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Introduction

Augmented reality combined with modern smartphones equipped with cameras, magne-
tometers, and the ability to display maps on the screen make a powerful tool that can be 
used in a plethora of different applications. Here we are going to explain how to build one 
such kind of application. We will learn how to put geolocation based annotations on the 
screen, taking into account where a device is, which direction it is pointing, and how far 
place marks of interest are from it–known as geolocation augmented reality. We will ex-
plore the math that goes behind such application, and also learn about a reference imple-
mentation for iOS.

Although the reference implementation is for iOS, the concepts presented here are transfer-
able to any other capable device or platform.

The use case we will be developing 
here is of a user standing at a location 
with longitude ax and latitude ay and 

pointing the back of her device to a di-
rection making an angle α with a line 
parallel to the latitude lines. The device 
will have a camera with viewing angle 
ϕ and a maximum field of interest, 
from the observer’s perspective, de-
noted by radius r. We want to overlay 
annotations on the device’s screen of 
all place marks that are situated within 
the visible area. Furthermore, we want 
to update the annotations every time 
the user changes location, rotates the device, or changes the radius of the region of inter-
est.
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Blue and Red place marks are visible, all others are not.



The viewing angle ϕ of the device will depend whether its orientation is portrait or land-
scape. For our calculations we are using:

ϕ = {
π
3 if device orientation is landscape
π
4 if device orientation is portrait

Although there may be some discussion whether those angles are exact. They are pretty 
close to the actual angle values and perfectly good for this application.

Before we can proceed we need to find a way to convert longitude and latitude–which are 
expressed in degrees–to miles (or kilometers). And since the Earth’s shape is not a circle, 
we can expect to have two different conversions: one for latitude and one for longitude.

The Earth’s radius at the Equator Line is 3,956.547 miles. Let’s denote it by s. 

s = 3,956.547 miles
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Converting latitudes to miles is be simpler since we can approximate latitude lines to an 
arc of a circle. We know how to calculate the circumference of a circle (2πr), and we also 
know a circle has 360∘. Thus, if we divide the Earth’s circumference by 360 degrees we will 
have an approximation to miles per degree of latitude t. The accuracy of this approxima-
tion is sufficient for our application.

t =
2πs
360∘

 Miles Per Degree Of Latitude

Calculating miles per degree of longitude g will be not as straightforward. Walking one de-
gree of longitude alongside the Equator Line means walking a greater distance than walk-
ing one degree of longitude closer to the poles.

g = t cos (ay
π

180∘ )  Miles Per Degree Of Longitude

Our user is standing at:

a = [ax
ay] = [device's longitudedevice's latitude ]

A user will be pointing the device to a direction, and this direction will make an angle α 
with the true north (heading). Now, this angle α will be measured against the latitude lines, 
which are vertical, and equivalent to the y axis or any of its parallels in a Cartesian plane. 
However in a Cartesian plane it is common practice to measure angles against the x axis, 
therefore we need to convert the angle α to an angle ψ, which will give us the heading rela-
tive to an horizontal line parallel to the x axis.

ψ =
π
2

− α

And since now we know how to convert from degrees to miles and vice-versa, we can cal-
culate points b and c given a distance of interest r .
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b = [
bx

by] =

r
g cos (ψ + ϕ

2 ) + ax

r
t sin (ψ + ϕ

2 ) + ay

c = [cx
cy] =

r
g cos (ψ − ϕ

2 ) + ax

r
t sin (ψ − ϕ

2 ) + ay

Given that we have a set of place marks, each one with its own longitude and latitude. Our 
challenge is to determine which ones would fall within the region of interest, therefore be 
visible and have a corresponding annotation overlaid on the screen. We will need to iterate 
over the set of place marks and for each place mark:

p = [px
py] = [placemark's longitude

placemark's latitude ]
We will need to calculate whether or not its longitude and latitude coordinates are within 
the region of interest.

