
Dalmo Cirne
dalmo.cirne@gmail.com

Augmented Reality
Geolocation Math

mailto:dalmo.cirne@gmail.com
mailto:dalmo.cirne@gmail.com

Introduction

Augmented reality combined with modern smartphones equipped with cameras, magne-
tometers, and the ability to display maps on the screen make a powerful tool that can be
used in a plethora of different applications. Here we are going to explain how to build one
such kind of application. We will learn how to put geolocation based annotations on the
screen, taking into account where a device is, which direction it is pointing, and how far
place marks of interest are from it–known as geolocation augmented reality. We will ex-
plore the math that goes behind such application, and also learn about a reference imple-
mentation for iOS.

Although the reference implementation is for iOS, the concepts presented here are transfer-
able to any other capable device or platform.

The use case we will be developing
here is of a user standing at a location
with longitude ax and latitude ay and

pointing the back of her device to a di-
rection making an angle α with a line
parallel to the latitude lines. The device
will have a camera with viewing angle
ϕ and a maximum field of interest,
from the observer’s perspective, de-
noted by radius r. We want to overlay
annotations on the device’s screen of
all place marks that are situated within
the visible area. Furthermore, we want
to update the annotations every time
the user changes location, rotates the device, or changes the radius of the region of inter-
est.

1

Blue and Red place marks are visible, all others are not.

The viewing angle ϕ of the device will depend whether its orientation is portrait or land-
scape. For our calculations we are using:

ϕ = {
π
3 if device orientation is landscape
π
4 if device orientation is portrait

Although there may be some discussion whether those angles are exact. They are pretty
close to the actual angle values and perfectly good for this application.

Before we can proceed we need to find a way to convert longitude and latitude–which are
expressed in degrees–to miles (or kilometers). And since the Earth’s shape is not a circle,
we can expect to have two different conversions: one for latitude and one for longitude.

The Earth’s radius at the Equator Line is 3,956.547 miles. Let’s denote it by s.

s = 3,956.547 miles

2

x

yy′�

x′�a

c

b

mα

ϕψ

ω p

Converting latitudes to miles is be simpler since we can approximate latitude lines to an
arc of a circle. We know how to calculate the circumference of a circle (2πr), and we also
know a circle has 360∘. Thus, if we divide the Earth’s circumference by 360 degrees we will
have an approximation to miles per degree of latitude t. The accuracy of this approxima-
tion is sufficient for our application.

t =
2πs
360∘

 Miles Per Degree Of Latitude

Calculating miles per degree of longitude g will be not as straightforward. Walking one de-
gree of longitude alongside the Equator Line means walking a greater distance than walk-
ing one degree of longitude closer to the poles.

g = t cos (ay
π

180∘) Miles Per Degree Of Longitude

Our user is standing at:

a = [ax
ay] = [device's longitudedevice's latitude]

A user will be pointing the device to a direction, and this direction will make an angle α
with the true north (heading). Now, this angle α will be measured against the latitude lines,
which are vertical, and equivalent to the y axis or any of its parallels in a Cartesian plane.
However in a Cartesian plane it is common practice to measure angles against the x axis,
therefore we need to convert the angle α to an angle ψ, which will give us the heading rela-
tive to an horizontal line parallel to the x axis.

ψ =
π
2

− α

And since now we know how to convert from degrees to miles and vice-versa, we can cal-
culate points b and c given a distance of interest r .

3

b = [
bx

by] =

r
g cos (ψ + ϕ

2) + ax

r
t sin (ψ + ϕ

2) + ay

c = [cx
cy] =

r
g cos (ψ − ϕ

2) + ax

r
t sin (ψ − ϕ

2) + ay

Given that we have a set of place marks, each one with its own longitude and latitude. Our
challenge is to determine which ones would fall within the region of interest, therefore be
visible and have a corresponding annotation overlaid on the screen. We will need to iterate
over the set of place marks and for each place mark:

p = [px
py] = [placemark's longitude

placemark's latitude]
We will need to calculate whether or not its longitude and latitude coordinates are within
the region of interest.

We have that the projection of vector ⃗ap on vector ⃗ab can be calculated by:

proj ⃗ab ⃗ap = ∥ ⃗ap ∥ cos ω

Also, the dot product between ⃗ap and ⃗ab is:

⃗ap ⋅ ⃗ab = ∥ ⃗ab ∥∥ ⃗ap ∥ cos ω

Therefore we have that:

proj ⃗ab ⃗ap =
⃗ap ⋅ ⃗ab

∥ ⃗ab ∥

4

We need to express proj ⃗ab ⃗ap as a coordinate of vector ⃗ab , or in other words, calculate an

eigenvalue for it. That is achieved by dividing it by the norm of ⃗ab . Let’s call this eigen-
value λ.

