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Abstract

We propose an efficient and deterministic algorithm for catimy the one dimensional
dilation and erosion (max and min) sliding window filters.r flegp-element sliding window,
our algorithm computes the 1D filter using+o(1) comparisons per sample point. Our algo-
rithm constitutes a deterministic improvement over the pesviously known such algorithm,
independently developed by van Herk [25] and by Gil and Wer{fa] (the HGW algorithm).
The results presented in this paper constitute also an weprent over the Gevorkian, Astola
and Atourian [9] (GAA) variant of the HGW algorithm. The inguement over the GAA
variant is also in the computation model. The GAA algorithmkes the assumption that the
input is independently and identically distributed (thedi.assumption), whereas our main
result is deterministic.

We also deal with the problem of computing the dilation aras&mn filters simultaneously,
as required e.g., for computing the unbiased morphologidgk. In the case of i.i.d. inputs
we show that this simultaneous computation can be done nfficeeitly then separately
computing each. We then turn to tlepeningfilter, defined as the application of the min
filter to the max filter, and give an efficient algorithm for @demputation. Specifically, this
algorithm is only slightly slower than the computation o$fuhe max filter. The improved
algorithms are readily generalized to two dimensions (feecangular window), as well as
to any higher finite dimension (for a hyper-box window), wiltle number of comparisons per
window remaining constant.

For the sake of concreteness, we also make a few commentgtenentation consider-
ations in a contemporary programming language.

*A preliminary version of this paper was published in the pedtings of ISMM’00 [11].



1 Introduction

In signal and image analysis one often encounters the problem of min (or max) computation
in a window withp elements in the one-dimensional (1D) casepor p elements in the two
dimensional (2D) case. In mathematical morphology [20], the result of such astopisireferred
to as the erosion (or dilation) of the signal witlstaucturing elemengiven by a pulse of width.

The unbiased morphological edgs obtained by subtracting the filtered min result from the
filtered max result. This filter has numerous applications in image proceaam@nalysis (see
e.g., [15, 18]). To appreciate the visual effect of the morphological edge detectciuahianages,

consider Figure 1 which gives three examples of edge detection, using a window sizedor

p=2,4,8,161

Figure 1: The effect of the unbiased morphological edge filter.
(Criginal image is shown on left frame, followed by the fikdrimage using rectangular windows sized

2x2,4x4,8x 8, andl6 x 16.)

As can be seen from the figure, edges are accentuated by the morphological edgendetect
filter. These ‘morphological gradients’ need further processing to provide usdéfwmation, see
e.g., [21, pp. 116-119]. It should be emphasized that even though the larger windows do not appear
to highlight the edges as clearly as the smaller windows, they are useful epegoessing stage

for scale-space analysis of images [2, 3, 8, 16, 19, 24]. Therefore, we aesitetm the problem

INote that wherp is even the filter is not centered at the pixels of the origimage. Thus, the result of the
application of the filters is not, strictly speaking, traatg&n invariant. The filtered image represents a half a [sikét

with respect to the original image. Our algorithms are elyusgbplicable for both odd and even
2



of computing the min and max problems fowale rangeof window sizep.

Filtering out image components smaller than a certain threshold is cawieelying on the
min and max filters with a suitable window size. Thk®sing (respectivelyopening filter is
obtained by feeding the results of the max (resp. min) filter to the min (resg) filter. Figure 2
gives an example of the application of the opening and closing filters. We sed¢helbsing
filter eliminates small dark image components, while the opening eliminatals white regions.

In both filters, the size of the window determines the size of the image compohahtsah be

removed.

Figure 2: The effect of the opening (top) and closing(bottom) filters.
(Criginal image is shown on left frame, followed by the fikdrimage using rectangular windows sized

2x2,4x4,8x 8, andl6 x 16.)

Gevorkian, Astola and Atourian [9] mention other applications of the min and ntaxsfiin
pattern analysis, adaptive signal processing and morphological analysis. Morphbluggca-
tions were found to be useful in 2D and 3D image processing and analysis. Applicaiituncei

micro-chip manufacturingvhere machine vision techniques are used by inspection tools for qual-
3



ity control and fault detection, feature detection éhiaracter recognition3D data analysis such
asmedical imagesgraphics applications, and video processing. Also, the above mentioned basic
morphological operations are by now core technology in many standard software tdolassuc
Matlab.

Recently, a patent that deals with efficient applications of such operatiasled7], where
a pyramidal morphological ‘structuring element’ is applied to images by a tanssprocedure.
Actually, it can be shown that a pyramidal and a cone shaped structuring eteapamating on
an image can be obtained as the result of a version of Danielson’s [6] distamcemmaass
algorithm. Our work deals with flat ‘structuring elements’ which are mofulsn the general
morphological setting.

The one-dimensional version of our most basic problem can be formulated as follows:

1D MAX-FILTER: Given a sequence,, ... ,z,_1, and an integep > 1, compute
; — IMax T;4 4
v 0<;<p B

fori=0,... ,n—p.

(Note the above definition does not include the border, i.e», n» — p. In actual image
processing the border usually receives some special treatment, e.grimgirperiodic condition,
etc. Since our focus is algorithmic, the border is tacitly ignored henceforth.)

The 1D MN-FILTER problem is similarly defined. For the remainder of this article, we will
devote our attention mainly to max computations. Clearly, all resultsqarally applicable to min
computation.

As usual in filtering, we assume that< n. As an efficiency measure of algorithms for this
problem we use the coefficient;, defined as the number of comparison operations per sample
(or output) point as goes to infinity.

