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1 Quantization Error

1.1 Definitions

Let Q be the distribution of query subvectors qm for lookup table m, X be the
distribution of database subvectors xm for this table, and Y be the scalar-valued
distribution of distances within that table. I.e.:

p(Y = y) ,
∫
Q,X

p(qm,xm)I{dm(qm,xm) = y} (1)

where I{·} is the indicator function. Recall that we seek to learn a quantization
function βm : R→ {0, . . . , 255} of the form:

βm(y) = max(0,min(255, bay − bc)) (2)

that minimizes the loss:

EY [(ŷ − y)2] (3)

where ŷ , (βm(y) + b)/a is the reconstruction of y.
In the paper, we propose setting b = F−1(α) and a = 255/(F−1(1− α)− b)

for some suitable α. F−1 is the inverse CDF of Y , estimated empirically on a
training set. The value of α is optimized using a simple grid search.

To analyze the performance of βm from a theoretical perspective, let us
define the following:

• Let |ŷ − y| be the quantization error.

• Let B be the number of quantization bins. In practice, B = 256.

• Let bmin , F−1(α) be the smallest value that can be quantized without
clipping.

• Let bmax , F−1(1− α) be the largest value that can be quantized without
clipping.
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• Let ∆ , bmax−bmin

B be the width of each quantization bin.

Using these quantities, the quantization error for a given y value can be
decomposed into:

|y − ŷ| =


bmin − y if y ≤ bmin
∆c(y) if bmin < y ≤ bmax
y − bmax if y > bmax

(4)

where c(y) = (y − ŷ)/∆ returns a value in [0, 1) indicating where ŷ lies within
its quantization bin. These three cases represent y being clipped at bmin, being
rounded down to the nearest bin boundary, or being clipped at bmax, respec-
tively.

It will also be helpful to define the following properties.

Definition 1.1. A random variable X is (l, h)-exponential if and only if:

l < E[X] < h (5)

p(X < γ) <
1

σX
e−(E[X]−γ)/σX , γ ≤ l (6)

p(X > γ) <
1

σX
e−(γ−E[X])/σX , γ ≥ h (7)

where σX is the standard deviation of X.

In words, X is (l, h)-exponential if its tails are bounded by exponential dis-
tributions. For appropriate l and h, Laplace, Exponential, Gaussian, and all
subgaussian distributions are (l, h)-exponential.

1.2 Guarantees

Lemma 1.1. Let p(Y < bmin) = 0 and p(Y > bmax) = 0. Then |ŷ − y| < ∆.

Proof. The error |ŷ−y| > ε can be decomposed according to (4). By assumption,
the first and last terms in this decomposition, wherein Y clips, have probability
0. This leaves only:

|y − ŷ| = ∆c(y) (8)

where 0 ≤ c(y) < 1. For any value of c(y), |y − ŷ| < ∆. Intuitively, this means
that if the distribution isn’t clipped, the worst quantization error is the width
of a quantization bin.

Theorem 1.1 (Two-tailed generalization bound). Let Y be (bmin, bmax)-exponential.
Then:

p(|y − ŷ| > ε) <
1

σY

(
e−(bmax−E[Y ])/σY + e−(E[Y ]−bmin)/σY

)
e−ε/σY (9)

for all ε > ∆.
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Proof. Using the decomposition in (4), we have:

p(|y − ŷ| > ε) = p(c(y)∆ > ε)p(bmin < y ≤ bmax)

+ p(bmin − y > ε) (10)

+ p(y − bmax > ε)

The first term corresponds to y being truncated within a bin, and the latter two
correspond to y clipping. Since 0 ≤ c(y) < 1 and p(bmin < y ≤ bmax) ≤ 1, the
first term can be bounded as:

p(c(y)∆ > ε)p(bmin < y ≤ bmax) < I{ε < ∆} (11)

The latter two terms can be bounded using the assumption that Y is (bmin, bmax)-
exponential:

p(bmin − y > ε) = p(y < bmin − ε) <
1

σY
e−(E[Y ]−bmin−ε)/σY (12)

p(y − bmax > ε) = p(y > bmax + ε) <
1

σY
e−(bmax+ε−E[Y ])/σY (13)

Combining (11)-(13), we have:

p(|y − ŷ| > ε) < I{ε < ∆}+
1

σY

(
e−(bmax+ε−E[Y ])/σY + e−(E[Y ]−bmin−ε)/σY

)
(14)

When ε ≥ ∆, the first term is zero and we obtain (9).

