
Make-ing Life Easy:
A General Makefile Framework

Daniel Bosk

School of Computer Science and Communication
KTH Royal Institute of Technology, Stockholm

Department of Information and Communication Systems
Mid Sweden University, Sundsvall

18th January 2018

Contents

I General building blocks 4

1 portability.mk 5
1.1 Introduction . 5
1.2 Standard Unix commands . 6

1.2.1 File system commands . 6
1.2.2 Viewing file contents . 6
1.2.3 Filtering and transformations 7
1.2.4 Statistics . 7

1.3 Networking commands . 7
1.4 Compressed files and archives . 8

1.4.1 Compressing and uncompressing files 8
1.4.2 Packing and extracting from archives 9

2 subdir.mk 12
2.1 Introduction and usage . 12
2.2 Implementation . 12

II Packaging and publishing 14

3 pkg.mk 15
3.1 Introduction and usage . 15

3.1.1 Portability . 16
3.2 Implementation . 16

3.2.1 Packaging . 17
3.2.2 Cleaning . 17
3.2.3 Installation . 18

4 pub.mk 20
4.1 Introduction and usage . 20

4.1.1 Publication methods . 21
4.1.2 Publishing to multiple sites 21
4.1.3 Automatically tag on publication 22

4.2 Implementation . 23

1

4.2.1 The general publication mechanism 24
4.2.2 Publication methods . 24
4.2.3 Automatically committing and tagging 28

5 transform.mk 30
5.1 Introduction and usage . 30
5.2 Implementation overview . 30
5.3 A transformation mechanism . 31

5.3.1 Removing solutions . 32
5.3.2 Removing excessive build instructions 32
5.3.3 Handouts and solutions 32

5.4 Preparing camera-ready source 33
5.5 Using encrypted files . 34

III Papers and documents 36

6 tex.mk 37
6.1 Introduction and usage . 37
6.2 Implementation overview . 39
6.3 Targets for documents . 40

6.3.1 Auxillary files . 40
6.3.2 Bibliographies . 41
6.3.3 Indices . 41
6.3.4 PythonTeX . 43
6.3.5 Document files . 44

6.4 Targets for class and package files 45
6.5 External classes and packages . 46

6.5.1 Springer LNCS . 48
6.5.2 LNCS style for biblatex 48
6.5.3 ACM classes . 48
6.5.4 The RFC bibliography . 50
6.5.5 Proceedings of the Privacy Enhancing Technologies Sym-

posium . 51

7 doc.mk 52
7.1 Introduction and usage . 52
7.2 Implementation . 52

7.2.1 Printing . 53
7.2.2 Counting words . 53
7.2.3 To-do lists . 54
7.2.4 Format conversion . 54

2

IV Literate programming 58

8 noweb.mk 59
8.1 Introduction and usage . 59
8.2 Implementation . 59

8.2.1 Weaving documentation 60
8.2.2 Tangling code . 60

9 haskell.mk 64
9.1 Introduction, usage and implementation 64

V Assessment 65

10 exam.mk 66
10.1 Introduction and usage . 66
10.2 Implementation . 67

11 results.mk 70
11.1 Introduction and usage . 70

11.1.1 Portability . 72
11.2 Processing Moodle’s output . 72

11.2.1 Transforming Moodle’s output 72
11.2.2 Extracting the changes . 73
11.2.3 Extracting identifiers for reporting 74
11.2.4 Generating the report . 75

11.3 Sending and storing the results 76

VI Appendices 77

A MIUN-compatibility layer 78
A.1 Introduction . 78
A.2 miun.subdir.mk . 79
A.3 miun.package.mk . 79
A.4 miun.pub.mk . 80
A.5 miun.export.mk . 80
A.6 miun.tex.mk . 81
A.7 miun.docs.mk . 82
A.8 miun.course.mk . 83
A.9 miun.results.mk . 84
A.10 miun.depend.mk . 84

Bibliography 91

3

Part I

General building blocks

4

Chapter 1

portability.mk

1.1 Introduction
The purpose of this include file is to improve portability of the include files.
The make(1) utility itself already provides certain portability between plat-
forms, here we want to extend this portability. I.e. we provide variables which
substitute to system-specific commands which corresponds to the expected ac-
tion. For instance, MacOS uses an ancient version of unzip, a version which
does not support the option -DD which is desirable. So, on MacOS the vari-
able UNZIP will substitute to unzip which on other systems it will substitute to
unzip -DD. Another examples is BSD-systems, which does not use the GNU
versions of sed and grep (and make). On these systems SED will substitute to
gsed, which is the GNU version of the command. Probably the reader can skip
this chapter on a first reading.

The include file is structures similarly to a header file in C. We use the same
technique to prevent multiple inclusions. The outline is as follows.

5a 〈portability.mk 5a〉≡
ifndef PORTABILITY_MK
PORTABILITY_MK=true

〈system-specific configuration 5b〉

〈standard unix commands 6a〉
〈networking commands 7d〉
〈compressed files and archives 8b〉

endif

Since this file provides system-dependent configuration, we allow the user to
provide a system-wide configuration file.

5b 〈system-specific configuration 5b〉≡ (5a)
PORTABILITY_CONF?= ${HOME}/.mk.conf /etc/mk.conf

5

-include ${PORTABILITY_CONF}

The file in /etc/mk.conf is commonly available in BSDs. However, since these
files might not exist, make(1) should not yield a fatal error if the include directive
fails.

1.2 Standard Unix commands
In this section we provide default commands with options for the standard Unix
command line. More specifically, we cover the following areas.

6a 〈standard unix commands 6a〉≡ (5a)
〈file system commands 6b〉
〈printing file contents 6d〉
〈opening files depending on file type 6c〉
〈filtering and transforming file contents 7a〉
〈statistics on file contents 7c〉

1.2.1 File system commands
We commonly use the commands to interact with the file system. The following
basic commands cover most uses.

6b 〈file system commands 6b〉≡ (6a)
MV?= mv
CP?= cp -R
LN?= ln -sf
MKDIR?= mkdir -p
MKTMPDIR?=mktemp -d
CHOWN?= chown -R
CHMOD?= chmod -R

The make(1) utility already sets RM = rm -f by default [GNU16, Sect. 10.3], so
we need not repeat it.

1.2.2 Viewing file contents
Quite commonly we want to open files with the user’s desired application, e.g.
to open PDFs in the user’s PDF reader. For this we use the xdg-open(1) utility.

6c 〈opening files depending on file type 6c〉≡ (6a)
XDGOPEN?= xdg-open

However, for text files, we prefer to just print the contents to standard output.
6d 〈printing file contents 6d〉≡ (6a)

CAT?= cat

6

1.2.3 Filtering and transformations
Two of the most frequently used utilities are sed(1) and grep(1). The version
of these that we want to use is the GNU version. On Linux systems, this is
the default. On BSDs, however, they are available prefixed with the letter ‘g’.
The same goes to the make(1) utility, which means that we can use that fact to
check for this.

7a 〈filtering and transforming file contents 7a〉≡ (6a) 7b .

ifeq (${MAKE},gmake)
SED?= gsed
SEDex?= gsed -E
else
SED?= sed
SEDex?= sed -E
endif

Similarly, we let
7b 〈filtering and transforming file contents 7a〉+≡ (6a) / 7a

ifeq (${MAKE},gmake)
GREP= ggrep
GREPex= ggrep -E
else
GREP= grep
GREPex= grep -E
endif

1.2.4 Statistics
We also need to count words in a few places. We use wc(1) for this.

7c 〈statistics on file contents 7c〉≡ (6a)
WC?= wc
WCw?= wc -w

1.3 Networking commands
We also need some network related commands.

7d 〈networking commands 7d〉≡ (5a)
〈fetching files 7e〉
〈remote execution 8a〉
We have some common commands for fetching and copying files between

remote hosts.
7e 〈fetching files 7e〉≡ (7d)

CURL?= curl
SFTP?= sftp
SCP?= scp -r

7

We also need commands for remote execution.
8a 〈remote execution 8a〉≡ (7d)

SSH?= ssh

1.4 Compressed files and archives
We want to provide functionality to make it easy to uncompress files or extract
files from archives of different kinds. We will construct two functionalities.

8b 〈compressed files and archives 8b〉≡ (5a)
〈variables for compression programs 9b〉

〈variables for archive programs 9e〉
〈general pattern rule for archiving 9d〉
〈function to generate extraction targets 10c〉

Both will use the type of construction outlined in [GNU16, Sect. 10.2]: the vari-
able EXTRACT.suf (UNCOMPRESS.suf) will contain the command to extract a file
from an archive (decompress a file) with suffix .suf; the variable ARCHIVE.suf
(COMPRESS.suf) will contain the command to update an archive of suffix .suf
with a file (compress a file).

1.4.1 Compressing and uncompressing files
A compressed file is a file whose data is compressed — this is not necessarily an
archive. A compressed file can be uncompressed, i.e. the compression is removed.
Compressed files usually get the added suffix of the compression algorithm, e.g. a
.tar file usually get the suffix .tar.gz when it is also compressed using gzip(1).
Another common file to compress is PostScript, i.e. turning .ps to .ps.gz. We
want to form pattern rules for the compression and uncompression operations.

There are, of course, a myriad different compression formats. We will
let the variable COMPRESS_SUFFIXES and UNCOMPRESS_SUFFIXES contain space-
separated lists of suffixes supported for the two operations.

To compress a file, we simply passes its contents through a compression
program, e.g. gzip(1) (gets the .gz suffix). We can use the following general
pattern rule for compression and then use COMPRESS_SUFFIXES to automatically
generate all the pattern rules1.

8c 〈general pattern rule for compression 8c〉≡
define compress
%$(1): %
${COMPRESS$(1)}

endef
1 Note that the pattern rules in the code blocks 〈general pattern rule for compression 8c〉

and 〈general pattern rule for uncompression 9a〉 are not included in 〈compressed files and
archives 8b〉 above, and thus not enabled by default. This is due to causing circular depend-
encies.

8

$(foreach suf,${COMPRESS_SUFFIXES},$(eval $(call compress,${suf})))

In a similar fashion, we can use the following general pattern rule for uncom-
pression.

9a 〈general pattern rule for uncompression 9a〉≡
define uncompress
%: %$(1)
${UNCOMPRESS$(1)}

endef
$(foreach suf,${UNCOMPRESS_SUFFIXES},$(eval $(call uncompress,${suf})))

We note that due to to the call and eval above, we must escape the target
and prerequisite variables, $$@ and $$<, respectively.

Now, let us write what we need to automatically handle the gzip(1) format.
To uncompress a gzipped file we can use gunzip(1).

9b 〈variables for compression programs 9b〉≡ (8b) 9c .
UNCOMPRESS_SUFFIXES+= .gz .z
GUNZIP?= gunzip
UNCOMPRESS.gz?= ${GUNZIP} $<
UNCOMPRESS.z?= ${UNCOMPRESS.gz}

To compress a file using gzip(1) we can use the following.
9c 〈variables for compression programs 9b〉+≡ (8b) / 9b

COMPRESS_SUFFIXES+= .gz
GZIP?= gzip
COMPRESS.gz?= ${GZIP} $<

1.4.2 Packing and extracting from archives
We can (ab)use the archive syntax [GNU16, Chap. 11] of make(1) to create a
pattern rule for creating archives. This rule will work for all archive types that
support adding files to an existing archive. However, make(1) cannot check the
modification times of these archive members, so they will be updated every time
instead of only when necessary.

The pattern rule matches all archive member targets. Then it determines
which variable to use as recipe by looking at the suffix of the archive.

9d 〈general pattern rule for archiving 9d〉≡ (8b)
(%):
${ARCHIVE$(suffix $@)}

Unlike for the compression targets above (Section 1.4.1), we do not need to
escape $@ and $< — since we have only one (lazy) evaluation.

We do not want to break the native archive functionality of make(1), so we
provide the following to retain that.

9e 〈variables for archive programs 9e〉≡ (8b) 10a .
ARCHIVE.a?= ar r $@ $%

9

Now to a more interesting format, let us create tarballs using this syntax.
We provide settings for both tar(1) and pax(1) using the tar format. We are
interested in the pax(1) command because it has an interface for regular ex-
pressions, i.e. for filtering and transforming file names. The BSD tar(1) has this
too, but the GNU tar(1) does not. We can use the -u option to both tar(1) and
pax(1) to update an existing archive with a file.

10a 〈variables for archive programs 9e〉+≡ (8b) / 9e 10b .

TAR?= tar -u
PAX?= pax -wzLx ustar
ARCHIVE.tar?= ${TAR} -f $@ $%

We can also create zip(1) archives.
10b 〈variables for archive programs 9e〉+≡ (8b) / 10a 10d .

ZIP?= zip
ARCHIVE.zip?= ${ZIP} -u $@ $%

Unfortunately, we cannot create any pattern rules for file extraction from
archives. However, we can provide a function which create such targets auto-
matically.

10c 〈function to generate extraction targets 10c〉≡ (8b)
define extract
$(1): $(2)
${EXTRACT$(suffix $(2))}

endef

Now we only need to provide the EXTRACT.XXX for every type of archive we might
want to use. Then we can use the function extract in our makefiles. Note that
we are now in the same situation as for the compression targets (Section 1.4.1),
so we must escape the variables.

We start with tarballs. For extraction, we do not want to restore the modi-
fication times from inside the archive. If we restore the modification times,
then the archive will always be newer that the files extracted from it and thus
make(1) will re-extract the file every time. To prevent this we add the -m option
to tar(1).

10d 〈variables for archive programs 9e〉+≡ (8b) / 10b 10e .
UNTAR?= tar -xm
UNPAX?= pax -rzp m
EXTRACT.tar?= ${UNTAR} -f $$< $$@

It will be similar for zip archives. The option to prevent resetting the modi-
fication time for unzip(1) is -DD. Unfortunately, MacOS ships with an ancient
version of unzip(1), one which does not support the desired -DD option. Hence
we check if the system is Darwin, if so, we skip the -DD option.

10e 〈variables for archive programs 9e〉+≡ (8b) / 10d
ifeq ($(shell uname),Darwin)
UNZIP?= unzip
else

10

UNZIP?= unzip -DD
endif
EXTRACT.zip?= ${UNZIP} $$< $$@

11

Chapter 2

subdir.mk

2.1 Introduction and usage
Sometimes we want to recursively descend into subdirectories making a specific
target in each subdirectory. The subdirectories must be listed in the variable
SUBDIR, which holds a space-separated list of directory names. Then each sub-
directory may in turn hold a new set of subdirectories to descend into. We note
that the subdirectories will be built in depth-first search order (unless we allow
parallel execution).

By default, for any goals passed on the command line we will add the direct-
ories in SUBDIR as prerequisites. This behaviour can be overridden by setting
SUBDIR_ALL to anything different from yes. Like this we can add the subdir-
ectories in SUBDIR as prerequisites manually to only a subset of desired targets.

2.2 Implementation
The structure of the file is that of most include files. We want to ensure that it
is not included more than once. Furthermore, we do not want to do anything
unless the SUBDIR variable, containing the space-separated list of subdirectories,
exists.

12 〈subdir.mk 12〉≡
ifndef SUBDIR_MK
SUBDIR_MK=true

INCLUDE_MAKEFILES?=.

ifdef SUBDIR
〈let the recipe for each subdirectory recurse into it 13a〉
endif

SUBDIR_ALL?=yes

12

ifeq (${SUBDIR_ALL},yes)
〈add subdirectories as prerequisites for the goals 13b〉
endif

endif

The thing we want to do is to build the given goals (MAKECMDGOALS), i.e. the
targets specified on the command-line, in all subdirectories listed in SUBDIR. For
each directory, we specify a recipe which runs make in the subdirectory with
the goals specified on the command-line.

13a 〈let the recipe for each subdirectory recurse into it 13a〉≡ (12)
.PHONY: ${SUBDIR}
${SUBDIR}:
${MAKE} -C $@ -I ${INCLUDE_MAKEFILES} ${MAKECMDGOALS}

We also want to give the sub-make access to our INCLUDE_MAKEFILES, hence the
-I option. This is mostly due to (backwards) compatibility with the MIUN ver-
sions (see Appendix A) of the makefiles, which pre-dates the INCLUDE_MAKEFILES
construction.

To ensure these recipes are run we need to ensure that they are prerequisites
to the goals. This also means that if no goals are given on the command-line,
then we should use the default goal.

13b 〈add subdirectories as prerequisites for the goals 13b〉≡ (12)
ifneq (${MAKECMDGOALS},)
.PHONY: ${MAKECMDGOALS}
${MAKECMDGOALS}: ${SUBDIR}
else
${.DEFAULT_GOAL}: ${SUBDIR}
endif

We note that this will cause the default goal of each subdirectory to be built,
not the same goal which is the default goal in the root.

13

Part II

Packaging and publishing

14

Chapter 3

pkg.mk

3.1 Introduction and usage
The idea of this include file is to provide an easy way to package files together for
publication. It can be for packaging the source code of a document or package
a script with automatic installation instructions.

The first thing we need for a package is a name. This is controlled by the
PKG_NAME variable.

15a 〈variables 15a〉≡ (17a) 15b .

PKG_NAME?= ${PACKAGE}

Its default value is set for backwards compatibility, so that makefiles using the
old variable names will still work. The package name will, by default, determine
the name of the tarball that is generated.

