
01101010101011111100010101010101011111100010100101111
11011010101011010111101010
10101100011101010101010111
100101010101010000111010101

011010101010111111000101010101010111111000101001011111101101010101101011110101010101100011101010101010111100101010101010000111010101

011010101010111111000101010101010111111000101001011111101101010101101011110101010101100011101010101010111100101010101010000111010101

Dalmo Cirne
dalmo.cirne@gmail.com

http://dalmocirne.blogspot.com

mailto:dalmo.cirne@gmail.com
mailto:dalmo.cirne@gmail.com
http://dalmocirne.blogspot.com
http://dalmocirne.blogspot.com


Introduction! 2

The Experiment! 3

Hardware Configuration and Software Versions! 6

Installing Linux, OpenSolaris, and Windows on the same machine! 7

Installing the Development Tools on each O.S.! 7

Linux! 7

OpenSolaris! 8

Windows! 9

Obtaining the Source Code! 9

Compiling the Programs and Running the Experiments! 9

Methodology for Analyzing the Data! 12

Analysis of the Data! 13

Linear - C! 13

Linear - Java! 19

Threads - C! 24

Threads - Java! 28

Stress - C! 34

Stress - Java! 38

The Economics of Operating Systems! 42

Conclusion! 44

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  1  o f  45



Abstract
There are many reasons why one may choose a particular operat-
ing system to run on their computer: availability of software, 
technical skills, etc. Among those reasons one may choose the op-
erating system with the best performance, or the one with the 
lowest cost per transaction. This paper examines three operating 
systems (Linux, OpenSolaris, and Windows) and their respective 
capabilities of taking advantage of the multiple cores present in 
modern processors by executing operations with integers, floating 
points and math, and I/O in a multithreaded way, achieving par-
allelism in the execution of those operations, and then tries to rea-
son the measurements from the experiments in the economics of 
an operating system.

Introduction

Often times the choice of an operating system is related to some platform dependent tools one 
will be using (e.g., programming languages, spreadsheets, video editors), the services that will 
be running (e.g., database servers, application servers, Email servers), or availability of profes-
sionals with knowledge on a particular system. However, often times the tools, services and 
professionals are available on any chosen platform. Therefore, knowing better about the capa-
bilities of an operating system may be a decisive factor in choosing the one that is best for your 
needs.

Modern computers are rapidly increasing the number of cores available per processor. Two, 
four, and even 12 cores per chip are current available configurations. Therefore, the ability of an 
operating system to take advantage of such processors and scale its performance proportionally 
to the number of available cores is of great importance. An operating system should be able to 
manage threads efficiently, assign multiple threads to multiple cores when available, and use 
time slicing to simulate simultaneous execution when all cores are busy and more threads are 
scheduled to be executed. Linux and OpenSolaris use the Posix threads (pthreads) model and 
Microsoft Windows uses the Win32/Win64 model.

The ideas and experiments discussed throughout this paper are conceptually simple, nonethe-
less, it comes with several difficulties to be implemented into practice. The experiment includes 

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  2  o f  45



installing Linux, OpenSolaris, and Windows on the same machine1  and running a series of op-
erations with integer numbers, floating point and math, and Input/Output. Together these op-
erations roughly express all a computer can do, hence allowing us to infer that other software 
applications will behave similarly.

The Experiment

We want to compare the performance of the three operating systems. We have to make them 
execute identical tasks and compare execution times for each of the tasks. These tasks have to 
take the form of a program that will be compiled and executed on top of each of the operating 
systems.

In this experiment we chose to compare the performance in two different scenarios. In the first 
scenario, a program written in C, used specific O.S. APIs, but executed the exact same opera-
tions. For the second scenario, the program was written in Java. This way we have the very 
same source code, but compiled and executed on different operating systems. C and Java are the 
best choices to run this experiment. With the exception of Assembler, C is as fast as it gets when 
it comes to run a program. Java is widespread used among many industries and implemented 
for various platforms including the ones we are testing. Moreover, Java Virtual Machine (JVM) 
threads are native threads, rather than green threads, typically found in other interpreted lan-
guages. Which means to say that Java delegates to the operating system (kernel space) the task 
of managing multiple threads, rather than emulating the multithreading environment (user 
space) to make it operating system independent.

As in any experiment, it is important to have a point of reference to compare to when the results 
of the multithreaded computations are complete. The logical choice in this case is to create pro-
grams that will execute exactly the same tasks as the multithreaded ones, however the tasks will 
be executed serially. First the programs will execute the operations with integers, second with 
floating point and math, and last the I/O operations. The total running time of each iteration 
will be about the sum of the times to complete each individual task, whereas in the case of the 
multithreaded experiment the expected running time of each iteration will be the time it takes 
for the longest operation to finish since all the operations will be running in parallel in separate 
threads.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  3  o f  45

1 The choice to install all three operating systems on the same machine removes environment errors due 
to exogenous factors.



The third and last experiment will consist of putting the operating system under a condition of 
considerable stress. There will be many more threads than the number of available cores and 
each of the operations are computationally intensive. As a result, it is expected that each opera-
tion will take much longer to finish. Moreover, the stress experiment will take longer to finish 
than the linear experiment. The rationale is the overhead introduced by requiring from the op-
erating system the constant switching among the running threads and managing a very stress-
ful environment, with simultaneous operations competing for a limited number of resources. It 
is important to run the experiment this way, because we want to quantify the ability of an oper-
ating system to manage the concurrency of multiple threads.

The operations with integers are the simplest to implement. A global variable called counter is 
assigned to a temp variable, then we add 37, subtract 36, and assign the result back to counter. 
Effectively we are just incrementing counter by 1 at each iteration.

temp ← counter
temp ← temp+ 37
temp ← temp− 36
counter ← temp

The operations with floating point and math are executed by solving the following equation:



z
x
y



 =




exp (cos (

�
x2 + y2))

i/1.1
i× 1.1





When solved for the intervals x = [−10, 10] and y = [−10, 10] and plotted, it renders the curve:

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  4  o f  45



Lastly, the I/O operations consist of reading a file and replicating it a certain number of times. 
In this case we chose to read and replicate the GPL.

 
In the stress experiment we will execute the operations with integers, and floating point and 
math a little differently from its linear and multithreaded counterparts. One hundred concur-
rent threads will be competing to increment counter, however only one thread at a time will be 
able to increment it successfully. A mutex is used to manage the concurrency, delegating to the 
operating system the task of efficiently determining which thread wins the competition, and 
which threads wait idle for their turn to run. Eventually each of the 100 threads will be exe-
cuted.

Another difference introduced in the stress experiment is the usage of the classical Producer and 
Consumer model for the operations with floating point and math. The consumer thread asks for 
the result of a calculation. If the result has not yet been published by the producer thread, the 
consumer thread goes into a wait state and sleeps until it receives a notification from the pro-
ducer thread that the result is available to be consumed. After notifying the consumer thread, 
the producer thread will go into a sleep state and will wait until it receives a notification from 
the consumer thread that the previous result has been consumed and that it is ok to produce the 
next one.

Each of the experiments iterates 100 times per execution. This way we can generate data with a 
significant statistical mass on each one of the 100 iterations. We executed the integer operations 
100,000,000 times; the floating point and math operations 200,000 times; and replicated the GPL 
100 times2.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  5  o f  45

2 On each iteration we create a different directory to host the copies of the GPL. In the end of each run 
there will be 100 subdirectories, each one containing 100 copies of the GPL.

100x



Hardware Configuration and Software Versions

A machine capable of running this experiment has to have certain minimum requirements. For 
example, it must have a processor with more than one core and enough RAM not to use swap 
memory. It needs more than one core because we want to see tasks being executed in parallel. 
And it needs enough RAM because we don’t want to distort the I/O performance test by hav-
ing the operating system swapping data between physical memory and disk. The following ta-
ble contains the machine configuration used in this experiment:

CONFIGURATION

PROCESSOR

RAM

VIDEO CARD

HARD DISK

MAIN BOARD

Intel Core 2 Quad 2.5 GHz

2x2GB DDR2 1066 PC2-8500

NVidia 8600GT 512 MB

Western Digital WD5000AAKS - 
500GB - 
7200 RPM - SATA2

ASUS P5K-E P35 775

The software configuration is not identical across platforms, but we tried to keep them as ho-
mogeneous as possible. The next table shows each operating system used in this experiment 
and the softwares used to compile and run the programs.

