-

\_

EM ALGORITHMS FOR OPTICAL POSITION
SENSING

Myles Black-Ingersoll, David Lavy and Joshua Rapp

May 2, 2016
Boston University

Department of Electrical and Computer Engineering

Technical Report No. ECE-YYYY-NN

~

/

BOSTON
UNIVERSITY



EM ALGORITHMS FOR OPTICAL POSITION SENSING

Myles Black-Ingersoll, David Lavy and Joshua Rapp

BOSTON

UNIVERSITY

Boston University
Department of Electrical and Computer Engineering
8 Saint Mary’s Street
Boston, MA 02215

www.bu.edu/ece

May 2, 2016

Technical Report No. ECE-YYYY-NN



Contents

1 Introduction 1
2 Literature Review 1
3 Problem Statement 1
3.1 Photodetection Model . . . . . .. ..o 1
3.2 Position Estimation of a Single Static Beam . . . . .. .. ... ... 2
3.3 Position Tracking of a Single Moving Beam . . . . . . . .. ... ... 3
3.4 Position Estimation of Multiple Static Beams . . . . ... ... ... )
3.5 Position Tracking of Multiple Moving Beams . . . . . . . . ... ... 5)
4 Implementation 6
4.1 Data Generation . . . . . . . .. .. 6
4.2  Algorithm Implementation . . . . . . . ... ... ... ... ..... 6
5 Experimental Results 6
5.1 Single Beam Estimation . . . . .. .. .. .. ... ... ... ... 6
5.2 Multi-Beam Tracking . . . . . . .. . .. ... o 8
6 Conclusions 9
7 Description of Individual Effort 9
A Algorithms 14
B Matlab Code 17
B.1 Data Generation . . . . . .. .. . .. ... ... 17
B.2 EM Algorithms . . . . . .. . ... 21
B.3 Beam Tracking Functions . . . .. .. .. ... ... ... ... 28
B.4 Performance Evaluations . . . . . . ... ... ... 0. 40

B.5 Test Scripts . . . . . . .. 48



List of Figures

1

Kalman filter cycle . . . . . .. .. ... o
Results from investigations with a single static beam for p = 40, A, =
50, A,, = 50: (a) shows a sample image of data collected at detector,
(b) shows clustering performed by k-means for k = 2. The performance
of EM is evaluated for estimation against the centroid and k-means
methods (choosing the cluster with the most detections) for (¢) Ay = 50
and (d) Ay = 500. The performance closely mirrors that in [1].

Estimation performance for unknown beam covariance. Adaptively
estimating the covariance within the EM algorithm only marginally
improves position estimation performance over the “static” algorithm
where a circularly symmetric beam is assumed. . . . . . .. ... ..
Determining whether data has a signal present: (a) Performance eval-
uation vs. SNR; (b) Sample processing step, with empirical 1D CDFs
compared to theoretical CDFs of possible distributions. . . . . . . ..
Results for motion tracking with two beams moving at constant rates.
Even when the two beams pass in close proximity of one another, the
Hungarian algorithm successfully matches the position estimate to the
correct beam, and the Kalman filter ensures the two beams are still
distinguished. . . . . . . . ...

i

11

12

12

13



EM Algorithms for Optical Position Sensing

1 Introduction

Optical position sensing is a common task in calibration and tracking procedures.
In applications as diverse as star tracking [1], satellite navigation [2], and medical
x-ray localization [3], the exact position of a source signal captured by a detector
array is needed to properly align a target. For many signals, such as those from weak
stars or rapidly moving satellites, the resulting accumulated photon flux is low. In the
presence of significant ambient noise and detector dark counts, the low signal-to-noise
ratio (SNR) makes position estimation a difficult problem [2].

In this report, we investigate the Expectation-Maximization algorithm as a tool for
estimating signal positions on a two-dimensional detector when detection counts are
low. We evaluate performance at different noise levels compared to other standard
approaches and test the effects of removing certain classical assumptions from the
solution. Finally, we expand from the case of estimating a beam position at a single
static frame to the practical challenge of tracking multiple moving targets.

2 Literature Review

For the problem of identifying the arrival time of a one-dimensional waveform in ad-
ditive white Gaussian noise, the optimal solution is given by a correlator or matched
filter [4]. This filter has an impulse response equal to the time-reversed input wave-
form. The problem of finding the position of a signal on a two-dimensional detector
is analogous to the 1D problem in time [5], so a matched filter would seem to be a
simple solution to the optical position sensing problem. Unfortunately, both 1D and
2D formulations require knowledge of the pulse shape and input SNR [6], which are
parameters that may not always be known. Furthermore, the additive white Gaus-
sian model of noise is a poor fit for the low-flux photodetection case that we consider.
Instead, we aim to use an adaptable solution that can be broadly applied to many
contexts without too many a priori assumptions. The EM algorithm is one such
solution and will be thoroughly explored in the following report.

3 Problem Statement

3.1 Photodetection Model

A laser beam orthogonal to the detector surface has an intensity that can be described
by a circularly symmetric bivariate Gaussian distribution:

T p) = eXp{_(X—mT(X—u)}’ (1)

21 p? 2p?

where x = [, x5]" describes any point on the detector, g = [p1, po]’ denotes the
beam’s center, and p characterizes the beam’s width [7].
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Measurements at the photodetector are characterized by an inhomogeneous mixed
Poisson process with intensity

A(X, 1) = As(x,t) + A\n(x,1). (2)

The first component is an inhomogeneous signal process due to the incident beam with
intensity As(x,t) = AgI(x; p). The second component is a homogeneous noise process
with intensity A\, = ‘f}T"”, where A is the detector area. This noise is a combination of
dark counts—false registrations of detections due to non-ideal detector properties—
and photons from ambient light, both of which are uniformly distributed over the
detector’s surface and can thus be described by a single term.

3.2 Position Estimation of a Single Static Beam

In the ideal case where A\, = 0, all detections are due to the signal source, so the
maximum likelihood position estimate fiy,;, is simply the centroid of the data [7].
Unfortunately, in any practical setting, A, > 0, so there is no closed-form solution for
farr- Instead, numerical methods are needed to form a beam position estimate.

Expectation-Maximization One common numerical method for parameter esti-
mation when closed-form solutions are not available is the Expectation-Maximization
(EM) algorithm introduced in [8]. The basic approach of EM is to view experimental
observations X as being incomplete data. The missing components of the experiment
are called latent or hidden variables Y, which are random and only indirectly ob-
served through X. Together, X and Y combine to form the complete data. Since
many possible latent variable formulations are possible for the same observed data,
the challenge of EM is in properly describing the complete data so that maximum
likelihood analysis is computationally tractable [7].

Given an incomplete data set X with unknown data Y and parameters 6, the EM
algorithm follows these basic steps to estimate 6:

1. Determine the log-likelihood function log (p (x,y|@)) of the complete data set.

2. Take the conditional expectation of the log-likelihood given X and the current
0" estimate:

Ey|x gt [log(p(z, yW“)) |z, et]

3. Maximize the expectation in step 2 to determine the updated parameter esti-
mate 011
arg max By x g log(p(z, y|0"™)) |z, 0']
6t+1

4. Repeat steps 2 and 3 until the parameter estimate has converged.

The benefit of using this formulation is that the incomplete data log-likelihood is
guaranteed to converge to a limiting value, although there is no general guarantee of
that value being the global maximum [7] [8].
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Applying the EM Algorithm to Optical Position Sensing In the case of
optical position sensing, the parameter to be estimated is the center fi; of an optical
beam on a 2D grid. The incomplete data are the locations {x;}, i =1... N of the N
photon detections. The hidden data m; € {s, n} are marks denoting the detection
sources as either signal or noise. Combined, we have the complete data described as
{(xi, m;)}, i =1...N. The key intuition is that, given the marks for each detection,
the optimal estimate would use only the detections due to signal. However, since we
observe only the incomplete data, we must estimate the marks along with the beam
position.
From [1], the incomplete data log-likelihood function is given as

L(ps) = — /A A (x)dx — /A M (x)dx + /A log[A(x) + A (x)|Ndx,  (3)

which is intractable unless )\, = 0. However, reframing parameter estimation for the
complete data model, the expression simplifies as

Lei(x) = Ls(x) + Ln(x)
= —/ As(x)dx + / log(As(x))Ndx(my) (4)
A

A
since the noise component provides no information about the beam position, so de-
tections due to noise can be ignored.
The Ezpectation Step of the EM algorithm yields weight terms for each point,
representing the probability that a detection is due to signal:

(1)
A 5)

Ewawmw%wwz—/

)\S(X)dx+/w(x, D) log(As(x)) Ndx.
A

A

The Mazimization Step of the EM algorithm varies depending on the beam shape.
In this instance, the beam is assumed to be circularly symmetric and Gaussian, so
setting the gradient of (3.2) to zero yields

/ w(x, )T (x — p)Ndx =0 (6)
A
N o oi(x . 1) x
N i=1 Wi Xy, 7 )X
N(t+1) — Z 1 ( ) (7>

SN wi(xi, p®)

3.3 Position Tracking of a Single Moving Beam

Including a Prior for the Beam Position Once the position has been estimated
for the static case using the EM Algorithm, we analyze a moving beam and focus on
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Figure 1: Kalman filter cycle

target tracking. This problem can be thought of as applying the EM algorithm to
multiple frames sampled as the beam traverses some unknown path. We assume the
path is continuous, not a series of random jumps. Therefore we can include a prior on
the beam position for all but the estimate for the first frame. For a given frame, we
assume that the prior is a circularly symmetric Gaussian centered at the final position
estimate of the previous frame [1]. The standard deviation, ¢ of the Gaussian can be
estimated by taking the average of the distances between the previous min{M, Ny—1}
frames’ final position estimates (where M is the maximum number of frames to use
and Ny is the current frame number) and multiplying that average by a regularization
parameter.

