
REMOTE CONTROL OF NAO USING GUMSTIX

David Lavy and Alan Belyea

April 2016

Abstract

We introduce the use of a Gumstix board as a remote control for the NAO humanoid robot which will
perform 4 different tasks. The proposed system has a GUI on a LCD touchscreen based on Qt which it’ll
send data via Bluetooth to a server running on a PC. The PC will process the data into readable commands
for the robot, which then will send it over WiFi. Finally the robot will receive the commands and execute
them one by one.

1 Introduction

Remote control is one of the levels of robotics ’intelligence’. Many robots around the world perform tasks
that are difficult for a human to do it, but difficult at the same time for themselves to act autonomously as
they don’t have a good understanding of the situation and their environment. This is why these robots are
operated by a human brain. This configuration takes the best of both worlds: strength and expendability of
a machine and the brain of a human. One of the most simplest examples is the popular battlebots and one
of the most complex systems is the DaVinci robot (Figure 1). Different applications are used for remote
control in robotics. One of the most popular nowadays is navigation in hazardous environments. Another
application is in the medical field, where the robot needs to perform extremely precise and fine moves when
doing surgery.
For this project we utilize NAO, a complete humanoid robotics platform created by Aldebaran Robotics. His
extensive capabilities due to a variety of sensors that it has plus its easy-to-use SDK makes him an excellent
choice to implement remote control using it’s motion dynamics and speaking features.
We implemented our remote control by using the Gumstix board, which by using a graphical interface it will
send a series of commands to the NAO robot for execution. We accomplished to successfully operate NAO
and send a series of commands from the Gumstix. The PC will queue all the commands and send them
sequentially to NAO, which will execute them one by one without crashing or losing any commands.

(a) Battlebots competition
(b) DaVinci robot

Figure 1: Applications of remote control in robotics

1



EC535 Introduction to Embedded Systems
Project Report, Spring 2016

2 Design Flow

The project uses a LCD touchscreen that will run a GUI connected to the Gumstix board. The Gumstix
transmits user data via Bluetooth to a Python server running on a PC. The Python server receives all the
data from the Gumstix and breaks it down into a series of commands and parameters. The commands will
be interpreted in a different Python script that will be running the interface between NAO and the PC using
a WiFi connection. This Python script uses NAOqi (NAO’s SDK) to send the specific action that the robot
will understand and execute.
The LCD touchscreen display two button groups and 3 edit texts. The first button group displays all the
4 different commands that NAO can execute: Sit, Stand, Speak and Walk. The Walk command uses 3
different parameters that are set in the 3 edit texts: X coordinate, Y coordinate and Theta coordinate (the
interpretation of these parameters in the robot are shown in Figure 3) which are set using the second button
group to the specified coordinates (in meters and degrees).
The LCD communicates with the Gumstix bluetooth peripheral by calling a bluetooth client located on the
Gumstix. The client, which is hardcoded to transmit to the base station, transmits the command data to the
base station via Bluetooth. The PC base station has the NAOqi interface running, as well as a Python based
bluetooth server which is listening for transmissions from the Gumstix. The bluetooth server application
receives data, parses it, and translates the data into NAO commands that are sent over WiFi to the NAO
robot. The look and aesthetics of the LCD UI was built by David Lavy, while the functionality of the
buttons, error checking, and UI backend were programmed by Alan Belyea. The Bluetooth client software
was written by Alan Belyea. The Bluetooth server, and interface between base station (PC) and NAO robot
was implemented by David Lavy.

Figure 2: Flowchart for the remote control system



EC535 Introduction to Embedded Systems
Project Report, Spring 2016

Figure 3: Coordinates’ direction for NAO robot

3 Implementation

3.1 Gumstix UI

The Gumstix UI was designed using Qt, and was written in C++. It consists of text edit boxes to input
x,y and theta coordinates, as well as a virtual keyboard to enter the numerical data, and a button group
for sending final commands to the NAO robot. The user has a list of 4 different commands to execute:
Speak, Sit, Stand commands are sent by pressing the appropriate buttons; Walk command needs to first
input coordinates using the keypad which will tell the robot walk to a specific destination and finally press
the command to send it along with the input parameters.
When a command is executed the UI code (see /UI/mainwindow.cpp) formats all appropriate data that the
user input into a comma separated format string, and executes a system call to the bluetooth client with
the string as a command line argument. If the walk command is executed with blanks for any of the X, Y
or Theta coordinates they are assumed to be 0 and treated as such. If the user enters invalid data, such as a
number with multiple decimal points (eg: 1..0 or 1.0.) it is assumed to be invalid input and no system call is
executed. If the input has a trailing decimal, and no number after it, it is assumed to be 0 and transmitted
(eg 1. Would be assumed to be 1.0). The user is limited to inputting four characters into each coordinate
box including decimal points. This is done to conserve space on the LCD by limiting the size of input boxes
in an already crowded UI. Commands are sent in sequence one at a time. Multiple commands cannot be
input at a time. If more time was available multithreading and queing of commands on the Gumstix side
of the project would have been implemented. However, unless a bluetooth connection has timed out, or
for some other reason needs to be remade, the transmission time is small making this less of an issue. In
addition, the server can queue commands allowing the robot to execute commands in series even if it is not
complete an action which can compensate for the lack of queuing on the Gumstix side of the project.