LINUX OPENSOLARIS WINDOWS

O.S .  VERSION

DISK 
PARTITION

JAVA

C

FILESYSTEM

Fedora 12 2009.06 (20091230) Windows 7 
Professional

/dev/sda3 /dev/sda2 /dev/sda1

OpenJDK - 64bit
1.6.0_0 
build 14.0_b16

SUN JDK - 64bit
1.6.0_17-b04

SUN JDK - 64bit
1.6.0_17-b04

gcc
4.4.2

gcc
4.4.2

Visual C++ 2008 
Express Edition
9.0.30729.1SP

ext4 ZFS NTFS

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  6  o f  45



Installing Linux, OpenSolaris, and Windows on the same machine

The first challenge of this experiment was to install and boot each operating system separately 
on the same machine. Linux and OpenSolaris actually didn’t put up much of a challenge, most 
of the difficulties were related to getting Windows to behave as a good citizen and not assume 
that the entire machine was available to it.

The only way to get it all working was to install Windows first and the other two operating sys-
tems afterwards. In my case I ran the Windows installer, partitioned the disk in three equal par-
titions and used the first partition to install Windows3. The other two partitions were left un-
touched for Linux and OpenSolaris.

Next in-line was OpenSolaris. No surprises here. OpenSolaris was installed in the second disk 
partition, and the boot manager recognized the Windows partition and added it as a bootable 
option.

Last, but not least, Linux. The installation also ran with no surprises, taking the third and last 
partition on the disk. However during the boot manager configuration, it did not automatically 
recognize OpenSolaris. Nonetheless, since it offers an option to edit the boot options you simply 
need to add “/dev/sda2” and label it as “OpenSolaris”. When selected from the Linux boot man-
ager we are taken to the OpenSolaris boot manager and from there all works fine.

Installing the Development Tools on each O.S.

Linux
The Fedora installer gives you the option to install OpenJDK and gcc. If you select those at in-
stall time, you’re good to go. Otherwise you can install them easily from the command line

# yum install java-1.6.0-openjdk

# yum install gcc

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  7  o f  45

3 No anti-virus software was installed with Windows to avoid a performance hit. However, it is highly 
recommended the installation of an anti-virus program in computers running Windows.



OpenSolaris
The OpenSolaris installer does not give you the option to install either Java or gcc. Those have 
to be installed later. Java has to be installed in two steps (if we want the 64-bit version). Another 
two steps will be necessary to install gcc version 4.4.2.

Detailed instructions on how to install Java on OpenSolaris can be found at:
http://java.sun.com/javase/6/webnotes/install/jdk/install-solaris.html - 32-bit version
http://java.sun.com/javase/6/webnotes/install/jdk/install-solaris-64.html - 64-bit version

Notice that it is necessary to install the 32-bit version of Java prior to installing the 64-bit one.

We will have to download gcc 4.4.2 source and compile it, but before we do that we need to 
have a C compiler installed. We can install gcc 3.4.3 using Sun’s package manager. On a termi-
nal type:

$ pfexec pkg install SUNWgcc

$ pfexec pkg install SUNWgnu-mp

$ pfexec pkg install SUNWgnu-mpfr

gcc’s source code can be downloaded from any mirror listed in the GNU Compiler Collection 
site http://gcc.gnu.org. Once the source has been downloaded, change to the directory you 
downloaded it, uncompress, compile and install it.

$ tar xvjf gcc-4.4.2.tar.bz2

$ cd gcc-4.4.2

$ mkdir objdir/

$ cd objdir/

$ ../configure --prefix=/usr/local \\

--with-mpfr-include=/usr/include/mpfr/ \\
--with-as=/usr/sfw/bin/gas --with-gnu-as \\

--with-ld=/usr/ccs/bin/ld --without-gnu-ld \\

--enable-shared --with-gmp-include=/usr/include/gmp/

$ gmake 

$ pfexec gmake install 

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  8  o f  45

http://java.sun.com/javase/6/webnotes/install/jdk/install-solaris.html
http://java.sun.com/javase/6/webnotes/install/jdk/install-solaris.html
http://java.sun.com/javase/6/webnotes/install/jdk/install-solaris-64.html
http://java.sun.com/javase/6/webnotes/install/jdk/install-solaris-64.html
http://gcc.gnu.org
http://gcc.gnu.org


Windows
The Windows installer does not give you the option to install either Java or Visual C++ 2008 Ex-
press Edition. However installing both is quite simple. Just download the JDK from Sun’s web 
site and Visual C++ from Microsoft’s web site. Both are listed below:

http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://www.microsoft.com/express/Downloads/#2008-Visual-CPP

Obtaining the Source Code

All the source code is hosted at SourceForge4. You can checkout the code using Subversion, 
open a shell and type:

Compiling the Programs and Running the Experiments

After you download the programs you will need to compile them before running the experi-
ments. For Linux and OpenSolaris there is a convenience makefile, on the root directory where 
you put the source code that will compile and organize the binaries for you. If you open the file 
makefile, you will see all the options used to compile and link the programs. Notice, however, 
that you may need to inform the location of the gcc compiler. A suggestion is already written in 
the makefile. Open it and get familiarized with the compilation and linkage options. On the shell 
prompt change to the posix directory and type: make.

svn co https://multithreading.svn.sourceforge.net/svnroot/multithreading multithreading

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  9  o f  45

4 http://multithreading.sourceforge.net

https://multithreading.svn.sourceforge.net/svnroot/multithreading
https://multithreading.svn.sourceforge.net/svnroot/multithreading
http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://www.microsoft.com/express/Downloads/%232008-Visual-CPP
http://www.microsoft.com/express/Downloads/%232008-Visual-CPP
http://multithreading.sourceforge.net
http://multithreading.sourceforge.net


All files pertinent to the experiments are going to be inside of a newly created directory called 
Experiment. Inside of the Experiment directory there will be a directory for each individual ex-
periment. To run the experiments using C compiled binaries, just change to the experiments di-
rectory and execute the binary, for example, the linear experiment:

The experiments using Java will also be ran from the shell prompt. For example, the linear ex-
periment:

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  10  o f  45



For the Windows case the you will need to open the projects of the programs written in C on 
Visual C++ and build each of them. Open the project, select Release from the Solution Configura-
tion drop-down box, and Build Solution (F7) the project. You will find the binary inside the Re-
lease directory under your project’s root directory. The last step is to copy the file “gpl.txt” to 
that directory and run the experiment. For example:

Also for Windows we will need to compile the Java based programs. Change to the directory of 
the source .java file, compile the source code and pack the bytecode using jar. Then copy the file 
“gpl.txt” to that directory and run the experiment. For example, the linear experiment in Java:

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  11  o f  45



All experiments output their respective collected results in a .csv file, named hinting the oper-
ating system, the experiment, and whether it was executed from a C compiled program or Java. 
There you can find the sample data that is necessary to run the analysis contained in this paper.

Methodology for Analyzing the Data

The data collected from these experiments is a very large sample of the time it took for each op-
eration (integers, floating point and math, and I/O) to complete, plus the time each iteration 
took to complete (100 iterations were executed per program in the experiments). For each oper-
ating system, a set of programs were executed to measure the overall performance to complete 
the operations. One program in C executing the linear operations, one program in C executing 
the multithreaded operations, and one program in C executing the stressed operations. As well 
as one program in Java executing the linear operations, one program in Java executing the mul-
tithreaded operations, and one program in Java executing the stressed operations. In total there 
were 18 experiments ran (3 operating systems x 6 experiments on each operating system).

The sample data allows for the computation, with great statistical significance, of several statis-
tics:

• Average Running Time: This will give us an idea of the expected time to run each opera-
tion.

• Standard Deviation: Not only it is important to know the average running time, but also 
its volatility. A small standard deviation will tell us how predictable and reliable an 
operating system is in executing an operation within a certain amount of time. A large 
standard deviation will tell us that an operating system is not very predictable or reli-
able with expectations.

• Maximum and Minimum Running Times: This measurement is directly related with the 
standard deviation. The narrower this range, the better.

• Margin of Error: All statistical measurements carry some level of inaccuracy, thus it is 
important to measure how certain we are regarding the precision of the results. We are 
adopting 99% for the confidence level of all performed experiments.

• Histograms: Sometimes an image (chart) goes a long way in understanding a scenario. 
We will be able to visually compare each operating system side-by-side.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  12  o f  45



• Algebra of Sets: Portions of the sample data of each operating system will, in some 
cases, intersect with the others. We will need to know what elements are contained 
only in sample A, what elements are contained only in sample B, and what elements 
are an intersection of sample A and sample B. 