Applying Kalman Filtering for beam tracking Since applying EM at each
frame will cause jumps due to noise changing from one frame to the next, we apply
a linear Kalman filter to smooth out beam tracking. The Kalman filter is a set of
mathematical equations that provides an efficient computational (recursive) means to
estimate the state of a process, in a way that minimizes the mean-squared error [9].
It is currently used for many different applications including filtering noisy signals,
guidance, navigation and control of vehicles. The filter addresses the problem of
estimating the state x; of a discrete-time controlled process, which is governed by a
dynamic model that relates the previous state at time k — 1 with the current state,
denoted as:
ry, = Axp_y + Buy, + wy_q,

where A is the state transition model which is applied to the previous state x,_; and
B is the control-input model applied to the control vector u,. A measurement model
which relates the current state to the measurement z; is denoted as

2y = Hxp + vy,

where H is the observation model, which maps the true state space into the ob-
servation space. The variables wy and v, are the process and measurement noise
respectively and they are assumed to be independent white Gaussian noise:

p(w) ~ N(0,Q), p(v) ~ N(0, R).

The two covariance matrices () and R are assumed to be constant. Finally, the
Kalman Filter cycle is divided in two steps: a prediction and a correction step. The
first step predicts the current state based on the previous state and the commanded
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action. The second step observes the measurements, and judges whether they are
reliable based on the overall state estimate. This filter works by predicting the current
state using the prediction equations, followed by checking the quality of the prediction
using the update equations. This process is repeated continuously to update the
current state. Figure 1 shows a block diagram of the procedure.

The specific equations for the time and measurement updates are presented below:

Time update (Prediction) | Measurement update (Correction)
x;:Awk,l—l—Buk Kk:PI;HT(HPI;HT+R)_1
P, = AP, AT +Q zy =z, + Ky(z, — Hay))

Py = (I — KuH) Py,

The time update equations project the state and covariance estimates forward
from time step k — 1 to step k. The measurement update equations first compute the
Kalman gain K. After this step we incorporate our measurement z; and generate an
a posteriori state estimate. The final step is to obtain an a posteriori error covariance
estimate. After each time and measurement update pair, the process repeats and uses
the previous a posteriori estimates and predicts new a posteriori estimates.

3.4 Position Estimation of Multiple Static Beams

The above EM algorithm was designed for a single position estimate, so identifying the
location of multiple beams requires some pre-processing. Given k beams, where the
number of beams is known, we want to partition the set of photoevents into clusters of
signal photoevents corresponding to each beam. If the data is separated into different
beam clusters, the EM algorithm can be applied to each cluster separately providing
estimates of each position.

Ideal clusters only have signal photoevents from a single beam along with some
noise photoevents. The worst case scenario is when clusters are entirely due to noise.
The EM algorithm cannot provide an accurate beam position prediction if it is only
provided with noise photoevents. For this reason we chose to use the k-medians
algorithm as our multi-beam clustering algorithm. It is simple to implement, and
unlike the k-means algorithm it does not include a squared term that heavily penalizes
outlying noise photoevents.

3.5 Position Tracking of Multiple Moving Beams

Given the current estimated positions for the position of the beams, we now move
onto tracking these beams. The main problem is that several beams are detected
but they have no identifying characteristics, making them difficult to track. Using
the Kalman filter as before for state estimation, we now add an assignment step to
match the detected positions to associated beams by the Hungarian algorithm [10].
By solving the assignment problem, it is then possible to do the correction step, as
every beam will have its correct prediction. We set a threshold on the maximum
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distance between the predicted and observed state, so in the case that the beam gets
lost or incorrectly mismatched, the system will just predict the position of the beam
up to a certain number of frames until it decides that the beam is no longer present.

4 Implementation

4.1 Data Generation

Unfortunately, no real photodetection data was available for testing, so the only
available results are based on simulated data sets. Omne upside of this approach,
however, is that performance can be evaluated quantitatively, since the true beam
positions are known for simulated data. Data sets were generated based on the model
introduced in [1]. Given the detector size (i.e., rows and columns of detector matrix,
yielding area A), the beam size (given by the standard deviation p) and the signal
and noise photoconversion rates (Ag, A,,), a matrix of detections was generated. First,
a Poisson random number generator determined the number of noise detections N,
and signal detections Ny by

N,, ~ Poisson(A,,), Ny ~ Poisson(Ay).

The true signal position g was chosen uniformly at random on the detector, with
some constraints to avoid a position too close to the detector edge so that detections
all land on the detector surface. NN, noise detections were generated uniformly at
random over the entire detector surface; N, signal detections were generated from a
circularly symmetric bivariate Gaussian distribution A/(u, p*I5) and were rounded to
the nearest detector element. Slight modifications were made for the cases of a beam
with an unknown shape or for multiple beams. For a moving beam, data was also
simulated in this way, with p falling along a deterministic path.

4.2 Algorithm Implementation

The basic EM algorithm implementation is found in Algorithm 1. Modifications for
adding a prior when tracking a moving beam, modifications for multiple beams, and
integration with the Kalman filter and Hungarian algorithm are listed in Appendix
A, with Matlab code included in Appendix B.

5 Experimental Results

5.1 Single Beam Estimation

Figure 2 shows the results of position estimation for a single static beam. Figure
2a shows a sample image of a detector, where a small number of photons have been
detected. The EM algorithm clearly outperforms the centroid as a beam position
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Algorithm 1 Expectation-Maximization

1: Inputs:
287A87An7 A7 X = {Xla ce 7Xn}
2: Initialize:
~ (0 A~ n
g ) = Hcoc = %ijl X
— A
An = ll Al
3: fort=1,... t,a Or ,1?) = ﬂﬁH) do
~ (f—1 _
L M) = e (3 (x - )2 (x - )
~(t-1) D)
5 'LU(X, Hs ) - /\S(ﬂgt—l))+/\
6 ol = Simwesal U
° S wixgal )
7: end for

estimate. Figure 2b shows a different instance of detections for the same parameters,
with data clustered via k-means for £ = 2. We observe that the centroid of one of the
clusters is very near the true position estimate, suggesting that hard clustering may
be an alternative method of position estimation. The beam detections have smaller
spatial variance than the uniformly distributed noise, so we could choose the cluster
containing more points as a “signal cluster,” since the signal detections contribute
little to the within-cluster-sum-of-squares if the centroid is close to the true x.

Figures 2c and 2d show the trends for these types of estimation for a larger range
of parameters. For A, = 50 and 500, we investigated the performance for 100 estima-
tion trials in terms of the input SNR. The performance of EM vs the centroid closely
mirrors that in [1], with EM producing significantly more accurate position estimates
for all SNRs. The k-means method consistently performs worse than EM but better
than the centroid in terms of output SNR, although for & = 3, the low-SNR per-
formance approaches that of EM. This intuitively makes sense, since k-means is less
tailored to the particular problem than EM, but it does reduce the noise contribution
to the position estimate relative to the centroid method.

5.1.1 Position Sensing for Unknown Beam Covariance

Beam position estimation was also evaluated for a beam of an unknown size/shape
as given by the covariance 3. Figure 3 shows results versus SNR for A, = 500,
which was similar across other signal detection rates. The basic version of EM as in
Algorithm 1 was tested against a modified version where the beam covariance was
also estimated at each iteration. The usual data generation function was modified
to create signal detections of a correlated bivariate Gaussian with random marginal
variances. It was assumed for this investigation that the mean marginal standard
deviation was p = 40, which matched the parameter for our circular Gaussian beam
previously. The key difficulty for the modified algorithm was finding a suitable co-
variance initialization. A first attempt using the global covariance proved no better
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than the centroid at position estimation. Eventually, cross-validation determined that
the best initialization was with a circularly symmetric Gaussian with standard devi-
ation slightly larger or smaller than p = 40. Figure 3 shows that choosing p = 35
was slightly better at high SNR and p = 45 was slightly better at low SNR, but
in either case, there was little benefit in performance for position estimation over
using the basic, non-adaptive EM. This result justifies our continued assumption of
circular symmetry, even though in practice, the incident beams may not be perfectly
orthogonal to the detector.

5.1.2 Beam Presence Detection

While our previous performance evaluations of EM position estimation had performed
well, we had always assumed the presence of a signal in the data. In practical scenar-
ios, however, it may not always be known whether a beam signal is indeed present
at the detector. This is particularly important for a moving beam, since position
estimates from only noise would lead to poor tracking over time. Approaching the
problem of beam detection as a binary hypothesis test, the difficulty with deciding
whether a beam is present is that the beam position itself is unknown. In order to
make such a decision we followed a simple procedure: 1) make a position estimate
s with EM, regardless of whether signal is present; 2) for the given signal and noise
rates, calculate the theoretical CDFs for only noise and for a mixture of signal and
noise, assuming the signal is located at fis; 3) compare the empirical CDF from the
data to the theoretical CDF's; 4) decide whether signal is present depending on which
theoretical CDF is closest to the data in terms of mean-squared error. In practice, cal-
culating the empirical CDF for low-flux data is unreliable, since the detector matrix
is extremely sparse. However, since both the signal and noise had independent coor-
dinates, a simple workaround was to integrate detections over the rows and columns
and compare the 1D results to the theoretical results separately. Figure 4 shows the
results for a range of input SNRs. The classification of signal presence or absence
performed perfectly for input SNR greater than zero, so only low-SNR performance
is shown. It is clear from the plot that higher signal detection rates make detecting
beam presence much easier, since the correct classification rate (CCR) is consistently
higher.

5.2 Multi-Beam Tracking

Figure 5a shows the true and estimated paths for two incident beams. The Kalman
filtered estimates follow the true path fairly smoothly even when the beams overlap.
The largest error in either beam is only about 6% of the detector’s diagonal size, as
shown in Figure 5b. Figures 5¢ and 5d provide an additional visualization of the path
tracking.

The quality of the beam tracking during the overlap is largely due to the inclusion
of the prior based on previous beam positions. When the beams cross one another, the
k-medians algorithm clusters the signal photoevents together, and creates a second
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cluster composed almost entirely of noise. Without a prior, the EM algorithm would
produce one good beam estimate and one estimate in the center of the noise cluster.
This would be acceptable if the beams passed one another quickly, as the Kalman
filter can predict the path for a few frames at a time before losing track of it. In this
case the beams stay close together for numerous frames, and the prior is required to
force the EM algorithm to produce estimates based on the beams’ speed of travel.
However, if the beams remained close together for too long, the standard deviation
of the prior would grow, and eventually the EM estimates would end up completely
degraded by noise.

