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Abstract. In this paper we develop and experimentally evaluate a novel
GPU-based implementation of the morphological reconstruction opera-
tion. This operation is commonly used in the segmentation and feature
computation steps of image analysis pipelines, and often serves as a com-
ponent in other image processing operations. Our implementation builds
on a fast hybrid CPU algorithm, which employs a queue structure for ef-
ficient execution, and is the first GPU-enabled version of the queue-based
hybrid algorithm. We evaluate our implementation using state-of-the-art
GPU accelerators and images obtained by high resolution microscopy
scanners from whole tissue slides. The experimental results show that
our GPU version achieves up to 20x speedup as compared to the se-
quential CPU version. Additionally, our implementation’s performance
is superior to the previously published GPU-based morphological recon-
struction, which is built on top of slower baseline version of the operation.

1 Introduction

Image data and image analysis have applications in a wide range of domains,
including satellite data analyses, astronomy, computer vision, and biomedical
research. In biomedical research, for instance, digitized microscopy imaging plays
a crucial role in quantitative characterization of biological structures in great
detail at cellular and sub-cellular levels. Instruments to capture high resolution
images from tissue slides and tissue microarrays have advanced significantly in
the past decade. A state-of-the-art slide scanner can capture a 50Kx50K pixel
image in a few minutes from a tissue sectioned at 3-5 micron thickness, enabling
the application of this technology in research and healthcare delivery. Systems
equipped with auto-focus mechanisms can process batches of slides with minimal
manual intervention and are making large databases of high resolution slides
feasible.

In a brain tumor studies, for instance, images created using these devices may
contain upto 20 billion pixels (with digitization at 40X objective magnification),
or approximately 56 GB in size when represented as 8 bit uncompressed RGB
format. To extract meaningful information from these images, they usually are
processed through a series of steps such as color normalization, segmentation,
feature computation, and classification in order to extract anatomic structures at
cellular and sub-cellular levels and classify them [1]. The analysis steps consist



of multiple data and compute intensive operations. The processing of a large
image can take tens of hours.

On the computational hardware front, GPGPUs have become a popular im-
plementation platform for science applications. There is a shift towards heteroge-
neous high performance computing architectures consisting of multi-core CPUs
and multiple general-purpose graphics processing units (GPGPUs). Image anal-
ysis algorithms and underlying operations, nevertheless, need to take advantage
of GPGPUs to fully exploit the processing of such systems.

In this paper, we develop and experimentally evaluate an efficient GPU-
based implementation of the morphological reconstruction operation. Morpho-
logical reconstruction is commonly used in the segmentation, filtering, and fea-
ture computation steps of image analysis pipelines. Morphological reconstruc-
tion is essentially an iterative dilation of a marker image, constrained by the
mask image, until stability is reached (the details of the operation are described
in Section 2). The processing structure of morphological reconstruction is also
common in other application domains. The techniques for morphological recon-
struction can be extended to such applications as the determination of Euclidean
skeletons [8] and skeletons by influence zones [5]. Additionally, Delaunay trian-
gulations [10], Gabriel graphs [2] and relative neighborhood graphs [11] can be
derived from these methods, and obtained in arbitrary binary pictures [12].

2 Morphological Reconstruction Algorithms

A number of morphological reconstruction algorithms have been developed and
evaluated by Vincent [13]. We refer the reader to his paper for a more formal
definition of the operation and the details of the algorithms. In this section we
briefly present the basics of morphological reconstruction, including definitions
and algorithm versions.

Morphological reconstruction algorithms were developed to both binary and
gray scale images. In gray scale images the value of a pixel p, I(p), comes from a
set {0, ..., L—1} of gray levels in a discrete or continuous domain, while in binary
images there are only two levels. Figure 1 illustrates the process of gray scale
morphological reconstruction in 1-dimension. The marker intensity profile (red)
is propagated spatially but is bounded by the mask image’s intensity profile
(blue). In a simplified form, the reconstruction py(J) of mask I from marker
image J is done by performing elementary dilations (i.e., dilations of size 1) in
J by a structuring element G. Here, G is a discrete grid, which provides the
neighborhood relationships between pixels. A pixel p is a neighbor of pixel ¢
if and only if (p,q) € G. G is usually a 4-connected or 8-connected grid. An
elementary dilation from a pixel p corresponds to propagation from p to its
immediate neighbors in GG. The basic algorithm carries out elementary dilations
successively over the entire image J, updates each pixel in J with the pixelwise
minimum of the dilation’s result and the corresponding pixel in I (i.e., J(p) +
(max{J(q),q € Na(p)U{p}})AI(p); where N¢(p) is the neighborhood of a pixel
pon grid G and A is the pixelwise minimum operator), and stops when stability
is reached, i.e., when no more pixel values are modified.