• Chi-Square Goodness-of-Fit Test: When the differences in performance among the operat-
ing systems are not evident to the naked eye, we will use χ2  to elucidate the differ-

ences and obtain statistical significance to accept or reject the hypothesis that the be-
haviors of the operating systems are the same.

Analysis of the Data

All time units, throughout all the experiments, are reported in milliseconds. However, for the 
programs written in C, elapsed times for Linux and OpenSolaris were measured in microsec-
onds (10−3 milliseconds). A conversion to milliseconds was necessary, but it had no impact in 
the accuracy since the collected data has a much higher resolution than the converted data.

As a convention of nomenclature, Pj and Wj will represent Posix and Win32, respectively. Posix 

will encompass both Linux and OpenSolaris (C and Java) and Win32 will cover Windows (C 
and Java). The subscript j will represent an index to an item in a referred table.

Linear - C
We first start taking a look at the sample data from running the reference program written in C 
and executing the operations in a linear way.

Table 1 shows that within this experiment, OpenSolaris was faster than Linux by a small mar-
gin, and that both Posix based operating systems were significantly faster than Windows (ap-
proximately 1 order of magnitude).

In order to understand better what happened and how each operation contributed in the com-
position of those times, we have to explore the sample data and learn what it says. 

Number of 
Iterations

Concurrent 
Threads

Total Running Time (milliseconds)Total Running Time (milliseconds)Total Running Time (milliseconds)Number of 
Iterations

Concurrent 
Threads Linux OpenSolaris Windows

100 1 4,388 4,002 48,719

Table 1. Linear - C. Number of threads and total running time.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  13  o f  45



From Table 2 we can learn about some interesting statistics that can help us understand better 
how each operating system behaved during the execution of this experiment. On the average 
execution times (µ) Linux and OpenSolaris had equivalent performance for operations with in-

tegers and floating point and math. There was little, if any, difference in operations with inte-
gers (|µLinux − µOpenSolaris| > σLinux + σOpenSolaris). And practically no difference in operations 

with floating point and math, with Linux being a bit faster. For the I/O operations OpenSolaris 
was, on average, about 41% faster than Linux.

One thing worth noticing here is that both Linux and OpenSolaris were very predictable in their 
respective expected running times. The standard deviations were very narrow, which means to 
say that both operating systems were very consistent in their execution times.

When comparing Linux and/or OpenSolaris to Windows it is clear from the sample data that 
the formers were much faster than the latter in operations with integers and I/O. Regarding op-
erations with floating point and math, although the average running time appears to have been 
faster, there is no statistical evidence to confirm that since the standard deviation is much larger 
than the time difference between the averages (σWindows > |µLinux or OpenSolaris − µWindows|). 

Windows overall showed very large standard deviation numbers in all categories being meas-

Time MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime Measurements

Iteration Time
Counter 

Increment
Equation 

Calculation
File 

Replication

Average Linux

OpenSolaris

Windows

Standard Deviation Linux

OpenSolaris

Windows

Maximum Linux

OpenSolaris

Windows

Minimum Linux

OpenSolaris

Windows

Margin of Error Linux

OpenSolaris

Windows

43.86 7.55 23.35 12.51

39.74 7.23 23.64 8.84

461.43 42.68 22.52 372.04

3.87 0.23 0.00 0.02

0.89 0.19 0.08 0.83

467.69 6.92 7.85 459.72

82.10 9.29 23.36 12.58

46.94 8.92 24.41 16.06

2,340.00 47.00 32.00 2,275.00

43.03 7.09 23.34 12.46

39.34 7.11 23.62 8.52

125.00 31.00 15.00 47.00

0.996 0.059 0.001 0.005

0.229 0.048 0.021 0.214

120.478 1.784 2.023 118.423

Table 2. Linear - C. Summary Statistics.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  14  o f  45



ured. This volatility suggests that the expected running time for operations being executed on 
Windows is by far less accurate than Linux and OpenSolaris.

On Chart 1 and also on Table 2 we see that the average time for the floating point and math op-
erations on Windows were 22.52 milliseconds versus 23.35 milliseconds on Linux and 23.64 mil-
liseconds on OpenSolaris. However, due to the higher Windows volatility further analysis of the 
data is necessary to understand this better.

Since Linux and OpenSolaris had very similar performances on executing those operations, for 
simplicity we can safely assume that they had the same performance and run the comparison 
only against one of the two operating systems and Windows. Thus we will need to analyze the 
sample data and see how many times Linux was faster than Windows, how many times they 
had equivalent performance, and how many times Linux was slower than Windows.

Table 3 gives us the frequency analysis of the sample data for Linux, OpenSolaris and Windows 
in regards to floating point and math operations:

Chart 1. Linear - C. Average Running Time for opera-
tions with integers and floating point and math.

0

10

20

30

40

50

Linux OpenSolaris Windows

Average Running Time

Counter Increment Equation Calculation

Chart 2. Linear - C. Standard Deviation for opera-
tions with integers and floating point and math.

0

2

3

5

6

8

Linux OpenSolaris Windows

Standard Deviation

Counter Increment Equation Calculation

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  15  o f  45



Plotting the data in a histogram chart helps us visualize the distribution of execution times per 
time slot.

Let’s define W  as the set containing all samples from running the experiment on Windows, and 

P  as the set containing all samples from running the experiment on a Posix environment (Linux 
or OpenSolaris). For this case, P  is representing the sample from running the experiment on 
Linux.

On Table 3 we classified the sample running times for floating point and math into time ranges. 
Assuming that any given two time samples that fall within the limits of a time range interval 
[TRt−1, TRt] are said to have equivalent performance.

Equation CalculationEquation Calculation

Bin Index Time Ranges

Equation CalculationEquation CalculationEquation Calculation

Linux 
Frequency

OpenSolaris 
Frequency

Windows 
Frequency

1 15.00

2 16.80

3 18.60

4 20.40

5 22.20

6 24.00

7 25.80

8 27.60

9 29.40

10 33.00

0 0 22

0 0 34

0 0 0

0 0 0

0 0 0

100 99 0

0 1 0

0 0 0

0 0 0

0 0 44

Table 3. Linear - C. Frequency analysis of the running times for operations with floating point and math 
for Linux, OpenSolaris, and Windows.

Chart 3. Linear - C. Histogram for operations with floating point and math.

0

20

40

60

80

100

15.00 16.80 18.60 20.40 22.20 24.00 25.80 27.60 29.40 33.00

Equation Calculation

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  16  o f  45



We start by calculating the subset of the times the performance of the two operating systems 
were equivalent.

E = P ∩W

Then we calculate subset of the times Linux was slower than Windows.

S = W − P ∩W

And finally we calculate the subset of the times Linux was faster than Windows.

F = P − P ∩W  
For simplicity of reading, it is probably better to show the numbers in percentage format, where 
the sum of E + S + F = 100%. In order to do that, we also need to calculate the set of samples 
that contained both in the Linux and Windows sets.

P ∪W = P +W − P ∩W

Now we can calculate E , S, F  in terms of percentage.

E% =
1

count(P ∩W )

10�

j=1

Ej

S% =
1

count(P ∩W )

10�

j=1

Sj

F% =
1

count(P ∩W )

10�

j=1

Fj

Since we classified the running times of the samples into time ranges, the algebra of sets for 
each time range can be calculated using the following cases.

Ej = min (Pj ,Wj)

Sj =






Wj − Pj if (Pj < Wj) ∧ (
�j

i=1 Pi < 100)

0 if (Pj > Wj) ∧ (
�j

i=1 Pi > 0) ∧ (
�j

i=1 Wi < 100)

Pj − (Pj ∩Wj) otherwise

Fj =






Pj −Wj if Pj > Wj

0 if ((Pj > Wj) ∧ (
�j

i=1 Pi = 100)) ∨ (Pj = Wj) ∨ (
�j

i=1 Pi < 100)

Wj − Pj otherwise

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  17  o f  45



From the results shown in Table 4 we can see that Linux was in fact faster than Windows 72% of 
the time. They did not intersect at any point, and Windows was faster than Linux 28% of the 
time.

Another point worth looking into is the performance related to I/O operations. OpenSolaris and 
its Zettabyte File System (ZFS) took the lead in this case. Windows and its NT File System 
(NTFS) appear to be one of the weakest points of the operating system.