6 Conclusions

Through testing against other methods and successful integration within larger sys-
tems, it is clear that the EM algorithm is a high-performing tool for optical position
sensing. Expectation Maximization proved to be best method for beam position esti-
mation at an individual frame, with virtually no decline in performance even when the
beam shape was unknown. Taking advantage of the accuracy of the estimation results
using EM, the algorithm was further useful as a preprocessing tool for a number of
systems. The position estimate produced by EM was sufficient to decide whether data
included a beam signal with high accuracy, even at low SNR. Furthermore, in track-
ing the motion of single or multiple moving beams, EM provided reasonable position
estimates that could be improved on with an applied Kalman filter and matching
algorithms.

While this work covers a number of applications of EM for optical position sens-
ing, there are countless variations that we could have implemented. A more general-
purpose version of the algorithm would perform estimation with even fewer assump-
tions, such as unknown signal and noise rates Ay and A,,. A multiple-beam tracking
application would also benefit from a nonparametric implementation, where the num-
ber of beams is not known in advance, so the position estimates could adapt to beams
leaving the detector surface or new beams entering. While the combination of k-means
and EM worked adequately for multiple beams when the centers were sufficiently sep-
arated, future adjustments could compare this method with the traditional Gaussian
Mixture Model, which has its own EM implementation. Finally, instead of applying
the Kalman filter after EM produces position estimates, a more advanced algorithm
could use the Kalman prediction step to adjust the prior on the EM estimate.

7 Description of Individual Effort

Josh Implementation of data generation from model, implementation of EM algo-
rithm with unknown covariance Y, performance evaluations for known covari-
ance (EM vs k-means and centroid) and unknown covariance, performance eval-
uation of beam presence detection



EM Algorithms for Optical Position Sensing

10

Myles Implementation of EM algorithm, EM algorithm with prior, prior param-

eter estimation, multi-beam data generation, and multi-beam static position
estimation.

David Implementation of the Kalman Filter for single beam tracking using both

static and dynamic EM provided by Myles, implementation of the Kalman Filter
integrated with the Hungarian Algorithm for multibeam tracking, performance
statistics of both trackings.
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Figure 2: Results from investigations with a single static beam for p = 40, A, =
50, A, = 50: (a) shows a sample image of data collected at detector, (b) shows
clustering performed by k-means for k = 2. The performance of EM is evaluated for
estimation against the centroid and k-means methods (choosing the cluster with the
most detections) for (¢) Ay =50 and (d) Ay = 500. The performance closely mirrors
that in [1].
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successfully matches the position estimate to the correct beam, and the Kalman filter
ensures the two beams are still distinguished.
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A Algorithms

Algorithm 2 Expectation-Maximization with Prior

1

DN

3
4

5:

6:

7
8:

9

: Inputs:
237 A57 Am Aa Xuc = {Xl,um BRI Xn,uc}; ﬂs,prev.

. Initialize:
~ (0 A~ n
l/’u(@ ) = Hcog = %Z]‘:l X
)\ — Ay
no 4]

: Center Data: X = Xc — fbs prev.
(®)

cfort=1,... ta Or s’ = Y do
~(t—1 _
(™) = s exp (<5 - )57 (x - )
A(t_l) J— As hgt_l)
w(x, s ) = ﬁ
A0 — T vl

S n L (t—
S wixgal ) +(p/0)?

end for
: Shift final estimate back to original coordinate system

Algorithm 3 Expectation-Maximization for Multiple Beams

1

: Inputs:
Yo, A, A, A X ={x1,...,x, 1 k
: Cluster: Apply k-medians algorithm
: for cluster =1,...,k do
Apply EM algorithm to cluster
end for
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Algorithm 4 Kalman Filter for Single Beam Tracking

1: Inputs:
Z={z,...,z,},R,Q,P,A H,B
2: Initialize:

X0 = 727
3: for k=1,... numObservations do
4: Prediction:
5: xr, = Ax_1 + Buy
6: Pk_ = APk_lAT +Q
7 Correction:
8: K, =P H'(HPZH" + R)™!
9: z, =z, + Ky(2x — Hzy)
10: P, = ([—KkH)Pk_
11: end for

Algorithm 5 Kalman Filter and Hungarian Algorithm for Multi Beam Tracking

1: Inputs:
Z ={z,,...,z,}(For each beam), R,Q, P, A, H, B
2: Initialize:

X0 = 72y
3: for k =1,...,numObservations do
4: for beam =1, ..., numBeams do
5: Prediction (for each beam):
6: xr, = Axp_1 + Buy
7: Pk_ = APk_lAT =+ Q
8: end for
9: Hungarian Algorithm (Matching predictions with measurements for

each beam)

10: for beam =1, ..., numBeams do
11: Correction (for each beam):
12: K, =P H'(HP H" + R)™!
13: x = x, + Ki(2 — Hxp))
14: Pk:([—KkH)P];
15: end for

16: end for
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Algorithm 6 Hungarian Method
1: Inputs:
Cost Matrix: Assignment of beam (in rows) to measurement (in

columns)
2: Subtract the smallest entry in each row from all the entries of its row.

3: Subtract the smallest entry in each column from all the entries of its column.

4: Draw lines through appropriate rows and columns so that all the zero entries of
the cost matrix are covered and the minimum number of such lines is used.

5: Test for Optimality: (i) If the minimum number of covering lines is n, an optimal
assignment of zeros is possible and we are finished. (ii) If the minimum number
of covering lines is less than n, an optimal assignment of zeros is not yet possible.
In that case, proceed to 6.

6: Determine the smallest entry not covered by any line. Subtract this entry from
each uncovered row, and then add it to each covered column. Return to 4.
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B Matlab Code

B.1 Data Generation
B.1.1 Generate Data

function [ sig_pos, matDetect, listDetect ,labels | =
fcn_generate_data( Lr,Lc,rho,Lam.s,Lamn )

YFCN.GENERATE DATA takes in parameters about signal and noise
detection

%rates and generates a dataset based on the model of a circular
Gaussian

%signal and uniform noise.

%

% The output includes both a 2D-detector view of detections (
better for visualization)

% as well as a vector of detection coordinates (easier to process
) -

%

%

K3k 3Rk sk R sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskosk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk skosk skosk ok sk ks

% Input Parameters

Vi

% [Lr, Lc] = size of detector array represented by matrix
% rho = signal standard deviation

% sigma = prior standard deviation

% Lam_s = beam photo—conversion rate

% Lam.n Noise photoconversion rate

%

% Output Parameters

%

% sig_pos = coordinates of true signal position
% matDetect = matrix of signal detections

% listDetect = list of detection coordinates

%

K3k sk ok 3k 3k ok 3k skok ok sk sk ok skokosk sk sk sk sk sk sk skok sk sk sk ok sk sk sk sk sk sk sk sk skokosk sk sk ok sk sk ok skok sk sk ok sk sk sk skok sk skok sk sk sk skok ok skok ok

sig_-pos = [rho+round ((Lr—2«rho)xrand), rho+round ((Lc—2%rho)x*rand)
I

numSig = poissrnd (Lam_s);
numNoise = poissrnd (Lamn) ;

sigPreDetect = [sig_-pos(1)4round(rho*randn(numSig,1)),sig_pos (2)+
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round (rho*randn (numSig,1) ) ];

sigDetect = sigPreDetect (sigPreDetect (:,1) >0,:);
sigDetect = sigDetect (sigDetect (:,2) >0,:);
sigDetect = sigDetect (sigDetect (:,1)<=Lr,:);
sigDetect = sigDetect (sigDetect (:,2)<=Lc,:) ;

noiseDetect = [randi(Lr,[numNoise, 1]),randi(Lc,[numNoise, 1])];
listDetect = [sigDetect; noiseDetect ];
labels = [ones(length(sigDetect) ,1);zeros(length(noiseDetect) ,1)

I

matDetect = zeros(Lr,Lc);

for ii= 1l:length(listDetect)
matDetect (listDetect (ii ,1) ,listDetect (ii ,2)) = 1;
end

B.1.2 GGenerate Data to Detect Distribution

function [sig_pos ,matDetect,listDetect ,label] =
fcn_generate_distribution (Lr,Lc,rho,Lam_s,Lam n)

YFCN_GENERATE DISTRIBUTION takes in parameters about signal and
noise detection

%rates and generates a dataset based on the model of a circular
Gaussian

%signal and uniform noise.

%

% The output includes both a 2D-detector view of detections (
better for visualization)

% as well as a vector of detection coordinates (easier to process
)

%

%

K3k 3k sk oSk R sk sk sk sk R sk sk sk sk R sk sk sk Sk sk sk sk sk Sk sk skoskosk sk sk skosk sk sk sk sk skoskoskosk sk sk sk sk sk skosk sk sk sk skosk sk sk sk skosk sk skosk skosk sk skosk skosk ok sk ks

% Input Parameters

Vi

% [Lr, Lc|] = size of detector array represented by matrix
% rho = signal standard deviation

% sigma = prior standard deviation

% Lam_s = beam photo—conversion rate

% Lam.n Noise photoconversion rate

%

% Output Parameters

%

% sig_pos = coordinates of true signal position
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% matDetect = matrix of signal detections
% listDetect = list of detection coordinates
%o

K3k 3Rk Sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk sk skosk sk sk sk sk skosk sk sk sk skosk skosk sk skosk skosk sk sk ke

numSig = poissrnd (Lam.s);
numNoise = poissrnd (Lamn);

if randi([0 1])
sig_pos = [rho+round ((Lr—2%rho)*rand), rho+round ((Lc—2«rho)=*
rand) |;
sigPreDetect = [sig_-pos (1)+round(rho*randn(numsSig,1)) ,sig_pos
(2)+round (rhoxrandn (numSig,1)) |;

sigDetect = sigPreDetect (sigPreDetect (:,1) >0,:);
sigDetect = sigDetect (sigDetect (:,2) >0,:);
sigDetect = sigDetect (sigDetect (:,1)<=Lr,:);
sigDetect = sigDetect (sigDetect (:,2)<=Lc,:) ;

noiseDetect = [randi(Lr,[numNoise, 1]),randi(Lc,[numNoise,

1) 1;

listDetect = [sigDetect; noiseDetect];

label = 1;
else
sig_pos = [0,0];
numDetect = numSig+numNoise;

listDetect = [randi(Lr,[numDetect, 1]),randi(Lc,[numDetect,
1]) J;
label = 0;
end

matDetect = zeros(Lr,Lc);

for ii= 1l:length(listDetect)
matDetect (listDetect (ii ,1) ,listDetect (ii ,2)) = matDetect(
listDetect (ii ,1),listDetect (ii ,2))+41;
end

B.1.3 Generate Data with Unknown Covariance Matrix

function [sig_pos ,Sigma_cov ,matDetect,listDetect ,labels]| =
fcn_generate_correlated_data( Lr,Lc,sig_hat ,Lam.s,Lamn )

Y9FCN_GENERATE DATA takes in parameters about signal and noise
detection

%rates and generates a dataset based on the model of a circular
Gaussian
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Y%signal and uniform noise.