Fig. 1. Gray scale morphological reconstruction in 1-dimension. The marker image
intensity profile is represented as the red line, and the mask image intensity profile is
represented as the blue line. The final image intensity profile is represented as the green
line. The arrows show the direction of propagation from the marker intensity profile
to the mask intensity profile. The green region shows the changes introduced by the
morphological reconstruction process.

Vincent has presented several morphological reconstruction algorithms,
which are based on this core technique [13]:

Sequential Reconstruction (SR): Pixel value propagation in the marker image
is computed by alternating raster and anti-raster scans. A raster scan starts
from the pixel at (0,0) and proceeds to the pixel at (N — 1,M — 1) in a
row-wise manner. An anti-raster scan starts from the pixel at (N — 1, M — 1)
and moves to the pixel at (0,0) in a row-wise manner. Here, N and M are
the resolutions of the image in z and y dimensions, respectively. In each scan,
values from pixels in the upper left or the lower right half neighborhood are
propagated to the current pixel in raster or anti-raster fashion, respectively.
The raster and anti-raster scans allow for changes in a pixel to be propagated
in the current iteration. The SR method iterates until stability is reached, i.e.,
no more changes in pixels are computed.

Queue-based Reconstruction (QB): In this method, a first-in first-out (FIFO)
queue is initialized with pixels in the regional maxima. The computation then
proceeds by removing a pixel from the queue, scanning the pixel’s neighborhood,
and queuing the neighbor pixels that changed. The overall process continues
until the queue is empty. The regional maxima needed to initialize the queue
requires significant computational cost to generate.

Fast Hybrid Reconstruction (FH): This approach incorporates the characteristics
of SR and QB algorithms, and is about one order of magnitude faster than the
others. It first makes one pass using the raster and anti-raster scans as in SR.
After that pass, it continues the computation using a FIFO queue as in QB.

A pseudo-code implementation of FH is presented in Algorithm 1, Nt and
N~ denote the set of neighbors in Ng(p) that are reached before and after
touching pixel p during a raster scan.



Algorithm 1 Fast Hybrid gray scale reconstruction
Input

I: mask image
J: marker image, defined on domain Dy, J < 1.

: Scan Dj in raster order.

Let p be the current pixel

J(p) « (maz{J(q),q € N&(p) U {p}}) A L(p)
: Scan Dy in anti-raster order.

Let p be the current pixel

J(p) < (maz{J(q),q € N¢g (p) U{p}}) A (p)
if 3¢ € Ng (p) | J(q) < J(p) and J(q) < I(q)

fifo_add(p)
Queue-based propagation step}

10: while fifo_empty() = false do
11:  p « fifo_first()
12:  for all ¢ € Ng(p) do

13: if J(¢) < J(p) and I(q) # J(q) then
14: J(q) <= min{J(p), I(a)}
15: fifo_add(q)

3 Fast Parallel Hybrid Reconstruction Using GPUs

To the best of our knowledge, the only existing GPU implementation of mor-
phological reconstruction is a modified version of SR [4]: SR-GPU. As discussed
before, SR is about an order of magnitude slower than FH. Therefore, SR_GPU
is built on top of a slow base line algorithm, limiting its gains when compared to
the fastest CPU algorithm — FH. This section describes our GPU paralleliza-
tion of the Fast Hybrid Reconstruction algorithm, referred to in this paper as
FH_GPU.

The FH_GPU, as its CPU based counterpart, consists of a raster and anti-
raster scan phase that is followed by a queue-based phase. To implement the
raster and anti-raster scanning in our algorithm we extended the approach of
Karas [4]. We have made several changes to SR_.GPU: (1) we have templated
our implementation to support binary images as well as gray scale images with
integer and floating point data types; (2) we have optimized the implemen-
tation and multi-threaded execution for 2-dimensional images — the original
implementation was designed for 3-dimensional images. This modification al-
lows us to specialize the Y-direction propagation during the scans; and (3) we
have tuned the shared memory utilization to minimize communication between
memory hierarchies. For a detailed description of the GPU-based raster scan
phase we direct the reader to the paper [4]. The rest of this section discusses the
queue-based phase, which is the key aspect to achieve efficiency on execution of
morphological reconstruction and is the focus of this work.