A trivial algorithm for the 1D MaX-FILTER problem gives
Cl =p— 1.

On the other hand, since it is impossible to compute the filter without examiningrgaatpoint

at least once, there is a trivial information theoretical lower bound for thblpm of

Cy > 1.



We are unaware of any stronger lower bound for this problem.

Pitas [17] describes two non-trivial algorithms for the problem. The first sugbrighm
achievesC; = O(lgp). 2 Pitas’s second algorithm achievé$s = 3 + o(1) on the average
fori.i.d. input?

Note that the worst case performance of both of these algorithms depends on the wirelow si

van Herk [25] and later but independently Gil and Werman [12] gave an algorid@W\() for
computing the max filter whose performance does not depend Gil and Werman description
of the algorithm is slightly more general, showing that ireezed filter of any semi-ring operation,
o, can be computed usirly— 4/p applications ok per sample point. Since max is a semi-ring

operation, we have that

In the special case that the semi-ring operation is max, and assumingnpid. signal.
Gevorkian, Astola and Atourian [9] gave an algorithm (GAA) that improves t&&\Halgorithm,

achieving
E(Cy) =2.5—3.5/p.

The expectation here is with respect to input distribution.

We note that for many applications, such an assumption is clearly invadichahy natural
signals, the probability that;,. > z; is greater thaf.5 if it is given thatz; > z;_;. In the worst
input case, such as an almost monotonically increasing signal, the performaheeatgorithm
of GAA is the same as the HGW algorithm.

In this paper, we describe an algorithm achieving further reduction,
1
O =15+ % +O(1/p).

This improvement isleterministicand does not make any assumptions on the input distribution.

2We usédg(-) to denotdog,(-)
3Here and henceforth we use the famikigf (p)) notation for the family of functiong(p), such that

Thus,o(1) are those functions which tend to zeropeends to infinity.



The morphological edge detector and other applications require the simultaneous camputati

of the min and max in each window, as summarized in the following problem tefini

1D MAX-MIN-FILTER: Given a sequencey,... ,z,_1, and an integep > 1, com-
pute
; — IMaXx T;4 4
vi 0<5<p B
Z; = MmN Ty,
" o<j<p

fori=0,... ,n—p.

We give an algorithm which solves 1D Ak -MIN-FILTER problem faster than solving 1D MK -
FILTER and 1D MN-FILTER separately. Let’]* be the number of comparisons per input sample

for solving 1D Max-MIN-FILTER. Then, our algorithm achieves

1
E(CT) 2 2 4 2.3466-2L
p

for the special case of independent input distribution, i.e., the expectationisegird to input
distribution. In the worst case this algorithm does not improve on the independent ctioipata
the Min- and Max filters. However, for natural images, the algorithm makels an improvement,
although not to the extent possible for randomized inputs.

The problem posed by the opening filter is similar to 1DMMIN-FILTER, since in both it
is required to compute both a Min-Filter and a Max-Filter. However, tieetfzat in the opening
filter this filters are computed sequentially, where the results of onediliésthe input of the other,
makes it much easier. Lét; be the number of comparisons per input sample for computing the
opening filter. Then, we show that

12
Ofscl+o<ﬂ>.
P

Clearly, the same result holds for the closing filter.

A 1D max filter can be extended to a rectangular window 2D max filter [12]. Thesixte is
carried out by first applying the 1D filter along the rows, and then feeding the tesallD filter
running along the columns. Lé&t, be the number of comparison operations required per input

point for computing the 2D max filter. We have that

CQ — 201,



and more generally,
Cy=dCh,

where(; is defined accordingly for thé-dimensional filter. We similarly have that

Cm = dCT
C9 = dCe.

Outline The remainder of this paper is organized as follows. Section 2 reviews the 8GO
rithm. Our main result which improves this algorithm is described ini8a@. This section also
makes a few comments on a randomized version of the algorithm and on an actweahenp-
tion of the algorithms in languages such as C [14]. In Section 4 we give our algowthimef 1D
MAX-MIN FILTER PROBLEM. The efficient algorithm for computing the opening (and closing)
filter is described in Section 5. Finally, Section 6 gives the conclusionsremdions a few open

problems.

2 The van Herk-Gil-Werman algorithm

The van Herk-Gil-Werman (HGW) algorithm is based on splitting the input $ignaverlapping

segments of sizep — 1, centered at
Tp—1,T2p—15T3p—15- - -

Let ; be the index of an element at the center of a certain segment. The maximagafitdows
which includez; are computed in onbatchof the HGW algorithm as follows: First, defing;,

andS,fork=0,... .p—1:

Ry = Ri(j) = max(x;,&j-1,...,2j_k), )
Sk =5k(J) = max(x;,Tj1,. .0 Tigk).
Now, theR;’s and theS;’s can be merged together to compute the max filter:
te = Max(Tj—ky oo s Tjyeney Tjppk—1) = max( Ry, Sp_r-1), (2)

7



fork=1,...,p— 2. Inaddition, we have

max(x]—p—lv <o ,l’]‘) = Rp—lv
max (&g, ... ,Tjpp_1) = Sp_1.

There are two stages to the HGW algorithm:

Preprocessing Computing allR;, andsS;, from their definition (1), and noting th&t, = max(Ry_1,x;_x)
andsS; = max(Si_1,x4x) fork =1,...,p— 1. This stage is carried out if(p — 1) com-

parisons.

Merge Merging theR, andS, together using (2). This stage requires anogher2 comparisons.