λ =
proj ⃗ab ⃗ap

∥ ⃗ab ∥
 ⇒ λ =

⃗ap ⋅ ⃗ab

∥ ⃗ab ∥
2

Now we need to calculate the projection of vector ⃗ap on vector ⃗ac :

proj ⃗ac ⃗ap =
⃗ap ⋅ ⃗ac

∥ ⃗ac ∥

Dividing the projection by the norm of vector ⃗ac given us an eigenvalue and allows us to
express its coordinate in terms of ⃗ac . Let’s call this eigenvalue σ.

σ =
proj ⃗ac ⃗ap

∥ ⃗ac ∥
 ⇒ σ =

⃗ap ⋅ ⃗ac

∥ ⃗ac ∥2

With λ and σ in hand we can proceed to the last step in determining whether a place mark
lies within the visible region of interest.

The arc of circumference determining the distance boundary can be calculated using the
Pythagorean theorem:

a2 + b2 = c2

or in our case:

(λ ⃗ab)2 + (σ ⃗ac)2 = r2

However the length of vectors ⃗ab and ⃗ac have the same length, and are equal in length to
the radius r. Thus, in order to simplify the equation we can divide both sides by r2.

λ2
⃗ab
2

r2
+ σ2 ⃗ac 2

r2
=

r2

r2

5

Leaving us with:

λ2 + σ2 = 1

Now we can determine whether a place mark p is within the region of interest, therefore is
visible. The eigenvalues λ and σ must be positive numbers (otherwise the place mark
would be located behind the observer) and when combined, using the Pythagorean theo-
rem, they have to be smaller or equal to 1, so they are not farther than the boundary set by
the radius arc segment.

p(λ, σ) = {Visible ∀ (λ > 0) ∧ (σ > 0) ∧ (λ2 + σ2 ≤ 1)
Not Visible otherwise

Our next step is to translate what we have developed thus far into device (e.g. iPhone,
iPod Touch, iPad or iPad Mini) equations and coordinates.

6

Overlaying Augmented Reality Annotations on
the Device’s Screen

So far we have calculated which place marks are visible. Now we need to calculate their
respective coordinates, sizes, and perspectives on the device’s screen.

If we calculate the mid-point m of the
boundary arc segment
and determine the vector

⃗am, we can calculate the
distance d, to represent
how far a place mark p is
from the vector ⃗am . Point
m would be equivalent to
the center of the device’s
screen, and points b and
c e q u i v a l e n t t o t h e
screen’s left and right margins. Thus, once having d computed we can determine its pro-
portionally equivalent d′� on the screen.

m =
r
g cos ψ + ax

r
t sin ψ + ay

We know that the dot product between two vectors is equal to the product of their Norms
times the cosine of the angle θ between them:

⃗am ⋅ ⃗ap = ∥ ⃗am∥∥ ⃗ap ∥ cos θ

7

θ

d

l

d′�

b

c

The angle θ is the only unknown in the equation, and is exactly what we
need to discover in order to calculate distance d.

θ = arccos (⃗am ⋅ ⃗ap
∥ ⃗am∥∥ ⃗ap ∥)

Now that we know θ we can proceed to calculate d:

d = ∥ ⃗ap ∥ sin θ

The length of the vector ⃗bc is equivalent to the length l of the screen. With that informa-
tion we can calculate d′�:

d
∥b − c∥

=
d′�
l

 ⇒ d′� =
ld

∥b − c∥

For each place mark we will need to calculate a coordinate (x, y) representing the center of
the augmented reality annotation (annotation for short), and dimensions (w, h) representing
its width and height, respectively.

Having calculated the distance d′� above, we can compute coordinate x:

x =
l
2

+ d′�

In the equation above, l
2

 gives us the middle of the screen on the longitudinal (Cartesian x)

axis, and d′� tells us how far from it our annotation should be from it. This leaves us with
y, w, h yet to be calculated.

However, before we continue forward, let me introduce a scale factor s varying from [0,1]
that will become very important determining the remaining unknowns.

When plotting annotations on the screen, it would be nice to draw them smaller and closer
to the top of the screen if a place mark is farther from the observer, and draw them larger

8

a
∥ ⃗ap ∥ cos θ

p

p1

m

and closer to the bottom of the screen if a place mark is closer to the observer. This is
where the scale factor s becomes important.