15b 〈variables 15a〉+≡ (17a) / 15a 15c .
PKG_TARBALL?= ${PKG_NAME}.tar.gz

The next thing we need is to control which files are included. There are two
types of files: files that should be installed and files that should not.

15c 〈variables 15a〉+≡ (17a) / 15b 15d .

PKG_INSTALL_FILES?= ${INSTALL_FILES}
PKG_TARBALL_FILES?= ${PACKAGE_FILES} ${PKG_INSTALL_FILES}

The tarball files will only be included in the tarball, but the install files will
be installed if the install target is made. For example, a Makefile should be
included (since it contains the installation target), but it should not be installed.
When the file lists include directories it might be interesting to ignore certain
files, e.g. version management. This can be done with the following.

15d 〈variables 15a〉+≡ (17a) / 15c 16a .
IGNORE_FILES?= \(\.svn\|\.git\|CVS\)
PKG_IGNORE?= ${IGNORE_FILES}

15

The installation path is controlled by the following variables.
16a 〈variables 15a〉+≡ (17a) / 15d 16b .

PKG_PREFIX?= ${PREFIX}
PKG_INSTALL_DIR?= ${INSTALLDIR}

Sometimes different parts of a package must be installed to different places,
e.g. a script to /usr/local/bin and a manual page to /usr/local/share/man.
For this purpose, a package can be divided into several sub-packages. By default
we have one package called main.

16b 〈variables 15a〉+≡ (17a) / 16a 16c .
PKG_PACKAGES?= main

For each such package we can set a specialized version of the variables we dis-
cussed above. By default, they will inherit the global values set above.

16c 〈variables 15a〉+≡ (17a) / 16b 16d .

define variables
PKG_NAME-$(1)?= ${PKG_NAME}
PKG_INSTALL_FILES-$(1)?= ${PKG_INSTALL_FILES}
PKG_PREFIX-$(1)?= ${PKG_PREFIX}
PKG_INSTALL_DIR-$(1)?= ${PKG_INSTALL_DIR}

PKG_TARBALL-$(1)?= ${PKG_TARBALL}
PKG_TARBALL_FILES-$(1)?= ${PKG_TARBALL_FILES}
PKG_IGNORE-$(1)?= ${PKG_IGNORE}
endef

Then we use this as a function to set the variables for each sub-package.
16d 〈variables 15a〉+≡ (17a) / 16c 16e .

$(foreach pkg,${PKG_PACKAGES},$(eval $(call variables,${pkg})))

3.1.1 Portability
For portability, this include file requires the following programs to be available.

16e 〈variables 15a〉+≡ (17a) / 16d
ifneq (${MAKE},gmake)
INSTALL?= ${SUDO} install -Dp
else
INSTALL?= ${SUDO} install -CSp
endif

3.2 Implementation
This is an include file, so we will use a C-style header construction to prevent it
from being included more than once. Then the overview of the structure is as

16

follows.
17a 〈pkg.mk 17a〉≡

ifndef PACKAGE_MK
PACKAGE_MK=true

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/portability.mk

〈variables 15a〉
〈an all-like target 17b〉
〈targets for packaging 17c〉
〈targets for cleaning 18a〉
〈targets for installation 18d〉

endif

We want to have an all-like target, we call it package. The package target
should, of course, have all tarballs as prerequisites. The reason for not using
all is that we leave the all target for the user, with its prerequisites defined
in the main makefile.

17b 〈an all-like target 17b〉≡ (17a)
.PHONY: package
package: $(foreach pkg,${PKG_PACKAGES},${PKG_TARBALL-${pkg}})

3.2.1 Packaging
The packaging step shall take the files specified and create a tarball containing
them. What we will do is to create a target for the tarball. We will do this by
using the archive functionality of make(1) and the compression functionality we
added in Section 1.4.2.

17c 〈targets for packaging 17c〉≡ (17a)
define tarball
$(foreach f,${PKG_TARBALL_FILES-$(1)},\
$(eval ${PKG_TARBALL-$(1)}(${f}): ${f}))

${PKG_TARBALL-$(1)}: ${PKG_TARBALL-$(1)}(${PKG_TARBALL_FILES-$(1)})
endef
$(foreach pkg,${PKG_PACKAGES},$(eval $(call tarball,${pkg})))

3.2.2 Cleaning
The kind of cleaning we are interested in is to remove the tarballs that we
generate. The other files, install and tarball files, should be cleaned using other
cleaning targets — if they need cleaning at all.

17

The technique we use is to provide a clean-package target which we add as
a prerequisite to the general target clean. This way the user can have a recipe
for clean in the main makefile without us interfering.

18a 〈targets for cleaning 18a〉≡ (17a) 18b .

.PHONY: clean clean-package
clean: clean-package

We now create a cleaning target for each sub-package and add those as
prerequisites for the clean-package target. The recipe is to remove the tarball
of that particular sub-package.

18b 〈targets for cleaning 18a〉+≡ (17a) / 18a
define clean-package
.PHONY: clean-package-$(1)
clean-package: clean-package-$(1)
clean-package-$(1):
${RM} ${PKG_TARBALL-$(1)}

endef
$(foreach pkg,${PKG_PACKAGES},$(eval $(call clean-package,${pkg})))

3.2.3 Installation
The install target will install the files that are configured to be installed
where they are configured to be installed. The installation process proceeds in
the following steps.

18c 〈installation process 18c〉≡ (18d)
.PHONY: pre-install do-install post-install
post-install: do-install
do-install: pre-install
pre-install: ${PKG_INSTALL_FILES}

This will ensure that the targets’ recipes are run in the desired order (since the
prerequisites’ recipes are run first, if needed). This means that the files to be
installed are made before pre-install is run. To start the process with the
install target, we add the following.

18d 〈targets for installation 18d〉≡ (17a) 18e .
.PHONY: install
install: post-install
〈installation process 18c〉

Now we need to provide package dependent versions of these targets. We
achieve this by simply adding the package dependent versions as prerequisites
for the general targets, and in the same order as we did for the general targets.

18e 〈targets for installation 18d〉+≡ (17a) / 18d
define post-install
.PHONY: post-install-$(1)
post-install: post-install-$(1)

18

post-install-$(1): do-install-$(1)
endef
$(foreach pkg,${PKG_PACKAGES},$(eval $(call post-install,${pkg})))

define do-install
.PHONY: do-install-$(1)
do-install: do-install-$(1)
do-install-$(1): pre-install-$(1)
〈default do-install recipe 19〉

endef
$(foreach pkg,${PKG_PACKAGES},$(eval $(call do-install,${pkg})))

define pre-install
.PHONY: pre-install-$(1)
pre-install: pre-install-$(1)
pre-install-$(1): ${PKG_INSTALL_FILES-$(1)}
endef
$(foreach pkg,${PKG_PACKAGES},$(eval $(call pre-install,${pkg})))

Finally, we need a default recipe for the do-install target, otherwise the
user would have to write one every time — and that would counter the purpose
of this include file. The procedure is straight-forward. We first create the target
directory, with a possible prefix. Then, for every non-directory, we install using
the install command.

19 〈default do-install recipe 19〉≡ (18e)
for f in ${PKG_INSTALL_FILES-$(1)}; do \
[-d "$$$$f"] || ${INSTALL} -t ${PKG_PREFIX-$(1)}${PKG_INSTALL_DIR-$(1)}/ "$$$$f"; \

done

19

Chapter 4

pub.mk

4.1 Introduction and usage
Sometimes we wish to easily publish a release of the material we work with.
Here we provide the functionality of publishing files to servers. We provide a
general framework and then three different methods of publishing that can be
plugged in.

The idea is to publish files, and this is common between all publication
methods. This is controlled with the PUB_FILES variable, which is set to a
space separated list of file names.

20a 〈variables 20a〉≡ (23f) 20b .

PUB_FILES?=
For convenience, we can also control files to ignore.

20b 〈variables 20a〉+≡ (23f) / 20a 20c .
IGNORE_FILES?= \(\.svn\|\.git\|CVS\)
PUB_IGNORE?= ${IGNORE_FILES}

Publication means that we upload the files somewhere. This is controlled by
the following variable.

20c 〈variables 20a〉+≡ (23f) / 20b 20d .

PUB_SERVER?= localhost

We are also interested in where on the server the files are written.
20d 〈variables 20a〉+≡ (23f) / 20c 20e .

PUB_DIR?= ${PUBDIR}/${CATEGORY}
Once written to the location, we must consider the owner, group and access
rights.

20e 〈variables 20a〉+≡ (23f) / 20d 21a .
PUB_USER?= ${USER}
PUB_GROUP?= ${GROUP}
PUB_CHMOD?= o+r

20

4.1.1 Publication methods
There are currently three methods for publication: ssh, git, and at. The
default method is ssh.

21a 〈variables 20a〉+≡ (23f) / 20e 21b .

PUB_METHOD?= ssh

The remaining parts of the configuration depends on which publication method
is used.

ssh The ssh method will use the Secure SHell (SSH) protocol to transfer the
files. It will compress the files, pipe the output to the ssh process which runs
the decompression on the server — in the specified directory. After successful
transfer it will try to change the access rights to what is given by the settings
above.

at The at method works similarly to ssh, the difference is that it postpones
the publication until a certain time. The time is given by the PKG_AT variable,
or at as a shortcut for the command-line (make at=tomorrow).

21b 〈variables 20a〉+≡ (23f) / 21a 21c .
at?= tomorrow
PKG_AT?= ${at}

The way this works is that instead of writing the files to PUB_DIR on the
server, we write the files to PUB_TMP and then add an at job that will move the
files from the temporary to the final directory.

21c 〈variables 20a〉+≡ (23f) / 21b 21d .

PUB_TMPDIR?= /var/tmp

git The git method uses Git’s archive functionality. This means that Git will
export an archive made from a branch in the repository, which branch is used
is controlled by the following variable.

21d 〈variables 20a〉+≡ (23f) / 21c 21e .
PUB_BRANCH?= master

4.1.2 Publishing to multiple sites
We might also be interested in publishing files to several places, e.g. to a set of
mirrors. The variable PUB_SITES contains a list of sites.

21e 〈variables 20a〉+≡ (23f) / 21d 22a .
PUB_SITES?= main

21

We supply one by default, this allows us to simply use the general variables
above. This way, site-specific overrides can be specified by appending the vari-
able with the site name, e.g. -main. All other values are copied from the defaults,
i.e. the general variables.

22a 〈variables 20a〉+≡ (23f) / 21e 22b .

define variables
PUB_METHOD-$(1)?= ${PUB_METHOD}

PUB_SERVER-$(1)?= ${PUB_SERVER}
PUB_DIR-$(1)?= ${PUB_DIR}
PUB_FILES-$(1)?= ${PUB_FILES}
PUB_IGNORE-$(1)?= ${PUB_IGNORE}

PUB_USER-$(1)?= ${PUB_USER}
PUB_GROUP-$(1)?= ${PUB_GROUP}
PUB_CHMOD-$(1)?= ${PUB_CHMOD}

PUB_AT-$(1)?= ${PUB_AT}
PUB_TMPDIR-$(1)?= ${PUB_TMPDIR}

PUB_BRANCH-$(1)?= ${PUB_BRANCH}
endef

$(foreach site,${PUB_SITES},$(eval $(call variables,${site})))

Example 1. To publish the same material to three different mirrors, we can
do the following.

1 PUB_SITES= main mirror1 mirror2
2 PUB_SERVER = foo . bar
3 PUB_SERVER−mirror1 = foo . bar . mirror1
4 PUB_SERVER−mirror2 = foo . bar . mirror2

4.1.3 Automatically tag on publication
Since the published files usually are stripped of their versioning information, it
can be a good idea to keep track of the corresponding version in the version
management system. One way is to create a tag every time a publication is
made.

To enable this feature we set the variable PUB_AUTOTAG to true. By default
we let it be false, i.e. this feature is disabled.

22b 〈variables 20a〉+≡ (23f) / 22a 23a .
PUB_AUTOTAG?= false

22

The first thing we need is to know which version control system (VCS) is
used. We control this with PUB_VCS.

23a 〈variables 20a〉+≡ (23f) / 22b 23b .

PUB_VCS?= git

The only thing needed more than this is any options that the user want to use.
23b 〈variables 20a〉+≡ (23f) / 23a 23c .

PUB_TAG_OPTS?=

The tag name is controlled with the following variable. The default value is
today’s date and the current time.

23c 〈variables 20a〉+≡ (23f) / 23b 23d .

PUB_TAG_NAME?= $(shell date +%Y%m%d-%H%M)

The tagging will be wrong if we have forgotten to commit the files we were
working on. For this reason we also provide a similar feature which automatic-
ally makes a commit. This feature is also disabled by default.

23d 〈variables 20a〉+≡ (23f) / 23c 23e .
PUB_AUTOCOMMIT?= false

The command and options are similarly set with the following.
23e 〈variables 20a〉+≡ (23f) / 23d 26c .

PUB_COMMIT_OPTS?= -av

4.2 Implementation
This is an include file, so we will first use the C-style technique to prevent
inclusion more than once. Thus the structure is as follows.

23f 〈pub.mk 23f〉≡
ifndef PUB_MK
PUB_MK=true

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/portability.mk

〈variables 20a〉
〈target for publishing 24a〉
〈publication methods 24d〉
〈targets for automatic tagging and committing 28a〉

endif

We will now cover the different parts below. The 〈variables 20a〉 block has
been covered in the usage section, but the remaining are discussed below.

23

4.2.1 The general publication mechanism
We have a general publication mechanism that drives the publication process
and uses the methods described below. We have a general target publish to
be invoked by the user. Then we have a specific publish-site target for each
site, which does the actual publication. We add all those as prerequisites to the
main target.

24a 〈target for publishing 24a〉≡ (23f) 24b .

.PHONY: publish
publish: $(foreach site,${PUB_SITES},publish-${site})

Depending on the settings for automatic commits and tags, we also add targets
for those functionalities as prerequisites.

24b 〈target for publishing 24a〉+≡ (23f) / 24a 24c .
ifeq (${PUB_AUTOTAG},true)
publish: autotag
else ifeq (${PUB_AUTOCOMMIT},true)
publish: autocommit
endif

Next up is the actual site-specific targets. The prerequisites are the files that
should be published. Then the recipe is simply a call to the relevant publication
method.

24c 〈target for publishing 24a〉+≡ (23f) / 24b
define publish_target
.PHONY: publish-$(1)
publish-$(1): $(foreach file,${PUB_FILES-$(1)},${file})
$$(call publish-${PUB_METHOD-$(1)},$(1))

endef

$(foreach site,${PUB_SITES},$(eval $(call publish_target,${site})))

4.2.2 Publication methods
We will now cover the different publication methods. The outline is as follows.

24d 〈publication methods 24d〉≡ (23f)
〈helper functions 25a〉
〈ssh method 25c〉
〈at method 26e〉
〈git method 27e〉

We will first discuss two helper functions, chown and chmod. Then we will
process with the different methods discussed in the introduction.

Both chown and chmod takes one argument, the name of the site. Then each
function can use the site name to find the relevant configuration. The chown

24

function simply runs chown(1) on the PUB_DIR directory on the server.
25a 〈helper functions 25a〉≡ (24d) 25b .

define chown
$(if ${PUB_GROUP-$(1)},\
${SSH} ${PUB_SERVER-$(1)}\
${CHOWN} ${PUB_USER-$(1)}:$(strip ${PUB_GROUP-$(1)}) ${PUB_DIR-$(1)};,)

endef

Conversely, the chmod function does the same but with the chmod(1) command.
Note, however, that we do not run these commands if PUB_GROUP or PUB_CHMOD,
respectively, are empty.

25b 〈helper functions 25a〉+≡ (24d) / 25a
define chmod
$(if ${PUB_CHMOD-$(1)},\
${SSH} ${PUB_SERVER-$(1)}\
${CHMOD} ${PUB_CHMOD-$(1)} ${PUB_DIR-$(1)};,)

endef

ssh Now to the first publication method, the one using copying over SSH. We
define the method as a make function which takes one argument, the name of
the site.

25c 〈ssh method 25c〉≡ (24d)
define publish-ssh
〈create directory on server 25d〉; \
〈pack the files and pipe them to the server 25e〉; \
$(call chown,$(1)) \
$(call chmod,$(1))
endef

To create the directory on the server is straight-forward, we simply run the
command over SSH.

25d 〈create directory on server 25d〉≡ (25c 26e)
${SSH} ${PUB_SERVER-$(1)} ${MKDIR} ${PUB_DIR-$(1)}

Next is the packing of the files.
25e 〈pack the files and pipe them to the server 25e〉≡ (25c)

〈generate file list 26a〉 | \
〈pack the files 26b〉 | \
〈extract the files on the server 26d〉

Before we do anything with the files, we must ensure that the list of files is
not empty — if it was empty, that would break all of the following commands.
If not, we will use find(1) to generate a list of files to include. We do this in
case there is a directory in the list PUB_FILES. If there is a directory in there,

25

we cannot filter it using PKG_IGNORE, so we must generate a list of the entire
hierarchy included.

26a 〈generate file list 26a〉≡ (25e 26e)
[-n "${PUB_FILES-$(1)}"] && find ${PUB_FILES-$(1)} -type f -or -type l

Once we have the list we can use pax(1) to put them into an archive, an archive
which is written to standard out.

26b 〈pack the files 26b〉≡ (25e 26e)
xargs ${PAX} \
$(foreach regex,${PUB_REGEX-$(1)},-s ${regex}) \
-s "|^.*/$(strip ${PUB_IGNORE-$(1)})/.*$$||p"

We also filter the file list through a series of regular expressions. The user may
add regular expressions as a space-separated list in the following variable.

