CROCUS: CROwd Counting Using
Smartphones

Daniel Bosk!, Simon Bouget!, Sonja Buchegger!, and Sébastien
Gambs?

'KTH Royal Institute of Technology,
{dbosk,bouget,buc}t@kth.se
2Université du Quebec & Montréal, sebastien.gambs@ugam.ca

April 29, 2020

Abstract

Crowd counts vary according to who is doing the counting and what
methods and criteria they use. Current methods have wide margins for
error, are difficult to verify, and can be privacy-invasive. We recognize
the potential adversarial setting for crowd counts and thus aim for both
transparency (in the form of verifiability) and privacy. In this paper we
propose CROCUS, a decentralized system based on smartphones that
combines anonymous credentials, witnesses of proximity, and storage of
participation proofs on a public ledger (e.g., blockchain) to achieve prop-
erties similar to those needed for electronic voting, where, put simply, it is
important to count everyone, but only once, not leak private information,
and be able to prove that the count was done correctly. We find that,
with some assumptions about the availability of future technology such
as distance-bounding chips on smartphones, CROCUS can provide the
desired properties at acceptable performance.

Contents

[1__Introductionl

|2

Desired properties and current crowd-counting methods|

2.1 Desired properties| oL
2.2 Current crowd-counting methods|

B Definitions|

3.1 Protest, crowd estimation| 0L
3.2 Verifiability and privacy requirements|
8.3 Adversary model| oo

System modell

4.1 Model and assumptions|

B

Building blocks|

.1 Zero-knowledge proots of knowledge|
[5.2 Sybil-free pseudonyms|o
5.3 istance-bounding protocols|.00
b4 Location proofs|o
p.5 Time-stamping and storage: ledger|

Crowd counting with trusted witnesses|

6.1 Prerequisite: self-certified, Sybil-free pseudonyms|
6.2 Participation| oo
6.3 Count and verificationl

7

Crowd counting with potentially untrusted witnesses|

[r.1 Participation| oo L
[(.2 Count and Verificationl

Security and privacy analysis|

8.1 Elgibility verithability]o 00000
3.1.1 Temporal eligibility]
3.1.2 ounted onlyoncef
8.1.3 Spatial eligibility]o o000
8.1.4 Designated use] 0.

8.2 Individual and universal verifiability|

9.1 Smartphones and smartcards|
9.2 Witness processinglo
9.3 Ledger (blockchain) efficiency|

(10 Related work]

S ot

11
11
12
13
15
15

16
17
17
20

21
21
23

25
25
25
25
26
26
27
27

28
28
29
29

29

01 Discussionl
[11.1 Implementability| 0L

11.2 Communicationsl v e

|IA° Anonymous credentials protocol details|

30
30
31
32

33

38

1 Introduction

While our proposal is meant for crowd counting in general and to be applicable
to any kind of event, we represent an event with a political protest against an
oppressive regime throughout the paper. We choose this instantiation of an
event because it is the most challenging in terms of requirements for privacy
and verifiability (transparency).

Historically, there are many examples of protests in which the count es-
timated by police and that of the organizers differ significantly, sometimes by
hundreds of thousands. Even without foul play, the difference is quite natural as
both parties have different objectives and metrics. More precisely, the organiz-
ers want to count everyone who participated while the police want to estimate
the count at the peak of participation, due to crowd control |[44]. Among the
numerous recent examples in which it is difficult to establish the actual num-
ber of participants, there are the demonstrations against the president in South
Korea [44], Trump’s inauguration [38], the 2017 Women’s March in the US [47],
the demonstrations against the change of constitution in Venezuela [30] or for
the independence of Catalonia [23].

Consider the following scenario. Alice is an activist that organizes a protest
in some location(s) against the current government, represented by Grace. Alice
wants to estimate the number of participants to prove a certain support for her
cause against Grace in a way that is both demonstrably accurate and does not
increase the participants’ risk of retribution against them from Grace’s regime.
To realize this objective, a reliable yet privacy-preserving crowd-counting mech-
anism is needed, which to the best of our knowledge is a problem that has not
yet been entirely solved.

Existing methods for crowd-counting vary significantly in terms of approaches.
Most of them, however, lack precision (i.e., they have large error margins) and
can only give an estimate for a particular snapshot in time, not the cumula-
tive participation count — at least not without counting some persons multiple
times. In addition, they lack verifiability in the sense that one has to trust the
third party responsible for implementing the counting method.

Finally, one important observation about crowd-counting that has not been
adequately addressed in the design of current crowd-counting solutions is that
it actually is an adversarial setting. Alice the activist has an incentive to in-
crease the tallied number of participants, whereas Grace (and possibly other
entities) has an incentive to decrease it. In this paper, our main objective is to
provide a scheme preventing both Alice and Grace from cheating by providing
verifiable participation counts that can resist Sybil attacks while still preserving
the participants’ privacy to the extent possible given their physical presence at
the protest. While one cannot prevent an observer (physically present or look-
ing at photos or videos) from recognizing a particular individual at a protest,
we do not want the digital traces of our protocol to increase any risk for the
participants.

The paper is organized as follows. In Section [we describe our system
model and summarize the desired properties for crowd counting, followed by a

discussion of current crowd-counting methods in Section [2} In Section[3] we for-
malize the notion of protest and the desired verifiability and privacy properties,
and in Section [5] we give the relevant background on the building blocks of our
solution. We present CROCUS, a privacy-preserving crowd counting protocol
in in ??, analyze its security in Section [8] and estimate its performance in Sec-
tion[9] We compare it to related work in ??. Finally, we discuss limitations and
assumptions in Section [L1] and give our conclusions in Section

2 Desired properties and current crowd-counting
methods

2.1 Desired properties

We note that, in general terms, protests are petitions with a given time and
location. Protests, petitions and elections share that in all three many individ-
uals express their opinion. These opinions can be sensitive (e.g., be a cause for
discrimination or persecution). For that reason we have strong requirements
for verification and privacy for elections, it follows that we should have similar
properties for protests and petitions.

We draw inspiration from properties for voting systems as formalized in :
m » Find a new ref for voting verifiability properties, Douglas commented
that the last one is not the origin.<

Eligibility: anyone can verify that each cast vote is legitimate.

Universal verifiability: anyone can verify that the result is according to the
cast votes. m » Douglas: technically this is Sako-Kilian, non-technically,
it’s old. <

Individual verifiability: each voter can verify that their vote is included in
the result. m » Douglas: this is much earlier than Sako-Kilian, in
essence Fiat-Shamir (technically). Non-technically, much older.<

In our context, votes are translated into participation proofs. Universal and
individual verifiability remain the same, in the sense that anyone can verify the
participation count by counting the proofs and a participant can verify their
proof is included. The eligibility requirement is slightly different as for protests
it must also include temporal and spatial eligibility (i.e., each participation
proof satisfies some temporal and spatial relation to the protest). In essence,
the proof must bind the person to the time and location of the protest. (This
is the difference to a petition.)

In 7 the main three privacy properties for voting protocols are given as:

Vote privacy: the voting does not reveal any individual vote.

Receipt freeness: the voting system does not provide any data that can be
used as a proof of how the voter voted.

Coercion resistance: a voter cannot cooperate with a coercer to prove their
vote was cast in any particular way.

Coercion resistance in voting typically relies on physical isolation (e.g., pri-
vate voting booths), including for digital systems, and that is by definition not
possible for public events. For instance, someone could simply physically bring
Alice to a protest against her will. As for receipt freeness, while desirable in
itself, it implies a conflict with verifiability in our context: in contrast to vot-
ing, receipt freeness for how the voter voted (i.e., the cause of the protest) here
implies receipt freeness for that the voter voted (i.e., the protester was there),
which would make verifiability impossible.

Therefore in our context, the crucial property is vote privacy. More precisely,
for the protester we want unlinkability (from the adversary’s perspective) be-
tween a protester’s real identity P and the participation proof (and thus also the
protest itself). Phrased differently, given a participation proof, Grace should not
be able to distinguish if it was Alice or Bob who participated. Furthermore, if
Grace has managed to link one proof to Alice due to some auxiliary knowledge,
she should not be able to link it to another proof (from a different protest).

2.2 Current crowd-counting methods

The seemingly most common method for counting crowds at protests is Jacobs’s
method [2, 13, 128, 38, |44]. This manual method devised in the 1960s relies
on aerial pictures of the event. The verifier divides the protest venue into
regions and then estimates the density of the crowd in the different regions
before summing them up to get an estimate of the global count. Using pictures
makes it difficult to get cumulative counts, verify that the pictures have not
been manipulated, and to have both privacy and individual verifiability: either
one is included in the picture (privacy problem) or not (verifiability problem).
Similar limitations exist for estimating the number of persons in a picture or
video (e.g., the work of [49] or CrowdSize [13]).

Another problem for all the above methods is exemplified by the demon-
strations in Seoul: “[t|he demonstrators not only gather in open space, but also
small alleys and between buildings” [44]. In this situation it is very difficult to
faithfully capture the situation. Taking pictures from different angles risks dou-
ble counts. Another challenges is determining whether people near the event’s
perimeter are participants or simply bystanders |37].

Counting MAC addresses, as done by a company during the protests in
Seoul [44] suffers from MAC randomization, though some tracking of smart-
phones could still be possible with a different method [45] or using IMST catch-
ers; none of which is verifiable.

An approach that relies on a trusted infrastructure was recently deployed
by a collection of media outlets to count protesters passing the line defined by
a trusted sensor on marches [10]. This solution does not offer strong verifiabil-
ity guarantees and thus is complemented by micro-counts made by humans to
estimate their margin of error.

CrowdCount CrowdCount [12] is a web service that lets Alice create an event
such that anyone can submit their location to register that they are in Alice’s
event. Another related approach based on devices is UrbanCount |15], which
relies on epidemic spreading of crowd-size estimates by device-to-device commu-
nication to count crowds in dense urban environments with high node-mobility
and churn. However, there is no consideration of a potentially adversarial set-
ting and thus no verifiability or checks on eligibility. DiVote [14], a prior work
by the same authors for polling in dense areas, avoids double counting, but
again only works with honest participants and thus does not suit an adversarial
setting.

3 Definitions

3.1 Protest, crowd estimation

To be able to estimate the participation count for a protest, we first need to
define this concept and which quantity should be counted. Let us start by con-
sidering some examples. During the demonstrations against the South Korean
president in Seoul in 2016 “[t]he rallies stretch[ed] from midday to late night —
some people stay[ed] for several hours, others just several minutes” [44]. These
rallies were all in the same location in the capital and repeated every weekend
for a few weeks. The Women’s Marches in 2017 [47], on the other hand, occurred
in parallel in many locations. We also have the Venezuelan demonstrations in
2017 in which “anti-government demonstrators have staged daily protests across
Venezuela” [43] while “pro-government workers sang and danced as they staged
a rival march to show their support for the president’s controversial plan to
rewrite the constitution” |30]. Generalizing from these examples, the minimal
common part is the cause, while the location (or area) considered varies over
time.

