

Highly Available Container
Orchestration

Author: David Vossel <dvossel@redhat.com>
Date: 09/03/2014
Version: 3

mailto:davidvossel@gmail.com

Overview

● The Observation:

– Container and VM orchestration tools are becoming common place,
with new projects aiming to tackle orchestration in different ways
popping up all the time.

● The Problem:

– As these orchestration tools begin to be deployed in production
environments, the concept of how to make these deployments Highly
Available begins to be explored.

● The Solution:

– This presentation aims to give a high level introduction of where the
Pacemaker High Availability Stack fits in with container orchestration.

Why HA?
● To answer this, lets take a high level look at how container orchestration

is generally done.

– Orchestration front end executes commands on remote hosts using
API supplied by backend daemons

– Backend daemons expose API's for managing container images and
running containers.

Create Image Create Container Run Containers

Storage

Container

Application

Orchestration

Orchestration Backend Daemons

Container

Application

Container

Application

Container

Application

Side Note on Orchestration...
● We will not discuss orchestration specifics in this document. Below are the

orchestration definitions as they apply to this discussion.

Orchestration: Any method (automated or manual) by which containers are created
and launched remotely.

Orchestration Backend Daemons: Any local daemons required to execute the
remote actions invoked during orchestration. This can involve REST API daemons,
openstack components, libvirt, and even something as simple as ssh.

Create Image Create Container Run Containers

Storage

Container

Application

Orchestration

Orchestration Backend Daemons

Container

Application

Container

Application

Container

Application

Big picture overview
● Without the HA stack the big picture looks like this, where remote

orchestration handles container management across multiple nodes.

Orchestration

NODE 1

Create Image Create Container Run Containers

Storage

Container

Application

Orchestration Backend Daemons

Container

Application

Container

Application

Container

Application

Operating System

Create Image Create Container Run Containers

Storage

Container

Application

Orchestration Backend Daemons

Container

Application

Container

Application

Container

Application

Operating System

NODE 2

Problems...

● This model lacks fault tolerance and the ability to self heal.

– No storage recovery.

– Limited backend daemon recovery (systemd might auto-restart)

– Limited container recovery.

● No recovery of containers when backend daemons or lxc technology
is down.

● Lacks ability to monitor container applications.
– No fencing

Create Image Create Container Run Containers

Storage

Container

Application

Orchestration Orchestration Backend Daemons

Container

Application

Container

Application

Container

Application

More Problems...

● Without a cluster manager, unpredictable scenarios arise

– Backend API daemons running without container storage mounted

– Orchestration backend API unavailable while containers are running.

– Containers running with failed/degraded application inside.

– Network communication between orchestration and remote backend
API is down. Orchestration has no ability accurately determine the
remote API is down without the use of fencing.

Create Image Create Container Run Containers

Storage

Container

Application

Orchestration Orchestration Backend Daemons

Container

Application

Container

Application

Container

Application

But my distributed container
manager is different....

● As more orchestration tools emerge the developers of these tools realize
the need for fault tolerance. As a result many begin build HA looking
features into the distributed system.

● Don't be fooled. These are not HA solutions. HA must be a holistic
approach. It is not possible to build a true HA solution without taking the
entire system into account.

● There's one simple question that typically exposes a faulty HA solution
immediately. “Is the HA manager natively Highly Available itself?”
meaning is the tool being used to guarantee HA able to handle and react
it's own internal faults in a predictable safe way as well as the system's
the tool manages? The answer to this question nearly always a
resounding NO. Why? Because true HA is very difficult.

Pacemaker to the Rescue!

● Pacemaker does not replace orchestration.... Instead
pacemaker adds resilience to whatever orchestration system is
already in use.

Pacemaker

Create Image Create Container

Storage

Orchestration
Backend
Daemons

Container

Application

Container

Application

Container

Application

Container

Application

Launch Container

Container

Application

Container

Application

Orchestration

BLUE:

ORANGE:
Orchestration Actions
Pacemaker Managed Resources

Pacemaker to the Rescue!
● The storage, orchestration daemons, containers, and container applications are all

managed as resources within the pacemaker cluster.

● Pacemaker introduces fault tolerance to the existing orchestration system by monitoring
and recovering each component in a consistent and predictable way.

● Pacemaker itself is also highly available, which ensures consistent and predictable
behavior regardless of where a fault may occur.

Pacemaker

Create Image Create Container

Storage

Orchestration
Backend
Daemons

Container

Application

Container

Application

Container

Application

Container

Application

Launch Container

Container

Application

Container

Application

Orchestration

BLUE:

ORANGE:
Orchestration Actions
Pacemaker Managed Resources

Orchestration remains the same
(almost)

● Orchestration still performs actions using backend API with one slight difference.

● “launch container” action is performed through pacemaker rather than by the
backend API directly.

– Pacemaker ensures storage dependencies are available before launch

– Pacemaker monitors both the container and container's application for health.

– Pacemaker automatically recovers and relocates failed container resources.

– Pacemaker maintains control over containers even if API daemons are down.