We have that the projection of vector ⃗ap  on vector ⃗ab  can be calculated by:

proj ⃗ab ⃗ap = ∥ ⃗ap ∥ cos ω

Also, the dot product between ⃗ap  and ⃗ab  is:

⃗ap ⋅ ⃗ab = ∥ ⃗ab ∥∥ ⃗ap ∥ cos ω

Therefore we have that:

proj ⃗ab ⃗ap =
⃗ap ⋅ ⃗ab

∥ ⃗ab ∥
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We need to express proj ⃗ab ⃗ap  as a coordinate of vector ⃗ab , or in other words, calculate an 

eigenvalue for it. That is achieved by dividing it by the norm of ⃗ab . Let’s call this eigen-
value λ.

λ =
proj ⃗ab ⃗ap

∥ ⃗ab ∥
 ⇒ λ =

⃗ap ⋅ ⃗ab

∥ ⃗ab ∥
2

Now we need to calculate the projection of vector ⃗ap  on vector ⃗ac :

proj ⃗ac ⃗ap =
⃗ap ⋅ ⃗ac

∥ ⃗ac ∥

Dividing the projection by the norm of vector ⃗ac  given us an eigenvalue and allows us to 
express its coordinate in terms of ⃗ac . Let’s call this eigenvalue σ.

σ =
proj ⃗ac ⃗ap

∥ ⃗ac ∥
 ⇒ σ =

⃗ap ⋅ ⃗ac

∥ ⃗ac ∥2

With λ and σ in hand we can proceed to the last step in determining whether a place mark 
lies within the visible region of interest. 

The arc of circumference determining the distance boundary can be calculated using the 
Pythagorean theorem:

a2 + b2 = c2

or in our case:

(λ ⃗ab )2 + (σ ⃗ac )2 = r2

However the length of vectors ⃗ab  and ⃗ac  have the same length, and are equal in length to 
the radius r. Thus, in order to simplify the equation we can divide both sides by r2.

λ2
⃗ab
2

r2
+ σ2 ⃗ac 2

r2
=

r2

r2
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Leaving us with:

λ2 + σ2 = 1

Now we can determine whether a place mark p is within the region of interest, therefore is 
visible. The eigenvalues λ and σ must be positive numbers (otherwise the place mark 
would be located behind the observer) and when combined, using the Pythagorean theo-
rem, they have to be smaller or equal to 1, so they are not farther than the boundary set by 
the radius arc segment.

p(λ, σ) = {Visible ∀  (λ > 0) ∧ (σ > 0) ∧ (λ2 + σ2 ≤ 1)
Not Visible otherwise

Our next step is to translate what we have developed thus far into device (e.g. iPhone, 
iPod Touch, iPad or iPad Mini) equations and coordinates.
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Overlaying Augmented Reality Annotations on 
the Device’s Screen

So far we have calculated which place marks are visible. Now we need to calculate their 
respective coordinates, sizes, and perspectives on the device’s screen.

If we calculate the mid-point m of the 
boundary arc segment 
and determine the vector 

⃗am, we can calculate the 
distance d, to represent 
how far a place mark p is 
from the vector ⃗am . Point 
m would be equivalent to 
the center of the device’s 
screen, and points b and 
c e q u i v a l e n t t o t h e 
screen’s left and right margins. Thus, once having d computed we can determine its pro-
portionally equivalent d′� on the screen.

m =
r
g cos ψ + ax

r
t sin ψ + ay

We know that the dot product between two vectors is equal to the product of their Norms 
times the cosine of the angle θ between them:

⃗am ⋅ ⃗ap = ∥ ⃗am∥∥ ⃗ap ∥ cos θ
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The angle θ is the only unknown in the equation, and is exactly what we 
need to discover in order to calculate distance d.

θ = arccos ( ⃗am ⋅ ⃗ap
∥ ⃗am∥∥ ⃗ap ∥ )

Now that we know θ we can proceed to calculate d:

d = ∥ ⃗ap ∥ sin θ

The length of the vector ⃗bc  is equivalent to the length l of the screen. With that informa-
tion we can calculate d′�:

d
∥b − c∥

=
d′�
l

 ⇒ d′� =
ld

∥b − c∥

For each place mark we will need to calculate a coordinate (x, y) representing the center of 
the augmented reality annotation (annotation for short), and dimensions (w, h) representing 
its width and height, respectively.

Having calculated the distance d′� above, we can compute coordinate x:

x =
l
2

+ d′�

In the equation above, l
2

 gives us the middle of the screen on the longitudinal (Cartesian x) 

axis, and d′� tells us how far from it our annotation should be from it. This leaves us with 
y, w, h yet to be calculated.