For the rest of the paper, we will refer to the organizer as Alice. We assume
that the objective of Alice is to count everyone who participated at any time
and in any of the locations [44] Formally, we define a protest as an event that
is uniquely identified by its cause cid, its time interval ¢ and its location (area)
l. More specifically, we will use the following definition.

Definition 1 (Subprotest, Protest). A subprotest p = (cid,t,l) is a tuple in
which cid € {0,1}*, for some fized X € N, is the identifier of the cause of the
protest, t C T is a time period and | C L is the location (topological connected-
ness is not necessary).

A protest P is the set of subprotests sharing the same cid.

The protests described in the previous examples can be captured using this
definition by decomposing them into subprotests. Each subprotest will then be
encapsulated by our definition and to estimate the total participation to the
protest we can just sum up the estimates obtained. Similarly for marches, the
marching path can be divided into subprotests with locations (or areas) that
slightly overlap.

Each participant who wants to be counted must submit a participation proof.
The proof must be associated with the protest (i.e., its cause identifier cid), and
its time and location must coincide with one of the subprotests.

Our protocol relies on witnesses to certify and associate the proof to the
time and location by creating a proof share. A witness is only allowed to create
one proof share per protester to avoid the risk of count inflation. (Note that a
participant of a protest can take the role of a protester but also act as witness for
other protesters.) Then, the set of all valid proof shares forms the participation
proof of a protester.

Definition 2 (Valid proof share). A proof share s = (cid,t,1, pid, wid) is a
tuple in which: cid,t,l are as in Definition [1; pid is a protester’s pseudonym
for the protest identified by cid; wid is a witness’s pseudonym for a protester
with pseudonym pid.

Furthermore, we say that s is valid for a subprotest p = (cid',t',1') if and
only if cid = cid',t Ct',1 C 1" and denote this by s C p.

We let S denote the set of all proof shares. Let Sp = {s € S | Ip € P, s C p}
be the subset of proof shares related to a protest P. We denote by =;;q the
equivalence relation on S where (cid, t,1, pid, wid) =p;q (cid',t',l', pid’, wid') if
pid = pid’.

Definition 3 (Participation proof). We denote by Ilp = Sp/ =piq the set of all

proofs of participation for the protest P. The participation proof of a protester
with pseudonym i who participates in a protest P is the set

mip = {(cid, t,1, pid,wid) € Sp | pid =i},
of all proof shares with the same protester and valid for any subprotest of P.
We can now define the participation count as follows.

Definition 4 (Participation count). We define a participation count of a protest
P as the cardinality |H§,’9| of the set of eligible participation proofs respectively
to a strength function ¢ and a threshold 0:

15’ = {mip € 0| s(mip) > 0}
with ¢: P(S) > Ry and 6 € Ry.

The strength function ¢ can be used to regulate the trust in the estimated
participation count. m » The strength function can take the size of the time
interval into account too, smaller time intervals around the event yields stronger
proofs. < In general, ¢ can be defined as a weighted sum of the proof shares,
¢ =Y w;s;, with the weights w; being the trust in the witness corresponding
to the proof share s;, and the threshold 6 represents the total trust needed to
accept a participant as valid. One example would be to set all weights to 1 for
¢ to return the number of unique witnesses and thus let 6 to be the threshold
of the number of required witnesses. Another possibility would be to also have

a particular type of witness, called trusted witness, participating in the protest.
For instance, the role of the trusted witness could be taken by the independent
journalist Jane. In this situation, the weights would be 1 for trusted witnesses
and 0 for any other witness, and setting = 1 would require at least one proof
share issued by a trusted witness. Finally, both approaches can be combined
by giving a weight of 1 to all non-trusted witnesses and a weight of € to trusted
witnesses. This results in a participant being eligible if they are witnessed either
by 6 non-trusted witness or by one trusted witness.

3.2 Verifiability and privacy requirements

We now try to make the properties from Section [2.I] more specific. We define
three verifiability requirements, among which eligibility can be further broken
up into four subproperties:

V1. FEligibility: anyone can verify that each participation proof provides tem-
poral and spatial eligibility and that only one participation proof is counted
per individual.

V1.1. Temporal eligibility: demonstrate that the proof was created after
the start of the protest and before the end of the protest.

V1.2. Spatial eligibility: demonstrate that the proof is spatially related to
the physical location or journey of the protest.

V1.3. Counted only once: A protester can create one and only one pseudonym
(pid in Deﬁnition per protest (cid in Deﬁnition, this pseudonym
is unique except with negligible probability. Analogously, a witness
can create one and only one pseudonym per protester (wid in Defini-
tion , this pseudonym is unique except with negligible probability.

V1.4. Designated event: prove that the proof is designated for the particu-
lar protest.

V2. Universal verifiability: anyone can verify that the result obtained matches
the submitted participation proofs.

V3. Individual verifiability: each participant can verify that their participation
proof is included in the global count.

For privacy, we require a set of unlinkability properties:

P1l. Pseudonym unlinkability: given a protest (identifier cid), protesters Alice
and Bob, and a pseudonym pid,,, the adversary cannot tell if pid, = pidaj;ce
or pid, = pidg.y,, except with negligible probability. And similarly with
wid if Alice and Bob act as witnesses.

P2. Protest unlinkability: protesters’ pseudonyms (pid,;,, pid.;,) must be un-
linkable between protests (cid, cid’) from the adversary’s perspective.

dpyv(cid, P),tpyv ')
f(dP,W(CZdv P))v tP,L

Figure 1: An overview of the adversary model. The protester (with real identity)
P and witness (with real identity) W communicate. They exchange protocol
data as a function d of the protest and protester, dpw (cid, P), and record
the time it happened, tpw. The protester submits f(dpw (cid, P)), for some
function f, to the ledger L, who records the time that happened, ¢tp .

P3. Witness unlinkability: witnesses’ pseudonyms (widp;q, widy;q) must be
unlinkable between protesters (pid, pid’) from the adversary’s perspective.

What these properties say is that pseudonyms must look random (require-
ment [P1)) and that each psdeudonym must not be reused more than strictly nec-
essary for the verifiability properties (requirements and . In Pfitzmann-
Hansen terminology [41], they are role-relationship pseudonyms, but with in-
creasingly narrowed notions of roles and relationships (participant of particular
protest, witness of a particular participant at a particular protest). In the ter-
minology of Martucci et al. [36], for each protester a protest is a context or
identity domain whereas for each witness every protester is a context (or iden-
tity domain).

3.3 Adversary model

There are three players: the protester (with identity) P, a witness (with identity)
W, and a ledger L (i.e., time-stamping storage, that will contain the set of
all proof shares,). The protester P and the witness W communicate some
protocol data, dp,w (cid, P), and record when the communication occurred tp vy .
The protester P communicates with L and L only learns some function f of the
protocol data exchanged with the witness, f(dpw (cid, P)), and the time of the
communication (¢p). This is illustrated in Fig.

The goal of the adversary is to link a protester’s real identity P to a protest
identifier cid. The adversary maliciously controls W. The adversary honest-but-
curiously controls L, but can submit to L like everyone else (e.g., a malicious
protester P). The adversary only learns the protocol data, i.e., what is sent
over the channel — no auxiliary data such as who is on the other side of the
channel obtained as side information, e.g., by face recognition or inference from
address to identity.

10

4 System model

To set the stage, we will now describe our system model including assumptions
and a summary of the desired properties for crowd counting.

4.1 Model and assumptions

Throughout this paper, each time we refer to a participant, such as Alice, we
actually mean a personal device that can perform cryptographic operations and
communicate with other local devices on Alice’s behalf. Furthermore, we assume
that each participant has a digital identity certificate signed by a certificate
authority (CA)E| that ensures a one-to-one mapping between an identity and a
cryptographic keyﬂ

In practice, participants witness each other’s participation using their smart-
phones (or similar devices) running the protocol described in ?? and uploading
their testimony (i.e., proof shares) to a ledger (such as a blockchain) after the
protest. During the protest, the devices might be limited by their batteries and
computations they can perform and only have local connectivity to each other.
No connection to any global network such as the Internet is necessary at that
time. Nonetheless, before and after the protest, we assume that the devices
have global connectivity (i.e., Internet connections) and are not computation-
ally limited by any battery, for the participants to be able to upload their proof
shares to the ledger.

5 Building blocks

In this section, we will briefly review the primitives forming the building blocks
of CROCUS.

5.1 Zero-knowledge proofs of knowledge

We will use the notation introduced by Camenisch and Stadler [9]:
PK{(a,8,7) 1y =g°h" Ny’ =g}, (1)

which means that we prove knowledge of «, 3,v ensuring that y,y’ are of the
form y = g*h? and y/ = §7, respectively. Greek letters are known only to
the prover and used for the information for which the prover wishes to prove
knowledge, while all other letters are known by the verifier.

When a proof of knowledge is turned into a signature using the Fiat-Shamir
heuristic 25|, we will denote it as

o+ SPK{(a,,7) 1y = g"h’ Ay = §7 }(m),

1We note that any system that prevents Sybil attacks |22] will do. The CA can be central-
ized or decentralized, but as Douceur 22| points out, the CA must be logically centralized to
prevent Sybil attacks.

2For every physical person there exists at most one valid digital certificate.

11

which yields a signature ¢ on m, ensuring that the issuer knows «, 3, such
that y = g*h® and 3y = §.

5.2 Sybil-free pseudonyms

We must protect against Sybil attacks [22]. We use the idea of identity do-
mains and self-certified Sybil-free pseudonyms proposed by Martucci et al. [35].
However, we don’t need the ability to (nor want to be able to) deanonymize
pseudonyms, so we don’t use the entire e-token dispenser scheme by Camenisch
et al. |7] that Martucci et al. [35] use, but rather just what they call the to-
ken serial number. More specifically, what we need is an anonymous credential
system with the following properties.

We need an anonymous credential system, AC, which provides the following
algorithms and properties. Here we give a high-level overview of the required
properties and notation and refer the reader to figures in Appendix [A] for ex-
ample algorithms.

AC must provide a commitment scheme, AC.Commit, and algorithms such
that the prover can convince a verifier that they know the value inside a com-
mitment, which means that:

PK{(k,0) : ¢ = AC.Commit(k, 0)}.

We require the commitment scheme to be perfectly hiding and computationally
binding, rather than the other way around. Indeed, we are more concerned with
long-term privacy, which means that we are looking for information-theoretic
security with respect to confidentiality. AC.Commit can be instantiated with the
Pedersen commitment scheme [40], see Fig. [6]

AC must also contain a (blindable) signature scheme with the associated pro-
tocols enabling one to get a signature on a committed value ((AC.GetSig; AC.IssueSig))
and to prove knowledge of a signature on a committed value ((AC.ProveSig; AC.VerifySig)).
This can be instantiated using CL-signatures [8], see Figs. [7| and

The prover commits to a value k with commitment ¢ < AC.Commit(k, o)
and opening o. Afterwards, they use o « (AC.GetSig; AC.IssueSig) to obtain a
signature o = AC.Sign(pk, sk, k,r) on the value k and some random value r. (pk
and sk are the public verification key and the private signing key, respectively.)