For ease of understanding, it is helpful to consider the case wherein bmin and
bmax are symmetric about the mean. When this holds, the bound of Theorem 1.1
simplifies to the more concise expression of Lemma 1.2. This shows that the
error probability decays exponentially with the number of standard deviations
bmin and bmax are from the mean, as well as the size of ε (normalized by the
standard deviation).

Lemma 1.2 (Symmetric generalization bound). Let z be any scalar such that
Y is (E[y]− zσY , E[y] + zσY )-exponential. Then:

p(|y − ŷ| > ε) <
1

σY
2e−(z+ε/σY ) (15)

where ε > ∆ = 2zσY /B.

Proof. This follows immediately from Theorem 1.1 using bmin = E[y] − zσY ,
bmax = E[y] + zσY .

The bound of 1.1 is effective when Y is roughly symmetric, but less so when
Y is heavily skewed. Such skewness is sometimes present when estimating Lp
distances. In the presence of severe skewness, E[Y ] is close to either bmin or
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bmax, and so one of the two exponentials in parentheses approaches 1. Theo-
rem 1.3 describes a tighter bound for the case of right skew and a hard lower
limit of 0, since this is often the distribution observed for Lp distances. The
corresponding bound for left skew and a hard upper limit is similar so we omit
it. Note that this theorem is useful only if bmin ≈ ∆, but this is commonly the
case when the Lp distances are highly skewed.

Lemma 1.3 (One-tailed generalization bound). Let Y be (bmin, bmax)-exponential,
with p(Y < 0) = 0. Then:

p(|y − ŷ| > ε) <
1

σY
e−(bmax+ε−E[Y ])/σY (16)

for all ε > max(∆, bmin).

Proof. Using (17) with the fact that ε > bmin, we have:

p(|y − ŷ| > ε) = p(c(y)∆ > ε)p(bmin < y ≤ bmax) (17)

+ p(y − bmax > ε)

Again applying the bounds from (11) and (13), we obtain (16).

2 Dot Product Error

In this section, we bound the error in Bolt’s approximate dot products. We also
introduce a useful closed-form approximation that helps to explain the high
performance of product quantization-based algorithms in general.

2.1 Definitions and preliminaries

Definition 2.1 (Codebook). A (K,J)-codebook C is an ordered collection of
K vectors {c1, . . . , cK} ∈ RJ . Each vector is referred to as a “centroid” or
“codeword.” The notation ci denotes the ith centroid in the codebook.

Definition 2.2 (Codelist). A (K,M, J)-codelist C is an ordered collection of
M (K,J/M)-codebooks. Because zero-padding is trivial and does not affect any
relevant measure of accuracy, we assume that J is a multiple of M . The notation

c
(m)
i denotes the ith centroid in the mth codebook. A codelist can be thought of

(and stored) as a rank-3 tensor whose columns are codebooks, treated as row-
major 2D arrrays.

Definition 2.3 (Subvectors of a vector). Let x ∈ RJ be a vector, let M > 0
be an integer, and let L = J/M . Then x(1), . . . ,x(M) are the subvectors of x,
where x(m) ∈ RL , x(k−1)L+1, . . . , xL. As with codelists, J is assumed to be a
multiple of M .
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Definition 2.4 (Encoding of a vector). Let x ∈ RJ be a vector with subvectors
x(1), . . . ,x(M) and let C be a (K,M, J)-codelist. Then the encoding of x is the
sequence of integers a1, . . . , aM , 0 < am ≤M where

am , arg min
i
||x(m) − c

(m)
i ||2 (18)

Definition 2.5 (Reconstruction). Let a1, . . . , aM , 0 < am ≤M be the encoding
of some vector x, and let C be a (K,M, J)-codelist. Then the concatenation of

the vectors c
(1)
a1 , c

(2)
a2 , . . . , c

(M)
aM is the reconstruction of x, denoted x̂.

Definition 2.6 (Residuals). Let x̂ be the reconstruction of x. Then r , x− x̂
is the residual vector for x.

Apart from these definitions, it is also necessary to establish several geomet-
ric properties of random (encoded) vectors in high-dimensional spaces.

Lemma 2.1 (Dot product bias [1]). Let x̂ be the reconstruction of x using
codelist C, and suppose that the centroids of all codebooks within C were learned
using k-means. Then E[q>x− q>x̂] = 0.