Equation CalculationEquation CalculationEquation CalculationEquation Calculation

Time Ranges
Linux Faster 
than Windows

Linux Equal to 
Windows

Linux Slower 
than Windows

15.00 0 0 22

16.80 0 0 34

18.60 0 0 0

20.40 0 0 0

22.20 0 0 0

24.00 100 0 0

25.80 0 0 0

27.60 0 0 0

29.40 0 0 0

33.00 44 0 0

Totals 144 0 56

72.00% 0.00% 28.00%

Table 4. Linear - C. Performance comparison between Linux and Windows on operations with floating 
point and math.

Chart 5. Linear - C. Standard deviation for I/O op-
erations.

0

100.00

200.00

300.00

400.00

500.00

File Replication

Standard Deviation

Linux OpenSolaris Windows
Chart 4. Linear - C. Average running time for I/O 

operations.

0

80.00

160.00

240.00

320.00

400.00

File Replication

Average Running Time

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  18  o f  45



Not only the Windows average running time was considerably slower than OpenSolaris and 
Linux, as we can see in Chart 4, but also the space occupied on disk by the files themselves was 
significantly larger than OpenSolaris using ZFS and Linux using ext4. Table 5 shows the disk 
spaced used for the I/O operations by each of the file systems.

Each execution of any of the programs in this experiment creates a directory and copies the GPL 
100 times into that directory for each iteration, and since each program execution iterates 100 
times, at the end of each experiment there will be 10,100 items (10,000 files and 100 directories). 
Doing the math to calculate NTFS’ overhead we have:

Total Overhead = 351 MB− 335 MB = 16MB (16, 777, 216 bytes)

Average Overhead per Item =
16, 777, 216 bytes

10, 100 items
≈ 1, 661 bytes per item

The Windows filesystem seems to need to save a lot more overhead information to store the 
same amount of data5.

Linear - Java
The second set of data comes from running the reference program written in Java, also execut-
ing the operations in a linear way. 

The differences among the operating systems are not as accentuated as in the Linear - C case, 
nonetheless we can clearly perceive that OpenSolaris and Linux performed better than Win-
dows, with OpenSolaris having the best overall performance among the operating systems for 
this case. Let’s take a look into the details of the experiment.

Linux 
(ext4)

OpenSolaris
(ZFS)

Windows
(NTFS)

Space Used on 
Disk (MB)

335 335 351

Table 5. Linear - C. Disk spaced used per filesystem.

Number of 
Iterations

Concurrent 
Threads

Total Running Time (milliseconds)Total Running Time (milliseconds)Total Running Time (milliseconds)Number of 
Iterations

Concurrent 
Threads Linux OpenSolaris Windows

100 1 257,836 245,548 280,363

Table 6. Linear - Java. Number of threads and total running time.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  19  o f  45

5 This behavior was observed across all experiments.



Table 7 shows that OpenSolaris performed better across the board in the Java linear experiment. 
It had the lowest average running time and the least volatility in all categories being measured. 
The histogram of the iteration times is shown in Chart 6.

One thing we can notice from Table 7 is that although Linux was on average faster than Win-
dows in floating point and math operations, it had a higher volatility in its execution time. Let’s 
take a closer look at how this volatility affects the results and compare it to the same operations 
on Windows.

Time MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime Measurements

Iteration Time
Counter 

Increment
Equation 

Calculation
File 

Replication

Average Linux

OpenSolaris

Windows

Standard Deviation Linux

OpenSolaris

Windows

Maximum Linux

OpenSolaris

Windows

Minimum Linux

OpenSolaris

Windows

Margin of Error Linux

OpenSolaris

Windows

2,570.45 2,357.55 156.18 56.54

2,455.04 2,311.03 87.86 56.03

2,794.69 2,495.54 169.15 128.74

50.60 31.88 16.51 10.31

33.00 22.85 1.61 10.22

83.51 81.48 5.78 15.65

2,693.00 2,425.00 184.00 130.00

2,751.00 2,497.00 103.00 147.00

2,948.00 2,637.00 172.00 203.00

2,484.00 2,293.00 141.00 48.00

2,430.00 2,288.00 87.00 52.00

2,667.00 2,371.00 156.00 109.00

13.03 8.21 4.25 2.66

8.50 5.89 0.42 2.63

21.51 20.99 1.49 4.03

Table 7. Linear - Java. Summary Statistics.

Chart 6. Linear - Java. Histogram for iteration running times.

0

18

36

54

72

90

2,430.00 2,481.90 2,533.80 2,585.70 2,637.60 2,689.50 2,741.40 2,793.30 2,845.20 2,949.00

Iteration Time

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  20  o f  45



The data shown on Table 8 suggests that there are a significant number of performance overlaps 
between Linux and Windows. First we need to know if there is statistical evidence showing that 
the two sets of sample data are different. We will use Chi-Square Goodness-of-Fit Test (χ2) to 

determine that.

Our null hypothesis is that the two sample data are equal (or very similar) and the alternative 
hypothesis is that they are not similar at α = 0.05 (5%).

H0 : P = W

H1 : P �= W

Let pij be the probabilities of the events, where i is the index for the time range bin and j is the 

index for the operating system. Each program run is iterated n = 100 times. Also, let Fij be the 

frequencies of each event. The sum

Q =
10�

i=1

2�

j=1

(Fij − npij)
2

npij

is approximately the chi-square with a maximum of 

Time range bins− 1 + Operating systems− 1 = (10− 1) + (2− 1) = 10 degrees of freedom.

Equation CalculationEquation Calculation

Bin Index Time Ranges

Equation CalculationEquation CalculationEquation Calculation

Linux 
Frequency

OpenSolaris 
Frequency

Windows 
Frequency

1 87.00

2 96.80

3 106.60

4 116.40

5 126.20

6 136.00

7 145.80

8 155.60

9 165.40

10 185.00

0 31 0

0 68 0

0 1 0

0 0 0

0 0 0

0 0 0

54 0 0

2 0 0

8 0 16

36 0 84

Table 8. Linear - Java. Frequency analysis of the running times for operations with floating point and math 
for Linux, OpenSolaris, and Windows.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  21  o f  45



Table 9 has the calculated Chi-Square (Q) and the expected (χ2
0.05(4)) Chi-Square with 4 degrees 

of freedom. 

p = pi1 + pi2 =





54
200

2
200

8
200

36
200





+





0
200

0
200

16
200

84
200





=





0.27
0.01
0.12
0.60





n · p = 100 ·





0.27
0.01
0.12
0.60



 =





27
1
12
60





q = qi1 + qi2 =





(54 ⌧ 27)2

27

(2 ⌧ 1)2

1

(8 ⌧ 12)2

12

(36 ⌧ 60)2

60





+





(0 ⌧ 27)2

27

(0 ⌧ 1)2

1

(16 ⌧ 12)2

12

(84 ⌧ 60)2

60





Q = 77.867

Chi-Square Test - Equation CalculationChi-Square Test - Equation CalculationChi-Square Test - Equation Calculation

p np q

0.000 0.0

0.000 0.0

0.000 0.0

0.000 0.0

0.000 0.0

0.000 0.0

0.270 27.0 54.000

0.010 1.0 2.000

0.120 12.0 2.667

0.600 60.0 19.200

Q= 77.867

Expected Chi-Square (0.05, 4) =Expected Chi-Square (0.05, 4) = 9.488

Table 9. Linear - Java. Linux and Windows Chi-Square Goodness-of-Fit Test calculation for operations 
with floating point and math.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  22  o f  45



Since Q = 77.867 > 9.488 = χ2
0.05(4), the null hypothesis H0  is rejected. Which means that there 

is no statistical evidence that shows that the two samples of data are equal.

Since now we know that the two data samples are not equal, we can compare their time ranges 
in executing the operations.

Table 10 shows us that 54% of the time Linux executed the floating point and math operations in 
less than or equal to 145.80 milliseconds. In contrast Windows executed 100% of the operations 
in more than 145.80 milliseconds. The evidence shows that even though Linux had a higher 
volatility than Windows in the expected execution time, overall it performed better than Win-
dows the majority of the time.

OpenSolaris was the fastest executing the I/O operations and also had the least volatility, as we 
can see on Charts 7 and 8, respectively. Windows was the slowest among the operating systems 
and had the highest volatility.

