
Proceedings on Privacy Enhancing Technologies 2019

From grassroots to CROCUSes: privacy-preserving CROwd
Counting Using Smartphones
Abstract: Crowd counts vary according to who is do-
ing the counting and what methods and criteria they
use. Current methods have wide margins for error, are
difficult to verify, and can be privacy-invasive. We rec-
ognize the potential adversarial setting for crowd counts
and thus aim for both transparency (in the form of ver-
ifiability) and privacy. In this paper we propose CRO-
CUS, a decentralized system based on smartphones that
combines anonymous credentials, witnesses of proxim-
ity, and storage of participation proofs on a public ledger
(e.g., blockchain) to achieve properties similar to those
needed for electronic voting, where, put simply, it is im-
portant to count everyone, but only once, not leak pri-
vate information, and be able to prove that the count
was done correctly. We find that, with some assump-
tions about the availability of future technology such
as distance-bounding chips on smartphones, CROCUS
can provide the desired properties at acceptable perfor-
mance.

1 Introduction
While our proposal is meant for crowd counting in gen-
eral and to be applicable to any kind of event, we rep-
resent an event with a political protest against an op-
pressive regime throughout the paper. We choose this
instantiation of an event because it is the most challeng-
ing in terms of requirements for privacy and verifiability
(transparency). Consider the following scenario. Alice is
an activist that organizes a protest in some location(s)
against the current government, represented by Grace.
Alice wants to estimate the number of participants to
prove a certain support for her cause against Grace.
Bob, Carol and many others participate in the protest.
However, they might only be willing to do so in a man-
ner that does not leave any digital traces because of the
fear of retribution against them from Grace’s regime. To
realize this objective, a reliable yet privacy-preserving
crowd-counting mechanism is needed, which to the best

of our knowledge is a problem that has not yet been
entirely solved.

Historically, there are many examples of protests in
which the count estimated by police and that of the
organizers differ significantly, sometimes by hundreds
of thousands. Even without foul play, the difference
is quite natural as both parties have different objec-
tives and metrics. More precisely, the organizers want to
count everyone who participated while the police want
to estimate the count at the peak of participation, due
to crowd control [42]. Among the numerous recent ex-
amples in which it is difficult to establish the actual
number of participants, there are the demonstrations
against the president in South Korea [42], Trump’s in-
auguration [37], the 2017Women’s March in the US [45],
the demonstrations against the change of constitution in
Venezuela [31] or for the independence of Catalonia [24].

Existing methods for crowd-counting vary signifi-
cantly in terms of approaches (we will review them in
detail in Section 3). However, most of them lack preci-
sion (i.e., they have large error margins) and they can
only give an estimate for a particular snapshot in time.
In particular, the existing methods cannot reliably esti-
mate the cumulative participation count — at least not
without counting some persons multiple times — which
in turn increases the error of the estimation. In addi-
tion, they lack verifiability in the sense that one has to
trust the third party responsible for implementing the
counting method.

Finally, one important observation about crowd-
counting that has not been adequately addressed in the
design of current crowd-counting solutions is that it ac-
tually is an adversarial setting. Indeed, going back to
our example, Alice the activist has an incentive to in-
crease the tallied number of participants, whereas Grace
(and possibly other entities) has an incentive to decrease
it. In this case, we are left with two options: either we
trust Alice or Grace (or another third party) or we have
to be able to verify their claims ourselves. In this pa-
per, our main objective is to provide a scheme prevent-
ing both Alice and Grace from cheating by providing
verifiable participation counts that can resist Sybil at-
tacks while still preserving the participants’ privacy to
the extent possible given their physical presence at the
protest. While one cannot prevent an observer (physi-
cally present or looking at photos or videos) from rec-

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 2

ognizing a particular individual at a protest, we do not
want the digital traces of our protocol to increase any
risk for the participants.

2 System model
To set the stage, we will now describe our system model
including assumptions and a summary of the desired
properties for crowd counting.

2.1 Model and assumptions

Throughout this paper, each time we refer to a partici-
pant, such as Alice, we actually mean a personal device
that can perform cryptographic operations and commu-
nicate with other local devices on Alice’s behalf. Fur-
thermore, we assume that each participant has a digital
certificate signed by a certificate authority (CA)1 that
ensures a one-to-one mapping between an identity and
a cryptographic key2.

In practice, participants witness each other’s partic-
ipation using their smartphones (or similar devices) run-
ning the protocol described in Section 6 and uploading
their testimony (i.e., proof shares) to a ledger (such as a
blockchain) after the protest. During the protest, the de-
vices might be limited by their batteries and computa-
tions they can perform and only have local connectivity
to each other. No connection to any global network such
as the Internet is necessary at that time. Nonetheless,
before and after the protest, we assume that the devices
have global connectivity (i.e., Internet connections) and
are not computationally limited by any battery. This
assumption is necessary to ensure that the participants
will be able to upload their proof shares to the ledger.

2.2 Desired properties

We note that, in general terms, protests are petitions
with a given time and location. Protests, petitions and
elections share that in all three many individuals express

1 We note that any system that prevents Sybil attacks [22] will
do. The CA can be centralized or decentralized, but as Douceur
[22] points out, the CA must be logically centralized to prevent
Sybil attacks. See ?? for a discussion on existing identity systems
and their limits.
2 For every identity there exists at most one valid digital cer-
tificate.

their opinion. These opinions can be sensitive (e.g., be a
cause for discrimination or persecution). For that reason
we have strong requirements for verification and privacy
for elections, it follows that we should have similar prop-
erties for protests and petitions.

We draw inspiration from properties for voting sys-
tems as formalized in [17]:

Eligibility: anyone can verify that each cast vote is
legitimate.

Universal verifiability: anyone can verify that the
result is according to the cast votes.

Individual verifiability: each voter can verify that
his vote is included in the result.

In our context, votes are translated into participation
proofs. Universal and individual verifiability remain the
same, in the sense that anyone can verify the participa-
tion count by counting the proofs and a participant can
verify their proof is included. The eligibility requirement
is slightly different as for protests it must also include
temporal and spatial eligibility (i.e., each participation
proof satisfies some temporal and spatial relation to the
protest). In essence, the proof must bind the person to
the time and location of the protest. (This is the differ-
ence to a petition.)

In [17], the main three privacy properties for voting
protocols are given as:

Vote privacy: the voting does not reveal any individ-
ual vote.

Receipt freeness: the voting system does not provide
any data that can be used as a proof of how the
voter voted.

Coercion resistance: a voter cannot cooperate with
a coercer to prove his vote was cast in any particular
way.

Coercion resistance in voting typically relies on
physical isolation (e.g., private voting booths), including
for digital systems, and that is by definition not possi-
ble for public events. For instance, someone could simply
physically bring Alice to a protest against her will. As
for receipt freeness, while desirable in itself, it implies
a conflict with verifiability in our context: in contrast
to voting, receipt freeness for how the voter voted (i.e.,
the cause of the protest) here implies receipt freeness
for that the voter voted (i.e., the protester was there),
which would make verifiability impossible.

Therefore in our context, the crucial property is vote
privacy. More precisely, for the protester we want un-

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 3

linkability (from the adversary’s perspective) between a
protester’s real identity P and the participation proof
(and thus also the protest itself). Phrased differently,
given a participation proof, Grace should not be able
to distinguish if it was Alice or Bob who participated.
Furthermore, if Grace has managed to link one proof
to Alice due to some auxiliary knowledge, she should
not be able to link it to another proof (from a different
protest).

3 Related work
The seemingly most common method for counting
crowds at protests is Jacobs’s method [1, 2, 29, 37, 42].
This manual method devised in the 1960s relies on aerial
pictures of the event. The verifier divides the protest
venue into regions and then estimates the density of
the crowd in the different regions before summing them
up to get an estimate of the global count. Clearly, this
method is prone to errors as it is based on estimates.
It provides universal verifiability since anyone can redo
the counting using the same pictures. However, it is diffi-
cult to achieve individual verifiability using this method
since it is hard to verify that oneself is indeed in any of
the photos. We can argue that it also achieves eligi-
bility if all the photos are taken at the same point in
time, since then no one can be counted twice. Unfor-
tunately, we can only get the peak participation with
this method. When it comes to spatial and temporal
eligibility, we have to rely on pictures (e.g., by deter-
mining from the pictures themselves when and where
they were taken). However, this is prone to cheating —
and subject to a variety of manipulation techniques —
and the best we can do is to employ forensic methods
to try to detect any modifications or other attempts of
fraud. From a privacy perspective, all techniques based
on photo or video material are necessarily not privacy-
preserving unless the protesters take actions to protect
themselves. For instance, there is a risk that partici-
pants are recognizable from the material if they do not
wear masks.

Among more recent methods, there is an applica-
tion called CrowdSize [13] that can estimate the size of
a crowd in a selected area. Once the user has specified
the zone, they select one of three pre-set density esti-
mates: light, medium or dense. This is similar to the
method usually used by police (e.g., during the protests
in Seoul): “[p]olice presume[d] that, when sitting, six
people would fill a space of 3.3 square meters [. . .] The

same area would hold nine or 10 people when stand-
ing” [42]. This method is not verifiable unless the user
takes a picture of the crowd, in which case it inherits
the verifiability properties of the previous method.

In the computer vision community, there is a body
of work on estimating the number of persons in a picture
(e.g., the work of [46]). This class of methods requires
pictures or video surveillance of the protest location
during the entire protest and are thus highly privacy-
invasive. They are generally based on machine learning
techniques, and thus also require a training dataset to
work. In the work by [46], they actually train and eval-
uate their algorithm on different scenes, which might
make this method easier to use for protesting. Univer-
sal verifiability can be provided with this method, since
someone can always recount the participants using the
recorded video material. Some degree of individual ver-
ifiability could also be provided, if Alice can recognize
her own face in the video, but this might still be difficult.
While automatic face recognition can help verifiability,
it reduces privacy. In addition, it is difficult (if not im-
possible) to avoid counting some people twice, thus we
cannot argue for eligibility. Furthermore, it is also diffi-
cult to capture the entire location on video surveillance,
and the spatial and temporal verifiability properties are
reduced to those of the video.

Another problem for all the above methods is ex-
emplified by the demonstrations in Seoul: “[t]he demon-
strators not only gather in open space, but also small
alleys and between buildings” [42]. In this situation it is
very difficult to faithfully capture the situation. Indeed,
even if the scene is taken from different angles, there is
the additional problem of not counting people twice.