3.1 Queue-based Phase Parallelization Strategy

After the raster scan phase, active pizels, those that satisfy the propagation
condition to a neighbor pixels, are inserted into a global queue for computation.



The global queued is then equally partitioned into a number of smaller queues.
Each of these queues is assigned to a GPU thread block. Each block can carry
out computations independently of the other blocks.

Two levels of parallelism can be implemented in the queue-based compu-
tation performed by each thread of block: (i) pixel level parallelism which al-
lows pixels queued for computation to be independently processed; and (ii) the
neighborhood level parallelism that performs the concurrent evaluation of a pixel
neighborhood. The parallelism in both cases, however, is available at the cost of
dealing with potential race conditions that may occur when a pixel is updated
concurrently.

Algorithm 2 GPU-based queue propagation phase

1: {Split initial queue equally among thread blocks}
2: while queue_empty() = false do
3:  while (p = dequeue(...))! = EMPTY do in parallel

4: for all ¢ € Ng(p) do

5: if J(q) < J(p) and I(q) # J(q) then

6: oldval = atomicM ax(&J(q), min{J(p),I(q)})
7 if oldval < min{J(p),I(q)} then

8: queue_add(q)

9: if tid =0 then

10: queue_swap-in_out()

11:  __syncthreads()

12:  __threadfence_block()

During execution, a value maz operation is performed on the value of the
current pixel being processed (p) and that of each pixel in the neighborhood
(¢ € Ng(p)) — limited by a fixed mask value I(q). To correctly perform this
computation, atomicity is required in the maximum and update operations. This
can only be achieved at the cost of extra synchronization overheads. The use of
atomic CAS operations is sufficient to solve this race condition. The efficiency
of atomic operations in GPUs have been significantly improved in the last gen-
eration of NVidia GPUs (Fermi) [9] because of the use of cache memory. Atomic
operations, however, still are more efficient in cases where threads do not concur-
rently try to update the same memory address. When multiple threads attempt
to update the same memory location, they are serialized in order to ensure cor-
rect execution. As a result, the number of operations successfully performed per
cycle is reduced [9].

To lessen the impact of the potential serial execution, our GPU paralleliza-
tion employs the pixel level parallelism only. The neighborhood level parallelism
is problematic in this case because the concurrent processing and updating of
pixels in a given neighborhood likely affect one another, since the pixels are
located in the same region of the image. Unlike traditional graph computing
algorithms (e.g., Breadth-First Search [3,6]), the lack of parallelism in neigh-
borhood processing does not result in load imbalance in the overall execution,
because all pixels have the same number of neighbors which is defined by the
structuring element G.



The GPU-based implementation of the queue propagation operation is pre-
sented in Algorithm 2. After splitting the initial queue, each block of threads
enters into a loop in which pixels are dequeued in parallel and processed, and
new pixels may be added to the local queue as needed. This process continues
until the queue is empty. Within each loop, the pixels queued in last iteration
are uniformly divided among the threads in the block and processed in parallel
(Lines 3—38 in Algorithm 2). The value of each queued pixel p is compared to
every pixel ¢ in the neighborhood of pixel p. An atomic maximum operation is
performed when a neighbor pixel ¢ should be updated. The value of pixel ¢ before
the maximum operation is returned (oldval), and used to determine whether the
pixel’s value has really been changed (Line 7 in Algorithm 2). This step is neces-
sary because there is a chance that another thread might have changed the value
of g between the time the pixel’s value is read to perform the update test and
the time that the atomic operation is performed (Lines 5 and 6 in Algorithm 2).
If the maximum operation performed by the current thread has changed the
value of pixel g, ¢ is added to the queue for processing in the next iteration of
the loop. Even with this control, it may happen that between the test in line 7
and the addition to the queue, the pixel ¢ may have been modified again. In this
case, q is added multiple times to the queue, and although it may impact the
performance, the correctness of the algorithm is not affected.