26c 〈variables 20a〉+≡ (23f) / 23e 27a .
PUB_REGEX?= "|^(.*)$$$$|\1|p"
$(foreach site,${PKG_SITES},$(eval PUB_REGEX-${site}?=${PUB_REGEX}))

Finally, we extract the files on the server by running the corresponding
pax(1) instance over SSH.

26d 〈extract the files on the server 26d〉≡ (25e)
${SSH} ${PUB_SERVER-$(1)} ${UNPAX} \
-s "\"|^|$(strip ${PUB_DIR-$(1)})/|p\""

at The next method is very similar to the first. The difference here is a middle
step where we copy the files to a temporary place on the server and an additional
final step where we publish them in the destination at some predefined time.

26e 〈at method 26e〉≡ (24d)
define publish-at
〈create directory on server 25d〉; \
〈create temporary directory 26f〉; \
〈generate file list 26a〉 | \
〈pack the files 26b〉 | \
〈extract the files in the temporary directory 27b〉; \
〈add at-job on the server 27c〉
endef

We have already seen some of these code blocks above, we will now cover the
new ones.

The first thing we want to do is to create a temporary directory on the
server. We do this in the proper way.

26f 〈create temporary directory 26f〉≡ (26e)
TMPPUB=$$(${SSH} ${PUB_SERVER-$(1)} "export TMPDIR=${PUB_TMPDIR-$(1)} && \
${MKTMPDIR-$(1)}")

26

We allow the user to override the mktemp command per server, since this com-
mand might differ on different servers.

27a 〈variables 20a〉+≡ (23f) / 26c 27d .

$(foreach site,${PUB_SITES},$(eval MKTMPDIR-${site}?=${MKTMPDIR}))

Next we upload the files to the temporary directory on the server. The
difference between this and previous upload is the extraction. We will now use
a different regular expression, one which prepends the temporary directory to
all files.

27b 〈extract the files in the temporary directory 27b〉≡ (26e)
${SSH} ${PUB_SERVER-$(1)} ${UNPAX} \
-s "\"|^|$${TMPPUB}/|p\""

Finally, we must add the at(1) job on the server. This is done by changing
the directory to the temporary directory, then we echo the commands we want
to execute later and pipe those to the at(1) command.

27c 〈add at-job on the server 27c〉≡ (26e)
${SSH} ${PUB_SERVER-$(1)} "cd $${TMPPUB} && (\
echo ’mv ${PUB_FILES-$(1)} ${PUB_DIR-$(2)};’ \
$(if ${PUB_CHMOD-$(1)},\
echo ’${CHMOD-$(1)} ${PUB_CHMOD-$(1)} ${PUB_DIR-$(1)};’,) \

$(if ${PUB_GROUP-$(1)},\
echo ’${CHOWN-$(1)} ${PUB_USER-$(1)}:$(strip ${PUB_GROUP-$(1)}) ${PUB_DIR-$(1)};’,) \

) | at ${PKG_AT}"

We note that we allow the user to specify different CHOWN and CHMOD variables
for different servers, since these commands might differ per server.

27d 〈variables 20a〉+≡ (23f) / 27a
define chown_and_chmod
CHOWN-$(1)?= ${CHOWN}
CHMOD-$(1)?= ${CHMOD}
endef
$(foreach site,${PUB_SITES},$(eval $(call chown_and_chmod,${site})))

git The last method uses Git’s functionality to pack the files. We simply use
git archive and specify which branch to use. Then we pipe the archive to the
server, unpack as before and finally run chown and chmod.

27e 〈git method 27e〉≡ (24d)
define publish-git
git archive ${PUB_BRANCH-$(1)} ${PUB_FILES-$(1)} \
| ${SSH} ${PUB_SERVER-$(1)} ${UNPAX} -s ",^,$(strip ${PUB_DIR-$(1)}),"; \

$(call chown,$(1)) \
$(call chmod,$(1))
endef

27

4.2.3 Automatically committing and tagging
The last feature allows us to automatically commit and make a tag when we
publish. We accomplish this by two targets that we have already seen above.
These targets use functions specific to the selected VCS.

28a 〈targets for automatic tagging and committing 28a〉≡ (23f)
〈commit and tag functions 28b〉

.PHONY: autocommit
autocommit:
$(call autocommit-${PUB_VCS})

.PHONY: autotag
autotag:
$(call autotag-${PUB_VCS})

Below we will cover the different VCSs.
For now there are two functions, one for committing and one for tagging.

The commit functions are quite straight-forward for all three VCSs. The tagging
is similarly straight-forward for two, but not the third.

28b 〈commit and tag functions 28b〉≡ (28a)
〈autocommit for git, svn and cvs 28c〉
〈autotag for git and cvs 28d〉
〈autotag for svn 28e〉

The commit functions are as expected for all three VCSs.
28c 〈autocommit for git, svn and cvs 28c〉≡ (28b)

autocommit-git = git diff –quiet || git commit ${PUB_COMMIT_OPTS}
autocommit-svn = svn commit ${PUB_COMMIT_OPTS}
autocommit-cvs = cvs commit ${PUB_COMMIT_OPTS}

The tagging is similarly straight-forward for Git and Concurrent Versions Sys-
tem.

28d 〈autotag for git and cvs 28d〉≡ (28b)
autotag-git = git tag ${PUB_TAG_OPTS} ${PUB_TAG_NAME}
autotag-cvs = cvs tag ${PUB_TAG_OPTS} ${PUB_TAG_NAME}

The tagging function for Subversion is not as easy though. The outline is as
follows.

28e 〈autotag for svn 28e〉≡ (28b)
〈helper functions for svn tagging 29b〉

define autotag-svn
〈find the root of repo 29a〉
〈go to root and create tag 29c〉
endef

28

To find the root of the repository, or more exactly where the directories trunk
and tags are located, we must search through the parent directories. We start
in the current working directory and add one level per iteration.

29a 〈find the root of repo 29a〉≡ (28e)
ROOT=.
while ! [-d $${ROOT}/trunk]; do \
$(call exit_if_fs_root,$${ROOT})
ROOT=$${ROOT}/.. \

done \

We must check if we reach the root of the file system. We use the function
exit_if_fs_root for this. This function exits with value 1 if the current dir-
ectory examined is the root of the file system. If this happens, make(1) will
abort the recipe and the code after will not be executed. The way we check for
equality is to check that the device identifiers and the inode numbers are equal,
we can do that using stat(1).

29b 〈helper functions for svn tagging 29b〉≡ (28e)
define exit_if_fs_root
if [$(stat -c %i $(1)) = $(stat -c %i /) \

-a $(stat -c %d $(1)) = $(stat -c %d /)]; then \
exit 1; \

fi
endef

Finally, if the recipe is still executing, this means that we have found the
root and we can copy the trunk to tags.

29c 〈go to root and create tag 29c〉≡ (28e)
cd ${ROOT} \
&& svn copy trunk tags/${PUB_TAG_NAME} \
&& svn commit ${PUB_COMMIT_OPTS};

29

Chapter 5

transform.mk

5.1 Introduction and usage
It is difficult to work openly with assessment material. We do not want to
publish the solutions to the assignment so that the students can find them and
pass the assessment without actually learning the material. On the other hand,
we want to be able to publicly collaborate with other teachers, to improve the
assignments and their solutions. This include file provides some tools to achieve
this.

5.2 Implementation overview
The structure is similar to other include files. We want to prevent repeated
inclusion, so we use a C-style technique to avoid that.

30 〈transform.mk 30〉≡
ifndef TRANSFORM_MK
TRANSFORM_MK=true

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/portability.mk

〈variables 31a〉
〈suffix rule for transformations 31b〉
〈target generation for transformations 32a〉
〈suffix rules for camera-ready source 33b〉
〈suffix rules for encrypted files 34d〉

endif

We will now explore now these are implemented.

30

5.3 A transformation mechanism
We want to provide suffix rules for transforming files in different ways. We
will transform any file with a suffix in TRANSFORM_SRC for which there is a
corresponding target in TRANSFORM_DST.

31a 〈variables 31a〉≡ (30) 31e .
TRANSFORM_SRC?= .tex
TRANSFORM_DST?= .transformed.tex

Then we can form the following suffix rule, which covers all combinations of
sources and destinations.

31b 〈suffix rule for transformations 31b〉≡ (30)
〈transformations 31c〉
.SUFFIXES: ${TRANSFORM_SRC} ${TRANSFORM_DST}
$(foreach src,${TRANSFORM_SRC},$(foreach dst,${TRANSFORM_DST},${src}${dst})):
〈transformation recipe 31d〉

The 〈transformations 31c〉 will be covered below, we start with how they are
applied.

We will now describe a function which makes it easier to apply a list of
transformations. The first argument is the input file, the second is a space
separated list of transformations and the third is the output file.

31c 〈transformations 31c〉≡ (31b) 32b .

define transform
cat $(1) $(foreach t,$(2),| $(call ${t})) > $(3)
endef

What we do here is to expand each transformation in the list to a pipe expres-
sion, so the result is a pipeline through which the file contents is piped. Thus
every transformation must read from standard input and write to standard out-
put.

Now back to our 〈transformation recipe 31d〉. This is a suffix rule, but we
want the transformation to be target-dependent. To solve this, we will have a
variable TRANSFORM_LIST-target containing the space separated list of trans-
forms to apply to the target. We will also use TRANSFORM_LIST.suf, where
.suf is the suffix of the target file. Thus we can just apply this list using the
function above.

31d 〈transformation recipe 31d〉≡ (31b 32a)
$(call transform,\
$$^,\
$${TRANSFORM_LIST$$(suffix $$@)} $${TRANSFORM_LIST-$$@},\
$$@)

We will let TRANSFORM_LIST be the default list of transformations applied.
31e 〈variables 31a〉+≡ (30) / 31a 32e .

$(foreach suf,${TRANSFORM_DST},$(eval TRANSFORM_LIST${suf}?=${TRANSFORM_LIST}))

31

This will work well for a lot of cases, however, there are cases where suffix
rules simply will not work. For these we must generate specific targets. Let
TRANSFORM_TARGETS contain a space separated list of target files.

32a 〈target generation for transformations 32a〉≡ (30)
define target_recipe
$(1):
〈transformation recipe 31d〉

endef
$(foreach target,${TRANSFORM_TARGETS},$(eval $(call target_recipe,${target})))

Note that we use the same recipe as above.

5.3.1 Removing solutions
To remove solutions we will supply a filtering transformation. The filter uses
sed to remove every solution environment from the content.

32b 〈transformations 31c〉+≡ (31b) / 31c 32c .
NoSolutions?= ${SED} "/\\\\begin{solution}/,/\\\\end{solution}/d"

5.3.2 Removing excessive build instructions
Sometimes we have extra build instructions in the internal repo, which are not
necessary for the exported source code.

32c 〈transformations 31c〉+≡ (31b) / 32b 32d .

ExportFilter?= ${SED} "/#export \\(false\\|no\\)/,/#export \\(true\\|yes\\)/d"
OldExportFilter?= ${SED} "/#export no/,/#endexport/d"

5.3.3 Handouts and solutions
It is common that we want to produce handouts from slides and solutions for
assignments or exams. We do not want to do this by hand, so we add two
transformations that can be used to do this for us.

32d 〈transformations 31c〉+≡ (31b) / 32c
PrintAnswers?= ${SED} "${MATCH_PRINTANSWERS}"
Handout?= ${SED} "${MATCH_HANDOUT}"

We will need quite a few layers of escaping for these two regular expressions.
First we will handle the printing of solutions. We want to add the \printanswers

command [Hir15] to the preamble. What we do is to match on the exam docu-
ment class, then we insert the \printanswers command directly after it.

32e 〈variables 31a〉+≡ (30) / 31e 33a .
exam_class= "(\\\\\\\\\\documentclass\\[?.*\\]?{.*exam.*})"
with_print= "\\1\\\\\\\\\\printanswers"
SED_PRINTANSWERS= "s/${exam_class}/${with_print}/"

32

Now we will solve the handouts. What we want to do is to add the handout
option to the Beamer document class [TWM15].

33a 〈variables 31a〉+≡ (30) / 32e 34c .
without_handout= "\\\\\\\\\\documentclass\\[?(.*)\\]?{beamer}"
with_handout= "\\\\\\\\\\documentclass\\[\\1,handout\\]{beamer}"
SED_HANDOUT= "s/${without_handout}/${with_handout}/"

5.4 Preparing camera-ready source
Sometimes we must prepare ‘camera-ready source’, which essentially means that
everything must be contained in a single TeX file. Unfortunately, this is difficult
to accomplish with the transformations outlined above1. For now, we will use
some functions which requires parameters — the transformations above must
not require any parameter — so the outline looks like this:

33b 〈suffix rules for camera-ready source 33b〉≡ (30)
〈function to substitute bibliography for bbl 33c〉
〈function to fill filecontents environments 33d〉
〈function to insert biblatex bbl code 34a〉

.SUFFIXES: .tex .cameraready.tex

.tex.cameraready.tex:
〈camera-ready recipe 34b〉

The first thing we want to do is to replace the \bibliography command
with the bbl-code generated by bibtex. This function also takes one argument,
the file name of the bbl-file (which is the main document name with the .tex
suffix replaced by .bbl).

33c 〈function to substitute bibliography for bbl 33c〉≡ (33b)
define bibliography
${SED} \
-e "/\\\\bibliography{[^}]*}/{s/\\\\bibliography.*//;r $(1)" \
-e "}"

endef

The bibtex alternative biblatex is becoming more popular. So we want to
provide similar functionality for biblatex. To do this for biblatex we can use
the filecontents package to include the bibliographies inline.

First we want to use is to fill filecontents environments with the actual
content from the file. We provide a function which takes the filename as an
argument and then uncomments the environment and reads the file contents
into the environment.

33d 〈function to fill filecontents environments 33d〉≡ (33b)
define filecontent
1It is possible and this solution will eventually be converted to such a solution.

33

${SED} "/^%\\\\begin{filecontents*\\?}{$(1)}/,/^%\\\\end{filecontents*\\?}/s/^%//" \
| ${SED} "/^\\\\begin{filecontents*\\?}{$(1)}/r $(1)"

endef

Next, for this to work with biblatex we need to insert some extra code.
34a 〈function to insert biblatex bbl code 34a〉≡ (33b)

define _the_bblcode
\\\\makeatletter\\\\def\\\\blx@bblfile@biber{\\\\blx@secinit\\\\begingroup\\\\blx@bblstart\\\\input{\\\\jobname.bbl}\\\\blx@bblend\\\\endgroup\\\\csnumgdef{blx@labelnumber@\\\\the\\\\c@refsection}{0}}\\\\makeatother
endef

define bblcode
${SED} "s/^%biblatex-bbl-code/${_the_bblcode}/"
endef

Finally, with these functions we can write the following suffix rule, which
calls the above functions one by one.

34b 〈camera-ready recipe 34b〉≡ (33b)
cat $< \
| $(call filecontent,\
$(shell ${SED} -n "s/^%\\\\begin{filecontents*\\?}{\\([^}]*\\)}/\\1/p" \
$<)) \

| $(call bibliography,${<:.tex=.bbl}) \
| $(call bblcode) \
> $@

5.5 Using encrypted files
The idea of this approach is to encrypt the confidential data in the reposit-
ory. Thus the repository can be available to everyone, but only those with the
decryption keys can read and make sensible changes in the confidential contents.

We will achieve this using the GNU Privacy Guard (GPG) version of Pretty
Good Privacy (PGP). We need a command to encrypt, the recipients and a
command to decrypt. We will use the following by default.

34c 〈variables 31a〉+≡ (30) / 33a
GPG?= gpg
TRANSFORM_ENC?= ${GPG} -aes
TRANSFORM_RECIPIENTS?= me
TRANSFORM_DEC?= ${GPG} -d

This will yield the following suffix rules.
34d 〈suffix rules for encrypted files 34d〉≡ (30)

.SUFFIXES: .tex .tex.asc

.tex.tex.asc:
${TRANSFORM_ENC} $(foreach r,${TRANSFORM_RECIPIENTS}, -r $r) < $< > $@

34

.tex.asc.tex:
${TRANSFORM_DEC} < $< > $@

An alternative approach, probably less prone to errors, is to use Git. We can
use Git’s attributes and filter functionality. This means that we apply a filter
to all files with the .asc suffix. We have two alternatives: do this ourselves or
use the git-crypt package2 [Aye]. The set up we must do for this to work is
to set a Git attribute.

35 〈gitattributes 35〉≡
*.asc filter=git-crypt

This will yield similar behaviour as with the makefile approach, except that
many things are automated further.

2Install on Ubuntu by running sudo apt install git-crypt.

35

Part III

Papers and documents

36

Chapter 6

tex.mk

6.1 Introduction and usage
The aim of this include file is to make building LaTeX documents easier. First
we want to add suffix rules for LaTeX similar to those already in make(1) [see
GNU16, Sect. 10.2] for languages like C.

We provide several suffix rules. First, for ordinary documents, i.e. to compile
a .tex file to .pdf, .ps or .dvi. Second, for classes and packages, i.e. to compile
a DocTeX .dtx file to .pdf, .ps or .dvi and an .ins file to .cls or .sty. The
suffix rules we provide here follows the conventions set out in [GNU16, Sect.
10.2].

