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Drift User Guide
This guide will help you understand what drift is and how you can detect in using deepchecks.

Structure:

Which Types of Drift Are There?
How Do You Detect Drift?
How Can I Use Deepchecks to Detect Drift?

Tabular Data
Text (NLP) Data
Computer Vision Data

What Can You Do in Case of Drift?
Code Examples

What Is Distribution Drift?
Distribution drift is a change in the distribution of the data, the label or the relationship between them. Drift
happens over time, and can occur either gradually or suddenly.

Common reasons for drift can be natural changes in the data, such as shopping habits changing for an
online retailer (for example, during the covid pandemic, online shopping rose significantly and buyer
patterns changed), or data acquisition and processing issues, such as camera settings changing accidentally
to have lower exposure.

So Why Is Drift So Important?
Machine learning models are meant to predict on unseen data, based on previous known data. If the data or
the relationships between features and the target label have changed, our model’s performance may
degrade.

Detecting drift is an important warning sign that our model may be not as accurate on newer data
(compared to the training data), and that it should be adjusted or retrained on different data. In production
environments, detecting drift (and other measures derived from drift, such as model confidence) is often the
only way to know that our model performance is deteriorating, as in many cases the label is unknown for
some time after the prediction is made.

It is important to note that not all changes in data represent drift. For example, periodic changes in data due
to daily, weekly or seasonal changes are usually not considered drift, as they are often present in the training
data.

Different change patterns in data
Different change patterns in data. Source.

Which Types of Drift Are There?
In machine learning, we usually refer to 2 types of drift:

Data Drift
Data drift is any change in the distribution of the data.

For example, in a dataset predicting a person’s income, the target (income) is highly correlated with high
level of education (advanced academic degrees). A government plan to help people of lower social-
economic status to get higher education, would create a data drift that changes how the data distributes.

Search the docs ...

https://www.iosrjournals.org/iosr-jce/papers/Vol17-issue1/Version-2/D017122026.pdf
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However, this will not change the relation between a person’s salary and their level of education, as these
new graduates will be able to work in better paying professions.

Concept Drift
Concept drift is a change in the underlying relation between the data and the label.

Continuing the example of predicting income using the level of education, let’s assume that a change in the
job market (for example, the rise of high-tech companies) caused drift in the data: suddenly, job experience
became more significant for programming jobs than a degree in computer science. Now, the relation
between the level of education and the income has changed - and a person’s salary can’t be predicted from
their level of education as accurately as it was on previous data.

Concept drift will almost always require some changes to the model, usually by retraining of the model on
newer data.

For more on the different types of drift, see here

Different types of drift
Different types of drift. Adapted from this source.

How Do You Detect Drift?
In general, drift detection is done by comparing the newer and older data, and seeing whether they are
derived from the same underlying distribution. This is actually not a “yes or no” question - Instead, we ask
“how much are these distributions different?”.

There are many methods to detect drift. Here, we will elaborate on two of them:

Detection by Univariate Measure
This is the simplest and most common drift detection method. This is done by taking only one variable at a
time (that can either be a data feature, the label or even the prediction) and measuring the difference
between newer and older samples of the variable. There are many measures that can be used for this, such
as the Kolmogorov-Smirnov test, Jensen-Shannon Divergence and more. In deepchecks, we found that the
best results are given by:

For continuous numeric distributions - Kolmogorov-Smirnov statistic or Wasserstein metric (Earth
Movers Distance)
For discrete or categorical distributions - Cramer’s V or Population Stability Index (PSI)

These methods have the advantage of being simple to use and produce explainable results. However, they
are limited by checking each feature one at a time, and cannot detect drift in the relations between features.
Also, these methods will usually detect drift multiple times if it occurs in several features.

Choosing the Correct Method to Detect Drift

As mentioned above, we recommend to use either Cramer’s V or PSI for categorical variables, and use
Cramer’s V by default. PSI is widely used in the industry, but does not have an upper limit and is not very
explainable. Cramer’s V is always in the range [0,1], and is based on the Pearson’s chi-squared test.

In general, it is recommended to use Cramer’s V, unless your variable includes categories with a small
number of samples (common practice is categories with less than 5 samples). However, in cases of a variable
with many categories with few samples, it is still recommended to use Cramer’s V, as PSI will not be able to
detect change in the smaller categories.

