
DESIGN AND MODELLING OF A 4DOF PAINTING

ROBOT

MSc. Nilton Anchaygua A. Victor David Lavy B. Jose Luis Jara M.

Abstract

The following project has as goal the study of the kinematics,

dynamics and control of a 4DOF robotics arm with an

industrial application for painting. We will study different types

of controls learned in an Advanced Robotics class. The tuning

of the gains of our controller will be done manually; also in our

design it will be considered the electric dynamics of DC

motors with the purpose of using the parameters and

constraints that could show up in the implementation of our

robot.

INTRODUCTION

Robotics field has been one of the most interesting ones in

the last years, mainly for the big applications that have been

found and the ones that are in the process of discovering,

from which we find a manifold going from industrial

applications to domestic and entertained applications.

Nevertheless, the modelling of these robots requires a

detailed analysis and calculations, especially in the control

part. For this first project, we have used a PID control,

manually tuned, considering admissible values of torque and

voltages of the actuators.

For this task, the robot has been modeled first calculating its

Denavit-Hartenberg parameters; the inverse kinematics was

done according to the geometric method with the desired

position. The dynamics was calculated by designing our robot

using the software Solidworks and was substantiated using

SimMechanics from Simulink, Matlab and the Euler-Lagrange

equations. After this, a compensation was performed to check

our analysis and lastly the PID control is showed for a specific

trajectory considering the electric dynamics from the motors

and their restrains.

I. ROBOT’S DESIGN

Our robot is based in a 4DOF KUKA robot, in which every

articulation in the robot are rotationals.

 Figure 1 – 4DOF Robotics Arm

II. ROBOT’S KINEMATIC

2.1 Direct Kinematics

 a d

 Denavit-Hartenberg Parameters

2.2 Position’s equations

 [

]

 Calculation of the end-effector position

 () [() ()]

 () [() ()]

 () ()

It has been included a fourth parameter which corresponde to

the orientation that defines our robot; this way we are

improving our trajectory control.

2.3 Inverse Kinematics

To develop our inverse kinematics we have chosen the

geometric method because it is much easier to analyze a

specific point based on the functions of its articulations.

According to this we have:

 (

 √
)

 () √ ()

 (
 ()

 ()
)

 ()
()

 (

)

 (
 √ ()

 ()
)

2.4 Inverse Kinematics Analysis

 Choose random positions:

 ()

 ()

 ()

 ()

(X, Y,

Z,)

)

X0

Y0

Z4

Z3

Z2 Z1

Z0

q4

q3 q2

q1

L3

L1

L2

III. DIFFERENTIAL KINEMATICS

3.1 Jacobian

To calculate the Jacobian matrix, we apply the following

equation:

[

]

IV. ROBOT’S DYNAMIC

4.1 Dynamics using Lagrange Algorithm

In this section we will calculate the robot’s dynamic using

the following equation:

 () ̈ (̇) ()

𝝉: Torques and forces in the actuatiors

𝑯: Inertial square matrix

𝑪: Coriolis forces column matrix

𝑮: Gravity column matrix

With this equation we get the matrices by differentiating

it, in which we get the following equations:

 Matrix H

 ∑(

)

 Matrix C

Using Christoffel symbols starting with the inertial tensor.

 Matrix G

 ∑

Where:

g = Gravity vector with respect to the base system

4.2 Dynamic using SimMechanics

One of the simulation software we have used is the tool

SimMechanics from Matlab, it simulates our robot in 3D

providing physical features for an adequate control, the block

is as follows:

Figure 4.1 – Block in SimMechanics

4.3 Dynamics through Simulink

Figure 4.2 – Block in Simulink

Figure 4.3 – Sub-Block in Simulink

V. ROBOT’S CONTROL

5.1 Gravity compensation

As a first step for controlling the robot, we performed a

gravity compensation, so in this way we can verify that

our algorithms were correct.

For this, we used the SimMechanics block, showed as

follows.

Figure 5.1 – Gravity compensation in Simechanics

5.2 PD control for regulacion

By succeeding in checking our dynamics equations are

correct, we start by implementing our different control

techniques. As our first control technique we will use PD

control with gravity compensation. For this type of control,

gravity compensation acts as a correction bias, manually

tuning and finding the correct values for K which belong to

the following equation:

 () (̇) ()

This type of control is often utilized as a set-point

regulator, for example = constant.

We have the following control block:

Figure 5.2 – PD Control for regulation

5.3 PID Control

An integral action has to be added to the PD control to

compensate gravity forces. This PID regulator has the

following formula:

 () ∫ () ̇

Where:

If ()

If ∫(̇)

If () ()

Figure 5.3 –PID Control with manual tuning

5.4 Control using neural networks

Many times calculating the inverse kinematics is

hard to achieve; because of that the use of genetic

algorithms to obtain those parameteres is benefitial

in some cases.

Having the direct kinematics, we créate a Matlab

program that will generate the knowledge charts and

will perform the training process of the neural

network.

The features of this net are the following:

- Multilayer using backpropagation training

- 3 input values X, Y, Z

- 2 hidden layers of 15 neurons each and 1 output

layer with 4 neurons each; each output

represents the articulations

- Using the gradient descent algorithm with a

variable learning rate between 0.001 and 0.01

Evaluation chart:

Input Direct Kinematics Neural Network

X Y Z Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1.45 0 0.32 0 0 pi/2 0.17 0 1e-4 pi/2 0.17

1.43 0 0.57 0 0.17 pi/2 0.34 0 0.17 pi/2 034

1.36 0 0.81 0 0.34 pi/2 0.52 0 0.35 pi/2 0.52

1.25 0 1.04 0 0.52 pi/2 0.70 0 0.52 pi/2 0.70

1.11 0 1.25 0 0.70 pi/2 0.87 0 0.70 pi/2 0.87

0.93 0 1.43 0 0.87 pi/2 1.04 0 0.87 pi/2 1.05

0.72 0 1.57 0 1.04 pi/2 1.22 0 1.04 pi/2 1.22

0.50 0 1.68 0 1.22 pi/2 1.39 0 1.22 pi/2 1.40

0.25 0 1.75 0 1.39 pi/2 1.57 0 1.40 pi/2 1.57

0 0 1.77 0 1.57 pi/2 1.74 0 1.57 pi/2 1.74

Figure 5.4 – Net training

Figure 5.5 – Net simulation block

Figure 5.6 – Control using genetic algorithms

5.5 Fuzzy Logic Control

VI. RESULTS OBTAINED FOR POSITION

CONTROL

 PD Control with regulation

Final set point will have the following angle

articulations:

With this values, the measured error has the

following graphic

Figure 6.1 – Error measurement with PD Control

Figure 6.2 – Torque calculated for control

Now we will simulate in the Simulink block

Figure 6.3 – Simulink Articulations

Figure 6.4 – Torque obtained for control

