From eee39f3db9a4aa39c09fb21b8091d961962fb971 Mon Sep 17 00:00:00 2001 From: nd-02110114 Date: Sun, 31 May 2020 12:53:10 +0900 Subject: [PATCH] :bug: update tutorials --- ...asic_Tools_of_the_Deep_Life_Sciences.ipynb | 327 +- .../02_Learning_MNIST_Digit_Classifiers.ipynb | 183 +- .../tutorials/03_Modeling_Solubility.ipynb | 347 +- ...4_Introduction_to_Graph_Convolutions.ipynb | 328 +- ...5_Putting_Multitask_Learning_to_Work.ipynb | 211 +- ...g_Deeper_on_Molecular_Featurizations.ipynb | 332 +- .../07_Uncertainty_In_Deep_Learning.ipynb | 180 +- ...troduction_to_Model_Interpretability.ipynb | 381 +- ...idelity_model_from_experimental_data.ipynb | 354 +- ...ploring_Quantum_Chemistry_with_GDB1k.ipynb | 610 ++- ...nsupervised_Embeddings_for_Molecules.ipynb | 1095 ++-- ...redicting_Ki_of_Ligands_to_a_Protein.ipynb | 148 +- ...Modeling_Protein_Ligand_Interactions.ipynb | 2067 +++++--- ...nteractions_With_Atomic_Convolutions.ipynb | 103 +- .../15_Synthetic_Feasibility_Scoring.ipynb | 125 +- ...onal_Generative_Adversarial_Networks.ipynb | 209 +- ...erative_Adversarial_Network_on_MNIST.ipynb | 182 +- ..._Reinforcement_Learning_to_Play_Pong.ipynb | 654 ++- .../21_Introduction_to_Bioinformatics.ipynb | 4578 +++++++++-------- 19 files changed, 6980 insertions(+), 5434 deletions(-) diff --git a/examples/tutorials/01_The_Basic_Tools_of_the_Deep_Life_Sciences.ipynb b/examples/tutorials/01_The_Basic_Tools_of_the_Deep_Life_Sciences.ipynb index 677897f95b..8c82ed4245 100644 --- a/examples/tutorials/01_The_Basic_Tools_of_the_Deep_Life_Sciences.ipynb +++ b/examples/tutorials/01_The_Basic_Tools_of_the_Deep_Life_Sciences.ipynb @@ -89,74 +89,47 @@ "metadata": { "id": "OyxRVW5X5zF0", "colab_type": "code", - "colab": {} - }, - "source": [ - "%%capture\n", - "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" - ], - "execution_count": 0, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Jk47QTZ95zF-", - "colab_type": "text" - }, - "source": [ - "You can of course run this tutorial locally if you prefer. In this case, don't run the above cell since it will download and install Anaconda on your local machine. In either case, we can now import `deepchem` the package to play with." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "PDiY03h35zF_", - "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 253 + "height": 479 }, - "outputId": "7631cf36-ec65-42d9-8457-f3d7adb727fb" + "outputId": "c6592413-7694-439c-e233-2a363260d743" }, "source": [ - "# Run this cell to see if things work\n", - "import deepchem as dc" + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 2, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 14732 0 --:--:-- --:--:-- --:--:-- 14732\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "remove current miniconda\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", " warnings.warn(msg, category=FutureWarning)\n" ], "name": "stderr" }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, { "output_type": "stream", "text": [ @@ -170,9 +143,48 @@ "\n" ], "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 3.28 s, sys: 1.33 s, total: 4.61 s\n", + "Wall time: 4min 8s\n" + ], + "name": "stdout" } ] }, + { + "cell_type": "markdown", + "metadata": { + "id": "Jk47QTZ95zF-", + "colab_type": "text" + }, + "source": [ + "You can of course run this tutorial locally if you prefer. In this case, don't run the above cell since it will download and install Anaconda on your local machine. In either case, we can now import `deepchem` the package to play with." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "PDiY03h35zF_", + "colab_type": "code", + "colab": {} + }, + "source": [ + "# Run this cell to see if things work\n", + "import deepchem as dc" + ], + "execution_count": 0, + "outputs": [] + }, { "cell_type": "markdown", "metadata": { @@ -217,11 +229,11 @@ "metadata": { "id": "YEDcUsz35zGO", "colab_type": "code", + "outputId": "d3cafd3b-ea5f-46d4-b943-51c9fe09612b", "colab": { "base_uri": "https://localhost:8080/", "height": 102 - }, - "outputId": "4c436d71-7899-4b37-c7f5-0a0e419f41e6" + } }, "source": [ "data, labels" @@ -232,11 +244,11 @@ "output_type": "execute_result", "data": { "text/plain": [ - "(array([[0.49479882, 0.88435469, 0.42959074, 0.37081081],\n", - " [0.59314417, 0.63599229, 0.71899725, 0.25277191],\n", - " [0.9648509 , 0.13042426, 0.4710018 , 0.18399865],\n", - " [0.45050728, 0.2351225 , 0.51815274, 0.00368521]]),\n", - " array([0.65081079, 0.47392044, 0.31896501, 0.46142403]))" + "(array([[0.88854803, 0.85106206, 0.50989582, 0.4604496 ],\n", + " [0.99076893, 0.96688872, 0.17772694, 0.22514947],\n", + " [0.02122289, 0.85833497, 0.59921674, 0.47021954],\n", + " [0.82452021, 0.83123677, 0.74626358, 0.86423226]]),\n", + " array([0.57071948, 0.43635559, 0.15942782, 0.07542204]))" ] }, "metadata": { @@ -286,11 +298,11 @@ "metadata": { "id": "LJc90fs_5zGs", "colab_type": "code", + "outputId": "1553fa2c-6c18-49e8-fc3e-136eebbac879", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "4b32b746-4130-432a-9004-90d66d6e58a7" + } }, "source": [ "dataset" @@ -301,7 +313,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": { @@ -326,11 +338,11 @@ "metadata": { "id": "HSVqeYox5zGx", "colab_type": "code", + "outputId": "896d67d0-1c60-4996-d0d3-188b4cc4c293", "colab": { "base_uri": "https://localhost:8080/", "height": 102 - }, - "outputId": "e99835ed-4fb4-4601-d2c3-2ac041f8b5a5" + } }, "source": [ "dataset.X, dataset.y" @@ -341,11 +353,11 @@ "output_type": "execute_result", "data": { "text/plain": [ - "(array([[0.49479882, 0.88435469, 0.42959074, 0.37081081],\n", - " [0.59314417, 0.63599229, 0.71899725, 0.25277191],\n", - " [0.9648509 , 0.13042426, 0.4710018 , 0.18399865],\n", - " [0.45050728, 0.2351225 , 0.51815274, 0.00368521]]),\n", - " array([0.65081079, 0.47392044, 0.31896501, 0.46142403]))" + "(array([[0.88854803, 0.85106206, 0.50989582, 0.4604496 ],\n", + " [0.99076893, 0.96688872, 0.17772694, 0.22514947],\n", + " [0.02122289, 0.85833497, 0.59921674, 0.47021954],\n", + " [0.82452021, 0.83123677, 0.74626358, 0.86423226]]),\n", + " array([0.57071948, 0.43635559, 0.15942782, 0.07542204]))" ] }, "metadata": { @@ -372,11 +384,11 @@ "metadata": { "id": "k_8IONOw5zHC", "colab_type": "code", + "outputId": "8778e16c-4ca3-404b-cc28-cf6c15740214", "colab": { "base_uri": "https://localhost:8080/", "height": 85 - }, - "outputId": "7040aeec-5087-47f9-c185-460282ec0f92" + } }, "source": [ "for x, y, _, _ in dataset.itersamples():\n", @@ -387,10 +399,10 @@ { "output_type": "stream", "text": [ - "[0.49479882 0.88435469 0.42959074 0.37081081] 0.6508107895953468\n", - "[0.59314417 0.63599229 0.71899725 0.25277191] 0.4739204414199628\n", - "[0.9648509 0.13042426 0.4710018 0.18399865] 0.3189650065656162\n", - "[0.45050728 0.2351225 0.51815274 0.00368521] 0.46142403321496583\n" + "[0.88854803 0.85106206 0.50989582 0.4604496 ] 0.5707194770088277\n", + "[0.99076893 0.96688872 0.17772694 0.22514947] 0.43635558550779396\n", + "[0.02122289 0.85833497 0.59921674 0.47021954] 0.1594278181500921\n", + "[0.82452021 0.83123677 0.74626358 0.86423226] 0.0754220447474171\n" ], "name": "stdout" } @@ -411,11 +423,11 @@ "metadata": { "id": "1fDXCKv_5zHI", "colab_type": "code", + "outputId": "7b089c43-6dcc-46a2-ebb8-194cca588e33", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "63509864-b73f-4aaa-970f-f387ffbaa007" + } }, "source": [ "dataset.ids" @@ -451,11 +463,11 @@ "metadata": { "id": "uffH-1EI5zHR", "colab_type": "code", + "outputId": "f8cc9d84-67f1-4d44-8937-f0497469e0c2", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "279e0325-4ec5-44c2-9020-9f1a6d7d511f" + } }, "source": [ "dataset.w" @@ -491,11 +503,11 @@ "metadata": { "id": "JHiBOSJB5zHV", "colab_type": "code", + "outputId": "2cec0633-6e40-41f9-d1da-c9520b32a4a3", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "6b77e031-63a2-4f38-f16a-9272859ef3a1" + } }, "source": [ "w = np.random.random((4,)) # initializing weights with random vector of size 4x1\n", @@ -508,7 +520,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "array([0.3758539 , 0.37790286, 0.56012147, 0.79153357])" + "array([0.14539906, 0.12112723, 0.66676722, 0.66657104])" ] }, "metadata": { @@ -588,11 +600,11 @@ "metadata": { "id": "lPTLNO6n5zH7", "colab_type": "code", + "outputId": "cf4ce0c3-cc8e-4335-9f45-7bbb0e16a03f", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "7373e425-066f-4cbf-e8f4-03766b245345" + } }, "source": [ "from tensorflow.examples.tutorials.mnist import input_data\n", @@ -656,11 +668,11 @@ "metadata": { "id": "MgAfsAdn5zH_", "colab_type": "code", + "outputId": "d7c5ec0b-ee00-4226-dd58-4a9d5334f454", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "19d601c6-f01a-43dc-af26-199148b3f741" + } }, "source": [ "import matplotlib.pyplot as plt\n", @@ -675,13 +687,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAPEUlEQVR4nO3df7BcZX3H8c8n4ZJAACXQpjFEIRCK\nwUJgbgKtVONQKPKjQJ2mMB2lM5SrDjjSwakMrZW/asYRIqIFAkRDQZARIihBSFMqUpFygQAJv0Ix\nDMncJEIKBAr5ce+3f9yDc4F7nr3sOfuDPO/XzJ3dPd89e76z8MnZ3eec8zgiBGDnN67TDQBoD8IO\nZIKwA5kg7EAmCDuQiV3aubFdPSEmalI7Nwlk5U29rm2x1aPVKoXd9gmSLpM0XtI1EbEg9fyJmqSj\nfGyVTQJIeCBWlNaa/hhve7yk70n6tKRZks60PavZ1wPQWlW+s8+V9GxEPBcR2yTdJOnUetoCULcq\nYZ8m6YURj9cVy97Gdp/tftv927W1wuYAVNHyX+MjYlFE9EZEb48mtHpzAEpUCft6SdNHPN6vWAag\nC1UJ+4OSZto+wPauks6QdHs9bQGoW9NDbxGxw/Z5ku7S8NDb4ohYXVtnAGpVaZw9IpZJWlZTLwBa\niMNlgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3I\nBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUxUmsUV\n2HrSnGR98zmvldYemXND3e28zRfW/Wlp7b47D0+uO+Oq55L1HQMbmuqpkyqF3fZaSVskDUraERG9\ndTQFoH517Nk/FREv1vA6AFqI7+xAJqqGPSTdbfsh232jPcF2n+1+2/3btbXi5gA0q+rH+GMiYr3t\n35e03PZTEXHvyCdExCJJiyRpL0+OitsD0KRKe/aIWF/cbpK0VNLcOpoCUL+mw257ku0937ov6XhJ\nq+pqDEC9qnyMnyJpqe23XueHEfHzWrpC27hn12T9mUuPSNbvOGVhsn5Qz4TS2lByzequ3O+X5ds+\n597SmiTN/qPPJev7fSajcfaIeE5S+sgEAF2DoTcgE4QdyARhBzJB2IFMEHYgE5zimrmnL5+drD9z\nyr8m6+M0MVkfUusOmux7YV6yfs30XzT92t+ZfVOyfsk+n0zWB1/a3PS2W4U9O5AJwg5kgrADmSDs\nQCYIO5AJwg5kgrADmWCcfSeQOk210Tj66pO/2+DVxyerA4P/l6x/YulXSmszlm5LrjthTfo00sEX\nX0rWj/jR35TWHppzfXLdh9/YP1mPbduT9W7Enh3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwwzr4T\nGDi3fPLcZ065vMHa6XH0a1/5cLJ+6znHJesz/+vXDbZfbkfTaw7burWn6XV/uv6wZH23Lb9p+rU7\nhT07kAnCDmSCsAOZIOxAJgg7kAnCDmSCsAOZYJx9J/DFvttKa+Pk5LrfeGlWsn7/XxycrHvtymS9\nivF77ZWsr/u7jyXr/3DYraW1R7alJ4ze7c/ff+PojTTcs9tebHuT7VUjlk22vdz2muJ279a2CaCq\nsXyM/4GkE96x7EJJKyJipqQVxWMAXaxh2CPiXknvnMvmVElLivtLJJ1Wc18Aatbsd/YpETFQ3N8g\naUrZE233SeqTpInavcnNAaiq8q/xERFS+ex9EbEoInojordHE6puDkCTmg37RttTJam43VRfSwBa\nodmw3y7prOL+WZLKx34AdIWG39lt3yhpnqR9ba+T9HVJCyTdbPtsSc9Lmt/KJpE2mPg3u9H86Mv+\nZV6yvufa5s9HlySNKz9ffvCThydXPfm7K5L1L3zwnvSmE8cYnPR0o9+U1zeov/80DHtEnFlSOrbm\nXgC0EIfLApkg7EAmCDuQCcIOZIKwA5ngFNfM7b4hPW1yVanhtTuvv7ql2z792RNLa+M+k55qerDu\nZroAe3YgE4QdyARhBzJB2IFMEHYgE4QdyARhBzLBOPtOYM0bpVcFkz6wNrnu4uu+k6wv2Phnyfp/\nPn9Qsv7zuanX3y257itDbybrc+74+2T9kAtWl9aGXn89ue7OiD07kAnCDmSCsAOZIOxAJgg7kAnC\nDmSCsAOZ8PCELu2xlyfHUeaitLU7+rDS0s9u+X5LN91oSuhGl7JOOfKyLyXrH/rmr5p+7Z3VA7FC\nr8bmUf+jsGcHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiATnM/+PrD1pDnJ+gtn7CitNRoHr2q8G+wv\nYqi0dOzqv0yuyjh6vRru2W0vtr3J9qoRyy62vd72yuKv/Gr8ALrCWD7G/0DSCaMsXxgRs4u/ZfW2\nBaBuDcMeEfdK2tyGXgC0UJUf6M6z/VjxMX/vsifZ7rPdb7t/u7ZW2ByAKpoN+xWSDpQ0W9KApEvK\nnhgRiyKiNyJ6ezShyc0BqKqpsEfExogYjIghSVdLmltvWwDq1lTYbU8d8fB0SavKngugOzQcZ7d9\no6R5kva1vU7S1yXNsz1bUkhaK+nzLezxfW/cYYck63+waH2yfs30q5L11Dnj5aPcY3PhhvQY/63/\n3ZusX3HcktLatX94fXLdz83/SrK+x82/Ttbxdg3DHhFnjrL42hb0AqCFOFwWyARhBzJB2IFMEHYg\nE4QdyASXkq7Bi31/nKzf9bVvJesfGDcxWa9yueYLBo5Ornvnf6SHzg5e+JtkfcfAhmR98FNHlm/7\n+quT61758oxk/WeHlh6lnS0uJQ2AsAO5IOxAJgg7kAnCDmSCsAOZIOxAJriU9BhtOaN8vLrqOPqT\n27cn6ws3HJesP/3tQ8u3/ZOVyXVnvHl/sl5+keqxGf+LR0trh9x8bnLdR//q28n60uPPS9Z77u5P\n1nPDnh3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwwzj5GLx5Wfk55o3H0pa9PTta/P/+kZH1o5RPJ\n+p4qv6Ry1UtJVzVut/L35tAj1ybXneCeZH1ol9ZOR72zYc8OZIKwA5kg7EAmCDuQCcIOZIKwA5kg\n7EAmGGevQaPrun/1nvnJ+sErH6yznbYav+8+yfruS8vfmx/NWNbg1RlHr1PDPbvt6bbvsf2E7dW2\nv1wsn2x7ue01xS1X7Ae62Fg+xu+QdEFEzJJ0tKRzbc+SdKGkFRExU9KK4jGALtUw7BExEBEPF/e3\nSHpS0jRJp0paUjxtiaTTWtUkgOre03d22/tLOkLSA5KmRMRAUdogaUrJOn2S+iRponZvtk8AFY35\n13jbe0i6RdL5EfHqyFoMzw456uyCEbEoInojordHEyo1C6B5Ywq77R4NB/2GiLi1WLzR9tSiPlXS\npta0CKAODT/G27akayU9GRGXjijdLuksSQuK29ta0mGX2Pex8mmR/3fojeS6D56YviTynKvOT9Y/\n+s/PJ+uDG5v/d3aXaR9K1l8/fFqyfv5lNybrJ+3+Smmt0em333v5wGR9t18+lax3+vTebjOW7+wf\nl/RZSY/bfusi5BdpOOQ32z5b0vOS0oPJADqqYdgj4j6VH91wbL3tAGgVDpcFMkHYgUwQdiAThB3I\nBGEHMuHhg9/aYy9PjqO88/2A/8I//Umy/ugXL6/0+qu3pSdOPn/NXzf92j/+6A3JeqPLZDc6vXdo\n9AMrJUkXDJRPgy1JT31pVrLu+8ung87VA7FCr8bmUf+jsGcHMkHYgUwQdiAThB3IBGEHMkHYgUwQ\ndiATXEq6BpOfGkzWr3x5RrI+a+K6ZH3exPRY9vJDb0nW09Lj6I1c+cpHkvWFd5xcWpv5tUeS6/pN\nxtHrxJ4dyARhBzJB2IFMEHYgE4QdyARhBzJB2IFMcD57F9hl/w8n62sWfLDp1/7GkT9J1n+15aBk\n/ad3HZWsH3DR/e+5J7QO57MDIOxALgg7kAnCDmSCsAOZIOxAJgg7kImG4+y2p0u6TtIUSSFpUURc\nZvtiSedI+m3x1IsiYlnqtRhnB1orNc4+lotX7JB0QUQ8bHtPSQ/ZXl7UFkbEt+pqFEDrjGV+9gFJ\nA8X9LbaflDSt1Y0BqNd7+s5ue39JR0h6oFh0nu3HbC+2vXfJOn22+233b9fWSs0CaN6Yw257D0m3\nSDo/Il6VdIWkAyXN1vCe/5LR1ouIRRHRGxG9PZpQQ8sAmjGmsNvu0XDQb4iIWyUpIjZGxGBEDEm6\nWtLc1rUJoKqGYbdtSddKejIiLh2xfOqIp50uaVX97QGoy1h+jf+4pM9Ketz2ymLZRZLOtD1bw8Nx\nayV9viUdAqjFWH6Nv08adRLu5Jg6gO7CEXRAJgg7kAnCDmSCsAOZIOxAJgg7kAnCDmSCsAOZIOxA\nJgg7kAnCDmSCsAOZIOxAJgg7kIm2Ttls+7eSnh+xaF9JL7atgfemW3vr1r4kemtWnb19JCJ+b7RC\nW8P+ro3b/RHR27EGErq1t27tS6K3ZrWrNz7GA5kg7EAmOh32RR3efkq39tatfUn01qy29NbR7+wA\n2qfTe3YAbULYgUx0JOy2T7D9tO1nbV/YiR7K2F5r+3HbK233d7iXxbY32V41Ytlk28ttryluR51j\nr0O9XWx7ffHerbR9Yod6m277HttP2F5t+8vF8o6+d4m+2vK+tf07u+3xkp6RdJykdZIelHRmRDzR\n1kZK2F4rqTciOn4Ahu1PSHpN0nUR8bFi2TclbY6IBcU/lHtHxFe7pLeLJb3W6Wm8i9mKpo6cZlzS\naZL+Vh187xJ9zVcb3rdO7NnnSno2Ip6LiG2SbpJ0agf66HoRca+kze9YfKqkJcX9JRr+n6XtSnrr\nChExEBEPF/e3SHprmvGOvneJvtqiE2GfJumFEY/Xqbvmew9Jd9t+yHZfp5sZxZSIGCjub5A0pZPN\njKLhNN7t9I5pxrvmvWtm+vOq+IHu3Y6JiCMlfVrSucXH1a4Uw9/BumnsdEzTeLfLKNOM/04n37tm\npz+vqhNhXy9p+ojH+xXLukJErC9uN0laqu6binrjWzPoFrebOtzP73TTNN6jTTOuLnjvOjn9eSfC\n/qCkmbYPsL2rpDMk3d6BPt7F9qTihxPZniTpeHXfVNS3SzqruH+WpNs62MvbdMs03mXTjKvD713H\npz+PiLb/STpRw7/I/4+kf+xEDyV9zZD0aPG3utO9SbpRwx/rtmv4t42zJe0jaYWkNZL+XdLkLurt\n3yQ9LukxDQdraod6O0bDH9Efk7Sy+Dux0+9doq+2vG8cLgtkgh/ogEwQdiAThB3IBGEHMkHYgUwQ\ndiAThB3IxP8DY0uEeSQOrDIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAPEUlEQVR4nO3df7BcZX3H8c8n4ZJAACXQpjFEIRCKwUJgbgKtVONQKPKjQJ2mMB2lM5SrDjjSwakMrZW/asYRIqIFAkRDQZARIihBSFMqUpFygQAJv0IxDMncJEIKBAr5ce+3f9yDc4F7nr3sOfuDPO/XzJ3dPd89e76z8MnZ3eec8zgiBGDnN67TDQBoD8IOZIKwA5kg7EAmCDuQiV3aubFdPSEmalI7Nwlk5U29rm2x1aPVKoXd9gmSLpM0XtI1EbEg9fyJmqSjfGyVTQJIeCBWlNaa/hhve7yk70n6tKRZks60PavZ1wPQWlW+s8+V9GxEPBcR2yTdJOnUetoCULcqYZ8m6YURj9cVy97Gdp/tftv927W1wuYAVNHyX+MjYlFE9EZEb48mtHpzAEpUCft6SdNHPN6vWAagC1UJ+4OSZto+wPauks6QdHs9bQGoW9NDbxGxw/Z5ku7S8NDb4ohYXVtnAGpVaZw9IpZJWlZTLwBaiMNlgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUxUmsUV2HrSnGR98zmvldYemXND3e28zRfW/Wlp7b47D0+uO+Oq55L1HQMbmuqpkyqF3fZaSVskDUraERG9dTQFoH517Nk/FREv1vA6AFqI7+xAJqqGPSTdbfsh232jPcF2n+1+2/3btbXi5gA0q+rH+GMiYr3t35e03PZTEXHvyCdExCJJiyRpL0+OitsD0KRKe/aIWF/cbpK0VNLcOpoCUL+mw257ku0937ov6XhJq+pqDEC9qnyMnyJpqe23XueHEfHzWrpC27hn12T9mUuPSNbvOGVhsn5Qz4TS2lByzequ3O+X5ds+597SmiTN/qPPJev7fSajcfaIeE5S+sgEAF2DoTcgE4QdyARhBzJB2IFMEHYgE5zimrmnL5+drD9zyr8m6+M0MVkfUusOmux7YV6yfs30XzT92t+ZfVOyfsk+n0zWB1/a3PS2W4U9O5AJwg5kgrADmSDsQCYIO5AJwg5kgrADmWCcfSeQOk210Tj66pO/2+DVxyerA4P/l6x/YulXSmszlm5LrjthTfo00sEXX0rWj/jR35TWHppzfXLdh9/YP1mPbduT9W7Enh3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwwzr4TGDi3fPLcZ065vMHa6XH0a1/5cLJ+6znHJesz/+vXDbZfbkfTaw7burWn6XV/uv6wZH23Lb9p+rU7hT07kAnCDmSCsAOZIOxAJgg7kAnCDmSCsAOZYJx9J/DFvttKa+Pk5LrfeGlWsn7/XxycrHvtymS9ivF77ZWsr/u7jyXr/3DYraW1R7alJ4ze7c/ff+PojTTcs9tebHuT7VUjlk22vdz2muJ279a2CaCqsXyM/4GkE96x7EJJKyJipqQVxWMAXaxh2CPiXknvnMvmVElLivtLJJ1Wc18Aatbsd/YpETFQ3N8gaUrZE233SeqTpInavcnNAaiq8q/xERFS+ex9EbEoInojordHE6puDkCTmg37RttTJam43VRfSwBaodmw3y7prOL+WZLKx34AdIWG39lt3yhpnqR9ba+T9HVJCyTdbPtsSc9Lmt/KJpE2mPg3u9H86Mv+ZV6yvufa5s9HlySNKz9ffvCThydXPfm7K5L1L3zwnvSmE8cYnPR0o9+U1zeov/80DHtEnFlSOrbmXgC0EIfLApkg7EAmCDuQCcIOZIKwA5ngFNfM7b4hPW1yVanhtTuvv7ql2z792RNLa+M+k55qerDuZroAe3YgE4QdyARhBzJB2IFMEHYgE4QdyARhBzLBOPtOYM0bpVcFkz6wNrnu4uu+k6wv2Phnyfp/Pn9Qsv7zuanX3y257itDbybrc+74+2T9kAtWl9aGXn89ue7OiD07kAnCDmSCsAOZIOxAJgg7kAnCDmSCsAOZ8PCELu2xlyfHUeaitLU7+rDS0s9u+X5LN91oSuhGl7JOOfKyLyXrH/rmr5p+7Z3VA7FCr8bmUf+jsGcHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiATnM/+PrD1pDnJ+gtn7CitNRoHr2q8G+wvYqi0dOzqv0yuyjh6vRru2W0vtr3J9qoRyy62vd72yuKv/Gr8ALrCWD7G/0DSCaMsXxgRs4u/ZfW2BaBuDcMeEfdK2tyGXgC0UJUf6M6z/VjxMX/vsifZ7rPdb7t/u7ZW2ByAKpoN+xWSDpQ0W9KApEvKnhgRiyKiNyJ6ezShyc0BqKqpsEfExogYjIghSVdLmltvWwDq1lTYbU8d8fB0SavKngugOzQcZ7d9o6R5kva1vU7S1yXNsz1bUkhaK+nzLezxfW/cYYck63+waH2yfs30q5L11Dnj5aPcY3PhhvQY/63/3ZusX3HcktLatX94fXLdz83/SrK+x82/Ttbxdg3DHhFnjrL42hb0AqCFOFwWyARhBzJB2IFMEHYgE4QdyASXkq7Bi31/nKzf9bVvJesfGDcxWa9yueYLBo5Ornvnf6SHzg5e+JtkfcfAhmR98FNHlm/7+quT61758oxk/WeHlh6lnS0uJQ2AsAO5IOxAJgg7kAnCDmSCsAOZIOxAJriU9BhtOaN8vLrqOPqT27cn6ws3HJesP/3tQ8u3/ZOVyXVnvHl/sl5+keqxGf+LR0trh9x8bnLdR//q28n60uPPS9Z77u5P1nPDnh3IBGEHMkHYgUwQdiAThB3IBGEHMkHYgUwwzj5GLx5Wfk55o3H0pa9PTta/P/+kZH1o5RPJ+p4qv6Ry1UtJVzVut/L35tAj1ybXneCeZH1ol9ZOR72zYc8OZIKwA5kg7EAmCDuQCcIOZIKwA5kg7EAmGGevQaPrun/1nvnJ+sErH6yznbYav+8+yfruS8vfmx/NWNbg1RlHr1PDPbvt6bbvsf2E7dW2v1wsn2x7ue01xS1X7Ae62Fg+xu+QdEFEzJJ0tKRzbc+SdKGkFRExU9KK4jGALtUw7BExEBEPF/e3SHpS0jRJp0paUjxtiaTTWtUkgOre03d22/tLOkLSA5KmRMRAUdogaUrJOn2S+iRponZvtk8AFY3513jbe0i6RdL5EfHqyFoMzw456uyCEbEoInojordHEyo1C6B5Ywq77R4NB/2GiLi1WLzR9tSiPlXSpta0CKAODT/G27akayU9GRGXjijdLuksSQuK29ta0mGX2Pex8mmR/3fojeS6D56YviTynKvOT9Y/+s/PJ+uDG5v/d3aXaR9K1l8/fFqyfv5lNybrJ+3+Smmt0em333v5wGR9t18+lax3+vTebjOW7+wfl/RZSY/bfusi5BdpOOQ32z5b0vOS0oPJADqqYdgj4j6VH91wbL3tAGgVDpcFMkHYgUwQdiAThB3IBGEHMuHhg9/aYy9PjqO88/2A/8I//Umy/ugXL6/0+qu3pSdOPn/NXzf92j/+6A3JeqPLZDc6vXdo9AMrJUkXDJRPgy1JT31pVrLu+8ung87VA7FCr8bmUf+jsGcHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiATXEq6BpOfGkzWr3x5RrI+a+K6ZH3exPRY9vJDb0nW09Lj6I1c+cpHkvWFd5xcWpv5tUeS6/pNxtHrxJ4dyARhBzJB2IFMEHYgE4QdyARhBzJB2IFMcD57F9hl/w8n62sWfLDp1/7GkT9J1n+15aBk/ad3HZWsH3DR/e+5J7QO57MDIOxALgg7kAnCDmSCsAOZIOxAJgg7kImG4+y2p0u6TtIUSSFpUURcZvtiSedI+m3x1IsiYlnqtRhnB1orNc4+lotX7JB0QUQ8bHtPSQ/ZXl7UFkbEt+pqFEDrjGV+9gFJA8X9LbaflDSt1Y0BqNd7+s5ue39JR0h6oFh0nu3HbC+2vXfJOn22+233b9fWSs0CaN6Yw257D0m3SDo/Il6VdIWkAyXN1vCe/5LR1ouIRRHRGxG9PZpQQ8sAmjGmsNvu0XDQb4iIWyUpIjZGxGBEDEm6WtLc1rUJoKqGYbdtSddKejIiLh2xfOqIp50uaVX97QGoy1h+jf+4pM9Ketz2ymLZRZLOtD1bw8NxayV9viUdAqjFWH6Nv08adRLu5Jg6gO7CEXRAJgg7kAnCDmSCsAOZIOxAJgg7kAnCDmSCsAOZIOxAJgg7kAnCDmSCsAOZIOxAJgg7kIm2Ttls+7eSnh+xaF9JL7atgfemW3vr1r4kemtWnb19JCJ+b7RCW8P+ro3b/RHR27EGErq1t27tS6K3ZrWrNz7GA5kg7EAmOh32RR3efkq39tatfUn01qy29NbR7+wA2qfTe3YAbULYgUx0JOy2T7D9tO1nbV/YiR7K2F5r+3HbK233d7iXxbY32V41Ytlk28ttryluR51jr0O9XWx7ffHerbR9Yod6m277HttP2F5t+8vF8o6+d4m+2vK+tf07u+3xkp6RdJykdZIelHRmRDzR1kZK2F4rqTciOn4Ahu1PSHpN0nUR8bFi2TclbY6IBcU/lHtHxFe7pLeLJb3W6Wm8i9mKpo6cZlzSaZL+Vh187xJ9zVcb3rdO7NnnSno2Ip6LiG2SbpJ0agf66HoRca+kze9YfKqkJcX9JRr+n6XtSnrrChExEBEPF/e3SHprmvGOvneJvtqiE2GfJumFEY/Xqbvmew9Jd9t+yHZfp5sZxZSIGCjub5A0pZPNjKLhNN7t9I5pxrvmvWtm+vOq+IHu3Y6JiCMlfVrSucXH1a4Uw9/BumnsdEzTeLfLKNOM/04n37tmpz+vqhNhXy9p+ojH+xXLukJErC9uN0laqu6binrjWzPoFrebOtzP73TTNN6jTTOuLnjvOjn9eSfC/qCkmbYPsL2rpDMk3d6BPt7F9qTihxPZniTpeHXfVNS3SzqruH+WpNs62MvbdMs03mXTjKvD713Hpz+PiLb/STpRw7/I/4+kf+xEDyV9zZD0aPG3utO9SbpRwx/rtmv4t42zJe0jaYWkNZL+XdLkLurt3yQ9LukxDQdraod6O0bDH9Efk7Sy+Dux0+9doq+2vG8cLgtkgh/ogEwQdiAThB3IBGEHMkHYgUwQdiAThB3IxP8DY0uEeSQOrDIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -704,11 +717,11 @@ "metadata": { "id": "lhbV376Z5zIN", "colab_type": "code", + "outputId": "33f1f695-f047-47c4-ef51-a64d2af38548", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "795ce512-e6f2-4293-fe9b-3a298fc9eace" + } }, "source": [ "import tensorflow as tf\n", @@ -727,13 +740,13 @@ "text": [ "Data\n", "\n", - "[[0.62267598 0.10984498 0.69076553 0.9632871 0.96289973]\n", - " [0.08211625 0.47625618 0.49433127 0.4326092 0.91228054]\n", - " [0.96577105 0.92293084 0.83923753 0.93247747 0.44985272]\n", - " [0.60186817 0.21104548 0.39213392 0.6575507 0.93132051]]\n", + "[[0.83418307 0.63209566 0.1512933 0.92250234 0.03714863]\n", + " [0.17699677 0.91293785 0.56589149 0.19330683 0.00165008]\n", + " [0.32118224 0.10098022 0.45462992 0.30815643 0.85958459]\n", + " [0.67693467 0.00927566 0.84660695 0.55743855 0.65285687]]\n", "\n", " Labels\n", - "[0.32892891 0.61337055 0.82170421 0.63212506]\n" + "[0.77424749 0.39799986 0.20608597 0.0937734 ]\n" ], "name": "stdout" } @@ -756,11 +769,11 @@ "metadata": { "id": "e5L_u7YC5zIa", "colab_type": "code", + "outputId": "cf8a7955-664d-4c5c-e232-da6c337c0267", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "8f40aea8-c26f-4e6e-b179-121de3a4e97a" + } }, "source": [ "iterator = dataset.make_one_shot_iterator() # iterator\n", @@ -787,13 +800,13 @@ "Instructions for updating:\n", "Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.\n", "Numpy Data\n", - "[[0.62267598 0.10984498 0.69076553 0.9632871 0.96289973]\n", - " [0.08211625 0.47625618 0.49433127 0.4326092 0.91228054]\n", - " [0.96577105 0.92293084 0.83923753 0.93247747 0.44985272]\n", - " [0.60186817 0.21104548 0.39213392 0.6575507 0.93132051]]\n", + "[[0.83418307 0.63209566 0.1512933 0.92250234 0.03714863]\n", + " [0.17699677 0.91293785 0.56589149 0.19330683 0.00165008]\n", + " [0.32118224 0.10098022 0.45462992 0.30815643 0.85958459]\n", + " [0.67693467 0.00927566 0.84660695 0.55743855 0.65285687]]\n", "\n", " Numpy Label\n", - "[0.32892891 0.61337055 0.82170421 0.63212506]\n" + "[0.77424749 0.39799986 0.20608597 0.0937734 ]\n" ], "name": "stdout" } @@ -814,11 +827,11 @@ "metadata": { "id": "c5DV_aLj5zIo", "colab_type": "code", + "outputId": "3ea4524e-c45a-48d7-efa1-6ddd90c5ff66", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "33221d60-81ef-48c5-c0fb-e278371f1e95" + } }, "source": [ "dataset_ = NumpyDataset(numpy_data, numpy_label) # convert to NumpyDataset\n", @@ -830,10 +843,10 @@ "output_type": "execute_result", "data": { "text/plain": [ - "array([[0.62267598, 0.10984498, 0.69076553, 0.9632871 , 0.96289973],\n", - " [0.08211625, 0.47625618, 0.49433127, 0.4326092 , 0.91228054],\n", - " [0.96577105, 0.92293084, 0.83923753, 0.93247747, 0.44985272],\n", - " [0.60186817, 0.21104548, 0.39213392, 0.6575507 , 0.93132051]])" + "array([[0.83418307, 0.63209566, 0.1512933 , 0.92250234, 0.03714863],\n", + " [0.17699677, 0.91293785, 0.56589149, 0.19330683, 0.00165008],\n", + " [0.32118224, 0.10098022, 0.45462992, 0.30815643, 0.85958459],\n", + " [0.67693467, 0.00927566, 0.84660695, 0.55743855, 0.65285687]])" ] }, "metadata": { @@ -860,11 +873,11 @@ "metadata": { "id": "hVy39LEe5zJA", "colab_type": "code", + "outputId": "71ebbeac-aba9-46aa-d5bf-0b39a966ca60", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "f379ec7a-9b51-4b54-b94b-e01ab62f33f9" + } }, "source": [ "iterator_ = dataset_.make_iterator() # Using make_iterator for converting NumpyDataset to tf.data\n", @@ -885,13 +898,13 @@ "output_type": "stream", "text": [ "Numpy Data\n", - "[[0.08211625 0.47625618 0.49433127 0.4326092 0.91228054]\n", - " [0.62267598 0.10984498 0.69076553 0.9632871 0.96289973]\n", - " [0.96577105 0.92293084 0.83923753 0.93247747 0.44985272]\n", - " [0.60186817 0.21104548 0.39213392 0.6575507 0.93132051]]\n", + "[[0.83418307 0.63209566 0.1512933 0.92250234 0.03714863]\n", + " [0.32118224 0.10098022 0.45462992 0.30815643 0.85958459]\n", + " [0.67693467 0.00927566 0.84660695 0.55743855 0.65285687]\n", + " [0.17699677 0.91293785 0.56589149 0.19330683 0.00165008]]\n", "\n", " Numpy Label\n", - "[0.61337055 0.32892891 0.82170421 0.63212506]\n" + "[0.77424749 0.20608597 0.0937734 0.39799986]\n" ], "name": "stdout" } @@ -922,11 +935,11 @@ "metadata": { "id": "I-MBPtBX5zJU", "colab_type": "code", + "outputId": "b78f6c9b-bfbe-4ffb-e7a8-37c8d2bb22f3", "colab": { "base_uri": "https://localhost:8080/", "height": 204 - }, - "outputId": "234834b7-1473-42f8-8759-a3c8c7414bc4" + } }, "source": [ "!wget https://raw.githubusercontent.com/deepchem/deepchem/master/deepchem/models/tests/example.csv" @@ -936,7 +949,7 @@ { "output_type": "stream", "text": [ - "--2020-03-27 03:01:02-- https://raw.githubusercontent.com/deepchem/deepchem/master/deepchem/models/tests/example.csv\n", + "--2020-05-31 02:33:55-- https://raw.githubusercontent.com/deepchem/deepchem/master/deepchem/models/tests/example.csv\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", @@ -945,7 +958,7 @@ "\n", "\rexample.csv 0%[ ] 0 --.-KB/s \rexample.csv 100%[===================>] 568 --.-KB/s in 0s \n", "\n", - "2020-03-27 03:01:02 (97.0 MB/s) - ‘example.csv’ saved [568/568]\n", + "2020-05-31 02:33:55 (30.1 MB/s) - ‘example.csv’ saved [568/568]\n", "\n" ], "name": "stdout" @@ -983,11 +996,11 @@ "metadata": { "id": "jN1lRtgC5zJi", "colab_type": "code", + "outputId": "a7960251-8b5e-4b19-dc01-3a6bf727abd4", "colab": { "base_uri": "https://localhost:8080/", "height": 153 - }, - "outputId": "f0b49608-7e61-4f55-d51a-5d0af8ebc14e" + } }, "source": [ "import deepchem as dc\n", @@ -1007,8 +1020,8 @@ "About to start loading CSV from /content/example.csv\n", "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", - "TIMING: featurizing shard 0 took 0.053 s\n", - "TIMING: dataset construction took 0.138 s\n", + "TIMING: featurizing shard 0 took 0.067 s\n", + "TIMING: dataset construction took 0.107 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -1062,11 +1075,11 @@ "metadata": { "id": "VkW5MLyL5zKC", "colab_type": "code", + "outputId": "36a0b0c5-915a-488d-cb2f-4629fc432e27", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "8d0e5268-874b-484a-ee50-67085da6ca52" + } }, "source": [ "len(train_data),len(valid_data),len(test_data)" @@ -1104,11 +1117,11 @@ "metadata": { "id": "cYeqhEgA5zKH", "colab_type": "code", + "outputId": "72a0f464-e80e-4ccd-870a-b65056a09852", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "89f162a6-35b9-4e8a-ce1d-a33d14c1529e" + } }, "source": [ "train_data,valid_data,test_data=splitter.split(dataset,frac_train=0.7,frac_valid=0.2,frac_test=0.1)\n", @@ -1150,11 +1163,11 @@ "metadata": { "id": "kplzieL35zKb", "colab_type": "code", + "outputId": "3b2538d4-1885-4b82-aef2-e88a8ae9fbcf", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "92991a97-666c-49ab-e4fc-ad33c2ef8767" + } }, "source": [ "!wget https://raw.githubusercontent.com/deepchem/deepchem/master/deepchem/models/tests/user_specified_example.csv" @@ -1164,7 +1177,7 @@ { "output_type": "stream", "text": [ - "--2020-03-27 03:01:03-- https://raw.githubusercontent.com/deepchem/deepchem/master/deepchem/models/tests/user_specified_example.csv\n", + "--2020-05-31 02:33:57-- https://raw.githubusercontent.com/deepchem/deepchem/master/deepchem/models/tests/user_specified_example.csv\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", @@ -1173,7 +1186,7 @@ "\n", "\r user_spec 0%[ ] 0 --.-KB/s \ruser_specified_exam 100%[===================>] 714 --.-KB/s in 0s \n", "\n", - "2020-03-27 03:01:04 (206 MB/s) - ‘user_specified_example.csv’ saved [714/714]\n", + "2020-05-31 02:33:57 (37.8 MB/s) - ‘user_specified_example.csv’ saved [714/714]\n", "\n" ], "name": "stdout" @@ -1185,11 +1198,11 @@ "metadata": { "id": "s3t_4cEe5zKg", "colab_type": "code", + "outputId": "244df6c8-0a63-4505-b450-c3b6e7f81ecb", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "3aab5bc9-e85b-433c-a51c-3620c8e6602c" + } }, "source": [ "from deepchem.splits.splitters import SpecifiedSplitter\n", @@ -1215,8 +1228,8 @@ "About to start loading CSV from /content/user_specified_example.csv\n", "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", - "TIMING: featurizing shard 0 took 0.038 s\n", - "TIMING: dataset construction took 0.053 s\n", + "TIMING: featurizing shard 0 took 0.050 s\n", + "TIMING: dataset construction took 0.064 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -1252,11 +1265,11 @@ "metadata": { "id": "JNBpEHmm5zKx", "colab_type": "code", + "outputId": "01d665c6-eb1b-4eff-ad25-65e0d83e26c3", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "df8c993f-1dc6-4ba9-a01e-f2065d941e46" + } }, "source": [ "train_data,valid_data,test_data" @@ -1294,11 +1307,11 @@ "metadata": { "id": "zCT3KKQz5zK2", "colab_type": "code", + "outputId": "c4920252-d2a3-4894-f9a1-a2a3b0616335", "colab": { "base_uri": "https://localhost:8080/", "height": 0 - }, - "outputId": "4aa74983-cf8b-4f26-b217-2654818caeb6" + } }, "source": [ "from deepchem.splits.splitters import IndiceSplitter\n", @@ -1345,11 +1358,11 @@ "metadata": { "id": "es-X6PDQ5zK7", "colab_type": "code", + "outputId": "66a197fc-72c5-41ea-cacd-ca7043c09adc", "colab": { "base_uri": "https://localhost:8080/", "height": 153 - }, - "outputId": "ca654eb0-2606-4340-a9f7-72ac85c8d76f" + } }, "source": [ "from deepchem.splits.splitters import RandomGroupSplitter\n", @@ -1371,11 +1384,11 @@ "text": [ "Loading raw samples now.\n", "shard_size: 8192\n", - "About to start loading CSV from /usr/local/lib/python3.7/site-packages/deepchem/data/tests/../../models/tests/example.csv\n", + "About to start loading CSV from /root/miniconda/lib/python3.6/site-packages/deepchem/data/tests/../../models/tests/example.csv\n", "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", - "TIMING: featurizing shard 0 took 0.037 s\n", - "TIMING: dataset construction took 0.051 s\n", + "TIMING: featurizing shard 0 took 0.050 s\n", + "TIMING: dataset construction took 0.068 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -1387,11 +1400,11 @@ "metadata": { "id": "sCYn9An75zLK", "colab_type": "code", + "outputId": "c3a7ea8b-4f4b-412c-c903-a120d3665065", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "ad469ae7-721a-4e61-bab7-7fce98671119" + } }, "source": [ "train_idxs,valid_idxs,test_idxs" @@ -1402,7 +1415,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "([5, 3, 2, 8, 4, 7], [0, 6, 9], [1])" + "([0, 6, 9, 2, 8, 3, 5], [4, 7], [1])" ] }, "metadata": { @@ -1440,11 +1453,11 @@ "metadata": { "id": "Wdiwca-U5zLo", "colab_type": "code", + "outputId": "a7903880-be1f-4682-d2e0-8193d0c48b09", "colab": { "base_uri": "https://localhost:8080/", "height": 68 - }, - "outputId": "5fc58018-a670-46d9-de69-eea813f12def" + } }, "source": [ "print(\"Groups present in the training data =\",train_data)\n", @@ -1456,8 +1469,8 @@ { "output_type": "stream", "text": [ - "Groups present in the training data = [7, 2, 1, 1, 3, 3]\n", - "Groups present in the validation data = [0, 0, 0]\n", + "Groups present in the training data = [0, 0, 0, 1, 1, 2, 7]\n", + "Groups present in the validation data = [3, 3]\n", "Groups present in the testing data = [4]\n" ], "name": "stdout" @@ -1491,11 +1504,11 @@ "metadata": { "id": "C8Kkvi5F5zL_", "colab_type": "code", + "outputId": "9d6caf58-4915-4944-df8b-ecf3f84926f9", "colab": { "base_uri": "https://localhost:8080/", "height": 170 - }, - "outputId": "67bf1ecf-f450-4ea3-d7d2-2d9be69a71c7" + } }, "source": [ "from deepchem.splits.splitters import ScaffoldSplitter\n", @@ -1512,11 +1525,11 @@ "text": [ "Loading raw samples now.\n", "shard_size: 8192\n", - "About to start loading CSV from /usr/local/lib/python3.7/site-packages/deepchem/data/tests/../../models/tests/example.csv\n", + "About to start loading CSV from /root/miniconda/lib/python3.6/site-packages/deepchem/data/tests/../../models/tests/example.csv\n", "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", - "TIMING: featurizing shard 0 took 0.039 s\n", - "TIMING: dataset construction took 0.057 s\n", + "TIMING: featurizing shard 0 took 0.052 s\n", + "TIMING: dataset construction took 0.064 s\n", "Loading dataset from disk.\n" ], "name": "stdout" diff --git a/examples/tutorials/02_Learning_MNIST_Digit_Classifiers.ipynb b/examples/tutorials/02_Learning_MNIST_Digit_Classifiers.ipynb index cb728ebea2..0c581442b2 100644 --- a/examples/tutorials/02_Learning_MNIST_Digit_Classifiers.ipynb +++ b/examples/tutorials/02_Learning_MNIST_Digit_Classifiers.ipynb @@ -56,67 +56,101 @@ "metadata": { "id": "UXJKRlAv5xFA", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 479 + }, + "outputId": "3a8d973a-9b49-44ea-f7b6-4ad80ffcdba3" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 28140 0 --:--:-- --:--:-- --:--:-- 28140\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "remove current miniconda\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.71 s, sys: 996 ms, total: 3.71 s\n", + "Wall time: 4min 14s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "code", "metadata": { "id": "hbTulXIP5xFN", "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 63 - }, - "outputId": "ec59ca5d-c872-4de4-af00-fb9ed614d292" + "colab": {} }, "source": [ "from tensorflow.examples.tutorials.mnist import input_data" ], - "execution_count": 2, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - } - ] + "execution_count": 0, + "outputs": [] }, { "cell_type": "code", "metadata": { "id": "4u9vY8iu5xFU", "colab_type": "code", + "outputId": "22a37e01-90de-4bd7-ad54-9b8c42333aed", "colab": { "base_uri": "https://localhost:8080/", "height": 530 - }, - "outputId": "e1e5157e-bce2-4b8a-e398-52b95b546dad" + } }, "source": [ "# TODO: This is deprecated. Let's replace with a DeepChem native loader for maintainability.\n", @@ -127,7 +161,7 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:From :1: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From :2: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Please use alternatives such as official/mnist/dataset.py from tensorflow/models.\n", "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.\n", @@ -166,42 +200,15 @@ "metadata": { "id": "MsHJLy-35xFe", "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 207 - }, - "outputId": "037c5709-8e5f-458f-ccce-8e168174e3ca" + "colab": {} }, "source": [ "import deepchem as dc\n", "import tensorflow as tf\n", "from tensorflow.keras.layers import Reshape, Conv2D, Flatten, Dense, Softmax" ], - "execution_count": 4, - "outputs": [ - { - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n" - ], - "name": "stdout" - } - ] + "execution_count": 0, + "outputs": [] }, { "cell_type": "code", @@ -244,11 +251,11 @@ "metadata": { "id": "Xq9T4trd5xGD", "colab_type": "code", + "outputId": "fc4384c6-730f-4e8c-a60d-d9708d003bdb", "colab": { "base_uri": "https://localhost:8080/", "height": 275 - }, - "outputId": "d084c449-863f-45c3-fe62-ac4a91b41d2f" + } }, "source": [ "model.fit(train, nb_epoch=2)" @@ -258,15 +265,15 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:200: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:200: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", @@ -293,11 +300,11 @@ "metadata": { "id": "ZGP9d70u5xGU", "colab_type": "code", + "outputId": "7ae20e09-7602-42d7-87a4-2510873146f1", "colab": { "base_uri": "https://localhost:8080/", "height": 204 - }, - "outputId": "896f006d-bfab-43de-8d64-2f4ee5dfc7e5" + } }, "source": [ "from sklearn.metrics import roc_curve, auc\n", @@ -320,16 +327,16 @@ "output_type": "stream", "text": [ "Validation\n", - "class 0:auc=0.9999057979948827\n", - "class 1:auc=0.9999335476621387\n", - "class 2:auc=0.9998705637425881\n", - "class 3:auc=0.999911789233876\n", - "class 4:auc=0.9999623237852037\n", - "class 5:auc=0.9998804023326087\n", - "class 6:auc=0.9998620230088834\n", - "class 7:auc=0.9995460674157303\n", - "class 8:auc=0.9998530924048773\n", - "class 9:auc=0.9996017892577271\n" + "class 0:auc=0.9999473577030227\n", + "class 1:auc=0.9999211378882008\n", + "class 2:auc=0.9999187049470992\n", + "class 3:auc=0.9999000878057167\n", + "class 4:auc=0.9999732080250338\n", + "class 5:auc=0.9998869625422123\n", + "class 6:auc=0.9999294587087216\n", + "class 7:auc=0.9998189989785494\n", + "class 8:auc=0.9996727967199541\n", + "class 9:auc=0.9998515678426888\n" ], "name": "stdout" } diff --git a/examples/tutorials/03_Modeling_Solubility.ipynb b/examples/tutorials/03_Modeling_Solubility.ipynb index e14e92c93b..c28cf9a6f3 100644 --- a/examples/tutorials/03_Modeling_Solubility.ipynb +++ b/examples/tutorials/03_Modeling_Solubility.ipynb @@ -65,20 +65,76 @@ "metadata": { "id": "hagObl_sc_8_", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "44375acf-0114-483e-ce76-73f07c8a7926" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 97034 0 --:--:-- --:--:-- --:--:-- 97034\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.39 s, sys: 520 ms, total: 2.91 s\n", + "Wall time: 4min 6s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -126,7 +182,7 @@ "metadata": { "id": "58FAHaJOc_9D", "colab_type": "code", - "outputId": "9903c971-0475-43f9-f6be-4011df24806a", + "outputId": "4258b01c-157f-407d-bf77-5f76a49b7a8c", "colab": { "base_uri": "https://localhost:8080/", "height": 204 @@ -140,16 +196,16 @@ { "output_type": "stream", "text": [ - "--2020-03-27 03:22:37-- https://raw.githubusercontent.com/deepchem/deepchem/master/datasets/delaney-processed.csv\n", + "--2020-05-31 02:34:48-- https://raw.githubusercontent.com/deepchem/deepchem/master/datasets/delaney-processed.csv\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 96699 (94K) [text/plain]\n", "Saving to: ‘delaney-processed.csv’\n", "\n", - "\rdelaney-processed.c 0%[ ] 0 --.-KB/s \rdelaney-processed.c 100%[===================>] 94.43K --.-KB/s in 0.001s \n", + "\rdelaney-processed.c 0%[ ] 0 --.-KB/s \rdelaney-processed.c 100%[===================>] 94.43K --.-KB/s in 0.003s \n", "\n", - "2020-03-27 03:22:37 (70.3 MB/s) - ‘delaney-processed.csv’ saved [96699/96699]\n", + "2020-05-31 02:34:49 (31.7 MB/s) - ‘delaney-processed.csv’ saved [96699/96699]\n", "\n" ], "name": "stdout" @@ -161,10 +217,10 @@ "metadata": { "id": "XXQteOIQc_9G", "colab_type": "code", - "outputId": "820d03c2-cb3d-4d3a-888a-3de5018aac08", + "outputId": "45ce6874-e8f8-41da-b99d-d9dfa0fb9e6c", "colab": { "base_uri": "https://localhost:8080/", - "height": 338 + "height": 102 } }, "source": [ @@ -180,40 +236,6 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n", "Columns of dataset: ['Compound ID' 'ESOL predicted log solubility in mols per litre'\n", " 'Minimum Degree' 'Molecular Weight' 'Number of H-Bond Donors'\n", " 'Number of Rings' 'Number of Rotatable Bonds' 'Polar Surface Area'\n", @@ -280,7 +302,7 @@ "metadata": { "id": "iRNwkDU_c_9N", "colab_type": "code", - "outputId": "da77eae0-fb5a-46ec-bbe4-2e6b22d1e2de", + "outputId": "155d4e2c-b2de-4e90-f046-36170259f057", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 @@ -298,7 +320,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAIO0lEQVR4nO3d3ZaiRgCFUcma939l\ncsE0IWojf1WnpPZeuZgkPaA2H4WIxTCO4wPI+Sf9AKB3IoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmwrKGYUg/BFr3J/0AbmvKbxzH+Q/pR0SjBhvH5d5WJ0V+\nI8KLDcPaSypFXonwMtsDkyJLIrzAelS/jY1SZCLCs1aOP7dkJkVEeNxKP3vTkmLPRHjEsePPk4vl\nrkS428njzy3LP78QvogId7jw+PPMuu5vvsxoevrD8Lj16+CKmU1q5jeZFnj4yPaLLZO7e34TEX62\nfvzZXSQR09h405dahAd1fbhY361fZxHuVjo/o2tvRLiPQoobx+cTM3fn+4T7KLCG6UWeX+q7v+Yi\nhDARQpgIIUyEECZCCBMhhIkQwkTYtHnGRG4sH+EwPGxm9KxGhMvGXnsbx78XKkmRWVfbQqWR8GNg\nUqRblSJcXpQ7edubFOlQ7FsU88QFj5cLdH/+ly/s0YV6J2ZeB8PH6tA3jqNzg93q6ldf9ezob6Pa\neorDMPTz+6BDNSJctrdydDmn+PLfDYncWeZzwpVTL+P4eDv0tfPm0O6Aa2VOzKyclXksZvt7tNTe\nrPR9Pxt8yn2pPutpco6ZjSk2uFE2vpvY7e1Un7lZBpM3OU7Mepqf6Gl9d9Py7aZLp5h84qFZd5+e\ncr2d3frzLbw/ykc4md4KPt691sEhccsuucTDy4wAW36m5ESPj0+v8G8/cHLF0zrWfubGh6NP1l/r\nykPi3l3yhQ8vcwS+PAZb+ZkyY8KWp3x9is3M6t3iO65H4t4PT6s4fN/5Mw8vdvz5+kao1uHZsad8\nwX5q5QlWPzHTaIST0jchO7PYM6EeWGBZx07MnNs6T/4Gj//1ZgbAWdMRfnRhiseyWf8rG5fZ7Jmn\nzw5t0Knf2jAM46Ot/CbfHeHk/C/1zCi0JcXK43ltwzDsKqH68Uvjr/MdIpwcfndx4G9dspw2PwI9\nLF7C2+U3nt/kVtvBY+ebuo0/uWvtqVU3Il5C8oP+o+4W4eTMIeL3rrod8RK+60X+pse6V3CvHB8Q\nWhAs4bsibOjD+ss9fbxbs4Hgqvk6d45wErzqreVr0GlHft7R21Mg60QIYSKEMBFCmAghTIQQJkII\nEyGEiZAb+q7ZonuJ0OflNKuXCKFZIoQwEUKYCCFMhBAmQggTIYSJEMK6idDX22lVNxFCq0QIYSKk\noMhV1MMwTDPcTX+o/wD2MhvfzUWmPF2utPIDeJ1gsv1JX0VY3tNNJ+utNlPC23lW69zadWUVLafY\nR4ShDP6u+vX+m8XX+X6Da/wmx2dWunGxbU7EfP8ZuCMZfLgbc93bg82KjopbFltkSvI9S2vzlgQd\nRPhWuXsmf1zydEf4AmvfuHG3UMI1r8ChhUTeqa7rNcKNt2Xfa+Mod/XaD2xS2RIueAXOHVA0lWKL\nh8gX+3g4WnpbXH9Hem5jumAzOvz0r9qJ7F3O1bvO+BvFDiJ8bDsxE9wWDy3h4r34rn1BicPpLcss\n9iYiOyT2EeF2O8elK3eiwzBs3g6K7LyjGfy3/MQJrZ81hO4rLMInG38TqXOMxTeUaieQW1U/RRG+\n9/GT3/qfOzdyFqETNd8o9np29JPfzuPXKcHdtpPXV1QnwjXLAOqXkL/bdqqEyPUVOSL8IF9CSmcl\nBPkqE4SJEMIcjtKe+ZK6hxMz9CxbQgftzUTI73oqIch7QggTIbxR8xhAhBAmQggTIYSJEMJE2Lr5\n2nHuSoQQJkIIEyG8U/FqIRFCmAghTIQQJkIIEyGEiRBeDMPff+Z/LcmXeuH/qk8zZySEDZYD49WM\nhE3rehLuppR85UX4QSqDp9U1dVNLrtXfxNKbpe7Kkr8xE0/TzBV+ZyjCN4IZbJ9vfxiG8WFCtDsQ\n4YvNu71rUzy4tNJ37aQ8ES6Eblt9zX3n/R6/lgh/nNuOj4V05VhqSPxaIrxy890VVey+8zSm7wjL\nbLL505uOTr9KxxGWPu/svvNs03GEVbjkhY9EWEND9513pNoel63dmvvOf4M7fotiebX78ithptCd\neCka08dIaBBY8lI05qYR2tPzPW4a4fKNUAOms6OBczPZ+86zzU0jZPbUnhTbc8cTM6+mAaGNURGe\n3HEkXO7s5z8bAWhVHyNhA+wD+I0IIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIS1uG6OX4gQwkQI\nYSKEMBFCmAghTIRVTN/rX86/CD/u+M361piBl1VGwhBz3vDDSBhiPOSHkRDCjITlmYGXVW6NBmEO\nRyFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoSwfwEQmd7RFhlcIwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU5f4H8O8AyiaLCooi4L6VS0AueRVTUjQ0F0aR0u71l2NqYWU1vtpIW+5U93cvhppD2S8yWzBvuBAkqKllloCmgguICiiiyKrsnO/vj2ccCRBmmHPmOTDf918J4zxfks+c55znnO+jQEQghPBjxbsAQiwdhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISkfUKElSshMBAmTYK0NEhMhOeeAwC4fh0mT+Zcm5EohKR9SkiA0lJIToZNm3Txa7dseBdASJukpkJAAADAiBGQmwuIsGcPZGVBTQ3vyozGLYSpqanR0dFubm43btz48MMPu3btyqsS0i4hAqLuvxUKUChg1izYuBGuX4fQUK6VGc3cISwtLd22bduWLVvS09MBwN7evrKy8sCBAzt27PD19TVzMaQd8/eHr76C5cshIwP69eNdjUnMd0549uzZ1atX9+nT5/nnn09PT/fw8FCr1QcOHBg7dmx2dvYjjzyyYcMGsxVD2r0ZM6C6GiZMgFWrICqKdzWmQYlVVVXFxsYGBgbqR/Tz84uJiampqdG/IDw8nH1r8eLFd+7ckbok0kE88AAC4IkTvOswlYQhzMzMVKvVbm5uLGAuLi4qler06dPNvnjbtm2Ojo4AMHr06KysLOmqIh2EIKCDAwJgaSnvUkwlfgjr6+uTkpKCg4MVCoX+0KfVam/fvt3yX8zIyBg2bBgAODs7f//996IXRjqUq1cRAN3dedchAjFDmJ+fr9FofHx8WPbs7OyUSuUvv/zS9JV1dXUZGRlNv15WVhYSEgIACoUiPDxcP2UlpLEjRxAAx47lXYcIxAnhkSNHlEplp06dWPwGDx6s0WgKCwubvlIfVHd396qqqqYvEAQhMjKSvVVAQEB+fr4oFZKO5osvEADDwnjXIQKTQlhSUqLVah944AGWPWtr6+Dg4KSkJEEQGr1SEIT9+/eHhITogzpkyJDz58/f750PHTrUq1cvAPD09Gz2WEos3VtvIQC+8QbvOkTQxhCmpKSoVCoHBweWqN69e6vV6pycnKavZEF98MEHWw1qIwUFBVOmTAEAGxsbjUbTtjpJh/XkkwiAn3/Ouw4RGB3C+vr6Rx55hCXKysoqKCho165ddXV1TV/JgsqueQJAr1691Gr1lStXDB+rtrZWrVazCzxz5swpKSkxtlrSYY0fjwB46BDvOkRgdAhfeeWVAQMGODs7h4eHX7x4sekLKisrY2NjJ0yYoA9qYGBgbGxsbW1t20qMi4tzdXVlp5r3W+EgFqdHDwTAvDzedYjA6BAOHDgQAE6ePNn0W+fPn1er1d27d2fxc3V1ValU6enppld54cKFESNGAECXLl2++eYb09+QtG/l5QiAdnZYX8+7FBEYF8K6urrOnTsrFIqKigr9F2tra7/77rvJkyfrFwbHjx//5ZdfVlZWilhoRUXF0qVL2furVKrq6moR35y0M3/+iQA4bBjvOsRhXAizs7PZFcuGX6yqqnJ3dwcAJycnlUp1QsrbiLRabefOnQHA39//0qVL0g1E5CwjPj41ICB3+XLehYjDuBu4WQgHDBjQ8Iu2trZvvvnmpk2b8vLytFrt6NGjjXpPo6hUqqNHj/br1y8lJeXhhx/et2+fdGMR2YrPyPA7dOgjW1vehYjDuBBevHgRAPr379/o688///zKlSudnZ1Fq+v+/Pz8/vjjj2nTphUWFs6cOfP99983w6BEVpo9GLRfIhwJzc/NzS0xMZEtHh4/fryoqIhvPcTM2O9h04NBO9WWEMrhh1coFGq1+uGHH46Lizty5AjvcjqQRh2TGvVTkgc2I+N+MBCLcU/Wy+2HLykpATnV0wHp+ymdPg3Ll8PRo7wLgvr6+pycHIVC0bdvX961iMO4EPI9EtbW1upvPQUAQRAuX76sUCj6tfPuBrLTsGNS035KdxeieMnNza2pqfH09LS3t+dbiViMmI7eunWrpKTEycmJLUiY39NPP929e/e9e/eyP+bl5VVXV/fs2VN/ZxwRx6xZkJgIX38N0KSf0smT8NprUFfHsTq5TcdMZ0QIuV+VuXjxYlFRkb4vG/d6LIK/Pxw6BACQkQF9+0JoKPzznxAYCNev86rofpfo2y8jQsj9h2/0EdjxPhHlaMYMcHWFoCB4/nnYuBG2boXeveHQIRg1Cvbv51JRx/vwNeKckO8PX1ZWduvWLQcHh549ezaspyN9IspCUBAEBQEAeHjAzz8DAGze/JcXnDwJYWGQnAxBQfDuu/Dqq2Y+S+x4/+5GT0d5/fD647D+DlXuR2YL5e4OiYkQEQGCAGvXwpw5UFJitsELCwtTUlIAwNvb22yDSs3o6SivI2HT0TvetKTdsLaGt9+GuDhwdYXdu2HMGDh9WuoxU1NTly9f7uPjc/nyZScnp/Dw8MuXL0s9qHm0myNh09HpSMjZrFlw/DiMHAmZmTBmDHz+uRSDlJeXb9myZdSoUf7+/tHR0VVVVRMnTnR0dDxx4sSYMWP2czovFZmBN3pXVVVZW1vb2Njw6oCmUqkAICoqiv2RLdM7ODi02iaDSOvOHVyyBAEQ4PrrrzfbvKttzp49q1ar9RfDe/bsqVars7OzEbGwsHD69Olw98ap+nb+VKGhITx37hwA9O/fX9JqWsB6eP/444/sj6mpqQAwYsQIXvWQv4iJqfP2fqhnTz8/P5aTNquurmYt2xv1rW30eKogCBqNxsrKCgAef/zxW7dumfYD8GRoCOPj4wEgMDBQ0mpawG6L0Tdoi42NBYA5c+bwqoc0cjolhbWcdXNz++mnn9rwDllZWWq1Wn8riLOzs0ql+vPPP1v4Kz/++GO3bt0AwNvb+/fff29r7W0lCLhiBU6dihMnYmoqJiTgqlWIiPn5GBBg+NsYGsKoqCgAWM7pMcra2lobGxsrKyv9bEej0QDASy+9xKUe0qzCwsIZM2YYO0tkLduVSqW1tTWLn6+vr1arLS8vN+Sv5+TkjB07FgBsbW0jIyNN+wmMFB+va3x66hSOHy95CF988UUA+OCDD4ytUxRZWVns007/FXaKuHHjRi71kPths0QWpylTphQUFLTwYtYJWn8ftq2trVKpTEpKMnZQPnsKVVTg+vWo1er+2KcP/vgjenvj9On46KOShHD27NkAwGuLiJ9++gkAHn30Uf1Xpk6dCgAJCQlc6iEtO3DgALunwsvL67fffmv6gpSUlMWLF+tvxx84cKBGo7l586Ypg5ppT6GyMtRqcdQofO45XLcOt2zRfd3LS/IjIevem5aWZlTBYvnkk08A4H/+53/0X2Efny308CZ85ebmjh8/vtEssbS0tGEnaNYOc/fu3WJd4pZ2T6ETJ3D5cuzShV0KxiFDcO9eXLQIETE9HSdNkjaEgiCwz5hG7XfNtjzw8ssvA8B7773H/lhTU2Ntbd3wFLH96sBd41jvZpa3xx9/fMmSJfqW7Z6enuvWrbt69arog4q/p1BVFcbGYmCgLnsA6OeHMTFYU6O7MDN9Ok6Zgn/+KW0Ir127xq56Nfr6ypUrzdN9cN68eQDw7bffsj9mZmYCgI+Pj9TjSqe8HLVaHD0a33yTdykS2759u4ODA+s/pFAoWCdoSVebRdtTKCsL1Wp0d9dlz9kZVSo8dUrUYhENDCHrH+Hn5/fXCrNsbW0BYOzYsc3uQiGiUaNGAcDx48fZHxMTE9l5v6SDSuTUKVy5Ep2ddf+yo0bxLkh6b731FlvUzczMNNugbd5TqLa2NmHXLpw+Ha2sdP9I/v742Wco2fUeg0J44cKF+fPnOzo66tfKmdTUVLZ8171798TERGkqRERkn6P6BdnNmzcDwDPPPCPdiKKrrtZNahSKe5MarRb1XZQTErBHD6yowNpao+Yy7cCrr74KAO+++66Zxy0oKGAX8NieQq2ePTXcYLPooYfQ1haVSjT+aq2xDL0ws2jRInYm/dZbbzVc/2nb0pBRbt68CQCurq76r7BTxPfff1/0saSQnV3dcFLj4oKrVuGZM41flpCAvr64aVMHDOH8+fMBgMv+BYbsKSQIQnJy8vz58xvu2/dzdDQWF5unSEND2HD959FHH71+/Xqz35o5c6YUNxCVl5dfuHBB/8e5c+cCwHfffSf6QCLSr0GPGLGUxW/YMIyMxGaXoAUBExLw7bdxyhSsqupoIWT9oDnc0XLXrl27mt1TqM379onLuDb4P//8s4eHBwD06dPn6NGjDb/VcGno2LFjohbZ2MiRIxueIspNfn7+u+++q3/gzc7OLjy8pLnVMqyvx6QkVCpxzRpMSMB33sGoKNy2raOFkJ1NNLtzs9k02lOo2X37pL60cT9G78qUl5fH9idsundnbm7uuHHjzHADkZOTEwAUFRVJN0TbGL4Gff06vv8+9u2rm6N6eGB8PL7zDt65g1On4mOPmb92qbCzCWdnZ96F4O3bt5988kl26qRfqJw+fXpcXFyzG2yaTVt26m24/hMWFnb79m39txreQPTUU09JcQNRQUFBo1NE7iorKzds2MCWidnH07x58/bt29fsrCYlBVUqtLfXxW/AANRo8MYN3ZEQEd9+GydPNvePIJ1jx44BwEMPPcS7EJ0XX3zRycnJwcFBrH37TNf2Pet/+OEHFxcXABg6dOiZv15n+Oqrr9iBftiwYRkZGSYXeU9KSsrs2bOdnZ27d+/e9vUfsdXU1LCr4R4eHmq1+vLly01fU1qKWi2OHKnLnpUVBgZibCxy/Qg2h6+//hoAQkJCeBei89lnn7FbTHkXck/bQ4iI586dYye1Tk5OjS6TnD17dvjw4WwesmPHDtOKxOLi4v/85z9Dhw7Vn2Wxefzhw4dNfGexfPHFFzt37mx2N+ITJ06rVOjoqItfr1745puYm2v+Gvl45513AECtVvMuROe1114DgLfffpt3IfeYFEJELC8vDw0NZdlQqVQN74QoKytTKpUm3kDU7Al0Wloae8bXwPUfLqqqqtjDqQAwalRxw7udmjp7FtVq7JAPZv3jH/8AAK3+aQPeFi5cCADbtm3jXcg9poaQ0e/d+be//a3hDYGCIPzrX/+ysbEBgGnTphmelkYb3ze93amuri4iIoI9WD179uxicy3pGOLChQtr1qxhD5sCQNeuXdev33vuXDOvrKrCbdvwkUd0B0kHh+YXMNq1gIAAAGjDA0oS8ff3B4Bff/2VdyH3iBNCRDx+/Di71cDd3b3R//HDhw/36tXLwGf/Lly4YPjG97t372Y9SAYNGtTyI9hmwBYGg4ODG/VlaHjhSs9ctyXy16dPHwAwseeFiNiHY8OFbu5ECyEi3rx5c9q0aWzRMyIiouHdM60uJ9TV1e3evbtpZ5FWr69mZmayO0vt7Oy2bt0qwo9hvIa3O7FKlEpls/cr6hcGra118fP1Ra0Wm8tpR1BZWWllZWVjY9Ps2bL5FRcXA4Cjo6OsTmHEDCH+dZY4a9YsQ5byrl69qtFovLy89L/BixcvNurBxcrKymeeeYb99cWLF1fob8eUmCAISUlJq1evZvNtdqF4w4YNzc6NWVDHjJnP4meu2xI5y8jIAIABAwbwLkSHNQ6WW38wkUPI7N27l80SBw4cePLkyWZfo7+rS/8bPGTIEI1G0+a73mJiYtheWb6+vlJPftjtTg888AAAdO/e3cHB4X63OwmCsH//fqVSqV/Bf+KJy//+N8rvRgNJsC20pk2bxrsQHXn2B5MkhIh45cqVMWPGsCPbp59+2vBbxcXFWq1Wv7TduXNn1lnE9BlCWloa6wXcvXt3iTpfHDt27O9//7t+Zzxvb+9333232ROMRk+RW1tbi/sUebuwYcMGAFixYgXvQnT++c9/AsCaNWt4F/IXUoUQESsrK1k7Jv0ska03NHy8OiIiouVeQMYqKSlht3eL+1RHZWVlTEyMr68vq5z1ZYiNjW32VKfZZZUrV66IUkn7snr1agD46KOPeBeis2zZMgDYtGkT70L+QsIQMp999hlbW9df8LSysgoODo6Pj5eocbJRDb9adf78ebVarV9vcHV1DQ8Pv3jxYgt/hd0obJ6nyGVu1qxZALBz507ehehMmTIF5NcfTPIQIuKJEyeGDBkyb968hp3MpdZqw6+W3a8PtCFXfWJiYtasWWPOp8hli901db/rAubH+oM1fCxODswRQkSsra0tKioyQzeahppt+NUqdrWWrW4BgJOTk0qlks+vUTsiCAI79SgtLeVdC+Ld/mDW1tZm/j1slZlCyEvDBz6efPLJZtfNmaZXa4cOHarRaGT4wFR7kZeXx27e4F2IzoULF0CW/cE6eAiZ7du3s8skQ4cObXrzTVFRUWRkJGuW0/BqLZdSO5LDhw8DwLhx43gXoiPb/mBGbJfdfoWFhfn6+oaEhKSnp48bN27r1q3szvLU1NTo6Oht27ZVVlYCwIABA5YtW7Z06VL9niTEFHLbQJLvLrctsIgQAsDQoUN/++23pUuXfv/99wsXLty6devVq1fPnDkDANbW1k888cSzzz47bdo0dq8PEYXctlKW7Wb3FvQ75+TktGPHDq1Wa2Njc+bMmTNnzrBncLOysuLi4oKCgiiB4pLbL73cjsx6Fvdrp1KpJk6cePXq1dWrV+fk5DTcFYiIS27TP7kdmfUsZTraELuVPiwsTH8/JxHXzZs3P//88/T0dACorq7mXY7OpUuXQJZHQgUi8q7B3Lp27VpSUlJYWKi/iYeI5ZdfftmyZcv333+vz56Dg8Mnn3yyZMkSvoUVFBR4eHi4urqyj2BZsbjpaGFhYUlJCWsVxbuWjqO8vDw6Onr06NETJ07cvn17bW1tYGDg9u3bly1bVlFR8fTTTy9ZsoRdguaFzUUHDhzIsYb74r1GYm6///47yKkDX3t39uxZtVrNnlwDAHZn4qVLl/QviImJYffN+Pr6tnzPraS2bdsGAAsXLuRVQAss7pxQblcL2qvq6h9/+OG9qKijR4+yL0yePPnZZ5+dO3cu6zakt2TJkpEjR4aEhKSlpT388MNfffUV27zEzOR2qbYhi5uOyvY6dbtx8SKsXQteXs5a7dGjR52dnVUq1alTpw4ePLhw4cJGCWRGjx6dlpY2f/78oqKixx9/fO3atfX19WavWsb/7rwPxeYmtw587UZdHcbFYVCQfte+qsDATz/9tIXbcRthe3eyW3Mb7SkktYKCgkGDBoH8HmJiLC6EcuvA1w7k56NGc2/fDNPa4+zfv79Hjx4A4O3tXSz9lj7sAWvWCcHJyWnQoEEyaX3fkMWFUG4d+GQtJQUXL8ZOnXTxGzQINRpsbn8bo+Tl5U2YMCF80iS0scG/7ikklpKSkqioKNYECO72FmF3ZTg7O8vnIWPGskJYVVUlqw588iIIuGIFTp2KEyfigQM4dKguezY2OH8+JiejeN1xampqql98Uff+YWEitnzMyMgIDw/v0qULi1/D3UHKysoWLFgAprWEl4JlhbDi3LkNAQERc+fyLkSW4uMxLAwR8dQpHD8e/fywVy9Uq1G67jg//IAuLgiAQ4c2s3exMRpuOsD4+fnFxMQ0TZq+W/zEiROvXbtmyqBisawQ4t69CICy6cAnL+vXo/56VZ8+ePkymmG+cO4cPvggAqCTE377bVve4cIFXLNmV1AQy17Xrl1feOGFc83uOnDXkSNHevfuDQDu7u7JycltrFw8FhbCDRsQAJ99lncdsrRuHW7ZovtvLy/zjVtejqGhuqmpSoUG9p5gzcyDg1GhQIAaL6/xY8d+/vnnBrZ+vnHjhn5PoYiICL59KC0shKtXIwDKpgOfvMTH46JFiIjp6ThpkrlH12qxc2cEwL/9DRvsKdQMdrXW21uXWzs7VCqxuU0HWiafPYUsLISzZiEAyuzimFwIAi5ditOn45QpyGV3nePH0ccHAdDdHffta+YFR46gUnnvau3gwajRYGGhKWPu2bOH+55CFhbC4cMRAKl12v24u6OTE964wa2AggKcOhUBMCLi3qXa33/H//1fHDRIl71OnXDBAjxwQKyrtQ33FPrss89EeU+jWFIIBQEdHBAA5dGBT3bKyhAA7e1FXIpoi7o63LoV9+79y6XaIUMQAHv3RrUac3JEH5PXnkKMJYUwL0831SHNOnECAfCBB3jXgYhNLtX+8APu2oV1dZKOac49hRqypBu4s7MBAOj5ifu5eBFANv9/EEH/uLlCAXPmwOzZYG0t6ZhLliz59ddf+/fvzx74YC0SzcCSQiirXzIZYh9SMnnOwN8fDh0CAMjIgLstYc3goYceSktLmzt37q1bt2bOnLl27VpBEKQe1JJCKKtfMhmS1f+fGTPA1RWCguD55yEqypwju7i47Ny5U6PRWFlZffDBB4GBgTdu3JB0REsKITsSyuSXTIZkNVNQKGDzZkhMhP37YeRIsw+uUKvVycnJPXv2PHjwoL+//7Fjx6QbzpJCuH49xMXB1Km865Ar+pD6q8mTJ6ekpIwfPz43N3fy5Mlsw1MpWEa3NURYtQouXICaGoiMhLt7fZJ76urAwQHq6+HOHbCz412NjNTU1Lz00kubNm1SKBS//fbb2LFjRR/CMo6ECQlQWgrJybBpEzz3HO9qZCknB2prwdOTEthI586dN27cuG7dOnt7+82bN0sxhGWEMDUVAgIAAEaMgNxcsISDv7FkdUIoPwMHDqyoqJCoa6NlhLDRotPdzXeJ3sX8/OPDh5cOG8a7EJmStEmfZYSw0aLTe+/B2rVg9oZfchadnj4mI2OjpyfvQmRK0o6JltF3dMYM2LsXgoKgthZefx1mzYKaGkhLg+3bgbYiBABqx9oaCqHJ2KKT3r59EBoKSUng6wuxsTB+PL/K5ELOvXHlgKajYgsIgJQUmDAB8vJg0iT44AOzjo4IK1dCYCBMmgRpaWYd+v5ku22YHFRVVeXn53fq1MnLy0uK97fIEAKApyf8/DOo1VBXB2vXQlgY3L5tpqHlt15SWFhYWlpKm+Tcz6VLlwRB8PHxsZbmDnJLDSEA2NiARgM//AAuLvDNN+DvD+np0o5YWAgffQSHD8ttvYQOgy2T+oTZgkPIzJkDf/wBDz4I58/DuHHw3XeSjJKaCsuXg48PvPoqpKb+Zb3k3Dk4fFiSQQ1GV2VaJvUJs8WHEAAGD4bffoPQULh9G0JDj77/fm1trTjvXF4OW7bAqFHg7w/R0VBVBcHBEBh4b73E2xtCQmDqVPjXvzgeEumqTMsohGbRpQt88w18/HHexIkT33hjypQp165dM+kNz52DtWvBxwdWrIBTp6BnT1CrISsL9uyBV1+995DOxo2gVIIgwCuvwJw5UFIi0s9jHAphy+qLi7s4Okr4/8dsz/C3C8ePH2c7Fri7u+9rtuFXy6qrMTYWAwNZM0wEQD8/1GqxsrKlv7VnD3btqtvsgUfDL9okpxXDhyNAnWT9wSiEjd28eXP69OkAYG1tHRERUV9fb8jfysvLi4iIWDB5si57zs6oUhmRqCtX8OGHdV00zdvwq76+vlevXgDAcRtdWRMEtLeXtD8YhbAZgiCwB6sBIDg4uKio6H6vrKur27Vr14wZM9iLFQpF5owZGB3dlh1OKitx2TJdhhcvRukbfhUXF0dGRvbv39/BwSEkJIQ2yWke6w/Wo4d0I1AI7ys+Pr5bt24A4OPj88cffzT67vXr1zUaDZu7AoCtra1SqRRhRhcTo+vL6OuLkjX8OnLkSFhYmK2tLSu+f//+Z8+elWisdu/QIQTAceOkG4FC2JKcnBz2EKednV10dDT7YkpKyuLFizt16sR+gwcOHKjRaG6avGvfPamp2L8/AmD37pU//STa2yKWlZVptVrW6BYArKysAgMDY2Nj6yRuJdi+/d//IQA++aR0I1AIW1FZWbls2TL2Wztp0qRhdx/2sbGxmTdvXlJSkiR7iZSW4rx5gqtrgLe3Wq02PSSNdu3r2bOnWq2+dOmSGLV2dG++iQD41lvSjUAhNMiXX35pZ2fHdvnt1auXWq2+It2ufYwgxEdGsvukpk2b1rYjreG79pH7CgtDAPziC+lGoBAaatasWQCwatUqc17AOHjwoIeHBwD06dPn6NGjhv/FrKwstVrtfvdBLWdnZ5VKderUKelK7bDGjkUAPHxYuhEohIaaMGECABw8eNDM4+bl5T3yyCNsAqxpbYf3+vr6pKQkpVKpv9XYz89Pq9XeFm8/aovj7o4ArezWZhoKoaHYESlHgt1IWlVbW6tWq1mowsLCmk1Ufn6+RqPx8fER+WqthTPLJjkUQoPcuXNHoVDY2toauHYvhf/+978uLi4AMHTo0DMNdng/cuSIUqnUX60dNGiQRqMpNG3XPqJjlk1yLOPJepOxu0n69u3LFuW5mDt37vDhw0NCQs6cOTN+/PiPP/64pqYmKirqzJkzAGBtbR0cHLx69eqpU6cqqJOVWKytYfZsuDu/kIqkEe8w4uLiAGDmzJm8C8GysrIFCxYAgIODA/sX9PLyWr9+/bVr13iXRtqIjoQGkc8Td05OTt99993t27cTExMHDx784YcfBgcHS/TEt6Vr1Lj9xg3Yuxc2boTr1yE0FH7+Waxx6FEmg8jtYZ8ePXoIgvDyyy8/8cQTlECpmKsRCR0JDcKOhPIJodw+FDqmpo3b9+yBrCyoqRF3HDoSGkRuXVjkMz3uyI2FrW8AAAipSURBVJo2bp81CxIT4euvxR2HQtg6QRCuXLmiUCj6mXHL2BZI3YGP6Jhrt2CajrYuNze3urq6d+/e+guSfGVnZwuC0L9/fzoblFbDxu1RUWBix5P7oxC2Tm4nYHKbG3dYjRq3jxwJQUEAAB4eIl4aBZqOGkJuJ2Byu0pETEQhbB0dCYmkKIStk9uRUG4fCsREFMLWye2XXm4fCsRECpTBXggy161bt+Li4oKCgh49evCuBRDR0dGxsrKyrKzMycmJdzlEBHQkbEVJSUlxcXGXLl3kkEAAuHbtWmVlZY8ePSiBHQaFsBVZWVlAc1EiJQphK+R2KZLWJzoeCmEr5HbkkduHAjEdhbAVcrs0Krd6iOkohK2Q2/RPbkdmYjoKYSvkNv2jI2HHQ+uELampqWFPTlRUVHTu3Jl3OVBeXu7s7Gxvb8+6v/Euh4iDjoTNEwQhOTk5JCTEycnJ0dExMzOTd0UADebGlMCOhELY2M2bNz/44INBgwY99thje/bsuXPnTllZ2dixY7/55hvepcnuBJWIgkJ4T2pq6vLly318fNauXZudne3p6RkREZGdnb106dI7d+6EhYUtX768Ruz+IkaR2wkqEQfnlosyYMiufTExMfb29gDg5+fHcUexZ599FgA+/vhjXgUQKVh2CE+eXPPcc/qbMD08PF5//fX77XmWmprKesy4ubklJiaauVLmscceA4D4+HguoxOJWGQIq6owNhYDAxFg84QJYPCufYWFhUFBQQCgUCjUarX596VgE1Ha2rqDsbAQZmXhK6+gmxsCIAC6ut54662MjAzD30AQBI1Gw3akmDlz5q1bt6QrtqH6+vrdu3dbW1srFIri4mLzDErMwzJCWF+PSUmoVKK1tS5+fn6o1WJbd+07cOAAe7LJy8vr2LFj4hbbSEFBgUajYTPhzp07KxSK0aNHZ2VlSTooMaeOHsL8fNRo0MdHlz1bW1QqUYxd+3JycsaNGwcAtra2kZGRpr9hU4cOHVq0aJH+JoEBAwa8+OKLbH3C2dl5586dUgxKzK/9hzAhAVetQkTMz8eAABQEXLECp07FiRMxOho7ddLFb8gQ/Pe/sahIxJGrqqrCw8NZQp566qk7d+6I8ralpaVarXbkyJHNXq0tLS2dP3++/ry04SVc0k51uBDGx2NYGCLiqVM4diz27ImBgbh7t3Q7rX711VeOjo4AMGrUqMzMTFPeKiMjIzw8vEuXLvqrtWq1uumKiCAIkZGRbFfQgICA/Px8UwYl3HWIEHp74/Tp+OijGBCA69ejVqv7Vp8+KNLRqWVnz54dPnw4myXu2LHD2L9eVVUVGxsbGBioX7w15GrtoUOHevXqBQCenp6//vqrCeUTzjpECBseCdetwy1bdN/y8jJbFWVlZUqlks0Sw8PDW13tYDIzM9VqtZubG8uei4uLSqU6ffq0gYNevXp1woQJAGBjY6PRaEwon/DU4UIYH4+LFiEipqfjpEnmLKThLHHSpEktbJ1bX1+flJQUHBysvw/bz89Pq9XeNv5qbU1NzQsvvMDeJDQ0tKa83LQfgnDQ4ULILsxMn45TpuCff5q/nMOHD7NZYo8ePfbv39/ou/n5+RqNxufuHuh2dnZKpfKXX34xcdC4uDgXF5fNEybgkCFo8IGUyET7D6H83LhxY+rUqfpZoiAIiHjkyBGlUsmOkwAwePBgjUZTWFgo1qDnz56t9/VFAOzSBb/9Vqy3JWZAIZREbW3tyy+/zGab/v7+gwYNYtnr1KnTggULDhw4IEhxtbaiAv/xD92SjEqF1dXiD0EkQCGU0K5du7p06eLp6QkAvXv3VqvVOTk5ko+q1WLnzgiA/v54+bLkwxGTUQilFRoaCgDLly8366p6Sgr27YsA6OaG+/aZb1zSJvRQr7QKCwsB4IknnjDrrrp+fnD8OEyfDoWFMGMGvP02CIL5RidGohBKi1uHQjc3SEgAjQYQYd06mD0biovNXQMxDHVbk1BdXZ29vb0gCBUVFba2tnyKiI+HJUugqAjeeQfeeINPDaRFdCSU0OXLl+vq6vr06cMtgQDw+OOQkgIrVsCrr8LKlRAYCJMmQVoaJCbCc88BAFy/DpMncyuPUAglJZe+TP36webNkJwMpaWQnAybNuniR+TBhncBHZm8WtanpkJAAADAiBGQmwuIsGcPZGUB1/5xBOhIKCl5taxHBP35v0IBCgXMmgWJifD111zLIhRCKckrhP7+cOgQAEBGBvTrx7sacg9NRyUkr+nojBmwdy8EBUFtLURFwbVrvAsiOrREISEXF5eysrJbt25169aNdy1EvuhIKBXh5s2TI0ZcdnamBJKW0TmhVKwuXuz366+P3rjBuxAidxRCyVy8CAAgk6syRMYohJLJzgYAkMlVGSJjFELJsBDSkZC0hkIoGTYdpSMhaQ2FUDJ0JCSGoXVCaVRVgaMjWFtDZSWY83Fe0g7RkVAa2dkgCNC3LyWQtIpCKA2aixKDUQilQVdliMEohNKgIyExGF2YkUZhIZw7B15ecLfjPSH3Q0dCsSHCypUQGgqvvQa3blErF9IqCqHYEhKolQsxCj3KJDZq5UKMREdCsVErF2IkCqHYqJULMRJNR8VGrVyIkWiJghDOaDpKCGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZ/8PyXhnIlEBESwAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -310,7 +332,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAH0ElEQVR4nO3d2ZKjRhRFUeHw//8y\nfqBDrtZAoYE898Ja4RdP1RTKrUwQoGme5wuQ8096A+DsRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEULYESKcpim9CfC+I0QIrYkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEtY9wmqZ5ntNbAe9rHyF0J0II+ze9ATz388J0S+7jEmFV0/RXeDd/y4FYjpZ0\nn9w8X9yxdVAihDARQpgIIUyEECbCku5Pwzg7elw+oqjqpkMFbrA88qvdZYwiLKzbYIr4+ay9Jb92\nlxOLsBjLzm2u7d33Ns9zrw5FSBv3k94zvToUYRNnnSG3h3ejUYcirOSspd1bWW1u16VDEXZwjjjf\nnvRWLB1+8QfuQYSEfWXSW1H/lGnvCCvvWVbsMemtz3iVl6a9I6SR/cLb+DPLdijCMp4d+PU/IPzu\nUdknMdfsUISM8OG4/+IsWrBDEbKvT0b8TudsqnUowtr6r0Vftceh471SHYqwhvPF9tOY8G7U6VCE\nZETCu1GkQxGyo4dDvNQlLBU6dGd9CY8fZnjQNeo8z0UKXFwvbUvpGuE0TcsbWHb3fUX8nZjsQGq5\nHP05altcofue6XI52q9UWHAgNYvw4W6qf4XuObV7RVIDqdNydNk761foDt6kzz17yduN4MMYP5B6\nRHg9Alz/z5p2SDWDB1KDCNcnwBvL7pNiXPeZfGSHpSPcOAHeWIrVIR8aNooKR7g6Af66d1p06ICw\nuDGjqGSE0/Tr59Rb9k6LDiluwCiq9xHF5stEtnywc+BPESszk7+k0ky4YQK8seXwr+whopFazcNB\nMuBlKhPhkt9bv+3BlqbiPJsCEb4+Ad7r2OG1NJ+pVBB870sfE37vRoFeh4gH+C6hZw7ziwyTi3AZ\nhd9+dsjlt0GQHfFbvkvICK5jzDgJRbjnnXJbbtMcfCvnxgcWVbjBlPFCEe48zrYvTfcb8e89vkGH\nEdl9nj4m3M3GpenXDxE/f0pf6w77bnnQbhHW+L71Xwf0tw4Rv/uEzNYdHsawl2CfCG8O+aLPStnv\nEHHX54Xp8Dx2eJkfJpd+ZtGWZefGQb/3V3nd/FmNOuy1tVfxy+gPe0x44/NDxJHt3WxSx5Hd3cjd\nfpYIF68eIpZ5QO0hH33IH+eK8PLKIeKlwIU1i3mOL+fZUYFrR4fb+AiMIgUulg4ra7psrrDZO0R4\nP17qvY2v399U4YW5V7/Dwxg8APaZCZfxcv2r3oBeVLuv4lftOuy1e1N2OyasGt6NgjPeul7Hh8XP\n7hbZtjMeE64r8sKsKDgfruy0dsuN8UTYUqkO291OvW78u/CojyiaLKHqT4NX2XXpqzclF1+XZp3u\nc8IjGd/hlpuSn/2/1TqsszGjIux1PqGPMft1mi7LF5l+eB18tQ6LMBP+r+n42GmT7+5Fe+FhsH07\njGybCPnLtb23h2L3DscbeHa01Bk97lwvrJjffP7r/349HRo/X1rqXcBHFH+UelUiPm/v759WvcN7\nqTEgwkO5H9XXf7Lyr3bSscMIEV4ux5oGS41qHW4xNkKHhfurto8LdljtPddMyO4KdngvWKYIy70v\nfu7ZZPjz9rLBY75Uh9Ve7uERVlstHdTD3Xz9+OG7J0I3b1KhDksJzIRn3M1cLhcdPnH25ejx1qJX\nNdccNTvMDoOzR3hsNd9eqnUYn3tjX9NXYf4pshnn9OvOL/idWTtxATcZkeu8I49R/5UIiRnWYc32\nrgpF+GxpvtOOsxatYOMXE7yh1IJzXWwgbm/gpePm7b+OCOv44mtRfNJ7qNBM+MxLe3PwdMpXfL7s\n7NjeVYMIX7J9du34ah3YGx02WnCuO1qE9LWxw9aT3kNnjNA0WNZKh8dr7yoWoaf98NDPgXGYBee6\nM86EFHe9bO3A4f2UnIs+uWbvk4+PTvLS0kVyJvzKKWnozrQAYW5lgjARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEEPYfKN+F8IMkKH0AAAAASUVO\nRK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVzUdf4H8PfMyDAMl4rgHQqaV+kSVkqSokPTJmgXWZnHZou1ltVj19itTNPdws3KLgtjS80urFSwzREQ8SS1zLwibzxRQUSOGef4/P74uCM/hxnm+M58ZvD1fPSHzHfmO29iXvM9PpeMMUYAII5cdAEA1zuEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAsDaiC3BKbm5udXX1lClToqKiRNcCIDEZY0x0DS3r27dveXn5/v37+/btK7oWAIkFxulofX09EYWGhoouBEB6CCGAYAghgGABcE1oMpmCgoIUCoXJZBJdC4D0AuBIiMMgtG4IIYBgCCGAYAghgGAIIYBgARPCsLAw0YUAeEXAhBBHQmitAiCEdXV1dH2GkDGaM4e6dyeVim65hYqKRBcEXhEAIbx+j4Svv06vvUazZ9PWrZSQQKNH0549omsC6SGE/spkorfeohkzaMoUSkig3Fzq2ZMWLBBdFkgPIfRX5eVUVUWjRl35USajUaNoyxahNYFXIIT+qrKSiKhTp6uPdO585UFoXRBCfxUcTER0+fLVRwwGkslElQPegxD6q65diYhOn776yJkz1KWLqHLAexBCf9W9O0VH05o1V35kjAoL6c47hdYEXhEAEz1ddyE0GikoiBQK+tvfaOZM6t+fBg+mhQvp7Fl69lnRxYH0EEI/YzRS5840YADpdDRjBhkM9OqrdO4cDRxIOh317i26PpAeQuhntm+nqio6d45UKiKimTNp5kzRNbVCJ06c0Ol0w4cPj4yMjI6OFlsMQuhn1q0jIho5splNr79OZWU0YwYNG+bjoloHvV6/adOmoqKioqKin3/+mTGWkJBQX1+/bt26rvw2mCAIoZ8pKSEiSklpZtOqVfTjj/TUUz6uKNDt27dPp9PpdLoNGzY0NjbyB8PCwpKTk8vLyw8fPpySkrJu3bpu3bqJqjAAJnrq0KFDVVXVuXPnOnToILoWL9PrqX17MhiospKu+WUvXaL27Ukmo+pqwqiultTV1ZWUlKxevVqn0x07dsz6eP/+/dPT0zUaTXJycnBwcE1NjVar3bZtW2xs7Lp16+Li4sSUy/yeSqUiooaGBtGFeF9xMSNiCQnNbMrPZ0Rs2DCf1xQwzGbzjh07srOzNRpNUFCQ9RMeHR2dkZGRk5Nz4sQJ21fV1NQMGTKEiG644YaDBw/6vmzGmL+fjprNZr1eL5fLeRRbOX4u2uwFoYNN17fKysoNGzYUFBR8//331dXV/EGFQpGYmJiWlpaenp6QkCCX220Pj4yMLCwsTE9PX79+PT8v7dWrl69q/x8h0XdebW0tEYWFhYkuxCeGDmVEbPXqZjYNGsSIWEmJr0vyS42NjYWFhVlZWYmJibImXfni4uIyMzPz8vJqampc2mFdXV1KSgoRderUae/evV4q2x5/vyY8c+ZM586dO3bseObMGdG1eNmlSxQVRYxRVRVFRPy/TVVVFBNDSiVduEDXwxmBHYcPH+b3NtesWXPp0iX+oFqtTkpK0mg06enp/fv3d3vnDQ0NY8aMKS4u7tixY1FR0U033SRR1S3z99PR6+jW6IYNZDRSUtK1CSSidevIYqFhw67DBDp5i8XzN1Kr1fn5+ffee29hYeGoUaOKiopuvvlmz3frDITQb7R4Qdhsu0VrZLFYdu7cyQ96paWlRqORPx4dHT1ixAiNRjN69GhvtOyp1eqCgoKMjIyCggKew4EDB0r+Ls3w8emvq7Zs2UJEQ4YMEV2I9yUkMCJWXNzMphtvZESsrMznNfnUmTNn8vLyJkyY0L59e+vnk99imTVr1o4dO8xmsyf7b2xs1Ol0R48edfw0g8EwZswYImrXrt22bds8eUcn+XsICwsLiWjUqFGiC/GyqiomlzOVitm2xJw8yYhYeDgzGkVU5l2S32KxdejQoZycnIyMjPDwcCJ67bXXWnyJwWC49957iaht27Zl3v/uw+mofygpIYuFkpIoJOTaTXyStREjqI2//7FcVVVVNX/+/OzsbP5jWFjYyJEjtVrtXXfd5WE7QU1NTVFR0dq1a3U6XUVFBX9QJpMlJCTExMS0+HKlUpmXl/fwww9/9913Wq12zZo1vC3RS/z973odhZDsXPW13gvCN998c/78+d26dXvssce0Wm1SUpJSqXR7b/auJDt06JCSkuLqlWRQUFBeXt7kyZOXLVum0WhWr149YsQIt2tzDCH0Dw76bbfeZvri4mKTyZSbm6vVat3eydmzZ0tLS4uKivLz863tWPxKUqPRpKWlJSUlOWisd0ChUCxevFguly9dujQtLa2goCDFS1+F3j7f9dDbb79NRM8++6zoQrzp1Ckmk7GwMHb58rWbDhxgRCwqinl2T8IP1dTUKBQKpVJZV1fn6muNRuPGjRu9eiVpZTKZJk2aRERqtbqoqEiq3TaFI6F45tJSBWOUnExNejxeYT1CuvVd7s9KS0vNZnNSUpLzf1zHjfUajSYxMVHyOhUKxaeffqpWqz/88MMxY8asXLkyNTVV2rdACMWbWlRU0aPHnLFjm7n2b70XhCUlJUQ0sqXT7Pr6+q1btxYUFKxatappY31cXBzvGipVY70DMpnsgw8+kMvlH3zwQXp6+vLly9PT06V8A28cXiU0ffp0IlqwYIHoQryoZ8+eRPTTTz9du8FiYZ06MSL2228i6vIu3g6+fv36ZrdaLJa5c+fecccdbZrcE46JiRk/fvzSpUvPnDnj42p5SfzTqFQqV65cKeGe/T2EU6ZMIaLc3FzRhXjL0aNHiah9+/a2LdF7du/+04ABxWPGCCnMq86fPy+Xy9VqtV6vt/ecQYMG0f9usWRlZW3cuNHDxnrPWSyW5557jufwu+++k2q3fh3CgwcPxsXFtW/f/tFHH7VYLKLL8Yrc3Fwiuv/++203vfPOO0Q0YcIE31flbV9//TURpaamOnjOihUrVq5cWVtb67OqnPTiiy8SUVBQ0DfffCPJDv00hCaTad68eXwMoUKhIKKxY8devHhRdF3Se/TRR4no/ffft93EO2188sknvq/K25588klyrvOKf5o5cyb/ZH722Wee780fQ7h3797bbruNXwZkZGTk5+fzXg69e/fes2eP6Ook1qVLFyLat2/fNY+bTKZ27doR0ZEjR0TU5V033ngjEfmgR5j3zJo1i+dwyZIlHu7Kv0JoNBqzs7P5za4uXbrk5+fzxysqKgYPHkxE4eHhUp0D+IO9e/cSUceOHW1Ptrdv305E8fHxQgrzqpMnT/I/pTHAe8PyDne8DcOT/fhRCPfs2XPrrbfyO8KZmZnXXAw0NjZOnjyZb83KyjKZTKLqlNB7771HROPHj7fdNG/ePCL685//7PuqvG3JkiVElJ6eLroQCfA/E2/DcHsnfhHCpgfAHj16FBYW2ntmTk4On8Pn7rvvrq6u9mWR3nD//ffbu/fLe3J9+eWXvq/K2/iX6VtvvSW6EGnMnz+f5/C9995zbw/iQ7h7925+qtnsAdBWaWlpx44d+anar7/+6psivcFsNvNJHA8fPnzNJoPBEBoaKpPJTp8+LaQ2r4qNjSWiX375RXQhklm4cKFMJpPJZO+8844bLxcZQn4A5B3ne/bsWdzseNbmHD9+/PbbbyeikJAQzy+LRfnpp5+IKDY21nbThg0biOimm27yeVFed+DAASKKiooS3ugnrY8++kgul8tksrffftvV1woL4a5du2655RbrAfDSpUsuvVyv1/N2fCLKzMy8bNv12e+98cYbRDRlyhTbTbNnzyai6dOn+74qb8vJyeE3vUUXIr1Fixbx4Rr//Oc/XXqhgBBevnzZegCMi4tbt26d27vKycnh+xk+fHhlZaWERfrAPffcQ0TLli2z3TR8+HAiWrFihe+r8rZx48YR0cKFC0UX4hW5ubk8h3PmzHH+Vb4OoWX7du2QIUQkl8uff/75+vr6Fl/i+Lxl06ZNnTt3JqLu3bv7ZkYQSRiNxoiICCKynRa6vr4+ODhYoVC0gjtP17BYLPx6vry8XHQt3vLFF1/w/q5ZWVlOvsSHIbx8mWVns6Cg8uTk+Ph4ez13r6HX65OSkrKzsx085+TJk0OHDiUilUr1n//8R6JyvWvz5s1E1K9fP9tNa9euJaLBgwf7vipv+/XXX3kLsOhCvOuzzz6Ty+Xp6elONqT5KoQ//sgGDGBETKFgf/tbo9MLS+Tl5fELv8cff7yxsdHe04xGY1ZWVgBdIs6dO5eIpk2bZrvpH//4BxG98MILvq/K2xYsWEBEEydOFF2I1/E1npw8NfN+CBsbWVYWUygYEevVi5WWurqDr776io8nTEhIcNyHa+nSpSEhIUQ0bNgwP7+5z8fRNdv7h9/4/eGHH3xflbeNHTuWiDzsX+L/+NRSkZGR/nEk3LqV9evHiFibNmz6dObEFWCzdu3aFR8fT0QdOnRwPMXATz/9xJuhunbtunXrVvfeztt4M6BcLj9//vw1m2pra9u0aRMUFOTq7WL/Z+0N2+LMn4Hu008/5UMOnHy+10LY9AA4YAD78UcP93fx4kX+PdqmTRvHl4jnzp3jx5ng4OBFixZ5+L5ecuHCheLi4lOnTn366afPPPPMjh07+Ml2fn4+P5KLLlB627ZtI6JevXqJLkQau3btsjeTzcSJE10aie6dEG7Zwvr2vXIAzMpi9gduusRisWRnZ/NbwI888oiDO6vXXCIaDAZJCpBEs5MUhYSEpKam1tfXP//880T0yiuviC5Tery7c2ZmpuhCpNGnTx+FQrFr1y7bTfyC0PnuXFKHsKHh6gHwppuYF9oM8vPzIyMjiWjQoEGHDh1y8MzPP/9crVYTUWJi4rFjxySvxCXl5eXvvvvu6NGjm86XExoaOnr06JdffrlTp05ElJyc/Ntvvy1evNj3q3P5QGvqDWsdCGJ7C7C8vJyIYmJinB+GLmkIN29mffpIfgC0VV5ezhfBat++vU6nc/DMnTt38hlcoqOjPekV4J66urrCwsLp06f36NGDmoiLi5s+fXphYaF1cofy8nI+L+2wYcP8cCy551pZb9ilS5cSUVpamu2mDz/8kIjGjRvn/N4kCiE/AMrljIjdfDPbvl2a3dpXW1vLhyAoFIpZs2Y5+NY5f/48n6OuxYtJSTRdtLnpfNJRUVF80ebjx483+8IjR47w74ukpKTWN4dAK+sN+6c//YmI3nzzTdtNDz30EBF99NFHzu9NihBu3Hhl2SB+APTVBVjTS8QxY8Y4mO/VZDJlZWXxC7Dx48c7003HVZWVlXl5eZmZmXykPGedpKiwsNCZAaxHjx6Ni4vj589VVVWSFylQK+sNy09tdu7cec3j1i5Bv//+u/N7czGEFgt79VXWrRsLDmYJCYwP/JsxgxGxgQOZ7aR93vf999/zG999+vSxnSSiKefbG51kbx7ozp07T5gwIS8v78KFC67u89ixY7wx5pZbbrFtwAhcrak37MGDB8nOQJBdu3bxHpQu7dDFEP7rXyw4mOXmsp9/Zo8/zpRKtns3a2xk777bzBTuvnLgwAG+uHFERITjP/P+/fv79u3L2xsdDB12zLrUVkSTJXVDQkI0Gk12dvaOHTvc261VRUUFX5PoD3/4w7lz5zzcmz9oZb1hFy1aREQPPvig7Sa+asOkSZNc2qErITQaWVQUe/nlKz9aLKxPH9bcSBzfu3TpUkZGBv1v8gsHfb6t7Y0KhcL5S0TrLRZ+2db0FktmZmZ+fr6DLnVuOH36NL/z1K9fv1ZwJ6OV9YZ95JFHiKjZ+Sz46qKLFy92aYeuhHDPHkbESkquPvKXv7DmuiALYbFYFixYwDuwjx492sGpYNOLyYcfftjBgiR79uxxcIuloqLCO78KY4ydOXOGH9779u176tQp772RD7Sm3rAWi4W3J/1mMy26yWRq27Ytud4lyJUQFhczIrZ//9VH5s5l7du79H7eVlJS4uT8iAUFBfx/2cCBA5u2N549e9bzWyySqKysvPnmm/nl7smTJ33zpt7QmnrD7t69m+wMBCkrK+MfPFf36UoIN21iRKxpF4GXX2ZRUa6+pbdZ50cMCwtbvny5g2c2bW+cN2/eCy+8MGjQoKa3WHr06DF16tRvv/1WwqW2XFJdXc1/lxtvvNFe24af471hlUpl6+gN62Ba9Ndee42InnzySVf36UoIjxxhRGzNmquPPPEEu/lmV9/SB5yfH9F6iRgVFSX5LRZJVFdX85kge/ToYTsllP9btWoVESUnJ4suRBoOpkXnzdFff/21q/t0JYQmE4uOZs89d+VHi4XFxrLmRsT5CSfnR6yurg4KClIoFE8//XRRUZGDJUpEsR4Phw59NOBGIPAVVGbNmiW6EAk4mBbd2iXIjRWjXGyimDePKZVs0SL288/siSdYSAhzpVHS90pKSqKjo4koPj7+4MGDzT6H9zPSaDQ+rs0lFy5cuOeeqd26GWNjmcMOs37H8RJogcXBtOjr16/n9xfc2K3rjfVz5rCuXZlSyQYNYoGwoMeJEyduv/32gQMH2rsLOmTIECKSZGUPr6qrYyNGMCLWvbuff/Vd5cwSaAHEwbTofGmK56znia5wt9uaXs/UaiaXs0CY46yxsdHe3cXy8nKZTBYREeGNvmySq6tjI0cyItapEwuIpXGcWQItgNx9991E9MUXX9huSk5OJqJVq1a5sVt3V0IPDqZhw8hioaIiN/fgQyqVqml7Q1O8XTUjI4MPevJzoaFUUEAaDZ05Q6NG0Z49ogtqCV8TO8X+ct8Wi+X48eM+rMh9RqNx06ZNMpnM9tdpaGjYtm2bQqG488473dizuyEkIq2WiEinc38PolkslmXLlhHRpEmTRNfiLLWa8vMpNZUqK2nUKNq9W3RBDq1bt47sL0zPGJs2bdrgwYN3+/mvQUREP/74Y11dXf/+/XljfVMbN240GAyJiYm85dlVHodw7VpizP2dCFVcXHz8+PGePXsOGzZMdC0uCAmhggJKT6ezZ2n4cNqxQ3RBNo4ePbpo0aIxY8ZUVFSoVCre5cDW5cuXjxw5cvbs2VGjRvHZEP2Zgy8UfsC3913TMo/Okbt3Z0TMZkBHoBg/fjwRvfrqq6ILcYfBwMaOZUSsbVvPZ/CRQH19/ffffz99+vQ+ffpYP118pa3Ro0fbuzFjMBh4f8t27dr5+dzNI0aMIKJml6rnDbmOx5c74FkIp0xhRMz7I2W94eLFi2q1WiaTOZ4jw58ZDOy++67kUNSit3xMSVpaGl/bnAsNDdVoNAsWLFi7di0/edNqtQ12Jps1GAy8Bbxt27Z+u3ZvY2OjSqWSy+W24zxramoUCoVSqXTQCdkxz0KYl8eIWEqKRzsR5OOPPyailMAs3spkYo8+yohYZCTbssVHb3r+/HnevbZ79+7W4Mnlcmv32qYza+3fv5+vUzB8+HB7PdcuX77M50mIjIz0z4kqCwsLiSgxMdF208qVK4nozjvvdHvnnoWwupopFEypZAHYLZBfB7o66sQPmUzssccYEQsN/X9DXKR+F5N12g4+VIWLiYnhY0ocDPX47bff+N3p5ORkezPomEwmfnUQFhZW4r1fw10vvvgiEc2YMcN207PPPkuedQnyeHqLIUMYESso8HQ/vnXgwAGZTBYaGto6ehWbTGzixCs5dHqVR6ccPcpycti4cQa+nqn1Sk+j0fz73/9udsK/Zllnsrrjjjsc5HDChAn8bNb3s3I55mAgCL/tVOr61PJWHodw1ixGxJ5+2tP9+NbMmTOJaPLkyaILkYzJxCZPZkRMrWbuzhlwRUMDKyxkWVksMZERXflv0KA7+QjmvLw89+ahcmYmK5PJxJuL1Gq146nWfYkPBGnTpo3t10dlZaVMJvOwS5DHIdyy5coiE4HDYrHwT4MfnvZ4wmy+cqcsOpq5cY/g11/ZG28wjYapVFezFxnJ7r+f5eSwY8ck6FHkzExWFovlqaee4jlcu3at52/qOQfTon/11VdEdNddd3myf49DaDKx9u0ZEbPTPdoPFRcXE1FsbGwrW7GZMWaxsGefdeHK8Px5lpfHMjOvNDbx/+RylpjIsrJYYaH0U+dZZ7JKSEiwN5OVxWKZNm0aP+/Nz8+XuALXOZgWPTMzk4g8nEpTiikPMzIYEQuctVf5UgGtY3CNA/HxrHPnqykaO5a99BJjjJlMbMcOlp3NNBrWps3V7MXEsIwMlpPDvD2ZRkVFRe/evcnhTFYWi+WZZ54hIqVSuXLlSu8W1JJBgwbZO2/iU3J52MIpRQhzcxkRc3oNGrHq6urCwsJkMpm9kU2tRnw8UyrZ0qVXfuQhnDuXRUZeDV5wMBs1iv3738zpOyzScGYmK4vFwsciKpXKZpvIfYMPBFGpVLZzebm6BJo9UoTw+HFGxMLDBc566LxPPvnEw1adQBEfz+67jyUkXPmRh3D+fEbE4uJYZibLy2MCZ/puOpOVgxl0eNtAUFDQt99+68vyrIxG44YNG5ptynJ1CTR7JJoGv39/RuTGAqC+x2ehDZRVtT0RH8+WLGHR0VcuEXkIz51jUsx7LI2mM1mdOHHC3tNefvllIlIoFP425tPVJdDskSiEzz/PiNiLL0qzN685cuSIXC4PCQkRNXGTL8XHsy+/ZDNnsjFjGGtyTehXrDN39O7d28FMVnzIrEKhWLJkiS/Lc+yGG24gV5ZAs8eDURRNWP74x+39+y86dkySvXnP4sWLLRbLAw88wBdXux785S+0di0dPCi6DjvatWtXWFh46623HjhwIDk5+ciRI80+bfbs2dnZ2Waz+fHHH1+8eLFva2ze77//XlFRERMTw0+qPSLJV0JjY6NarZbL5ZV+PNDeYrHwm+NuT4AfWPiRkDE2cSKbNo3de68/Hgm5Cxcu8C4psbGxDvrT89klZDLZQj+4Fe/GEmj2SHMkVKlUycnJFouF93P1Txs2bDh06FC3bt0cDPRulZ57jhYvJoNBdB32tW3bVqfTDR069NixYykpKQftHLhfeOGF+fPnM8amTZv2wQcf+LjIa7Q4aYDzpAkhEfF1WHV+PNB+yZIlRDRp0iSFQiG6Fp9KSKDERCopEV2HQ5GRkYWFhSNGjKioqEhJSTlw4ECzT/vrX/+6cOFCInrmmWfeffdd39Z4FWOstLSUPBnIe83uJLF3714i6tixo/OrBPtSXV1deHg4Ee1vOo1/q2Y9HWWMrVjBiPz3dNSqrq6Of6w7duzoYBWDjz76SCaTyWSyt99+25flWfG5D7t27SrJ3qRcLpvfLLJdOdEf8MNgUlKS6EKgBfX19RqNhudw9+7d9p62cOFCvmDBW2+95bParKvihYaG9uzZ84knnpBkt1KGcMqUKeRxPzov4d+vOTk5oguBljU0NPAp5WNiYhyMlsrNzQ0KCvrSerj3josXL3733XdTp07lq/NyMpls6tSpUr2FlCHMy8sjvxyrfvz4cYVCoVKp3Fg6N3DFx7O5c6/+OGBAAJyOWun1euvcM9u3b7f3NFcXIXOS2Wy2jmBudlU8aRfnuTpE2nMajUahUGzevJn3z5Rwzx5avHix2Wx+6KGH3JuRDnwvODh4+fLl48aNW7lyZWpqqk6nu+2222yfFhsbK+Gbnj17trS0tKioaPXq1adOneIP8lXxNBpNWlpaUlISX9ZSWlKGsF27drfeemtZWdn69evT0tJsn1BaWjp79myVShUeHh4WFhYcHBwZGalWq1UqVdu2bUNCQvg/VCqVWq2OjIxUqVShoaHh4eFN51NwQ8BNLgpEpFQqv/7664cffnjFihVarXbNmjW8LVFaJpOprKxs9erVRUVFP//8M/vf/J2dO3fWaDTp6empqane/u6WMoREpNVqy8rKdDpdsyE8deoUXzfDVW3atGkxt6+88kqzbQ+bN28uLy/v0qULv9yHAKJUKpcvXz5x4sQvvvhCq9X+8MMPQ4cOlWTPhw8fLioqKioq0ul0tbW1/MGQkJA77rhDo9FoNJrExERJ3sgZMibp1L1lZWVDhw7t3bv377//bru1qqpq165dBoOhrq7u0qVLer3+0qVLdXV1BoPh4sWLDQ0Ner2+pqamsbGR/0Ov1zc0NFy8eNFisTh+X7lcbjKZmq7vaZWZmfnxxx///e9/f/3116X5JQNEr1505AhZ/5eYzfTSS/TPfwqtyS1ms3ny5MnLli0LDQ0tKChwu328vr5+69atBQUFBQUFTfvHxcXF8bPN1NTUphM3+ozEITSbzTExMdXV1YcOHeITGUjCaDQ6zq3ZbOZjXq7R2NjYpUuXmpqaffv29evXT6p6AkKvXnTPPZSZeeXH++6jceMCMoREZDabp0yZsmTJErVaXVBQ4HwTucVi2blzJz/obdiw4fLly/zxqKiokSNHajSaP/7xj00nbhRDwps8XEZGBhH5Q+8+xtjnn39ORLfffrvoQgQI6LujtvjxkIjUanWLvX8rKyv5zKhNFwLit1j4zKhGo9E3ZTtD4mtCItJqtcuXL9fpdHy6HrGsXfjP2oIAAANTSURBVNVEFwKeksvln3zyiVqtXrhwYVpa2jfffHPNfQd7t1g6deqUmprqm1ssbpI81nylq/Dw8MuiB9qfOHGCz09ub0Kh1q2VHQk5i8Xy9NNPE5FSqeSLAVp7sURERFg/1SEhIRqNJjs7e8eOHaJLbpn0R8Ju3br1799/3759W7dudW+5NqksXbrUbDY/8MADUVFRAssACclkMt5v+/3333/wwQdjYmJOnjxp3TRw4ECtVqvVaocNG8bXogkI0oeQiLRa7b59+954443Kysrw8HBrw6BKpYqIiFCr1b75H7R06VK6js9FrxkP5P8rijqJ5zAoKKi8vPy///2vf91icYvEd0e59evXz5kzp8Th4BmVSsVb+dq1a2fvH46fEBER4WBQEm8s6dix44kTJzxs6wf/ZDQaf/nll8TERG/0YvElr3w6R4wY0bVr13/961+8lU+v19fX1zdtYDAajXq9Xq/XE9Hp06fdfqOIiAiVShUWFmY93oaGhqpUqsjIyLKyMiKaMGECEthaBQUF8YUBA51XjoTO4C3yjY2NFy5csPcPx09osRH/kUceeemllwYMGOCzXwrADcJCKAlrr5ra2lq9Xs8b9A0GQ21tbX19/dSpU9VqtegaAVoQ2CEEaAUC+4oWoBVACAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEE+z++dXgbGiYhNQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -322,7 +344,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGEklEQVR4nO3d0XbiNhRAUdPV//9l\n+pA2ZUIgJAEfWdr7ad7Gy7lnJAeZOZ3P5w3o/FVfAKxOhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQczOl0qi/hyUTIkZxOp/P5XF/Fk4mQw5iywE2EHMWsBW4i5BAmLnATIeObu8BNhAxu+gI3ETKy\nFQrcRMiwFilwEyFjWqfATYQMaKkCNxEymtUK3ETIUBYscBMh41izwE2EkBMhQ1h2GdxEyAhWLnAT\nIbnFC9xEuKDT6TTOy+kK3Lbt7/oC2NX70F92WGWgwDfuwkJuDX0SpALfuRGreHDo34N86WAo8JJ7\nsYQfDP3rlkcFfuB2zO/3Q//EIBV4zR2Z3NOH/jdBKvBTbsrMXj3033qAVOAt7su09hz6L5dHBd7h\n1swpHPrrIBV4n7szoXGG/i3IQS5mWI6tzWacAjf5PUaEUxmqwDfn83mco6pjEuE8BiyQR4hwEgo8\nLhHOYJwC7Tx/QISHN06Bt3gsvE+ExzZagXr7AS/1fts+L/s8eCX5NfB7Ivyey7lvX04/VoFvK+SB\nLnhPIvyGD2N0+eedgzTQMxHho+7P/Z5BDl6gRe+7RPiQb03VS4M03/MR4dd+M/fPDfLQBVohbxHh\nF544N78M0gTPSoT3vG7uvxvksQq06H2LCG/6coyeNWdfBmmg5ybCz+1W4AefBjlNgVbIT4nwE1WB\nHxjWRTg7+tEgBR6dQ6SPE+EfFPhq4rwmwv8pkIQI/6XAp7PoPUiE26ZAUiJU4N6skB+sHqECyQUR\nnv6z/199fSUKfCmL3iOCD+uP8ma6Al/H0ZlL5YmZkd9MNyLsZpRja0O9ma5A9jRKhJfaN9MV+Fx2\nnl8aMcJLO7+Zblx2I853o0d46dVvppsJEkeK8NLT30xXIJWjRnjp92+mK/Cl7DzvmyHCSz94M918\nVMT5ZuZja+fz+csfsCHYx52b7EjNEiN4qzQFDqI9O5WbbTv6OAWOIzw7NYJ1I1zkB3w4c3/f3KfW\njZDxDXLW/9VW2ZLZfE5jviCthBzMfA+QIuTA5niAXGiTZke6iMMtj1ZCZvPgfnWcf5RFyMyugxwk\nvEszH1v7wJcOLes9v8sCx5mHhSKEMYkQYiJkfrd2noPsSNeKcJCbDpfWihAGJEKILRehHemaRn4s\nXC5CGI0IIbZihCPsQBhHPg8rRsia7sTWHicVIcREyEKGe4Fi27ZlI8wfAxjL+bx187BohCwqje0W\nEUJs3QjtSBnEuhHCH7qdqghZzHiPhUtHaEfKCJaOEEYgQtYz2I5UhPCfKM7VI/RYSG71CCE3ytfx\nw95Op22M4bcSQkyErGqMZXATIeRECDERQkyEEBMhxPx32bBt2/bHgbV9f3EqQrj64H7fz/FtR1ne\ndXL7nuQWIcRECDERQkyEEBMhy7v+Ncy+vx31EQVcdehzQgh0bzbZjkJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcT+AaiJ4xRk\nSP78AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAZk0lEQVR4nO3daVhU59kH8HtmWMIqiqAGV4zUiCkhGkkAFXQQDFp7pdAszWLV2EtjNK1tTZoYY9IkpvFKNa1GBVNtE62ktYa4ADOACNhqIWoMaTERERQQFBBZHJaZ98PTdzqFYQRmuecc/r9PynM8c6vzn3Oe55y5j8JgMBAA8FFyFwAw2CGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQR5unLlSldXF3cVfYIQggxdvnw5Ojr6ySef7Ozs5K7lzhBCkJvy8vJZs2Zdvny5tra2o6ODu5w7UxgMBu4aAGymsrIyJiamrKwsMjIyIyPDx8eHu6I7QwhBPq5duxYTE/Pvf//7oYceysrKkkQCCSEE2aitrY2Njf3666/Dw8Ozs7OHDh3KXVFfYU4IclBXVzdnzpyvv/46LCxMo9FIKIGEEIIMNDQ0JCQklJSU3HfffVqt1t/fn7ui/sHpKEhbY2NjXFxcUVHRd77znePHj48cOZK7on7DkRAk7ObNm/Hx8UVFRZMmTcrJyZFiAgkhBOlqaWlZuHDh6dOn77nnntzc3Lvvvpu7ogFCCEGSWltbExMT8/Pzx44dq9FogoKCuCsaOIQQpKe1tXXBggV5eXljxozJzc0dP348d0VWQQhBYnQ6XVJSUm5ublBQUG5ubnBwMHdF1kIIQUra29uTkpKOHTsWGBio0WgmTpzIXZENIIQgGR0dHcnJyYcPHw4ICMjJybn33nu5K7INhBCkoaur6+mnn05PTx8+fHh2dnZoaCh3RTaDEIIEiAQeOHDAz88vIyPjvvvu467IlhBCcHZdXV2LFy/ev3//kCFDsrKypk2bxl2RjSGE4NQMBsOKFSs+/vhjX1/fzMzMBx98kLsi20MIwXkZDIaVK1empKR4enqmp6dHRERwV2QXCOFgJIkOSAaDYdWqVTt27PD09Dx8+PDs2bO5K7IXF+4CwNG2bt3a1NS0bdu2WbNmqdXqqKgo51xpXLdu3fbt2z08PNLT02NjY7nLsScDDCa//e1vicjd3d30PTB+/Pgf//jHf/zjH69cucJd4H+89NJLROTm5nb48GHuWuwOIRxEdu3apVAoFArFjh07Ll68uHPnzuTk5G5fgQ0ODl6+fPnevXsrKyu56nzllVdEAtPT07lqcCSEcLDYvXu3UqlUKBTbtm3rNmQMZLeuECKQaWlpN27ccFidr732GhGpVKoDBw447EV5IYSDwp49e0QCf/e731nYrLOzs6ioaMuWLcnJyb6+vsY0KpXKKVOmiEA2NDTYr8733ntPJHDfvn32exVngxDK34EDB1QqFRFt2rSp73+qo6OjqKho06ZNarX6rrvuMgZSpVJNmzZt3bp16enpN2/etGGd77//vtj/xx9/bMPdOj+EUOY+/fRTFxcXInrrrbcGvJPW1tb8/HwRSDc3N2MgXVxcRCA1Gs3t27etqXPLli1EpFAodu3aZc1+pAghlLODBw+6uroS0RtvvGGrfTY3N2s0mnXr1kVFRYmdC56enmq1esOGDRqNRqfT9WufKSkpxhUjW9UpIQihbB09elRcivjFL35hp5e4deuWCOS0adOUyv/e+OHl5aVWqzdt2lRUVNTV1WV5JxZWjAYJhFCeMjMzxUTuZz/7mWNesba2Nj09XQRSoVAYA+nj42MMpF6v7/anxIoREf3mN79xTJ1OCCGUoaysLJHANWvWsBRQU1OTlpa2fPnyCRMmmF7zCAwMTE5O3rJlS1FRkWGgK0bygxDKTX5+vpeXFxE999xzPY88jldWVpaamvqjH/2oW0vCESNGiGPgO++8w10jM3TglpWTJ0/Gx8c3NzcvWbIkNTXV9LTQGZSVlWm12oKCgpycnKtXr44cOTI2Nnbfvn3cdXHj/hQAmzl58qR4GNjixYvvuBzCS6/Xr1mzhoiWLl3KXQs/HAll4syZM3Pnzm1oaPjhD3+4b98+MddyZmfPng0PDw8KCqqsrHS2I7aDIYRycPbs2blz59bX1yclJe3fv19cnXdyBoMhKCiourr6/PnzU6dO5S6HE77UK3lffvmlWq2ur69/9NFHpZJAIlIoFPPmzSOijIwM7lqYIYTSVlpaGh8ff+PGjfnz5+/bt08qCRTi4+OJKDMzk7sQZjgdlbALFy7ExMRUV1fHx8d/9tln3b6q6/xu3LgRGBjo6up6/fp1b29v7nLY4EgoVd9++21sbGx1dXVcXNyhQ4ckl0Ai8vf3nz59uk6ny8vL466F02AJ4a1bt1555RWdTsddiG1UVFTExcVVVVXNnDnzb3/7m+lXjaQlISGBcEbKe4XEMZqbm2fNmkVEy5Yts7BZQ0PDxYsX9+7dW1FR4bDaBqCiokLcDhYVFXXr1i3ucu4sLy9v5cqVBQUFPYcKCwuJKCQkxPFVOQ/5h7C1tXXOnDlENHr06G+//ba3zRobG6dPnx4eHi4+m4KDg59++umdO3c6WyArKyvFo4gefvjhpqYm7nL6RHRtWrt2bc+hzs7OYcOGEZGF/xrZk3kIdTpdYmIiEY0YMeJf//pXb5s1NjaK1s5BQUEJCQlDhgwxPVmYMmXKqlWr/vrXv16/ft2RxfdUU1MjHkX0wAMP1NfX8xbTd7m5uUQUGhpqdjQ5OZmItm/f7uCqnIecQ6jT6RYuXEhEgYGBJSUlvW3W3Nw8c+ZMIho3blx5ebnhf1utdAuksfeR4zNw7dq1KVOmENH999/vyM5L1mtvbxcday5fvtxzNDU1lYgWLVrk+MKchGxD2N7evmjRIiIKCAg4f/58b5u1tLTExMQQ0dixYy9dutRzAxHI3lqtrF69Oi0tzbatVsyqra0Vt5V897vfZT8gD4D4v0hJSek5JG5b8/LysrJBhnTJM4SdnZ2PP/44Efn5+RUXF/e2mXG6OGbMmIsXL95xt6a9j0wvCZi2Wmlra7PpX8VgMBgaGhrEo4gmT55cU1Nj8/07wPbt24koKSnJ7Kj4fMnNzXVsUc5ChiHs7Ox88skniWjIkCH//Oc/e9tMp9M98sgjd5wu9qalpUWj0WzYsEGtVpu2WvHw8IiKihKB7G+rFbOM89WQkJCqqirrd8ji0qVL4jOxo6Oj5+jatWuJ6KWXXnJ8Yc5AbiEUT5MkIl9f31OnTvW2mU6nW7BgwR2ni310x1Yr+fn57e3tA9jzzZs3Z8yYQUSTJk26evWqlXXyCgkJISKzFyqysrLEXNfxVTkDWYVQr9f/5Cc/Ee/+vLy83jZrb2//3ve+J6aLX331lW1rqKurM9tqxdvbu++9jwTj5U3jipGkrV69mojWr1/fc+j27dve3t4KhUK6h3pryCeEer1+xYoVROTp6WlhdtHZ2fnYY48R0dChQy1MF23C2GpFrGoaBQQELFiwoLfeR4LpilFZWZld63SMI0eOENGMGTPMjoqpwZ49exxclTOQSQj1ev2qVavElCw7O7u3zYzTRT8/PwvTRXuoqqoSgRw3bpxpIEeMGJGcnLxz507TlSHTGwz6smIkCa2trR4eHkql8tq1az1Ht27dSkRPPPGE4wtjJ5MQ/vKXvyQiNze3I0eO9LZNV1fXU089JRZsLEwXHaC0tHTHjh2PPfZYYGCgaSAnTJiwdOnSPXv2xMXFDXjFyJmJv5fZ50yUlpYSkb+/v5M35rAHOYTw5ZdfFgn8/PPPe9tGr9cvX75cTBdPnDjhyPIsM/uIMh8fn5EjR8osgQaDYfPmzUT07LPPmh0NDg4mIt7PRxaSD+Grr75KRK6urp999llv25hOF48fP+7I8vquq6uruLh48+bNiYmJmZmZNl8xcgbnz58nopEjR5qdCYv/o40bNzq+MF7SDuHrr78ubl7585//3Ns2er3++eefFwnMyclxZHnQ05gxY4jozJkzPYcOHTpERJGRkY6vipeEQyjObVQq1SeffGJhMzFddHd3P3r0qMNqg94sXbqUemn429zc7O7urlKppHVnrPWkGkLx7HWlUvmnP/3JwmZ9mS6CI6WlpRFRTEyM2VFxVSYtLc3BVfGSZAjFcrZCodi5c6eFzcSjzy1PF8HBGhoaXFxcXF1dzd71/s4779Dg6wgsvRCK7u4KhcLyN9A2bNhwx+kisIiMjCSiQ4cO9Rw6c+aMuDrqDE/RcBiJhfCjjz4Sz7L7/e9/b2Ez43RxUD36XCo2btxIRCtWrOg5pNfrR40aRUQWvn0mP1IKofFZdu+++66FzcR0UaVSWZ4uApdTp06JOxPMjj777LNEtHnzZgdXxUgyIUxLSxOdbS0/Scs4XRyEjz6Xiq6uroCAACIqLS3tOSoe0hQXF+f4wrj0NYR5eXnGzg51dXV2ramn9vZ2cQ/0W2+9ZWEz46PPP/zwQ4fVBgPwxBNPENEHH3zQc6iurk6pVLq7u0uikZxN9DWE4jxeUCqVYWFhL774Ynp6emNjo13rM6qurrb8THPjdHHQPvpcQvbs2UNEiYmJZkfFVygt3AYsM30NoWmrFQ8PD2MgTVutOCyQPeHR59JSXV2tUCg8PT3N9pVZv349Ea1evdrxhbEYyJyQq9VKb/o4XQSnEhYWRkQajabnUEFBAQ2mjsDWLsyYtlpxc3MzG0i7dtH6y1/+IhL461//2n6vAja3bt06Ivr5z3/ec8jYEVg236W0zJaro83NzWZbrXh6eqrV6g0bNmg0moG1WunNwYMHRZOlQXjrvdTl5OQQ0dSpU82OJiUl0aDpCGyvSxRNTU3GQFrZaqU3x44dEyfDZj9NwcnpdDofHx8iMvuggZSUFBo0HYEdcZ3w2rVraWlpq1evFs0zjYYPH37HViu9yczMFK14f/rTn9qpbLA30W4rNTW159Cg6gjs6Iv11dXVotXK+PHjTQNpbLXSly+zajQasUK7Zs0aB9QMdrJt2zYiSk5ONjsaGhpKg6MjMOcdM+I5ZMuXLxdf9DQaNWqUCKTZPn/5+fniqa7Lli0bVLf5yk9ZWVlCQoLZI6FhMHUEdpbb1sy2WiGTR5RVVlYaDIbCwkIxkViyZMkg7Ag0qAyejsBO98x6vV7/5Zdf5ubm5uTknDhxoqmpSfxcoVBMmjSpsrKyra1t8eLFu3fvNl2ABfnR6XT+/v6tra1Xr14VX62QK6cLoamurq6zZ88WFBQUFhZmZWXdvHlz9OjRo0ePLigoUKlU3NWB3SUmJh49enTbtm0rV67krsWeuA/FfaXT6cQk4dFHH+WuBRzkgw8+mDhxokKhmDJlivjyQENDA3dRtufUR8JuysvLJ0yY4Ovre/36ddMHIYGMffTRRytXrtTpdOK3Li4uM2bMiI2NjY2NjYyMNL2NWbqkFEIimjx5cmlpaX5+fnR0NHct4CBtbW3FxcWFhYVarfbEiRPt7e3i5y4uLmFhYWq1Wq1Wz5w50/Q2ZmmRWAhffPHFrVu3vvrqq2+++SZ3LcCgpaXl73//u1arLSgoOH36dEdHh/i5p6dnZGRkVFRUdHT0rFmzTG9jdn4SC+GxY8ceeeSRBx988PTp09y1ALPm5uZ//OMfWq1Wq9V+8cUXxneyl5fXww8/LI6Q4eHhzr+KLrEQtrW1+fv763S66urqbk9TgcGsrq7u+PHjYiHdNJA+Pj4REREikA888IDpbczOQ2IhJKL4+PisrKxPPvlEPOQMoJuampr8/HytVqvRaMRjuoXAwMDZs2eLU9ZutzHzkl4I33///bVr1z7zzDN79+7lrgWcXVVVlVjRycjIqKioMP581KhR0dHRarV63rx53W5jdjzphbCkpGTq1KkjRowQLRK4ywHJKCsrEys6OTk5V69eNf48ODhYHB7nz5/f7TZmx5BeCIlo3LhxFRUVX3zxRXh4OHctIEkikFqtNjs7u76+3vjz4OBgMYGcM2dOt9uY7UeSIXzuuedSU1Pffvtt8bwXgAHreWukccgYSLVaPXToUNM/8s0330yePNlmRfDcqGOdTz/9lIhmz57NXQjISnt7e0FBwRtvvBEbGyu+Mi64uLgYO4K3trYGBga6u7s3Nzfb6nUleSRsamoaPnw4EdXV1Q0ZMoS7HJChzs7Oc+fOiVPW/Pz8AwcOLFq0SAxFREScPn368OHDiYmJNnktZ7+OaZavr++MGTM6Ojpyc3O5awF5SklJefvtt9esWaPRaG7cuJGQkGAcEr/OzMy01WtJMoREFB8fTzb9hwAwtWvXroMHD+bn5xORl5eX6Y2p4r2XkZFhq9eSagjFp5EN/yEATFk43EVERAwbNuybb765ePGiTV5LqiGcNm1aYGBgeXl5aWkpdy0gQxYOdyqVau7cuWS7EzGphlCpVKrVasIZKdhHVFSUr69vSUmJ6X02RradDUk1hIRpIdiTq6trbGwsEYl+U90kJCQoFIrs7Gzjt42tIe0QKhSK3NzctrY27lpAhix8ygcFBYWGhra0tJw8edL6F5JwCEeMGHH//fe3tbWJh/gA2Nb8+fOJSKvVdnZ29hy14YUKCYeQcEYK9jR+/PiQkJDGxsZTp071HLXhe08OIcSFCrATC4e7mTNnent7nzt3rqqqyspXkXYIo6KihgwZ0tsSFoCVLBzu3N3dxd3LGo3GyleRdghdXV1jYmKolyUsACvFxsZ6eHgUFRXV1tb2HLXVGam0Q0iYFoI9eXh4REdH6/X67OzsnqPG915XV5c1ryL5EIolrKysLGP3OwAbsvApHxISMnHixPr6+uLiYmteQvIhFEtYTU1NaIII9mAModkv/c2bN4+sXhqUfAjJDl8tATCaOnXq2LFja2pqzp0713PUJrMhOYQQFyrAruLi4qiXN9jcuXPd3NxOnTrV1NAw4P3LIYRiCau4uNjsEhaAlSwc7ry9vc889ZQuIMBXqx3w/uUQQuMSltaKfwiA3sTFxbm4uBQWFhofWWtqyqRJqpoasuKMVA4hJFyoAHvy8/N7Jj7+w4gIndm7lEXni4wMGmi7JpmEUKzNZGVlSbFvFTi/3TNmLC0oCDh82MxYWBiNGkVXr1JJycB2LpMQhoaGiiWss2fPctcCciQOd8eOmRlSKGjePCIa8BmpTEJI/3/FBmekYBfTp1NAAJWX04ULZkbj44kQQkwLwa6USlKriXpJWlwcKZV04gQ1Nw9k39aV5kTUarVYwjLtZA5gMxYOd8OH0/TppNPRiRMD2LF8Qujn5xcREdHR0XH8+HHuWkCO4uNJoaDcXLp92/woDfCMVD4hJJyRgl2NHElhYdTaSmYvVIgQDui2LRmG8JjZJSwA61k43D30EA0bRhcuUFlZf/cqqxBOnz5ddAS+YHYJC8BKFg53KhXNmUM0kDNSWYVQqVSK1si4mRvsIjqafH3pq6+ostLM6ECnhbIKIRElJCQEBAS0t7dzFwJy5OpKMTFERGbbqYgL+jk51M+3nySfT2hBR0eHSqVSKuX24QLOYvt2ev55Sk6mtDQzo1OnUkkJHT9Os2f3fZdye7O6uroigWBH8+cTEWm1ZK4j8MDOSPF+BeiPCRNo0iRqaCCz7VQGdKECIQToJzH3M3u4mzWLPD3p7Fmqru77/hBCgH6ycM551100ezYZDNSfjsByW5gBsLuWFvL3p44OqqmhgIDuo59/TuXl9P3v05gxfdwfQgjQf2o1ZWfT/v30+OPW7wynowD9l5BAQ4fSjRs22RmOhAD919ZGbm6kUtlkZzgSAvSfh8f/JHD3brr3XnJ3p9Gj6eWXqZ9PZEAIAayzZw8tW0Y/+AGdPk0bN9KWLfTCC/3aAU5HAawTHEz33ktHjvznt6+/Tm++SVeu0KhRfdwBjoQAVqispEuXKDHxvz9ZuJD0eios7Ps+EEIAK9TUENH/HPTEr3HHDIBD6fXdf92fbxEghABWCAoiIqqq+u9PxDFw9Oi+7wMhBLDC3XfTPfeQaXv8I0fI1ZWiovq+D4QQwDrr11NWFv3qV3TuHP3hD/Tuu/TCCzR8eN93gEsUAFbbvZvee48uXaLAQFqyhF57rV830yCEAMxwOgrADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQCz/wOAAroCsHt1UAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -334,7 +356,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGIUlEQVR4nO3cUW7jNhRAUbno/rfs\nfhiYppEzDRCL93l4zgISz4uuKHto3u73+wF0/qpfAOxOhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcT+rl/ARLfb\n7aKffL/fL/rJr2UCK4nws9vtdt2FcukPfxUTWMzjKMRE+B9X36fv9/t1T3ovYQLriRBiIvzXmrcr\nk5cCE0j4YOZ//PC6fPfPIV5Vy1sP4WrvfYm80NNaXpLQdT/5tRa/pIETqHgchZgIj+PixerpW6Bp\n74vWr0vTJhAS4YrHxeEdVk+GcybQEiHEdo9w2acmYxfD9gOSCRPI7R4h5LaOcPF/HgxcDCf8P4HF\ncOsIz+ycZL19I5ywCDxUZZrAEJtGGO5iGfJQOqfAh5073DTCs5UX5c4XHGc7RjhtEXhYWaYJjLJj\nhGc2bRHaLsKZi8DDmjJNYJrtIjyzc5LWXhGee5u2aevqMicvgw8b3pv2ihAGmnhfXHby7JBl4en6\nfNHvmvDv/Y6tJjDiKvzIybMmsNsEPI5CbFaE9k+bwIYTmBUhbGhQhF9tqn7tbxl4I/zlikVgwmbx\n79vz9OHRh/8OfA/9dh4X3PuOcYfTh6dEuP5LDNP+Kibw9CVdesrBkAkMehz9ZM6M3t20py8+GRGh\nLzGYwM4T6COsvuQ+529Q/WO3msBTQybQR3jmQfQKQy44zuIIp32JYT0TMIFxK6Fl8DoTLjjOyggn\n9ObsXRPI702zVsIJf5I/W37BcZZFOOdL7rudvbv+6/xfmXPPbe9NTYRzpv/g7F0TCDuc8jg67U/y\nZ/NQOkqwd3Rmb083E160e/iNJnARE/hoxAbumX+SY/bW+x8atYN5c6sfR+d8HnO229m71Sc0cyZw\nljyoT3lPCNtaGuHkZfBht7N3nT58tn4xtBJCbN1taf4y+MtWJ88e6enDQ66B9uJcOoIhE/+93U6e\nPVs8gXwm+UvyOAqxpRHO36ix4cmzn6yfwLSvcaxfma2E9DbfQb46wslLwZ4nz35kAkmWVkJG2Plr\nHEGEM2+E68/eXfO7vs8EqiythEyxssw5y+BRRTjtRrjzybMPQyYQ7iAPs8xWwjlX4ZxjJiom0C6M\nHkeZZcMd5GWEE26ETp4dOIHrxjLtQfTBSgixOMJpW5bWM4Fli+HMZfDIIwT6CDffN3iYwJLFcOwy\neEyI8Nh7y9KDCVza4eQCjyERws6m3AyOKw9ZyL8w9k0mcMWSNXwZPIYc/vuVOWOqmMDx4yHMn+Gg\nx1Enz5rAnhMYFCHsaVaEG+4b/MQENpzArAhhQ+PuCsd+Z++emcBWE5gYIWzF4yjERAgxEUJMhBAT\nIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE\nRAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQI\nMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDER\nQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJM\nhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEULsH7TGzk4Jjg+3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAaz0lEQVR4nO3de1xUZf4H8O8AArJK5Fq0S7pq5iXbVTR7Ybprm9puWWFgiqaCmnlJUcrwQt7RLLuYkZqpXPKakqVtudrarrYrqIuYmqhlXjDADREnEISZ+f3xvF6n85uZQzBzzvM9Q5/3n486z4P6mXnmnPN8vxaHw0EAwMePewEAv3QIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmAVwL4CB1Wr98ssvjZ4lKCjooYceMnoWafbt21ddXW30LH369GnevLnRs5iO4xcmJydn6tSpEv5iW7ZsmZiYaLVauX9ib1mt1sTExJYtW0r4S5s6dWpOTg73TyybxeFwSPjLNQmHwxEVFXXo0KEOHTq0a9fO0LmOHj1aUlKSkpKSmppq6ERGe+mllxYvXhweHh4ZGWnoROfOnTtz5sz999+fk5NjsVgMnctcuN8FpEpPTyeiiIgICR9QBw8etFgsQUFBZ8+eNXou45w7dy44ONhisRw4cMDouSoqKlq3bk1EGRkZRs9lKr+gEFqt1t/+9rdE9P7778uZceTIkUQUGxsrZzojxMTEENGoUaPkTJeVlUVE4eHh5eXlcmY0g19QCGfNmkVEUVFRdrtdzoyFhYXNmjUjoj179siZUV/79u0jopCQkIsXL8qZ0W639+7dm4hmz54tZ0Yz+KWE8NtvvxXbKsnf+xctWkREXbp0qampkTmv92pra7t27UpEqampMuc9cuSIn59fYGDgmTNnZM7L6JdyYSYmJmbHjh3x8fEZGRky562qqrrnnnu+++67VatWTZgwQebUXlq1atWkSZNat2596tSpkJAQp1/NzMwsKiryfpakpKSgoCCnwfj4+KysrJiYmOzsbO+n8AHc7wIyiG1Vs2bNLl++LH/2bdu2EVGLFi1KS0vlz+6ZsrIycU9i+/btbn9Djx49dPnvd/XqVdcXLy4uDg0NJZ/dxjdU479Zb7PZpk2bRkSzZ88WF2YEq9UaGxs7c+ZMHW+p22y2NWvWHDlyZN26dcrg4MGD+/fv//nnn6empr7xxht6zWWoBQsW/PDDDw8++GBsbKzb35CQkNC/f3/vJwoODnYdDA8PnzFjRkpKSlJSUn5+fkBAY/9fyv0uYLh33nmHiNq2bXvjxg31eHJyMhE98MADOs5VVFQkHvjYu3evevzEiRMBAQEBAQEnTpzQcTqDnDp1qkmTJv7+/vn5+VxrqKqqat++PRGtXLmSaw3SNPIQXr16VWyrsrOz1ePffPNNUFCQn59fbm6uvjO+/PLLRHTPPffcvHlTPT5+/Hgi6t+/v77TGeGRRx4hogkTJvAuY/v27UTUokWLH374gXclRmvkIUxMTCSiP//5z07jTzzxBBGNGTNG9xmrq6vvvvtuInr77bfV46WlpS1atCCiTz75RPdJdbRr1y4iCgsLu3LlCvdaHAMGDCCiqVOnci/EWI05hF9//bXYVh07dkw9/vnnnxNR8+bNv//+eyPm3bFjBxHdeuutTm/h4gth+/btq6qqjJjXezdv3uzYsSMRvfnmm9xrcThU2/jjx49zr8VAjTmEf/3rX4lo4sSJ6sHa2trf//73RPTKK68YN/XDDz9MRFOmTFEP1tTUdOnShYhef/1146b2xmuvvUZEnTp1ctpLMxL3dXxiG++xRhvCnTt3io+j//3vf+rxFStWEFG7du0M/Tg6efJkQECAv7//V199pR7fs2cPEYWGhhYVFRk3u2dKSkrCwsKI6NNPP+Vey09KS0t//etfE9GuXbu412KUxhnC6urqDh06ENHy5cvV41evXhX/oh999JHRa3juueeI6KGHHnIaf/TRR4no2WefNXoBDTVu3DgiGjhwIPdCnL355ptEdNddd5l2G++lxhnCV199lYg6d+7stK3SCoYRlMB//PHH6vGzZ8+KC7OHDx+WsIx6Onr0qL+/f5MmTQoKCrjX4qympubee+8lomXLlnGvxRCNMIQlJSW33HILEX322Wfqca0tonHE1tf1Lfz5558not69e0t7lPxn9e3bl4heeOEF7oW4t3fvXnEtzYTbeO81whA+88wzRPTYY485jbu9WGKompoatxeBysvL77jjDiL64IMPpC2mDlu3biWi2267raysjHstmgYOHEhE48aN416I/hpbCPPy8vz9/QMDA522VVq3DYymdTtk9erVRNSqVauKigqZ63FVWVnZpk0bInr33Xd5V1I3c27jddHYQvinP/2JiKZPn64e1LqBLofbBwNsNpt4BnrhwoXyl6S2YMECIurWrVttbS3vSn7WCy+8IJ40NM82XheNKoRbtmwhottvv/3atWvqca1HyeRQHpE7dOiQevzLL7+0WCxNmza9cOGC/FUJhYWFv/rVr4jon//8J9ca6u/69etiG79161buteip8YRQ2Va999576nHlXMzu3bu51vbiiy8SUa9evZzewgcPHkxEI0aM4FrY008/TURPPfUU1wIaas2aNSbZxuuo8YRw/vz5brdVCQkJRDRo0CCuhTkcjuvXr//mN78hok2bNqnHL168GBISIqeMkqv//Oc/FoslODj4u+++kz+7Z2w223333UdECxYs4F6LbhpJCC9duuR2W/Xf//7XJLUS1q5dS0R33nnnjz/+qB5/6aWXiKh79+42m03memw22/33309Ec+bMkTmv95Rt/Pnz57nXoo9GEsJhw4YR0dChQ9WDdrv9j3/8IxHNmDGDa2EKm83Ws2dPIpo3b556XKnzl56eLnM969evJ6KIiAinNwWfMGTIECIaPnw490L00RhCKLZVTZs2ddpWbdiwgYjCw8OdrtNw+fe//+32Lfz9998nuXX+rFar2B5v2LBBzoz6Urbx+/fv516LDnw+hMq2au7cuerxyspK8Qmzfv16rrW5iouLI6K4uDj1oN1u79OnDxHNmjVLzjJmzpxJcqs/6m7OnDks23gj+HwIRTUX122VqGpx3333meof6cKFCyEhIX5+fqdPn1aPy6zzp1R/1L2qgEzmfJP1jFElD8vLy/Py8ubOnWvEi6t99dVX169f37Bhg7jarnA4HFlZWR07doyKijJ6DQ2Snp7euXNn11UlJCRkZmbecccdoraKcb755pvi4mL51R91t3HjxhEjRoSGhv7hD38weq6FCxd2795dPJOsP4PCnZCQEBERYciK/7+WLVsGBgY2ggtlaWlpbkuPGSE4ODgtLc3tMtzWIDSn8+fPBwYGymkXFRERkZCQYNAPYsgnYV5eXs+ePQMCAjIyMu68807dX19tyZIlu3fvjouL27x5s6ETGerGjRudOnW6ePHirFmzRJ0l43z66adLly6NiIg4ffq0uK8jXL58OT4+vry8PDc318/PB7rHxsXFbd269ZFHHhENDozz/fffx8fH37x5MycnR1yA0JnusVYuM8ycOVP3F3el3CH817/+JWE6g8i8zFDHpazf/e535CPfsrQuNRtkxowZ5O6ZJ13oH0L5F9znzZtHRJGRkeZ/BNkt+RfctW7qbNy4kcx0U0eL8tzM/Pnz5cyoPPNkxE0dnUPIcutZeQt3emrUVzz11FNE9PTTT8ucdPjw4UQ0ZMgQ9aCpHm+og3iC1PXxI0MZ93iDziHkeghLfCF0PT9hflxnKbTOTygP+jndRDEP5SzFli1bZM5r3IN+eoaQ93FkcZLwxRdflD+1x5RtFcupQq2ThKNHjyai6Oho+Uuqj+nTp5P2qcKEhITmesjLy3N9cYMeedczhG63VXa7Xc5R6Ly8PJO/hbt69913ie9gjnL4a82aNepxMxz+0qJ1OFMhHiv1ntZ/WrfbeC/pFkKtbVVmZqbFYpFTyXzs2LFE9Pjjj0uYy3tKpRnGI6rKMWin6jK8x6Dr8NhjjxHRM888o/UbKisry/Wg9X3KiGPQ+oRQq1iD5DbxWnXWzMkkNdfc1lnjLQiixej+BfWke0EQfUKoVbZI/oPCWhVHzcY8ZYtExVHzlMbSYp7qo7qXxtIhhFoF/FgeFFZqb7/11lvSJvWAqQr4madIZB2WL19OpqnDrW+RSB1CqLWtevLJJ4koPj7e+yka5OOPPyZ3XSjMw2ylbJVtvFMXCvnlkrUoHSl27tzJuxKFjuWSvQ2h1rbqH//4B/G1iRf9mCZNmiR/6p+l9GZ67bXXuNfyk2XLlpG7fkwyGwfUYeLEiUTUr18/3mWo6dg4wNsQum1vUltbK06XLFmyxMvX94xWZ0IzEO1NzNalsLq6WnQm1Gqh49RRQybxgWzCLoV6tdDxKoRajb7Egdp27do5tYmXacqUKWZ4C3eibKtM2K9X9OjVaibH+GVMfDVNTExkmb0OejWT8zyEWi0vlTbxH374oTcr85JJluHE5C0v3bZV1eqoIUd2djaZuHO9Lm1VPQ+hVvNnrTbx8qWlpbF/IKuZv/mzso3Pz89Xj3PdoFNuV77zzjsy560/XRqMexjC0tLSFi1aENHf/vY39bipvoyxfzV1MmDAACKaNm0a90LqMnXqVLfvoW47ahht8eLF4sGdmpoamfM2yCeffEJEYWFhV65c8ewVPAzh+PHj3W6rzHZZkvcirdr27dvNvK1SKNv47Oxs9fjPPrSpO+UR1r///e9yZvSYKIYwYcIEz/64JyHMz8/39/cPCAg4ceKEetycN+gGDRpERMYVCKmPqqoqUb5p1apVjMuop5UrVxJR27ZtnbbxWh01DBIfH09ETz75pIS5vHTq1KkmTZr4+fkdOXLEgz/uSQgffPBBIkpKSlIPmvZRlfo8uKPLI791nPVMTU0loi5duph5W6VQtvGLFy9Wj5eXl4eHh991112FhYVGr0FmDUhdTJs2jYj69OnjwTtUg0O4bds2sa0qLS1Vj5v5oc26H2G9evXqzxxrqZ8ePXq4nb2oqEhsq/bs2WPwD6qbffv2ud3GHzt2TMKNCvnVkL1XVlZ22223EdH27dsb+mcbFsIbN260bduWiFavXq0eN/nxBeUwh9sCIWVlZbocA+3bt6/b2UeOHElEsbGxxv6QeouJiSGiUaNGyZ9afpkiXaxatYqIWrdu3dDToQ0L4aJFi9xuq8x/kC89PZ04+p8o26qzZ8/KnNd7586dE9v4nJwcmfMqZYoyMjJkzuu92trarl27ElFqamqD/mADQlhYWNisWTPXbZVPHGln6QRmt9t79+5NRLNnz5Y2qY5EPU/JLSu4yhTpQmzjQ0JCGlQxqAEhHDFiBBENHjzYadxXirvI74mZmZnpi9sqhbKNz8rKkjMjb5kiXcTGxhLRyJEj6/9H6hvCgwcPWiyWoKAgp22Vb5U5k9kduqKiolWrVkSUmZkpYTqDiH4VERERVqtVwnTs/cO9p2zj6/8+Uq8y+A6Ho1evXrm5uSkpKeJqu2Lr1q2JiYmLFy8WB0NN7vLlyx07dqyoqFixYkW3bt0MnWv9+vUZGRk9evQ4dOiQT1SVd0v5p09ISBgzZoyhcx0/fnzy5MlNmzY9deqU+Froo1JSUpYsWdKAf/r6JLW8vLxfv36hoaFu3w6vXbvmQ9v3iRMnim+2RgsJCQkICPjiiy+4f2JvffHFFwEBASEhIRL+0po1a+b0+LgvslqtoaGh/fr1q+fXkID6/NXY7fbc3NyKiorjx4/36tXL6VeN6hdlAIfDcezYsR9//LFNmzZGd6opKCiorKzcv3+/eLbBd+3fv7+2tjYsLKx79+6GTlRYWHj+/Hnx1LHFYlH/UkFBwWeffZaUlGToAhrq/Pnz2dnZU6ZMCQwMVI8fP37carXm5uba7fZ6vVA9w+3T16wUmzZtIlnfYJUakD7dtk3pt6NjhT8tSr+HzZs3q8evXbvWvHlzi8Vy8OBBo9fQIKLQ7vPPP68e9OA6fH1DyNJkQl9Ky4q1a9fKmVEUoh0+fLic6YwwbNgwIho6dKic6d577z1y12QiJSWFiHr06GGez4ADBw5YLBbXuxEetKxowC0KH32OQaE0b5L2Dym/3ZK+tJo3GUer3ZLZ7uArhXYXLVqkHrdarR40b2pACH3xiT4FVxtDmY0H9aXVxtBoWo0Hs7KyzPMZoG+h3YY9tuZzz7Yr4uLiiCguLk7yvJWVleIt3Cc6b6qtW7euodsqvQwdOpSIhg0bph40z+NHSqHdbdu2qcc9LrTb4FMUPnTKSyG5q6uTDRs2kC903lRTrpFs3LhR/uxa2xaTfAaIi7SuhXY9Prna4BD60HlnwWaz9ezZk4jmzZvHsgBf6byplpycTBLP77rS+gI/atQoIoqJiWFZlUP7/K43NRw8OdS7ZMkSMn3lD8XatWvdXnCTSem86RPb+G+//VZUspDZv8CJcil73bp16nHlM4DrcKaoZDF+/Hj1YG1trShI9/LLL3vwmp6E0Pw1sBTKtmrTpk28K0lISCCiQYMG8S6jPqKjo4lo9OjRvMvYuHGj25u6ovoTS5kCUdPJtdCul3X9PCz0ZPJqkArJZVHqYObOm2piW8Xefsyh2sYnJyerx5WCPStXrpS5HqW64RtvvKEe977Cred1R01bF1khv0BY3ZTOm6bdxivbqqVLl3KvxeHQPqrKUrru9ddfJ6L27dtXV1erx72v9e55CJUOAewte7SwlMqsg7KNT0tL416Le2+//bbYVpmnT8bo0aOJKDo62mlcFHGV0wHa4XBcuXJFVLw3otCuV70oJk2aRCbrlaMwSVdXJx9++CGZqfOmmrKt2rFjB/daflJcXCxOCDht4yWXM3/22WeJaMCAAU7jf/nLX4joueee8+bFvQqhCbvGCbztE+pmqs6bapMnT/ZyW2WQpUuXkrtCftIae4guaMYV2vW2Ndpbb71FpumfqjDnqgTzdN5UO3nypNhWmWpVglLSdsWKFepx5TNg165dhi5A9AN1Oi2htSoPeBtCpZP4q6++6uVL6cUMLfXqZpLOm2piWzV58mTuhbj30Ucfuf3MEc0eDX23/eCDD8hdZ+xXXnnF7eezB3Rol222b18m/C/uxGxvE1r/xU3F7duE0W2Pb9y40aZNGzK40K4OIXQ4HI8//jgRjR07VpdX84Y5N3uuzLNh1nFbZSitDfPevXvFZ4DTDXRdLFy4kIi6du1aW1urHhfldp544gldZtEnhOa5I2fayx5OzHPpSOuyhwlpXToaOHAgEY0bN07f6QoLC8Vz5E6FgnQvtKtPCB0Ox/Tp04nogQceYHw2xcw3AFyZYRuvdQPAnLRuohQUFAQGBvr5+R09elTH6bT6F+heaLdeJQ/rw2q1duzYsaioaPPmzeLwnpPLly+Le8Fe6tq1q6i54OTmzZv33nvv2bNn09LSxNdC84uOjt65c+eYMWPE4T1XCxcurKys9HKWkJCQuXPnuv2lMWPGpKenR0dHi6+F5peWljZlypR27dp9/fXXQUFByvicOXMCAwOnT5/etGlTvebKz8+fMWPG6tWrRf8VYfPmzcOHD7/99tvPnDmjW4kzvdLs0C4QIhw+fFiXBQ8ZMsTt7OZ/KMzVz27jxVMaXgoLC3P74j7Rv8AJ74N1BpUp0u2TkIjsdntUVNThw4fnzZs3f/58p18tLi4W5Zy91LlzZ/GYv1pJSUmHDh2uX7++e/ducRnNVyQnJy9btqxXr17i5LHTry5fvryqqsrLKYKDg0X3PDWHw9G3b98DBw4kJyeLq+2+Yt++ff369WvevPnp06fFERlp5s+fv2DBgsjISHG8WLfX1THQDr4z7D50UMgJ12ErrYNCPoHlsJVxZYp0DqFDo0CIoXzryKwr+ceOtY7M+gqWY8fGlSnSP4SS65r5YvEIJ/ILcMiv/qg7yQU4DN3i6R9Ch9x/Y18so+RK5jaeq/qjvmSWojL6XVLPCzOKysrKTp06Xbp0qVu3bqI4nEEcDkdOTk55efm6deuM7hlktGHDhm3ZsqVVq1biOSzjnDx58tKlS3FxcaKtne9av3792LFjb7nllqioKNdrWjoqLi7Oz89v1apVQUGBIY1xjEi2w+HYsWOHOG1otMjIyKSkJN/dVikuXLjgeg3TINOmTWtQK1lzstlsSUlJkZGREv7GJk2aZNwxS0M+CYWSkpK8vDyDXlxx6623RkVFGT2LHDabbc+ePRImevjhh/39/SVMJEFOTk5ZWZnRs3Tv3j08PNygFzcwhABQH77aQRag0UAIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjA7P8AbMnzBzLh+CYAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -346,7 +368,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAE20lEQVR4nO3dXU7bQBhA0bjqjsr+\nV0DW5D5E4h9KieM7E5/zBFJiWQzXn+2EsKzregI6v+odgKMTIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERHhvlmVZlqXeC/7D73oH2MZTeOu6Xr69fMH4RDixlxNPcvNyvJzPm6H3\nxcMs7hSs0zS+2d6bp1jf8Vmk0f2gvTdPt8SDc004Ihd7h+IwOZArh94Xm7XKI7M8vQ3bu2zq/XZ0\nODJr09j2hPM7GetwWK4Jd7X50Ntqa4QcHXfy2Yniz7bzs00ZhmMyCfdzTQCbjNB1XXU4IBEObfP7\npTockAhHdKPXKhiTCEex240Ww3A0IowlQ0+HQxFhZqv7pT+jw3GIMCMALny8xXFdhmG9F4jw2HQ4\nAhEenQ5zIoSYCDEMYyLkdNJhSoQ7eXys9+BfdFgRIcREyDPDMCFCXtHh/kR4dO+T0+HORHho3sM9\nAhHyAcNwTyI8ri/GoAm5JxEelALHIcIjktlQRMgr+tyfCA/HiehoRHgsChyQCCEmwgMxBsckwqNQ\n4LD89A9BgSMzCSEmwvtnDA5OhHdOgeMT4T1T4BRECDER3i1jcBb+K9PNnc/Pfx37589Ov/oKnIgI\nb+t8Xl6G9+bb/SlwQE5Hd7VPgZ+VpsAxWZWbu5yOOhHlM1ZlJx+muHmfCpyRhdnVh9eET3durq/R\nieiM3Ji5re/ciXl6wJU1KnBSIhzIlTUqbVKOkTd3zeuE15+pGoPjs0JzOJ+Xh4fT6T/HnQKnYJEm\n8/LT6b9eOwXOwjXhZF529RSk2KbmYHkP3o9HY3AilureXIK0rBMRIcS8gRtiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE2F++aZL1t4mbAQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO2deVgT5/bHJ0MwYQ+yqVgVC21/eC2b4IJeK2AVDFVsg8imuCHWi1rbq5bLRWvdalW0POBWFS+gEBDZ3ICKgqCoLCq4I0pRUTAgW4Asvz/GO52LJLIkM1nO5/GPOfhmzsnyzUxmvu95aWKxGAEAgDpQqgsAAHUHRAgAFAMiBACKARECAMWACAGAYkCEAEAxIEIAoBgQIQBQDIgQACgGRAgAFAMiBHpFV1fXixcvqK5CNQERAtLg8/kZGRnBwcHDhw9ftmwZgiAZGRngN5YtNHhBgfdpb2/PycnhcrlpaWlv377F/shgMNhsdkpKyu7du9esWUNthaoEiBD4i7a2ttzcXC6Xm5qa2tLSImkYg8EoLCy0t7cnszYVBkQIIA0NDenp6SkpKTk5OR0dHZKGoSgqEomwbUtLy5KSEj09PbJqVGVAhOpLQ0NDVlYWl8u9cOFCZ2enpGEmJiYzZ87kcDh8Pt/b2xv/e1BQ0JEjR0ipVNURA2pGTU3NgQMH2Gw2nU6X8sEYMWJEaGhofn6+UCjEHxscHEwcExcXR+ETURngSKguPH369PTp01wut7CwUMqbbmFh4enpyeFwnJ2daTRat//l8/njx4+/desWFurq6paUlFhZWcmxbjUARKjiVFVVZWRkfFB71tbWnp6ebDZ78uTJ0ndYUVHh6OjY3t6OhY6OjgUFBYMGDZJl0eoGtQdiQE7cuXMnIiLCwcFB+rtvbW0dERFRWVnZp51HRUURd7JhwwY5PQs1AY6EKkVFRQWXy01MTLx3756UYdbW1hwOx8/Pr99nkl5eXqdPn8a2URQ9f/68m5tb/3YFgAiVHpFIVFpampGRER8f/+jRI0nDUBSdOHEih8P55ptvzM3NB5iUx+PZ2to+e/YMC83MzMrLy83MzAa4W/UERKisCIXCoqIiLpebnJz8/PlzScM0NDQmTJjA4XC8vb2HDh0qwwLy8/OnTZsmFAqx0N3dPSsr6/1rOcCHofh0GOgjAoEgPz8/NDR0yJAhUt5WBoPh5uYWGRlZV1cnv2LCw8OJSSMjI+WXS4WBI6FywOfzs7OzMzMzU1NTX79+LWmYlpaWq6srh8OZM2eOvr6+vKsSCoVubm55eXlYyGAwioqK7Ozs5J1XxQARKjQ9GqnfR1tb28XFhcPhzJ07V1dXl8wKa2pqbG1t37x5g4VgZ+sPVB+KgR5obW1NT08PCAiQrihDQ8OAgICkpKSWlhYKq01OTiZWtXjxYgqLUUZAhApEQ0NDbGwsm81mMBhStGdkZBQQEJCent7R0UF1ye9YunQpscL4+HiqK1Im4HSUeurr68+cOcPlcs+fP9/V1SVpGG6kdnd3l277JB8+n+/k5HT79m0sNDAwKC0ttbCwoLYqZQFESBk1NTVnz57NyMg4d+6cQCCQNGzkyJGzZ8/mcDiTJk1CUcXthHDnzh0nJyeine3KlSuamprUVqUcUH0oVjuqq6sjIyN7tEcTsbCwwCYxiEQiqkvuLfv27SM+hbCwMKorUg7gSEgSvTdSczgcT0/PD9o+FRCxWOzl5ZWWloaFKIpeuHDB1dWV2qoUHxChfMHMnJmZmTdv3pQyDNOej4/PZ599Rlpt8qCbnc3c3LysrMzY2JjaqhQcEKFcwLR38uTJ+/fvSxqDoqidnR2bzR6IkVoBuXz5souLC9jZ+gClJ8MqhVAovHHjRkREhKWlpZQXHEVRZ2fnyMjIP//8k+qS5UVYWBjxKe/bt4/qihQaOBIOlL4aqefNmyfd9qkCCASCqVOnFhYWYiGDwbh69aqtrS21VSksIMJ+gmsvKSnp5cuXkoYxmUw3NzdPT885c+aYmpqSWSG1dLOzWVlZlZSUkGypUxqoPhQrGe3t7ZihjMViSXlVtbS02Gx2bGxsU1MT1SVTBpfLJb4mS5cupboiBQVE2Cva2tow7UmfmqCtrY1pr7m5meqSFYLFixcTX5+EhASqK1JE4HRUGo2NjdnZ2RkZGdI7UhsaGrLZbA6H8+WXX0q3faobra2tjo6Od+/exUIWi1VaWjpq1ChKi1I4QIQ98ObNm8zMzA92xTUyMvLw8OBwODNmzIB2Y5LoZmdzcnIqKCgAO9v/QPWhWIF4/fo1NolB+kcEW58oPT29q6uL6pKVg8jISOILGB4eTnVFigUcCZGamppTp05lZmbm5eX1xkj9Qdsn0A2xWDxnzpz09HQsRFE0OzvbxcWF2qoUB/UVYXV1dVpa2gA7UgO9pL6+3sbGBr+PCnY2ImonQnUwUismly5dcnV1xe1sHh4emZmZ8L2GIGrzmxDrSG1tbS391cA6Ut+9e5fqelWTDRs2EF/tqKgoqitSCFT8SKjORmoFRCAQ/P3vfy8qKsJCBoNx7do1GxsbaquiHBUUoUgkKiwszMzMTElJkdKRGjdzyqQjNdBLnj17Zmtry+PxsNDa2vr69eva2trUVkUxVB+KZQbeFXfYsGFSnq+GhgY2ieHFixdUl6ymJCUlEd+R4OBgqiuiGKUXIa496QshMJlMNpt94MCBV69eUV0yIA4KCiK+OydOnKC6IipR1tNRrCM1l8tNT09vamqSNIzkjtRKR2dnZ3Fx8QfXJJQ5ra2t48aNw5eOUnc7G9XfAn0DN1JL7/EMRmrpYHNBli1bZmJiQqPRnj59Sn4Nt27dYjKZ+Fs2efJktXUgKYcIeTxeUlJSQECAjo6OFO1hHanT09P5fD7VJSsikuaC7Nmzh5J6du/eTSwjIiKCkjIoR6FFiHeklm6PxjtSd3Z2Ul2yIvLBpvqTJ0+mpDCRSOTp6YmXgaJobm4uJZVQiyKKsJdG6o8++giM1FKor68/fPiwh4eH9K8wMzOzkJAQqrqbvnr1irhq4vDhw+vr6ymphEIUSITPnj2LjIx0c3OT3uN95MiRStcVl0yUbi7IxYsXNTQ08MK8vLyorYd8qBfhkydPetORevTo0aA9KTx79uzAgQNsNlsZv8LWrVtHLDI6OprqikiFMhE+fvwY056UTwzyXzPnjRs3qKpTwVGNpvpdXV0TJ07Eq2UymWVlZVQXRR5ki7BPRup79+6RXJ6ygH+FSdeeEn2FPX78mHjN1traurW1leqiSIIkEWLa++STT6R8YlAUdXBwiIiIePjwITlVKR3Yy/jB2VVKOhckMTGR+CxCQkKorogk5ChCoVCYn5+/bt26jz/+WMonBjdz1tbWyq8YpQbT3qefftqbr7AHDx5QXW//WbBgAfFJnTx5kuqKyED2IsTNnMRLz1K0B0bqHsG/wtSqqX5LSwvxu4bFYlVXV1NdlNyRpQizs7ODgoKMjIykfGi0tLTmzJlz/PhxHo8nw9QqA8wFuXnzJvHG5pQpUwQCAdVFyRdZijAwMFCK9qAjtRT6Ohekrq6O6pLlyK+//kp81hs3bqS6IvkiGxHyeLxz585t3Lix24eGxWJxOBwwUksCmur3iEgkYrPZ+NNHUfSPP/6guig5IhsR5ufnEz80gwcPBiO1FKCp/gdRKzub7EU4ZswYlT+J7x/4XBDpixPBXBCM8+fPoyiKvyxz586luiJ5IXsROjs7y2SfKgPMBek3P/zwA/El2r9/P9UVyQUQobxQOiO1AtLZ2TlhwgT8tWIymeXl5VQXJXukmX2BfgBN9WWIpqZmXFycvb3927dvEQTh8/m+vr7Xr1/X0tKiujSZIhMpw5EQ5oLIj252tm+//ZbqimQMiHBAqJ6RWjEJCAggvp6pqalUVyRL4HS0P2CNvblcbmVlpZRh2IIWPj4+n332GWm1qSTR0dHFxcV4G/VFixbZ29uPGDGC2qpkBYiwD/Spqb6/v7902yfQe3R1dePj4ydNmoSt2crj8fz9/btNyVdiZHI8VeHTUZgLojj88ssvxNd88+bNVFckG0CEPQNGagVEJBLNmjULf/HpdHpBQQHVRckAOB39H4RCYVFREZfLTUxMrKurkzSMyWS6ubl5enp6eXmZmJiQWaE6Q6PRjhw5YmNj8/LlSwRBBALB/Pnzy8rKBg8eTHVpAwJEiCDQVF95MDU1PXbsmLu7u1gsRhCkpqZm2bJlycnJVNc1MGRyPFXS01Foqq+krF27lvgGHTp0iOqKBoQ6irCXTfVhLojC0tnZOX78eOK3ZGVlJdVF9R81Oh198+ZNZmYml8u9cOECdqW7R4yNjd3d3TkczsyZM6XbPgGq0NTUjI+Px+1sbW1t3t7excXFympnk4mUFflICE31VZVjx44R38HQ0FCqK+onKitCaKqvDvj7++NvJY1GO336NNUV9QdVOx2trq5OS0vjcrmFhYViyeufjh49ms1mwyQGZScmJqa4uPjBgwcIgojF4qCgoLKyMqWzs6mICKuqqjIyMrhc7pUrV6QMw8ycnp6eH+yfCygFmJ3N2dkZt7MFBgbm5uYqmZ1NJsdTqk5Hoak+IBaLt2/fTny7t2zZQnVFfUMpRQhN9QEiQqFw+vTp+FtPp9OvXLlCdVF9QPlORy9fvjx16lRJ/0un06dOnfr11197eXkNGTKEzMIAqkBRNC4ujmhn8/HxKS8vNzQ0pLq0XoF+eIiC4ezsbGpq2u2PuJG6pqYmJycnJCQEFKhWmJqaHj16FL/GhtnZqC2p9yifCDU0NGbPno1tYx2pY2Nj6+vrCwoKVq1aBdpTW2bOnLl69Wo8TE5OPnLkCIX19B7lOx1FEMTHx6epqenrr7/28PCQ3sMTUCt27Nhx5cqV4uJiLAwNDZ00aZLitzWgiSXfTOs9BQUFU6ZMwbadnZ0LCgoGvk8A6AePHj2yt7dvbm7GwrFjxxYXFzOZTGqrko7ynY4CgBQsLS337t2Lh7dv396wYQOF9fQGECGgagQFBfn5+eHh3r1709PTKazng4AIARVk//79VlZW2LZYLF6yZMnz58+pLUkKIEJABcHsbPjiH69fv/b19RUKhdRWJQkQIaCaODo6EhfMvHTp0s6dO6krRxogQkBlWbdunZubGx6Gh4cXFRVRWI8kQISAyoLZ2fAVyAUCgb+/v5RGXlQBIgRUGTMzM6KdraqqaunSpdSW9D4gQkDFcXd3Dw0NxUMul9utLwblgAgB1WfHjh12dnZ4uHLlynv37lFYTzdAhIDqw2AwkpKS8O6yra2t3t7efD6f2qpwQISAWmBpablnzx48vH37dlhYGIX1EAERAurC4sWLfX198XDPnj0ZGRkU1oMDIgTUiOjoaAsLC2xbLBYvXrz4xYsX1JaEgAgBtcLAwCAxMRFvA43Z2UQiEbVVgQgB9cLR0TEiIgIP8/Lyfv31VwrrQUCEgBqyYcMGV1dXPAwLC7t69SqF9YAIAbUDRdHY2FhjY2MsFAgEfn5+2Noy1NRDVWIAoBBzc/Pjx48riJ0NRAioKe7u7itXrsTDpKSk48ePU1IJiBBQX3bu3Glra4uHK1asuH//PvllgAgB9QWzs+FdM1tbW/38/KQsICsnQISAWmNlZbV79248vHnzJvl2NhAhoO4sXbp0/vz5eLhr167MzEwyCwARAgASHR09atQobJt8OxuIEAAQFotFtLO9evVq4cKFpNnZQIQAgCAI4uTkFB4ejocXLlwg/laUKyBCAHhHWFiYi4sLHv7444/Xrl0jIS+IEADegaLo8ePHcTtbV1cXOXY2ECEA/IW5uXlsbCxuZ3v8+PE//vEPeScFEQLA/+Dh4bFixQo8PH78eFxcnFwzgggBoDu7du2ysbHBw5CQkAcPHsgvHYgQALrDYDASEhK0tbWxsKWlxdfXV352NhAhAPSAtbV1Nzsb8QaGbAERAkDPBAcH+/j44OHOnTuzsrLkkQhECAASiYmJIdrZFi1a9PLlS5lnARECgERYLNZ//vMfOp2OhZidTSwWyzYLiBAApDF58uR//etfeHj+/HliJ2+ZACIEgA8QHh5OtLOtX79etnY2ECEAfACsO5uRkREWdnV1+fv7Nzc3y2z/stoRAKgww4cPP3ToEB4+evSIuObhAAERAkCv8PLyCgkJwcNjx47Fx8fLZM8gQgDoLbt37yba2ZYvXy4TOxuIEAB6C5PJjI+PJ9rZZNKdDUQIAH1gzJgxxAVkbty4QVxepn+ACAGgb4SEhMybNw8Pf/nll+zs7IHsEEQIAH1m//79I0eOxLZFIlFAQMBA7GwgQgDoM5idTUNDAwvr6uqCgoL6bWeTjQgZDHTMGFPs30cf6ctknwCgyEyZMoVoZzt37tzevXv7tyuaTNyoLS0F9+9PwbZ1dZ0//bRg4PsEAAVHJBK5ubldvHgRCxkMRlFRkZ2dXV/3A6ejANBPsO5suJ2to6PD29u7H3Y2ECEA9J/hw4cfPHgQDx89erR69eq+7gRECAADYu7cucHBwXh45MiRhISEPu0BRAgAAyUyMvLzzz/Hw+Dg4IcPH/b+4SBCABgoTCYzISFBS0sLCzE7W1dXVy8fDiIEABnQzc52/fr1bdu29fKxIEJA1cjKypJ5G5jesGLFilmzZmHb06ZNW7JkSS8fCCIEVIqkpCQ2mz19+vTnz59TWEafvgVAhIDq8Pjx46VLlyIIkpuba29vf+nSJTKzR0dH441J8/LyDh8+3MsHgggBFUEgEPj7++MrmTU1NRkaGpKWvaKi4vvvv8dDR0fHDRs29PKxIEJARQgLC7t69SoedrttIFf4fL6vr297ezsW6urqxsfH44tvfxAQIaAK5OXlES9OdruBLm9Wr15969YtPDxw4ICVlVXvHw4iBJSe169f+/r6ikQiLOxmJZM3p06dOnDgAB4uWrTI19e3T3sAEQLKjVgsXrx48YsXL7Cwm6la3vz555/Lli3DQ0tLy8jIyL7uBEQIKDd79uzJyMjAw3//+9/Tpk0jJ7VIJAoMDGxoaMBCBoORlJSkp6fX1/2ACAElpqSk5Mcff8TDbhNt5c1PP/2ETyZEEGT79u39mEyIgAgB5aW1tdXPz6+jowMLu7WckDf5+fk///wzHs6cOXPVqlX92xWIEFBWVq5cee/ePTwkNl+SN42NjQEBAUKhEAvNzMyOHj1Ko9H6tzcQIaCUcLncY8eO4WG3NoTyZvny5U+fPsW2URT9z3/+M2TIkH7vDUQIKB9VVVWYPQ3D2tqaeJNQ3sTExCQmJuLhP//5z+nTpw9khyBCQMnA7GlNTU1YiM3lw1vTy5tu9rRx48Zt2rRpgPsEEQJKRnh4eFFRER52W6RFrvD5fD8/v7a2NizE7GmDBg0a4G5BhIAycenSpZ07d+LhrFmzli9fTlr27777rry8HA/379//ySefDHy3IEJAacDsafg1yeHDh8fGxvb7mmRfSU1NjYmJwcOFCxf6+fnJZM8gQkA5EIvFS5YswafqdlvCWt78+eefxEtBlpaW+/btk9XOQYSAcrB379709HQ8DA8Pd3FxISe1SCRasGABbk/T1NSMi4vrhz1NEiBCQAm4ffs2cY7s5MmTybSnbd68+Y8//sDD7du3jx8/Xob7BxECik5ra6u3tzefz8dCzJ5Gp9PJyV5QUEC0p82YMWPNmjWyTQEiBBSd0NBQoj0tJiZm1KhR5KTG7GkCgQALTU1Njx07JvNLQSBCQKFJTk4+cuQIHgYHB/v4+JCWPSQkpLq6Gtum0WhHjhwZiD1NEiBCQHGpqakhTpm1trbevXs3adkPHDhw8uRJPPzhhx/wtqKyBUQIKCgCgcDHx4fH42Ehg8Eg055WWVn53Xff4aGDg8PmzZvllAtECCgoERERhYWFeLhr1y7S7GkdHR2+vr5Ee1pCQsLA7WmSABECisilS5d27NiBhx4eHitWrCAt+9q1a4n2tJiYGJnY0yQBIgQUDh6PFxgYiNvTzM3NybSnnTlzJjo6Gg8DAwP9/f3lmhFECCgWYrE4KCjo2bNnWIh1TzM2NiYne21t7YIFC/CVJD7++OPffvtN3klBhIBi8dtvv6WlpeFhWFgYmfa0wMDA+vp6LNTU1IyPj9fX15d3XhAhoEDcuXNn/fr1eOjk5BQeHk5a9i1bthDtaVu3bpWtPU0SIEJAUWhra/P29sZXdGCxWImJib1f0WGAFBcXE29CfPnll8RbFHIFRAgoCqtWrbp79y4eRkdHk2lPmzdvHr7ANWZPQ1GS1AEiBBSClJQU4oJ+S5cunT9/PmnZV6xYQbSn/f7770OHDiUtO4gQoJ5u9jQrKysy7WmHDh06ceIEHq5du5bNZpOWHQERApQjEAjmz5//5s0bLMRWdNDV1SUn+8OHD7vZ07Zs2UJOahwQIUAxmzZtunLlCh7u3LnT1taWnNQdHR3e3t4tLS1YqKOjI5PuaX0FRAhQyeXLl7dt24aH7u7uK1euJC37Dz/8UFZWhofR0dGffvopadlxQIQAZfB4PBmu6NBXzp49GxUVhYfe3t6BgYHkpO4GiBCgjG72tPj4eDMzM3JS19bWBgYG4va00aNHHzp0iJzU7wMiBKghKiqKaE/bsGGDq6srOamx7mm4PY1Op5NjT5MEiBCggIqKin/+85946OjoGBERQVr2bdu25ebm4uGWLVsmTJhAWvb3ARECZMPn8319fXF7moGBAZn2tOvXrxOXcPniiy+IC7xQAogQIJtVq1bdunULD6Ojoy0sLMhJ3dTURLSnmZiYJCQkkGZPkwSIECCVU6dOHTx4EA8XL17s6+tLWvYVK1Y8efIE2ybfniYJECFAHu+v6LBnzx7Ssv/+++8JCQl4uGbNGk9PT9KySwFECJCESCQKCAjoZk+T4YoO0nn06BGxc/bYsWPJt6dJAkQIkMSmTZvy8vLwcMeOHXZ2duSkxuxpzc3NWKijo5OUlMRkMsnJ/kFAhAAZ5OfnE4887u7uoaGhpGVft25daWkpHkZFRX322WekZf8gIEJA7lBuTyOuJcjhcBYuXEhO6l4CIgTkzvLly58+fYptoygaFxdHmj2trq4uKChIQexpkgARAvIlOjo6KSkJD9etW+fm5kZOapFI5O/vX1dXh4V0Oj0uLs7AwICc7L0HRAjIkYqKCqIfZdy4cRs3biQt+44dO3JycvBw8+bNEydOJC177wERAvKimz1NV1eXzCmz169fJwp+6tSpP/zwAzmp+wqIEJAXa9asIdrT9u/fL9cVHYi0tLT4+fl1dnZiIWZP09DQICd7XwERAnIhNTV1//79eLhw4UI/Pz/Ssi9fvvzhw4fYNo1GO3z48LBhw0jL3ldAhIDsed+eRrxJIG+OHj0aHx+Ph6tWrfrqq69Iy94PQISAjMFWdGhoaMBCTU3NuLg4Mu1pq1atwsOxY8cSe9goJiBCQMb89NNPFy9exMPt27eTs6IDgiBdXV1+fn4Ka0+TBIgQkCUFBQU///wzHs6YMYNom5Y369atKy4uxsN9+/YplD1NEiBCQGY0Njb6+/vj9jRsRQfS7Gnnzp2LjIzEw2+++WbRokXkpB4gIEJAZrxvTxsyZAg5qV+9ekW0p3300UfEqcMKDogQkA379+9PTEzEw++//3769OnkpMbsaS9fvsRCOp1+8uRJQ0NDcrIPHBAhIAMqKyvXrl2Lhw4ODsS1/uTNzp07s7Oz8XDTpk2TJk0iLfvAARECAwWzp7W1tWGhrq5uQkICafa0Gzdu/Pvf/8bDqVOnrlu3jpzUsgJECAyUtWvXlpeX42FMTAxV9jRDQ8Pjx48rrD1NEiBCYEBkZWXFxMTgYWBgoL+/P2nZQ0JCHjx4gG3TaLSjR4+OGDGCtOyyAkQI9J/a2toFCxbg1yQ//vjj3377jbTssbGxcXFxePiPf/xj9uzZpGWXITT8FRwIYrFAKGx8t0eapoaGws2bBGSOSCSaPn36H3/8gYWampr5+fmkmWMeP35sb2//9u1bLPzb3/5WXFyspaVFTnbZQpfJXmg0Op1uLJNdAcrCzz//jCsQQZCtW7eSbE/DFaitrZ2UlKSkCkQQBBEDQN+5du0acfWIL7/8UigUkpadeDsEQZBDhw6RlloeyOZ0FFArGhsb7ezsqqursdDU1LSsrIy0fvLnz593d3fHP7dff/11cnIyOanlBFyYAfpMSEgIrkCSV3R49erVwoULxcppT5PEgH4TikRtTU1ZTU1n29tvd3ZWC4XNCCLW0NDV1ByqpTVWX/9LFutrDQ3K1l4E5MHBgwdPnjyJh2vXrmWz2eSkFovFixYtItrTTpw4MXjwYHKyy4/+n442NByvrV3X1fVSyhg6fbC5+Q5j4yX9SwEoGpWVlY6Ojrg5xsHBobCwkDRzzM6dO4lLi27evPlf//oXOanlSj9F+Px5xIsXP/3PjmgMOp2FIDSBoEEs7iL+19ChEcOGbRxIlYAi0NHRMWHChLKyMizU0dG5efPmp59+Sk72mzdvTpo0CTfHTJky5eLFi0pnjumR/pyOvn2bjSuQRtMwMVlhZLRIS2ssjaaBIIhY3NnaWvzq1W883ruWry9e/KSnN01Pb6qsigYo4fvvv8cViCBIdHQ0aQp8354WFxenGgpEkH7donjwwO3GDQT7x+OdljTsxYut+LD796f2IxGgOGRlZRGn53p7e5OZPSAggPihTU1NJTO7vOnz6ahY3FlSooUgIgRB9PRcPvkkV8rYysqx7e0VWDB27JNBg0b1KRegINTW1tra2tbX12Ph6NGjS0tL9fVJuuSWlJQ0b948PPz222+joqLISU0OfT4d7ep6gSkQQRBdXemztmhGRgtfv47R0vpcS+vzvqodUBBEItGCBQtwBdLp9Pj4eNIU+PjxY2L3xDFjxuzcuZOc1KTRZxGKxYIet3vEzOx7M7PvpY8BFJytW7fm5v51vrNly5YJEyaQk7qrq8vf3x+3pzGZzISEBCW2p0mgzzfrNTWH0Wjv/Epv316QdT2AYlFcXPzTT39dBv/iiy+IC7zIm7CwsKtXr+JhZGTk559/Tlp20ujPLYqHD798+/ZdNwFT05XDh+/GZQmoEk1NTXZ2dk+ePMFCExOT8gV52FMAAAz3SURBVPJy0swxFy5ccHd3F4ne/faZO3duSkoKOalJpj8ibG29ev/+ZLH4XWc7BsPK1PRbFstr0CDlm08JSMHX1/fEiRPYNo1GS0tL8/T0JCf169evbWxsXrx4gYXDhw8vKyszMjIiJzvJ9PNmPY+X/OSJv1jcQfwjg2Glr++qp+eqp+dCpyu9mUjNOXz4MPGKyHfffbdr1y5yUovF4q+++iozMxMLURTNycmZNm0aOdnJp/+2tba20tra9RJ+FqK6uhMMDTmGhvM1NUlaGBmQIQ8fPnRwcMD7ydvb2xcWFjIYDHKy79q1i/jLc+PGjREREeSkpoSBTmVqby9/8+ZEY+NpPv/++/+LolomJiFDh4ZraLDwP758uV1T05zF8iT+EVAcOjo6Jk6cWFpaioU6Ojo3btwgrZ98SUnJxIkTVdKeJgmZzSfs7PyzuTm3ufmP5uaLnZ01xP9iMq2trM5ivxhFopbyclORqJ1G09DRwY6W8zQ1SerTDPSGVatWEVcyO3r06MKFC8lJ3dra6uDgcP/+uy90FotVVlY2cuRIcrJThVwm9ba3l9fXH66vPywS8bG/MBiW1tblKKrN4yVWVfn8TwV/qZGjqam4KzmqCWfPnp01axb+qeBwOElJSaRlX7hwYWxsLB6ePHmS6JVRVeQ4s57Pf/DokUdHx2MsHD78VzOztVVV3jweV8IjUG1tOwMDtpGRP4NhKaeqACnU1dXZ2NjU1dVh4ejRo0tKSgwMSGrb1c2eFhISEh0dTU5qapFve4v29orKys8xm5uOzvjPPrva3l7O43F5vBQ+/56UqnR0HFmsuYaG3zAYH8uvPICISCSaMWNGTk4OFtLp9MuXL0+cOJGc7FVVVXZ2drg5xtra+vr169ra2uRkpxa595i5d29Ca+s1BEFQVMvOrg3/e0dHVVNTBo/HbWkpRBCJNTCZ1oaGHBbLU1vbQa51Alu3bg0LC8PDbdu2rV+/npzUAoHg73//e1FRERYymcyrV6/a2NiQk51y+iZCsbijre1WW9uNtrYbxsbLdHQ+3OLu8WOvxsbT2La9vQCbc0iks7O6sTHtg2pkMEYbGLANDTm6us4IQtKSd+rD9evXnZ2du7rezcaeOnVqbm4uadck169fv2PHDjyMjo4OCQkhJ7Ui0DcRNjamP378rsmxsfGSkSMPffAhd+86trXdQBCETh9sY9MgZWRnZ01j46mmpszm5jwp1vBBg0ayWLNBjTKkpaXF3t7+4cOHWGhiYlJWVjZsGEkXyfLy8tzc3PClRb28vE6dOkVOagWhbyIUiVrLy81EolYEQVBUd8yYCulWNT6/sqLib9jxTV9/upVVrwzfAkF9U9MZHo/79u35bp0yiAwa9JG+vjuLxdbXd6fRZNPFWD3x8/NLSEjAtmk0WkZGxqxZs8hJrVb2NEn0bRYFiuqYmKzAtkWilkePPDo7n0oa3NVVW1XljZ9hDh7s28ssdLqxkVGgpWXG55+/HDUq1sCATaP10Eqos7Omvv7go0df3bo1pLo6sKkpQ4piASksWbLE3Nwc2161ahVpChSLxYsXL8YViKJobGysuikQ6ceFGaHw7d274zo63p26oKi2sfEiFmuOltbnGhqDxeIugeBlZ+ezpqYzr1/HCIV4o3KH//u/4n63ORUKG9++zW5qyuDxTmHH4R7R0DBksdiGhhx9/S9pNJI8VqpBfX39okWLqquri4uLmUwmOUn37Nnz3Xff4WFERMTGjRvJSa1Q9OfqaEfHw4cPZ3Z0VPVyPJP5f5988odMbDEiUXtzcw6Px21sPC0UNksahqLaenouhoYcQ8O5KKo78LzqgFgsfvPmDWkHotu3bzs5OfH57+wckydPvnjxIp2ujj8r+nmLQiBoqK3d0NBwBJ/Q1CMoqm1ismLYsE0oKuMbPiIRv7k5m8fjNjamC4VNkgvQ0tNzNTTksFhzoA2x4tDa2jpu3Lh7997dK2axWKWlpaNGjaK0KMoY0H3Crq7nPF5yS0t+e/udrq46kagFQVANDQNNTTNtbTtd3cmGht7yXiZNLBa2thbxeFweL7Grq07SMBRl6um5sVieLJYXnW4i15KAD7Jo0aKjR4/i4YkTJ3x8fKSMV21UZ0EYghqTu7qeSxoGxnHK4XK53t7eeBgcHLx//34K66Ec1REhAVFLS2FTUyaPl9LR8UjSIIIav9HUNCezPnXm2bNntra2PB4PC9XKniYJlRThX7S3V/B4XB7vZI/THf8Lbhz3YzCsyCtO/ehmT2MwGNeuXVMfe5okVFyEOP9VI5fPr5QyDLOqDh7sw2SSNIdVrfjxxx+3bduGh1FRUd9++y2F9SgI6iJCHDCOU8WlS5dcXV1xe5qHh0dmZiaxtb7aonYixOm1cdzCwMATrKoDpL6+3sbG5vnzdxfMzM3Ny8rKjI2Nqa1KQVBfEeKAcVzeiMXiOXPmpKenYyGKotnZ2S4uLtRWpTiACP+i18bx4fr6HmAc7z179+5dvXo1HoaHhxO7egMgwh4QCN40NWXyeNy3b7O79VYlQqcbGRh4GBpy9PVn9GgxBxAEuXPnjpOTU3t7OxY6OTkVFBRoakLL9r8AEUqDYBxPFYlaJA0D47gkWltbHR0d7969i4Vqbk+TBIiwV4hELU1NZ3i8lKamM1LVaHD79jIdnQnu7u6qt3hQP1iyZMnvv/+OhwkJCfPnz6ewHsUERNg3MON4Y2NmY2OqQPD6/QH+/qPv3avS0tJydXXlcDhz5swhbSk/RSM5OZnD4eDh0qVLDx48SGE9CguIsJ8QrKpJXV0vsT++fGnBZj8hDmMymW5ubp6ennPmzDE1NaWiUmqoqamxtbV98+YNFlpZWZWUlOjqwrSyHgARDhSicTw+/pNffsnrcZiGhsaECRM4HM68efOGDFFx47hAIJg6dWphYSEWMhiMq1ev2traUluV4iKLhe8BDOH161dWr149YoS0vjsaGhrTpk2Lioqqra2lumB5QWydiCDIvn37qK5IoYEjoVyoqKjgcrknT57El1V4HxRF7ezs2Gy2n5+flZXqGMcvX77s4uKC29Pc3d2zsrLAniYFEKF8wdSYmZl58+ZNKcOsra05HI6Pjw9pix/JCR6PZ2tr++zZMywEe1pvABGSRFVVVUZGBpfLLSwslPKaW1tbe3p6stnsyZMnk1meTBCLxV5eXmlpaViIouiFCxdcXV2prUoJoPRkWB2prq6OjIx0dnaWfoZmYWERGhqan58vEomoLrm3EBdUQxAkLCyM6oqUAzgSUkZNTc3Zs2czMjLOnTsnEEg0jo8cOXL27NkcDmfSpEko2s+ekSTQzZ7m6Oh45coVsKf1BhAh9dTX1585c4bL5Z4/fx5fDeJ9TExMZs6cyeFw3N3dFa01IJ/Pd3Jyun37NhYaGBiUlpZaWFhQW5XSQPWhGPiLhoaG2NhYNpstfXV4IyOjgICA9PT0jo4Oqkt+x9KlS4kVxsfHU12RMgEiVERaW1vT09MDAgKkW0wMDQ0DAgKSkpJaWloorDY5OZlY1eLFiyksRhmB01GFpr29PScnh8vlpqWl4Qtovo+2traLiwuHw/Hy8tLT0yOzwm72NEtLy5KSEpJrUHZAhMoBn8/Pzs7OzMxMTU19/boH4zgGycZxoVDo5uaWl5eHhQwGo6ioyM7OTt55VQ2qD8VA3xAIBPn5+aGhodINqAwGw83NLTIysq6uTn7FhIeHE5NGRkbKL5cKA0dCZUUoFBYVFXG53JSUlNraWknDcOO4t7f30KFDZVhAfn7+tGnTwJ42cECESo9IJCotLc3IyIiPj3/0SGLHcRRFJ06cyOFwvvnmG3w1wn7TzZ5mZmZWXl5uZmY2wN2qJyBClQKzqiYmJuILHvUIZlUdiHHcy8vr9OnT2DaKoufPn3dzc+vfrgD4Taia3LlzJyIiwsHhA52Lra2tIyIiKisr+7TzqKgo4k42bNggp2ehJsCRUMWRuXG8oqLC0dGRaE8rKCgYNAiazfUfEKG68PTp09OnT39QjRYWFp6enhwOp0eLOZ/PHz9+/K1bt7BQV1e3pKRElSZDUgO1B2KAfGpqag4cOMBms6UbUEeMGIFN4xAKhfhjg4ODiWPi4uIofCIqAxwJ1ZeGhoasrCwul3vhwoXOzk5Jw3DjOJ/PJy7uGRQUdOTIEVIqVXFAhADS0NCQnp6ekpKSk5PT0SGx4ziKoiKRCNsGe5oMARECf9HW1pabm8vlclNTU1taJPY4ZjAYhYWF9vb2ZNamwoAIgR7o0TjOYDDYbHZKSsru3bvXrFlDbYWqBIgQkAZuHD99+vT48ePT09MzMjLYbDbY02QIiBDoFV1dXfX19bJ1nwIYIEIAoBjFbRwEAGoCiBAAKAZECAAUAyIEAIoBEQIAxYAIAYBiQIQAQDEgQgCgGBAhAFAMiBAAKOb/AY5akbglJ4eaAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -358,7 +380,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGL0lEQVR4nO3dXXbTTBZA0ahXz4j5\nz+BjTO4H024TYkf/p0Tv/RTWMqTAPlyVJMfT7Xb7ADr/qhcA/+9ECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERnmSa\npnoJDOrf9QL+fvf8brfb44t6RYxl8po4zpfVSZFPRHiIb0uTIg8i3N80zf1Xnf9I/mJeBHtaMd+M\nRES4j40tXSvFnz//d6b3x49rrHlkItxqx34ukeLPn9NzeJ9+yQouUWyy76bu/kdda6OowO2u9HwP\nZenUWpTW4CPxfjgqv72IcLHVhazodt032ter5KS4FxEus/1Y8dARuqPH2Zf3mdkTbmdPONdec+mx\n8Zv5p518v9u37aludyL83hENLDoHs7TbFWbOPY7gcPSdE0ZQu1Fc157rhPsS4UtnbsZO3ihO0/TP\nPx8fEhqDCL9QnZY89DLG8xsaPelD8abe30zTdC8heZnez8HMfPvvfZHvHz89uT3Zb8m/eT5MZT6T\n8JdBLsrdbdkothPPudMVnB39+BjvTrEVlzEWPZ6hOBwd1+OAc9FvOW49c/z4cXNQupQIR7doozgC\nHS4lwguYcw5mKDpcRIQvjfaKv1yKzCTCi1mxUUwYhvOJ8JLyEzBz6HAmEXIgHc4hQoiNdZG68uXF\n+tGu4H9r2AUPu7BBmIQc7hJnkkIihJgIOYNh+IYIOYkOXxEh59Hhl0QIMRFyKsPwTyLkcJ+q0+En\nIuRYX16p1+EzEUJMhBzozQ1rhuGDCDnK+1tG3VD6IEICCnwmQg4hs/lEyP4ciC4iQk6lwD+JkJ1N\n08sfgaPAL4mQPU3Tx6vKFPiKCNnNmwJ5Q4ScwRh8Q4Ts4+2B6DV+UGpFhOzguwLPXc3ViJCtZLaR\nCDmQPucQ4SWN8/4DB6Lb+bjsixntM7EVuJ0IXxrnhX43Wn7sRYQXcLn8jMFFRDi6y13mVuBSTsyM\n6/7J2IsKHOeEDfNd7H/Z4wx1yLd0Mc+Pf+7w/L+OMbiCCH8zQoqLpt/7BbdBMpMIv1CluOj7rpuW\nd570oYjwpTPPiKwoasva/hukJ38IInznhJG4Zfu3x3f/9YVXQUiE3zsuxR23f5tX8usLL4fziXCu\nvUfQgdu/Le41elGcSYTLbN8onrz9W8dgPJMIF1s9l9rt3zoG4wlEuNKhA22E/L7057V4V+e3c+/o\nSo/bU2amMvjx53yq250IN3l8vtcu2Qw7AJ/dbjrcmQi3er5jc3U/l8iPg4hwH6tTvGJ+huG+RLin\npRvFwbd/b+hwRyLc35yN4hUHIAcR4SHeHJ3+NfndhyHbifBAn1L8a/J70OEurronuZzrbv84mp8x\ncxIF8ooIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKI\niRBiIoSYCCEmQoiJEGIihJgIISZCiP0H2f3F/UcD2DcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXhTVd4H8JPuC1sLQoHKDkIRWQoFqaCyL/F1Zp5B1pTBZ+wASkAFqq9oQEEqigSZAaoihk3hnedxDAo4tKDgUkra0r10oTt0owtt0iXLef84JdZSoElvcrJ8P49/jNPee361+TY35/7OuSJKKQEAflx4FwDg7BBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzpw9hNXV1VVVVbyrAKfmvCFMTEx8+umnZ8+ePXDgwLCwsIqKCt4VgZMSUUp512Bt5eXlW7ZsOXTokMFg6Natm1qt1uv1/v7+27ZtW716tZubG+8Cwbk41zuhVqvdu3fviBEjPvvsM1dXV6lUWlhYmJaWtmDBgqqqqnXr1j3++ONnzpzhXSY4Geo0zp8/P3r0aPZTz5o1KzU1tc1XR40aZfxqWloarzrB2ThFCK9fv75w4UIWsBEjRpw+fbrdb2tubpbL5d26dSOEuLu7S6XSmpoaK5cKTsjBQ1hdXR0REeHh4UEI6dGjR2RkZGNj44MPqaiokEqlrq6uhJCePXvK5XKdTmedasE5OWwI9Xq9QqHo3bs3IcTFxUUikZSVlXX88Pj4+GnTprE3zwkTJly6dMlypYKTc8wQXrx4cezYsSxCzzzzzLVr18w7j1KpHDRoEDuPWCzOy8sTtEwASh0vhIWFhRKJhMXm0UcfVSgUBoOhMydUq9WRkZFdunQhhHh7e0dERNTV1QlVLQB1pBCq1WqZTObl5UUI8fHxkclkDQ0NQp28uLhYIpGIRCJCSP/+/Tufbei82tof8vIkqamPJST4xse7JiZ2T08fV1i4vqEhg3dppnGEm/WU0n//+98bN24sLCwUiUR//etfP/roowEDBgg+UFxc3Pr162NjYwkhISEhe/funTJliuCjwENRqs3LW15d/X+t/j8XQgzsf4lEbgMGRPXq9SKX2szB+69AZ129enXq1KnsZ5k4ceLPP/9s0eHYfE+fPn0IISKRSCKR3Lp1y6Ijwr1u3tymUhGViuTm/lWtVhkMzZTqm5tvVVR8eu1ab5WKxMe7azSpDz+RbbDjEJaUlISHh7u4uBBC+vXrFxUVpdfrrTN0fX29TCbz9PQkhPj6+spksofe+QABJScPUKlIevoEg6Ht3aP6+liWz/z8v3OpzQx2GcKmpia5XN61a1dCiIeHh1Qqra2ttX4Z2dnZixYtYm/Cw4YNO3XqlPVrcEp6lUqkUpGiotfb/XJx8eaSEllt7Tkrl2U2+wuhUqkcMmQIe+mLxeLc3Fy+9URHR48ZM4bVM3PmzOTkZL71OIOkpD4qFcnNfYF3IcKwpxCmp6fPnTuXvdxHjRp19uxZ3hW10Gq1UVFRvXr1IoS4ubmFh4eXl5fzLsqR5ee/qFIRlUpUUvK2Xq/hXU5n2UcIb9++bWwl8/f3t81WMlYkWwnFitRqtbyLckxabXl6+jj22S8xseuNG0vLyw80NKTzrstMth7C5ubmNm8yFRUVvIt6kIyMjHnz5rG365EjR545c4Z3RY5Jr1ffuvVBcvIgFkX2T1JS34KClzWaFN7VmcamQ3j+/PnHH3/c+HErJcVu/uO2+eCak5PDuyL7ptc3VFd/W1mpuPdLGs21sjJ5Ts7ziYl+d9MoKihYbTDYzWWIjYYwKyvLOPE4fPhwe5x4ZFO4rRdGcZnCtWt6vaamRpmXJ0lM7KZSkaSkPvfekzAyGLQ1NaczM6exKBYWbrBmqZ1hcyGsq6sz3oLr0qWL1W7BpaamJiUlCX7amzdvGm9m9u3b15o3M+2XTld7+/bxnJy/JCT4GN/c0tMn3rq186HTMAaDLitrHrtfr9WasG6GIxsKYetmFLb4qLS01GqjT58+3YwVTx2kUqlCQ0PZG3twcPDly5cFH8IB6HRVlZWK7GxxfLzn3ey5pKcHl5TIGhuzWn+nwaDTau87NVBd/R92eG3tD5avWgC2EsLY2NjJkyezl+nkyZNjY2OtOXpjY+P69evd3d0JIX5+fnv27GlubhZ2CIPBcOrUqYEDB7J+t0WLFuXn5ws7hJ3SaivvZs/DmL3MzNCyMnlzc/G933/jxtKEBJ+0tNH3O2FV1f+x89y5E2PJwgXDP4RFRUXGBQqBgYEcFyh0cBeMzmBLPby9vcndpR4ajd3f5jJPU1NRRUVUdrY4Pt6NZSY+3vVu9h7Ujltc/Cb7/vLyg/d+1WBozMycrlKR+Hg3rfa2xcoXEs8QtnlF2shSvQfvByUI2/m7Y31NTfllZfLMzFDWeqZSkYQEr+xscUVFVAc/wmm1t5OTA9kb5o0bK+rqLul01Xq9pqkpr6rqZEbGlLsTM69Y+mcRCp8Qtr42Y5P4NnVtxnZ86t69O7Hkjk8//vjjuHHjeF2BW1lj4417suednS2urFTodCZPGjc0pKemjmh9h7DNP3l5EoNB4A8UlsMhhCqV6qmnnmIvvgkTJtjsLEVlZaWld3ziOxdlBRpNakmJLD092BiPhAQflj29vlNXPQZDU2Xl4Zyc55OTByYkeMfHuyYm9khLG1tQ8I/6+l+N36bXqw2Gpk7/HJZl1RCy+Xr2smbz9TbYfdZGQkLC9OnT2Z+McePG/fTTT4IPwbaEs/5dGcth2UtNHWnMXmKiX16epKZGaTBY70fTaJJTU4OKijZabUTzWCmE927paV93rpVK5eDBg40Xzzdu3BB8CPvvT9Cr1aqSEllKynBj9q5d63k3exzejtTqq/HxHiqVqKZG+Dk2AVkjhEqlcujQofbew6XRaCIjI9kiRrbj0507dwQfpc20kO136ul0uurqiwUFLycl9TNmLzk5sLBQWlf3E6WcOxNu3dqpUpFr13o3N9/kW8kDWDaEGRkZ8+fPd6Ru5pKSEuPEpoWW87fuWXd3d7fNnnWdTnf58mWpVBoQEHDhwtS72RtYWCitq7tMqe1M9uqzsmarVCQraw73vwj3Y6kQtl7X4+fn52DreuLi4p588kn2x2XSpEm//PKL4EPY5uqthoaGb7/9NiwszM/Pz7hN0Y4dz5eUvKVWJ/Curn3NzaVJSQEqFSkt/ZB3Le0TPoRshesjjzzi2CtcDQaDQqEICAgwdsAUFhYKPkqbdcznzvHZskGj0SiVSolEwj7VM0FBQTKZTKVScSnJJLW1Z1UqUXy8e329Ld4HEjiEMTExxr0eZsyY4fB7PbAdn9hmp2zHJwE3OzXitaOHWq1m2WN7H7fOXkaGne3tWVi4QaUiKSlDzbgtaWmChdCZdz0qKChos+234ENYc2+rqqoqhUIhFovZXRN2DzM4OFgmk2VlZT38eJtkMDSmp49XqUheXhjvWtoSIITY/4+5cOHCE088wV61zz77rCUWRll0l8fKykqWPdbITghxdXUNDQ2Vy+XFxe00UtudxsbsxMSuKhW5ffso71r+oFMhbPO5CDvhsg4Y9nnYcguj2ux33MlpoaKioqioKLFYbHxOuDF7jvfbrKg4pFKRhIQuDQ3XedfyO/NDeOXKFeMm8CEhIb/99puAZdm1qqoq40MR/fz8IiMjm5oEvlXNmm/ZVv9sWqigoMCkM+Tn58vl8tDQUHa7hRDi5eUlFoujoqIcciLN6MaNZSoVSU8Ptp12NnNCiKejdERmZuaCBQvY6/uxxx77/vvvBR/CjGfg5Obmtsmet7e3WCxWKBT21cNkNp2uJiVlsEpFios3866lhWkhZF0jeE5Yx50/fz4oKMjYAZOWlib4EPc+De7e70lNTZXJZMHBwcZJTh8fH5Y9J/wN1tfHxce7q1QutbX/5V0LpSaFEE/MNI91Fka1+1xUlr2RI0cas+fv7y+RSJRKpXNOnhndurXjbjsb/8+9HQ3hSy+9xH6Ltrz4yJZZYWGUTqfbv38/63dzdXVl80NMQEDAmjVroqOjHalvqXP0WVmzVCqSlTWXe5Ndh0J48eLFqVOn+vr62kjzlP2Kj4+fNm2a8c/ZpUuXBB+CLYzy8fHx9vYODAwMDw9XKpXI3r2am0vZMy1KS3fzraRDITxy5AghZOnSpZauxklY4cKe3da3xHWvI6mpOWML7WwupMPYpRR03nPPPZeWlsamuL777rugoKA33nijvr5e8IGMU6DQru7d5/fuvY5SbV7eCr2+jlcZJoQQBMQ2tsrMzJRIJI2NjR988MHIkSOPHDlC7f/p5fYlMHCXj8/4pqacoiIprxoQQp769+9/5MiR2NjYKVOmlJSUrFy5csqUKbGxsbzrciIikeeQISddXbvevv1lVdVxLjUghPyFhIT8+uuvrAEwLi5u6tSpYWFhpaWlvOtyFp6ewwMDPyaEFBSsbmzMsn4BCKFNEIlEYWFhOTk5MpnMw8Pj6NGjw4YN27p1a1NTE+/SnEKvXn/3919qMNTn5S2ntNnKoyOENsTX13fr1q0pKSlisVitVm/btm3MmDFZWRz+NjuhAQMOeHoO1mhUN2/KrDw0Qmhzhg8ffvr06ejo6DFjxhgMBuMWyWBRrq7dBw/+WiRyLy3ddefOeWsOjRDaqJkzZ8bHx//www/GlbVgab6+IX37vkOIIT9fotVa7zM5Qmi73N3djVtFgnX07fu/XbvO1GrL8vNXEWKl20UIIUBrLoMHK9zcet25c668fK+VhrTQefPz85OSku7cuWOh8wNYiLt7/0GDFISIiovf0GgSrTCipUK4YcOGcePGXbhwwULnB7Cc7t0X9O79cnFx4IoVb6jVaksPh8tRgHb07//hzp09v/nmv1KpxdvZEEKAdri4eB06dNjHx+eLL744ceKEZcey6NkB7FdQUNCePXsIIWvXrs3Ly7PcQAghwH2Fh4cvWbKktrZ28eLFWq3WQqMghAAPcuDAgUGDBl29enXr1q0WGgIhBHiQHj16HDt2zM3NLTIyMjo62hJDIIQADxEaGvr2228bDIYVK1aUlZUJfn6EEODhtmzZMmPGjLKyslWrVgm++wFCCPBwLi4uR44c6dmz59mzZ/ft2yfwyYU9HYCjYk98EIlEmzdvTkwUsp0NIQToqIULF65Zs6apqWnx4sV1dYLtzoYQAphg9+7dY8eOzc7Ofu2114Q6J0IIYAIvL68TJ074+Ph8/vnnX331lSDnRAgBTBMUFLR7925CyJo1a/Lz8zt/QoQQwGSrV69evHixUO1sCCGAOQ4ePDhw4MC4uLj33nuvk6dCCAHMwdrZXF1dd+zY0cnF6wghgJmeeuqpLVu2GAyGsLCwyspKs8+DEAKY75133nn22WfZc0TMbmdDCAHMZ2xnO3PmzP79+808ibA1ATibwMDAzz77jBDy+uuvJyUlmXEGhBCgs/785z+vXr26qalp2bJlGo3G1MMRQgAB7Nmz54knnkhPTzejnQ0hBBAAa2fz9vaOior6+uuvTToWIQQQxujRoz/66CNiejsbQgggmLVr1/7pT3+qqamRSCQ6na6DRyGEAO07fPjw7t27Tb3798UXXwwcOPDnn3/evn17Bw9BCAHakZGR8corr2zcuDEmJsakA/38/BQKhYuLy1dffdXY2NiRQxBCgLaMNxtWrVo1a9YsSw+HEAK0tWnTpmvXrg0bNmzvXpMfUVhdXb1y5UqDwbB06VIvL6+OHIIQAvzB2bNn//nPf3p6ep48ebJr166mHv7iiy8WFBSw3u4OHoIQAvyupKQkLCyMUrpz584JEyaYevj+/fv/85//9OjR4+jRo25ubh08CiEEaGEwGFauXFlZWTlv3rwNGzaYenhaWtrGjRvJ3cdXdPxAhBCgxc6dO2NiYnr37n348GGRSGTSsY2NjcuWLWtoaPjHP/6xZMkSk45FCAEIIeTq1avbtm1zcXE5duxYQECAqYe/+uqrycnJQUFBH3/8sanHIoQAxLhl06ZNm2bPnm3q4d98883Bgwc9PT3ZboimHo4QArQ8i3fixInvvvuuqccWFxe/9NJL5O6+wGaMjhCCszt06NCJEye6dOly/PhxDw8Pk45lG8zcvn17wYIFa9euNa8AhBCcWk5OzquvvkoIOXDgwIgRI0w9/N1337148aLxWTHm1YAQgvNqamp64YUX6urqVq5cuWLFClMPZ13abJuZXr16mV0GQgjOKyIiIjExcejQoZ988ompx9bU1KxYsUKv17/11lszZszoTBkIITips2fPfvLJJ+7u7sePH+/WrZuph69evbqgoCAkJOTtt9/uZCUIITgj44Ovd+7cOXnyZFMPP3jw4MmTJ7t3737y5El3d/dOFoMQgtMxGAwrVqwoKyubO3euGfsypaenv/7668T09rT7QQjB6XzwwQfR0dG9e/f+8ssvzWtP02g0f//735cuXSpIPQghOJcrV+JkMpmLi8vRo0fNaE9jO/wOHz7cjPa0++noagsAB1BfT9asCZ40aXdoaNGcOXNMPfz7778/cOCA2UsN7wchBCcSHk4SE10nTVq3fbve1GONT33ZtWvX+PHjBawKl6PgLA4fJl99Rbp0IUePEg8PV5OONbanzZ8/f926dcIWhhCCU8jJIevXE0LI/v3kscdMPnz79u0XLlzo06ePGUsNHwohBMfX1EQWLyZ1deSFF4hEYvLhv/zyy3vvvceWGvbp00fw8hBCcHxvvkkSEsjQoeSzz0w+lrWn6XS6N954w0LbHyKE4ODOnSNyOXF3J8eOEdO701oeLDFp0qStW7cKXxwhBCEEx1ZeTlatIpSSHTvIlCkmH/7pp59+/fXXQrWn3Q9CCA7LYCArVpDSUjJnDnn9dZMPT09PZ0sN9+/fP3jwYOHruwshBIf14Yfk/HnyyCPkyy+Ji4mv9MZGsmrVyxqN5sUXX1y2bJllCmyBEIJjUqnIO+8QkYh88QXp29fkwzdtIrdvn5sz5zUzlhqaylIhlMvl165d6+RiRwDz1NeT5ctJczN57TUiFpt8+Jkz5F//IsXFnpGRu319fS1Q4B9Yqm1NkCUeAOZZs4ZkZZEJE8j775t8bEkJWbmSUEoiI4mg3Wn3hctRcDQKBTl2jPj6khMniImbpxGDgaxcSSorybx5LR02VoAQ2i6tVpubm8u7CjuTm0ukUkII+de/zGlPe/99EhND+vQhhw8TobvT7gshtFExMTETJkyYM2dOU1MT71rshlZLli8nd+6QF14gK1eafHhcHHn3XeLiQo4eJaavNDQfQmhzsrOzn3vuuVmzZqWmprq6uhYUFPCuyG68+Sa5coUMGWJOe1ptLVmyhGi1ZPNmYvpG+J2CENoQtVq9devWMWPGfPfdd76+vjKZLCUlxYwdaZ3TDz+Qjz8mbm5mt6eRvDwycSLZts0CxT0QFvXaBIPBcOzYsc2bN5eVlYlEIolEsmvXLjM2X3Ba5eXkb38jlJLt28mTT5p8+Oeftyw1PH7c5LmczkMI+YuLi1u/fn1sbCwhJCQkZO/evVPMaHN0bmvXktJSMns22bTJ5GOzswnbcu3gQcLlsgMh5KmkpOTNN988duwYpbR///7vv/++RCIRfM2oM9i1izQ1kU8/Nbk9zbjU8G9/I8uXW6a4h0EI+dBoNPv27du+fXt9fb2Pj8+6deu2bNnSpUsX3nXZqyFDyOnT5hy4eTNJTCTDhhHLd6fdlwkh1OtN3hsH2nX69GmpVJqfn08IEYvF+/bts1CDEaXUEqd1GGfPkn37WpYaCrd5muloB1y8eHHq1Km+vr5yuVyn03XkEGhXfHz8tGnT2H/5CRMmXLp0SfAhqqurIyIifHx8vL29AwMDw8PDlUqlVqsVfCB7V1pK+/ShhNDduzlX0qEQUkrZs0jZS+fy5csWrckhVVRUSKVSV1dXQkjPnj0t8edMp9Pt37+fPaPL1dX1kUceMf6pDQgIWLNmTXR0NNLI6PV01ixKCJ07lxoMnIvpaAgppUql0njVJBaL8/LyLFaVQ2lubpbL5ey5P+7u7lKptKamRvBRLly48MQTT7DfzjPPPHPt2jVKaWpqqkwmGzlypDGN/v7+EolEqVQ2NjYKXoMd2bGDEkJ796a3bvEuxaQQUko1Gk1kZCSbP/D29o6IiLhz546FKnMM58+fHzVqFAvArFmz0tLSBB+isLBQcncLsUcffVShUNz7PSyNwcHBxjT6+PiIxWKFQlFXVyd4STYuLo66u1MXF/rf//IuhVJqagiZ4uJi40w6e1Cwgfs7uu3JzMxcsGABe8U/9thj33//veBD1NfXy2QyLy8vFiqZTNbQ0PDgQ3Jzc+VyeWhoqPFGiLe3N0tjbW2t4BXaoJoaOngwJYRu3sy7lLvMCSFz5coV4z3lSZMm/frrrwKWZdeqqqoiIiI8PDwIIX5+fpGRkU1NTcIOYTAYTp06NWDAAEKISCRatGhRQUGBSWfIz89vk0YvLy+xWBwVFVVeXi5stTZl2TJKCA0OpkL/TsxnfggppQaDQaFQsO4q1mx1yxYusfnRarVRUVFsRsTFxUUikVjiBX316tWpU6ey5EycOPGXX37pzNmKioqioqLEYrGbW8v9KldX19DQULlc7ni/zUOHKCG0Sxd6/TrvUlrpVAgZdlHk6elJCGFtxw+9KHJIMTExxqmRZ599NikpSfAhSkpKwsPDXVxcCCH9+vWLiorS6/VCnbyyslKhUIjFYuPefsY0FhcXCzUKR9nZtGtXSgg9epR3KX8kQAiZ7OzsRYsWsV/esGHDTp06JdSZbV/rn33AgAHtTo10UlNTk1wuZ4/j8vDwkEqllpsSq6qqYmlkf1jZu3pwcLBMJsvKyrLQoJbW2EjHj6eE0LAw3qXcQ7AQMjExMWPGjGG/uRkzZiQnJwt7flvTemrEclcBSqXSuO+lWCzOzc0VfIh2qdVqpVIpkUha99MFBQXJZLKMjAzr1CCUDRsoIXToUGqD008Ch5D+8XORm5tbeHi4Q37Qt87n4fT09Llz57JX/6hRo86dOyf4EB2h0WhYGru1WqjH0qhSqbiUZJKzZ6lIRN3daWws71LaI3wImaqqKqlUyj7r+/n5yeVyR+rViIuLe/LuqjULzQzfvn3b2GHj7+9vIw2DDQ0N3377bVhYmJ+fnzGNzz//8ltv0YQE3sXdR2kpDQighNAPP+Rdyn1YKoRMRkbG/PnzjffKzpw5Y9HhrKD1PdJ+/fpZ4h4p67Dp0aMH67AJDw+vqKgQdojO0+l0ly9flkqlAQEBU6eeIIQSQgcOpFIpvXyZfyOYkV5PZ8+mhNA5c6hwc1gCs2wIGaVSOXToUONHmpycHCsMKjjWLcSmRizXLXT+/PnRo0cbO2xSU1MFH0JYOp3u4sXml1+m/fpRFkVCaGAglUrpTz/xf93v3NnSnnbzJudKHsAaIaTt9U/aV39Gm6mRGzduCD7E9evXxXc3ix4+fLjdTS/r9VSlojIZHT789zT27EklEqpU8rkzfvUq9fCgIhE9fZrD6B1npRAyN2/eDA8PZ59zevXqZSOfcx4sISFh+vTpLBvjx4//6aefBB+CLT5i9wN69OgRGRlp793VqalUJqMjR/6eRj+/ljRa8ydLTqZBQXTjRuuNaB6rhpCJj49/6qmn2MvalhdGVVZWWnrxkV6vVygU7AnMrMOmtLRU2CH4YmkMDv49jT4+VCymCgW1Tt+4Wm1D7Wn3wyGEjFKpHDhwoPECLz8/n1cl92IXz927dyeWXHz0448/jhs3jv0XePrppxMTEwUfwnbcuEHlchoaSkWiljR6e7ek0a4+l1gEtxBSStVqtXFhlI+PT0REhC0sq7HC1EhRUZFxijUwMNCplqHk57dNo5cXFYtpVBQtK+NdHCc8Q8jYzivy+vXrCxcuZPEbMWLEd999J/gQarVaJpN5e3uTu4uPNBqN4KPYhaIiGhVFxWLq5taSRldXGhpK5fKHL7Q1Xt9+9FE7Xx06lBJCd+60RNUWwT+ETGxs7OTJk1kAJk+e/Ntvv1lz9MbGxvXr17PGZT8/vz179jQ3Nws7BFt8xK7A2eIjm7oC56iykioUVCymHh4t0XJxaUnj/frGjSHs16+dj3wIofn4zlJMnz6dDVpmgasilUoVGhrK/sQEBwfb7FwUX1VVLWn09Pw9jcHBVCajbfrGW8/0fPpp2/MghJ1VV1dnXBjVpUsXmUxmnfn61NRUSyw+Yndl2OKjvn37Crv4yFHV1tLjx+lf/kJ9fFqSJhLRiRPpzp2UXbyzEE6eTAmhw4e3bQlACIWRlZVlXBxkj3eu6d3FR/bbn2ALNBqqVFKJhHbrRgmhffpQdpOIhTAykvr5UULoyZN/OAohFFJ0dPTjjz/Oojhz5syUlBTeFXWUUqkcMmSIvXfq2Y6GBvrtt9S4TpOF8P336ZYtlBA6fvwfvhkhFBhbGMX20mQLo2ywm7m1jIyMefPmsfiNHDny7NmzvCtyQCyEW7fS8nLq7U0Joa3XeCGEFnHvuh4bXBjFimSrt2y2SMfAQiiTUUrpK69QQujTT//+VYTQgtLT023zTcbu3q7tXesQ5ue33Gk03tVCCC2uzcctq+31cD9tPrg6/I4etqB1CCmly5dTQuj//E/LvyKE1tB64pHtesRl4rH1FK6z7W3FV5sQpqRQkYiKRJS1GCKE1tN6/z8r34JrfTOT7e9k74uP7EubEFJKFy6khFCJhFJKhw1DCK3r6tWrrZtRfv75Z4sO5/CLj+zCvSG8fJkSQt3caF4eHTUKIbS6e/eEt1BbZrMnXRcAAAJCSURBVGxsrHHn/5CQECs3uILRvSGklIaGUkLoyy/TkBCEkBO2QMGkp6N0XOulHngGDnfthvD06ZZligghZ+w5YQIujLLNRY9Ort0QGgx0zJiWRlOEkL+LFy+OHTvWuGidPTHTDHguqm1qN4SU0qNHf19dgRDyx2ZQevfubZxBMWmNUpuNcCzxcHkw2/1CqNXSQYMQQhtjxkZmrR8uby9bwoFdc/AQMq239BwxYsTp+2xDae+bo4KdcooQMg/ewan1NuGzZs1KT0/nVSc4GycKIW1vL8Pq6urMzMzWD8ywxMPlAR5ARCklTqa8vHzLli2HDh0yGAzdunVTq9V6vd7f33/btm2rV682PjUawDqcMYRMYmLihg0b1Gp1dnb2kiVLtm/fzp6pCGBlzhtCprq6mlLq7+/PuxBwXs4eQgDuXHgXAODsEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDO/h997uu2e2eTwgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -370,7 +392,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHfklEQVR4nO3dXW7jRhCFUSuYHXn/\nO4jXxDwIUDyyRIviz61qnvM0GAwisd0fiyZt5TJN0weQ80/6DcDZiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQgj7k34DI7h8XW5/nj6n21/e/jzM\ni7IHEa51t++PySDyouzE5egqP3f/8QUe86LsR4QQJkIIEyGEiRDCRLjK9Dl9f1Tw8feTg5FelP14\nRLHWXRLH3KiMvCg7uUyTrx8kuRyFMBFCmAjfV/N2SM13xQwRjubnvVOKE+Gb/Mw0WxHhgAzDXkT4\nDmOQDYlwTIZhIyJczBhkWyIclmHYhQiX6TUGddiCCCFMhAv0GoNXhmF9IoQwEb6q4xi8MgyL8/uE\nL7lc2i/UAIcwKpMQwkT4uzFmyDRNl4uL0opE+IsxCrzSYU0ihDARzhlpDF4ZhgWJEMJE+NR4Y/DK\nMKxGhI+NWuCVDksRIYQ1ON9Hztn1l2U9C1tE9f8XReqycOzL0Q8LW4nLUQgrHWHwrDn2rQsLW0rp\nCOEM6kYY/+Zh1HO2ha2mboRwEkUjfHa23u8M+vC/PN45Oz4Gr8Zb2DUqPqKYKXC/DXTdFhU26PH2\n7uGcq/q6ihGWMlKczw4kcnQjLexK5S5HI2Pw6tk10hjXTgV3/BgLu165COFsakUYHINXow7DgmPw\nqvvCbqJWhHBChSKMj8Gr8YZh2TF41Xdht1IlwuIbBfZTJcJnInGONAxbnN06LuyGSkRY5EL0u5Nv\ni+OdecFLRNhIr73SYgySj7DgGLzqflEaX8Cluizs5sIRttsosLn8JHyoSJx9h2GRBVyq/sLuIRlh\n040C26o4CUvF2XEYllrApSov7E5iEbbeKLChcpOwYJy9hmHBBVyq5sLuJxNh2ccSz3TpsOwCLlVt\nYXcViHCYjQKbKHQ5WjzO+sOw+AIuVWdh93Z0hINtFFivyiRsEWflYdhiAZeqsLAHODTCITcKrHRo\nFe1uij5U8Ch6LeBSRx7d5ev/wTt9Tre/vP15D8d97ujYG6Wgjguefc93se3d3s1xET77sNd2e+XZ\ngQS/gXn2kb691nbms4kXL+y/r/7DmXF3TIEfFT6Bu9EuuXE5eqSxj+7j4BszJ7nZVUejBR++tBlV\nHlF0l91DjWJb6gxxHh3hwNulphYLfobSZpiEG6iwh1rE9tDM6h25sNPn9P35xMffjyt2Fbgx0+6u\nXXcW/EV3HR52dzTztRlpT5Q6loI/SDCvyBjMylyO9r12ulNto1T+6dZFqi3srmLfE7bbFt0VXPBT\nlTbDjZn31dxDBWN7yIXoTTLCLttlGBa8JpPwTZXP1vVjMwa/C0dYf7sMxoIXZBK+o/7ZunJsxuCd\nfISVt8tDXTZKu8cVXRZ2c/kIPwpvCzZ32tJmlIiwkV57qNowdCH6UJUIDcODWfA6qkTYQsezdZ3Y\njMFnCkVYZ7s81HejVLsovdN3YbdSKEIGprQZtSIscm7+qfseyg5DF6LzakUIJ1QuwoLDcIyzdWoY\nGoO/yn/u6E8zH8ew63axIYgoeiqqc46s8042cfDnXxiDr6i7EBW+SBXew+YqHFSF91BHue8J4Wzq\nRhi/QzPq2drCVlM3QjiJ0hEGz9ljn60tbCmlI4QzaHBaipyz6y/Leha2iAYRRgx/1TT8ATbichTC\nRPhY/D7+rozBUkT41KgdKrAaEUKYCOeMNwyNwYJECGEi/MVIw9AYrEmEvxujQwWWJUIIE+FLpmm6\nfDUehpcvY7AuEb5q+uza4eXrMn0qsC4RQpgIF+g4DI3B+kQIYSJcptcwNAZbEOGwFNiFCBfrNQyp\nT4RjMgYbEeE7DEM2JMIBGYO9iPBNhiFbEeFojMF2/FwvhJmEECZCCBMhhIkQwkQIYSKEsD/pNzCC\n70/tb8/o9n5eF3lR9iDCte72/TEZRF6UnbgcXeXn7j++wGNelP2IEMJECGEihDARQpgIV/n5W4UH\n/JJh5EXZj0cUa90lccyNysiLshO/TwhhLkchTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGE/QcyfAaIQD+qHgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVwU9f8H8PeysByCggqYdBgSIHwFD7SvXzVK+qZ534ZZ3rdyCKGipqjkfWeZmZaZeZSoKVmWmX39Zh6wX5VrDdMEERS5hAV2d+b3x/jbDHaHa3bes7vv58M/itmYF36/Lz47OzPvkbEsC4QQPDbYAQixdlRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWwMe5p7slSZNyfH8p+sMIAREBUQj57CvcEpgc6pDr4pPlsKtik/3obuzbqTuri4GKLD0BEYIsdQLr2Ptw76fak+Dbxw12HK9XKqDtROlYX6xnLbXWwcQDGwgMQcVAJjUrMSxzhOiKxbSIAdHXqyrJsZlWmVQUg4qASGlaoLVRVqeLbxOu/MqX1FKsKQERDx4SG5WvzAcDTztNqAxDRUAkNc7RxBAAdq7PaAEQ0VELD2tq1BYBcTe6TX6xiq6wnABENldAwe5l9F6cux0uO67+SXJLsc91HtBqgByCioRIatfyp5cklyQvvLlSqlQeLDk64PWFK6yn2MnsAqGQqK5lKrg8aVqP/ZwsLQMQhY1kWO4N0JRUnJeQlZFZmeim8ZrSeEesZKwPZI+aRi9KlxivlMrm2s9byAhARUAnrsCF/w28Vv633Wv+s4lnsLDXd1dxNyEvo6Nhxjvsc7Cyk8aiEfAq0Bb5pviW6km99vu3XvB92nJqOlxwfkj3ETe6mClS1tm2NHYc0Eh0T8onPjS/RlQxqMUiCDQSAwS0G92ver0hXtDRvKXYW0ni0EhqVWpHaLaubHOTXAq752vtixzEsozIjOCOYASbFPyXIMQg7DmkMWgmNisqJ0rG6CI8IyTYQADo4dJjpPlPH6qJyorCzkEaildCwA0UHwv8I97D1UAWqWshbYMfhU6Qr8k3zfaB9cMT7yDDXYdhxSIPRSmiAmlEvyF0AAIltEyXeQABwk7ste2oZAMTmxlYyldhxSINRCQ1Ym7/2dvXtzk6dJ7aaiJ2lXma0nhHkGHSz6uaTN/4Sc0FvR2vK0eT4p/mXM+U/+/78kvNL2HHq60zZmbAbYc42zlmBWdx1p8Rc0EpYU1xOXDlTPsZtjBk1EAD6uPQZ5jrsEfMo/m583a8mUkIr4d/8Wv5rz6yeDjYO6QHp7RTtsOM0zM2qm4EZgVVM1QW/C92bdceOQ+qLVsK/MMBE3olkgY3zjDO7BgKAt713lEcUC2xkTiQL9LvVbNBK+Jfdhbsn357sZeeVFZjVzKYZdpzGeMQ88kvzu6u5+3m7z8e1HIcdh9QLrYSPlenKFt9dDABrvdaaaQMBwNnGmRsMtSB3wSPmEXYcUi9UwsdW3luZp8nr0axHeMtw7CxNMr7V+O7NuudqctfcW4OdhdQLvR0FAMi+nx2cG6xm1Bf8L3Rz6oYdp6m4j5dc5C5Xva4+1/o57DikDrQSAgDETI3xjPWMkcVYQAMBoEezHtEQ3SqqVezMWOwspG60EsKZM2fCwsJcXFyysrKeeuop7DjCyM3N9fPzKy8v/+mnn15++WXsOISPta+EOp0uKioKABYtWmQxDQQALy+v+fPnA0BUVJROR3MTpY21blu3bgUAb2/vyspK7CwCU6vV7dq1A4AdO3ZgZyF8rPrtaFFR0QsvvFBYWHj06NEhQ4ZgxxHe4cOHR48e7e7urlKpXF1dseMQw6z67eiSJUsKCwv79OljkQ0EgFGjRoWGht6/f3/FihXYWYhR1rsSpqenBwcHsyybmprasWNH7DimolQqQ0JCZDKZUqkMDAzEjkMMsN6VcN68eVqtdubMmRbcQADo1KnT5MmTtVptdHQ0dhZimJWuhEePHh02bJibm5tKpWrd2sKHBd6/f9/X17e4uPjkyZP9+/fHjkNqssaVsLq6Oi4uDgCWL19u8Q0EAHd39yVLlgBAZGRkdXU1dhxSkzWWcOPGjTdu3AgICJg+fTp2FpHMnTvXz8/v999/3759O3YWUpPVvR3Nz8/39fUtLS09depU3759seOI5+TJkwMHDmzevHlWVlabNm2w45C/WN1KuGDBgtLS0qFDh1pVAwFgwIABr7/+emlp6bJly7CzkL+xrpUwJSWlW7dutra2169ff+GFF7DjiC0zMzMoKEin0128eLFr167YcchjtqLtSaPRqNVq0XZXG8uyERERDMNER0dbYQMBwN/ff/bs2Zs3b46IiEhOTpbJZIhhHB0d7ezsEANIh0gr4cWLF0+fPr148WIR9sXD2dlZoVD88ccfzZs3x02Cpbi4uF27djqd7tEj5PvuV69eHRYWFhISghtDCsQoYXV1dVBQUHZ2tkKhkMvlpt6dMQzDaLVahUKRnZ3t7u6OFQNXXl6ej4+PTqezs7NDXAl1Ol1VVZW/v79SqbS1Fe/tmESJcJH4unXrAMDf37+6ulqE3fHgTlVPmzYNNwai8ePHA8CwYcNwY1RVVfn6+gLA1q1bcZNIgclLmJ+f36JFCwBITk429b7qdOPGDXt7exsbm8uXL2NnQXDlyhUbGxuFQqFSqbCzsEePHgUANze3+/fvY2dBZvISTp06FQAGDBhg6h3VE3cJZc+ePRmGwc4iKoZhevXqBQALFizAzvIYd5Zozpw52EGQmbaEqampcrnczs4uMzPTpDuqv5KSEu5U9aFDh7CziOrzzz8HAE9Pz5KSEuwsj6WlpdnZ2cnl8qtXr2JnwWTaEoaGhgJATEyMSffSUDt27ACAZ555pry8HDuLSMrLy5999lkA2LNnD3aWv5kzZw4A9OnTBzsIJhOW8ODBgwDg4eFRVFRkur00gk6n405VL1++HDuLSLiTQ126dNHpdNhZ/ubhw4fcNfRHjx7FzoLGVKco1Gp1QEDArVu3du7cyR0WSsr58+d79+7t4OCQmZnJLREW7M6dO/7+/mq1+ty5c9xhoUFnzpxhGMYUAVq0aNGtm9FZku+///7cuXO9vb3T09Pt7e1NEUDqTFTuhIQEAOjUqZNWqzXRLppo5MiRADBu3DjsICY3atQoAHjzzTf5X2a683Uvvvgiz361Wi13X/Xq1asF/bnNhklWQv3Qy7Nnz3KHhU9Sq9Xp6emiXbt48+ZNBweHtm1rPjeznuuDuav/mt+vXz+tVmuKDAEBAdxUO2MscvRrA5ii2WPHjgWA0aNHG9yakJBgY2OTmJhoil3XcODAAXt7+/DwcINbJXukJBQzOvrlZm1NnDgROwgC4Uv43//+VyaTOTo6/vHHH7W33rlzp1mzZgDw888/C77rhu5Osp8ZCuWjjz4CM/kcODs7m7uO4rfffsPOIjaBS6jT6bp37w4AS5YsMfiCN954AwDeeOMNYffLY+nSpQDQuXNng8udBM+eCcXszohyM0d69OhhbddRCFzC3bt3A4CXl9ejR49qb9Uvkrdu3RJ2vzwqKiqee+45APjkk09qb5XgdSRCmTdvHpjVtUGlpaXcAeEXX3yBnUVUQpZQ/5e4b9++2lt1Oh33OfXSpUsF3Gl9fPHFFwDg4eFRXFxce6ukrqgUiv4q2UuXLmFnaYBPPvmE55e4pRKyhNwTSIy9ndi1axcAPP300+L//TIM07t3bwCIi4sz+AKJ3FsgIDO9X0R/OPPuu+9iZxGPYCXkP7DWL5L79+8Xao8NkpKSwi13WVlZtbfeu3ePu833u+++Ez+b4E6fPg0AzZs3z8vLw87SYPwf7FkkwUo4dOhQAJgwYYLBrVI45p44cSIADBkyxODW9957DwACAgI0Go3IwYSl0Wi4cfcbNmzAztJI4eHhADBmzBjsICIRpoQ//vgjADg7O+fm5tbe+vvvv0vh0+d79+5xdzaeOnWq9taqqipu8Mz27dvFzyagjRs3AoCPj4/5PuxNf2Lp7Nmz2FnEIEAJ9ZcdrVq1yuALBg8eDACTJk1q+r6aaPXq1QDQoUMHg/f4HzlyBABatmz54MED8bMJorCwsGXLlgBw4sQJ7CxNws1llPJljwISoITbtm0DAG9vb7VaXXvrDz/8AAAuLi53795t+r6aqM6pCq+99hoAREREiBxMKNxM8VdffRU7SFNVVFRwTzjduXMndhaTa2oJ9beiJCUl1d6qXyTXrFnTxB0JhX+qQlpamq2tra2trTneZnr9+nUu/PXr17GzCODAgQM8J5YsSVNLOHfuXDB+U6Y0H0bNP1Vh1qxZABAWFiZyqqb797//DQBRUVHYQQTz0ksvAUBsbCx2ENNqUgnT09O58QT/+9//am99+PBhq1atQHr3a/JPVSgsLORiHzt2TPxsjXb48GFzP6CtLSUlRS6XKxQK6YxHMYUmlZBbUmbPnm1w6+zZs3kWSVz8UxW2bNkCAO3bt5fUAs6jsrLSx8cHAD788EPsLAKbMmUKAAwcOBA7iAk1voTHjh2r8+BKsjN8+KcqaDSaf/zjHwCwdu1a8bM1wsqVKwEgMDDQ3E9y1qYfmfntt99iZzGVRpawzo8ZpT/NTv+hrsHlTlIf6vLLyclxdnYGgO+//x47i0lww6ONnViyAI0s4Zo1a3j+XpKSkngWSYmoc6rCoEGDAGDy5MkiB2uot956CwBGjBiBHcRU9L/xN2/ejJ3FJBpTQv53CPpLT7Zt29bkeKbFXehjbLnTX+hz8eJF8bPV06+//iqTyezt7W/cuIGdxYSOHz8u/V/rjdaYEk6aNAkABg8ebHDrqlWruIswzeLNA/9UhXfeeQf9klceDMO8+OKLALBo0SLsLCbXr18/AJg5cyZ2EOE1uIT1vB3B4PWZElTPmz++/PJL8bPV6bPPPgOANm3aWN5YgNr4z4eZtQaXkDt/+s477xjcyn+ngjTx3+Hx8ccfY90Gya+srIwbIbd3717sLCKJiIgAgFdeeQU7iMAaVsL9+/fX5xZ1g4ukZPFPVUAcCMAvPj4eALp27Wqpo+Jq059Y+vrrr7GzCKkBJdQPa9m1a1ftrfq71+fPny9cPJHwT1U4f/68+KNx+HHDVGUy2S+//IKdRVTbt28HgOeff97g3QJmqgEl5B9btm/fPm5smTleblvnVAXxh8TxGz58OAC8/fbb2EHEptVqg4KCAECcubX1kVedB1eA+3O69HQjvkN9S8g/wLOiooIb4Ll79+5GhJACSY1L5XfmzBkAcHJy+vPPP7GzIOB+fGN3kJvO7ge7A9IC7FPs219vvzF/45Ob1Dp1sbbY5CXkXwoKCgpGjx4dEhJi1scn4eHhoaGhxmau8b8REI1Wqw0ODpbUUiC+YcOGAcD48eNF2+NnhZ/BFYjPjb9cfnnXg13Oqc7r7q178gVqnbrRJazXsyiKi4uDgoIKCgpUKhXP8wwqKiqcnJzq/G6SxZ+/oqLC29u7pKSksrJSzFS1OTg4uLm5cYeFuEmw3Lx509/fX6FQlJeXN+g/9O3oq/pU1dDdfevzbeSdyI6OHb/y/or7yq4HuzKrMtd7rde/ppKpdFQ6nn7h9Ksurzb0+wv5IB6zbiCYf349lmXVarVZ/ziS+oVeqitVVani28TrvzKl9RQhd1DPFdPaBmDV9u6774KU3o6uXLnS4AsyMjJ69+5t1p/ZcD9jeHh4YWGhwRfwj/YTXJo6Da7AtyV8t3E05e2oMB/MWLw7d+44OTnJZLJz585hZ2F/+eUXmUzm5OR0+/bt2lv1Zy8uXLggfjZBfPDBB2D8PAT/aD9TuFl1E67AiWK+2VlilJB94pMJaxiAVcOYMWMAwNgj1sQ3YsQIAHjrrbcMbl24cCEA/POf/5TmJa/89Gfkv/rqq9pb9aco3nvvPdEiVTKVcAU+uv9RjS8++a8ilVB/sv7jjz9uxJ7MlwRP1t++fZtbmQ2erDfrK9oiIyPB+LVp77//Phgf7Wc6XTK6DPh9gP5fTxaffPrq00/2UKQSsiz75ZdfgnUMwNLT6XQhISEAsGzZMuwsf7No0SIwftnap59+CmZ4bbf+Km2lUll7q36RPHLkiMjBThSfkF2RLchdkFqReuDhAff/uS+7+/j/D2qdWn+eMLkkWa1T11gk69TIC7gtfgCW3s6dO0GSF3Drn3D62Wef1d5qpnc58d+vxD/az9SOFB0JTg+2T7H3vu699t5ahmVYli3Tlekvl9H/kafIG/SdBb6VycKUlpZyz9k8cOAAdhYD9u7dC8afcGp29/t+8803AODq6mrwzl26lelvJk+eDACDBg0SPI3UxMbGAsC//vUvaX7CwTBMz549ASA+Pt7gC8aNGwcAI0eOFDlYI1RVVfn5+QHApk2bDL6AWyRnzZolcjARCD/ewmKYxXiLy5cv8zzh1IxmQHHTnPz9/Q0OZOAf7WfuGjnoae3atWDRA7BYlh04cCAATJkyBTtIHd5++20AGD58uMGtK1asAMlPQ9T/Wk9OTq69VT/oacuWLeJnE0FTRx5a6t8L95xNsxh5qB8pYnC5U6vVzz//PADs2LFD/Gz1xD/h1+J/4zd++K8FD8DSD/9dt25d3a+WgMTERJ7lTj8h39hVYLhSU1PlcrmdnZ3BWffWcOzTpDH4lnqsvHnzZjDPMfgffPCBwRe8/PLLABAdHS1ysPoIDQ0FgJiYGINbreFTQBM+EMZM6R8Ic/z4cewsDfDVV1+B8QfCKJVKuVwuwaem6Z9/VlRUVHurlZwPa+qj0SxvANbMmTPBnB+NFhkZaXCrBJ8fWueTQPlH+1kMwR4SKv6VRKagf87mtWvXsLM0GH/4goICV1dXADh58qT42QxKSEgA48/Etp5rJAV4XDbWNbWmwL+YSN+MGTN4lrsNGzYAgI+PjxSOdXNycrib486ePVt7q1XdLSBACVHuLjGFr7/+muewyizoD2i/+eab2ls1Gk1gYCAAbNiwQfxsNYwdOxYARo8ebXCrVd03J0AJWYz7LAWnf46NsQ8YzcWmTZt4Ptr9/vvvAaB58+Z5eXniZ9Mzo9l2IhCmhCzGACxhcafaAgICpHxlSX3oT3KuX7/e4Av69+8PANOmTRM5mJ7ZTXk1NcFKmJ2dzU1VMPhkFYnTX3Ty3XffYWcRgP5yH4PL3Y0bNxQKhY2NzeXLl8XPxrLs7t27wfi8c/0iKZ1bqE1NsBKyLLtgwQIznarAf/mlORowYAAATJ061eDW6OhoAOjZs6f4/0vpn/yxb9++2lsl++QPkxKyhPqpCp9//rmA39bU+G9EMFM3btzgbgG5dOlS7a0lJSXcfZKHDh0SOdj8+fPB+DOwdu3aJc1bqE1KyBKyLLtnzx7unUZZWZmw39lEGIbp1asXACxcuBA7i8BiYmJ4bobcsWMHADzzzDPl5eWiRarn0yD3798vWiQpELiEDMNwx9yLFy8W9jubCP/N6WZNPxbg4MGDtbfqdLquXbsCwIoVK0SLxD8vVOLPRTYdgUvI/v9UBQcHB4OfPkuKfkzLp59+ip3FJLgBOcaWO/75pYLjP49lFrdQm4jwJWRZ9s033wSAUaNGmeKbC4h/YJkF0I+KS0hIMPiCkSNHOjg4GJzwKbhly5bJZLJVq1YZ3Dp48GAAmDRpkghJpKZeD4RpqNzcXD8/v/Ly8p9++om7icaYWbNmqVQNfkBHfTg6OnKDg4z5888/O3TooFarz507xx0WWqTz58/37t3bwcEhIyODuxDsSTk5OVqtlruKWgSXLl0KCgqyt7ev8fUff/zx1VdfdXFxycrK4g4LrYuJyr18+XIACA4O5r/sqEuXLib6uZycnPgT8g+xtiSjR48GgLFjx2IHMUyj0XTs2BEA1qxZg50Fh0lWQgCorKzs0KHDrVu3Pvroo2nTphl72cWLF0tLS00RQC6Xv/LKK8a2/uc//3nppZccHR0zMjJ4HvZmGe7cuePv769Wq3/++WfukeaSsm3btoiIiPbt26elpdVeJK2C6fp96NAhAHB3dzd4vyYilA8GcS1ZsgQAunTpIrWj34cPH3JXnB87dgw7CxoTlpD9/8kF8+bNM+leGurDDz8E0U+R4ZLs88xnz54NeEO1JcK0JeSf4YOiqKjI3d0dAA4fPoydRVT79u0DAE9PT+ncI5uWlmZrayuXy69evYqdBZNpS8iyLHdA2L9/f1PvqJ6ioqIAoFevXtZ2RphhGO6AcP78+dhZHnvttdcAYO7cudhBkJm8hPqpCgbnuoosIyPDzs4O8QYCXFeuXJHOVbJJSUkA4ObmZr63UAvF5CVkWXb9+vUA4OPjU1VVJcLueLz++usAMH36dNwYiCZMmAAAQ4cOxY2hv4V627ZtuEmkwFSnKJ5UXV0dFBSUnZ2tUCjkcrmpd2cMwzBarVahUGRnZ3OHhVYoLy/Px8eHYRhbW1uZTIYVQ6fTVVVV+fv7K5VKW1tbrBgSIcbPr1Ao9u7de/r06cWLF4uwOx7Ozs52dnZWejIKAAAcHR3t7OwYhikrK8NNsnr16rCwMGogAIixEnI0Go1arRZnXwaxLDtgwIDz58/HxcWtWbMGMQmiqKioLVu2hIaGck8xQMT9OsDNIBHilVAKUlNTQ0JCuMmc3ANtrEpmZmZQUBDDMFeuXAkODsaOQx6zwQ4gqs6dO48fP766ujouLg47C4J58+ZpNJqpU6dSAyXFulZCAMjPz/fz8yspKTl16lTfvn2x44jnxIkTgwYNcnV1ValUVvu5lDRZ10oIAJ6engsXLgSA6OhojUaDHUckGo2Ge/T30qVLqYFSY3UlBIDo6GhfX9+MjAxuzoo12Lp1a1ZWlr+/P3etJpEUq3s7yjl27NjQoUPd3NxUKhX3QBsLVlBQ4OfnV1xcnJyczF2uQCTFGldCABgyZEjfvn2LioqWLVuGncXkFi9eXFxcPGDAAGqgNFnpSggAGRkZwcHBDMOkpqZyd3ZbJKVSGRISYmNjc+3aNT8/P+w4xAArXQkBoEOHDtOnT9fpdNx9FZYqKipKp9NFRERQAyXLeldCACgqKvL19X3w4EFSUhI3EtPCHDp0aMyYMe7u7iqViruXhUiQ9a6EAODm5sY9By8mJqayshI7jsDUajU3c37lypXUQCmz6hICwMyZMzt27Hjz5s3NmzdjZxHYunXrbt261alTp8mTJ2NnIXys+u0o58yZM2FhYc7OziqVymKGXupHv549e5ab9EMky9pXQgDo06fPkCFDPF702HRvE3YWwWzM3+jRzWPkyJHUQOmjlRAAIPt+dnBusJpRX/C/0M2pG3acpvq1/NeeWT1d5C5Xva4+17rm1G0iNbQSAgC0d28/x30OA0zknUgWzPu3EgNMVE4UC2ykRyQ10CzQSvhYma7ML90vT5O3r92+N1u+iR2n8fYU7pl0e5KXnVdWYFYzm2bYcUjdaCV8zEXuktg2EQDm584vZ8qx4zRSma5s0d1FALDGaw010FxQCf8yvtX47s2652py1+avxc7SSIn3EvM0eT2a9Rjbcix2FlJf9Hb0b7iPNBxsHNID0tsp2mHHaZibVTcDMwKrmKoLfhe6N+uOHYfUF62Ef9OjWY/wluFqRj0/dz52lgaLyY2pZCq59Rw7C2kAWglrytXk+qX5lTPlZ33PhjqbzUm2M2Vnwm6EOds4ZwVmtbVrix2HNACthDV52XnFecYBQNSdKB2rw45TLzpWF5UTBQCL2iyiBpodKqEB73i+007RTqlW7i7cjZ2lXj588OE19TVve+8oD0u+LctS0dtRww4WHXzjjzc8bD2yArNc5ZK+BaFIV+Sb5vtA+yDJO2moqwXekGXxaCU0bIzbmFDn0AJtwcp7K7Gz1GHp3aUPtA/6uPShBpopWgmNUqqVIZkhNmBzrcM1PweJ3paeUZkRnBHMAJPinxLkGIQdhzQGrYRGdXLsNLHVRA2ric2Nxc5iVHROtIbVzGg9gxpovmgl5FOgLfBN8y3RlST7JL/eXHKjyo6VHBuaPdRN7qYKVLW2tfDBjRaMHkzFx8PW492n3r2qvtrJsRN2FgNCnELGtRzXvVl3aqBZo5WQEGR0TEgIMiphY9zT3JOlyLg/P5T9YIUBiICohHz2FO4JTA90SHXwSfPZVPDXBJo2dm3UndTFwcUWH4CIgD6YMWrvw72Tbk+KbxM/3HW4Uq3kLiWN9Xx8usLBxgEYCw9AxEElNCoxL3GE6wjudvuuTl1Zls2syrSqAEQcVELDCrWFqipVfJt4/VemtJ5iVQGIaOiY0LB8bT4AeNp5Wm0AIhoqoWGONo4AgHg/IXoAIhoqoWHcrbG5mtwnv1jFVllPACIaKqFh9jL7Lk5djpcc138luSTZ57qPaDVAD0BEQyU0avlTy5NLkhfeXahUKw8WHZxwe8KU1lPsZfYAUMlUVjKVXB80rEb/zxYWgIiDrh3lk1SclJCXkFmZ6aXwmtF6RqxnrAxkj5hHLkqXGq+Uy+TazlrLC0BEQCUkBBm9HSUEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVPG5i4UAAABaSURBVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZP8HLSkn/KpvXDUAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -382,7 +404,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHHklEQVR4nO3d0W7jNhRFUano//+y\n+mBMoo7tWHZEnktqLczLoEUr09wkozjKum3bAuT8k74AuDoRQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkII+zd9AYNZ1/X4v7xtW7srYRqzRbiua7up/+5//K1iF9Fe1WwRbtvWtMO3vHsZda78iHeXmLcM\nNA6/N1uE7YxVSGutR+NSoz3hjZnbZpi+ik+Me+X8xoQRLg1m86UW5pc6jMal1qM5IxzXpSYfN9NG\neOJstg3uPRyNFgvHddajaSNcTnoX+xdYefI9K/D3Q1T2JXcwc4QM5OHSU3k9OtF5Ef41WPu/ruv3\nn75++S6mDqI1J1+7bfDi2u+E67ps2/ef0Tqkm8tuho6jT2XX+GqTzzbYzqkR5o6dP6s2oYfTLbZr\nboanRrg/dhbz7htZYY0vPvkaDVHxV93ChY6jx9/dCgXeVJiRFQ6iFcahnQtFyCiudihtH+HtjujX\nn/3yWfJOaZ1t8CY7+Spsg9M7L8K/3pX9X599reg7FrUFY7vUZpg+jiY6/EHNNb7U5MveKZ1SOsJl\nd17t9z98/O7WLDCl5mhMWWaBCJc/59UCHZZV5ILdFG2hRoQ30aNpzYU/pfL9mPnKrBTh0rXD4d7L\nbhdcJLab4d6mDxSLcMl0WGra1VTqTulkZdaLcFmWuYb4RB0mn/Wov5IR9lrqbIMHxYdo7s2w7nNH\nv0b5rLf/4Td/v/7RKB22nnyjjEND++H9Go37D3udN1B1I1z+TIjPCvkhuaH1f+pukRXq/tnqB9ej\nB5f+w8tpGdszpSO8OfJk+18mV+rh+dXUGZbTVoeH6eZe5gARLneRzLrLvdTtqbuTj+eJ6Z5hjAiX\n/5892v0s6eSTbyKBN6vZDwAVvTv6zLZtl+3EJ6dnNViETVWefHbpvclGY5jjKD1d93D+1we2uozA\nMAPdbU4UnHyRSyo4DjdlL+xjjqM8VvNwPl+BiwjvVZt8U0479kRYmqeA7826HonwgWqTj7mJ8LEK\nHVZY+CuMw02F0WhEhLxQp8NZifCpgk/dvay5R2OMCOd+D+5Ve73Wo6bGiDDFSYwORFhOzYU/tR7V\nHI1zifAFmyGt+QB3LZUX/mef6j70jImPXlTl0TiRCF/r9iMFg865I9f8QaiDjsYHRMgbPl6PLpLT\nZwb4mrDCiuipu51dajQGiJBS3Kk6nePoUZ66282ltsFFhMf1f+puWe+uR6O8rhQRHjJQIR28Oxrv\nniCuNtQifK1PgRM/W2nKF3UiN2ZemDWMjxmQ04nwJ35FOx1Uj9C6W4q3o4XqEQZFJpzN8IJE+Jgl\n/54xaWSACPvvDB40eE+B7VT/FsXXL+tdet3pNtvobKQJ1yHFOgXWuZKl2MXMp/pOuNd6VzTViBh1\n2p2eYsECi1xSkcuY2AA3Zh66/credV1PuYdRc57VvEPD6UY6jt475YBas8AiDE4H8wzxZynWn2TB\nK6w/OHMYeyfc6//NDDjFnEvdwRRHWen9uuy5zbMT7h3ZFU0yiph/Ij5McbgCO1/wcOMztDl3wr37\nXdEM+5nx6Wz+CG9Gv20z8cMvuEqENybxS1Lvb9RPzFyQD9DMSoR8sw1GXOs4OjpP3Z2SlW9mnro7\nBBFCmK8JIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC/gMD25k0x05dXQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAbS0lEQVR4nO3deVRU5/kH8GcWdlDRIHUXiQsQNfancYFatZqoJabGikul0RitrUoiGpeDkaRxq0aDW90ae7QeTTRRkcTYHBNPQHGriAZjVEhESJQEZRUYmJn398drJ1NGCMvc+9wh38/JH/eMeJ+X4Je587z3vq9OCEEAwEfPPQCAnzuEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGZG7gFoXWFhYVZWFhF5enp6eXnJF+2Pvby8PD092cYHrg8hrM3x48dPnjy5Zs2aOn69fSC9vb09PDzksY+Pj7u7u+Oxr6+vm5vbtGnThg0bZvti+LnRCSG4x9AQJ0+eHDBggO3tSAllZWWhoaHZ2dnBwcEtWrSoqKgoLy+Xf1ReXl5RUeF43DBhYWE9e/bcv39/Y0fMp6ioaNWqVfJYr9c3b95cHhsMhmbNmsljo9Ho5+fneOzm5ubr6yuP3d3dfXx8HI89PDy8vb2V/z54uOQ74dq1axctWjR79uxNmzYpV2XlypXZ2dl9+vS5cOGCwWCoy18pKyszmUzy+MGDB5WVlY7HpaWlVVVVtuO8vLx58+Z9+eWXc+fOHTRokLO/CTUcOXIkPj7+ypUrilaZNGnSzJkzhwwZomgVFi75Tnjp0qUBAwZUVVUlJSX99re/VaJEZmZmz549TSbT6dOnBw4cqEQJm7i4uJUrVw4cOPD06dM6nU7RWk5XXl4eFhb2zTffjBkzRv4SsVgsxcXF8k/NZnNJSYnjcVVVVWlpqTyurKx88OCB47HJZCorK5PHFRUVOp1Op9Ndv369Xbt2qnxnKhKuafXq1UTUunXrvLw8Jc4/evRoInrxxReVOHk1xcXFv/jFL4jogw8+UKGccy1dupSIevbsWVVVpWih3//+96r9RFTmqiG0WCxDhw4lot/97ndOP/kHH3xARP7+/gol3NGWLVuIqEuXLiaTSZ2KTpGZmenp6anT6T7//HOla3399dceHh56vf7ixYtK11KZq4ZQCJGTk+Pv709Eu3btcuJpy8rKOnfuTESbN2924mlrZzabw8LCiGjDhg2qFW08+Vlg2rRp6pSbN28eEQ0bNkydcqpx4RAKIfbs2UNEPj4+N27ccNY54+LiiKhPnz5ms9lZ56yLxMRE+fZ77949Nes22KFDh4ioWbNm3333nToV79+/36pVKyL6+OOP1amoDtcOoRBi4sSJRDRo0CCnZObmzZvy+io1NbXxZ6uv4cOHE9HChQvVL11fZWVlQUFBRLRp0yY167711ltEFBISovRHUDW5fAgLCgo6duxIRG+++Wbjz6ZmP8bRpUuX9Hq9u7t7ZmYmywDq7pH9GJPJ9Nlnnyla12QyPf7440S0Y8cORQupqc4hvHlTdOr08PjgQfHccw+PjxwRISEiKEg8/7zIz3f6+OrixIkTer3eaDSePXu2MedRvx/jKDo6mogmTZrENYC6qKkfs3LlSiJ69dVXnVXo66+/njBhwtq1a+1ffPfdd2VjvLi42FmFeDUuhHfvCn9/ce2aEELMni1mznT+AOtGfmR//PHHS0pKGnYGln6Mo9zcXG9vb51Od/r0acZh1E72Y6ZOnWr/4u3bt+UNLsePH3dWoU8//ZSIWrRo8cMPP9hetFqt4eHhRBQfH++sQrwaF8L9+8WoUQ9fzMgQHTo4eXR1VlFR0atXLyL685//3LAzcPVjHC1ZsoSIBg4caLVaeUfySIcPH35kP+b5558nogkTJji33DPPPENEL7/8sv2LZ86c0el0Xl5et2/fdm45FvUJocEgOnUSnTqJgICHIdy0Sfzxjw+/IC9PeHoqMsa6ycjIkNdISUlJ9f27vP2YaoqLiwMDA4no0KFD3GOprqZ+zCeffEJE3t7et27dcm7FL7/80mg0urm5VWuAjxs3joimT5/u3HIsGvdO+N574plnHr74xReic2cnj66e1q5dS0QBAQF3796t11/k7cc42rx5MxEFBwdrbe6+pn5M9+7diehvf/ubEkVfeuklIho3bpz9i1lZWXLuPi0tTYmiampcCH/4Qfj7i6++EkKImBghrxlOnhSXLzt7nHVisViGDRtGRM/Z+kZ1oIV+TDVVVVVy7n7jxo3cY/lRTf2YFStWEFG3bt0qKiqUqHv37l35yEVycrL966+88krTmLtvdHc0MVGEhYmuXUVUlCgsFBkZws9P+PsLpr5Cbm5uy5YtiWjnzp11+XqN9GMcybn7li1bamfuXrV+jKP4+Hgieuqpp+w/J9+/f1/+rBUtrQJnzxOaTCIqShAJb2/BdFvDwYMH5W00169f/8kv1k4/xtFvfvMb7czdq9yPqaasrKx9+/ZEtH//fvvX5QeQ0NBQl567V2Cy3mwWM2YIIuHuLt57z/nnr4NJkyYRUd++fSsrK2v5Mls/RoX7jxtAO3P36vdjHO3cuZOIOnfubH/RazKZgoODiegf//iH0gNQjjJ3zFitYuFCQSQMBsFxZ0NhYWGnTp2I6PXXX6/ly7TWj3E0ZcoUIpo8eTLvMFj6MdVYLJY+ffoQUbW5e7kiQWBgoOvO3St529rq1UKnEzqdUOWHVE1ycrLBYDAajWfOnHnkF8h+TLNmze7cuaPy2OouJydHzt0zzp1w9WMc2ebu8+3uzbJarfJhYtedu1f43tGtW4VeL4jEokVC9annBQsWyEa/4+9IzfZjHC1evJh37p6xH+NIzt2/8sor9i+mpqbKufucnBw1B+Msyt/AvX+/cHMTRGLWLGGxKF7OTkVFRe/evYlopsP9dLIfo8Lz4I1nm7s/fPiw+tV5+zGOrly5YjAYHOfu5XheeukllcfjFKo8RfHRR8LbWxCJiRNFrZ0Sp7t69apckS0xMdH2osb7MY645u610I9xNH369EfO3bu7uxsMhitXrqg/pEZS61Gm5GTRvLkgEqNHVz14oFJRIYQQ69evl7fR2D77ab8fU01VVVVoaKj6c/e192PWrFmj5mBsvv32W3klnJKSYv96TEwMEY0cOZJlVI2h4vOEX3wh2ra9PHhw//791ZyAtlqto0aNkj8eq9XqEv0YR0eOHCGixx57rLCwUJ2K2unHOKp97v7f//4318AaRtWHeh/cuBHUubOcHFfzHjHbbTSbNm1ylX6MIzl3v2jRInXKaaofU01JSUmbNm2I6N1337V/Xa6V3qtXLw3eelELtZ+s/+6775544gm5spiac9DyDdDNzc1V+jGO0tLS9Hq9p6enCp/EtNaPcbRjxw4iCgoKeuTc/TvvvMM4tvpiWN7i3r17/fv3J6I2bdoo/TH622+/PXr0aHx8fGRkpK+vr1xA9tSpU4oWVc4f/vAHFZ6712Y/phqz2dyzZ08ieuutt+xf37dvHxG1bdu2tLSUa2z1xbMCd2lp6dixY0+cONGyZctjx47JTDaeECIrKyvtvy5dupSfn2//BUaj0Ww2HzhwYPz48U6pqLLs7Oxu3bp5eHjYlrKuacOGuuwhVdP2NWfPnv3888979uyZlpZmNP64UUJqauqMGTNeeOGFhQsXKvhN1tnx48dHjRrVokWLzMxMuQobEQkhIiIiUlNT33jjjWXLlilVOzGRliyhigrq04d27KBWrSgzk4YPp1u3iIjef5/27qUjR+p4MrZl8E0m0+TJkw8dOuTr63v48GG50Fh9WSyW7Ozsq1evXrx48eLFi2fPnq2WuhYtWoSFhf3ff506dWrWrFlBQUHXrl1zxV2QLl261LdvXy8vL9ta8Qpp0aLFunXrXnzxxWqvy1005FW9FkycOLFfv35z5syx/2meOXMmPDzcy8trxYoVtjXza9p2Rv7m6qjTGYUgDw+ybTvj6Uk1bTeUl0chIZSaSj160Jw5VFVF27e7ZAiJyGKxzJgx45///KeHh8e+ffvk543amc3m69evX/yv9PT0av8c27RpExYWFhoaKlMXGhpqv7uDxWJ58sknMzIy1q1bFxsb6/xvSUlCiCFDhiQnJ8fGxq5bt06+aL9hQ7XNG35yD6matq9JTEw8c+bMkCFDTp48qfy3pYiQkJCysrLbt2/X8etNnTu7y/w8kpcX2bagjIigyZNpzx46doyI6OpVGjWKbt921RASkRAiNjY2ISHBYDDs3Llz2rRp1b6gqqrqxo0bttSlpaXZ/m1Jbdq0sb3R9evXT27qUIuPP/549OjR/v7+N2/etF3DuIRdu3ZNnz49MDDw+vXrtr3HlFBYWNi1a9f8/PykpKTIyEjlCikkPT29b9++RPTcc8/ZttOqfduZq61be37/PVVUkO1fV3k5PXLHu8GDafx4unCBdu8mIvr+e+rUicrLKTOTevSg9u2JiMrKaNCguodQE+uOyt1ddDrd+vXrS0pKUlJStm/fHhMTEx4e7njR2KZNm8jIyPj4+KNHj37//fcNKPf0008TUWxsrNO/EeUUFRXJ3y979+5VoVxCQgIR9ejRw+XayFardfDgwUQ0b948p520rEzcv//wv3v3Hr2qS01PvdeBJkIohFi/fr1OpzMYDHq93j5yRqOxV69eU6dO3bBhQ0pKSoNXNLR3+fJlg8Hg7u5+8+bNxp9NHbNnzyaiiIgIdW7jrqys7Nq1KxFt3bpVhXJOtGvXLiIKDAxU8K6GR67q0gRCKIT405/+5Ofnp9frQ0NDo6OjExISUlJSHihzj5u87o2KilLi5E535coVo9FoNBrT09NVK/r+++8TUUBAQFFRkWpFG6moqEhO4v/rX/9StlK1VV1EUwmhvB9qwYIFKtSq6f5DDbJdX6l//RwREUFEcXFxKtdtsDlz5qh5veAsGgrhzJkziWjLli3qlHvttdeIqH///hr/gb3zzjuKX1/V4Ny5c/I5vezsbJVLNwDL9YJTaCiE8nnNDz/8UJ1ytvsPDxw4oE7FBlC5H+NowoQJRPTCCy+wVK87RfoxatFQCHv06EFEGRkZqlXctm0bOdx/qCkq92Mc2fbH/c9//sMygDpSox+jGK2E0Gq1yluu1Fyux2w2y7vJ169fr1rRutPI9dX8+fOJaMiQIYxjqJ16/RhlaCWEeXl5RNSqVSuV63744YdE5O/vn8+0r1tNrFbrwIEDtTCfWVBQIO9qUO2TQn25aD/GRishPH/+PBH98pe/VL/0iBEjiGj+/Pnql64FYz/G0dtvv63ZuXuNXC80hlZCeODAASIaO3as+qXT09PlGrvambu/f/9+69atGfsx1djm7rdt28Y9lv/h0v0YG62EUK5nXm0pO9VMnTqVtPGsqsTej3EkNxdo3bq1pubuXbofY6OVEMrL+rfffpulem5uro+Pj0ae901LS5PLFmvt+krO3S9dupR7IA+5ej/GRishfPbZZ4lpaU1Jriw2YMAA3jcf7fRjHJ09e1ZTc/eu3o+x0UoI5WbXjBs+lpSUyGnxgwcPco1BaKwf4ygqKoocVn9i0QT6MTZaCaF8QI53L76tW7cSUZcuXbjm7rXWj3Gkkbn7ptGPsdFECAsKCojIz8+Pdxhms1nuj8v10VSD/RhHckWCoUOHMo6hafRjbDQRwvT0dCJ64oknuAcikpKS5Ny9+u/Jmu3HVHP//n05d//RRx+xDKDJ9GNsflxLi9GtW7eISO4oyCsyMnL48OEnTpxYtWqVnDVRhxBi9uzZFoslNjZWbmKjWf7+/nFxcbGxsQsWLHj66aftl2OT5DLn9su31fe4dnFxcXfu3ImIiJALQDYF3L8FhBBiw4YNRPSXv/yFeyBC2M3dq7k2scb7MdWYTCY5d799+3bHP7UtNtVg3t7eNV0WNaV+jI0m3gmzs7NJG++ERNS7d+8pU6bs2bNn6dKlchdYpRUUFCxZsoSI1q1bp+gKTs7i7u6+YsWKqKio1157beLEic2aNbP/U51ON378ePul3Gpa1q2m47Kyskeu6SiEmDNnjtlsnjdvnsavF+qH+7eAEEKMGzeOiN5j2uDeUW5urtwf9/Tp0yqUc4l+jKPw8HAiWrZsmdPPXFpa+sgrgibWj7HRRAjlAnVnz57lHsiP5C6iKuyP6yr9GEe2ufvbt2+rUK7p9WNsmNcdlQICAvLz8+/cufOTq4aqprS0tGvXrnfv3p04ceKTTz4pX7RvHvj4+Li7uzse+/r62hao9vPzs/Ut7I+bNWsm18MUQoSHh585c8Z+PV8XEhUVdfDgwWnTpsn3KEXNnTt38+bNERERycnJ9gs6NwXcvwWEvPr39PTU1MWY1WodNGhQQECA0v//3d3dXWtFM3u2ufuLFy8qWqhJ9mNs+Bszcn6iY8eOmvr1FhMTk5qa6uvrO2vWLFuzpKZGQmlpqdykgYhKSkrMZrPjcXFxscVikcdFRUVWq1UeG41GLy8vr5q2PdC2oKCgWbNmbdiwYejQoe3bt6/XFjR1PxZCrFq1qgn2Y2y4fwuIY8eOEdGIESO4B/IjeTO3l5fXyZMnFS1UVVUVEhJCrrlpqbR8+XLHqUKn69KlS7t27Vz0euEn8b8Tamp+gog2b968fPlyg8Gwd+/eIUOGKFrLaDSuXLly7Nixr7/++pQpU1xifsJeXl7e2rVrzWbzzp07Bw4c+MhtZ+p7/Mi5jQEDBsycOdO2rVJTw/1bQCxevJiI3nzzTe6BCCHEnj179Hq9TqfbtWuXakWHDRtGRIsXL1atorPIe1bGjBnDPRDXxh/CSZMmkTb6zkeOHJFXViovvqbmPthOlJKSIqcosrKyuMfi2vhDKJ9hTU5O5h3Gp59+KvsBf/3rX9WvPnnyZCKaMmWK+qUbpqqqSvZI3njjDe6xuDz+ELZt25aIeB/WPnfunJ+fHxHNmTOHZQA5OTnyHp0LFy6wDKC+5KxmcHBweXk591hcHnMITSaTXq83Go2Ma+llZGTIZ3Oio6MtFgvXMBYtWkREv/71r7kGUHd3796VPaSkpCTusTQFzCG8efMmEXXo0IFrANnZ2R06dJDdBd5FNYuLiwMDA4koMTGRcRh1gX6MczGH8Jtvvhk7dqxOp4uMjDx//rzK1fPy8rp160ZEw4YN08Jl1caNG4moe/fulZWV3GOpEfoxTsf/mXDLli3yxkudTjdy5MjPPvtMnbqFhYXyptCnnnpKzQ0waqH9uXv0Y5TAH0IhxJ07d+Lj421T1X369Nm9e7fZbFau4oMHD+QqmmFhYZraheLQoUNEFBAQoM2nddCPUYImQigVFRUlJCTIZikRdenSJSEhoayszOmFTCbTyJEjiahjx47qPIZTL3LufsmSJdwDqQ79GIVoKIRSRUXF7t275Uc1IgoMDIyPjy8oKHDW+c1ms1w8s3Xr1l999ZWzTutEmp27Rz9GIZoLoWSxWI4ePdqvXz8ZRT8/v5iYmNzc3Eae1mq1zpgxg4iaN2/OuNDwT9Lg3D36McrRaAhtUlJSIiMjZRTd3d2jo6OvXbvW4LO9+uqrROTt7Z2SkuLEQTpdTk6Ol5eXdubu0Y9RlNZDKKWlpUVHR8un0fV6fWRkZAPWwli+fLlM8rFjx5QYpHMtXLhQO3P36McoyjVCKGVlZcXExNieFg0PDz969Ggdn8f/+9//TkQGg0E7y0nVrqCg4LHHHtPC3D36MUpzpRBKeXl58fHx/v7+Moq9e/fevXt37Te77Nu3Tz6gtGPHDtXG2XhyOVb2uXv0Y5TmeiGUiouLExIS2rVrJ6MYFBRU03zGJ598IldnWrNmjfrjbIzKykrZJd6yZQvXGNCPUYGrhlAymUy7d+/u0aOHjGJAQEB8fLz9NhKpqak+Pj5EFBcXxzjOBuOdu0c/Rh2uHUJJzmf0799fRtHX1zcmJiYnJ+fy5cvyqnXWrFncY2y4X/3qV1xz9+jHqKMphNDmxIkTI0aMkFF0c3OT74GTJk1ifECp8c6dO6fT6dSfu0c/RjVNKoRSenp6dHS00WgcN27ciBEjuHb8dCK5Akh0dLSaRdGPUY0mVuBWQlZWVvv27eUK89xjaaxbt26FhISYTKbz58/LLQOUdurUqcGDB3t6emZkZHTp0kWFij9neu4BKCU4ONjDw6MJJJCIOnfuPHfuXCHEggULVChnNpvlMh+LFy9GAlXQZN8Jm5jCwsKuXbvm5+cfPXr02WefVbTW+vXr58+fHxwcnJGRYVsMG5SDELqMjRs3vvzyy506dVq9erWPj88j15mvae9b+y1rapeXl9e9e/eioqKkpCTbXbugKITQZchZO4vFcuPGjcacp/Y9pHJzc/Py8saMGZOYmNjYEUPdIISuxGQybdu27fTp03VZQ76m7Wt+0rJly6ZOnRoUFOTUsUONEMKfnZ/cQ6p3795No6HlKhBCAGZNdooCwFUghADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjD7f8l4ls08HQK1AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -394,7 +416,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAIzklEQVR4nO3dW3arxhqFUZRxepT0\nvwXZbdJ5YIcoSEaIi1bVz5xPHs6OTUn1mTu63e/3Acj5I70AcHUihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhP0vvQCtu/26TV/f/7xP35y+hp1EuGQW\nm/Y4g83RHz0np0DOIEIIEyGEiRDCRAhhIvzR/c/74/mJ4b+nK+AoTlEsmXXo6ChnuN3vJhYk2RyF\nMBFCmAg/5vAMxxIhhInwY8+nLmAPEUKYCCFMhFvYIuVAIoQwEUKYCCFMhBvZLeQo+bsoPM6MiwtH\n6HFmkNwc7f1xZrZIOYR9QggT4T5/pReA/olwl/v9frvZImUXEUJYMkKPM4MhfoqiwOPMxi1Sz8ti\nM7PnACJkD/uEENZHhI3vKzpGyh59ROjaFArraWdm7LDZgzf2DNmmv3nT7EXeImSbPjZHH9k0pZj+\nIhxa7dDhGbbpeAuqtV3EqcB+X9KXqo6rHR1HOMruIs5WfeOLWWPWPg5tNq6h86G1pvsIh8QRkefM\nXi5Dd7P25QIvD62LcTWuQoTDtzpcmHlvF6DlWVt1XL0oEuFwWodr1mYf/ep2Zu3bJdk2roUfyEt1\nIhwO7XB9Kpt/aWrWrhzanheznT80XSgV4bC7w09nz1HZnz1rNwR/yNDUuEa1CIfPZ8+eNdLh28DH\nztrNP+28cW1YmPIKRjism0P7p/upR4P2LN7OoZ19lMvqcaZmhMPPM+moGfC18yIr1yEHrmq+P7Sq\nk3ClshEOD5Pp8G2h1LXaL89Pzr6z/1d8f2gX31itHOHwz7t7+BjjN0yctA6Jj2s47S1rWZcXcH+k\nXoHDP4OqV+DwcIncda6Grx/hsRqZqeXd7/fr3JUiwg8ULrDNoY0dlk8x//mEz77wiYUb5lyb0/QQ\nLQ9t2jptdgn3ay5Cn1jIs2nTtGSKbW2ONvuJhYX/EvcytMJ7iW1F2KZepukG3Q2t5F5ic5ujrelu\nmpb3++243YYq70uva8Lbr1uDz3rqS99/X+734XYbSqwSe10TjvuKU4cn7Tr2PU0XVRjatEqcvu5T\nWxGOzzJcf3T08QTG7Dv7VZimPyg1tP5TbCvCYesnFs5q3J9iqWl6BT2nWHOq/ZvxX6/PLK15flHj\nr8yex2pUHdr0/w9DTym2/n7s9LvGpxSX3+b2p+mwdSELD+35pwxDHyl28JbsMbulcPlZmm//U1NE\nuPJntd9hc/uEJ3m+u/elLuboZrVH91oP471KhKPHNWHhaxFfumKBnbhWhI+eN1MLT9PCQ/vY49ZQ\nG6/JdSMcvdxjpKzZLmIbe4xXj/AKa8Kq4/rYc3LjtW/pF+e6EV5n7TfeeXCFkXaq1wu495jym83L\nqrer0bhrRTgeFF1YJ1TtsOq4arhKhFN+b7fKqs7XquN6o4chV4/w7+H2a21+5V2rw/Fuw8c3fTwM\nM/s3DcyKmgdm5hdwf/g6O5LRt4WrRmcdtvEWV4twdivTbdj4h79qh1XH9duai7bbG3uRCM+4qbfq\nfK05rn7umXjWd4RnP96iqlId9pzfqNcIj7qDflmpyVpP//mNWpxhBz4Gf+GjQtcPvM0O9y9Vm+Ma\n1i1Yswu/QXNrwgYfg191fdjpuOpdb9jWecJmH4NfVXdnDkue8m0rwmZ1N1nreXvJYb9EuFbVDrsY\nV8kV4OSiEW57O7uYrxu0PK7CK8BJcwdmYFI+v1Fba8LZ47eH/56uaEHLK409WhvXFVaAk+bWhNse\ng7/g8PeyhSP7YzDHLkYL4xoqnoF4K/+in2f25N/RUeONzNdpII/Pbpx9Z/+vCI5ruFh+o+bWhEd5\nnEyP7+vhs/ZsyxP0ucaX/6xN3b0XJ6m5Jlx53dP4xeZX4NSVxp7F2zm0s1eG2pspGOGnc2jPOuTw\n+XrsBN38084b14aFKa9ahDtnz4ZZe8iF1NPXJ70dkXFt+70XVGqfcP+8Oe+Ax7NvTtAv7zpq7yN1\n1oQn7cmsmbWf3hi1/NO+5u2SbBvXwg/kpSIRfufA+sKsfbsA7bT3rOq4elFhc/T260t/ShY2Vl+e\n6e5l5bCwsfrTGXztHaj7CCN3/b6ctZN+J+jLE6ovv9Pd0FrW8ebodx4zs16/7S2rOq529BphC4+9\neNbCtZd0p627KFZSIJX0F2GbBcJmPR2YaW0nEA7RTYSNrwBti7JZH5ujjRcIe/j7fQCrQfboY00I\nhYkQwkS4l21RdhIhhIkQwvLnCQ/8NMLvsy3KfuEIG/w0ws/8nV4A+pfcHPVphDDYJ9yjv/U2TRIh\nhIkQwkS4kW1RjpKMsP1PI4QvCJ+iOPzTCKE7+ZP1L8NTI9dhn3ALO4QcSIQQJkIIE+HHbItyLBFC\nmDtxIMyaEMJECGEihDARQpgIIUyEEJa/gLtxXT8Mji6IcEn3D4OjBzZHf+RhcHyHCCFMhBAmQggT\nIYSJ8EceBsd3OEWxxMPg+AL3E0KYzVEIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDC/g//ByU3CN4YGAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1RU5f4/8M+eCxdBYJQBFVAUFMXULFELE1NMzKFOh6ATOkfTdWx95TTaxdBWhnr65ZjlGVwrz0pXGoVWqOUBFBXzqFhKEpoJyMhFEZD7gNzmvn9/bM/IIUSG2XueuXxeqz+S2ZfPwLxnP3vvZz8PRdM0IITI4ZEuACFnhyFEiDAMIUKEYQgRIgxDiBBhGEKECMMQIkQYhhAhwjCECBGGIUSIMAwhQoRhCBEiDEOIEGEYQoQIwxAiRBiGECHCMIQIEYYhRIgwDCFChGEIESIMQ4gQYRhChAjDECJEGIYQIcIwhAgRhiFEiDAMIUKEYQgRIgxDiBBhGEKECMMQIkQYhhAhwjCECBGGIUSIMAwhQoRhCBEiDEOIEGEYQoQIwxAiRBiGECHCMIQIEYYhRIgwDCFChGEIESIMQ4gQYRhChAjDECJEGIYQIcIwhAgRhiFEiDAMIUKEYQgRIgxDiBBhGEKECMMQIkQYhhAhwjCECBGGIUSIMAwhQoRhCBEiDEPYm+81X6qQogqpmLIY0rUgp+CMISzsKowpi/H6zUt8TRxXEVemKev56qWwSyXhJQuGLiBVHnI2ThfCYnXxXOXcJn3T7qDdOwJ2lKpLo5RRdbo60wKhrqET3SZ68jwJFomcioB0Ada25e4WCqjT40/78H0AQOItCS8OP9J6JEmcRLo05KScLoSn7p2K9Y5lEggAvgLf8snlQ/lDyVaFnJlzNUeb9c2thtYQ15CeP8QEIrKcK4QaWgMAXnwv0oUg9IBzhVAsEPOApzKoSBeC0APOFUIhJRwpHHlDfaPnDwu7Cm9pbxGqCCEnCyEAPO/9/PG24/W6euafXcauxFuJm2o3ka0KOTOKpmnSNVhVlbbqiRtPjBKOetf/XQElSG1IrdBU/Drp10BhIAAoNUojbQSAv9/5u4bW7B29FwC8+F6jhKMI140cl9OFEABuqG+8W/Pu+Y7zPODN8ZzzaeCn413HMy95XvXsNHb2Wj7OJ+7wuMNWLxM5C2cMYT8ud12W3ZGFuoZ+Hfw16VqQs3C6m/X9EwvE+Z35ReoitVHtxnMjXQ5yCk53YaZ/wS7B04dMbze0/9j+I+lakLPAEPYW5xMHAEdaj5AuBDkLPCfsTalRhhWFifii+qn1QkpIuhzk+PBI2NsE1wmT3SarDKqz7WdJ14KcAoawD3EibJEi68EQ9oE5LTzadtRAG0jXghwfhrAPU92nhrmF1evqf+r8iXQtyPFhCPv2ks9LgC1SZBUYwr7dv1GhOkIDXj1G3MIQ9m3GkBljXcbW6GryO/NJ14IcHIbwobBFiqwDQ/hQzI2Kw6rD2CJFnMIQPtRsj9mjhKNuaW9d7bpKuhbkyDCED8UDHrZIkRWwHEIHm8iBuUZ6SHWIdCHIkZkdQqeayGGu51w/gZ9SoyxSF5GuBTks80LobBM58Cn+iz4vAsARFbZIEVfMC6FpIodlw5atGL7i7ISzOlrn2KdMrwhemXN6zqlVp0gXghyWecNbOOFEDnPFc4u3F7e0tJSWloaFhZEuBzkgM46EzjmRg1AolEgkAHD06FHStSDHZEYInXYih7i4OAA4csSRW92IIDNC6LQTOSxatMjLy+vy5cuVlZWka0EOyIwQOu1EDq6urosXLwZskSJumHd11GkncsAWKeKOeaOtOe1EDl1dXX5+ft3d3Xfu3Bk1yu7fDrIpZg95aO5EDuFu4UXhjtDd5M9//vMPP/zw2WefrVmzhnQtyKFwOO5oja4m5HqIhtbI/GSKQAUFFEc7so4DBw4sW7Zs/vz5P/6Ig3MjNnE7+G9WW1ZCZYLaqF46bOn+Mfvteizd9vZ2Pz8/nU539+5dsVhMuhzkOLh9lCnWOzYnJGcof+iBlgNxFXHdxm5Od8epoUOHzp8/32Aw/Pvf/yZdC3IonD9POG/ovDPjz/gKfLPasp4vf/6e4R7Xe+QOXiNFXLDSXBQl6pKFNxfW6GpmDJmRE5rjK/C1wk5Z19zcPGLECIqi6uvrRSIR6XKQg7DSk/WT3CZdCLsQ6hpa0FUwVzm3Wldtnf2ya/jw4fPmzdPpdNnZ2aRrQY7DesNbBLsE503Im+o+tURd8kzpMzc1N622axZhixSxztpTo6kMqiVlSy52XhwhHHEi9MQ092nW3Lvl6uvrAwIChEJhQ0PD0KEO/gQJsg5rD/Qk4otyx+c+5/Vcna7uWeWzP3f+bOUCLOTv7//000+r1eqcnBzStSAHQWC0NQ+eR1ZI1ss+L6sMquduPnfqnp09tD5r1iwA+OSTTyoqKkjXQp5Opzt27NjJkyf379/f0tJCuhz7RBOiN+pX3VoFv4JLocsh1SFSZQzc9evXU1JSJkyYAAAURVEUBQDh4eEpKSlFRUWkq7M2tVqdm5srk8n8/PwAgGmZ8/n8yMhIhUJRW1tLukB7QiyENE0baePaO2vhV+AX8tNvpROs5GH0ev25c+dkMllgYKDpa4uJ3+zZs729vU0/DA8P37Rp09WrV0mXzK3Ozs7Dhw8nJiZ6ef3Ps90CgWDOnDlC4f0eUXw+PyoqKjU19c6dO6RLtgMkQ8iQ18mDs4PF/uIdO3aQruU+vV6fl5cnk8lGjhxp+pyNHj06KSlp3LhxALBq1aqei/n7+5sWCw4OlslkeXl5RqOR9PtgTWdnZ2ZmplQq7XktKjw8XCaTeXp6AsCXX35J07RKpcrIyJBKpR4eHj0XS0lJKS0tJf0mbBf5ENI0/dnez5jDy6ZNmwiW8chQJSUlAUBoaOi9e/f6XLHnU05BQUEymSw3N1en05F6RxZqaWlJS0uLj4/vM1RarZY5PU5ISOi14sNC65xN90eyiRDSNJ2ens40ZtasWWMwGKy56+7ubuYT07N5OW7cOCZ7psWOHTtGUZSrq2thYeHDNmUwGPLy8pKTk0NDQ02b8vX1lUqlmZmZWq3WKm/IUk1NTWlpaRKJxMXFhXkLPB6POdmrrq42Lfb2228zv6i2traHbWqAv1snZyshpGk6KyvL3d0dABITE63wee3n27q4uLjXwtXV1b6+vgCgUCgGuH3mQk7PURKHDRvGpFGj0bD9bljQ0NDAZK/nqd3DLrScOHGCoiiBQPDzzz8PZOPO03QfBBsKIU3TZ8+eZc74JRJJV1cXF7sYxHmLwWCYP38+ACxevHgQHxcmjeHh4abd+fj4xMfHp6WldXR0WPyGLHX79m2FQhEZGcnj3b9f5erqGh0drVAo6uvr+1ylvr5+xIgRACCXy83d3cPOt+296W4J2wohTdMFBQXMMScqKqqfdo65mpub+2xiyeXysrKy/tfdunUrAPj7+9fV1VlSQ3l5OfNxZ06AAcDd3V0ikaSlpfU6ybSCioqKXsW4ubkxxbS2tvazotFoXLJkCQDMmzdPr9cPugBT0z0k5MFItnbXdGeFzYWQpuni4mLmlsCTTz7Z0NBgyaYaGxsH3sTqU35+vlAo5PF4ubm5llTSU2Vl5eACYLnr16/L5fLIyEjT537IkCFmfRF8/PHHACAWi2tqalisynQP1i6a7uyyxRDSNH3r1q3x48cDwMSJE6uqqsxdnWliRUdHCwSCXtkz62imUqmCg4MBYOPGjebWMBBVVVWs1PlIzKd80qRJpk+5SCSSSqUZGRlmNYkLCgpcXFwoisrMzGSxvF512mzTnSM2GkKapuvq6qZNmwYAY8aMUSqVA1mF9SPMq6++CgARERFcfx/3c8S25IDzxyPM8OHDB32EaW9vZ64zvfnmm4MuaYBMTfdBH7HtiO2GkKZplUrF/Bn8/f2vXLnysMU4+oPt2bMHADw9PQf4FcCKfs5db968OZAtMOdaMpksICDA9AsRi8WWn2tJpVIAmDJlSnd396A3Yi6CTXersekQ0jTd2dm5aNEiplly4cKFni9x2nRRKpVMX5D0dDL96UxXcZkyGMxV3Bs3bvxx+X6uOubl5Vl+6/W7774DAA8Pj5KSEgs3NThWa7pbn62HkKZpjUYTHx/PHN9ycnKscBKvVqsff/xxAHjttddY2aAlurq6mPuZPbtrmnqf9OpIzRg7diy799/KysqYve/bt4+VDVqCo6Y7QXYQQpqm9Xr9ypUrmaaI6aM2atSopKSkM2fOWHKhvE9vvPEG9NU9jayurq4ffvhh2bJlPXufMLdzGFOmTNm8efO1a9fY3a9Wq509ezYAxMfHs7tlCzU2Nu7duzcmJsbUdOfz+cnJyb/99hvp0sxjHyGkadpoNMbExIhEIh8fH+bGLuvZYxw/fpyiKKFQmJ+fz8X2LWdqebq7u3t6egYHB/fZy4ct69evZ1q2LS0tHO3CQqamu1AopCiKx+NJpdKH9TSwQXYTQpqmt23bBgDJycnc7cLUPW3nzp3c7YUtzNny8ePHudvFyZMneTzewLunkcV0e2QOjD4+PnK5XK1Wky7q0azxZL3vNV+qkKIKqZiyGCvsbtCMRuPy5cubmppiYmLWrVtHupxHM10w5EhjY+OKFSuMRuPWrVufeuopTvfFCuYX8ssvv0gkktbW1g0bNkydOtX2h8ZjJ4SFXYUxZTFev3mJr4njKuLKNGU9X70UdqkkvGTB0AWs7Is727Zt+/HHH/38/Pbv38/159v20TS9cuXKu3fvRkVFvfvuu6TLMUNoaGhWVlZubu7kyZOVSmVsbOzChQuLimx3ViIWQlisLp6rnNukb9odtHtHwI5SdWmUMqpOV2daINQ1dKLbRE+eZz8bIe7y5ctbtmzh8Xjp6elM72Qnt3PnzuzsbF9f34MHD/L5fNLlmC06OvrKlSsKhcLb2/v06dPTp09fu3Zta2sr6br6wEIIt9zdQgF1evzpZcOWrRi+4uyEszpad6TVnkbmbGtre+WVV3Q63fr16xcuXEi6HPIKCwvfe+89iqK++OIL+52PUSgUrl27try8XCaTGY3GXbt2hYSEpKamGgwG0qX9DxZCeOreqVjvWB++D/NPX4Fv+eTyJHGS5Vu2mjVr1lRWVs6YMYN5YMLJdXZ2Mo90ymSyF154gXQ5lho+fHhqaurly5fnzp3b0tKybt26GTNmnD9/nnRdD1gawmZ9c6uhNcQ1pOcPh/IJjIqbmJgYGxvb0dFh7opffPHFwYMHPT09Dxw4YLrj5MySkpJKS0sfe+wx5nK0Y5g+ffq5c+cyMzPHjh179erVqKio2NjYyspK0nUBWB5CDa0BAC++1yOX5NqJEyeys7O1Wq1Za5WVlb355psA8K9//atnLxynlZGRkZaW5uHhkZGRwVzxdySxsbFFRUVyuXzo0KHZ2dmTJ0/esGFDe3s72aosDaFYIOYBT2VQDWLdDmMHDVYdhL8XjUaTkJDQ3t6+fPnyZcuWEazERlRUVPztb38DgNTU1J7PPTkSd3f35OTk4uLixMREtVq9ffv28PDwkxkZYN35IHqyNIRCSjhSOPKG+kbPHxZ2Fd7S3nrkuuur14/+ffSGmg2VWjKtguTk5CtXroSEhOzatYtIATZFr9cvW7bs3r17L7/88qpVq0iXw63AwMADBw7k5+c/9dRT1dXVT+7YAbNmwc9kJmVg4cLM897PH287Xq+rZ/7ZZexKvJW4qXbTI1e82HmxWle9vX576PXQmLKY71TfMY1b68jJydm1a5dQKDxw4ECvoWyd0/vvv3/x4sWgoKDPP/+cdC1WEhERceHChf8cOOBbXQ2XL8Mzz8Brr8Hdu1Yug4UQvj/ifU++58Kyhekt6d+qvl1wc4FKr9oWcP+cXqlR3lDfuKG+0WHs6DR2Mv9fq6sFgMJJhXkT8lb7rnbjuZ28d/IvlX8ZcW3E61WvF3YVWl5V/+rr65knJLZt28YMnunkzp49+8knnwgEgm+//XbYsGGky7EeHo83LzERysogJQVcXODLL2H8eNi8GdRq6xXBSue3ku6S2LJY76veoqui2LJYpfrBU7AeVzzgV+j1X1x5XM/VW/Wtnzd+HlkaaVogvChcXidv1DX2XKz/vqPM1LnNzc2PrNZgMERHRwPAokWL7HqwvZiYGGCj72hDQwPzFOKHH37ISmGkDBkyBAAG/zRpVRUtldIANAAdFESnpbFa3UPZVgfuou6i5Opk8W9iJoquha7xFfGZrZl6o55mL4QfffQRAPj5+d29e5flN2BdrITQaDTGxsYCwNy5czl6MMVqLA0h48wZeurU+1F89lma+wejCEyN1o9wt3B5gPzOlDuZIZnxongDGA6pDr1Q/sKY62M21GxocWdh5q3Lly9v3ryZoqh9+/Zh9zQAUCgUWVlZIpHo66+/tsfuaex79lm4cgXS0kAshv/8B6ZPh7/+FRoaONwj1ym3RJWmamvt1nHXxzEHRqqAgv8HsbGxfY5xMpAjYXt7OzOI2/r16zmr2nosPxJeu3bNzc2NoqijR4+yWBgp7BwJTVpa6ORk2sWFBqBFIloup7kZ78umQ2hS0Fmw+vZql19cQAYA4O3tvXr16l6TGQwkhEuXLgWAJ5980jFGs7QwhB0dHRMnTgSAN954g93CSGE5hIwbN+jnn7/fOg0Lo48dY3PjNE3bSwgZKTtSwAd6DmQ0bdq01NTUpqYmegAh3LdvHwB4enr2OVCSPbIwhK+99hoAPPbYYxzNOGB9nISQkZtLh4ffj2J0NM3q3FL2FELThZni4uLk5GTT0EYuLi4SiYSZW+JhIbx58yYz8ctXX31l5bK5Y0kIMzIyAMDNzY31MWkI4jCENE1rtbRCQXt70wC0UEjLZDRLYy7aZQiZf2o0mszMzPj4eNMYeACwdu3aP47PqdVqZ86cCX3NpGfXBh3C27dvMw2HPXv2cFEYKdyGkHH3Lr1yJc3j0QB0YiJN03RODj1jBu3mRvv60n/7G61SmbtJOw6hSU1NjVwuN00qxJz1ff7556Y/BtNFOyQkhMUZZmzB4EKo0+mYsSri4uIevbRdsUYIGQUF9Lx5dHExnZdHCwT0okX04cO0QkF7edHPPEObefPZEULIYL7aly9fbhot18vLSyqVbtu2jRk97eLFi1YumGuDC+HGjRsBICgoaCD3VO2L9UJosmABHRLy4KrpV1/RALSZfxHbuk9ouZ07d9bU1OzZs2f27Nn37t37+uuv33vvPZqm//GPfzCDZzq57u7uQ4cO8fn8b775xqm6p3FCo4Fz5+Cll8D0GGp8PLi4wMmTZm3G0UKIkPXcvg16PfSYGh3c3CAoCCoqzNqMo4XwrbfeCggIWL169aVLl5jm6EcffURR1KZNmy5dukS6OvLc3d3j4+MNBsOrr77a0sJCDySn1tUFANDr0Wc3t/s/HzBHCGFtbe327dvb2toAgJkNhrkwU1tb+9VXX23YsGHdunU6nY55WI50seQxg4jeuXNn9erVpGuxW4WFMH8+1NQAAHR2/s9LKhV4mjewoB2HUKvVZmVlJSQkjBkzZsOGDUajEf57i6KgoGD16tWmWem3b98+c+bM8vJy5rFxJ8c8ryQSiY4cObJ3717S5dibujpYtQoiIuA//4H0dBAKobT0wavt7dDQABMnmrdN1i8XcQdv1veCN+t7IXCz/rnn6NGjaVNn5rQ0GoA+f96sDdtTCLHbWi/Yba0XbrutTZrUR7e1n36ihUL6uefoo0fp3btpkYhevNjcbdtHCLEDd5+wA3cvZDpw5+bSs2bRrq60WEwnJdHt7ebuwaZDiI8y9Q8fZeoFH2VijdqozmzNjK+IFxQKmPgFXAtIrk5er1gPFj9Z/8svv7i4uFAUlZ2dzUHtVsXKk/U7d+4EAJFIdPv2bbYKI4W1EBoMdFoaLRbTADSPR0uldEMDGwX2zbaujharizfUbAj6PeiF8hcOqQ7xgR8vis8Mybz92G15gHxYNws9PCIiIjZv3kzT9MqVK+vq6h69gqNbt25dbGysSqWSSqW2NkkDGWfOwPTpsHw5NDbef8r+q69ALOZuhzYRwjZD256mPXOUcyYXT95ev71R38iMc1E9pTpjbEasdyyfYnPYheTk5Ojo6IaGhhUrVtDkhny1EcysLyNHjjx//rxcLiddDlHl5ZCQAAsWwLVrEBQEaWlw5gxMncr1bkmG0AjGCx0XXq96fdTvo16vev2njp98+D6rfVf/OvHXovCiZP9kX4Hvo7diPmb+M39//5MnTzKNMScnFouZ+c82b978M6EBcAnr7ITNm+Gxx+DQIfDwgJQUUCrhr3+1zs5JztT7RMkTzyif2dO0R21UL/Ja9O3Yb+um1n0++vMnhjzBdUn+/v7MTKAbN27Mz8/nene2b968ee+8845er//LX/7iVN3ZjEbjyYMHITQUtmwBrRZWrICbN2HzZnBzs1oNJGfqfcrjqUBhYLJ/ctljZSdCT7wiesWVcmWlnoFYvHixTCbT6XRLly7F7mwA8OGHHzLd2V5//XXStVjJ5cuX58yZE7N06YnAQIiIgAsXYP9+6HEj2jpIztS7I3BH1ZQqeYB8rMtYy8sYhO3bt0+fPp2ZRJJIATZFIBCkp6d7eXkdPnz4iy++IF0Ot6qrq5cuXTpr1qyLFy8GBgYa1q+H/Hx46ikixZCcqdeT50kByanhXV1dMzIyhg4dmpaWlp6eTrASGzFu3DimN+natWtLSkpIl8OJ7u5uZiamgwcPurm5Mb0glyQkAEXso+g4M/XGxMRIJBJzZ/kMDQ395z//CQD/93//p1QquSnNniQkJCxfvryzszMhIaG7u5t0OSzLysoyzUkokUhMcxWSrcpxZuo9ePBgVlaWp5lPkQDAqlWrEhMTOzo6li5dau4cow7ps88+CwsLu379OjMQhmO4cuVKVFTUCy+8UFlZyczam5WVNXYsmfOgXhxnpl5L7N69e+zYsQUFBR988AHpWsjz8PA4ePCgi4vLrl27MjMzSZdjqebm5rVr10ZERJw/f3748OEKhYKZv550XQ+QnKnXdnh7e3/33XdCoXDHjh25ubmkyyHviSee+Oijj2iaXrVqVW1tLelyBkmn06WmpjKTwPJ4PJlMVl5evnbtWlubcoPkTL02JSIiIiUlxWg0Llu2DLuzAcBbb70lkUiampoSExPtsTvb6dOnp0+fvm7dura2tujo6CtXrqSmpnp7e5Ouqw8kZ+q1NRs3blywYEFDQwMzfyjpcghjJq4aOXLkuXPnPv74Y9LlmKGsrEwikSxcuLCoqGjChAlZWVm5ubmTJ08mXddDkZyp19bweLy0tDRfX98TJ04oFArS5Twa198UYrH4yy+/5PF4H3zwwcWLFzndFyuYX8jMmTOPHTvm4+Mjl8t///13iURCuq5HYeVZDAtn6h0Io9EYExMjEol8fHxkMllubi5HM1oeP36cGSw4Pz+fi+1bTq/X5+XlyWQyd3d3T0/P4ODglJSU4uJijna3fv16ABg9enRLSwtHu7CQSqXKyMiQSqVCoZCiKB6PJ5VK6+vrSdc1ULb4POEf6fX6lStXAoBbjx59o0aNSkpKOnPmDOtpfOONNwAgNDT03r177G7ZEl1dXT/88MOyZct6ntj4+j7o4z5lypTNmzezPmaMVqtlxk2Oj49nd8sWamxs3Lt3b0xMjOnmMJ/PT05O/o37uXXZZQch1Gg08fHxADBkyJCcnJzr16+npKRMmDDB9OEbNmyYVCrNzMxka9AKtVr9+OOPAwBzckhWV1dXZmamVCr18npwHyg8PDwlJaWoqEitVufm5spkMtOwVwAwduxYmUyWl5dnNHNShIcpKytj9r5v3z5WNmiJxsbGtLQ0iUQiFApN2YuMjFQoFDU1NaSrGwxbD2FnZ+eiRYsAwMfH58KFCz1fYtIYHh5u+vD5+PjEx8czQ49auF+lUsnc909PT7dwU4NjamL17H7AZK/PgapMbdSeA2GNHj2aSaPBYLCwnu+++w4APDw8SkpKLNzU4FRVVSkUiujoaNMkXKbs1dXVESmJLTYdQpVKFRkZCQD+/v5Xrlx52GLl5eUKhYJZkjFkyBCJRJKWlmZJe3LPnj0A4OnpqVQqH700S5qbm5mveVMTi8fjRUZGyuXyP0751ieDwcCkMSAgwPQLEYvFTGNBq9UOujapVMo0evsc44cjlZWVzB+X+m/fTjc3N+aP28rS9IDE2W4I6+rqpk2bBgBjxowZYAxY/4O9+uqrABAREcH16GwcNbH+2HQfPnz4oJvu7e3tYWFhAPDmm28OuqQB4uiL1TbZaAhv3brFDIs2ceLEqqoqc1e/ffs2K00XlUoVHBwMABs3bjS3hoGwWhOLSeOkSZNMn2mRSCSVSjMyMsxquhcUFDDDZGVmZrJYXq86OTrFsFm2GMLi4uLAwEAAePLJJxssG+WqnyNMbW3tQLaQn58vFAp5PF5ubq4llfREsIl1/fp1uVxuyRGGuXEvFotZvApihYtttszmQlhQUMBcdo+KimJxYt1+zrXKysr6X3fr1q3MeamFRydTE8uUPXd3d1JNrIqKisF9ERiNxiVLlgDAvHnzLLk5xJy7Jicnh4Q8eATH19fX8nNXu2NbITx79ixzKVwikXA0NrvpqqNpuhj471XH0tLSPlcxGAzz588HgMWLFw/ior+NN7GYpntkZKRpvnFXV9fo6GiFQvGw+9319fUjRowAALlcbu7u+rmKm5ubq9PpLH5D9seGQpiVleXu7g4AiYmJVvgi7OzsZO6/9Xymk0njH3ufVFdXM8dnhUIxwO0z2WOuZNhFE6uhoWHgTfcTJ05QFCUQCH7++eeBbNyUPX9/f9MvJDg4mN37mXbKVkKYnp7O/O3XrFlj+U0ts3R3dzNp7NkTZdy4ccznw7TYsWPHKIpydXUtLCx82KZMTazQHrO32l0Tq6mpqc+mu0KhqK6uNi329ttvM7+ofs4aBvi7dXI2EcLP9n3GnJls2rSJYBmP/LZOSkqCvrqzmVYcNWqUacWgoCB7b2K1tLSkpaXFx8f32XTXarWzZs0CgISEhF4r9tPKKDLNZ4wEyHYAAAc5SURBVIT+i3wI5XXy4MJgv4l+O3bsIF3LfQ87b0lKSho3bhwArFq1inamJtbDQiWTyZgOPV9++SU9qPNtRJMNoZE2rr2zFn4FfiE/vZpM77D+6fX6c+fOyWQy5pYJgzloz549u2cTKzw8fNOmTVevXiVdMrc6OzsPHz6cmJjYsyMrAAgEgjlz5vQ8mYyKikpNTb1z5w7pku0AsRDqjfpVt1bBr+BS6HJIdYhUGQPX814WRVFMFJ22idWr4zhzhDT3HixiUDSJR8i1tHZp5dLDrYc9eB7fj/v+Oa/nrF/DoL3zzjuffvrpzJkzv/nmG6Z16sx0Ot2pU6cEAkFtbe2LL744bBgLM2c5G4H1d9lp7PxzxZ9P3Tsl4ouyQ7Of9nja+jVYgpm74p133sEEAoBQKGTu3aNBs/aRUGVQLSlbcrHz4gjhiBOhJ6a5T7Pm3i1XX18fEBAgFAobGhqIDxqLHINVj4R1urpFZYuudV8Ldgk+Nf7UeNfx1tw7K77//nuDwRAbG4sJRGyxXghvaW8tvLmwTFM2yW3SqfGnAoWBj17H9hw5cgQA4uLiSBeCHIeVmqMl6pKFNxfW6GpmDJmRE5rD0eyfXGtubh4xYgRFUfX19SKRiHQ5yEFYY5LQgq6Cucq5NbqaeUPn/Tj+RztNIAAcPXpUr9dHR0djAhGLOA/h2faz82/Ob9I3xXrHHg85btezVmBbFHGB2+ZoVltWQmWC2qheOmzp/jH7hZSQu31xra2tzc/Pz2Aw3L17VywWky4HOQ4Oj4Q1upr4ini1US3zk30d/LVdJxAAsrKytFrtvHnzMIGIXRxeHQ0QBuwZs6dSU5kyMoW7vVgNtkURR8h0W7M7XV1dYrFYrVbfuXOn5/NKCFnOGldHHUB2dnZXV9fTTz+NCUSsYzmEvtd8qUKKKqRiymLY3TJZ2BZF3DE7hIVdhTFlMV6/eYmvieMq4so0ZT1fvRR2qSS8ZMHQBexVSJ5arc7JyaEo6qWXXiJdC3JA5oWwWF08Vzm3Sd+0O2j3joAdperSKGVUne7BvLahrqET3SZ68jz72YjdOXnyZHt7e0RExJgxY0jXghyQeVdHt9zdQgF1evxpH74PAEi8JeHF4UdajySJk7gpzyZgWxRxyrwQnrp3KtY7lkkgAPgKfMsnlw/lO/LzBDqdLjs7GwD+9Kc/ka4FOSYzQtisb241tIa4hvT8oWMnEADON56fvGEyfZbuOUg7Qiwy45xQQ2sAwK47fw7Ct/pvL0RfWPTFItKFIIdlRgjFAjEPeCqDirtqbI2BNvy79d8AECfCE0LEFTNCKKSEI4Ujb6hv9PxhYVfhLe0tlouyGec6zjXqG8PcwsLdwh+9NEKDYt4tiue9nz/edrxeV8/8s8vYlXgrcVPtJg4KswlHWo8AQLxPPOlCkCMz7+ro+yPe/771+4VlC9/1f1dACVIbUlV61baAbcyrSo3SSBsBoMPYoaE1zDHTi+81SmiXXb2MYDzaehSwLYo4ZnYH7hvqG+/WvHu+4zwPeHM853wa+KlpvCbPq56dxs5ey8f5xB0ed5idYq3rp46f5ijnjHUZW/FYBelakCMz+1GmiW4TM0My+3yp4/EOi+uxIUxb9GXRy6QLQQ4On6LoGw30963fA0CcD7ZFEbcwhH0r6Cq4rb0dKAyc6TGTdC3IwWEI+3ZEdQQA4kRxFFCka0EODkPYt6NtRwHbosgqMIR9+K37t1J1qb/Q3+4mq0H2CEPYB+a66EveL/EpPulakOPDEPbBdEJIuhDkFHC0td6UGmVYUdhwwfC6KXUCisD8jcjZ4JGwt0OqQwDwoveLmEBkHRjC3pgTQrwuiqwGm6P/o1JbGXI9xJPv2TClwY3nRroc5BSwxfU/mvRNszxmhbqGYgKR1eCRsA8G2oA3J5DVYAgRIgwvzPTmqCP5I5vljCF0wpH8kS1zuhA650j+yJY53dVR5xzJH9kypwuhE47kj2ycczVHnXMkf2TjnCuEzjmSP7JxzhVCJxzJH9k+5wqhE47kj2yfc4UQnG8kf2T7nK7bWpW26okbT4wSjjKN5F+hqfh10q+BwkDoMZL/3+/8XUNr9o7eC/Y8kj+yC04XQnCmkfyRXXDGECJkU5zunBAhW4MhRIgwDCFChGEIESIMQ4gQYRhChAjDECJEGIYQIcIwhAgRhiFEiDAMIUKEYQgRIgxDiBBhGEKECMMQIkQYhhAhwjCECBGGIUSIMAwhQoRhCBEiDEOIEGEYQoQIwxAiRBiGECHCMIQIEYYhRIgwDCFChGEIESIMQ4gQYRhChAjDECJEGIYQIcIwhAgRhiFEiDAMIUKEYQgRIgxDiBBhGEKECMMQIkQYhhAhwjCECBGGIUSIMAwhQoRhCBEiDEOIEGEYQoQIwxAiRBiGECHCMIQIEYYhRIgwDCFChGEIESIMQ4gQYRhChAjDECJEGIYQIcIwhAgRhiFEiLD/DwyUnhvJH+ZGAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -406,7 +428,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAH7UlEQVR4nO3d3XbiNhiGUejq/d+y\ne8BMSggBbMt6pc97rxx0TWfCnx5k2cZcl2W5ADn/pO8AnJ0IIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSJkAtfrNX0XDiRCJrAs\nS+EORQhhImQOhSdDEUKYCJlG1clQhBAmQmZScjIUIZNZ0negOREym2W51JoMRQhh/6bvQAU/VynL\nUm+jaSS3ybDKkyzCva7X68/kXu88kCj3RHiI15mZORsoNBmKcJen0+BbT2dOHZ6WHTPbKSesypMv\nwmb2HEROHoO+Xv/8ECLCjR6mwW2zYv7kj9uy6vYTvzNnJcItjtgQLXlCFp8QYQObmxQeFxFu0GRD\n9KlOTRbLfv41rUMU6zTfEL2F128v68Oxtful4Iw7G+8fzrSHDUW4y/RNXuZsrxaboysclEe/leHP\nuWLmrbgyRPipnwVO1uTTAk2DAxDhRm0LDOwmnb3A29N1W9PefqZ9ONaEH+m8Tmu/Mpx5jD5x/3Dm\nf1xmwvf6bIgeNxlebYiOTYSr9ZkVD9xAnb3A2e//DzZHn3gY/d02RI84PnHcqQUZ5Qq8iPBy+bPE\nv8/uxcZnz0G8v8npkzuHs0Z4P9cty+XjC+kdPaYPPVg/fZMVp8HLGSP82rX9scBZLN9v+u3fefrn\nxTZEZ7//L1SP8OeJkcO/kGvLeVHp7X9VHbtllI6w3dm9wcnwrQ8rHfPOf2jYJ78JhyjG1fZDUk1+\nT0TtAi/FZ8KmOk+GzT+mmBrHm9e05yFCDrRzTXtTvtLSEbb+xGq3KaXCxxQ/tvZCyfWcYE14u5TY\nPIatZa0mD+QMl+EpPRMeYOQp5bXsmvZFSDM+mW2JcCyTFv7Wiwf1ts953/g+JMLVjhsTRw+1Mde0\nhev6UOk1YdFTDQc314ctR2Am3OJhSmmy4On5MUWTz1BE2MCeBc/XX6sRxnEPpPDbhwg3+nBMDDho\n5l3TVlV5TTjLGsLY/VDVlaGZcLunY2JtTpECO1xHg8+JcLunw+71W3XVYdqtwJIrw7IRHv1S/fb7\n154JmRpPJUfzpPpFWOkl3/OFhA+/p9E9Spr+yshp/SL8WkHN/vSV+aTfvGvaYrpujt5eralftqnv\n/IN517TFJsPAmvDoKfHrlze/leNOyBpnPO1Z0w71QCaS2TFz0JT4UN3XrVxapFhshG17OOOsaUd7\n89oj/DAaFvL69+y8odS+1vFvrvPVTV+csjtvkOFDFPunxA/r2jMrdihkuV2JY9ph1Mfr7yN4bPK3\n3zLekzzEccJt67cN/2RDimW2eb60fUQPm4XBrcTVN9r0+kN7DBHhZeWUuHPb8vMUu46nLpPhvO8p\njb+Wp92FofcbJcKbt1Niwx2eb1Ocd7x21mEyrP1ajBXh5fcp8aCjGr+lmHnVD54MJx3Knff99Ddc\nhDf3U2KH82weUqz3Ml8OHrvdVoYlX5pBI/x6rm//0ed41BAn9NhN+t1RL8fS+MLQe4z+od7+PeTf\naOecQB7eK5u8dR67Ibos/18YOnom/egRsl+NTbgaj+IpEdJM28kwcHwoRITFTTqBlN8jek+ElfUf\nu00mw+TxoYRB947eq/0u+KuHfXcP4+NMT0j5ATBBhGf086Sqh1H4vcnf3sBT53A+HDNc9c+TG6Kh\n40MinNP3gfJ01Ex6AZvwZ+tefPziMNaEZXU7yeG4m46vafswE3KUt6O59krvcyNGWH4h/l6jk6pS\n58Gu+kjaCyOsaTsYMUIul1Ps/zz7W+1f1oTF9V/kFNiQ6fykiZCWChTYnwjrC+4mnVfPt5LRI/TO\nOhMv1iajR0gTPSZDn0XeSoQQJsKzOHYyNA3uIEJ2U+A+IjwRu0nHNGKE93vY7G0bnWlwtxEj5Djt\nJ0MF7iZCCBPh6VgZjsanKE7q4XJMwXuC84yY+Os1axAh6w3zLQ412BxlpZG+XrMGO2YgTIQQJkII\nsyZkpZG+XrMGEbKe9pqyOQphIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoSw/wDwE4vdIiKsdQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dfVzN5/8H8Pc51anT3SlichfNQguzGKu5b6i5t9y3RpOwmES5KzdDxMTXRmtuYsPC3I3vl9xkfrmZQiS5KRm5q3Qnnc7pnOv3x2WfpZLqfD6fqzPv52MPD+ez03V9Dl7n+txc1/sjIYQAQogdKesdQOhthyFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMGbLeAX2Smpp648YNS0tLKysrKysrS0tLS0tLY2Nj1vuF9BuGsLoCAgLu3r27f//+iv/LxMTE+lVyubziRm57o0aNpFI8BkEvSQghrPdBDxw9etTd3d3Q0LBXr15qtTo/Pz8vLy8/P7+goECtVte0NQMDg48//jgqKqpNmzZC7C3SLxjCNysqKmrfvn16evqKFStmz55d7v8WFxcrlcri4uLcV1W6kW7Py8tTKBRFRUU3b95s2bIlkw+F6hCC3sTPzw8AOnbsqFKpeGlQpVKNGTMGAHx8fHhpkB8qFRk7lri7E09PUlTEem/eIjgSvkFcXFzv3r2NjIwSExOdnJz4ajYtLa1NmzYSiSQ1NdXe3p6vZnWyaxfcuAGLFsGqVWBuDn5+rHfobYGXB6ry4sWLiRMnEkLmz5/PYwIB4N133x03bpxarV66dCmPzeokKQm6dgUAcHGBq1dZ781bBENYlblz5965c6d9+/bBwcF0y7Jly0JCQlQqle6Nz58/39DQMDo6+tatW7q3VktqNTx58s9L7rAIL96KifXxcN117tw5AwMDQ0PDhIQEuuXq1asymUwikcTHx9euzdzc3KVLlxb9fcY1fvx4ABg/fjw/e1wLixeT+vXJ/v2EELJrFwkOJoSQlSvJ5s3MdklQdfK8F0NYOaVS6ejoCADz58+nW9RqdadOnQBg6tSptW72008/BYDw8HD6MiMjQyaTGRgY3Lx5k4edrqmUFGJiQiQSEhtLCCEqFRk3jri7k1GjSHExg/0Rwc6dJCSEEELCw8mKFeTHH0lMDDl6lJw/T1JSSGYmKSwUf6fwwkzlgoKCVq5c2aZNm8uXL5uYmADA8uXL586da2dnd+3aNQsLi9o1+9///tfDw8PGxubu3bvm5uYA4OPjs3nzZm9v761bt/K4/2+m0cDHH8PFizB5MvzwAwAAIXDoEAwcCBKJqHsipjlzoHt3cHeHs2chLAwOHarkPVIpKBRgbQ2WlhNatcouKVEoFJaWlgqFQqFQ0JlS3BZbW1sbGxtd90r83Nd9ly5dMjIykkql//d//0e3pKammpiYSCSS//3vfzo2/sknnwDAypUr6UtuMExNTdWx5ZoJCyMApHlzUlDwcktkJAEgo0eLuhsiCw4mhw8TQkh8PBk5kvj4EE9P4uZGOncmrVuTRo2IqSkB4P5ramtbdXwCAwN13ymctlaeSqXy9vZWq9WBgYGurq4AoNVqv/rqK6VS+dVXX/Xr10/H9ufPn9+/f/+VK1f6+flZWFjY2dl98cUXP/3007Jly6Kjo/n4BNVw6xYsWgQAEBkJdFTPzISgIACAIUNE2gcmPvgAzpwBDw+Ij4d+/WD8+EreU1oK+fmQnw95eTsKCp7l59OpUfRXOlOK29KsWTMe9kr3HP/LhISEAICDg8OLFy/oltWrVwNA48aNnz17xksXdDBcsWIFfSn2YKjRkG7dCACZMOGfje7uBIAMHCjGDjCRnU3i4+vmeS+G8BVJSUkymUwqlZ4+fZpuSU9Ppydv++klRD4cPXoUAOrXr1/w96HgxIkTAcDLy4uvLqqyZg0BILa2hPtO2bKFABArK/LggRg7wMS4cUQqJRs2sN6PSmAI/6FWq52dnQHA39+fbtFqtW5ubkLEo1u3bgCwfPly+vLevXt0MLxx4wa/HZV39y4xNycAZN++l1sePSL16hEAsm2bsF0z9PvvBICYmpLbt1nvSiUwhP/49ttvAaBFixaFf1+nXr9+PQA0aNDg6dOn/PZ17NixcoPhpEmTAGDs2LH8dlSWVqtN9vEhAGTMmH+2DhtGAIiHh3D9MpaXR5o2JQBkzRrWu1I5DOFLN27coNc/jx49SrdkZGTQWxF79uwRosfu3bsDwLJly+jLe/fuGRsbGxgYpKSkCNEdIWTjxo0AsKJPH5KV9XLTzp0EgFhakr/+EqhT9iZMIACka1dSWsp6VyqHISSEEI1GQy+E+vr6chvphdARI0YI1Onx48fLDYZ0ucaYssMUfx48eGBlZQUAu3fvfrkpK4s0bEgASFSUED3WCSdOEImEGBuT69dZ78prYQgJISQ8PJxe/8zNzaVbfvrpJ5qQx48fC9cvHQyXLl1KX/7111/GxsZSqfTatWu899W/f38AGDRoELflJ39/VfPmpE8fotXy3l2d8Pw5sbcnACQsjPWuVAVDSNLT083MzADgwIEDdEtmZqa1tTUA7NixQ9CuT5w4AQBWVlZc+CdPngwAo0aN4rejzZs3l/tO2bdvHwDYNWhQfPcuv33VIZMnEwDSsSPhaSGoQN72EObl5bm4uACAt7c3t3HYsGEAMFCUm2Y9evQAgCVLltCXmZmZcrlcKpVevXqVry4ePnxIv1O2b99Ot+Tm5jZp0gQA/vOf//DVS50TF0ckEiKTEf7+JAXydoUwMzMzNjY2MjJy2rRpbm5u9vb2EomkcePGCoUiJyeHe1tycnLfvn0zMzNF2KUzZ86UGwynTp0KACNHjuSri6FDhwKAR5nrn1988QUAuLi4aDQavnqpU4qKin4dOlRrbk4WLmS9L2/27w1hbi65cIFER6/99tvhw4e3a9eu0tqExsbGEolELpc/evSI1Z727NkTABYvXkxfPnz4kA6GSUlJujf+yy+/AIBCofjr7+ufR44cAQC5XH7r1i3d26+bZsyYAQBf9ulTxw9EKT0MYcUlYWo1SUsjsbEkMpJMm0bc3Ii9PZFI6BzcQR99xEXO2tra1dXV19c3LCwsJiYmOTm5tLR0yJAhADBjxgxWHyguLq59+/aHDh3itnz99dcA8OmnnyYkJKSlpWVlZdWuvE1WVlbDhg0B4KeffqJbuOmOq1at4mfv656KC0HrOD1cylS2FIpMBhs2QHo6VFzqbmYGDg7QunXsRx9lN2rUunVrBwcHOgGtnOTk5A4dOshksrS0tMaNG4vxESoghEjKLCBKT093dHQ0NTXNzc0t+7YqaplWuj0jI2P48OGtWrU6evQobd/X1zcqKqpLly7x8fEGBgZif07hlZSUfPjhhykpKfPmzaOzL/QA62+BmgsOJkeOEEJIfDyZPJnUr08AiLU1cXUlvr4kLIwcPEjS0khNznbolZhvvvlGqH2uoVmzZgGAjY1Nx44d7e3t69WrV7vAGBkZ1atXz87OLioqKjs7++TJkxKJxNjYODk5mfVHFEpQUBAAtGnTprjOzM9+Iz0cCefMgW7dwMMDzp6FHTvgm2+gSROQy3VpkhsM79y5Qy8bMvTnn3/SC7bnzp3r3Lkzt/11BU5fV+NUqVRyA2njxo3btm2bkZGRlpa2dOnSuXPnsvlsArt8+XKXLl00Gs0ff/xBZ1/oB9bfAjUnTCmU4cOHA8D06dP5arB2SkpKaFm32bNn696aUql8+vRpYmKiQqEAgNGjR3fq1EmtVuvech1UUlLSrl074GmhrZj0cCRUq2HCBMjJAYUCtmwBExNeWr1+/Xr79u2ZD4YLFiz49ttvHRwcrly5ItdteC8rJCRkyZIln3766eHDh42MjPhqVheEkCtXrkycOFEikVhZWdHiEfQZO1zxCGtra+6lpaUlnVPxOqGhoYsXL7a3t7969WrV76xr9DCEDx5A797QrRts2sRvw56ennv27PH391+3bh2/LVdTUlJS586dNRpNXFwcXevEl/z8/BYtWuTl5Z0+fZrOlWNuw4YN9CKwVqut5o8YGhqWfSQWl1VLS8uioqIffvhBo9GcOnWqjnzA6tPDEB49Cv37Q48eEBfHb8N0MDQyMrpz507Tpk35bfyNSktLu3btmpiYOH369IiICN7bpwOFm5tbbGws743X1L1799q1a1dYWLhu3bouXboUFBTk5ubSmhFcIQlaRYJ78E5BQUFxcXEVbdra2jo5OdE1YnqG7dFwbXz3HQEgkycL0faIESMA4Ouvvxai8aotXrwYXl3NyK+8vDw6eY0rGsBQ7VaolJSUZGVl3blzJyEh4cSJE7/99tvWrVvXrl27ZMmSgQMHAoCdnV1JSYlA+ywcPQzhxIkEgKxbJ0Tb169fl0qlxsbG9+/fF6L91+FWMx47dky4XkJDQwGgd+/ewnVRHUKsUNFoNPSqTGRkJF9tikYPQ+jqSgDI8eMCNT9y5EjQrcJvTWk0GnpPws/PT9COuMEwLi5O0I6q8LoVKidPnpw1a9aSJUvWrVu3devWffv2nThxokYThn799VcAaN68ud4NhnoYQloQ5eFDgZpPSUmRSqUymSwjI0OgLspZuXIlADRp0oSbwy2cRYsWAUCvXr2E7uh16CTBAQMGlNu+bNmyqs+b5HJ5o0aNHBwcOnfu7Obm9vnnn0+YMOF6maW6Wq22ffv2ALBx40ZxP5Ou9C2EDx++rAsmpFGjRgHAlClTBO2FunnzJr0VcYROAxJYfn5+vXr1AODUqVMidFfO9u3bAUChUFQ82r948WJYWNjcuXOnTp3q5eU1aNCgnj17vnHCEFedmYqJiQGAZs2aKZVKET+WrvQthMePEwDi6ipoJzdv3jQwMJDJZHcFXvCq0WjorQgxnwlDrwC5CvxnWNHTp08bNGgAAJtrNcXi+fPnmZmZN27cOH/+/LFjx2JiYuhcvLLv0Wq1HTp0AIAffviBp70Wg76FcN06AkAmThS6n9GjR4twkrZ27VoAsLW15auscHWwGgzpnKQ+ffpohaymsXv3br0bDPUthLRgwXffCd3PrVu3DA0NjYyMKg6GO3bs2L17d2xs7MWLF2/evPno0SOuVneNcM+E+e2333jY45pYsmSJyIMhPVC0tLS8d++eoB1xg+H3338vaEc80rMQ5o8YQeRyovNTWapj7NixADBp0qRy2yt9JJORkZGNjY29vb2zs3Pv3r2HDBni7e3t7+8/f/78lStXVoyZVqulj0kbzeIBLIWFhfTI8MSJEyJ0l52d/c477wDABlEKYO/du5ceX9Tuy1F8ehbChg0bGkqlmaIUyeQGw/T09LLbx48fP2zYsD59+jg7O7dq1aphw4aVrtkvq0ePHuUapyVAbWxsnjx5IsJnqYg+plucwXDMmDEA0LNnT0EPRDncYLh+/XoRutOdPk1by8nJsbGxMTc3LygokIjyDD0vL6+ff/7Z19c3MjKy6neWlJRwk61yc3PLzr0qKCho0aIFnSdJZWZmOjk55eXl/frrr3SOjvieP39ub2+flZV1/PjxPn36CNfR4cOHBwwYYGpqmpSU1KpVK+E6Kmvfvn3Dhg2ztbVNS0vjcR68UFh/C9TA6dOnAaBLly6i9Xj79u1KB0Mdubu7w6slQJmgt+ZcXFyE6yIvL4/Owo2IiBCul4q0Wi19rPI6YWZW8UufQrhhwwYQ/QnvXl5eANChQ4elS5euX79+27ZtBw4cOHXqVGJiYlpaWk5OTk2X523ZsgUArKysHrB+BNLz589pBZpY+rhsAYwfPx4AunbtWip6CXpaWFUvzgz16SGhN27cAIC2bduK2amFhYVcLk9KSkpKSnrde8zMzMoue7O2ti67yob71crKSqVSBQQEAMC6deuYL+E3MzObMWPGnDlzQkJC6MOn+HXixImtW7caGxtv2rRJ/Ho2gwcP7ty588WLF6OioqZNmyZy7zXD+lugBug/lN9//120HmmtFyMjI29v7+Dg4MmTJ48dO3bAgAHdu3f/4IMPWrZsaW1tLZVKa/QHbmJiUvE6DSvcYMg9BofHlu3t7aHMs1DFd+DAAQBo1KhRHR8M9WkkTElJAQBHR0dxups7d254eLhMJtu1axetn/s6hYWF3DWY112boU9avnfvXnZ2dqVF35gwMzMLCAgIDg5euHBh3759eWw5MDAwPT29Y8eOtAQoE4MGDaKD4Y8//jh9+nRWu/Fm1Qxrdnb2ggULGH6j0JpFpqamIhSN1mq133zzDQDIZLJ93MM0+UAL+0okkitXrvDYrC64wXDLli3Z2dm1K3BazqlTpyQSiUwm47GYf+0cPHgQABo1alRES9TWSdUNIS2c/t577/3xxx+C7tDrxMfHA4Czs7PQHWm1WnoKIZPJuEfE8Ih+JQ8fPpz3lmstICDA5NVSPSYmJra2to6Ojq6urgMGDPDy8po2bVpQUFBoaGhERER0dPTBgwfPnDmTnJycmZn57NmzsjcAi4qK6K0IrqY4Wx999BEAfCf8LKtaq24Ir1y58uGHHwKARCLx9fXlHqknmjVr1oDw80u0Wq2/vz9N4MGDB4Xo4tGjR6ampnVnMFSr1fRvtn79+tbW1rUucMpNGKKngh06dOBlUNXdoUOH6vhgWIMLMyqVKiwsTCaTAUCLFi0EXQNeVnZ2dmhoqJmZWbNmzSwsLMLCwgQ6KtZqtfRhLMbGxmWL0vOOHusOHTpUuC6qj94ttLOz475YX7x48ezZs8zMzOTk5DNnzhw8eDA6OjoiIiI0NDQoKGjatGleXl4DBgxwdXV1dHS0tbWli3TLsrCwWL58OdvPVRYdDFevXs16RypX46uj165d4yrSenp6ln2YEe9ycnLmzZvHzdVs3rw5/U3Tpk03btzI7xetVqudMmUKAMjlcqG/X7jB8OLFi4J29Eapqam0rMb/dJuOq1Qqnzx5cvv27YSEBPoV4+joyJ2937p1a+TIkSEhIXzscm0cPnwYAGxsbASq36Oj2tyiUKvVYWFh9CzC1taW30sXVEFBQVhYGH28MwC4ubmdP3+eEBIbG0tnQtBMRkZG8lLKVqvV0qdzmpqaCnfnuix6t3DIkCEi9PU6Go3mk08+AYCvvvqKx2ZVKlXLli0BYOfOnXTL2bNnAcDc3DwrK4vHjmrE2dkZANq2bevp6enj4zNjxoyFCxd+9913mzZtKrsmRvX4Man6OKvi84h0Vvv7hLdv3+YKPHp6evL151sufq6urhULosTGxn7wwQf0DW3atImOjtZlQoZGo/nyyy9pAo8LVrqmnMePHzMfDFevXg0AjRs35n01Y1RUFP0Xzw2GtLzavHnz+O2oUlqtduzYseVO6bt37879o6rC/SZNCAAxMiI2NsTenjg7k969yZAhxNub+PuTefPIggWEDunh4YSnRSE63azXaDSRkZH0rtc777yze/duXVqrGL8qVp1qNJqYmBgHBwf65vfffz8mJqYWk/RLS0u9vb1pAsVZ18OZOXMmAAwePFjMTjnp6en0L27//v28N65SqejlGa6a07lz5+hg+PTpU967K4euUGnYsCF38Llr1y56prp9+/aYmJgff/xx1apVCxYsmD59+pdffll2TUx+y5bE2Jg+VK/y/7p1e+V5RHzgYcZMWlpa7969uSGxFn/KNH7c+b2rq+vJkyer84M0iu+++y79wY8++qhGlzRLS0vprRczM7Nq9sijJ0+ejOzW7YqDA0lMFLlrrVZLpx95eXkJ1AWta/jee+9xByn9+/cHgLlz5wrUI/XgwQP6PR4TE0O3cKsZa1ANUakkT56Q27dJQgKJjSV795LNm0lEBFm8mIwdSw4fJoSQ+HjCU0k+fqatabXayMhIegXF2tq6+p+2sLCwdvErS6VSRUZGco8WdHFxqc6YVlpaOm7cOJpAJlWPCCEkMJAAENGXU6xfvx4AGjRoINy4xA2Gv/zyC92SkJAgkUiEHgwrrlChZbt69erFz2pGAZ5HxOfc0YyMDLpaHAA8PDyqrp9L40eLndD46Xg0qFQqIyMj6XcevZbz559/vu7NpaWldOG8QqE4e/asLv3qJCuLmJsTAPL6XeVdRkYG/brcs2ePoB1t2rSJDobcxTOakDlz5gjU4+bNmwGgfv363MPP6U1CU1PTO3fu8NOHSkXGjSPu7mTUKFJcTPh4CiL/E7hjYmJotBQKRWRkZMWvn4rx4/FyyPPnz8sOrW5ubokVDvZKS0vpWm+FQnHu3Dm+uq6lWbMIAKlQh1M4tStBXwulpaX0pH379u10Cx0MzczMhKgn8PDhQ/r3znWXl5dHl6oIsqqwtJR88w1p2JC8WvGtFgRZRfHo0SNa4xUA+vXrx9X2KSwsjIiI4AYrfuNXFj3JtLS0BACJROLp6Zmamkr/l0qlos/ltbKyorc9GMvKIhYWBIBcuCBCb0KUoK8CHZrKDoafffYZAAQFBfHeF51k7+HhwW2hF70//vhjoeYb9+9PAIjOZ7kCLmWKiYmxsbEBAEtLy5UrV65Zs6Zs/ASaFFZWVlZWUFAQrW4glUo9PT1TUlLot4OVldUFUf7RV0tQEAEgn30mdD+vK0EvHG4w3LZtG90i0GC4Y8cO+i/tr7/rD8XGxtJng6ekpPDY0SsSEohEQszNiW5nucKuJ4yPj6cHP9yDKT/55BOR7wQ8ePBg8uTJdLYdnRhZv379iseoLGVnvxwMBR6ZX1eCXlBbt24FgFatWnGD4YABA4CnRxFTWVlZdCFIVFQU3ZKfn0/nV4WHh/PVS+U8PAjAy0s1tSVsCOmEjEWLFkVERAwZMqR///6tW7dmciny3r17vr6+HTp0GDJkyOXLl8XfgTcIDiYApMyhFO+qKEEvqNLS0tatWwNAdHQ03ZKYmMjvYEiLZfXu3Zu7ADFp0iR6y0rwshp0MDQzIzp8FmFDSJ9WxS0X6NmzJ4hV67JSdWRefyUEHgx1LEGvo+joaAB49913ucGQPk5w1qxZujdOVwyamZmlpaXRLSdPnqSrGa9du6Z7+2/22WcEgOhwlitsCOkhAVfEumPHjgCQkJAgaKf6au5cIpMRYR6iIE4J+tfhBsMtW7bQLZcuXaKDoY7Xh3Jzc+n1T67EaFFREZ28sWTJEh13u7oSE3UcDIUNoUKhAABuaiK9e3v79m1BO9VXz54RYUrEi1aCvgrbtm0rNxgOGjQIAAIDA3VpltbCc3Fx4a5/0gXZYq9mHDCAAJDaDuwChlCr1UqlUolEwv25169fHwBEmD2orwSYoS9yCfrXKS0tbdOmTdnjYToY0lLOtWuTLlAyNTW9desW3XL27FkDAwNDQ0Oxj7Z0GwwFDGF+fj4AmJubc1voJUo9elyO2HbufGWGflwcOXWKXLpE0tJITg6p1TUGkUvQV+Hnn38GgBYtWnBP0l21alVycnLtWnv+/DktK7xq1Sq6RalU0iJgCxYs4GePa2TQIKW9/X+XLq3FjwpYBv/+/fvNmzdv0qTJgwcPAKC4uNjU1NTExKS4uFigHvXenDnQvTu4u8PZs/Dzz3DsGKSlvfIGMzOwtASFgv6a5OS0vrCQq3fKFTi1tramv4mPjx82bJjIJehfR6PRODk5paambtq0acKECbo3uHPnzh07duzfv5/eeZo9e3Z4eHjbtm0vXbpUrmSOCO5fufJup05Gxsbp6enc/fDq4vsL4R/JyckA4OjoSF8+evQIAN555x3hetR7wcGvzNAfO5Z07046dCAtWxJrayKRlFtWc7pHj6r/cumhx5o1a1h/sJd++eUXALCzs+P9sfIXLlwwMDCQSqXx8fH8tlx9gwcPBoCZM2fW9AcFrDtKD0fp3LGKL1ElPvgAzpwBDw+IjwdnZxg/vvwbCguhoADy8+mvjUpKIseMKVvvlP6an5+fl5eXn59fXFysUqm4VZfMjRo1avny5cnJydu3b/fx8eGrWZVK5ePjo9FoZs+e7eLiwlezNbVw4cKDBw9+//33AQEB3JqeahHiK4E6cuQIAPTr14++vHDhAgB06tRJuB71XrkZ+joLDw8HAGdnZ+YnhBw6v6x58+Y8VuuaP38+ADg4ODCvtE3nJAUEBNTopwQ8J9y1a9fo0aNHjBjx66+/AkBsbGzfvn379Olz/PhxgXpE5RQXF7dq1erhw4eHDx/28PBgvTsAAFqttkWLFrm5uc+fPzcxMZHL5SYmJtYVVLpdLpdXrOyWlJTUuXNnjUYTFxfXrVs3Jh+Kk5yc3KFDB5lMlpaWVv3BUPDDUXqrsOJLJAK5XD5z5syZM2eGhIS4u7uL81DHqv311185OTkajUYikSiVSqVSCQD0ekF1GBsb02tO9AE7lpaW58+fV6vV/v7+zBMIAE5OToMHD963b194eDitlFsdGMJ/uSlTpqxevToxMfHIkSN0GRFDhJBJkya9ePFi1KhRO3fuLC4uzs3NVSqV9DdlVbqRbs/KysrKyuLadHJy6tix4/Llyxl+rrIWL1584MCBjRs3BgYGVvPBWwKGsKCgACpcmMEQiszExCQwMDAgICAkJMTDw4PtYBgVFXXs2DEbG5u1a9cCgFwur+ljdOJx2xoAAAVsSURBVIuLi7lLUPTik7m5OV2pU0c4OTkNHTp079694eHhERER1foZQc5PCSGE0AdEr127lr4MDQ0FgNDQUOF6RJUqLi6mX8kirOGsQmZmJi3BtGvXLoa7IYKrV69KpVITE5NqTg6r2bP1aqTSw1G8RSE+OhgCwMKFC4lg1+HeaMqUKXl5eQMHDhw5ciSrfRBHu3btFi5ceOTIEbpy5Y3EDiEejjLh5+fXpEmTS5cu0cJH4ouOjj5w4ICVlRV95vm/3oIFC3r16lXNNwsYQnpOiCGsC0xMTGbPng2MBsPHjx/Tsv9r165l/pDwOghHwreFr69vkyZNLl++TFfBimnq1KnPnj1zd3enpZZROYKHEK+O1hEmJiZBQUEg+mCo2b17bE5OPSuryMhI0TrVL+KNhOWOTpH4fH19mzZteuXKlQMHDojUZXa2wdSpw06fzlizplmzZiJ1qm8EPyfEkbDuMDY2poPhggULtFqtGF36+0NWFvTqZeHtLUZ3+kmouaMvXrwwMzMru3pQLpcrlcqioiJTU1MhekTVUVJS0qpVqwcPHuzdu5cWQRbQoUMwaBCYmsLVq/D3Q3tQRUKNhOXGPZVKpVQqDQ0NMYFsGRsbBwcHA0BoaKiwg2F+PkyeDACwYgUmsGpChRDvT9RZEydOtLOzS05O3rdvn4DdTJ8OmZnw8ccwZYqAvfwrCHU4qtFo7t+/r1ar33vvPQAoLCykj8iiT6VGbG3YsGHKlCnvv/8+nWDFfwfHj0PfviCTweXL0LYt/+3/uwi4nhDVWWq12sHBISMjY/fu3Z9//jnPrRcUgJMT3L8P4eEQGMhz4/9GAl4dRXWWkZERd8+Q/zPD2bPh/n3o0gVmzOC55X8pDOFbysfHp2XLltevX9+zZw/PTfv5QZcusGkTGBjw3PK/FB6Ovr0iIyP9/PxatmwZERFBV6nT5eoKhUKQE0X0GhjCt5dKpXJ2dlYqlXfu3Cn3vywsLLhapj3btFleVATW1mVLnoKlJVhagpUVWFm9/L2PDzx7BubmsHUr4I2omsAQvtW0Wu3ixYsTEhK4cokFBQW5ubll3/N51667z59/Q0MbNsCjR7BoEaxaBebm4Ocn4E7/6whY3gLVfVKpdOHChRW3l61lqiguhuxsyM+HvDyu5CkUFLz8Dd14+za4uQEAuLjAzz+L/Cn0HYYQVYKWM6vBD8yZA9whFZ5P1hD+eSE+0NrhAC9rh6OawHNCxAe1GiZMgJwcUChgyxYQ/Xkseg1DiBBjeDiKEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHG/h8pipBjgXiW5gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -418,7 +440,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEzklEQVR4nO3d227aWhRA0fqo///L\nPg9IKHWaFAgw2YsxnkITGuStyfIFyLbv+y+g81/9AODdiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQ\nYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiJ8Udu2bdtWPwqe4Xf9APjDObx93083T18wmAh7Hyee5N6QJ9rMYeh982PW\naDYL/GwXtne4i2UazOo+yQ3tHe5upaZyTPhADva4hOfX+/vh0Pvmv7VYI1nXu3lQe4dfYb3msag/\n8vwdTh3O45jwFk8YerwPT6vXOeXXbjTDcBivHb1aHsC+715WOokIl6TDSUQIMRGuyjAcQ4QL0+EM\nIlybDgcQIcREuDzDcHUinECHSxPhEDpclwghJsI5DMNFiXAUHa5IhNPocDkihJg39Q50Gobnz/C+\n7r5X/qarfpy/EuFM5w7zdz/yTyIc6+M8fJKPU1f8FxMhd7Jtf4R3uMnXnJiZ7HlnSj8nt++/nKS9\njAgn85FQSxDhWApchWPC4VyieH0inOk8Bg3D12d3dKBgR/TzaRhnRy9mEk6THQoeOlTgxUQ4Snwy\nRng3sTsKMRHO4ZrEokQ4hALXJcIJts2liIWJEGIiXJ4LcqsT4doUOIAIISbChRmDM4hwVQocQ4RL\nUuAkIryaj9blvrzM4hYfO3z+BjQGhxHhT52DtCW5jQjvph2PrEuED7Ft2+njWmxd/kmEj3WejjYz\nX/HO+sc6t6dGviLCJ1EjXxHhs6mRAxFmDjVK8W15xUxv349/zujg/C/ffIt1ifAVSeutiPAV+bNi\nb0WEEHNi5kWdhuHnszUm5DwifF1/7fBwU5MD2B2FmAhfmjM070CEr85F/PG8iwJiJiHERAgxEUJM\nhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEULsf6NIF0BqN5vhAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAaL0lEQVR4nO3deVxU9f7H8fewK3gRFUsTrlpupKWZpai54QVxRlQ8KEuuaWal5nJd+tl1Sb1lG2iR4XZNFjmCCqgpmhYCLqVyC1tsUXNHE0SQdeb3x+BoZlzAge85M+/n4/4xj8NhzqdH99Xg8PGMxmAwgIjEsRE9AJG1Y4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwexED2Ahzp49m5iYmJ+fr9PpOnfuLHocUhONwWAQPYOKnT59evv27bIsZ2RkGAwGBweH0tLS6Ojo4OBg0aORajDCmjh58mRCQkJCQkJWVpbxiIuLy+DBgxs2bLh69WoXF5djx461adNG7JCkFvxxtBqys7NlWZZl+eTJk8YjDRs2HDhwoFarDQwMdHZ2BnDjxo3Y2NjQ0NCDBw86ODgInZfUga+E/5uxvbi4uB9++MF4pFGjRoMHD5YkydfX957ScnNzu3Tpcvr06Xnz5i1btkzEvKQyjPD+9Hp9RkZGSkrKli1bfv75Z+PBJk2aDBo0SJIkPz8/e3v7v/reI0eO9OrVq7y8fPfu3T4+PnU1MqkVI/yD8vLyzMxMWZa3bNly4cIF40EPD49hw4bpdLq+ffva2VXpB/glS5a88cYbDz30UFZW1kMPPVSbI5PqMULgrvY2b958+fJl48GWLVsOGTJEkqSePXtqNJpqPaFerx84cODnn38+aNCgHTt2VPfbyapYdYRFRUWpqamyLCclJeXl5RkPtm7dWqvVSpLUq1evB3ny8+fPd+7c+erVqx988MG0adPMMS9ZJmuM8NatW3v37pVledu2bfn5+caDXl5ekiQFBQV5eXmZ60I7d+7UarUODg6ZmZldunQx19OShbGiCHNzc1NTU5OTkxMTEwsKCowHje0FBwe3a9euNi76yiuvfPjhh4899tixY8caNGhQG5cgtbP8CH///feUlBRZlvfs2VNSUgLAxsamR48eOp1uxIgRjz76aK1evbi4+Nlnn83KypowYcKaNWtq9VqkUhYb4dWrV3fu3CnL8u7du0tLSwHY2tp2795dkiRJkpo3b15nk5w8ebJbt26FhYXR0dEhISF1dl1SC0uL8LfffktMTExJSTlw4EBZWRnuam/UqFGifluwevXqyZMnu7q6Hj9+vFWrVkJmIMWykAjvWaQG4OTk5OPjI0lSQECAq6ur6AERHBwcFxfXrVu39PT0Sn7RT1ZI3RH+8ssvycnJsiynp6cbj9SvX79///6SJA0bNkxRb4SY1tlef/31N998U/Q4pCCqjLAqi9QKdPDgwX79+un1+j179gwYMED0OKQUaorQ2F5sbOyPP/5oPFLJIrUyLVq0aOHChY888siJEyeaNGkiehxSBKVH+CCL1ArEdTb6M4VGaFrmlGX54sWLxoOenp5Dhw6t1iK1Ap07d65z587Xrl2LiIh49dVXRY9D4ikrQrMvUivT1q1bhw8f7ujoeOjQId6QhhQR4X0Xqb28vHQ6nVarfcBFamWaMmVKZGRkmzZtjh075uLiInocEklkhIWFhfv27bvvIvXIkSM7dOggarA6UFRU1L1796ysrIkTJ37yySeixyGRBERYySJ1SEhI27Zt63geUbKzs5955pnCwsKYmBjenc2a1V2Ef7VILUlSYGBgixYt6mYMRYmMjJwyZUrDhg2PHz/esmVL0eOQGLUeYSWL1EFBQc2aNavVqyvfqFGjNm/e/Mwzzxw8eFBdv24hc6mtCM+ePbt161ZZljMzM/V6PQBHR8fevXtrtdrg4OCmTZvWxkXVKDc3t3PnzmfOnFmwYMHixYtFj0MCmDlC5S9SK1BaWlq/fv0MBkNqamr//v1Fj0N1zTwRZmdnp6SkJCcnK3+RWpkWLly4aNEirrNZpweK0LjMGR8f/9133xmPuLm5abVanU7n7++v2EVqBdLr9T4+Pvv37/f3909JSbGMnQSqoppE+OdF6saNG/v7+6tokVqBTOtsq1atevnll0WPQ3WnqhEaF6llWU5MTDx37pzxoLu7u5+fnxoXqZUpMTExMDDQ0dHx8OHDTz75pOhxqK4Yqmb+/Pmmb2nZsuXMmTPT09PLy8ur+O1URS+++CIALy+vgoIC0bNQHalShPHx8a6urg0bNpw3b95XX31V2zNZs1u3bj3xxBMAXnzxRdGzUB2p0sdlFxUV5eXlabXaZcuWde3atZZekwmAk5NTTExMvXr1Vq9eHRcXJ3ocqgv8zHrFefzxx1esWAHgpZdeOn36tOhxqNYxQiV6+eWXhw4dmpub+/zzzxtv3EgWjBEq1Lp16zw9PQ8ePMhbs1k8RqhQbm5umzZtsrW1XbJkyeeffy56HKpFjFC5evfuPX/+fL1eP2bMmGvXrokeh2oLI1S0N954o2fPnufOnZs4caLoWai2MEJFs7Ozi42NbdSo0datWyMjI0WPQ7WCESqdh4eH8SY0M2bMyMrKEj0OmR8jVIHAwMCJEycWFRWFhIQUFhaKHofMjBGqQ0RERKdOnU6ePDlr1izRs5CZMUJ1MK2zRUZGbt68WfQ4ZE6MUDU6duz41ltvAZg8efKZM2dEj0NmwwjV5JVXXgkICDCus5WXl4seh8yDEaqJRqNZv369p6dnWloa19ksBiNUGTc3t08//dTW1nbx4sX79+8XPQ6ZASNUn+eee27u3Ll6vX706NFcZ7MAjFCVFi5c6O3tfe7cuUmTJomehR4UI1QlOzu7uLi4Ro0aJSYmrl69WvQ49EAYoVp5eHgY85s+ffp///tf0eNQzTFCFRsxYsSECROM62y3bt0SPQ7VECNUt/Dw8A4dOmRnZ8+ePVv0LFRDjFDdnJ2d4+Pj69Wr9+GHH27btk30OFQTjFD1OnbsuHz5cgDjx48/e/as6HGo2hihJZg6deqQIUOuX78eFhbGdTbVYYSWQKPRrF27tnnz5mlpacuWLRM9DlUPI7QQTZo0iYmJMa6zmT4lklSBEVqOPn36/POf/ywrKwsODv79999Fj0NVxQgtyuLFi3v06PHbb79xnU1FGKFFsbOzi46OdnV1TUhIWLNmjehxqEoYoaVp1apVVFQUgGnTppk+xpyUjBFaIEmSxo0bV1hYGBQUxHU25WOElmnlypXt27f/9ttv586dK3oW+h8YoWUyrrM5OTmtXLly+/btosehyjBCi9WpU6dly5YZDIZx48ZxnU3JGKElmz59uk6nu379+ujRo7nOpliM0JIZ19maNWv2xRdfGO9ZSgrECC2cu7t7TEyMjY3Nv/71r4yMDNHj0H0wQsvXt2/fWbNmlZWVjRo16vr166LHoXvZiR6A6sLSpUu//PLLQ4cOTZo0SZble7564MCBmJgYIYPdw87W9iPl/Nl13Dj06FEH12GEVsG4ztalS5ctW7asW7du/Pjxd381OzvbuGQjnJ2d3UdlZaKnuM3bmxGSObVu3ToqKmrkyJFTp0719vZu37696Uv9+vVTyH0TbTQaGAyip7jN27tursMIrUhQUNCOHTs2btwYFBR05MgRJycn43EvLy8vLy+xs6lDVhY+/RR79+L8edy4AXd3tGmDIUMwdizc3Gr8rHxjxrp89NFH7dq1++abb+bNmyd6FlUpKcGUKXjqKbz7LrKycPUqSkpw/jwOHMCMGWjXDlu21Pi5GaF1cXZ2jo6OdnBwCA8PT0pKEj2OSpSVISgIkZHQ6wHAwQHPPgtfX7RtW3FCTg5GjkR0dM2enhFana5duy5dutRgMLzwwgsXLlwQPY4aRETAtH8bFobz53HoED77DD/8gPR0tG4NAHo9Jk7E6dM1eHpGaI1mzpyp1WpzcnJCQkK4zvY/5OZi4cKKx8OH49NP0aTJna96e2Pfvoo/EN66hTlzanAFRmiN7l5nW7FihehxlE2WkZ8PAPb2eP/9+5zQsiVMtz/ftg3VX4dghFaqadOmGzZssLGxWbBgQWZmpuhxFCwhoeKBjw88Pe9/zoQJ0GgAoKQE1f+TNiO0Xv/4xz9mzJhRVlYWFhaWl5cnehylOnas4sGAAX95TtOm6NSp4vHXX1f3CozQqi1dutTDw8Pe3r6goED0LIp06RJycioed+hQ2Zmmr37zTXUvwl/WW7WjR49evHhRr9fn5eU1b95c9DjKc/nyncd/9bPoPV+9cqW6F+ErofXKzc0NCwsrKyubM2dOh8r/M2+1jG/JGDk7V3ami0vFgxs3qnsRRmi9pkyZcvr06W7dui00vQVP9ygquvPY0bGyM2/vAKL6t7djhFYqKioqNjbWxcXFuEAjehylql//zuO7g/wzU3uml8QqY4TW6NSpUzNmzADw8ccft2nTRvQ4CtagwZ3Hlf+cafrB9W9/q+5FGKHVKS4uDgoKunnz5rhx40JDQ0WPo2wtWtx5XPlK2pkzFQ88PKp7EUZodWbPnn3ixInHHnssPDxc9CyK5+YG05vG335b2ZnZ2RUPOneu7kUYoXXZtWvXqlWrHB0dN2/e3ODun7Xorzz7bMWD1NS/POfSJZg+9qN79+pegRFakfPnz48ePdpgMCxfvvypp54SPY5KjBhR8SAtDd9/f/9zNmyoeODmBl/f6l6Bv6y3Fnq9fsyYMVevXvXz85s+ffrdX4qKipo5c6aowe5mb29/rbRU9BS3ffwxQkIQEAB3d+TkwGDAq69i927Y/PGl68IFvPNOxeMxY1D9t5oZobVYvnz5vn37mjZtun79eo1x2/i2kpKS/Lt/Ky2OnZ0dlHOjp5ISAHB2xuLFeOklANi7t+Jv97q7V5xz4gRCQ3HtGgC4u+ONN2pwHUZoFY4ePbpo0SIbG5tNmzY9/PDD93x10qRJzz//vJDB7qFR1I2e6tWrePDii0hPx6ZNAJCQgORkdOsGNzecOXNnU9TJCbGxNbvTDCO0fHl5eSNHjiwtLZ0zZ87AgQP/fIK9vb29vX3dD6YaGg3Wr0ezZnjvPZSXo6QE6el/OKFlS6xbh379avb0fGPG8k2ZMuXXX399+umnFy9eLHoW1bKzw9tvIysLs2fjySfRuDEcHNCiBXx98fHHOHmyxgWCr4QWb+3atTExMVxPM4/HH8fbb+Ptt837rHwltGQ//fTTa6+9BiAyMrKt6dZgpDCM0GIZ19Py8/PHjBkTFhYmehz6S4zQYs2ZM+f48eOPPvpoRESE6FmoMozQMu3atSsiIsLe3j46Ovpv1d/rp7rECC3Q5cuXx40bZ1xPe9a0+khKxQgtjV6vDwsLu3z5sq+vr/EvDZLCMUJL89Zbb+3du9d4W9F71tNImRihRTl69OjChQs1Gs26dev+vJ5GysQILcfNmzdDQ0NLSkpmzZo1ePBg0eNQVTFCyzF58uRTp0517dr1zTffFD0LVQMjtBAbNmyIjo42ffyg6HGoGhihJfjpp5+mTp2K2x/EK3ocqh5GqHqlpaVhYWH5+flBQUGjR48WPQ5VGyNUvblz5x4+fLh169ZRUVGiZ6GaYITqtnv37vfff9/Ozo7raerFCFXsypUrY8eONRgMS5cu7V79O+2RQjBCtTIYDOPHj7906VLfvn1nzZolehyqOUaoVitWrNixY4e7u3tMTIyNDf89qhj/5anS119/vWDBAo1Gs3bt2mbNmokehx4I7zGjPjdv4rXXHm/f/gUfHyedTid6HHpQjFB9XnoJaWlO3bqtWrZMMTerpgfAH0dVZuNGbNoEZ2ds3KhxdOR6miVghGry88949VUAWLUK7duLnobMhBGqRmkpQkNx4wYkCWPHip6GzIcRqsb8+Th8GK1bg9tpFoYRqsOePXjvPdjZYdMmuLqKnobMiu+OqsCVKxg7Fno9li5Fjx6ipyFz4yuh0hkMmDABFy+iTx/Mni16GqoFjFDp3n0XKSlwd0dMDGxtRU9DtYARKtrXX+P116HRYM0aNG8uehqqHYxQuQoKEBqKkhJMm4YhQ0RPQ7WGESrXlCn44Qd06oTly0WPQrWJESpUfDw2boSzM+Lj4eQkehqqTYxQiX75BRMnAkBEBNfTLB8jVJyysor1tBEjMH686Gmo9lUjwlOnTuXk5NTeKGT0+us4dAgeHvjkE9GjUJ2oUoQ9e/YcM2bM4cOHH3744V69eoWHh58/f762J7NOBw7gnXdgZ4e4OLi5iZ6G6oTGYDBU5bzU1NSIiIjU1NTi4mIANjY23bt3DwwMHD58eMuWLWt3RquRk4Mnn8TFi1i6FPPni56G6kpVIzQqLCzct2+fLMvbtm3Lz883HvTy8pIkaeTIkR06dKidIa2CwYCAACQno08f7NvH5RgrUr0ITW7durV3715ZlpOSkvLy8owHvby8dDqdVqvt1auXWYe0Cu+9h5kz4eaGEyfg6Sl6GqpDNYzQpLi4OC0tLTk5OS4u7sqVK8aDrVq10ul0kiT17NmTHxZbFceOwdsbJSXYuhUBAaKnobr1oBGalJeXZ2ZmyrIsy/LFixeNBz09PYcOHSpJkre3N++N+VcKCvD00/j+e0ydivBw0dNQnTNbhCZ6vT4jI0OW5YSEBNObqO7u7n5+fpIk+fn52dvbm/eKajduHDZsQMeOOHIE9eqJnobqnPkjvFt2drYsy7GxsT/++KPxSOPGjf39/SVJ8vX15WdZApBlBAWhfn189RX4xpZ1qt0ITYw1xsfHf/fdd8Yjbm5uWq1Wp9P5+/s7OzvXwQwK9MsveOop5OUhKgovvCB6GhKkjiI0yc7OTklJSU5OTk9PNx6pX79+//79JUkaNmxYgwYN6nIYscrK8NxzyMxEYCC2bBE9DYlT1xGa/Prrr0lJSbIsZ2RkGGdwcnLy8fGRJCkgIMDVCm5mNG8e/v1veHjgxAk0aiR6GhJHWIQmZ8+e3bp1qyzLmZmZer0egKOjY+/evbVabXBwcNOmTcWOV0u++AIDBkCjwYED6NlT9DQklPgITXJycnbt2iXL8u7du0tLSwHY2tp2795dkqSgoCBL+uyhnBx07owLF7BkCf7v/0RPQ6IpKEKTK1eubNu2LSEhYf/+/aYae/fuHRz88uDBIx55RPR8D8ZgwNChSErCc8/h88+5nkaKjNDk+vXrycnJKSkpO3fuLCgo6NMn5YsvBnt5QZIQEoK2bUXPVyMffIDXXuN6Gt2h6AhN8vPzU1JSvvxy4MaNTQoLKw527YrAQAQGqqnGb77BM8+gqAjbtnE9jSqoI0KToiKkpkKWkZSE23vj8PKCTgetFgrfGzetp73yClauFD0NKYbKIjQpLkZaGpKTEReH23vjaNUKOh0kCT17QoF74xMnYs0adOqEI0d47ya6Q60RmpSXIzMTsgxZxu29cXh6YuhQSBK8vaGcvfGjRzF+PKKj8cQTokchJVF9hCZ6PTIyIMtITMS5cxUH3d3h5wdJgp8flLA3rtcr6D8KpBCWE+HdsrMhy4iNxe29cTRuDH9/SBJ8fcG9cVIUy4zQxFhjfDxu743DzQ1aLXQ6+PvDWvfGSVksPEKT7GykpCA5Gbf3xlG/Pvr3hyRh2DBY0944KY61RGhy+jS2b4csIyMDxn90Jyf4+ECSEBBQ1Q/B/ewzDBpU8XjYMCQm3v80JycUF6NxY1y9ao7RyUJZXYQmZ89i61bIMjIzodcDgKMjeveGVovgYFS+N353hDY2+P57tGlzn9MYIVWF9b5V5+mJadNw8CAuX8Z//gOtFno99u7F9Olo3hy9eiE8/M7vPCqh1+Pdd2t/XLJc1vtK+Ge//46UFMgy9uxBSQkA2NigRw9IEgID0aLFnTNNr4S2tigvh5MTzpy5z4snXwmpKqz3lfDPGjXC6NFITsalS9iwAUOGwMEB6emYPh2enujRA++8gzNn/vAtAwYAQFERVq0SMjJZAkZ4H25uGDMG27fj2jUkJeH55+HigkOHMHs2Nm78w5l9+sD4IQAffQTTZjlRtTDCytSvD50OGzfi0iUkJCAkBCNG/OGEggJMnw4A165h3TohM5LqMcIqqV8fw4cjOvreuxIWFmLChIqPT3rvPZSXC5mO1I0RPpCyMri4YPJkAPj1VyQkiB6IVIgRPhDjW8tTp1bso65YIXYcUiVGaAYPP4zQUAD46iscOCB4GFIdRmges2ZV/DVivhhSdTFC8/Dyqvj1/a5dyM4WPQ2pCiM0m1mzAMBg4IshVQ8jNJt+/dC1KwDExMD4kXAKvM8NKRAjNCfji2FpacVnffJOFlQV/L+JOUkS/v53AFi9Gjdu8JZqVCWM0JxsbSu22G7cwCefoEkT0QORGjBCM3vhBTRsCADh4RXrbESVY4RmZtpiO3cOJ06InobUgBGan2mLrbhY9CikBozQ/Jo1Q0iI6CFIPRhhrTBtsRH9T7zHDJFgfCUkEowREgnGCIkEY4REgjHCmvjsM2g00GgqlmMqP4fLa1Q5RkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMDvRA6jbzZvo1ev+X8rNrdtRSLUY4QMpL0d6uughSOX44yiRYIzwgbi6wmC4//927RI9HKkEIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGz6IgEoyvhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCTY/wOFEBQ3JSHLAQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -430,7 +452,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAG+UlEQVR4nO3dW5LiRhRFUcnhGbXn\nP4MeE/5QGNMUD73PzdRaX3QFdKVAm0wJKMbb7TYAOX+lBwBXJ0IIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTITsY\nx3Ecx/QoWvV3egA0bxzH2+02XZh+Mv2TmUb3F6tN1f3chd79nJdEyEr3CfDDFaYL9rHPRMgaXwt8\nuvJ0wc72kghZbFGBTzecLtjrHomQBfY62FPjIxEy1+oJ8PP/OVw+RREyy8zTMJapK4iQ7+bPgRtn\ntmvWKMK8ykuydWPb3tKlahRh2NPbTUo9HNsPAveqsdTdsjsRxrzcverMAPuehrFM/UCEGYee59ju\niBOhg4nxDREGLD3PMZy4252zl2/ZroOeIIJ8iuJsi/ah+zVPa+Oc/fvk7SpOhOfZssOd8FmhyAzj\nM1CD5ehpSp3nePkfVtgTZtZYZLR7aXImHH///yHu26/b/Yf3y9Xsfhpmxwmk1ILwmsvU9iJ8iq1y\ne5M5T9vrXircvsuWnVLKvnZ6hMYi/Jlc5QJPm9/W3bBsgXfFh7eXxiJsyOpdfPX8tuiG9Qu8DhEe\nYpdd/KCJ8SJrvIZ0G+F08iayWN13knma34bZ/bycGPuYAG+3Wx8bMuk2wim/k1M8dJLZuEw1AZbV\n2B//vf26Pb4+Mfz5csXL6083+Xy1XUzPzSfs5dNvGf8z/1aHjorV2psJnzqcM8s9zoozb7LU+auj\na76k1qV+Ftbz7b5GrXB8MueIscI499LVtnSzJUvtkmLBWejzkLrZd7vZkOHKEU7G3+PwzzD09XaT\n4eMfqC875qW62ZZONmO7pXNao3tAo8N+qZttae/EzEEWvTLezcNPBSL8w9dXxgseBNI6Eb7W8dtN\nqEaEX3T2dpPO3vDVh8beMZNir+U4ItzKd7WnTLN6ehQ7ECGEiXCubp53qUaEECbCrZqbIZsbcPdE\nCGEipGF9zOoihDARLtDH8y7ViBDCRLiD5mbI5gbcNxFCmAhpxsvZu4NZXYS0oeNPYIlwmQ6ed5sz\n/Y3jXgscfKiX4vrOb2Im3EdzM2QTA55TYAeVmgkpavfvGC9LhJRztS85FSG1XGQJ+sgxIYVcsMDB\nTLiCvxp4hJlL0K/XaZGZcDfFzzf+HFudAc/5ftXTvoP1fCK8hMpT9zWXoI8sRztXfAmnwEGEfau8\ni1/5IPCJCLs158Xu1DdtVH52OJ8I16h/gvTz8J6qW/TdjEePbf51uiHCPVWI8+u09m6EL78N7ojh\nKfCJCLsyfwn6wUETo4PAd0TYj10KvPv6pcX7jm3p8Hoiwh4c+o7n7ctUBX523S3fqM5Oc/JHfo44\nf1Pnzoy49MZvVGHX2XcJuvRXD5tTvOZB4BPL0YYFCxz2OH9T4VmsAhE2qc7HXlcfMSrwzh2xXmop\nVfk8x8yJUYGP3BdbnfZGk/uva+Kltnd3S5HhlSLC3Zywe2UPAtd5vFsKDq8Cd8rODpoY6xwErmMC\n/KDuw9a6HWusfBDIdh65w22sUYHd8+Cd54glmWVeB0R4tpOXqdTnUYw5YZlKEzyQeStqVGBPPJaF\neLvJNXk4K3p3usVpmC6JsK6nidEE2CuPawNMgH0TIYT5LgoIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYT9C2gl\nC2su6iTfAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAdjUlEQVR4nO3de1BU5/kH8GdZrnIRQVREFBBBbSLBS8zIeA1Gq1iNiplovTTYTZzpkJm06Zp2EmqSSdc202o7zcwaxaIZU5lcDI2NFu94F0QMilxEBIEocnG5LJdl9/fH29/OBrmcPXvOeRf2+5n80ZjznvO43e/Zc55zeVUWi4UAgB833gUAuDqEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzd94FAPRu7969Pj4+V65cSUlJiYuL412OjFQWi4V3DQA/0t7evm3btn/+859BQUENDQ1ENHXq1E2bNm3dujU4OJh3ddJDCMG51NTUrFmz5vLly97e3mlpaU1NTenp6XV1dUTk5eX1s5/9TKPRvPjiiyqVinel0rEAOI0LFy6EhoYSUXh4eG5uLvvD9vb2zMzMpKQktVrNvrTh4eFarfbevXtci5UMQgjOYs+ePZ6enkQ0b968hw8fPr3AgwcPdDpdZGQki6Kbm1tiYmJmZmZHR4fy1UoIIQT+urq6tFoti5ZGo+ns7Oxn4e7u7uzs7I0bNw4bNowNGTFihEajuXHjhmIFSwshBM7q6uoWLlxIRF5eXunp6cIHNjY26vX6+Ph467nVjBkzdu3aVV9fL1+1ckAIgaf8/PwJEyYQUVhY2JUrV8StpLCwUKvVWhun3t7eycnJ2dnZZrNZ2mplghACN4cOHWKHlAkJCbW1tQ6uzWg0ZmZmJiYmWhunMTExaWlp9+/fl6Ra+SCEwIHJZLI9CZS2s1JZWanT6dgPLBGp1WrWv+n/VJMjhBCUVl9fv3jxYiJyd3ffvXu3TFth/Zvk5GTWcSWiMWPGpKam3rx5U6YtioYQgqIKCgqioqKIKCQk5PTp0wpssaGhQa/X2974NmPGDL1e39zcrMDWhUAIQTmZmZm+vr5EFB8fr/ypWm5urkaj8ff3Z1H09/ffuHGjM/RvEEJQgtls1ul0bm5uRLR+/fq2tjZelTzdv5k8ebJOp+v19gBlIIQgO4PBsHLlSnYSqNPpxK3k008/3bJlS05OjlRVFRcXp6WlhYeH9+jfdHV1SbUJgRBCpbW2tj58+LCmpoZ3IQopKSmZMmUKEQUHB584cUL0eqwX5WNjY3fu3On4JQ3GZDKx/o2Hhwdb/9ixY7VabWlpqSTrFwIhVBRrS/z0pz+13vfotH1zSRw9ejQwMJCIpk2bVl5e7siq5L7wUFtbu2vXrmeeeaZH/6alpUWS9fcDIVSOtS0xduxY2775b3/72zt37vCuTmK2J4GvvPKKVF9lBS48sP6Nn58fW//w4cM1Go2Eh8FPQwiVwL6RrBOwYcOGtrY25++bO6K5uXnNmjVEpFKp0tLS5Gg/yv0BPnnyJCMjIzEx0br+qVOn6nS6R48eSbJ+Wwih7PpvS/Tom/v4+Ayu+x6fVlZWxg7qAgICvvnmG7k3J/eFh6KiIq1WO2rUKLZ+Ly+v5OTkrKwsk8kkyfotCKHciouLhbQlnLBvLs7x48dHjBjB7tu8ffu2YtuV+wPs6OjIyspKTk52d//fa5nCwsK0Wu3du3cdXzlCKCNrWyIuLk5gW4L1zcePH8+9by6CXq9n39Hly5c3NTVxqUHuCw/V1dU6nW7ixIls/a+99prjB6gIoSwcbEs83TcPDQ1VuG9uF6PRuHnzZnYSqNVqu7u7+dYj94UHs9l88uRJdkb6u9/9zsG1IYTSk7Atwfrmzz77rPJ9c+GqqqpmzZpFRH5+fl9++SXvcn5E1gsPhw4dIqLVq1c7uB6EUGIytSV69M0DAgLk7psLlJOTM3r0aCKKjo4uLCzkXU6f5LjwcP36ddY1dbA2hFBKx44ds7YlioqKJF+/kn1zIfR6PTveW7p0aUNDA5ca7CLtB9ja2urm5ubp6engCaf0Ifyg9gPKI/ZPcEGw5Ot3Wkq2JRTom/evvb09JSWFbT01NVWx7UpFqg+Q3cFTXFzsSDHSh/Ba67W/P/r73x/9PaowykVCyKstIWvfvB/V1dUvvPACEXl7e2dkZMi6LVk5/gEuWbKEiBw877A7hJ/Vfzbnzhz/G/7e+d4zi2Z+3fh1X0smFCe4QgidoS3Ro2/u5uaWkJCg1+tbW1sl39bFixet7+e9du2a5Ovnoqqq6oMPPmBPG7MPcPHixUL+dm+++SYR7dy505Gt2xdC7QMtO8jcXLF5S8WWUQWjKI90P/T+cIorhNDxtkRZWVlZWZlU9bD2A7tDlYgCAwM1Gk1eXp5U6z948KCPjw8RzZ07d9DdSCCE7Qd4/fr1AZf/5JNP2NVCRzZqRwivt15X5akivo/4ofMH9icNpoa423FueW63jb3cGzHkQyhJW2LTpk2SX3hoamrS6/UJCQk92g+PHz8WvU673s872DU2Nn722WdCljx16hQRzZkzx5HN2RHC1KpUyqP0xz96PevV1qupVanlHb3cDjKEQyhhW2Lbtm22P1zbtm2zzsHguFu3bmm12pEjR9q2H0TcV1lXV7do0SK2hn379klV3hBQW1tLREFBQY6sxI4Qzr4zm/KoqrNK4PJDNYSStyXkvvDg4IQq+fn5ERERRDR27NjLly9LUtJQwi5KOXJwbkcIw26Gqa+rzRahO9EhGUJZ2xJyX3gQMaHK559/zt7PO2fOHNd5G4Bd2B757NmzotdgRwiDC4J98n2ELz/0QqhMW0LuCw/WCVXY34X6mFBF1vfzDiVbtmwhIr1eL3oNdoRw/Pfj3fLcTGahe+VeQ9jc3dxubhe+USfBpS0h94WHfiZUsX0/r+hXM7mIP/7xj0T01ltviV6DHSGcXzyf8qi0ved96H2FqtcQvl/zfuCNQM19zfXWgfu/ToJvW8JsNufk5Mh64eHq1atvvPHG8OHD2fqHDRvGJlcZPXq0M9ye6uS+/vprIlq2bJnoNdgRwvdq3qM8+tujv9n+YXVndeCNwL88/MvTy/cawpfvvmy9qW1m0cxPHn3SZOLz4JlAztOWkOPCgy3b52InTJgQGRlZUVEhyZqHtqKiIiKKiooSvQY7QljRUeGd7x16M7Si43//3zR3Ny8sWajKU11qufT08n2dE94y3tI+0I4sGMmi6J3vnVyenG3IFt7yUYxztiWkuvDQl3fffZeIfvnLX0qytiGvs7PTw8PDzc1N9BuN7btj5tO6TymPAm4EbLi3IaUiJfz7cMqjD2o/sC5wpOkIu3GU3Tvqm+9r/dcrLT+afa7d3J7ZkJlUlqS+rmZpDP8+XPtAe6/jnri/ibScvy0h30zux48fJ6IFCxZIUaZLmDx5MhEVFBSIG273vaMnDCcWly4OvBHoed3zudvPfdX4le1/fbHkRevRZo9/0mrSel1hVWeV7gdd5PeRbDG3PLfEksTMhswOM7fv/eBqS1RVVUk7k/v9+/eJaMyYMdLWOYStWrWKiA4fPixuuLM8T9ht6c42ZG+8t9En34elccSNEZr7mhttSk9EfvPmTXYj78iRI5WZNkgSAi88CGE2m9nDr4PiEUFnsH37diLasWOHuOHOEkKrRlOjvk4fXxRv/QmdUTRDX6c3mAwKbD0rKysgIICI4uPjB2lbotcLD3q93mCw4wOcPn06EV261MupPjxt//79RPTqq6+KG+50IbS62nr19fuvD78xnEXRL9/vFxW/ON9wXqbN9Zg2SI6HgBSWm5ubmpoqbib39evXE9H+/fvlL3MouHTpEttxixvuvCFkjN3GzIbMxJJEVZ6K8mj+7+azicgrKysl3IrBYGCH9Wq12vlPAu3S2tp64MCB+fPnW1/I+fnnnw84aseOHUS0fft2BSocAhobG9n1VXHPczt7CK1K20vfqX5n9vzZ7Jvk4eGxcuXKrKwsx98nWVJSMnXqVCIKDg7Ozs6WpFonVFpa+s4778TGxgp5Ufzhw4eJaNWqVQoUNjSMGTOGiMSdwgyaEDLW+UCs75N0cD6Q//znP1JNGzSUFBQUENHkyZN5FzJoLFiwgIiOHTsmYuwgC6EVmw9k2rRpPdoPwucDsT0JXLdunVO9yZM7o9GoVqs9PDyG9sO7EnrjjTeIaNeuXSLGDtYQWvWYDyQgIIDNB9L/qObm5rVr19L/v5pp8M6+Ih92nUaOFzcOSX/961+JaNu2bSLGDvoQMm1tbcLnAykrK2PvtA4ICDhy5Ijy1Q4Ky5YtI6Kvvvpq4EXBYvnuu++IaOHChSLGDpEQWt25c0er1bKXLxGRp6dnUlKS7XwgZ86cCQkJIcWnDRp03nrrLSL66KOPeBcyONy7d4+IQkNDRYwdaiFk+poP5MMPP2R/smzZMl7TBg0Wer2eiDZv3sy7kMGhu7ub3evf2Nho79ihGUKrmpoanU43adIk6xmjSqV67733uE8b5PzOnj1LRLNnz+ZdyKDx3HPPEZGI593caEhjM4oVFxefOXMmLi7OYDCsXbt2x44drCkK/WBPBty5c4d3IYOG6E/MJb6LKpVq/vz5v/nNb9j/5l3O4DBq1Kjg4OAnT56wt/rBgFgIi4uL7R3oEiFk2GfEnoMGIWJjYwk/hoLhl3BgkydPVqlUJSUl3d3dvGsZHHBEaheEcGB+fn5hYWEdHR0VFRW8axkc2C+hiOMr1xQTE+Pm5lZWVtbV1WXXQBcKIWHXbid8XHbx8fGZMGFCV1dXeXm5XQMRwp5u3bp16NAhdCMIIbSfuE/MtUIo5PhKq9Vu2LCBPabp4qKiory8vCorK1taWnjXMjgghAMT8hlh92/l7u4eHR1tsVhKS0t51zI4iDuLRgh7XwbdCAa7JLvgl3BgYWFhAQEBdXV19fX1fS2Dr50t7JLsIu5atGuFUKVSDXgBesqUKWwBi8WiXGXOCtfr7TJ69OigoKCmpqaHDx8KH+VaISQBP3TBwcEjR440GAxokBKOC+zHdlt2/Ri6XAiFnDrjm2fFbjMqLi7GbUYCifjyuFwI0SC1i7+//9ixY9vb2ysrK3nXMjiIaJAihL3A7Vq2sEuyC34JBzZp0iR3d/fy8vKOjo6+lsHXzhY+DbsghAPz9PSMjIzs7u4uKyvraxl87WzhuMAuEydO9PT0rKysbGtrEzjE5UJIAjIWGRnp7e1dVVWF27UIz2Hayd3dfeLEiWazuaSkROAQ1w1hP98qtVrNbtcS/jkOYTgusJe9n5grhhBXKewybtw4Pz+/R48e9XObEdhCCAeGqxR2sd5mhNPCJ0+eCFnM3o/LFUMo5MY03K5lC7skIvrvf/8bFRWVmZk54JLWL5jANbtiCIOCgkJCQlpaWqqrq/taBl87W/gl/Pjjj5ctW9bQ0PDvf/97wIWttxmZzWYhK3fFEJKAjOGtULZceZfU3t6+ZcuWt99+22w2a7XajIyMAYcEBASEhoYajUaBtxkhhL3DW6FsuWwIHzx4MG/evIyMDD8/vy+++MI6l17/LBaLn58fEQl8GNqlQ4gGqUAxMTFqtbr/24yGnvPnz8+cOfPatWvR0dGXL19evXq1kFHNzc2rV68uKSlZsWLF4sWLhQxx6RCiQSqQl5dXRESEyWS6e/cu71oUsmfPnkWLFj18+HDp0qVXr179yU9+ImRUWVnZnDlzjhw5EhQU9Ktf/UrgthDCPqEbYct1dkkdHR1bt259/fXXu7q6UlNTv/322xEjRggZePz48eeff76wsDA2NvbChQsvvfSSwC26aAgjIiJ8fHyqq6sNBkNfy7jO104IF/k0ampqFixYsG/fPm9v74yMjN27d6vVaiEDd+/evXz58sbGxqSkpCtXrrCPSyiJp4caPNh899euXetrgaqqKiIKCQlRsiqn9emnnxLRpk2beBcio4sXL4aGhhJReHh4P1+MHoxG46ZNm+j/p14XMeue64Zw3bp1RHTw4MG+FjCbzQEBAUT0+PFjJQtzTjk5OUT0/PPP8y5ELgcPHvTx8SGiuXPn9jrLeq+qqqpmzpxJRP7+/qKnFnfRw1ES0CBVqVQxMTHkAsdgQgzh91+ZTKbt27dv3LjRaDRqNJqTJ0+OGjVKyMCcnJyZM2fm5uZGR0dfunTp5ZdfFleA64ZQyI1pLnIiJMRQff/V48ePlyxZsnPnTi8vr3379un1eusU6/3bs2fPiy++yNqn165dE9g+7ZXrhlDIY3J466atobdLunHjxqxZs06dOhUWFnb27NnXXntNyKiOjo6UlJTXX3/dZDJptdpvv/02MDDQkTJcN4SxsbEqlaq0tNRkMvW1zND72jliiH0a//rXvxISEioqKubMmZObmzt79mwho2pqaubPn5+enu7t7X3gwAGdTiewfdoP1w2hr69veHh4Z2fnvXv3+lpmiH3tHDRkLpx2d3dv37791VdfbWtr02g0p0+fHjNmjJCBFy9enDlz5pUrV8LDw8+fP//zn/9cmoLE9XOGBnY5NSsrq68FOjo63N3d1Wp1e3u7koUpqbOz8w9/+ENjY+OAS7IHCF566SUFqpJPfX09u5vM3d1dp9MJH6jX6z09PYlo3rx5wtunQrh0CFNTU4noT3/6Uz/LTJo0iYgKCwsVq0pJDx8+nDt3LhG9/PLLAy7MbkceP368AoXJ5ObNm1FRUUQ0cuTI06dPCxzV1dWl1WrZj5ZGo+ns7JS2KpcO4T/+8Q8iSklJ6WeZFStWENEXX3yhWFWKyc/PnzBhAhGFhYVdvnx5wOVNJpO3t7dKpWpublagPMllZWWxC7/x8fEVFRUCR9XV1S1cuJCIvLy80tPT5SjMpUN48uRJIkpISOhnmbfffpuIPvzwQ8WqUsahQ4eGDRvG/vq1tbUCR02dOpWITp06JWttkjObzdankNavX9/W1iZw4PXr1637qStXrshUnkuHkD1ZHxQU1M8ye/fuJaKNGzcqVpXcWGPdenDV0dEhcOCFCxf8/f3Hjx/v4eGRlJSUmZnZ1dUla6mSMBgMq1atIiK1Wm3XSaC4/ZQILh1Ci8XCrvA8evSorwXOnz9PRLNmzVKyKvnYtiV2794tfKC1LTFu3DhrU378+PFpaWn37t2TrV5HlZSUsF/v4ODg7OxsgaNE76fEcfUQsqtD586d62sB9p4/f39/s9msZGFysLYlQkJCHGlLVFdX63S66Oho9odubm4JCQl6vb61tVXO8u129OhRtpOdNm1aeXm5wFH19fWJiYki9lOiuXoIN2/eTER79uzpZ5mQkBAievDggWJVycHxtsT+/ft7/Nfc3FyNRuPr68vSOHz4cI1Gk5eXJ3Hp9rM9CVy3bl1LS4vAgQUFBSL2Uw5y9RB+9NFHRPTrX/+6n2VYE//EiROKVSUtudsSTU1Ner0+ISHBevF56tSpOp2urq5Oor+BfZqbm9euXUtEKpUqLS1N+CFMZmYm26HEx8ffv39f1iJtuXoIv/rqKyJavnx5P8u8++67K1asuHDhgmJVSUjJtsStW7e0Wi07cGA/nsnJydnZ2UoeyZeVlT377LNEFBAQcOTIEYGj2H5KpVIR0YYNG4TvpyTh6iG8ffs2EU2cOJF3IbLg0pZob2/PzMxMSkqy9m/GjRun1WqV6d/8/ve/J6IpU6YUFxcLHGIwGFauXCniHhqpuHoIOzs7PTw83NzcjEYj71okJq4t8fjxY9aW8PT07P9UeUAPHjzQ6XTsFIv1bxITEzMyMmT9nTGZTO+///6TJ08ELl9cXMwelQwODuZ1xuHqIbRYLOy+5Js3b/IuRDKOtCUiIyOlbUt0d3fn5ORoNBp2cEtEI0aM0Gg0+fn5kqzfEdb9VFxcnPD9lOQQQgs7FDl8+DDvQqTR3Ny8Zs0aEW2Jw4cPs7bE9OnT5WhLNDY26vX66dOnW/s3M2bM2LVrV319veTbGpDtfuqVV14Rvp+SA0JoYec/O3bs4F2IBMrKyp555hknb0sUFhZqtdrg4GAWRW9vb4X7N6L3UzJBCC3p6emsd8+7EEedOXOGdSZjYmJu374tcBSvtgTr3yQmJrLwE9GkSZPS0tLkvjZgu5/65ptvZN2WQAih5eLFi+wYjHchDtHr9e7u7uxyS1NTk8BRztCWqKys1Ol0ERERtv2bzMxMyZ8Yslgsx48fZ2/yjYmJKSoqknz94iCElsbGRiLy9fXlflgijtFoZPf92Pvey6NHjw4fPpx7W4Lp7u7Ozs5OTk5md6gS0ZgxY1JTUyVsmInbTykAIbRYLJbRo0cTkZI3SUilqqpq1qxZROTn5/fll18KHNWjLeFU93w2NDTo9fq4uDjb/o1er3fkIUbR+yllIIQWi8WyYMECIlq7du3333/PuxY75OTksN1HdHS08MqtbQl2D43T/v7n5uampqYGBQWxKPr4+Ijr34jbTykJIbRYLJbKykr2Vny+fXO7WN+QuWTJkoaGBoGjnLAt0T+j0dijfxMbG6vT6X744Qchw233U077jhKE8H+4982Fa29v37p1K6szNTXVZDIJHHjs2DHWloiNjXWetoRAxcXFaWlp48ePZ39xtVrN+jf9PFhs3U8tXbpU+H5KeQjhj/DqmwtXXV39wgsvsN1ERkaG8IFO25awi8lkYv0b63uyQ0NDtVptaWmp7WLt7e0pKSki9lNcIIS9U7JvLlxeXh77KRg3bpyS0wY5odra2l27drEHJmz7Ny0tLaL3U7wghP3pq29eUFCgfDG20wYJPCOy/LgtIXraIKdlNpvPnTu3efNm2weL2XWXiIgIZ7g9VQiEUBDWN3/uueck7Jvb5f3337ceXAl/vdK5c+ecvy0hiSdPnmRkZLDnP5YuXWrX9GbcIYT2kapvbq+CgoKgoKB9+/YJHzJY2hLSKiwsbG1tHRSvgbNCCMVwsG8ujsFgELiktS3BTgKdvC0BCKFDRPTN5Wbbljhw4ACvMkA4hFACAvvmCrCddT03N1fhrYM4CKGU+umbK7D1AwcOeHt7kwzTBoGsEEJZsBdy+vn5sSgGBARoNJqcnByZNif3tEEgK4RQRgaDgfXNrf2bKVOm6HS6ft66L4IC0waBrBBCJRQVFWm12lGjRrEoenp6SjWhir3Tm4ETQgiVY+3fsHs4WXK0Wu3du3fFrVCxaYNAVgghB45PqKLwtEEgK4SQpx4TqgQGBgqZUEX09GbgnBBC/vqaUOXx48dPLyxuejNwZgihExlwQhVx05uBk1NZLBYCZ9LR0ZGVlXXgwIHvvvuuu7ubiMLDw9evX09Ef/7zn81m8/r16/fu3csea4IhACF0XtXV1Z999tmePXvKy8uJyN/f32g0fvzxx2+++Sbv0kBKCKGzM5vNJ06cSE9P37Bhg6+v76JFi3hXBBJDCAE4c+NdAICrQwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOPs/oRHd0bgFC0kAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -442,7 +464,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEf0lEQVR4nO3c0W7iMAAAwcv9/z/n\nHiqhlqsgQJK1Yea5onbwxqYFlnVd/wCdv/UA4NOJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCtlqWpR7CexIhW63ruiyLFHe3rOtaj4HJfHVo5ezFTnigt9k0riayrqtdcUd2wkNc9orZN427\n418WS+hVruDOfl21M6a4fcwzzm4oItzNlk3j9g8M4vs4t290s8xuQCLcx9ss1v8n8tCAB5/dmET4\nqueW3YAvpW5P5NEUR5vdyFys57141x9n0zji5d84sxufCJ+x4wprF+vR27gUtxDhw444ayWL9ZWJ\nOJ3uyNV5wNGpnLZY95qI0+kuRLjJaWvohM53f3wpvkiE951/mjposR46ES8UnybCW2b8q8nRD7XX\nb/FC8cKF+N04d+vp/hHidPooEV4bc2U8sW/k27jT6UYi/GHkM9J0hz3vd9uof6oGMcsimO5t4tPd\nO873iXO+Mtqq3WK6D0yNPLbcR0c4+8qY7qPDn7nR3fW5F+VtFsRcE5nlfnGmmZ4/3oYUvxMhGSl+\n8W1rZC7f2lYPJCZCYnZCEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBAT\nIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE\nRAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECLF/ifttEnhcTvQA\nAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAANGElEQVR4nO3dTWwU9R/H8V8rBUHxCRQRAR9ABapSrPWhKgokCm4TLz32pOFkWg4mxQM28aA9rhoPJF5qTEwIXrYFTQpSHqpYBHxqC5UKVusTQi0taFvb/R9+yWTS9b/dh5n5zOy+XycTt9Oh7Xt39jszvy1JJpMGgE6pegeAYkeEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaECKn+/v6JiQn1XgSBCBFG4+PjW7ZsKS8v37Nnj3pffEeECKMff/wxmUz29fXFYrGampq+vj71HvmICBFGK1eu7O7ujsfj119/fVtbW3l5eUNDw/DwsHq/fFGSTCbV+wD8XxcuXHj99dfffffdycnJBQsW7Nix4+WXX77qqqvU++UlIkQEnDx5ctu2bYcOHTLGVFRUxOPxp556Sr1TniFCREZra2tDQ8PZs2eNMbFY7O23377zzjvVO+WBontPODAwcOTIkd27dxfJ+DsqJiYmdu/enf4xNTU13d3dzc3N8+fPb2trW7Nmzfbt20dGRoLZQx8li8bly5ebm5uvvfbahQsXGmNWrly5a9cu9U4hmUwm29vb16xZY4zZs2dPJo//+eef6+rqSkpKjDG33XZbS0vL1NSU3zvpn6KIcGpq6sMPP1y6dKkxpqSkZMOGDStWrLDPQZs3b+7t7VXvYPHq7e3dvHmz/V3ce++9Bw4cyPxru7q6HnvsMfu1Dz/88Geffebbbvqr8CM8fvz4k08+aX9V69atO3ToUDKZHB8f37lzp31JLCsr27p16/nz59V7WlyGhoYaGxvnzJljjLnhhhuam5v/+eefbDcyNTXV0tJy66232qfXurq6X3/91Y+99VUhR/jnn3/W19fbcfaCBQvi8fi///7rfsCFCxecB9x0002pD4AfJicnW1paFi1aZIwpLS2tq6v77bff8tng6OhoU1PT1VdfbYy55pprmpqa/v77b6/2NgCFGeH4+Lg9z2tf6Orr6//666//9+Cenp5nn33WvlSuWrXqk08+CXJXi01HR8eDDz5of9rr168/efKkV1s+c+ZMbW2t3fLSpUtbWlq82rLfCjDC9vb21atX21/Gpk2buru7M/mqRCJx11132a+KxWL9/f1+72ex+emnn5xpyu233+7TNGX//v0PPPCA/T0+88wzX3/9teffwnMFFeGpU6e2bNnivMvPcNTmGBsbi8fj8+fPN8bMnj27vr7+0qVLPu1qUbl8+bJzuDhv3rympqYrV644//ejjz5qa2vz8NvZw92bb77ZOdz9448/PNy+5wokwosXLzY2Ns6ePdsYc+ONNzY3N4+NjeW2qcHBwa1bt5aWltrx986dOycnJ73d2+IxNTW1a9eu5cuX28FJbW3tuXPn3A+4dOnS4sWLjTEbN2789ttvPfzWHv5J+C3yEaY+7f3+++/5b/bYsWOPP/64fVGtrKzs7OzMf5vF5ssvv6yurrY/w4ceeujw4cOpj5mYmHDG1LNmzfJ8TJ3nwVEwoh3hp59+6t8bAPssvmzZMudZ3N5fgxn98ssvztHE4sWLZzyaSB1TT0xMeLg/7e3tq1atynZMEJioRjgwMFBXVxfAKMw9/rbvZ6I1/g6YfV993XXXOXPp4eHhDL/WPaa+7777Pv74Yw93LKuBecCiF6HkpFBgzUfatAnzmTNn8t+It2PqGU8dS0QpQnt86Fx9VltbOzAwEOQOuI9+n3766a+++irI7x5mvb29zz33nFcvYu6XUzumzvzlNBP/eRGVUGQinHahoGpSYudAt9xyi7dzoOiyb+dmzZrl+ds595g6kzeW2UokEnfccYfzknv27FkPN56VCEQ4ODjovmQ+DOcM7HWPdvxtr3sM7fjbP34PNq1jx465R6xHjhzxcOPOjTXGmLlz5zY2No6MjHi4/QyFOsIrV67Ym8fCefb89OnTzz//vP37uOeee7w94xxy+/btKy8vt//2jRs3fvPNN/59r9Qx9bSTjXly3xi1ZMmS4G+MCm+EiUTCuW86Fov98MMP6j36b9Oukvvuu+/Ue+Svvr4+5xLNFStWBHZPZuplN94O5L744otHH33U/ruqqqo+//xzDzeeXhgjPHHihLOCyNq1azs6OtR7NIMwj789ZOfS9uYjO5fO4eajPLnH1J5fgGrf8Ad/Y1S4InRPkCN3b1E4x9+eSL35SHvb3oEDB5xbMTwfUwf/XBOWCFNfTIaGhtQ7lQv3y3hFRcXBgwfVe5Qv4XFaGn6Pqb///vvAjrpDEaGzxEjBvK2aNv4O7Rva9OQTixl5cnt+Gvv27bv//vvt73HDhg0+zZ/EEZ4+fToWizkDxtbWVu3+eMg92rXj71CNdtNzz+7nzZunmt1nyNe/otQzMZ7fGCWL0O/nsJAI/4tJqvCcxc6Kr8dT/l2TkJREWIQXnURlXbCwXc+VLb8nC9Ouztu7d68nmw06Qvdca/369cVz+WXI1wU7f/58wYx2/Z6xJxKJu+++2zlSyO06dbfgIrRnePxeYiTkQrgumH31cN98VBgnOX0925z6Q8vnEvMgIvT7WofICXL8nV7I73bNn6/XXaXeu5zbS66/Efp91V+k7d+/3z3+DnhdsEis++AJv69AzmQVj/R8jNDX698Lgx1/2wVyfBp/p4rQCkge8vVenBnXs0rPlwizXWKkyF28eNEZf/tahbv5SKwF6Dlf70q1b7vmzp1r/mtlxzQ8jtDve6IL2KlTp9wfjeL58WEUV8X1Q+r6DN6u35XDGsdeRsgi1vlzj783bdrU09OT/zbdc6Bly5axQE7S/zF1R0fH2rVr7c/8kUceOXr0aJoHexOht0uMFDkPx98hPCMSKr6u3+W+9eS1115L88h8I/T1cp5i5j57vnDhwmzPOIf82oBQ8XX12qGhoR07doyOjqZ5TO4RBrPESJE7fvz4E088ke11ZFG5Si48fFrHPUM5RjhtiRFvP0UA0yQSCTv+NjNdUV1gnyMdMNXJm6wjdC8xwse+B2bGe4sifedUqAR/GUMWEY6MjMiXGCly7vG3+8aoqCyKFSG5fcplbjKN8P3333duPnrppZfy/Hxj5OPgwYMVFRX276OysrKystL+d2GsphEega3flWmEb775pgnTEiNFzhl/l5WVzZkzJ+o3H4VZAOt3lSSTSZOBsbGxvXv3vvDCC/ZYCGEwPDzc2dlpjKmurrZP2PDJiRMntm3bdvjwYWPMunXr4vG4c/dz/jKNEEBra2t9ff25c+eMMbFY7J133nHWAclHaf6bAIpETU1NT0+PHVO3tbWtXr16+/bto6OjeW6WV0Iga4ODg6+++uoHH3yQTCaXLFnyxhtvOFPrHBAhkKOurq6GhoajR48aY6qqqt566y1nleSscDgK5Kiqqqqzs/O9995btGhRV1dXdXX1K6+8ksN2iBDIXWlp6Ysvvtjf39/U1FRWVpbbnIbDUcAb/f39y5cvt3cUZYUIATEORwExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAGx/wFmd1nIWWiPaAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -454,7 +476,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHjklEQVR4nO3d0XbixhKGUcg67//K\n5IIDiwASYIT+qu69r8aeZBC4P0pIyBxPp9MByPknvQEwOxFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDAR8ivH4+J3Vv5qQiLkh2ZO630i5IdOJx2+9r/0BrDgdvGeTrnt4OdEWNLx+J/w7r5s5TwMHzff\nhLwSYT2Pa3ZpITfxdPPvvpy5Sa8JOzsep168oxBhZ6fT/6dMmRSXNsQRmhV2R/s779id13hul/Xl\n7etwiQhHkUtx6TZXvvPOfzyP42nme1/Wl0dHd0yx8wGjKkRY1ffnCX+c4u/++fSe9d5E2E2NqbjD\nAJwnRRE29PnyPB6Ph8Nhk5/1zm3MkKII29o9xWAPY6c4b4THmxddjR+EvVI8HvNLZdQU849sxN2S\nOi6cwGrz4PwpxTfv3Ya7spuotj3fmzHCT9ffo6IP2ocpvrOaKwzAp0ZKsehD/FPfL6yncVZ5JDdK\nscUqb7GRL00X4e+e2muNzQ/PITzunzdaGN1T7PRYfy+ytlJHgP58AOYP/1cFvZ44bk303tHUD+l6\no0uj8qe3+1FUfddxaxNFGHc6nfZf5W+m2HcADmCWCNdX//ATYD3F4e9+cVNc1FunwPMw3Oe2nt76\neQOC28Cj8SdhnQKL+MNrRX5qiknIo+tUTG8Io0cYHIMrpw3rLH2TsIKRI7QjSgvDRhgvsNTEo7Ix\nI4wXuE6f3BozwiLExjsGjLD4GDzTJ1ejRVitQLHx0lARVisQ3jFUhCsKFmhIbq3Wz/d940RYMLMz\nsbFukAib7ojqk8MYEdYvUGysGCHCFRUKhHXtI+yS2dIwNCTpHWH9HVF4qXGEwxQYH4bxDdhE308C\nbhzhipoFjrHW2VzXCFcyq1kgLGkZYd/MHJ7hUcsIV/Ttk2m1jHBpbrQo0NDjTssIl9QvcIU4p9U1\nQkuWR02fhLtG2JrDM9wSIYQ1jrD13Gi98WyrcYRDEueEekfYesm23ng21DvCIYlzNiJMWr8KxAcJ\nvunxQbp+Z+Wv6mj/+YSRz6D+qbu7s/LpTnttUQPHY9eThIcBIhzM4xPKysUiT78/Z5zniwmb3nUR\ndvVRnHOW2cUIEQ6zR7rJvXj6L8wwNpeGYcEXgXdGiHAMP30e+XSftqmnHd59WfAeD3J0tPth/dQk\nP10cLsdj998GTEL+8xRw7rD+burSYZiOv+5JhHmlXtBep+KhaornxlY2rV2HhX783yu1mt9UYZuX\ntqFgin3PQ6wwCZMqF3goNhVfDsC+hopwmHMVpVRIccgBeDVUhL30er5IpTjwALwSYUavAq92TnHs\nAXjVcimsq7++62zhN1vy03sxwwC8Mgn5o+sbJDZPcZIBeDVghMUPz1Tetk9tvnda5EjszgaMsLJS\nBW61MZukOGd+Z3NFePveyP1/3qUK3Nw3KY79yLw07J1/+XPd+eqeguvsd5v0foozD8CruSbhrckv\nit3hyqmXgRV8YoqYN8Ilv7gods7VtpKiAXhr2Ai3PUb6ztj0ycFP3aV49wcOA0e4j5d1TV7g4fII\nXFOc/NF4apAr65/ydLskeCH//jda3/iT8NqhcxLUNHiEwd+iq0DeNHiEt/Y8J1G5wMrbNqeJIlwy\n7S/qpAgRPvfNL583aviICD/zzQnDCvZ/gih+UUsFItyGRcafjXyeEFoQ4UTsFtYkQggTIYSJEMJE\nOIvgC8Knt+q16ZUIIUyEECbCKTg5UZl3zAzOZc31iXA0d9UZgPWJcARd3j7OUyJsaYRxd/5o+Y5b\nvjUR9jBCdSwQYVGqm4cIC/HSbk4iTDLuOIgwIvirUClIhAHa45a3rUGYtxRCmEkIYSKEMBFCmAgh\nTIQQJkIIc7KeHd2+Tc+5sQsRspe7qwddTHhhd5RdPCZ3vqgXEUKcCCFMhBAmQggTIbt4PAzj6OiF\nUxTs5a5DBV6IkB0J7xm7oxAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYf8CPUHPL3UqQFkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxUVf8H8O8MM+wkCIgoICC4oaKBaCpqSqboS1Kj0sQWdcrlQfv50rHHpcy0sawH63mkoVKpXBrLLXtMEZeA1MddEVdQAUFljZ0ZZs7vj0OIwAwwzL3nDn7ff+l4uffLyIdz7plzzxERQgAhxI6YdQEIPe0whAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhCxt2gRiERw9+7jV44fB5EINmxgVhKfMIQIMYYhRIgxDCFCjElYF4BQrezsx39+8IBdHbzDECKhCA1lXQEjGEIkFEoldOpU++fUVFi5kmk1PMIQIqEYOxa8vWv/7OjIshKe4cAMQoxhCBFiDEOIEGMYQoQYExFCWNeA0FMNW0KEGMMQIvboUxQzZz5+JT8fn6JAiHc7dkBWFusiWMAQIkHw9AQnJ/jiC9Z1sIAhRIJQVQXz58O330JREetSeIch5Fd+PsybBx4eYGUFPj6wbBmUl7OuSRA0GliwAHQ62LSJdSm8wxDyqKICRo4EpRLGjoV16yAoCNavhwkTQKdjXRl7hICzM7z1Fnz1FVRVsa6GXxhCHsXEQFoafPEFbN4MixfDzz/DwoVw4gRs2/b4GJkM3nkHcnPZVcnS4sWQnw/x8azr4BeGkEc//QR2dvDuu49fWbq09nUqNxe2boW4OOjRA1auhL/+YlAkjwiBhw+feMXHB6ZOhc8/f9w50GggIgL27eO/Ov5gCPlSUwNpadCvH1hZPX6xSxfo0gUuX679q7s7XLwIkZFQXg4ffwy+vvDhh1BayqRert2+DS+8AGFhoFY/8frSpXDrFhw4UPvX7dth/3546SUYMgSOHuW/TD5gCPlSUgI1NeDs3PB1FxcoKHj81z59QKWCkydhzBgoLITVq6F7d1i/Hqqr+SyWU9XV8OGH0LcvJCZCfj7cuvXEvwYFwfPPQ2wsSKUAANOng1IJ7u5w+jSMGQPDh0NSEpOquUQQPwoLCQAJD2/4er9+xN6+6S9JSCDBwQSAAJBu3YhSSWpquC6Ta0lJpE8fAkBEIhIVRfLzCSFk4ULSocPjYw4erP2mP/us9pXycqJQECen2tfDwsjFiwyK5wiGkC9aLbGyIkFBDV/v3Jn4+Bj6woQE0r9/7U9fnz5EpSI6HXdlcqeoiERHE7GYABB/f5KY+PifGoSQENKv3xMhpEpKiEJBHBwIABGLSWQkuX2bj8q5hiHkUVAQsbIiZWWPX8nKIgDk5Zeb+UKtlqhUpHv32igOHkyOHOG0UpPbv5907UoAiFRK5HJSVWX8qR49InI5sbauPZtMRnJyTFcoCxhCHn36KQEg69Y9fmXxYgJA9u5t0Zer1USpJO7utVEcNowkJXFUqQllZ5PJk2tLDg0laWmmOe29e0QmIxYWBIDY2hK5nBQWmubM/MMQ8qiigvTrR0Qi8vbbZONGMm0aASCTJrXuJGVlRKEgjo7Cvz3SaEhMDLG3JwDE0ZHExBCt1sSXSEsjkZFEJCIAxMGByOXkr79MfAkeYAj5VVhI5s8nXboQqZT4+JCVK8mVK6S6utXnKSggH3wg5NujCxfIoEG1vygiI8nDhxxe63//IxMn1l7LxYUoFKSyksPLmRyGkCm1mvj5ES8vI0c+6e2RlZWgbo/Ky4lcXttR9PEhBw/ydN3kZDJiRG0U6Tuq0fB06TbCEDJ15w4JCHg88rl7tzEjn+npJCqKDjtW9Ov3z3/+s6ioiINaW+S330i3bgSASCQkOpqUlvJdQEICGTCg9h3t1cs8xpIxhKzRkU8/v9ofnEGDyP79xpznyhUSEfHJ4MEA4ODgIJfLS0pKTF2rIbm5JCqq9psYMID87398XvwJWi35/nvi61tbzOuvXz18+DCzaloAQygMdOSzS5fHI58nThhxmtOnT48ZM4ZOw3B1dVUoFJXc3x7pdCQ+njg71w5UKhSCmFNA31EfH527+yAAGDZs2Amj3lIeYAiFpLycxMQQV9fHI58XLhhxmqSkpNC/d1fx8vJSKpU1nMUiLS0tIiKT1jtxIrl3j6PrGKm8vFKhUHTs2JG+G5MmTbpy5QrrohrCEAoPnRjyzDOPRz5v3TLiNAkJCYGBgfSHr3fv3iqVSmfS2yO1Wq1QKKysrIKDx3fuTOLjTXhuEystLVUoFM888wwAiMXiyMjIW0a9pRwRUAg1Gs2mTZv27t175cqV8vJy1uWwlpfXcGLI/futPYdWq1WpVH5+fjSKgwYN2m/cDWcjx48f79mzJ/2Zfvfdd4uKWv8pC+/y8vLkcrm1tTUASKVSmUx2v/VvKReEEsL9+/f37NlTJBLVzSx3cnIKCgqKjIyUy+VKpTIhISE9Pd20v8vNQGYmkcmIRFJ7vxUdbcQnbmq1WqlUdunShb6xbbw7Kioqio6OFovFAODv73/06FGjT8VEZmamTCaTSCQAYGtrGx0d/ZDTDzFbQBAhvHXrVocOHQAgNDR0/PjxPXv2tLS0bPKZDwcHhwEDBkyZMmXJkiWxsbGHDx9OT0/XmMvnQUa7du3xxBB7e+MmhpSXlysUCicnJ/pOhoWFXWj9Def+/fu7du1KWxK5XF7VljmgTF27di0yMpL+0re3t5fL5X+xm2vDPoSVlZUDBw4EgIiIiPoNXWFh4dmzZ1UqlUKhkMlkYWFh7u7uTSZTIpH4+vqGhYXJZDKFQqFSqc6ePcvwPeWKKSaGlJSUGHd3lJGRMW7cOPqGh4aGpplqDihTly9fjoyMpN+Ui4sLP4PJjbEP4ZtvvgkAPXr0aElsGifT19fXwsKiyXA22aHVmnz+Is+OHiVDhtQ9ZFizdasRI5+tujvSaDQxMTH29vYA4OjoqFQq29lNQUpKyogRI+jPjKenp1Kp5LlvxTiEsbGxAGBnZ5eammr0Saqrq9PT0xMSEpRKpVwuj4yMDAoKoj80jVlZWTVuNs1vHOjviSGXR4zo1auXcSOfLbk7unDhwqBBg+hbFxkZyfz2iTsJCQm0RwYARr+lxmEZwgsXLtjY2ADA999/z8X5m2w2m0xmXbMZFRVVl0yGk79aRKslP/ww6e+EBAcHHzp0yIjTXL16dcqUKfTuyNHRsa53Wl5eLpfLaS/Dx8fn999/N2n1QkQHk/39/elb2q9fP5VKxcN1mYWwoKDAx8cHAKKjo/m8bnFx8blz52gy58yZM3r0aG9vb30dWhcXl8GDB0+bNm3FihVbtmw5ceKE0Hqzphr5pHdHISEh9Nf/gQMHunXrRu+3o6OjS/mfA8qOWq2OjY2te0vDG69IYmpsQqjVasePHw8AgwcPrjbiQR5TU6vVjTu0Dg4ODTJpZ2e3efNmAd4RlZeXx8TEdOrUidYZFhZ2/vx5I85TUlKSm5sbFRVFzzNw4MAzZ86YvFqzUF1drVQqnZycnn322e3bt3N6LTYh/OCDDwCgU6dOWVlZTApooZycnKSkpK1bt65ater111+nn6MkJCSwrqtpjeeF3Lx5s+VfrtPp4uPjnZ2d6S2iQqHgbrKbufjyyy8BYNasWZxehUEIExISLCwsxGKxcfcwDK1ZswYApk6dyroQQxqPfGZnZzf7VTdv3nz++edpAzhhwoR7QpsDysi2bdsAYNq0aZxehe8Q3rt3z8XFBQDWrl3L86XbLjc3VyqVSiSSlvxYs1V/5NPS0lImkxkY2CwrK6MNYJcuXX7++Wc+6xS4PXv2AEBERASnV+E1hFVVVXS8e+LEiUIb4Wgh+tnu6tWrWRfSIteuXYuKiqJTzOi8kOLi4saHLV261NnZedy4cU3+69Ps0KFDAPDCCy9wehVeQyiTyQCgW7du+XTNVzOUmJhIWwy1Ws26lpaqPy/E2dm58byQ2bNnA0BcXByrCgUrKSmJjjlzehX+lsHftm1bXFyctbX17t27nRuvBl/PvHnz1q9fTwjhrbaWGz16dJ8+fXJycn777TfWtbQU/bwrJSVl5MiRBQUFy5Yt8/f3j4uLq6mpoQfY2toCQEVFBdMyhYind4bTiNe5fPky/X6+++47w0du3boVAGxsbNLT0/mprbX+9a9/AcCLL77IuhBjJCQkPPvss/S/vmfPnvHx8VqtdtmyZQCwrv6CqIgQQsj169fpG8XpVfgIYUlJSa9evQBgzpw5ho+8dOlSC7PKUFFRka2trUgkatUHAMKh1Wq3bdtGHzK0s7N79OjR6tWrAWDlypWsSxOczMxMAPD09OT0Kpx3Rwkhb7755vXr1wMDAzdu3GjgyOLi4ilTplRUVMhksrfffpvrwozm6Oj46quvEkK++eYb1rUYQywWT58+PS0t7euvv16zZo2rqyt2R/Wh70w511uacxpxQsgnn3wCAE5OToa7lzqdbsqUKQAQGBhYUVHBdVVtdPr0aQBwdnZm8uSLyf3nP/8BgLlz57IuRHDoLyZra2tOr8JtS3j8+PGVK1eKRKLNmzcbmDwNAAqFYvfu3U5OTrt376azuoUsJCQkKCiooKDg559/Zl2LCdjZ2QG2hE2xtrYWi8VVVVVarZa7q3AYwgcPHkyfPr2mpmbFihUvvfSSgSOPHTu2atUqsVj8448/Gs4qb/bs2TNp0qSSkhJ9B7z77rsA8PXXX/NYFFewO6qPSCSiTUJlZSWHl+GohVWr1XTVvTFjxhiegpibm0sfmV+1ahVHxRhh5MiRALBp0yZ9B5SXl9OlIoybKi0oBw4cAF4eFzBHrq6uAMDpg5RctYRLlixJSkry9PTcsWOHvgeFAECj0bzyyiu5ubljxoxZtWoVR8UYYe7cuWCwobO1tZ0xYwYAmOnwTH3YEhrAx5vDRbJ/+uknAJBKpcnJyYaPjI6OBgBPT89Hjx5xUYnR1Go1faIsJSVF3zFpaWkikcje3t7c17M5deoUAISEhLAuRIh69+4NAFevXuXuEqZvCW/evDlnzhwAiImJGTZsmIEjf/rppy+//FIqle7cuZM2+sIhlUrp4jd0AY4m9e7dOzQ0tKysbPv27fxVxgFsCQ0wv5awtLS0T58+0IKnP65fv06ffDNw38XWvXv3LCwsrKysDNwP7NixAwD69+/PZ2Emd/v2bQDw9fVlXYgQ0aENTvexMHEI6UPZffv2Lau/M3sjLc8qWxMmTACATz/9VN8B1dXVbm5uAPDnn3/yWZhp5eTkAEDnzp1ZFyJEL774IgAc5HKbRVN2Rzdu3PjDDz/Y29urVCr60ZM+c+fOTUtL69u3r8BHNeqGZ3Q6XZMHWFpa0sk9BnqtwofdUQPMqTt68uRJS0tLkUi0a9cuw0fSCdAODg7CX0BWq9XS1agMLAJQ12sV2thSy2k0GgCQSCSsCxEiOgb+ww8/cHcJ07SEjx49evnll9Vq9eLFi19++WUDR546dUoul9M5NHTcScjEYjEdZDLQ0Hl5eb344ovV1dXx8fE8lmZKEonE0tKypqZGrVazrkVwzKMl1Gq1L7zwAgAMHTrU8KOuDx8+pDsZLFmypO3X5cejR4+srKwsLCzu3r2r75hff/0VALp3726mywUQQhwdHQFA6EutsrBo0SIA+OKLL7i7hAlawuXLlyckJLi5ue3atUsqleo7TKvVzpgx4/79+0OHDl27dm3br8sPV1fXl156SavVbt68Wd8x4eHh3t7e6enp9Ll7c8TT4wJmyAxawl9//VUkEkkkkmbHcOVyOQC4ubkJZFO4ljt+/DgAuLu7G2jn6a+VyZMn81mYCdHHC830CUlOffJJhYVFzT//yeEl2hTCO3fu0I2IN2zYYPjI/fv3tzCrwtS3b18AMLASGe21SiQSga+kqk///v0B4OLFi6wLEZzPPycA5L33OLyE8d3RqqqqqVOnFhYWRkRE/N///Z+BI2/fvj1z5kxCyPr16+u2vzEvdIkqA1NJXV1dIyIiampqvv32Wx7rMhn8lEIfW1sAAG7fGKPj+9ZbbwGAv7+/4XXyKisr6aImDbYfNC/FxcV2dnYikejGjRv6jjl27Bg012sVrNGjRwPAkSNHWBciOPHxBIBERXF4CSNbwri4uC1bttjY2KhUKro4vD7z5s07f/68v79/fHx8/d2wzUuHDh3o5B6lUqnvmFGjRgUEBOTm5tIng8wLtoT60FknnL4xxoTw4sWLdNw2NjZ2wIABBo5UKpVbtmyxs7Pbs2eP4awK3/z58wFg8+bNBn5Saa/VHGfPYAj14aE72uoQFhUVTZkypbKycsGCBW+88YaBIy9evPjee+8BwKZNmwICAoyvURgGDBgwaNCg4uLiXbt26TvmjTfesLOzO3LkyM2bN/msre1whQt9aAg5/eymdSHU6XSvv/76nTt3QkJCNmzYYODIuqz+4x//mDlzZtuKFIpmn/Tt0KEDXYgtLi6Ox7pMAFtCfQQ3MPPhhx8CQMeOHe/cuWPgMKFtP2gqFRUV9COZc+fO6Tvm/PnzAODk5GReW3AvWbIEAOjC56i+1FQCQPr04fASrWgJExMT16xZIxaLt2/f7u3tbeDIjz766ODBgx07dty5c6elpaXxvyEExsbGhrbqBoZnBg4cGBwcXFRUZF4LsWFLqI+A7gmzsrJee+01rVa7evVq+oSVPomJiR9//HFLsmqO3nnnHZFItH379r/++kvfMc32WgWIjzXFzJNQuqPV1dUhISEAMGHCBMNzlDMzM+n2gx9//LGJ2mrBoZtp/vvf/9Z3QEt6rUJDt6RdsGAB60IEp6SEABB7ew4v0aKWUKvV9uzZ08nJKT4+nm52p09hYaGdnd3EiRPff//9tv+CECba0NFVOZo8wMbGhq4wYEbDM9gd1aeuJeRwl7CWJDUvL8/a2trw4zx18vPzCwsL2/rLQcA0Gg1diC0pKUnfMdeuXTOvhdjoWlWvvfYa60KEyNqaABDudjxoUUvo4uIyZcoUrVbbkomRzs7OdFXc9koikTS7pEWvXr1GjhxZVlb2448/8lia8fBzQgO4vi1s6cAMXfX922+/pUshPOVkMpmFhcXPP//86NEjfcfQXivda0X4sDtqANef17c0hKGhof369Xvw4MHevXu5qsV8eHp6hoeHq9XqLVu26Dtm8uTJXbp0SUtLS0lJ4bM24+BDvQYIpSUEgHfeeQfMbeSdO7Shi4uL07cQm1QqpQ+amMVUUmwJDRBQCGfOnOng4HD06NG0tDSuyjEf48aN8/Pzy8jIOHz4sL5jaK91165dBnqtAoEhNEBAIXRwcJg2bRq0iy1Q2k4kEs2aNQuaW4ht/PjxarV669at/FVmFAyhAQIKIQDMmzcPALZu3Yr/WwAwe/ZsKyur33777d69e/qOob1WpVKpr9cqEBhCA4QVwsDAwMGDBxcXF9N9l55yLfnkZty4cT4+PhkZGQkJCXzW1loYQgO4fq631c8TmuPESO7Qd8PAJzctWT5YCOhkjOrqak73hTZTXLeEItLK2TiVlZWenp4FBQVnz54NCgriqCwzEhgY2Llz5y1bttBpNI3l5eV5enrW1NSkp6d369aN5/JazsHBoaysrKSkxMHBgXUtwrJ5M5w8CdOnw/PPc3L+VreENjY29IF6bAypU6dOHTp0SF8CAcDV1XXy5MmGlw8WApw0o8/bb8M333CVQDCiJQSA27dv9+jRw8bGJjs7u33PUDOVP/74Y+TIke7u7vfu3TOwSDlbvr6+d+7cycjIoHvgIN4Ys9CTn5/f6NGjKyoqzGViJHMjRozw9/fPzc0dPXr0smXLvvnmm8TExLt37wrqBgwnzTSwaBGIRFB/bZb8fBCJoG5dF3rA3buPDzh+/IkDWkhiXH1z585NTEyMjY1dsGCB+S5kyJvCwsKSkhIXF5fk5OTk5OS616VSqaenp++TevToweSuDAdIm7RjB6xdC56eHF7CyBBGRER07dr12rVrSUlJZrqoNm90Ot2MGTMePnwYGBj4+eefZ2Zmpqenp6enZ2Rk3L9/PyMjIyMjo8GXuLu7d+/e3dfXt3v37nV/6NSpE6d1Yggb8/SEqir44gv41784vIqRIZRIJLNmzfroo49iY2MxhIbVrbizd+/eBut9qNXq7OzsjCddv349Nzc3Nze3fpsJAFZWVl27dm3QbAYEBFhbW5ukTgxhY1VVMH8+bNgAq1YBd6MfRoYQAObMmbNu3brdu3c/fPiQ7tuOGjO84o6lpSXNUoPXi4qKGiTz6tWrubm5jZtNiUTi5eXVIJn+/v7PPPNMa0vFEDam0cCCBfDpp7BpEyxf3vQx2dmP//zggTFXMT6EHh4eEyZM2Ldv35YtW5YtW2b0edqxutWxPv74Y8OrYzXg5OQUFBTU4GPYxsnMyMi4d+9ekx1aJycn30a8vb0NrE6CIWyMEHB2hrfegq++gsWLmz4mNLStVzE+hAAwd+7cffv2xcbGLlmyxMLCoq21tC/V1dVTp07Nz8+fMGGCSVbcaTKZTXZob9y4UVRUdO7cuXPnztU/uMkObe/evWn8MIT6LF4MX38N8fEwdWoT/6pUQt3demoqrFzZ6vO3KYRjx4719/e/devWoUOHwsPD23Kq9mfhwoVnzpzp1q1bs6tjtUWTHVpCCB3yqRsBon8oKCho3GxaWFh4enp27949Ly8PAB4Y16NqR7Ra2Lv3ibz5+MDUqfD55zB5chPHjx0LdfcZjo7GXLFNIRSJRLNnz5bL5bGxsRjC+rZv365UKq2trX/55RdnZ2eery4SiTw8PDw8PBqMmVVVVeXk5NA7zLS0NBrIzMzMu3fv3r17FwAcHR0VCkVRUdHy5cu5HowVpsuXQSaD06dh+/YnXl+6FIKDgavtttq4UBRdiE0sFhteGP+pcvnyZdq1++6771jX0rzq6uqbN28ePHiQLhhLP/V1dHRcu3ZtWVkZ6+r4U15OliwhEgkBIF5e5PffycKFpEOHxwc8/zwJDiZSKfnss9pXFi4kAKT+D/6xYwTg8QEt1NZukouLy9SpU3U6nZnuUGtypaWlr7zySkVFxezZs+mibAJnaWnp7+/v5uaWn5/v5uZ28uTJiRMnFhcXL1++3Nvbe/369VVVVaxr5Nzx4zBwIHz2Geh0IJNBaio0HkdbuhTOngVO1jlr6y8QQujHWZ07d25Pe78YR6fTTZ06FQACAwMrKipYl9MKK1euBIC5c+fSvyYnJ9d1ZT09PZVKpUajYVshRwoKiExGAAgACQwkp08//qcGLSEhpF+/Jxo6U7WEJgghIYRuFfrTTz+Z5GzmS6FQAICTk1N6ejrrWlqHbiB5+PDh+i8mJCTUbQLbq1cvlUplvhueN6bTkfh44uJCAIiNDfngA8Jqm3PThJCurjlq1CiTnM1MHTt2TCKRiESiPXv2sK6ldeiWpo6Ojo37MlqtVqVS+fn50Sj269dPpVIxKdK0bt8mYWG1DeD48YTtgIZpQlhSUkKnaKSmpprkhGYnNzfX3d0dAFasWMG6llZbt24dALzxxhv6DlCr1Uqlsu6ZyWHDhp04cYLHAk1JrSYKRe3K9m5uJD6edUGmCiEhhK5KunDhQlOd0IxoNJrQ0FAAGD16dE1NDetyWm3QoEEAsHfvXsOHlZeXx8TE1H10ERYWdv78eX4qNJXkZBIQQACISESiokheHuuCCCEmDOGlS5dol+apGtemFi1aRAcwHj16xLqWVsvKyhKJRLa2ti3cWri0tFShUNCOj1gsjoyMvHnzJtdFtl1xMYmOJmIxASB+fuTIEdYF1WOyEBJCnnvuOTCTD8dMaM+ePSKRSCqVJicns67FGBs3bgSAyMjIVn1VXl6eXC6nD3BIpVKZTHb//n2OKmy7/fuJhwcBIFIpkcs53F/JOKYMYXx8PAAMHDjQhOcUuBs3btA2wcCeoQI3atQoANi+fbsRX5uZmSmTySQSCQBYWlrKZLKHDx+avMK2uH+fTJlSOwAzbBi5epV1QU0xZQirqqpcXV0B4MyZMyY8rWCVlZXRkX3z3dYvLy9PIpFYWVkVFxcbfZJr165FRkbSqTb29vZyuVwIuzJqtUSpJA4OBIA4OpKYGGJwj2mWTBlCQsjixYsBYNasWaY9rTDR7Xh79uxZUlLCuhYj0R0NwsPD236qy5cvR0ZG0jEbFxcXhUJRya7bd/78+RkzDtIG8NVXSW4uq0JaxMQhvH37tlgstrGxad+b9ZK/b6Xs7e3T0tJY12I8Ou3+m2++MdUJU1JSRo4cyXCqTVlZ2eLFiyUSiVgsGTOm4MABPi9uJBOHkBDywgsvAMDGjRtNfmbhOHXqlKWlpUgkMutPrktKSujC2ya/kUtISBg4cCCNYs+ePePj47W89AX/+9//0uULxGKxTCYzlx6K6UP4yy+/0FlO7WmKU30PHz708PAAgMWLF7OupU22bdvG3TwnnU6nUqn8/f1pFPv27cvpL6wHDx7QuwM6cfd0/Tmggmf6EGo0mq5duwLA8ePHTX5y5rRa7dixYwHgueeeU7Oaa2giL7/8Mtd9FjrVhv48AMDQoUNN/lOh0+ni4+Ppc1i2trYKhcLs5pqbPoSEkA8++AAAXn31VS5OzhZdqMLNzU3IH4u1RGVlpYODg0gkunfvHtfXqq6uViqVdauBhYWFnTt3ziRnvnXr1pgxY+hpw8PDzfShVk5CmJOTI5VKpVJpS35SCwoKIiMj5XJ5XFxcYmLinTt3BDvz69dffxWJRBKJpB008nv37gWAkJAQ3q5Ip9p06NABAEQiURun2qjVasz4Xi0AAArwSURBVIVCYWVlRX8nxgthDqixOAkhIeSll14CgLVr1zZ75KlTpxo84iiVSn19fcPCwmQymUKhUKlUZ8+eZX6TfffuXbpQxWetfVxMkOiuPp988gnP183Pz5fL5TY2NvQ/OioqyojmKykpqU+fPjTMUVFR+fn5HFTKH65CeOjQIQDw8vJqtlnLy8vbtm3bmjVr3nzzzdDQ0Lr7h8bc3d2HDRs2c+bM1atX//DDD3/++Sdv8zMqKyufffZZAJg0aVI7GHBSq9UdO3YEgGvXrjEpICsrq8FUmwcPHrTkC4uKiqKjo+nCWf7+/omJiVyXygOuQqjT6Xr06AEAB1r/SU11dXV6enpCQoJSqZTL5ZGRkUFBQXTjrsasrKwaN5smf6qdLlTh7+/flpklwnH48GEACAgIYFvG9evXo6KiaKLoVBvDb+/+/fvp72ipVCqXy6uqqngrlVNchZAQ8tlnnwHAhAkTTHXCwsLCs2fPqlQqhUIhk8nCwsLoI3z6ms0GyTQ6P3FxcQBgY2Njdk/u6EM3GF65ciXrQggh5MqVK3VTbZydnRUKRePfodnZ2ZP/Xm9w+PDhV4U5B9RYHIYwPz+fLsSWkZHB3VUKCgrOnDmzc+fOdevWzZo1a9SoUV5eXvrW+ezUqdOQIUM2bNjQ8vNfvHiR3sBs3bqVu++CT1qtlv7yEtTvlD///JNOJQcADw+Puqk2Go0mJibG3t4eABwdHWNiYvj53J9PHIaQEDJjxgwAeP/99zm9SmNqtbpxh5b+R0JrnjwuLCyk6+rOnz+f04L5RBfm8vb2FuDNbUJCAr33phWuWLGCPnAMABMnTszOzmZdICe4DWFKSgoAuLq6CqH7rtPpsrOzT5w40cLZnjqdLiIiAgBCQkKEUL+p0En2gp3uQ6fa0AEFR0dHAPDx8Tl48CAh5ODBgyqVivk4uclxG0JCCJ1DuHPnTq4vZHKrV68GgI4dO5rpR8D60LZdgI8gT58+3cXF5Y8//iCEaDSauLi4nTt3rl69uu6RfzoJ7saNG0zLND3OQxgbGwsAI0aM4PpCpnXkyBELCwuxWEx/B7cb58+fBwA3NzcB3lnRRzoMDKfT9RcvXLjAZ1U8aNNeFC3x+uuvL1269MKFC05OTnTT2fp8fHwEuNt2VlbWtGnTtFrtRx99NG7cONblmNKePXsAYMqUKdztUWO0ZreFogeUl5fzVxMvOA+hg4PD+fPnp02bdvbs2cabddnb2zfeF9rLy0sqlXJdmD4ajWbatGl5eXnh4eHL9W0MabZoCCc3ub0Qay0MYfvbvI3zEAKAn5/fmTNnmtzjMiMj49KlS3Sltvrc3d0DAgLqt5l+fn502iHXFi1alJKS4uXlxemWZkzcunUrNTXV0dGx7rlbQcEQcq5Vu8/STdsbn6G1u8+21o4dOzZt2kS3NKNPx7Qn9FHPSZMmWVpasq6lCXRSFIaQb00mU6PRZGVlmWT32VZJTU2dM2cOAHz11VfBwcFt/NYESMh9UcCWUFDoUxQNdp8FPc3mnTt3mt20vU+fPgEBAd27d3fUv5Mq3dKsvLx8xowZs2fPNv13xdr9+/fPnDlja2tLH0oWIDozCUMoaE02m3W7z9bfgDYzM7PJZrPJDm23bt3EYvHbb7997dq1/v37K5VKfr8tnvzyyy+EkPDwcCP6CPzAltBcWVtbN242NRrN3bt3G2/a3mQyra2tnZ2d79+/7+jouHv3bsH+jLaRwPuigCFsZ6RSqb+/f90qQ3X0dWjv378/f/78sWPHdu/enUnBXMvPz09OTpZKpfQDcWHCED4VmuzQlpWVpaen9+rVi66V0C7t27evpqYmPDzcwF0xcxjCp5e9vX1gYCDrKrgl/L4oPMUhbFcfRqMmlZaWJiYmWlhYTJo0iXUthmAIUbt14MCBqqqq4cOH1+3vKUwYQtRumUVfFDCEqL2qqqr6/fffRSKR8EPY7LS1Zg8wUxjCdu7QoUOlpaXBwcFeXl6sa2nGU/soE4awnTOXvihgdxS1SzU1Nb/99huYSQhtbGxEIlFlZaVOp2vyAAwhMj/Hjh3Lz88PCAjo1asX61qaJxKJbGxsCCGVlZVNHoAhROanbjEL1oW0lOGYYQiRmdHpdPv27QMz6YtShmNmaWkpkUg0Go1Go+G3Lm7htLV269SpUzk5Od7e3nSRMrMg699f4u5uVVWl74Ds556TlpdbVFQAL2ud8AND2G7V9UUFuJ6dPstzcuD8eSgr03eA2+3bkJsLGEIkcLm5uadPn/7+++/BrPqiAAD0YU4Dd33NHmCGMITtgUajuXz5cnJyMn1kOS0tDQCeeeaZ9957b+jQoayra40WhrB9fV6PITRXt27dOv23ixcv1h+r6NChQ0hIyJAhQ5YvX25mqzZiS4iErLS09NKlS+fOnUtJSTl+/HheXl7dP1lYWPTp04c+rzx8+PCBAweaWfbq0K1gMYRIILRa7fXr12kPMyUl5cKFC/WnknTu3Dk4OLgueE5OTgxLNZlme5sYQsS13Nzcuv0CkpOTi4uL6/5JKpUOHDhw2LBhNHgBAQEM6+QKdkcR/5ocU6nj7u4+fPhwGrzg4GBra2tWdfIEQ4j4kZOTk5KSQoN39uzZ6urqun9ycHDo378/7WGOHDlS4M/Cm56NDQCAnrmjABhCZCw6pkKDd/r06fY5pmISzWas2ZEbM4Qh5IThMRV3d/egv4WGhgp5GUK+tXB0FD8nRE162sdUTKLZlrDZ/qoZwhAar+VjKoMGDWrHKwubEn5EgVpl8+bN7777bt1f6ZgKDd6QIUNcXV0Z1maucHQUtcqQIUMCAwOfe+65wYMHDx48uFevXmb0vIJAYQhRqwQGBl68eJF1Fe3LUxnCp3g0HAnQU/kRBYYQCclT+SgThhAJyVP5FAWGEAkJ3hMixBiGECHGLCzAygq0WtC34BqGECHOGY6ZnR14eICbG58VcQ0/J0QCEx8PUmntCE1j1taQlcVvQZwTEUJY14DQUw27o0io8vNh3jzw8AArK/DxgWXL2tnHg3WwJUSCVFEBgwbB9evwxhsQEAAnT8Ivv8DIkXD0KLS7h57xnhAJUkwMpKVBTAwsXFj7yqJFsHEjbNsGUVFMKzM9bAmRIAUGQno6FBRA3XOYOTnQtStMmAAHDjCtzPQwhEh4amrAxgaCg+HkySde79oVLCwgM5NRWVxpb91r1B6UlEBNDTg7N3zdxQUKClgUxC0MIRIe+mx04z4aIe1vVAYwhEiIOnQAKyt4+LDh63l50B4XDcEQIuERi6FvX0hNfeKDwexsePAAgoLYlcUVDCESpFdfhepq+PLLx6/ExAAAzJjBqiLu4OgoEqTKShg8GFJT4a23IDAQTp2CHTtg0iTYt491ZaaHIURCVVQEK1fCnj2QlwceHjBjBixfDu1x+VYMIUKM4T0hQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixNj/A2t2CTg/fNxjAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -480,7 +502,7 @@ "metadata": { "id": "t7V7o6x8c_9S", "colab_type": "code", - "outputId": "2c179f67-979b-4da3-e36f-ecfd0da5e1a3", + "outputId": "28cfb813-c73e-425d-a90c-0fad2db9919a", "colab": { "base_uri": "https://localhost:8080/", "height": 295 @@ -505,13 +527,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZhcZZn+8e9NCIs0EBKgJywStuAg\nDEgaRHE0LS6oCIwsQ0QEZCaj/oZxGUdxRURGkAGEcUEGGeKIaRAFIgqomAZ0BExYjBiIrCJLYLKY\nNCqQ5Pn9cd6WSndV16lOnaqunPtzXX11nVNnuWvpp99665z3KCIwM7Py2KDdAczMrLVc+M3MSsaF\n38ysZFz4zcxKxoXfzKxkXPjNzErGhd/WmaR7JU1vd452kvR3kh6TNCDpFU3a5omSftaMZSVdL+mE\nasumzLuMsG7pX9/1jQu/jUjSI5LeMGTeWoUjIl4eEf11tjNFUkjasKCo7fYfwD9HRFdE3NXuMENF\nxFsiYlaN+7oi4iEASZdJ+vyQ++u+vtZZXPhtvTAG/qHsBNzb5gxmubjw2zqr/FQg6QBJ8yStkLRY\n0nlpsVvS7+Wpa+FVkjaQ9ClJj0p6WtI3JW1Zsd13p/uWSPr0kP18VtJVkr4laQVwYtr3LyQtl/Sk\npC9L2qhieyHp/ZJ+K2mlpDMk7Srpf1PeKyuXH/IYq2aVtLGkAWAccI+kB6usK0nnp/VWSFogaa90\n35ZpW8+kbX9K0rC/y2qfmCT1S/qHIbv6sqQ/SLpP0sEjLFu5UkjaTdJM4Djgo+k1+n6V13cDSadK\nejC9LldKmpju2yS9HkvSa/BLSd3V9mnt5cJvzXYBcEFEbAHsClyZ5r82/Z6QuhZ+AZyYfnqBXYAu\n4MsAkvYEvkpWiCYDWwLbD9nX4cBVwATgcmA18CFga+BVwMHA+4es82ZgGnAg8FHgYuBdwI7AXsCM\nGo+rataIeC4iutIy+0TErlXWfVN6/FPT4zgGWJLu+880bxfgdcC7gZNqZKjnlcCDZI//NOB7g0U5\nj4i4mOx5/GJ6jd5eZbFTgCNS1u2AZcBX0n0nkD2WHYFJwHuBP43uoViRXPgtj2tSC265pOVkBbmW\nF4DdJG0dEQMRcdsIyx4HnBcRD0XEAPBx4NjUqj0K+H5E/Cwingc+AwwdWOoXEXFNRKyJiD9FxPyI\nuC0iVkXEI8DXyQpUpS9GxIqIuBf4NfCjtP8/ANcDtb6YHSlrPS8AmwMvAxQRCyPiSUnjgGOBj0fE\nypT5XOD4HNus5mngSxHxQkRcAdwPvG2U26rlvcAnI+L3EfEc8FngqPQ8vEBW8HeLiNXp9VjR5P1b\nE7jwWx5HRMSEwR+Gt6IrnUzWsr0vfdQ/dIRltwMerZh+FNgQ6E73PTZ4R0T8kRdbyYMeq5yQNFXS\ndZKeSt0//07W+q20uOL2n6pMd1HdSFlHFBE/Jfsk8xXgaUkXS9oiZRtfZbtDP9nk9XisPerioyl3\nM+0EXF3RCFhI9kmrG/gf4EagT9ITkr4oaXyT929N4MJvTRURv42IGcC2wNnAVZI2Y3hrHeAJskIy\n6KXAKrJi/CSww+AdkjYla02utbsh018D7gN2T11NnwA0+keTO2tdEXFhREwD9iT7x/hvwP+RtZKH\nbvfxKpt4Nv1+ScW8vxqyzPaSKh/vS1PuRtQbrvcx4C2VDYGI2CQiHk+fNE6PiD2BVwOHknVd2Rjj\nwm9NJeldkraJiDXA8jR7DfBM+l15vPhs4EOSdpbURdZCvyIiVpH13b9d0qvTF66fpX4R3xxYAQxI\nehnwvmY9rjpZRyRpf0mvTK3fZ4E/A2siYjXZdyBnStpc0k7Ah4FvDd1GRDxD9g/hXZLGSXoP2Xco\nlbYF/kXSeElHA38N/LDBx7mYtV+joS5KeXdKj20bSYen272S9k5dWCvI/qmtaXD/1gIu/NZshwD3\npiNdLgCOTf3vfwTOBH6eugkOBC4l6x64BXiYrCCeApD64E8B+sha/wNkfdjPjbDvjwDvBFYC/wVc\n0cTHVTNrDlukPMvIul+WAOek+04h+2fwEPAz4NtpX9X8I9knhSXAy4H/HXL/7cDuZJ8kzgSOioih\n3WP1fAPYM71G11S5/wJgDvAjSSuB28i+VIbsE8hVZEV/IXAz2XNmY4x8IRbrBKmVvZysG+fhducx\n62Ru8duYJentkl6SviP4D2AB8Eh7U5l1Phd+G8sOJ/ty8gmyLoxjwx9RzdaZu3rMzErGLX4zs5Jp\n98BWuWy99dYxZcqUYfOfffZZNttss9YHWkfO3Vqdmhs6N7tzt1at3PPnz/+/iNhm2B0RMeZ/pk2b\nFtXMnTu36vyxzrlbq1NzR3RududurVq5gXlRpaa6q8fMrGRc+M3MSsaF38ysZFz4zcxKxoXfzKxk\nXPjNzErGhd/MrGRc+M3MSsaF38ysZDpiyAYzGzt6Z/VWnT/3hLktTmKj5Ra/mVnJuPCbmZWMC7+Z\nWcm48JuZlYwLv5lZyfioHjNrisqjfWZ0zeD0WacDPtpnLHKL38ysZFz4zcxKxoXfzKxkXPjNzErG\nhd/MrGRc+M3MSsaF38ysZFz4zcxKptATuCRNAC4B9gICeA9wP3AFMAV4BDgmIpYVmcPMGldr+GXr\nfEW3+C8AboiIlwH7AAuBU4GbImJ34KY0bWZmLVJY4Ze0JfBa4BsAEfF8RCwHDgdmpcVmAUcUlcHM\nzIYrssW/M/AM8N+S7pJ0iaTNgO6IeDIt8xTQXWAGMzMbQhFRzIalHuA24KCIuF3SBcAK4JSImFCx\n3LKI2KrK+jOBmQDd3d3T+vr6hu1jYGCArq6uQvIXyblbq1NzQ3uzL1qyaNTrThw3kaWrlwIwddLU\nZkUqXKe+V2rl7u3tnR8RPUPnF1n4/wq4LSKmpOm/JevP3w2YHhFPSpoM9EfEHiNtq6enJ+bNmzds\nfn9/P9OnT2929MI5d2t1am5ob/Z1+XJ3RtcMZg/MBjprdM5Ofa/Uyi2pauEvrKsnIp4CHpM0WNQP\nBn4DzAFOSPNOAK4tKoOZmQ1X9Hj8pwCXS9oIeAg4ieyfzZWSTgYeBY4pOIOZmVUotPBHxN3AsI8Z\nZK1/MzNrA5+5a2ZWMi78ZmYl48JvZlYyLvxmZiVT9FE9ZlaQRo+z76Tj6a1YbvGbmZWMC7+ZWcm4\n8JuZlYwLv5lZybjwm5mVjAu/mVnJuPCbmZWMC7+ZWcn4BC6zkqh1wpdP7Coft/jNzErGhd/MrGRc\n+M3MSsaF38ysZFz4zcxKpqHCL2kDSVsUFcbMzIpX93BOSd8G3gusBn4JbCHpgog4p+hwZla8Rsf1\nt86Xp8W/Z0SsAI4Argd2Bo4vNJWZmRUmT+EfL2k8WeGfExEvAFFsLDMzK0qewv914BFgM+AWSTsB\nK/JsXNIjkhZIulvSvDRvoqQfS/pt+r3VaMObmVnj6hb+iLgwIraPiLdG5lGgkU7B3ojYNyJ60vSp\nwE0RsTtwU5o2M7MWqfnlrqQP11n3vFHu83Bgero9C+gHPjbKbZmZWYMUUb27XtJp6eYewP7AnDT9\nduCOiHhX3Y1LDwPLyL4T+HpEXCxpeURMSPcLWDY4PWTdmcBMgO7u7ml9fX3Dtj8wMEBXV1e9GGOO\nc7dWp+aGkbMvWrKoxWnymzhuIktXLwVg6qSpbU6TX6e+V2rl7u3tnV/R2/IXNQv/XxaQbgHeFhEr\n0/TmwA8i4rX1wkjaPiIel7Qt8GPgFLIviCdULLMsIkbs5+/p6Yl58+YNm9/f38/06dPrxRhznLu1\nOjU3jJx9LB+GOaNrBrMHZgOdNfpnp75XauWWVLXw5/lytxt4vmL6+TSvroh4PP1+GrgaOABYLGly\nCjUZeDrPtszMrDnyjMf/TeAOSVen6SPI+uZHJGkzYIOIWJluvwn4HFmX0QnAWen3taMJbmadwdcB\nGHvqFv6IOFPSDcBr0qyTIuKuHNvuBq7OuvHZEPh2RNwg6ZfAlZJOBh4FjhlddDMzG428V+C6G3hy\ncHlJL42I3420QkQ8BOxTZf4S4OAGc5qZWZPkGavnFOA0YDHZeD0iO0rnb4qNZrb+afQL2RldM5j+\nl6Ofy2Gk58jdQ82Rp8X/AWCP1FI3M7MOl+eonseAPxQdxMzMWiNPi/8hoF/SD4DnBmdGxGjP3DUz\nszbKU/h/l342Sj9mZtbB8hzOeXorgpiZWWvkOapnLlXG34+I1xeSyMzMCpWnq+cjFbc3AY4EVhUT\nx8zMipanq2f+kFk/l3RHQXnMzKxgebp6JlZMbgBMA7YsLJGZmRUqT1fPfLI+fpF18TwMnFxkKDMz\nK06erp6dWxHEzMxaI09Xz3jgfcDghVf6ya6m9UKBuczMrCB5unq+BowHvpqmj0/z/qGoUGZmVpw8\nhX//iKgcXvmnku4pKpCZmRUrzyBtqyXtOjghaRey4ZnNzKwD5Wnx/xswV9JDZEf27AScVGgqsw43\nli+EbpbnqJ6bJO0O7JFm3R8Rz420jpmZjV15jurZBHg/2TV3A7hV0kUR8eeiw5mZWfPl6er5JrAS\n+M80/U7gf4CjiwplZi9yt5E1W57Cv1dE7FkxPVfSb4oKZGZmxcpzVM+dkg4cnJD0SmBecZHMzKxI\neQr/NOB/JT0i6RHgF8D+khZI+lW9lSWNk3SXpOvS9M6Sbpf0gKQrJPmqXmZmLZSnq+eQddzHB4CF\nwBZp+mzg/Ijok3QR2YBvX1vHfZiZWU51W/wR8Siwgmwo5kmDPxHxaLqvJkk7AG8DLknTAl4PXJUW\nmQUcMer0ZmbWMEUMu6ri2gtIZwAnAg/y4iUYI8+lFyVdBXwB2JzsSl4nArdFxG7p/h2B6yNiryrr\nzgRmAnR3d0/r6+sbtv2BgQG6urrqxRhznLu12pF70ZJFTdnOxHETWbp6aVO21Uqtzj110tSmbGd9\ne4/39vbOj4ieofPzdPUcA+waEc83EkTSocDTETFf0vRG1gWIiIuBiwF6enpi+vThm+jv76fa/LHO\nuVurHblPn3V6U7Yzo2sGswdmN2VbrdTq3HOPnNuU7ZTlPZ6n8P8amAA83WCWg4DDJL2V7Fq9WwAX\nABMkbRgRq4AdgMcb3K6Zma2DPEf1fAG4S9KNkuYM/tRbKSI+HhE7RMQU4FjgpxFxHDAXOCotdgJw\n7Sizm5nZKORp8c8iOxJnAbCmCfv8GNAn6fPAXcA3mrBNMzPLKU/h/2NEXLguO4mIfrIrdxERDwEH\nrMv2zMxs9PIU/lslfQGYA/xlVM6IuLOwVGZmVpg8hf8V6feBFfOC7Hh8MzPrMHnG4/fQgGZm65G6\nR/VI2lLSeZLmpZ9zJW3ZinBmZtZ8eQ7nvJRsPP5j0s8K4L+LDGVmZsXJ08e/a0QcWTF9uqS7iwpk\nZmbFytPi/5Ok1wxOSDoI+FNxkczMrEh5WvzvA2ZV9OsvIxtszczMOlCeo3ruBvaRtEWaXlF4KjMz\nK0yeo3r+XdKEiFgRESskbZWGWzAzsw6Up4//LRGxfHAiIpYBby0ukpmZFSlP4R8naePBCUmbAhuP\nsLyZmY1heb7cvRy4SdLgsfsnkY3YaWZmHSjPl7tnS7oHeEOadUZE3FhsLDOz/HpnVR9ZZu4Jzbky\n1/omT4ufiLgBuKHgLGZm1gJ5+vjNzGw94sJvZlYyNQu/pJvS77NbF8fMzIo2Uh//ZEmvBg6T1Aeo\n8k5fgcvMrDONVPg/A3wa2AE4b8h9vgKXmVmHqln4I+Iq4CpJn46IM1qYyczMCpTnOP4zJB0GvDbN\n6o+I64qNZWZmRckzSNsXgA8Av0k/H5D070UHMzOzYuQ5gettwL4RsQZA0izgLuATI60kaRPgFrJx\nfTYEroqI0yTtDPQBk4D5wPER8fzoH4KZmTUi73H8Eypu573Q+nPA6yNiH2Bf4BBJBwJnA+dHxG5k\nF3U5OW9YMzNbd3kK/xeAuyRdllr784Ez660UmYE0OT79DB4NdFWaPws4ouHUZmY2aoqI+gtJk4H9\n0+QdEfFUro1L48j+UewGfAU4B7gttfaRtCNwfUTsVWXdmcBMgO7u7ml9fX3Dtj8wMEBXV1eeKGOK\nc7dWM3IvWrKo6vypk6Y2tHyjJo6byNLVS5uyrVYaK7lrvT61rG/v8d7e3vkR0TN0fq7Cv64kTQCu\nJjsv4LI8hb9ST09PzJs3b9j8/v5+pk+f3vzABXPu1mpG7kZHf6y1fKNmdM1g9sDspmyrlcZK7kZH\n51zf3uOSqhb+lozVk67gNRd4FTBB0uCXyjsAj7cig5mZZXINyzwakrYBXoiI5emqXW8k+2J3LnAU\n2ZE9JwDXFpXBrGjNatmbtdKILX5J4yTdN8ptTwbmSvoV8Evgx+nEr48BH5b0ANkhnd8Y5fbNzGwU\nRmzxR8RqSfdLemlE/K6RDUfEr4BXVJn/EHBAYzHNzKxZ8nT1bAXcK+kO4NnBmRFxWGGpzMysMHkK\n/6cLT2FmZi2TZ5C2myXtBOweET+R9BJgXPHRzMysCHULv6R/JDuRaiKwK7A9cBFwcLHRzMzWTaPn\nX5RFnuP4/x9wELACICJ+C2xbZCgzMytOnsL/XOXomenkq+JP9zUzs0LkKfw3S/oEsKmkNwLfAb5f\nbCwzMytKnsJ/KvAMsAD4J+CHwKeKDGVmZsXJc1TPmjQc8+1kXTz3RytGdjMzs0LkOarnbWRH8TwI\nCNhZ0j9FxPVFhzMzs+bLcwLXuUBvRDwAIGlX4AeAC7+ZWQfK08e/crDoJw8BKwvKY2ZmBavZ4pf0\njnRznqQfAleS9fEfTTbappmZdaCRunreXnF7MfC6dPsZYNPCEpmZWaFqFv6IOKmVQczMrDXyHNWz\nM3AKMKVyeQ/LbGbWmfIc1XMN2VWyvg+sKTaOmdnYs74N9pan8P85Ii4sPImZmbVEnsJ/gaTTgB8B\nzw3OjIg7C0tlZmaFyVP49waOB17Pi109kabNzKzD5Cn8RwO7VA7NbGZmnSvPmbu/BiYUHcTMzFoj\nT4t/AnCfpF+ydh//iIdzStoR+CbQTdY1dHFEXCBpInAF2eGhjwDHRMSyUaU3MxuFWkfpnLbTaS1O\n0h55Cv9on4lVwL9GxJ2SNgfmS/oxcCJwU0ScJelUsvH+PzbKfZiZWYPyjMd/82g2HBFPAk+m2ysl\nLSS7UPvhwPS02CygHxd+M7OWUb1rqkhayYvX2N0IGA88GxFb5N6JNAW4BdgL+F1ETEjzBSwbnB6y\nzkxgJkB3d/e0vr6+YdsdGBigq6srb4wxw7lbqxm5Fy1Z1KQ0jZk4biJLVy9ty77XRafm3m7j7aq+\nV2q9/lMnTS06Ui613uO9vb3zI6Jn6Py6hX+thbNCfThwYEScmnOdLuBm4MyI+J6k5ZWFXtKyiNhq\npG309PTEvHnzhs3v7+9n+vTpufOPFc7dWs3IXatPuGgzumYwe2B2W/a9Ljo192k7nVb1vTLWz9yt\n9R6XVLXw5zmq5y8icw3w5jzLSxoPfBe4PCK+l2YvljQ53T8ZeLqRDGZmtm7yDNL2jorJDYAe4M85\n1hPZGD8LI+K8irvmACcAZ6Xf1zYS2KxI7WrZm7VSnqN6KsflX0V2CObhOdY7iOyM3wWS7k7zPkFW\n8K+UdDLwKHBM7rRmZrbO8hzVM6px+SPiZ2QXZ6/m4NFs08zM1t1Il178zAjrRUScUUAeMzMr2Egt\n/merzNsMOBmYBLjwm5l1oJEuvXju4O105u0HgJOAPuDcWuuZmdnYNmIffxpX58PAcWRn2e7ncXXM\nzDrbSH385wDvAC4G9o6IgZalMjOzwox0Ate/AtsBnwKekLQi/ayUtKI18czMrNlG6uNv6KxeMzPr\nDHlO4DLrWL2zepnRNYPTZ52+1vyxMsaKWTu4VW9mVjIu/GZmJeOuHlsvNDq4mgdjszJzi9/MrGRc\n+M3MSsZdPdZR3EVjRVq0ZNGwI8DWR27xm5mVjAu/mVnJuKvHzGyUxvpF2Gtxi9/MrGRc+M3MSsZd\nPVa4kY7EGesfic3WR27xm5mVjAu/mVnJFNbVI+lS4FDg6YjYK82bCFwBTAEeAY7xpRzHrqFdNIPD\nGzeze6ZTj4ow62RFtvgvAw4ZMu9U4KaI2B24KU2bmVkLFVb4I+IWYOmQ2YeTXbSd9PuIovZvZmbV\nKSKK27g0BbiuoqtneURMSLcFLBucrrLuTGAmQHd397S+vr5hywwMDNDV1VVM+AJ1Su5FSxatNT1x\n3ESWrl7K1ElT12k7edTax2i2NZi7E3Vq9rLnbvRvZF3Vqim9vb3zI6Jn6Py2Ff40vSwitqq3nZ6e\nnpg3b96w+f39/UyfPr1peVulU3JX6+OfPTC74f730QysVmsfo9nWYO5O1KnZy5671d9R1aopkqoW\n/lYf1bNY0uQUaDLwdIv3b2ZWeq0u/HOAE9LtE4BrW7x/M7PSK6zwS5oN/ALYQ9LvJZ0MnAW8UdJv\ngTekaTMza6HCjuOPiBk17jq4qH2amVl9PnPXzKxkPEibmVmLjJUz1d3iNzMrGRd+M7OScVePNWys\nfFw1G6tGc6JhK7nFb2ZWMi78ZmYl466eEhnrHz8rdVJWs07jFr+ZWcm48JuZlYwLv5lZybjwm5mV\njAu/mVnJ+KgeaxofiWPWGdziNzMrGRd+M7OScVdPB3PXitn6odXjX7nFb2ZWMi78ZmYl48JvZlYy\nLvxmZiXjwm9mVjIu/GZmJdOWwzklHQJcAIwDLomIs4ra1/pwmUAftmlmzdTyFr+kccBXgLcAewIz\nJO3Z6hxmZmXVjq6eA4AHIuKhiHge6AMOb0MOM7NSUkS0dofSUcAhEfEPafp44JUR8c9DlpsJzEyT\newD3V9nc1sD/FRi3KM7dWp2aGzo3u3O3Vq3cO0XENkNnjtkhGyLiYuDikZaRNC8ieloUqWmcu7U6\nNTd0bnbnbq1Gc7ejq+dxYMeK6R3SPDMza4F2FP5fArtL2lnSRsCxwJw25DAzK6WWd/VExCpJ/wzc\nSHY456URce8oNzdiV9AY5tyt1am5oXOzO3drNZS75V/umplZe/nMXTOzknHhNzMrmY4r/JKOlnSv\npDWSeirmv1HSfEkL0u/XtzNnNbWyp/s+LukBSfdLenO7MtYjaV9Jt0m6W9I8SQe0O1Nekk6RdF96\nDb7Y7jyNkPSvkkLS1u3Okoekc9Jz/StJV0ua0O5MI5F0SPrbe0DSqe3Ok5ekHSXNlfSb9L7+QK4V\nI6KjfoC/Jjuhqx/oqZj/CmC7dHsv4PF2Z20g+57APcDGwM7Ag8C4duet8Rh+BLwl3X4r0N/uTDlz\n9wI/ATZO09u2O1MD2XckOxjiUWDrdufJmflNwIbp9tnA2e3ONELWcelvbhdgo/S3uGe7c+XMPhnY\nL93eHFiUJ3vHtfgjYmFEDDuLNyLuiogn0uS9wKaSNm5tupHVyk42ZEVfRDwXEQ8DD5ANbTEWBbBF\nur0l8MQIy44l7wPOiojnACLi6TbnacT5wEfJnvuOEBE/iohVafI2svN1xqqOHUYmIp6MiDvT7ZXA\nQmD7eut1XOHP6UjgzsE/8g6wPfBYxfTvyfHitckHgXMkPQb8B/DxNufJayrwt5Jul3SzpP3bHSgP\nSYeTfXq9p91Z1sF7gOvbHWIEnfT3V5OkKWQ9H7fXW3ZMDtkg6SfAX1W565MRcW2ddV9O9tHyTUVk\nq2ddso8VIz0G4GDgQxHxXUnHAN8A3tDKfLXUyb0hMBE4ENgfuFLSLpE+I7dTndyfoE3v5XryvNcl\nfRJYBVzeymxlI6kL+C7wwYhYUW/5MVn4I2JUhUTSDsDVwLsj4sHmpspnlNnH1DAWIz0GSd8EBr9A\n+g5wSUtC5VAn9/uA76VCf4ekNWQDWz3Tqny11MotaW+y73zukQTZ++JOSQdExFMtjFhVvfe6pBOB\nQ4GDx8I/2BGMqb+/RkkaT1b0L4+I7+VZZ73p6klHDfwAODUift7uPA2aAxwraWNJOwO7A3e0OVMt\nTwCvS7dfD/y2jVkacQ3ZF7xImkr2Jd6YHoUxIhZExLYRMSUippB1Qew3Fop+PeliSx8FDouIP7Y7\nTx0dO4yMshbBN4CFEXFe7vXG9j/i4ST9HfCfwDbAcuDuiHizpE+R9TdXFqI3jaUv8WplT/d9kqwv\ndBXZx7Ux2Scq6TVkV0/bEPgz8P6ImN/eVPWlP+hLgX2B54GPRMRP25uqMZIeITsabEz/wwKQ9ADZ\nUWpL0qzbIuK9bYw0IklvBb7Ei8PInNnmSLmkv8dbgQXAmjT7ExHxwxHX67TCb2Zm62a96eoxM7N8\nXPjNzErGhd/MrGRc+M3MSsaF38ysZFz413NpRMdvVUxvKOkZSde1M1c9kgYamV80SY/UGxlTUv/Q\nUVfT/MMGR3yU9FlJH0m3PyfpDen2ByW9pMFMP2zlqJc5n4NjJX1S0omSvpzmvVfSu9PtEyVt14q8\nVpsL//rvWWAvSZum6TfSprMSJY3JM8WLFhFzIuKsKvM/ExE/SZMfBBoq/BHx1ohY3oyMTfQW4IbK\nGRFxUUR8M02eCDRU+Mv6vimSC385/BB4W7o9A5g9eIekzSRdKukOSXelQcGQNEXSrZLuTD+vTvMn\nS7oljcf/a0l/m+YPVGzzKEmXpduXSbpI0u3AFyXtKukGZddMuFXSy9JyO0v6hbLrKXy+3gNS5pyU\nYYGkv0/zN5D0VWVjwf84tYqPqrJ+rccxI23v15LOrrLeFEm/rpj+iKTPVixyfMU2D0jL/KX1O2Rb\nl6Xn6l/IiuFcZWOrv0fSlyqW+0dJ51dZ/xFJW6dMCyX9l7Ix2X9U8Y9+6P6+pux6Cg9Jmp5e+4WD\nr1fO52AzST+QdE9aZvC5F9kJcncOWf6z6Xk6CugBLk/P0aaSpikbNG++pBslTU7r9Ev6kqR5vDhE\niDWJC3859JENCbEJ8DesPXrfJ4GfRsQBZEManCNpM+Bp4I0RsR/w98CFafl3AjdGxL7APsDdOfa/\nA/DqiPgw2UWhT4mIacBHgK+mZS4AvhYRewNP5tjmO8iKzD5kg8Sdk4rGO4ApZNc4OB54VY31hz2O\n1AVxNtlQFPsC+0s6IkeWSi9J23w/2ZnCdUXEhWRDYfRGRC9wJfB2ZWOwAJyUY1u7A1+JiJeTnRV+\nZI3ltiJ7Tj5ENizB+cDLgR90MwMAAAPLSURBVL2VXWQnz3NwCPBEROwTEXvxYgv/FcA9tcbliYir\ngHnAcek5WkV2JvtR6f1wKVB5xuxGEdETEefWeezWIH+EKoGI+JWyIVtnkLX+K70JOEyp3xnYBHgp\nWSH6sqR9gdVkwxpDNq7JpakoXRMReQr/dyJitbIRBF8NfCdrHALZaf0AB/FisfofsuIzktcAsyNi\nNbBY0s1ko26+Ju1vDfCUpLk11h/2OJRdta0/Ip4BkHQ58FqycX7ymg0QEbdI2kKj6IOPiAFJPwUO\nlbQQGB8RC+qs9nDFazGf7J9fNd+PiJC0AFg8uF1J96Z1dqL+c7AAODd9GrguIm5N8w+hseGX9yC7\naNKP0/thHGv/07+igW1ZA1z4y2MO2fj504FJFfMFHDn0AjGp+2IxWWt4A7JxeQYL2mvJuo4uk3Re\n6r+tbOVtMmTfz6bfGwDLU2uvmsLGD5H0SuDrafIzETFn6OMA/pBjU6tY+5Py0Mc69DGM9jFdQjYk\n833Af+dYvvLaE6uBYV09Q5ZbM2SdNWT14IV6O4qIRZL2I7sC2+cl3RQRnyNrRNT6pFGNgHsjotan\nsmdrzLd15K6e8rgUOL1Ky/FG4JTUP4ukV6T5WwJPppbz8WStMSTtRNZS/C+y4rRfWn6xpL+WtAHw\nd9UCpHHCH5Z0dNqWJO2T7v452aiIAMfleDy3An8vaZykbchapXek7RyZ+vq7yf7RERG3R8S+6WdO\njcdxB/C61G8+juwT0s1D9rsY2FbSJGVXeDt0yP2D/d2vAf4QEXn+mQCsJLt0HoN5yYYKficV38m0\nQN3nIHUH/TEivgWcA+wnaUuySy0uGbbFtVU+zvuBbSS9Km13vLLraVjB3OIviYj4PS/201c6g2xU\nwl+lov0wWTH7KvBdZYfh3cCLra/pwL9JegEYAN6d5p8KXEc2vv08oKtGlOOArykbTXU82fcP95B9\ngfdtSR8D8lyw5mqyvup7yFrVH42IpyR9l+xiMb8hu6rSnVRvyQ97HBHxpLLDLueStUZ/MPTiORHx\ngqTPkRXIx8la5JX+LOmu9Njek+NxDLoYuEHSE6mfH7K+/n0jYlkD21kneZ4DYG+y71TWkH1CeB/Z\n0WI/ob7LgIsk/Yns9TsKuHDwHwfZe/HeZjwWq82jc9p6R1JX6iefRFagD+qEMeyHUnauxfkRcVO7\ns9Qj6RLgkoi4rd1ZrD4XflvvSOoHJpBdbOWLEXFZWwM1KH0hfAfZETJHtzuPrX9c+M3MSsZf7pqZ\nlYwLv5lZybjwm5mVjAu/mVnJuPCbmZXM/wdzvtKk9S6t2gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZhcZZn+8e9NCIs0EBKgJywStuAgDEgaRHE0LS6oCIwsQ0QEZCaj/oZxGUdxRURGkAGEcUEGGeKIaRAFIgqomAZ0BExYjBiIrCJLYLKYNCqQ5Pn9cd6WSndV16lOnaqunPtzXX11nVNnuWvpp99665z3KCIwM7Py2KDdAczMrLVc+M3MSsaF38ysZFz4zcxKxoXfzKxkXPjNzErGhd/WmaR7JU1vd452kvR3kh6TNCDpFU3a5omSftaMZSVdL+mEasumzLuMsG7pX9/1jQu/jUjSI5LeMGTeWoUjIl4eEf11tjNFUkjasKCo7fYfwD9HRFdE3NXuMENFxFsiYlaN+7oi4iEASZdJ+vyQ++u+vtZZXPhtvTAG/qHsBNzb5gxmubjw2zqr/FQg6QBJ8yStkLRY0nlpsVvS7+Wpa+FVkjaQ9ClJj0p6WtI3JW1Zsd13p/uWSPr0kP18VtJVkr4laQVwYtr3LyQtl/SkpC9L2qhieyHp/ZJ+K2mlpDMk7Srpf1PeKyuXH/IYq2aVtLGkAWAccI+kB6usK0nnp/VWSFogaa9035ZpW8+kbX9K0rC/y2qfmCT1S/qHIbv6sqQ/SLpP0sEjLFu5UkjaTdJM4Djgo+k1+n6V13cDSadKejC9LldKmpju2yS9HkvSa/BLSd3V9mnt5cJvzXYBcEFEbAHsClyZ5r82/Z6QuhZ+AZyYfnqBXYAu4MsAkvYEvkpWiCYDWwLbD9nX4cBVwATgcmA18CFga+BVwMHA+4es82ZgGnAg8FHgYuBdwI7AXsCMGo+rataIeC4iutIy+0TErlXWfVN6/FPT4zgGWJLu+880bxfgdcC7gZNqZKjnlcCDZI//NOB7g0U5j4i4mOx5/GJ6jd5eZbFTgCNS1u2AZcBX0n0nkD2WHYFJwHuBP43uoViRXPgtj2tSC265pOVkBbmWF4DdJG0dEQMRcdsIyx4HnBcRD0XEAPBx4NjUqj0K+H5E/Cwingc+AwwdWOoXEXFNRKyJiD9FxPyIuC0iVkXEI8DXyQpUpS9GxIqIuBf4NfCjtP8/ANcDtb6YHSlrPS8AmwMvAxQRCyPiSUnjgGOBj0fEypT5XOD4HNus5mngSxHxQkRcAdwPvG2U26rlvcAnI+L3EfEc8FngqPQ8vEBW8HeLiNXp9VjR5P1bE7jwWx5HRMSEwR+Gt6IrnUzWsr0vfdQ/dIRltwMerZh+FNgQ6E73PTZ4R0T8kRdbyYMeq5yQNFXSdZKeSt0//07W+q20uOL2n6pMd1HdSFlHFBE/Jfsk8xXgaUkXS9oiZRtfZbtDP9nk9XisPerioyl3M+0EXF3RCFhI9kmrG/gf4EagT9ITkr4oaXyT929N4MJvTRURv42IGcC2wNnAVZI2Y3hrHeAJskIy6KXAKrJi/CSww