At a later point, the prover wants to prove to a verifier that they know k
and a signature o on k made by the owner of pk (corresponding to sk) without
revealing k nor o (i.e., in a zero-knowledge manner). The prover and verifier
run the protocol (AC.ProveSig; AC.VerifySig) to prove the following:

PK{(k,r) : ¢/ = AC.BlindSig(AC.Sign(pk, sk, k,7))}.

Finally, we need a pseudo-random function (PRF), AC.PRF, such that there
exists a protocol (AC.ProvePRF; AC.VerifyPRF) implementing the following proof
of knowledge (PK):

PK{(k) : y = AC.PRF(k, z)}.

12

This means that the prover can convince the verifier that y = AC.PRF(k, x)
without revealing k. This can be instantiated by the Dodis and Yampolskiy [21]
verifiable random function (VRF), see Fig. [9]

We need an anonymous credential system, AC, which provides the following
algorithms and properties. Here we give a high-level overview of the required
properties and notation and refer the reader to figures in Appendix [A] for ex-
ample algorithms.

AC must provide a commitment scheme, AC.Commit, and algorithms such
that the prover can convince a verifier that they know the value inside a com-
mitment, which means that:

PK{(k,o0) : ¢ = AC.Commit(k, 0)}.

We require the commitment scheme to be perfectly hiding and computationally
binding, rather than the other way around. Indeed, we are more concerned with
long-term privacy, which means that we are looking for information-theoretic
security with respect to confidentiality. AC.Commit can be instantiated with the
Pedersen commitment scheme [40], see Fig. [6]

AC must also contain a (blindable) signature scheme with the associated pro-
tocols enabling one to get a signature on a committed value ((AC.GetSig; AC.IssueSig))
and to prove knowledge of a signature on a committed value ((AC.ProveSig; AC.VerifySig)).
This can be instantiated using CL-signatures [8], see Figs. [7| and

The prover commits to a value k with commitment ¢ < AC.Commit(k, o)
and opening o. Afterwards, they use o < (AC.GetSig; AC.IssueSig) to obtain a
signature o = AC.Sign(pk, sk, k,r) on the value k and some random value r. (pk
and sk are the public verification key and the private signing key, respectively.)

At a later point, the prover wants to prove to a verifier that they know k
and a signature o on k made by the owner of pk (corresponding to sk) without
revealing k nor o (i.e., in a zero-knowledge manner). The prover and verifier
run the protocol (AC.ProveSig; AC.VerifySig) to prove the following:

PK{(k,r) : o/ = AC.BlindSig(AC.Sign(pk, sk, k,7))}.

Finally, we need a PRF, AC.PRF, such that there exists a protocol {AC.ProvePRF; AC.VerifyPRF)
implementing the following PK:

PK{(k) : y = AC.PRF(k, z)}.

This means that the prover can convince the verifier that y = AC.PRF(k,)
without revealing k. This can be instantiated by the Dodis and Yampolskiy [21]
VRF, see Fig. [0

5.3 Distance-bounding protocols

Distance bounding (DB) [5] protocols were first suggested by Brands and Chaum
[5] to prevent relay attacks in contactless communications in which the adver-
sary forwards a communication between a prover and a possibly far-away verifier

13

to authenticate. These attacks cannot be prevented by cryptographic means as
they are independent of the semantics of the messages exchanged. As a con-
sequence, mechanisms ensuring the physical proximity between a verifier and
a prover should be used instead. DB protocols precisely enable the verifier
to estimate an upper bound on their distance to the prover by measuring the
time-of-flight of short challenge-response messages (or rounds) exchanged dur-
ing time-critical phases. Time critical phases are complemented by slow phases
during which the time is not taking into account. At the end of a DB proto-
col, the verifier should be able to determine if the prover is legitimate and in
their vicinity. In this sense, DB protocols combine the classical properties of
authentication protocols with the possibility of verifying the physical proximity.

There are four adversaries for DB protocols established in the literature,
each of which tries to commit a type of fraud. These can be summarized as
follows:

e Distance fraud (DF) [5]: a legitimate but malicious prover wants to fool
the verifier on the distance between them.

e Mafia fraud (MF) [19]: the adversary illegitimately authenticates using a,
possibly honest, prover who is far away from the verifier. (Also known as
relaying attack or man-in-the-middle attack.)

e Terrorist fraud (TF) [18]: a legitimate, but malicious, prover helps an
accomplice, who is close to the verifier, to authenticate. TF resistance is a
very strong property; it implies that if the verifier accepts the accomplice
with non-negligible probability the accomplice can compute the prover’s
secret keyﬂ

e Distance hijacking (DH) [11]: similar to DF, the malicious prover is far
away but uses an unsuspecting honest prover close to the verifier to pass as
being close. (This is different from MF in that the honest prover actually
tries to authenticate to the verifier, but the malicious prover hijacks the
channel at some point(s) during the protocol.)

Our setting requires a public-key DB protocol with a malicious verifier who
will potentially try to impersonate the prover. The verifier might also try to
track the provers and map their identities to their actions, thus we also re-
quire strong privacy. In fact, as the construction in 7?7 shows, we require a DB
zero-knowledge PK, or simply proof of proximity of knowledge (PPK) [46], for
discrete logarithms. For this paper, we assume the existence of such a proto-
col. There exists PPK schemes, e.g. |46|, just no published scheme for discrete
logarithms yetﬁ

3This means that even things like functional encryption will not help the adversary.
4The authors have such a protocol under submission in another venue.

14

5.4 Location proofs

Some location-based services only grant access to resources to users located at
a particular location, thus raising the issue of verifying the position claimed
by a particular user. One possible way to counter this threat is by having the
requesting device formally prove that it really is at the claimed location, which
gives rise to the concept of location proofs (LPs). In a nutshell, an LP is a
digital certificate attesting that someone was at a particular location at a specific
moment in time. A location-proof share (LPS) is an architecture by which
users can obtain LPs from neighboring witnesses (e.g., trusted access points or
other users) that can later be shown to verifiers who can check the validity of
a particular proof |34}, 50]. Most of the existing approaches to LPs require the
prover and the witnesses to disclose their identities, thus raising many privacy
issues such as the possibility of tracing the movements of users of the LPS.
However, some LPSs, such as PROPS [27], exist that provide strong privacy
guarantees along with the possibility of verifying the claim of the location.

»add something on platin.io, details unknown but roughly relying on
witnesses and graph theory (unique big cluster, assumption of honest major-
ity) <

5.5 Time-stamping and storage: ledger

We need a robust time-stamping and storage service (i.e., a ledger), L, which
implements the following:

e p < L.GetStartPoint yields a value p at time ¢ such that p is difficult to
guess before time ¢ and L. Time(p) = ¢;

o 7 < L.Submit(x) stores « permanently and yields a value 7 at time ¢ such
that L.Verify(z,7) — T and L. Time(w) = t.

With these building blocks, Alice can prove to a third-party verifier that
a message m was created within the time interval [to,¢1]: After time tg, Alice
requests p;, < L.GetStartPoint. Before time t;, Alice submits h < H(m, p;,)
to L and gets 7, < L.Submit(h). The tuple (pt,, m, 7,) can be used to prove
that m was created within the time interval [to,t1]. The verifier computes
R < H(m,p,) and checks whether L.Verify(h',m,) = T and L.Time(ps,) >
to AN L.Time(wtl) é tl.

The value output by L.GetStartPoint must be chosen at a low enough rate
to not be unique for any individual. I.e., there must be a high probability
that more than one person gets the same value from L.GetStartPoint. (This can
always be scaled, if L.GetStartPoint progresses at too high pace, one can resort
to only using every nth output.)

L can be instantiated by an open-membership distributed ledger (e.g., a
blockchain) such as Bitcoin [39], secured via Proof-of-Work consensus, or Om-
niLedger [32], secured via Byzantine consensus. If a blockchain is used for L,
the L.Submit(z) request includes x in the blockchain and returns the identifier

15

of the block into which x was included. The L.GetStartPoint request returns the
hash of the most recent block of the chain (i.e., the head)ﬂ The returned hash
is difficult to predict since it depends on the content of the block, populated by
other users and by the creator of the block with additional randomness (e.g.,
nonces and secrets).

Regarding consensus resilience, it is advisable to use a ledger with a high
number of participants and preferably sharing the ledger with other services.
We want to share the blockchain with other services due to privacy (and anti-
censorship) reasons (analogous to the idea of “domain fronting”).

We require a few additional properties from L that are already provided
by ledgers. First, L must be continuously extended, such as in the Bitcoin
blockchain in which blocks are created every 10 minutes on average (this is so
that L. Time can map values from L.GetStartPoint to real time). Second, L must
provide immutability and availability to any data committed through L.Submit
to ensure verifiability of the data by anyone at any time.

6 Crowd counting with trusted witnesses

We now present a protocol for privacy-preserving but verifiable crowd counts.
This version of the protocol relies on trusted entities to act as witnesses for an
LP.

A prerequisite for this protocol is a one-to-one mapping between a persons
real identity and a certificate (i.e., a cryptographic key). Section covers how
Alice can obtain such a certificate. It is a lighter version than in [35] and not
the full protocol of [7].

At the core of our construction, witnesses generate participation proofs for
the protesters (in Section , these are essentially augmented LPsﬂ Then
whoever wants to verify the participation count, will count and verify those
participation proofs (in Section .

The entities involved in our protocol are participants and (count) verifiers.
A participant can assume three different roles:

(1) The organizer has written a manifesto for the protest and disseminated it
to others. Anyone can do this.

(2) A protester is attending the protest and asks witnesses to vouch for their
presence.

(3) A witness provides proofs of participation to protesters. The proofs are
constructed such that they are verifiable by third parties. The witness
must be trusted by the verifier.

5In situations where forks are common, it is relatively easy to adapt this process to look
at a few blocks before the head and avoid the issue of the stamp becoming invalid later.

SAn LP certifies that its owner was at a given location at a given time. In Section we
point out that we also need a cause identifier.

16

In general, there is one organizer and every participant can act as either or both
protester and witness.

Anyone can be a verifier (we required universal verifiability, Section. The
verifier defines the protest to be counted by setting the cause, time (interval)
and location (area), cf., Definition Now the verifier counts all proofs that
verify correctly and fulfils the cause, time and location criteria. The verifier can
publish, e.g., in a news paper, the final count together with the cause, time and
location and anyone can verify this count (by the same procedure).

6.1 Prerequisite: self-certified, Sybil-free pseudonyms

Before Alice can have her participation in any event counted, she must get a
certificate that ensures Sybil-freeness. This is only done onceﬂ The keys can
be reused for an arbitrary number of protests or, given careful choices in the
PRF used for deriving identifiers, other services that work with anonymous
credentials.

We use the setup and registration phases of Anon-Pass |33E| for getting the
certificate, adapting only the notation to fit ours.