Pacemaker

Create Image Create Container

Storage

Orchestration
Backend
Daemons

Container

Application

Container

Application

Container

Application

Container

Application

Launch Container

Container

Application

Container

Application

Orchestration

Big Picture View: With HA

Orchestration

NODE 1

Create
Image

Storage

Orchestration
Backend
Daemons

Container

Application

Create
Container

Launch
Container

Container

Application

Container

Application

Container

Application

NODE 1

Create
Image

Storage

Orchestration
Backend
Daemons

Container

Application

Create
Container

Launch
Container

Container

Application

Container

Application

Container

Application

Pacemaker

HA container Storage:

● When containers and virtual machines are involved, it is common to have these
images available locally via some form of shared storage.

● Pacemaker can manage mounting shared storage through the use of the
Filesystem OCF script that ships in the resource-agent's package.

● With the Filesystem resource-agent, pacemaker has the ability to both monitor
the mounted filesystem is available as well is perform i/o health checks on the
partition itself.

HA orchestration daemons:

● Pacemaker can already natively manage the system resources involved with
container management and orchestration.

● The process is to hand over control of the daemons to Pacemaker rather than
launching the daemons manually or at system initialization.

● Pacemaker supported resource standards. (Systemd, OCF, LSB, Upstart,
Nagios)

● Pacemaker has the ability to understand complex resource ordering and
colocation constraints. These resource constraints allow us to define resource
dependencies such as (don't start this daemon until this shared storage partition
is mounted).

● Resource constraints allow pacemaker to recover resources in a consistent and
predictable manner after a failure. With constraints we can guarantee resources
will always be stopped and started in the correct order.

HA Container Execution:

● After the container orchestration system creates a container, the orchestration
must hand off the container to Pacemaker to launch and monitor.

● Pacemaker launches containers using custom OCF resource-agents scripts. Take
for example a docker container, a 'docker' specific OCF script must be used.

● Unlike systemd unit files and traditional LSB style init scripts, OCF scripts allow
parameters to be passed in to them.

● When pacemaker is told to manage resource instances using an OCF script, the
resource instance along with the resource's parameters are stored in pacemaker
distributed database (the CIB)

● The CIB itself is highly available ensuring that once a container is handed off to
pacemaker to manage, that resource instance will remain persistent.

Extending HA to Container
Applications

● One advanced feature Pacemaker offers is the ability to both manage executing
containers as well as executing and monitoring the applications that run within the
containers.

● This ability to manage containers' internal applications is achieved through the use
of the pacemaker_remote daemon.

– pacemaker_remote runs in the container's environment and extends
pacemaker's resource management from a host node into container.

– This allows pacemaker to manage resources within a container just as if the
container were another HA node available to the system.

● A more in-depth overview of pacemaker_remote can be found here.
http://clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/html-single/Pacemaker_Remote/index.html

http://clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/html-single/Pacemaker_Remote/index.html

Extending HA to Container
Applications, cont....

● With pacemaker_remote we go from treating containers as black boxes, where the
applications are hidden inside the containers invisible to the cluster manager...

Physical Host

Storage

Pacemaker

Container Container

Hardware

Cluster software

Cluster resources

● To an environment where pacemaker is able to monitor both the containers and the
applications running within the containers.

Physical Host

Storage

Pacemaker

Container

Hardware

Cluster software

Cluster resources

Apache MariaDBContainer Applications

Pacemaker remote

Container
Pacemaker remote

Extending HA to Container
Applications, cont....

● By making the pacemaker_remote daemon the entry point for a container, and
having pacemaker manage launching container applications through
pacemaker_remote, multiple applications can be monitored in a single container as
well as enforcing complex resource dependencies within a container.

● The figure below shows a container running pacemaker_remote launching multiple
resource instances within each container. Start order and recovery strategies can
be expressed for the resource instances running within the container just as if they
were running on a physical cluster node.

Physical Host

Storage

Pacemaker

Container

Hardware

Cluster software

Cluster resources

MariaDB

Container Applications

Pacemaker remote

Container
Pacemaker remote

Apache

Floating IP

MariaDB

Apache

Floating IP

Extending HA to Container
Applications, cont....

● In an ideal world there should be one resource per a container. This can sometimes be
difficult to achieve though as service stacks can often be so tightly coupled that building
all the container linkages becomes difficult.

● The ability to manage complex resource groups within a container using
pacemaker_remote solves many of the problems encountered when trying to expose
container to container communication. Resources that depend on one another can live
within the same container.

Physical Host

Storage

Pacemaker

Container

Hardware

Cluster software

Cluster resources

MariaDB

Container Applications

Pacemaker remote

Container
Pacemaker remote

Apache

Floating IP

MariaDB

Apache

Floating IP

Pacemaker Scaling
1000s of nodes and beyond!

● In the past, pacemaker was limited in the number of nodes it could scale to
because of limits imposed by the corosync messaging layer of the stack. These
limitations made it difficult for some deployments to extend past 16-20 nodes.

● Great improvements have been made to pacemaker's architecture allowing
pacemaker to extend past the previous limitations to 100s and even 1000s of
nodes.

● Pacemaker is able to scale beyond the corosync limitations through the use of
pacemaker_remote on baremetal nodes.

● With the use of pacemaker_remote baremetal nodes, it is not a stretch to imagine
a cluster consisting of 16 cluster-nodes coupled with 1000 pacemaker_remote
baremetal nodes which collectively manage 1000s of containers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

