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Abstract

We propose an efficient and deterministic algorithm for computing the one dimensional
dilation and erosion (max and min) sliding window filters. For a p-element sliding window,
our algorithm computes the 1D filter using1:5+o(1) comparisons per sample point. Our algo-
rithm constitutes a deterministic improvement over the best previously known such algorithm,
independently developed by van Herk [25] and by Gil and Werman [12] (the HGW algorithm).
The results presented in this paper constitute also an improvement over the Gevorkian, Astola
and Atourian [9] (GAA) variant of the HGW algorithm. The improvement over the GAA
variant is also in the computation model. The GAA algorithm makes the assumption that the
input is independently and identically distributed (the i.i.d. assumption), whereas our main
result is deterministic.

We also deal with the problem of computing the dilation and erosion filters simultaneously,
as required e.g., for computing the unbiased morphologicaledge. In the case of i.i.d. inputs
we show that this simultaneous computation can be done more efficiently then separately
computing each. We then turn to theopeningfilter, defined as the application of the min
filter to the max filter, and give an efficient algorithm for itscomputation. Specifically, this
algorithm is only slightly slower than the computation of just the max filter. The improved
algorithms are readily generalized to two dimensions (for arectangular window), as well as
to any higher finite dimension (for a hyper-box window), withthe number of comparisons per
window remaining constant.

For the sake of concreteness, we also make a few comments on implementation consider-
ations in a contemporary programming language.�A preliminary version of this paper was published in the proceedings of ISMM’00 [11].
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1 Introduction

In signal and image analysis one often encounters the problem of min (or max) computation

in a window withp elements in the one-dimensional (1D) case, orp � p elements in the two

dimensional (2D) case. In mathematical morphology [20], the result of such an operator is referred

to as the erosion (or dilation) of the signal with astructuring elementgiven by a pulse of widthp.
The unbiased morphological edgeis obtained by subtracting the filtered min result from the

filtered max result. This filter has numerous applications in image processingand analysis (see

e.g., [15, 18]). To appreciate the visual effect of the morphological edge detector on actual images,

consider Figure 1 which gives three examples of edge detection, using a window sizedp � p, forp = 2; 4; 8; 16.1

Figure 1: The effect of the unbiased morphological edge filter.

(Original image is shown on left frame, followed by the filtered image using rectangular windows sized2� 2, 4� 4, 8� 8, and16� 16.)

As can be seen from the figure, edges are accentuated by the morphological edge detection

filter. These ‘morphological gradients’ need further processing to provide useful information, see

e.g., [21, pp. 116-119]. It should be emphasized that even though the larger windows do not appear

to highlight the edges as clearly as the smaller windows, they are useful as a pre-processing stage

for scale-space analysis of images [2, 3, 8, 16, 19, 24]. Therefore, we are interested in the problem

1Note that whenp is even the filter is not centered at the pixels of the originalimage. Thus, the result of the

application of the filters is not, strictly speaking, translation invariant. The filtered image represents a half a pixelshift

with respect to the original image. Our algorithms are equally applicable for both odd and evenp.
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of computing the min and max problems for awide rangeof window sizep.
Filtering out image components smaller than a certain threshold is carriedout relying on the

min and max filters with a suitable window size. Theclosing (respectivelyopening) filter is

obtained by feeding the results of the max (resp. min) filter to the min (resp. max) filter. Figure 2

gives an example of the application of the opening and closing filters. We see that the closing

filter eliminates small dark image components, while the opening eliminates small white regions.

In both filters, the size of the window determines the size of the image components that can be

removed.

Figure 2: The effect of the opening (top) and closing(bottom) filters.

(Original image is shown on left frame, followed by the filtered image using rectangular windows sized2� 2, 4� 4, 8� 8, and16� 16.)

Gevorkian, Astola and Atourian [9] mention other applications of the min and max filters in

pattern analysis, adaptive signal processing and morphological analysis. Morphological opera-

tions were found to be useful in 2D and 3D image processing and analysis. Applications include

micro-chip manufacturingwhere machine vision techniques are used by inspection tools for qual-
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ity control and fault detection, feature detection forcharacter recognition, 3D data analysis such

asmedical images, graphics applications, and video processing. Also, the above mentioned basic

morphological operations are by now core technology in many standard software tools such as

Matlab.

Recently, a patent that deals with efficient applications of such operations was filed [7], where

a pyramidal morphological ‘structuring element’ is applied to images by a two scans procedure.

Actually, it can be shown that a pyramidal and a cone shaped structuring elements operating on

an image can be obtained as the result of a version of Danielson’s [6] distance map two pass

algorithm. Our work deals with flat ‘structuring elements’ which are more useful in the general

morphological setting.

The one-dimensional version of our most basic problem can be formulated as follows:

1D MAX -FILTER: Given a sequencex0; : : : ; xn�1, and an integerp > 1, computeyi = max0�j<pxi+j
for i = 0; : : : ; n� p.

(Note the above definition does not include the border, i.e.,i > n � p. In actual image

processing the border usually receives some special treatment, e.g., mirroring, periodic condition,

etc. Since our focus is algorithmic, the border is tacitly ignored henceforth.)

The 1D MIN-FILTER problem is similarly defined. For the remainder of this article, we will

devote our attention mainly to max computations. Clearly, all results are equally applicable to min

computation.

As usual in filtering, we assume thatp � n. As an efficiency measure of algorithms for this

problem we use the coefficientC1, defined as the number of comparison operations per sample

(or output) point asn goes to infinity.

