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Abstract 

The following project has as goal the study of the kinematics, 

dynamics and control of a 4DOF robotics arm with an 

industrial application for painting. We will study different types 

of controls learned in an Advanced Robotics class. The tuning 

of the gains of our controller will be done manually; also in our 

design it will be considered the electric dynamics of DC 

motors with the purpose of using the parameters and 

constraints that could show up in the implementation of our 

robot. 

INTRODUCTION 

Robotics field has been one of the most interesting ones in 

the last years, mainly for the big applications that have been 

found and the ones that are in the process of discovering, 

from which we find a manifold going from industrial 

applications to domestic and entertained applications. 

Nevertheless, the modelling of these robots requires a 

detailed analysis and calculations, especially in the control 

part. For this first project, we have used a PID control, 

manually tuned, considering admissible values of torque and 

voltages of the actuators. 

For this task, the robot has been modeled first calculating its 

Denavit-Hartenberg parameters; the inverse kinematics was 

done according to the geometric method with the desired 

position. The dynamics was calculated by designing our robot 

using the software Solidworks and was substantiated using 

SimMechanics from Simulink, Matlab and the Euler-Lagrange 

equations. After this, a compensation was performed to check 

our analysis and lastly the PID control is showed for a specific 

trajectory considering the electric dynamics from the motors 

and their restrains.  

I. ROBOT’S DESIGN 

Our robot is based in a 4DOF KUKA robot, in which every 

articulation in the robot are rotationals.  

 

                 Figure 1 – 4DOF Robotics Arm 

II. ROBOT’S KINEMATIC 

 

2.1 Direct Kinematics 
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   Denavit-Hartenberg Parameters 

 

2.2 Position’s equations 
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             Calculation of the end-effector position 
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It has been included a fourth parameter which corresponde to 

the orientation that defines our robot; this way we are 

improving our trajectory control. 

 

2.3 Inverse Kinematics 

To develop our inverse kinematics we have chosen the 

geometric method because it is much easier to analyze a 

specific point based on the functions of its articulations. 

According to this we have: 
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2.4 Inverse Kinematics Analysis 

 

 Choose random positions: 
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III. DIFFERENTIAL KINEMATICS 

 

3.1 Jacobian 

To calculate the Jacobian matrix, we apply the following 

equation: 
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IV. ROBOT’S DYNAMIC 

 

4.1 Dynamics using Lagrange Algorithm 

In this section we will calculate the robot’s dynamic using 

the following equation: 

   ( ) ̈   (   ̇)   ( ) 

𝝉: Torques and forces in the actuatiors 

𝑯: Inertial square matrix  

𝑪: Coriolis forces column matrix  

𝑮: Gravity column matrix 

With this equation we get the matrices by differentiating 

it, in which we get the following equations: 
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 Matrix C 

 

Using Christoffel symbols starting with the inertial tensor. 

 

     
    

   
 
 

 

    

   
   

 

 

 

 

 Matrix G 
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Where: 

 

g = Gravity vector with respect to the base system 

 

4.2 Dynamic using SimMechanics 

One of the simulation software we have used is the tool 

SimMechanics from Matlab, it simulates our robot in 3D 

providing physical features for an adequate control, the block 

is as follows: 

 

 

 

 

 

 

 

 

Figure 4.1 – Block in SimMechanics 

 

4.3 Dynamics through Simulink 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Block in Simulink 

 



 

 

 

 

 

 

 

 

Figure 4.3 – Sub-Block in Simulink 

 

V. ROBOT’S CONTROL 

 

5.1 Gravity compensation 

As a first step for controlling the robot, we performed a 

gravity compensation, so in this way we can verify that 

our algorithms were correct. 

For this, we used the SimMechanics block, showed as 

follows. 

 

 

 

 

 

 

 

 

Figure 5.1 – Gravity compensation in Simechanics 

 

5.2 PD control for regulacion 

By succeeding in checking our dynamics equations are 

correct, we start by implementing our different control 

techniques. As our first control technique we will use PD 

control with gravity compensation. For this type of control, 

gravity compensation acts as a correction bias, manually 

tuning and finding the correct values for K which belong to 

the following equation: 

    (    )    ( ̇)   ( ) 

This type of control is often utilized as a set-point 

regulator, for example    = constant. 

We have the following control block: 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – PD Control for regulation 

 

5.3 PID Control 

An integral action has to be added to the PD control to 

compensate gravity forces. This PID regulator has the 

following formula: 

    (    )    ∫ (    )      ̇ 

Where: 
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Figure 5.3 –PID Control with manual tuning 

5.4 Control using neural networks 

 

Many times calculating the inverse kinematics is 

hard to achieve; because of that the use of genetic 

algorithms to obtain those parameteres is benefitial 

in some cases.  

Having the direct kinematics, we créate a Matlab 

program that will generate the knowledge charts and 

will perform the training process of the neural 

network. 

The features of this net are the following: 

- Multilayer using backpropagation training 

- 3 input values X, Y, Z 

- 2 hidden layers of 15 neurons each and 1 output 

layer with 4 neurons each; each output 

represents the articulations 

- Using the gradient descent algorithm with a 

variable learning rate between 0.001 and 0.01 

Evaluation chart: 

Input  Direct Kinematics Neural Network 

X Y Z Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1.45 0 0.32 0 0 pi/2 0.17 0 1e-4 pi/2 0.17 

1.43 0 0.57 0 0.17 pi/2 0.34 0 0.17 pi/2 034 

1.36 0 0.81 0 0.34 pi/2 0.52 0 0.35 pi/2 0.52 

1.25 0 1.04 0 0.52 pi/2 0.70 0 0.52 pi/2 0.70 

1.11 0 1.25 0 0.70 pi/2 0.87 0 0.70 pi/2 0.87 

0.93 0 1.43 0 0.87 pi/2 1.04 0 0.87 pi/2 1.05 

0.72 0 1.57 0 1.04 pi/2 1.22 0 1.04 pi/2 1.22 

0.50 0 1.68 0 1.22 pi/2 1.39 0 1.22 pi/2 1.40 

0.25 0 1.75 0 1.39 pi/2 1.57 0 1.40 pi/2 1.57 

0 0 1.77 0 1.57 pi/2 1.74 0 1.57 pi/2 1.74 

 

 

Figure 5.4 – Net training 

 

Figure 5.5 – Net simulation block 

 
Figure 5.6 – Control using genetic algorithms 

 

5.5 Fuzzy Logic Control 

 

VI. RESULTS OBTAINED FOR POSITION 

CONTROL 

 PD Control with regulation 

 

Final set point will have the following angle 

articulations: 

 

   
  

 
 

    
  

 
 

   
  

 
 



   
  

 
 

 

With this values, the measured error has the 

following graphic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 – Error measurement with PD Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 – Torque calculated for control 

 

 

 

 

 

 

 

Now we will simulate in the Simulink block 

 

 

 

 

 

 

 

 

 

Figure 6.3 – Simulink Articulations 

 

 

 

 

 

 

 

 

   

 

Figure 6.4 – Torque obtained for control 