Since this procedure computes the maximump @findows in total, we have that the amortized
number of comparisons per window is

2p-+p-2_, 1
p p

For largep, we have that the preprocessing step requires two comparison operationspantele

while the merge step requires one more such comparison.

3 The Improved Algorithms for the Max-Filter

In this section we show how the two steps of the HGW algorithm can be carrietharat effi-

ciently.

3.1 An efficient preprocessing computation

Let us now deal with the preprocessing step of the HGW algorithm. The obsertetond the
GAA algorithm is that preprocessing computation can be made more efficientrfdomazed
input, using the fact that in the HGW algorithm, the suffi¥esof one segment overlap with the

prefixesk, of the following segment. Specifically, the problem that needs to be solved is
PREFIX-SUFFIX MAX: Given a sequencey, ... ,z,, compute all of itgrefix max-
ima

sk = Sk(0) = max(xg, ..., k),

8



fork=0,...,p— 1, and all itssuffix maxima
ry = Ri(p) = max(xg, ... ,2p),
fork=1,...,p.
Note that this problem does not call for computing the overall maximum of the input
8p = ro = max(xog,...,T,).

The original HGW algorithm make3(p — 1) comparisons in solving theREFIX-SUFFIX

MAX problem. We propose the following efficient solution for this problem. Let

_|p+1| p  pmod2

B { 2 J A 3
In thefirst part of the modified implementation, compute gll fork =0,... ,¢— 1, usingg — 1
comparisons ang; for k = ¢, ... , p, usingp — ¢ comparisons. The total number of comparisons

in the first stage is them — 1.

Thesecond parbf the modified implementation of the preprocessing stage begins in compar-
ing s,y andr,. If r, > s,_1, then we know that the overall maximum falls in onexof. .. , z,.
Therefore, it is unnecessary to further compute the valugqf r,_,, ... ,r;. Instead, the algo-

rithm outputs

Tg—1 =Tg—2 = ... =11 =Ty,
and continues to computg, ... , s, In
p pmod 2
_g=L_ £ - 4
P-a=3 5 (4)
comparisons.

A similar situation occurs if, < s,_;, inwhich case itis unnecessary to compute. . , s,_1.

In this casery, ... ,r,—; are computed in
p  pmod 2
—l=t4— -1 5
q 5T (5)
comparisons.



The number of comparisons in the second part is given by the maximum of (4) and (5)

p  pmod 2
2 2
The total number of comparisons in the more efficient algorithm for the preprocesanng cf

PREFIX-SUFFIX MAX is

mod 2 p mod 2
P = Lop - ———. (6)

p
—N+1+2 =
(p—1)+ —|-2 5

Consider Algorithm 1 demonstrating the improved pre-processing stage=far. Again, the
implementation carries no hidden overhead, with the comparisons dominatingrtiputation.
Notice also that the assignment operations in instructions 3, 4, 14 and 20 can heedxec

parallel on suitable architecture.

3.2 An efficient merge procedure

We first show how to improve the merge step, by reducing the amortized number pagsons

initfrom1to

lgp
— 4+ of1).
) (1)

In this step, we compute
max( Ry, Sp—k-1), (7)

fork=1,...,p— 2. Observing that

Rp—Q 2 Rp—l 2 2 Rlv

Sp—lZ---ZSh

we can eliminate most of these comparisons. Suppose that for some speeiis found that
Ri 2 Sp—i—lv
then for allk > ¢, we have that

Ry > R; > Sp—i-1 > Sp—p-1,
10



Algorithm 1 Solving RREFIX-SUFFIX MAX, p = 9 (¢ = 5) using 13 comparisons instead of 16.
1. Input: xg,zy, x9, 3, T4, Ts, Tg, T7, Ts, Tg.

2. Output:  sg, s1, ..., sg andry, ..., rg,
/I Initialization
3! S0,...,88 < To,...,Ts
4: ry,...,Tg & T1,...,Tg
Il First part (p — 1 = 8 comparisons)
5: if 59 > sy thens; < sg
6: If 51 > sy thens; < s
7: 1f 55 > s3thenss < s,
8: if s3> s4thens, « s3
9: if rg > rgthenrg « rg
10: if rg > rr thenr, < rg
11: if r- > rg thenrg « 7
12: if rg > rs thenry < rg
/I Second part (5 comparisons)
13: if r5 > s4 then// max(xo, ... ,x9) = max(xs,... , T9)
14:  ry,7,73,74 < 75
15:  if s4 > s5thenss ¢ sy
16: If s5 > sgthensg < s5
17:  if s > s7thens; ¢ sg
18: if s7 > sgthensg ¢ s7
19: elsel// max(xq, ... ,x9) = max(zg,... ,T4)
20: S5, 86, 87,88 ¢ S4
21:  if rs > rythenry < ry
22:  ifry>rsthenry « ry
23:  if r3 > rythenry «+ r3
24;:  if ry > rythenry < ry

25: end if

11



and therefore there is no need to do the comparisons of (7) far all . Similarly, if it is

determined that
Ri S Sp—i—l )

then we do not need to do the comparisons of (7) fok all ..

The optimized procedure for doing the merge step is therefore by a binary searshart\tey
settingi = [(p — 2)/2], and then continue with the remaining half of the problem size.

Consider for example Algorithm 2, demonstrating the binary search method for tlge mer
stage in the cage= 9. Instruction 1-13 implement the binary search, which terminatesin a jump
to a labell;, where; is the smallest such that= max(R;, Ss_;) = R;. Each such jumpis carried
out after exactly 3 instructions in this case. Instructions 14—21 compute the ehlusdy proper
assignments t&;’s, without any additional comparisons. The total number of assignments is any
where between 0 and 7.