Setup: (spkca,sskca) < Setup During the setup phase, the CA creates all
the needed keys. The CA generates a service public-private key-pair (spkca, sskca) <
AC.Setup (see Fig. [7).

Registration: sk < (Regp(spkca); Rege4(sskca)) During the registration
phase, each participant generates a secret key (k,r) and obtains a signature
on it by the CA but without revealing it to the CA (or to any part thereof in
a decentralized CA scenario). At the end, each participant will have a signed
secret key while the CA will issue only one signature per participant but with-
out knowing the association between a particular key and the identity of the
participant. The participant chooses k,r < Z4 uniformly randomly and runs
o « (AC.GetSig(spkca, k,r); AC.IssueSig(spkca, sskca)) (see Fig. . Upon
success, the participant sets sk = (o, k,r).

6.2 Participation

The goal of our protocol is to generate and collect privacy-preserving partici-
pation proofs that can be counted and verified. These proofs consist of proof
shares that are constructed as depicted in Fig. |2l They are constructed through
an interactive protocol between the protester and the witness, as depicted in
Fig. Bland described below.

"It is repeated when the credential expires, in analogy to a passport in terms of expected
intervals.

8This version is slightly adapted (improves efficiency) from the original version by Ca-
menisch et al. |7].

17

(cid, pid, wid, t,1)

Figure 2: Structure of a proof share. The protest (cause) identifier cid is the hash
value of the manifesto. The protester P’s protest-specific pseudonym pid is com-
puted using the protester’s key skp and cid. The witness W’s protester-specific
identifier wid is computed using the witness’s key sky and the protester’s
pseudonym pid. t is the time (interval) and [is the location (area) as de-
termined by the trusted witness W. All values are signed by the witness (sig-
nature Ty = SPK{(skw) : wid = - - -}(cid, pid,wid, t,1)) while also proving the
correctness of wid and knowledge of a signature on sky by some CA.

Creation of a protest: the manifesto The organizer writes a manifesto for
the protest, which describes its cause. This manifesto could take the form of any
intelligible text, in practice at minimum a name. The organizer then distributes
this manifesto to people through any suitable means (e.g., on the Web, on
placards, etc.). If they agree with the cause, they will use the knowledge of the
manifesto to join the protest.

Joining as a protester: (pid) < Joinp(m) In the terminology of Mar-
tucci et al. |35], the manifesto m is the context and it yields an identity do-
main. A protester who wants to join the protest uses the manifesto m to
compute an identifier for the cause (the context) by hashing the manifesto,
cid + H(m)ﬂ Afterwards, this is used to create the protester’s protest-specific
pseudonym pid < AC.PRFy . (cid).

Joining as a witness The witness does not have to do anything to join as a
witness. That the witness is trusted by the verifier means that the verifier trusts
that the witness can (1) determine the time of an interaction with a protester,
(2) determine the its own location during that interaction and (3) will run the
protocol as an honest witness with the potentially malicious protester.

9The result should be compared to that received from the organizer to check that the cid
indeed is correct. This is to avoid that protesters use different cids for semantically equivalent
manifestos m. However, we omit this in the protocol for readability.

18

Participation: 7 « (Prticip(cid, skp); Witness(skw, spkca)) In the partic-
ipation phase, the protester and the witness construct the proof share of the
protester (Fig. [2)).

The protester sends pid to the witness. Then they run the protocol

(AC.ProveSig(spkca, k, r, 0); AC.VerifySig(spkca, sskca))

(see Fig. , k and r are part of skp. Note that the proof of knowledge (PK)
in Fig. [§| must be a proof of proximity of knowledge (PPK) [46] (i.e., a proof
of knowledge with distance bounding). We use the protocol of DB-Schnorr,
which does exactly this. If the protocol succeeds, the witness will compute
wid < AC.PRFg,, (pid) and send (wid,t,l) to the protester, where t is the
current time and [is the witness’ current location.

Submission: s < Submity (cid, pid, wid,t,l) In the submission phase, the
proof shares are be made available for the verifier. I.e., the verifier must be able
to verify that a proof was actually issued by a witness.

To achieve this, the witness computes a non-interactive zero-knowledge (NIZK)
proof .4, proving the correctness of wid while also signing the time ¢ and lo-
cation [. More specifically, we have that

Yuid SPK{(skw) :
wid = AC.PRF4,, (pid) A

oy = Ac.BnndSig(AC.SignsskCA,(skw))}
(cid, pid, wid, t,1).

Finally, the complete proof share is the tuple
s = (cid, pid, wid, t,1, Yuid)-

For individual and universal verifiability, the proof should be published on
some permanent storage, such as the ledger L by running L.Submit(s) (Sec-
tion .

Note that it does not matter if it is the witness or the protester who makes
s available to the verifier. The witness could compute s during the protest and
give to the protester immediately, but we separate these steps to show that the
witness can postpone those extra computations while potentially running on
battery.

Now, the witness is anonymous here. For the verifier to recognize a proof
on some publicly available storage as issued by a trusted witness there could be
another CA, say CA’, which issues credentials to witnesses. C'A" could be run
by a news paper, trusted to only issue credentials to trustworthy witnesses.

Another solution would be that the witness simply signs the tuple (cid, pid, t,1)
with a key that is tied to the witness’ identity. However, that would allow track-
ing and thus the anonymity set of the protester would shrink.

19

O — all: manifesto
P: cid + H(manifesto),
pid < AC.PRF (cid) Join
P — W: pid Participation
P« W: PPK{(skp) :
pid = AC.PRF ., (cid),
op = AC.BIindSig(AC.SignSSkCA (skp))}

W : wid < AC.PRF ., (pid)

(a) Join and participation

W L.Submit((cid, pid, wid, t,1,¥wid)), where
Yuwia = SPK{(skw) :
wid = AC.PRF s, (pid),

o}y = AC.BlindSig (AC.SignsskCA, (skw))}
(cid, pid, wid, t,1)

(b) Submission

Figure 3: An overview of the protocol with trusted witnesses. The organizer O
broadcasts the manifesto. The protester P with pseudonym pid in the context
of the protest (cid), the witness W with pseudonym wid in the context of that
protester and their computations are as in Fig.[2] Finally, W submits the proof
share to a public ledger L for permanent storage.

Note also that the prover need not compute any NIZK proof of the cor-
rectness of pid since the witness is trusted to have verified this (as part of the
distance bounding).

6.3 Count and verification

Assume that the verifier wants to verify the count for a protest P. The first thing
the verifier will do, is to download all the proof shares s from the ledger L, such
that s C p is a valid proof share for some subprotest p € P of the protest P.
Next, the verifier selects only those proof shares s = (cid, pid, wid, t,1, Pyiq)
such that 1,,;4 proves knowledge of a signature by sskc 4. We denote this set
of proof shares by S.

Next, the verifier partitions the set of proof shares S using the relation =;q
such that (cid, pid, wid, t,1) =piq (cid’, pid’,wid',¥',1') is true if pid = pid'. Each
equivalence class m; p € /=4 is a proof of participation for participant . In

20

terms of Definition [d we let § = 1 and

(s) {1 if the verifier trusts C' A’ to issue only to trustworthy witnesses
s(s) = .

0 otherwise

Consequently, the total participation count is |H§59|.

7 Crowd counting with potentially untrusted wit-
nesses

In line with some LPS, e.g., PRivacy-preserving 10cation-Proof System [27], we
now provide a version where we reduce the trust in the witnesses. The entities
and roles involved in this version of the protocol are still the same, but we reduce
the possibility to create new proofs before and after an event.

7.1 Participation

The main change to participate is the use of the time-stamping property of
L. Instead of the witness determining the time ¢, the witness and protester
each determine a time interval for the creation of the proof. The witness gets
ts < L.GetStartPoint and the protester gets t, < L.GetStartPoint from the
ledger L. They close the interval by committing the proof share to the ledger
using L.Submit. This adapted structure of a proof-share is depicted in Fig.
The updated protocol phases are given in Fig. |5/ and described below.

The creation of the protest is the same: the organizer publishes the manifesto
in some way.

Joining The join procedure is the same, except we add fetching t;. So the
protester computes cid < H(m) and pid + AC.PRFg . (cid). The protester also
fetches a time-correlated random value, ¢, from L, t5 < L.GetStartPoint.

The witness simply gets a time-correlated random value from the time-
stamping service, t., < L.GetStartPoint. Note that we do this for redundancy,
the newest of ¢ and ¢, will set the start of the time interval of creation for the
proof share.

Participation In the participation phase, the only difference is the use of ¢,
and t’. instead of t.
The protester sends pid and ts to the witness. Then they run the protocol

(AC.ProveSig(spkca, k,r,0); AC.VerifySig(spkc a, sskca))

to verify the correctness of pid and do the distance bounding, same as before.
If the protocol succeeds, the witness will compute wid <— AC.PRFy,, (pid) and
send (wid,t),1) to the protester.

P ACH]

21

(cid, pid, wid, t., t', 1)
c
S

S S

S
7S
'0&4; (.

Figure 4: Structure of a proof share. The protest (cause) identifier cid is the
hash value of the manifesto. The protester P’s identifier pid is computed using
the protester’s key skp and cid. The witness W’s protester-specific identifier wid
is computed using the witness’s key sky and the protester’s pid. t,,t) are the
outputs from L.GetStartPoint, e.g., hashes of the head blocks in the ledger seen
by the protester and witness, respectively, and [is an area. All values are signed
by the witness (signature my = SPK{(skw) : wid = - - -}(cid, pid, wid, t, t,,1))
while also proving the correctness of wid and knowledge of a signature on sk .
The protester constructs mp analogously.

Submission The submission phase differs in what constitutes the proof share.
The protester commits the proof-share data to the ledger L and receives the
proof of commitment t. + L.Submit(H(cid, pid, wid, ts,t,,1)), which ends the
time interval. The sooner this is done, the higher the precision for the time-
dependent eligibility criterion will be for later counting. (The witness can also
do this, the important part is to do it as soon as possible.) The remaining
operations are not time critical.

The protester computes a NIZK proof tp;q, which shows the correctness of
pid to a third party. More specifically,

d}pid «— SPK{(SkP) :
pid = AC.PRFg . (cid) A
op = AC.BlindSig(AC.Sign,., (skp))}
(cid, pid, wid, ts, ., 1).
Finally, the protester uploads the tuple
sSp = (Cid7 pZd, ’U)Zd, t57 t;, tEa la 1ppid)

for permanent storage, L.Submit(sp).
The witness, like the protester, commits the proof-share data to the ledger,
te < L.Submit(H(cid, pid, wid, ts,t.,1)). (This is to close the time interval as

22

early as possible, whoever is the faster will submit it first, so both submit
it.) m » but both do<« Then, without any time requirements, the witness
computes a NIZK proof 1,4 as follows:

Yuid < SPKA(skw) :
wid = AC.PRF ., (pid) A
oy = AC.BlindSig(AC.Sign, .., (skw)) }
(cid, pid, wid, ts, ., 1).

Finally, the witness uploads the tuple
sw = (cid, pid, wid, ts, t, t), 1, Vwia)

for permanent storage on the ledger, L.Submit(sy).