3.2 Bluetooth Client

The Bluetooth client (see /bluetooth/client.c) is written in C. It uses the bluetooth and RFCOMM libraries.
Those libraries allow the code to set up a bluetooth socket between the Gumstix and the base station.
Currently the MAC address for the base station is hardcoded into the client and would need to be changed
if you wanted to use another base station. The code takes an input string determined by the UI code, and
sets up a socket. The socket takes the hardcoded MAC address from above, and sets up a socket based on
the bluez and RFCOMM library protocols. This socket is treated like a file from the linux perspective. The
program then writes to the socket as if it were a file. If the connection cannot be made, or times out the
program returns errors and exits without crashing. The client does not support multiple commands being
sent at once, and can only send one command each time it is called.



EC535 Introduction to Embedded Systems
Project Report, Spring 2016

Figure 4: Qt GUI interface

3.3 PC Server

The PC server (see /NAO/BTserver.py) is written in Python. It is similar to the bluetooth client as it uses
the same libraries (bluez ) but in the Python version [1]. It sets up a socket that will be constantly listening
to any data that client from the Gumstix will send. As soon as it receives data in form of a string it will open
up a file and write the data on it. The server will stack all the received commands in a queue based on that
file. A second python script called NAO/naoqiServer.py reads the queue and executes all commands stored
in the queue sequentially. If invalid commands are received from the Gumstix, either because of packet
loss or invalid commands the server will ignore them without crashing and will continue executing the next
command in the queue without crashing.

3.4 NAO Robot

NAO’s key components are a 57 cm tall body with 25 degrees of freedom with electric motors and actuators.
He owns a whole sensor network of two cameras, four microphones, a sonar rangefinder, two IR emitters
and receivers, one inertial board, nine tactile sensors and eight pressure sensors. NAO is also equipped
with several communication devices, such as a voice synthesizer, LED lights and two high-fidelity speakers.
Moreover, NAO owns two CPUs, one located in the head and the other one located in the torso, which
are Intel ATOM 1,6ghz CPUs that run a Linux kernel and support NAOqi, which is Aldebaran’s propriety
middleware. Figure 5 shows more of its capabilities.
The final implementation was written in Python (see NAO/naoqiServer.py). Although it would be nice to
have it in C++ for a much faster compilation and running, it was a challenging task to learn most of the
SDK for NAO (NAOqi) just using Python and due to time constraints C++ was not feasible.
The program starts by creating the IP port from which the PC will connect to the robot. The specific IP
address is determined by the NAO robot when it boots up. If you press the chest button of the NAO robot
when it boots up it will tell you its IP address through built in speakers. The specific IP address can then
be coded into the python scripts as needed. Once the connection is set, we create a proxy which will connect
the main broker running in the PC to a broker running in the robot (Figure 6). This broker which runs
the NAOqi framework will have a direct access to its modules In our case we need three modules: Motion
(for walking), Posture (for standing and sitting down) and Speech (for talking). Each module has its own
methods from which we will call to make the robot perform certain action. A visual example is shown in
Figure 7.
The program interacts with the bluetooth server running already in the PC. Once the server has stacked a
command in the file, the program will detect this extract it and parse it, this way it’ll know which action
needs to send and what parameters it needs to go along with it. The program is set so it will not execute
any action if any other action besides the one specified in the GUI are sent. Once it has the command and
parameters it uses the corresponding proxy and sends the action through WiFi to NAO. To avoid conflicts in
executing multiple commands, that are not compatible, at the same time (for example sitting and standing)
the program waits until the action is completed and then attempts to read the file again if any other command



EC535 Introduction to Embedded Systems
Project Report, Spring 2016

has been sent. This way NAO will respond to commands in a sequentially manner.

Figure 5: NAO interface [2]

Figure 6: Architecture description between PC and NAO brokers



EC535 Introduction to Embedded Systems
Project Report, Spring 2016

Figure 7: Broker structure

4 Conclusion and Future Work

This project implemented a remote control system which aims to interface with a humanoid robot via a
Gumstix board For continued work on this project with Gumstix and NAO, there are several improvements
that can be made on the GUI. One of them is to add functionalities on the robot. NAO is a complete
robotics platform and it has different functionalities; because of the time constraints we weren’t able to dig
too much on this capabilities and focused on a few basic ones to have an understanding on how the SDK
works. It would be nice to add other functions such a speech recognition or visual recognition of objects
being activated from the Gumstix. Another one is to implement a interactive multi-screen menu where
we can switch from an initial screen showing all the possible commands to a second screen where we can
input the respective parameters per command. Because of the size and poor response of the fingers on the
touchscreen it was difficult to easily interact with the screen by setting the parameters because of the size of
the buttons. A better distributed menu would improve the experience controlling NAO just like using your
phone.

References

[1] Pybluez documentation. https://github.com/karulis/pybluez, 2014.

[2] Aldebaran Robotics. Naoqi documentation. http://doc.aldebaran.com/, 2005.