A trivial algorithm for the 1D MAX -FILTER problem givesC1 = p � 1:
On the other hand, since it is impossible to compute the filter without examining eachinput point

at least once, there is a trivial information theoretical lower bound for the problem ofC1 � 1:
4



We are unaware of any stronger lower bound for this problem.

Pitas [17] describes two non-trivial algorithms for the problem. The first such algorithm

achievesC1 = O(lg p). 2 Pitas’s second algorithm achievesC1 = 3 + o(1) on the average

for i.i.d. input.3

Note that the worst case performance of both of these algorithms depends on the window size.

van Herk [25] and later but independently Gil and Werman [12] gave an algorithm (HGW) for

computing the max filter whose performance does not depend onp. Gil and Werman description

of the algorithm is slightly more general, showing that thep sized filter of any semi-ring operation,�, can be computed using3 � 4=p applications of� per sample point. Since max is a semi-ring

operation, we have thatC1 = 3 � 4=p:
In the special case that the semi-ring operation is max, and assuming i.i.d.input signal.

Gevorkian, Astola and Atourian [9] gave an algorithm (GAA) that improves the HGW algorithm,

achievingE(C1) = 2:5 � 3:5=p:
The expectation here is with respect to input distribution.

We note that for many applications, such an assumption is clearly invalid. In many natural

signals, the probability thatxi+ > xi is greater than0:5 if it is given thatxi > xi�1. In the worst

input case, such as an almost monotonically increasing signal, the performance ofthe algorithm

of GAA is the same as the HGW algorithm.

In this paper, we describe an algorithm achieving further reduction,C1 = 1:5 + lg pp +O(1=p):
This improvement isdeterministicand does not make any assumptions on the input distribution.

2We uselg(�) to denotelog2(�)
3Here and henceforth we use the familiaro(f(p)) notation for the family of functionsg(p), such thatlimp!1 g(p)f(p) = 0:

Thus,o(1) are those functions which tend to zero asp tends to infinity.
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The morphological edge detector and other applications require the simultaneous computation

of the min and max in each window, as summarized in the following problem definition.

1D MAX -M IN-FILTER: Given a sequencex0; : : : ; xn�1, and an integerp > 1, com-

pute yi = max0�j<pxi+jzi = min0�j<pxi+j
for i = 0; : : : ; n� p.

We give an algorithm which solves 1D MAX -M IN-FILTER problem faster than solving 1D MAX -

FILTER and 1D MIN-FILTER separately. LetCm1 be the number of comparisons per input sample

for solving 1D MAX -M IN -FILTER. Then, our algorithm achievesE(Cm1 ) � 2 + 2:3466lg pp ;
for the special case of independent input distribution, i.e., the expectation is with regard to input

distribution. In the worst case this algorithm does not improve on the independent computation of

the Min- and Max filters. However, for natural images, the algorithm makes such an improvement,

although not to the extent possible for randomized inputs.

The problem posed by the opening filter is similar to 1D MAX -M IN-FILTER, since in both it

is required to compute both a Min-Filter and a Max-Filter. However, the fact that in the opening

filter this filters are computed sequentially, where the results of one filterare the input of the other,

makes it much easier. LetCo1 be the number of comparisons per input sample for computing the

opening filter. Then, we show thatCo1 � C1 +O� lg2 pp � :
Clearly, the same result holds for the closing filter.

A 1D max filter can be extended to a rectangular window 2D max filter [12]. The extension is

carried out by first applying the 1D filter along the rows, and then feeding the result to a 1D filter

running along the columns. LetC2 be the number of comparison operations required per input

point for computing the 2D max filter. We have thatC2 = 2C1;
6



and more generally,Cd = dC1;
whereCd is defined accordingly for thed-dimensional filter. We similarly have thatCmd = dCm1Cod = dCo1 :
Outline The remainder of this paper is organized as follows. Section 2 reviews the HGWalgo-

rithm. Our main result which improves this algorithm is described in Section 3. This section also

makes a few comments on a randomized version of the algorithm and on an actual implementa-

tion of the algorithms in languages such as C [14]. In Section 4 we give our algorithm for the 1D

MAX -M IN FILTER PROBLEM. The efficient algorithm for computing the opening (and closing)

filter is described in Section 5. Finally, Section 6 gives the conclusions andmentions a few open

problems.

2 The van Herk-Gil-Werman algorithm

The van Herk-Gil-Werman (HGW) algorithm is based on splitting the input signal to overlapping

segments of size2p � 1, centered atxp�1; x2p�1; x3p�1; : : :
Let j be the index of an element at the center of a certain segment. The maxima of thep windows

which includexj are computed in onebatchof the HGW algorithm as follows: First, defineRk
andSk for k = 0; : : : ; p� 1:Rk = Rk(j) = max(xj; xj�1; : : : ; xj�k);Sk = Sk(j) = max(xj; xj+1; : : : ; xj+k): (1)

Now, theRk’s and theSk’s can be merged together to compute the max filter:tk = max(xj�k; : : : ; xj; : : : ; xj+p�k�1) = max(Rk; Sp�k�1); (2)
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for k = 1; : : : ; p� 2. In addition, we havemax(xj�p�1; : : : ; xj) = Rp�1;max(x0; : : : ; xj+p�1) = Sp�1:
There are two stages to the HGW algorithm:

PreprocessingComputing allRk andSk from their definition (1), and noting thatRk = max(Rk�1; xj�k)
andSk = max(Sk�1; xj+k) for k = 1; : : : ; p� 1. This stage is carried out in2(p� 1) com-

parisons.

Merge Merging theRk andSk together using (2). This stage requires anotherp�2 comparisons.