7.2 Count and Verification

The set of proofs is constructed the same way as before. What differs is what
we do with 6 and <.

We have the set of proof shares S, as before. We also have the partitioning of
the set of proof shares using the relation =,;q such that (cid, pid, wid, t,1) =piq
(cid', pid’, wid',¥',1") is true if pid = pid'. Each equivalence class m; p € S/=pia
is a proof of participation for participant ¢. This is the same as before.

However, in terms of Deﬁnition the total participation count is still |H§;9|,
but this time the verifier might set 6 and ¢ differently. The verifier can still set
and ¢ the same as before and get the trusted witnesses scenario. But this time
the verifier knows when the proofs were constructed (in [ts, t.]), due to trusting
L to provide correct time-stamping and immutability.

m » The following should be edited to fit.« Note that, thanks to the
(s, 0)-eligibility criterion (Definition [4)), the method of counting is extremely
generic, and each (counting) verifier can make an independent choice to regu-
late their trust in the final result, based on their initial trust in the witnesses.
In other words, anyone who does the counting can choose the eligibility criteria
(time interval, location, number of regular or trusted witnesses, who is consid-
ered to be a trusted witness) for their own count. As long as these assumption-
s/criteria are published along with the result, anyone can verify the correctness
of the count under those criteria, and potentially question the validity of this
choice. Biased or partisan verifiers may be tempted to make extreme choices,
but they will have to publish those choices and lose credibility. Reasonable ver-
ifiers on the other hand will try to find a good middle-ground that counts all
legitimate protesters while being resistant to isolated malicious agents.

23

O — all: manifesto

P: ts + L.GetStartPoint
cid < H(manifesto),
pid < AC.PRF, (cid)

W: t. + L.GetStartPoint Joi
oin

P—W:pd Participation
P« W: PPK{(skp) :

pid = AC.PRF ., (cid),
op = AC.BIindSig(AC.SignSSkCA (skp))}
W : wid < AC.PRF ., (pid)

W — P: (wid, t,,1)

SIS

(a) Join and participation.

D te L.Submit(H(pid, wid, ts,tls,l))
St — L.Submit(H(pid7 wid, ts,tls,l))
: L.Submit((cid7 pid, wid, ts, th, te,l, 71'1l,¢cl))7 where

Twia = SPK{(skw) :
wid = AC.PRF ., (pid),
oW = AC,BIindSig(AC.SignSSkCA (skw))}
(cid, pid, wid, ts, t},1)

: L.Submit((cid7 pid, wid, ts, th, te, 1, Wpid)) , where

Tpia = SPK{(skp) :
pid = AC.PRF ., (cid),
op = AC.BIindSig(AC,SignSSkCA (skp))}
(cid, pid, wid, ts, t},1)

(b) Submission.

Figure 5: An overview of CROCUS participation. The organizer O broadcasts
the manifesto. The protester P, witness W and their computations are as in
Fig. @l Finally, both P and W submit the proof shares to a public ledger for
permanent storage S. Note that pidalways refers to the protester whose presence
is being witnessed.

24

8 Security and privacy analysis

8.1 Eligibility verifiability

Requirement states that anyone must be able to determine the authen-
ticity of the relevant attributes of the data. In CROCUS, we have several
attributes that must be verifiable: the time of creation (i.e., temporal eligibil-
ity, requirement , the physical location of skp at creation (i.e., spatial
eligibility, requirement , recognition of two proofs originating from the
same person (i.e., one-proof-per-person eligibility, requirement and that
the proof is indeed designated for the event (i.e., designated-event eligibility,
requirement .

As we will show, it follows from Section [8:2] that the adversary cannot drop
submitted proof shares and thus cannot decrease the count. As indicated in
the adversary model (Section , the adversary can submit proof shares as
everyone else, so the adversary’s only option is to increase the count. We will
thus let Alice pose as the adversary (malicious protester) in this section, as
she naturally has an incentive to increase the count, as the organizer and a
participant.

8.1.1 Temporal eligibility

Requirement ensures freshness, as Alice cannot simply resubmit an old
proof as a new one or create a proof in advance.

In general, to prevent replays, Alice must respond to an unpredictable chal-
lenge. The challenge here is “what did L.GetStartPoint return at the time of
the proof’s creation?”. The response is included as ts and ¢/ in the proof share
(see Fig.[]). The unpredictability of L.GetStartPoint ensures that a proof cannot
have been created before max{t,,t.}. The correctness of the response must be
verifiable by any verifier, which is the case with L.Time.

According to requirement [VI.I] we must also prove that a proof share has not
been created after a certain time. Otherwise, Grace could argue that the proof
share was created after the protest, thus defeating the purpose of our protocol.
The hash values of the proof shares are committed to the ledger (L.Submit),
which means that there is a negligible probability that they were created after
that: Alice would have to choose a value y in the range of the hash function H
and then find a pre-image x such that y = H(z) and « is a valid proof for the
desired protest, at the desired time. If H is collision resistant, she will succeed
with negligible probability.

8.1.2 Counted only once

Requirement [VI.3 aims to prevent Sybil attacks, in the sense that Alice cannot
provide two (or more) participation proofs for a specific protest and thus be
counted more than once. To do this she must create more than one pseudonym,
pid. Indeed, to be counted twice, Alice must produce a pid # pid. Due to the

25

deterministic property of AC.PRF, Alice must produce a new key sk’» such that
the Veriﬁeﬂ accepts the proof

PK{(sk'p) : pid’ = AC.PRF, (cid) A
op = AC.BlindSig(AC.Sign,;..., (sk’p))}

while she does not know a valid signature on sk’». As a consequence, this is
reduced to the security of the AC scheme. Remember, by assumption the CA
will issue only one signature for such a key, so Alice cannot ask for a second
one.

8.1.3 Spatial eligibility

Requirement is achieved by having a witness vouch that Alice was indeed at
the location when the proof share was created. In essence, the witness performs
distance bounding to ensure Alice is close to them, this is then propagated to the
verifier through the signature and founded on trust (remember that the witness
is trusted by the verifier). Alice has three options: (1) relay her communication
with an honest witness through a conspirator, (2) forge a witness signature for
the proof, (3) corrupt a witness to issue a proof although neither might be
present at the location.

Relaying the communication is an attack against the DB protocol. We as-
sumed a DB protocol with TF resistance (the most relevant property for this
situation), so Alice cannot succeed with more than negligible probability. (DF
is captured by TF in this case, as in TF she has a colluder. MF would prevent
Alice from relaying unsuspecting bystanders’ communication to witnesses. DH
is not really useful to Alice in this situation.)

Forging a witness’s signature on a proof is equivalent to breaking the counted-
only-once property above (Section . As above, this is reduced to the secu-
rity of the AC scheme.

Finally, Alice can corrupt witnesses. In the case of trusted witnesses, Alice’s
chance of corrupting witnesses is reduced to the trustworthiness of the witnesses
chosen by the verifier. In the #-threshold case, with unknown witnesses, Alice
succeeds only if she can corrupt at least 6 witnesses.

We note that the strength function from Definition [4] allows the verifier to
take different approaches, each of which must be individually analyzed. In all
of these cases, it is up to the verifier to perform a risk analysis.

8.1.4 Designated use

Requirement aims to prevent Alice (or someone else) from reusing the
same proof (or proof share) for another event. This possibility is prevented
through the use of cid in the proof shares. To reuse the proof share for another

10Here the verifier is either the witness during the distance bounding or the verifier who
tries to verify the count.

26

protest, with a different manifesto, one must find a second pre-image m’ such
that cid = H(m) = H(m').

There exists another case of collision that we must prevent. Consider the
situation in which Alice computes pid = AC.PRF(cid) for some cause identifier
cid and some witnesses computes widy, . . ., wid,, with wid; = AC.PRF, (pid).
Now, if Alice constructs a manifesto m such that H(m) = pid, then widy, ..., wid,
would be valid participant identifiers for the protest with manifesto m. The pro-
tocol prevents such use by the fact that pid and wid are in fixed positions in
both

Twia = SPK{(sk;) : ... }(cid, pid, wid, ts,t’,1)

and
Tpia = SPK{(sk;) : ...}(cid, pid, wid, ts,t.,1),

and the two proofs can thus not be confused. Thus, the verification process
differs for the two types of proofs.

8.2 Individual and universal verifiability

Requirement [V3] means that Alice and Bob, as participants, can verify that
their participation proofs (i.e., proof shares) are indeed included in the computed
count. All proof shares (i.e., mpiq,p = (cid, pid, wid, ts, th, te, L, 1, Ypid, Ywid)) are
committed to the ledger L and available from a public and permanent storage.
Thus, Alice and Bob can simply check that all of their proof shares are indeed
there and the security of individual verifiability depends on the properties of
the ledger (cf., Section [5.5).

We assumed an honest-but-curious adversary controlling LE This means
that Alice can check that her proof share is indeed there.

Requirement [V2] implies that anyone can check the result and that all par-
ticipation proofs counted are legitimate. As the proof shares are committed
and stored publicly, anyone can download them, verify eligibility (i.e., verify
Ypid, Yuwia) of the proofs and count them. Like for individual verifiability, the
security of universal verifiability is reduced to the properties of the ledger; but
universal verifiability also depends on the eligibility verification (each proof must
be verified as eligible to count).

8.3 Privacy

The issue at core from a privacy perspective is linkability. We must ensure that
no part of any proof is linkable to an individual.

We start with requirement Given pid, the adversary cannot distinguish
whether pid = AC.PRF , (cid) or pid = AC.PRFy, (cid) due to the properties
of AC (see [7]).

1'We note that, in general, distributed (decentralized) ledgers cannot withstand a malicious
Internet-service provider (ISP). Such an adversary can partition the network and provide Alice
and Bob with different views of the ledger, thus breaking individual verifiability. However,
this requires that the adversary can observe Alice’s and Bob’s channels to the ledger.

27

Requirement [P2]means that Alice’s proofs must be unlinkable across protests.
This also follows from the properties of AC.PRF [7]: pid = AC.PRFg(cid) and
pid = AC.PRF,; (cz’d/) (where cid # cid') are unlinkable from the perspective
of the adversary. The argument is the same for requirement [P3]

However, there are more data than pid, wid used in the protocol. The pro-
tocol uses cid, pid, wid, ts,t., 1, ¥pid, Ywia- The cause identifier cid will be used
for all proof shares pertaining to the same protest and thus it cannot be used
to uniquely identify any individual. The location [is coarse enough so that
many non-overlapping (pid, wid)-pairs use the same location. After all, it is the
location of the protest, not the location within the protest that matters. Thus [
is not uniquely identifying any individual protester or witness. Likewise, thanks
to the constraints in the time-stamp granularity (Section , t is not uniquely
identifying either.

9 Performance

»include evaluation environment, parameters, results, disclaimer about
parts that cannot yet be implemented and evaluated because the hardware doesn’t
exist yet for DB on phones<

Performance considerations are crucial during the protests due to the nature
of the devices used to run CROCUS, which are resource-constrained in terms of
energy, storage and computational power, and are operating on limited network
capacity.