During the protests in Seoul [42], one company tried
to estimate the number of participants using their phys-
ical analytics technology. In a nutshell, this technology
scans the MAC addresses emitted from the participants’
smartphones during Wi-Fi probe requests. However, in
order to work this method makes many additional as-
sumptions:

The company presumed that about half of smartphone users
usually leave on their Wi-Fi feature on and the other half
switch it off, based on a separate survey on smartphone
usage. It also assumed that about 20% of the smartphone
signals were repetition from the same device. [42]

This method cannot provide any verifiability, as we must
trust the company on performing the measurements cor-
rectly and to be honest about when and where they
conducted them. In addition, as MAC address random-
ization is now getting a wider adoption precisely to fight

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 4

against physical tracking, this method will not work any
more, although some tracking of smartphones could still
be possible with a different method [43].

A better proposal would be to use IMSI catchers
(or the real cell towers of the mobile network) to count
unique phones at a location. However, there are several
problems with this approach. First, it will be difficult
to register only the participants’ phones, as many by-
standers will also be counted. Thus, it will not be pos-
sible to distinguish clearly between the protesters and
the counter-protesters. Second, since the phone has a
unique identifier, participants might be uncomfortable
to be registered in association with the event and might
thus turn the device off, even though, at least with 5G,
the IMSI number will not be transmitted anymore in
plaintext. Finally, there will be limited verifiability, as
the data recorder must be trusted to record all data in
relation to the protest.

An approach that relies on a trusted infrastructure
was recently deployed by a collection of media out-
lets to count protesters passing the line defined by a
trusted sensor on marches [10]. This solution does not
offer strong verifiability guarantees and thus is comple-
mented by micro-counts made by humans to estimate
their margin of error.

In general for all of the above methods, the more a
crowd spreads out, the more difficult it is to determine
its size. In particular, one of the challenges is deter-
mining whether people near the event’s perimeter are
participants or simply bystanders [36].

One of the works most closely related to our goal is
CrowdCount [12], which is a web service that lets Al-
ice create an event such that anyone can submit their
location to register that they are in Alice’s event. This
method has the benefit of counting everyone who has
declared their presence, not just the count at the snap-
shot of the pictures. However, there is no verification as
the service must be trusted to behave honestly, and even
then, nothing prevents Bob from submitting more than
once (violating eligibility). Another downside is that the
service also requires an Internet connection during the
event to register as a participant. This makes it vulner-
able to a denial-of-service attack, e.g., Grace can shut
down the cellular network or Internet backbone as a
means to censor the protest.

Another related approach based on devices is Ur-
banCount [15], which relies on epidemic spreading of
crowd-size estimates by device-to-device communication
to count crowds in dense urban environments with high
node-mobility and churn. However, there is no consid-
eration of a potentially adversarial setting and thus no

verifiability or checks on eligibility. DiVote [14], a prior
work by the same authors for polling in dense areas,
avoids double counting, but again only works with hon-
est participants and thus does not suit an adversarial
setting.

4 Definitions

4.1 Protest, crowd estimation

To be able to estimate the participation count for a
protest, we first need to define this concept and which
quantity should be counted. Let us start by considering
some examples. During the demonstrations against the
South Korean president in Seoul in 2016 “[t]he rallies
stretch[ed] from midday to late night — some people
stay[ed] for several hours, others just several minutes”
[42]. These rallies were all in the same location in the
capital and repeated every weekend for a few weeks.
The Women’s Marches in 2017 [45], on the other hand,
occurred in parallel in many locations. We also have
the Venezuelan demonstrations in 2017 in which “anti-
government demonstrators have staged daily protests
across Venezuela” [41] while “pro-government workers
sang and danced as they staged a rival march to show
their support for the president’s controversial plan to
rewrite the constitution” [31]. Generalizing from these
examples, the minimal common part is the cause, while
the location (or area) considered varies over time.

For the rest of the paper, we will refer to the orga-
nizer as Alice. We assume that the objective of Alice is
to count everyone who participated at any time and in
any of the locations [42] Formally, we define a protest
as an event that is uniquely identified by its cause cid,
its time interval t and its location (area) l. More specif-
ically, we will use the following definition.

Definition 1 (Subprotest, Protest). A subprotest p =
(cid, t, l) is a tuple in which cid ∈ {0, 1}λ, for some fixed
λ ∈ N, is the identifier of the cause of the protest, t ⊆ T
is a time period and l ⊆ L is the location (the topolog-
ical connectedness is not necessary).
A protest P is the set of subprotests sharing the same
cid.

The protests described in the previous examples can be
captured using this definition by decomposing them into
subprotests. Each subprotest will then be encapsulated
by our definition and to estimate the total participation
to the protest we can just sum up the estimates ob-

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 5

tained. Similarly for marches, the marching path can be
divided into subprotests with locations (or areas) that
slightly overlap.

Each participant who wants to be counted must sub-
mit a participation proof. The proof must be associated
with the protest (i.e., its cause identifier cid), and its
time and location must coincide with one of the sub-
protests.

Our protocol relies on witnesses to certify and as-
sociate the proof to the time and location by creating
a proof share. A witness is only allowed to create one
proof share per protester to avoid the risk of count in-
flation. (Note that a participant of a protest can take
the role of a protester but also act as witness for other
protesters.) Then, the set of all valid proof shares forms
the participation proof of a protester.

Definition 2 (Valid proof share). A proof share s =
(cid, t, l, pid, wid) is a tuple in which: cid, t, l are as
in Definition 1; pid is a protester’s pseudonym for
the protest identified by cid; and wid is a witness’s
pseudonym for a protester with pseudonym pid.
Furthermore, we say that s is valid for a subprotest
p = (cid′, t′, l′) if and only if cid = cid′, t ⊆ t′, l ⊆ l′ and
denote this by s v p.

We denote by S the set of all proof shares, and we will
use the following notation to filter out a subset of S with
specific cids and pids:

Scid0,pid0
=

{(cid, t, l, pid, wid) ∈ S | cid = cid0 ∧ pid = pid0}.

Definition 3 (Participation proof). The participation
proof of a protester with pseudonym pid who par-
ticipates in a protest P with cause identifier cid is the
set

πpid,P =
{
s ∈ Scid,pid | ∃p ∈ P : s v p

}
,

of all proof shares with the same protester and protest
identifiers, and valid for any subprotest p of P. We de-
note by Π the set of all proofs.

We can now define the participation count as follows.

Definition 4 (Participation count). We define a partici-
pation count of a protest P as the cardinality |Πς,θP | of
the set of eligible participation proofs respectively to a
strength function ς and a threshold θ:

Πς,θP = {πi,P ∈ Π | ς(πi,P) ≥ θ}

with ς : P(S)→ R+ and θ ∈ R+.

The strength function ς can be used to regulate the
trust in the estimated participation count. In general, ς
can be defined as a weighted sum of the proof shares,
ς =

∑
ωisi, with the weights ωi being the trust in the

witness corresponding to the proof share si, and the
threshold θ represents the total trust needed to accept
a participant as valid. One example would be to set
all weights to 1 for ς to return the number of unique
witnesses and thus let θ to be the threshold of the num-
ber of required witnesses. Another possibility would be
to also have a particular type of witness, called trusted
witness, participating in the protest. For instance, the
role of the trusted witness could be taken by the inde-
pendent journalist Jane. In this situation, the weights
would be 1 for trusted witnesses and 0 for any other
witness, and setting θ = 1 would require at least one
proof share issued by a trusted witness. Finally, both
approaches can be combined by giving a weight of 1 to
all non-trusted witnesses and a weight of θ to trusted
witnesses. This results in a participant being eligible if
they are witnessed either by θ non-trusted witness or by
one trusted witness.

4.2 Verifiability requirements

We now try to make the properties from Section 2.2
more specific. We define three verifiability requirements,
among which eligibility can be further broken up into
four subproperties:

V1. Eligibility: anyone can verify that each participation
proof provides temporal and spatial eligibility and
that only one participation proof is counted per in-
dividual.

V1.1. Temporal eligibility: demonstrate that the proof
was created after the start of the protest and
before the end of the protest.

V1.2. Spatial eligibility: demonstrate that the proof is
spatially related to the physical location or jour-
ney of the protest.

V1.3. Counted only once: A protester can create one
and only one pseudonym (pid in Definition 2)
per protest (cid in Definition 2), this pseudonym
is unique except with negligible probability.
Analogously, a witness can create one and only
one pseudonym per protester (wid in Defini-
tion 2), this pseudonym is unique except with
negligible probability.

V1.4. Designated event: prove that the proof is desig-
nated for the particular protest.

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 6

V2. Universal verifiability: anyone can verify that the
result obtained match the submitted participation
proofs.

V3. Individual verifiability: each participant can verify
that his participation proof is included in the global
count.

4.3 Privacy requirements

For privacy, any temporary identifiers, such as
pseudonyms, should only be reused when strictly nec-
essary (by the principle of data minimization) for the
fulfillment of verifiability properties (in Section 4.2) to
prevent inference on long-term identities by repeated
samples and side information. We can thus summarize
the desired privacy properties as follows:

P1. Pseudonym unlinkability: given a protest (identifier
cid), protesters Alice and Bob, and a pseudonym
pidb, the adversary cannot tell if pidb = pidAlice or
pidb = pidBob, except with negligible probability.
And similarly with wid if Alice and Bob act as wit-
nesses.

P2. Protest unlinkability: protesters’ pseudonyms
(pidcid, pidcid′) must be unlinkable between protests
(cid, cid′) from the adversary’s perspective.

P3. Witness unlinkability: witnesses’ pseudonyms
(widpid, widpid′) must be unlinkable between
protesters (pid, pid′) from the adversary’s perspec-
tive.

What these properties say is that pseudonyms
must look random (requirement P1) and that each
pseudonym must be used as little as possible to still en-
sure the verifiability properties defined in the previous
subsection (requirements P2 and P3).

4.4 Adversary model

There are three players: the protester (with identity)
P , a witness (with identity) W and the time-stamping
storage S (that will contain the set of all proof shares,
S). The protester P and the witness W communicate
some protocol data, dP,W (cid, P), and records when the
communication occurred tP,W . The protester P com-
municates with S, in which S only learns some func-
tion of the protocol data exchanged with the witness,
f(dP,W (cid, P)) for some function f , and the time of
the communication (tP,S). This is illustrated in Fig. 1.