Since this procedure computes the maximum ofp windows in total, we have that the amortized

number of comparisons per window is2(p � 1) + p � 2p = 3� 4p:
For largep, we have that the preprocessing step requires two comparison operations per element,

while the merge step requires one more such comparison.

3 The Improved Algorithms for the Max-Filter

In this section we show how the two steps of the HGW algorithm can be carried outmore effi-

ciently.

3.1 An efficient preprocessing computation

Let us now deal with the preprocessing step of the HGW algorithm. The observationbehind the

GAA algorithm is that preprocessing computation can be made more efficient for randomized

input, using the fact that in the HGW algorithm, the suffixesSk of one segment overlap with the

prefixesRk of the following segment. Specifically, the problem that needs to be solved is

PREFIX-SUFFIX MAX : Given a sequencex0; : : : ; xp, compute all of itsprefix max-

ima: sk = Sk(0) = max(x0; : : : ; xk);
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for k = 0; : : : ; p � 1, and all itssuffix maxima:rk = Rk(p) = max(xk; : : : ; xp);
for k = 1; : : : ; p.

Note that this problem does not call for computing the overall maximum of the inputsp = r0 = max(x0; : : : ; xp):
The original HGW algorithm makes2(p � 1) comparisons in solving the PREFIX-SUFFIX

MAX problem. We propose the following efficient solution for this problem. Letq = �p + 12 � = p2 + p mod 22 : (3)

In thefirst partof the modified implementation, compute allsk, for k = 0; : : : ; q� 1, usingq� 1
comparisons andrk for k = q; : : : ; p, usingp� q comparisons. The total number of comparisons

in the first stage is thenp � 1.

Thesecond partof the modified implementation of the preprocessing stage begins in compar-

ing sq�1 andrq. If rq � sq�1, then we know that the overall maximum falls in one ofxq; : : : ; xp.
Therefore, it is unnecessary to further compute the value ofrq�1; rq�2; : : : ; r1. Instead, the algo-

rithm outputsrq�1 = rq�2 = : : : = r1 = rq;
and continues to computesq; : : : ; sp�1 inp � q = p2 � p mod 22 (4)

comparisons.

A similar situation occurs ifrq � sq�1, in which case it is unnecessary to computesq; : : : ; sp�1.
In this caser1; : : : ; rq�1 are computed inq � 1 = p2 + p mod 22 � 1 (5)

comparisons.
9



The number of comparisons in the second part is given by the maximum of (4) and (5)p2 � p mod 22 :
The total number of comparisons in the more efficient algorithm for the preprocessing stage of

PREFIX-SUFFIX MAX is(p � 1) + 1 + p2 � p mod 22 = 1:5p � p mod 22 : (6)

Consider Algorithm 1 demonstrating the improved pre-processing stage forp = 9. Again, the

implementation carries no hidden overhead, with the comparisons dominating the computation.

Notice also that the assignment operations in instructions 3, 4, 14 and 20 can be executed in

parallel on suitable architecture.

3.2 An efficient merge procedure

We first show how to improve the merge step, by reducing the amortized number of comparisons

in it from 1 tolg pp + o(1):
In this step, we computemax(Rk; Sp�k�1); (7)

for k = 1; : : : ; p� 2. Observing thatRp�2 � Rp�1 � : : : � R1;Sp�2 � Sp�1 � : : : � S1;
we can eliminate most of these comparisons. Suppose that for some specifici it was found thatRi � Sp�i�1;
then for allk > i, we have thatRk � Ri � Sp�i�1 � Sp�k�1;
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Algorithm 1 Solving PREFIX-SUFFIX MAX , p = 9 (q = 5) using 13 comparisons instead of 16.
1: Input: x0; x1; x2; x3; x4; x5; x6; x7; x8; x9.
2: Output: s0; s1; :::; s8 andr1; :::; r9;

// Initialization

3: s0; : : : ; s8  x0; : : : ; x8
4: r1; : : : ; r9  x1; : : : ; x9

// First part (p� 1 = 8 comparisons)

5: if s0 > s1 then s1 s0
6: if s1 > s2 then s2 s1
7: if s2 > s3 then s3 s2
8: if s3 > s4 then s4 s3
9: if r9 > r8 then r8 r9

10: if r8 > r7 then r7 r8
11: if r7 > r6 then r6 r7
12: if r6 > r5 then r5 r6

// Second part (5 comparisons)

13: if r5 > s4 then // max(x0; : : : ; x9) = max(x5; : : : ; x9)
14: r1; r2; r3; r4 r5
15: if s4 > s5 then s5 s4
16: if s5 > s6 then s6 s5
17: if s6 > s7 then s7 s6
18: if s7 > s8 then s8 s7
19: else// max(x0; : : : ; x9) = max(x0; : : : ; x4)
20: s5; s6; s7; s8 s4
21: if r5 > r4 then r4 r5
22: if r4 > r3 then r3 r4
23: if r3 > r2 then r2 r3
24: if r2 > r1 then r1 r2
25: end if
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and therefore there is no need to do the comparisons of (7) for allk > i. Similarly, if it is

determined thatRi � Sp�i�1;
then we do not need to do the comparisons of (7) for allk < i.

The optimized procedure for doing the merge step is therefore by a binary search. Westart by

settingi = d(p� 2)=2e, and then continue with the remaining half of the problem size.

Consider for example Algorithm 2, demonstrating the binary search method for the merge

stage in the casep = 9. Instruction 1–13 implement the binary search, which terminates in a jump

to a labelLi, wherei is the smallest such thatti = max(Ri; S8�i) = Ri. Each such jump is carried

out after exactly 3 instructions in this case. Instructions 14–21 compute the valuesof ti’s by proper

assignments toRi’s, without any additional comparisons. The total number of assignments is any

where between 0 and 7.