Notice that the implementation in Algorithm 2 is very straightforward aedies no additional
overhead. In fact, this implementation can be translated directlyioS layout, machine code,
or higher level programming language. This efficiency is achieved by unrolling loopmanel
generally pre-computing all values, including labels, which are dependent solgly

In general, we have that binary search method reduces the number of comparisopsftom
tolgp + O(1). In fact, it can be easily checked that the maximal number of comparisons is
exactly[lg(p — 1)]. The amortized contribution of the improved merge step to the complexity is
therefore

[lg(p—1)]
—

(8)

3.3 Comparison Complexity

In examining algorithms 2 and 1 together, we conclude that in thecasg, we are able to reduce
the number of comparisons from 23 in the case of the HGW algorithm to 16, i.e., impritvéng
complexity by abouB0%. The improvement is even greater for larger values.of

More generally, we can combine (8) and (6) to compute the amortized comparispiegdyn

of our improved algorithm.
12



Algorithm 2 Efficient merge fop = 9 using 3 comparisons instead of 7.
Require: Ry < Ry < R3 < Ry < Rs < Rg < Ry andS; < 5 < .55 <54 <55 <5 < 57

Ensure: t; = max(Ry, S7), t2 = max(Rz, Ss), t3 = max(Rs,S5), t4 = max(Ra4, Sq), t5 =
max(Rs, S3), te = max(Rs, S2), andt; = max( Ry, Sy)
/l Valuest,, ... ,t; are returned in variablesi,, ... , R;
1. if Ry >S4 then

2: if RQ 2 56 then

3 if Ry > S7 thenjump L, elsejump L,
4: else

5: if Rs >S5 thenjump L3 elsejump Ly
6: endif

7: elsell Ry < 54

8: if RG 2 52 then

9: if Rs > 53 thenjump Ls elsejump Lg
10: else

11: if R;>S; thenjump L, elsejump Lg
12:  endif

13: end if

14: Lg: R7 < 54
15: Lr: Rg <+ 5,
16: Lg: RBs + S5
17: Ls: Ry = Sy
18: L4 Ry < S;
19: L5 By < Sq
20: Lo Ry « 57

21: Ll:

13



Theorem 1 There exists a deterministic algorithm for th® MAX-FILTER problem, achieving

Hg(p_ 1)-‘ _ pm0d2 <15+ Hg(p_ 1)—‘ =15+ hg_p + O(l

P 2p P P P

) (9)

Can we improve on this result? An information theoretical lower bound for thebeurof
comparisons required to solv&kBFIX-SUFFIX MAX, isp+lg p — O(1). This bound is derived as
follows. A compact output of an algorithm for the problem uges lg p — O(1) bits comprised

as follows:

1. lIgp bits to designate the location of the overall maximum (for simplicity, weeiage thap

is a power of 2) ,

2. asingle bit for each location prior to the maximum, designating whether thesporiding

element changes the prefix maxima, and

3. a single bit for each location following to the maximum, designating whethecdlre-

sponding element changes the suffix maxima.

Moreover, there are distinct inputs which produce all the bit combinations of thipacimepre-
sentation. Thus, in order to make the distinction between these inputs, thehalg@itorced to

make at least
p+lgp—0(1) (10)

comparisons.

Although we are unable to meet the lower bound (10), we can come even closen tanit i
important special cases. Suppose that in an input toReeER-SUFFIX MAX problem, the overall
maximum is located at a random locatioim the input sequence. (This does not necessarily mean
obeys the input the i.i.d. condition.)

In the first part of the preprocessing stage, we maintain a record of the fp@gxvhich the
value stored at;,7 = 1,...q — 1 was found. Similarly, we keep a record of the indgxat which
the value stored at,: = p — 1,... , ¢ was found.

Then, once the comparison betwegn, andr, is made, we know whethér= ¢, or ( = /5.

All that remains is to proceed to compute outpsifSs,. i, ... , s in the case that,_; < r,,
14



orr,_1,74—2,...,7+1 Otherwise. The expected number of comparisons in this completion stage

is
5%3({}2 @—1—ﬁ+ §:(j—®>=
- (55

dq—D+p-q9lp—q+1)
2(p+1)
PP +2¢° —2pg+p—2q (11)
a 20p+1)
:pz—(pmodZ)
Ap+1)

1 1 (p mod 2)
1A ApT D)

<

»-Jklﬁ 3

In general, it cannot be assumed that arbitrary input to therX- SUFFIX MAX problem will
have its maximum at a random location. For example, the maximum will always ocanreand
point for monotonic inputs* When this assumption holds, then the amortized expected number
of comparisons in this version of the preprocessing stage is therefore at most

(p—1)+1+p/4
p

=1.25

Combining the above with (8) we obtain:

Theorem 2 There exists an algorithm for tHED MAX-FILTER problem, achieving

lgp—1 !
B(Cy) <1254 18P o5 J8P

p p

when the input is i.i.d.

4For some inputs it should be possible to gain better perfoo@dy choosing at random the starting point for
segmentation. Segments will be centered at positions etttex + p, 7 + 2p, ..., wherer is an integer selected
at random in the rangl, ... ,p — 1]. Such a random selectiatoes not degradéhe overall efficiency due to the

assumption that < n, since only one random number in the raf@e., p — 1] needs to be computed.