The latex(1) and pdflatex(1) commands are controlled by
37a 〈variables 37a〉≡ (39a) 37b .

LATEX?= latexmk -dvi
PDFLATEX?= latexmk -pdf

Possible flags are controlled by
37b 〈variables 37a〉+≡ (39a) / 37a 37c .

LATEXFLAGS?= -use-make

The output directory is by default
37c 〈variables 37a〉+≡ (39a) / 37b 37d .

TEX_OUTDIR?= ltxobj

We note that we add this output directory to the search path for prerequis-
ites [see GNU16, Sect. 4.5.1]. The reason for this is that we might need some
out the objects as prerequisites for other files.

Normally, the above is all that is needed. However, if you need to manually
build the bibliography, you can either add the .bbl file as a prerequisite or set
the following variable to a non-empty string.

37d 〈variables 37a〉+≡ (39a) / 37c 38a .
TEX_BBL?=

37

Similarly as for the main LaTeX commands, the bibtex(1) command is controlled
by

38a 〈variables 37a〉+≡ (39a) / 37d 38b .

BIBTEX?= bibtexu
BIBTEXFLAGS?=

And, in case we use biblatex, the biber(1) command is controlled by
38b 〈variables 37a〉+≡ (39a) / 38a 38c .

BIBER?= biber
BIBERFLAGS?=

Similarly as for the bibliography, to enable indexing you can either manually
add the .ind file as a prerequisite, or you can set the following variable to a
non-empty string.

38c 〈variables 37a〉+≡ (39a) / 38b 38d .

TEX_IND?=

The indexing-related programs are the following.
38d 〈variables 37a〉+≡ (39a) / 38c 38e .

MAKEINDEX?= makeindex
MAKEIDXFLAGS?=
XINDY?= texindy
XINDYFLAGS?=

We also provide support for PythonTeX. This is enabled by the following
variable.

38e 〈variables 37a〉+≡ (39a) / 38d 38f .
TEX_PYTHONTEX?=

Then the required command and flags are controlled with the following variables.
38f 〈variables 37a〉+≡ (39a) / 38e 49a .

PYTHONTEX?= pythontex3
PYTHONTEXFLAGS?=

Finally, we provide targets to easily add external classes as dependencies.
We add the phony targets

• lncs for Springer Lecture Notes in Computer Science (LNCS),

• biblatex-lncs for the LNCS bibliography style for the biblatex package,

• acmproc for the Association for Computing Machinery (ACM) special
interest group proceedings,

• acmsmall and acmlarge for the ACM journal formats,

• rfc or rfc.bib for an up-to-date bibliography containing all Internet En-
gineering Task Force (IETF) Request For Commentss (RFCs).

38

6.2 Implementation overview
The structure of the include file is similar to a header file in C or C++. The
include file uses the old C-style technique to prevent multiple inclusions.

39a 〈tex.mk 39a〉≡
ifndef TEX_MK
TEX_MK=true

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/portability.mk

〈variables 37a〉
〈targets for documents 40a〉
〈targets for class and package files 45a〉
〈targets for external classes 46a〉
〈targets for cleaning 39b〉

endif

We include portability.mk (Chapter 1) to get portable settings for several
common utilities.

We will start with the targets for cleaning. We provide two phony targets,
clean-tex and distclean-tex, and we add them as prerequisites to clean and
distclean, respectively.

39b 〈targets for cleaning 39b〉≡ (39a)
.PHONY: clean clean-tex
clean: clean-tex

clean-tex:
〈clean recipe 39c〉

.PHONY: distclean distclean-tex
distclean: distclean-tex

distclean-tex:
〈distclean recipe 40c〉

We will add to the recipes in the remainder of the chapter. However, as
latexmk(1) is set as the default in Section 6.1, we can already add the following
line to the cleaning recipe.

39c 〈clean recipe 39c〉≡ (39b)
-latexmk -C -output-directory=${TEX_OUTDIR}
${RM} -R ${TEX_OUTDIR}
${RM} *.pytxcode
${RM} pythontex-files-*

39

6.3 Targets for documents
Now we will treat how to compile documents.

40a 〈targets for documents 40a〉≡ (39a)
〈auxillary files 40d〉
〈bibliography files 41a〉
〈indices files 42a〉
〈PythonTeX files 43a〉
〈document files 44a〉
〈target for latexmkrc 40b〉

These will be discussed in the following sections. However, since we use latexmk(1)
by default (Section 6.1), we will discuss the relevant 〈latexmkrc 42e〉 entries in
parallel. We supply a target to easily use our 〈latexmkrc 42e〉 with latexmk(1).

40b 〈target for latexmkrc 40b〉≡ (40a)
latexmkrc:
[-e $@ -o "${INCLUDE_MAKEFILES}" = "."] || \
${LN} -s ${INCLUDE_MAKEFILES}/latexmkrc $@

We also add the corresponding line for cleaning.
40c 〈distclean recipe 40c〉≡ (39b)

[! -L latexmkrc] || ${RM} latexmkrc

We will now discuss the different files we need latex(1) to generate. Note
that in many cases we want latex(1) to generate more files, e.g. .toc files, but
we do not have to care about these here. The reason we can ignore those files is
that they do not require any external tool, e.g. bibtex(1), to be run, these files
just requires another run of latex(1).

6.3.1 Auxillary files
Many steps in compiling a LaTeX document needs the .aux file. Thus we will
first introduce a rule for creating the .aux file. We will create it in the specified
output directory.

40d 〈auxillary files 40d〉≡ (40a)
${TEX_OUTDIR}/%.aux: %.tex
〈try to create output directory 40e〉
〈run pdflatex 40f〉

To create the output directory we simply try mkdir(1).
40e 〈try to create output directory 40e〉≡ (40–42)

${MKDIR} ${TEX_OUTDIR}

We can the simply run latex(1) with the specified output directory. Note that
it does not matter whether we run latex(1) or pdflatex(1) to generate the .aux
file.

40f 〈run pdflatex 40f〉≡ (40–42 45d)
${PDFLATEX} -output-directory=${TEX_OUTDIR} ${LATEXFLAGS} $<

40

6.3.2 Bibliographies
One file that is commonly needed is the one used to create the bibliography, the
.bbl file. There are two ways to create this file, either using classical bibtex(1)
or using the biblatex package and biber(1).

41a 〈bibliography files 41a〉≡ (40a) 41f .
〈bbl target for bibtex 41b〉
〈bbl target for biber 41d〉

The first approach, using bibtex(1), depends on the .aux file. This means
that we can have a target creating the desired .bbl file from the .aux file.

41b 〈bbl target for bibtex 41b〉≡ (41a)
${TEX_OUTDIR}/%.bbl: ${TEX_OUTDIR}/%.aux
〈compile bbl with bibtex 41c〉

To compile the .bbl file using bibtex(1) and to put the output files in the desired
output directory, we can do this.

41c 〈compile bbl with bibtex 41c〉≡ (41b)
${BIBTEX} ${BIBTEXFLAGS} $<
${MV} $@ ${@:.bbl=.blg} ${TEX_OUTDIR}

The second approach uses the biblatex package [Leh+16] and biber(1) [KC16].
They do not rely on the .aux file, instead biblatex creates a .bcf file. Thus
its target is exactly the same as that of the .aux file.

41d 〈bbl target for biber 41d〉≡ (41a) 41e .
${TEX_OUTDIR}/%.bcf: %.tex
〈try to create output directory 40e〉
〈run pdflatex 40f〉

This .bcf file is in turn used by biber(1) to create the .bbl file. To compile the
.bbl with biber(1) and put the output files in the desired directory, we do the
following.

41e 〈bbl target for biber 41d〉+≡ (41a) / 41d
${TEX_OUTDIR}/%.bbl: ${TEX_OUTDIR}/%.bcf
${BIBER} -O $@ ${BIBERFLAGS} $<

As mentioned in Section 6.1, we can automatically add the .bbl file as a
prerequisite if the variable TEX_BBL is set.

41f 〈bibliography files 41a〉+≡ (40a) / 41a 43b .

ifneq (${TEX_BBL},)
%.pdf: ${TEX_OUTDIR}/%.bbl
endif

6.3.3 Indices
There are several time we need to work with indices, e.g. when working with
standard indices but also glossaries. Here we provide some suffix rules to make
it easier to build such indices.

41

Before we start, however, we will note that many of these rules are not
needed if the imakeidx package [Gre16] is used. We do recommend to use this
package. Furthermore, we provide rules for the nomencl package, however, we
recommend to use the glossaries package [Tal16] instead. The glossaries
package also has native support for xindy(1). Although the glossaries package
supports abbreviations and acronyms, we recommend the acro package [Nie16]
for this instead.

The standard LaTeX index uses an .idx file, which is generated similarly as
the .aux file. Thus we can use the same type of target.

42a 〈indices files 42a〉≡ (40a) 42b .

${TEX_OUTDIR}/%.idx: %.tex
〈try to create output directory 40e〉
〈run pdflatex 40f〉

The actual index, which resides in a .ind file, can then be generated as follows.
42b 〈indices files 42a〉+≡ (40a) / 42a 42c .

${TEX_OUTDIR}/%.ind: ${TEX_OUTDIR}/%.idx
${XINDY} -o $@ ${XINDYFLAGS} $<

As mentioned in Section 6.1, we can automatically add the .ind file as a pre-
requisite if the variable TEX_IND is set.

42c 〈indices files 42a〉+≡ (40a) / 42b 42d .

ifneq (${TEX_IND},)
%.pdf: ${TEX_OUTDIR}/%.ind
endif

For backwards compatibility, we provide the following code for the nomenclature
package.

42d 〈indices files 42a〉+≡ (40a) / 42c
${TEX_OUTDIR}/%.nlo: %.tex
〈try to create output directory 40e〉
〈run pdflatex 40f〉

${TEX_OUTDIR}/%.nls: ${TEX_OUTDIR}/%.nlo
〈try to create output directory 40e〉
${MAKEINDEX} -o $@ ${MAKEIDXFLAGS} -s nomencl.ist $<

And now we add the corresponding code for latexmk(1). The code is fetched
from the latexmk example-files on Comprehensive TeX Archive Network (CTAN)1.

42e 〈latexmkrc 42e〉≡ 43c .
add_cus_dep(’nlo’, ’nls’, 0, ’makenlo2nls’);
sub makenlo2nls {
system("makeindex -s nomencl.ist -o \"$_[0].nls\" \"$_[0].nlo\"");

}

1URL: http://mirrors.ctan.org/support/latexmk/example_rcfiles/nomenclature_
latexmkrc

42

http://mirrors.ctan.org/support/latexmk/example_rcfiles/nomenclature_latexmkrc
http://mirrors.ctan.org/support/latexmk/example_rcfiles/nomenclature_latexmkrc

6.3.4 PythonTeX
Occasionally we use PythonTeX. We also provide a target for the required files.

43a 〈PythonTeX files 43a〉≡ (40a)
pythontex-files-%/%.pytxcode: %.tex
${PYTHONTEX} ${PYTHONTEXFLAGS} $<

As mentioned in Section 6.1, we can automatically add the .pytxmcr file as a
prerequisite if the variable TEX_PYTHONTEX is set.

43b 〈bibliography files 41a〉+≡ (40a) / 41f
ifneq (${TEX_PYTHONTEX},)
%.pdf: ${TEX_OUTDIR}/pythontex-files-%/%.pytxcode
endif

If we use latexmk(1), then we must also add instructions for this in 〈latexmkrc 42e〉.
The following code is fetched from the latexmk example-files on CTAN2.

43c 〈latexmkrc 42e〉+≡ / 42e
This version has a fudge on the latex and pdflatex commands that
allows the pythontex custom dependency to work even when $out_dir
is used to set the output directory. Without the fudge (done by
trickery symbolic links) the custom dependency for using pythontex
will not be detected.

add_cus_dep(’pytxcode’, ’pytxmcr’, 0, ’pythontex’);
sub pythontex {

This subroutine is a fudge, because it from latexmk’s point of
view, it makes the main .tex file depend on the .pytxcode file.
But it doesn’t actually make the .tex file, but is used for its
side effects in creating other files. The dependence is a way
of triggering the rule to be run whenever the .pytxcode file
changes, and to do this before running latex/pdflatex again.
return system("pythontex3 –verbose \"$_[0]\"");

}

$pdflatex = ’internal mylatex %R %Z pdflatex %O %S’;
$latex = ’internal mylatex %R %Z latex %O %S’;
sub mylatex {

my $root = shift;
my $dir_string = shift;
my $code = "$root.pytxcode";
my $result = "pythontex-files-$root";
if ($dir_string) {

warn "mylatex: Making symlinks to fool cus_dep creation\n";
unlink $code;

2URL: http://mirrors.ctan.org/support/latexmk/example_rcfiles/pythontex-
latexmkrc

43

http://mirrors.ctan.org/support/latexmk/example_rcfiles/pythontex-latexmkrc
http://mirrors.ctan.org/support/latexmk/example_rcfiles/pythontex-latexmkrc

if (-l $result) {
unlink $result;

}
elsif (-d $result) {

unlink glob "$result/*";
rmdir $result;

}
symlink $dir_string.$code, $code;
if (! -e $dir_string.$result) { mkdir $dir_string.$result; }
symlink $dir_string.$result, $result;

}
else {

foreach ($code, $result) { if (-l) { unlink; } }
}
return system @_;

}

6.3.5 Document files
Now that we have all prerequisite files, we can actually compile the docu-
ment. For simplicity we add file in both the current working directory and
the TEX_OUTDIR as targets. The reason for this is that it makes the makefile
easier to write, usually we prefer writing just the .pdf file — and not the path
to the .pdf in the TEX_OUTDIR directory. And for the same reason, we create
a hard link between them after compilation — this allows make(1) to track
modification times correctly.

44a 〈document files 44a〉≡ (40a)
%.pdf ${TEX_OUTDIR}/%.pdf: %.tex
〈compile PDF 44b〉
-${LN} ${TEX_OUTDIR}/$@ $@

%.dvi ${TEX_OUTDIR}/%.dvi: %.tex
〈compile DVI 44c〉
-${LN} ${TEX_OUTDIR}/$@ $@

Then the compilation step is the usual. We compile once, then we recompile
as long as the log file tells us.

44b 〈compile PDF 44b〉≡ (44a 45c)
${PDFLATEX} -output-directory=${TEX_OUTDIR} ${LATEXFLAGS} $<
while (grep "Rerun to get cross" ${TEX_OUTDIR}/${<:.tex=.log}); do \
${PDFLATEX} -output-directory=${TEX_OUTDIR} ${LATEXFLAGS} $<; \

done

And the same for DVI files.
44c 〈compile DVI 44c〉≡ (44a 45c)

${LATEX} -output-directory=${TEX_OUTDIR} ${LATEXFLAGS} $<

44

while (grep "Rerun to get cross" ${TEX_OUTDIR}/${<:.tex=.log}); do \
${LATEX} -output-directory=${TEX_OUTDIR} ${LATEXFLAGS} $<; \

done

6.4 Targets for class and package files
There are two parts concerning class and package files.

45a 〈targets for class and package files 45a〉≡ (39a)
〈compile sty and cls files 45b〉
〈compile class and package documentation 45c〉

These are very similar to what we have done above, especially the documenta-
tion.

Compiling a class or package from DocTeX source is easier than compiling a
document. We can normally create the .sty and .cls files by running latex(1)
on the .ins file.

45b 〈compile sty and cls files 45b〉≡ (45a)
%.cls %.sty: %.ins
${LATEX} $<

We can then compile the documentation similarly to how we compile normal
documents.

45c 〈compile class and package documentation 45c〉≡ (45a) 45d .

%.pdf ${TEX_OUTDIR}/%.pdf: %.dtx
〈compile PDF 44b〉
-${LN} ${TEX_OUTDIR}/$@ $@

%.dvi ${TEX_OUTDIR}/%.dvi: %.dtx
〈compile DVI 44c〉
-${LN} ${TEX_OUTDIR}/$@ $@

However, we must tell make(1) how to make a .bbl etc. from .dtx.
45d 〈compile class and package documentation 45c〉+≡ (45a) / 45c

${TEX_OUTDIR}/%.aux: %.dtx
〈run pdflatex 40f〉

${TEX_OUTDIR}/%.bcf: %.dtx
〈run pdflatex 40f〉

${TEX_OUTDIR}/%.idx: %.dtx
〈run pdflatex 40f〉

45

6.5 External classes and packages
Occasionally, we are required to use document classes that are not in CTAN.
Here we provide targets for some such classes and packages.

46a 〈targets for external classes 46a〉≡ (39a)
〈a general downloader 46b〉
〈Springer LNCS 48a〉
〈biblatex LNCS style 48c〉
〈ACM classes 48d〉
〈the RFC bibliography 50b〉
〈PoPETS 51b〉

We will now construct a general downloader, then we will use this downloader
to write targets for the external classes we are interested in. In general, what we
want this function to do is to download an archive or repository (TEX_EXT_SRC),
extract the files we are interested in (TEX_EXT_FILES) to the destination dir-
ectory (TEX_EXT_DIR), and finally, create symbolic links to those files from the
current working directory.