Lemma 2.2 (Euclidean distance bias [4, 1]). Let a1, . . . , aM , 0 < am ≤ M be
the encoding of some vector x using codelist C and x̂ be the reconstruction of x.
Further suppose that the centroids of all codebooks within C were learned using
k-means. Then:

E[‖q− x‖2 − ‖q− x̂‖2] =

M∑
m=1

MSE(am,m) (19)

where MSE(am,m) is the expected squared Euclidean distance between centroid

c
(m)
am and the subvectors assigned to it by k-means. I.e.,

MSE(am,m) , EX [‖c(m)
am − x(m)‖2], am = arg min

i
‖c(m)
i − x(m)‖2 (20)

Lemma 2.3 (Area of a hyperspherical cap (Li. 2011 [5])). Suppose that a
hyperphere in RJ with radius r is cut into two caps by a hyperplane, with the
angle θ, 0 ≤ θ ≤ π

2 defining the radius of the smaller cap. Then the area of the
smaller cap is given by

AJ(r) =
1

2
AsJ(r)Isin2(θ)

(
J − 1

2
,

1

2

)
(21)

where AsJ(r) is the area of the hyperpsphere and Ix(α, β) denotes the regularized
incomplete beta function (i.e., the CDF of a Beta(α, β) distribution).

Lemma 2.4 (Minimum angle between random vectors). Let x,y ∈ RJ be vec-

tors such that x>y
‖x‖‖y‖x is sampled uniformly from the surface of the unit hyper-

sphere SJ−1, and let θ , arccos( x>y
‖x‖·‖y‖ ) be the angle between x and y. Then

for 0 ≤ a ≤ π
2 ,

p(|θ| ≥ a) = Isin2(a)

(
J − 1

2
,

1

2

)
(22)
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Proof. Since the angle between x and y is independent of their norms, assume
without loss of generality that x and y have been scaled such that ‖x‖ = ‖y‖ =
1. For a given x, the set of y vectors such that cos(θ) ≥ a, θ ≤ π

2 is exactly the
set of vectors comprising a hyperspherical cap of SJ−1 with radius defined by a.
Because the projection onto x of y has probability mass uniformly distributed
across SJ−1, the probability that y lies within this cap is equal to the area of
the cap divided by the area of the hypersphere. Using Lemma 2.3, this ratio is
given by:

1

2
Isin2(a)

(
J − 1

2
,

1

2

)
(23)

By symmetry, this is also p(θ < −a). Summing the probabilities of these two
events yields (22).

Lemma 2.5 (Gaussian approximation to angle between random vectors). Let
x, q, and θ be defined as in Lemma 2.4. Then

p(cos(θ) > a) ≈ 1

2
+

1

2
erf

(
−cos(θ)

√
J

2

)
(24)

Proof. Using the identity Iz(α, α) = 1
2I4z(1−z)(α,

1
2 ) [2, Eq. 8.17.6], we can

rewrite (23) as:

Iφ(
J − 1

2
,
J − 1

2
) (25)

where φ = 1
2 (1− cos(θ)). Recall that a Beta(α, β) distribution can be approxi-

mated by a normal distribution with:

µ =
α

α+ β
(26)

σ2 =
αβ

(α+ β)2(1 + α+ β)
(27)

Using α = β = J−1
2 , this yeilds

µ =
1

2
(28)

σ2 =

(
J−1
2

)2
4
(
J−1
2

)2 (
1 + 2J−12

) =
1

4J
(29)

Further recall that the CDF of a normal distribution with a given mean µ and
variance σ2 is given by

Φ(a) =
1

2
+

1

2
erf

(
a− µ
σ
√

2

)
(30)

6



Substituting (28) and (29) into (30), we obtain

Iφ(
J − 1

2
,
J − 1

2
) ≈ erf((φ− 1

2
)
√

2J) (31)

Finally, substituting 1
2 (1− cos(θ)) for φ yields (24).

Lemma 2.6 (Gaussian PDF approximation). Let x, q, and θ be defined as in
Lemma 2.4. Then

cos(θ) ∼ N (0, J−1) (32)

Proof. Writing (24) in the form of (30) gives

µ = 0 (33)

σ2 =
1

J
(34)

Because (24) is the CDF of a Gaussian random variable with this µ and σ2, the
PDF is given by N (0, J−1).

2.2 Guarantees

We now prove several bounds on the errors caused by product quantization
using an arbitrary number of subvectors. We begin with no distributional as-
sumptions, and then prove increasingly tight bounds as more assumptions are
added.

Lemma 2.7 (Worst-case dot product error). Let x̂ be the reconstruction of x
and let q ∈ RJ be a vector. Then |q>x − q>x̂| < ‖q‖ · ‖r‖, where r is the
residual vector x− x̂.