However, before we continue forward, let me introduce a scale factor s varying from [0,1] 
that will become very important determining the remaining unknowns.

When plotting annotations on the screen, it would be nice to draw them smaller and closer 
to the top of the screen if a place mark is farther from the observer, and draw them larger 
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and closer to the bottom of the screen if a place mark is closer to the observer. This is 
where the scale factor s becomes important.

We can define an annotation’s maximum size to have width defaultWidth and height 
defaultHeight, then by multiplying its size by the scale factor s we can make the size of the 
annotation drawn on the screen to be inversely proportional to the place mark’s distance 
to the observer (which is the length of vector ⃗ap ), behaving as we described in the previ-
ous paragraph.

The scale factor s is calculated by:

s = 1 −
∥ ⃗ap ∥

r

And the dimension (w, h) of a place mark are given by:

w = s × defaultWidth

h = s × defaultHeight
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The same idea we used for the dimensions of an annotation can be carried over to deter-
mine its y coordinate. We just need to establish a maximum y coordinate (yMax) on the 
screen and multiply it by the scale factor s.

y = s × yMax

As you can see from the screenshot, the annotations closer to the observer appear in 
larger size and closer to the bottom of the screen, and as distances from the observer 
grow, the annotations get smaller and closer to the top of the screen.
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Reference Implementation

A reference implementation for iOS is available in GitHub. You can clone or fork it from:

https://github.com/dcirne/ARGEOM

Let’s begin by taking a look at the source code files and explaining a little about of what 
each of them do.

As you can see, we are using 
some of Cocoa Touch’s frame-
works in this project. For exam-
ple: 

• AVFoundation to capture the in-
put from the device’s camera. 

• MapKit to place a map on the 
screen.

• CoreMotion to detect device 
movement and acceleration (in-
cluding the gesture to tell 
whether the device is parallel or 
perpendicular to the floor.)

• CoreLocation for user location 
and device heading.

This project also uses Storyboards to represent user interfaces (iPhone and iPad), and 
ARC for memory management. Last but not least, the deployment target is iOS 5.0 or 
greater.
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If you already have the project open in Xcode, you should be able to select a device and 
hit Run to see it working.

DCViewController is the root view controller of this app and also has the responsibility of 
loading the collection [NSArray] of place marks. There are two choices of place marks col-
lections to be loaded, and it is very easy to pick which one you want. The first one is call-
ing the method:

- (NSArray *)loadPlacemarks;

In its implementation you can see a simplistic way of entering a collection of place marks. 
You can manually enter title, subtitle, latitude, and longitude.

The other choice is to call the method:

- (void)loadPlacemarks:(PlacemarksLoaded)completionBlock;

This method loads the list of U.S. State Capitals from a CSV file in a background thread, 
parses it, allocates an instance of DCPlacemark for each capital, and adds it to the collec-
tion of place marks. Once the collection is complete, it invokes the completion block on 
the main thread passing all loaded place marks as parameter.

In order to keep the selection easy, you can comment out the compiler directive

#define USE_EXTERNAL_PLACEMARKS 

comment it out if you want the simple, manual collection of place marks; or uncomment it 
if you want the list of U.S. State Capitals.

DCPlacemark contains the representation of a place mark, including its longitude, lati-
tude, title and other properties.

DCAugmentedRealityAnnotationViewController is used to overlay an augmented reality 
annotation on the device’s screen.
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DCAugmentedRealityViewController is the place where most of the calculations hap-
pen. Using it is as simple as presenting the view controller and calling its start method 
passing a collection [NSArray] of DCPlacemarks as parameter:

- (void)startWithPlacemarks:(NSArray *)placemarks;

When you hold your device parallel to the floor you will see the standard iOS map view 
from MapKit and the place marks as pins on the map. However, if you move your arm to 
hold the device perpendicular to floor, the map is resized, placed at the bottom-right cor-
ner, and the augmented reality mode gets started. Depending on the direction you are 
pointing the device to, and the distance set in the slider, you will see annotations appear-
ing on the screen.