%

% The output includes both a 2D-detector view of detections (
better for visualization)

% as well as a vector of detection coordinates (easier to process
).

%

%

Kok ok sk ok ook ok ok ok ok ok ok ook ok sk ok ok ok ok ok ok ok ok ok ok kok ook ok sk ok ok sk ok skok ok sk ok ok ook ok sk ok Kok ok ok ok sk k ok ok ok ok ok 3

% Input Parameters

Vi

% [Lr, Lc] = size of detector array represented by matrix
% rho = signal standard deviation

% sigma = prior standard deviation

% Lam_s = beam photo—conversion rate
% Lam_n Noise photoconversion rate

%

% Output Parameters

%

% sig_pos = coordinates of true signal position
% matDetect = matrix of signal detections

% listDetect = list of detection coordinates

o

0
K3k 3k k3K 3k ok 3k sk Sk R Sk sk koSk R Sk sk Sk ok Skoskok sk ok sk sk Sk sk skoskok Sk ok koskoskoSk ok Sk sk skoSk sk Sk sk sk Sk sk kosk sk Sk sk kosk sk skosk ok sk R Skok skosk ok sk ks

sig_pos = [sig_hat+round ((Lr—2x«sig_hat )srand), sig_hat+round ((Lc
—2xsig_hat )*rand) |;

numSig = poissrnd (Lam_s);
numNoise = poissrnd (Lamn) ;

sigl = randi([sig_-hat/2,3xsig_hat /2]);
sig2 = randi([sig_-hat /2,3xsig_hat /2]);

rho = —142xrand (1) ;

Sigma_cov = [sigl "2, rhoxsigl*sig2; rhoxsiglxsig2, sig2 " 2];
sigPreDetect = round (mvnrnd(sig_pos ,Sigma_cov ,numSig));
%sigPreDetect = [sig_pos(1)+round(sig_-hatsrandn(numSig,1)),

sig_pos (2)4round(sig_hat+randn(numSig,1))];

sigDetect = sigPreDetect (sigPreDetect (:,1) >0,:);
sigDetect = sigDetect (sigDetect (:,2) >0,:);
sigDetect = sigDetect (sigDetect (:,1)<=Lr,:);
sigDetect = sigDetect (sigDetect (:,2)<=Lc,:);
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noiseDetect = [randi(Lr,[numNoise, 1]),randi(Lc,[numNoise, 1]) ];
listDetect = [sigDetect; noiseDetect |;
labels = [ones(length(sigDetect) ,1);zeros(length(noiseDetect) ,1)

s

matDetect = zeros(Lr,Lc);

for ii= 1l:length(listDetect)
matDetect (listDetect (ii ,1) ,listDetect (ii ,2)) = matDetect(
listDetect (ii ,1),listDetect (ii ,2))+1;
end

B.2 EM Algorithms
B.2.1 Basic EM

function xhats = staticEM (detector_data ,nonzero_coords ,rho,LS,LN,
itmax)

% use the expectation maximization algorithm to estimate the
position on an

% optical beam on a 2D detector array

%

% Inputs:

%

% detector_data — an MxN matrix of photoevent counts at each grid
point

%

% nonzero_coords — Lx2 matrix of coordinate pairs [row col; row
col; row

% col; ...] where L is the number of locations where at least one
photo count occured

%

% rho — beam spatial variance (scalar double) (probably in units
of num

% grid points)

%

% LS — mean # signal photoconversions

%

% LN — mean # noise photoevents

%

% itmax — maximum number of iterations allowed (default Inf)

%

% Outputs:

%

% xhat — the position estimate [row position column position ]
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if nargin = 5
itmax = Inf;

end

L = size(nonzero_coords ,1);

num._row
num_col

= size (detector_data ,1);
= size (detector_data ,2);

A = num_rowsnum_col;
R = diag ([rho"2 rho"2]);
Rinv = inv(R);

% get initial estimate (COG estimate)

cogsum = 0;
for nzpair = 1:L
row = nonzero_coords (nzpair ,1);

col

= nonzero_coords (nzpair ,2);

rc_pair = [row col];
counts = detector_data (row, col);
cogsum = cogsum + countssrc_pair;

end
xhat =
xhat =

cogsum / sum(detector_data (:));
round (xhat) 7;

% apply EM

lambdaN

ithum =

= LN/A;
1.

xhats{1} = xhat;
while true

num_sum = 0;
denom_sum = 0;

for

end

nzpair = 1:L

row = nonzero_coords (nzpair ,1);
col = nonzero_coords (nzpair ,2) ;
d = [row; col];

lambdaS = LS/(2%pi*rho"2) % exp(—0.5%(d — xhat) ’«Rinvx(d

— xhat));
w = lambdaS/(lambdaS + lambdaN);

counts = detector_data (row,col);
num_sum = num-sum + counts x w x d;
denom_sum = denom_sum 4 counts x w;
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xhat_tminusl = xhat;
xhat = round (num_sum/denom_sum) ;

if isequal(xhat,xhat_tminusl) || itnum = itmax
break ;

end

ithum = itnum + 1;

xhats{itnum} = xhat;

end

B.2.2 EM Unknown Covariance

function [xhats, Rhats] = variableEM (matDetect ,listDetect ,

%

%
%o
%o
%o
%o

%o
%o

%
%o
%o
%o
%o
%o
%o
%o
%o
%o

sigma_hat ,Lam_S,Lam N,itmax)

use the expectation maximization algorithm to estimate the
position on an

optical beam on a 2D detector array

Inputs:

matDetect — an MxN matrix of photoevent counts at each grid
point

nonzero_coords — Lx2 matrix of coordinate pairs [row col; row
col; row

col; ...] where L is the number of locations where at least one
photo count occured

LS — mean # signal photoconversions

LN — mean # noise photoevents

itmax — maximum number of iterations allowed (default Inf)

Outputs:

xhat — the position estimate [row position column position |

if nargin = 5

itmax = Inf;

end

numDetect = size (listDetect ,1);
num_row = size (matDetect,1);
num_col = size (matDetect ,2);
Area = num_rowsnum_col;
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%% Initialization

% x estimate

cogsum = 0;
for nzpair = 1l:numDetect
row = listDetect (nzpair,1);
col = listDetect (nzpair ,2);
rc_pair = [row col];
counts = matDetect (row, col);
cogsum = cogsum + countsxrc_pair;
end
xhat = cogsum / sum(matDetect (:));

xhat = round (xhat) ’;

% Covariance estimate
if sigma_hat==0
Rhat = ((listDetect —ones (numDetect,1)s*xhat’) '«(listDetect —
ones (numDetect ,1)*xhat ’) ) /numDetect ;
else
Rhat = diag ([sigma_hat "2;sigma_hat “2]);
end
Rinv = inv (Rhat) ;

% apply EM
lambdaN = Lam_N/Area;
ithum = 1;
xhats{1} = xhat;
Rhats{1} = Rhat;
while true
sigma_hat = sqrt(det(Rhat));

num_sum = O0;

denom_sum = 0;

R_num_sum = 0;

for nzpair = 1l:numDetect
row = listDetect (nzpair,1);
col = listDetect (nzpair ,2) ;
d = [row; col];

lambdaS = Lam_S/(2*xpixsigma_hat) x exp(—0.5%(d — xhat) '
Rinvx(d — xhat));
weight = lambdaS/(lambdaS + lambdaN);

counts = matDetect (row, col);
num_sum = num._sum + counts x weight * d;
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denom_sum = denom_sum 4+ counts *x weight;

Rnum_sum = R.num_sum+ weight*(d — xhat)*(d — xhat) ’;

end
xhat_tminusl = xhat;
xhat = round (num_sum/denom_sum) ;

Rhat = R_num_sum/denom_sum ;

if isequal(xhat,xhat_tminusl) || itnum = itmax
break ;

end

ithum = itnum 4+ 1;

xhats{itnum,1} = xhat;
Rhats{itnum,1} = Rhat;
end

B.2.3 EM with Prior for Dynamic Tracking

function xhat = dynamicEM(detector_data ,nonzero_coords ,prev_xhat ,
sigma ,rho ,LS,LN)

% use the expectation maximization algorithm to estimate the
position on an

% optical beam on a 2D detector array

%o

% Inputs:

%o

% detector_data — an MxN matrix of photoevent counts at each grid
point

%

% prev_xhat — the most recent position estimate (2x1 or 1x2
vector)

%o

% rho — beam spatial variance (scalar double) (probably in units
of num

% grid points)

%o

% LS — mean # signal photoconversions

%

% LN — mean $ noise photoevents

%

% Outputs:

%o

% xhat — the position estimate [row position column position |

if size(prev_xhat) = size(ones(1,2))
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prev_xhat = prev_xhat ’;
end
L = size(nonzero_coords ,1);
num_row = size (detector_data ,1);
num_col = size (detector_data ,2);
A = num_rowxnum_col;

Rinv = inv(diag ([rho"2 rho"2]));

xhat = prev_xhat;