After computing pixels from the last iteration, pixels that are added to the
queue in the current iteration are made available for the next iteration, and all
writes performed by threads in a block are guarantee to be consistent (Lines 9
to 12 in the algorithm). As described in the next section, the choice to process
pixels in rounds, instead of making each pixel inserted into the queue immedi-
ately accessible, is made in our design to implement a queue with very efficient
read performance (dequeue performance) and with low synchronization costs to
provide consistency among threads when multiple threads read from and write
to the queue.

3.2 Parallel Queue Implementation and Management

The parallel queue is a core data structure employed by FH_GPU. It is used to
store information about pixels that are active in the computation and should be
processed. An efficient parallel queue for GPUs is a challenging problem [3, 4, 6]
due to the sequential and irregular nature of accesses.

A straight forward implementation of a queue (named Naive here), as pre-
sented by Hong et al. [3], could be done by employing an array to store items
in sequence and using atomic additions to calculate the position where each
item should be inserted. Hong et al. stated that this solution worked well for
their use case. The use of atomic operations, however, is inefficient when the
queue is heavily employed as in our algorithm. Moreover, a single queue that
is shared among all thread blocks introduces additional overheads to guarantee
consistency across threads in the entire device.

We have designed a parallel queue that operates independently in a per
thread block basis to avoid inter-block communication, and is built with a cas-
cade of storage levels in order to exploit the GPU fast memories for efficient
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write and read accesses. The parallel queue (depicted in Figure 2) is constructed
in multiple-levels:(i) Per-Thread queues (TQ) which are very small queues pri-
vate to each thread, residing in the shared memory; (ii) Block Level Queue (BQ)
which is also in the shared memory, but is larger than TQ. Write operations to
the block level queue are performed in thread warp-basis; and (iii) Global Block
Level Queue (GBQ) which is the largest queue and uses the global memory of
the GPU to accumulate data stored in BQ when the size of BQ exceeds the
shared memory size.

The use of multiple levels of queues improves the scalability of the imple-
mentation, since portions of the parallel queue are utilized independently and
the fast memories are employed more effectively. In our queue implementation,
each thread maintains an independent queue (TQ) that does not require any
synchronization to be performed. In this way threads can efficiently store pixels
from a given neighborhood in the queue for computation. Whenever this level
of queue is full, it is necessary to perform a warp level communication to ag-
gregate the items stored in local queues and write them to BQ. In this phase,
a parallel thread warp prefix-sum is performed to compute the total number of
items queued in individual TQs. A single shared memory atomic operation is
performed at the Block Level Queue to identify the position where the warp
of threads should write their data. This position is returned, and the warp of
threads write their local queues to BQ.

Whenever a BQ is full, the threads in the corresponding thread block are
synchronized. The current size of the queue is used in a single operation to
calculate the offset in GBQ from which the BQ should be stored. After this
step, all the threads in the thread block work collaboratively to copy in parallel
the contents of QB to GBQ. This data transfer operation is able to achieve
high throughput, because the memory accesses are coalesced. It should be noted
that, in all levels of the parallel queue, an array is used to hold the queue
content. While the contents of TQ and BQ are copied to the lower level queues
when full, GBQ does not have a lower level queue to which its content can be
copied. In the current implementation, the size of GBQ is initialized with a



fixed tunable memory space. If the limit of GBQ is reached during an iteration
of the algorithm, excess pixels are dropped and not stored. The GPU method
returns a boolean value to CPU to indicate that some pixels have been dropped
during the execution of the method kernel. In that case, the algorithm has to
be re-executed, but using the output of the previous execution as input, because
this output already holds a partial solution of the problem. Hence, recomputing
using the output of the previous step as input will result in the same solution
as if the execution was carried out in a single step. The operation of reading
items from the queue for computation is embarrassingly parallel, as we statically
partitioning pixels queued in the beginning of each iteration.

4 Experimental Results

We evaluate the performance of the GPU-enabled fast hybrid morphological re-
construction algorithm (FH_GPU), comparing it to that of existing fastest CPU
and GPU implementations under different configurations. Test images used in
the experiments were extracted from the set of images collected from a brain
tumor research study. Each test image had been scanned at 20X magnification
resulting in roughly 50K x50K pixels. The images used in this studies are par-
titioned into tiles to perform image analyses on a parallel machine. A tile is
processed by a single GPU or a CPU core. Hence, the performance numbers
presented in this paper are per individual tiles.