Notice that the implementation in Algorithm 2 is very straightforward and carries no additional

overhead. In fact, this implementation can be translated directly to aVLSI layout, machine code,

or higher level programming language. This efficiency is achieved by unrolling loops andmore

generally pre-computing all values, including labels, which are dependent solelyonp.
In general, we have that binary search method reduces the number of comparisons fromp� 2

to lg p + O(1). In fact, it can be easily checked that the maximal number of comparisons is

exactlydlg(p� 1)e. The amortized contribution of the improved merge step to the complexity is

thereforedlg(p� 1)ep : (8)

3.3 Comparison Complexity

In examining algorithms 2 and 1 together, we conclude that in the casep = 9, we are able to reduce

the number of comparisons from 23 in the case of the HGW algorithm to 16, i.e., improvingthe

complexity by about30%. The improvement is even greater for larger values ofp.
More generally, we can combine (8) and (6) to compute the amortized comparison complexity

of our improved algorithm.
12



Algorithm 2 Efficient merge forp = 9 using 3 comparisons instead of 7.
Require: R1 � R2 � R3 � R4 � R5 � R6 � R7 andS1 � S2 � S3 � S4 � S5 � S6 � S7
Ensure: t1 = max(R1; S7), t2 = max(R2; S6), t3 = max(R3; S5), t4 = max(R4; S4), t5 =max(R5; S3), t6 = max(R6; S2), andt7 = max(R7; S1)

// Valuest1; : : : ; t7 are returned in variablesR1; : : : ; R7
1: if R4 � S4 then

2: if R2 � S6 then

3: if R1 � S7 then jumpL1 elsejumpL2
4: else

5: if R3 � S5 then jumpL3 elsejumpL4
6: end if

7: else// R4 < S4
8: if R6 � S2 then

9: if R5 � S3 then jumpL5 elsejumpL6
10: else

11: if R7 � S1 then jumpL7 elsejumpL8
12: end if

13: end if

14: L8: R7  S1
15: L7: R6  S2
16: L6: R5  S3
17: L5: R4  S4
18: L4: R3  S5
19: L3: R2  S6
20: L2: R1  S7
21: L1:

13



Theorem 1 There exists a deterministic algorithm for the1D MAX -FILTER problem, achievingC1 = 1:5 + dlg(p� 1)ep � p mod 22p � 1:5 + dlg(p� 1)ep = 1:5 + lg pp +O(1p ) (9)

Can we improve on this result? An information theoretical lower bound for the number of

comparisons required to solve PREFIX-SUFFIX MAX , is p+ lg p�O(1). This bound is derived as

follows. A compact output of an algorithm for the problem usesp + lg p � O(1) bits comprised

as follows:

1. lg p bits to designate the location of the overall maximum (for simplicity, we assume thatp
is a power of 2) ,

2. a single bit for each location prior to the maximum, designating whether the corresponding

element changes the prefix maxima, and

3. a single bit for each location following to the maximum, designating whether thecorre-

sponding element changes the suffix maxima.

Moreover, there are distinct inputs which produce all the bit combinations of this compact repre-

sentation. Thus, in order to make the distinction between these inputs, the algorithm is forced to

make at leastp + lg p�O(1) (10)

comparisons.

Although we are unable to meet the lower bound (10), we can come even closer to it in an

important special cases. Suppose that in an input to the PREFIX-SUFFIX MAX problem, the overall

maximum is located at a random location` in the input sequence. (This does not necessarily mean

obeys the input the i.i.d. condition.)

In the first part of the preprocessing stage, we maintain a record of the index`1 at which the

value stored atsi, i = 1; : : : q � 1 was found. Similarly, we keep a record of the index`2 at which

the value stored atri, i = p� 1; : : : ; q was found.

Then, once the comparison betweensq�1 andrq is made, we know whether` = `1 or ` = `2.
All that remains is to proceed to compute outputssq; sq+1; : : : ; s`�1 in the case thatsq�1 < rq,

14



or rq�1; rq�2; : : : ; r`+1 otherwise. The expected number of comparisons in this completion stage

is 1p + 1  Xj=q�1;::: ;0(q � 1 � j) + Xj=q;::: ;p(j � q)! ==  q�1Xi=0 i+ p�qXi=0 i!= q(q � 1) + (p � q)(p� q + 1)2(p + 1)= p2 + 2q2 � 2pq + p � 2q2(p+ 1)= p2 � (p mod 2)4(p + 1)= p4 � 14 + 14(p + 1) � (p mod 2)4(p + 1)� p4 : (11)

In general, it cannot be assumed that arbitrary input to the PREFIX-SUFFIX MAX problem will

have its maximum at a random location. For example, the maximum will always occur at an end

point for monotonic inputs.4 When this assumption holds, then the amortized expected number

of comparisons in this version of the preprocessing stage is therefore at most(p � 1) + 1 + p=4p = 1:25
Combining the above with (8) we obtain:

Theorem 2 There exists an algorithm for the1D MAX -FILTER problem, achievingE(C1) � 1:25 + dlg p � 1ep + � 1:25 + lg pp
when the input is i.i.d.

4For some inputs it should be possible to gain better performance by choosing at random the starting point for

segmentation. Segments will be centered at positions indexed �; � + p; � + 2p; : : : , where� is an integer selected

at random in the range[0; : : : ; p � 1]. Such a random selectiondoes not degradethe overall efficiency due to the

assumption thatp � n, since only one random number in the range[0; ::; p� 1] needs to be computed.
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3.4 Implementation of the algorithms

The model of computation we have used here is that of comparisons. Few words are in place

regarding the implementation of the algorithms in contemporary programming languagesin actual

use such as C [14], in machine language, or even in hardware.