Time Range Comparison - Equation Calculation

Range

Time Range Comparison - Equation CalculationTime Range Comparison - Equation CalculationTime Range Comparison - Equation Calculation

Linux OpenSolaris Windows

<= 96.80

> 96.80 
and 
<= 145.80

> 145.80

0% 99% 0%

54% 1% 0%

46% 0% 100%

Table 10. Linear - Java. Time range comparison for operations with floating point and math.

Chart 7. Linear - Java. Average running time for I/O 
operations.

0

26.00

52.00

78.00

104.00

130.00

File Replication

Average Running Time

Linux OpenSolaris Windows
Chart 8. Linear - Java. Standard deviation for I/O op-

erations.

0

3.20

6.40

9.60

12.80

16.00

File Replication

Standard Deviation

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  23  o f  45



Threads - C
This experiment is the first one to take advantage of the availability of multi-cores and the mul-
tithreading capabilities of the operating systems. The sample data comes from running each op-
eration (integers, floating point and math, and I/O) on its own thread, achieving parallel proc-
essing on the same machine.

Comparing Table 11 and Table 1 we notice that all operating systems were able to benefit from 
the multithreaded way of executing operations, and on average, each iteration was faster when 
compared to the respective linear programs. Moreover, the total time needed to finish each ex-
periment was smaller.

One thing worth noticing is that on average, each individual operation took longer to run than 
their equivalent linear programs. However, since the operations are being executed in parallel, 
the total time of an iteration is approximately the time the slowest operation takes to complete. 

Number of 
Iterations

Concurrent 
Threads

Total Running Time (milliseconds)Total Running Time (milliseconds)Total Running Time (milliseconds)Number of 
Iterations

Concurrent 
Threads Linux OpenSolaris Windows

100 3 3,339 2,388 42,167

Table 11. Threads - C. Number of threads and total running time.

Time MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime Measurements

Iteration Time
Counter 

Increment
Equation 

Calculation
File 

Replication

Average Linux

OpenSolaris

Windows

Standard Deviation Linux

OpenSolaris

Windows

Maximum Linux

OpenSolaris

Windows

Minimum Linux

OpenSolaris

Windows

Margin of Error Linux

OpenSolaris

Windows

33.36 8.54 27.28 15.09

23.85 7.32 23.71 10.23

421.21 57.74 25.87 401.46

6.05 1.34 2.65 4.51

0.18 0.36 0.16 1.85

436.02 7.86 7.43 435.84

54.93 12.92 36.22 54.78

24.77 8.32 24.53 22.15

2,278.00 78.00 32.00 2,262.00

23.63 6.84 23.37 12.50

23.74 6.66 23.64 8.77

62.00 46.00 15.00 46.00

1.56 0.35 0.68 1.16

0.05 0.09 0.04 0.48

112.32 2.02 1.91 112.27

Table 12. Threads - C. Summary Statistics.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  24  o f  45



Windows had the average running time for operations with floating points and math smaller 
than Linux, but it also had a higher volatility in executing those operations. Once more we have 
to look deeper into the sample data to understand this better.

Looking at Chart 11, we cannot tell whether the two sample data histograms (Linux and Win-
dows) are equal or different.

Nevertheless, we should perform a formal statistical analysis to determine whether the two 
sample data are equal. If we go ahead and propose a hypothesis that the two are equal and an 
alternative hypothesis that they are not equal:

H0 : P = W

H1 : P �= W

We can calculate the Chi-Square Goodness-of-Fit Test as follows

Chart 9. Threads - C. Average Running Time for op-
erations with integers and floating point and math.

0

12.00

24.00

36.00

48.00

60.00

Linux OpenSolaris Windows

Average Running Time

Counter Increment Equation Calculation
Chart 10. Threads - C. Standard Deviation for opera-

tions with integers and floating point and math.

0

1.60

3.20

4.80

6.40

8.00

Linux OpenSolaris Windows

Standard Deviation

Counter Increment Equation Calculation

Chart 11. Threads - C. Histogram for operations with floating point and math.

0

20

40

60

80

100

15.00 17.22 19.44 21.67 23.89 26.11 28.33 30.55 32.78 37.22

Equation Calculation

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  25  o f  45



And reject the null hypothesis that the two samples of data are equal, since 
Q = 162.286 > 15.507 = χ2

0.05(8).

From the frequency analysis table shown on Table 14, we can calculate how many times each 
operating system was faster than the other and how many times they had overlapping equiva-
lent performance.

Chi-Square Test - Equation CalculationChi-Square Test - Equation CalculationChi-Square Test - Equation Calculation

p np q

0.070 7.0 14.000

0.100 10.0 20.000

0.000 0.0

0.000 0.0

0.035 3.5 7.000

0.195 19.5 39.000

0.100 10.0 20.000

0.105 10.5 21.000

0.385 38.5 39.286

0.010 1.0 2.000

Q= 162.286

Expected Chi-Square (0.05, 8) =Expected Chi-Square (0.05, 8) = 15.507

Table 13. Threads - C. Linux and Windows Chi-Square Goodness-of-Fit Test calculation for operations 
with floating point and math.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  26  o f  45



Linux and Windows were faster than the other about the same amount of times, however with 
the high volatility on Windows execution times, we can only conclude that there is no statistical 
evidence to say in this case, whether one was faster than the other in executing operations with 
floating point and math.

OpenSolaris was again the fastest executing the I/O operations and had the least volatility. 
Windows continued to be the slowest among the operating systems and also the one with the 
highest volatility.

Equation CalculationEquation CalculationEquation CalculationEquation Calculation

Time Ranges
Linux Faster 
than Windows

Linux Equal to 
Windows

Linux Slower 
than Windows

15.00 0 0 14

17.22 0 0 20

19.44 0 0 0

21.67 0 0 0

23.89 7 0 0

26.11 39 0 0

28.33 20 0 0

30.55 21 0 0

32.78 0 11 55

37.22 0 0 2

Totals 87 11 91

46.03% 5.82% 48.15%

Table 14. Threads - C. Performance comparison between Linux and Windows on operations with floating 
point and math.

Chart 12. Threads - C. Average running time for I/O 
operations.

0

90.00

180.00

270.00

360.00

450.00

File Replication

Average Running Time

Linux OpenSolaris Windows
Chart 13. Threads - C. Standard deviation for I/O op-

erations.

0

90.00

180.00

270.00

360.00

450.00

File Replication

Standard Deviation

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  27  o f  45



Threads - Java
This is the second experiment to take advantage of executing the operations in parallel using 
multithreading capabilities of the machine and operating systems. The sample data is originated 
from running the multithreaded program in Java and utilizing the virtual machine (JVM).

Again, as in the previous analysis (Threads - C), we can see that all operating systems benefited 
from running the operations in parallel on separated threads when compared to the linear ex-
periment.

As expected, we once more can see that although the average running time for each iteration 
was smaller than the equivalent java experiment running the operations in linear mode, each 
individual operation took longer to complete. However, even though the operations with inte-
gers in Linux and Windows may look like two exceptions, we cannot assert that since there is no 

Number of 
Iterations

Concurrent 
Threads

Total Running Time (milliseconds)Total Running Time (milliseconds)Total Running Time (milliseconds)Number of 
Iterations

Concurrent 
Threads Linux OpenSolaris Windows

100 3 244,511 231,800 244,905

Table 15. Threads - Java. Number of threads and total running time.

Time MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime Measurements

Iteration Time
Counter 

Increment
Equation 

Calculation
File 

Replication

Average Linux

OpenSolaris

Windows

Standard Deviation Linux

OpenSolaris

Windows

Maximum Linux

OpenSolaris

Windows

Minimum Linux

OpenSolaris

Windows

Margin of Error Linux

OpenSolaris

Windows

2,444.71 2,443.51 184.13 88.96

2,317.48 2,316.95 90.06 66.85

2,448.28 2,444.54 172.24 146.33

45.96 46.17 32.12 29.27

28.43 27.99 4.26 18.06

76.84 68.88 6.99 29.01

2,635.00 2,630.00 299.00 205.00

2,518.00 2,512.00 124.00 189.00

2,808.00 2,605.00 203.00 268.00

2,358.00 2,358.00 145.00 53.00

2,289.00 2,289.00 87.00 52.00

2,371.00 2,371.00 156.00 109.00

11.84 11.89 8.27 7.54

7.32 7.21 1.10 4.65

19.79 17.74 1.80 7.47

Table 16. Threads - Java. Summary Statistics.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  28  o f  45



statistical evidence for such an assumption. Their respective standard deviations are larger than 
the difference between the average running times (σintegers > |µintegers linear − µintegers threaded|).