W

P

S

A

dP,W (cid, P), tP,W
f(dP,W (cid, P)), tP,S

Fig. 1. An overview of the adversary model. The protester (with
real identity) P and witness (with real identity) W communicate.
They exchange protocol data as a function d of the protest and
protester, dP,W (cid, P), and record the time it happened, tP,W .
The protester submits f(dP,W (cid, P)), for some function f , to
the storage S, who records the time that happened, tP,S. Both
the witness W and the storage S are controlled by the adversary.

The adversary maliciously controls W . The adver-
sary honest-but-curiously controls S, but can submit to
S as everyone else. The adversary only learns the proto-
col data — i.e., what is sent over the channel, no auxil-
iary data3.

This adversary has no access to data from out-
side the system, e.g., inferences that can be made from
the communication layer (e.g., IP-addresses mapped to
physical identities or face recognition from the protest),
which means that it has only the protocol data at its
disposal.

5 Building blocks
In this section, we will briefly review the primitives
forming the building blocks of CROCUS.

5.1 Zero-knowledge proofs of knowledge

We will use the notation introduced by Camenisch and
Stadler [9]:

PK
{

(α, β, γ) : y = gαhβ ∧ y′ = ĝγ
}
, (1)

which means that we prove knowledge of α, β, γ ensur-
ing that y, y′ are of the form y = gαhβ and y′ = ĝγ ,
respectively. Greek letters are known only to the prover
and used for the information for which the prover wishes

3 By auxiliary data we mean any data outside of the protocol,
i.e., meta-data such as who is on the other side of the channel ob-
tained as side information, e.g., by face recognition or inference
from address to identity.

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 7

to prove knowledge, while all other letters are known by
the verifier.

When a proof of knowledge is turned into a signa-
ture using the Fiat-Shamir heuristic [25], we will denote
it as

σ ← SPK
{

(α, β, γ) : y = gαhβ ∧ y′ = ĝγ
}

(m),

which yields a signature σ onm, ensuring that the issuer
knows α, β, γ such that y = gαhβ and y′ = ĝγ .

5.2 Anonymous credentials

We need an anonymous credential system, AC, which
provides the following algorithms and properties. Here
we give a high-level overview of the required proper-
ties and notation and refer the reader to figures in Ap-
pendix A for example algorithms.

AC must provide a commitment scheme, AC.Commit,
and algorithms such that the prover can convince a veri-
fier that he knows the value inside a commitment, which
means that:

PK{(k, o) : c = AC.Commit(k, o)}.

We require the commitment scheme to be perfectly hid-
ing and computationally binding, rather than the other
way around. Indeed, we are more concerned with long-
term privacy, which means that we are looking for
information-theoretic security with respect to confiden-
tiality. AC.Commit can be instantiated with the Pedersen
commitment scheme [39], see Fig. 4.

AC must also contain a (blindable) signature scheme
with the associated protocols enabling one to get a sig-
nature on a committed value (〈AC.GetSig; AC.IssueSig〉)
and to prove knowledge of a signature on a committed
value (〈AC.ProveSig; AC.VerifySig〉). This can be instan-
tiated using CL-signatures [8], see Figs. 5 and 6.

The prover commits to a value k with commitment
c ← AC.Commit(k, o) and opening o. Afterwards, they
use σ ← 〈AC.GetSig; AC.IssueSig〉 to obtain a signature
σ = AC.Sign(pk, sk, k, r) on the value k and some ran-
dom value r. (pk and sk are the public verification key
and the private signing key, respectively.)

At a later point, the prover wants to prove to a
verifier that they know k and a signature σ on k made by
the owner of pk (corresponding to sk) without revealing
k nor σ (i.e., in a zero-knowledge manner). The prover
and verifier run the protocol 〈AC.ProveSig; AC.VerifySig〉
to prove the following:

PK
{

(k, r) : σ′ = AC.BlindSig(AC.Sign(pk, sk, k, r))
}
.

Finally, we need a pseudo-random func-
tion, AC.PRF, such that there exists a protocol
〈AC.ProvePRF; AC.VerifyPRF〉 implementing the follow-
ing proof of knowledge (PK):

PK{(k) : y = AC.PRF(k, x)}.

This means that the prover can convince the verifier
that y = AC.PRF(k, x) without revealing k. This can be
instantiated by the Dodis and Yampolskiy [21] verifiable
random function (VRF), see Fig. 7.

5.3 Distance-bounding protocols

Distance bounding (DB) [5] protocols were first sug-
gested by Brands and Chaum [5] to prevent relay attacks
in contactless communications in which the adversary
forwards a communication between a prover and a possi-
bly far-away verifier to authenticate. These attacks can-
not be prevented by cryptographic means as they are in-
dependent of the semantics of the messages exchanged.
As a consequence, mechanisms ensuring the physical
proximity between a verifier and a prover should be used
instead. DB protocols precisely enable the verifier to es-
timate an upper bound on his distance to the prover by
measuring the time-of-flight of short challenge-response
messages (or rounds) exchanged during time-critical
phases. Time critical phases are complemented by slow
phases during which the time is not taking into account.
At the end of a DB protocol, the verifier should be able
to determine if the prover is legitimate and in his vicin-
ity. In this sense, DB protocols combine the classical
properties of authentication protocols with the possibil-
ity of verifying the physical proximity.

There are four adversaries for DB protocols estab-
lished in the literature, each of which tries to commit a
type of fraud. These can be summarized as follows:

– Distance fraud (DF) [5]: a legitimate but malicious
prover wants to fool the verifier on the distance be-
tween them.

– Mafia fraud (MF) [19]: the adversary illegitimately
authenticates using a, possibly honest, prover who
is far away from the verifier. (Also known as relaying
attack or man-in-the-middle attack.)

– Terrorist fraud (TF) [18]: a legitimate, but mali-
cious, prover helps an accomplice, who is close to
the verifier, to authenticate. TF resistance is a very
strong property; it implies that if the accomplice

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 8

succeeds (with non-negligible probability) he will
learn the prover’s secret key4.

– Distance hijacking (DH) [11]: similar to DF, the ma-
licious prover is far away but uses an unsuspecting
honest prover close to the verifier to pass as being
close. (This is different from MF in that the honest
prover actually tries to authenticate to the verifier,
but the malicious prover hijacks the channel at some
point(s) during the protocol.)

There are two lines of attempts at formalizing the above
properties: one by Boureanu, Mitrokotsa, and Vaudenay
[4] and another by Dürholz et al. [23].

The majority of the existing DB protocols are sym-
metric and thus require an honest verifier. Indeed, in
this context it does not make sense to protect against
the verifier as he can easily impersonate the prover as
he has a knowledge of his secret key. There has been less
work done in the domain of asymmetric (or public-key)
DB protocols. Our setting requires a public-key DB pro-
tocol with a malicious verifier who will potentially try
to impersonate the prover. The verifier might also try
to track the provers and map their identities to their
actions, thus we also require strong privacy. In fact, as
the construction in Section 6 shows, we require a DB
zero-knowledge proof of knowledge, or simply proof of
proximity of knowledge (PPK) [44], for discrete loga-
rithms. For this paper, we assume the existence of such
a protocol. Candidates for such a protocol include mod-
ifications of [44] or [27] to work for discrete logarithm
and to provide general attribute-based anonymous cre-
dentials (not restricted to identity-based ones), respec-
tively.

5.4 Time-stamping and storage: ledger

We need a robust time-stamping service, S, which im-
plements the S.Get, S.Stamp and S.Time requests such
that

– ρ← S.Get yields a value ρ at time t, ρ is difficult to
guess before time t and S.Time(ρ) = t;

– π ← S.Stamp(x) yields a value π at time t such that
S.Verify(x, π)→ > and S.Time(π) = t.

– S.Store(x) stores x permanently and publicly read-
able.

4 This means that even things like functional encryption will
not help.

With these building blocks, we can ensure that a
message m is created within the time interval [t0, t1].
After time t0, a user requests ρt0 ← S.Get. Before time
t1, a user submits h ← H(m, ρt0) to the time-stamping
service to get πt1 ← S.Stamp(h).

The tuple (ρt0 ,m, πt1) can be used to prove
that m was created within the time interval [t0, t1].
The verifier computes h′ ← H(m, ρt0) and checks
whether S.Verify(h′, πt1) = > and S.Time(ρt0) ≥ t0 ∧
S.Time(πt1) ≤ t1.

The value output by S.Get must be chosen at a low
enough rate to not be unique for any individual. I.e.,
there must be a high probability that more than one
person gets the same value from S.Get. (This can always
be scaled, if S.Get progresses at too high pace, one can
resort to only using every nth output.)

S can be instantiated by an open-membership
distributed ledger (e.g., a blockchain) such as Bit-
coin [38], secured via Proof-of-Work consensus, or Om-
niLedger [33], secured via Byzantine consensus. If a
blockchain is used for S, the S.Stamp(x) request includes
x in the blockchain and returns the identifier of the block
into which x was included. The S.Get request returns
the hash of the most recent block of the chain (i.e., the
head).5 The returned hash is difficult to predict since
it depends on the content of the block, populated by
other users and by the creator of the block with addi-
tional randomness (e.g., nonces and secrets).

Regarding consensus resilience, it is advisable to use
a blockchain with a high number of participants and
preferably sharing the blockchain with other services.
The resilience of the Byzantine consensus relies on hon-
est participants outnumbering malicious participants. A
similar reasoning can be made with Proof-of-Work con-
sensus in which the computing power of the honest par-
ticipants must be greater than the one of malicious par-
ticipants. In both cases, assuming a majority of honest
members in the population, the more participants the
merrier. We want to share the blockchain with other
services due to privacy (and anti-censorship) reasons,
analogous to the idea of “domain fronting”.

We require a few additional properties from S that
are already provided by blockchains. First, S must be
continuously extended, such as in Bitcoin in which
blocks are created every 10 minutes on average. Second,
S must provide immutability and availability to any data

5 In situations where forks are common, it is relatively easy to
adapt this process to look at a few blocks before the head and
avoid the issue of the stamp becoming invalid later.

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 9

committed through S.Stamp to ensure verifiability of the
data by anyone at any time.

6 The CROCUS Protocol
We now present CROCUS, a protocol for privately veri-
fiable crowd counts. A prerequisite for using CROCUS is
a one-to-one mapping of a person’s sybil-proof identity
and a cryptographic key. Since we assume these proper-
ties, we present only the result of the process of getting
anonymous credentials from a CA, in Section 6.1.

The core of the CROCUS protocol consists of gener-
ating participation proofs (joining a protest, participat-
ing in witnessing, submitting proof shares to a ledger,
all in Section 6.2) with an overview in Fig. 3, and then
counting and verification of that count (in Section 6.3).