The program uses CoreMotion to monitor the device’s motion and detect whether it is par-
allel or perpendicular to the floor. Then we use this information to start/stop the aug-
mented reality visualization mode. This is handled by the following methods:

- (void)startMonitoringDeviceMotion;
- (void)stopMonitoringDeviceMotion;
- (void)handleDeviceAcceleration:(CMAccelerometerData *)accelerometerData 
                           error:(NSError *)error;

One important point worth mentioning is that by default iOS devices assume the top of the 
screen, in portrait mode, to represent due north. Thus, if we are holding a device in any 
other orientation, or if we rotate the device, we need to set the heading orientation to the 
appropriate value. This is accomplished in app by the method:

- (void)updateLocationManagerHeadingOrientation;

Now, probably the most important method in this class, and highly likely in the whole pro-
ject, is the one where majority of the calculations described in this paper are performed. 
Let’s take a moment to dive deeper look into the code:
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- (void)calculateVisiblePlacemarksWithUserLocation:(CLLocation *const)location
                                      heading:(CLHeading *const)heading
                              completionBlock:(PlacemarksCalculationComplete)completionBlock {

.

.

.
// Calculations are performed on a separate thread in a serial queue
dispatch_async(placemarksQueue, ^{

// Blocks to perform vector operations
double(^dotProduct)(double *, double *) = ^(double *vector1, double *vector2)...
double(^norm)(double *) = ^(double *vector)...
void(^makeVector)(double **, CGPoint, CGPoint) = ^(double **vector, CGPoint point1, 
CGPoint point2)...
CLLocationDistance(^calculateDistanceBetweenPoints)(CGPoint, CGPoint) = ^(CGPoint 
point1, CGPoint point2)...
.
.
.
// Loops through place marks calculating which ones are visible and which
// ones are not 
for (DCPlacemark *placemark in self.placemarks) {

pointP = CGPointMake(placemark.coordinate.longitude,
                     placemark.coordinate.latitude);
makeVector(&vectorAP, pointA, pointP);
            
lambda = dotProduct(vectorAP, vectorAB) / pow(norm(vectorAB), 2);
sigma = dotProduct(vectorAP, vectorAC) / pow(norm(vectorAC), 2);

if ((lambda > 0) && (sigma > 0) && (pow(lambda, 2) + pow(sigma, 2) <= 1)) {
thetaDirection = calculateDistanceBetweenPoints(pointB, pointP) <= 
                 calculateDistanceBetweenPoints(pointC, pointP) ? -1.0 : 1.0;
theta = acos(dotProduct(vectorAM, vectorAP) / (norm(vectorAM) * 
             norm(vectorAP))) * thetaDirection;
dPrime = l * norm(vectorAP) * sin(theta) / norm(vectorBC);
distanceFromObserver = [placemark  
                        calculateDistanceFromObserver:location.coordinate];
scale = 1.0 - distanceFromObserver / distance;
                
placemark.bounds = CGRectMake(0,
                              0, 
                       defaultAugmentedRealityAnnotationSize.width * scale, 
                       defaultAugmentedRealityAnnotationSize.height * scale);
placemark.center = CGPointMake(lOver2 + dPrime, yMax * scale);
                
[visiblePlacemarks addObject:placemark];

} else {
[nonVisiblePlacemarks addObject:placemark];

}
            
free(vectorAP);

}
.
.
.
dispatch_async(dispatch_get_main_queue(), ^{

completionBlock([visiblePlacemarks copy], [nonVisiblePlacemarks copy]);
});

}
}
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This method calculates all visible and non-visible place marks in a background serial dis-
patch queue and when finished it dispatches completionBlock on the main queue. 

In this reference implementation the completion block contains a call to a single method. 
This method overlays the visible annotations on the screen and also remove the ones no 
longer visible.

- (void)overlayAugmentedRealityPlacemarks:(NSArray *const)visiblePlacemarks
                      nonVisiblePlacemarks:(NSArray *const)nonVisiblePlacemarks;

We have covered a lot of ground in this paper. We have learned the math necessary to de-
termine whether a place mark is within a region of interest, we went one step further and 
translated it to fit inside a device’s screen, and last but not least we saw a reference imple-
mentation for iOS.

I hope you have enjoyed reading this paper and playing with the reference implementation 
as much as I did writing them.

Dalmo Cirne
dalmo.cirne@gmail.com
http://dalmocirne.blogspot.com
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