% determine sigma

static_xhats = staticEM (detector_data ,nonzero_coords ,rho,LS,LN);
staticX = static_xhats{end};

if isempty (sigma)
sigma = 0.25%norm(staticX — prev_xhat);
end

% make prev_xhat the origin of the grid, get estimate and adjust
using prev_xhat to get value with true
% origin

lambdaN = LN/A;
while true

num_sum = 0;
denom_sum = 0;
xhat = xhat — prev_xhat;
for nzpair = 1:L
row = nonzero_coords (nzpair ,1);
col = nonzero_coords (nzpair ,2);
d = [row; col] — prev_xhat; % set previous xhat as
origin
lambdaS = LS/(2xpixrho”2) % exp(—0.5%(d — xhat) ’«Rinv
*(d—xhat));
w = lambdaS /(lambdaS + lambdaN);
counts = detector_data (row, col);
num_sum = num._sum -+ counts x w x d;
denom_sum = denom_sum 4+ counts * w;
end
xhat_tminusl = xhat 4+ prev_xhat;
xhat = round (num_sum/(denom_sum + (rho/sigma)"2));

xhat = xhat + prev_xhat; % reset origin
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if xhat = xhat_tminusl
% if norm(xhat — xhat_tminusl) <= 0
break ;
end

end

B.2.4 EM for Multiple Beams

function xhat = multibeamEM (detector_data ,nonzero_coords ,rho,LS,
LN, ...
prev_xhats ,sigma ,num_beams)

% use the expectation maximization algorithm to estimate the
position on an

% optical beam on a 2D detector array

%

% need to assign cluster to prev_xhat entry based on centroid
and

% prev_xhat position

%

% Inputs:

%

% detector_data — an MxN matrix of photoevent counts at each grid
point

%

% nonzero_coords — Lx2 matrix of coordinate pairs [row col; row
col; row

% col; ...] where L is the number of locations where at least one
photo count occured

%

% rho — beam spatial variance (scalar double) (probably in units
of num

% grid points)

%

% LS — mean # signal photoconversions

%

% LN — mean # noise photoevents

%

% prev_xhats — most recent position estimates (cell array, one
cell per beam) (use [] for static case)

%

% sigma — standard deviation for beam locationn (use|] for static
case)

%

% num_beams — number of beams

%
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20 % Outputs:

30 (/(/‘,‘

31 % xhats — the position estimates for each beam cell array of cell
arrays

32

33 [clusters ,Cs|] = kmeans(nonzero_coords ,num_beams,  'Replicates’ ,20,’
Distance’, ’cityblock ’);

34

35 % assign clusters to prev_xhats
36 cluster_prev_xhats = cell (1,length(prev_xhats)); % idx 1
corresponds to cluster 1, idx 2 to cluster 2, etc.

37 xhat_choices = prev_xhats;

ss if Tisempty (prev_xhats)

39 for cluster.num = 1:size(Cs,1)

10 cent = Cs(cluster_num ,:) ’; % centroid of cluster

a xhatDiffs = cellfun (@(x) norm(x—cent),xhat_choices); %
find distance for each xhat to centroid

12 [7,idx] = min(xhatDiffs); % index of the unassigned xhat
that is closest to centroid

43 cluster_prev_xhats{cluster.num} = xhat_choices{idx}; %
assign nearest unassigned xhat to cluster

m xhat_choices (idx) = []; % remove assigned xhat

45 end

46 end

47

48

19 xhat = cell (1,num_beams) ;

50 for beam num = 1:num_beams

51 beam_data = nonzero_coords(clusters = beam.num,:) ;

52 if isempty (prev_xhats)

53 xhats = staticEM (detector_data ,beam_data,rho,LS,LN);

54 xhat{beam num} = xhats{end};

55 elseif Tisempty(prev_xhats)

56 prev_xhat = cluster_prev_xhats{beam_num };

57 xhat{beam num} = dynamicEM (detector_data ,beam_data,
prev_xhat ,sigma ,rho ,LS,LN);

58 end

5o end

B.3 Beam Tracking Functions
B.3.1 Kalman Filter

1 function [estPath] = kalman2D (observ, Lr, Lc)
2 %% System parameters

3 dt = 1; % sampling interval

4t = 1; % starting frame
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u = .005; % control input

x_init = [observ(t,1); observ(t,2); 0; 0]; % Initial Conditions
x_est = x_init; % state estimate

noise = .1; % process noise intensity

noise_.x = 1; % noise for x and y are

noise_y = 1; % chosen by user and the same

visualize = 0; % visualize the tracking

numObserv = length (observ);

%% Kalman Filter params
R = [noise_x 0;
0 noise_y]; %coviarance of the noise
[dt"4/4 0 dt"3/2 0;
0 dt"4/4 0 dt"3/2;
dt"3/2 0 dt°2 0;
0 dt"3/2 0 dt"2] .x noise "2; % Covariance of the
observation noise
= Q; % Estimate of initial state
—[10dt 0; 01 04dt; 0010, 000 1]; %State
transition model
H =[1000; 010 0]; % Observation model
B (dt°2/2); (dt°2/2); dt; dt]; % Control—input model

Q

eV,

[
z = []; % The measurements of the node state
x_sta_est = []; % Initial state estimate
v_est = []; % Initial velocity estimate
P_est = P; % Initial covariance matrix

%% Perform Kalman Filter

% figure
for i = t:numObserv
img = ones(Lr, Le, 3); % Create a blank image for
visualization
z(i,:) = [observ(i,1) observ(i,2)]; % Current measurement

coordinates

% Time Update

x_est =A x x_est + B x u; % Project the state ahead

P =A xP x A" +Q; % Project the error covariance
ahead

% Measurement Update

K =P +«xH / (H* P x H + R); % Compute the Kalman
Gain

if Tisnan(z(i,:))
x_est = x_est + K * (z(i,:)’ — H % x_est); % Update

estimate with measurement
end
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P = (eye(4) — K x H) *x P; % Update error covariance

x_sta_est = [x_sta_est; x_est(1:2) ’];

v_est = [v_est; x_est(3:4) ];

x_estimation (i) = x_est(1); Y%estimation in horizontal
position

y_estimation (i) = x_est(2); %estimation in vertical position

if visualize==1
r = b;
ang=0:.01:2«pi; %parameters of nodes
imagesc (img) ;
set (gca, 'YDir’, "normal ")

% axis off
hold on
plot (r * cos(ang) + ground(i,l), r % sin(ang) + ground(i
,2), 7.g’); % Ground truth motion

plot (r * cos(ang) + z(i,1), r % sin(ang) + z(i,2), ~.b7);
% The measurement motion

plot (r % cos(ang) + x_est(1l), r % sin(ang) + x_est(2), .
r’); % The kalman filtered motion

hold off
legend ( 'Ground truth’, 'Measurement’, ’'Kalman Filter )
pause (0.05)
end

end

x_estimation = x_estimation ’;

y_estimation = y_estimation ’;

estPath = [x_estimation y_estimation |;

B.3.2 Kalman Filtering Multiple Beams

function [estPaths| = multitrack2D (X,Y,Lr,Lc,numBeams)
%% System parameters

dt = 1; % Sampling interval

startFrame = 1; % Starting frame

u = 0; % Control input

noise = .1; % process noise intensity

noise_x = 1; % measurement noise in the horizontal direction
(x axis).

noise._y = 1; % measurement noise in the horizontal direction
(y axis).

%% Kalman parameters
R = [noise_x 0;
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0 noise_y]; % Covariance of the noise
Q = [dt"4/4 0 dt"3/2 0;
0 dt"4/4 0 dt"3/2;
dt"3/2 0 dt"2 0;
0 dt"3/2 0 dt"2].xnoise "2; % Covariance of the
observation noise

P =Q; % Estimate of initial state

A =1J104dt 0; 01 0dt; 001 0; 000 1]; % State transition
model

B = [(dt"2/2); (dt"2/2); dt; dt]; % Control—input model

H =[1000; 010 0]; % Observation model

%% Multi tracking parameters

beamObserv = [X{startFrame} Y{startFrame} zeros(length (X{
startFrame }) ,1) zeros(length (X{startFrame}) 1)]’;

beamEstimation = nan(4,2000);

beamEstimation (:, 1:size(beamObserv, 2)) = beamObserv; % Initial
estimate

beamXestimation = nan(2000); % X estimate

beamYestimation = nan(2000); % Y estimate

P _est =P; % Initial covariance matrix

trackLost = zeros(1,2000); % How many times a track was not
assigned

numDetect = size (X{startFrame},1); % Initial number of
detections

numBeam = find (isnan (beamEstimation(1, :)) = 1, 1) — 1;

% Initial number of track estimates

%% Start the multi—tracking
for t = startFrame:length (X)
beamMeasurement = [X{t} Y{t}]; % Matrix with current
measurements
%% Perform Kalman Filter

% Time Update (Prediction of state for all the beams)

numDetect = size (X{t},1); % How many detections in current
time
for beam = 1:numBeam
beamEstimation (: ,beam) = A % beamEstimation (: ,beam) + B x
u;
end

P=AxPx A" +Q;

%% Perform Hungarian Algorithm

% Create the distance matrix between all the detections

% For the matrix, it is assigned: rows = tracks & columns =
detections

)

distMatrix = pdist ([ beamEstimation (1:2, 1:numBeam) ’;
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beamMeasurement | ) ;

distMatrix = squareform (distMatrix); % Create the squared
distance matrix

distMatrix = distMatrix (1:numBeam, numBeam+1:end) ; % Do only
matching for the tracks detected

[assignment , cost| = assignmentoptimal (distMatrix); %
Hungarian Algorithm
assignment = assignment ’;

% Check exceptions where matching must be ignored and just
estimate

% In those casses assignment = 0

% Detection far from observation

rejected = [];

for beam = 1:numBeam
if assignment (beam) > 0
rejected (beam) = distMatrix (beam, assignment (beam)) <
50 ;
else
rejected (beam) = 0;
end
end
assignment = assignment .x rejected;

% Done with matching

% Measurement Update (Correction of state for all the beams)
K=Px«H / (Hx*xP x H +R);
k = 1;
for beam = 1:length (assignment )
if assignment (beam) > 0
beamEstimation (:, k) = beamEstimation(:, k) + K x (
beamMeasurement (assignment (beam), :)’ — H x
beamEstimation (:, k));
end
k =k + 1;
end
P = (eye(4)— K « H) = P; % Update error covariance

%% Store data
beamXestimation(t,1:numBeam) = beamEstimation (1 ,1:numBeam) ;
beamYestimation(t,1:numBeam) = beamEstimation (2 ,1:numBeam) ;

% Assigning new detections and lost trackings
% For nmew detections: If it wasn’t assigned means a new beam
newTracks = beamMeasurement (~ismember (1: size (beamMeasurement
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%o

end

end

07

, 1), assignment),
if “isempty (newTracks)