The entities involved in our protocol are partici-
pants and (count) verifiers.

A participant is an individual who wants to partici-
pate in a given protest. A participant can assume three
different roles:

(1) The organizer has written a manifesto (at minimum
a name) for the protest and disseminated it to oth-
ers.

(2) A protester is attending the protest and asks wit-
nesses to vouch for their presence.

(3) A witness provides proofs to protesters which state
that the protester was indeed participating, con-
structed such that the proofs are verifiable by third
parties.

In general, there is one organizer and every participant
can act as either or both protester and witness.

After the protest, anyone can count the number of
participants (of the protest and the protocol) and verify
anyone else’s count given the relevant meta data (which
protest, location, time, and witness parameters used in
the count). We refer to anyone counting or verifying a
count as the verifier; the process is the same.

6.1 Prerequisite: anonymous credentials

Before Alice can have her participation in any event
counted by CROCUS, she needs to get an anonymous
credential and corresponding keys. This only needs to be
repeated when the credential expires or is lost, in anal-
ogy to a passport in terms of expected intervals. The
keys can be reused for an arbitrary number of protests

or, given careful choices in the PRF used for deriving
identifiers, other services that work with anonymous cre-
dentials.

We use the setup and registration phases of Anon-
Pass [34] for getting anonymous credentials, adapting
only the notation to fit ours.

Setup: (spk, ssk) ← Setup. During the setup phase,
the CA creates all the needed keys. The CA generates
a service public-private key-pair (spk, ssk) ← AC.Setup
(see Fig. 5).

Registration: sk ← 〈RegP (spk); RegCA(ssk)〉. Dur-
ing the registration phase, each participant generates a
secret key (k, r) and obtains a signature on it by the
CA but without revealing it to the CA. At the end,
each participant will have a signed secret key while the
CA will issue only one signature per participant but
without knowing the association between a particular
key and the identity of the participant. The participant
chooses k, r ¢← Zq uniformly randomly and runs σ ←
〈AC.GetSig(spk, k, r); AC.IssueSig(spk, ssk)〉 (see Fig. 6).
Upon success, the participant sets sk = (σ, k, r).

6.2 Participation

The goal of CROCUS is to generate and collect privacy-
preserving participation proofs that can be counted and
verified. These proofs consist of proof shares that are
constructed as depicted in Fig. 2. The protocol phases
are given in Fig. 3 and described below.

Creation of a protest: the manifesto. The organizer
writes a manifesto for the protest, which describes its
cause. This manifesto could take the form of any in-
telligible text. The organizer will then distribute this
manifesto to people through any suitable means (e.g.,
on the Web, on placards, etc.). If they agree with the
cause, they will use the knowledge of the manifesto to
join the protest.

Joining as a protester: (pid, ts)← JoinP (manifesto).
A protester who wants to join the protest will use the
manifesto to compute an identifier for the cause by hash-
ing the manifesto, cid ← H(manifesto) (and compar-
ing the result to that received from the organizer, we
omit this in the protocol for readibility). Afterwards,
this identifier is used to create the protest-specific iden-
tifier for the protester, pid← AC.PRFskP

(cid) (see Fig. 2
and Fig. 7). The protester should also receive a time-
correlated random value from the time-stamping ser-
vice, ts ← S.Get.

Joining as a witness: t′s ← JoinW . The witness
should simply get a time-correlated random value from

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 10

(cid, pid, wid, ts, t′s, l)

pid

cid

manifesto

wid ts, t′s l

πW

πP

∈

∈
∈ ∈ ∈

H(·)

AC.PRF
sk

P (·)

AC.PRF
sk

W (·)

Fig. 2. Structure of a proof share. The protest (cause) iden-
tifier cid is the hash value of the manifesto. The protester
P ’s identifier pid is computed using the protester’s key skP

and cid. The witness W ’s protester-specific identifier wid is
computed using the witness’s key skW and the protester’s
pid. ts, t′s are the hashes of the head blocks in the ledger
seen by the protester and witness, respectively, and l is an
area. All values are signed by the witness (signature πW =
SPK{(skW) : wid = · · ·}(cid, pid, wid, ts, t′s, l)) while also prov-
ing the correctness of wid and knowledge of a signature on skW .
The protester constructs πP analogously.

the time-stamping service, t′s ← S.Get. Note that we do
this for redundancy, the newest of ts and t′s will set the
start of the time interval of creation for the proof share.

Participation: π ← 〈Prticip(cid, skP); Witness(skW , spk)〉,
In the participation phase, the protester and the witness
construct the proof share of the protester (Fig. 2).

The protester sends pid to the witness. Then they
run the protocol

〈AC.ProveSig(spk, k, r, σ); AC.VerifySig(spk, ssk)〉

(see Fig. 6). Note that the proof of knowledge (PK)
in Fig. 6 must be run as a a proof of proximity of
knowledge (PPK) [44], which we do by distance bound-
ing. If the protocol succeeds, the witness will com-
pute wid← AC.PRFskW

(pid) and send (wid, t′s, l) to the
protester.

Submission: sP ← SubmitP (cid, pid, wid, ts, t′s, l).
The protester commits the proof-share data to the time-
stamping service and receives the proof of commitment,
te ← S.Stamp(H(cid, pid, wid, ts, t′s, l)). The sooner this
is done, the higher the precision for the time-dependent
eligibility criterion will be for later counting. The re-
maining operations are not time critical.

The protester computes a non-interactive zero-
knowledge (NIZK) proof ψpid, which shows the correct-

ness of pid. More specifically,

ψpid ← SPK {(skP) :

pid = AC.PRFskP
(cid) ∧

σ′
P = AC.BlindSig(AC.Signssk(skP))}

(cid, pid, wid, ts, t′s, l).

Finally, the protester uploads the tuple

sP = (cid, pid, wid, ts, t′s, te, l, ψpid)

for permanent storage.
Submission: sW ← SubmitW (cid, pid, wid, ts, t′s, l).

The witness should, just as the protester, commit the
proof-share data to the time-stamping service (i.e., the
ledger), t′e ← S.Stamp(H(cid, pid, wid, ts, t′s, l)). Then,
without any time requirements, the witness computes
a NIZK proof ψwid as follows:

ψwid ← SPK {(skW) :

wid = AC.PRFskW
(pid) ∧

σ′
W = AC.BlindSig(AC.Signssk(skW))}

(cid, pid, wid, ts, t′s, l).

Finally, the witness uploads the tuple

sW = (cid, pid, wid, ts, t′s, t′e, l, ψwid)

for permanent storage on the ledger.

6.3 Count and Verification

To count or verify the participation count for a protest
P with identifier cid0, a verifier must download from
the storage system S the set Scid0 of all sP and sW
tuples containing cid0. Then from Scid0 , a verifier can
build, in succession, (1) the valid proof shares s(i)

j for
all matching pairs (sP , sW) corresponding to a witness
i and a protester j, (2) the participation proof πj for
each protester j, (3) the set Πς,θP of eligible participa-
tion proofs for all protesters in P, and finally, (4) the
participation count, i.e., the cardinality of Πς,θP .

More precisely, given

Scid0 = {(cid, pid, wid, l, ts, t′s, tc, ψ) ∈ S | cid = cid0}

and a matching pair (sP , sW) ∈ Scid0
2 for a witness i

and a protester j with

sP = (cid0, pidj , widi, l, ts, t
′
s, tc, ψi) and

sW = (cid0, pidj , widi, l, ts, t
′
s, t

′
c, ψj),

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 11

O → all : manifesto

P : ts ← S.Get

cid← H(manifesto),

pid← AC.PRFskP
(cid)

W : t′s ← S.Get Join
ParticipationP →W : pid

P ↔W : PPK{(skP) :

pid = AC.PRFskP
(cid),

σ′P = AC.BlindSig(AC.Signssk(skP))
}

W : wid← AC.PRFskW
(pid)

W → P : (wid, t′s, l)

(a) Join and participation.

P : te ← S.Stamp
(

H
(
pid, wid, ts, t

′
s, l
))

W : t′e ← S.Stamp
(

H
(
pid, wid, ts, t

′
s, l
))

W : S.Store
(

(cid, pid, wid, ts, t′s, te, l, πwid)
)
, where

πwid = SPK{(skW) :

wid = AC.PRFskW
(pid),

σ′W = AC.BlindSig(AC.Signssk(skW))
}

(cid, pid, wid, ts, t′s, l)

P : S.Store
(

(cid, pid, wid, ts, t′s, te, l, πpid)
)
, where

πpid = SPK{(skP) :

pid = AC.PRFskP
(cid),

σ′P = AC.BlindSig(AC.Signssk(skP))
}

(cid, pid, wid, ts, t′s, l)

(b) Submission.

Fig. 3. An overview of CROCUS participation. The organizer O broadcasts the manifesto. The protester P , witness W and their
computations are as in Fig. 2. Finally, both P and W submit the proof shares to a public ledger for permanent storage S. Note that
pidalways refers to the protester whose presence is being witnessed.

the verifier can build a valid proof share s(i)
j certified by

i for j as follows: verify ψi and ψj , let

t = [max(ts, t′s),min(tc, t′c)] and

s
(i)
j = (cid0, pidj , widi, l, t),

as in Definition 2, check that s(i)
j is valid (i.e., happened

during and at the location of the protest), as in Defini-
tion 2.

Then the set of all valid proof shares for a protester j
constitutes its participation proof πj , as in Definition 3,
and the verifier thus can derive the set of (ς, θ)-eligible
participation proofs Πς,θP for all protesters for the protest
P, as in Definition 4. Finally, the participation count
|Πς,θP | is the cardinality of this set by the same Defini-
tion 4.

In the case of trusted witnesses, each such trusted
witness must publish or otherwise inform the verifier of
which proof shares they have signed, e.g., by giving a list
of all such proof shares or digitally signing each proof
share6.

Note that, thanks to the (ς, θ)-eligibility criterion
(Definition 4), the method of counting is extremely

6 To achieve witness privacy in this situation, one could employ
a group or ring signature scheme for a set of trusted witnesses,
e.g., members of an independent journalist association. Then one
learns that at least one member of this set of trusted witnesses
must have been there.

generic, and each (counting) verifier can make an in-
dependent choice to regulate their trust in the final
result, based on their initial trust in the witnesses. In
other words, anyone who does the counting can choose
the eligibility criteria (time interval, location, number of
regular or trusted witnesses, who is considered to be a
trusted witness) for their own count and as long as these
are published along with the result, anyone can verify
the correctness of the count under those criteria, and
potentially question the validity of this choice. Biased
or partisan verifiers may be tempted to make extreme
choices, but they will have to publish those choices and
lose credibility. Reasonable verifiers on the other hand
will try to find a good middle-ground that counts all
legitimate protesters while being resistant to isolated
malicious agents.