The basic assumption is thatp is quite small and is either fixed or selected from a small set

of pre-determined values. Therefore, an implementation should unroll all definite loops whose

number of iterations is dependent solely onp. By doing so, the comparisons of the loop control

variable are eliminated, just as the overhead of manipulating it. This principle means that the

computation of the prefix maxima in the lower half and the suffix maxima in the upper half of

each segment should be implemented using loop unrolling. An examples of the output of this loop

unrolling is given in Algorithm 1.

The second part of the randomized version of the preprocessing stage is more difficult to

implement without an explicit loop structure. Specifically, if the overallmaximum occurs (say) in

the upper half, it is required to complete the computation of the prefix maxima, stopping exactly

at the location of the maximum. One way of implementing this without checking the location of

the maximum in each iteration is by using “computed goto” of Fortran or functions pointers in

C. There are no more thanp=2 possible locations of the maximum in the upper half of the input.

For each such location, there is a chunk of code which unrolls the loop up to that point. There

are similar chunks of code designed to deal with the case of the maximum falling inthe lower

half of the input. Now, in the first part of the preprocessing, whenever the maximum isupdated

as a result of examination of a certain input value, the algorithm also updates a pointer to the

appropriate chunk to be executed in case the maximum is found in the current location.

Now, when the maximum of the upper half is found to be greater than the maximum of the

lower half, all that should be done is to use this pointer in order to make a jump to theappropriate

chunk of code. Admittedly, hand coding of such an implementation could be tedious. Fortunately,

with the advent of C++ [23], it is possible to employ its rich template mechanism in order to have

such code generated automatically. The techniques of doing so are beyond the scope of thispaper.

The interested reader is referred to e.g., [10] and the references thereof for examples of applying

the template mechanism for non-trivial compile-time computation and code generation.
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In the merge step, the flow of control in the implementation should follow the comparisons

tree implicit in the binary search. Specifically, each node in the tree should correspond to an if-

then-else construct in the code. These constructs would have the same nesting as the tree nodes.

Algorithm 2 shows how this is done for a fixedp. Again, the template mechanism can be used to

reduce the bulk of the burden of generating the code from the implementor.

Finally, it should be noted that in a highly optimized implementation of the second part of the

preprocessing stage, if the overall maximum is found in the lower half, all prefix maxima of the

upper half are equal to this overall maximum, and there isno needto actuallyproduceor store

them in an auxiliary array . Instead, these values could be inlined into the codeof the merge step.

4 Efficient Algorithm for Simultaneously Computing the Max

and Min Filters

In this section we deal with the 1D MAX -M IN FILTER problem, and show how computing the min

and max filters simultaneously can be done more efficiently than an independent computation of

both. We start again with the HGW algorithm. The gain comes from partitioning theinput signal

into pairs of consecutive elements, and comparing the values in each pair. Thegreater value in

each pair carries on the maximum computation while the lesser one carries one to the minimum

computation.

4.1 The Prefix Max-Min Problem

Let us first consider the following problem,

PREFIX MAX -M IN: Given a sequencex0; : : : ; xq�1, computeMk = max(x0; : : : ; xk);mk = min(x0; : : : ; xk);
for k = 0; : : : ; q � 1.

The straightforward solution for PREFIX MAX -M IN uses a total of2(q� 2)+1 comparisons. For

the sake of simplicity we assume that all elements in the input sequence are distinct. Analyzing this
17



problem from an information theoretical point of view the algorithm is tantamount to classifying

each elementxi, i > 2, into one of three categories. Elementxi may increase the running prefix

maximum, i.e.,xi > Mk�1, and thereforeMk = xi. If this is not the case, thenxi may decrease

the running minimum, i.e.,xi < mk�1. The third case is thatmk�1 � xi < Mk�1, and therefore

no changes are made to be made to the running prefix minimum or maximum. Also, there areonly

two possible cases forx1, while there is exactly one case forx0. Thus, we obtain1 + (q � 2) lg 3 � 1:58496q;
as an information theoretic lower bound for the number of comparisons for the PREFIX MAX -M IN

problem.

We do not know of a general way of bringing the amortized number of comparisons from2�o(1) closer to thelg 3 lower bound, or alternatively, proving a stronger lower bound. However,

if the distribution of the input elements is independent, we can do even better thanthe lower

bound (which obviously holds for worst case inputs). This improvement is carried out as follows.

Suppose thatMi andmi were already computed. Then, to computeMi+1, Mi+2, mi+1 andmi+2,
we apply the followingincorporate-next-input-pairalgorithm.

Algorithm incorporate-next-input-pair: Extend the result of a solution toPREFIX

MAX -M IN to include input elementsxi+1 andxi+2, using the four following compar-

isons:

1. Comparexi+1 andxi+2. Assume, without loss of generality, thatxi+1 � xi+2.
2. CompareMi with xi+1 = max(xi+1; xi+2).
3. Comparemi with xi+2 = min(xi+1; xi+2).
4. At this stage, the algorithm has determined bothMi+2 andmi+2. Specifically,Mi+2 = max(xi+1;Mi)mi+2 = min(xi+2;mi):

There are four cases to consider in computingmi+1 andMi+1.
(a) No changes:xi+1 �Mi andxi+2 � mi
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No more comparisons need to be done in this case, and the algorithm simply

outputsMi+2 = Mi+1 = Mimi+2 = mi+1 = mi:
(b) Changes to both the maximum and the minimum:xi+1 �Mi andxi+2 � mi:

Again, no more comparisons need to be done in this case, and the algorithm

outputsMi+2 = Mi+1 = xi+1;mi+1 = mi;mi+2 = xi+2:
(c) Change to the maximum:xi+1 �Mi andxi+2 � mi:

The algorithm outputsMi+2 = Mi+1 = xi+1;mi+2 = mi+1 = mi:
without any additional comparisons.