D

beamEstimation (:, numBeam + 1:numBeam + size (newTracks,

2)) =

[newTracks; zeros (2, size(newTracks, 2))];
% Number of estimated beams including new ones

numBeam = numBeam + size (newTracks, 2);

% a counter
noTrackInList = find (assignment = 0);
if “isempty(noTrackInList)

trackLost (noTrackInList) = trackLost(noTrackInList) + 1;

end

% 1t

% and reseted to NalN

will

a track has

be deleted

o If a tracking didn’t get matched with a detection ,
start

a counter greater than 6, the tracking will

bad_trks = find (trackLost > 6);
beamEstimation (:, bad_trks) = NaN;

9% Visualization

07
0

clf

{

img = omnes (500, 500, 3); % Create a blank image for
visualization
imagesc (img) ;

1), Tor
) 7g‘/

)

)

"); % Plot measurements

'¢’, 'm’, ’k’];

“isnan (beamXestimation (t,nB))

cldx = mod(nB,6) + 1; %pick color
tempX = beamXestimation (1:t,nB);

tempY = beamYestimation (1:t,nB);

plot (tempY, tempX, '.—’, "MarkerSize

colours (cldx),

hold on;
plot (Y{t}(:) X{t}(
colours = ['r’, b
for nB = 1:numBeam
if
axis off
end
end

pause (0.05)

07
0

}

"LineWidth’ ,3)

3,

"Color 7,
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% Creating the estimated paths for each beam
for i=1:numBeams
estPaths{i} = [beamXestimation (1:length(X),i) beamYestimation
(1:length(Y),i)];
end

B.3.3 Hungarian matching algorithm

function [assignment, cost] = assignmentoptimal (distMatrix)

YASSIGNMENTOPTIMAL Compute optimal assignment by Munkres
algorithm

%  ASSIGNMENTOPTIMAL (DISTMATRIX) computes the optimal assignment
(minimum

% overall costs) for the given rectangular distance or cost

matrix, for

%  example the assignment of tracks (in rows) to observations (
in

%  columns). The result is a column vector containing the
assigned column

%  number in each row (or 0 if no assignment could be done).

%

% [ASSIGNMENT, COST| = ASSIGNMENTOPTIMAL(DISTMATRIX) returns
the

% assignment vector and the overall cost.

%

%  The distance matrix may contain infinite values (forbidden

% assignments). Internally , the infinite values are set to a
very large

% finite number, so that the Munkres algorithm itself works on

% finite —number matrices. Before returning the assignment, all

% assignments with infinite distance are deleted (i.e. set to
Zero) .

%

% A description of Munkres algorithm (also called Hungarian
algorithm)

%  can easily be found on the web.

%

% <a href="assignment.html”>assignment .html</a> <a href="http
:/ /www.mathworks.com/matlabcentral /fileexchange /6543” > File
Exchange</a> <a href="https://www.paypal.com/cgi—bin/webscr?
cmd=_s—xclick&hosted_button_id=EVW2A4G2HBVAU’ >Donate via
PayPal</a>

%

%  Markus Buehren

%  Last modified 05.07.2011

% save original distMatrix for cost computation
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originalDistMatrix = distMatrix;

% check for negative elements
if any(distMatrix (:) < 0)

error (’All matrix elements have to be non—negative.’);
end

% get matrix dimensions
[nOfRows, nOfColumns| = size (distMatrix);

% check for infinite values

finiteIndex = isfinite (distMatrix);

infiniteIndex = find (" finiteIndex);

if Tisempty(infinitelndex)
% set infinite values to large finite value
maxFiniteValue = max(max(distMatrix (finitelndex)));
if maxFiniteValue > 0

infValue = abs(10 * maxFiniteValue * nOfRows % nOfColumns) ;
else

infValue = 10;
end

if isempty (infValue)
% all elements are infinite

assignment = zeros (nOfRows, 1);
cost = 0;
return

end

distMatrix (infiniteIndex) = infValue;

end

% memory allocation

coveredColumns = zeros (1, nOfColumns) ;
coveredRows = zeros (nOfRows, 1);

starMatrix = zeros (nOfRows, nOfColumns);
primeMatrix = zeros (nOfRows, nOfColumns) ;

% preliminary steps

if nOfRows <= nOfColumns
minDim = nOfRows;

% find the smallest element of each row
minVector = min(distMatrix, [], 2);

% subtract the smallest element of each row from the row
distMatrix = distMatrix — repmat(minVector, 1, nOfColumns);
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% Steps 1 and 2

for row = 1:nOfRows
for col = find(distMatrix (row,:)==0)
if “coveredColumns(col)% any(starMatrix (:,col))
starMatrix (row, col) = 1;
coveredColumns(col) = 1;
break
end
end
end
else % nOfRows > nOfColumns
minDim = nOfColumns ;
% find the smallest element of each column
minVector = min(distMatrix);
% subtract the smallest element of each column from the column
distMatrix = distMatrix — repmat(minVector, nOfRows, 1);
% Steps 1 and 2
for col = 1:n0fColumns
for row = find (distMatrix (:,col)==0)’
if “coveredRows (row)
starMatrix (row, col) = 1;
coveredColumns(col) = 1;
coveredRows (row) = 1;
break
end
end
end
coveredRows (:) = 0; % was used auxiliary above
end
if sum(coveredColumns) == minDim
% algorithm finished
assignment = buildassignmentvector (starMatrix) ;
else
% move to step 3
[assignment , distMatrix, starMatrix, primeMatrix,
coveredColumns, coveredRows| = .
step3 (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim) ; Y#ok
end
% compute cost and remove invalid assignments
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[assignment , cost| = computeassignmentcost (assignment ,
originalDistMatrix , nOfRows) ;

%o

function assignment = buildassignmentvector (starMatrix)

[maxValue, assignment]| = max(starMatrix, [], 2);

assignment (maxValue = 0) = 0;

%o

function [assignment, cost] = computeassignmentcost (assignment ,
distMatrix , nOfRows)

rowlndex = find(assignment);

costVector = distMatrix (rowIndex + nOfRows * (assignment (rowlndex
)=1));

finiteIndex = isfinite (costVector);

cost = sum(costVector (finitelndex));

assignment (rowIndex (" finiteIndex)) = 0;

% Step 2:

function [assignment, distMatrix, starMatrix, primeMatrix,

coveredColumns, coveredRows| = ...
step2 (distMatrix, starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim)

% cover every column containing a starred zero
maxValue = max(starMatrix);

coveredColumns (maxValue = 1) = 1;
if sum(coveredColumns) == minDim
% algorithm finished
assignment = buildassignmentvector (starMatrix);
else
% move to step 3
[assignment , distMatrix, starMatrix, primeMatrix,
coveredColumns, coveredRows| =
step3 (distMatrix , starMatrix, primeMatrix, coveredColumns,

coveredRows , minDim) ;
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150 end
151
152 % Step 3:

153 function [assignment, distMatrix, starMatrix, primeMatrix,
coveredColumns , coveredRows] =
154 step3 (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim)

155

156 zerosFound = 1;

157 while zerosFound

158

159 zerosFound = 0;

160 for col = find (" coveredColumns)

161 for row = find (" coveredRows ")

162 if distMatrix (row,col) = 0

163

164 primeMatrix (row, col) = 1;

165 starCol = find (starMatrix (row,:) );

166 if isempty(starCol)

167 % move to step 4

168 [assignment , distMatrix, starMatrix, primeMatrix,
coveredColumns, coveredRows| = .

169 step4 (distMatrix , starMatrix, primeMatrix,

coveredColumns , coveredRows, row, col, minDim);

170 return

171 else

172 coveredRows (row) = 1;

173 coveredColumns (starCol) = 0;

174 zerosFound = 1;

175 break % go on in next column

176 end

177 end

178 end

179 end

10 end

181

182 % move to step 5

183 [assignment , distMatrix, starMatrix, primeMatrix, coveredColumns,
coveredRows] = ...
184 stepb (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim) ;

186 % Step 4:
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function [assignment, distMatrix, starMatrix , primeMatrix,
coveredColumns , coveredRows]| = .
step4 (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , row, col, minDim)

newStarMatrix = starMatrix;
newStarMatrix (row, col) = 1;
starCol = col;

starRow = find (starMatrix (:, starCol));
while Tisempty (starRow)

% unstar the starred zero
newStarMatrix (starRow, starCol) = 0;

% find primed zero in row
primeRow = starRow;
primeCol = find (primeMatrix (primeRow, :));

% star the primed zero
newStarMatrix (primeRow, primeCol) = 1;

% find starred zero in column
starCol = primeCol;
starRow = find (starMatrix (:, starCol));

end
starMatrix = newStarMatrix;

primeMatrix (:) = 0;
coveredRows (:) = 0;

% move to step 2
[assignment , distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows| = ...
step2 (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim) ;

% Step b5:
0 ep o:
TSI TSI IS IS IS IS IS SIS IS IS IS IS IS IS TSI IS SIISSIITIT

function [assignment, distMatrix, starMatrix, primeMatrix,
coveredColumns, coveredRows] =
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stepb (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim)

% find smallest uncovered element

uncoveredRowsIndex = find (" coveredRows ") ;
uncoveredColumnsIndex = find (" coveredColumns) ;
[s, index1] = min(distMatrix (uncoveredRowsIndex,

uncoveredColumnsIndex) ) ;

[s, index2] = min(s); %#ok

h = distMatrix (uncoveredRowsIndex (index1 (index2)),
uncoveredColumnsIndex (index2) ) ;

% add h to each covered row

index = find (coveredRows) ;

distMatrix (index, :) = distMatrix(index, :) + h;

% subtract h from each uncovered column

distMatrix (:, uncoveredColumnsIndex) = distMatrix (:,
uncoveredColumnsIndex) — h;

% move to step 3
[assignment , distMatrix, starMatrix, primeMatrix, coveredColumns,
coveredRows| = ...
step3 (distMatrix , starMatrix, primeMatrix, coveredColumns,
coveredRows , minDim) ;

B.4 Performance Evaluations

B.4.1 Static Single Beam Evaluation

%% Explore EM Performance
% Joshua Rapp
% April 23, 2016

clear; close all; clc;

numS = 3;
numN = 10;

numTrials = 100;

Lr = 500; Lc = 500;
Lam.s = [50,100,500];
rho = 40;

itmax = 100;

meanCOG = zeros (numS,numN) ;
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meanEM = zeros (numS,numN) ;
meanKMEANS2 = zeros (numS,numN) ;
meanKMEANS3 = zeros (num$S,numN) ;
meanSPECT = zeros (numS,numN) ;

for jj = 1l:numS
lam_s = Lam_s(jj);
disp (num2str(lam_s));
Lam_n = round(logspace(logl0(lam_s/10),logl0(10xlam_s) ,numN) )

9

for kk = 1:numN
lam_n = Lamn(kk);
disp (num2str(lam-n));

EMdist = zeros (numTrials 1) ;
COGdist = zeros(numTrials,1);
K2MEANSdist = zeros (numTrials ,1) ;
K3MEANSdist = zeros (numTrials 1) ;
SPECTdist = zeros(numTrials,1);

for t = l:numTrials
[ sig_pos, matDetect, listDetect ,labels | =
fcn_generate_data (Lr,Lc,rho,lam_s,lam_n);
numDetect = length (labels);

% figure; plot(listDetect(labels==1,1),listDetect (
labels==1,2) ,...