7 Security and privacy analysis

7.1 Eligibility verifiability

Requirement V1 states that anyone must be able to
determine the authenticity of the relevant attributes
of the data. In CROCUS, we have several attributes
that must be verifiable: the time of creation (i.e., tem-
poral eligibility, requirement V1.1), the physical loca-
tion of skP at creation (i.e., spatial eligibility, require-
ment V1.2), recognition of two proofs originating from

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 12

the same person (i.e., one-proof-per-person eligibility,
requirement V1.3) and that the proof is indeed desig-
nated for the event (i.e., designated-event eligibility, re-
quirement V1.4).

As we will show, it follows from Section 7.2 that
the adversary cannot drop submitted proof shares and
thus cannot decrease the count. As indicated in the ad-
versary model (Section 4.4), the adversary can submit
proof shares as everyone else, so the adversary’s only
option is to increase the count. We will thus let Alice
pose as the adversary in this section, as she naturally
has an incentive to increase the count, as the organizer
and a participant.

7.1.1 Temporal eligibility

Requirement V1.1 ensures freshness, as Alice cannot
simply resubmit an old proof as a new one or create
a proof in advance.

In general, to prevent replays, Alice must respond to
an unpredictable challenge. The challenge here is “what
did S.Get return at the time of the proof’s creation?”.
The response is included as ts and t′s in the proof share
(see Fig. 2). The unpredictability of S.Get ensures that a
proof cannot have been created before max{ts, t′s}. The
correctness of the response must be verifiable by any
verifier, which is the case with S.Time.

According to requirement V1.1, we must also prove
that a proof share has not been created after a certain
time. Otherwise, Grace could argue that the proof share
was created after the protest, thus defeating the purpose
of our protocol. The hash values of the proof shares are
committed to the ledger (S.Stamp), which means that
there is a negligible probability that they were created
after that: Alice would have to choose a value y in the
range of the hash function H and then find a pre-image x
such that y = H(x) and x is a valid proof for the desired
protest, at the desired time. If H is collision resistant,
she will succeed with negligible probability.

7.1.2 Linkability

Requirement V1.3 prevents Sybil attacks, in the sense
that Alice cannot provide two (or more) participation
proofs for a specific protest and thus be counted more
than once. To do this she must create more than one
pseudonym, pid. Indeed, to be counted twice, Alice must
produce a pid′ 6= pid. Due to the deterministic property
of AC.PRF, Alice must produce a new key sk′

P such that

the verifier7 accepts the proof

PK
{

(sk′
P) : pid′ = AC.PRFsk′

P
(cid) ∧

σ′′
P = AC.BlindSig

(
AC.Signssk

(
sk′
P

))}
while she does not know a valid signature on sk′

P . As
a consequence, this is reduced to the security of the AC
scheme. Remember, by assumption the CA will issue
only one signature for such a key, so Alice cannot ask
for a second one.

7.1.3 Spatial eligibility

Requirement V1.2 is achieved by having a witness vouch
that Alice was indeed at the location when the proof
share was created. In essence, the witness performs dis-
tance bounding to ensure Alice is close to them, this
is then propagated to the verifier through the signa-
ture and trust in the witness’s honesty. Alice has three
options: (1) relay her communication with an honest
witness through a conspirator, (2) forge a witness sig-
nature for the proof, (3) corrupt a witness to issue a
proof although neither might be present at the location.

Relaying the communication is a DF attack against
the DB protocol. We assumed DF resistance for the DB
protocol, so Alice cannot succeed with more than neg-
ligible probability.

Forging a witness’s signature on a proof is equiv-
alent to breaking linkability above (Section 7.1.2). As
above, this is reduced to the security of the AC scheme.

Finally, in the case of trusted witnesses, Alice’s
chance of corrupting witnesses is reduced to the trust-
worthiness of the witnesses chosen by the verifier. In the
θ-threshold case, with unknown witnesses, (by assump-
tion) Alice succeeds only if she can corrupt at least θ
witnesses.

We note that the strength function from Defini-
tion 4 allows the verifier to take different approaches,
each of which must be individually analyzed. In all of
these cases, it is up to the verifier to perform a risk
analysis.

7 Here the verifier is either the witness during the distance
bounding or the verifier who tries to verify the count.

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 13

7.1.4 Designated use

Requirement V1.4 is to prevent Alice (or someone else)
from reusing the same proof (or proof share) for an-
other event. This possibility is prevented through the
use of cid in the proof shares. To reuse the proof
share for another protest, with a different manifesto,
one must find a second pre-image manifesto′ such that
cid = H(manifesto) = H

(
manifesto′).

There exists another case of collision that we must
prevent. Consider the situation in which Alice com-
putes pid = AC.PRFsk(cid) for some cause identifier
cid and some witnesses computes wid1, . . . , widn, with
widi = AC.PRFski

(pid). Now, if Alice constructs a man-
ifesto m such that H(m) = pid, then wid1, . . . , widn
would be valid participant identifiers for the protest
with manifesto m. The protocol prevents such use by
the fact that pid and wid are in fixed positions in both

πwid = SPK{(ski) : . . .}
(
cid, pid, wid, ts, t

′
s, l
)

and

πpid = SPK{(ski) : . . .}
(
cid, pid, wid, ts, t

′
s, l
)
,

and the two proofs can thus not be confused. Thus, the
verification process differs for the two types of proofs.

7.2 Individual and universal verifiability

Requirement V3 requires that Alice and Bob, as par-
ticipants, can verify that their participation proofs
(i.e., proof shares) are indeed included in the
computed count. All proof shares (i.e., πpid,P =
(cid, pid, wid, ts, t′s, te, t′e, l, ψpid, ψwid)) are committed to
the ledger and available from a public and permanent
storage. Thus, Alice and Bob can simply check that all
of their proof shares are indeed there and the security
of individual verifiability depends on the properties of
the ledger and storage (S, Section 5.4).

We assumed an honest-but-curious adversary con-
trolling S8. This means that Alice can check that her
proof share is indeed there.

Requirement V2 implies that anyone can check the
result and that all participation proofs counted are le-

8 We note that, in general, distributed (decentralized) ledgers
cannot withstand a malicious Internet-service provider (ISP).
Such an adversary can partition the network and provide Alice
and Bob with different views of the ledger, thus breaking in-
dividual verifiability. However, this requires that the adversary
can observe Alice’s and Bob’s channels to the ledger.

gitimate. As the proof shares are committed and stored
publicly, anyone can download them, verify eligibility
(i.e., verify ψpid, ψwid) of the proofs and count them. As
for individual verifiability, the security of universal ver-
ifiability is reduced to the properties of the ledger and
storage; but universal verifiability also depends on the
eligibility verification.

7.3 Privacy

The issue at core from a privacy perspective is linkabil-
ity. We must ensure that no part of any proof is linkable
to an individual.

We start with requirement P1. Given pid, the adver-
sary cannot distinguish whether pid = AC.PRFskA

(cid)
or pid = AC.PRFskB

(cid) due to the properties of AC
(see [7]).

Requirement P2 means that Alice’s proofs must
be unlinkable across protests. This also follows from
the properties of AC.PRF [7]: pid = AC.PRFsk(cid) and
pid′ = AC.PRFsk

(
cid′) (where cid 6= cid′) are unlinkable

from the perspective of the adversary. The argument is
the same for requirement P3.

However, there are more data than pid, wid

used in the protocol. The protocol uses
cid, pid, wid, ts, t

′
s, l, ψpid, ψwid. We assume that the cid

will be used by many individuals, as it is the cause iden-
tifier. And thus it cannot be used to uniquely identity
any individual.

We assume that the location l is coarse enough so
that many non-overlapping (pid, wid)-pairs use the same
location. After all, it is the location of the protest, not
the location within the protest that is interesting. Thus
l is not uniquely identifying any individual protester
or witness. Likewise, thanks to the constraints in the
time-stamp granularity (Section 5.4), t is not uniquely
identifying either.

8 Performance

8.1 Smartphones and smartcards

Performance considerations are crucial during the
protests due to the nature of the devices used to run
CROCUS, which are resource-constrained in terms of
energy, storage and computational power, and are oper-
ating on limited network capacity. Recent technological
progress has enabled the deployment of advanced cryp-

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 14

tographic primitives on smartcards and smartphones
that could be used to implement our solution. For
instance, benchmarks [30] have shown that Android
devices are now fast enough to efficiently implement
Privacy Enhancing Technologies (PETs), with a Sam-
sung Galaxy S i9000 being able to execute Idemix in
153 ms. However, those benchmarks also demonstrate
that smartcards remain slow to process complex pro-
tocols such as Idemix or U-Prove (taking between 4 s
and 8 s to process them). While the limited processing
power of many embarked systems has been a challenge,
Idemix has been successfully implemented to prove the
possession of credentials on Java Cards by Bichsel and
co-authors in 2009 [3] and the IRMA project, released
in 2014, aimed to achieve an implementation “suitable
for real life transactions” [16] while maintaining security
and privacy for its users.

With respect to its implementation, CROCUS is ac-
tually very similar to Anon-Pass [34], an anonymous
subscription system in which a long-term credential can
be used to derive a single login for any authentica-
tion window (i.e., epoch) such that logins are unlink-
able across different epochs. In particular, the setup and
registration phases are almost identical. The evaluation
conducted by the authors was using as server a Dell
Optiplex 780s, which has a quad-core 2.66 GHz Intel
Core 2 CPU, 8 GB of RAM and uses Ubuntu Linux
12.04 while the client was also simulated on a quad-
core 2.66 GHz Intel Core 2 CPU but with only 4 GB
of RAM. The elliptic pairing group used in Anon-Pass
is a Type A symmetric pairing group with a 160-bit
group order and 512-bit base field while the ECDSA
signature uses a 160-bit key. This is typically the type
of pairing that could also be used with CROCUS. Not
counting the setup that is performed once by the CA,
the time reported for the registration on the server (i.e.,
CA) side is 19.8 milliseconds while it is 23.4 milliseconds
on the client side. With respect to joining and participa-
tion phases, with the exception of the distance-bounding
they are actually quite similar to the login protocol of
Anon-Pass in which the time required to create a mes-
sage for a protester would be around 13.5 milliseconds
while the time needed for the witness would be only 7.9
milliseconds.