We used a system with a contemporary CPU (Intel i7 2.66 GHz) and two
NVIDIA GPUs (C2070 and GTX580). Codes used in our evaluation were com-
piled using using “gcc 4.2.17, “-03” optimization flag, and NVidia CUDA SDK
4.0. The experiments were repeated 3 times, and, unless stated, the standard
deviation was not observed to be higher than 1.3%.

4.1 Results

The evaluation of morphological reconstruction, as the input data size varies,
using 4-connected and 8-connected grids is presented in Table 1. The speedups
are calculated using the single core CPU version as the baseline.

The results show that both SR_.GPU and FH_GPU achieve higher speedups
with 8-connected grids. The performance differences are primarily a consequence
of the GPU’s ability to accommodate the higher bandwidth demands of mor-
phological reconstruction with 8-connected grid, thanks to the higher random
memory access bandwidth of the GPU. For example, when the input tile is
4K x 4K, the CPU throughput, measured as a function of the number of pix-
els visited and compared per second, increases from 67 to 85 million pixels per
second as the grid changes from 4-connected to 8-connected. For the same sce-
nario, the FH_.GPU has a much better throughput improvement, going from 746
to 1227 million pixels per second. This difference in computing rates highlights
that morphological reconstruction has abundant parallelism primarily in mem-
ory operations (like other graph algorithms [3,7]), which limits the performance
of the CPU for the 8-connected case. The use of an 8-connected grid is usually



Input FH SR_GPU (ms) FH_GPU (ms) SR_GPU speedup FH_GPU speedup

Size CPU(ms) C2070 GTX 580 C2070 GTX 580 C2070 GTX 580 C2070 GTX 580

4-connected grid

4K x4K 1990 1578 1007 281 181 1.26 1.97 7.08 10.99
8K X 8K 8491 5393 3404 1034 646 1.57 2.49 8.21 13.14
12K x 12K 19174 11773 6688 2334 1350 1.62 2.86 8.21 14.2
16K x 16K 34818 19278 10990 3960 2256 1.80 3.16 8.79 15.43
8-connected grid
4K x4K 1314 599 401 169 115 2.19 3.27 7.77 11.42
8K X 8K 5267 1646 1089 502 316 3.19 4.83 10.49 16.66
12K x 12K 11767 3156 1952 1023 656 3.72 6.02 11.5 17.93
16K X 16K 20965 5076 3088 1736 1078 4.13 6.78 12.07 19.44

Table 1. Impact of the input tile size on the performance of (i) FH: the fastest CPU
version, (ii) SR_.GPU: the previous GPU implementation [4], and (iii) FH.GPU: our
queue-based GPU version.

more beneficial for SR_GPU, since the propagation of pixel values is more ef-
fective for larger grids and, as a result, fewer raster scans are needed to achieve
stability.

The performance analysis for FH_.GPU under the scenario with input data
size variation is also interesting. As larger input tiles are processed, maintaining
the number of threads fixed, the algorithm increases its efficiency. The change
from 4K x4K to 8K x8K tiles improved the throughput from about 1227 to 1533
millions of pixels visited and compared per second — using 8-connected grid and
the GTX 580. The throughput increase is consequence of a better utilization of
the GPU computing power, because of the smaller amortized synchronization
costs at the end of each iteration. The speedup on top of the CPU version is also
higher, since there is no throughput improvement for the CPU as the tile size
increases.

For tiles larger than 8Kx8K, no improvement in throughput is observed
for FH_.GPU either. Small increases in speedup values compared to the CPU
version are observed for the 12Kx 12K and 16K x16K image tiles. These gains
are consequence of the better performance achieved by the multiple iterations of
the raster scan phase, which is the initial phase in FH_.GPU before the queue-
based execution phase. The raster scans have a better performance for larger
image tiles because the overhead of launching the 4 GPU kernels used by the
raster scan phase is better amortized since more pixels are modified per pass.

5 Conclusions

We have presented an implementation of a fast hybrid morphological recon-
struction algorithm for GPUs. Unlike a previous implementation, the new GPU
algorithm is based on an efficient sequential algorithm and employs a queue-
based computation stage to speed up processing. Our experimental evaluation
on two state-of-the-art GPUs and using high resolution microscopy images show
that (1) multiple levels of parallelism can be leveraged to implement an efficient
queue and (2) a multi-level queue implementation allows for better utiliza-
tion of fast memory hierarchies in a GPU and reduces synchronization overheads.
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