% 'r.’,listDetect (labels==0,1),listDetect (labels
==0,2),’b.");

% EM Estimate

xhats = staticEM (matDetect ,listDetect ,rho,lam_s,lam_n
,itmax) ;

EM_est = xhats{end};

% OOG Estimate
COG_est = mean(listDetect);

% kmeans estimate , k=2
KMEANS2 est = kmeans_estimate( listDetect , 2);

% kmeans estimate , k=3
KMEANS3_est = kmeans_estimate ( listDetect , 3 );

% Spectral Clustering
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%SPECT _est = kmeans_estimate( listDetect , 2,
spectral 7, 1);

% Euclidean Distance

EMdist (t) = sqrt ((EM_est(1)—sig_pos (1)) "24+(EM_est(2)—
sig_pos (2))"2);

COGdist(t) = sqrt ((COG_est(1)—sig-pos (1)) "2+(COG_est
(2)—sig-pos(2))"2);

K2MEANSdist (t) = sqrt ((KMEANS2_ est(1)—sig_pos (1)) "2+(
KMEANS2_ est (2)—sig-pos (2)) "2);

K3MEANSdist(t) = sqrt ((KMEANS3 est(1)—sig_pos (1)) 2+(
KMEANS3_est (2)—sig-pos (2)) "2);

end

meanEM (jj ,kk) = mean(EMdist) ;
meanCOG (jj ,kk) = mean(COGdist) ;
meanKMEANS2( jj ,kk) = mean(K2MEANSdist) ;
meanKMEANS3(jj ,kk) = mean(K3MEANSdist) ;

end
end

save('slocumb_validation4 .mat’);

SNRi = 10xlogl0(fliplr (logspace(—1,1,numN)));

BW = rhoxsqrt (log(4));

SNRo. EM = 10xlogl10 (BW"2./meanEM) ;

SNRoCOG = 10x1og10 (BW"2./meanCOG) ;
SNRoKMEANS2 = 10%1log10 (BW"2./meanKMEANS2) ;
SNRoKMEANS3 = 10%log10 (BW" 2. /meanKMEANS3) ;
SNRoSPECT = 10xlogl10 (BW"2./meanSPECT) ;

for ii = 1:numS
figure; plot (SNRi,SNRo.EM(ii ,:) ,SNRi,SNRoCOG(ii ,:) ,SNRi,
SNRoKMEANS2( ii ,:) ,SNRi,SNRoKMEANS3(ii ,:) );
xlabel ("Input SNR (dB)7);
ylabel (’Output SNR (dB));
legend ('EM’,’COG’, K2’ ,’K3’, ’Location’, 'northwest ") ;
title ([ "Performance of EM, Kmeans, and COG Estimators for \
Lambda s = ' num2str(Lam_s(ii))]);
end

B.4.2 Beam Presence Detection Evaluation
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%% Explore EM Performance
% Joshua Rapp
% April 23, 2016

clear; close all; clc;

numS = 3;
numN = 10;

numTrials = 100;
Lr = 500; Lec = 500;

noise_min = 1;
noise_max = 100;

Lams = [50,100,500];

Lam.s = [];

Lamn = [];

for ii = 1:numS
Lam_s = [Lam_s,Lams(ii)*ones (1 ,numN) ];
Lam.n = [Lam-n,round(logspace(logl0(Lams(ii)*noise_min) ,...

log10 (noise_max*Lams(ii)) ,numN)) ];

end

rho = 40;

itmax = 100;

rows = 1:Lr;

cols = 1:Lc;

%% Theoretical Marginals — Uniform (Noise Only)

unif_rows = ones(Lr,1)/Lr;

marg_unif_rows = cumsum(unif_rows)/sum(unif_rows);

unif_cols = ones(Lc,1)/Lc;

marg_unif_cols = cumsum(unif_cols)/sum(unif_cols);

CCRs = zeros (numSsnumN, 1) ;

parfor jj = 1:numSsnumN

lam_s = Lam_s(jj);
lam n = Lam n(jj);
disp ([ "Sig: ’~ num2str(lam_s)

true_labels = zeros(numTrials,1);

num?2str (lam_n)]) ;
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predict_labels = zeros(numTrials,1);

for

end

t = l:numTrials

[ sig-pos, matDetect,listDetect ,label] =
fcn_generate_distribution (Lr,Lc,rho,lam_s ,lam_n);

true_labels(t) = label;

% EM Gaussian Center Estimation

xhats = staticEM (matDetect ,listDetect ,rho,lam_s,lam_n,
itmax) ;

xest = xhats{end};

% Theoretical Marginal — Gaussian + Uniform (Noise and
Signal)

gauss_rows = (lam_s*normpdf(rows,xest (1) ,rho)+lam_nx
unif_rows ’) /(lam_s+lam_n) ;

marg_gauss_rows = cumsum( gauss_rows)/sum(gauss_rows);

gauss_cols = (lam_s*normpdf(cols ,xest (2) ,rho)+lam_nx*
unif_cols ’) /(lam_s+lam_n) ;

marg_gauss_cols = cumsum( gauss_cols)/sum(gauss_cols);

% Compute Marginals

data_rows = sum(matDetect ,2) ;

marg_cdf_rows = cumsum(data_rows)/sum(data_rows);

data_cols = sum(matDetect ,1) ’;

marg_cdf_cols = cumsum(data_cols)/sum(data_cols);

MSE Noise_cols = mean((marg_cdf_cols—marg_unif_cols)."2);

MSE _Noise_rows = mean((marg_cdf_rows—marg_unif_rows). 2);

MSE_Signal _cols = mean((marg_cdf_cols—marg_gauss_cols )
2);

MSE Signal rows = mean((marg_cdf rows—marg_gauss_rows ’)
2)5

[T ,dist_predict] = min ([ MSE_Noise_cols+MSE_Noise_rows ,
MSE _Signal_cols+MSE_Signal_rows|) ;
predict_labels(t) = dist_predict —1;

CCRs(jj) = sum(true_labels=—predict_labels)/numTrials;

end

save(’distribution_detection3 .mat’);

T
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SNRi = 10xlogl0(fliplr (logspace(logl0(1/noise_max),logl0(

noise_min ) ,numN) ) ) ;
CCRs = reshape (CCRs,numN,numS) ;

figure; plot (SNRi,CCRs);
xlabel ("Input SNR (dB)7);
ylabel (’Detection CCR’);

legend ( ’\Lambda_S = 50’ ,’\Lambda_S = 100’,’\Lambda_S = 500’

Location’, 'northwest ’);
title (’Distribution Detection’);

B.4.3 Variable Beam Size Evaluation

%% Performance vs SNR, Unknown spot size
% Joshua Rapp

% April 23, 2016

clear; close all; clc;

numS = 3;
numN = 10;
numTrials = 100;

Lr = 500; Lec = 500;
Lams = [50,100,500];

rho_hatl = 40;
rho_hat2 = 45;
rho_hat3 = 35;

itmax = 100;

meanCOG = zeros (numS,numN) ’;
meanStaticEM = zeros (numS,numN) ’;

meanVarl = zeros (numS,numN) ’;
meanVar2 = zeros (numS,numN) ’;
meanVar3 = zeros (numS,numN) ’;
noise_min = 0.1;
noise_max = 10;

Lams = [50,100,500];
Lam.s = [];
Lamn = [];

for i1i = 1:numS

Y
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35 Lam s = [Lam_s,Lams(ii)*ones(1,numN) |;

36 Lam n = [Lamn,round(logspace (logl0(Lams(ii)*noise_min) ,...

37 log10 (noise_max+Lams(ii)) ,numN) ) |;

3s end

39 V0

10 parfor jj = 1:numSsxnumN

1 lam_s = Lam-s(jj);

12 lam n = Lamn(jj);

13 disp (num2str(lam-n)) ;

44

15 StaticDist = zeros(numTrials,1);

16 VarlDist = zeros(numTrials, 1) ;

a7 Var2Dist = zeros(numTrials, 1) ;

48 Var3Dist = zeros(numTrials,1);

19 COGdist = zeros(numTrials,1);

50

51 for t = l:numTrials

52 [sig_pos,” ,matDetect,listDetect ,labels] = ...