8.2 Distance-bounding anonymous
credentials

The distance-bounding chips9 currently available on the
market can already enable proofs of proximity for any
range of up to 200 meters. One of the objectives is
to be able to integrate them in phones or smartcards
in the near future, and even phones with off-the-shelf
hardware running in RFID-emulation mode have shown
promising results. For instance in [28], the authors have
demonstrated that it is already possible to implement
distance-bounding protocols as a standard Android ap-
plication on existing smartphones. More precisely, they
have proposed three different implementations of the
Swiss-Knife protocol using 32 challenge-response rounds
ranging from a basic implementation running a the ap-
plication layer to an advanced one running in RFID-
emulation mode. The results obtained already show that
a relay attack can be detected if the adversary intro-
duces a delay of more than 1.5 ms when performing
such an attack (most of the existing attacks introduce
delays of at least tens of milliseconds).

8.3 Ledger (blockchain) efficiency

As an example, consider a protest with 1 000 000 partic-
ipants. If we use trusted witnesses, each participant only
needs to acquire one proof share from a trusted witness.
Thus, there will be 1 000 000 proof shares submitted to
the blockchain in total. If we consider OmniLedger [33],
which can do approximately 1500 transactions per sec-
ond, it takes at least 11 minutes to process all the proof
shares.

If we do not use trusted witnesses, but instead a
threshold θ = 1000, then it will take at least 7 days
before all transactions are committed to the blockchain.
While this already takes longer than counting votes in
national elections, the threshold is still very low. For
large groups organizing online to collectively pretend to
participate at a physical protest, the threshold would
have to be much higher. Considering that online forums
can facilitate mass coordination, the threshold approach
with only untrusted witnesses seems not only inefficient
but also potentially ineffective for verifiability.

9 https://www.3db-access.com

https://www.3db-access.com

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 15

9 Discussion: limitations of
assumptions

9.1 Equipment

Some of the assumptions that are required for imple-
menting our proposition are not yet realized, however,
we believe that they soon will be.

One major issue is that all protesters must have
smartphones — in many countries with oppressive
regimes, far from all possess smartphones currently,
though the rate is on the rise.

On those smartphones we additionally require an
identity credential signed by some CA. This is also not
yet widely available. However, more and more nation
states are starting to issue digital certificates in iden-
tity cards and many already have crypto-enabled RFID
chips in their passports. E.g., Estonia, Germany, and
Sweden already have the infrastructure and widely de-
ployed electronic identity systems, and the EU already
has regulation in place (eIDAS). In Sweden, more than
95 % of people in the ages 21–50 use BankID, 88 % for
ages 51–60 and 76 % for ages 61–7010.

National identities, however, are problematic when
there is an incentive for the government to create more
identities, for example when it comes to elections. In
functioning voting systems, there is no more than one
ballot (token) per physical person and the ballot is not
linked to the vote. Audits and other processes help en-
sure that there are no ballots for non existing persons
(Sybil-proof identities) or extra ballots for voters. Sim-
ilarly, here, we need a 1) mapping between an identity
and a physical person (in the form of an anonymous
identity credential, functioning as a pseudonym for pri-
vacy properties) and 2) only one such credential per
identity (token of personhood instead of token of being
a voter in a particular election). With the same caveat
as for identities for voting for 1), mechanisms such as
collective signing [40] could ensure 2). Again, this is not
yet realized, but with the current pace for adopting pub-
lic ledgers and efforts for cross-national identity creden-
tials such as the EU’s eIDAS, the prerequisites exist.
Moreover, the code of practice for European statistics11

includes principles such as coordination and cooperation

10 Official statistics, in Swedish: https://www.bankid.com/
assets/bankid/stats/2018/statistik-2018-04.pdf.
11 http://ec.europa.eu/eurostat/web/quality/
european-statistics-code-of-practice

as well as impartiality and objectivity and is an example
of both efforts toward and motivation for cross-national
improvements of statistics.

We also need to run distance-bounding protocols
on smartphones. Achieving this is currently not feasible
within a meaningful range as existing smartphones lack
the required hardware to conduct the distance bounding
fast enough. However, thefts of luxury cars due to re-
lay attacks have driven the development of hardware for
doing distance bounding in car keys. We believe that us-
ing smartphones for contactless payment and electronic
tickets will drive a similar development for this hard-
ware on smartphones.

9.2 Communications

We need the participants to communicate during the
protest. Since the cellular network could be shut down
to keep protesters from accessing the Internet, making
phone calls or texting, we require a different means of
communications between protesters. This could be ac-
complished by Bluetooth or WiFi communications, as
demonstrated by Briar [6] and FireChat [26], two exam-
ples of applications for communication during protests
via wireless mesh networking. The crowd-counting sce-
nario likely has higher requirements on capacity and
withstanding interference as the participants continu-
ously run the protocol for witnessing each others pres-
ence; messages are presumably less frequent. 5G is in-
tended to cope with billions of devices (IoT), and thus
could help cope with the device density in crowds. An
alternative, although originally designed to work within
5G cellular networks, is device-to-device communica-
tion (D2D) [32]. Specifically, the out-of-band and au-
tonomous version D2D would fit our scenario thanks to
using unlicensed spectrum and working without cellu-
lar coverage. Due to the requirements of lawful inter-
cept and the drive for operators to identify the network
users, there still is an authorization step to commu-
nicate in this mode. Near-field-communication (NFC)
would solve any scalability problem from interference,
require no infrastructure or provider, but at the price
of requiring the participant and witness to hold their
phones together for each proof share.

9.3 Adversaries

Our adversary model considers only protocol data, no
auxiliary data. Against this adversary our scheme is se-

https://www.bankid.com/assets/bankid/stats/2018/statistik-2018-04.pdf
https://www.bankid.com/assets/bankid/stats/2018/statistik-2018-04.pdf
http://ec.europa.eu/eurostat/web/quality/european-statistics-code-of-practice
http://ec.europa.eu/eurostat/web/quality/european-statistics-code-of-practice

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 16

cure. The question is how this adversary model maps to
real adversaries.

In any real implementation there are potential side-
channels. E.g., in the communication layer: IP-addresses
translate into identities, devices’ MAC-addresses can be
used as persistent identifiers. We do not consider these
aspects as there are entire fields dedicated to some of
them, we simply assume the tools developed in those
fields (e.g., Tor [20] and randomized MAC-addresses)
to prevent these problems will be used.

Like other schemes involving Internet communica-
tion, we do not consider a global passive adversary. Such
an adversary could use side information to do e.g., time-
correlation attacks against people that submit transac-
tions concerning a particular cid over Tor, identify them,
and link them to the cid . On a more realistic scale, a
national passive adversary can control all the nation’s
ISPs but would not be able to observe all Tor exit nodes
or otherwise observe all input to the ledger needed to
perform such correlation attacks.

During a protest there are also other information
channels available to the adversary. E.g., one could ar-
gue that the adversary might be able to map a face to a
pid by means of signal triangulation during the protocol
run, and then map the face to an identity through face
recognition. However, there are far easier tactics the ad-
versary could use: e.g., the adversary can take photos of
the event and try to capture as many faces as possible.
This is already possible today and thus not a weakness
introduced by our scheme.

Besides these privacy concerns, there are also verifi-
ability concerns. There, we have shown that the security
is reduced to the witnesses. In the case of the canoni-
cal CROCUS with trusted witnesses, as in any trusted
third party, it simply reduces to their trustworthiness.

We outlined a variant of counting and verifying for
CROCUS that uses a threshold θ of untrusted witnesses
and, trivially, resists a collusion of malicious witnesses
smaller than θ. While using this approach is technically
possible, we do not know whether it is of practical use.
We have not found a principled way of determining a
secure value for θ, yet neither can we at this point con-
clude that there is no such way. Informally, a higher
θ increases the probability of a collusion that is large
enough to break verifiability being detected and made
known to the verifier.

Overall, while CROCUS provides the mechanism
for a privacy-preserving and verifiable way of count-
ing crowds, any verifier still needs to consider their own
trust, analogous to detecting bias in science. There, if
a paper espousing, say, the efficacy of X, comes from

research sponsored by the company that manufactures
X, it might be biased. Likewise, if a count of a pro-
government protest is published by that government,
one needs to consider where identities were issued and
which witnesses were considered trusted. In contrast to
a layperson interpreting science, however, the results
can easily be reproduced by the verifier: knowing which
set of witnesses (and other criteria such as location and
time) the counter used for the count, the count can
be verified (by a re-count). Whether the result can be
trusted then depends on whether the verifier also trusts
this set of witnesses. Given that all proof shares are on
the ledger, however, a verifier can come up with their
own criteria and make a count themselves. This count
then, given that they publish what criteria they used,
can in turn be verified by anyone else.

10 Conclusion
In this paper, we have introduced CROCUS, a privacy-
preserving protocol for verifiably counting participants
at protests.

We showed that CROCUS provides universally veri-
fiable data. With CROCUS, a journalist can easily count
the participation, specify how they counted (time, loca-
tion etc.) along with the result and everyone can in-
dependently verify that the result is correct. The only
results that cannot be trusted are results aligned with
the interests of the CA.

Despite the verification, the privacy of the partici-
pants is preserved to the extent possible by their phys-
ical presence at the protest, with the following caveat.
Grace, the government in our protest scenario, can co-
erce Alice in some way to reveal her private key and then
use it to verify her participation. However, this requires
that Grace already suspects Alice — Grace cannot check
everyone — and that Alice has not renewed her digital
certificate.

While CROCUS is an actual count and not an esti-
mate, its accuracy for the total number of participants
hinges on the participants having the necessary equip-
ment (i.e., a smartphone or similar device), some sort
of trustworthy credential, and the willingness to run
the protocol. Until used by most participants, CRO-
CUS would result in a considerable undercount. How-
ever, it represents a first step toward accurate verifiable
yet privacy-preserving crowd counting by showing how
it can be done in theory at least and in practice once
some assumptions concerning hardware and e-identities

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 17

become more realistic. While the necessary technolo-
gies are not yet available in most authoritarian regimes,
some of them are in several democracies. We believe
that it is important to implement systems such as ours
also there to support the maintenance of democratic
processes and increase transparency.

References
[1] Farouk El-Baz. The [?]-Man March. WIRED. June 2003.

url: https://www.wired.com/2003/06/crowd-spc/ (visited
on 07/21/2017).

[2] BBC Magazine. “Protest numbers: How are they
counted?” In: BBC News (Mar. 28, 2011). url: http :
//www.bbc.com/news/magazine- 12879582 (visited on
07/24/2017).