15



3.4 Implementation of the algorithms

The model of computation we have used here is that of comparisons. Few words areein pla
regarding the implementation of the algorithms in contemporary programming langoagpsal
use such as C [14], in machine language, or even in hardware.

The basic assumption is thatis quite small and is either fixed or selected from a small set
of pre-determined values. Therefore, an implementation should unroll all elf@ps whose
number of iterations is dependent solely;onBy doing so, the comparisons of the loop control
variable are eliminated, just as the overhead of manipulating it. Thisipkenmeans that the
computation of the prefix maxima in the lower half and the suffix maxima in the uppeoha
each segment should be implemented using loop unrolling. An examples of the output of this loop
unrolling is given in Algorithm 1.

The second part of the randomized version of the preprocessing stage is moretdificul
implement without an explicit loop structure. Specifically, if the ovemsdiximum occurs (say) in
the upper half, it is required to complete the computation of the prefix maxima, stpppactly
at the location of the maximum. One way of implementing this without checking th&édoaat
the maximum in each iteration is by using “computed goto” of Fortran or functions psiinte
C. There are no more than'2 possible locations of the maximum in the upper half of the input.
For each such location, there is a chunk of code which unrolls the loop up to that poine Ther
are similar chunks of code designed to deal with the case of the maximum fallthg llower
half of the input. Now, in the first part of the preprocessing, whenever the maximupdeted
as a result of examination of a certain input value, the algorithm also updatesitarpoi the
appropriate chunk to be executed in case the maximum is found in the current location.

Now, when the maximum of the upper half is found to be greater than the maximum of the
lower half, all that should be done is to use this pointer in order to make a jump épghepriate
chunk of code. Admittedly, hand coding of such an implementation could be tedious. Felyunat
with the advent of C++ [23], it is possible to employ its rich template meidma in order to have
such code generated automatically. The techniques of doing so are beyond the scopgeaptthis
The interested reader is referred to e.g., [10] and the referencestli@rexamples of applying

the template mechanism for non-trivial compile-time computation and code generat
16



In the merge step, the flow of control in the implementation should follow the casgpesr
tree implicit in the binary search. Specifically, each node in the tree dlumutespond to an if-
then-else construct in the code. These constructs would have the same nedim¢yes hodes.
Algorithm 2 shows how this is done for a fixed Again, the template mechanism can be used to
reduce the bulk of the burden of generating the code from the implementor.

Finally, it should be noted that in a highly optimized implementation of the secandfthe
preprocessing stage, if the overall maximum is found in the lower half, aeflypmaxima of the
upper half are equal to this overall maximum, and theneasieedto actuallyproduceor store

them in an auxiliary array . Instead, these values could be inlined into theofdlde merge step.

4 Efficient Algorithm for Simultaneously Computing the Max
and Min Filters

In this section we deal with the 1D Ak-MIN FILTER problem, and show how computing the min
and max filters simultaneously can be done more efficiently than an independent abarpot
both. We start again with the HGW algorithm. The gain comes from partitioninonthe signal
into pairs of consecutive elements, and comparing the values in each paigr&dter value in
each pair carries on the maximum computation while the lesser one carries threerhinimum

computation.

4.1 The Prefix Max-Min Problem

Let us first consider the following problem,

PREFIX MAX-MIN: Given a sequence, ... ,x,_;, cOmpute
My = max(xq, ... ,2x),
my = min(xg, ... ,Tx),

fork=0,...,q— 1.

The straightforward solution forfEFIX MAX-MIN uses a total of(¢ — 2) + 1 comparisons. For

the sake of simplicity we assume that all elements in the input sequencetaretdfnalyzing this
17



problem from an information theoretical point of view the algorithm is tantamouriassifying
each element;, ¢ > 2, into one of three categories. Elementmay increase the running prefix
maximum, i.e.x; > M, _,, and thereforé/, = x,. If this is not the case, ther; may decrease
the running minimum, i.es; < m;_,. The third case is that,_; < z; < M;_,, and therefore
no changes are made to be made to the running prefix minimum or maximum. Also, thené/are

two possible cases far;, while there is exactly one case fes. Thus, we obtain
1+ (q—2)lg3 ~ 1.58496¢,

as an information theoretic lower bound for the number of comparisons forbBelR MAX-MIN
problem.

We do not know of a general way of bringing the amortized number of comparison2from
o(1) closer to thdg 3 lower bound, or alternatively, proving a stronger lower bound. However,
if the distribution of the input elements is independent, we can do even bettethddower
bound (which obviously holds for worst case inputs). This improvement is carriecsdaliews.
Suppose that/; andm,; were already computed. Then, to compte ;, M; 5, m;1; andm,,,

we apply the followingncorporate-next-input-paalgorithm.

Algorithm incorporate-next-input-pair: Extend the result of a solution REFIX
MAX-MIN to include input elements_; andz;,,, using the four following compar-
isons:
1. Comparer;,; andz; 5. Assume, without loss of generality, that ; > x,,,.
2. CompareV/; with x;11 = max(x;41, Ziy2).
3. Comparen; with ;.2 = min(x;41, i42).
4. At this stage, the algorithm has determined hth, andm,,,. Specifically,
M2 = max(xiy1, M;)
Mite = min(a;42,m;).
There are four cases to consider in computing; and M, ;.