53 fcn_generate_correlated_data( Lr,Lc,rho_hatl  lam_s,

lam_n );

54 numDetect = length (labels);

55

56 % EM Estimate

57 xhats = staticEM (matDetect ,listDetect ,rho_hatl ,lam_s,
lam_n ,itmax) ;

58 EM_est = xhats{end};

59

60 x_varl = variableEM (matDetect ,listDetect ,rho_hatl ,lam_s,
lam_n ,itmax) ;

61 Varl_est = x_varl{end};

62

63 x_var2 = variableEM (matDetect ,listDetect ,rho_hat2 ,lam_s,
lam_n ,itmax) ;

64 Var2_est = x_var2{end };

65

66 x_var3 = variableEM (matDetect ,listDetect ,rho_hat3 ,lam_s,
lam_n ,itmax) ;

67 Var3_est = x_var3{end};

68

69 % COG Estimate

70 COG_est = mean(listDetect);

71

72 % Euclidean Distance

73 StaticDist (t) = sqrt ((EM_est(1)—sig_pos (1)) "2+(EM_est(2)—

sig-pos (2))"2);
74 VarlDist (t) = sqrt ((Varl_est(l)—sig_pos (1)) 2+(Varl_est
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(2)—sig_pos(2))"2);

Var2Dist (t) = sqrt ((Var2_est(1)—sig_pos (1)) "2+(Var2_est
(2)—sig-pos(2)) 2);

Var3dDist (t) = sqrt (( Var3_est (1)—sig_pos (1)) "24+(Var3_est
(2)—sig-pos(2))°2);

COGdist(t) = sqrt ((COG_est(1)—sig_pos (1)) "24+(COG_est(2)—

sig-pos(2))"2);
end

meanStaticEM (jj) = mean(StaticDist);
meanVarl(jj) = mean(VarlDist);
meanVar2(jj) = mean(Var2Dist);
meanVar3(jj) = mean(Var3Dist);
meanCOG( jj) = mean(COGdist) ;

end
save(’slocumb_variableb .mat’);

%%
SNRi = 10xloglO( fliplr (logspace(—1,1,numN)));

BW = rho_hatlxsqrt(log(4));

SNRo_Static = 10xlogl0 (BW"2./meanStaticEM) ;
SNRo_Varl = 10xlogl0 (BW"2./meanVarl);
SNRo_Var2 = 10xlogl0 (BW"2./meanVar2);
SNRo_Var3 = 10xlogl10 (BW"2./meanVar3) ;
SNRoCOG = 10xlog10 (BW"2./meanCOG) ;

for 11 = 1:numS
figure; plot (SNRi, SNRo_Static (:,ii),SNRi,SNRo_Varl (:,ii) ,...
SNRi,SNRo_-Var2 (:,ii),SNRi,SNRo_Var3 (:,ii) ,SNRi,SNRoCOG/: ,
ii));
xlabel ("Input SNR (dB)’);
ylabel ("Output SNR (dB)’);

legend ('Static , \rho = 40’ [’ Variable, \rho = ~ num2str(
rho_hatl) ] ,...
[ "Variable, \rho = ' num2str(rho_hat2)],...
[ "Variable, \rho = ' num2str(rho_hat3)],...

'COG’, ’Location’, ’southeast ’);
title ([ 'Performance of EM Estimators for \Lambda.s =
num2str (Lams(1i))]) ;
end
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B.5 Test Scripts
B.5.1 Test Basic Data Generation and EM Estimation

%% Test script for data generation
% Joshua Rapp
% Boston University

% EC 503
clear; close all; clc;

%% Static Data

Lr = 500; Lec = 500;
rho = 40;

Lam_s = 50;

Lamn = 50;

[ sig_pos, matDetect, listDetect ,labels | = fcn_generate_data(
Lr,Lc,rho,Lam_s,Lammn );
centroid = mean(listDetect);
%% Plot Detections as Image
figure; imagesc(matDetect); axis ij image; colormap(gray);
hold on;
plot (sig_pos(2),sig-pos (1), g+ ...
"MarkerSize’ ,10, ’LineWidth’ ,3)

euclid_dist = sqrt(sum((sig_pos—centroid)."2));

9% Apply EM
xhats = staticEM (matDetect ,listDetect ,rho,Lam_s,Lam n,20) ;
xest = xhats{end};
figure; imagesc(matDetect); axis ij image; colormap(gray);
hold on;
plot (sig_pos(2),sig_pos (1), g+ , MarkerSize’ 10, LineWidth’ ,3)
plot (xest (2) ,xest (1), rx’ ...

"MarkerSize’ ,10, ’LineWidth’ ,3)

9% Apply k—means

numClusters = 2;

[idx ,C,sumd] = kmeans(listDetect ,numClusters);

CCR = mean((2—labels)=—idx);

cmap = hsv(numClusters) ;

figure;

plot (listDetect (idx==1,1),listDetect (idx==1,2), ’r. , MarkerSize’

12)
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hold on
for i1 = 2:numClusters
plot (listDetect (idx==ii ,1) ,listDetect (idx=ii ,2),’ ., Color’,

cmap(ii ,:) , MarkerSize’ ;12);
end

plot (C(:,1),C(:,2), kx', MarkerSize’ ,15, LineWidth’ ,3)
plot (sig_pos(1),sig-pos(2), g+, MarkerSize’ 10, LineWidth’,3)
plot (xest (1) ,xest(2), mx’, MarkerSize’ 10, LineWidth’ ,3)
legend ( ’Cluster 1’,’Cluster 2’ ,’Centroids’ ,...

"True Position’,’EM Estimate’, Location’, NW”)
title 'Cluster Assignments and Centroids’
hold off

EMerror = norm(sig_-pos—xest ’) ;
KMeansError = norm(sig_pos—C(1,:));
%% Tracking Motion

% numFrames = 10;

% speed = 40;

%

% [sig_pos, matDetect, listDetect ,labels] =

% fcn_generate_motion_data (Lr,Lc,rho,Lam_s,Lam n,numFrames,
speed) ;

%

% for ii = 1l:numFrames

% figure; imagesc(matDetect (:,:,11)); axis image; colormap (
gray) ;

% hold on;

% plot (sig_pos(ii,2),sig_pos(ii,1),'g*x ...

% "MarkerSize ’,10, LineWidth’,3)

% end

% implay (matDetect ,1) ;

B.5.2 Test Beam Presence Detection

%% Test script for data generation
% Joshua Rapp

% Boston University

% EC 503

clear; close all; clc;

9% Static Data
Lr = 500; Lec = 500;
rho = 40;
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Lam_s = 50;
Lam.n = 100;

[ sig-pos, matDetect,listDetect ,label] =
fcn_generate_distribution (Lr,Lc,rho,Lam_s,Lamn);
centroid = mean(listDetect);

9% Apply EM

xhats = staticEM (matDetect ,listDetect ,rho,Lam_s,Lam_n,20) ;

xest = xhats{end};

figure; imagesc(matDetect); axis 1ij image; colormap(gray);

hold on;

plot (sig_pos(2),sig-pos (1), g+, MarkerSize ,10, LineWidth’,3);
plot (xest (2) ,xest (1), rx’, MarkerSize’ 10, LineWidth’ ,3);

plot (centroid (2) ,centroid (1), b=+, MarkerSize’ ;10, LineWidth’ 3);

legend (’Truth’,’EM est.’, Centroid’);
rows = 1:Lr;
cols = 1:Lc;

% Theoretical Marginals

unif_rows = ones(Lr,1)/Lr;

marg_unif_rows = cumsum(unif_rows)/sum(unif_rows);

unif_cols = ones(Lc,1)/Lc;

marg_unif_cols = cumsum(unif_cols)/sum(unif_cols);

gauss_rows = (Lam_s*normpdf(rows, xest (1) ,rho)+Lam n*xunif_rows’) /(
Lam_s+Lam n) ;

marg_gauss_rows = cumsum( gauss_rows)/sum(gauss_rows) ;

gauss_cols = (Lam_sxnormpdf(cols ,xest(2),rho)+Lam nxunif_cols ”) /(
Lam_s+Lam n) ;

marg_gauss_cols = cumsum( gauss_cols)/sum(gauss_cols);

% Compute Marginals

data_rows = sum(matDetect,2) ;

marg_cdf_rows = cumsum(data_rows)/sum(data_rows);

figure; plot(rows,marg_cdf_rows,rows,marg_unif_rows ,rows,
marg_gauss_rows ) ;

title ('Empirical Marginal CDF (Rows)’);

xlabel ( "Row’ ) ;

legend (’Empirical CDF’,’Noise CDF’,’Noise+Signal CDF’,’ ’Location’
"northwest ’);

)

data_cols = sum(matDetect ,1) ’;
marg_cdf_cols = cumsum(data_cols)/sum(data_cols);
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figure; plot(cols ,marg _cdf_cols,cols ,marg unif_cols ,cols,
marg_gauss_cols);

title (’Empirical Marginal CDF (Columns)’);

xlabel ("Column ) ;

legend (’Empirical CDF’,’Noise CDF’,’Noise+Signal CDF’,’Location’,
"northwest ’);

MSE Noise_cols = mean((marg_cdf_cols—marg_unif_cols). 2);
MSE _Noise_rows = mean ((marg_cdf_rows—marg_unif_rows)."2);
MSE_Signal_cols = mean((marg_cdf_cols—marg_gauss_cols’)."2);
MSE _Signal_rows = mean((marg_cdf_-rows—marg_gauss_rows ’)." 2);

[T ,dist_predict] = min ([ MSE_Noise_cols+MSE_Noise_rows ,
MSE _Signal_cols+MSE _Signal rows|) ;

B.5.3 Test Variable-Size Position Estimation

%% Test script for data generation
% Joshua Rapp
% Boston University

% EC 503
clear; close all; clc;

%% Static Data
Lr = 500; Lec = 500;
rho_hat = 40;

Lam_s = 100;
Lam.n = 1000;

[sig_pos ,Sigma_cov ,matDetect ,listDetect ,labels] =
fcn_generate_correlated_data( Lr,Lc,rho_hat ,Lam_s,Lamn );
centroid = mean(listDetect);

% Apply EM

[x_var, Rvar] = variableEM (matDetect,listDetect ,0,Lam_s,Lamn);
x_var_est = x_var{end};

R_var_est = Rvar{end};

x_stat = staticEM (matDetect ,listDetect ,rho_hat ,Lam_s,Lamn);
x_stat_est = x_stat{end};

~

Err_var = sqrt(sum((sig-pos—x_var_est ’)." 2));
Err_stat = sqrt(sum((sig_pos—x_stat_est ’)."2));
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disp ([ "Variable Improvement: ' num2str(Err_stat—Err_var)]);
%% Plot

figure; imagesc(matDetect); axis ij image; colormap(gray);

hold on;

plot (sig_pos(2),sig-pos (1), g+, MarkerSize’ ;10, LineWidth’,3)

plot (x_var_est (2) ,x_var_est (1), rx’, MarkerSize  ,10, LineWidth’
3)

plot (x_stat_est (2),x_stat_est (1), mp’, MarkerSize’ ;10, LineWidth"’

,3)
plot (centroid (2) ,centroid (1), b’ MarkerSize 10, LineWidth’ 3)
legend ( 'Truth’,’Variable EM’,’Static EM’,’Centroid’);