[3] Patrik Bichsel, Carl Binding, Jan Camenisch, Thomas
Groß, Tom Heydt-Benjamin, Dieter Sommer, and Greg
Zaverucha. “Cryptographic protocols of the identity mixer
library.” In: Tech. Rep. RZ 3730, Tech. Rep. (2009).

[4] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaude-
nay. “Practical and provably secure distance-bounding.” In:
Journal of Computer Security 23.2 (2015), pp. 229–257.

[5] Stefan Brands and David Chaum. “Distance-bounding
protocols.” In: Workshop on the Theory and Application of
of Cryptographic Techniques. Springer. 1993, pp. 344–359.

[6] Briar. Briar: a messaging app designed for activists. 2016.
url: https://briarproject.org/how-it-works.html (visited on
02/25/2018).

[7] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss,
Anna Lysyanskaya, and Mira Meyerovich. “How to Win
the Clonewars: Efficient Periodic N-times Anonymous
Authentication.” In: 13th ACM Conference on Computer
and Communications Security. 2006, pp. 201–210. doi:
10.1145/1180405.1180431.

[8] Jan Camenisch and Anna Lysyanskaya. “Signature schemes
and anonymous credentials from bilinear maps.” In: An-
nual International Cryptology Conference. Springer. 2004,
pp. 56–72.

[9] Jan Camenisch and Markus Stadler. “Efficient group signa-
ture schemes for large groups.” In: Annual International
Cryptology Conference, CRYPTO’97. Springer. 1997,
pp. 410–424.

[10] Nicolas Chapuis. “Des médias s’associent pour compter les
participants aux manifestations.” fr. In: Le Monde.fr (Mar.
2018). issn: 1950-6244. url: https://www.lemonde.fr/
societe/article/2018/03/20/des-medias-s-associent-pour-
compter- les-participants-aux-manifestations_5273676_
3224.html (visited on 05/30/2018).

[11] Cas Cremers, Kasper B Rasmussen, Benedikt Schmidt, and
Srdjan Capkun. “Distance hijacking attacks on distance
bounding protocols.” In: Security and Privacy (SP), 2012
IEEE Symposium on. IEEE. 2012, pp. 113–127.

[12] CrowdCount. Crowd Count: Real-time crowd sizing. 2016.
url: http://crowdcount.org/ (visited on 04/05/2017).

[13] CrowdSize. Crowdsize iPhone Application. 2016. url: http:
//www.crowdsize.com/ (visited on 07/24/2017).

[14] Peter Danielis, Sylvia T Kouyoumdjieva, and Gunnar Karls-
son. “DiVote: A Distributed Voting Protocol for Mobile
Device-to-Device Communication.” In: Teletraffic Congress
(ITC 28), 2016 28th International. Vol. 1. IEEE. 2016,
pp. 69–77.

[15] Peter Danielis, Sylvia T Kouyoumdjieva, and Gunnar Karls-
son. “UrbanCount: Mobile Crowd Counting in Urban En-
vironments.” In: 8th IEEE Annual Information Technol-
ogy, Electronics and Mobile Communication Conference

https://www.wired.com/2003/06/crowd-spc/
http://www.bbc.com/news/magazine-12879582
http://www.bbc.com/news/magazine-12879582
https://briarproject.org/how-it-works.html
https://doi.org/10.1145/1180405.1180431
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
http://crowdcount.org/
http://www.crowdsize.com/
http://www.crowdsize.com/

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 18

(IEMCON), October 03-05, 2017, Univ British Columbia,
Vancouver, Canada. Institute of Electrical and Electronics
Engineers (IEEE). 2017, pp. 640–648.

[16] Antonio De La Piedra, Jaap-Henk Hoepman, and Pim
Vullers. “Towards a full-featured implementation of at-
tribute based credentials on smart cards.” In: International
Conference on Cryptology and Network Security, pp. 270–
289.

[17] Stéphanie Delaune, Steve Kremer, and Mark Ryan. “Verify-
ing privacy-type properties of electronic voting protocols.”
In: Journal of Computer Security 17.4 (2009), pp. 435–
487.

[18] Yvo Desmedt. “Major security problems with the
‘unforgeable’(feige)-fiat-shamir proofs of identity and
how to overcome them.” In: Proceedings of SECURICOM.
Vol. 88. 1988, pp. 15–17.

[19] Yvo Desmedt, Claude Goutier, and Samy Bengio. “Spe-
cial uses and abuses of the Fiat-Shamir passport protocol.”
In: Conference on the Theory and Application of Crypto-
graphic Techniques. Springer. 1987, pp. 21–39.

[20] Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
“Tor: The Second-Generation Onion Router.” In: USENIX
Security Symposium. 2004, pp. 303–320.

[21] Yevgeniy Dodis and Aleksandr Yampolskiy. “A verifiable
random function with short proofs and keys.” In: Interna-
tional Workshop on Public Key Cryptography. Springer.
2005, pp. 416–431.

[22] John R. Douceur. “The Sybil Attack.” In: Peer-to-Peer
Systems. 2002. doi: 10.1007/3-540-45748-8_24.

[23] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and
Cristina Onete. “A formal approach to distance-bounding
RFID protocols.” In: International Conference on Informa-
tion Security. Springer. 2011, pp. 47–62.

[24] Sam Edwards. Barcelona protesters demand release of
jailed separatist leaders. [Online; accessed 2. Feb. 2018].
Nov. 11, 2017. url: https://www.independent.co.uk/
news/world/europe/barcelona-protesters-demand-release-
of-jailed-separatist-leaders-catalonia-latest-a8050116.html
(visited on 02/02/2018).

[25] Amos Fiat and Adi Shamir. “How To Prove Yourself: Prac-
tical Solutions to Identification and Signature Problems.”
In: Advances in Cryptology — CRYPTO’ 86: Proceedings.
1987. doi: 10.1007/3-540-47721-7_12.

[26] FireChat. FireChat: a messaging app without Internet ac-
cess or cellular data. 2016. url: https://www.opengarden.
com/firechat.html (visited on 02/25/2018).

[27] S. Gambs, M.-O. Killijian, M. Roy, and M. Traore.
“PROPS: A PRivacy-preserving lOcation Proof System.”
In: Reliable Distributed Systems (SRDS), 2014 IEEE 33rd
International Symposium on. 2014. doi: 10.1109/SRDS.
2014.37.

[28] Sébastien Gambs, Carlos Eduardo Rosar Kos Lassance,
and Cristina Onete. “The Not-so-distant Future: Distance-
Bounding Protocols on Smartphones.” In: 14th Smart Card
Research and Advanced Application Conference. Bochum,
Germany, Nov. 2015.

[29] Michelle Goldberg. The protest-crowd numbers game -
Salon.com. Salon. Jan. 2003. url: http://www.salon.com/
2003/01/24/crowds/ (visited on 07/21/2017).

[30] Jan Hajny, Lukas Malina, Zdenek Martinasek, and Ondrej
Tethal. “Performance evaluation of primitives for privacy-
enhancing cryptography on current smart-cards and smart-
phones.” In: Data Privacy Management and Autonomous
Spontaneous Security. Springer, 2014, pp. 17–33.

[31] Al-Jazeera. Huge marches as Venezuela marks 50 days of
protest. May 21, 2017. url: http://www.aljazeera.com/
news/2017/05/venezuelan- opposition-marks- 50- days-
protests-170520174956348.html (visited on 08/01/2017).

[32] Udit Narayana Kar and Debarshi Kumar Sanyal. “An
overview of device-to-device communication in cellular
networks.” In: ICT Express (2017). issn: 2405-9595. doi:
10.1016/j.icte.2017.08.002.

[33] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ewa Syta, and Bryan Ford. OmniLedger:
A Secure, Scale-Out, Decentralized Ledger via Sharding.
Cryptology ePrint Archive, Report 2017/406. To appear in
39th IEEE S&P 2018. 2017.

[34] Michael Z Lee, Alan M Dunn, Brent Waters, Emmett
Witchel, and Jonathan Katz. “Anon-pass: Practical anony-
mous subscriptions.” In: Security and Privacy (SP), 2013
IEEE Symposium on. IEEE. 2013, pp. 319–333.

[35] Wanying Luo and Urs Hengartner. “Veriplace: a privacy-
aware location proof architecture.” In: Proceedings of the
18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM. 2010, pp. 23–32.

[36] Remy Melina. How Is Crowd Size Estimated? Live Science.
Sept. 2010. url: https ://www.livescience.com/8578-
crowd-size-estimated.html (visited on 07/20/2017).

[37] Robinson Meyer. “How Will We Know Trump’s Inaugural
Crowd Size?” In: The Atlantic (Jan. 20, 2017). issn: 1072-
7825. url: https://www.theatlantic.com/technology/
archive/2017/01/how-will-we-know- trumps- inaugural-
crowd-size/513938/ (visited on 07/24/2017).

[38] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008. url: https://bitcoin.org/bitcoin.pdf.

[39] Torben Pryds Pedersen. “Non-interactive and information-
theoretic secure verifiable secret sharing.” In: Annual Inter-
national Cryptology Conference. 1991, pp. 129–140.

[40] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, I. Khoffi, and B. Ford. “Keeping Au-
thorities "Honest or Bust" with Decentralized Witness
Cosigning.” In: 2016 IEEE Symposium on Security and Pri-
vacy (SP). May 2016, pp. 526–545. doi: 10.1109/SP.2016.
38.

[41] Alan Taylor. Months of Deadly Anti-Government Protests
in Venezuela - The Atlantic. June 12, 2017. url: https :
//www.theatlantic.com/photo/2017/06/months- of-
anti-government-protests-continue-in-venezuela/530031/
(visited on 08/01/2017).

[42] Kim Tong-Hyung and Youkyung Lee. “Counting 1 million
crowds at anti-president rallies in Seoul.” In: Associated
Press: The Big Story (Nov. 2016). url: http://bigstory.
ap.org/article/317ea62bddbd4132ab1467863a532ab9/
counting- 1-million- crowds- anti- president- rallies- seoul
(visited on 04/05/2017).