(d) Possible change to the minimum:xi+1 �Mi andxi+2 � mi:
This is the only case in which an additional comparison is required: The

algorithm first outputsMi+2 = Mi+1 = Mi;mi+2 = xi+2;
and then determinesmi+1 by comparingxi+1 with Mi. If xi+1 < mi thenmi+1 = xi+1;
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otherwise,mi+1 = mi:
Thus, in the worst case, the algorithm makes four comparisons for each pairxi+1 andxi+2,

wherei > 0 is odd, which does not improve on the two comparisons per element by the trivial

algorithm. The fourth comparison however is needed only in casexi+2 < mi = min0�j�i(xi); (12)

or in the dual case, namely when the first comparison yieldsxi+1 � xi+2, andxi+2 < Mi = max0�j�i(xi): (13)

With i.i.d. (independent input distribution) the probability of (12) or (13) holding is1=(i+ 3), for

all i > 0. Let u = bq=2c � 1 = (q � (q mod 2)) � 1. Then in the last application of the above

algorithm we deal with the pairx2u andx2u+1. In total,Fq, theexpected(with regard to input

distribution) number of times the fourth comparison is made is given byFq = 14 + 16 + 18 + � � �+ 12u+ 2 = (Hu+1 � 1)=2; (14)

whereHu is theuth harmonic number. It is well known thatlimu!1Hu = lnu+ 
 (15)

where
 � 0:577216 is Euler’s constant (also called Mascheroni’s constant). Combining (14)

and (15) we haveFq = ln(u+ 1)2 + 
2 � 0:5 + o(1)� ln(u+ 1)2 � 0:211392 + o(1) (16)

It is also known thatlnu+ 
 � Hu � lnu+ 1 (17)

from which we obtainFq � ln(u+ 1)2� ln q � 12 : (18)
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Other than these, in solving PREFIX MAX -M IN, there areu applications ofincorporate-next-

input-pair, in which3u comparisons are made, one comparison in whichx0 is compared withx1
to determineM0, M1, m0 andm1, and finally, and only ifq is odd, two comparisons to deter-

mineMq�1 andmq�1. The number of these comparisons is1 + 3u+ 2(q mod 2) = 3q2 � 2 + q mod 22 : (19)

Adding (18) and (19) we have that the expected total number of comparisons in our solution to

PREFIX MAX -M IN is at most3q2 + ln q2 � 2; (20)

and the expected amortized number of comparisons per element is at most1:5 + ln q2q � 2=q:
It should be noted that one cannot hope to improve much on this result. The reason is that solving

PREFIX MAX -M IN also yields the maximum and the minimum of the whole input. However,

computing both these values cannot be done in less thand3p=2e comparisons [5, page 187] even

for randomized inputs.

4.2 Computing the Min-Max Filter

We now employ algorithmincorporate-next-input-pairin the pre-processing stage of the modified

HGW algorithm adapted for finding both the minimum and the maximum filters. Specifically,

we are concerned in this stage in finding an efficient algorithm to the PREFIX-SUFFIX MAX -M IN

problem, defined as computing the maximum and the minimum of all prefixes and all suffixes

of an array of sizep + 1. Such an efficient algorithm is obtained by partitioning the input array

into two halves. In the lower half which comprisesq = b(p+ 1)=2c = p=2 + (p mod 2)=2
elements we repetitively applyincorporate-next-input-pairto compute the prefix maxima and the

prefix minima in this half. A similar computation is carried out in the upper half with p � q +1 = d(p + 1)=2e elements of the input array, except that algorithmincorporate-next-input-pair

is mirrored to compute thesuffixminima and the suffix maxima in this half. The total expected
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number of comparisons so far can be computed from (20):3q2 + 3(p + 1� q)2 + ln q2 + ln(p+ 1 � q)2 � 4 = 3p2 + ln(b(p + 1)=2cd(p + 1)=2e2 � 2:5� 3p2 + ln �p+12 �22 � 2:5= 3p2 + ln(p + 1)� ln 2� 2:5� 3p2 + ln p � 2:5:
(21)

Once this computation is done, we carry on as before to produce the rest of the requiredoutput.

In two more comparisons we find out where the maximum and the minimum of the whole array

occur. If the maximum occurs in the lower (resp. upper) half then it remains to compute the suffix

(resp. prefix) maxima from the mid-point down-to (resp. up-to) the location of the maximum.