46b 〈a general downloader 46b〉≡ (46a)
define download_archive
〈targets for symlinks 46c〉
〈targets for desired files 47b〉
〈targets for archive 47c〉
〈target for cleaning 47g〉
endef
define download_repo
〈targets for symlinks 46c〉
〈targets for desired files 47b〉
〈targets for repo 47d〉
〈target for cleaning 47g〉
endef

The first thing we want to do is to generate targets and recipes for how to
create the symbolic links, assuming that the target files already exists. First we
set up a dependency between the files we are interested in and where that file
is actually located. Then we create a recipe which will create a symbolic link
between them. We use the notdir function [GNU16, Sect. 8.3] to remove any
directory-part since we want to create the symbolic link in the current working
directory.

46c 〈targets for symlinks 46c〉≡ (46b) 47a .
$(foreach file,${TEX_EXT_FILES-$(1)},\
$(eval $(notdir ${file}): ${TEX_EXT_DIR-$(1)}/${file}))

$(notdir ${TEX_EXT_FILES-$(1)}):
${LN} $$^ $$@

Note that we need the eval command above to evaluate the rule for each file,
otherwise we would get one line with many colons — which is not valid syntax

46

for make(1). To make it easier to add these files as prerequisites to a target, we
also provide the following phony target.

47a 〈targets for symlinks 46c〉+≡ (46b) / 46c
.PHONY: $(1)
$(1): $(notdir ${TEX_EXT_FILES-$(1)})

Now we need something to trigger the download of the archive or the repos-
itory. One way to do this is to add a prerequisite for the files from the archive
or repository.

47b 〈targets for desired files 47b〉≡ (46b)
$(addprefix ${TEX_EXT_DIR-$(1)}/,${TEX_EXT_FILES-$(1)}): \
${TEX_EXT_DIR-$(1)}/${TEX_EXT_SRC-$(1)}

Now we turn to the recipe. In the case of an archive, we must extract the desired
files. We let the variable TEX_EXT_EXTRACT contain the extraction command.

47c 〈targets for archive 47c〉≡ (46b) 47e .
$(addprefix ${TEX_EXT_DIR-$(1)}/,${TEX_EXT_FILES-$(1)}):
${TEX_EXT_EXTRACT-$(1)}

For a repository we can simply copy the file or create a link. We prefer the
latter.

47d 〈targets for repo 47d〉≡ (46b) 47f .
$(addprefix ${TEX_EXT_DIR-$(1)}/,${TEX_EXT_FILES-$(1)}):
${LN} ${TEX_EXT_DIR-$(1)}/${TEX_EXT_SRC-$(1)}/$${@:${TEX_EXT_DIR-$(1)}/%=%} $$@

The file TEX_EXT_SRC can be either an archive or a repository. We let
TEX_EXT_URL be the uniform resource location to fetch it from in both cases. In
the case of an archive we do the following.

47e 〈targets for archive 47c〉+≡ (46b) / 47c
${TEX_EXT_DIR-$(1)}/${TEX_EXT_SRC-$(1)}:
${MKDIR} ${TEX_EXT_DIR-$(1)}
${CURL} -o $$@ ${TEX_EXT_URL-$(1)}

In the case of a repository, we simply clone it.
47f 〈targets for repo 47d〉+≡ (46b) / 47d

${TEX_EXT_DIR-$(1)}/${TEX_EXT_SRC-$(1)}:
git clone ${TEX_EXT_URL-$(1)} $$@

We note that the directory of the repo should be an order-only prerequisite [see
GNU16, Sect. 4.3] for the files inside. Unfortunately this is not the case at the
moment.

Finally, we must also do some cleaning.
47g 〈target for cleaning 47g〉≡ (46b)

.PHONY: distclean clean-$(1)
distclean: clean-$(1)
clean-$(1):
${RM} ${TEX_EXT_FILES-$(1)}
["${TEX_EXT_DIR-$(1)}" = "."] && ${RM} ${TEX_EXT_SRC-$(1)} \
|| ${RM} -R ${TEX_EXT_DIR-$(1)}

47

6.5.1 Springer LNCS
Springer’s LNCS series is used for the proceedings of many conferences. The
style files are available on Springer’s web site, but unfortunately not under any
permissive license3. So, we must, each and every one of us, connect to Springer’s
server and download our own copy. This is what we automate here.

We use the downloader described above.
48a 〈Springer LNCS 48a〉≡ (46a) 48b .

TEX_EXT_FILES-lncs?= llncs.cls sprmindx.sty splncs03.bst aliascnt.sty remreset.sty
TEX_EXT_DIR-lncs?= lncs
TEX_EXT_SRC-lncs?= llncs2e.zip
TEX_EXT_URL-lncs?= ftp://ftp.springer.de/pub/tex/latex/llncs/latex2e/llncs2e.zip
TEX_EXT_EXTRACT-lncs?=${UNZIP} $$< -d ${TEX_EXT_DIR-lncs}

$(eval $(call download_archive,lncs))

We also want to add backwards compatibility for when we used llncs instead
of just lncs.

48b 〈Springer LNCS 48a〉+≡ (46a) / 48a
.PHONY: llncs
llncs: lncs

6.5.2 LNCS style for biblatex

There is also an LNCS style for the biblatex package available on GitHub.
Since it is available on GitHub, we recommend adding it as a Git submodule.
I.e. run the following command.

1 g i t submodule add https : // github . com/ neape l / b ib la tex−l n c s . g i t

This will add a directory biblatex-lncs to the current directory.
If we do not add it as a submodule we can use the downloader above.

48c 〈biblatex LNCS style 48c〉≡ (46a)
TEX_EXT_FILES-biblatex-lncs?= lncs.bbx lncs.cbx lncs.dbx
TEX_EXT_DIR-biblatex-lncs?= lncs
TEX_EXT_SRC-biblatex-lncs?= biblatex-lncs
TEX_EXT_URL-biblatex-lncs?= https://github.com/neapel/biblatex-lncs.git

$(eval $(call download_repo,biblatex-lncs))

6.5.3 ACM classes
We provide targets for the following ACM classes.

48d 〈ACM classes 48d〉≡ (46a)
〈ACM SIG proceedings 49b〉
3It would be most desirable that they were made available in CTAN under an open license.

48

〈ACM small standard 49e〉
〈ACM large standard 50a〉

Special Interest Group proceedings

The structure is similar as above. We use a variable to control the destination,
current directory by default.

49a 〈variables 37a〉+≡ (39a) / 38f
TEX_EXT_DIR-acmproc?= acm

Then we download the class file to that directory.
49b 〈ACM SIG proceedings 49b〉≡ (48d) 49c .

${TEX_EXT_DIR-acmproc}/acm_proc_article-sp.cls:
${CURL} -o $@ http://www.acm.org/sigs/publications/acm_proc_article-sp.cls

acm_proc_article-sp.cls: ${TEX_EXT_DIR-acmproc}/acm_proc_article-sp.cls
${LN} $^ $@

We also add the phony target acmproc to easily add this class as a prerequisite
for a document.

49c 〈ACM SIG proceedings 49b〉+≡ (48d) / 49b 49d .

.PHONY: acmproc
acmproc: acm_proc_article-sp.cls

The cleaning will only need to remove the single document class that we
downloaded.

49d 〈ACM SIG proceedings 49b〉+≡ (48d) / 49c
.PHONY: distclean clean-acmproc
distclean: clean-acmproc
clean-acmproc:
${RM} acm_proc_article-sp.cls
${RM} ${TEX_EXT_DIR-acmproc}/acm_proc_article-sp.cls

ACM small standard

We can use the downloader for the small standard.
49e 〈ACM small standard 49e〉≡ (48d)

TEX_EXT_FILES-acmsmall?= acmsmall.cls
TEX_EXT_DIR-acmsmall?= acm
TEX_EXT_SRC-acmsmall?= v2-acmsmall.zip
TEX_EXT_URL-acmsmall?= http://www.acm.org/publications/latex_style/v2-acmsmall.zip
TEX_EXT_EXTRACT-acmsmall?=${UNZIP} $< -d ${TEX_EXT_DIR-acmsmall}

$(eval $(call download_archive,acmsmall))

49

ACM large standard

As for the small standard, we can use the downloader.
50a 〈ACM large standard 50a〉≡ (48d)

TEX_EXT_FILES-acmlarge?= acmlarge.cls
TEX_EXT_DIR-acmlarge?= acm
TEX_EXT_SRC-acmlarge?= v2-acmlarge.zip
TEX_EXT_URL-acmlarge?= http://www.acm.org/publications/latex_style/v2-acmlarge.zip
TEX_EXT_EXTRACT-acmlarge?=${UNZIP} $< -d ${TEX_EXT_DIR-acmlarge}

$(eval $(call download_archive,acmlarge))

6.5.4 The RFC bibliography
Occasionally we want to cite IETF RFCs. Fortunately, Roland Bless of Karls-
ruher Institute of Technology provides an up-to-date bibliography file for all
RFCs, so we will use that one. This is a single file, so we do not need to use the
downloader.

50b 〈the RFC bibliography 50b〉≡ (46a) 50e .
rfc.bib:
〈download rfc.bib 50c〉
〈change misc to techreport 50d〉

${TEXMF}/tex/latex/rfc.bib:
mkdir -p ${TEXMF}/tex/latex/
〈download rfc.bib 50c〉
〈change misc to techreport 50d〉

We will use curl(1) to download a compressed version from Bless’ site. We
let curl(1) output the contents to standard out and pipe it to the uncompress(1)
utility and, finally, redirect the result to the target file.

50c 〈download rfc.bib 50c〉≡ (50b)
${CURL} -o - http://tm.uka.de/~bless/rfc.bib.gz 2>/dev/null \
| ${UNCOMPRESS} - > $@ ; \

According to IETF [CP11, Sect. 5.2] the RFCs should be cited as the
techreport BibTeX type.

50d 〈change misc to techreport 50d〉≡ (50b)
${SED} -i "s/@misc/@techreport/" $@

We also provide a phony target for these two files.
50e 〈the RFC bibliography 50b〉+≡ (46a) / 50b 51a .

.PHONY: rfc
rfc: rfc.bib ${TEXMF}/tex/latex/rfc.bib

50

Finally, we provide a phony cleaning for cleaning. The target is named
clean-rfc and is added as a prerequisite for distclean — this way its recipe
will not interfere with any cleaning recipe written by the user.

51a 〈the RFC bibliography 50b〉+≡ (46a) / 50e
.PHONY: distclean clean-rfc
distclean: clean-rfc
clean-rfc:
${RM} rfc.bib

6.5.5 Proceedings of the Privacy Enhancing Technologies
Symposium

We would also like to be able to use the PoPETS format.
51b 〈PoPETS 51b〉≡ (46a)

TEX_EXT_FILES-popets?=by-nc-nd.pdf dg-degruyter.pdf dgruyter_NEW.sty
TEX_EXT_URL-popets?=https://petsymposium.org/files/popets.zip
TEX_EXT_DIR-popets?=popets
TEX_EXT_SRC-popets?=popets.zip
TEX_EXT_EXTRACT-popets?=${UNZIP} -p $$< popets/$$(notdir $$@) > $$@

$(eval $(call download_archive,popets))

51

Chapter 7

doc.mk

7.1 Introduction and usage
When working with large sets of documents we sometimes want to do some
operations on them, e.g. print them or convert them between formats. This
include file provides exactly that.

We provide a target print which prints its prerequisites, see Section 7.2.1 for
details. We also provide a target wc which counts the words of its prerequisites
(Section 7.2.2). Finally, we also provide a set of suffix rules for automatic
conversion between different formats, see Section 7.2.4 for details about the
formats.

7.2 Implementation
Since the makefile is designed for inclusion, we want to ensure that it is not
included more than once — like we do in C and C++. Then first comes our
variables described above followed by the targets.

52 〈doc.mk 52〉≡
ifndef DOC_MK
DOC_MK=true

〈variables 53a〉
〈target for printing 53b〉
〈target for word counting 54a〉
〈target for to-do lists 54b〉
〈suffix rules for format conversion 54d〉

endif

52

7.2.1 Printing
We provide a target print to print all documents in a set. The usage is simply
that documents are added as prerequisites, then the target prints all documents
in its dependency list. The printing is done using the lpr command by default.
However, this can be changed with the LPR variable.

53a 〈variables 53a〉≡ (52) 53c .
LPR?= lpr
LPRFLAGS?=

If lpr is used, we note that the files added as prerequisites for the print
target must be printable by lpr, e.g. we must supply PostScript-files instead
of PDF-files. Fortunately, the automatic file format conversion (Section 7.2.4)
solves most of those problems. For example, if you want to print a PDF-file
something.pdf, then just add something.ps as a prerequisite to print and the
suffix rules below will do the rest.

The implementation is quite simple. We will iterate through the list of
prerequisites and process them one by one. For each document we will check
if there is an overriding setting for the printing command and its arguments, if
there is not we use the default set above.

53b 〈target for printing 53b〉≡ (52)
.PHONY: print
print:
$(foreach doc,$^,\
$(if ${LPR-${doc}},${LPR-${doc}},${LPR}) \
$(if ${LPRFLAGS-${doc}},${LPRFLAGS-${doc}},${LPRFLAGS}) \
${doc};)

7.2.2 Counting words
We provide a wc target which counts the words in its prerequisites. The files
added as prerequisites must thus be text files. Similarly as for print, there are
suffix rules to convert e.g. TeX-files to plain text files using detex.

The implementation is similar to that for print. The counting is done using
the wc command by default, but we allow overrides using the following variable.

53c 〈variables 53a〉+≡ (52) / 53a 54c .
WC?= wc
WCFLAGS?= -w

We will simply iterate through the list of prerequisites and process them one
by one using wc. We first print the name followed by a colon, then we print the
word count. Similarly as above, we check for each document whether there is
an overriding setting for the word counting command. We also check if there is
a preprocessing command, e.g. it might be useful to run detex(1) on TeX files

53

before counting the words.
54a 〈target for word counting 54a〉≡ (52)

.PHONY: wc
wc:
$(foreach doc,$^,echo -n "${doc}: "; ${CAT} ${doc} | \
$(if ${PREWC-${doc}},${PREWC-${doc}} |,$(if ${PREWC},${PREWC} |,)) \
$(if ${WC-${doc}},${WC-${doc}},${WC}) \
$(if ${WCFLAGS-${doc}},${WCFLAGS-${doc}},${WCFLAGS});)

7.2.3 To-do lists
Similarly to the wc target, we would also like to add a todo target which gen-
erates a to-do list from the to-do comments in the source files (i.e. ‘TODO’,
‘XXX’ or ‘FIXME’).

54b 〈target for to-do lists 54b〉≡ (52)
.PHONY: todo
todo:
$(foreach doc,$^,echo "${doc}: "; ${CAT} ${doc} | \
$(if ${PRETODO-${doc}},${PRETODO-${doc}} |,$(if ${PRETODO},${PRETODO} |,)) \
$(if ${TODO-${doc}},${TODO-${doc}},${TODO}) \
$(if ${TODOFLAGS-${doc}},${TODOFLAGS-${doc}},${TODOFLAGS});echo;)

We will use the grep(1) utility to grep for these flags in the files.
54c 〈variables 53a〉+≡ (52) / 53c 55a .

TODO?= ${GREP} "\(XXX\|TODO\|FIXME\)"
TODOFLAGS?=

7.2.4 Format conversion
The format conversion is done using pattern rules. This means that whenever
we need a file in a certain format, we simply keep the name but change the suffix
(‘file extension’). The conversions that are implemented are the following:

54d 〈suffix rules for format conversion 54d〉≡ (52)
〈PDF to PS 55b〉
〈PS to PDF 55c〉
〈DVI to PS 55e〉
〈ODT to PDF 55g〉

〈SVG to PDF 56b〉
〈SVG to PS 56c〉
〈DIA to TeX 56e〉

〈MD to TeX 56g〉
〈TeX to text 57b〉

54

Document formats

To convert PDFs to PostScript format, we use the pdf2ps command by default.
55a 〈variables 53a〉+≡ (52) / 54c 55d .

PDF2PS?= pdf2ps
PDF2PSFLAGS?=
PS2PDF?= ps2pdf
PS2PDFFLAGS?=

This allows us to specify the rule as follows.
55b 〈PDF to PS 55b〉≡ (54d)

%.ps: %.pdf
${PDF2PS} ${PDF2PSFLAGS} $<

We also have the other way around.
55c 〈PS to PDF 55c〉≡ (54d)

%.pdf: %.ps
${PS2PDF} ${PS2PDFFLAGS} $<

We do similarly for DVI-files that we want to convert to PostScript.
55d 〈variables 53a〉+≡ (52) / 55a 55f .

DVIPS?= dvips
DVIPSFLAGS?=

With those variables we let
55e 〈DVI to PS 55e〉≡ (54d)

%.ps: %.dvi
${DVIPS} ${DVIPSFLAGS} $<

There is no good conversion program for the Open Document Format (ODF)
files. We will use LibreOffice.

55f 〈variables 53a〉+≡ (52) / 55d 56a .
ODT2PDF?= soffice –convert-to pdf
ODT2PDFFLAGS?=–headless

This yields the following suffix rule.
55g 〈ODT to PDF 55g〉≡ (54d)

%.pdf: %.odt
${ODT2PDF} ${ODT2PDFFLAGS} $<

Figure formats

Usually we want to keep figures in their source form, so that we can still edit
them later. However, just as usually, we cannot use the source form directly in
TeX documents, so we want to convert them to TeX or PDF.

When working with SVG-files, there are two things: the graphics and the
text in the graphics. We will use Inkscape for working with SVGs, because

55

Inkscape allows us to export the graphics part as PDF and all text in it as TeX.
Unlike previously, we will only allow flags for inkscape to be set.