9.1 Smartphones and smartcards

Recent technological progress has enabled the deployment of advanced crypto-
graphic primitives on smartcards and smartphones that could be used to im-
plement our solution. For instance, benchmarks |29] have shown that Android
devices are now fast enough to efficiently implement privacy-enhancing technolo-
gies, with a Samsung Galaxy S 19000 (back in 2014) able to execute Idemix in
153 ms. However, those benchmarks also demonstrate that smartcards remain
slow to process complex protocols such as Idemix or U-Prove (taking between
4s and 8s to process them). While the limited processing power of many em-
barked systems has been a challenge, Idemix has been successfully implemented
to prove the possession of credentials on Java Cards by Bichsel and co-authors
in 2009 [4] and the IRMA project, released in 2014, aimed to achieve an im-
plementation “suitable for real life transactions” [16] while maintaining security
and privacy for its users.

With respect to its implementation, CROCUS is very similar to the im-
plementation of Anon-Pass 33|, an anonymous subscription system in which a
long-term credential can be used to derive a single login for any authentication
window (i.e., epoch) such that logins are unlinkable across different epochs. In
particular, the setup and registration phases are almost identical. The evalua-
tion conducted by Lee et al. [33] used as server a Dell Optiplex 780s, which has

28

a quad-core 2.66 GHz Intel Core 2 CPU, 8 GB of RAM and uses Ubuntu Linux
12.04 while the client was also simulated on a quad-core 2.66 GHz Intel Core 2
CPU but with only 4 GB of RAM. The elliptic pairing group used in Anon-Pass
is a Type A symmetric pairing group with a 160-bit group order and 512-bit
base field while the ECDSA signature uses a 160-bit key. This is typically the
type of pairing that could also be used with CROCUS . Not counting the setup
that is performed once by the CA, the time reported for the registration on
the server (i.e., CA) side is 19.8 ms while it is 23.4ms on the client side. With
respect to joining and participation phases, with the exception of the distance-
bounding they are actually quite similar to the login protocol of Anon-Pass in
which the time required to create a message for a protester would be around
13.5ms while the time needed for the witness would be only 7.9 ms.

9.2 Witness processing

As above, assume we have one trusted witness. A smartphone ran Idemix in
153 ms back in 2014. 3DB-access |1] says their distance-bounding part takes less
than 1ms and can do more than 120m (line of sight, maximum 200 m). Then
a witness fixed in one position can cover 45216m? (120 m radius), which fits
137018 protesters according to Tong-Hyung and Lee [44]. It would take this
witness 5.8h to witness all of them. Thus, to witness 1000000 protesters, it
would take 8 h for 5.3 witnesses.

9.3 Ledger (blockchain) efficiency

For the example of 1000000 participants, with trusted witnesses, each partici-
pant only needs to acquire one proof share from a trusted witness. Thus, there
will be 1000 000 proof shares submitted to the blockchain in total. If we consider
OmniLedger [32], which can do approximately 1500 transactions per second, it
takes at least 11 minutes to process all the proof shares.

» removed for now: One problem can arise in the case in which there
18 no trusted witnesses. In this situation, if we set the threshold too high, we need
to submit more proof shares than the blockchain can handle within a reasonable
time. <

10 Related work

Our scheme relates to several other works: the crowd counting methods al-
ready described in Section [2] location-proof systems and Sybil-free pseudonym
systems.

Location-proof systems In a nutshell, an LP is a digital certificate attest-
ing that someone was at a particular location at a specific moment in time. An
LPS is an architecture by which users can obtain LPs from neighboring wit-
nesses (e.g., trusted access points or other users) that can later be shown to

29

verifiers who can check the validity of a particular proof [34} [50]. Most of the
existing approaches to LPs require the prover and the witnesses to disclose their
identities, thus raising many privacy issues such as the possibility of tracing the
movements of users of the LPS. However, some LPSs, such as PROPS [27], exist
that provide strong privacy guarantees along with the possibility of verifying the
claim of the location.

CROCUS shares some similarities with PROPS. The main difference is that
CROCUS operates in a more adverse environment, and can thus not provide any
guarantees using the decentralized, untrusted witnesses that PROPS can. The
incentives to cheat are also bigger and consequently the thresholds for collusion
are much higher. CROCUS must also tie the cause to the location proof, to
designate the proof to the protest in which the protester participated.

The same can be said in comparison to Platin.i

Sybil-free pseudonym systems Our Sybil-free pseudonym system is very
similar to that of Martucci et al. [36]. Both are based on the work of Camenisch
et al. [7]. We make the same simplification of |7] as Martucci et al. [36], but
we also require an interactive version. Furthermore, our PKs must be distance
bounding.

11 Discussion

11.1 Implementability

Some of the assumptions that are required for implementing our proposition are
not yet realized, however, we believe that they soon will be.

One major issue is that all protesters must have smartphones — in many
countries with oppressive regimes, far from all possess smartphones currently,
though the rate is on the rise.

On those smartphones we additionally require an identity credential signed
by some CA. This is also not yet widely available. However, more and more
nation states are starting to issue digital certificates in identity cards and many
already have crypto-enabled RFID chips in their passports. E.g., Estonia, Ger-
many, and Sweden already have the infrastructure and widely deployed elec-
tronic identity systems, and the EU already has regulation in place (eIDAS). In
Sweden, more than 95 % of people in the ages 21-50 use BankID, 88 % for ages
51-60 and 76 % for ages 61-70 [48].

National identities, however, are problematic when there is an incentive for
the government to create more identities, for example when it comes to elections.
In functioning voting systems, there is no more than one ballot (token) per
physical person and the ballot is not linked to the vote. Audits and other
processes help ensure that there are no ballots for non existing persons (Sybil-
proof identities) or extra ballots for voters. Similarly, here, we need (1) a
mapping between an identity and a physical person (in the form of an anonymous

12URL: https://platin.io.

30

https://platin.io

identity credential, functioning as a pseudonym for privacy properties) and (2)

only one such credential per identity (token of physical personhood instead of
token of being a voter in a particular election). With the same caveat as for
identities for voting for |(1)] mechanisms such as collective signing [42] could
ensure Again, this is not yet realized, but with the current pace of adopting
public ledgers and efforts for cross-national identity credentials such as the EU’s
eIDAS, the prerequisites exist. Moreover, the code of practice for European
statistics [24] includes principles such as coordination and cooperation as well
as impartiality and objectivity and is an example of both efforts toward and
motivation for cross-national improvements of statistics.

We also need to run distance-bounding protocols on smartphones. Achieving
this is currently not feasible within a meaningful range as existing smartphones
lack the required hardware to conduct the distance bounding fast enough. How-
ever, thefts of luxury cars due to relay attacks have driven the development
of hardware for doing distance bounding in car keys. We believe that using
smartphones for contactless payment and electronic tickets will drive a similar
development for this hardware on smartphones.

If we remove the distance-bounding component, we can, given some caveats
on trust and setup, use CROCUS for online petitions: a trusted consortium
could set up a petition site, ensure that only one credential is issued per iden-
tity (given sybil-proof identities, again, building on something like eIDAS), use
CROCUS without witnesses and location and still benefit from the privacy and
verifiability properties from its pseudonyms and ledger setup.

11.2 Communications

We need the participants to communicate during the protest. Since the cellu-
lar network could be shut down to keep protesters from accessing the Internet,
making phone calls or texting, we require a different means of communications
between protesters. This could be accomplished by Bluetooth or WiFi com-
munications, as demonstrated by Briar [6] and FireChat [26], two examples of
applications for communication during protests via wireless mesh networking.
The crowd-counting scenario likely has higher requirements on capacity and
withstanding interference as the participants continuously run the protocol for
witnessing each others presence; messages are presumably less frequent. 5G is
intended to cope with billions of devices (IoT), and thus could help cope with
the device density in crowds. An alternative, although originally designed to
work within 5G cellular networks, is device-to-device communication (D2D) [31].
Specifically, the out-of-band and autonomous version D2D would fit our scenario
thanks to using unlicensed spectrum and working without cellular coverage. Due
to the requirements of lawful intercept and the drive for operators to identify
the network users, there still is an authorization step to communicate in this
mode. Near-field-communication (NFC) would solve any scalability problem
from interference, require no infrastructure or provider, but at the price of hav-
ing participant and witness hold their phones together for each proof share.

31

11.3 Adversaries

Our adversary model considers only protocol data, no auxiliary data. Against
this adversary our scheme is secure. The question is how this adversary model
maps to real adversaries.

In any real implementation there are potential side-channels. E.g., in the
communication layer: IP-addresses translate into identities, devices’ MAC-addresses
can be used as persistent identifiers. We do not consider these aspects as there
are entire fields dedicated to some of them, we simply assume the tools devel-
oped in those fields (e.g., Tor |20] and randomized MAC-addresses) to prevent
these problems will be used.

Like other schemes involving Internet communication, we do not consider a
global passive adversary. Such an adversary could use side information to do
e.g., time-correlation attacks against people that submit transactions concerning
a particular cid over Tor, identify them, and link them to the cid. On a more
realistic scale, a national passive adversary can control all the nation’s ISPs but
would not be able to observe all Tor exit nodes or otherwise observe all input
to the ledger needed to perform such correlation attacks.

During a protest there are also other information channels available to the
adversary. E.g., one could argue that the adversary might be able to map a face
to a pid by means of signal triangulation during the protocol run, and then map
the face to an identity through face recognition. However, there are far easier
tactics the adversary could use: e.g., the adversary can take photos of the event
and try to capture as many faces as possible. This is already possible today and
thus not a weakness introduced by our scheme.

Besides these privacy concerns, there are also verifiability concerns. There,
we have shown that the security is reduced to the witnesses. In the case of
using trusted witnesses — which we consider the canonical CROCUS— it simply
reduces to their trustworthiness, like in any system with trusted third parties.

We outlined a variant of counting and verifying for CROCUS that uses a
threshold 0 of untrusted witnesses and, trivially, resists a collusion of malicious
witnesses smaller than . While using this approach is technically possible, we
do not know whether it is of practical use. We have not found a principled way
of determining a secure value for 6, yet neither can we at this point conclude
that there is no such way. Informally, a higher 6 increases the probability of
a collusion that is large enough to break verifiability being detected and made
known to the verifier.

Overall, while CROCUS provides the mechanism for a privacy-preserving
and verifiable way of counting crowds, any verifier still needs to consider their
own trust, analogous to detecting bias in science. There, if a paper espous-
ing, say, the efficacy of X, comes from research sponsored by the company that
manufactures X, it might be biased. Likewise, if a count of a pro-government
protest is published by that government, one needs to consider where identi-
ties were issued and which witnesses were considered trusted. In contrast to
a layperson interpreting science, however, the results can easily be reproduced
by the verifier: knowing which set of witnesses (and other criteria such as lo-

32

cation and time) the counter used for the count, the count can be verified (by
a re-count). Whether the result can be trusted then depends on whether the
verifier also trusts this set of witnesses. Given that all proof shares are on the
ledger, however, a verifier can come up with their own criteria and make a count
themselves. This count then, given that they publish what criteria they used,
can in turn be verified by anyone else.