Chart 14 shows us that there were lots of overlapping in performance, at least between Linux 
and Windows; OpenSolaris performed better than the other two operating systems in all met-
rics. We will need to take a closer look at the sample data and analyze it per measured category. 
Let’s start looking at operations with integers.

Chart 14. Threads - Java. Histogram for iteration running times.

0

18

36

54

72

90

2,289.00 2,341.00 2,393.00 2,445.00 2,497.00 2,549.00 2,601.00 2,653.00 2,705.00 2,809.00

Iteration Time

Linux OpenSolaris Windows

Chart 15. Threads - Java. Histogram for operations with integers.

0

18

36

54

72

90

2,289.00 2,323.20 2,357.40 2,391.60 2,425.80 2,460.00 2,494.20 2,528.40 2,562.60 2,631.00

Counter Increment

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  29  o f  45



There is some similarity between the Linux and Windows histograms, however, to be sure we 
will propose a null hypothesis that the two curves are similar and calculate the Chi-Square to 
accept or reject the null hypothesis.

We have to reject the null hypothesis that the two curves are similar because the calculated Chi-
Square is much larger than the expected Chi-Square Q = 49.226 > 14.067 = χ2

0.05(7).

Counter IncrementCounter Increment

Bin Index Time Ranges

Counter IncrementCounter IncrementCounter Increment

Linux 
Frequency

OpenSolaris 
Frequency

Windows 
Frequency

1 2,289.00

2 2,323.20

3 2,357.40

4 2,391.60

5 2,425.80

6 2,460.00

7 2,494.20

8 2,528.40

9 2,562.60

10 2,631.00

0 1 0

0 84 0

0 9 0

9 4 38

25 0 17

42 1 9

11 0 6

7 1 17

2 0 6

4 0 7

Table 17. Threads - Java. Frequency analysis of the running times for operations with integers for Linux, 
OpenSolaris, and Windows.

Chi-Square Test - Counter IncrementChi-Square Test - Counter IncrementChi-Square Test - Counter Increment

p np q

0.000 0.0

0.000 0.0

0.000 0.0

0.235 23.5 17.894

0.210 21.0 1.524

0.255 25.5 21.353

0.085 8.5 1.471

0.120 12.0 4.167

0.040 4.0 2.000

0.055 5.5 0.818

Q= 49.226

Expected Chi-Square (0.05, 7) =Expected Chi-Square (0.05, 7) = 14.067

Table 18. Threads - Java. Linux and Windows Chi-Square Goodness-of-Fit Test calculation for operations 
with integers.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  30  o f  45



Now that we know that there is no statistical evidence to say that the curves are similar, the next 
step is to calculate how many times each operating system was faster than the other and how 
many times they had equivalent performance.

The comparison on Table 19 shows that Linux and Windows had a large number of perform-
ance intersections (36.99% of the time), Windows was faster than Linux in 29.45% of the time, 
and Linux was faster than Windows 33.56% of the time.

Another performance analysis we can make is the time range comparison. We can see on Table 
20 that 76% of the time Linux completed the operations with integers between 2,323 millisec-
onds and 2,460 milliseconds versus 64% of the time for Windows.

Counter IncrementCounter IncrementCounter IncrementCounter Increment

Time Ranges
Linux Faster 
than Windows

Linux Equal to 
Windows

Linux Slower 
than Windows

2,289.00 0 0 0

2,323.20 0 0 0

2,357.40 0 0 0

2,391.60 0 9 29

2,425.80 8 17 0

2,460.00 33 9 0

2,494.20 5 6 0

2,528.40 0 7 10

2,562.60 0 2 4

2,631.00 3 4 0

Totals 49 54 43

33.56% 36.99% 29.45%

Table 19. Threads - Java. Performance comparison between Linux and Windows on operations with inte-
gers.

Time Range Comparison - Counter Increment

Range

Time Range Comparison - Counter IncrementTime Range Comparison - Counter IncrementTime Range Comparison - Counter Increment

Linux OpenSolaris Windows

<= 2,323.20

> 2,323.20
and
 <= 2,460.00

> 2,460.00

0% 85% 0%

76% 14% 64%

24% 1% 36%

Table 20. Threads - Java. Time range comparison for operations with integers.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  31  o f  45



Our next analysis is regarding the operations with floating point and math. Chart 16 and Table 
21 show us the histogram distribution for these operations.

Windows, did not perform as well as OpenSolaris. However there was an exception for one 
case, among 18 different measurements in total, where it performed better than Linux. If we 
analyze the time ranges we can see that in 90% of the time the former executed the floating 
point and math operations in less than 172 milliseconds versus 41% of the time for the latter.

Chart 16. Threads - Java. Histogram for operations with floating point and math.

0

20

40

60

80

100

87.00 108.30 129.60 150.90 172.20 193.50 214.80 236.10 257.40 300.00

Equation Calculation

Linux OpenSolaris Windows

Equation CalculationEquation Calculation

Bin Index Time Ranges

Equation CalculationEquation CalculationEquation Calculation

Linux 
Frequency

OpenSolaris 
Frequency

Windows 
Frequency

1 87.00

2 108.30

3 129.60

4 150.90

5 172.20

6 193.50

7 214.80

8 236.10

9 257.40

10 300.00

0 4 0

0 95 0

0 1 0

4 0 0

37 0 90

31 0 9

12 0 1

8 0 0

2 0 0

6 0 0

Table 21. Threads - Java. Frequency analysis of the running times for operations with floating point and 
math for Linux, OpenSolaris, and Windows.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  32  o f  45



The next analysis is regarding the I/O operations. We can see on Chart 17 that OpenSolaris per-
formed better among the three operating systems.

As we can see on Charts 18 and 19, OpenSolaris had the smallest average running time and the 
lowest volatility. We also can notice that, for the first time, ext4 had a higher volatility than 
NTFS. However since the average running time was considerably faster, it compensated for the 
higher volatility.

µLinux + σLinux < µWindows

118.23 < 146.33

Time Range Comparison - Equation Calculation

Range

Time Range Comparison - Equation CalculationTime Range Comparison - Equation CalculationTime Range Comparison - Equation Calculation

Linux OpenSolaris Windows

<= 172.20

> 172.20

41% 100% 90%

59% 0% 10%

Table 22. Threads - Java. Time range comparison for operations with floating point and math.

Chart 17. Threads - Java. Histogram for I/O operations.

0

14

28

42

56

70

52.00 73.70 95.40 117.10 138.80 160.50 182.20 203.90 225.60 269.00

File Replication

Linux OpenSolaris Windows

Chart 18. Threads - Java. Average running time for 
I/O operations.

0

30.00

60.00

90.00

120.00

150.00

File Replication

Average Running Time

Linux OpenSolaris Windows
Chart 19. Threads - Java. Standard deviation for I/O 

operations.

0

6.00

12.00

18.00

24.00

30.00

File Replication

Standard Deviation

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  33  o f  45



Stress - C
Now we step into a territory where the machine is going to be overwhelmed with concurrent 
operations. There will be multiple threads competing for a limited amount of resources. Each 
operating system will have to manage which threads are to run and which threads are to wait 
idle for their time slot to run. This sample data was generated by running the stress programs 
written in C.

The first thing we can see is that all three operating systems took a substantial larger amount of 
time to complete the operations. This was expected since the overhead generated by having to 
manage this enormous and chaotic concurrent environment requires a herculean effort from 
each operating system.

Another point that may catch our attention is that, for the first time, Windows finished in sec-
ond place, ahead of OpenSolaris.

Number of 
Iterations

Concurrent 
Threads

Total Running Time (milliseconds)Total Running Time (milliseconds)Total Running Time (milliseconds)Number of 
Iterations

Concurrent 
Threads Linux OpenSolaris Windows

100 103 169,660 388,446 230,991

Table 23. Stress - C. Number of threads and total running time.