56a 〈variables 53a〉+≡ (52) / 55f 56d .

INKSCAPE?= inkscape
INKSCAPEFLAGS?= -D -z –export-latex

56b 〈SVG to PDF 56b〉≡ (54d)
%.pdf: %.svg
${INKSCAPE} ${INKSCAPEFLAGS} –file=$< –export-pdf=$@

We can thus create similar rules for the formats PS and EPS, instead of PDF.
56c 〈SVG to PS 56c〉≡ (54d)

%.ps: %.svg
${INKSCAPE} ${INKSCAPEFLAGS} –file=$< –export-ps=$@

%.eps: %.svg
${INKSCAPE} ${INKSCAPEFLAGS} –file=$< –export-eps=$@

Dia is a useful tool for making figures over network topologies etc. Fortu-
nately, Dia can output native TeX. Similarly to Inkscape, we will only provide
flags for Dia.

56d 〈variables 53a〉+≡ (52) / 56a 56f .
DIA?= dia
DIAFLAGS?=

That gives the suffix rule as follows.
56e 〈DIA to TeX 56e〉≡ (54d)

%.tex: %.dia
${DIA} ${DIAFLAGS} -e $@ -t pgf-tex $<

Text-based formats

The conversion of the text-based formats differ from the formats above. Most
of these tools automatically write their output to stdout, which is customary
when working with text in the terminal.

We use the pandoc program to convert between Markdown and TeX.
56f 〈variables 53a〉+≡ (52) / 56d 57a .

MD2TEX?= pandoc -f markdown -t latex
MD2TEXFLAGS?=

This gives the following suffix rule.
56g 〈MD to TeX 56g〉≡ (54d)

%.tex: %.md
${MD2TEX} ${MD2TEXFLAGS} < $< > $@

56

There are times when we want to convert out TeX-files to plain text, e.g. to
count the words. To do this we simply use the detex program.

57a 〈variables 53a〉+≡ (52) / 56f
TEX2TEXT?= detex
TEX2TEXTFLAGS?=

This gives us the following suffix rule.
57b 〈TeX to text 57b〉≡ (54d)

%.txt: %.tex
${TEX2TEXT} ${TEX2TEXTFLAGS} $< > $@

57

Part IV

Literate programming

58

Chapter 8

noweb.mk

8.1 Introduction and usage
The noweb.mk include provides suffix rules for weaving and tangling (produce
documentation and code, respectively). To use it correctly there are some suffix
naming conventions.

The suffix rules of make works by taking a prerequisite with one suffix and
applying the recipe to get a target with another suffix. This requires the stem
of the filename to be identical. This means that some jobs must be done using
specific recipe.

We assume that there is a main TeX file which will include the woven docu-
mentation. So all invocations of noweave use the -n option. Furthermore, some
language-specialized suffixes, such as cxx.nw, will use noweave options suitable
for that language.

8.2 Implementation
The overall structure is the same as for other include files. We will cover the
suffix rules for documentation first and then those for code.

59 〈noweb.mk 59〉≡
ifndef NOWEB_MK
NOWEB_MK = true

〈variables 60a〉
〈suffix rules for weaving documentation 60c〉
〈suffix rules for tangling code 60d〉

endif

59

8.2.1 Weaving documentation
We will use the noweave command to weave the documentation.

60a 〈variables 60a〉≡ (59) 60b .

NOWEAVE?= noweave

The default options that we will use can be controlled with the following variable.
60b 〈variables 60a〉+≡ (59) / 60a 60e .

NOWEAVEFLAGS?= -x -n -delay -t2

Now we need to specify all the suffixes to use and then construct suffix rules
for all of them. Fortunately we can use the same recipe for all, so we only need
to write one recipe for multiple targets. We will use a variable NOWEB_SUFFIXES
to keep a list of supported suffixes. Since these suffixes only matter for tangling,
we will set the variable in that section. For now, we only use it.

60c 〈suffix rules for weaving documentation 60c〉≡ (59)
.SUFFIXES: .nw .tex $(addsuffix .nw,${NOWEB_SUFFIXES})
.nw.tex $(addsuffix .nw.tex,${NOWEB_SUFFIXES}):
${NOWEAVE} ${NOWEAVEFLAGS} $< > $@

For Haskell code, if the code is written using Haskell’s native literate lan-
guage, then that code is directly compilable as LaTeX code. So we need not do
any weaving for .lhs files.

8.2.2 Tangling code
We will now cover the rules for tangling the source code for different languages.

60d 〈suffix rules for tangling code 60d〉≡ (59)
〈general tangling rules 61a〉
〈special rules for different languages 61e〉

We will first write some general pattern rules, then supply ways to adapt this
rule to the different languages.

We will use notangle(1).
60e 〈variables 60a〉+≡ (59) / 60b 60f .

NOTANGLE?= notangle
NOTANGLEFLAGS?= -t2

We will also use the command cpif(1). This command only updates the files
if they have changed. We need this since many files may reside in the same
NOWEB source file, but only some of them are updated. Without cpif, make
would normally update all files if any has changed — which is clearly undesir-
able.

60f 〈variables 60a〉+≡ (59) / 60e 61d .

CPIF?= cpif

However, since we use this variable, cpif(1) can be substituted for tee(1) in
desirable situations.

60

General pattern rules There are two general pattern rules that we will add.
61a 〈general tangling rules 61a〉≡ (60d)

〈tangle source files with suffix 61c〉
〈tangle source files without suffix 61b〉

In the first one, we will tangle a file with suffix .suf from the source file with
suffix .suf.nw and in the second a source file with suffix .nw.

We can start with the second. In this rule, we have a file with a supported
suffix .suf depend on the NOWEB source file with suffix .nw. Then we let the
recipe be set by the variable NOTANGLE.suf, which is the convention followed
by make(1) [GNU16, Sect. 10.2].

61b 〈tangle source files without suffix 61b〉≡ (61a)
$(addprefix %,${NOWEB_SUFFIXES}): %.nw
${NOTANGLE$(suffix $@)}

The case with suffixes can paradoxically be done without introducing the
suffixes.

61c 〈tangle source files with suffix 61c〉≡ (61a)
define with_suffix_target
%$(1): %$(1).nw
$${NOTANGLE$$(suffix $$@)}

endef
$(foreach suf,${NOWEB_SUFFIXES},$(eval $(call with_suffix_target,${suf})))

The reason for this is that the suffix is now captured by the pattern on both
sides, i.e. for target and prerequisite. However, this rule does not capture some
thing we want, e.g. we cannot tangle a header file .h from a .cpp.nw file. We
must add these rules manually, which we do below.

Rules for different languages We will now cover specialized instances of
the general pattern rules defined above. We will simply set the default variables.

61d 〈variables 60a〉+≡ (59) / 60f
〈defaults for C and C++ 62a〉
〈defaults for Haskell 62d〉
〈defaults for Python 63a〉
〈defaults for Make 63b〉
〈defaults for shell scripts 63c〉

As noted above, we need some special rules for the C and C++ header files, but
no extra rules for any other language.

61e 〈special rules for different languages 61e〉≡ (60d)
〈rules for C and C++ 62b〉

For the languages of the C-family, we will use the -L option to get the line
preprocessor-directive in the generated source — this will allow gdb and the

61

compiler to point to lines in the NOWEB source file, and not to the generated
file.

62a 〈defaults for C and C++ 62a〉≡ (61d) 62c .
NOWEB_SUFFIXES+= .c .cc .cpp .cxx
NOTANGLEFLAGS.c?= ${NOTANGLEFLAGS} -L
NOTANGLE.c?= ${NOTANGLE} ${NOTANGLEFLAGS.c} -R$@ $< | ${CPIF} $@
NOTANGLEFLAGS.cc?= ${NOTANGLEFLAGS.c}
NOTANGLE.cc?= ${NOTANGLE} ${NOTANGLEFLAGS.cc} -R$@ $< | ${CPIF} $@
NOTANGLEFLAGS.cpp?= ${NOTANGLEFLAGS.c}
NOTANGLE.cpp?= ${NOTANGLE} ${NOTANGLEFLAGS.cpp} -R$@ $< | ${CPIF} $@
NOTANGLEFLAGS.cxx?= ${NOTANGLEFLAGS.c}
NOTANGLE.cxx?= ${NOTANGLE} ${NOTANGLEFLAGS.cxx} -R$@ $< | ${CPIF} $@

For C-family source code, we will assume that the header files (declarations)
are written together with the definitions, so that we can extract both files from
the same NOWEB source. However, for this we must add extra pattern rules.

62b 〈rules for C and C++ 62b〉≡ (61e)
%.h: %.c.nw
${NOTANGLE.h}

%.hh: %.cc.nw
${NOTANGLE.hh}

%.hpp: %.cpp.nw
${NOTANGLE.hpp}

%.hxx: %.cxx.nw
${NOTANGLE.hxx}

Finally, we can define the variables used for tangling.
62c 〈defaults for C and C++ 62a〉+≡ (61d) / 62a

NOWEB_SUFFIXES+= .h .hh .hpp .hxx
NOTANGLEFLAGS.h?= ${NOTANGLEFLAGS} -L
NOTANGLE.h?= ${NOTANGLE} ${NOTANGLEFLAGS.h} -R$@ $< | ${CPIF} $@
NOTANGLEFLAGS.hh?= ${NOTANGLEFLAGS.h}
NOTANGLE.hh?= ${NOTANGLE} ${NOTANGLEFLAGS.hh} -R$@ $< | ${CPIF} $@
NOTANGLEFLAGS.hpp?= ${NOTANGLEFLAGS.h}
NOTANGLE.hpp?= ${NOTANGLE} ${NOTANGLEFLAGS.hpp} -R$@ $< | ${CPIF} $@
NOTANGLEFLAGS.hxx?= ${NOTANGLEFLAGS.h}
NOTANGLE.hxx?= ${NOTANGLE} ${NOTANGLEFLAGS.hxx} -R$@ $< | ${CPIF} $@

The suffix rules for Haskell is similar to those for C and C++, due to the
Glasgow Haskell Compiler (GHC) being very close to the C and C++ compilers.

62d 〈defaults for Haskell 62d〉≡ (61d)
NOWEB_SUFFIXES+= .hs
NOTANGLEFLAGS.hs?= ${NOTANGLEFLAGS} -L
NOTANGLE.hs?= ${NOTANGLE} ${NOTANGLEFLAGS.hs} -R$@ $< | ${CPIF} $@

62

We also note that we do not need any suffix rule for .lhs files, for the same
reason as for the weaving, GHC automatically tangles Haskell’s native literate
files (.lhs).

For Python, there is no special processing needed, we simply use the flags
we set above.

63a 〈defaults for Python 63a〉≡ (61d)
NOWEB_SUFFIXES+= .py
NOTANGLEFLAGS.py?= ${NOTANGLEFLAGS}
NOTANGLE.py?= ${NOTANGLE} ${NOTANGLEFLAGS.py} -R$@ $< > $@

It is the same case for makefiles.
63b 〈defaults for Make 63b〉≡ (61d)

NOWEB_SUFFIXES+= .mk
NOTANGLEFLAGS.mk?= ${NOTANGLEFLAGS}
NOTANGLE.mk?= ${NOTANGLE} ${NOTANGLEFLAGS.mk} -R$@ $< > $@

And also for shell scripts.
63c 〈defaults for shell scripts 63c〉≡ (61d)

NOWEB_SUFFIXES+= .sh
NOTANGLEFLAGS.sh?= ${NOTANGLEFLAGS}
NOTANGLE.sh?= ${NOTANGLE} ${NOTANGLEFLAGS.sh} -R$@ $< > $@

63

Chapter 9

haskell.mk

9.1 Introduction, usage and implementation
This is by far the shortest include file in this collection. What we provide here is
a reasonable default set-up for make when working with Haskell. In summary,
we provide the following.

64a 〈haskell.mk 64a〉≡
〈default variables 64b〉
〈suffix rules for Haskell programs 64c〉

The Glasgow Haskell Compiler is functionally equivalent to the GNU C
Compiler when compiling C programs. It can also handle the linking step,
which means that we can simply use GHC for the linking step.

64b 〈default variables 64b〉≡ (64a)
LD= ghc

And then we can provide the following suffix rule for compiling Haskell programs.
64c 〈suffix rules for Haskell programs 64c〉≡ (64a)

.SUFFIXES: .hs .lhs

.hs.o .lhs.o:
ghc ${HSFLAGS} -c $<

64

Part V

Assessment

65

Chapter 10

exam.mk

10.1 Introduction and usage
Many courses use exams as the tool for assessment. Usually the exam is repeated
a few times during the year and over the years. This is quite repetitive, so we
want to make it as easy as possible. This makefile, 〈exam.mk 67d〉, will automate
as much as possible using the examgen program [Bos16]. (It is recommended
that you read the documentation of examgen before you continue, or at least
run examgen -h.)

We assume that the exams will have the following structure. There is a main
TeX file called exam-uniqueID.tex. This file contains the code which uses the
exam document class and, in particular, contains the following code:

1 \begin{ que s t i on s }
2 \ input{ quest ions−ID . tex }
3 \end{ que s t i on s }

The file questions-ID.tex will be automatically generated by the exam gen-
erator. The prefixes of the filenames can be controlled using the following vari-
ables:

66a 〈variables 66a〉≡ (67d) 66b .

EXAM_NAME?= exam
EXAM_QNAME?= questions

With this structure, we only need to keep track of the unique identifiers, ‘ID’
in the example. We will use EXAM_IDS as a space-separated list containing all
IDs. (The default is a single ID, which is today’s date.)

66b 〈variables 66a〉+≡ (67d) / 66a 67a .
EXAM_IDS?= $(shell date +%y%m%d)

Now let us proceed to the contents, i.e. questions-ID.tex. The intended
learning outcomes (ILOs) of a course rarely changes, so usually several exams
share the same set of ILOs. This means that we would like to generate exams

66

with the same parameters for several exams, e.g. the same databases and the
same tags. These parameters are given to examgen as a set of tags, i.e. a space-
separated list.

67a 〈variables 66a〉+≡ (67d) / 66b 67b .

EXAM_TAGS?= ILO1 ILO2 ... ILOn

examgen also needs to get the questions from somewhere, we will use EXAM_DBS
as a space-separated list of question database files. The default value is all
previous exams1.

67b 〈variables 66a〉+≡ (67d) / 67a 67c .
EXAM_DBS?= $(foreach id,${EXAM_IDS},${EXAM_QNAME}-${id}.tex)

Sometimes we might want a different set of tags or databases per exam. E.g.
we want to generate one exam per student, where each student has an individual
set of ILOs to be assessed on. For this reason we allow EXAM_TAGS-ID to override
the contents of EXAM_TAGS when dealing with ID.

We can also pass specific flags to the examgen program using the EXAM_FLAGS
variable. We set the default value as follows.

67c 〈variables 66a〉+≡ (67d) / 67b
EXAM_FLAGS?= -NCE

Note that the flags can be target-specific too, i.e. by setting EXAM_FLAGS-ID.
We conclude with a usage example.

Example 2. This will generate two exams: exam-161014.pdf and exam-dbosk.pdf.
The first will be generated from the questions.tex database with the complete
tag set. The second will be generated from the same database, but only using
the tag ‘ILOn’.

1 EXAM_IDS= 161014 dbosk
2
3 EXAM_TAGS= ILO1 ILO2 . . . ILOn
4 EXAM_DBS= ques t i on s . tex
5
6 EXAM_TAGS−dbosk= ILOn

10.2 Implementation
We want to create a makefile 〈exam.mk 67d〉 for inclusion. The file will have the
following outline:

67d 〈exam.mk 67d〉≡
〈variables 66a〉
〈generate targets for exams 68a〉
〈generate targets for questions 68e〉
1This also includes all future exams, but examgen will ignore those since they do not yet

exist.

67

As suggested above, each exam exam-ID.pdf depends on at least two files:
exam-ID.tex and questions-ID.tex. We will automatically generate these
targets by iterating over the list in EXAM_IDS. We will not provide any recipe,
that is left for the user or the use of tex.mk. What we will do is the following:

68a 〈generate targets for exams 68a〉≡ (67d)
〈define target-specific variables 68b〉
〈define callable exam definition 68c〉
〈call the exam definition for each ID 68d〉
We want the possibility of overriding EXAM_NAME and EXAM_QNAME for certain

targets. We let the user set them, but if unset we set them to the default values.
68b 〈define target-specific variables 68b〉≡ (68a)

define target_variables
EXAM_NAME-$(1)?= ${EXAM_NAME}
EXAM_QNAME-$(1)?= ${EXAM_QNAME}
endef
$(foreach id,${EXAM_IDS},$(eval $(call target_variables,${id})))

We do the same for the actual targets. As stated above, we only set the
dependencies and leave the recipe to the user (or tex.mk).

68c 〈define callable exam definition 68c〉≡ (68a)
define exam_target
${EXAM_NAME-$(1)}-$(1).pdf: ${EXAM_NAME-$(1)}-$(1).tex
${EXAM_NAME-$(1)}-$(1).pdf: ${EXAM_QNAME-$(1)}-$(1).tex
endef

Now we call the above variable and ask make(1) to evaluate it as code.
68d 〈call the exam definition for each ID 68d〉≡ (68a)

$(foreach id,${EXAM_IDS},$(eval $(call exam_target,${id})))

We also said above that the file questions-ID.tex will automatically be
generated by examgen. We will now provide the target that accomplishes just
that. (Since the exam depends on this file, we will automatically generate the
questions when we try to make the exam — if it does not already exist.) The
structure of the code will be similar as for the exam.