[43] Mathy Vanhoef, Célestin Matte, Mathieu Cunche,
Leonardo S. Cardoso, and Frank Piessens. “Why MAC
Address Randomization is Not Enough: An Analysis of Wi-
Fi Network Discovery Mechanisms.” In: Proceedings of the

https://doi.org/10.1007/3-540-45748-8_24
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://doi.org/10.1007/3-540-47721-7_12
https://www.opengarden.com/firechat.html
https://www.opengarden.com/firechat.html
https://doi.org/10.1109/SRDS.2014.37
https://doi.org/10.1109/SRDS.2014.37
http://www.salon.com/2003/01/24/crowds/
http://www.salon.com/2003/01/24/crowds/
http://www.aljazeera.com/news/2017/05/venezuelan-opposition-marks-50-days-protests-170520174956348.html
http://www.aljazeera.com/news/2017/05/venezuelan-opposition-marks-50-days-protests-170520174956348.html
http://www.aljazeera.com/news/2017/05/venezuelan-opposition-marks-50-days-protests-170520174956348.html
https://doi.org/10.1016/j.icte.2017.08.002
https://www.livescience.com/8578-crowd-size-estimated.html
https://www.livescience.com/8578-crowd-size-estimated.html
https://www.theatlantic.com/technology/archive/2017/01/how-will-we-know-trumps-inaugural-crowd-size/513938/
https://www.theatlantic.com/technology/archive/2017/01/how-will-we-know-trumps-inaugural-crowd-size/513938/
https://www.theatlantic.com/technology/archive/2017/01/how-will-we-know-trumps-inaugural-crowd-size/513938/
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://www.theatlantic.com/photo/2017/06/months-of-anti-government-protests-continue-in-venezuela/530031/
https://www.theatlantic.com/photo/2017/06/months-of-anti-government-protests-continue-in-venezuela/530031/
https://www.theatlantic.com/photo/2017/06/months-of-anti-government-protests-continue-in-venezuela/530031/
http://bigstory.ap.org/article/317ea62bddbd4132ab1467863a532ab9/counting-1-million-crowds-anti-president-rallies-seoul
http://bigstory.ap.org/article/317ea62bddbd4132ab1467863a532ab9/counting-1-million-crowds-anti-president-rallies-seoul
http://bigstory.ap.org/article/317ea62bddbd4132ab1467863a532ab9/counting-1-million-crowds-anti-president-rallies-seoul

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 19

11th ACM Asia Conference on Computer and Commu-
nications Security. ASIA CCS ’16. New York, NY, USA:
ACM, 2016, pp. 413–424. isbn: 978-1-4503-4233-9. doi:
10.1145/2897845.2897883. url: http://doi.acm.org/10.
1145/2897845.2897883 (visited on 07/24/2017).

[44] Serge Vaudenay. “Sound proof of proximity of knowledge.”
In: International Conference on Provable Security. Springer.
2015, pp. 105–126.

[45] Kaveh Waddell. “The Exhausting Work of Tallying Amer-
ica’s Largest Protest.” In: The Atlantic (Jan. 2017). issn:
1072-7825. url: https://www.theatlantic.com/technology/
archive/2017/01/womens-march-protest-count/514166/
(visited on 04/05/2017).

[46] Cong Zhang, Hongsheng Li, X. Wang, and Xiaokang Yang.
“Cross-scene crowd counting via deep convolutional neural
networks.” In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2015, pp. 833–841.
doi: 10.1109/CVPR.2015.7298684.

[47] Zhichao Zhu and Guohong Cao. “Applaus: A privacy-
preserving location proof updating system for location-
based services.” In: INFOCOM, 2011 Proceedings IEEE.
IEEE. 2011, pp. 1889–1897.

.1 Distance bounding and location proofs

Some location-based services (LBSs) only grant access
to resources to users located at a particular location,
thus raising the issue of verifying the position claimed
by a particular user. In most of the existing schemes, the
location of a user (device) is determined by the device
itself (e.g., through GPS) and forwarded to the LBS
provider. One of the main drawbacks of this approach
is that a user can cheat by having her device transmit
a false location. Therefore, it is possible for a user to be
inappropriately granted access to a particular resource
while being thousands of kilometers away.

One possible way to counter this threat is by having
the requesting device formally prove that it really is at
the claimed location, which gives rise to the concept of
location proofs (LPs). In a nutshell, an LP is a digital
certificate attesting that someone was at a particular
location at a specific moment in time. A location-proof
share (LPS) is an architecture by which users can ob-
tain LPs from neighboring witnesses (e.g., trusted access
points or other users) that can later be shown to veri-
fiers who can check the validity of a particular proof [35,
47]. Most of the existing approaches to LPs require the
prover and the witnesses to disclose their identities, thus
raising many privacy issues such as the possibility of
tracing the movements of users of the LPS. However,
some LPSs, such as PROPS [27], exist that provide
strong privacy guarantees along with the possibility of
verifying the claim of the location.

CROCUS shares some similarities with PROPS, al-
though their objective is quite different as it aims at
verifying a global property of the population (i.e., crowd
estimation) in contrast to checking the location claim
made by a user, which is an individual property.

Another difference is that CROCUS operates in a
more adverse environment. CROCUS must provide uni-
versal verifiability, this means that all proofs must be
available to and verifiable by anyone. One problem here
is that we have multiple verifiers who might not trust the
same witnesses. The incentives to cheat are also bigger
and consequently the thresholds for collusion are much
higher.

A Anonymous credentials
protocol details

Here we summarize the algorithms suggested as instan-
tiations for the anonymous-credentials system AC in
Section 5.2: these are summarized as Figs. 4 to 8.

function P.Commit(x, r)
return gxhr

Fig. 4. Pedersen’s commitment scheme [39]. Let G = 〈g〉 = 〈h〉
be a group with prime order q and generators g and h.The r
should be chosen randomly from Zq .

https://doi.org/10.1145/2897845.2897883
http://doi.acm.org/10.1145/2897845.2897883
http://doi.acm.org/10.1145/2897845.2897883
https://www.theatlantic.com/technology/archive/2017/01/womens-march-protest-count/514166/
https://www.theatlantic.com/technology/archive/2017/01/womens-march-protest-count/514166/
https://doi.org/10.1109/CVPR.2015.7298684

From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones 20

function CL.Setup
x

¢← Zq , X ← gx, y
¢← Zq , Y ← gy , z

¢← Zq , Z ← gz

sk ← (x, y, z), pk ← (q,G,GT , g, gT , e,X, Y, Z)
return (sk, pk)

function CL.Sign(pk, sk,m, r)
a

¢← G,A← az

b← ay , B ← Ay

c← ax+xymAxyr

return σ = (a,A, b, B, c)
function CL.BlindSig(σ = (a,A, b, B, c))

r
¢← Zq , r′

¢← Zq

ã← ar, Ã← Ar, b̃← br, B̃ ← Br, ĉ← (cr)r′

return σ̃ = (ã, Ã, b̃, B̃, ĉ)
function CL.VerifySig(pk,m, r, σ = (a,A, b, B, c))

if e(a, Z) 6= e(g,A) then
return ⊥ . A malformed

else if e(a, Y) 6= e(g, b) ∨ e(A, Y) 6= e(g,B) then
return ⊥ . b or B malformed

else if e(X, a) · e(X, b)m · e(X,B)r 6= e(g, c) then
return ⊥ . c malformed

return >

Fig. 5. The CL-signature scheme [8]. Let G = 〈g〉, GT = 〈gT 〉 be
groups of prime order q. Let e : G→ GT be a bilinear map.

CL.GetSig(pk,m, r) CL.IssueSig(pk, sk)

M ← P.Commit(m, r) M−−−−−→

PK{(m, r) : M = P.Commit(m, r)}

α
¢← Zq

a← gα, A← az

b← ay, B ← Ay

σ ← (a,A, b,B, c)
(a,A,b,B,c)
←−−−−− c← axMαxy

CL.ProveSig(pk,m, r, σ) CL.VerifySig(pk, sk)

σ̃ ← CL.BlindSig(σ) σ̃−−−−−→ e(ã, Z) ?= e(g, Ã)

e(ã, Y) ?= e(g, b)

e(Ã, Y) ?= e(g, B̃)
vx ← e(X, ã) vx ← e(X, ã)
vxy ← e(X, b̃) vxy ← e(X, b̃)
vs ← e(g, ĉ) vs ← e(g, ĉ)

PK
{

(m, r) : vrs = vxv
m
xy

}
Fig. 6. Protocols for CL anonymous credentials [8]. Let G =
〈g〉, GT = 〈gT 〉 be groups of prime order q. Let e : G → GT be a
bilinear map.

function
DY.SetupPRF

sk
¢← Z∗q

pk ← gsk

return (sk, pk)

function
DY.PRF(sk, x)

return y = g
1

sk+x

T

function DY.ProvePRF(sk, x)
return π = g

1
sk+x

function
DY.VerifyPRF(pk, x, y, π)

if e(gx · pk, π) 6= e(g, g) then
return ⊥

else if y 6= e(g, π) then
return ⊥

return >

Fig. 7. Verifiable random function [21]. Let G = 〈g〉, GT = 〈gT 〉
be groups of prime order q. Let e : G→ GT be a bilinear map.

CHKL.ProvePRF(k, x) CHKL.VerifyPRF(y)

y ← DY.PRF(k, x)

PK{(k) : y = DY.PRF(k, x)}

Fig. 8. Protocols using DY.PRF with CL anonymous creden-
tials [7]. Let G = 〈g〉, GT = 〈gT 〉 be groups of prime order q. Let
e : G→ GT be a bilinear map.

	From grassroots to CROCUSes: privacy-preserving CROwd Counting Using Smartphones
	1 Introduction
	2 System model
	2.1 Model and assumptions
	2.2 Desired properties

	3 Related work
	4 Definitions
	4.1 Protest, crowd estimation
	4.2 Verifiability requirements
	4.3 Privacy requirements
	4.4 Adversary model

	5 Building blocks
	5.1 Zero-knowledge proofs of knowledge
	5.2 Anonymous credentials
	5.3 Distance-bounding protocols
	5.4 Time-stamping and storage: ledger

	6 The Protocol
	6.1 Prerequisite: anonymous credentials
	6.2 Participation
	6.3 Count and Verification

	7 Security and privacy analysis
	7.1 Eligibility verifiability
	7.1.1 Temporal eligibility
	7.1.2 Linkability
	7.1.3 Spatial eligibility
	7.1.4 Designated use

	7.2 Individual and universal verifiability
	7.3 Privacy

	8 Performance
	8.1 Smartphones and smartcards
	8.2 Distance-bounding anonymous credentials
	8.3 Ledger (blockchain) efficiency

	9 Discussion: limitations of assumptions
	9.1 Equipment
	9.2 Communications
	9.3 Adversaries

	10 Conclusion
	.1 Distance bounding and location proofs

	A Anonymous credentials protocol details