(a) No changes:

Tiyr < M; andxip, > my
1



No more comparisons need to be done in this case, and the algorithm simply
outputs
Miyz = Mip = M,
Mig2 = My = M.
(b) Changes to both the maximum and the minimum:
Tiy1 > M; andxip, < my.
Again, no more comparisons need to be done in this case, and the algorithm
outputs
Mi—l—? = Mi—l—l = Ti41,
mi-l—l = mi7
Miy2 = Tiy2.
(c) Change to the maximum:

Tiy1 > M; andxipy > m;.

The algorithm outputs
Mi—l—? = Mi—l—l = Ti41,
Mig2 = My = M.
without any additional comparisons.

(d) Possible change to the minimum:
Tipr < M; andzip, < mj.
This is the only case in which an additional comparison is required: The
algorithm first outputs

Miio = My = M,
Miyo = Ti42,

and then determines;; by comparinge;; with M;. If 2,11 < m, then

miy1 = Ti41,

19



otherwise,
mMiy1 = My.

Thus, in the worst case, the algorithm makes four comparisons for each;pa@nd«; .,
where: > 0 is odd, which does not improve on the two comparisons per element by the trivial

algorithm. The fourth comparison however is needed only in case

Tiyg < My = Ofgljig(ilfi)a (12)

or in the dual case, namely when the first comparison yields < x;.,, and

Tipo < M; = 52}22(2(:1;2) (13)

With i.i.d. (independent input distribution) the probability of (12) or (13) holding/is + 3), for
all: > 0. Letu = |¢/2] — 1 = (¢ — (¢ mod 2)) — 1. Then in the last application of the above
algorithm we deal with the pair, andz,,4,. In total, F,, the expectedwith regard to input
distribution) number of times the fourth comparison is made is given by

F—l—l—l—l—l—l— + L _
T4 68 Qu+2

(Hu1 — 1)/2, (14)
whereH,, is theuth harmonic number. It is well known that

lim H, =Inu+~ (15)

(I dee]

wherey ~ 0.577216 is Euler's constant (also called Mascheroni’s constant). Combining (14)

and (15) we have

| 1
Fq:M+1—O.5—|—O(1)
In( 2+ ) 2 (16)
~ % — 0.211392 + o(1)

Itis also known that
Inu+~v< H, <lnu+1 a7

from which we obtain

P, < In(u+ 1)
2 (18)

Ing—1

< .

- 2
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Other than these, in solvingRRFIX MAX-MIN, there are: applications ofncorporate-next-
input-pair in which 3u comparisons are made, one comparison in whighs compared with:
to determineM,, My, mo andmy, and finally, and only ify is odd, two comparisons to deter-

mine M,_, andm,_,. The number of these comparisons is

d2
1—|—3u—|—2(qm0d2):32—q—2—|—qm; . (19)

Adding (18) and (19) we have that the expected total number of comparisons in our solution to

PREFIX MAX-MIN is at most
—F+ — =2 20
+ 5 ) (20)

and the expected amortized number of comparisons per element is at most

1
15+ =2 _9/q.
2q

It should be noted that one cannot hope to improve much on this result. The reasonae$vingt s
PREFIX MAX-MIN also yields the maximum and the minimum of the whole input. However,
computing both these values cannot be done in less[thaiz| comparisons [5, page 187] even

for randomized inputs.

4.2 Computing the Min-Max Filter

We now employ algorithnmcorporate-next-input-pain the pre-processing stage of the modified
HGW algorithm adapted for finding both the minimum and the maximum filters. Spdlgifica
we are concerned in this stage in finding an efficient algorithm to #erFX-SUFFIX MAX-MIN
problem, defined as computing the maximum and the minimum of all prefixes and allesuffix
of an array of sizev + 1. Such an efficient algorithm is obtained by partitioning the input array
into two halves. In the lower half which comprises= |(p+1)/2] = p/2 + (p mod 2)/2
elements we repetitively appipcorporate-next-input-pato compute the prefix maxima and the
prefix minima in this half. A similar computation is carried out in the uppef thath p — ¢ +

1 = [(p+1)/2] elements of the input array, except that algorithmoorporate-next-input-pair

is mirrored to compute thsuffixminima and the suffix maxima in this half. The total expected
21



number of comparisons so far can be computed from (20):

1— 1 1 1— 1 1
3 3041—a) g hiptlog) 3 (et 02002,
2 2 2 2 2 2
2
3p ln<%>
LA W WY
-2 + 2
3
= +I(p+1)—In2-25
§3?p+1np—2.5.
(21)

Once this computation is done, we carry on as before to produce the rest of the regumed
In two more comparisons we find out where the maximum and the minimum of the whole array
occur. If the maximum occurs in the lower (resp. upper) half then it remainsrtgate the suffix
(resp. prefix) maxima from the mid-point down-to (resp. up-to) the location of the mani
From (11) we have that this computation costs another 0.25 comparison per input elénent.
similar completion stage must be carried out for the minimum prefixes or ssiffilseng another
0.25 amortized comparisons. All that remains to do is the merge step, whidio bascarried
out twice, once for the minimum and once for the maximum. The number of comparisons for the

merge is at mostIg p. Combining this bound with (21) we obtain:

Theorem 3 There exists an algorithm for thED MIN-MAX FILTER problem, that at the worst
case makes twice the number of comparisons as that of Theorem 2. For i.i.d. input, theeanortiz

number of comparisons that the algorithm makes is

| 1
PT R LA 7,

p
In2 lgp
=24+ 24+ —=—)=—
tetE

1
~ 2+ 2.3166-2L

P
Stated differently, we have that asymptotically for laggeand for i.i.d. one comparison per
element is required to compute each of the minimum and the maximum filtersgdpcothiey are

computed together.
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4.3 Performance on Natural Images