68e 〈generate targets for questions 68e〉≡ (67d)
〈define target-specific questions variables 68f〉
〈define the questions target 69〉
The ID-specific variables are defined analogously to those for the exam. The

variables that are relevant to make specific are the following.
68f 〈define target-specific questions variables 68f〉≡ (68e)

define questions_variables
EXAM_TAGS-$(1)?= ${EXAM_TAGS}
EXAM_DBS-$(1)?= ${EXAM_DBS}
EXAM_FLAGS-$(1)?= ${EXAM_FLAGS}
endef
$(foreach id,${EXAM_IDS},$(eval $(call questions_variables,${id})))

68

Finally, we can define target as follows. The target file ‘questions-ID.tex’ de-
pends on the questions databases to exist. Then the recipe simply runs examgen
with the set parameters.

69 〈define the questions target 69〉≡ (68e)
define questions_target
.PRECIOUS: ${EXAM_QNAME-$(1)}-$(1).tex
${EXAM_QNAME-$(1)}-$(1).tex:
examgen ${EXAM_FLAGS-$(1)} -d ${EXAM_DBS-$(1)} -t ${EXAM_TAGS-$(1)} > $$@

endef
$(foreach id,${EXAM_IDS},$(eval $(call questions_target,${id})))

69

Chapter 11

results.mk

11.1 Introduction and usage
The problem case is the following. We have a Moodle system where we do
grading and everything related to a course, i.e. we have individual assignments.
Then we must report the grades to a national database. The entries in this
database is according to parts set in the course syllabus, each part can contain
one or more assignments. This makefile uses the data that can be extracted
from Moodle and some settings, then it converts the data to a form which is
reportable to the student office, where the report is manually entered into the
national database.

Since the data must be manually entered into the database, we require that
the reports we send are not overlapping. E.g. if we report all grades by the end
of a course, but some students complete their assignments late and are graded
after the first report, then we must generate a second report which only contains
the new results.

The input is a file which is exported from Moodle (a tab-separated CSV-file).
The output is also a tab-separated CSV-file, reflecting the current state of what
has been reported to the national database. The output could thus simply be
a copy of the input, it will be used for comparison the next time we generate
a report. Finally, we will output a temporary file, the report to be sent to the
student office for registration. For this we will use three variables that can be
set on the command-line:

70 〈variables 70〉≡ (71a) 71b .

in?= new.csv
out?= reported.csv
report?= report.pdf

The structure will be that of a makefile used for inclusion in a main Makefile.
The structure is thus similar to most makefiles, we first need 〈variables 70〉, then
〈targets 71d〉. Since this will be a file to include, we do not want to include the

70

same contents twice, in any form of accidental recursive inclusion, so we use a
C-like construction.

71a 〈results.mk 71a〉≡
ifndef MIUN_RESULTS_MK
MIUN_RESULTS_MK=true

〈variables 70〉
〈targets 71d〉

INCLUDE_MAKEFILES?= .
include ${INCLUDE_MAKEFILES}/miun.depend.mk

endif

So to use this file, simply input it in your Makefile by adding the line include
results.mk at the end of the file, in the same fashion as the inclusion of
miun.depend.mk above.

For the purpose of reporting the results, we need to provide some identifiers.
Usually this comes in the form of a course identifier. We also need to know
where to send the results, so we can automate as much as possible. We will
dedicate two variables for this, which can be set in a Makefile.

71b 〈variables 70〉+≡ (71a) / 70 71c .
RESULTS_COURSE?= course identifier
RESULTS_EMAIL?= iksexp@miun.se

These variables are later used to form the command for sending the results to
the student office. By default we use Mutt1.

71c 〈variables 70〉+≡ (71a) / 71b 72 .
RESULTS_MAILER?= mutt -s "resultat ${RESULTS_COURSE}" -a ${report} – ${RESULTS_EMAIL}

We provide a target report which processes the input, generates the new
report and emails it to the designated address above.

71d 〈targets 71d〉≡ (71a) 71e .
.PHONY: report
report:
〈report recipe 76e〉

Finally, we also provide a way to clean up all temporary files. We provide
a target clean-results which we add as a dependency to the clean target,
which is left to the user to use for whatever other cleaning is specified in the
Makefile.

71e 〈targets 71d〉+≡ (71a) / 71d 73a .
.PHONY: clean clean-results
clean: clean-results
1We could also use Thunderbird by setting RESULTS_MAILER?=

thunderbird -compose "to=${RESULTS_EMAIL},subject=’resultat
${RESULTS_COURSE}’,attachment=’file://${report}’".

71

clean-results:
〈clean recipe 73b〉

We will populate the 〈clean recipe 73b〉 as we go.

11.1.1 Portability
To improve the portability of the code, we use the following variables instead of
the respective commands directly:

72 〈variables 70〉+≡ (71a) / 71c 73f .
LOCALC?= localc –norestore
RM?= /bin/rm -Rf
MV?= /bin/mv
DIFF?= diff
JOIN?= join
CUT?= cut
SORT?= sort
HEAD?= head
TAIL?= tail
SED?= sed
GREP?= grep
CAT?= cat
CP?= cp -R
PAGER?= less
PASTE?= paste
LN?= ln

There is currently an unknown bug causing the join command to not work with
tabs, although that exact code has worked previously, so the resulting report
file will be space separated.

11.2 Processing Moodle’s output
This section covers the technical details of how to process the data exported
from Moodle. We have the input file, given as ${in}, then we want the a report
of changes to send to the student office (Section 11.2.2). There are different
identifiers used in the national database and in Moodle. So we need to extract
the identifiers in Moodle and convert to those in the national database (Sec-
tion 11.2.3). Then we can send the report and update our local representation
of what is reported to the national database, i.e. ${out}.

11.2.1 Transforming Moodle’s output
The first thing we need to do is to transform Moodle’s output. The output
format varies a lot, it changes with the mood of the system administrator. So
the code in this section changes the most.

72

We will now create a temporary file ${out}.diff based on ${in}.
73a 〈targets 71d〉+≡ (71a) / 71e 73g .

${out}.new: ${in}
〈new recipe 73c〉

This means we should also add ${out}.diff to the recipe of clean.
73b 〈clean recipe 73b〉≡ (71e) 75f .

${RM} ${out}.new

We are now going to process the data, we will do this by piping the data
through a series of commands. The columns we are interested in are 1–3 and 6
to the end.

73c 〈new recipe 73c〉≡ (73a) 73d .

${CUT} -f 1-3,6- ${in} | \

For some reason the students’ usernames are appended to their lastnames —
in addition to having a separate column for usernames. Obviously we want to
filter this away.

73d 〈new recipe 73c〉+≡ (73a) / 73c 73e .
${SED} "s/ (\([a-z]\{4\}[0-9]\{4\}\))//" \

Some of the data in Moodle are quite long, so we would like to do some
rewrites. For this purpose we will add a list of regular expressions that will
be applied. We store this list as a space separated list of regular expressions
in ${RESULTS_REWRITES}. This means that we also must avoid spaces in the
regular expressions, thus the first thing we do is to remove all spaces in the data.

73e 〈new recipe 73c〉+≡ (73a) / 73d
$(if ${RESULTS_REWRITES},| ${SED} "s/ //g",) \
$(foreach regex,${RESULTS_REWRITES},| ${SED} ${regex}) \
> $@

We let the default rewrites be
73f 〈variables 70〉+≡ (71a) / 72 74b .

RESULTS_REWRITES+= "s/Godkänd(G)/G/g" "s/Underkänd(U)/U/g"
RESULTS_REWRITES+= "s/Komplettering(Fx)/Fx/g"
RESULTS_REWRITES+= "s/\"//g"

11.2.2 Extracting the changes
Now we want to find what has changed since the last time we exported the
grades. For this we will create a file ${out}.diff which contains only the
changed rows.

73g 〈targets 71d〉+≡ (71a) / 73a 74e .
${out}.diff: ${out}.new
〈diff recipe 74a〉

73

We are not interested in the headers of the table, so we skip that line.
74a 〈diff recipe 74a〉≡ (73g) 74c .

${GREP} -v "^.\?First \?name" ${out}.new | \

We are not interested in reporting students’ failed results, so we filter out those.
In ${RESULTS_FAILED} we keep a regular expression for the grades that shall be
removed. We then use ${RESULTS_FAILED_regex} to match against the data.

74b 〈variables 70〉+≡ (71a) / 73f 76b .

RESULTS_FAILED?= -\|Fx\?\|U
RESULTS_FAILED_regex= "\(\| \|,\)\"\?\(${RESULTS_FAILED}\)\"\?\(.*\)*$$"

The code to filter the data will thus be:
74c 〈diff recipe 74a〉+≡ (73g) / 74a 74d .

$(if ${RESULTS_FAILED},${GREP} -v ${RESULTS_FAILED_regex} |,) \

Finally, we want to compare this result with the old result and keep only
the modified lines. For the convenience of the secretaries we will also sort the
data on the third column (i.e. family name).

74d 〈diff recipe 74a〉+≡ (73g) / 74c
${DIFF} ${@:.diff=} - | ${SED} -n "/^> /s/^> //p" | ${SORT} -k 3 > $@

Due to the difference comparison we require that the new file depends on the
old file, and that the old file actually exists, so we add this as a dependency.

74e 〈targets 71d〉+≡ (71a) / 73g 74f .
${out}.diff: ${out}

We will have to ensure that the old file exists, i.e. create it if it does not exist.
We need it for comparisons, an empty file perfectly represents previously non-
existent results, so we create a symbolic link to /dev/null.

74f 〈targets 71d〉+≡ (71a) / 74e 74g .
${out}:
[-r $@] || ${LN} -s /dev/null $@

11.2.3 Extracting identifiers for reporting
In Moodle, every student is identified by a unique username. In the national
database of grades, every student is uniquely identified by their civic registration
number. What we want to do here is to extract the username from the exported
data, then supply the corresponding civic registration numbers. We are only
interested in the usernames of those students for whom the results changed, so
we can use the ${out}.diff file from above.

In this case we can use one of make’s suffix-based constructions. We will
take a file with suffix ‘.csv.diff’ and create a file ‘.csv.diff.id’.

74g 〈targets 71d〉+≡ (71a) / 74f 75c .
.SUFFIXES: .csv .csv.diff .csv.diff.id
.csv.diff.csv.diff.id:
〈identifier recipe 75a〉

74

Now we want to extract the usernames and get the identifiers from the national
database. We simply extract the list of usernames (the third column in the
data) and pipe it to a pager.

75a 〈identifier recipe 75a〉≡ (74g) 75b .

@echo "–– userids showed in ${PAGER} ––"
${CAT} $< | ${CUT} -f 3 | ${PAGER}

Now we let the user paste the list of both identifiers.
75b 〈identifier recipe 75a〉+≡ (74g) / 75a

@echo "–– paste username <tab> personnummer, end with C-d on a blank line (EOF) ––"
${CAT} > $@

11.2.4 Generating the report
Now we have the changes in ${out}.diff and a mapping from usernames to
civic registration numbers in ${out}.diff.id. To create the report, we only
have to join these files and convert the result to PDF format.

To convert a CSV-file to PDF we will use LibreOffice and one of make’s
suffix rules.

75c 〈targets 71d〉+≡ (71a) / 74g 75d .

.SUFFIXES: .csv .pdf

.csv.pdf:
${LOCALC} $<

Now we can add a target using this conversion.
75d 〈targets 71d〉+≡ (71a) / 75c 75e .

${report:.csv=.pdf}: ${report:.pdf=.csv}

The above target lets us create a PDF-formatted report from a CSV-file, so
now we have to create that CSV-file using ${out}.diff and ${out}.diff.id.
We also need the table headers from ${in}.

75e 〈targets 71d〉+≡ (71a) / 75d 76c .
${report:.pdf=.csv}: ${in} ${out}.diff ${out}.diff.id
〈report.csv recipe 75g〉

Since the target for report.csv will automatically generate ${out}.diff and
${out}.diff.id we would better add them to the clean recipe in addition to
the ${report:.pdf=.csv} file.

75f 〈clean recipe 73b〉+≡ (71e) / 73b 76d .

${RM} ${out}.diff ${out}.diff.id
${RM} ${report:.pdf=.csv}

Now we want the header back, so we can get it properly formatted from
${out}.new. However, we do not want all the excess columns for the grades:
we only need one column with a summary.

75g 〈report.csv recipe 75g〉≡ (75e) 76a .
${HEAD} -n 1 ${out}.new | \
${CUT} -f -${RESULTS_COLUMNS} > $@

75

Next, we simply join the two tables on the username column and sort the list
on the column of the family name. We want to cut the excess columns here as
well, the number of columns is controlled by ${RESULTS_COLUMNS}.

76a 〈report.csv recipe 75g〉+≡ (75e) / 75g
${JOIN} -1 1 -2 3 ${out}.diff.id ${out}.diff | ${CUT} -d " " -f 2- | \
${SORT} -k 2 | ${CUT} -d " " -f -${RESULTS_COLUMNS} » $@

By default we let the default number of columns be four, i.e. first and last name,
civic identification number and finally one grade.

76b 〈variables 70〉+≡ (71a) / 74b
RESULTS_COLUMNS?= 4

11.3 Sending and storing the results
Now we will do the actual reporting. As stated in Section 11.1 we have a target
report for this purpose.

76c 〈targets 71d〉+≡ (71a) / 75e
.PHONY: report
report: ${report} ${in}

Since this will trigger the creation of ${report} we must add it to the clean
recipe.

76d 〈clean recipe 73b〉+≡ (71e) / 75f
${RM} ${report}

If there are no new results, then we do not want to send any report. The
first thing we do is thus to check for new results. If there are none, we will say
so to the user.

76e 〈report recipe 76e〉≡ (71d) 76f .
if [! -s ${out}.diff]; then \
echo "No new results to report" >&2; \

Otherwise, if there are new results, we will output them using the pager and
then send them using the email program. If the emailing succeeds, then we want
to store the results, but not if it fails (hence the conditional).

76f 〈report recipe 76e〉+≡ (71d) / 76e
else \
${PAGER} ${report}; \
${RESULTS_MAILER} && \
${MV} ${out}.new ${out}; \

fi

76

Part VI

Appendices

77

Appendix A

MIUN-compatibility layer

A.1 Introduction
This entire makefile collection grew out of a set of generic makefiles for handling
course material that I started to develop at Mid Sweden University (MIUN),
starting back in 2011. In 2014 I started my PhD in KTH Royal Institute of
Technology and I started to add some research oriented parts and by 2016 I
refactored everything and rewrote it using literate programming. A lot of my
material still depends on the original MIUN structure, the aim of this file is to
map the old ‘MIUN API’ to the current one.

We will create a file 〈miun.compat.mk 78〉 which will implement the old API
using the new. We let 〈miun.compat.mk 78〉 implement each old module as a
code block.

78 〈miun.compat.mk 78〉≡
ifndef MIUN_COMPAT_MK
MIUN_COMPAT_MK=true

〈miun.subdir.mk 79a〉
〈miun.package.mk 79b〉
〈miun.pub.mk 80a〉
〈miun.export.mk 80b〉
〈miun.tex.mk 81〉
〈miun.docs.mk 82〉
〈miun.course.mk 83〉
〈miun.results.mk 84a〉
〈miun.depend.mk 84b〉

endif

This way we can create separate files containing only the individual parts too.
Then we do not have to modify old Makefiles to include miun.compat.mk.

78

A.2 miun.subdir.mk
The code to recurse through subdirectories is essentially the same, it has no
API, so we simply include it using the recommended way.

79a 〈miun.subdir.mk 79a〉≡ (78)
ifndef MIUN_SUBDIR_MK
MIUN_SUBDIR_MK=true

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/subdir.mk

endif # MIUN_SUBDIR_MK

A.3 miun.package.mk
We will base the old interface on revision 448 in the original internal MIUN
repo, i.e. dated 2014-11-18 16:14:21Z. The current version of pkg.mk already
maps the interface quite well, so we only have to map the last few parts and
include the new include file.

79b 〈miun.package.mk 79b〉≡ (78)
ifndef MIUN_PACKAGE_MK
MIUN_PACKAGE_MK=true

ifdef TARBALL_NAME
PKG_TARBALL?=${TARBALL_NAME}.tar.gz
endif

ifdef DOCS_FILES
PKG_PACKAGES= main docs

PKG_INSTALL_FILES-docs?=${DOCS_FILES}
PKG_INSTALL_DIR-docs?=${DOCSDIR}
endif

.PHONY: all
all: package

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/pkg.mk

endif # MIUN_PACKAGE_MK

79

A.4 miun.pub.mk
We will base the old interface on revision 448 in the original internal MIUN
repo, i.e. dated 2014-11-18 16:14:21Z. The current version of pub.mk already
maps the interface quite well, so we only have to set the old defaults, map the
last few variables and include the new include file.

80a 〈miun.pub.mk 80a〉≡ (78)
ifndef MIUN_PUB_MK
MIUN_PUB_MK=true

SERVER?= ver.miun.se
PUBDIR?= /srv/web/svn
CATEGORY?=
TMPDIR?= /var/tmp
PUB_GROUP?= svn

ifdef NO_COMMIT
PUB_AUTOCOMMIT?=${NO_COMMIT}
endif

ifdef COMMIT_OPTS
PUB_COMMIT_OPTS?=${COMMIT_OPTS}
endif

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/pub.mk

endif # MIUN_PUB_MK

A.5 miun.export.mk
We will base the old interface on revision 287 in the original internal MIUN
repo, i.e. dated 2013-01-21 23:27:17Z.

