Skip to content
a R package for data exploratory analysis
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.
Paper JOSS final paper Sep 2, 2019
R JOSS paper Aug 7, 2019
docs Updated contribution guidelines Aug 20, 2019
inst/rmd_template updated utilis Aug 6, 2019
man updated utilis Aug 6, 2019
revdep Version updated May 4, 2019
tests updated test function Aug 7, 2019
.gitignore Version updated May 4, 2019 Version updated May 4, 2019 Version updated May 4, 2019 Updated contribution guidelines Aug 20, 2019
CRAN-RELEASE updated utilis Aug 6, 2019
DESCRIPTION updated utilis Aug 6, 2019
LICENSE Version updated May 4, 2019
NAMESPACE updated utilis Aug 6, 2019 Updated contribution guidelines Aug 20, 2019
VcfEDA.Rproj Version updated May 4, 2019
master Updated contribution guidelines Aug 20, 2019

SmartEDA CRAN status

Downloads Total Downloads

Authors: Dayanand Ubrangala, Kiran R, Ravi Prasad Kondapalli and Sayan Putatunda


In a quality statistical data analysis the initial step has to be exploratory. Exploratory data analysis begins with the univariate exploratory analyis - examining the variable one at a time. Next comes bivariate analysis followed by multivariate analyis. SmartEDA package helps in getting the complete exploratory data analysis just by running the function instead of writing lengthy r code.

Functionalities of SmartEDA

The SmartEDA R package has four unique functionalities as

  • Descriptive statistics
  • Data visualisation
  • Custom table
  • HTML EDA report


Journal of Open Source Software Article

An article describing SmartEDA pacakge for exploratory data analysis approach has been published in arxiv and currently it is under review at The Journal of Open Source Software. Please cite the paper if you use SmartEDA in your work!


The package can be installed directly from CRAN.


To contribute, download the latest development version of SmartEDA from GitHub via devtools:

devtools::install_github("daya6489/SmartEDA",ref = "develop")



In this vignette, we will be using a simulated data set containing sales of child car seats at 400 different stores.

Data Source ISLR package.

Install the package "ISLR" to get the example data set.

	## Load sample dataset from ISLR pacakge
	Carseats= ISLR::Carseats

Overview of the data

Understanding the dimensions of the dataset, variable names, overall missing summary and data types of each variables

## overview of the data; 
## structure of the data	

Summary of numerical variables

To summarise the numeric variables, you can use following r codes from this pacakge

## Summary statistics by – overall
## Summary statistics by – overall with correlation	
## Summary statistics by – category

Graphical representation of all numeric features

## Generate Boxplot by category
ExpNumViz(mtcars,target="gear",type=2,nlim=25,fname = file.path(tempdir(),"Mtcars2"),Page = c(2,2))
## Generate Density plot
ExpNumViz(mtcars,target=NULL,type=3,nlim=25,fname = file.path(tempdir(),"Mtcars3"),Page = c(2,2))
## Generate Scatter plot
ExpNumViz(mtcars,target="carb",type=3,nlim=25,fname = file.path(tempdir(),"Mtcars4"),Page = c(2,2))

Summary of Categorical variables

## Frequency or custom tables for categorical variables
## Summary statistics of categorical variables
	ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,Pclass="Yes")
## Inforamtion value and Odds value
	ExpCatStat(Carseats,Target="Urban",result = "IV",clim=10,nlim=5,Pclass="Yes")

Graphical representation of all categorical variables

## column chart
	ExpCatViz(Carseats,target="Urban",fname=NULL,clim=10,col=NULL,margin=2,Page = c(2,1),sample=2)
## Stacked bar graph
	ExpCatViz(Carseats,target="Urban",fname=NULL,clim=10,col=NULL,margin=2,Page = c(2,1),sample=2)
## Variable importance graph using information values

Variable importance based on Information value

  ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,bins=10,Pclass="Yes",plot=TRUE,top=10,

Create HTML EDA report

Create a exploratory data analysis report in HTML format


Quantile-quantile plot for numeric variables


Parallel Co-ordinate plots

## Defualt ExpParcoord funciton
## With Stratified rows and selected columns only
## Without stratification

Exploratory analysis - Custom tables, summary statistics

Descriptive summary on all input variables for each level/combination of group variable. Also while running the analysis we can filter row/cases of the data.

	ExpCustomStat(Carseats,Cvar=c("US","ShelveLoc"),gpby=TRUE,filt="Urban=='Yes' & Population>150")


  • Need some help?
  • Found a bug?
  • Request a new feature? Just open an issue.


  • Want to add a feature?
  • Correct a bug? You're more than welcome to contribute

Please read the contribution guidelines prior to submitting a pull request. Try to code and submit a new pull request (PR). Even if not perfect, we will help you to make a great PR


See article wiki page.


Chon Ho, Y. (2010). Exploratory data analysis in the context of data mining and resampling. International Journal of Psychological Research, 3(1), 9–22. doi:

Coates, M. (2016). exploreR: Tools for Quickly Exploring Data. Retrieved from

Comtois, D. (2018). summarytools: Tools to Quickly and Neatly Summarize Data. Retrieved from

Cui, B. (2018). DataExplorer: Data Explorer. Retrieved from

DiCerbo et al. (2015). Serious Games Analytics. Advances in Game-Based Learning. In C. Loh, Y. Sheng, & D. Ifenthaler (Eds.),. Cham: Springer. doi:10.1007/978-3-319-05834-4

Harrell et al. (2018). Hmisc: Harrell Miscellaneous, Retrieved from

Hoaglin, D., Mosteller, F., & Tukey, J. (1983). Understanding robust and exploratory data analysis. Wiley Series in probability and mathematical statistics, New-York.

Jaggi, S. (2013). Descriptive statistics and exploratory data analysis. Indian Agricultural Statistics Research Institute. Retrieved from

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). ISLR: Data for an Introduction to Statistical Learning with Applications in R. doi:

Konopka et al. (2018). Exploratory data analysis of a clinical study group: Development of a procedure for exploring multidimensional data. PLoS ONE, 13(8).

Liu, Q. (2014, October). The Application of Exploratory Data Analysis in Auditing (PhD thesis). Newark Rutgers, The State University of New Jersey, Newark, New Jersey.

Ma, X., Hummer, D., Golden, J. J., Fox, P. A., Hazen, R. M., Morrison, S. M., Downs, R.T., et al. (2017). Using Visual Exploratory Data Analysis to Facilitate Collaboration and Hypothesis Generation in Cross-Disciplinary Research. International Journal of Geo-Information, 6(368), 1–11. doi:

Nair, A. (2018). RtutoR: Shiny Apps for Plotting and Exploratory Analysis. Retrieved from

Ryu, C. (2018). dlookr: Tools for Data Diagnosis, Exploration, Transformation. Retrieved from

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.

Ubrangala, D., Rama, K., Kondapalli, R. P., & Putatunda, S. (2018). SmartEDA: Summarize and Explore the Data. Retrieved from

You can’t perform that action at this time.