Natural images are far from being random inputs. It is therefore important wkahe perfor-
mance of the algorithm of Theorem 3 in natural images. The important factoy,ithe number
of times the prefix maximum (or the prefix minimum) is changed in a window ofsiZ&learly,
1 < K, < p. With randomized input, the expected valuelof is H, ~ Inp + ~, which gives
rise to an asymptotic saving 6f5 comparison per input value. If, on the other hand, the input is
monotonically increasing thel,, = p. This is a worst case input in which no savings at all can
be made in computing the min and max filters together. More generally, the aeatbrtumber
of comparisons that are saved by the iterative applicatianadrporate-next-input-pais in the
order of

p— I

o

Figure 3 shows the average value/of (using max computation) fgr = 2,... ,100 in the

lighthouse image. In this, and all subsequent figures, the average was computed ioyrexalin
one-dimensional row windows in the image. Only windows which entirely fathénimage were
considered. For comparison purposes, this figure, just as all the ones to follovg gievate at
which H, increases witlp.

Figure 3 left frame shows the average valudgffor the red, green and blue components of
each pixel. Itis interesting to note that these three channels behave quigelgj and as we shall
see next, very much like the behavior of the illumination in grey-level imagessifall values
of p, K, andH,, are close, and, appears to increase in a logarithmic rate. For larger valugs of

K, appears to increase at a linear rate, with
9 S [(100 S 12

It is also interesting to note that the rate of increaséipfis the fastest in the red channel, and
slowest in the blue channel.

Figure 3, right frame, is similar to Figure 3, left frame, except that it csghe rate of increase
of K, for minimum computation.

We witness again the same phenomena: The rate of incre#sgigfaster than that of/,,, it

is slowest to change in the blue and fastest in the red. Curiously, we hagatiydbetter ratio for
23
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Figure 3: Left: Average number of times the prefix maximum is changed in the lighthmase
vs. window size. Right: Average number of times the prefix minimum is changed ligltiteouse

image vs. window size.

K, /p for the minimum computation
8 < Kigo < 10.

To gain better understanding of the rate of increas& pfn natural images, we run similar
experiments for six grey-level images. The results are depicted in Figle# #ame for the
maximum computation, and in Figure 4 right frame for the minimum computation. The experi
ments were conducted this time only for the green channel. It was our experiensedh#bese
imagesk, increased slightly faster for red, and slightly slower for blue.

As can be seen from these two figurés, is always faster to increase thaf). Still, even for
large windows we have thdt, is only a small fraction op. A slower rate of increase i, for
minimum rather than for maximum could not be observed. For exanipl®f the “Sails” image
increases at the slowest rate for minimum prefix, and at the fastegorateaximum prefix.

One may conjecture that the rate of increaseigfis logarithmic, but with a base of loga-
rithm less thare. To check this Figures 4 is redrawn in semi-logarithmic scale in FiguEnts
conjecture is false as can easily be seen from these two frames.

In conclusion, we find that for natural images the algorithm behind Theorem 3 gieds as

amortized saving of abowt9 comparison compared to the independent computation of the min
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Figure 4: Left: Average number of times the prefix maximum is changed in seviensthif natural

images vs. window size. Right: Average number of times the prefix minimum is chamgeven

different natural images vs. window size.
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Figure 5: Left: Average number of times the prefix maximum is changed in seviensthif natural
images vs. window size (semi-logarithmic scale). Right: Average numbemektthe prefix

minimum is changed in seven different natural images vs. window size (segarithmic scale).
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and max filters.

5 An Efficient Algorithm for the Opening and Closing Filters

In this penultimate section of the paper we turn to describing how the opening @sidg)l filter
can be computed more efficiently than a mere sequential application of the iMexaRd then
the Min-Filter.

To understand the improvement, consider for a moment the problem of computing the prefix-
minimum, in the case that the input of lengtls given as a sequence bimonotonically increas-
ing or decreasing segments. Suppose that the prefix-minimum has been computed up to, a point
i.e., that the value of:; = min(xo, ... , ;) is known, and that; .1, ... , x,44 iS @ monotonically
decreasing segment of the input of lengthThen, in order to compute:; .1, ... ,m,, all that
is required is to find the smalleétsuch thatn, < m;. This/ can be easily found using a binary

search inlg £] comparisons. We then have

Mity = .
Titj Ifgg.]gk
If on the other hand, ., ... , ;4 IS @ monotonicallyncreasingsequence, all that is required in
order to computen; 1, ... ,m; IS to compare:; ; andm;,. In this case we have that
Mig1 = Migg = -+ = Mmjpr = min(@;41, m;).

Using Lagrange multipliers we obtain that the number of comparisons is bounded above by

L {1g %} . (22)

Recall now the improved merge step described in Section 3.2. Eachiatedd the binary
search algorithm generates about half of the outputs of the max-filter that remaibedcom-
puted. Note that all values generated in one such iteration are consectutieeantput. Further,
since these values are obtained from computing eitheor 5;, they are either monotonically
increasing or monotonically decreasing. Thus an application of the modified nemafdorithm

also partitions each stretch pbutputs into no more thafig p| monotonic segments.
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The improved opening filter algorithm is thus obtained by first applying the modified HGW
max-filter algorithm, while preserving this partitioning of the output. Then, theltesre feed
into the modified HGW min-filter algorithm. The partitioning information is thesed for an effi-
cient implementation of the preprocessing stage in which prefix- and suffix-mismiexcomputed.