Time MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime Measurements

Iteration Time
Counter 

Increment
Equation 

Calculation
File 

Replication

Average Linux

OpenSolaris

Windows

Standard Deviation Linux

OpenSolaris

Windows

Maximum Linux

OpenSolaris

Windows

Minimum Linux

OpenSolaris

Windows

Margin of Error Linux

OpenSolaris

Windows

1,696.57 14.93 1,695.78 26.34

3,884.43 8.52 3,884.07 9.70

2,309.45 60.50 2,288.82 99.61

337.15 5.45 337.14 9.93

574.13 0.70 574.13 0.29

1,451.30 6.36 1,448.19 90.66

2,083.23 55.77 2,082.42 54.20

5,739.59 11.32 5,739.23 10.17

5,258.00 78.00 5,116.00 602.00

1,035.38 9.08 1,034.74 14.40

2,734.53 7.93 2,734.16 9.18

1,029.00 46.00 1,014.00 62.00

86.85 1.40 86.85 2.56

147.90 0.18 147.90 0.08

373.85 1.64 373.05 23.35

Table 24. Stress - C. Summary Statistics.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  34  o f  45



One unique element introduced in this experiment was the use of semaphores. We used the 
classical Producer and Consumer model to execute the operations with floating point and math. 
The introduction of semaphores wouldn’t have been this burdensome if we did not have an-
other set of 100 threads all competing to execute the operations with integers. A producer may 
have finished and signaled to the consumer, however, since the operating system has to time-
slice manage the available resources and decide who is going to run next, the consumer may 
take a long time to start, execute the operations, and signal back to the producer that it can cal-
culate another set of points.

Chart 20 shows the histogram with the running times of this experiment’s iterations. Charts 21 
and 22 show us the average running times and standard deviations for operations with integers 
and floating point and math.

Under these circumstances of extreme stress this is the first time Linux performed better than 
OpenSolaris. Furthermore, Windows did not finish last, although it still had the highest volatil-
ity among the three operating systems.

Chart 20. Stress - C. Histogram for iteration running times.

0

10

20

30

40

50

1,029.00 1,500.16 1,971.32 2,442.48 2,913.64 3,384.80 3,855.95 4,327.11 4,798.27 5,740.59

Iteration Time

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  35  o f  45



After analyzing Charts 23, 24, and 25 we can see that the operations with floating point and 
math basically dictated the pace for this experiment and were responsible for consuming most 
of the time spent on each iteration. We can see that on the other two categories being measured 
OpenSolaris had better performance than Windows.

Chart 21. Stress - C. Average Running Time for op-
erations with integers and floating point and math.

0

800.00

1,600.00

2,400.00

3,200.00

4,000.00

Linux OpenSolaris Windows

Average Running Time

Counter Increment Equation Calculation
Chart 22. Stress - C. Standard Deviation for opera-
tions with integers and floating point and math.

0

300.00

600.00

900.00

1,200.00

1,500.00

Linux OpenSolaris Windows

Standard Deviation

Counter Increment Equation Calculation

Chart 23. Stress - C. Histogram for operations with integers.

0

20

40

60

80

100

7.93 15.04 22.14 29.25 36.36 43.47 50.57 57.68 64.79 79.00

Counter Increment

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  36  o f  45



Table 25 shows us the time range comparison among the three operating systems regarding the 
performance of each to run the operations with floating point and math, while time-slice man-
aging the execution of multiple concurrent threads.

There must be some nuance in the semaphore thread scheduling algorithm in OpenSolaris, be-
cause it outperformed both Linux and Windows on the other two categories being measured. 
The C source code is identical for both Linux and OpenSolaris, compiled with the same options 

Chart 24. Stress - C. Histogram for operations with floating point and math.

0

10

20

30

40

50

1,014.00 1,486.62 1,959.25 2,431.87 2,904.49 3,377.12 3,849.74 4,322.36 4,794.98 5,740.23

Equation Calculation

Linux OpenSolaris Windows

Chart 25. Stress - C. Histogram for I/O operations.

0

20

40

60

80

100

9.18 68.56 127.94 187.33 246.71 306.09 365.47 424.85 484.24 603.00

File Replication

Linux OpenSolaris Windows

Time Range Comparison - Equation Calculation

Range

Time Range Comparison - Equation CalculationTime Range Comparison - Equation CalculationTime Range Comparison - Equation Calculation

Linux OpenSolaris Windows

<= 1,959.25

> 1,959.25 
and 
<= 3,849.74

> 3,849.74

63% 0% 50%

37% 50% 29%

0% 50% 21%

Table 25. Stress - C. Time range comparison for operations with floating point and math.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  37  o f  45



and with the same version of gcc. The reason why OpenSolaris semaphores performed as such 
is a subject the author would like to explore further in another opportunity in the future.

Stress - Java
Our last experiment also puts the machine and the operating systems under heavy stress with 
multiple concurrent threads. However, the program was written in Java, which means that we 
have the very same source code for all three operating systems. Not only the operating system 
will be put under a condition of stress managing its finite resources, but also the JVM (Java Vir-
tual Machine). We have two flavors of JVM: The reference implementation, provided by Sun 
(now Oracle), running on top of OpenSolaris and Windows, and the OpenJDK running on top 
of Linux.

As with the case of running the experiment with the C programs putting the operating systems 
under stress, the equivalent experiment in Java also took a considerable larger amount of time 
to finish when compared to the other Java-based experiments. Once more this was expected due 
to having the overhead operations of switching among several concurrent threads.

Chart 26. Stress - C. Average running time for I/O 
operations.

0

20.00

40.00

60.00

80.00

100.00

File Replication

Average Running Time

Linux OpenSolaris Windows
Chart 27. Stress - C. Standard deviation for I/O op-

erations.

0

24.00

48.00

72.00

96.00

120.00

File Replication

Standard Deviation

Linux OpenSolaris Windows

Number of 
Iterations

Concurrent 
Threads

Total Running Time (milliseconds)Total Running Time (milliseconds)Total Running Time (milliseconds)Number of 
Iterations

Concurrent 
Threads Linux OpenSolaris Windows

100 103 770,474 937,646 981,864

Table 26. Stress - Java. Number of threads and total running time.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  38  o f  45



Linux performed better than the other two operating systems in this computational stressful 
environment in all three categories being measured. Again the introduction of semaphores in 
the operations with floating point and math had a significant impact on the execution times. 

Time MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime MeasurementsTime Measurements

Iteration Time
Counter 

Increment
Equation 

Calculation
File 

Replication

Average Linux

OpenSolaris

Windows

Standard Deviation Linux

OpenSolaris

Windows

Maximum Linux

OpenSolaris

Windows

Minimum Linux

OpenSolaris

Windows

Margin of Error Linux

OpenSolaris

Windows

7,704.21 6,041.46 7,702.28 314.65

9,375.92 6,703.07 9,374.33 1,507.04

9,817.08 6,844.03 9,814.46 4,290.43

393.94 164.11 394.20 333.88

414.03 92.21 414.01 1,453.89

1,426.16 178.58 1,426.92 1,884.30

8,673.00 6,533.00 8,672.00 2,644.00

10,399.00 7,302.00 10,397.00 5,923.00

13,150.00 7,161.00 13,150.00 7,113.00

6,905.00 5,595.00 6,902.00 67.00

8,478.00 6,490.00 8,476.00 59.00

7,878.00 6,302.00 7,878.00 514.00

101.48 42.27 101.54 86.01

106.65 23.75 106.65 374.52

367.38 46.00 367.58 485.40

Table 24. Stress - Java. Summary Statistics.

Chart 28. Stress - Java. Average Running Time for 
operations with integers and floating point and 

5,500.00

6,400.00

7,300.00

8,200.00

9,100.00

10,000.00

Linux OpenSolaris Windows

Average Running Time

Counter Increment Equation Calculation
Chart 29. Stress - Java. Standard Deviation for opera-

tions with integers and floating point and math.

0

300.00

600.00

900.00

1,200.00

1,500.00

Linux OpenSolaris Windows

Standard Deviation

Counter Increment Equation Calculation

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  39  o f  45



Chart 30 shows us how each operating system behaved running those operations.

When we compare OpenSolaris and Windows we see that sometimes Windows ran faster than 
OpenSolaris, while other times it ran slower. Table 25 contains the data of the histogram plotted 
on Chart 30.

If we analyze the sample data we will find that during the majority of times, OpenSolaris ran 
faster than Windows.

Chart 30. Stress - Java. Histogram for operations with floating point and math.