Proof. This follows immediately from application of the Cauchy-Schwarz in-
equality.

|q>x− q>x̂| = |q>x− q>(x− r)| = |q>r| ≤ ‖q‖ · ‖r‖ (35)

If we are willing to make the extremely pessimistic assumption that the co-
sine of the angle between q and r is uniformly distributed, a tighter bound (and
indeed, an exact expression for the error probability) is possible (Theorem 2.1).
This assumption is pessimistic because angles close to 0, which yield smaller
errors, are much more probable in high dimensions.

Theorem 2.1 (Pessimistic dot product error). Let θ denote the angle between
r and some vector q, and suppose that cos(θ) ∼ Unif(−1, 1). Then

p(|q>x− q>x̂| > ε) = max(0, 1− ε

‖q‖ · ‖r‖
) (36)
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Proof. Simple algebra shows that

q>x− q>x̂ = q>(x̂ + r)− q>x̂ = q>r = ‖q‖ · ‖r‖ cos(θ) (37)

Since cos(θ) ∼ Unif(−1, 1), we have that |cos(θ)| ∼ Unif(0, 1), and therefore

p(|q>x− q>x̂| > ε) = p(|‖q‖ · ‖r‖ cos(θ)| > ε) (38)

= p

(
|cos(θ)| > ε

‖q‖ · ‖r‖

)
(39)

= max

(
0, 1− ε

‖q‖ · ‖r‖

)
(40)

The assumption that the cosine similarity of vectors is uniform can be re-
placed with the slightly more optimistic assumption that the errors in quantizing
each subvector are independent, yielding Theorem 2.2.

Theorem 2.2 (Dot product error with independent subspaces). Let x(1), . . . ,x(M)

be the subvectors of x, let x̂(1), . . . , x̂(M) be the subvectors of x̂, and let q(1), . . . ,q(M)

be the subvectors of an arbitrary vector q ∈ RJ . Further let r(m) , x(m)− x̂(m),
and assume that the values of ‖r(m)‖ are independent for all k. Then

p(|q>x− q>x̂| ≥ ε) ≤ 2 exp

(
−ε2

2
∑M
m=1(‖q(m)‖ · ‖r(m)‖))2

)
(41)

Proof. The quantity q>x− q>x̂ can be expressed as the sum

M∑
m=1

q(m)>(x(m) − x̂(m)) =

M∑
m=1

q(m)>r(m) (42)

Each element of this sum can be viewed as an independent random variable vk.
By Lemma 2.7, −‖q(m)‖ · ‖r(m)‖ < vk < ‖q(m)‖ · ‖r(m)‖. The inequality (41)
then follows from Hoeffding’s inequality.

This bound assumes the worst-case distribution of errors for each subvector.
If we instead assume that the errors are random as defined in Lemma 2.4, it
is possible to obtain not only a bound, but a closed-form expression for the
probability of a given error.

Theorem 2.3 (Dot product error approximation). Let x(1), . . . ,x(M),
x̂(1), . . . , x̂(M), q(1), . . . ,q(M), r(1), . . . , r(M) be defined as in Theorem 2.2. Sup-
pose that each (q(m), r(m)) satisfy the conditions of Lemma 2.4 and the values
of q(m)>r(m) are independent across all k. Then

p(q>x− q>x̂) ≈ N (0, σ2) (43)

where σ2 , 1
L

∑M
m=1‖q(m)‖2 · ‖r(m)‖2.
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Proof. Applying Lemma 2.6 to a given (q(m), r(m)), we have the approximation:

cos(θm) ∼ N (0, L−1) (44)

where θm , q(m)>r(m)

‖q(m)‖·‖r(m)‖ . Recalling from (37) that q>x−q>x̂ = ‖q‖·‖r‖ cos(θ),

this implies that

q(m)>x(m) − q(m)> x̂(m) ∼ N (0, σ2
m) (45)

where σ2
m = ‖q(m)‖2·‖r(m)‖2

L . Because the errors from each subspace are inde-
pendent, one can sum their variances to obtain (43).

This approximation is optimistic if the codebooks are trained from k-means
using the Euclidean distance, since the residuals’ directions are unlikely to be
uniformly distributed on the unit hypersphere. However, if the centroids are
trained under the Mahalanobis distance as in [3, 1], then this approximation
may be pessimistic. This is because the latter approach tends to concentrate
cos(θ) around 0 (by construction), which yields even smaller variances in each
subspace.