80b 〈miun.export.mk 80b〉≡ (78)
ifndef MIUN_EXPORT_MK
MIUN_EXPORT_MK=true

TRANSFORM_SRC= .tex
TRANSFORM_DST= .exporttex

TRANSFORM_LIST.exporttex= NoSolutions
TRANSFORM_LIST-Makefile.export= OldExportFilter ExportFilter

INCLUDE_MAKEFILES?=.

80

include ${INCLUDE_MAKEFILES}/transform.mk

endif # MIUN_EXPORT_MK

A.6 miun.tex.mk
We will base the old interface on revision 450 in the original internal MIUN
repo, i.e. dated 2014-11-26 12:21:11Z. It is only the submission target that is
not implemented from that version.

81 〈miun.tex.mk 81〉≡ (78)
ifndef MIUN_TEX_MK
MIUN_TEX_MK=true

TEX_OUTDIR?= .

TEXMF?= ${HOME}/texmf

ifneq (${USE_LATEXMK},yes)
LATEX?= latex
PDFLATEX?= pdflatex
endif

ifneq (${USE_BIBLATEX},yes)
TEX_BBL= yes
endif

solutions?= no
handout?= no

TRANSFORM_SRC= .tex

ifeq (${solutions},yes)
TRANSFORM_DST+= .solutions.tex
TRANSFORM_LIST.solutions.tex=PrintAnswers

%.pdf: %.solutions.pdf
${LN} $< $@

endif

ifeq (${handout},yes)
TRANSFORM_DST+= .handout.tex
TRANSFORM_LIST.handout.tex=Handout

%.pdf: %.handout.pdf

81

${LN} $< $@
endif

.PHONY: all
all: ${DOCUMENTS}

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/tex.mk
include ${INCLUDE_MAKEFILES}/transform.mk

endif # MIUN_TEX_MK

A.7 miun.docs.mk
We will base the old interface on revision 423 in the original internal MIUN
repo, i.e. dated 2014-05-09 09:36:13Z.

82 〈miun.docs.mk 82〉≡ (78)
ifndef MIUN_DOCS_MK
MIUN_DOCS_MK=true

DOCUMENTS?=
PUB_FILES?= ${DOCUMENTS}
SERVER?= ver.miun.se
PUBDIR?= /srv/web/svn/dokument
CATEGORY?=

ifdef PRINT
LPR?= ${PRINT}
endif

.PHONY: all
all: ${DOCUMENTS}

.PHONY: print
print: ${DOCUMENTS:.pdf=.ps}

.PHONY: clean-docs
clean-docs:
ifneq (${DOCUMENTS},)
${RM} ${DOCUMENTS}

endif

.PHONY: clean
clean: clean-docs

82

.PHONY: todo
todo: $(wildcard *)

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/miun.tex.mk
include ${INCLUDE_MAKEFILES}/miun.pub.mk

endif # MIUN_DOCS_MK

A.8 miun.course.mk
We will base the old interface on revision 423 in the original internal MIUN
repo, i.e. dated 2014-05-09 09:36:13Z.

83 〈miun.course.mk 83〉≡ (78)
ifndef MIUN_COURSE_MK
MIUN_COURSE_MK=true

DOCUMENTS?=
PUB_FILES?= ${DOCUMENTS}
SERVER?= ver.miun.se
PUBDIR?= /srv/web/svn/courses
CATEGORY?=

.PHONY: all
all: ${DOCUMENTS}

.PHONY: clean-course
clean-course:
ifneq (${DOCUMENTS},)
${RM} ${DOCUMENTS}

endif

.PHONY: clean
clean: clean-course

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/miun.docs.mk
include ${INCLUDE_MAKEFILES}/miun.export.mk

endif # MIUN_COURSE_MK

83

A.9 miun.results.mk
We will base the old interface on revision 448 in the original internal MIUN
repo, i.e. dated 2014-11-18 16:14:21Z.

84a 〈miun.results.mk 84a〉≡ (78)
ifndef MIUN_RESULTS_MK
MIUN_RESULTS_MK=true

in?= ${COURSE}.txt
out?= reported.csv
report?= new_results.pdf

RESULTS_COURSE?= ${COURSE}
RESULTS_EMAIL?= ${EXPADDR}

MAILER?= thunderbird -compose \
"to=${EXPADDR},subject=’resultat ${COURSE}’,attachment=’file://${report}’"

RESULTS_MAILER?= ${MAILER}

REWRITES?= "s/Godkänd(G)/G/g" "s/Underkänd(U)/U/g" "s/Komplettering(Fx)/Fx/g"
RESULTS_REWRITES?=${REWRITES}

FAILED?= -\|Fx\?\|U
RESULTS_FAILED?= ${FAILED}

FAILED_regex= " \(${FAILED}\)\(.*\)*$$"
RESULTS_FAILED_regex?=${FAILED_regex}

INCLUDE_MAKEFILES?=.
include ${INCLUDE_MAKEFILES}/results.mk

endif # MIUN_RESULTS_MK

A.10 miun.depend.mk
We will base the old interface on revision 464 in the original internal MIUN
repo, i.e. dated 2015-05-26 12:51:03Z. The dependencies for Springer, ACM etc.
has been removed.

84b 〈miun.depend.mk 84b〉≡ (78)
ifndef MIUN_DEPEND_MK
MIUN_DEPEND_MK=true

CONF?= /etc/mk.conf
-include ${CONF}

84

.PHONY: dvips
ifeq (${MAKE},gmake)
dvips:
which dvips || sudo pkg_add ghostscript

else
dvips:
which dvips || sudo apt-get install texlive-full

endif

.PHONY: pdf2ps
ifeq (${MAKE},gmake)
pdf2ps:
which pdf2ps || sudo pkg_add ghostscript

else
pdf2ps:
which pdf2ps || sudo apt-get install texlive-full

endif

.PHONY: latex
ifeq (${MAKE},gmake)
latex:
which latex || sudo pkg_add texlive_texmf-full

else
latex:
which latex || sudo apt-get install texlive-full

endif

.PHONY: latexmk
ifeq (${MAKE},gmake)
latexmk:
which latexmk || sudo pkg_add latexmk

else
latexmk:
which latexmk || sudo apt-get install latexmk

endif

.PHONY: pax
ifeq (${MAKE},gmake)
pax:
which pax

else
pax:
which pax || sudo apt-get install pax

endif

85

.PHONY: sed
ifeq (${MAKE},gmake)
SED= gsed
SEDex= gsed -E
sed gsed:
which gsed || sudo pkg_add gsed

else
sed gsed:
which sed

endif

.PHONY: grep
ifeq (${MAKE},gmake)
GREP= ggrep
GREPex= ggrep -E
grep ggrep:
which ggrep || sudo pkg_add ggrep

else
grep ggrep:
which grep

endif

.PHONY: git
ifeq (${MAKE},gmake)
git:
which git || sudo pkg_add git git-svn

else
git:
which git || sudo apt-get install git git-svn

endif

.PHONY: wget
ifeq (${MAKE},gmake)
wget:
which wget || sudo pkg_add wget

else
wget:
which wget || sudo apt-get install wget

endif

.PHONY: localc
ifeq (${MAKE},gmake)
localc:
which localc || sudo pkg_add libreoffice

else
localc:

86

which localc || sudo apt-get install libreoffice
endif

.PHONY: update

update: update-rfc

.PHONY: rfc remove-rfc update-rfc clean-rfc

rfc: rfc.bib

remove-rfc::
${RM} -f ${TEXMF}/tex/latex/rfc.bib

update-rfc: remove-rfc ${TEXMF}/tex/latex/rfc.bib

.PHONY: clean-depends
#clean: clean-depends
clean-depends: clean-rfc
clean-rfc:
${RM} rfc.bib

${TEXMF}/tex/latex/rfc.bib: ${wget-depend}
mkdir -p ${TEXMF}/tex/latex/
wget -O - http://tm.uka.de/~bless/rfc.bib.gz 2>/dev/null | \
uncompress - > ${@}

rfc.bib:
if [-e ${TEXMF}/tex/latex/rfc.bib]; then \
ln -s ${TEXMF}/tex/latex/rfc.bib rfc.bib ; \

else \
wget -O - http://tm.uka.de/~bless/rfc.bib.gz 2>/dev/null | \
uncompress - > ${@} ; \

fi

update: latexmkrc miun.tex.mk miun.course.mk miun.docs.mk
update: miun.export.mk miun.pub.mk miun.package.mk
update: miun.subdir.mk miun.results.mk

latexmkrc miun.tex.mk \
miun.course.mk miun.docs.mk miun.export.mk miun.pub.mk \
miun.package.mk miun.subdir.mk miun.results.mk:
wget -O $@ http://ver.miun.se/build/$@

clean-depends:

87

${RM} latexmkrc miun.tex.mk miun.course.mk miun.docs.mk miun.export.mk
${RM} miun.pub.mk miun.package.mk miun.subdir.mk miun.results.mk

update: miunmisc miunart miunasgn miunbeam miunexam
update: miunlett miunprot miunthes

MIUN Miscellanous package and Logo

miunmisc-depend?= ${TEXMF}/tex/latex/miun/miunmisc/miunmisc.sty
logo-depend?= ${TEXMF}/tex/latex/miun/miunmisc/MU_logotyp_int_sv.eps \

${TEXMF}/tex/latex/miun/miunmisc/MU_logotyp_int_CMYK.eps

${miunmisc-depend} ${logo-depend}:
wget -O /tmp/miunmisc.tar.gz \
http://ver.miun.se/latex/packages/miunmisc.tar.gz

cd /tmp && tar -zxf miunmisc.tar.gz
cd /tmp/miunmisc && ${MAKE} install

#.PHONY: miunmisc miunlogo
#miunmisc: ${miunmisc-depend}
#miunlogo: miunmisc

MIUN Article class

miunart-depend?= ${TEXMF}/tex/latex/miun/miunart/miunart.sty
${miunart-depend}:
wget -O /tmp/miunart.tar.gz \
http://ver.miun.se/latex/packages/miunart.tar.gz

cd /tmp && tar -zxf miunart.tar.gz
cd /tmp/miunart && ${MAKE} install

#.PHONY: miunart
#miunart: ${miunart-depend} miunlogo

MIUN Assignment class

miunasgn-depend?= ${TEXMF}/tex/latex/miun/miunasgn/miunasgn.sty
${miunasgn-depend}:
wget -O /tmp/miunasgn.tar.gz \
http://ver.miun.se/latex/packages/miunasgn.tar.gz

cd /tmp && tar -zxf miunasgn.tar.gz
cd /tmp/miunasgn && ${MAKE} install

#.PHONY: miunasgn
#miunasgn: ${miunasgn-depend} miunlogo

88

MIUN Beamer class

miunbeam-depend?= ${TEXMF}/tex/latex/miun/miunbeam/miunbeam.sty
${miunbeam-depend}:
wget -O /tmp/miunbeam.tar.gz \
http://ver.miun.se/latex/packages/miunbeam.tar.gz

cd /tmp && tar -zxf miunbeam.tar.gz
cd /tmp/miunbeam && ${MAKE} install

#.PHONY: miunbeam
#miunbeam: ${miunbeam-depend} miunlogo

MIUN Exam class

miunexam-depend?= ${TEXMF}/tex/latex/miun/miunexam/miunexam.sty
${miunexam-depend}:
wget -O /tmp/miunexam.tar.gz \
http://ver.miun.se/latex/packages/miunexam.tar.gz

cd /tmp && tar -zxf miunexam.tar.gz
cd /tmp/miunexam && ${MAKE} install

#.PHONY: miunexam
#miunexam: ${miunexam-depend} miunlogo

MIUN Letter class

miunlett-depend?= ${TEXMF}/tex/latex/miun/miunlett/miunlett.sty
${miunlett-depend}:
wget -O /tmp/miunlett.tar.gz \
http://ver.miun.se/latex/packages/miunlett.tar.gz

cd /tmp && tar -zxf miunlett.tar.gz
cd /tmp/miunlett && ${MAKE} install

#.PHONY: miunlett
#miunlett: ${miunlett-depend} miunlogo

MIUN Protocol class

miunprot-depend?= ${TEXMF}/tex/latex/miun/miunprot/miunprot.sty
${miunprot-depend}:
wget -O /tmp/miunprot.tar.gz \
http://ver.miun.se/latex/packages/miunprot.tar.gz

cd /tmp && tar -zxf miunprot.tar.gz
cd /tmp/miunprot && ${MAKE} install

#.PHONY: miunprot

89

#miunprot: ${miunprot-depend} miunlogo

MIUN Thesis class

miunthes-depend?= ${TEXMF}/tex/latex/miun/miunthes/miunthes.sty
${miunthes-depend}:
wget -O /tmp/miunthes.tar.gz \
http://ver.miun.se/latex/packages/miunthes.tar.gz

cd /tmp && tar -zxf miunthes.tar.gz
cd /tmp/miunthes && ${MAKE} install

#.PHONY: miunthes
#miunthes: ${miunthes-depend} miunlogo

endif # MIUN_DEPEND_MK

90

Bibliography

[Aye] Andrew Ayer. git-crypt: transparent file encryption in git. Accessed
on 23rd October 2016. url: https://www.agwa.name/projects/
git-crypt/.

[Bos16] Daniel Bosk. examgen: An exam generator. v3.1. 2016. url: https:
//github.com/dbosk/examgen/releases/tag/v3.1.

[CP11] Brian Carpenter and Craig Partridge. Recommendations of a com-
mittee on RFC citation issues. Internet draft. Internet Engineering
Task Force, Feb. 2011. url: https://tools.ietf.org/html/
draft-carpenter-rfc-citation-recs-01#section-5.2.

[GNU16] GNU Project. GNU Make Manual. Free Software Foundation. May
2016. url: https://www.gnu.org/software/make/manual/.

[Gre16] Enrico Gregorio. The package imakeidx. v1.3d. May 2016.

[Hir15] Philip Hirschhorn. Using the exam document class. 2.5. May 2015.

[KC16] Philip Kime and François Charette. biber: A backend bibliography
processor for biblatex. v2.5. May 2016.

[Leh+16] Philipp Lehman, Philip Kime, Audrey Boruvka and Joseph Wright.
The biblatex package. v3.4. May 2016.

[Nie16] Clemens Niederberger. ACRO. v2.6a. Aug. 2016.

[Tal16] Nicola L.C. Talbot. User manual for glossaries.sty v4.25. June 2016.

[TWM15] Till Tantau, Joseph Wright and Vedran Miletić. The Beamer class.
3.36. Mar. 2015.

91

https://www.agwa.name/projects/git-crypt/
https://www.agwa.name/projects/git-crypt/
https://github.com/dbosk/examgen/releases/tag/v3.1
https://github.com/dbosk/examgen/releases/tag/v3.1
https://tools.ietf.org/html/draft-carpenter-rfc-citation-recs-01#section-5.2
https://tools.ietf.org/html/draft-carpenter-rfc-citation-recs-01#section-5.2
https://www.gnu.org/software/make/manual/

	I General building blocks
	portability.mk
	Introduction
	Standard Unix commands
	File system commands
	Viewing file contents
	Filtering and transformations
	Statistics

	Networking commands
	Compressed files and archives
	Compressing and uncompressing files
	Packing and extracting from archives

	subdir.mk
	Introduction and usage
	Implementation

	II Packaging and publishing
	pkg.mk
	Introduction and usage
	Portability

	Implementation
	Packaging
	Cleaning
	Installation

	pub.mk
	Introduction and usage
	Publication methods
	Publishing to multiple sites
	Automatically tag on publication

	Implementation
	The general publication mechanism
	Publication methods
	Automatically committing and tagging

	transform.mk
	Introduction and usage
	Implementation overview
	A transformation mechanism
	Removing solutions
	Removing excessive build instructions
	Handouts and solutions

	Preparing camera-ready source
	Using encrypted files

	III Papers and documents
	tex.mk
	Introduction and usage
	Implementation overview
	Targets for documents
	Auxillary files
	Bibliographies
	Indices
	PythonTeX
	Document files

	Targets for class and package files
	External classes and packages
	Springer LNCS
	LNCS style for biblatex
	ACM classes
	The RFC bibliography
	Proceedings of the Privacy Enhancing Technologies Symposium

	doc.mk
	Introduction and usage
	Implementation
	Printing
	Counting words
	To-do lists
	Format conversion

	IV Literate programming
	noweb.mk
	Introduction and usage
	Implementation
	Weaving documentation
	Tangling code

	haskell.mk
	Introduction, usage and implementation

	V Assessment
	exam.mk
	Introduction and usage
	Implementation

	results.mk
	Introduction and usage
	Portability

	Processing Moodle's output
	Transforming Moodle's output
	Extracting the changes
	Extracting identifiers for reporting
	Generating the report

	Sending and storing the results

	VI Appendices
	MIUN-compatibility layer
	Introduction
	miun.subdir.mk
	miun.package.mk
	miun.pub.mk
	miun.export.mk
	miun.tex.mk
	miun.docs.mk
	miun.course.mk
	miun.results.mk
	miun.depend.mk

	Bibliography