Detecting Drift in Unbalanced Classification Tasks

In classification problems, it is common to have unbalanced data, meaning that the number of samples in
each class is highly skewed. For example, in a dataset of credit card transactions, the number of fraudulent
transactions is usually much lower than the number of non-fraudulent transactions, and can be below 1% of

https://deepchecks.com/data-drift-vs-concept-drift-what-are-the-main-differences/
https://www.win.tue.nl/~mpechen/publications/pubs/Gama_ACMCS_AdaptationCD_accepted.pdf
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Wasserstein_metric
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V
https://www.lexjansen.com/wuss/2017/47_Final_Paper_PDF.pdf
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V
https://www.lexjansen.com/wuss/2017/47_Final_Paper_PDF.pdf
https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
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the total number of samples.

In such cases, running the tabular__label_drift: or tabular__prediction_drift checks with the default
parameters will likely lead to a false negative, as for example a change in the percent of fraudulent
transactions from 0.2% to 0.4% will not be detected, but may in fact be very significant for our business.

To detect this kind of drift, set the balance_classes parameter of these checks to True. This will cause the
check to consider all classes equally, regardless of their size.

Note: This method currently only works with Cramer’s V, so you must keep the default
categorical_drift_method parameter as 'cramers_v'.

Detection by Domain Classifier
Training a Domain Classifier is a method to detect multivariate drift, meaning that it can run on several
variables, and even on the whole dataset. This is done by training a model to classify whether a sample came
from the train dataset or the newer (test or production) dataset. If the classifier can easily predict which
sample is from which dataset, it would mean that there are significant differences between these datasets.

The main advantage of this method is that it can also uncover covariate drift, meaning drift in the data that
does not affect the distribution of each individual variable, but does affect the relationship between them.

In deepchecks (in checks tabular__multivariate_drift and vision__image_dataset_drift) we merge the train and
the test sets, and assign label 0 to samples that come from the training set, and 1 to those who are from the
test set. Then, we train a binary classifer of type Histogram-based Gradient Boosting Classification Tree. We
then normalize the AUC score of this classifier and use it as the drift score, as the higher the AUC, the better
the model, meaning the datasets are significantly different.

How Can I Use Deepchecks to Detect Drift?
Deepchecks can test your data for both concept drift and data drift, by using a variety of methods.

Tabular Data
To detect data or concept drift, deepchecks offers the tabular__feature_drift which uses univariate measures
and the tabular__multivariate_drift which uses a domain classifier in order to detect multivariate drift.

For drift in your label’s distribution, deepchecks offers the tabular__label_drift, which also uses univariate
measures.

In cases where the label is not available, we strongly recommend to also use the tabular__prediction_drift,
which uses the same methods but on the model’s predictions, and can detect possible changes in the
distribution of the label.

For code examples, see here

All of these checks appear also in the deepchecks interactive demo, where you can insert corruption into the
data and see the checks at work.

Text (NLP) Data
Regarding data or concept drift In text data, we can’t measure drift on the text directly, as text is not
structured data that can be measured. However, we can use different methods to represent the text as a
structured variable, and then measure drift on that variable. In deepchecks-NLP, we use 2 such methods:
Text Embeddings and Text Properties.

Both methods have their pros and cons when used to measure drift: Properties are more explainable, but
will not necessarily capture all the information in the text. Embeddings are able to find more complex
patterns in the text, but these patterns may be difficult to explain. Therefore, we recommend to use both
methods to detect data or concept drift:

1. The Text Embeddings Drift Check uses embeddings to measure drift using a domain classifier

https://arxiv.org/abs/2004.03045
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://checks-demo.deepchecks.com/
http://localhost:63342/gallery-boilerplate/build/html/plot/examples/plot_test.html#nlp-embeddings-drift
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2. The Text Properties Drift Check uses properties to measure drift using univariate measures

For drift in your label’s distribution, deepchecks offers the nlp__label_drift, which uses univariate measures.

In cases where the label is not available, we strongly recommend to also use the nlp__prediction_drift, which
uses the same methods but on the model’s predictions, and can detect possible changes in the distribution
of the label.

For code examples, see here

Computer Vision Data
In computer vision we can’t measure drift on images directly, as the individual pixel has little value when
estimating drift. Also, labels in computer vision are sometimes complex structures as well (for example, in
object detection, an image can have any number of bounding boxes). Therefore, the computer vision checks
use vision__properties_guide to estimate drift, as image data and labels are not simple one-dimensional
variables.

To detect data or concept drift, deepchecks offers the vision__image_property_drift which uses univariate
measures and the vision__image_dataset_drift which uses a domain classifier in order to detect multivariate
drift.