0

12

24

36

48

60

6,902.00 7,526.90 8,151.80 8,776.70 9,401.60 10,026.50 10,651.40 11,276.30 11,901.20 13,151.00

Equation Calculation

Linux OpenSolaris Windows

Equation CalculationEquation Calculation

Bin Index Time Ranges

Equation CalculationEquation CalculationEquation Calculation

Linux 
Frequency

OpenSolaris 
Frequency

Windows 
Frequency

1 6,902.00

2 7,526.90

3 8,151.80

4 8,776.70

5 9,401.60

6 10,026.50

7 10,651.40

8 11,276.30

9 11,901.20

10 13,151.00

1 0 0

35 0 0

51 0 5

13 6 35

0 46 10

0 41 1

0 7 12

0 0 16

0 0 15

0 0 6

Table 25. Stress - Java. Frequency analysis of the running times for operations with floating point and 
math for Linux, OpenSolaris, and Windows.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  40  o f  45



Furthermore, when we build the time comparison table, we can see that about 49% of the time 
Windows took more than 10,000 milliseconds to finish the operations.

Last, but not least, we discovered that Linux outperformed OpenSolaris and Windows in I/O 
operations. Its average running time and volatility was considerably smaller than the other two 
operating systems, as we can see on Charts 31 and 32.

Equation CalculationEquation CalculationEquation CalculationEquation Calculation

Time Ranges

OpenSolaris 
Faster than 
Windows

OpenSolaris 
Equal to 
Windows

OpenSolaris 
Slower than 
Windows

6,902.00 0 0 0

7,526.90 0 0 0

8,151.80 0 0 5

8,776.70 0 6 29

9,401.60 36 10 0

10,026.50 40 1 0

10,651.40 5 7 0

11,276.30 16 0 0

11,901.20 15 0 0

13,151.00 6 0 0

Totals 118 24 34

67.05% 13.64% 19.32%

Table 26. Stress - Java. Performance comparison between OpenSolaris and Windows on operations with 
floating point and math.

Time Range Comparison - Equation Calculation

Range

Time Range Comparison - Equation CalculationTime Range Comparison - Equation CalculationTime Range Comparison - Equation Calculation

Linux OpenSolaris Windows

<= 8,151.80

> 8,151.80 
and 
<= 10,026.50

> 10,026.50

87% 0% 5%

13% 93% 46%

0% 7% 49%

Table 27. Stress - Java. Time range comparison for operations with floating point and math.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  41  o f  45



The Economics of Operating Systems

The TCO (Total Cost of Ownership) of an operating system is usually hard to be determined. 
There are many tangible and intangible costs involved (e.g., procurement, installation, mainte-
nance, electricity, etc.). Based on the behaviors measured on these experiments, we can try to 
estimate with good accuracy some of the most important factors (i.e., response time and electric-
ity consumption) throughout the course of a year.

Regardless of the operating system of choice, there is going to be a physical space, network 
equipment, insurance, and other equipments and costs that are part of the TCO. That will be 
exactly the same no matter which operating system is running on the computer. Hence what we 
can estimate is the marginal cost involved in choosing one operating system versus another. 
However, these marginal costs are among the most expensive and important costs: electricity 
consumption, the average transaction time, and the cost per transaction.

One important cost is that of procuring licenses. However, for the sake of this estimate, let’s as-
sume that the cost of procuring a Windows license is offset by the cost of having a technician 
installing Linux or OpenSolaris on a computer, since those are not widely available to be pro-
cured pre-installed (nonetheless there are some options available out there).

Our estimate is going to be calculated by averaging the average running time per cycle for all 
the experiments and projecting the total running time over a period of a year for the operating 
system with the highest average running time. Then we calculate how much time (in days) the 

Chart 31. Stress - Java. Average running time for I/O 
operations.

0

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

File Replication

Average Running Time

Linux OpenSolaris Windows
Chart 32. Stress - Java. Standard deviation for I/O 

operations.

0

400.00

800.00

1,200.00

1,600.00

2,000.00

File Replication

Standard Deviation

Linux OpenSolaris Windows

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  42  o f  45



other two operating systems would require to complete the same task and the electricity cost 
involved for each one of them.

Total Electricity Cost = Cost per Killowatt-Hour × Watts × Hours Running

1, 000

The average cost of electricity for a commercial establishment in New York was US$ 0.1536 per 
hour in December of 20096. A modern server consumes somewhere between 200W and 400W, 
thus we can safely assume 300W for this estimate.

Now we need to calculate how many iterations each operating system would execute in one 
year. In order to do that we first need to find out the number of milliseconds in a year: 365 days 
x 24 hours x 60 minutes x 60 seconds x 1,000 milliseconds = 31,536,000,000 milliseconds.

Averaging the Average Running Times per iterationAveraging the Average Running Times per iterationAveraging the Average Running Times per iterationAveraging the Average Running Times per iteration

Linux OpenSolaris Windows

Linear C

Threads C

Stress C

Linear Java

Threads Java

Stress Java

43.86 39.74 461.43

33.36 23.85 421.21

1,696.57 3,884.43 2,309.45

2,570.45 2,455.04 2,794.69

2,444.71 2,317.48 2,448.28

7,704.21 9,375.92 9,817.08

Average 2,415.53 3,016.08 3,042.02

Table 28. All Experiments. Averaging the average running time of each of the experiments.

Number of milliseconds 
in a year
Number of milliseconds 
in a year 31,536,000,00031,536,000,000

Linux OpenSolaris Windows

Average running 
time per iteration

Number of 
iterations per year

2,415.53 3,016.08 3,042.02

13,055,531 10,455,963 10,366,784

Table 29. Calculation of the average running time per iteration and projecting the number of iterations 
executed in one year’s time.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  43  o f  45

6 According to the U.S. Energy Information Administration  - 
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html

http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html


With this data in hand we can calculate our projections. The operating system with the highest 
average running time per iteration was Windows (3,042.02), hence it becomes our reference 
point. The total electricity cost to run Windows on a computer over a period of a year (365 days) 
and execute 10,366,784 iterations is:

Total Electricity CostWindows = $0.1536 × 300 × 24× 365

1, 000
= $403.66

Now, to execute the same number of iterations as Windows, OpenSolaris and Linux would re-
quire, respectively:

Time RequiredOpenSolaris = 31, 536, 000, 000×10, 366, 784

10, 455, 963
= 31, 267, 029, 180milliseconds

Time RequiredOpenSolaris ≈ 362 days

Time RequiredLinux = 31, 536, 000, 000×10, 366, 784

13, 055, 531
= 25, 041, 256, 478milliseconds

Time RequiredLinux ≈ 290 days

Therefore, the total electricity cost to execute the same number of iterations would be:

Total Electricity CostOpenSolaris = $0.1536 × 300 × 24× 362

1, 000
= $400.22

Total Electricity CostLinux = $0.1536 × 300 × 24× 290

1, 000
= $320.53

Now we can calculate the cost per iteration for each of the operating systems:

Cost per IterationWindows =
$403.66

10, 366, 784
= $0.0000389379

Cost per IterationOpenSolaris =
$400.22

10, 455, 963
= $0.0000382765

Cost per IterationLinux =
$320.53

13, 055, 531
= $0.0000245511

Conclusion

We started this paper talking about the many reasons why one may choose an operating system. 
We have studied the Posix and Win32/Win64 threading models, their respective capabilities in 
performing simultaneous tasks, and lastly we have analyzed the economic aspects associated 
with the transactions.
D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  44  o f  45



The statistical evidence collected and analyzed from all the experiments shows us that the Posix 
threading model (Linux and OpenSolaris) has clear performance and multitasking advantages 
over the Win32/Win64 threading model. Furthermore, the file systems ZFS and ext4 were much 
more efficient and used space more efficiently than NTFS.

The statistical evidence collected from the experiments showed us that the cost of ownership is 
smaller for Posix based operating systems.

Whichever one is your choice for an operating system, for whatever reason, I hope this paper 
has advanced your understanding about some of the characteristics of the other operating sys-
tems available. I also hope that it may have helped you to reinforce your positions or reevaluate 
them.

Disclaimers

Microsoft, Microsoft Windows, and Microsoft Windows 7 are trademarks or registered trademarks of Mi-
crosoft Inc.

OpenSolaris and Java are registered trademarks of Sun Microsystems, Inc.

Oracle is a registered trademarks of Oracle Corporation and/or its affiliates.

Linux is a registered trademark of Linus Torvalds.

Fedora is a registered trademark of Red Hat, Inc.

Other names may be trademarks of their respective owners.

These trademark holders are not affiliated with Dalmo Cirne. These entities do not sponsor or endorse 
this paper.

D a l m o  C i r n e! S a t u r d a y,  A p r i l  1 7 ,  2 0 1 0

P a g e  45  o f  45


