A Framework for Accelerating Iterative Algorithms with Asynchronous Accumulative Updates on FPGAs
Verilog Tcl C++ SystemVerilog Perl Makefile Other
Switch branches/tags
Nothing to show
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
fpga/DE4_Ethernet_0
sw
INSTALL.md
LICENSE
README.md

README.md

Maestro

A Framework to Accelerate Iterative Algorithms with Asynchronous Accumulative Updates on FPGAs

What is Maestro?

Maestro is a distributed cluster computing framework to accelerate iterative algorithms using FPGAs.

Iterative Algorithms

Iterative algorithms represent a pervasive class of data mining, web search and scientific computing applications. In iterative algorithms, a final result is derived by performing repetitive computations on an input data set (e.g. PageRank, Dijkstra's shortest path). Existing techniques to parallelize such algorithms use software frameworks such as MapReduce and Hadoop to distribute data for an iteration across multiple CPU-based workstations in a cluster and collect per-iteration results. These platforms are marked by the need to synchronize data computations at iteration boundaries, impeding system performance.

Why Maestro?

Maestro uses asynchronous accumulative updates to break these synchronization barriers. These updates allow for the accumulation of intermediate results for numerous data points without the need for iteration-based barriers allowing individual nodes in a cluster to independently make progress towards the final outcome. Computation is dynamically prioritized to accelerate algorithm convergence.

Maestro Speedup

We have implemented a general-class of iterative algorithms on a cluster of four Altera DE-4 FPGAs. Our experiments show that Maestro cluster of 4 Altera DE-4 FPGA boards offers upto 140X speedup over Hadoop.

Obtaining Source Code

Please follow instructions in the INSTALL file

License

Maestro is licensed under Apache 2.0 license