12 Conclusion

In this paper, we have introduced CROCUS, a privacy-preserving protocol for
verifiably counting participants at protests.

We showed that CROCUS provides universally verifiable data. With CRO-
CUS, a journalist can easily count the participation, specify how they counted
(time, location etc.) along with the result and everyone can independently verify
that the result is correct. The only results that cannot be trusted are results
aligned with the interests of the CA (which can be mitigated by multi-party
solutions).

Despite the verification, the privacy of the participants is preserved to the
extent possible by their physical presence at the protest, with the following
caveat. Grace, the government in our protest scenario, can coerce Alice in
some way to reveal her private key and then use it to verify her participation.
However, this requires that Grace already suspects Alice — Grace cannot check
everyone — and that Alice has not renewed her digital certificate.

While CROCUS is an actual count and not an estimate, its accuracy for
the total number of participants hinges on the participants having the neces-
sary equipment (i.e., a smartphone or similar device), some sort of trustworthy
credential, and the willingness to run the protocol. Until used by most par-
ticipants, CROCUS would result in a considerable undercount. However, it
represents a first step toward accurate verifiable yet privacy-preserving crowd
counting by showing how it can be done in theory at least and in practice once
some assumptions concerning hardware and e-identities become more realistic.
While the necessary technologies are not yet available in most authoritarian
regimes, some of them are in several democracies. We believe that it is impor-
tant to implement systems such as ours also there to support the maintenance
of democratic processes and increase transparency.

33

References

(1]

2]

3]

[4]

[5]

[6]
7]

18]

19]

[10]

[11]

[12]

[13]

3db Access AG. 3db Access. URL: https://wuw.3db-access.com.

Farouk El-Baz. The [?]-Man March. WIRED. June 2003. URL: https :
//www.wired.com/2003/06/crowd-spc/ (visited on 07/21/2017).

BBC Magazine. “Protest numbers: How are they counted?” In: BBC' News
(Mar. 28, 2011). URL: http://www.bbc.com/news/magazine- 12879582
(visited on 07/24/2017).

Patrik Bichsel, Carl Binding, Jan Camenisch, Thomas Grofs, Tom Heydt-
Benjamin, Dieter Sommer, and Greg Zaverucha. “Cryptographic protocols
of the identity mixer library”. In: Tech. Rep. RZ 3730, Tech. Rep. (2009).

Stefan Brands and David Chaum. “Distance-bounding protocols”. In: Work-
shop on the Theory and Application of of Cryptographic Techniques. Springer.
1993, pp. 344-359.

Briar. Briar: a messaging app designed for activists. 2016. URL: https:
//briarproject.org/how-it-works.html (visited on 02/25/2018).

Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. “How to Win the Clonewars: Efficient Peri-
odic N-times Anonymous Authentication”. In: 158th ACM Conference on
Computer and Communications Security. 2006, pp. 201-210. por: 10 .
1145/1180405.1180431.

Jan Camenisch and Anna Lysyanskaya. “Signature schemes and anony-
mous credentials from bilinear maps”. In: Annual International Cryptology
Conference. Springer. 2004, pp. 56-72.

Jan Camenisch and Markus Stadler. “Efficient group signature schemes for
large groups”. In: Annual International Cryptology Conference, CRYPTO’97.
Springer. 1997, pp. 410-424.

Nicolas Chapuis. “Des médias s’associent pour compter les participants
aux manifestations”. fr. In: Le Monde.fr (Mar. 2018). 1sSN: 1950-6244.
URL: https ://www . lemonde . fr / societe /article/2018/03/20/
des-medias - s-associent - pour- compter-les-participants-aux-
manifestations_5273676_3224.html (visited on 05/30/2018).

Cas Cremers, Kasper B Rasmussen, Benedikt Schmidt, and Srdjan Cap-
kun. “Distance hijacking attacks on distance bounding protocols”. In: Se-
curity and Privacy (SP), 2012 IEEE Symposium on. IEEE. 2012, pp. 113—
127.

CrowdCount. Crowd Count: Real-time crowd sizing. 2016. URL: http :
//crowdcount .org/| (visited on 04/05/2017).

CrowdSize. Crowdsize iPhone Application. 2016. URL: http://www.crowdsize.
com/| (visited on 07/24,/2017).

34

https://www.3db-access.com
https://www.wired.com/2003/06/crowd-spc/
https://www.wired.com/2003/06/crowd-spc/
http://www.bbc.com/news/magazine-12879582
https://briarproject.org/how-it-works.html
https://briarproject.org/how-it-works.html
https://doi.org/10.1145/1180405.1180431
https://doi.org/10.1145/1180405.1180431
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
https://www.lemonde.fr/societe/article/2018/03/20/des-medias-s-associent-pour-compter-les-participants-aux-manifestations_5273676_3224.html
http://crowdcount.org/
http://crowdcount.org/
http://www.crowdsize.com/
http://www.crowdsize.com/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Peter Danielis, Sylvia T Kouyoumdjieva, and Gunnar Karlsson. “DiVote:
A Distributed Voting Protocol for Mobile Device-to-Device Communica-
tion”. In: Teletraffic Congress (ITC 28), 2016 28th International. Vol. 1.
IEEE. 2016, pp. 69-77.

Peter Danielis, Sylvia T Kouyoumdjieva, and Gunnar Karlsson. “Urban-
Count: Mobile Crowd Counting in Urban Environments”. In: 8th IEEE
Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), October 03-05, 2017, Univ British Columbia, Van-
couwver, Canada. Institute of Electrical and Electronics Engineers (IEEE).
2017, pp. 640-648.

Antonio De La Piedra, Jaap-Henk Hoepman, and Pim Vullers. “Towards
a full-featured implementation of attribute based credentials on smart
cards”. In: International Conference on Cryptology and Network Security,
pp- 270-289.

Stéphanie Delaune, Steve Kremer, and Mark Ryan. “Verifying privacy-
type properties of electronic voting protocols”. In: Journal of Computer
Security 17.4 (2009), pp. 435-487.

Yvo Desmedt. “Major security problems with the ‘unforgeable’(feige)-fiat-
shamir proofs of identity and how to overcome them”. In: Proceedings of
SECURICOM. Vol. 88. 1988, pp. 15-17.

Yvo Desmedt, Claude Goutier, and Samy Bengio. “Special uses and abuses
of the Fiat-Shamir passport protocol”. In: Conference on the Theory and
Application of Cryptographic Techniques. Springer. 1987, pp. 21-39.

Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The
Second-Generation Onion Router”. In: USENIX Security Symposium. 2004,
pp. 303-320.

Yevgeniy Dodis and Aleksandr Yampolskiy. “A verifiable random function
with short proofs and keys”. In: International Workshop on Public Key
Cryptography. Springer. 2005, pp. 416-431.

John R. Douceur. “The Sybil Attack”. In: Peer-to-Peer Systems. 2002.
DOI: 10.1007/3-540-45748-8_24.

Sam Edwards. Barcelona protesters demand release of jailed separatist
leaders. [Online; accessed 2. Feb. 2018]. Nov. 11, 2017. URL: https://wuw.

independent . co . uk /news /world/europe /barcelona - protesters -

demand-release-of-jailed-separatist-leaders-catalonia-latest-
a8050116.html| (visited on 02/02/2018).

European Statistical System Committee. Nov. 2017. DOI:|10.2785/798269.
URL: http://ec. europa. eu/eurostat /web/quality /european -
statistics-code-of-practice.

Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology —
CRYPTO’ 86: Proceedings. 1987. DOI: [10.1007/3-540-47721-7_12,

35

https://doi.org/10.1007/3-540-45748-8_24
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://www.independent.co.uk/news/world/europe/barcelona-protesters-demand-release-of-jailed-separatist-leaders-catalonia-latest-a8050116.html
https://doi.org/10.2785/798269
http://ec.europa.eu/eurostat/web/quality/european-statistics-code-of-practice
http://ec.europa.eu/eurostat/web/quality/european-statistics-code-of-practice
https://doi.org/10.1007/3-540-47721-7_12

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

FireChat. FireChat: a messaging app without Internet access or cellular
data. 2016. URL: https://www.opengarden.com/firechat.html (visited
on 02/25/2018).

S. Gambs, M.-O. Killijian, M. Roy, and M. Traore. “PROPS: A PRivacy-
preserving lOcation Proof System”. In: Reliable Distributed Systems (SRDS),
2014 IEEE 33rd International Symposium on. 2014. DOI: [10.1109/SRDS.
2014.37.

Michelle Goldberg. The protest-crowd numbers game - Salon.com. Salon.
Jan. 2003. URL: http://www.salon.com/2003/01/24/crowds/| (visited
on 07/21/2017).

Jan Hajny, Lukas Malina, Zdenek Martinasek, and Ondrej Tethal. “Per-
formance evaluation of primitives for privacy-enhancing cryptography on
current smart-cards and smart-phones”. In: Data Privacy Management
and Autonomous Spontaneous Security. Springer, 2014, pp. 17-33.

Al-Jazeera. Huge marches as Venezuela marks 50 days of protest. May 21,
2017. URL: http://www.aljazeera.com/news/2017/05/venezuelan-
opposition-marks-50-days-protests-170520174956348 . html| (vis-
ited on 08/01/2017).

Udit Narayana Kar and Debarshi Kumar Sanyal. “An overview of device-
to-device communication in cellular networks”. In: ICT Express (2017).
ISSN: 2405-9595. DOI: [10.1016/j.icte.2017.08.002.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ewa Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out, Decentral-

ized Ledger via Sharding. Cryptology ePrint Archive, Report 2017/406. To

appear in 39th IEEE S&P 2018. 2017.

Michael Z Lee, Alan M Dunn, Brent Waters, Emmett Witchel, and Jonathan
Katz. “Anon-pass: Practical anonymous subscriptions”. In: Security and
Privacy (SP), 2013 IEEE Symposium on. IEEE. 2013, pp. 319-333.

Wanying Luo and Urs Hengartner. “Veriplace: a privacy-aware location
proof architecture”. In: Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM. 2010,
pp. 23-32.

Leonardo A. Martucci, Markulf Kohlweiss, Christer Andersson, and An-
driy Panchenko. “Self-Certified Sybil-Free Pseudonyms”. In: Proceedings
of the First ACM Conference on Wireless Network Security. WiSec ’08.
Alexandria, VA, USA: Association for Computing Machinery, 2008, pp. 154—
159. 1SBN: 9781595938145. DOI: |[10.1145/1352533. 1352558, URL: https:
//doi.org/10.1145/1352533.1352558|

Leonardo A. Martucci, Markulf Kohlweiss, Christer Andersson, and An-
driy Panchenko. “Self-certified Sybil-free Pseudonyms”. In: Proceedings
of the First ACM Conference on Wireless Network Security. WiSec ’08.
Alexandria, VA, USA: ACM, 2008, pp. 154-159. 1SBN: 978-1-59593-814-5.
DOI: [10.1145/1352533.1352558.