For drift in your label’s distribution, deepchecks offers the vision__label_drift, which also uses univariate
measures.

In cases where the label is not available, we strongly recommend to also use the vision__prediction_drift,
which uses the same methods but on the model’s predictions, and can detect possible changes in the
distribution of the label.

For code examples, see here

What Can You Do in Case of Drift?
Output of the LabelDrift check

When suspecting drift in your data, you must first understand what changed in the data - were it the
features, the labels, or maybe just the predictions. In deepchecks, we show a drift score for each feature,
starting with your most tabular__feature_importance, giving you an idea of the severity of your drift, even if
you’re not still sure of its source.

It is recommended to manually explore your data and try to understand the root cause of your changes, in
order to estimate the effect of the change on your model’s performance. After you have deeper insights on
your data, you can choose to act in one of the following ways:

Retrain Your Model
If you have either kind of drift, retraining your model on new data that better represents the current
distribution, is the most straight-forward solution. However, this solution may require additional resources
such as manual labeling of new data, or might not be possible if labels on the newer data are not available
yet.

Retraining is usually necessary in cases of concept drift. However, retraining may still be of use even for
other cases, such as data drift that caused a change in the label’s distribution, but not in the ability to
predict the label from the data. In this cas, retraining the model with the correct distribution of the label can
improve the model’s performance (this is not relevant when the training dataset is sampled so labels are
evenly distributed).

If you’re retraining to compensate for drift, you can also over-sample or give higher weights to
newer or more out-of-distribution data, in order for you model to adjust to the new data
distribution.

Note
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Adjust Your Prediction
When retraining is not an option, or if a quick action needs to be taken, adjustments to the output of the
models may still help in cases of concept drift. This can be done by either recalibrating your model’s output,
or by changing your decision thresholds on the model’s scores.

However, these methods assume that there’s still enough similarity between your training data and your
current data, which may not always be the case.

Do Nothing
Not all drift is necessarily bad, and each case should be examined separately. Sometimes, data drift may be
simply explained by changes in your label distribution (for example, in a dataset of food images, a drift in
brightness of images can simply mean that people are eating more eggs, which are whiter than other foods).

Code Examples

Tabular Checks
tabular__feature_drift:

tabular__multivariate_drift:

tabular__label_drift:

tabular__prediction_drift:

Text (NLP) Checks
Embeddings Drift:

nlp__property_drift:

from deepchecks.tabular.checks import FeatureDrift
check = FeatureDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.tabular.checks import MultivariateDrift
check = MultivariateDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.tabular.checks import LabelDrift
check = LabelDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.tabular.checks import PredictionDrift
check = PredictionDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset, model=model)

# Load the embeddings from a file:
train_dataset.set_embeddings('my_train_embeddings_file.npy')
test_dataset.set_embeddings('my_test_embeddings_file.npy')

# If you do not have a model to extract embeddings from, you can use the deepchecks default 
embeddings:
train_dataset.calculate_default_embeddings()
test_dataset.calculate_default_embeddings()

# For more on loading embeddings, see the :ref:`nlp__embeddings_guide'.

# Calculate the check:
from deepchecks.nlp.checks import TextEmbeddingsDrift
check = TextEmbeddingsDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

http://localhost:63342/gallery-boilerplate/build/html/plot/examples/plot_test.html#nlp-embeddings-drift
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Previous
Embeddings Drift

nlp__label_drift:

nlp__prediction_drift:

Computer Vision Checks
vision__image_property_drift:

vision__image_dataset_drift:

vision__label_drift:

vision__prediction_drift:

# If text properties were not calculated yet:
train_dataset.calculate_default_properties()
test_dataset.calculate_default_properties()

from deepchecks.nlp.checks import PropertyDrift
check = PropertyDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.nlp.checks import LabelDrift
check = LabelDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.nlp.checks import PredictionDrift
check = PredictionDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset,
                   train_predictions=train_predictions, test_predictions=test_predictions)

# For Text Classification tasks, it is recommended to use the probabilities:
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset,
                   train_probabilities=train_probabilities, 
test_probabilities=test_probabilities)

from deepchecks.vision.checks import ImagePropertyDrift
check = ImagePropertyDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.vision.checks import ImageDatasetDrift
check = ImageDatasetDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.vision.checks import LabelDrift
check = LabelDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

from deepchecks.vision.checks import PredictionDrift
check = PredictionDrift()
result = check.run(train_dataset=train_dataset, test_dataset=test_dataset)

http://sphinx-doc.org/
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