We can define an annotation’s maximum size to have width defaultWidth and height
defaultHeight, then by multiplying its size by the scale factor s we can make the size of the
annotation drawn on the screen to be inversely proportional to the place mark’s distance
to the observer (which is the length of vector ⃗ap), behaving as we described in the previ-
ous paragraph.

The scale factor s is calculated by:

s = 1 −
∥ ⃗ap ∥

r

And the dimension (w, h) of a place mark are given by:

w = s × defaultWidth

h = s × defaultHeight

9

The same idea we used for the dimensions of an annotation can be carried over to deter-
mine its y coordinate. We just need to establish a maximum y coordinate (yMax) on the
screen and multiply it by the scale factor s.

y = s × yMax

As you can see from the screenshot, the annotations closer to the observer appear in
larger size and closer to the bottom of the screen, and as distances from the observer
grow, the annotations get smaller and closer to the top of the screen.

10

Reference Implementation

A reference implementation for iOS is available in GitHub. You can clone or fork it from:

https://github.com/dcirne/ARGEOM

Let’s begin by taking a look at the source code files and explaining a little about of what
each of them do.

As you can see, we are using
some of Cocoa Touch’s frame-
works in this project. For exam-
ple:

• AVFoundation to capture the in-
put from the device’s camera.

• MapKit to place a map on the
screen.

• CoreMotion to detect device
movement and acceleration (in-
cluding the gesture to tell
whether the device is parallel or
perpendicular to the floor.)

• CoreLocation for user location
and device heading.

This project also uses Storyboards to represent user interfaces (iPhone and iPad), and
ARC for memory management. Last but not least, the deployment target is iOS 5.0 or
greater.

11

http://www.github.com/
http://www.github.com/
https://github.com/dcirne/ARGEOM
https://github.com/dcirne/ARGEOM

If you already have the project open in Xcode, you should be able to select a device and
hit Run to see it working.

DCViewController is the root view controller of this app and also has the responsibility of
loading the collection [NSArray] of place marks. There are two choices of place marks col-
lections to be loaded, and it is very easy to pick which one you want. The first one is call-
ing the method:

- (NSArray *)loadPlacemarks;

In its implementation you can see a simplistic way of entering a collection of place marks.
You can manually enter title, subtitle, latitude, and longitude.

The other choice is to call the method:

- (void)loadPlacemarks:(PlacemarksLoaded)completionBlock;

This method loads the list of U.S. State Capitals from a CSV file in a background thread,
parses it, allocates an instance of DCPlacemark for each capital, and adds it to the collec-
tion of place marks. Once the collection is complete, it invokes the completion block on
the main thread passing all loaded place marks as parameter.

In order to keep the selection easy, you can comment out the compiler directive

#define USE_EXTERNAL_PLACEMARKS

comment it out if you want the simple, manual collection of place marks; or uncomment it
if you want the list of U.S. State Capitals.

DCPlacemark contains the representation of a place mark, including its longitude, lati-
tude, title and other properties.

DCAugmentedRealityAnnotationViewController is used to overlay an augmented reality
annotation on the device’s screen.

12

DCAugmentedRealityViewController is the place where most of the calculations hap-
pen. Using it is as simple as presenting the view controller and calling its start method
passing a collection [NSArray] of DCPlacemarks as parameter:

- (void)startWithPlacemarks:(NSArray *)placemarks;

When you hold your device parallel to the floor you will see the standard iOS map view
from MapKit and the place marks as pins on the map. However, if you move your arm to
hold the device perpendicular to floor, the map is resized, placed at the bottom-right cor-
ner, and the augmented reality mode gets started. Depending on the direction you are
pointing the device to, and the distance set in the slider, you will see annotations appear-
ing on the screen.

The program uses CoreMotion to monitor the device’s motion and detect whether it is par-
allel or perpendicular to the floor. Then we use this information to start/stop the aug-
mented reality visualization mode. This is handled by the following methods:

- (void)startMonitoringDeviceMotion;
- (void)stopMonitoringDeviceMotion;
- (void)handleDeviceAcceleration:(CMAccelerometerData *)accelerometerData
 error:(NSError *)error;

One important point worth mentioning is that by default iOS devices assume the top of the
screen, in portrait mode, to represent due north. Thus, if we are holding a device in any
other orientation, or if we rotate the device, we need to set the heading orientation to the
appropriate value. This is accomplished in app by the method:

- (void)updateLocationManagerHeadingOrientation;

Now, probably the most important method in this class, and highly likely in the whole pro-
ject, is the one where majority of the calculations described in this paper are performed.
Let’s take a moment to dive deeper look into the code:

13

- (void)calculateVisiblePlacemarksWithUserLocation:(CLLocation *const)location
 heading:(CLHeading *const)heading
 completionBlock:(PlacemarksCalculationComplete)completionBlock {

.