3 Euclidean Distance Error

The guarantees in this section closely parallel those of the previous section, so
we state them without comment.

Theorem 3.1 (Worst-case L2 error). Let x̂ be the reconstruction of x and let
q ∈ RJ be a vector. Then |‖q− x‖ − ‖q− x̂‖| < ‖r‖.

Proof. This follows immediately from application of the triangle inequality.

‖q− x‖ − ‖r‖ ≤ ‖q− x̂‖ = ‖q− x + r‖ ≤ ‖q− x‖+ ‖r‖ (46)

and therefore

|‖q− x‖ − ‖q− x̂‖| ≤ ‖r‖ (47)

Theorem 3.2 (Pessimistic L2 error). Let θ denote the angle between r and
some vector q, and suppose that cos(θ) ∼ Unif(−1, 1). Then

p(|‖q− x‖2 − ‖q− x̂‖2| > ε) = max

(
0,
‖r‖2 − ε

2‖r‖‖q− x‖
− 1

)
(48)

Proof. Using the Law of Cosines, we have

‖q− x‖2 = ‖q− x̂‖2 + ‖x− x̂‖2 − 2‖q− x̂‖‖x− x̂‖ cos(θ)

= ‖q− x̂‖2 + ‖r‖2 − 2‖q− x̂‖‖r‖ cos(θ) (49)
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and therefore

‖q− x‖2 − ‖q− x̂‖2 = ‖r‖2 − 2‖r‖‖q− x̂‖ cos(θ) (50)

This implies that

p(‖q− x‖2 − ‖q− x̂‖2 > ε) = p(‖r‖2 − 2‖r‖‖q− x̂‖ cos(θ) > ε)

= p

(
‖r‖2 − ε

2‖r‖‖q− x̂‖
> cos(θ)

)

=
1

2
max

(
0,
‖r‖2 − ε

2‖r‖‖q− x̂‖
− 1

)
(51)

Equation (48) follows by symmetry.

Theorem 3.3 (L2 error with independent subspaces). Let x(1), . . . ,x(M) be the
subvectors of x, let x̂(1), . . . , x̂(M) be the subvectors of x̂, and let q(1), . . . ,q(M)

be the subvectors of an arbitrary vector q ∈ RJ . Further let r(m) , x(m)− x̂(m),
and assume that the values of ‖q(m)−x(m)‖2−‖q(m)− x̂(m)‖2 are independent
for all k.

p(|‖q− x‖2 − ‖q− x̂‖2| > ε) ≤ 2 exp

(
−ε2

2
∑M
m=1‖r(m)‖4

)
(52)

Proof. The quantity ‖q− x‖2 − ‖q− x̂‖2 can be expressed as the sum

M∑
m=1

‖q(m) − x(m)‖2 − ‖q(m) − x̂(m)‖2 (53)

By assumption, each element of this sum can be viewed as an independent
random variable vk. By Lemma 3.1, −‖r(m)‖2 ≤ vk ≤ ‖r(m)‖2. Assuming
that one adds in the bias correction described in Lemma 2.2, one can apply
Hoeffding’s inequality to obtain (41).

Theorem 3.4 (L2 error approximation). Let x(1), . . . ,x(M), x̂(1), . . . , x̂(M),
q(1), . . . ,q(M), r(1), . . . , r(M) be defined as in Theorem 3.3. Suppose that each
pair (q(m) − x̂(m), r(m)) satisfy the conditions of Lemma 2.4 and the values of
(q(m) − x̂(m))>r(m) are independent across all k.

p(‖q− x‖2 − ‖q− x̂‖2) ≈ N (‖r‖2, σ2) (54)

where σ2 , 4‖r‖2‖q− x‖2L−1.

Proof. Applying Lemma 2.6 to a given (q(m), r(m)), we have the approximation:

cos(θm) ∼ N (0, L−1) (55)
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where θm , q(m)>r(m)

‖q(m)‖·‖r(m)‖ . Further recall from (50) that

‖q(m) − x(m)‖2 − ‖q(m) − x̂(m)‖2 = ‖r(m)‖2 − 2‖r(m)‖‖q(m) − x̂(m)‖ cos(θm)
(56)

Combining (56) and (55) yields

‖q(m) − x(m)‖2 − ‖q(m) − x̂(m)‖2 ∼ N (‖r(m)‖2, σ2
m) (57)

where σ2
m , 4‖r(m)‖2‖q(m)−x̂(m)‖2L−1. Because the errors from each subspace

are independent, one can sum their variances to obtain (54).
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