From (11) we have that this computation costs another 0.25 comparison per input element.A

similar completion stage must be carried out for the minimum prefixes or suffixes, using another

0.25 amortized comparisons. All that remains to do is the merge step, which hasto be carried

out twice, once for the minimum and once for the maximum. The number of comparisons for the

merge is at most2 lg p. Combining this bound with (21) we obtain:

Theorem 3 There exists an algorithm for the1D MIN-MAX FILTER problem, that at the worst

case makes twice the number of comparisons as that of Theorem 2. For i.i.d. input, the amortized

number of comparisons that the algorithm makes isCm1 < 2 + 2ln p + lg pp= 2 + (2 + ln 22 )lg pp� 2 + 2:3466lg pp :
Stated differently, we have that asymptotically for largep, and for i.i.d. one comparison per

element is required to compute each of the minimum and the maximum filters, provided they are

computed together.
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4.3 Performance on Natural Images

Natural images are far from being random inputs. It is therefore important to check the perfor-

mance of the algorithm of Theorem 3 in natural images. The important factor isKp, the number

of times the prefix maximum (or the prefix minimum) is changed in a window of sizep. Clearly,1 � Kp � p. With randomized input, the expected value ofKp is Hp � ln p + 
, which gives

rise to an asymptotic saving of0:5 comparison per input value. If, on the other hand, the input is

monotonically increasing thenKp = p. This is a worst case input in which no savings at all can

be made in computing the min and max filters together. More generally, the amortized number

of comparisons that are saved by the iterative application ofincorporate-next-input-pairis in the

order ofp �Kpp :
Figure 3 shows the average value ofKp (using max computation) forp = 2; : : : ; 100 in the

lighthouse image. In this, and all subsequent figures, the average was computed by examining all

one-dimensional row windows in the image. Only windows which entirely fall inthe image were

considered. For comparison purposes, this figure, just as all the ones to follow, shows the rate at

whichHp increases withp.
Figure 3 left frame shows the average value ofKp for the red, green and blue components of

each pixel. It is interesting to note that these three channels behave quite similarly, and as we shall

see next, very much like the behavior of the illumination in grey-level images. For small values

of p, Kp andHp are close, andKp appears to increase in a logarithmic rate. For larger values ofp,Kp appears to increase at a linear rate, with9 � K100 � 12:
It is also interesting to note that the rate of increase ofKp is the fastest in the red channel, and

slowest in the blue channel.

Figure 3, right frame, is similar to Figure 3, left frame, except that it depicts the rate of increase

of Kp for minimum computation.

We witness again the same phenomena: The rate of increase inKp is faster than that ofHp, it

is slowest to change in the blue and fastest in the red. Curiously, we have a slightly better ratio for
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Figure 3: Left: Average number of times the prefix maximum is changed in the lighthouseimage

vs. window size. Right: Average number of times the prefix minimum is changed in thelighthouse

image vs. window size.Kp=p for the minimum computation8 � K100 � 10:
To gain better understanding of the rate of increase ofKp in natural images, we run similar

experiments for six grey-level images. The results are depicted in Figure 4left frame for the

maximum computation, and in Figure 4 right frame for the minimum computation. The experi-

ments were conducted this time only for the green channel. It was our experience thatin all these

imagesKp increased slightly faster for red, and slightly slower for blue.

As can be seen from these two figures,Kp is always faster to increase thanHp. Still, even for

large windows we have thatKp is only a small fraction ofp. A slower rate of increase inKp for

minimum rather than for maximum could not be observed. For example,Kp of the “Sails” image

increases at the slowest rate for minimum prefix, and at the fastest ratefor maximum prefix.

One may conjecture that the rate of increase ofKp is logarithmic, but with a base of loga-

rithm less thane. To check this Figures 4 is redrawn in semi-logarithmic scale in Figure 5.This

conjecture is false as can easily be seen from these two frames.

In conclusion, we find that for natural images the algorithm behind Theorem 3 gives rise to an

amortized saving of about0:9 comparison compared to the independent computation of the min
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Figure 4: Left: Average number of times the prefix maximum is changed in seven different natural

images vs. window size. Right: Average number of times the prefix minimum is changed in seven

different natural images vs. window size.
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Figure 5: Left: Average number of times the prefix maximum is changed in seven different natural

images vs. window size (semi-logarithmic scale). Right: Average number of times the prefix

minimum is changed in seven different natural images vs. window size (semi-logarithmic scale).
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and max filters.

5 An Efficient Algorithm for the Opening and Closing Filters

In this penultimate section of the paper we turn to describing how the opening (and closing) filter

can be computed more efficiently than a mere sequential application of the Max-Filter and then

the Min-Filter.

To understand the improvement, consider for a moment the problem of computing the prefix-

minimum, in the case that the input of lengthp is given as a sequence ofL monotonically increas-

ing or decreasing segments. Suppose that the prefix-minimum has been computed up to a pointi,
i.e., that the value ofmi = min(x0; : : : ; xi) is known, and thatxi+1; : : : ; xi+k is a monotonically

decreasing segment of the input of lengthk. Then, in order to computemi+1; : : : ;mi+k, all that

is required is to find the smallest` such thatm` < mi. This ` can be easily found using a binary

search indlg ke comparisons. We then havemi+j = 8<: mi if j < `xi+j if ` � j � k.

If on the other handxi+1; : : : ; xi+k is a monotonicallyincreasingsequence, all that is required in

order to computemi+1; : : : ;mi+k is to comparexi+1 andmi. In this case we have thatmi+1 = mi+2 = � � � = mj+k = min(xi+1;mi):
Using Lagrange multipliers we obtain that the number of comparisons is bounded above byLllg pLm: (22)

Recall now the improved merge step described in Section 3.2. Each iteration of the binary

search algorithm generates about half of the outputs of the max-filter that remainedto be com-

puted. Note that all values generated in one such iteration are consecutive inthe output. Further,

since these values are obtained from computing eitherRi or Si, they are either monotonically

increasing or monotonically decreasing. Thus an application of the modified max filter algorithm

also partitions each stretch ofp outputs into no more thandlg pe monotonic segments.
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The improved opening filter algorithm is thus obtained by first applying the modified HGW

max-filter algorithm, while preserving this partitioning of the output. Then, the results are feed

into the modified HGW min-filter algorithm. The partitioning information is thenused for an effi-

cient implementation of the preprocessing stage in which prefix- and suffix-minima are computed.