.

.
// Calculations are performed on a separate thread in a serial queue
dispatch_async(placemarksQueue, ^{

// Blocks to perform vector operations
double(^dotProduct)(double *, double *) = ^(double *vector1, double *vector2)...
double(^norm)(double *) = ^(double *vector)...
void(^makeVector)(double **, CGPoint, CGPoint) = ^(double **vector, CGPoint point1,
CGPoint point2)...
CLLocationDistance(^calculateDistanceBetweenPoints)(CGPoint, CGPoint) = ^(CGPoint
point1, CGPoint point2)...
.
.
.
// Loops through place marks calculating which ones are visible and which
// ones are not
for (DCPlacemark *placemark in self.placemarks) {

pointP = CGPointMake(placemark.coordinate.longitude,
 placemark.coordinate.latitude);
makeVector(&vectorAP, pointA, pointP);

lambda = dotProduct(vectorAP, vectorAB) / pow(norm(vectorAB), 2);
sigma = dotProduct(vectorAP, vectorAC) / pow(norm(vectorAC), 2);

if ((lambda > 0) && (sigma > 0) && (pow(lambda, 2) + pow(sigma, 2) <= 1)) {
thetaDirection = calculateDistanceBetweenPoints(pointB, pointP) <=
 calculateDistanceBetweenPoints(pointC, pointP) ? -1.0 : 1.0;
theta = acos(dotProduct(vectorAM, vectorAP) / (norm(vectorAM) *
 norm(vectorAP))) * thetaDirection;
dPrime = l * norm(vectorAP) * sin(theta) / norm(vectorBC);
distanceFromObserver = [placemark
 calculateDistanceFromObserver:location.coordinate];
scale = 1.0 - distanceFromObserver / distance;

placemark.bounds = CGRectMake(0,
 0,
 defaultAugmentedRealityAnnotationSize.width * scale,
 defaultAugmentedRealityAnnotationSize.height * scale);
placemark.center = CGPointMake(lOver2 + dPrime, yMax * scale);

[visiblePlacemarks addObject:placemark];

} else {
[nonVisiblePlacemarks addObject:placemark];

}

free(vectorAP);

}
.
.
.
dispatch_async(dispatch_get_main_queue(), ^{

completionBlock([visiblePlacemarks copy], [nonVisiblePlacemarks copy]);
});

}
}

14

This method calculates all visible and non-visible place marks in a background serial dis-
patch queue and when finished it dispatches completionBlock on the main queue.

In this reference implementation the completion block contains a call to a single method.
This method overlays the visible annotations on the screen and also remove the ones no
longer visible.

- (void)overlayAugmentedRealityPlacemarks:(NSArray *const)visiblePlacemarks
 nonVisiblePlacemarks:(NSArray *const)nonVisiblePlacemarks;

We have covered a lot of ground in this paper. We have learned the math necessary to de-
termine whether a place mark is within a region of interest, we went one step further and
translated it to fit inside a device’s screen, and last but not least we saw a reference imple-
mentation for iOS.

I hope you have enjoyed reading this paper and playing with the reference implementation
as much as I did writing them.

Dalmo Cirne
dalmo.cirne@gmail.com
http://dalmocirne.blogspot.com

15

mailto:dalmo.cirne@gmail.com
mailto:dalmo.cirne@gmail.com
http://dalmocirne.blogspot.com
http://dalmocirne.blogspot.com

References

Dot Product. (n.d.). In Wikipedia. Retrieved November 13, 2012, from
http://en.wikipedia.org/wiki/Dot_product#Geometric_interpretation

Norm. (n.d.). In Wikipedia. Retrieved November 9, 2012, from
http://en.wikipedia.org/wiki/Norm_(mathematics)

Unit Vector. (n.d.). In Wikipedia. Retrieved November 9, 2012, from
http://en.wikipedia.org/wiki/Unit_vector

Earth Radius. (n.d.). In Wikipedia. Retrieved January 27, 2013, from
http://en.wikipedia.org/wiki/Earth_radius

Longitude. (n.d.). In Wikipedia. Retrieved January 27, 2013, from
http://en.wikipedia.org/wiki/Longitude

Latitude. (n.d.). In Wikipedia. Retrieved January 27, 2013, from
http://en.wikipedia.org/wiki/Latitude

16

http://en.wikipedia.org/wiki/Dot_product%23Geometric_interpretation
http://en.wikipedia.org/wiki/Dot_product%23Geometric_interpretation
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Earth_radius
http://en.wikipedia.org/wiki/Earth_radius
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Latitude