It follows from (22) that the preprocessing stage can be doriig® p) comparisons. Since the

merge step can be donedr(lg p) comparisons, we obtain:

Theorem 4 There exists an algorithm which computes the opening filter, achieving

2
Cf:01+0<1g p).
p

In other words, asymptotically computing the opening filter is not more expensive ¢iman c
puting just the max-filter. When going to more than one dimension, unlike the erosion atorgil
the opening and closing operations are not separable, and thus do not enjoy the same computa-
tional efficiency as the one dimensional opening and and closing. Nevertheless, ahstilaide
the one dimensional efficiency to accelerate these operations. The order ofmyeirathis case

could be the following:

e Apply the MaX FILTER on the rows. For non-i.i.d. signals, this operation takesompar-

isons.

e Apply the MIN-MAX FILTER on the columns of the result of the previous step. For non-

i.i.d. signals, this operation také§ + o(1) comparisons.

e Apply the MIN FILTER on the rows of the result of the the previous step. For non-i.i.d. it

takesC'; comparisons.

That is, for two dimensional images, instead of using = 6 comparisons per element, we spend
only 3C; = 4.5 comparisons per element (8175 comparisons instead 6ffor i.i.d. signals). For
the generak-dimensional case, we spefid— 1)C; comparisons, exploiting the fact that at least

for one dimension we can enjoy the efficiency of the 1INMMAX FILTER.
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6 Conclusions and Open Problems

We presented improvements of the HGW algorithm for running min and max filkeesaverage
computational complexity was shown tohe5+o(1) per element for randomized input, ahd-+
o(1) for a deterministic algorithm (worst case input). These improvements,hwdome close
to the best known lower bound for the problem, were enabled by careful examinatitwe of t
redundancies in the preprocessing and the merge steps of the HGW algorithm.

We continued to study a related problem, namely the computation of the min andttidtena
together. We found that for i.i.d. input, it is possible to compute the minimum and tkignuan
filters together ir2 + o(1) comparisons per data point. This is less tBan+ o(1) comparisons
required by applying twice the best max filter algorithm.

The opening and closing filters which are similar to the problem of computing theanah-
max-filters together, can be computed much more efficiently. We found algoritntiese filters
usingl.5+ o(1) comparisons deterministically, ®r25 + o(1) comparisons when the inputis i.i.d.

All separable algorithms like erosion and dilation are readily extendiblegiodnidimensions.

We leave the following open questions for further research:

1. Inimage processing, the selection of a coordinate system is usually arlbm@unrelated
to the geometry of the objects being presented. Therefore, it seems more tatusal
a circle rather than a square as the shape of the window. However, the extefiihen
1D algorithm for a 2D-circle case needs further thought. By using a heap data srtatur

represent a sliding window in the shape of a circle of ragiuge can compute the filter in

O(plgp)

comparisons per window; in each move of the center of the circle, the datauséus
updated by addin@(p) points and removing)(p) points. If pixel values are drawn from
some small finite domain, then it is possible to use a dynamic moving histogram [13, 4]
data structure supporting insertions and deletion3(ih) time. The amortized cost is then
reduced ta@)(p). Itis interesting and important to find more efficiaaturatealgorithms for

this problem, with and without assuming that pixel values are bounded. (Previous fésul

22] give approximations to this probler;é)



2. We know of no deterministic or randomized algorithm which computes for worsicpse
the Max-MIN FILTER more efficiently than computing the min and max separately. There
is however an interesting property of algorithnmcorporate-next-input-panvhich might
be used in trying to meet this challenge: The fourth comparison is only requirgtdor
computation of thenterim M,,; andm,,,; output values. Thus, a repetitive application
of this algorithm can carry on to its next iteration, while delaying the fourth mamson
of the current iteration for later. It might be possible to use this observabiabtain an
efficient algorithm for the MX-MIN FILTER problem which does not presume any input
distribution. For example, in the preprocessing stage one may apqayporate-next-input-
pair to compute the prefix maxima of the greater elements of each pair in the lolf@sha
well as the prefix minimum of the lesser elements of these pairs. A sipolaputation is
carried out in the upper half of the input array, except that algoriticarporate-next-input-
pair is mirrored to compute the suffix minima (resp. maxima) of the lesser (ggspter)
elements of each pair in the upper half. The computation of the skipped values could be

done later on and only if necessary.

3. A related algorithmic problem is that of solvingRBFix MAX-MIN problem in less than
2p + O(1) comparisons. We find this problem fascinating since it is possible to solve eithe
the RREFIX MAX (or the RREFIX MIN) problem in the same number of comparisons it takes
to compute just the overall maximum (minimum). On the other hand, computing both the
overall maximum and the overall minimum can be done in a smaller number of copPsRr
than what is required for computing them independently. Our inability to makeagimil
saving for the problem of computing th&Brix MAX together with REFIX MIN leads us
to suspect that there is @&p + O(1) lower bound for the REFIX MAX-MIN problem. It
might be possible to derive such a bound using a technique similar to that of the proof that

computing the maximum and minimum pialues require§3p/2| comparisons.

4. As mentioned above, the Max-Filter algorithms do not assume any input distnbror
some applications it could be useful to produce an algorithm for this problem which works

better in the case of i.i.d. input.
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Our results do not seem to be directly applicable to the more difficult problem opating
the median filter. However, it might similar techniques might be used toawgpthe constants,
or even the asymptotic complexity of the currently best median filter algorit#hwyhich runs

in O(log® p) time per filtered point.
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