It follows from (22) that the preprocessing stage can be done inO(lg2 p) comparisons. Since the

merge step can be done inO(lg p) comparisons, we obtain:

Theorem 4 There exists an algorithm which computes the opening filter, achievingCo1 = C1 +O� lg2 pp � :
In other words, asymptotically computing the opening filter is not more expensive than com-

puting just the max-filter. When going to more than one dimension, unlike the erosion and dilation,

the opening and closing operations are not separable, and thus do not enjoy the same computa-

tional efficiency as the one dimensional opening and and closing. Nevertheless, one could still use

the one dimensional efficiency to accelerate these operations. The order of operations in this case

could be the following:� Apply the MAX FILTER on the rows. For non-i.i.d. signals, this operation takesC1 compar-

isons.� Apply the MIN-MAX FILTER on the columns of the result of the previous step. For non-

i.i.d. signals, this operation takesC1 + o(1) comparisons.� Apply the MIN FILTER on the rows of the result of the the previous step. For non-i.i.d. it

takesC1 comparisons.

That is, for two dimensional images, instead of using4C1 = 6 comparisons per element, we spend

only 3C1 = 4:5 comparisons per element (or3:75 comparisons instead of5 for i.i.d. signals). For

the generaln-dimensional case, we spend(n� 1)C1 comparisons, exploiting the fact that at least

for one dimension we can enjoy the efficiency of the 1D-MIN-MAX FILTER.
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6 Conclusions and Open Problems

We presented improvements of the HGW algorithm for running min and max filters.The average

computational complexity was shown to be1:25+o(1) per element for randomized input, and1:5+o(1) for a deterministic algorithm (worst case input). These improvements, which come close

to the best known lower bound for the problem, were enabled by careful examination of the

redundancies in the preprocessing and the merge steps of the HGW algorithm.

We continued to study a related problem, namely the computation of the min and the max filter

together. We found that for i.i.d. input, it is possible to compute the minimum and the maximum

filters together in2 + o(1) comparisons per data point. This is less than2:5 + o(1) comparisons

required by applying twice the best max filter algorithm.

The opening and closing filters which are similar to the problem of computing the min-and

max-filters together, can be computed much more efficiently. We found algorithmsfor these filters

using1:5+o(1) comparisons deterministically, or1:25+o(1) comparisons when the input is i.i.d.

All separable algorithms like erosion and dilation are readily extendible to higher dimensions.

We leave the following open questions for further research:

1. In image processing, the selection of a coordinate system is usually arbitrary and unrelated

to the geometry of the objects being presented. Therefore, it seems more naturalto use

a circle rather than a square as the shape of the window. However, the extensionof the

1D algorithm for a 2D-circle case needs further thought. By using a heap data structure to

represent a sliding window in the shape of a circle of radiusp, we can compute the filter inO(p lg p)
comparisons per window; in each move of the center of the circle, the data structure is

updated by addingO(p) points and removingO(p) points. If pixel values are drawn from

some small finite domain, then it is possible to use a dynamic moving histogram [13, 4]

data structure supporting insertions and deletions inO(1) time. The amortized cost is then

reduced toO(p). It is interesting and important to find more efficientaccuratealgorithms for

this problem, with and without assuming that pixel values are bounded. (Previous results [1,

22] give approximations to this problem.)
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2. We know of no deterministic or randomized algorithm which computes for worst caseinput

the MAX -M IN FILTER more efficiently than computing the min and max separately. There

is however an interesting property of algorithmincorporate-next-input-pairwhich might

be used in trying to meet this challenge: The fourth comparison is only required forthe

computation of theinterim Mi+1 andmi+1 output values. Thus, a repetitive application

of this algorithm can carry on to its next iteration, while delaying the fourth comparison

of the current iteration for later. It might be possible to use this observation to obtain an

efficient algorithm for the MAX -M IN FILTER problem which does not presume any input

distribution. For example, in the preprocessing stage one may applyincorporate-next-input-

pair to compute the prefix maxima of the greater elements of each pair in the lower half as

well as the prefix minimum of the lesser elements of these pairs. A similarcomputation is

carried out in the upper half of the input array, except that algorithmincorporate-next-input-

pair is mirrored to compute the suffix minima (resp. maxima) of the lesser (resp.greater)

elements of each pair in the upper half. The computation of the skipped values could be

done later on and only if necessary.

3. A related algorithmic problem is that of solving PREFIX MAX -M IN problem in less than2p+O(1) comparisons. We find this problem fascinating since it is possible to solve either

the PREFIX MAX (or the PREFIX M IN) problem in the same number of comparisons it takes

to compute just the overall maximum (minimum). On the other hand, computing both the

overall maximum and the overall minimum can be done in a smaller number of comparisons

than what is required for computing them independently. Our inability to make similar

saving for the problem of computing the PREFIX MAX together with PREFIX M IN leads us

to suspect that there is an2p + O(1) lower bound for the PREFIX MAX -M IN problem. It

might be possible to derive such a bound using a technique similar to that of the proof that

computing the maximum and minimum ofp values requiresd3p=2e comparisons.

4. As mentioned above, the Max-Filter algorithms do not assume any input distribution. For

some applications it could be useful to produce an algorithm for this problem which works

better in the case of i.i.d. input.
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Our results do not seem to be directly applicable to the more difficult problem of computing

the median filter. However, it might similar techniques might be used to improve the constants,

or even the asymptotic complexity of the currently best median filter algorithm [12] which runs

in O(log2 p) time per filtered point.
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