36

https://www.opengarden.com/firechat.html
https://doi.org/10.1109/SRDS.2014.37
https://doi.org/10.1109/SRDS.2014.37
http://www.salon.com/2003/01/24/crowds/
http://www.aljazeera.com/news/2017/05/venezuelan-opposition-marks-50-days-protests-170520174956348.html
http://www.aljazeera.com/news/2017/05/venezuelan-opposition-marks-50-days-protests-170520174956348.html
https://doi.org/10.1016/j.icte.2017.08.002
https://doi.org/10.1145/1352533.1352558
https://doi.org/10.1145/1352533.1352558
https://doi.org/10.1145/1352533.1352558
https://doi.org/10.1145/1352533.1352558

[37] Remy Melina. How Is Crowd Size Estimated? Live Science. Sept. 2010.
URL: https://www.livescience.com/8578-crowd-size-estimated.
html| (visited on 07/20/2017).

[38] Robinson Meyer. “How Will We Know Trump’s Inaugural Crowd Size?”
In: The Atlantic (Jan. 20, 2017). 1SSN: 1072-7825. URL: https://www.
theatlantic.com/technology/archive/2017/01/how-will-we-know-
trumps-inaugural-crowd-size/513938/| (visited on 07/24,/2017).

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
URL: https://bitcoin.org/bitcoin.pdf}

[40] Torben Pryds Pedersen. “Non-interactive and information-theoretic secure
verifiable secret sharing”. In: Annual International Cryptology Conference.
1991, pp. 129-140.

[41] Andreas Pfitzmann and Marit Hansen. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectability,
Unobservability, Pseudonymity, and Identity Management. http://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf. v0.34. Aug. 2010. URL:
http://dud. inf . tu-dresden.de/literatur/Anon%5C_Terminology
5C_v0.34.pdf.

[42] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N.
Gailly, I. Khoffi, and B. Ford. “Keeping Authorities "Honest or Bust" with
Decentralized Witness Cosigning”. In: 2016 IEEE Symposium on Security
and Privacy (SP). May 2016, pp. 526-545. DOI: [10.1109/SP.2016.38|

[43] Alan Taylor. Months of Deadly Anti-Government Protests in Venezuela
- The Atlantic. June 12, 2017. URL: https://www.theatlantic.com/
photo/2017/06/months - of - anti- government - protests- continue-
in-venezuela/530031/| (visited on 08/01/2017).

[44] Kim Tong-Hyung and Youkyung Lee. “Counting 1 million crowds at anti-
president rallies in Seoul”. In: Associated Press: The Big Story (Nov. 2016).
URL: http://bigstory.ap.org/article/317ea62bddbd4132ab14678632532ab9/
counting-1-million-crowds-anti-president-rallies-seoul| (vis-
ited on 04/05/2017).

[45] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S. Cardoso,
and Frank Piessens. “Why MAC Address Randomization is Not Enough:
An Analysis of Wi-Fi Network Discovery Mechanisms”. In: Proceedings
of the 11th ACM Asia Conference on Computer and Communications
Security. ASTA CCS ’16. New York, NY, USA: ACM, 2016, pp. 413-424.
ISBN: 978-1-4503-4233-9. DOI: 10 .1145/2897845 . 2897883, URL: http:
//doi.acm.org/10.1145/2897845.2897883| (visited on 07/24,/2017).

[46] Serge Vaudenay. “Sound proof of proximity of knowledge”. In: Interna-
tional Conference on Provable Security. Springer. 2015, pp. 105-126.

37

https://www.livescience.com/8578-crowd-size-estimated.html
https://www.livescience.com/8578-crowd-size-estimated.html
https://www.theatlantic.com/technology/archive/2017/01/how-will-we-know-trumps-inaugural-crowd-size/513938/
https://www.theatlantic.com/technology/archive/2017/01/how-will-we-know-trumps-inaugural-crowd-size/513938/
https://www.theatlantic.com/technology/archive/2017/01/how-will-we-know-trumps-inaugural-crowd-size/513938/
https://bitcoin.org/bitcoin.pdf
http://dud.inf.tu-dresden.de/literatur/Anon%5C_Terminology%5C_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon%5C_Terminology%5C_v0.34.pdf
https://doi.org/10.1109/SP.2016.38
https://www.theatlantic.com/photo/2017/06/months-of-anti-government-protests-continue-in-venezuela/530031/
https://www.theatlantic.com/photo/2017/06/months-of-anti-government-protests-continue-in-venezuela/530031/
https://www.theatlantic.com/photo/2017/06/months-of-anti-government-protests-continue-in-venezuela/530031/
http://bigstory.ap.org/article/317ea62bddbd4132ab1467863a532ab9/counting-1-million-crowds-anti-president-rallies-seoul
http://bigstory.ap.org/article/317ea62bddbd4132ab1467863a532ab9/counting-1-million-crowds-anti-president-rallies-seoul
https://doi.org/10.1145/2897845.2897883
http://doi.acm.org/10.1145/2897845.2897883
http://doi.acm.org/10.1145/2897845.2897883

function P.Commit(x,r)

return g“h"”

Figure 6: Pedersen’s commitment scheme [40]. Let G = (g) = (h) be a group
with prime order ¢ and generators g and h.The r should be chosen randomly
from Z,.

[47]

[48]

[49]

[50]

A

Kaveh Waddell. “The Exhausting Work of Tallying America’s Largest
Protest”. In: The Atlantic (Jan. 2017). 1SSN: 1072-7825. URL: https :
/ /www . theatlantic . com/technology/archive /2017 /01 /womens -
march-protest-count/514166/| (visited on 04,/05/2017).

Malin Wemnell. Marknadsinformation BankID — anvdndning och innehav.
Swedish. English title: Market information BankID — use and holding.
Apr. 2018. URL: https://www.bankid.com/assets/bankid/stats/
2018/statistik-2018-04.pdf.

Cong Zhang, Hongsheng Li, X. Wang, and Xiaokang Yang. “Cross-scene
crowd counting via deep convolutional neural networks”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June
2015, pp. 833-841. DOI: |10.1109/CVPR.2015.7298684.

Zhichao Zhu and Guohong Cao. “Applaus: A privacy-preserving location
proof updating system for location-based services”. In: INFOCOM, 2011
Proceedings IEFE. IEEE. 2011, pp. 1889-1897.

Anonymous credentials protocol details

Here we summarize the algorithms suggested as instantiations for the anonymous-
credentials system AC in Section these are summarized as Figs. [0] to

38

https://www.theatlantic.com/technology/archive/2017/01/womens-march-protest-count/514166/
https://www.theatlantic.com/technology/archive/2017/01/womens-march-protest-count/514166/
https://www.theatlantic.com/technology/archive/2017/01/womens-march-protest-count/514166/
https://www.bankid.com/assets/bankid/stats/2018/statistik-2018-04.pdf
https://www.bankid.com/assets/bankid/stats/2018/statistik-2018-04.pdf
https://doi.org/10.1109/CVPR.2015.7298684

function CL.Setup
T &Zq,X — g%y &Zq,Yegy,z &ZQ,Z —g°
sk < (z,y,2),pk < (¢,G,Gr,9,97,¢,X,Y, Z)
return (sk, pk)

function CL.Sign(pk, sk, m,r)
al G, A+ a?
b+ a’, B+ AY
¢ a” TV ATV
return o = (a, 4,b, B, ¢)

function CL.BlindSig(c = (a, A,b, B, ¢))
r & 2y, &7,
a4+ a A A" b+ b B+ B e+ ()
return ¢ = (a, A, b, B, ¢)

function CL.VerifySig(pk, m,r,o = (a, A, b, B, ¢))
if e(a, Z) # e(g, A) then

’

return | > A malformed
else if e(a,Y) # e(g,b) Ve(A,Y) # e(g, B) then

return | > b or B malformed
else if e(X,a) - e(X,b)™ - e(X,B)" # e(g,c) then

return | > ¢ malformed
return T

Figure 7: The CL-signature scheme [8]. Let G = (g), Gr = (gr) be groups of
prime order q. Let e: G — G be a bilinear map.

CL.GetSig(pk, m, 1) CL.IssueSig(pk, sk)

M + P.Commit(m,) M,

PK{(m,r): M = P.Commit(m,r)}

oz(iZq
a+ g% A« ad’
b+ a¥, B+ AY

o< (a,A,b,B,c) @ALEBO o gm ey

CL.ProveSig(pk, m,r, o) CL.VerifySig(pk, sk)

& + CL.BlindSig(o) — 7 5 (@ 2) =e(g, A)
o(@Y) = e(g,b)
e(4,Y) = e(g, B)

Vg — e(X, ZLN) Vg < e(X, d)

gy €(X, b) Uy + (X, D)

vs + e(g,¢) vs < €(g,¢)

PK{(m,r) : vl = vaviy }

Figure 8: Protocols for CL anonymous credentials [§]. Let G = (g), Gr = (97)
be groups of prime order q. Let e: G — G be a bilinear map.

39

function DY.SetupPRF function DY.ProvePRF(sk, x)
Sk (i Z; return T = gsk{#a:

sk
pk g - function DY .VerifyPRF(pk, z, y, 7)
return (sk, pk) if e(g” - pk,) # e(g, g) then

function DY.PRF(sk, x) return L
1 .
return y = g2 " else if y # e(g, m) then
return |
return T

Figure 9: Verifiable random function [21]. Let G = (g), Gr = (gr) be groups of
prime order q. Let e: G — Gp be a bilinear map.

CHKL.ProvePRF(k, z) CHKL.VerifyPRF(y)
y « DY.PRF(k, z)

PK{(k) : y = DY.PRF(k,z)}
Figure 10: Protocols using DY.PRF with CL anonymous credentials |7]. Let

G = (g9),Gr = (gr) be groups of prime order ¢g. Let e: G — Gr be a bilinear
map.

40

	Introduction
	Desired properties and current crowd-counting methods
	Desired properties
	Current crowd-counting methods

	Definitions
	Protest, crowd estimation
	Verifiability and privacy requirements
	Adversary model

	System model
	Model and assumptions

	Building blocks
	Zero-knowledge proofs of knowledge
	Sybil-free pseudonyms
	Distance-bounding protocols
	Location proofs
	Time-stamping and storage: ledger

	Crowd counting with trusted witnesses
	Prerequisite: self-certified, Sybil-free pseudonyms
	Participation
	Count and verification

	Crowd counting with potentially untrusted witnesses
	Participation
	Count and Verification

	Security and privacy analysis
	Eligibility verifiability
	Temporal eligibility
	Counted only once
	Spatial eligibility
	Designated use

	Individual and universal verifiability
	Privacy

	Performance
	Smartphones and smartcards
	Witness processing
	Ledger (blockchain) efficiency

	Related work
	Discussion
	Implementability
	Communications
	Adversaries

	Conclusion
	Anonymous credentials protocol details