+AdkjYla02utbsh018D7gN2T11NnwA0+keTO2tdEXFhREwD9iT7x/hvwP+RtZKHbvfxKpt4Nv1+ScW8vxqyzPaSKh/vS1PuRtQbrvcx4C2VDYGI2CQiHk+fNE6PiD2BVwOHknVd2Rjjwm9NJeldkraJiDXA8jR7DfBM+l15vPhs4EOSdpbURdZCvyIiVpH13b9d0qvTF66fpX4R3xxYAQxIehnwvmY9rjpZRyRpf0mvTK3fZ4E/A2siYjXZdyBnStpc0k7Ah4FvDd1GRDxD9g/hXZLGSXoP2XcolbYF/kXSeElHA38N/LDBx7mYtV+joS5KeXdKj20bSYen272S9k5dWCvI/qmtaXD/1gIu/NZshwD3piNdLgCOTf3vfwTOBH6eugkOBC4l6x64BXiYrCCeApD64E8B+sha/wNkfdjPjbDvjwDvBFYC/wVc0cTHVTNrDlukPMvIul+WAOek+04h+2fwEPAz4NtpX9X8I9knhSXAy4H/HXL/7cDuZJ8kzgSOioih3WP1fAPYM71G11S5/wJgDvAjSSuB28i+VIbsE8hVZEV/IXAz2XNmY4x8IRbrBKmVvZysG+fhducx62Ru8duYJentkl6SviP4D2AB8Eh7U5l1Phd+G8sOJ/ty8gmyLoxjwx9RzdaZu3rMzErGLX4zs5Jp98BWuWy99dYxZcqUYfOfffZZNttss9YHWkfO3Vqdmhs6N7tzt1at3PPnz/+/iNhm2B0RMeZ/pk2bFtXMnTu36vyxzrlbq1NzR3RududurVq5gXlRpaa6q8fMrGRc+M3MSsaF38ysZFz4zcxKxoXfzKxkXPjNzErGhd/MrGRc+M3MSsaF38ysZDpiyAYzGzt6Z/VWnT/3hLktTmKj5Ra/mVnJuPCbmZWMC7+ZWcm48JuZlYwLv5lZyfioHjNrisqjfWZ0zeD0WacDPtpnLHKL38ysZFz4zcxKxoXfzKxkXPjNzErGhd/MrGRc+M3MSsaF38ysZFz4zcxKptATuCRNAC4B9gICeA9wP3AFMAV4BDgmIpYVmcPMGldr+GXrfEW3+C8AboiIlwH7AAuBU4GbImJ34KY0bWZmLVJY4Ze0JfBa4BsAEfF8RCwHDgdmpcVmAUcUlcHMzIYrssW/M/AM8N+S7pJ0iaTNgO6IeDIt8xTQXWAGMzMbQhFRzIalHuA24KCIuF3SBcAK4JSImFCx3LKI2KrK+jOBmQDd3d3T+vr6hu1jYGCArq6uQvIXyblbq1NzQ3uzL1qyaNTrThw3kaWrlwIwddLUZkUqXKe+V2rl7u3tnR8RPUPnF1n4/wq4LSKmpOm/JevP3w2YHhFPSpoM9EfEHiNtq6enJ+bNmzdsfn9/P9OnT2929MI5d2t1am5ob/Z1+XJ3RtcMZg/MBjprdM5Ofa/Uyi2pauEvrKsnIp4CHpM0WNQPBn4DzAFOSPNOAK4tKoOZmQ1X9Hj8pwCXS9oIeAg4ieyfzZWSTgYeBY4pOIOZmVUotPBHxN3AsI8ZZK1/MzNrA5+5a2ZWMi78ZmYl48JvZlYyLvxmZiVT9FE9ZlaQRo+z76Tj6a1YbvGbmZWMC7+ZWcm48JuZlYwLv5lZybjwm5mVjAu/mVnJuPCbmZWMC7+ZWcn4BC6zkqh1wpdP7Coft/jNzErGhd/MrGRc+M3MSsaF38ysZFz4zcxKpqHCL2kDSVsUFcbMzIpX93BOSd8G3gusBn4JbCHpgog4p+hwZla8Rsf1t86Xp8W/Z0SsAI4Argd2Bo4vNJWZmRUmT+EfL2k8WeGfExEvAFFsLDMzK0qewv914BFgM+AWSTsBK/JsXNIjkhZIulvSvDRvoqQfS/pt+r3VaMObmVnj6hb+iLgwIraPiLdG5lGgkU7B3ojYNyJ60vSpwE0RsTtwU5o2M7MWqfnlrqQP11n3vFHu83Bgero9C+gHPjbKbZmZWYMUUb27XtJp6eYewP7AnDT9duCOiHhX3Y1LDwPLyL4T+HpEXCxpeURMSPcLWDY4PWTdmcBMgO7u7ml9fX3Dtj8wMEBXV1e9GGOOc7dWp+aGkbMvWrKoxWnymzhuIktXLwVg6qSpbU6TX6e+V2rl7u3tnV/R2/IXNQv/XxaQbgHeFhEr0/TmwA8i4rX1wkjaPiIel7Qt8GPgFLIviCdULLMsIkbs5+/p6Yl58+YNm9/f38/06dPrxRhznLu1OjU3jJx9LB+GOaNrBrMHZgOdNfpnp75XauWWVLXw5/lytxt4vmL6+TSvroh4PP1+GrgaOABYLGlyCjUZeDrPtszMrDnyjMf/TeAOSVen6SPI+uZHJGkzYIOIWJluvwn4HFmX0QnAWen3taMJbmadwdcBGHvqFv6IOFPSDcBr0qyTIuKuHNvuBq7OuvHZEPh2RNwg6ZfAlZJOBh4FjhlddDMzG428V+C6G3hycHlJL42I3420QkQ8BOxTZf4S4OAGc5qZWZPkGavnFOA0YDHZeD0iO0rnb4qNZrb+afQL2RldM5j+l6Ofy2Gk58jdQ82Rp8X/AWCP1FI3M7MOl+eonseAPxQdxMzMWiNPi/8hoF/SD4DnBmdGxGjP3DUzszbKU/h/l342Sj9mZtbB8hzOeXorgpiZWWvkOapnLlXG34+I1xeSyMzMCpWnq+cjFbc3AY4EVhUTx8zMipanq2f+kFk/l3RHQXnMzKxgebp6JlZMbgBMA7YsLJGZmRUqT1fPfLI+fpF18TwMnFxkKDMzK06erp6dWxHEzMxaI09Xz3jgfcDghVf6ya6m9UKBuczMrCB5unq+BowHvpqmj0/z/qGoUGZmVpw8hX//iKgcXvmnku4pKpCZmRUrzyBtqyXtOjghaRey4ZnNzKwD5Wnx/xswV9JDZEf27AScVGgqsw43li+EbpbnqJ6bJO0O7JFm3R8Rz420jpmZjV15jurZBHg/2TV3A7hV0kUR8eeiw5mZWfPl6er5JrAS+M80/U7gf4CjiwplZi9yt5E1W57Cv1dE7FkxPVfSb4oKZGZmxcpzVM+dkg4cnJD0SmBecZHMzKxIeQr/NOB/JT0i6RHgF8D+khZI+lW9lSWNk3SXpOvS9M6Sbpf0gKQrJPmqXmZmLZSnq+eQddzHB4CFwBZp+mzg/Ijok3QR2YBvX1vHfZiZWU51W/wR8Siwgmwo5kmDPxHxaLqvJkk7AG8DLknTAl4PXJUWmQUcMer0ZmbWMEUMu6ri2gtIZwAnAg/y4iUYI8+lFyVdBXwB2JzsSl4nArdFxG7p/h2B6yNiryrrzgRmAnR3d0/r6+sbtv2BgQG6urrqxRhznLu12pF70ZJFTdnOxHETWbp6aVO21Uqtzj110tSmbGd9e4/39vbOj4ieofPzdPUcA+waEc83EkTSocDTETFf0vRG1gWIiIuBiwF6enpi+vThm+jv76fa/LHOuVurHblPn3V6U7Yzo2sGswdmN2VbrdTq3HOPnNuU7ZTlPZ6n8P8amAA83WCWg4DDJL2V7Fq9WwAXABMkbRgRq4AdgMcb3K6Zma2DPEf1fAG4S9KNkuYM/tRbKSI+HhE7RMQU4FjgpxFxHDAXOCotdgJw7Sizm5nZKORp8c8iOxJnAbCmCfv8GNAn6fPAXcA3mrBNMzPLKU/h/2NEXLguO4mIfrIrdxERDwEHrMv2zMxs9PIU/lslfQGYA/xlVM6IuLOwVGZmVpg8hf8V6feBFfOC7Hh8MzPrMHnG4/fQgGZm65G6R/VI2lLSeZLmpZ9zJW3ZinBmZtZ8eQ7nvJRsPP5j0s8K4L+LDGVmZsXJ08e/a0QcWTF9uqS7iwpkZmbFytPi/5Ok1wxOSDoI+FNxkczMrEh5WvzvA2ZV9OsvIxtszczMOlCeo3ruBvaRtEWaXlF4KjMzK0yeo3r+XdKEiFgRESskbZWGWzAzsw6Up4//LRGxfHAiIpYBby0ukpmZFSlP4R8naePBCUmbAhuPsLyZmY1heb7cvRy4SdLgsfsnkY3YaWZmHSjPl7tnS7oHeEOadUZE3FhsLDOz/HpnVR9ZZu4Jzbky1/omT4ufiLgBuKHgLGZm1gJ5+vjNzGw94sJvZlYyNQu/pJvS77NbF8fMzIo2Uh//ZEmvBg6T1Aeo8k5fgcvMrDONVPg/A3wa2AE4b8h9vgKXmVmHqln4I+Iq4CpJn46IM1qYyczMCpTnOP4zJB0GvDbN6o+I64qNZWZmRckzSNsXgA8Av0k/H5D070UHMzOzYuQ5gettwL4RsQZA0izgLuATI60kaRPgFrJxfTYEroqI0yTtDPQBk4D5wPER8fzoH4KZmTUi73H8Eypu573Q+nPA6yNiH2Bf4BBJBwJnA+dHxG5kF3U5OW9YMzNbd3kK/xeAuyRdllr784Ez660UmYE0OT79DB4NdFWaPws4ouHUZmY2aoqI+gtJk4H90+QdEfFUro1L48j+UewGfAU4B7gttfaRtCNwfUTsVWXdmcBMgO7u7ml9fX3Dtj8wMEBXV1eeKGOKc7dWM3IvWrKo6vypk6Y2tHyjJo6byNLVS5uyrVYaK7lrvT61rG/v8d7e3vkR0TN0fq7Cv64kTQCuJjsv4LI8hb9ST09PzJs3b9j8/v5+pk+f3vzABXPu1mpG7kZHf6y1fKNmdM1g9sDspmyrlcZK7kZH51zf3uOSqhb+lozVk67gNRd4FTBB0uCXyjsAj7cig5mZZXINyzwakrYBXoiI5emqXW8k+2J3LnAU2ZE9JwDXFpXBrGjNatmbtdKILX5J4yTdN8ptTwbmSvoV8Evgx+nEr48BH5b0ANkhnd8Y5fbNzGwURmzxR8RqSfdLemlE/K6RDUfEr4BXVJn/EHBAYzHNzKxZ8nT1bAXcK+kO4NnBmRFxWGGpzMysMHkK/6cLT2FmZi2TZ5C2myXtBOweET+R9BJgXPHRzMysCHULv6R/JDuRaiKwK7A9cBFwcLHRzMzWTaPnX5RFnuP4/x9wELACICJ+C2xbZCgzMytOnsL/XOXomenkq+JP9zUzs0LkKfw3S/oEsKmkNwLfAb5fbCwzMytKnsJ/KvAMsAD4J+CHwKeKDGVmZsXJc1TPmjQc8+1kXTz3RytGdjMzs0LkOarnbWRH8TwICNhZ0j9FxPVFhzMzs+bLcwLXuUBvRDwAIGlX4AeAC7+ZWQfK08e/crDoJw8BKwvKY2ZmBavZ4pf0jnRznqQfAleS9fEfTTbappmZdaCRunreXnF7MfC6dPsZYNPCEpmZWaFqFv6IOKmVQczMrDXyHNWzM3AKMKVyeQ/LbGbWmfIc1XMN2VWyvg+sKTaOmdnYs74N9pan8P85Ii4sPImZmbVEnsJ/gaTTgB8Bzw3OjIg7C0tlZmaFyVP49waOB17Pi109kabNzKzD5Cn8RwO7VA7NbGZmnSvPmbu/BiYUHcTMzFojT4t/AnCfpF+ydh//iIdzStoR+CbQTdY1dHFEXCBpInAF2eGhjwDHRMSyUaU3MxuFWkfpnLbTaS1O0h55Cv9on4lVwL9GxJ2SNgfmS/oxcCJwU0ScJelUsvH+PzbKfZiZWYPyjMd/82g2HBFPAk+m2yslLSS7UPvhwPS02CygHxd+M7OWUb1rqkhayYvX2N0IGA88GxFb5N6JNAW4BdgL+F1ETEjzBSwbnB6yzkxgJkB3d/e0vr6+YdsdGBigq6srb4wxw7lbqxm5Fy1Z1KQ0jZk4biJLVy9ty77XRafm3m7j7aq+V2q9/lMnTS06Ui613uO9vb3zI6Jn6Py6hX+thbNCfThwYEScmnOdLuBm4MyI+J6k5ZWFXtKyiNhqpG309PTEvHnzhs3v7+9n+vTpufOPFc7dWs3IXatPuGgzumYwe2B2W/a9Ljo192k7nVb1vTLWz9yt9R6XVLXw5zmq5y8icw3w5jzLSxoPfBe4PCK+l2YvljQ53T8ZeLqRDGZmtm7yDNL2jorJDYAe4M851hPZGD8LI+K8irvmACcAZ6Xf1zYS2KxI7WrZm7VSnqN6KsflX0V2CObhOdY7iOyM3wWS7k7zPkFW8K+UdDLwKHBM7rRmZrbO8hzVM6px+SPiZ2QXZ6/m4NFs08zM1t1Il178zAjrRUScUUAeMzMr2Egt/merzNsMOBmYBLjwm5l1oJEuvXju4O105u0HgJOAPuDcWuuZmdnYNmIffxpX58PAcWRn2e7ncXXMzDrbSH385wDvAC4G9o6IgZalMjOzwox0Ate/AtsBnwKekLQi/ayUtKI18czMrNlG6uNv6KxeMzPrDHlO4DLrWL2zepnRNYPTZ52+1vyxMsaKWTu4VW9mVjIu/GZmJeOuHlsvNDq4mgdjszJzi9/MrGRc+M3MSsZdPdZR3EVjRVq0ZNGwI8DWR27xm5mVjAu/mVnJuKvHzGyUxvpF2Gtxi9/MrGRc+M3MSsZdPVa4kY7EGesfic3WR27xm5mVjAu/mVnJFNbVI+lS4FDg6YjYK82bCFwBTAEeAY7xpRzHrqFdNIPDGzeze6ZTj4ow62RFtvgvAw4ZMu9U4KaI2B24KU2bmVkLFVb4I+IWYOmQ2YeTXbSd9PuIovZvZmbVKSKK27g0BbiuoqtneURMSLcFLBucrrLuTGAmQHd397S+vr5hywwMDNDV1VVM+AJ1Su5FSxatNT1x3ESWrl7K1ElT12k7edTax2i2NZi7E3Vq9rLnbvRvZF3Vqim9vb3zI6Jn6Py2Ff40vSwitqq3nZ6enpg3b96w+f39/UyfPr1peVulU3JX6+OfPTC74f730QysVmsfo9nWYO5O1KnZy5671d9R1aopkqoW/lYf1bNY0uQUaDLwdIv3b2ZWeq0u/HOAE9LtE4BrW7x/M7PSK6zwS5oN/ALYQ9LvJZ0MnAW8UdJvgTekaTMza6HCjuOPiBk17jq4qH2amVl9PnPXzKxkPEibmVmLjJUz1d3iNzMrGRd+M7OScVePNWysfFw1G6tGc6JhK7nFb2ZWMi78ZmYl466eEhnrHz8rdVJWs07jFr+ZWcm48JuZlYwLv5lZybjwm5mVjAu/mVnJ+KgeaxofiWPWGdziNzMrGRd+M7OScVdPB3PXitn6odXjX7nFb2ZWMi78ZmYl48JvZlYyLvxmZiXjwm9mVjIu/GZmJdOWwzklHQJcAIwDLomIs4ra1/pwmUAftmlmzdTyFr+kccBXgLcAewIzJO3Z6hxmZmXVjq6eA4AHIuKhiHge6AMOb0MOM7NSUkS0dofSUcAhEfEPafp44JUR8c9DlpsJzEyTewD3V9nc1sD/FRi3KM7dWp2aGzo3u3O3Vq3cO0XENkNnjtkhGyLiYuDikZaRNC8ieloUqWmcu7U6NTd0bnbnbq1Gc7ejq+dxYMeK6R3SPDMza4F2FP5fArtL2lnSRsCxwJw25DAzK6WWd/VExCpJ/wzcSHY456URce8oNzdiV9AY5tyt1am5oXOzO3drNZS75V/umplZe/nMXTOzknHhNzMrmY4r/JKOlnSvpDWSeirmv1HSfEkL0u/XtzNnNbWyp/s+LukBSfdLenO7MtYjaV9Jt0m6W9I8SQe0O1Nekk6RdF96Db7Y7jyNkPSvkkLS1u3Okoekc9Jz/StJV0ua0O5MI5F0SPrbe0DSqe3Ok5ekHSXNlfSb9L7+QK4VI6KjfoC/Jjuhqx/oqZj/CmC7dHsv4PF2Z20g+57APcDGwM7Ag8C4duet8Rh+BLwl3X4r0N/uTDlz9wI/ATZO09u2O1MD2XckOxjiUWDrdufJmflNwIbp9tnA2e3ONELWcelvbhdgo/S3uGe7c+XMPhnYL93eHFiUJ3vHtfgjYmFEDDuLNyLuiogn0uS9wKaSNm5tupHVyk42ZEVfRDwXEQ8DD5ANbTEWBbBFur0l8MQIy44l7wPOiojnACLi6TbnacT5wEfJnvuOEBE/iohVafI2svN1xqqOHUYmIp6MiDvT7ZXAQmD7eut1XOHP6UjgzsE/8g6wPfBYxfTvyfHitckHgXMkPQb8B/DxNufJayrwt5Jul3SzpP3bHSgPSYeTfXq9p91Z1sF7gOvbHWIEnfT3V5OkKWQ9H7fXW3ZMDtkg6SfAX1W565MRcW2ddV9O9tHyTUVkq2ddso8VIz0G4GDgQxHxXUnHAN8A3tDKfLXUyb0hMBE4ENgfuFLSLpE+I7dTndyfoE3v5XryvNclfRJYBVzeymxlI6kL+C7wwYhYUW/5MVn4I2JUhUTSDsDVwLsj4sHmpspnlNnH1DAWIz0GSd8EBr9A+g5wSUtC5VAn9/uA76VCf4ekNWQDWz3Tqny11MotaW+y73zukQTZ++JOSQdExFMtjFhVvfe6pBOBQ4GDx8I/2BGMqb+/RkkaT1b0L4+I7+VZZ73p6klHDfwAODUift7uPA2aAxwraWNJOwO7A3e0OVMtTwCvS7dfD/y2jVkacQ3ZF7xImkr2Jd6YHoUxIhZExLYRMSUippB1Qew3Fop+PeliSx8FDouIP7Y7Tx0dO4yMshbBN4CFEXFe7vXG9j/i4ST9HfCfwDbAcuDuiHizpE+R9TdXFqI3jaUv8WplT/d9kqwvdBXZx7Ux2Scq6TVkV0/bEPgz8P6ImN/eVPWlP+hLgX2B54GPRMRP25uqMZIeITsabEz/wwKQ9ADZUWpL0qzbIuK9bYw0IklvBb7Ei8PInNnmSLmkv8dbgQXAmjT7ExHxwxHX67TCb2Zm62a96eoxM7N8XPjNzErGhd/MrGRc+M3MSsaF38ysZFz413NpRMdvVUxvKOkZSde1M1c9kgYamV80SY/UGxlTUv/QUVfT/MMGR3yU9FlJH0m3PyfpDen2ByW9pMFMP2zlqJc5n4NjJX1S0omSvpzmvVfSu9PtEyVt14q8VpsL//rvWWAvSZum6TfSprMSJY3JM8WLFhFzIuKsKvM/ExE/SZMfBBoq/BHx1ohY3oyMTfQW4IbKGRFxUUR8M02eCDRU+Mv6vimSC385/BB4W7o9A5g9eIekzSRdKukOSXelQcGQNEXSrZLuTD+vTvMnS7oljcf/a0l/m+YPVGzzKEmXpduXSbpI0u3AFyXtKukGZddMuFXSy9JyO0v6hbLrKXy+3gNS5pyUYYGkv0/zN5D0VWVjwf84tYqPqrJ+rccxI23v15LOrrLeFEm/rpj+iKTPVixyfMU2D0jL/KX1O2Rbl6Xn6l/IiuFcZWOrv0fSlyqW+0dJ51dZ/xFJW6dMCyX9l7Ix2X9U8Y9+6P6+pux6Cg9Jmp5e+4WDr1fO52AzST+QdE9aZvC5F9kJcncOWf6z6Xk6CugBLk/P0aaSpikbNG++pBslTU7r9Ev6kqR5vDhEiDWJC3859JENCbEJ8DesPXrfJ4GfRsQBZEManCNpM+Bp4I0RsR/w98CFafl3AjdGxL7APsDdOfa/A/DqiPgw2UWhT4mIacBHgK+mZS4AvhYRewNP5tjmO8iKzD5kg8Sdk4rGO4ApZNc4OB54VY31hz2O1AVxNtlQFPsC+0s6IkeWSi9J23w/2ZnCdUXEhWRDYfRGRC9wJfB2ZWOwAJyUY1u7A1+JiJeTnRV+ZI3ltiJ7Tj5ENizB+cDLgR90MwMAAAPLSURBVL2VXWQnz3NwCPBEROwTEXvxYgv/FcA9tcbliYirgHnAcek5WkV2JvtR6f1wKVB5xuxGEdETEefWeezWIH+EKoGI+JWyIVtnkLX+K70JOEyp3xnYBHgpWSH6sqR9gdVkwxpDNq7JpakoXRMReQr/dyJitbIRBF8NfCdrHALZaf0AB/FisfofsuIzktcAsyNiNbBY0s1ko26+Ju1vDfCUpLk11h/2OJRdta0/Ip4BkHQ58FqycX7ymg0QEbdI2kKj6IOPiAFJPwUOlbQQGB8RC+qs9nDFazGf7J9fNd+PiJC0AFg8uF1J96Z1dqL+c7AAODd9GrguIm5N8w+hseGX9yC7aNKP0/thHGv/07+igW1ZA1z4y2MO2fj504FJFfMFHDn0AjGp+2IxWWt4A7JxeQYL2mvJuo4uk3Re6r+tbOVtMmTfz6bfGwDLU2uvmsLGD5H0SuDrafIzETFn6OMA/pBjU6tY+5Py0Mc69DGM9jFdQjYk833Af+dYvvLaE6uBYV09Q5ZbM2SdNWT14IV6O4qIRZL2I7sC2+cl3RQRnyNrRNT6pFGNgHsjotansmdrzLd15K6e8rgUOL1Ky/FG4JTUP4ukV6T5WwJPppbz8WStMSTtRNZS/C+y4rRfWn6xpL+WtAHwd9UCpHHCH5Z0dNqWJO2T7v452aiIAMfleDy3An8vaZykbchapXek7RyZ+vq7yf7RERG3R8S+6WdOjcdxB/C61G8+juwT0s1D9rsY2FbSJGVXeDt0yP2D/d2vAf4QEXn+mQCsJLt0HoN5yYYKficV38m0QN3nIHUH/TEivgWcA+wnaUuySy0uGbbFtVU+zvuBbSS9Km13vLLraVjB3OIviYj4PS/201c6g2xUwl+lov0wWTH7KvBdZYfh3cCLra/pwL9JegEYAN6d5p8KXEc2vv08oKtGlOOArykbTXU82fcP95B9gfdtSR8D8lyw5mqyvup7yFrVH42IpyR9l+xiMb8hu6rSnVRvyQ97HBHxpLLDLueStUZ/MPTiORHxgqTPkRXIx8la5JX+LOmu9Njek+NxDLoYuEHSE6mfH7K+/n0jYlkD21kneZ4DYG+y71TWkH1CeB/Z0WI/ob7LgIsk/Yns9TsKuHDwHwfZe/HeZjwWq82jc9p6R1JX6iefRFagD+qEMeyHUnauxfkRcVO7s9Qj6RLgkoi4rd1ZrD4XflvvSOoHJpBdbOWLEXFZWwM1KH0hfAfZETJHtzuPrX9c+M3MSsZf7pqZlYwLv5lZybjwm5mVjAu/mVnJuPCbmZXM/wdzvtKk9S6t2gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -560,7 +583,7 @@ "metadata": { "id": "UUiC9Z52c_9Z", "colab_type": "code", - "outputId": "c0d42db9-3901-4b92-a728-537e88d64b00", + "outputId": "ded501e1-37e3-48ce-d57e-444fa2abf09b", "colab": { "base_uri": "https://localhost:8080/", "height": 170 @@ -583,8 +606,8 @@ "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", "Featurizing sample 1000\n", - "TIMING: featurizing shard 0 took 3.792 s\n", - "TIMING: dataset construction took 3.869 s\n", + "TIMING: featurizing shard 0 took 3.238 s\n", + "TIMING: dataset construction took 3.296 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -608,7 +631,7 @@ "metadata": { "id": "_wEJ8mn_c_9c", "colab_type": "code", - "outputId": "dc712aee-1a86-461e-ccad-1667ec1bdef6", + "outputId": "1bec839c-6219-4bcf-b130-6e98b26550e5", "colab": { "base_uri": "https://localhost:8080/", "height": 204 @@ -633,7 +656,7 @@ "Loading dataset from disk.\n", "TIMING: dataset construction took 0.028 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.026 s\n", + "TIMING: dataset construction took 0.027 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -656,7 +679,7 @@ "scrolled": true, "id": "koTNAeQ8c_9g", "colab_type": "code", - "outputId": "a93b3eb8-4ca9-422e-d861-9dd208ead702", + "outputId": "20769ae5-5e4f-42f1-b74a-415029b238c4", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 @@ -672,7 +695,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGEklEQVR4nO3d0XbiNhRAUdPV//9l\n+pA2ZUIgJAEfWdr7ad7Gy7lnJAeZOZ3P5w3o/FVfAKxOhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQczOl0qi/hyUTIkZxOp/P5XF/Fk4mQw5iywE2EHMWsBW4i5BAmLnATIeObu8BNhAxu+gI3ETKy\nFQrcRMiwFilwEyFjWqfATYQMaKkCNxEymtUK3ETIUBYscBMh41izwE2EkBMhQ1h2GdxEyAhWLnAT\nIbnFC9xEuKDT6TTOy+kK3Lbt7/oC2NX70F92WGWgwDfuwkJuDX0SpALfuRGreHDo34N86WAo8JJ7\nsYQfDP3rlkcFfuB2zO/3Q//EIBV4zR2Z3NOH/jdBKvBTbsrMXj3033qAVOAt7su09hz6L5dHBd7h\n1swpHPrrIBV4n7szoXGG/i3IQS5mWI6tzWacAjf5PUaEUxmqwDfn83mco6pjEuE8BiyQR4hwEgo8\nLhHOYJwC7Tx/QISHN06Bt3gsvE+ExzZagXr7AS/1fts+L/s8eCX5NfB7Ivyey7lvX04/VoFvK+SB\nLnhPIvyGD2N0+eedgzTQMxHho+7P/Z5BDl6gRe+7RPiQb03VS4M03/MR4dd+M/fPDfLQBVohbxHh\nF544N78M0gTPSoT3vG7uvxvksQq06H2LCG/6coyeNWdfBmmg5ybCz+1W4AefBjlNgVbIT4nwE1WB\nHxjWRTg7+tEgBR6dQ6SPE+EfFPhq4rwmwv8pkIQI/6XAp7PoPUiE26ZAUiJU4N6skB+sHqECyQUR\nnv6z/199fSUKfCmL3iOCD+uP8ma6Al/H0ZlL5YmZkd9MNyLsZpRja0O9ma5A9jRKhJfaN9MV+Fx2\nnl8aMcJLO7+Zblx2I853o0d46dVvppsJEkeK8NLT30xXIJWjRnjp92+mK/Cl7DzvmyHCSz94M918\nVMT5ZuZja+fz+csfsCHYx52b7EjNEiN4qzQFDqI9O5WbbTv6OAWOIzw7NYJ1I1zkB3w4c3/f3KfW\njZDxDXLW/9VW2ZLZfE5jviCthBzMfA+QIuTA5niAXGiTZke6iMMtj1ZCZvPgfnWcf5RFyMyugxwk\nvEszH1v7wJcOLes9v8sCx5mHhSKEMYkQYiJkfrd2noPsSNeKcJCbDpfWihAGJEKILRehHemaRn4s\nXC5CGI0IIbZihCPsQBhHPg8rRsia7sTWHicVIcREyEKGe4Fi27ZlI8wfAxjL+bx187BohCwqje0W\nEUJs3QjtSBnEuhHCH7qdqghZzHiPhUtHaEfKCJaOEEYgQtYz2I5UhPCfKM7VI/RYSG71CCE3ytfx\nw95Op22M4bcSQkyErGqMZXATIeRECDERQkyEEBMhxPx32bBt2/bHgbV9f3EqQrj64H7fz/FtR1ne\ndXL7nuQWIcRECDERQkyEEBMhy7v+Ncy+vx31EQVcdehzQgh0bzbZjkJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcT+AaiJ4xRk\nSP78AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAZk0lEQVR4nO3daVhU59kH8HtmWMIqiqAGV4zUiCkhGkkAFXQQDFp7pdAszWLV2EtjNK1tTZoYY9IkpvFKNa1GBVNtE62ktYa4ADOACNhqIWoMaTERERQQFBBZHJaZ98PTdzqFYQRmuecc/r9PynM8c6vzn3Oe55y5j8JgMBAA8FFyFwAw2CGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQR5unLlSldXF3cVfYIQggxdvnw5Ojr6ySef7Ozs5K7lzhBCkJvy8vJZs2Zdvny5tra2o6ODu5w7UxgMBu4aAGymsrIyJiamrKwsMjIyIyPDx8eHu6I7QwhBPq5duxYTE/Pvf//7oYceysrKkkQCCSEE2aitrY2Njf3666/Dw8Ozs7OHDh3KXVFfYU4IclBXVzdnzpyvv/46LCxMo9FIKIGEEIIMNDQ0JCQklJSU3HfffVqt1t/fn7ui/sHpKEhbY2NjXFxcUVHRd77znePHj48cOZK7on7DkRAk7ObNm/Hx8UVFRZMmTcrJyZFiAgkhBOlqaWlZuHDh6dOn77nnntzc3Lvvvpu7ogFCCEGSWltbExMT8/Pzx44dq9FogoKCuCsaOIQQpKe1tXXBggV5eXljxozJzc0dP348d0VWQQhBYnQ6XVJSUm5ublBQUG5ubnBwMHdF1kIIQUra29uTkpKOHTsWGBio0WgmTpzIXZENIIQgGR0dHcnJyYcPHw4ICMjJybn33nu5K7INhBCkoaur6+mnn05PTx8+fHh2dnZoaCh3RTaDEIIEiAQeOHDAz88vIyPjvvvu467IlhBCcHZdXV2LFy/ev3//kCFDsrKypk2bxl2RjSGE4NQMBsOKFSs+/vhjX1/fzMzMBx98kLsi20MIwXkZDIaVK1empKR4enqmp6dHRERwV2QXCOFgJIkOSAaDYdWqVTt27PD09Dx8+PDs2bO5K7IXF+4CwNG2bt3a1NS0bdu2WbNmqdXqqKgo51xpXLdu3fbt2z08PNLT02NjY7nLsScDDCa//e1vicjd3d30PTB+/Pgf//jHf/zjH69cucJd4H+89NJLROTm5nb48GHuWuwOIRxEdu3apVAoFArFjh07Ll68uHPnzuTk5G5fgQ0ODl6+fPnevXsrKyu56nzllVdEAtPT07lqcCSEcLDYvXu3UqlUKBTbtm3rNmQMZLeuECKQaWlpN27ccFidr732GhGpVKoDBw447EV5IYSDwp49e0QCf/e731nYrLOzs6ioaMuWLcnJyb6+vsY0KpXKKVOmiEA2NDTYr8733ntPJHDfvn32exVngxDK34EDB1QqFRFt2rSp73+qo6OjqKho06ZNarX6rrvuMgZSpVJNmzZt3bp16enpN2/etGGd77//vtj/xx9/bMPdOj+EUOY+/fRTFxcXInrrrbcGvJPW1tb8/HwRSDc3N2MgXVxcRCA1Gs3t27etqXPLli1EpFAodu3aZc1+pAghlLODBw+6uroS0RtvvGGrfTY3N2s0mnXr1kVFRYmdC56enmq1esOGDRqNRqfT9WufKSkpxhUjW9UpIQihbB09elRcivjFL35hp5e4deuWCOS0adOUyv/e+OHl5aVWqzdt2lRUVNTV1WV5JxZWjAYJhFCeMjMzxUTuZz/7mWNesba2Nj09XQRSoVAYA+nj42MMpF6v7/anxIoREf3mN79xTJ1OCCGUoaysLJHANWvWsBRQU1OTlpa2fPnyCRMmmF7zCAwMTE5O3rJlS1FRkWGgK0bygxDKTX5+vpeXFxE999xzPY88jldWVpaamvqjH/2oW0vCESNGiGPgO++8w10jM3TglpWTJ0/Gx8c3NzcvWbIkNTXV9LTQGZSVlWm12oKCgpycnKtXr44cOTI2Nnbfvn3cdXHj/hQAmzl58qR4GNjixYvvuBzCS6/Xr1mzhoiWLl3KXQs/HAll4syZM3Pnzm1oaPjhD3+4b98+MddyZmfPng0PDw8KCqqsrHS2I7aDIYRycPbs2blz59bX1yclJe3fv19cnXdyBoMhKCiourr6/PnzU6dO5S6HE77UK3lffvmlWq2ur69/9NFHpZJAIlIoFPPmzSOijIwM7lqYIYTSVlpaGh8ff+PGjfnz5+/bt08qCRTi4+OJKDMzk7sQZjgdlbALFy7ExMRUV1fHx8d/9tln3b6q6/xu3LgRGBjo6up6/fp1b29v7nLY4EgoVd9++21sbGx1dXVcXNyhQ4ckl0Ai8vf3nz59uk6ny8vL466F02AJ4a1bt1555RWdTsddiG1UVFTExcVVVVXNnDnzb3/7m+lXjaQlISGBcEbKe4XEMZqbm2fNmkVEy5Yts7BZQ0PDxYsX9+7dW1FR4bDaBqCiokLcDhYVFXXr1i3ucu4sLy9v5cqVBQUFPYcKCwuJKCQkxPFVOQ/5h7C1tXXOnDlENHr06G+//ba3zRobG6dPnx4eHi4+m4KDg59++umdO3c6WyArKyvFo4gefvjhpqYm7nL6RHRtWrt2bc+hzs7OYcOGEZGF/xrZk3kIdTpdYmIiEY0YMeJf//pXb5s1NjaK1s5BQUEJCQlDhgwxPVmYMmXKqlWr/vrXv16/ft2RxfdUU1MjHkX0wAMP1NfX8xbTd7m5uUQUGhpqdjQ5OZmItm/f7uCqnIecQ6jT6RYuXEhEgYGBJSUlvW3W3Nw8c+ZMIho3blx5ebnhf1utdAuksfeR4zNw7dq1KVOmENH999/vyM5L1mtvbxcday5fvtxzNDU1lYgWLVrk+MKchGxD2N7evmjRIiIKCAg4f/58b5u1tLTExMQQ0dixYy9dutRzAxHI3lqtrF69Oi0tzbatVsyqra0Vt5V897vfZT8gD4D4v0hJSek5JG5b8/LysrJBhnTJM4SdnZ2PP/44Efn5+RUXF/e2mXG6OGbMmIsXL95xt6a9j0wvCZi2Wmlra7PpX8VgMBgaGhrEo4gmT55cU1Nj8/07wPbt24koKSnJ7Kj4fMnNzXVsUc5ChiHs7Ox88skniWjIkCH//Oc/e9tMp9M98sgjd5wu9qalpUWj0WzYsEGtVpu2WvHw8IiKihKB7G+rFbOM89WQkJCqqirrd8ji0qVL4jOxo6Oj5+jatWuJ6KWXXnJ8Yc5AbiEUT5MkIl9f31OnTvW2mU6nW7BgwR2ni310x1Yr+fn57e3tA9jzzZs3Z8yYQUSTJk26evWqlXXyCgkJISKzFyqysrLEXNfxVTkDWYVQr9f/5Cc/Ee/+vLy83jZrb2//3ve+J6aLX331lW1rqKurM9tqxdvbu++9jwTj5U3jipGkrV69mojWr1/fc+j27dve3t4KhUK6h3pryCeEer1+xYoVROTp6WlhdtHZ2fnYY48R0dChQy1MF23C2GpFrGoaBQQELFiwoLfeR4LpilFZWZld63SMI0eOENGMGTPMjoqpwZ49exxclTOQSQj1ev2qVavElCw7O7u3zYzTRT8/PwvTRXuoqqoSgRw3bpxpIEeMGJGcnLxz507TlSHTGwz6smIkCa2trR4eHkql8tq1az1Ht27dSkRPPPGE4wtjJ5MQ/vKXvyQiNze3I0eO9LZNV1fXU089JRZsLEwXHaC0tHTHjh2PPfZYYGCgaSAnTJiwdOnSPXv2xMXFDXjFyJmJv5fZ50yUlpYSkb+/v5M35rAHOYTw5ZdfFgn8/PPPe9tGr9cvX75cTBdPnDjhyPIsM/uIMh8fn5EjR8osgQaDYfPmzUT07LPPmh0NDg4mIt7PRxaSD+Grr75KRK6urp999llv25hOF48fP+7I8vquq6uruLh48+bNiYmJmZmZNl8xcgbnz58nopEjR5qdCYv/o40bNzq+MF7SDuHrr78ubl7585//3Ns2er3++eefFwnMyclxZHnQ05gxY4jozJkzPYcOHTpERJGRkY6vipeEQyjObVQq1SeffGJhMzFddHd3P3r0qMNqg94sXbqUemn429zc7O7urlKppHVnrPWkGkLx7HWlUvmnP/3JwmZ9mS6CI6WlpRFRTEyM2VFxVSYtLc3BVfGSZAjFcrZCodi5c6eFzcSjzy1PF8HBGhoaXFxcXF1dzd71/s4779Dg6wgsvRCK7u4KhcLyN9A2bNhwx+kisIiMjCSiQ4cO9Rw6c+aMuDrqDE/RcBiJhfCjjz4Sz7L7/e9/b2Ez43RxUD36XCo2btxIRCtWrOg5pNfrR40aRUQWvn0mP1IKofFZdu+++66FzcR0UaVSWZ4uApdTp06JOxPMjj777LNEtHnzZgdXxUgyIUxLSxOdbS0/Scs4XRyEjz6Xiq6uroCAACIqLS3tOSoe0hQXF+f4wrj0NYR5eXnGzg51dXV2ramn9vZ2cQ/0W2+9ZWEz46PPP/zwQ4fVBgPwxBNPENEHH3zQc6iurk6pVLq7u0uikZxN9DWE4jxeUCqVYWFhL774Ynp6emNjo13rM6qurrb8THPjdHHQPvpcQvbs2UNEiYmJZkfFVygt3AYsM30NoWmrFQ8PD2MgTVutOCyQPeHR59JSXV2tUCg8PT3N9pVZv349Ea1evdrxhbEYyJyQq9VKb/o4XQSnEhYWRkQajabnUEFBAQ2mjsDWLsyYtlpxc3MzG0i7dtH6y1/+IhL461//2n6vAja3bt06Ivr5z3/ec8jYEVg236W0zJaro83NzWZbrXh6eqrV6g0bNmg0moG1WunNwYMHRZOlQXjrvdTl5OQQ0dSpU82OJiUl0aDpCGyvSxRNTU3GQFrZaqU3x44dEyfDZj9NwcnpdDofHx8iMvuggZSUFBo0HYEdcZ3w2rVraWlpq1evFs0zjYYPH37HViu9yczMFK14f/rTn9qpbLA30W4rNTW159Cg6gjs6Iv11dXVotXK+PHjTQNpbLXSly+zajQasUK7Zs0aB9QMdrJt2zYiSk5ONjsaGhpKg6MjMOcdM+I5ZMuXLxdf9DQaNWqUCKTZPn/5+fniqa7Lli0bVLf5yk9ZWVlCQoLZI6FhMHUEdpbb1sy2WiGTR5RVVlYaDIbCwkIxkViyZMkg7Ag0qAyejsBO98x6vV7/5Zdf5ubm5uTknDhxoqmpSfxcoVBMmjSpsrKyra1t8eLFu3fvNl2ABfnR6XT+/v6tra1Xr14VX62QK6cLoamurq6zZ88WFBQUFhZmZWXdvHlz9OjRo0ePLigoUKlU3NWB3SUmJh49enTbtm0rV67krsWeuA/FfaXT6cQk4dFHH+WuBRzkgw8+mDhxokKhmDJlivjyQENDA3dRtufUR8JuysvLJ0yY4Ovre/36ddMHIYGMffTRRytXrtTpdOK3Li4uM2bMiI2NjY2NjYyMNL2NWbqkFEIimjx5cmlpaX5+fnR0NHct4CBtbW3FxcWFhYVarfbEiRPt7e3i5y4uLmFhYWq1Wq1Wz5w50/Q2ZmmRWAhffPHFrVu3vvrqq2+++SZ3LcCgpaXl73//u1arLSgoOH36dEdHh/i5p6dnZGRkVFRUdHT0rFmzTG9jdn4SC+GxY8ceeeSRBx988PTp09y1ALPm5uZ//OMfWq1Wq9V+8cUXxneyl5fXww8/LI6Q4eHhzr+KLrEQtrW1+fv763S66urqbk9TgcGsrq7u+PHjYiHdNJA+Pj4REREikA888IDpbczOQ2IhJKL4+PisrKxPPvlEPOQMoJuampr8/HytVqvRaMRjuoXAwMDZs2eLU9ZutzHzkl4I33///bVr1z7zzDN79+7lrgWcXVVVlVjRycjIqKioMP581KhR0dHRarV63rx53W5jdjzphbCkpGTq1KkjRowQLRK4ywHJKCsrEys6OTk5V69eNf48ODhYHB7nz5/f7TZmx5BeCIlo3LhxFRUVX3zxRXh4OHctIEkikFqtNjs7u76+3vjz4OBgMYGcM2dOt9uY7UeSIXzuuedSU1Pffvtt8bwXgAHreWukccgYSLVaPXToUNM/8s0330yePNlmRfDcqGOdTz/9lIhmz57NXQjISnt7e0FBwRtvvBEbGyu+Mi64uLgYO4K3trYGBga6u7s3Nzfb6nUleSRsamoaPnw4EdXV1Q0ZMoS7HJChzs7Oc+fOiVPW/Pz8AwcOLFq0SAxFREScPn368OHDiYmJNnktZ7+OaZavr++MGTM6Ojpyc3O5awF5SklJefvtt9esWaPRaG7cuJGQkGAcEr/OzMy01WtJMoREFB8fTzb9hwAwtWvXroMHD+bn5xORl5eX6Y2p4r2XkZFhq9eSagjFp5EN/yEATFk43EVERAwbNuybb765ePGiTV5LqiGcNm1aYGBgeXl5aWkpdy0gQxYOdyqVau7cuWS7EzGphlCpVKrVasIZKdhHVFSUr69vSUmJ6X02RradDUk1hIRpIdiTq6trbGwsEYl+U90kJCQoFIrs7Gzjt42tIe0QKhSK3NzctrY27lpAhix8ygcFBYWGhra0tJw8edL6F5JwCEeMGHH//fe3tbWJh/gA2Nb8+fOJSKvVdnZ29hy14YUKCYeQcEYK9jR+/PiQkJDGxsZTp071HLXhe08OIcSFCrATC4e7mTNnent7nzt3rqqqyspXkXYIo6KihgwZ0tsSFoCVLBzu3N3dxd3LGo3GyleRdghdXV1jYmKolyUsACvFxsZ6eHgUFRXV1tb2HLXVGam0Q0iYFoI9eXh4REdH6/X67OzsnqPG915XV5c1ryL5EIolrKysLGP3OwAbsvApHxISMnHixPr6+uLiYmteQvIhFEtYTU1NaIII9mAModkv/c2bN4+sXhqUfAjJDl8tATCaOnXq2LFja2pqzp0713PUJrMhOYQQFyrAruLi4qiXN9jcuXPd3NxOnTrV1NAw4P3LIYRiCau4uNjsEhaAlSwc7ry9vc889ZQuIMBXqx3w/uUQQuMSltaKfwiA3sTFxbm4uBQWFhofWWtqyqRJqpoasuKMVA4hJFyoAHvy8/N7Jj7+w4gIndm7lEXni4wMGmi7JpmEUKzNZGVlSbFvFTi/3TNmLC0oCDh82MxYWBiNGkVXr1JJycB2LpMQhoaGiiWss2fPctcCciQOd8eOmRlSKGjePCIa8BmpTEJI/3/FBmekYBfTp1NAAJWX04ULZkbj44kQQkwLwa6USlKriXpJWlwcKZV04gQ1Nw9k39aV5kTUarVYwjLtZA5gMxYOd8OH0/TppNPRiRMD2LF8Qujn5xcREdHR0XH8+HHuWkCO4uNJoaDcXLp92/woDfCMVD4hJJyRgl2NHElhYdTaSmYvVIgQDui2LRmG8JjZJSwA61k43D30EA0bRhcuUFlZf/cqqxBOnz5ddAS+YHYJC8BKFg53KhXNmUM0kDNSWYVQqVSK1si4mRvsIjqafH3pq6+ostLM6ECnhbIKIRElJCQEBAS0t7dzFwJy5OpKMTFERGbbqYgL+jk51M+3nySfT2hBR0eHSqVSKuX24QLOYvt2ev55Sk6mtDQzo1OnUkkJHT9Os2f3fZdye7O6uroigWBH8+cTEWm1ZK4j8MDOSPF+BeiPCRNo0iRqaCCz7VQGdKECIQToJzH3M3u4mzWLPD3p7Fmqru77/hBCgH6ycM551100ezYZDNSfjsByW5gBsLuWFvL3p44OqqmhgIDuo59/TuXl9P3v05gxfdwfQgjQf2o1ZWfT/v30+OPW7wynowD9l5BAQ4fSjRs22RmOhAD919ZGbm6kUtlkZzgSAvSfh8f/JHD3brr3XnJ3p9Gj6eWXqZ9PZEAIAayzZw8tW0Y/+AGdPk0bN9KWLfTCC/3aAU5HAawTHEz33ktHjvznt6+/Tm++SVeu0KhRfdwBjoQAVqispEuXKDHxvz9ZuJD0eios7Ps+EEIAK9TUENH/HPTEr3HHDIBD6fXdf92fbxEghABWCAoiIqqq+u9PxDFw9Oi+7wMhBLDC3XfTPfeQaXv8I0fI1ZWiovq+D4QQwDrr11NWFv3qV3TuHP3hD/Tuu/TCCzR8eN93gEsUAFbbvZvee48uXaLAQFqyhF57rV830yCEAMxwOgrADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQCz/wOAAroCsHt1UAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -684,7 +707,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGL0lEQVR4nO3dXXbTTBZA0ahXz4j5\nz+BjTO4H024TYkf/p0Tv/RTWMqTAPlyVJMfT7Xb7ADr/qhcA/+9ECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERnmSa\npnoJDOrf9QL+fvf8brfb44t6RYxl8po4zpfVSZFPRHiIb0uTIg8i3N80zf1Xnf9I/mJeBHtaMd+M\nRES4j40tXSvFnz//d6b3x49rrHlkItxqx34ukeLPn9NzeJ9+yQouUWyy76bu/kdda6OowO2u9HwP\nZenUWpTW4CPxfjgqv72IcLHVhazodt032ter5KS4FxEus/1Y8dARuqPH2Zf3mdkTbmdPONdec+mx\n8Zv5p518v9u37aludyL83hENLDoHs7TbFWbOPY7gcPSdE0ZQu1Fc157rhPsS4UtnbsZO3ihO0/TP\nPx8fEhqDCL9QnZY89DLG8xsaPelD8abe30zTdC8heZnez8HMfPvvfZHvHz89uT3Zb8m/eT5MZT6T\n8JdBLsrdbdkothPPudMVnB39+BjvTrEVlzEWPZ6hOBwd1+OAc9FvOW49c/z4cXNQupQIR7doozgC\nHS4lwguYcw5mKDpcRIQvjfaKv1yKzCTCi1mxUUwYhvOJ8JLyEzBz6HAmEXIgHc4hQoiNdZG68uXF\n+tGu4H9r2AUPu7BBmIQc7hJnkkIihJgIOYNh+IYIOYkOXxEh59Hhl0QIMRFyKsPwTyLkcJ+q0+En\nIuRYX16p1+EzEUJMhBzozQ1rhuGDCDnK+1tG3VD6IEICCnwmQg4hs/lEyP4ciC4iQk6lwD+JkJ1N\n08sfgaPAL4mQPU3Tx6vKFPiKCNnNmwJ5Q4ScwRh8Q4Ts4+2B6DV+UGpFhOzguwLPXc3ViJCtZLaR\nCDmQPucQ4SWN8/4DB6Lb+bjsixntM7EVuJ0IXxrnhX43Wn7sRYQXcLn8jMFFRDi6y13mVuBSTsyM\n6/7J2IsKHOeEDfNd7H/Z4wx1yLd0Mc+Pf+7w/L+OMbiCCH8zQoqLpt/7BbdBMpMIv1CluOj7rpuW\nd570oYjwpTPPiKwoasva/hukJ38IInznhJG4Zfu3x3f/9YVXQUiE3zsuxR23f5tX8usLL4fziXCu\nvUfQgdu/Le41elGcSYTLbN8onrz9W8dgPJMIF1s9l9rt3zoG4wlEuNKhA22E/L7057V4V+e3c+/o\nSo/bU2amMvjx53yq250IN3l8vtcu2Qw7AJ/dbjrcmQi3er5jc3U/l8iPg4hwH6tTvGJ+huG+RLin\npRvFwbd/b+hwRyLc35yN4hUHIAcR4SHeHJ3+NfndhyHbifBAn1L8a/J70OEurronuZzrbv84mp8x\ncxIF8ooIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKI\niRBiIoSYCCEmQoiJEGIihJgIISZCiP0H2f3F/UcD2DcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXhTVd4H8JPuC1sLQoHKDkIRWQoFqaCyL/F1Zp5B1pTBZ+wASkAFqq9oQEEqigSZAaoihk3hnedxDAo4tKDgUkra0r10oTt0owtt0iXLef84JdZSoElvcrJ8P49/jNPee361+TY35/7OuSJKKQEAflx4FwDg7BBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzpw9hNXV1VVVVbyrAKfmvCFMTEx8+umnZ8+ePXDgwLCwsIqKCt4VgZMSUUp512Bt5eXlW7ZsOXTokMFg6Natm1qt1uv1/v7+27ZtW716tZubG+8Cwbk41zuhVqvdu3fviBEjPvvsM1dXV6lUWlhYmJaWtmDBgqqqqnXr1j3++ONnzpzhXSY4Geo0zp8/P3r0aPZTz5o1KzU1tc1XR40aZfxqWloarzrB2ThFCK9fv75w4UIWsBEjRpw+fbrdb2tubpbL5d26dSOEuLu7S6XSmpoaK5cKTsjBQ1hdXR0REeHh4UEI6dGjR2RkZGNj44MPqaiokEqlrq6uhJCePXvK5XKdTmedasE5OWwI9Xq9QqHo3bs3IcTFxUUikZSVlXX88Pj4+GnTprE3zwkTJly6dMlypYKTc8wQXrx4cezYsSxCzzzzzLVr18w7j1KpHDRoEDuPWCzOy8sTtEwASh0vhIWFhRKJhMXm0UcfVSgUBoOhMydUq9WRkZFdunQhhHh7e0dERNTV1QlVLQB1pBCq1WqZTObl5UUI8fHxkclkDQ0NQp28uLhYIpGIRCJCSP/+/Tufbei82tof8vIkqamPJST4xse7JiZ2T08fV1i4vqEhg3dppnGEm/WU0n//+98bN24sLCwUiUR//etfP/roowEDBgg+UFxc3Pr162NjYwkhISEhe/funTJliuCjwENRqs3LW15d/X+t/j8XQgzsf4lEbgMGRPXq9SKX2szB+69AZ129enXq1KnsZ5k4ceLPP/9s0eHYfE+fPn0IISKRSCKR3Lp1y6Ijwr1u3tymUhGViuTm/lWtVhkMzZTqm5tvVVR8eu1ab5WKxMe7azSpDz+RbbDjEJaUlISHh7u4uBBC+vXrFxUVpdfrrTN0fX29TCbz9PQkhPj6+spksofe+QABJScPUKlIevoEg6Ht3aP6+liWz/z8v3OpzQx2GcKmpia5XN61a1dCiIeHh1Qqra2ttX4Z2dnZixYtYm/Cw4YNO3XqlPVrcEp6lUqkUpGiotfb/XJx8eaSEllt7Tkrl2U2+wuhUqkcMmQIe+mLxeLc3Fy+9URHR48ZM4bVM3PmzOTkZL71OIOkpD4qFcnNfYF3IcKwpxCmp6fPnTuXvdxHjRp19uxZ3hW10Gq1UVFRvXr1IoS4ubmFh4eXl5fzLsqR5ee/qFIRlUpUUvK2Xq/hXU5n2UcIb9++bWwl8/f3t81WMlYkWwnFitRqtbyLckxabXl6+jj22S8xseuNG0vLyw80NKTzrstMth7C5ubmNm8yFRUVvIt6kIyMjHnz5rG365EjR545c4Z3RY5Jr1ffuvVBcvIgFkX2T1JS34KClzWaFN7VmcamQ3j+/PnHH3/c+HErJcVu/uO2+eCak5PDuyL7ptc3VFd/W1mpuPdLGs21sjJ5Ts7ziYl+d9MoKihYbTDYzWWIjYYwKyvLOPE4fPhwe5x4ZFO4rRdGcZnCtWt6vaamRpmXJ0lM7KZSkaSkPvfekzAyGLQ1NaczM6exKBYWbrBmqZ1hcyGsq6sz3oLr0qWL1W7BpaamJiUlCX7amzdvGm9m9u3b15o3M+2XTld7+/bxnJy/JCT4GN/c0tMn3rq186HTMAaDLitrHrtfr9WasG6GIxsKYetmFLb4qLS01GqjT58+3YwVTx2kUqlCQ0PZG3twcPDly5cFH8IB6HRVlZWK7GxxfLzn3ey5pKcHl5TIGhuzWn+nwaDTau87NVBd/R92eG3tD5avWgC2EsLY2NjJkyezl+nkyZNjY2OtOXpjY+P69evd3d0JIX5+fnv27GlubhZ2CIPBcOrUqYEDB7J+t0WLFuXn5ws7hJ3SaivvZs/DmL3MzNCyMnlzc/G933/jxtKEBJ+0tNH3O2FV1f+x89y5E2PJwgXDP4RFRUXGBQqBgYEcFyh0cBeMzmBLPby9vcndpR4ajd3f5jJPU1NRRUVUdrY4Pt6NZSY+3vVu9h7Ujltc/Cb7/vLyg/d+1WBozMycrlKR+Hg3rfa2xcoXEs8QtnlF2shSvQfvByUI2/m7Y31NTfllZfLMzFDWeqZSkYQEr+xscUVFVAc/wmm1t5OTA9kb5o0bK+rqLul01Xq9pqkpr6rqZEbGlLsTM69Y+mcRCp8Qtr42Y5P4NnVtxnZ86t69O7Hkjk8//vjjuHHjeF2BW1lj4417suednS2urFTodCZPGjc0pKemjmh9h7DNP3l5EoNB4A8UlsMhhCqV6qmnnmIvvgkTJtjsLEVlZaWld3ziOxdlBRpNakmJLD092BiPhAQflj29vlNXPQZDU2Xl4Zyc55OTByYkeMfHuyYm9khLG1tQ8I/6+l+N36bXqw2Gpk7/HJZl1RCy+Xr2smbz9TbYfdZGQkLC9OnT2Z+McePG/fTTT4IPwbaEs/5dGcth2UtNHWnMXmKiX16epKZGaTBY70fTaJJTU4OKijZabUTzWCmE927paV93rpVK5eDBg40Xzzdu3BB8CPvvT9Cr1aqSEllKynBj9q5d63k3exzejtTqq/HxHiqVqKZG+Dk2AVkjhEqlcujQofbew6XRaCIjI9kiRrbj0507dwQfpc20kO136ul0uurqiwUFLycl9TNmLzk5sLBQWlf3E6WcOxNu3dqpUpFr13o3N9/kW8kDWDaEGRkZ8+fPd6Ru5pKSEuPEpoWW87fuWXd3d7fNnnWdTnf58mWpVBoQEHDhwtS72RtYWCitq7tMqe1M9uqzsmarVCQraw73vwj3Y6kQtl7X4+fn52DreuLi4p588kn2x2XSpEm//PKL4EPY5uqthoaGb7/9NiwszM/Pz7hN0Y4dz5eUvKVWJ/Curn3NzaVJSQEqFSkt/ZB3Le0TPoRshesjjzzi2CtcDQaDQqEICAgwdsAUFhYKPkqbdcznzvHZskGj0SiVSolEwj7VM0FBQTKZTKVScSnJJLW1Z1UqUXy8e329Ld4HEjiEMTExxr0eZsyY4fB7PbAdn9hmp2zHJwE3OzXitaOHWq1m2WN7H7fOXkaGne3tWVi4QaUiKSlDzbgtaWmChdCZdz0qKChos+234ENYc2+rqqoqhUIhFovZXRN2DzM4OFgmk2VlZT38eJtkMDSmp49XqUheXhjvWtoSIITY/4+5cOHCE088wV61zz77rCUWRll0l8fKykqWPdbITghxdXUNDQ2Vy+XFxe00UtudxsbsxMSuKhW5ffso71r+oFMhbPO5CDvhsg4Y9nnYcguj2ux33MlpoaKioqioKLFYbHxOuDF7jvfbrKg4pFKRhIQuDQ3XedfyO/NDeOXKFeMm8CEhIb/99puAZdm1qqoq40MR/fz8IiMjm5oEvlXNmm/ZVv9sWqigoMCkM+Tn58vl8tDQUHa7hRDi5eUlFoujoqIcciLN6MaNZSoVSU8Ptp12NnNCiKejdERmZuaCBQvY6/uxxx77/vvvBR/CjGfg5Obmtsmet7e3WCxWKBT21cNkNp2uJiVlsEpFios3866lhWkhZF0jeE5Yx50/fz4oKMjYAZOWlib4EPc+De7e70lNTZXJZMHBwcZJTh8fH5Y9J/wN1tfHxce7q1QutbX/5V0LpSaFEE/MNI91Fka1+1xUlr2RI0cas+fv7y+RSJRKpXNOnhndurXjbjsb/8+9HQ3hSy+9xH6Ltrz4yJZZYWGUTqfbv38/63dzdXVl80NMQEDAmjVroqOjHalvqXP0WVmzVCqSlTWXe5Ndh0J48eLFqVOn+vr62kjzlP2Kj4+fNm2a8c/ZpUuXBB+CLYzy8fHx9vYODAwMDw9XKpXI3r2am0vZMy1KS3fzraRDITxy5AghZOnSpZauxklY4cKe3da3xHWvI6mpOWML7WwupMPYpRR03nPPPZeWlsamuL777rugoKA33nijvr5e8IGMU6DQru7d5/fuvY5SbV7eCr2+jlcZJoQQBMQ2tsrMzJRIJI2NjR988MHIkSOPHDlC7f/p5fYlMHCXj8/4pqacoiIprxoQQp769+9/5MiR2NjYKVOmlJSUrFy5csqUKbGxsbzrciIikeeQISddXbvevv1lVdVxLjUghPyFhIT8+uuvrAEwLi5u6tSpYWFhpaWlvOtyFp6ewwMDPyaEFBSsbmzMsn4BCKFNEIlEYWFhOTk5MpnMw8Pj6NGjw4YN27p1a1NTE+/SnEKvXn/3919qMNTn5S2ntNnKoyOENsTX13fr1q0pKSlisVitVm/btm3MmDFZWRz+NjuhAQMOeHoO1mhUN2/KrDw0Qmhzhg8ffvr06ejo6DFjxhgMBuMWyWBRrq7dBw/+WiRyLy3ddefOeWsOjRDaqJkzZ8bHx//www/GlbVgab6+IX37vkOIIT9fotVa7zM5Qmi73N3djVtFgnX07fu/XbvO1GrL8vNXEWKl20UIIUBrLoMHK9zcet25c668fK+VhrTQefPz85OSku7cuWOh8wNYiLt7/0GDFISIiovf0GgSrTCipUK4YcOGcePGXbhwwULnB7Cc7t0X9O79cnFx4IoVb6jVaksPh8tRgHb07//hzp09v/nmv1KpxdvZEEKAdri4eB06dNjHx+eLL744ceKEZcey6NkB7FdQUNCePXsIIWvXrs3Ly7PcQAghwH2Fh4cvWbKktrZ28eLFWq3WQqMghAAPcuDAgUGDBl29enXr1q0WGgIhBHiQHj16HDt2zM3NLTIyMjo62hJDIIQADxEaGvr2228bDIYVK1aUlZUJfn6EEODhtmzZMmPGjLKyslWrVgm++wFCCPBwLi4uR44c6dmz59mzZ/ft2yfwyYU9HYCjYk98EIlEmzdvTkwUsp0NIQToqIULF65Zs6apqWnx4sV1dYLtzoYQAphg9+7dY8eOzc7Ofu2114Q6J0IIYAIvL68TJ074+Ph8/vnnX331lSDnRAgBTBMUFLR7925CyJo1a/Lz8zt/QoQQwGSrV69evHixUO1sCCGAOQ4ePDhw4MC4uLj33nuvk6dCCAHMwdrZXF1dd+zY0cnF6wghgJmeeuqpLVu2GAyGsLCwyspKs8+DEAKY75133nn22WfZc0TMbmdDCAHMZ2xnO3PmzP79+808ibA1ATibwMDAzz77jBDy+uuvJyUlmXEGhBCgs/785z+vXr26qalp2bJlGo3G1MMRQgAB7Nmz54knnkhPTzejnQ0hBBAAa2fz9vaOior6+uuvTToWIQQQxujRoz/66CNiejsbQgggmLVr1/7pT3+qqamRSCQ6na6DRyGEAO07fPjw7t27Tb3798UXXwwcOPDnn3/evn17Bw9BCAHakZGR8corr2zcuDEmJsakA/38/BQKhYuLy1dffdXY2NiRQxBCgLaMNxtWrVo1a9YsSw+HEAK0tWnTpmvXrg0bNmzvXpMfUVhdXb1y5UqDwbB06VIvL6+OHIIQAvzB2bNn//nPf3p6ep48ebJr166mHv7iiy8WFBSw3u4OHoIQAvyupKQkLCyMUrpz584JEyaYevj+/fv/85//9OjR4+jRo25ubh08CiEEaGEwGFauXFlZWTlv3rwNGzaYenhaWtrGjRvJ3cdXdPxAhBCgxc6dO2NiYnr37n348GGRSGTSsY2NjcuWLWtoaPjHP/6xZMkSk45FCAEIIeTq1avbtm1zcXE5duxYQECAqYe/+uqrycnJQUFBH3/8sanHIoQAxLhl06ZNm2bPnm3q4d98883Bgwc9PT3ZboimHo4QArQ8i3fixInvvvuuqccWFxe/9NJL5O6+wGaMjhCCszt06NCJEye6dOly/PhxDw8Pk45lG8zcvn17wYIFa9euNa8AhBCcWk5OzquvvkoIOXDgwIgRI0w9/N1337148aLxWTHm1YAQgvNqamp64YUX6urqVq5cuWLFClMPZ13abJuZXr16mV0GQgjOKyIiIjExcejQoZ988ompx9bU1KxYsUKv17/11lszZszoTBkIITips2fPfvLJJ+7u7sePH+/WrZuph69evbqgoCAkJOTtt9/uZCUIITgj44Ovd+7cOXnyZFMPP3jw4MmTJ7t3737y5El3d/dOFoMQgtMxGAwrVqwoKyubO3euGfsypaenv/7668T09rT7QQjB6XzwwQfR0dG9e/f+8ssvzWtP02g0f//735cuXSpIPQghOJcrV+JkMpmLi8vRo0fNaE9jO/wOHz7cjPa0++noagsAB1BfT9asCZ40aXdoaNGcOXNMPfz7778/cOCA2UsN7wchBCcSHk4SE10nTVq3fbve1GONT33ZtWvX+PHjBawKl6PgLA4fJl99Rbp0IUePEg8PV5OONbanzZ8/f926dcIWhhCCU8jJIevXE0LI/v3kscdMPnz79u0XLlzo06ePGUsNHwohBMfX1EQWLyZ1deSFF4hEYvLhv/zyy3vvvceWGvbp00fw8hBCcHxvvkkSEsjQoeSzz0w+lrWn6XS6N954w0LbHyKE4ODOnSNyOXF3J8eOEdO701oeLDFp0qStW7cKXxwhBCEEx1ZeTlatIpSSHTvIlCkmH/7pp59+/fXXQrWn3Q9CCA7LYCArVpDSUjJnDnn9dZMPT09PZ0sN9+/fP3jwYOHruwshBIf14Yfk/HnyyCPkyy+Ji4mv9MZGsmrVyxqN5sUXX1y2bJllCmyBEIJjUqnIO+8QkYh88QXp29fkwzdtIrdvn5sz5zUzlhqaylIhlMvl165d6+RiRwDz1NeT5ctJczN57TUiFpt8+Jkz5F//IsXFnpGRu319fS1Q4B9Yqm1NkCUeAOZZs4ZkZZEJE8j775t8bEkJWbmSUEoiI4mg3Wn3hctRcDQKBTl2jPj6khMniImbpxGDgaxcSSorybx5LR02VoAQ2i6tVpubm8u7CjuTm0ukUkII+de/zGlPe/99EhND+vQhhw8TobvT7gshtFExMTETJkyYM2dOU1MT71rshlZLli8nd+6QF14gK1eafHhcHHn3XeLiQo4eJaavNDQfQmhzsrOzn3vuuVmzZqWmprq6uhYUFPCuyG68+Sa5coUMGWJOe1ptLVmyhGi1ZPNmYvpG+J2CENoQtVq9devWMWPGfPfdd76+vjKZLCUlxYwdaZ3TDz+Qjz8mbm5mt6eRvDwycSLZts0CxT0QFvXaBIPBcOzYsc2bN5eVlYlEIolEsmvXLjM2X3Ba5eXkb38jlJLt28mTT5p8+Oeftyw1PH7c5LmczkMI+YuLi1u/fn1sbCwhJCQkZO/evVPMaHN0bmvXktJSMns22bTJ5GOzswnbcu3gQcLlsgMh5KmkpOTNN988duwYpbR///7vv/++RCIRfM2oM9i1izQ1kU8/Nbk9zbjU8G9/I8uXW6a4h0EI+dBoNPv27du+fXt9fb2Pj8+6deu2bNnSpUsX3nXZqyFDyOnT5hy4eTNJTCTDhhHLd6fdlwkh1OtN3hsH2nX69GmpVJqfn08IEYvF+/bts1CDEaXUEqd1GGfPkn37WpYaCrd5muloB1y8eHHq1Km+vr5yuVyn03XkEGhXfHz8tGnT2H/5CRMmXLp0SfAhqqurIyIifHx8vL29AwMDw8PDlUqlVqsVfCB7V1pK+/ShhNDduzlX0qEQUkrZs0jZS+fy5csWrckhVVRUSKVSV1dXQkjPnj0t8edMp9Pt37+fPaPL1dX1kUceMf6pDQgIWLNmTXR0NNLI6PV01ixKCJ07lxoMnIvpaAgppUql0njVJBaL8/LyLFaVQ2lubpbL5ey5P+7u7lKptKamRvBRLly48MQTT7DfzjPPPHPt2jVKaWpqqkwmGzlypDGN/v7+EolEqVQ2NjYKXoMd2bGDEkJ796a3bvEuxaQQUko1Gk1kZCSbP/D29o6IiLhz546FKnMM58+fHzVqFAvArFmz0tLSBB+isLBQcncLsUcffVShUNz7PSyNwcHBxjT6+PiIxWKFQlFXVyd4STYuLo66u1MXF/rf//IuhVJqagiZ4uJi40w6e1Cwgfs7uu3JzMxcsGABe8U/9thj33//veBD1NfXy2QyLy8vFiqZTNbQ0PDgQ3Jzc+VyeWhoqPFGiLe3N0tjbW2t4BXaoJoaOngwJYRu3sy7lLvMCSFz5coV4z3lSZMm/frrrwKWZdeqqqoiIiI8PDwIIX5+fpGRkU1NTcIOYTAYTp06NWDAAEKISCRatGhRQUGBSWfIz89vk0YvLy+xWBwVFVVeXi5stTZl2TJKCA0OpkL/TsxnfggppQaDQaFQsO4q1mx1yxYusfnRarVRUVFsRsTFxUUikVjiBX316tWpU6ey5EycOPGXX37pzNmKioqioqLEYrGbW8v9KldX19DQULlc7ni/zUOHKCG0Sxd6/TrvUlrpVAgZdlHk6elJCGFtxw+9KHJIMTExxqmRZ599NikpSfAhSkpKwsPDXVxcCCH9+vWLiorS6/VCnbyyslKhUIjFYuPefsY0FhcXCzUKR9nZtGtXSgg9epR3KX8kQAiZ7OzsRYsWsV/esGHDTp06JdSZbV/rn33AgAHtTo10UlNTk1wuZ4/j8vDwkEqllpsSq6qqYmlkf1jZu3pwcLBMJsvKyrLQoJbW2EjHj6eE0LAw3qXcQ7AQMjExMWPGjGG/uRkzZiQnJwt7flvTemrEclcBSqXSuO+lWCzOzc0VfIh2qdVqpVIpkUha99MFBQXJZLKMjAzr1CCUDRsoIXToUGqD008Ch5D+8XORm5tbeHi4Q37Qt87n4fT09Llz57JX/6hRo86dOyf4EB2h0WhYGru1WqjH0qhSqbiUZJKzZ6lIRN3daWws71LaI3wImaqqKqlUyj7r+/n5yeVyR+rViIuLe/LuqjULzQzfvn3b2GHj7+9vIw2DDQ0N3377bVhYmJ+fnzGNzz//8ltv0YQE3sXdR2kpDQighNAPP+Rdyn1YKoRMRkbG/PnzjffKzpw5Y9HhrKD1PdJ+/fpZ4h4p67Dp0aMH67AJDw+vqKgQdojO0+l0ly9flkqlAQEBU6eeIIQSQgcOpFIpvXyZfyOYkV5PZ8+mhNA5c6hwc1gCs2wIGaVSOXToUONHmpycHCsMKjjWLcSmRizXLXT+/PnRo0cbO2xSU1MFH0JYOp3u4sXml1+m/fpRFkVCaGAglUrpTz/xf93v3NnSnnbzJudKHsAaIaTt9U/aV39Gm6mRGzduCD7E9evXxXc3ix4+fLjdTS/r9VSlojIZHT789zT27EklEqpU8rkzfvUq9fCgIhE9fZrD6B1npRAyN2/eDA8PZ59zevXqZSOfcx4sISFh+vTpLBvjx4//6aefBB+CLT5i9wN69OgRGRlp793VqalUJqMjR/6eRj+/ljRa8ydLTqZBQXTjRuuNaB6rhpCJj49/6qmn2MvalhdGVVZWWnrxkV6vVygU7AnMrMOmtLRU2CH4YmkMDv49jT4+VCymCgW1Tt+4Wm1D7Wn3wyGEjFKpHDhwoPECLz8/n1cl92IXz927dyeWXHz0448/jhs3jv0XePrppxMTEwUfwnbcuEHlchoaSkWiljR6e7ek0a4+l1gEtxBSStVqtXFhlI+PT0REhC0sq7HC1EhRUZFxijUwMNCplqHk57dNo5cXFYtpVBQtK+NdHCc8Q8jYzivy+vXrCxcuZPEbMWLEd999J/gQarVaJpN5e3uTu4uPNBqN4KPYhaIiGhVFxWLq5taSRldXGhpK5fKHL7Q1Xt9+9FE7Xx06lBJCd+60RNUWwT+ETGxs7OTJk1kAJk+e/Ntvv1lz9MbGxvXr17PGZT8/vz179jQ3Nws7BFt8xK7A2eIjm7oC56iykioUVCymHh4t0XJxaUnj/frGjSHs16+dj3wIofn4zlJMnz6dDVpmgasilUoVGhrK/sQEBwfb7FwUX1VVLWn09Pw9jcHBVCajbfrGW8/0fPpp2/MghJ1VV1dnXBjVpUsXmUxmnfn61NRUSyw+Yndl2OKjvn37Crv4yFHV1tLjx+lf/kJ9fFqSJhLRiRPpzp2UXbyzEE6eTAmhw4e3bQlACIWRlZVlXBxkj3eu6d3FR/bbn2ALNBqqVFKJhHbrRgmhffpQdpOIhTAykvr5UULoyZN/OAohFFJ0dPTjjz/Oojhz5syUlBTeFXWUUqkcMmSIvXfq2Y6GBvrtt9S4TpOF8P336ZYtlBA6fvwfvhkhFBhbGMX20mQLo2ywm7m1jIyMefPmsfiNHDny7NmzvCtyQCyEW7fS8nLq7U0Joa3XeCGEFnHvuh4bXBjFimSrt2y2SMfAQiiTUUrpK69QQujTT//+VYTQgtLT023zTcbu3q7tXesQ5ue33Gk03tVCCC2uzcctq+31cD9tPrg6/I4etqB1CCmly5dTQuj//E/LvyKE1tB64pHtesRl4rH1FK6z7W3FV5sQpqRQkYiKRJS1GCKE1tN6/z8r34JrfTOT7e9k74uP7EubEFJKFy6khFCJhFJKhw1DCK3r6tWrrZtRfv75Z4sO5/CLj+zCvSG8fJkSQt3caF4eHTUKIbS6e/eEt1BbZrMnXRcAAAJCSURBVGxsrHHn/5CQECs3uILRvSGklIaGUkLoyy/TkBCEkBO2QMGkp6N0XOulHngGDnfthvD06ZZligghZ+w5YQIujLLNRY9Ort0QGgx0zJiWRlOEkL+LFy+OHTvWuGidPTHTDHguqm1qN4SU0qNHf19dgRDyx2ZQevfubZxBMWmNUpuNcCzxcHkw2/1CqNXSQYMQQhtjxkZmrR8uby9bwoFdc/AQMq239BwxYsTp+2xDae+bo4KdcooQMg/ewan1NuGzZs1KT0/nVSc4GycKIW1vL8Pq6urMzMzWD8ywxMPlAR5ARCklTqa8vHzLli2HDh0yGAzdunVTq9V6vd7f33/btm2rV682PjUawDqcMYRMYmLihg0b1Gp1dnb2kiVLtm/fzp6pCGBlzhtCprq6mlLq7+/PuxBwXs4eQgDuXHgXAODsEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDO/h997uu2e2eTwgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -696,7 +719,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHfklEQVR4nO3dXW7jRhCFUSuYHXn/\nO4jXxDwIUDyyRIviz61qnvM0GAwisd0fiyZt5TJN0weQ80/6DcDZiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQgj7k34DI7h8XW5/nj6n21/e/jzM\ni7IHEa51t++PySDyouzE5egqP3f/8QUe86LsR4QQJkIIEyGEiRDCRLjK9Dl9f1Tw8feTg5FelP14\nRLHWXRLH3KiMvCg7uUyTrx8kuRyFMBFCmAjfV/N2SM13xQwRjubnvVOKE+Gb/Mw0WxHhgAzDXkT4\nDmOQDYlwTIZhIyJczBhkWyIclmHYhQiX6TUGddiCCCFMhAv0GoNXhmF9IoQwEb6q4xi8MgyL8/uE\nL7lc2i/UAIcwKpMQwkT4uzFmyDRNl4uL0opE+IsxCrzSYU0ihDARzhlpDF4ZhgWJEMJE+NR4Y/DK\nMKxGhI+NWuCVDksRIYQ1ON9Hztn1l2U9C1tE9f8XReqycOzL0Q8LW4nLUQgrHWHwrDn2rQsLW0rp\nCOEM6kYY/+Zh1HO2ha2mboRwEkUjfHa23u8M+vC/PN45Oz4Gr8Zb2DUqPqKYKXC/DXTdFhU26PH2\n7uGcq/q6ihGWMlKczw4kcnQjLexK5S5HI2Pw6tk10hjXTgV3/BgLu165COFsakUYHINXow7DgmPw\nqvvCbqJWhHBChSKMj8Gr8YZh2TF41Xdht1IlwuIbBfZTJcJnInGONAxbnN06LuyGSkRY5EL0u5Nv\ni+OdecFLRNhIr73SYgySj7DgGLzqflEaX8Cluizs5sIRttsosLn8JHyoSJx9h2GRBVyq/sLuIRlh\n040C26o4CUvF2XEYllrApSov7E5iEbbeKLChcpOwYJy9hmHBBVyq5sLuJxNh2ccSz3TpsOwCLlVt\nYXcViHCYjQKbKHQ5WjzO+sOw+AIuVWdh93Z0hINtFFivyiRsEWflYdhiAZeqsLAHODTCITcKrHRo\nFe1uij5U8Ch6LeBSRx7d5ev/wTt9Tre/vP15D8d97ujYG6Wgjguefc93se3d3s1xET77sNd2e+XZ\ngQS/gXn2kb691nbms4kXL+y/r/7DmXF3TIEfFT6Bu9EuuXE5eqSxj+7j4BszJ7nZVUejBR++tBlV\nHlF0l91DjWJb6gxxHh3hwNulphYLfobSZpiEG6iwh1rE9tDM6h25sNPn9P35xMffjyt2Fbgx0+6u\nXXcW/EV3HR52dzTztRlpT5Q6loI/SDCvyBjMylyO9r12ulNto1T+6dZFqi3srmLfE7bbFt0VXPBT\nlTbDjZn31dxDBWN7yIXoTTLCLttlGBa8JpPwTZXP1vVjMwa/C0dYf7sMxoIXZBK+o/7ZunJsxuCd\nfISVt8tDXTZKu8cVXRZ2c/kIPwpvCzZ32tJmlIiwkV57qNowdCH6UJUIDcODWfA6qkTYQsezdZ3Y\njMFnCkVYZ7s81HejVLsovdN3YbdSKEIGprQZtSIscm7+qfseyg5DF6LzakUIJ1QuwoLDcIyzdWoY\nGoO/yn/u6E8zH8ew63axIYgoeiqqc46s8042cfDnXxiDr6i7EBW+SBXew+YqHFSF91BHue8J4Wzq\nRhi/QzPq2drCVlM3QjiJ0hEGz9ljn60tbCmlI4QzaHBaipyz6y/Leha2iAYRRgx/1TT8ATbichTC\nRPhY/D7+rozBUkT41KgdKrAaEUKYCOeMNwyNwYJECGEi/MVIw9AYrEmEvxujQwWWJUIIE+FLpmm6\nfDUehpcvY7AuEb5q+uza4eXrMn0qsC4RQpgIF+g4DI3B+kQIYSJcptcwNAZbEOGwFNiFCBfrNQyp\nT4RjMgYbEeE7DEM2JMIBGYO9iPBNhiFbEeFojMF2/FwvhJmEECZCCBMhhIkQwkQIYSKEsD/pNzCC\n70/tb8/o9n5eF3lR9iDCte72/TEZRF6UnbgcXeXn7j++wGNelP2IEMJECGEihDARQpgIV/n5W4UH\n/JJh5EXZj0cUa90lccyNysiLshO/TwhhLkchTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGE/QcyfAaIQD+qHgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVwU9f8H8PeysByCggqYdBgSIHwFD7SvXzVK+qZ534ZZ3rdyCKGipqjkfWeZmZaZeZSoKVmWmX39Zh6wX5VrDdMEERS5hAV2d+b3x/jbDHaHa3bes7vv58M/itmYF36/Lz47OzPvkbEsC4QQPDbYAQixdlRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWwMe5p7slSZNyfH8p+sMIAREBUQj57CvcEpgc6pDr4pPlsKtik/3obuzbqTuri4GKLD0BEYIsdQLr2Ptw76fak+Dbxw12HK9XKqDtROlYX6xnLbXWwcQDGwgMQcVAJjUrMSxzhOiKxbSIAdHXqyrJsZlWmVQUg4qASGlaoLVRVqeLbxOu/MqX1FKsKQERDx4SG5WvzAcDTztNqAxDRUAkNc7RxBAAdq7PaAEQ0VELD2tq1BYBcTe6TX6xiq6wnABENldAwe5l9F6cux0uO67+SXJLsc91HtBqgByCioRIatfyp5cklyQvvLlSqlQeLDk64PWFK6yn2MnsAqGQqK5lKrg8aVqP/ZwsLQMQhY1kWO4N0JRUnJeQlZFZmeim8ZrSeEesZKwPZI+aRi9KlxivlMrm2s9byAhARUAnrsCF/w28Vv633Wv+s4lnsLDXd1dxNyEvo6Nhxjvsc7Cyk8aiEfAq0Bb5pviW6km99vu3XvB92nJqOlxwfkj3ETe6mClS1tm2NHYc0Eh0T8onPjS/RlQxqMUiCDQSAwS0G92ver0hXtDRvKXYW0ni0EhqVWpHaLaubHOTXAq752vtixzEsozIjOCOYASbFPyXIMQg7DmkMWgmNisqJ0rG6CI8IyTYQADo4dJjpPlPH6qJyorCzkEaildCwA0UHwv8I97D1UAWqWshbYMfhU6Qr8k3zfaB9cMT7yDDXYdhxSIPRSmiAmlEvyF0AAIltEyXeQABwk7ste2oZAMTmxlYyldhxSINRCQ1Ym7/2dvXtzk6dJ7aaiJ2lXma0nhHkGHSz6uaTN/4Sc0FvR2vK0eT4p/mXM+U/+/78kvNL2HHq60zZmbAbYc42zlmBWdx1p8Rc0EpYU1xOXDlTPsZtjBk1EAD6uPQZ5jrsEfMo/m583a8mUkIr4d/8Wv5rz6yeDjYO6QHp7RTtsOM0zM2qm4EZgVVM1QW/C92bdceOQ+qLVsK/MMBE3olkgY3zjDO7BgKAt713lEcUC2xkTiQL9LvVbNBK+Jfdhbsn357sZeeVFZjVzKYZdpzGeMQ88kvzu6u5+3m7z8e1HIcdh9QLrYSPlenKFt9dDABrvdaaaQMBwNnGmRsMtSB3wSPmEXYcUi9UwsdW3luZp8nr0axHeMtw7CxNMr7V+O7NuudqctfcW4OdhdQLvR0FAMi+nx2cG6xm1Bf8L3Rz6oYdp6m4j5dc5C5Xva4+1/o57DikDrQSAgDETI3xjPWMkcVYQAMBoEezHtEQ3SqqVezMWOwspG60EsKZM2fCwsJcXFyysrKeeuop7DjCyM3N9fPzKy8v/+mnn15++WXsOISPta+EOp0uKioKABYtWmQxDQQALy+v+fPnA0BUVJROR3MTpY21blu3bgUAb2/vyspK7CwCU6vV7dq1A4AdO3ZgZyF8rPrtaFFR0QsvvFBYWHj06NEhQ4ZgxxHe4cOHR48e7e7urlKpXF1dseMQw6z67eiSJUsKCwv79OljkQ0EgFGjRoWGht6/f3/FihXYWYhR1rsSpqenBwcHsyybmprasWNH7DimolQqQ0JCZDKZUqkMDAzEjkMMsN6VcN68eVqtdubMmRbcQADo1KnT5MmTtVptdHQ0dhZimJWuhEePHh02bJibm5tKpWrd2sKHBd6/f9/X17e4uPjkyZP9+/fHjkNqssaVsLq6Oi4uDgCWL19u8Q0EAHd39yVLlgBAZGRkdXU1dhxSkzWWcOPGjTdu3AgICJg+fTp2FpHMnTvXz8/v999/3759O3YWUpPVvR3Nz8/39fUtLS09depU3759seOI5+TJkwMHDmzevHlWVlabNm2w45C/WN1KuGDBgtLS0qFDh1pVAwFgwIABr7/+emlp6bJly7CzkL+xrpUwJSWlW7dutra2169ff+GFF7DjiC0zMzMoKEin0128eLFr167YcchjtqLtSaPRqNVq0XZXG8uyERERDMNER0dbYQMBwN/ff/bs2Zs3b46IiEhOTpbJZIhhHB0d7ezsEANIh0gr4cWLF0+fPr148WIR9sXD2dlZoVD88ccfzZs3x02Cpbi4uF27djqd7tEj5PvuV69eHRYWFhISghtDCsQoYXV1dVBQUHZ2tkKhkMvlpt6dMQzDaLVahUKRnZ3t7u6OFQNXXl6ej4+PTqezs7NDXAl1Ol1VVZW/v79SqbS1Fe/tmESJcJH4unXrAMDf37+6ulqE3fHgTlVPmzYNNwai8ePHA8CwYcNwY1RVVfn6+gLA1q1bcZNIgclLmJ+f36JFCwBITk429b7qdOPGDXt7exsbm8uXL2NnQXDlyhUbGxuFQqFSqbCzsEePHgUANze3+/fvY2dBZvISTp06FQAGDBhg6h3VE3cJZc+ePRmGwc4iKoZhevXqBQALFizAzvIYd5Zozpw52EGQmbaEqampcrnczs4uMzPTpDuqv5KSEu5U9aFDh7CziOrzzz8HAE9Pz5KSEuwsj6WlpdnZ2cnl8qtXr2JnwWTaEoaGhgJATEyMSffSUDt27ACAZ555pry8HDuLSMrLy5999lkA2LNnD3aWv5kzZw4A9OnTBzsIJhOW8ODBgwDg4eFRVFRkur00gk6n405VL1++HDuLSLiTQ126dNHpdNhZ/ubhw4fcNfRHjx7FzoLGVKco1Gp1QEDArVu3du7cyR0WSsr58+d79+7t4OCQmZnJLREW7M6dO/7+/mq1+ty5c9xhoUFnzpxhGMYUAVq0aNGtm9FZku+///7cuXO9vb3T09Pt7e1NEUDqTFTuhIQEAOjUqZNWqzXRLppo5MiRADBu3DjsICY3atQoAHjzzTf5X2a683Uvvvgiz361Wi13X/Xq1asF/bnNhklWQv3Qy7Nnz3KHhU9Sq9Xp6emiXbt48+ZNBweHtm1rPjeznuuDuav/mt+vXz+tVmuKDAEBAdxUO2MscvRrA5ii2WPHjgWA0aNHG9yakJBgY2OTmJhoil3XcODAAXt7+/DwcINbJXukJBQzOvrlZm1NnDgROwgC4Uv43//+VyaTOTo6/vHHH7W33rlzp1mzZgDw888/C77rhu5Osp8ZCuWjjz4CM/kcODs7m7uO4rfffsPOIjaBS6jT6bp37w4AS5YsMfiCN954AwDeeOMNYffLY+nSpQDQuXNng8udBM+eCcXszohyM0d69OhhbddRCFzC3bt3A4CXl9ejR49qb9Uvkrdu3RJ2vzwqKiqee+45APjkk09qb5XgdSRCmTdvHpjVtUGlpaXcAeEXX3yBnUVUQpZQ/5e4b9++2lt1Oh33OfXSpUsF3Gl9fPHFFwDg4eFRXFxce6ukrqgUiv4q2UuXLmFnaYBPPvmE55e4pRKyhNwTSIy9ndi1axcAPP300+L//TIM07t3bwCIi4sz+AKJ3FsgIDO9X0R/OPPuu+9iZxGPYCXkP7DWL5L79+8Xao8NkpKSwi13WVlZtbfeu3ePu833u+++Ez+b4E6fPg0AzZs3z8vLw87SYPwf7FkkwUo4dOhQAJgwYYLBrVI45p44cSIADBkyxODW9957DwACAgI0Go3IwYSl0Wi4cfcbNmzAztJI4eHhADBmzBjsICIRpoQ//vgjADg7O+fm5tbe+vvvv0vh0+d79+5xdzaeOnWq9taqqipu8Mz27dvFzyagjRs3AoCPj4/5PuxNf2Lp7Nmz2FnEIEAJ9ZcdrVq1yuALBg8eDACTJk1q+r6aaPXq1QDQoUMHg/f4HzlyBABatmz54MED8bMJorCwsGXLlgBw4sQJ7CxNws1llPJljwISoITbtm0DAG9vb7VaXXvrDz/8AAAuLi53795t+r6aqM6pCq+99hoAREREiBxMKNxM8VdffRU7SFNVVFRwTzjduXMndhaTa2oJ9beiJCUl1d6qXyTXrFnTxB0JhX+qQlpamq2tra2trTneZnr9+nUu/PXr17GzCODAgQM8J5YsSVNLOHfuXDB+U6Y0H0bNP1Vh1qxZABAWFiZyqqb797//DQBRUVHYQQTz0ksvAUBsbCx2ENNqUgnT09O58QT/+9//am99+PBhq1atQHr3a/JPVSgsLORiHzt2TPxsjXb48GFzP6CtLSUlRS6XKxQK6YxHMYUmlZBbUmbPnm1w6+zZs3kWSVz8UxW2bNkCAO3bt5fUAs6jsrLSx8cHAD788EPsLAKbMmUKAAwcOBA7iAk1voTHjh2r8+BKsjN8+KcqaDSaf/zjHwCwdu1a8bM1wsqVKwEgMDDQ3E9y1qYfmfntt99iZzGVRpawzo8ZpT/NTv+hrsHlTlIf6vLLyclxdnYGgO+//x47i0lww6ONnViyAI0s4Zo1a3j+XpKSkngWSYmoc6rCoEGDAGDy5MkiB2uot956CwBGjBiBHcRU9L/xN2/ejJ3FJBpTQv53CPpLT7Zt29bkeKbFXehjbLnTX+hz8eJF8bPV06+//iqTyezt7W/cuIGdxYSOHz8u/V/rjdaYEk6aNAkABg8ebHDrqlWruIswzeLNA/9UhXfeeQf9klceDMO8+OKLALBo0SLsLCbXr18/AJg5cyZ2EOE1uIT1vB3B4PWZElTPmz++/PJL8bPV6bPPPgOANm3aWN5YgNr4z4eZtQaXkDt/+s477xjcyn+ngjTx3+Hx8ccfY90Gya+srIwbIbd3717sLCKJiIgAgFdeeQU7iMAaVsL9+/fX5xZ1g4ukZPFPVUAcCMAvPj4eALp27Wqpo+Jq059Y+vrrr7GzCKkBJdQPa9m1a1ftrfq71+fPny9cPJHwT1U4f/68+KNx+HHDVGUy2S+//IKdRVTbt28HgOeff97g3QJmqgEl5B9btm/fPm5smTleblvnVAXxh8TxGz58OAC8/fbb2EHEptVqg4KCAECcubX1kVedB1eA+3O69HQjvkN9S8g/wLOiooIb4Ll79+5GhJACSY1L5XfmzBkAcHJy+vPPP7GzIOB+fGN3kJvO7ge7A9IC7FPs219vvzF/45Ob1Dp1sbbY5CXkXwoKCgpGjx4dEhJi1scn4eHhoaGhxmau8b8REI1Wqw0ODpbUUiC+YcOGAcD48eNF2+NnhZ/BFYjPjb9cfnnXg13Oqc7r7q178gVqnbrRJazXsyiKi4uDgoIKCgpUKhXP8wwqKiqcnJzq/G6SxZ+/oqLC29u7pKSksrJSzFS1OTg4uLm5cYeFuEmw3Lx509/fX6FQlJeXN+g/9O3oq/pU1dDdfevzbeSdyI6OHb/y/or7yq4HuzKrMtd7rde/ppKpdFQ6nn7h9Ksurzb0+wv5IB6zbiCYf349lmXVarVZ/ziS+oVeqitVVani28TrvzKl9RQhd1DPFdPaBmDV9u6774KU3o6uXLnS4AsyMjJ69+5t1p/ZcD9jeHh4YWGhwRfwj/YTXJo6Da7AtyV8t3E05e2oMB/MWLw7d+44OTnJZLJz585hZ2F/+eUXmUzm5OR0+/bt2lv1Zy8uXLggfjZBfPDBB2D8PAT/aD9TuFl1E67AiWK+2VlilJB94pMJaxiAVcOYMWMAwNgj1sQ3YsQIAHjrrbcMbl24cCEA/POf/5TmJa/89Gfkv/rqq9pb9aco3nvvPdEiVTKVcAU+uv9RjS8++a8ilVB/sv7jjz9uxJ7MlwRP1t++fZtbmQ2erDfrK9oiIyPB+LVp77//Phgf7Wc6XTK6DPh9gP5fTxaffPrq00/2UKQSsiz75ZdfgnUMwNLT6XQhISEAsGzZMuwsf7No0SIwftnap59+CmZ4bbf+Km2lUll7q36RPHLkiMjBThSfkF2RLchdkFqReuDhAff/uS+7+/j/D2qdWn+eMLkkWa1T11gk69TIC7gtfgCW3s6dO0GSF3Drn3D62Wef1d5qpnc58d+vxD/az9SOFB0JTg+2T7H3vu699t5ahmVYli3Tlekvl9H/kafIG/SdBb6VycKUlpZyz9k8cOAAdhYD9u7dC8afcGp29/t+8803AODq6mrwzl26lelvJk+eDACDBg0SPI3UxMbGAsC//vUvaX7CwTBMz549ASA+Pt7gC8aNGwcAI0eOFDlYI1RVVfn5+QHApk2bDL6AWyRnzZolcjARCD/ewmKYxXiLy5cv8zzh1IxmQHHTnPz9/Q0OZOAf7WfuGjnoae3atWDRA7BYlh04cCAATJkyBTtIHd5++20AGD58uMGtK1asAMlPQ9T/Wk9OTq69VT/oacuWLeJnE0FTRx5a6t8L95xNsxh5qB8pYnC5U6vVzz//PADs2LFD/Gz1xD/h1+J/4zd++K8FD8DSD/9dt25d3a+WgMTERJ7lTj8h39hVYLhSU1PlcrmdnZ3BWffWcOzTpDH4lnqsvHnzZjDPMfgffPCBwRe8/PLLABAdHS1ysPoIDQ0FgJiYGINbreFTQBM+EMZM6R8Ic/z4cewsDfDVV1+B8QfCKJVKuVwuwaem6Z9/VlRUVHurlZwPa+qj0SxvANbMmTPBnB+NFhkZaXCrBJ8fWueTQPlH+1kMwR4SKv6VRKagf87mtWvXsLM0GH/4goICV1dXADh58qT42QxKSEgA48/Etp5rJAV4XDbWNbWmwL+YSN+MGTN4lrsNGzYAgI+PjxSOdXNycrib486ePVt7q1XdLSBACVHuLjGFr7/+muewyizoD2i/+eab2ls1Gk1gYCAAbNiwQfxsNYwdOxYARo8ebXCrVd03J0AJWYz7LAWnf46NsQ8YzcWmTZt4Ptr9/vvvAaB58+Z5eXniZ9Mzo9l2IhCmhCzGACxhcafaAgICpHxlSX3oT3KuX7/e4Av69+8PANOmTRM5mJ7ZTXk1NcFKmJ2dzU1VMPhkFYnTX3Ty3XffYWcRgP5yH4PL3Y0bNxQKhY2NzeXLl8XPxrLs7t27wfi8c/0iKZ1bqE1NsBKyLLtgwQIznarAf/mlORowYAAATJ061eDW6OhoAOjZs6f4/0vpn/yxb9++2lsl++QPkxKyhPqpCp9//rmA39bU+G9EMFM3btzgbgG5dOlS7a0lJSXcfZKHDh0SOdj8+fPB+DOwdu3aJc1bqE1KyBKyLLtnzx7unUZZWZmw39lEGIbp1asXACxcuBA7i8BiYmJ4bobcsWMHADzzzDPl5eWiRarn0yD3798vWiQpELiEDMNwx9yLFy8W9jubCP/N6WZNPxbg4MGDtbfqdLquXbsCwIoVK0SLxD8vVOLPRTYdgUvI/v9UBQcHB4OfPkuKfkzLp59+ip3FJLgBOcaWO/75pYLjP49lFrdQm4jwJWRZ9s033wSAUaNGmeKbC4h/YJkF0I+KS0hIMPiCkSNHOjg4GJzwKbhly5bJZLJVq1YZ3Dp48GAAmDRpkghJpKZeD4RpqNzcXD8/v/Ly8p9++om7icaYWbNmqVQNfkBHfTg6OnKDg4z5888/O3TooFarz507xx0WWqTz58/37t3bwcEhIyODuxDsSTk5OVqtlruKWgSXLl0KCgqyt7ev8fUff/zx1VdfdXFxycrK4g4LrYuJyr18+XIACA4O5r/sqEuXLib6uZycnPgT8g+xtiSjR48GgLFjx2IHMUyj0XTs2BEA1qxZg50Fh0lWQgCorKzs0KHDrVu3Pvroo2nTphl72cWLF0tLS00RQC6Xv/LKK8a2/uc//3nppZccHR0zMjJ4HvZmGe7cuePv769Wq3/++WfukeaSsm3btoiIiPbt26elpdVeJK2C6fp96NAhAHB3dzd4vyYilA8GcS1ZsgQAunTpIrWj34cPH3JXnB87dgw7CxoTlpD9/8kF8+bNM+leGurDDz8E0U+R4ZLs88xnz54NeEO1JcK0JeSf4YOiqKjI3d0dAA4fPoydRVT79u0DAE9PT+ncI5uWlmZrayuXy69evYqdBZNpS8iyLHdA2L9/f1PvqJ6ioqIAoFevXtZ2RphhGO6AcP78+dhZHnvttdcAYO7cudhBkJm8hPqpCgbnuoosIyPDzs4O8QYCXFeuXJHOVbJJSUkA4ObmZr63UAvF5CVkWXb9+vUA4OPjU1VVJcLueLz++usAMH36dNwYiCZMmAAAQ4cOxY2hv4V627ZtuEmkwFSnKJ5UXV0dFBSUnZ2tUCjkcrmpd2cMwzBarVahUGRnZ3OHhVYoLy/Px8eHYRhbW1uZTIYVQ6fTVVVV+fv7K5VKW1tbrBgSIcbPr1Ao9u7de/r06cWLF4uwOx7Ozs52dnZWejIKAAAcHR3t7OwYhikrK8NNsnr16rCwMGogAIixEnI0Go1arRZnXwaxLDtgwIDz58/HxcWtWbMGMQmiqKioLVu2hIaGck8xQMT9OsDNIBHilVAKUlNTQ0JCuMmc3ANtrEpmZmZQUBDDMFeuXAkODsaOQx6zwQ4gqs6dO48fP766ujouLg47C4J58+ZpNJqpU6dSAyXFulZCAMjPz/fz8yspKTl16lTfvn2x44jnxIkTgwYNcnV1ValUVvu5lDRZ10oIAJ6engsXLgSA6OhojUaDHUckGo2Ge/T30qVLqYFSY3UlBIDo6GhfX9+MjAxuzoo12Lp1a1ZWlr+/P3etJpEUq3s7yjl27NjQoUPd3NxUKhX3QBsLVlBQ4OfnV1xcnJyczF2uQCTFGldCABgyZEjfvn2LioqWLVuGncXkFi9eXFxcPGDAAGqgNFnpSggAGRkZwcHBDMOkpqZyd3ZbJKVSGRISYmNjc+3aNT8/P+w4xAArXQkBoEOHDtOnT9fpdNx9FZYqKipKp9NFRERQAyXLeldCACgqKvL19X3w4EFSUhI3EtPCHDp0aMyYMe7u7iqViruXhUiQ9a6EAODm5sY9By8mJqayshI7jsDUajU3c37lypXUQCmz6hICwMyZMzt27Hjz5s3NmzdjZxHYunXrbt261alTp8mTJ2NnIXys+u0o58yZM2FhYc7OziqVymKGXupHv549e5ab9EMky9pXQgDo06fPkCFDPF702HRvE3YWwWzM3+jRzWPkyJHUQOmjlRAAIPt+dnBusJpRX/C/0M2pG3acpvq1/NeeWT1d5C5Xva4+17rm1G0iNbQSAgC0d28/x30OA0zknUgWzPu3EgNMVE4UC2ykRyQ10CzQSvhYma7ML90vT5O3r92+N1u+iR2n8fYU7pl0e5KXnVdWYFYzm2bYcUjdaCV8zEXuktg2EQDm584vZ8qx4zRSma5s0d1FALDGaw010FxQCf8yvtX47s2652py1+avxc7SSIn3EvM0eT2a9Rjbcix2FlJf9Hb0b7iPNBxsHNID0tsp2mHHaZibVTcDMwKrmKoLfhe6N+uOHYfUF62Ef9OjWY/wluFqRj0/dz52lgaLyY2pZCq59Rw7C2kAWglrytXk+qX5lTPlZ33PhjqbzUm2M2Vnwm6EOds4ZwVmtbVrix2HNACthDV52XnFecYBQNSdKB2rw45TLzpWF5UTBQCL2iyiBpodKqEB73i+007RTqlW7i7cjZ2lXj588OE19TVve+8oD0u+LctS0dtRww4WHXzjjzc8bD2yArNc5ZK+BaFIV+Sb5vtA+yDJO2moqwXekGXxaCU0bIzbmFDn0AJtwcp7K7Gz1GHp3aUPtA/6uPShBpopWgmNUqqVIZkhNmBzrcM1PweJ3paeUZkRnBHMAJPinxLkGIQdhzQGrYRGdXLsNLHVRA2ric2Nxc5iVHROtIbVzGg9gxpovmgl5FOgLfBN8y3RlST7JL/eXHKjyo6VHBuaPdRN7qYKVLW2tfDBjRaMHkzFx8PW492n3r2qvtrJsRN2FgNCnELGtRzXvVl3aqBZo5WQEGR0TEgIMiphY9zT3JOlyLg/P5T9YIUBiICohHz2FO4JTA90SHXwSfPZVPDXBJo2dm3UndTFwcUWH4CIgD6YMWrvw72Tbk+KbxM/3HW4Uq3kLiWN9Xx8usLBxgEYCw9AxEElNCoxL3GE6wjudvuuTl1Zls2syrSqAEQcVELDCrWFqipVfJt4/VemtJ5iVQGIaOiY0LB8bT4AeNp5Wm0AIhoqoWGONo4AgHg/IXoAIhoqoWHcrbG5mtwnv1jFVllPACIaKqFh9jL7Lk5djpcc138luSTZ57qPaDVAD0BEQyU0avlTy5NLkhfeXahUKw8WHZxwe8KU1lPsZfYAUMlUVjKVXB80rEb/zxYWgIiDrh3lk1SclJCXkFmZ6aXwmtF6RqxnrAxkj5hHLkqXGq+Uy+TazlrLC0BEQCUkBBm9HSUEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVPG5i4UAAABaSURBVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZFRCQpBRCQlBRiUkBBmVkBBkVEJCkFEJCUFGJSQEGZWQEGRUQkKQUQkJQUYlJAQZlZAQZP8HLSkn/KpvXDUAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -708,7 +731,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHHklEQVR4nO3d0W7jNhRFUano//+y\n+mBMoo7tWHZEnktqLczLoEUr09wkozjKum3bAuT8k74AuDoRQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkII+zd9AYNZ1/X4v7xtW7srYRqzRbiua7up/+5//K1iF9Fe1WwRbtvWtMO3vHsZda78iHeXmLcM\nNA6/N1uE7YxVSGutR+NSoz3hjZnbZpi+ik+Me+X8xoQRLg1m86UW5pc6jMal1qM5IxzXpSYfN9NG\neOJstg3uPRyNFgvHddajaSNcTnoX+xdYefI9K/D3Q1T2JXcwc4QM5OHSU3k9OtF5Ef41WPu/ruv3\nn75++S6mDqI1J1+7bfDi2u+E67ps2/ef0Tqkm8tuho6jT2XX+GqTzzbYzqkR5o6dP6s2oYfTLbZr\nboanRrg/dhbz7htZYY0vPvkaDVHxV93ChY6jx9/dCgXeVJiRFQ6iFcahnQtFyCiudihtH+HtjujX\nn/3yWfJOaZ1t8CY7+Spsg9M7L8K/3pX9X599reg7FrUFY7vUZpg+jiY6/EHNNb7U5MveKZ1SOsJl\nd17t9z98/O7WLDCl5mhMWWaBCJc/59UCHZZV5ILdFG2hRoQ30aNpzYU/pfL9mPnKrBTh0rXD4d7L\nbhdcJLab4d6mDxSLcMl0WGra1VTqTulkZdaLcFmWuYb4RB0mn/Wov5IR9lrqbIMHxYdo7s2w7nNH\nv0b5rLf/4Td/v/7RKB22nnyjjEND++H9Go37D3udN1B1I1z+TIjPCvkhuaH1f+pukRXq/tnqB9ej\nB5f+w8tpGdszpSO8OfJk+18mV+rh+dXUGZbTVoeH6eZe5gARLneRzLrLvdTtqbuTj+eJ6Z5hjAiX\n/5892v0s6eSTbyKBN6vZDwAVvTv6zLZtl+3EJ6dnNViETVWefHbpvclGY5jjKD1d93D+1we2uozA\nMAPdbU4UnHyRSyo4DjdlL+xjjqM8VvNwPl+BiwjvVZt8U0479kRYmqeA7826HonwgWqTj7mJ8LEK\nHVZY+CuMw02F0WhEhLxQp8NZifCpgk/dvay5R2OMCOd+D+5Ve73Wo6bGiDDFSYwORFhOzYU/tR7V\nHI1zifAFmyGt+QB3LZUX/mef6j70jImPXlTl0TiRCF/r9iMFg865I9f8QaiDjsYHRMgbPl6PLpLT\nZwb4mrDCiuipu51dajQGiJBS3Kk6nePoUZ66282ltsFFhMf1f+puWe+uR6O8rhQRHjJQIR28Oxrv\nniCuNtQifK1PgRM/W2nKF3UiN2ZemDWMjxmQ04nwJ35FOx1Uj9C6W4q3o4XqEQZFJpzN8IJE+Jgl\n/54xaWSACPvvDB40eE+B7VT/FsXXL+tdet3pNtvobKQJ1yHFOgXWuZKl2MXMp/pOuNd6VzTViBh1\n2p2eYsECi1xSkcuY2AA3Zh66/credV1PuYdRc57VvEPD6UY6jt475YBas8AiDE4H8wzxZynWn2TB\nK6w/OHMYeyfc6//NDDjFnEvdwRRHWen9uuy5zbMT7h3ZFU0yiph/Ij5McbgCO1/wcOMztDl3wr37\nXdEM+5nx6Wz+CG9Gv20z8cMvuEqENybxS1Lvb9RPzFyQD9DMSoR8sw1GXOs4OjpP3Z2SlW9mnro7\nBBFCmK8JIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC/gMD25k0x05dXQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAbS0lEQVR4nO3deVRU5/kH8GcWdlDRIHUXiQsQNfancYFatZqoJabGikul0RitrUoiGpeDkaRxq0aDW90ae7QeTTRRkcTYHBNPQHGriAZjVEhESJQEZRUYmJn398drJ1NGCMvc+9wh38/JH/eMeJ+X4Je587z3vq9OCEEAwEfPPQCAnzuEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGZG7gFoXWFhYVZWFhF5enp6eXnJF+2Pvby8PD092cYHrg8hrM3x48dPnjy5Zs2aOn69fSC9vb09PDzksY+Pj7u7u+Oxr6+vm5vbtGnThg0bZvti+LnRCSG4x9AQJ0+eHDBggO3tSAllZWWhoaHZ2dnBwcEtWrSoqKgoLy+Xf1ReXl5RUeF43DBhYWE9e/bcv39/Y0fMp6ioaNWqVfJYr9c3b95cHhsMhmbNmsljo9Ho5+fneOzm5ubr6yuP3d3dfXx8HI89PDy8vb2V/z54uOQ74dq1axctWjR79uxNmzYpV2XlypXZ2dl9+vS5cOGCwWCoy18pKyszmUzy+MGDB5WVlY7HpaWlVVVVtuO8vLx58+Z9+eWXc+fOHTRokLO/CTUcOXIkPj7+ypUrilaZNGnSzJkzhwwZomgVFi75Tnjp0qUBAwZUVVUlJSX99re/VaJEZmZmz549TSbT6dOnBw4cqEQJm7i4uJUrVw4cOPD06dM6nU7RWk5XXl4eFhb2zTffjBkzRv4SsVgsxcXF8k/NZnNJSYnjcVVVVWlpqTyurKx88OCB47HJZCorK5PHFRUVOp1Op9Ndv369Xbt2qnxnKhKuafXq1UTUunXrvLw8Jc4/evRoInrxxReVOHk1xcXFv/jFL4jogw8+UKGccy1dupSIevbsWVVVpWih3//+96r9RFTmqiG0WCxDhw4lot/97ndOP/kHH3xARP7+/gol3NGWLVuIqEuXLiaTSZ2KTpGZmenp6anT6T7//HOla3399dceHh56vf7ixYtK11KZq4ZQCJGTk+Pv709Eu3btcuJpy8rKOnfuTESbN2924mlrZzabw8LCiGjDhg2qFW08+Vlg2rRp6pSbN28eEQ0bNkydcqpx4RAKIfbs2UNEPj4+N27ccNY54+LiiKhPnz5ms9lZ56yLxMRE+fZ77949Nes22KFDh4ioWbNm3333nToV79+/36pVKyL6+OOP1amoDtcOoRBi4sSJRDRo0CCnZObmzZvy+io1NbXxZ6uv4cOHE9HChQvVL11fZWVlQUFBRLRp0yY167711ltEFBISovRHUDW5fAgLCgo6duxIRG+++Wbjz6ZmP8bRpUuX9Hq9u7t7ZmYmywDq7pH9GJPJ9Nlnnyla12QyPf7440S0Y8cORQupqc4hvHlTdOr08PjgQfHccw+PjxwRISEiKEg8/7zIz3f6+OrixIkTer3eaDSePXu2MedRvx/jKDo6mogmTZrENYC6qKkfs3LlSiJ69dVXnVXo66+/njBhwtq1a+1ffPfdd2VjvLi42FmFeDUuhHfvCn9/ce2aEELMni1mznT+AOtGfmR//PHHS0pKGnYGln6Mo9zcXG9vb51Od/r0acZh1E72Y6ZOnWr/4u3bt+UNLsePH3dWoU8//ZSIWrRo8cMPP9hetFqt4eHhRBQfH++sQrwaF8L9+8WoUQ9fzMgQHTo4eXR1VlFR0atXLyL685//3LAzcPVjHC1ZsoSIBg4caLVaeUfySIcPH35kP+b5558nogkTJji33DPPPENEL7/8sv2LZ86c0el0Xl5et2/fdm45FvUJocEgOnUSnTqJgICHIdy0Sfzxjw+/IC9PeHoqMsa6ycjIkNdISUlJ9f27vP2YaoqLiwMDA4no0KFD3GOprqZ+zCeffEJE3t7et27dcm7FL7/80mg0urm5VWuAjxs3joimT5/u3HIsGvdO+N574plnHr74xReic2cnj66e1q5dS0QBAQF3796t11/k7cc42rx5MxEFBwdrbe6+pn5M9+7diehvf/ubEkVfeuklIho3bpz9i1lZWXLuPi0tTYmiampcCH/4Qfj7i6++EkKImBghrxlOnhSXLzt7nHVisViGDRtGRM/Z+kZ1oIV+TDVVVVVy7n7jxo3cY/lRTf2YFStWEFG3bt0qKiqUqHv37l35yEVycrL966+88krTmLtvdHc0MVGEhYmuXUVUlCgsFBkZws9P+PsLpr5Cbm5uy5YtiWjnzp11+XqN9GMcybn7li1bamfuXrV+jKP4+Hgieuqpp+w/J9+/f1/+rBUtrQJnzxOaTCIqShAJb2/BdFvDwYMH5W00169f/8kv1k4/xtFvfvMb7czdq9yPqaasrKx9+/ZEtH//fvvX5QeQ0NBQl567V2Cy3mwWM2YIIuHuLt57z/nnr4NJkyYRUd++fSsrK2v5Mls/RoX7jxtAO3P36vdjHO3cuZOIOnfubH/RazKZgoODiegf//iH0gNQjjJ3zFitYuFCQSQMBsFxZ0NhYWGnTp2I6PXXX6/ly7TWj3E0ZcoUIpo8eTLvMFj6MdVYLJY+ffoQUbW5e7kiQWBgoOvO3St529rq1UKnEzqdUOWHVE1ycrLBYDAajWfOnHnkF8h+TLNmze7cuaPy2OouJydHzt0zzp1w9WMc2ebu8+3uzbJarfJhYtedu1f43tGtW4VeL4jEokVC9annBQsWyEa/4+9IzfZjHC1evJh37p6xH+NIzt2/8sor9i+mpqbKufucnBw1B+Msyt/AvX+/cHMTRGLWLGGxKF7OTkVFRe/evYlopsP9dLIfo8Lz4I1nm7s/fPiw+tV5+zGOrly5YjAYHOfu5XheeukllcfjFKo8RfHRR8LbWxCJiRNFrZ0Sp7t69apckS0xMdH2osb7MY645u610I9xNH369EfO3bu7uxsMhitXrqg/pEZS61Gm5GTRvLkgEqNHVz14oFJRIYQQ69evl7fR2D77ab8fU01VVVVoaKj6c/e192PWrFmj5mBsvv32W3klnJKSYv96TEwMEY0cOZJlVI2h4vOEX3wh2ra9PHhw//791ZyAtlqto0aNkj8eq9XqEv0YR0eOHCGixx57rLCwUJ2K2unHOKp97v7f//4318AaRtWHeh/cuBHUubOcHFfzHjHbbTSbNm1ylX6MIzl3v2jRInXKaaofU01JSUmbNm2I6N1337V/Xa6V3qtXLw3eelELtZ+s/+6775544gm5spiac9DyDdDNzc1V+jGO0tLS9Hq9p6enCp/EtNaPcbRjxw4iCgoKeuTc/TvvvMM4tvpiWN7i3r17/fv3J6I2bdoo/TH622+/PXr0aHx8fGRkpK+vr1xA9tSpU4oWVc4f/vAHFZ6712Y/phqz2dyzZ08ieuutt+xf37dvHxG1bdu2tLSUa2z1xbMCd2lp6dixY0+cONGyZctjx47JTDaeECIrKyvtvy5dupSfn2//BUaj0Ww2HzhwYPz48U6pqLLs7Oxu3bp5eHjYlrKuacOGuuwhVdP2NWfPnv3888979uyZlpZmNP64UUJqauqMGTNeeOGFhQsXKvhN1tnx48dHjRrVokWLzMxMuQobEQkhIiIiUlNT33jjjWXLlilVOzGRliyhigrq04d27KBWrSgzk4YPp1u3iIjef5/27qUjR+p4MrZl8E0m0+TJkw8dOuTr63v48GG50Fh9WSyW7Ozsq1evXrx48eLFi2fPnq2WuhYtWoSFhf3ff506dWrWrFlBQUHXrl1zxV2QLl261LdvXy8vL9ta8Qpp0aLFunXrXnzxxWqvy1005FW9FkycOLFfv35z5syx/2meOXMmPDzcy8trxYoVtjXza9p2Rv7m6qjTGYUgDw+ybTvj6Uk1bTeUl0chIZSaSj160Jw5VFVF27e7ZAiJyGKxzJgx45///KeHh8e+ffvk543amc3m69evX/yv9PT0av8c27RpExYWFhoaKlMXGhpqv7uDxWJ58sknMzIy1q1bFxsb6/xvSUlCiCFDhiQnJ8fGxq5bt06+aL9hQ7XNG35yD6matq9JTEw8c+bMkCFDTp48qfy3pYiQkJCysrLbt2/X8etNnTu7y/w8kpcX2bagjIigyZNpzx46doyI6OpVGjWKbt921RASkRAiNjY2ISHBYDDs3Llz2rRp1b6gqqrqxo0bttSlpaXZ/m1Jbdq0sb3R9evXT27qUIuPP/549OjR/v7+N2/etF3DuIRdu3ZNnz49MDDw+vXrtr3HlFBYWNi1a9f8/PykpKTIyEjlCikkPT29b9++RPTcc8/ZttOqfduZq61be37/PVVUkO1fV3k5PXLHu8GDafx4unCBdu8mIvr+e+rUicrLKTOTevSg9u2JiMrKaNCguodQE+uOyt1ddDrd+vXrS0pKUlJStm/fHhMTEx4e7njR2KZNm8jIyPj4+KNHj37//fcNKPf0008TUWxsrNO/EeUUFRXJ3y979+5VoVxCQgIR9ejRw+XayFardfDgwUQ0b948p520rEzcv//wv3v3Hr2qS01PvdeBJkIohFi/fr1OpzMYDHq93j5yRqOxV69eU6dO3bBhQ0pKSoNXNLR3+fJlg8Hg7u5+8+bNxp9NHbNnzyaiiIgIdW7jrqys7Nq1KxFt3bpVhXJOtGvXLiIKDAxU8K6GR67q0gRCKIT405/+5Ofnp9frQ0NDo6OjExISUlJSHihzj5u87o2KilLi5E535coVo9FoNBrT09NVK/r+++8TUUBAQFFRkWpFG6moqEhO4v/rX/9StlK1VV1EUwmhvB9qwYIFKtSq6f5DDbJdX6l//RwREUFEcXFxKtdtsDlz5qh5veAsGgrhzJkziWjLli3qlHvttdeIqH///hr/gb3zzjuKX1/V4Ny5c/I5vezsbJVLNwDL9YJTaCiE8nnNDz/8UJ1ytvsPDxw4oE7FBlC5H+NowoQJRPTCCy+wVK87RfoxatFQCHv06EFEGRkZqlXctm0bOdx/qCkq92Mc2fbH/c9//sMygDpSox+jGK2E0Gq1yluu1Fyux2w2y7vJ169fr1rRutPI9dX8+fOJaMiQIYxjqJ16/RhlaCWEeXl5RNSqVSuV63744YdE5O/vn8+0r1tNrFbrwIEDtTCfWVBQIO9qUO2TQn25aD/GRishPH/+PBH98pe/VL/0iBEjiGj+/Pnql64FYz/G0dtvv63ZuXuNXC80hlZCeODAASIaO3as+qXT09PlGrvambu/f/9+69atGfsx1djm7rdt28Y9lv/h0v0YG62EUK5nXm0pO9VMnTqVtPGsqsTej3EkNxdo3bq1pubuXbofY6OVEMrL+rfffpulem5uro+Pj0ae901LS5PLFmvt+krO3S9dupR7IA+5ej/GRishfPbZZ4lpaU1Jriw2YMAA3jcf7fRjHJ09e1ZTc/eu3o+x0UoI5WbXjBs+lpSUyGnxgwcPco1BaKwf4ygqKoocVn9i0QT6MTZaCaF8QI53L76tW7cSUZcuXbjm7rXWj3Gkkbn7ptGPsdFECAsKCojIz8+Pdxhms1nuj8v10VSD/RhHckWCoUOHMo6hafRjbDQRwvT0dCJ64oknuAcikpKS5Ny9+u/Jmu3HVHP//n05d//RRx+xDKDJ9GNsflxLi9GtW7eISO4oyCsyMnL48OEnTpxYtWqVnDVRhxBi9uzZFoslNjZWbmKjWf7+/nFxcbGxsQsWLHj66aftl2OT5DLn9su31fe4dnFxcXfu3ImIiJALQDYF3L8FhBBiw4YNRPSXv/yFeyBC2M3dq7k2scb7MdWYTCY5d799+3bHP7UtNtVg3t7eNV0WNaV+jI0m3gmzs7NJG++ERNS7d+8pU6bs2bNn6dKlchdYpRUUFCxZsoSI1q1bp+gKTs7i7u6+YsWKqKio1157beLEic2aNbP/U51ON378ePul3Gpa1q2m47Kyskeu6SiEmDNnjtlsnjdvnsavF+qH+7eAEEKMGzeOiN5j2uDeUW5urtwf9/Tp0yqUc4l+jKPw8HAiWrZsmdPPXFpa+sgrgibWj7HRRAjlAnVnz57lHsiP5C6iKuyP6yr9GEe2ufvbt2+rUK7p9WNsmNcdlQICAvLz8+/cufOTq4aqprS0tGvXrnfv3p04ceKTTz4pX7RvHvj4+Li7uzse+/r62hao9vPzs/Ut7I+bNWsm18MUQoSHh585c8Z+PV8XEhUVdfDgwWnTpsn3KEXNnTt38+bNERERycnJ9gs6NwXcvwWEvPr39PTU1MWY1WodNGhQQECA0v//3d3dXWtFM3u2ufuLFy8qWqhJ9mNs+Bszcn6iY8eOmvr1FhMTk5qa6uvrO2vWLFuzpKZGQmlpqdykgYhKSkrMZrPjcXFxscVikcdFRUVWq1UeG41GLy8vr5q2PdC2oKCgWbNmbdiwYejQoe3bt6/XFjR1PxZCrFq1qgn2Y2y4fwuIY8eOEdGIESO4B/IjeTO3l5fXyZMnFS1UVVUVEhJCrrlpqbR8+XLHqUKn69KlS7t27Vz0euEn8b8Tamp+gog2b968fPlyg8Gwd+/eIUOGKFrLaDSuXLly7Nixr7/++pQpU1xifsJeXl7e2rVrzWbzzp07Bw4c+MhtZ+p7/Mi5jQEDBsycOdO2rVJTw/1bQCxevJiI3nzzTe6BCCHEnj179Hq9TqfbtWuXakWHDRtGRIsXL1atorPIe1bGjBnDPRDXxh/CSZMmkTb6zkeOHJFXViovvqbmPthOlJKSIqcosrKyuMfi2vhDKJ9hTU5O5h3Gp59+KvsBf/3rX9WvPnnyZCKaMmWK+qUbpqqqSvZI3njjDe6xuDz+ELZt25aIeB/WPnfunJ+fHxHNmTOHZQA5OTnyHp0LFy6wDKC+5KxmcHBweXk591hcHnMITSaTXq83Go2Ma+llZGTIZ3Oio6MtFgvXMBYtWkREv/71r7kGUHd3796VPaSkpCTusTQFzCG8efMmEXXo0IFrANnZ2R06dJDdBd5FNYuLiwMDA4koMTGRcRh1gX6MczGH8Jtvvhk7dqxOp4uMjDx//rzK1fPy8rp160ZEw4YN08Jl1caNG4moe/fulZWV3GOpEfoxTsf/mXDLli3yxkudTjdy5MjPPvtMnbqFhYXyptCnnnpKzQ0waqH9uXv0Y5TAH0IhxJ07d+Lj421T1X369Nm9e7fZbFau4oMHD+QqmmFhYZraheLQoUNEFBAQoM2nddCPUYImQigVFRUlJCTIZikRdenSJSEhoayszOmFTCbTyJEjiahjx47qPIZTL3LufsmSJdwDqQ79GIVoKIRSRUXF7t275Uc1IgoMDIyPjy8oKHDW+c1ms1w8s3Xr1l999ZWzTutEmp27Rz9GIZoLoWSxWI4ePdqvXz8ZRT8/v5iYmNzc3Eae1mq1zpgxg4iaN2/OuNDwT9Lg3D36McrRaAhtUlJSIiMjZRTd3d2jo6OvXbvW4LO9+uqrROTt7Z2SkuLEQTpdTk6Ol5eXdubu0Y9RlNZDKKWlpUVHR8un0fV6fWRkZAPWwli+fLlM8rFjx5QYpHMtXLhQO3P36McoyjVCKGVlZcXExNieFg0PDz969Ggdn8f/+9//TkQGg0E7y0nVrqCg4LHHHtPC3D36MUpzpRBKeXl58fHx/v7+Moq9e/fevXt37Te77Nu3Tz6gtGPHDtXG2XhyOVb2uXv0Y5TmeiGUiouLExIS2rVrJ6MYFBRU03zGJ598IldnWrNmjfrjbIzKykrZJd6yZQvXGNCPUYGrhlAymUy7d+/u0aOHjGJAQEB8fLz9NhKpqak+Pj5EFBcXxzjOBuOdu0c/Rh2uHUJJzmf0799fRtHX1zcmJiYnJ+fy5cvyqnXWrFncY2y4X/3qV1xz9+jHqKMphNDmxIkTI0aMkFF0c3OT74GTJk1ifECp8c6dO6fT6dSfu0c/RjVNKoRSenp6dHS00WgcN27ciBEjuHb8dCK5Akh0dLSaRdGPUY0mVuBWQlZWVvv27eUK89xjaaxbt26FhISYTKbz58/LLQOUdurUqcGDB3t6emZkZHTp0kWFij9neu4BKCU4ONjDw6MJJJCIOnfuPHfuXCHEggULVChnNpvlMh+LFy9GAlXQZN8Jm5jCwsKuXbvm5+cfPXr02WefVbTW+vXr58+fHxwcnJGRYVsMG5SDELqMjRs3vvzyy506dVq9erWPj88j15mvae9b+y1rapeXl9e9e/eioqKkpCTbXbugKITQZchZO4vFcuPGjcacp/Y9pHJzc/Py8saMGZOYmNjYEUPdIISuxGQybdu27fTp03VZQ76m7Wt+0rJly6ZOnRoUFOTUsUONEMKfnZ/cQ6p3795No6HlKhBCAGZNdooCwFUghADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjD7f8l4ls08HQK1AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -720,7 +743,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAG+UlEQVR4nO3dW5LiRhRFUcnhGbXn\nP4MeE/5QGNMUD73PzdRaX3QFdKVAm0wJKMbb7TYAOX+lBwBXJ0IIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTITsY\nx3Ecx/QoWvV3egA0bxzH2+02XZh+Mv2TmUb3F6tN1f3chd79nJdEyEr3CfDDFaYL9rHPRMgaXwt8\nuvJ0wc72kghZbFGBTzecLtjrHomQBfY62FPjIxEy1+oJ8PP/OVw+RREyy8zTMJapK4iQ7+bPgRtn\ntmvWKMK8ykuydWPb3tKlahRh2NPbTUo9HNsPAveqsdTdsjsRxrzcverMAPuehrFM/UCEGYee59ju\niBOhg4nxDREGLD3PMZy4252zl2/ZroOeIIJ8iuJsi/ah+zVPa+Oc/fvk7SpOhOfZssOd8FmhyAzj\nM1CD5ehpSp3nePkfVtgTZtZYZLR7aXImHH///yHu26/b/Yf3y9Xsfhpmxwmk1ILwmsvU9iJ8iq1y\ne5M5T9vrXircvsuWnVLKvnZ6hMYi/Jlc5QJPm9/W3bBsgXfFh7eXxiJsyOpdfPX8tuiG9Qu8DhEe\nYpdd/KCJ8SJrvIZ0G+F08iayWN13knma34bZ/bycGPuYAG+3Wx8bMuk2wim/k1M8dJLZuEw1AZbV\n2B//vf26Pb4+Mfz5csXL6083+Xy1XUzPzSfs5dNvGf8z/1aHjorV2psJnzqcM8s9zoozb7LU+auj\na76k1qV+Ftbz7b5GrXB8MueIscI499LVtnSzJUvtkmLBWejzkLrZd7vZkOHKEU7G3+PwzzD09XaT\n4eMfqC875qW62ZZONmO7pXNao3tAo8N+qZttae/EzEEWvTLezcNPBSL8w9dXxgseBNI6Eb7W8dtN\nqEaEX3T2dpPO3vDVh8beMZNir+U4ItzKd7WnTLN6ehQ7ECGEiXCubp53qUaEECbCrZqbIZsbcPdE\nCGEipGF9zOoihDARLtDH8y7ViBDCRLiD5mbI5gbcNxFCmAhpxsvZu4NZXYS0oeNPYIlwmQ6ed5sz\n/Y3jXgscfKiX4vrOb2Im3EdzM2QTA55TYAeVmgkpavfvGC9LhJRztS85FSG1XGQJ+sgxIYVcsMDB\nTLiCvxp4hJlL0K/XaZGZcDfFzzf+HFudAc/5ftXTvoP1fCK8hMpT9zWXoI8sRztXfAmnwEGEfau8\ni1/5IPCJCLs158Xu1DdtVH52OJ8I16h/gvTz8J6qW/TdjEePbf51uiHCPVWI8+u09m6EL78N7ojh\nKfCJCLsyfwn6wUETo4PAd0TYj10KvPv6pcX7jm3p8Hoiwh4c+o7n7ctUBX523S3fqM5Oc/JHfo44\nf1Pnzoy49MZvVGHX2XcJuvRXD5tTvOZB4BPL0YYFCxz2OH9T4VmsAhE2qc7HXlcfMSrwzh2xXmop\nVfk8x8yJUYGP3BdbnfZGk/uva+Kltnd3S5HhlSLC3Zywe2UPAtd5vFsKDq8Cd8rODpoY6xwErmMC\n/KDuw9a6HWusfBDIdh65w22sUYHd8+Cd54glmWVeB0R4tpOXqdTnUYw5YZlKEzyQeStqVGBPPJaF\neLvJNXk4K3p3usVpmC6JsK6nidEE2CuPawNMgH0TIYT5LgoIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYT9C2gl\nC2su6iTfAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAdjUlEQVR4nO3de1BU5/kH8GdZrnIRQVREFBBBbSLBS8zIeA1Gq1iNiplovTTYTZzpkJm06Zp2EmqSSdc202o7zcwaxaIZU5lcDI2NFu94F0QMilxEBIEocnG5LJdl9/fH29/OBrmcPXvOeRf2+5n80ZjznvO43e/Zc55zeVUWi4UAgB833gUAuDqEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzhBCAM4QQgDOEEIAzd94FAPRu7969Pj4+V65cSUlJiYuL412OjFQWi4V3DQA/0t7evm3btn/+859BQUENDQ1ENHXq1E2bNm3dujU4OJh3ddJDCMG51NTUrFmz5vLly97e3mlpaU1NTenp6XV1dUTk5eX1s5/9TKPRvPjiiyqVinel0rEAOI0LFy6EhoYSUXh4eG5uLvvD9vb2zMzMpKQktVrNvrTh4eFarfbevXtci5UMQgjOYs+ePZ6enkQ0b968hw8fPr3AgwcPdDpdZGQki6Kbm1tiYmJmZmZHR4fy1UoIIQT+urq6tFoti5ZGo+ns7Oxn4e7u7uzs7I0bNw4bNowNGTFihEajuXHjhmIFSwshBM7q6uoWLlxIRF5eXunp6cIHNjY26vX6+Ph467nVjBkzdu3aVV9fL1+1ckAIgaf8/PwJEyYQUVhY2JUrV8StpLCwUKvVWhun3t7eycnJ2dnZZrNZ2mplghACN4cOHWKHlAkJCbW1tQ6uzWg0ZmZmJiYmWhunMTExaWlp9+/fl6Ra+SCEwIHJZLI9CZS2s1JZWanT6dgPLBGp1WrWv+n/VJMjhBCUVl9fv3jxYiJyd3ffvXu3TFth/Zvk5GTWcSWiMWPGpKam3rx5U6YtioYQgqIKCgqioqKIKCQk5PTp0wpssaGhQa/X2974NmPGDL1e39zcrMDWhUAIQTmZmZm+vr5EFB8fr/ypWm5urkaj8ff3Z1H09/ffuHGjM/RvEEJQgtls1ul0bm5uRLR+/fq2tjZelTzdv5k8ebJOp+v19gBlIIQgO4PBsHLlSnYSqNPpxK3k008/3bJlS05OjlRVFRcXp6WlhYeH9+jfdHV1SbUJgRBCpbW2tj58+LCmpoZ3IQopKSmZMmUKEQUHB584cUL0eqwX5WNjY3fu3On4JQ3GZDKx/o2Hhwdb/9ixY7VabWlpqSTrFwIhVBRrS/z0pz+13vfotH1zSRw9ejQwMJCIpk2bVl5e7siq5L7wUFtbu2vXrmeeeaZH/6alpUWS9fcDIVSOtS0xduxY2775b3/72zt37vCuTmK2J4GvvPKKVF9lBS48sP6Nn58fW//w4cM1Go2Eh8FPQwiVwL6RrBOwYcOGtrY25++bO6K5uXnNmjVEpFKp0tLS5Gg/yv0BPnnyJCMjIzEx0br+qVOn6nS6R48eSbJ+Wwih7PpvS/Tom/v4+Ayu+x6fVlZWxg7qAgICvvnmG7k3J/eFh6KiIq1WO2rUKLZ+Ly+v5OTkrKwsk8kkyfotCKHciouLhbQlnLBvLs7x48dHjBjB7tu8ffu2YtuV+wPs6OjIyspKTk52d//fa5nCwsK0Wu3du3cdXzlCKCNrWyIuLk5gW4L1zcePH8+9by6CXq9n39Hly5c3NTVxqUHuCw/V1dU6nW7ixIls/a+99prjB6gIoSwcbEs83TcPDQ1VuG9uF6PRuHnzZnYSqNVqu7u7+dYj94UHs9l88uRJdkb6u9/9zsG1IYTSk7Atwfrmzz77rPJ9c+GqqqpmzZpFRH5+fl9++SXvcn5E1gsPhw4dIqLVq1c7uB6EUGIytSV69M0DAgLk7psLlJOTM3r0aCKKjo4uLCzkXU6f5LjwcP36ddY1dbA2hFBKx44ds7YlioqKJF+/kn1zIfR6PTveW7p0aUNDA5ca7CLtB9ja2urm5ubp6engCaf0Ifyg9gPKI/ZPcEGw5Ot3Wkq2JRTom/evvb09JSWFbT01NVWx7UpFqg+Q3cFTXFzsSDHSh/Ba67W/P/r73x/9PaowykVCyKstIWvfvB/V1dUvvPACEXl7e2dkZMi6LVk5/gEuWbKEiBw877A7hJ/Vfzbnzhz/G/7e+d4zi2Z+3fh1X0smFCe4QgidoS3Ro2/u5uaWkJCg1+tbW1sl39bFixet7+e9du2a5Ovnoqqq6oMPPmBPG7MPcPHixUL+dm+++SYR7dy505Gt2xdC7QMtO8jcXLF5S8WWUQWjKI90P/T+cIorhNDxtkRZWVlZWZlU9bD2A7tDlYgCAwM1Gk1eXp5U6z948KCPjw8RzZ07d9DdSCCE7Qd4/fr1AZf/5JNP2NVCRzZqRwivt15X5akivo/4ofMH9icNpoa423FueW63jb3cGzHkQyhJW2LTpk2SX3hoamrS6/UJCQk92g+PHz8WvU673s872DU2Nn722WdCljx16hQRzZkzx5HN2RHC1KpUyqP0xz96PevV1qupVanlHb3cDjKEQyhhW2Lbtm22P1zbtm2zzsHguFu3bmm12pEjR9q2H0TcV1lXV7do0SK2hn379klV3hBQW1tLREFBQY6sxI4Qzr4zm/KoqrNK4PJDNYSStyXkvvDg4IQq+fn5ERERRDR27NjLly9LUtJQwi5KOXJwbkcIw26Gqa+rzRahO9EhGUJZ2xJyX3gQMaHK559/zt7PO2fOHNd5G4Bd2B757NmzotdgRwiDC4J98n2ELz/0QqhMW0LuCw/WCVXY34X6mFBF1vfzDiVbtmwhIr1eL3oNdoRw/Pfj3fLcTGahe+VeQ9jc3dxubhe+USfBpS0h94WHfiZUsX0/r+hXM7mIP/7xj0T01ltviV6DHSGcXzyf8qi0ved96H2FqtcQvl/zfuCNQM19zfXWgfu/ToJvW8JsNufk5Mh64eHq1atvvPHG8OHD2fqHDRvGJlcZPXq0M9ye6uS+/vprIlq2bJnoNdgRwvdq3qM8+tujv9n+YXVndeCNwL88/MvTy/cawpfvvmy9qW1m0cxPHn3SZOLz4JlAztOWkOPCgy3b52InTJgQGRlZUVEhyZqHtqKiIiKKiooSvQY7QljRUeGd7x16M7Si43//3zR3Ny8sWajKU11qufT08n2dE94y3tI+0I4sGMmi6J3vnVyenG3IFt7yUYxztiWkuvDQl3fffZeIfvnLX0qytiGvs7PTw8PDzc1N9BuN7btj5tO6TymPAm4EbLi3IaUiJfz7cMqjD2o/sC5wpOkIu3GU3Tvqm+9r/dcrLT+afa7d3J7ZkJlUlqS+rmZpDP8+XPtAe6/jnri/ibScvy0h30zux48fJ6IFCxZIUaZLmDx5MhEVFBSIG273vaMnDCcWly4OvBHoed3zudvPfdX4le1/fbHkRevRZo9/0mrSel1hVWeV7gdd5PeRbDG3PLfEksTMhswOM7fv/eBqS1RVVUk7k/v9+/eJaMyYMdLWOYStWrWKiA4fPixuuLM8T9ht6c42ZG+8t9En34elccSNEZr7mhttSk9EfvPmTXYj78iRI5WZNkgSAi88CGE2m9nDr4PiEUFnsH37diLasWOHuOHOEkKrRlOjvk4fXxRv/QmdUTRDX6c3mAwKbD0rKysgIICI4uPjB2lbotcLD3q93mCw4wOcPn06EV261MupPjxt//79RPTqq6+KG+50IbS62nr19fuvD78xnEXRL9/vFxW/ON9wXqbN9Zg2SI6HgBSWm5ubmpoqbib39evXE9H+/fvlL3MouHTpEttxixvuvCFkjN3GzIbMxJJEVZ6K8mj+7+azicgrKysl3IrBYGCH9Wq12vlPAu3S2tp64MCB+fPnW1/I+fnnnw84aseOHUS0fft2BSocAhobG9n1VXHPczt7CK1K20vfqX5n9vzZ7Jvk4eGxcuXKrKwsx98nWVJSMnXqVCIKDg7Ozs6WpFonVFpa+s4778TGxgp5Ufzhw4eJaNWqVQoUNjSMGTOGiMSdwgyaEDLW+UCs75N0cD6Q//znP1JNGzSUFBQUENHkyZN5FzJoLFiwgIiOHTsmYuwgC6EVmw9k2rRpPdoPwucDsT0JXLdunVO9yZM7o9GoVqs9PDyG9sO7EnrjjTeIaNeuXSLGDtYQWvWYDyQgIIDNB9L/qObm5rVr19L/v5pp8M6+Ih92nUaOFzcOSX/961+JaNu2bSLGDvoQMm1tbcLnAykrK2PvtA4ICDhy5Ijy1Q4Ky5YtI6Kvvvpq4EXBYvnuu++IaOHChSLGDpEQWt25c0er1bKXLxGRp6dnUlKS7XwgZ86cCQkJIcWnDRp03nrrLSL66KOPeBcyONy7d4+IQkNDRYwdaiFk+poP5MMPP2R/smzZMl7TBg0Wer2eiDZv3sy7kMGhu7ub3evf2Nho79ihGUKrmpoanU43adIk6xmjSqV67733uE8b5PzOnj1LRLNnz+ZdyKDx3HPPEZGI593caEhjM4oVFxefOXMmLi7OYDCsXbt2x44drCkK/WBPBty5c4d3IYOG6E/MJb6LKpVq/vz5v/nNb9j/5l3O4DBq1Kjg4OAnT56wt/rBgFgIi4uL7R3oEiFk2GfEnoMGIWJjYwk/hoLhl3BgkydPVqlUJSUl3d3dvGsZHHBEaheEcGB+fn5hYWEdHR0VFRW8axkc2C+hiOMr1xQTE+Pm5lZWVtbV1WXXQBcKIWHXbid8XHbx8fGZMGFCV1dXeXm5XQMRwp5u3bp16NAhdCMIIbSfuE/MtUIo5PhKq9Vu2LCBPabp4qKiory8vCorK1taWnjXMjgghAMT8hlh92/l7u4eHR1tsVhKS0t51zI4iDuLRgh7XwbdCAa7JLvgl3BgYWFhAQEBdXV19fX1fS2Dr50t7JLsIu5atGuFUKVSDXgBesqUKWwBi8WiXGXOCtfr7TJ69OigoKCmpqaHDx8KH+VaISQBP3TBwcEjR440GAxokBKOC+zHdlt2/Ri6XAiFnDrjm2fFbjMqLi7GbUYCifjyuFwI0SC1i7+//9ixY9vb2ysrK3nXMjiIaJAihL3A7Vq2sEuyC34JBzZp0iR3d/fy8vKOjo6+lsHXzhY+DbsghAPz9PSMjIzs7u4uKyvraxl87WzhuMAuEydO9PT0rKysbGtrEzjE5UJIAjIWGRnp7e1dVVWF27UIz2Hayd3dfeLEiWazuaSkROAQ1w1hP98qtVrNbtcS/jkOYTgusJe9n5grhhBXKewybtw4Pz+/R48e9XObEdhCCAeGqxR2sd5mhNPCJ0+eCFnM3o/LFUMo5MY03K5lC7skIvrvf/8bFRWVmZk54JLWL5jANbtiCIOCgkJCQlpaWqqrq/taBl87W/gl/Pjjj5ctW9bQ0PDvf/97wIWttxmZzWYhK3fFEJKAjOGtULZceZfU3t6+ZcuWt99+22w2a7XajIyMAYcEBASEhoYajUaBtxkhhL3DW6FsuWwIHzx4MG/evIyMDD8/vy+++MI6l17/LBaLn58fEQl8GNqlQ4gGqUAxMTFqtbr/24yGnvPnz8+cOfPatWvR0dGXL19evXq1kFHNzc2rV68uKSlZsWLF4sWLhQxx6RCiQSqQl5dXRESEyWS6e/cu71oUsmfPnkWLFj18+HDp0qVXr179yU9+ImRUWVnZnDlzjhw5EhQU9Ktf/UrgthDCPqEbYct1dkkdHR1bt259/fXXu7q6UlNTv/322xEjRggZePz48eeff76wsDA2NvbChQsvvfSSwC26aAgjIiJ8fHyqq6sNBkNfy7jO104IF/k0ampqFixYsG/fPm9v74yMjN27d6vVaiEDd+/evXz58sbGxqSkpCtXrrCPSyiJp4caPNh899euXetrgaqqKiIKCQlRsiqn9emnnxLRpk2beBcio4sXL4aGhhJReHh4P1+MHoxG46ZNm+j/p14XMeue64Zw3bp1RHTw4MG+FjCbzQEBAUT0+PFjJQtzTjk5OUT0/PPP8y5ELgcPHvTx8SGiuXPn9jrLeq+qqqpmzpxJRP7+/qKnFnfRw1ES0CBVqVQxMTHkAsdgQgzh91+ZTKbt27dv3LjRaDRqNJqTJ0+OGjVKyMCcnJyZM2fm5uZGR0dfunTp5ZdfFleA64ZQyI1pLnIiJMRQff/V48ePlyxZsnPnTi8vr3379un1eusU6/3bs2fPiy++yNqn165dE9g+7ZXrhlDIY3J466atobdLunHjxqxZs06dOhUWFnb27NnXXntNyKiOjo6UlJTXX3/dZDJptdpvv/02MDDQkTJcN4SxsbEqlaq0tNRkMvW1zND72jliiH0a//rXvxISEioqKubMmZObmzt79mwho2pqaubPn5+enu7t7X3gwAGdTiewfdoP1w2hr69veHh4Z2fnvXv3+lpmiH3tHDRkLpx2d3dv37791VdfbWtr02g0p0+fHjNmjJCBFy9enDlz5pUrV8LDw8+fP//zn/9cmoLE9XOGBnY5NSsrq68FOjo63N3d1Wp1e3u7koUpqbOz8w9/+ENjY+OAS7IHCF566SUFqpJPfX09u5vM3d1dp9MJH6jX6z09PYlo3rx5wtunQrh0CFNTU4noT3/6Uz/LTJo0iYgKCwsVq0pJDx8+nDt3LhG9/PLLAy7MbkceP368AoXJ5ObNm1FRUUQ0cuTI06dPCxzV1dWl1WrZj5ZGo+ns7JS2KpcO4T/+8Q8iSklJ6WeZFStWENEXX3yhWFWKyc/PnzBhAhGFhYVdvnx5wOVNJpO3t7dKpWpublagPMllZWWxC7/x8fEVFRUCR9XV1S1cuJCIvLy80tPT5SjMpUN48uRJIkpISOhnmbfffpuIPvzwQ8WqUsahQ4eGDRvG/vq1tbUCR02dOpWITp06JWttkjObzdankNavX9/W1iZw4PXr1637qStXrshUnkuHkD1ZHxQU1M8ye/fuJaKNGzcqVpXcWGPdenDV0dEhcOCFCxf8/f3Hjx/v4eGRlJSUmZnZ1dUla6mSMBgMq1atIiK1Wm3XSaC4/ZQILh1Ci8XCrvA8evSorwXOnz9PRLNmzVKyKvnYtiV2794tfKC1LTFu3DhrU378+PFpaWn37t2TrV5HlZSUsF/v4ODg7OxsgaNE76fEcfUQsqtD586d62sB9p4/f39/s9msZGFysLYlQkJCHGlLVFdX63S66Oho9odubm4JCQl6vb61tVXO8u129OhRtpOdNm1aeXm5wFH19fWJiYki9lOiuXoIN2/eTER79uzpZ5mQkBAievDggWJVycHxtsT+/ft7/Nfc3FyNRuPr68vSOHz4cI1Gk5eXJ3Hp9rM9CVy3bl1LS4vAgQUFBSL2Uw5y9RB+9NFHRPTrX/+6n2VYE//EiROKVSUtudsSTU1Ner0+ISHBevF56tSpOp2urq5Oor+BfZqbm9euXUtEKpUqLS1N+CFMZmYm26HEx8ffv39f1iJtuXoIv/rqKyJavnx5P8u8++67K1asuHDhgmJVSUjJtsStW7e0Wi07cGA/nsnJydnZ2UoeyZeVlT377LNEFBAQcOTIEYGj2H5KpVIR0YYNG4TvpyTh6iG8ffs2EU2cOJF3IbLg0pZob2/PzMxMSkqy9m/GjRun1WqV6d/8/ve/J6IpU6YUFxcLHGIwGFauXCniHhqpuHoIOzs7PTw83NzcjEYj71okJq4t8fjxY9aW8PT07P9UeUAPHjzQ6XTsFIv1bxITEzMyMmT9nTGZTO+///6TJ08ELl9cXMwelQwODuZ1xuHqIbRYLOy+5Js3b/IuRDKOtCUiIyOlbUt0d3fn5ORoNBp2cEtEI0aM0Gg0+fn5kqzfEdb9VFxcnPD9lOQQQgs7FDl8+DDvQqTR3Ny8Zs0aEW2Jw4cPs7bE9OnT5WhLNDY26vX66dOnW/s3M2bM2LVrV319veTbGpDtfuqVV14Rvp+SA0JoYec/O3bs4F2IBMrKyp555hknb0sUFhZqtdrg4GAWRW9vb4X7N6L3UzJBCC3p6emsd8+7EEedOXOGdSZjYmJu374tcBSvtgTr3yQmJrLwE9GkSZPS0tLkvjZgu5/65ptvZN2WQAih5eLFi+wYjHchDtHr9e7u7uxyS1NTk8BRztCWqKys1Ol0ERERtv2bzMxMyZ8Yslgsx48fZ2/yjYmJKSoqknz94iCElsbGRiLy9fXlflgijtFoZPf92Pvey6NHjw4fPpx7W4Lp7u7Ozs5OTk5md6gS0ZgxY1JTUyVsmInbTykAIbRYLJbRo0cTkZI3SUilqqpq1qxZROTn5/fll18KHNWjLeFU93w2NDTo9fq4uDjb/o1er3fkIUbR+yllIIQWi8WyYMECIlq7du3333/PuxY75OTksN1HdHS08MqtbQl2D43T/v7n5uampqYGBQWxKPr4+Ijr34jbTykJIbRYLJbKykr2Vny+fXO7WN+QuWTJkoaGBoGjnLAt0T+j0dijfxMbG6vT6X744Qchw233U077jhKE8H+4982Fa29v37p1K6szNTXVZDIJHHjs2DHWloiNjXWetoRAxcXFaWlp48ePZ39xtVrN+jf9PFhs3U8tXbpU+H5KeQjhj/DqmwtXXV39wgsvsN1ERkaG8IFO25awi8lkYv0b63uyQ0NDtVptaWmp7WLt7e0pKSki9lNcIIS9U7JvLlxeXh77KRg3bpyS0wY5odra2l27drEHJmz7Ny0tLaL3U7wghP3pq29eUFCgfDG20wYJPCOy/LgtIXraIKdlNpvPnTu3efNm2weL2XWXiIgIZ7g9VQiEUBDWN3/uueck7Jvb5f3337ceXAl/vdK5c+ecvy0hiSdPnmRkZLDnP5YuXWrX9GbcIYT2kapvbq+CgoKgoKB9+/YJHzJY2hLSKiwsbG1tHRSvgbNCCMVwsG8ujsFgELiktS3BTgKdvC0BCKFDRPTN5Wbbljhw4ACvMkA4hFACAvvmCrCddT03N1fhrYM4CKGU+umbK7D1AwcOeHt7kwzTBoGsEEJZsBdy+vn5sSgGBARoNJqcnByZNif3tEEgK4RQRgaDgfXNrf2bKVOm6HS6ft66L4IC0waBrBBCJRQVFWm12lGjRrEoenp6SjWhir3Tm4ETQgiVY+3fsHs4WXK0Wu3du3fFrVCxaYNAVgghB45PqKLwtEEgK4SQpx4TqgQGBgqZUEX09GbgnBBC/vqaUOXx48dPLyxuejNwZgihExlwQhVx05uBk1NZLBYCZ9LR0ZGVlXXgwIHvvvuuu7ubiMLDw9evX09Ef/7zn81m8/r16/fu3csea4IhACF0XtXV1Z999tmePXvKy8uJyN/f32g0fvzxx2+++Sbv0kBKCKGzM5vNJ06cSE9P37Bhg6+v76JFi3hXBBJDCAE4c+NdAICrQwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOEMIAThDCAE4QwgBOPs/oRHd0bgFC0kAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -732,7 +755,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEf0lEQVR4nO3c0W7iMAAAwcv9/z/n\nHiqhlqsgQJK1Yea5onbwxqYFlnVd/wCdv/UA4NOJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCtlqWpR7CexIhW63ruiyLFHe3rOtaj4HJfHVo5ezFTnigt9k0riayrqtdcUd2wkNc9orZN427\n418WS+hVruDOfl21M6a4fcwzzm4oItzNlk3j9g8M4vs4t290s8xuQCLcx9ss1v8n8tCAB5/dmET4\nqueW3YAvpW5P5NEUR5vdyFys57141x9n0zji5d84sxufCJ+x4wprF+vR27gUtxDhw444ayWL9ZWJ\nOJ3uyNV5wNGpnLZY95qI0+kuRLjJaWvohM53f3wpvkiE951/mjposR46ES8UnybCW2b8q8nRD7XX\nb/FC8cKF+N04d+vp/hHidPooEV4bc2U8sW/k27jT6UYi/GHkM9J0hz3vd9uof6oGMcsimO5t4tPd\nO873iXO+Mtqq3WK6D0yNPLbcR0c4+8qY7qPDn7nR3fW5F+VtFsRcE5nlfnGmmZ4/3oYUvxMhGSl+\n8W1rZC7f2lYPJCZCYnZCEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBAT\nIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE\nRAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECLF/ifttEnhcTvQA\nAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAANGElEQVR4nO3dTWwU9R/H8V8rBUHxCRQRAR9ABapSrPWhKgokCm4TLz32pOFkWg4mxQM28aA9rhoPJF5qTEwIXrYFTQpSHqpYBHxqC5UKVusTQi0taFvb/R9+yWTS9b/dh5n5zOy+XycTt9Oh7Xt39jszvy1JJpMGgE6pegeAYkeEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaEgBgRAmJECIgRISBGhIAYEQJiRAiIESEgRoSAGBECYkQIiBEhIEaECKn+/v6JiQn1XgSBCBFG4+PjW7ZsKS8v37Nnj3pffEeECKMff/wxmUz29fXFYrGampq+vj71HvmICBFGK1eu7O7ujsfj119/fVtbW3l5eUNDw/DwsHq/fFGSTCbV+wD8XxcuXHj99dfffffdycnJBQsW7Nix4+WXX77qqqvU++UlIkQEnDx5ctu2bYcOHTLGVFRUxOPxp556Sr1TniFCREZra2tDQ8PZs2eNMbFY7O23377zzjvVO+WBontPODAwcOTIkd27dxfJ+DsqJiYmdu/enf4xNTU13d3dzc3N8+fPb2trW7Nmzfbt20dGRoLZQx8li8bly5ebm5uvvfbahQsXGmNWrly5a9cu9U4hmUwm29vb16xZY4zZs2dPJo//+eef6+rqSkpKjDG33XZbS0vL1NSU3zvpn6KIcGpq6sMPP1y6dKkxpqSkZMOGDStWrLDPQZs3b+7t7VXvYPHq7e3dvHmz/V3ce++9Bw4cyPxru7q6HnvsMfu1Dz/88Geffebbbvqr8CM8fvz4k08+aX9V69atO3ToUDKZHB8f37lzp31JLCsr27p16/nz59V7WlyGhoYaGxvnzJljjLnhhhuam5v/+eefbDcyNTXV0tJy66232qfXurq6X3/91Y+99VUhR/jnn3/W19fbcfaCBQvi8fi///7rfsCFCxecB9x0002pD4AfJicnW1paFi1aZIwpLS2tq6v77bff8tng6OhoU1PT1VdfbYy55pprmpqa/v77b6/2NgCFGeH4+Lg9z2tf6Orr6//666//9+Cenp5nn33WvlSuWrXqk08+CXJXi01HR8eDDz5of9rr168/efKkV1s+c+ZMbW2t3fLSpUtbWlq82rLfCjDC9vb21atX21/Gpk2buru7M/mqRCJx11132a+KxWL9/f1+72ex+emnn5xpyu233+7TNGX//v0PPPCA/T0+88wzX3/9teffwnMFFeGpU6e2bNnivMvPcNTmGBsbi8fj8+fPN8bMnj27vr7+0qVLPu1qUbl8+bJzuDhv3rympqYrV644//ejjz5qa2vz8NvZw92bb77ZOdz9448/PNy+5wokwosXLzY2Ns6ePdsYc+ONNzY3N4+NjeW2qcHBwa1bt5aWltrx986dOycnJ73d2+IxNTW1a9eu5cuX28FJbW3tuXPn3A+4dOnS4sWLjTEbN2789ttvPfzWHv5J+C3yEaY+7f3+++/5b/bYsWOPP/64fVGtrKzs7OzMf5vF5ssvv6yurrY/w4ceeujw4cOpj5mYmHDG1LNmzfJ8TJ3nwVEwoh3hp59+6t8bAPssvmzZMudZ3N5fgxn98ssvztHE4sWLZzyaSB1TT0xMeLg/7e3tq1atynZMEJioRjgwMFBXVxfAKMw9/rbvZ6I1/g6YfV993XXXOXPp4eHhDL/WPaa+7777Pv74Yw93LKuBecCiF6HkpFBgzUfatAnzmTNn8t+It2PqGU8dS0QpQnt86Fx9VltbOzAwEOQOuI9+n3766a+++irI7x5mvb29zz33nFcvYu6XUzumzvzlNBP/eRGVUGQinHahoGpSYudAt9xyi7dzoOiyb+dmzZrl+ds595g6kzeW2UokEnfccYfzknv27FkPN56VCEQ4ODjovmQ+DOcM7HWPdvxtr3sM7fjbP34PNq1jx465R6xHjhzxcOPOjTXGmLlz5zY2No6MjHi4/QyFOsIrV67Ym8fCefb89OnTzz//vP37uOeee7w94xxy+/btKy8vt//2jRs3fvPNN/59r9Qx9bSTjXly3xi1ZMmS4G+MCm+EiUTCuW86Fov98MMP6j36b9Oukvvuu+/Ue+Svvr4+5xLNFStWBHZPZuplN94O5L744otHH33U/ruqqqo+//xzDzeeXhgjPHHihLOCyNq1azs6OtR7NIMwj789ZOfS9uYjO5fO4eajPLnH1J5fgGrf8Ad/Y1S4InRPkCN3b1E4x9+eSL35SHvb3oEDB5xbMTwfUwf/XBOWCFNfTIaGhtQ7lQv3y3hFRcXBgwfVe5Qv4XFaGn6Pqb///vvAjrpDEaGzxEjBvK2aNv4O7Rva9OQTixl5cnt+Gvv27bv//vvt73HDhg0+zZ/EEZ4+fToWizkDxtbWVu3+eMg92rXj71CNdtNzz+7nzZunmt1nyNe/otQzMZ7fGCWL0O/nsJAI/4tJqvCcxc6Kr8dT/l2TkJREWIQXnURlXbCwXc+VLb8nC9Ouztu7d68nmw06Qvdca/369cVz+WXI1wU7f/58wYx2/Z6xJxKJu+++2zlSyO06dbfgIrRnePxeYiTkQrgumH31cN98VBgnOX0925z6Q8vnEvMgIvT7WofICXL8nV7I73bNn6/XXaXeu5zbS66/Efp91V+k7d+/3z3+DnhdsEis++AJv69AzmQVj/R8jNDX698Lgx1/2wVyfBp/p4rQCkge8vVenBnXs0rPlwizXWKkyF28eNEZf/tahbv5SKwF6Dlf70q1b7vmzp1r/mtlxzQ8jtDve6IL2KlTp9wfjeL58WEUV8X1Q+r6DN6u35XDGsdeRsgi1vlzj783bdrU09OT/zbdc6Bly5axQE7S/zF1R0fH2rVr7c/8kUceOXr0aJoHexOht0uMFDkPx98hPCMSKr6u3+W+9eS1115L88h8I/T1cp5i5j57vnDhwmzPOIf82oBQ8XX12qGhoR07doyOjqZ5TO4RBrPESJE7fvz4E088ke11ZFG5Si48fFrHPUM5RjhtiRFvP0UA0yQSCTv+NjNdUV1gnyMdMNXJm6wjdC8xwse+B2bGe4sifedUqAR/GUMWEY6MjMiXGCly7vG3+8aoqCyKFSG5fcplbjKN8P3333duPnrppZfy/Hxj5OPgwYMVFRX276OysrKystL+d2GsphEega3flWmEb775pgnTEiNFzhl/l5WVzZkzJ+o3H4VZAOt3lSSTSZOBsbGxvXv3vvDCC/ZYCGEwPDzc2dlpjKmurrZP2PDJiRMntm3bdvjwYWPMunXr4vG4c/dz/jKNEEBra2t9ff25c+eMMbFY7J133nHWAclHaf6bAIpETU1NT0+PHVO3tbWtXr16+/bto6OjeW6WV0Iga4ODg6+++uoHH3yQTCaXLFnyxhtvOFPrHBAhkKOurq6GhoajR48aY6qqqt566y1nleSscDgK5Kiqqqqzs/O9995btGhRV1dXdXX1K6+8ksN2iBDIXWlp6Ysvvtjf39/U1FRWVpbbnIbDUcAb/f39y5cvt3cUZYUIATEORwExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAGx/wFmd1nIWWiPaAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -744,7 +767,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEV0lEQVR4nO3a227aQBRAUajy/79M\nHxqlVZRyMeZsa1jrKYrAZ3C8J8TkfLlcTkDnV70AeHcihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCF26AjP5/N6s9YbxJM+6gX87M8FdLlcvr5YYNZ6g/6dODBl\nyUGn02lu0p1+vG5edDGNzRp+UTODvh18mZ1lbOf6O/FQEV7ffnY8OzcPtddGODbo5qzdt/b1trD5\n/D7nHiTC+1//k2dqvUFfB7l5hL0uskNtYdcf8NCsqoU+wm3ncdsp2/CsseVtvggeXeEzV9sBt7Dh\nWa9QRrjkz+mZQRty2jZrcmeZGbTtWXl+n8vIfgUv945l7M3ePYvZcdBDj3yTQfsKIlzvb/cXDbpy\ni2XHcZM3wxa767aX0dWsdxd75u7/t2/6qOZos540+Inkch+zzgxabGeZHDQ8a7Nj/V7mfxbbWSYH\nDc/a4NCLg3dw6H/ghncgQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKI\niRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQ\nYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBivwGiwqxGiuxqMgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAALz0lEQVR4nO3bS0hU7x/H8aOOlXa/ancrKYuKyrGsiKJcRAWtqlXL3CXlRpBoNhYuZxVIkAmtXNqFYrphkWWYFV3VLlZ2z6zUMp05v8VDh0FLxzOXD3/+79fuRzPzzOV5fz3z6C/Jtm0LgE6y+gkA/++IEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExDzxXuDbt29lZWXp6ek3b948evRobm5uvFfs5/bt28nJyS0tLbt3705KSkrw6r29vcFgsK+vb8yYMQleGv8z7Ljp7e09duzY1KlTLcsaMWKEZVnJycn79u37+PFj/BYN9+bNm8LCwuTk5Dlz5liW5fV66+rqErO0EQgEli5dumfPnsmTJ/v9/mAwmMjVv3//XlpaeurUqeLi4o6OjkQubTQ2Nra2tj58+DDxS9u2HQwGE/yGuxavCAOBwPLly03n+fn5ly5d8vl8I0eOtCxrwoQJfr+/t7c3Tkvbtt3Z2Xn48OH09HTLskaNGrVz587MzMxEToF79+4VFBSYlz9p0iTnfaivr4/30rZt9/X1HT9+3Lzk8ePHW5aVkZFRWVkZCoUSsLpt258+fSoqKkpJScnNzfV4PEVFRQmeAhcvXly+fPn+/fs3bdp0//79RC5t23ZXV9eRI0fa29sjvH3sI3zy5MmOHTvMtpszZ05VVZXz2Tc1NW3bts38U05OzoULF2K+eigUqq6unjt3rlllx44dz549s227s7MzMVPg8+fPZv9ZljVx4sTy8vJfv37V1NSYn8ZJSUl79+59//59PJY2Ll++vGLFCvPy8/LyKisrN2zYYP4zNzf3xo0b8Vvatu3u7u6ysjJz7T1ixAiv12veioyMjBMnTiTgR9OjR4+cPWaeRmpq6oEDBxIzBcK3X3FxcYT3imWEX758KSoq8ng8ZqOb/TfwZjU1NfPnz3ciefnyZayeQF1d3dq1a80je73e2trafjeI6xTo6enx+/3mJ09qamphYWH4j9x+U6C8vLynpyeGq9u23dTUtGvXLvPqZs2aFT7+EjAFzP6bN2+eeQIFBQXmQrSxsTExU+DLly8lJSXmi8+YMWN8Pt+7d++cgZiAbwTXrl3zer2DbL9/iU2Ev3//9vv9EyZMsCzL4/EUFhZ++PBhkNub/WoGVXp6us/n+/nzZzRPoLW1de/evebcZebMmRUVFYO83fGYAuGPWVBQ8ODBg7/erKmpafv27eZmixYtOn/+fPRL27bd3t5eUlJiCh89erTP5+vu7u53m66urvhNgfr6+vXr15vXtXLlyitXrvS7QVynwO/fvysqKqZMmWK+cfR7/ARMgVevXjnbb8aMGRUVFX19fZHfPQYR1tTULFiwwNl/kV+Cv3nzxnnqCxYsqK6udrH6jx8/fD7fqFGjTM8lJSU/fvwY8l4xnAK3b992PuPFixefPXt2yLv0mwIvXrxwt7T9Z/+Z0y+z/969ezfI7Zubm2M7BV6/fu18iNOnTx9k/8VpCgQCgSVLljjb7969e3+9WZymwMDt9/379+E+SFQRNjQ0bNy40bm6O336tIsHuXLlyrJly8yDbNmyJfLDtN7e3oqKimnTppl3dteuXa2trcNaOsop4Jy+WpY1ZcoUv98f+fwzU2Ds2LHRTAFz+mreus2bN9+9ezfyO+bk5EQ5BcwFdlpammVZaWlpJSUl3759G/JeMZwCd+7c2bRpk/NQQ358sZ0CwWCwqqoqIyPD2X6uL6lcRtjW1lZYWBh+tR3NOYfJafLkyebbVFFR0ZAfZyAQcNLNz8+P5ncPLqZAV1dXeXm5c/wQyRP+K9dTIPz4YeHChS4uIsw3CHdTwOw/c/pq9t9wMw4EAosXL3Y9Bd6+fetsv0mTJg0rp+bmZufg0PUUMKev5kHWrFkT5SXusCM0+898eCaYWJ07mXMd885Onz49/Fwh3OPHj503MTs7291FbD+RTwFz/GAubMwGev78eZSrX7161flEh5wCfz19db10+BSYPXt2VVXVkHe5dOmSc/q6evXq69evu1s6fAqkpaVFOAW6u7vLy8vHjRvnfFJfv351sbrrKfDkyRPn9Kvf4b9rw4hw4Ol/S0tLlMsP1NDQsG7dOuczvnXrlvNPZv8Nefrq2pBToK6uLj8/3zy3YR1/DclMAXO08K8pMPjpazT6TYFBTpX+dfrqWltbW4RTwGy/rKwsZ/s1NzdHs/Rwp8DA09coTxMdkUZYW1sbfvx67dq1mCz/V6FQyLnaNocNbW1tzv6L5PQ1GuFTIC8vz0yB5uZmZ/8Nefrq2iBTIMLTV9cGnwIDT19jtf+M8CmwefPmga/u1q1bzunrqlWrrl69GqulI5kCg5++Ri/SCIuLi60/x6+J+Wugjo6OAwcOpKamWn9+62pZ1rZt2x49ehTvpYPB4IkTJ8wUSElJ8Xq9zvwrKysbePofW/2mwMmTJ8NPX8+dOxe/pQdOgZ6enmGdvrpmvmcOnAJRnv5HaJApUFNTk52d7Yy/f52+RiPSCNvb248cOdLV1RXzZzC4p0+fbt269eDBgzk5OWfOnEnk0ub0z/zZh9l/b9++TczSoVCosrLSTAHz8z8zM/P48ePx2H8D1dfXO1fdzt/cxWn/9fPx48d9+/aZA+fMzMydO3c6p/+HDx/u7OyM39IDp0Btba1z+B/J6atrcfwD7hgS/jHuw4cPW1tbGxsbE790R0dHcXHxqVOnSktLXfz2KRrmG0FmZuaePXvcnb5Go6GhwVx8ZmVluTt9dS18CpjLn6lTpx47diyuf+qcZNu2BfxNZ2enx+NJSUkxXwoSybbt6urq7OzsUCiUl5eX4NUbGhpKS0vz8/O7u7sPHTpkLkbihwgBMf7PekCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQIwIATEiBMSIEBAjQkCMCAExIgTEiBAQI0JAjAgBMSIExIgQECNCQOw/GzEN2YaRj0wAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -756,7 +779,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEIklEQVR4nO3dQY7TQBBA0Rhxo7n/\nEThTs4tgQEIEMr8q897Kyqrj9k/bsZxc55wb0PlSDwA+OxFCTIQQEyHERAgxEUJMhBATIcRECDER\nQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJM\nhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQuxrPQAedH277tvn7dxfvG+zhQhXeheb9lZzOrrPr8kpcDURQkyEEBMhxEQI\nMRHuc97Oj/cnbj/frmAdtyhWetehb0dXu84xf1ByOgoxEUJMhOv5VmY7EUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBDzZP1612USd7MSQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJM\nhBATIcRECDERQsyfhC52Xdftdjvn3DfqEfEIT8Gs9NvqpLiUCJf5Y2lSXEeEa/xVXZ70XcRU7fBA\nVJbELUQ43T+2JMX5RDjXf+xHipOJcKInNeNCcSazMsuzlyxL4kAiHOTDViopjiLCEZIqnJ0OYRpi\n7aJkSZxAhJk5AcwZyeckwsbAU0EpVsYdCi9v+LE+8NPh5dnjH2d4fndbxvkyRPgRNh7WG8e8lAif\na/uhvH38K4jwiV7m+upl3shMdi7E/NATxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBAT\nIcRECDERQkyEEPsODz7UCW4GlL8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAQEUlEQVR4nO3df0yT+R3A8bb8kqIiisqvU/yFCgqKovj7VC7nD87kkrlk8dgZs5nFPzBZspFtf+DlloVbbglZFhOTRQ43l51Zsl0V73Ic6vlb/AmegsjJqYAcKqhYECjt/ujWI33aWkqffp6279dfD1jgQ+0bHtrn+zx6m82mAyDHID0AEO6IEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhICwSOkB4Gf5d/IvmS+5/KeK6RU7J+0M7Dh4PX4TAsL4TRhqZsXMejn00vHmgG3gbv9dwXnwWkSoLVad9WTPyc+efXbOfK5jsOOJ5YnRYJwaNXVV3KofJfxo0/hNep3e82c4nH54+JvN/c1zbs1Rc2SMFhFqSK25ds/DPVd7rw5/58DQwLOhZ3de3Tn49OBi4+JPpn+SHZstNSHUwN+EWvGvZ/9a2bTSqUAn13uv59/Jr+mpCdhUCAAi1IQTPSd+0vKTIduQ/c1p0dM+TPnwbMbZ5qzmG/Nv/PmNP6dEpdj/qc/a9+69d5v7m+WGhZ+xOypv0Da45+Eei81if7MwvvBw+uHxEeMdN8iJzfnpxJ/ufrD7SPcRnU7XM9Sz6/6u0xmnZcaFv/GbUN5fn/z1zqs79u2sMVmfzvh0eIF28RHxf0//++qxq+1vnnl5xvTcFNApoRoilPe3rr85tv+Q+gejwejyZlH6qEPphyL0ETqdLlofXd9XH6D5oDJ2R4W1DbZdNF+0b6dGpb4T/46HG8+InvGbqb9JjEx8b+J7kyInBWRAqI4IhdWaa206m337rfFvvfZlwA9TPlR/KAQUu6PCbvbddGznGnMFJ4EUIhTW1N/k2J4ZPVNwEkghQmHPh547tidHThacBFKIUNiLoReObXfPiyK0EaGwflu/YzvaEC04CaQQobA4Q5xju8/aJzgJpBChsOEHx5itZsFJIIUIhU2JnOLYfjjwUHASSCFCYQtjFzq2WRsRnohQWE5sjmP7gvmCNx9yuOtwz1CPahMh0IhQ2LK4ZY4/C0/1nHrtczPHnh9777v3km8m//zBzzstneoPCNURobAYfcy7E961b5ut5oNPD3q4scVm2fdon/2W/37273GGcQGYEGojQnm/SPyFY/v3Hb/vGOxwd8tftf3Kcf6LX0/9dawhVvXhoD4ilJcfl79j4g77dsdgx7Zvt7UNtilv9sfv/1jeWW7fnjdm3t4pewM3ItTEUiZN+FPqn86/PN8y0KLT6S73Xs5pyPnZpJ9tid+SFpVm0VmumK/85fFfHE/bGA3Gf6T/I0YfIzoy/EZvs9mkZ4BOp9Pd67+3rmld62Cr55sZDcb/zPzPW+Pfcnr/Z88/+13b75S3H37y39So1AkRE5xusCB2wT9n/NPXqeEH/CbUipkxM+sz63/Z+stPnn7i7jZLjUsr0yszx2Qq/6nb0n3r1S3PX6JtsE25ozvGMGbkw8KfiFBDEiISKqZX/Dbpt592f/rliy9bB1o7LB0RuoikqKSVcSt/nPDjrfFbpWeE/7E7GsSm1P9wyFtnNq8ZBit+Ewaxx5bH0iPAD3iJAhBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSERUoPAN9l6DOkR4Af6G02m/QM8JFer3ds8/8YvNgdBYQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRAgII0JAGBECwogQEEaEgDAiBIQRISCMCAFhRBisjh49OvzNQ4cOSU2CUSLC4NPY2Lh58+Zt27bpdLrY2Fij0ajT6d5///0NGzbU19dLT4cR09tsNukZ4K2urq4PPvhg//79FovF5Q0MBsOOHTs+/vjjKVOmBHg2+IwIg4PFYtm/f/++ffu6u7uHv99gMOh0OqvVOvydCQkJ+/bt27NnT2RkZECnhE/YHQ0CNTU1ubm5e/fudSpw48aNdXV1DQ0NW7duHf7+7u7uvXv3ZmVlVVVVBXZS+MQGDbt79+727duV/2tz5sw5cuTI8FtWV1dnZWUpb1lQUHDr1i2p+eENItSoly9flpaWxsTEOEU1duzY0tLSV69eKT9kYGCgvLw8Pj7e6UOioqKKi4ufPXsW+O8C3iBCzRkaGqqsrExKSnJqyWAwFBUVdXR0eP7wJ0+eFBcXR0REOH34pEmTysvLLRZLYL4LeI8IteXSpUv5+fnKvcply5ZduHDB+89z7dq1tWvXKj/P4sWLv/76a/Xmhw+IUCtaW1uLior0er1TNmlpaZWVlVar1YfPaTKZZsyYoUyxsLCwpaXF398BfESE8sxmc1lZ2dixY51SMRqNJSUlPT09o/nkvb29ZWVl48aNc/rksbGxJSUlL1688Nd3AZ8RoTCTyZSenq72Lyt3v2ZTU1N9/jULfyFCMVevXl2zZo0yv9zc3DNnzqjxFWtra1esWKH8inl5eefPn1fjK8IbRCjA3ROYiYmJaj+BabVaXT71qtfri4qKHj16pN6XhjtEGFCeX8p7/vx5YMawvwg5ZswYpzHi4uJKS0v7+voCMwbsiDBwqqurMzMzlXuDBQUFt2/fDvw8zc3NLg/HmT17ttPhOFAVEQZCY2Pjli1blA/3uXPnVlVVyc5WU1OTnZ2tnM2+MEp2tjBBhOrq6uoqKSmJjo52eognJCSUl5cPDg5KD2iz/f8YncmTJzsNGRkZuXv37s7OTukBQxwRqiXoHtlB8fMiJBGhKk6cOOFuH6+urk56Ok887DkfP35cerrQRIR+dv/+/aKiIuWDOLie7aiurp4/f77yuygsLGxubpaeLtQQod+E2PP+Gnk1JRwQoR+E8CvggscVhA8iHK1wOBYs8EfYhRUi9F1bW1tYHRXt4Vjz7777Tnq6IEaEvgjb9UGqrroKW0Q4Yh5Wyt67d096ukBQY/1xOCPCEeCcEcO5OxPH8uXLR3QmDhChVzh7kkv2o4KmTp3qdLd4eU4q2BHha3Aewdfy4eyMGI4IPeGMut7z/jzFcEKErt25c8fp3PJ2GRkZx44dk55Ou7766quFCxcq77eNGzfevHlTejqNIkJn3d3dLhcTTJgwoaysrL+/X3pArRscHDxw4EBiYqLTHWhfPvL48WPpATWHCH9gf5pBeVEx+9MM33//vfSAweTp06fFxcXKy0JNnDiRhVFOiPB/Tp48mZOTo9yPWr9+/Y0bN6SnC1YNDQ2bNm1S3qvz5s37/PPPpafTCiK0PXjwwOXiozfeeKOyslJ6ulBgMplmzpypvIcLCwu//fZb6enkhXWEZrM5lBYfaVl/f395efn48eOd7uro6GgWRoVphFar9ciRI9OmTXN6TOj1+u3bt9+/f196wNDU3t6+e/du+9WFh0tOTj5w4MDQ0JD0gDLCMcLLly+vXLlSuXe0dOnSc+fOSU8X+q5cubJq1Srl/b9kyZKzZ89KTycgvCJsa2tz+ZM4JSUlnH8SB559T2T69OnsidjCJ0LPf5OE8OIjLbP/TR4bG+v0n2I0GsPqb/KwiJBn57Ts4cOHYb4wKsQjvH379ttvv63Mb/78+V988YX0dPjBqVOnFi1apPyfevPNN0P+ddqQjdB+xIZy8ZH9iI2wXXykZZ4XRoXwEUshGKG7YxejoqI4dlH77MfuKhdG2Y/dDcmFUaEWYXV19YIFC5R7NQUFBd988430dPBWU1NTYWGh8v8xIyPj6NGj0tP5WehE2NTUxHq2EONhPWco/UgNhQh7enpcruwO4R2Y8DEwMODuj4vi4uLu7m7pAf0guCPkHCdhIrSfZgviCC9evLh8+XLlvsq6deuuX78uPR38z90LTosWLQrqs90FZYS8vBvOQu+8r0EWoYczQJeWlvb29koPiECwH4QYMmdAD5oIPR/yy7UQwlDIHI4fHBFeuXJl9erVyj2QJUuWcFWgMOduYVpeXl6wLEzTeoT2ZaDKp8XCfBkohvO8RPvBgwfSA76GdiO0n/paufiIK8XCpeC9UrJGIzSZTLNmzVLuY3DNdHgWjKft0lyEDQ0NmzdvVt6JnCQP3jtx4kR2drbyUbR+/fq6ujrp6ZxpKMKuri5OFwt/CaJTOWsiQvvio8mTJzvdX/YTp3d2dkoPiGDV1dXl8qIGCQkJ2rmogXyENTU17i4hUl9fLz0dQoG7y/vMnTu3qqpKejrRCN1dTGv27NksPoLfVVdXZ2ZmKh9v4he6k4nQ3WUl7c8ms/gIKtHmJV8DHaHVaq2srExKSnK6F/R6fVFR0aNHjwI8D8KQ1i5+HtAIL126lJ+fr9wfWLZs2YULFwI5CXDt2rW1a9cqH425ubmnT58O5CQBirC1tdXl4qPU1FQWH0GQyWRKT09XplhYWNjS0hKYGVSPsLe3193io5KSkp6eHrUHADyzP0TdLYwKwENU3Qi18GMG8IbgzppaEV69enXNmjVa2OEGvFdbW7tixQrl41bVpy38H6HWnnoCRiTwT+D7M0JtvggD+MDzwij/vpTttwg1ezgC4LPAHNTlhwgbGxu3bNmiHFQjB+YBo+Tu8OYNGzb45fDmUUUYFIeoA6On6kIfHyP0vFiLxUcISe6WvCYkJIxmyasvEQbXsmXAvxobG92d/OH48eM+fMKRRejuBB7Tpk3T7Ak8ADX48TRI3kYYvKeyAlTirxMCehVhU1NTcnKy8s+/nTt3tre3j+K7AIJee3v7zp07lScCT05Obmpq8uYzOH+kS7NmzUpLSxv+nry8vLNnz1ZUVCjjBMJKcnJyRUXF5cuXnU4Sn5SU5HJ/1QUvcz937pz92NaUlBQWHwEumUwmx+VSvL9am95ms3lZ/K5du9LS0kpKSuLi4kbwgwIIJ2az+aOPPmptbT148KCXHzKCCAGowau/CQGohwgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsKIEBBGhIAwIgSEESEgjAgBYUQICCNCQBgRAsL+CzS9g4m0MVi5AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -768,7 +791,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEfklEQVR4nO3dy07bUABFUVz1/3/Z\nHVSoFbSQh2Hfx1piQhSBjbxznEw4zvN8ATo/6gOA3YkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nm0V4HJ88chx/vuBb/KwPYCTH8XKe//325V8Nf/zz7nny+eZ3reg4jh1O814ifPU+ufN8++CdF9Bd\nz17+Al3+BB+22e0ojGe/JRz1zd55ngtvxcKn9rz9InzubR5czu3oQH6PYX0U1zODHxPhq98fw/zt\n/Uc133EUa3bIB/a7Hf3Amw69eF/BDH7KH2hEK124K53LF3E7yhdS4C1EOKI13hkq8EYihJgIBzX7\nGJrB24lwXLN3yI1EyPXM4F1EODRjuAMRcjEzeC8Rjm6uMVTgA0Q4gbk65F4i5DJm8DEinIMxXJgI\nuYYZfJgIp2EMVyXCmQzboRl8hgghJsLJDDiGZvBJIuQpCnyeCOcz4BjyDBHyODN4CRFOyRiuRISz\nyjs0g1cRIcREOLFwDM3ghUQIMa9n00vG0GVzIf+LYm5uCxfgdhRiIpyYGVyDCCEmwlmZwWWIcEoK\nXIkIISbC+ZjBxYgQYiKcjBlcjwhnosAliRBiIpyGGVyVCCEmwjmYwYWJcAIKXJsIISbC0ZnB5Ylw\naArcgQghJsJxmcFNiBBiIhyUGdyHCEekwK2IEGIiHI4Z3I0IISbCsZjBDYlwIArckwghJsJRmMFt\niRBiIhyCGdyZCIegwJ2JEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh9guBRd9aAb32+gAA\nAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAUb0lEQVR4nO3deVRUdRsH8GcEAdkEcxe0UhkBBQlQcyuXPJSpuSUhLriCpcwgi5CkiIEYKumrkR6XNKPXTI9keswM8i2jPKIJgkCKKygqsgrCMPP+MYbpocKBmefey/dz+IPjzNz7rePX586dO78r02g0BAB8WnEHAGjpUEIAZighADOUEIAZSgjADCUEYIYSAjBDCQGYoYQAzFBCAGYoIQAzlBCAGUoIwAwlBGCGEgIwQwkBmKGEAMxQQgBmKCEAM5QQgBlKCMAMJQRghhICMEMJAZihhADMUEIAZighADOUEIAZSgjADCUEYIYSAjBDCQGYoYQAzFBCAGYoIQAzlBCAGUoIwAwlBGCGEgIwQwkBmKGEAMxQQgBmKCEAM5QQgBlKCMAMJQRghhICMEMJAZihhADMUEIAZighADOUEIAZSgjADCUEYIYSAjBDCQGYoYQAzFBCAGYoIQAzlBCAGUoIwAwlBGCGEgIwQwkBmKGEAMxQQgBmKCEAM5QQgBlKCMAMJQRghhICMEMJAZihhADMUEIAZighADOUEIDZM5awb1+SyejVVxt46KefSCYjmYy+/LKBR8vKKCaGBg6k554jMzPq3p18fCglRYfEABJjbIid/P47eXnRrVuP/+T6dUpKoqQkWrSI/vMfkskMEQNAkPR/OHr3Lr32Gt26RUZGpFRSWhplZ9OXX5KzMxHRli0UFaX3DAACpv8SRkbSnTtERNu20fr1NHAg9elD06ZRWho5ORERxcbS1at6jwEgVHouYVUV7d1LROThQX5+TzxkaUlr1xIR1dTQZ5/pNwaAgOn5PeGpU1ReTkT09tsNPOrlRTY2VFJCR4/SBx+QWk03bug3z5Ouy2QajcZgu7Ozs2vVCqej4Wl6LuG5c49+8fBo4FEjI+rfn1JTKSODNBoqKaEePfSb50k9iAxXQaLExMTJkye3b9/egPsEHklJSSNGjOjcuXNjnqxTCX/8sbHnMwsKHv3SvXvDT9C2rrKSSkvJyIjs7XXJoyt7A07CkpISf3//33//fcuWLYbZI3DJysqaOXOmlZXV5cuXbWxs/vX5ep6E2mNRIrKwaPgJlpaPn2lvT9eu6TfPkwx5Oig7O9vV1XXr1q3+/v4uLi4G3DMYWlBQkEql8vHxaUwDSccTMx4elJHx9M/u3Q1t/s/t/93AUauffqZEOTo6BgQE1NXVKRQK7iygR4cOHTp27Jitre3KlSsb+RKd/upbWFDfvk//vPBCA8+0snr0S1lZw5uqqHj0i7W1LklEZeXKle3bt09JSTl48CB3FtCLmpqa0NBQIoqKimr8m389z5/6t4JXrjT8BO0nhLa2j+sqXba2tlFRUUQUHBxcXV3NHQeaX0JCQm5urqOjo7+/f+NfpecS1r/5+fXXBh5VqejsWSIiNzf9xhCMhQsXuri4XL58ecOGDdxZoJkVFRXFxMQQ0fr161u3bt34F+q5hC+/TLa2RET//W8DbwuPHXt05mbcOP3GEAwjIyNt/WJiYgrqTx2DJISHh5eWlo4fP97Ly+uZXqjnEpqY0OzZRERZWbR58xMPVVdTRAQRkaUlTZ+u3xhCMnLkyIkTJ1ZUVERo//NBEs6ePbtr1y4TE5OPPvromV+seSbOzhoizSuvNPDQ//6nIdIQaZKSnvjz4mJN164aIk2rVprAQM3p05q8PM3Bgxp390fP//jjZ8sgfpcuXTIzM5PJZGlpadxZoHkMGzaMiEJDQ3V4rf5LqNFoMjM1dnaPHv3rj0ymiYjQIbQEhIeHE9GgQYPUajV3FmiqL774gog6duxYUlKiw8sN8umcszNlZdHq1eThQTY2ZGJC3buTry+dOkUffmiIAMITERHRtWvXtLS0vdoL3EG0qqqqtP+kxsTEtG3bVpdNNPu/CtBIO3fuJKJu3bqVl5dzZwHdrVixgojc3Nzq6up024LEr1MRslmzZg0YMODmzZtxcXHcWUBHN27ciI+PJ6KEhASdvyKDErKRyWQff/yxTCaLj4/Pz8/njgO6CA4OrqysfOedd4YPH67zRlBCToMGDZo+fXp1dbX2WicQl1OnTu3bt69NmzaxsbFN2Q5KyGzNmjUWFhb79+9PTU3lzgLPQK1WKxQKjUYTGhrao2nfg0UJmXXr1i0sLIyIFApFXV0ddxxorB07dpw+fdrOzi4kJKSJmzLo+g7QoOrqakdHxytXriQmJi5cuJA7Dvy78vJyuVxeWFiYlJTk7e3dxK1hEvIzMzNbu3YtEUVERBQXF3PHgX+3atWqwsLCwYMHT5s2relbwyQUihEjRqSmpiqVyvXr13NngX9y6dIlZ2fn2tratLQ0T0/Ppm8Qk1AoEhISjIyMNm3adOHCBe4s8E+USuXDhw/9/PyapYGEEgqHq6vr3LlzVSqVUqnkzgJ/68SJE998842VlVV0dHRzbRMlFJDVq1fb2NgcP378yJEj3FmgASqVSrtEUGRkZJcuXZprsyihgHTo0CEyMpKIAgMDHz58yB0HnrZly5bMzMyePXsuWbKkGTeLEzPCUltb269fv5ycnHXr1gUFBXHHgceKi4sdHBzu3buXnJw8rlnXgsAkFJbWrVtv2rSJiKKiom799WZywC0yMvLevXujRo1q3gYSJqEwvfHGG0ePHl24cGFiYiJ3FiAiysrKcnV1JaL09PR+/fo178YxCYVo48aNJiYm27ZtO3PmDHcWICJSKpUqlWrRokXN3kBCCYWpV69e7777rlqtDgwMxKEKu4MHD3733Xft2rX74IMP9LF9HI4KVFlZmVwuv3Xr1r59+6ZOncodp+Wqqanp27dvXl7e5s2bFy1apI9dYBIKlLW1tfZmBkuXLn3w4AF3nJZr3bp1eXl5Tk5OCxYs0NMuUELhmj9/vru7+/Xr13E1KZfbt2+vWbOGiDZs2GBsrK9bmKGEwtWqVauEhASZTBYbG3vNsDeNA62wsLCysrKJEyeOGTNGf3vBe0Khmzp16v79+319fffs2cOdpWVJT0/39PQ0NjbOzMzs3bu3/naESSh069evNzc337t3708//cSdpQXRaDSBgYFqtTooKEivDSSUUPjs7e2DgoLq/05wx2kptP/qderUSbuwr17hcFQEHjx44OjoeO3atV27ds2aNYs7jvTV/w/fuXPnbO0djfQJk1AEzM3NV69eTX+eJ+COI33aM2EvvfTSzJkzDbA7lFAcfH19hw4dWn/GHPRH+5mQdmlmnRfVfiYooTjIZDLtQuvaz46540iZ9uoIHx+foUOHGmaPKKFouLu7z5gxo6amRrtOKejDzz//vH///jZt2mhvfG0YKKGYxMXFWVtba68n5s4iQfVXzIeHh3fv3t1g+0UJxaRTp07Lli2jP79Zwx1HarTfHbO3t1+6dKkh94uPKETGABf1t0yMX1vBJBQZExMT7QlS7WoL3HGkQ7ueyJAhQ6ZMmWLgXaOE4jNp0qQxY8YUFxevWrWKO4tE/PHHH5s3b66/Yt7Ae8fhqCjVL3ly9uzZvn37cscRvbFjxx45cmTBggWffvqp4feOSShKTk5O8+fPr1+LFppCu9qytbV1VFQUSwBMQrHS3zKYLYpKperfv/+FCxcYF3rFJBSrdu3aaZfr1t6fhDuOWGnvwKNdWYsrAyahiKlUKjc3t8zMzLVr1zb9frEtUHFxce/evYuLiw8fPjx27FiuGJiEImZsbJyQkEBE0dHRhYWF3HHER3tX1tGjRzM2kDAJJWDcuHGHDx+eN2/etm3buLOIyYULF/r3709E586dc3Z2ZkyCSSh6CQkJpqamO3bsOH36NHcWMVEoFCqVavHixbwNJJRQAnr27Ll48WK1Wq1QKHBc00j79+///vvv27Vrt3z5cu4sOByVhPLycrlcXlhYmJSU5O3tzR1H6Kqrq52cnPLz8z/55BN/f3/uOJiEkmBlZaW9hC0kJKSyspI7jtDFx8fn5+c7OzvPmzePOwsRSigZc+bM8fT0vHHjRnx8PHcWQbt582ZcXBzpeVHtZ4ISSkT9xcdxcXFXr17ljiNcy5Ytq6iomDJlymuvvcad5RGUUDoGDx789ttvV1VVGWCpTJFKS0vbu3evqalpbGwsd5bHUEJJiY+Pt7CwSEpKOnnyJHcWwdFoNNoTyMHBwb169eKO8xhKKCl2dnbBwcFEpFAosFz3U3bv3v3rr7927tw5NDSUO8sT8BGF1FRVVTk6Ol69enX79u1z5szhjiMUFRUVcrm8oKBg9+7dM2bM4I7zBExCqWnTpo32DU94eHhpaSl3HKGIiYkpKChwd3efPn06d5anoYQS5O3tPWzYsKKiIkMunilk+fn5GzZskMlk2jUsuOM8TXCBoOnql3BPSEjIzc3ljsMvODi4urp6xowZAwcO5M7SAJRQmtzc3GbPnl1TU4PvGaakpBw4cMDS0lJQH0v8FUooWbGxsW3btk1OTj527Bh3FjZ1dXXaZXjCw8O7du3KHadhKKFkdezYMSIigoiUSmVtbS13HB5bt249f/78Cy+8wLV+TGPgIwopq6mp6devX25u7saNGxcvXswdx9Du37/v4OBw9+7dr7/+etKkSdxx/hZKKHHJyckTJkywtLScNWuWmZkZdxyDSk1NPXPmzKuvvpqSksKd5Z+ghBKn0Wi6du1qamraMq/q9vLyWrNmjXahZMESxFc5QH/27Nlz69YtW1vb6OjoljYJiUihUAjk+0r/AJNQyh48eNCnT5/r169/9tlnhrn9OugAZ0elLCYm5vr16+7u7r6+vtxZ4G9hEkrWtWvXHB0dq6qqTp48abDbr4MOMAklKygo6MGDB76+vmigwGESSlNKSsrIkSPNzc2zs7MNeft10AEmoQTV1dUplUoiioiIQAOFD5NQghITEwMCAuzt7S9evGhubs4dB/4FSig1JSUlDg4Od+7c+eqrrwx/+3XQAQ5HpSYqKurOnTtDhw6dPHkydxZoFExCSbl48aKLi0tdXd1vv/3m7u7OHQcaBZNQUoKCgmpraxcsWIAGiggmoXR8++23b775prW1dW5ubqdOnbjjQGNhEkpEbW3t0qVLiWjlypVooLighBKxcePGnJycPn36vPfee9xZ4NngcFQKioqK5HJ5SUnJkSNHXn/9de448GwwCaVg+fLlJSUlY8eORQPFCJNQ9M6dO+fh4dGqVauMjAy5XM4dB54ZJqHoKRSKurq6xYsXo4EihUkobvv27Zs2bVqHDh1yc3NtbGy444AuMAlFrKqqKiwsjIhWr16NBooXSihi8fHxV65c6d+//9y5c7mzgO5wOCpWN2/elMvllZWVqampr7zyCncc0B0moViFhYVVVlZOnToVDRQ7TEJR+uWXX4YMGWJqapqdnf38889zx4EmwSQUH7VarVAoNBpNSEgIGigBmITis2vXLj8/v27duuXk5FhYWHDHgaZCCUWmoqJCLpcXFBR8/vnnArz9OugAh6Mi8+GHHxYUFAwaNMjHx4c7CzQPTEIxuXz5srOz88OHD9PS0gYMGMAdB5oHJqGYLF26tLq6etasWWiglGASisYPP/wwatQoS0vLnJwcwd5+HXSASSgO9Ytqv//++2igxKCE4pCYmHj+/PkXX3xRoVBwZ4FmhsNREbh//76Dg8Pdu3cPHDgwceJE7jjQzDAJRWDFihV3794dOXIkGihJmIRCl52d7erqqlar09PTXVxcuONA88MkFDqlUllbW+vv748GShUmoaAlJydPmDDB1tY2Nze3ffv23HFALzAJhaumpiYkJISIVq5ciQZKGEooXAkJCbm5uY6OjgEBAdxZQI9wOCpQRUVFDg4OpaWlR48e9fLy4o4DeoRJKFDh4eGlpaXjx49HAyUPk1CIzp496+HhYWxsnJGR4eDgwB0H9AuTUIgUCoVarQ4MDEQDWwJMQsFJSkry8fHp2LFjbm5u27ZtueOA3mESCktVVVV4eDgRxcTEoIEtBEooLHFxcVevXnVzc/Pz8+POAgaCw1EBuXHjRp8+fSorK3/88cfhw4dzxwEDwSQUkJCQkMrKSm9vbzSwRcEkFIpTp04NHTrUzMwsOzu7R48e3HHAcDAJBaF+Ue3Q0FA0sKXBJBSE7du3z5s3z87O7uLFi1hUu6VBCfmVl5fL5fLCwsKkpCRvb2/uOGBoOBzlFx0dXVhY+PLLL0+bNo07CzDAJGR26dIlZ2fn2tratLQ0T09P7jjAAJOQmVKpfPjwoZ+fHxrYYmEScjpx4sTo0aOtrKxycnK6dOnCHQd4YBKyUalU2kW1IyMj0cCWDCVks2XLloyMjJ49ey5ZsoQ7C3DC4SiP4uJiBweHe/fuHTp0aPz48dxxgBMmIY/IyMh79+6NGjUKDQRMQgZZWVmurq5ElJ6e3q9fP+44wAyTkIFSqVSpVAEBAWggECah4R08eHDSpEm2trZ5eXnPPfccdxzgh0loUDU1NWFhYUQUHR2NBoIWSmhQ69aty8vLc3JyWrhwIXcWEAocjhrO7du3HRwcysrKjh07NmbMGO44IBSYhIazbNmysrKyt956Cw2Ev8IkNJD09HRPT09jY+PMzMzevXtzxwEBwSQ0kAMHDqjVaqVSiQbCUzAJDef48eODBg2ysrLiDgLCghICMMPhKAAzlBCAGUoIwAwlBGCGEgIwQwkBmKGEAMxQQgBmKCEAM5QQgBlKCMAMJQRghhICMEMJAZihhADMUEIAZighADOUEIAZSgjADCUEYIYSAjBDCQGYoYQAzFBCAGYoIQAzlBCAGUoIwAwlBGCGEgIwQwkBmKGEAMxQQgBmKCEAM5QQgBlKCMAMJQRghhICMEMJAZihhADMUEIAZighADOUEIAZSgjADCUEYIYSAjBDCQGYoYQAzFBCAGYoIQAzlBCAGUoIwAwlBGCGEgIwQwkBmKGEAMxQQgBmKCEAM5QQgBlKCMAMJQRghhICMEMJAZihhADMUEIAZighADOUEIAZSgjADCUEYIYSAjBDCQGYoYQAzP4PiuPXMjG5yWMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -780,7 +803,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAFDUlEQVR4nO3cwVIbRxhG0VEq7//K\nykJOHAeQicvidvd/ztILawa4+lpSwe1+v19A54/6AmA6EUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBAT\nIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE\nRAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQI\nMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDER\nQkyEEPuzvoAV3W63r3/Q+/3+9Q/KCkT4X7fbLemhelxyjqMQE+EPwjm63+/JMZicCCEmwu/yV2XG\ncCYRrkWHA4nwm3wGGctHFD/x6l16W/5jDD0jzCHC63o6g2Lg1RxHVzyIemU4igghNj3CBWfwwRjO\nMT3ClelwiNERLjuDjDI6wvUZwwnmRmgGWcTcCHdhDI83NMK9ZlCHZ5sY4V4FcryJEe7IGB5sXIRm\nkNWMi3BfxvBUsyLcfQZ1eKRZEcKCBkW4+ww+GMPzTPml3jMKXM2nnw4+9ZUf+/2ZEuFJ1vn7Fytc\nwwFGHEcX+ZGFd42I8DxeGZ7k/AhPnUEdHuP8CGFxh0d46gw+HD+Gb2/uyNs9PMJ37fiDu+M1/xYT\n7vvkjyg+msF13uL/pOd/m3iHPv/fl/rf93q/X7fb4R8hnhzhdrH9guNvcIKJx9FrmwG5Lpn9PYYH\nOzzCjWL7BXP6PLvDwyN8Yos+52Q22fkRPoltiw4/Mq3Pg8fw/Aj39SSzaQU+nHrHJ787+o8nb5NO\neAf1dV79q0yf+ZcDjIjw2jC2LWZwkcvYnePoiq8M18mMLzAowjPeodHneQZFuIstDqL8RrMiPGMM\nOcysCNdnBgcaF6ExZDXjIrwWjs0MzjQxwifW7FOBZxsa4YKHUqWNNTTC1TiITjY3wgXH8C0FTjA3\nwmuZ2JQ23OgIn1ihT3EOMT3C/FCqNKZHuCxxziHCcgw/Kk2Bo4gQYiK8rmgMzSAPIvzmeYcvesRX\n/LdsR4RrMYMDifC7/LNBBc4kQoiJ8AfhGJrBsUQIMc++70jG0DdiLBFCzHEUYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKI\niRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQ\nYiKEmAghJkKIiRBiIoSYCCH2FxgIkk0LSRW8AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAVa0lEQVR4nO3deVRU9f/H8ffACIaEiiUeFROPDsiiJoYmZLlRrv0U7XiSpI4dTC1lEZHAOoi5FCr5zdQ85Xrym9sfuNM3zaWjcUTFJQXUFFwAQRZZZGDm/v64xdevlcydufe+Z3k9Tn91rnPfok/vLJ/7GY0gCAQAfJy4BwBwdIgQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgJmWe4D/Ki8vT01N5Z5CBlFRUf3799doNNyDgG2wlgj37NmTlpZ2/vx57kFkcObMmcGDB6enp3MPArZBIwgC9wzU0NAQGBh47dq1yZMnh4WFcY9jkTt37qxYscLJyenixYu+vr7c44ANsIorYXp6+rVr1wICAr7//nut1ipGskRFRcWGDRvi4+P37dvHPQvYAP4rYXFxsa+vb3V1dVZW1siRI3mHkUVpaamvr29lZeWBAwdGjRrFPQ5YO/53R+fPn19dXR0REWEfBRJRx44dU1JSiCguLq6xsZF7HLB2zFfCnJyckJAQrVZ7+fLlnj17Mk4ir8bGxqCgoLy8vFWrVsXExHCPA1aN80ooCMLcuXONRuO8efPsqUAiatWqlfjuaGpq6v3797nHAavGGeHWrVt/+eUXLy+vxMRExjEUMnbs2FGjRlVWVn7yySfcs4BVY3s6WldX5+fnV1RUtHnz5mnTprHMoLSrV6/26dPHaDTm5OT07duXexywUmxXws8++6yoqCg4ODgyMpJrBqX5+fnNnj3bYDB8+OGH7O9Cg9XiuRL+/vvv/v7+DQ0Nx48ft/VP55+usrKyV69eZWVlu3btioiI4B4HrBHPlTAhIeHRo0eRkZH2XSARtWvXbtGiRUQUFxdXV1fHPQ5YI4Yr4dGjR4cNG+bm5nblypVu3bqZ+Kvq6upOnDih6GCmCwwM7NKli4kHGwyG4ODg3NzcxYsXJycnKzoY2CRBXU1NTeJbFIsXL5b0C69evcr9o/qvb7/9VtLwR44cISI3N7dbt25J+oXgCNReqLlhw4bc3Nxu3brFxsZK+oVt2rQJDw9XaCqpunbtKun4oUOHRkRE7N69OyUlZcuWLQpNBTZK1aejlZWVOp3u/v37DvguheO8FwVSqfrGjLh8JCwsbOLEiWqe1xr4+PjExcUJghATE2M0GrnHASui3pVQ/OTaYDBkZ2cHBwerc1KrUlNT4+vre/fuXTtenwBmUO9KKN5SEB0d7ZgFEpG7u/vSpUvpzxtHuMcBa6FShPv37z948GDzh2YO65133gkNDS0pKVm+fDn3LGAt1Hg6ivt6HifevdWqVatLly7Z2b0jYB41roSrV6/Oy8sTF1KqcDorFxwcPHXq1IaGhgULFnDPAlZB8Ssh9nr4K/vb0QMsofiVMCUlpbKycsyYMSiwWadOnebPn09EsbGxTU1N3OMAM2WvhOfPnx8wYAD2//ur5l0e165d+8EHH3CPA5yUvRLGxMQYDIaPPvoIBT7B1dV12bJlRJScnFxeXs49DnBSMMIdO3YcO3bs+eefX7hwoXJnsV3iBnMPHjxYvHgx9yzASamno/X19f7+/jdv3ly/fn10dLQSp7ADly9f7tevHxGdO3cuMDCQexzgodSV8Isvvrh582a/fv2mT5+u0CnsQEBAwPvvv9/U1CT1nhKwJ4pcCe/cuePr61tbW/vzzz+/+uqrsj++PXnw4IFOpysvL9+3b9+YMWO4xwEGilwJExMTa2trJ0+ejAJb5OnpKW7XHRMT09DQwD0OMJD/Snjq1KnQ0FBXV9crV650795d3ge3S01NTf369bt8+XJ6enp8fDz3OKA2ma+ERqMxJiZGEISEhAQUaCKtVpuRkUFEqampxcXF3OOA2mSOcPPmzdnZ2V26dLHLTbWVM2LEiDFjxjx8+BDbdTsgOZ+O1tTU6HS6e/fubdu2berUqXI9rIO4du1aYGBgY2Pjr7/+OmDAAO5xQD1yXgk/++yze/fuDRo06O2335bxYR1Ez549Z8+e3fx8nnscUI9sV8IbN24EBAQ0NDScPn06JCRElsd0NNXV1b6+vsXFxT/88MNbb73FPQ6oRLYrYXx8/KNHj6KiolCg2Tw8PFJTU4lo3rx52K7bcchzJTxy5Mjw4cPd3d3z8vI6d+5s+QM6LKPROHDgwDNnzqSmpuJNGgchw5XQYDCIm1YkJyejQAs5OTllZGRoNJply5YVFhZyjwNqkCHCdevWXbx4sUePHtg/RhahoaGTJk2qr6//+OOPuWcBNVj6dLSiokKn05WVle3Zs2fChAlyjeXgioqK/Pz86uvrjx079sorr3CPA8qy9Er46aeflpWVDRs2DAXKyNvbOz4+Htt1OwiLroRXrlzp27ev0Wg8e/Zsnz59ZBwL6uvr/fz8CgsLv/vuu/fee497HAZZWVl6vV6Wh3Jx6aHX+8vyUEQ0ahQ5O8v1YERk2Vejvf7660Q0e/ZsSx4E/sm2bduIyMvLq6qqinsWBu3atZPrL/mQITFEglz/VVfL/Ds1/0qYmZn55ptvtm/fPj8//7nnnpPr5wXNBEEYMmTIyZMnFyxYIO6f71CmTJlSU1Mjy0N17/5/N2++L8tDEdHOnfTMM3I9GJHZT0f1en1QUFB+fv6XX345Z84cOSeCx5w9e/all17SarWXLl3q1asX9zigCDPfmMnIyMjPz+/du/fMmTPlHQge179//2nTpun1enGfUrBL5lwJS0tLdTpdVVXVwYMH33jjDSXGgmYlJSU6na66uvrQoUPii3CwM+ZcCZOSkqqqqsaPH48CVeDl5ZWUlEREcXFx2K7bLkm+Ep47d27AgAFarfbixYs6nU6hseBxer0+MDCwoKDgq6++wpfq2B/JV0Lx4+O5c+eiQNW4uLiI32e4cOFCbNdtf6RFuH379uPHj3fs2DE5OVmhgeBvTZgwITw8vKKiQrzXCXj9/DNpNKTR0MaN//P/d+0ijYakfuedhAjr6+vFFydLlixp27attPOAxVatWqXVar/++uuLFy9yzwJ/WLlShgeREOHy5ctv3br14osvOuYqKnb+/v4zZsxovnEM2Hl40KVLdOiQpY9jaoS3b99OT08nooyMDCcnlb7pHp6QlpbWoUOHI0eOZGZmcs8CNHEiabW0YoWlj2NqTgkJCbW1tVOmTBkyZIil5wRztW/fXrzdPi4uDtt1s2vbliIi6D//odxcyx7IlAWmFRUV3t7erq6ut27dknntKkjU2NjYo0cPFxcXef4ecZNxlfYTnn22UsZF208s4D56VCASPvhAyM4WiIR33vnjT2fnToFISEyU9meKJ5YAZhIEeuklCgujf/+b7twx/3FMirBdu3ZhYWENDQ2SVjCeOnWqrKzM3MEchSAI+/fvF0xeMrFmzZobN254e3s/evRI5ossh4qKCoUeubq6rSCQEv89++z//InEx1NjI/3rX5b9JTBFUVFRmzZtiOjYsWOmHJ+enq7RaGbOnGnBj9EhiDcNTpw40ZSDy8vLO3ToQESZmZlKDwZPIT4dnTFDEATBYBB69hTatRMePlT46WjXrl0TEhLoz6+hb/H40aNHa7Xab7755sKFC+b/C2Hv6urqxN2cxo8fb8rx4oqZ4cOHjxs3TuHRwFROThQTQ5WV9O23pNGY9RCm91pXV/fCCy8Q0YYNG0w5XrzPcOjQodL+WXAk4jcT9u/f32AwtHjw5cuXtVqtVqu9cOGCCrPBUzx+JRQEobZW8PQUuncXdu0y50oobXuL7du3E1HHjh0rKytbPPjBgwfiHfe7d++WNpRjKCwsdHNz02g0J06cMOX48PBwIpozZ47Sg0GLnohQEISPPxaIhJkzlY9QEATxc8J58+aZcvCaNWuIyMfHp76+XuqJ7N6kSZOIKDIy0pSDd+/eTUSenp5lZWVKDwYt+muEd+8KLi5Chw6qRHj27FlnZ2cXF5e8vLwWD25qahJ3YVuyZInUE9m3EydOaDQaNzc3Uz56bWhoEPe2WLNmjQqzQYv+GqEgCFFRf3yQqHiEgiBMnz6diMaNG2fKwUeOHCEid3f3O3fumHEuu2QwGIKDg4koLS3NlOOXLFlCRP7+/o2NjUrPBqb42whzc1WMsKSkRLyL4uDBg6YcL+4LHBUVZca57NK6deuIyNvbu7a2tsWDi4uLPTw8iOjw4cMqzAbqM3Pf0c8//5yIevfurdfrWzz4+vXrrVu31mg0p0+fNu909qSqqqpTp05EtGPHDlOOj4qKIqIJEyYoPRhwMTPChoYG8c76jIwMU44Xb0QcNGiQ0Wg074x2IzY2lohCQ0NN+VGcOXPGycnJxcUlPz9fhdmAhfmb/+7du3f8+PEmbv5bU1Pj6+t79+7drVu3RkZGmndGO3Dt2rWAgICmpqbs7GzxZeFTCH9u/puUlCS+LHQojrP5r0Xb4Iu7rc2aNcuUgzdt2kREXbp0efjwoSUntWmjRo0iohlPvKL/B1u3biVsgy8Hu90GnyR+IYwgCIMGDcrOzk5JSUlLSzP7pLbrxx9/DA8P9/DwyMvLE18WPkVdXV3v3r0LCws3btz47rvvqjKgdcEXwphK0tq0U6dOaTSa1q1b37hxw8Lz2hy9Xu/r60tEK1asMOV4SSvawKZZGqHUtWniC8JJkyZZeF6bs2LFCiLq2bOnKbcgSV3RBjbN0ggFiWvTbt++Ld4SdfToUctPbStKS0vFVzjirYMtkrSiDWydDBFKXZu2aNEiIurbt29TU5PlZ7cJ0dHRRDRy5EhTDj558qRGo3nmmWewmYiDkCFCQRB++uknMnltWn19fffu3Ylo3bp1spzdyp0/f97Z2Vn8erMWD25e0bZo0SIVZgNrIE+EgsS1aTt27CAiT0/P8vJyuQawWq+99hoRxcbGmnKwpBVtYB9ki1Dq2jRJfzVtl6R/bqSuaAP7IFuEgsS1aZKepNkoqU+8Ja1oA7shZ4QPHz7s3LkzEW3dutWU4yW9XWGLxLegAgICTLkFqaCgwNXV1cnJ6cyZMyrMBtZDzggFQdi4cSOZvDZN6hv3tkXqhzGjR48moujoaIXnAqsjc4RGozEkJISIUlJSTDle0kfYtkXSsoSsrCwi8vDwuHfvntKDgbWROUJB4tq05sVcK1eulH0SRpJ+CI2NjQEBAaavaAM7I3+EgsSLwP79++3sIiD16cDKlSvt9ekAmEKRCKW+HJJ0g4/1k/TCuLy83NPT015fGIMpFIlQkLg2raCgwMXFxT7eGJT6FvGMGTOIaMSIEUoPBlZLqQgd9iMyfFgKUikVoSB9sYiXlxcR7dy5U7mRlIZlQ2AGBSMUJP4lW7t2ra0vm5S0gHbnzp2Os4AWnkLZCM27gcDELXGtjdRbSXx8fBznVhJ4CmUjFCSuTZO0ObxVkXpTpbjLjokr2sC+KR6hg9xULnV7AXd3dyLKyspSYTawcopHKDjA9irYaAcsoUaEUtemJScnE1FwcLCtbDRmxpZzrq6uBQUFSg8GNkGNCAWJa9Nqa2u7detGRJs2bVJhNgv99ttvrVq1cnZ2zs3NbfFgo9E4cOBAIkpOTlZhNrAJKkUoSFybtmXLFrKRzafN2Ia8U6dO1v/7AtWoF6GktWlGozEsLIyIkpKSVJjNbJmZmUTUvn37+/fvt3hw84q2LVu2qDAb2Ar1IhQkrk07ffq0eDdQaWmpCrOZwWg0BgUFEb6aCiyjaoTNGxmZuDYtLS3Nyt8jvX79+pw5c0z5ksYbN27gSxrhb6kaoeDAW/pNnDiRiKZNm8Y9CFgdi76VyQziDa85OTlpaWnid544gqNHjw4bNszd3T0vL098WQjQzEnt8zk5ZWRkaDSapUuXFhYWqnx2FgaDISYmhoiSkpJQIPyV2hESUVhYWERERF1dnfihvN1bv379hQsXfHx84uLiuGcBa6T201FRUVGRn59ffX398ePHxY8i7FVFRYVOpysrK9u9e7f4shDgCQxXQiLy9vYWbzKMiYkxGo0sM6gjNTW1rKxs6NChKBD+Cc+VkB77OuhNmzZFRUWxzKC05q8Tz8nJ6du3L/c4YKV4roRE5ObmtnjxYiJKTEysrq7mGkNRcXFxjY2N0dHRKBCegi1CIoqMjAwLCyspKVm2bBnjGArZu3fvoUOH2rdvL248B/BP2J6OinJyckJCQsT9L3r16sU4ibz0en1QUFB+fn5GRsbcuXO5xwGrxnklJKLg4ODIyEi9Xr9gwQLeSeS1evXq/Px8Pz+/WbNmcc8C1o75SkhEJSUlOp2uurr68OHD4eHhvMPIorS0VKfTVVVVHThwQLyBC+ApmK+EROTl5ZWYmEhEsbGxTU1N3OPIIDk5uaqqauzYsSgQTMF/JSQivV4fGBhYUFAwefJkW//s/vbt2ytXrnR2dr5w4YK4qQfA01lFhES0Z8+etLS08+fPcw8ig5dffnnw4MHp6encg4BtsJYIiai8vDw1NZV7ChlERUX1799fo9FwDwK2wYoiBHBM/G/MADg4RAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjADBECMEOEAMwQIQAzRAjA7P8BMRYD2FwfZq8AAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -796,7 +819,7 @@ "metadata": { "id": "wizZIO-Ec_9i", "colab_type": "code", - "outputId": "9a50501a-981c-4091-ec48-59fae5fd7bea", + "outputId": "99170ad2-da4f-42bd-bf9c-72794262a224", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 @@ -812,7 +835,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHjUlEQVR4nO3dbXOiSBiGUdza//+X\n2Q86LqOEIDTcPO05NTWVmYqGiJfNS4u3cRwHIOef9ALAtxMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh7N/0AvTmdrvdvxjHMbsk\nVCHCBp7hDZP2brebDlnDE2WLaXXDz4OeDlnDs2St2eFuza08wizzFFmyIbz7TabfrEOWeX7M+PTg\nyq+t6pAFDszM+7WZjwbJcRx1yE88M14t17LnDIQOmWUk/N22QzLvjIfMEuGS96MsO+mQd54Qfzmn\nEB0yZe5owH08bHmPt9vjDwXZHM3YtV36jO1+89tteN7P9GuKEOH/Tt5K/KzD6Sgns76IMGmhw8cx\nocm3nrdYnEuEYdMOW50LoRaH6R6yRyz3ngtZ2Evk8hwdzXg/OrrrJWAcH3+e/3SktA4R5h0yCOuw\nDhEOw+nboif9OB0WIcKu6bACEYYdPirq8PJE2Om26FTzWXI0JcKv0HC26vRu7l8LfCcRJp05Km7u\n8H1yuOra+vYZMy8ZHF1FdkrA+tmqyzNV77uZ0/+/f78JAtt8e4QvvvlNt3/GyXH4PKevfMCa+fYI\n36s7rsOTR901i7F5tqpjrg19e4TDuR1ewXTncN8lc153FDt9wA7nwMwwzB20aP/m9wt4vrKM47g5\nv+nt7l8//+7uATuJCB+O7vBqQ+sRy6PDbUT4vzPHw6s12YoONxDhX75ku5RLEeGrIzq8wrh32jIY\nDD8lwhnd7x8evQDjOPOu5c1uf7S6w6tximKtPect4sPgML1m1Dk/bt9pnq/68GMRzpt9DnVz/vCc\nX+DTh+vXmQPdPP4vOvyVGppd5TufB5mn0ftcz7OWYeH3Xfmp4+vvsKjefp/mGnbYZJ7KRtGrdDeZ\nKPfTHXagq1/mIM33bc6WGwYnP7Px5zr21KF9wt8137dJyk3x3DFRruf980GEKy2v8m37Nt9jfy19\ndyjCtV5W+aWHu6mLvbthz2mePpJ7J8IPtHoTUMzFgvxUr286M2PmY3veBxSQXtSXzYcm26XL/1OO\nCL9JOsgmTphUePIsOZujH+hgy6dXR8ySO40IOdBBL1v7D5Ze6oC2CDlJ2yA3dHjZA9oipKo1HV42\nvCkRrlV1h/DlQ3xP/cmHP2ILHT6/PnQBmhBh16Lztv9ekKOC/GkTtER+d05RrFdmpX6bl1MU5bZZ\n6oyEuc2qofxUk/7Vqu7FVSN8Se4ym1WsVG44CrpShMsfBcQG0yuf9bhD2IdkhPft+Ols3NyyLKk9\n9BZe9C0qBn92hCXO27BTxRKCzovwMe5tWzezm1WnjFC1h0EqOC/CvS+N7zcf3z4wlusxKv6q+HnC\n4y+57vnzqWB1RYMvHuHgow+urmIVJ6sfIRfTwVvdT9ZFhAbDi4l0WHRbdOgkwmEYvPpejPFwvV4i\nbLrWp3dz/9rTaQMdrtRPhMO+tX67Pf48/8l+OlzjSnNHW/jwQiPTG77cz8wnOLx/G78659KgdXcI\nh/4iXPbnVfmxtj5aa2VXcV7bDmu9a36NPiNscpURx1wbKn1JwqP1GWGrq4zosKGuPtyqqcJb0rNe\nVnPpXYUuLa+RbeFVX8t9joR31ddNl2bHw82bLX0ceu05Qq5p9sOV1t+8v81UERJQ95L1R+gqQtuf\nhRS9ZP0RuopwSpDXV/GS9UfoKsIvWm+9KHfJ+iN0FeHUl67Pgr62vaeOJnC73gw1dRThlCCpo5cI\nVUdZvUQIZYkQwrqI8P3ttzZNqaOLCKGyLiI07lFZFxG+0CSl9BghlCJCCBMhhIkQwrp4F8X7h/hC\nHfUjnJ6ad5qegmyOQpgIIUyEEFZ/n3B6qXo7hBRUP8JBe9RmcxTCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC/gOrKvP3RoUnLAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dfVzN5/8H8PepTqopq4UayUmY0y3ZYuWuNUImVsj9vobNtvab7fsz+yLMzzazudnmZpv7RTcMbRGFkYg5Ip1D7poUhUk31KnT5/374/L9OGLW6pxzHee8nw//uJw+13Xw+lyfm+tGgohACOHHgncDCDF3FEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEDaSRqO5e/cu71YQU2DFuwFPjTt37uTm5qpUKqVSqVAosrOzJ02a1KpVq1mzZvFuGnm6SRCRdxuMkUajycvLy8nJOX36dE5OTk5OTlFRkfYHJBKJjY1NVVXVd999N23aNF7tJCaAQnjfox3dvXv3tD9gb2/fqVMnuVweEBDg5eXVtWvX9PT06OhoCwuLHTt2hIeH82o5edqZaQg1Gk1BQQHLm0KhUKlU+fn59f4qXF1dWd5Y8Lp06WJhUf8Wevbs2QsWLLC3t8/MzPTx8THgNyCmw4xCmJGRoVAo2BWmUqlUq9Xaf2pvb+/t7e3r6+vv7+/r6+vj42Nvb/+3x0TEsWPHbt68uX379llZWa1bt9Zb84nJMpcQJiUlLVy48NSpU2JJQzq6hqiurg4JCTl69Gj37t0PHjxoZ2enu1YTs2AWISwtLXV1ddVoNOPGjXvppZdYR+fg4NDAH79165b4eCYnJ2fmzJmRkZH1PtCjR49Lly5FRUUlJCRIJBI9fAlissziFUViYqJarR4wYMC6dev+9sN/e7uoUCjqhdDZ2Tk5OTkoKCgpKUkul8+dO1fnX4GYMLMIYVxcHACMGTPmsX/aiOeijx5ELpfHx8eHh4fPnz/f09Nz7Nix+vgixCSZ/uVoQUGBTCazsbEpKSlp3ry5WL58+fLU1NTHvgCUyWR+fn6+vr6+vr5+fn4eHh4NvML84YcfpkyZYm1tvWfPnr59++r2ixBTZfo94U8//SQIQkREhHYCASArK2v37t3wuI7uueeea1xdkydPzsnJ+fbbbyMjI7Oysjw9PXXwBYipM/2e0MfHJzc3NyUlZdCgQdrlmZmZJSUl/6ija4i6urphw4b98ssvL7zwwtGjR5999lldHZmYKhMPYXZ2drdu3Vq2bFlUVCSVSg1TaUVFRXBwcE5OTt++fffs2WNtbW2YeslTysRnUbBHMqNGjTJYAgHA3t4+OTm5devWv/32Gw0rJX/LlEMoCEJCQgL89XNR/XF3d09JSbGzs1uzZs3SpUsNXDt5uphyCPfv319YWNihQ4eXXnrJ8LUHBARs2LDBwsLiww8/3Llzp76qee89CAuDPn3g6FF9VUH0zJRDyK5Fx44dy2sIS2Rk5Lx58wRBGDt2rPaIuaaqqIAjR+DIEdi9G0pLITUV1q2Dt9/W2fGJYZnsg5nq6moXF5eysrK8vLxOnTrxagYiTpgwYdOmTc8///yxY8fatm3bmKNcuwYKBahUoFSCQgHnzoEgQGgo9O4NrVvDlCkAAB06gEoFzZrptv3EAEz2PWFycnJZWVlgYCDHBAKARCJZs2ZNYWHhgQMHhg4deujQoWeeeebJP1JRUaFRqRyzs+H0acjJgTNnoKLioU80awZeXuDjA4igfQ6lMatPJ5MN4ZOHqhmSVCpNSkrq2bPnyZMnx48fn5SUVG+6xrVr19ggVTZu7ty5c9t69Yo4ePDBJxwdQS6HgAAICAAvL/D2vt/j7d4N69fD1Klw+TI4OoK1NQgCNGouCOHINC9Hb9++7erqKghCYWGhkczxy8vL69mzZ2lp6fTp0yMjI8WFM86cOVNeXq79yWbNms0dPPhjBwfw9QVfX/DzA2fnxx8UEWJi4Px5qKmBRYugpgbefhtSUsDNzRBfieiIaYZw5cqV06ZNGzRoUEpKCu+2PLBv376wsDAbG5vKykrtckdHRzZojo2b8/b2bta4W7uwMNizB/z9ISMDHh6jR4yZaYYwODg4MzMzLi5u9OjRvNvykC5duly6dEkmk/Xs2VMcIN6yZUvdHL28HF5+GZRKGDgQfvkFLC11c1iiZyYYwitXrshkMjs7u+Li4ub8OoS7d++WlpZqPw41RMPy8yEwEG7ehA8+gK+/1ksVRNdM8CZ+06ZNiDhs2DCOCQSApKQkd3f3jz76SCzZuHEjIg4fPlyPDZPJ4OefoVkzWLIEVqzQVy0PS0+Ht94CAKisBH9/w9RpUkwwhPHx8WAEz0Xj4uIEQejSpYtYsnnzZjBAw4KDYfVqAICYGDCmW2Lyl9C0nDhxAgBatWpVW1vLsRlFRUWWlpY2NjalpaWs5Pfffzdowz75BAHQwQFzcvRdVVoaurnhgAEYGop+fvquzQSZWk/IXg9GR0dbWfF8Bbply5a6urrw8HBxPiFr2OjRow3UsAULIDoaysvhtdfgxg191zZoEKSmwvbt+q7HNJlUCAVBSExMBOO4FtVuRl1dnaEvkiUSWLMGXnoJ/vijfOzY6upqA9VL/jmTCmF6enpRUZGnp+eLL77IsRlnz57Nzs52dHQcOHCg2LDi4uKOHTt2797dcO2wtYWdOwsDA/tcvTphwgQ0ucfgJsOkQsj6n3HjxtUrr7fYtr5t2rQJAEaMGCG+c2cNGz9+vCGbAQDg4lK+dm3+9euJiYmffvqpnioJDYVVqwAAmjcHHc4VMSO8b0p1KTw83MLC4uTJk9qFmZmZ7dq1O3r0qGHaIAiCTCYDgEOHDrGSu3fvNm/eXCKRXLp0yTBtqGf37t1WVlYSiYS9vNG5tDR87jmsrEREDAzURw0mzqR6Qg8PD0EQZsyYUVtbKxbGxcUVFBQMHz68oKDAAG04fPhwfn5+u3btgoKCWMmOHTsqKytffvllDw8PAzTgUWFhYV999RUiTp48+ciRIzo8sloNFy8CALRvDz/8oMMDmxneZwFdKiwsbNOmDQBMmjRJLKypqQkNDQUALy+vO3fu6LsNU6dOBYCZM2eKJWyVtxUrVui76id75513AMDZ2fnChQuNPsjt25iRgUuX4rhxGBCAzZphq1aYloazZ2NICNbUUE/YGCYVQkQ8ceIE25Ll66+/FgvLysq8vb0BICwsTK+v6dRqNVuz9MyZM6zkxo0bUqlUKpXevHlTf/U2hEajYZsodunSRXx7+WRqNSoUuH49fvABvvIKOjsjwEO/LC3xhRdw506MjcXVq3HdOgphY5haCBGRTdhje3eKhZcvX27VqhUAvP/++/qrevv27QDQtWtXsWT58uUA8Nprr+mv0oYrLy9nmyj279//sSej27dvZ2RkLF26dNy4cQEBAYGB/6mXuhYtMCgIp0zBpUsxI+P+fWBaGsbGYnU19uuHvXoZ+kuZABMMISIuWLAAAOzs7I4fPy4WZmRksMeV3377rZ7qZRvFLF68WCwJDAwEgISEBD3V+E9duHCBTbB888031Wr1yZMn169fP3369FdeecX5kVmLrVp5vfACjhiBCxfiL7/glSuPPyYLISJ+9hn6+2NZGUZH4/nzBvxWTznTDCEisvcBzz///NWrV8XC+Ph4iURiaWn5yy+/6LzGsrIyW1tbCwsLscYLFy5IJBIHB4e7d+/qvLpGKCoqcnR0jIiIsLGxYX8P9VLn6OjYt2/fmJiYH3/88ffff793714javmf/0EA7NwZ//xT59/ANJlsCGtqavr16wcA3bp1q2SXTYiIOGvWLACwt7fP0fWgyh9//BEAQkNDxZLY2FgAeOONN3RbUaMtXrwYACIjIxMSEubNm2dpaenu7h4eHh4bG5uYmJibmysIQtNruXsXX3wRAbB3b1Srm34802eyIUTEW7dudezYEQCGDx9eV1fHCgVBYDN927dvX1xcrMPqWObXrVsnlrA1ptLT03VYS1OwTd22b9+OiDU1NRUVFS4uLnK5/MaNG7qtqKgI27ZFADSa849RM+UQIuK5c+ccHR0BYMaMGWJhVVVVz549AeDFF1/U1YWiOG1CfAty9OhRdj2s0Wh0UkUTqVQqdsFZXV3NSlJTUwGgY8eO+qhOocBnnkEAXLRIH4c3KSYeQkQ8ePAg25Jl1apVYuHNmzc7dOgAAFFRUTq5Blu0aBEAjBgxQix59913AeCjjz5q+sF14pNPPgGAqVOniiVsfN+nn36qpxq3bUMLC7SwwJ9/1lMNJsL0Q4iIa9euBQCpVKp9ZahUKlu0aAEAsezRXtNUVFRs3LhRHBxXW1vLHkJmZ2c3/eBNx2sw3eefIwDa2uKxY/qr5KlnFiFERLbMhJOT07lz58TC1NRUPQ2q/PXXX9lrcd0ettEOHToEAO3atRPvjdmY8pdfflnfVU+digDo6ooFBfqu6mllLiFke3cCgIeHh/ZzCPYy3dra+rffftNhddHR0QCwcOFCHR6zKf5qMN13332n76rVauzXDwGwa1esrDSK22NjYy4hRMR79+6x7Zl69eolPpzA/968ubm5aRc2RWVlJbvSy8/P18kBm4j7YLo//8TOnYU+fWIHDRpkJI+pjIoZhRARr1275ubmBgBskiuj0WjGjRuXmZmpq1o2btwIAL1799bVAZvo0cF033zzDQAMGTLEYG24cKGAnQimT59usEqfFuYVQkQ8efIkW3FQt9eK169f37NnzxdffDFmzBgnJycAWL16tQ6P3xSPDqbr0aMHAMTHxxuyGYcOHWLDBrlPKDE2ZhdCRExJSbG0tJRIJJs3b27cEWpra3NzcxMTE2NjY8PDw11dXeuN/1q3bp0Bpk01yJ07NwMDVwYHFxYWsoKLFy9KJBJ7e3vDD6Zbv349AFhZWe3du1e3R66trVWpVPHx8TNnziwpKeG71t4/ZY4hRMQvv/wSAGxtbRs44167o/Px8ZFKpfVS9+yzz/bu3fvdd9/9/vvvjx8/rqvbSx348UcEQK3BdHPnzgWAiRMncmnOxx9/DAAODg7iDWrj3LlzJyMjY/Xq1TExMUFBQWz+GiOTyd58801dNdgATHAZ/AaaNm3aypUrXVxcjh071q5dO+0/0mg0eXl54l5lCoXi+vXr9X7c1dVV3MJFLpfL5XJe+wH/jZAQOHAA1q2DiRNZQW1g4Fkbm5rY2O4hIYZvDiKOGTNmy5YtMpksKyuLzS/7W3V1defPnxe3ssrJybl69Wq9z8hkMl9fX2dn582bN1dVVS1fvvy9997TwzfQPfMNYW1t7aBBg9LT0728vFJSUq5evaq9SWC9NQIdHBx8fHxY3gICArp27fq3e30ahWvXoF07kEqhuBhatAAAOH4cAgPB1RWuXuW1Y0xVVVVISEhWVlZQUNC+ffseuwVVWVnZmTNnxH+O7Ozse/fuaX/A2tra09NTPA/6+/uLU7GSkpJGjhxpYWGxffv2IUOGGOIrNRHnnpir0tLSzp07P9qDWVpadurUKSoqasGCBcnJyX/88QfvljbWF18gAGoNpsOYGATADz/k1yZExOvXr7OrjxEjRgiCoNFoLl26lJycHBsbGxUV9djLCldX1/Dw8BkzZmzYsCE3N1ccdfBYbP6Kvb396dOnDfalGs2sQ4iIixcvtrCwsLGxEe/ojh07ZiTT/3TA1xcBcOfO+7+trcXWrREAH16QjovTp0/b29sDQPv27W1tbetF7plnngkMDJwyZcp3332XkZHxT59yCYIwduxYAGjTpo34RMpomXsIBwwYAMb0OkGXlEoEQCenB7P6du1CADSawXSLFi0StwlwdXUNDQ2NiYlhHV3T3+mr1eo+ffoAQEBAgJGfVc06hCUlJVZWVtbW1rdu3eLdFj2YMQMB8O23H5SMGYMA+H//x69ND3nrrbcAYPz48bp6naNWqw8cOCD+9tatW56engAQGRn55MtXvsw6hEuWLAGAYcOG8W6IHggCtm+PAHj48P2Sykps3hwlErx8mWvL7nt0MF0TsbUUpFJpWlqaWKhSqVhn+5///EcnteiDWYeQ7QyxdetW3g3RgwMHEADd3VGcLblpEwIYz3JoO3bsAAB/f38dHvOxLyH37NnDdsLasGGDDuvSIfMN4fnz59k/WOOWMzJ2b76JADhr1oOSsDAEQK2ZzXxFRUUBwJdffqnDYwqCMGrUKACQyWQlJSViOVv+RyqV7t+/X4fV6Yr5hpCt+PR0Da34BxYsQDc3VKnu/7akBK2s0NoajePu99GV6crLy9W6WBbq3r17bJnJoKAg7XFL77//PgA899xz541vMUYzDaEgCGxnCO37eFOjvWzH0qUIgBER/FrzkDVr1gDAK6+8IpbMmzfPyclp/fr1TT+4+BJy5MiR4toldXV1Q4cOBYDOnTvfvn276bXokD5D+O67OGAA9u6NR47osZZGOXz4MHuJZC7T2/bvx4gI3L6ddzvuCwkJAYC1a9eKJZ07dwYA7WcqTZGbm8vWLtFeQaeiosLPzw8AevfurZNeV1f0FsJdu3DMGETES5eMcCPzt99+Gx5egs3UGPEZUFyZTtwS49ixY+xVoQ7Pibt27WJzZeLi4rSrbtu2LQD861//0lVFTae3EM6fj+IbcA8PNJ5ZBYhqdQ0bZ/hUjGlqDOM+A7KV6aKiosSSmJgY0MN8X/YKysbG5ojWmUihULBxv9oTLPnSWwjnzXvwIM7D48GgjU2bkPcqgMnJ6OmZO2rUV3yboUdGfAZERHZNKG7XI65Mp1AodF7XtGnTAMDZ2fnixYti4bZt29iWQdv1c31++fLlHTt2NHxpaX1ejrJxw5cuYUDA/cKrV9HGBgFQb1uyNMTIkQiAX3zBsQl69ldnQCOgVCoBwMnJSXx0uWvXLgB44YUX9FGdRqMZPHgwAMjlcu0N4RYuXAgAtra2x5q8GKNarc7Nzd2wYUNMTExoaKg4mUP7MvjJ9BZCQcB338X+/bFvX9TaGgnj41EiQUtL1MOWLA1RVoZ2dmhhYdIr8D32DGgc2Pv0t956SywZM2YMACxYsEBPNZaVlbEN4QYMGKA9437KlCnsRrTgH/5XYB3d/PnzIyMjO3bsaGFRf7trFxeX/v37p6SkNPCABnlFUVKCWluy4OzZCID29sjjlmzdOgTAfv0MX7MB/dUZkDdBENq3bw8AGRkZrERcme6yPgfT5efns9nDkydPFgtramrYQ9quXbtqbxlUz191dCIrKyu5XB4VFRUbG5ucnHzt2rV/2jz9h1CpxPbtMSICxRG0gnB/JLG7O+p0S5aGCA1FAPzxRwNXSxARf/vtNwBwd3cXX99t2rQJAIKDg/Vd9fHjx9kSGN98841Y+Oeff7JNewYPHiw+mC0qKkpLS2M7pcrl8sduIBcUFBQTE7N69eqMjIyqqqomtk3/Ibx48f4+y//+94PCqirs2RMBsHt3NOA0k6IitLREGxts2HbRRMcmT55cbyx1WFgYAKxcudIAtScmJrJdGZOTk8XCvLw8tjpeQEBAr1692NtFbVKp1M/Pb9y4cV9++eXevXt1u5MXY5DL0YMH0doaAVD77/rmTezQAQEwKgp1sSVLQyxejAAYGWmY2shD1Go1+++em5vLSthUMqlUarCpZGzGvfauOIiYnp5uZ2fHFsLUR0f3tww1bG3tWgRAqRS1N+tTqfDZZxEA58wxTCu6dkUA4xk3Yl62bdsGAN26dRNLli1bBgBDhw41WBsEQdi6dWu9fbiSkpIAwMPDQ08d3d8y4NjR//1fBEAHB/zviRARMTUVraxQItE0+Hluo6lUCICOjsb22sxcDB8+HAC++urB61m2K0FiYiLHViFiREQEACxZsoRXAwwYQkG4/4ZOJkPtrWF/+OFep07B7u76Hks9cyYC4MNXIsRA7ty5w6ZNiCu+XLhwQSKRcJ9Kdvv27WbNmllaWl6/fp1XGww7i+LePXzpJQTA4GDt/mjGBx+wYQ362ytPEFAmQwD87/58xKC+//57AHj11VfFkjlz5hjDGM7Vq1ezV4gc22DwqUzXrqGbGwLg+PFiWV1d3WuvvcaGTehpmolajcuWYUSEwZ4BkYewNZe0ZyqxdwP79u3j2CpE7N27NwBs3LiRYxt4zCfMzsbmzdHa+pDWG5vy8nI2pLBPnz5GNc2ENF1hYSFbV1Jc0Ono0aMA8Pzzz/OdSnblyhULCws7O7uKigqOzag/4sYQ/P1x8+Z/+/j0iYlhD6YAwN7ePiUlpU2bNgcPHmSDbnUlPR2cneHuXQCAHj3ul7z1FgBAZSX4++uwKvJ4P/30kyAIERER4ls4tk/w6NGjH30VbkhxcXGsYeL7CS54hBBAMmSIS3Q0Io4fPz4rK4sVtmnTZufOnXZ2dmvWrPn666+bWIUgwIULwLaQaN8efvihiccjjccix8aIMjExMXPmzJn43+0xeNm8eTM83DA+OPbCbGati4vLlStXxMKtW7eyaSbiVJcGKivDEydwwwaMicGgIGzeHAFw/nxMS8PZszEkBGtqMDAQETEtDd3ccMAADA01wtl2pubUqVMA4OjoaGx3GSdPngSAli1b1tTU8G0Jn56QWb58+auvvlpcXDxw4MCysjJW+Prrr8+fP18QhNGjR//+++9/9bOCIFy8WLd1K8yZAxER4OEBLVpA9+4wYQIsXw6ZmVBZCW5uYGUFAGBhASNHQlzcgx8fNAhSU2H7dv1+QQIAbm5ugwYNkkqld9ktgdFg/fOoUaMe3ejO0PieA8rKyry9vQEgLCxMe5rJhAkTAMDT01MsLCsrO3HiBBvMHhQU1Lx588DAawAo/pJKUS7HcePw888xORnFBe/S0jA2FqursV+/+4tupqXdf1tYUUE9od7dvXvX398fAEJCQrj3OaK6ujq2zkVWVhbvtqAV31OAg4NDcnJyjx49UlNTP/zwQzaOCQBWrVpVUlLSq1ev+fPns/3o8vPz6/2si8vZwYNdfX3Bzw98faFTpydt9dWsGfTvDwkJ+vsq5PHs7OxSUlICAwP3798/derUtWvX8m4RAMCBAwcKCws7dOjARu1wxvssgIh4+PBhtkndt99+i4jFxcVsFqY2W1vb7t27T5o0admyZQcOHDC2VevIk4kruyxatIh3WxAR33jjDQCIjY3l3RBE49mpNyEhITo62sLCYuvWrZMmTaqrq7O1tfX29mabcnp5efn4+FhbW/NuJmm8n3/+ma26vXXr1mHDhnFsSXV1tYuLS1lZ2blz59hSi5zxPgs8MHv2bABgo2l1u0UBMRKfffYZ6Ghll6ZISEgAgED2rNwI8Hw6Ws+8efN+/fVX9vaW7fBITMzHH388derUqqqqiIiIRzedN5hH31vyZSyXo0x5ebmLi4tarS4oKGjTpg3v5hDdq62tHThw4L59+7p27Xro0CHDD1W5ffu2q6urIAiFhYVsqUXujKgnBIDExMSqqqqQkBBKoKmSSqWJiYmdOnXKzs4eOXJkXV2dgRuQkJBQU1PTv39/I0kgGFsIje06geiDk5PT7t27W7ZsuWvXrhkzZhi4diP8P2ZEl6NFRUXu7u5SqbS4uPjR9XaIicnIyHj11VfVavWKFSvYAEadq62trTca5sqVKzKZzM7Orri4mO+gbW1G1BPGxcWx/asogeagV69eq1atAoD3338/PT296QfUaDRKpTIpKWnu3LlDhgzp0KHDe++9V+8zmzZtQsRhw4YZTwIBgPOIGW1GeJ1A9GrixIl5eXmff/7566+/npmZyQYwNtyNGzdycnJOnz7NxlSpVKqamhrtD1y4cKHej8THx4Px/R8zlstRpVLp7e3t5OR0/fp1eilvPhBx9OjR8fHxMpksKyuLrZP9WBqNJi8vT6VSKZVKhUKhUqkuX75c7zOurq5saAcb49GlSxftNeoVCkX37t1btWpVVFTEdrE3EsbSlI0bNwLAqFGjKIFmRSKRrF27Nj8//9ixY6+//np6ejobwKht48aNS5YsebSjc3Bw8PX19fX19fPz8/X19fb2fvJFJrvUio6ONqoEgrGEUBDeT0tr3adPP3pHb35sbW137NgRGBh4+PDhCRMmbNmyRSKRaH+gurqaTUp8ckf3BLW1tUql0mjvd4zjcvTAAQgJAXd3yM+Hh/8BiJlQKpVBQUFlZWWffvrprFmztP+ouLj4jz/++NuOTltpaal41apUKk+ePFlVVSWTyTw9Pffu3auH5jeJcfSEbL7t+PGUQLPl5eW1ZcuWIUOGzJkzx8PDY/To0eIfubi4uLi4POFna2trz549yx7PsOc0xcXF2h+wsLDo2LFjSEgIex5rbIygJ6yuBldXuHMHlEqQyzk3hnC1ZMmS6dOn29jY7N+/v2fPnn/1scd2dNofcHBw6NixI7tqDQgI8Pf3N6p3EvUYQQi3bYPISOjeHf56MQtiPt55550VK1Y4OztnZWV16NAB/slzUfGOseG3i8bACC5H2bWo8d0uEy6WLVt28eLFvXv3hoSEBAcHq1SqR5+LtmjRwsfHhz0X9fPz8/b2ZjOGn1K8e8LSUnB1hdpaKCgAGrRNAACgvLw8ODjY2tpaoVCwkkY/F30q8O4Jk5JArYb+/SmBROTg4HDkyJGzZ5D9yOsAAAMjSURBVM9mZ2c35AXg0453T9inDxw6BBs2wPjxPJtBCD9cQ1hQADIZ2NhAcTHY23NrBiFccb2wjosDQYChQymBxJxxDWG3bjB4MF2IEjPH+56QELPHqSd87z0IC4M+feDoUT4NIMRoGPYVhVoN167BuXNQWgqpqXD5MgwfDqdOGbQNhBgZPYewtBSUSlAoQKEAlQpyc6FNG5g4EXr3BgDw8ICKClCr4ZEpZISYD52GUK0GpRJOn4acHMjJgdOn4c8/H67NCmxtQaMB7RtRmjlBzFuTQigOZmfDakfa2Pw7M/OhT7RoAd7e4OUFcjkEBEC3bmBnB7t3w/r1MHUqXL4Mjo5AU+mJefsHT0fVarVSqWTztc6cOXPq1Kk/H+7o+ri7/2ZnB76+4O8Pvr7g6wtt2z7mQIgQEwPnz0NNDSxaBC++2PSvQcjTq6EhXLlyZUxMjEaj0S50cnJiy3uw8exeXl42Njb6aSchJquhl6Nt27ZFRA8PD3GvMrlcLpfLJXRHR0jTNLQnVKvViEgdHSE6RyNmCOHMdGZGEvKUohASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsLZ/wOAov9RxgL2wgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -824,7 +847,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHyklEQVR4nO3d246bSBSGUTya939l\nz4U1VssHjDHw196sdRVFUbqg6vP2oZO+XK/XCcj5J70AODsRQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihLB/0wso7HK5PP/m9Xo9fiWUJsIXXtb17GVvl8tFh3zl\ndBEuCUxFHKnzw3bq6aJhyFeaT8JIDNfrVYcs1/bd0WwGtw5TX51a2kYIVfSMcIRng4YhCzV/Tbi5\nd129bN6LQ5ZoGOFX5/7bYaUoNtcwwpe+mmAbMgz5qNv5GPPEj7kqBtHzjZnRnPBNmsvlcrZLXq3V\n01EDZxD3jbh3aF9mtIpwZCd5cXir7n6Z9188/D5/9TkWJY54iUWu9vHqDMaXTEK2seTx5WEwTmqc\npqnNJCw0YQotdbnVF6XGySQ8Xr8Xh79cjtk49Yiw2ZkuZMO3W878Fk6HCMvpMQyXXMKKyzzhZxun\nOApjqrvyabcCX/4lt1/UvVcfmYQxdefhYQVO53jRWDvCooe4tIUfBm6+L41fNNaOsLpaw3DJ6T/g\ncvq9aCxzAp4VOr7zSlzIkU9Bv9JgMPpXFHw2bIFT8fxuqkZYYnosNPg/dBq5wB6qRtjMsB0ueRsm\nXuCwd2+hkm/MxHd9D6O9STPI2zBnYBLywq2uAQssPfHeqTcJGz/6PjytSl2mF4EHqxdhe8/fI/Lu\nD+xBgccrdjd7b//Cq9svztR3w3zl3SLrng2TsJ53R+2XHwXnbZigShH2PgS/X927+fDxD3sKmlUp\nwnecjxlLxqYCs8p8RDFzDqp/VjslTvn1fx//pAL3VibCBqWtkL3kEb4b5lm/k1AmwnmlN2bAgz4t\n+7x+KHXPQKUI5+9y3T1455g4X963MR8XuqoU4aS0owy4pMaKRTivU6Jjxske6kXY6Ump0taptcsf\n1YtwarcHz8S5TtGDUTLCeVV2QmncVI2w05PSB5EP7uvergaqRjgVPzrGIHeFI5xmOyyaqDgXKrq/\nL9WOcN6w+6S0/Qy76TPKR9jpxaE4z6l8hJPSKK5DhPOqJJqNs8pdaqlJhFWelBqDGxpnW3/UJMKp\n0ZZwNn0inDdCojNj0ITc0Ah7/ZVWEVZ5Ugp/tYpwGrg0Y5B3ukU4b9hEWafHhjaMcMAnpSXGYI8D\nXVHDCCfn6fRqHYCeEc47eIdKjMG6GtzAthF+fFJ65GJgRtsIpzGekxiDEbXubecIpzE65Ehj/q/h\n85pHmFVuDFZ/zCr3v4bfdPipTPNuB+uAjSl9fBsY83Ftif4RTlt0uCSwr358bNHjMqy6BU4niXDG\nwvG1eoMPm8N7G+EHZb9T/Q7XXv1Xfvlp0r9/6Sr3eX6po6U42nrWOdckTO1Wm3l4u4T7w1n2inrc\n0uk8k3CEDRthDUssX2dwEFW5mUucaxJmtZmHd6nB2Ow2niLCcfbs/kHcIOvZxP1ajrm0cXZzK6eI\ncCj36THySVq3vL0HY7/Hr5uhj8Imhj3uAy7s7yn/vaVtaxzwdm2l7YXdjbx546xtZsj8Pn82+RsG\nuVF76HxtU4XNi69wYSHBwRi/RXvrfnkV9i+1yHUDaqsal38KMv4O/qjzFRbav4OXusk7HD/W+HEN\nXd+GeVbmmK5QKMLpwNVu/oX2qKXW3v2o7aVW3MW917zrbNnwvdCKe/cLnxMOZL9vqTngqd3DR/ar\nv9zZCpy6TsLSG7nt4rPf3nn7xfKvXnrjVjMJh7PVPIy/sfHVbIyvNqjhA0+PR9NfrmLYA/1uYT22\nbDWTcFCrv9V75AP98hviRl7wMbpdf78dLfGv+9Ypt+CdmISjW/ISsehpLrfgnbSaG/3G4N27Syua\nH3+ZhDU8z0P5tdFndDQeg3e3a5RfMyZhJf3+lxqmNj+L4jxH8ySXeSpNIoS6OkR4njFISx0ihNLK\nR2gMUl35CKG62hEagzRQO0JooHCExiA9FI4QeqgaoTFIG1UjVCBtVI0Q2hAhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCPsPmeGc7akMKOEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU9f4/8PfMsIOgLMqiJmgpbqG4hFhaooZimUZqprhc52Z2qZt9HZe6WAmOZkZlGW6FpRVZJlaoiKVAKJomIpoI4sIS+zLAMMzy++PzaH6kcubMzDnnMzO8n396D+e8ufGac+ZzPp/3R6TT6QAhRI+YdgEIdXUYQoQowxAiRBmGECHKMIQIUYYhRIgyDCFClGEIEaIMQ4gQZRhChCjDECJEGYYQIcowhAhRhiFEiDIMIUKUYQgRogxDiBBlGEKEKMMQIkQZhhAhyjCECFGGIUSIMgwhQpRhCBGiDEOIEGUYQoQowxAiRBmGECHKMIQIUYYhRIgyDCFClGEIEaIMQ4gQZRhChCjDECJEGYYQIcowhAhRhiFEiDIMIUKUYQgRogxDiBBlGEKEKMMQIkQZhhAhyjCECFGGIUSIMgwhQpRhCBGiDEOIEGUYQoQowxAiRBmGECHKMIQIUYYhRIgyDCFClGEIEaIMQ4gQZRhChCjDECJEGYYQIcowhAhRhiFEiDIMIUKUYQgRogxDiBBlGEKEKMMQIkQZhhAhyjCECFGGIUSIMgwhQpRhCBGizI52ATQ1NzfX1NRUV1dXVVXV/FNwcPDSpUv9/f1p14hsn0in09GugXutra11HZSXl5eVldX9U2lpaUNDQ2dnCAgIaGhouHDhwoABA4SsHHVBVhbChoYGcteqrq7ueOOqqqrq+C8qlYrN2VxcXLy8vLz/5tXBl19+mZaWFhYWlpmZKZFI+P69UFdmKSHU37vue9ci/8g+XU5OTj068Pf39/Pz6/FPAQEB3bt37+wMDQ0Nw4cPv3Xrllwul8lk3P2iCN1N6BBWVlZu2bKF3K863ru0Wi2bH3d3d/fx8bnrruXl5XXXPzo6OppfakZGxuTJkx0cHHJzc4cPH27+CRG6L0FDmJ2dnZCQ8PPPP9/7P+nvXfe9a5F/9Pb2dnBwEKxaAFixYsUnn3zy8MMP5+bmCnxp1HUIGsLIyMgjR45ERETMnTv3rruZZX7vamlpGTFixLVr19atW7dhwwba5SDbJFwI//jjj5EjR7q4uJSUlHh7ewtzUfPl5OQ8+uijIpEoKytr7NixtMtBNki4l/UbNmzQ6XTLly+3ogQCQFhY2Ouvv65Wq+fPn69QKGiXg2yQQHfCq1evDhkyxN7evri42OregLe1tY0ZMyYvLy82NvaDDz6gXQ6yNQLdCRMSErRarZXOQXF0dNy7d6+Dg8NHH3109OhR2uUgWyPEnfDGjRsPPfSQSCT6888/AwMD+b4cTxISEtatW9e7d++8vLwePXrQLgfZDiHmjm7atEmtVsfExAifQIVCQV5IkneSHd9M6v8xIyPjwQcfNHiq1atXp6WlZWVlrVy5cs+ePQIUj7oI3u+EFRUVgYGBKpUqLy9vyJAhXJ3W4OzQ8vLy0tLStrY2g6fKzs4eN24cm4sWFRWFhIQoFIoDBw7Mnj3b7F8CIQAB7oTvvvuuUqmMjo5mmcD6+vq71jRU/63jv7S3t7M5m6ur632n1JApoz4+Pl5eXr6+vix/l/79+yckJMTGxi5fvnz8+PG9evVi+YMIMeD3TlhTU9OvXz+FQnHu3LnQ0FCDx3t7e9fU1LA5c7du3Ui0SJw6m8Lm5ORk9i/xDzqdLjIy8ujRo08//fQPP/zA7clR18TvnTAxMVGhUEyfPp1NAgHAw8OjubmZeeK1v79/QEAAJ7NDTSASiXbv3j1s2LBDhw7t27dv/vz5VMpAtoTHO2FjY2O/fv3q6uqysrLCw8PZ/IhOpxOJRDzVw6HPP/988eLFHh4ely5d6tOnD+1ybJNGo2lpaWlra7Ou2R0m4PE94ccff1xXVzdx4kSWCQQAq0ggACxatGj27NkNDQ1LliyxkLVgNqa2tjYiIkIqlfr6+k6ePHnv3r22PF1Jx4/m5uaePXsCQHp6Ok+XoKuyspIMzGzfvp12Lbbmzz//JC+NPDw87O3tyR9qt27dFi5cePToUbVaTbtAjvEVwsTERAAYM2YMT+e3BGRgxtXV9dq1a7RrsR1ZWVk+Pj4AQBZV19bWJicnR0RE6J+SvLy8pFJpZmamVqulXSw3eAmhSqXq27cvABw6dIiP81sOMjAzbtw42/t4pmLPnj1k3WZkZGRjY2PH/+nmzZtyuXzQoEH6h7gHHnhAJpPZwCcgLyHcuXMnAAwePFij0fBxfstRX19PBmY2b95MuxbrptVq4+LiSLpiY2MZ/nLy8/NlMpmfn58+jYMHD5bL5RUVFUIWzCHuQ6hWq8kD/VdffcX5yS1Qenq6SCRydHTMy8ujXYu1am1tnTdvHgDY2dlt27aNzY9oNJrMzEypVOru7k6iKJFIIiIikpOTm5qa+C6YW9yHcN++fQDQv3//9vZ2zk9umV588UUACAkJaWtro12L9SkrKxs9ejQZevn555+N/fHW1tbU1NTo6Gh9/xFnZ+fo6OjU1FSVSsVHwZzjOIRarXbYsGEAsGvXLm7PbMkUCgW5+b/55pu0a7EyeXl5DzzwAAAEBQUVFBSYc6p7h3A8PT2tYgiH4xAePHgQAHr37t3V7gnZ2dkSicTOzu706dO0a7EaR44c8fDwAICwsLC//vqLq9PeunUrMTExJCTkriGcP//8k6tLcIvjEIaFhQHAhx9+yO1prcL//d//AcCgQYNaWlpo12IFkpKS7OzsAOC5557j6f+xzoZwysvL+bicybgM4bFjxwCgZ8+ezc3NHJ7WWiiVSvIo/uqrr9KuxaKp1erY2FgAEIlEMpmM72fF+w7hhIeHJyUl3fUWhBYuQzhhwgQAkMvlHJ7Tuly4cMHBwUEsFp84cYJ2LRaqqakpKioKABwdHb/44gshL22xQzichTAnJ4fMM6qvr+fqnNbo7bffBoB+/fo1NDTQrsXi3LlzZ8SIEWTWy8mTJ2mVYWlDOJyFMDIyEgD+97//cXVCK9Xe3k7aky5dupR2LZbl9OnTZP30gw8+yHKaC99vucgQDvlcoDiEw00IL1y4IBKJXF1dKysrOTmhVbty5YqzszMAfP/997RrsRQHDhxwcXEBgIiIiLq6OjY/cv369SFDhqSmpvJdm06ny8/Pj4uL69evH5UhHG5CSBqurFy5kpOz2YD333+fjFFxOPJuvRITE8ViMQD861//Yvnt69dff/Xy8gKACRMm8Fzd/0eGcGJjY8mlAUAsFgswhMNBCK9cuSIWix0dHUtLS80/m23QaDSPP/44ADzzzDO0a6Gpra0tJiaGDITGxcWx/KmvvvqK9CV58sknqXy1vncIx8nJKSoqKiUlhY8hHA5CuHDhQgBYvny5+aeyJbdv3yb7H+7fv592LXTU1NRMnDiRrPb64Ycf2PzIXdO4qa9NqaurE2AIx9wQ3rx5097envS356QgW7J7924A6N69+61bt2jXIrTCwkKy7Mjf3//cuXNsfkSpVD7//PPkPR7LadyCKSkpiY+P79gxcMCAAVx95zc3hGTuckxMDBfF2KBZs2YBwOTJky18+iK37lqYy+ZHqqqqxo8fT6Zx//jjj3xXaDIyhEPaWM+aNSs7O9v8c5oVwvLycmdnZ7FYnJ+fb34pNqmyspK0+UhKSqJdi0AYFuZ25tKlS2RkMjAw8PLly3xXaD6NRjNnzhwAeOutt8w/m1khfO211wDg2WefNb8OG0Ymtbu6uhYWFtKuhV/sF+Z2dPToUTKN+5FHHrGihblffvklAMyePdv8U5kewurqajc3NwBg+cTflZEVq+Hh4dRHGvhjwsJcXYdp3NHR0dY18T0vL498MzT/VKaH8M033wSAadOmmV+EzaurqyNdMLZs2UK7Fl6YsDBXrVbLZDL9NG6r64TS3t7u6OgoEonMf4liYggbGhrI9mCZmZlmVtBFHDt2zFa7YJiwMLepqWnGjBnw996PfFfIE7Jk8bfffjPzPCaGcOPGjQAwceJEMy/fpUilUgAYMWKEtbRdYMOEhbkWMo3bfGQegvmNZ00JYWtrK1koeezYMTMv36UoFIoBAwYAAPu5IxbOhIW5Fy5c6N27N5nGbbFL3VnaunUrJ9NUTAkh2bd99OjRZl67C8rKyiJdMM6cOUO7FrOYtjBXP4170qRJLKdxW7Ljx48DwLhx48w8j9EhVKlU5AsAy4lI6C4rV64kS2b27NmTlZVVVlZGuyKjmbYwVz+Ne+nSpbbxQF5dXU3GoswcVTI6hF2nsS9PlEqll5dXx72cHB0dg4KCyP4ncrk8JSXl3LlzFts804RvdO3t7WRmlVHTuKlTq9UXLlxIS0tjOMbf3x8Arl+/bs6FjAuhvrFvl52UbD7yDOPq6vrss8+OGTOms32/RCJR7969H3vssUWLFr3zzjv79u3LycmhvjDKhIW5NTU1ZEGJq6vrwYMH+a6QQ2VlZWTqL8PDNlnL/t1335lzIeNCuH//fuhijX3Za2hoYPPV6IknngCA+Ph4/b+0trYWFRWlp6cnJSXJZLLo6OjQ0FCyLPhe971tCtNZy7SFuWQat5+f39mzZ/mukHNkyiHD9NfVq1ebP9JmRAi7ZmNf9ubPnz9s2LDc3FyGY06fPg0A7u7ubP6Ia2trz507l5KSIpfLpVJpeHg4eTd7Xz169AgNDY2OjpbJZElJSenp6UVFRdz9cqYszO04jfvmzZscFiOYSZMmAcDhw4c7O4DclmbOnGnOVYwIIdkJrAs29mWjqKjIzs7O3t6+pKSE4TAynrFu3TqTL3RXMiMiIoKCgsh7gns5OTnde9s0dnaYmQtzIyMjrbfnFZkdvWHDhs4OuHz5MgAEBgaacxUjQkga+37wwQfmXM9WLVu2DADIxr2d+eOPP0QikYuLC+edeFQq1b0PtOQdeme3zfDw8I7J7OzObP7CXKsewEtOTgaA6Ojozg5Qq9XOzs4ikcicJoNsQ0ga+3p7eysUCpMvZqtu377t6OgokUiY3z4/99xzIGxr4KqqqtOnT+/fv3/Dhg1LliyZOHFinz59yFPlvTw9PUePHj1nzpw1a9bs3LkzIyPj119/HThwIBizMLe1tZUszDVqGrfF+uOPPwBg4MCBDMeEhoaCefM32YaQfBxu3LjR5CvZsFdeeQUA5s6dy3BMYWGhRCKxt7en/u3ovrdNfXfqjsgqmZEjR7LsHlReXj5mzBgA6Nat208//cT3LyKAtrY20s2Z4d6zZMkSADDnE4dVCCsqKnr27Onq6mq9D/f8IUu6RCLR+fPnGQ5bvHgxAEilUsEKM1ZFRUV2dvYXX3zx1ltvxcTEjBs3TiwWOzg4sPyPfunSJTKLw1oW5rJEBiMZZjiRneHN+S/LKoTNzc0PPfSQnZ0dm2eSn376ad68eVb9TcAoa9asAYCnnnqK4Zhbt245ODhIJBLr2tuZhOrq1asGj7TShblsvPDCCwCwY8eOzg745ZdfAGDs2LEmX4Lt4ygZJgoODmYeW1MoFORlbmJiosk1WZH6+nrSUo2518iKFSsA4IUXXhCsME6Q1UbffPMN82EqlYp8dXz++edbW1uFqU0w7777LgCsWLGiswPq6upI52uTbzxsQ6hUKocOHQosOvympqaSwfGu0HjmnXfeAYBJkyYxHFNRUUEG0C5duiRYYZx44403AGDt2rUGj7x69WpCQoJNNrMiQ5KPPvoowzFkEqLJi0KMeEVx/vx5e3t7sVj866+/Mh9Jvv+MHDnSNubpdkahUJCX0cx7MJF9C62xC/C3334LANOnT6ddCE2VlZUA4O7uzvARQ17/pqSkmHYJ46atkfc/gYGBzF20GhoayNeJd955x7SyrMJ7771n8MtATU1Nt27dAIB5Jo1lunbtGgD06dOHdiGU9erVCwBu3LjR2QHr1q0DgDfeeMO08xsXwvb2dtJKxOBYUEZGhlgstrOzs8YZg2wolcqAgAAAYG6SST62pk6dKlhhHNJoNOQtRXV1Ne1aaJoyZQowrt375ptvAGDGjBmmnd/opUwFBQVkbrHBF0Fk0efgwYNt78u6Tqf79NNPAeDhhx9meEpRKBRkkcSpU6eErI1DZJu3X375hXYhNJEvFAwtRq9evQoAffv2Ne38pqys37JlCwD4+fnV1NQwHNba2krahq9atcq04iyWWq0mjSqYRw43b94MAGFhYYIVxjnSF6eLjHV3xmCLUY1G4+rqCgC1tbUmnN+UEGo0GrIz9rx585iPPHfuHBnLsep+Pvfau3cvAAwYMIChj2hraytZ8XnkyBEha+PWxx9/DACLFy+mXQhNbFqMkqlCBscs78vEbmvFxcVkvMHgSyTyndXgWI4V0Wq15G3NZ599xnDYtm3bACAkJMSqB+6zsrLIQDftQmhi02KUzOD/8MMPTTi/6c1/k5KSAMDLy4t5N9P29vZRo0aBDe2dduDAATJmyLCkS6VSkc0VzFxzTV1jYyNpl9rFl3EbbDH60Ucfgal7pJu1F8W0adMAICoqivmwy5cvOzk5iUQilr2ZLRz5TPn4448ZjtmzZw+ZYGQD0/eCgoIAwJamg5rAYIvRU6dOAcCoUaNMOLlZISwtLfX09ASA3bt3Mx8pl8vJihjmsRzLl5aWBgC9evVimL6nVqvJNC72ncgs2cyZM6HLdxUi74QZnubq6+tFIpGzs7MJjwzm7k9Ilve7ubkxN5zSaDSPPfaYNc6fvMujjz4KAO+++y7DMV9//TUABAUF2cYjHHnVKZPJaBdCE5sWo+QLCMuNADriYLtsslZ1/PjxzI9eRUVF5M2vybN7qDt58iRZ/Mo8yDRy5EiwoQ0Jv//+ewB48sknaRdCE5sWo08//TQAfP3118aenIMQVldXs1w5Qca7vb29mcdyLBaZObF+/XqGYw4fPkxeotrMFIWioiLyG9EuhDKDLUbJPmVr1qwx9swchFCn0x05ckQkEhlcOaHVakmfRpMn+FB0/vx5smKlqqqK4bDw8HAA2Lp1q2CF8U2r1ZJ199S7ntJlsMUoGTY3YbNAbkKo+3uRv8GVE3fu3CF9+5hfslkgMj7BPPsnIyODvLax2P7ZpiGfLMePH6ddCE0GW4wWFhYCQEBAgLFn5iyETU1N/fv3Z7Nygkw3cXd3Z+4OaFEKCgrEYrGTkxPz1hGksS9DhzwrtXz5cgB47733aBdCk8EWo/r57szPSvfiLIQ6nS4zM5Plyono6GgAeOKJJ6xlNsn8+fMB4OWXX2Y45syZM8C6sa91IbPVFy5cSLsQmti0GCVtQZnXl96LyxDqdLpXX32VzcqJqqoqMpZj2jQfgbFs7EuaQbBZh251cnJyyJIR2oXQxKbF6L///W8AeP/99406M8chVCqVLFdOHDp0CABcXFzY9BGii01j34sXL5LGvjY5eqFQKEjntS7efN1gi9FPPvkEABYtWmTUaTkOoU6n+/3331l2wSBTgUJDQy25CwbLxr5z5swBYRv7CozsxnXx4kXahdBERh8ZZixmZ2cDwIgRI4w6Lfch1P39wsTgyon6+vq+ffvCP7cosjSkse+cOXMYjrl+/bqFNPblz7PPPmszE/FMZrDFaGNjo1gsdnR0NOq+wksI9V0wXnzxReYjMzIyRCKRvb09yy7rAtM39v39998ZDiONrZYtWyZYYcJ7++23AeD111+nXQhNbFqMkncERnXW4yWEOp2uoKCA5cqJl19+2WK7YJDGvsxTC6y0sa+xyHf4yZMn0y6EJjYtRp955hkA2LdvH/vT8hVC3d/NHQyunCDtvQFg9erV/BVjgoaGBjaNfcmHyPz58wUrjIqSkhIA8PHxoV0IZQZbjK5fv97Yli48hlDfBcPgH2hOTo5EIhGLxRbVEGnDhg1gu419jaXVaslUJyud98sV0mL022+/7eyAgwcPgpH99XgMoa5DFwyDKyfIg19QUJCFTPhqbm5m09h31apVYJ2NfU1AFqMdPXqUdiE0rV27FhhbjBYXFwOAr68v+3PyG0KdTrd9+3Y2KydUKhV5CcPQ9F9ITU1NcXFxzJNx6+vryS4o1tjY1wTkwXvz5s20C6HJYItRrVZL/irYvzHmPYTsV07k5+eTsZy0tDS+q+IEefqfMmUK7UIEsnPnzq7w7ZdZWVnZjh07mN+Xjh8/HgDS09NZnpP3EOo6dMEwuHIiISGBzEM3rX+jkPSNfW2smyOD3NxcABg6dCjtQizdSy+9BABbtmxhebwQIdT93T7V4MoJtVodFhbm4OCQmpoqTGEms4HGvsZqaWmRSCR2dnYW+DLJopBGhAsWLGB5vEAh1LFeOVFYWMi85a0lUCqVZJ21tTw5c2XQoEEAYPn/geg6ffo0AAwfPpzl8cKF0LpWTjAjfTqsvbGvCcgU2c8//5x2IRaNzHe3t7dnOd9dDELx9vbesWMHAKxataqgoECw63Kuvb2d7N765ptvikQi2uUIavjw4QBw8eJF2oVYNFdX1/79+7e3t5ONYgwSLoQAMGPGjEWLFimVyoULF7a3twt5aQ7t27evpKRk0KBBpOFFl/Lwww8DhtCQvLy8qqqqp556iuwSYxjft+a76PcPteSVEww0Gs3gwYMBYO/evbRroeD27dsA4OXlRbsQy3Xo0CHS5IJ9xyehQ6iz+JUTzMi72sDAQNto7GsC8mLmzp07tAuxRImJiRKJBADmzp3LfgyZQgh1Ot1//vMfsNSVE8xIY99PP/2UdiHUPP7448Bii9iuRq1Wr1ixAgBEIlFcXJxRI3Z0QqjfP9TSVk4wI419fX19re6zg0OkjdDGjRtpF2JBGhsbp0+fDgCOjo5GLWIi7Lj+UsqKk5NTcnJyWFjY5s2bIyMjycxgulpbW+s6KC8vLysrq/un4uJikUgUExPj5OREu15qcID0Ljdu3IiKiiooKPD29j548CCZs2YUkU6n46MyNt544434+PigoKCLFy+S77J86Jiu+0arvLy8tLS0ra2NzdlEIpGPj8/x48eHDRvGU8EW7vz586GhocHBwVb9nokrp0+fnjlz5l9//TV06NDDhw+TPWGMRTOEZJLauXPnXnrpJfL62yj6dHUWrbKyspqaGpVKxeZsTk5OPTrw9/f38/Pr8U+enp6LFy8+evRo9+7d09LSHnnkEeN/aavX1tbWrVs3rVbb2Njo4uJCuxyavv3225iYmNbW1ilTpqSkpJDFEyagGUIAKCgoCA0NbWtr++mnn8hiC/g7XQzRqqurq66uZvmm0WC6/P39AwICHB0d2ZxNpVI9//zz3333nZub26FDh0jL7a5m6NChly9fPnv2LNkvtQvS6XSbN29eu3atVquVSqXbtm2zt7c3+WyUQwgAmzZtWr16dffu3X19faurq0kvDDY/2L17dx8fH69/8vb2vusfHRwcuC1Yo9EsXbo0OTnZxcXl+++/nzp1Krfnt3zz58/fv3//rl27li5dynxkaWnpgQMH5syZQ2Ys2oa2trZly5Z98cUXEokkPj5eJpOZeUL6IWxoaPD393dzc6usrCT/or933feZkPyjt7c35+liT6fTxcbGbtu2zcHB4auvvpo1axatSqggn5uxsbEffPABmyPFYnFYWNjChQvnzZtHOi1Yr5qamlmzZp06dcrNzW3//v2k7bq5uBypNQlZEzRixIgrV65UVlZayybvWq32tddeAwCJRNLVJjSTPcMnTJhg8Mjjx4/PnDlT/6jv4uIyb968w4cPW3K7ZwbXrl0jTckCAgKYu2AahXIIW1tbrXpNkFwuBwCxWLxz507atQinrKwMALp3787ylXRdXV1ycnJUVBSZTQIAPXr0WLBgQXp6uhUtQzl+/DjpvhcSEnL79m0Oz0w5hNu2bQMrXxO0adMmABCJRLa0MahBPXv2BABjO47fvn07MTGRzDoi+vTpExsbe+HCBZ7q5MquXbvI0Mvs2bObm5u5PTnNEKpUKvJehWH3U6uwfft2sVgMADKZjHYtAomIiAAAkxsg5Ofnx8XFBQUF6dM4ePBguVzOvP0jFVqtNi4ujhQZGxvLx9clmiH87LPPACA4ONhavgcy+PLLL+3s7LpODleuXAlmb4eq0WgyMzNjY2PJpHDyYB8eHp6UlNTQ0MBVqeZQKBRkwZqdnd327dt5ugq1EGo0moEDB4IN7THyzTffkCeW5cuX28DHCrPk5GQAiI6O5uRsSqUyNTV1wYIF+rf/Tk5OUVFRKSkpFDdjKy0tJS9Ce/ToYey+n0ahFkKyJigoKMiW1gT9+OOPZFrpCy+8YEu/1120Wi3pLeDh4bFx40YO96Kqr6+3kCGcixcvki3D+vfvf+XKFV6vRS2Etrom6JdffiGvwubMmWOlA/HMTpw4MWbMGPLoqP9GFxoampiYWFlZydVV7ty5k5iYGB4eftcQjjA9pn7++Wd3d3cACA8P5/CX6gydENr2mqDc3FzSZ3X69Om29AtevnyZtMwDAB8fn61btx45cmTBggX6yfeOjo5RUVHJyckKhYLDi947hBMXF3fjxg2uLnGXxMRE8vli1MJcc9AJIfmEs+Ex/d9//50MNkycOJF5p1SrcOvWLalUSh4R3dzcZDJZx1+qpaUlJSUlKipKP3/Sw8NjwYIFqampXD2T64dwyAYhPA3htLe3d1yYy9VpDaLT3gIAvLy8LGTvF54UFBSQeQjjx4+vr6+nXY6JampqZDIZ+aJrb28vlUorKio6O7i6ujopKSk8PFzfhM7f3z82NpZhk3dj8TeE09jYOG3aNDB1Ya45KISQrDwwc3TbKhQXF5PnqJEjR1ZVVdEuxzjNzc1yuZzMERGJRNHR0devX2f5syUlJXK5nGxzTwQHB8fFxbE/g0F1dXW7du16/PHH9V9NPT09169fb9rZiouLSf8ub29vDj8yWBI6hGfOnAEAd3f3uro6gS9Nxc2bN8nfYnBwcGlpKe1yWNFoNCkpKaQpHgBERESYPBySn58vk8l69ep11xAO+x2LDOo4hLNmzRoTzpCTk0MmAA0dOpR5m+PdvEsAAAdaSURBVAaeCB1CMut87dq1Al+XooqKCrIMPzAwsLi4mHY5BqSnp5MGFgAwatSojIwM88+pVqvT09M7DuFIJJKIiAhuh3AuXbpkwpTOlJQUZ2dnAJgyZQqtbw2ChvDixYsikcjFxYXDD0KrUFtbS4b1+/bta7Fb2+fk5Oib/TzwwANJSUmcTzm4dwjH3d2d2yEc9rRarVwuJ19fpVIpxfe6goaQ7GTw6quvCnlRC1FfX08emXx9ffPy8miX8w9XrlzRv3vw9vaWy+VKpZLXK9bU1PA9hMNMqVQuWLCA3JPlcrkwF+2McCG8fv26RCKxt7fncIKFdWlubp48eTKZBXLmzBna5eh0Ot2dO3ekUimZ9erq6iqTyQSetEmGcMgivY5DOIWFhfxdtLq6mtzz3dzcLGETPuFCuHjxYgBYtmyZYFe0QEqlkkwI9vDwyM7OplhJbW2tTCYjX4fIuwfm/cz5RoZwOnbB4HwIh+i4MNdC9ngTKIS3bt1ycHCQSCQW+41IMCqVijz7ubq6Hjt2TPgC2trakpKSyFtv8u6B19uOUdRqdWZmplQq1XfB4HYIJz09naeFueYQKIRkIkIX3+5cT61WL1myhLwXPnjwoGDXJe8eAgMDyd/3pEmTLHY7kHuHcJydnaOjo80ZwuF1Ya45hAhhRUWFs7OzSCS6dOmSAJezClqt9pVXXiGPgikpKQJcMT09PSQkhPxBDxkyRJiLmu/eIRw/Pz9jh3AEWJhrDiFCuGrVKgB45plnBLiWdfnf//5Hnrh2797N31XOnDkzceJE8ifYt2/fpKQktVrN3+V4QoZwyBpUYtCgQWyGcPQLcx0cHD777DNBijUO7yGsqakhz/e5ubl8X8sakVZRIpEoMTGR85NfvXo1Ojqa3EO8vLzkcrkNrOowagintLQ0NDSUTGrjdWGuOXgP4fr16wFg6tSpfF/Iem3bto3k5O233+bqnJWVlbGxseTdg4uLi0wms95J5PdF1lXcdwhHvzBAyIW55uA3hAqFgqzoOXnyJK8XsnY7duzgqlVUU1OTXC4nf5p2dnZSqdQCuydxSKFQ7Nu3b9q0aeQTBwC6desWExMTHx8v5MJcc/AbQtLYNywsjNer2Ib9+/eTP6MVK1aY1spBpVIlJSXpZ0tHRER0qZGwu4ZwvLy8AGDRokUUu9SwxGMIrb2xr/BSU1PJyj2pVGrUCJ5Wq01JSenfvz+JX1hY2KlTp/ir08IVFha+9dZbu3fv3rt3L+1aWOExhDbQ2Fd4aWlpZBbLvHnzWL4QS09P17fTDQ4OtpZ3D0iPrxDaTGNf4Z08eZJ8mZkxYwbzYObZs2cnTZpE4te7d28rffeA+AqhLTX2Fd7Zs2fJV5rIyMiWlpZ7DygpKZFKpWQsx9PTUy6X3/cwZBV4CaHtNfYVXn5+vp+fHwA89thjHVc2VFVVyWQyss+Rg4NDbGxsF+lRYMN4CaFNNvYV3tWrV3v37g0Ao0aNqq6uVigUcrmcPKmKxeLo6Gj+2v4hIfESQltt7Cu8oqIiMt+6b9+++m5/Tz311OXLl2mXhjjD/U69P/7444wZM3x9fW/cuEEG3JE5ysvLJ0+erFKpCgsLx44du2nTpgkTJtAuCnHJjvMzksmQq1atwgRyws/P78SJE3Z2dr/99ltUVBTtchD3OL4TnjhxYtKkSV5eXiUlJfrWWgghBmLDhxgjPj4eAP773/9iAhFiics7YW5u7tixY93d3W/evEmaCCCEDOLyTrhhwwYAePnllzGBCLHH2Z0wLy8vJCTE2dn5xo0bpKk4QogNzu6ECQkJOp1OKpViAhEyCjd3wqKiooEDB4rF4uvXr5O1zAghlri5E8bHx2s0mkWLFmECETIWB3fC27dvDxgwQKPRXLlypeOWdAghNji4E27atEmlUs2dOxcTiJAJzL0T/vXXX4GBgUqlMi8vb+jQoVyVhVDXYe6dcOvWra2trTNnzsQEImQas+6EtbW1/fr1a2pqys3NHT16NIdlIdR1mHUn/Oijj5qamqZOnYoJRMhkZoXQ3d3d09Nz7dq1XFWDUBdk7sBMS0uLi4sLV9Ug1AVxv7IeIWQUjtcTIoSMhSFEiDIMIUKUYQgRogxDiBBlGEKEKMMQIkQZhhAhyjCECFGGIUSIMgwhQpRhCBGiDEOIEGUYQoQowxAiRBmGECHKMIQIUYYhRIgyDCFClGEIEaIMQ4gQZRhChCjDECJEGYYQIcowhAhRhiFEiDIMIUKUYQgRogxDiBBlGEKEKMMQIkQZhhAhyjCECFGGIUSIMgwhQpRhCBGiDEOIEGUYQoQowxAiRBmGECHKMIQIUYYhRIgyDCFClGEIEaIMQ4gQZRhChCjDECJEGYYQIcowhAhRhiFEiDIMIUKUYQgRogxDiBBlGEKEKMMQIkQZhhAhyjCECFGGIUSIMgwhQpRhCBGiDEOIEGUYQoQowxAiRBmGECHKMIQIUYYhRIgyDCFClGEIEaIMQ4gQZRhChCjDECJEGYYQIcr+Hzug5ZdXOmSzAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -836,7 +859,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGRElEQVR4nO3c3W7aShhAUXPU939l\nzgUqSgMh/BjvGbPWVYui1A2z+Tw25HA8Hheg8199APDpRAgxEUJMhBATIcRECDERQkyEEBMhxEQI\nMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDER\nQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJM\nhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcREOJbD4VAfAlsT4ViOx6MOP40Ih6PDTyNCiIlwRIbhRxHh\noHT4OUQ4Lh1+CBEOTYefQIQQE+HoDMPdE+EEdLhvIpyDDndMhNPQ4V6JEGIinIlhuEsinIwO90eE\n89HhzohwSjrcExFCTISzMgx3Q4QT0+E+iHBuOtwBEU5Ph7MTIcREuAeG4dREuBM6nJcI90OHkxLh\nruhwRn/qA2Amtws/Ho+bHcmeiHBvTsPwdg9PT8sb39YEftovzxaTSkbWr/FzlUm4Q6cC9TALF2Z2\n5XA4hAW6LPQcEe7H6WzQAJyOCHfCfmxeItyDcQp0RvoEF2bmdrkDHCdI7iTCieltH5yOzmrYAp2R\nPkqEUxq2QJ4gwsmc7gT+VOAgcRqGD7En/OvrohlgHV81SGOsS4TLsizL4fBPeN/+en5wKftU4F55\nXn9O7upPJhqY9xQ4WqWjHc+wTMIHfRuYVx9flXdj754IX/D+IKceJvd8spFFhKu5CPLw8viygj+E\nCN/geFyW5fjvJ2sfzenRAhU7LxEuy/F419XRZ77xP2/pvHzwqj1tAp2R3kOEy7L87fDrX79a4+bE\neSHeHo+W7AfylN/tDZdevg29Vwocud6Rj20EJuHd3nAtdK2PIFnlUxPhU1YNck+bQJ4gwpe9dnPi\nE4aYyzO3iXBVD96csDRZRPgmz92ceI6SZ+f5287V8fh6QrNEOMtxbs8k3M7leLQoWXyyvrLWb+md\naLz4uP1PRBizNBEhxETY+5xh+Dn/04e4MLOOVz619Mo/OsuGkBtEuI6rNwZvfM3H8u6ZSyJc341f\nCvrT11uan0yE2/k1zuScdmNeay75iYzi2+r89Zx2utXs/Qk/meyJ3Lc7f7no+c8TPXfTvWRsyS2K\nyZzfanPaRk5xxV+Bt4lwIHfeRjuv6fMVnfcf2vMU+CsXZiZzuabPHY621sc8qgGJcCY/TZXTg0PN\nnKEOZnBOR8dy4/Ty12U9zi5RgQ8R4RzuXNYj7BIV+CinoztU7RJtAp/jRWtElzfun3uathxKBuDT\nnI6O7pXFvdkuUYGvEOGIzueTry/uDXaJCnyRH9+gVt9fvWPDZhO4ChdmxrXu4j7fS1zrOxuAa3E6\nOqLT+n7HOeRaZ6cKXJEIh7PB+n7xgo0C1+V0dCybre/n3ulmE/gOXtIGcpnEBk3e35UB+CZOR0dR\nLfE7d4kKfB8RDuHGxyO2eSPo7V2iAt/KnrA3yBK/uku0CdyACGODFHj29c3fox3bXolwdC/G4D7E\n+ERYun+hP92SkMbn1S5j1HDi6mhDgZyJMKBAvhLh1hTINyLclAK5JMLtKJCrRLgdBXKVCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIIfY/q/vGM64tL1IAAAAA\nSUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVwT19oH8JMQICCLiKAIKLhXxaqgoixCxd3qRYsLauuK2sVrq22ovre2tbVoP61Le9uitlSlCChUrTurLIIKiohLVRRFUARkE5KQZd4/DjemrFlm5oTk+X76h4bJzEPlxzOZM+cMh6IoBAAgh0u6AAAMHYQQAMIghAAQBiEEgDAIIQCEQQgBIAxCCABhEEIACIMQAkAYhBAAwiCEABAGIQSAMAghAIRBCAEgDEIIAGEQQgAIgxACQBiEEADCIIQAEAYhBIAwCCEAhEEIASAMQggAYRBCAAiDEAJAGIQQAMIghAAQBiEEgDAIIQCEQQgBIAxCCABhEEIACIMQAkAYhBAAwiCEABAGIQSAMAghAIRBCAEgDEIIAGEQQgAIgxACQBiEkA0URZEuAeguCCGzpFJpaGjo2rVrSRcCdBcHfkkz6tatWx4eHkKhcN++fStXriRdDtBF0AmZNWTIkH379iGE3n333czMTNLlAF0EIWTcokWL3n//fYlEEhQU9PTpU9LlAJ0Dp6NskEgkAQEBaWlpXl5eycnJJiYmpCsCOgQ6IRuMjY1jY2MdHR0zMzMFAgHpcoBugU7InuzsbD8/P7FYHBERsXTpUtLlAF0BnZA9np6eu3btQgitXbs2NzeXdDlAV0AnZNuqVav279/fp0+fnJyc7t27ky4HkAchZJtYLPbx8bly5UpAQMDZs2eNjIxIVwQIg9NRtpmamsbFxdnb2ycmJn722WekywHkQSckIyUlZfLkyTKZLCYmJigoiHQ5gCTohGT4+/tv376doqjly5ffvHmTdDmAJOiEJC1duvTAgQMDBw68fPmytbU16XIAGRBCkoRCobe399WrV2fNmnXs2DEOh0O6IkAAnI6SZGZmFhcXZ2tre+LEiW3btpEuB5ABnZC8hISEadOmURT1119/TZ8+nXQ5gG3QCcmbNGnS559/LpfLFy9efP/+fdLlALZBJ9QJFEXNmzfv6NGjbm5uWVlZXbp0IV0RYA90Qp3A4XB+++23IUOG3LhxY9WqVaTLAayCEOoKS0vL+Ph4a2vrw4cP79y5k3Q5gD1wOqpbjh8/HhgYyOVyT58+PXnyZNLlADZAJ9Qts2fPDg0NlclkwcHBDx8+JF0OYAN0Qp0jl8tnzpx55syZkSNHZmZmmpmZka4IMAs6oc7hcrl//PFHv379rl27tnr1atLlAMZBCHWRjY1NfHy8ubn5oUOHwsPDSZcDmAWno7orKipq0aJFxsbGSUlJPj4+pMsBTIFOqLuCg4P//e9/SySSefPmlZaWki4HMAU6oU6TSqWTJk1KTU0dN25camoqLFiql6AT6jQejxcTE+Pk5JSVlbVx40bS5QBGQAh1nb29/dGjR01NTX/44YeIiAjS5QD6welo53Dw4MF33nmHz+enp6d7eHiQLgfQCULYaYSEhOzbt6937945OTl2dnakywG0gRB2GhKJ5I033sjIyJg4ceK5c+dgwVK9AZ8JOw38VBkHB4ekpKTNmzeTLgfQBjphJ3Px4kV/f3+JRBIdHT1v3jzS5QAaQCfsZMaPH79jxw6KolasWFFQUEC6HEAD6ISd0rJly37//fcBAwZcvny5a9eupMsBWoEQdkoikcjb2zs3N3fmzJnHjx/ncuGMphODf7xOic/nx8XFde/e/eTJk1999RXpcoBWoBN2YomJiVOnTqUo6vjx4zNnziRdDtAQdMJOLCAgYOvWrXK5PDg4+Pbt26TLARqCTti5URQ1f/78I0eODB48+NKlS1ZWVqQrAmqDEHZ6L1++9PT0vHnzZmBgYFxcHDxVptOB09FOz8LCAi9Y+ueff3733XekywFqg06oJ06cOBEYGMjhcE6dOjVlyhTS5QA1QCfUE7Nmzdq0aRMsWNoZQSfUH3K5fNasWadOnRoxYkRmZqa5uTnpioBKoBPqDy6Xe+jQof79++fl5cGCpZ0IhFCv4AVLu3TpEhkZ+dNPP5EuB6gETkf1UHx8/FtvvcXj8RITE319fUmXAzoAnVAPzZkz58MPP8QLlpaUlJAuB3QAOqF+kslk06dPP3/+vKenZ2pqqqmpKemKQJugE+onIyOjqKgoV1fX7Ozsjz76iHQ5oD3QCfVZXl7e+PHjhULh/v37V6xYQboc0DoIoZ47dOjQ22+/zefz09LSRo8eTboc0Ao4HdVzS5YsWbNmjUgkmjt3bnl5OelyQCugE+o/iUQyceLE9PR0f3//8+fP83g80hWBf4BOqP/wgqWOjo4pKSmffvop6XJAc9AJDUVWVpafn19jY2N0dPT8+fNJlwNegU5oKMaNG4dnGy5btuzatWukywGvQCc0LCtWrPjtt99cXFxycnJsbW1JlwMQghAaGpFI5OPjk5OTM2nSpDNnzhjyU2XkcnlNTY2xsbGFhQXZSiCEBufx48ceHh7l5eWfffbZF198QbocTQiFQpFIJBQKq6qq8B+a/VWV16uqqhBCwcHBa9eu9fb2JvjtQAgNUXJy8pQpU2Qy2ZEjR+bOncvOQXHnwQGorq5ubGx8+fLly5cvxWKx8utisbi+vr6d1yUSCS31cDgcKyururo6Ozu7J0+eEBy5gRAaqB07dggEAktLy+zs7CFDhrS/MS2dp7q6mq4fNj6fb2ZmxufzbWxs8B+a/VWV17t27crhcNzc3AoKCk6ePDljxgxaatMAhNBAKRYsdXR0nDZtWkNDg3LnqampEYvFuFPR2Hm6du1qampqbm5uZWVlampqaWnZpUsXU1PTdl7HgVF+3cTEhJZ6sO3bt4eGhgYFBcXGxtK4W7VACA1XRETEihUrbGxsXrx40f6WNHYedr411ZWWlvbu3dvIyKi0tJTU5WIIoSGSSqUbN27cvXs3/mtYWJijo6OpqamNjU3LjkRv59FBU6ZMOX/+/M8//7xmzRoiBUAIDU5FRcWCBQuSkpKMjIxkMpmbm1t+fj7pokiKiopatGiRp6dnVlYWkQLgjhnDcvXqVQ8Pj6SkpF69ei1cuBAhBCsFBwYGdu3aNTs7+86dO0QKgBAakIMHD3p7ez969MjLyysnJ+fGjRsIQoiQmZnZW2+9hRA6ePAgmQooYABEItG6devwv3hISIhYLH769CmHwzE3NxeJRKSrIy89PR0h5OjoKJVK2T86dEL9V1JS4ufnt2fPHj6f/+uvv4aHh5uYmJw7d46iKH9/f1gDCiHk5eXVr1+/kpKSlJQU9o8OIdRzGRkZHh4e2dnZzs7OaWlpy5cvx6+fO3cOwbno/3A4nLfffhshdODAAQKHZ7/5AtaEh4cbGxsjhCZMmFBWVqZ4XSaT2dnZIYT+/vtvguXplKKiIi6Xa2Zmhu/sYRN0Qv0kEomWL1++evVqqVS6bt26xMREe3t7xVdzcnLKy8tdXFwGDhxIsEid0qdPHx8fH6FQGB8fz/KhIYR6qLi42NfXNyIiwsLCIiYmZvfu3c3uTj579ixCaNq0aYQK1FHvvPMOInJGynLnBUxLSUnBTa9///43btxodZvx48cjhI4dO8ZybTqurq7OwsKCw+Hcv3+fzeNCJ9QfFEVt3749ICDg+fPn06dPv3LlyrBhw1puVl1dffnyZWNjY39/f/aL1GUWFhaBgYEURUVGRrJ6YDYTD5hTV1eHR5w5HI5AIJDJZG1teeTIEYSQn58fm+V1FomJiQghFxcXuVzO2kGhE+qDe/fueXp6Hj161MrKKi4uLiwsjMtt818WBifa4e/v37t376KiooyMDNYOCiHs9E6dOjVmzJibN28OHjw4Ozs7MDCw/e3Pnz+PIIRt4HK5ixcvRixfnmGt5wLayeVyRdObPXt2TU1Nh28pKChACPXo0YPN063O5e7du3jli/r6enaOCJ2ws6qtrZ0zZ05oaCiHwwkLC/vzzz+trKw6fJfiXFQH59fqiAEDBowdO7a2tvbYsWPsHBFC2CnduXNn7Nixx44ds7W1PXPmjEAgUDFU8IFQFSwPGMKk3s4nOjp65cqV9fX1I0aMiI+Pd3V1VfGNQqHQ1tYWT6FQvoEGNFNTU+Pg4CAWi4uKipydnZk+HHTCzkQmk4WGhgYHB9fX1y9atCgzM1P1BCKEUlNThULhqFGjIIHts7a2fvPNN+Vy+R9//MHC4SCEnUZFRcXUqVO3b99uZGQUFhYWGRlpbm6u1h7wuejUqVOZKVCv4DPSiIgINg7GzvUfoKWrV6+6uLgghOzs7JKTkzXbyeDBgxFC6enp9NamlyQSiYODA0Lo0qVLTB9L004okaDwcDRpEurZE5maInt75OeH9uxBYnErG9+4gRoaNP0tAVBkZKSXl1dRUdH48ePz8vI0u92sqKjozp07VlZWY8eOpb1C/cPj8YKDgxE7l2c0SW5REfXaaxRCrfzXvz/V7OZXuZzq1Yvi8SgvLyosjMrJoWCESmUSiUQgEOB/Kbwshca7+uWXXxBCc+fOpbE8/YbHVLt168b0CiDqh7C+nurXrylyb71FnT9P3blDJSdTwcFNLzo7U8rTIsvLqdGjKS73VVCdnKgVK6jYWOrFCxq/E/1TUlKCpzuYmpru27dPy73hO2n27t1LS20GYuTIkQihI0eOMHoU9UO4eXNTljZsaPNL69c3/1JFBRUbS4WEUE5Or9JoZES5u1MCAZWQQDU2avgd6KmMjAz8mcTJySk7O1vLvUkkEmtra4RQUVERLeUZiF27diGEZs6cyehR1AyhREL17EkhRPXoQTU0NP+qWNyUMWtrSihscyeFhdSuXVRAAGVq+iqQtrZUUBAVHk49fqz2N6F38FpMCCFfX99nz55pv8MLFy4ghF577TXtd2VQKioqTExMeDze06dPmTuKmiG8fLkpM6tXt77Bhx82bZCY2PHe6uuphARKIKCGDPnHB8u+fal166iEBMrwVuMTCoWKtZhCQkIaaTpB2LRpE0Loww8/pGVvBmX27NkIoe+//565Q6gZwr17m3Kyf3/rG0RFNW3w7bfq7bmwkAoPp4KCKCurV2k0N6cCApou5xiA4uLiMWPGIITMzMwOHDhA457d3d0RQmfPnqVxnwYCLzkzbNgw5g6hZgi3bGmKR0JC6xtcvNjmx0IVSSRUejolEFDu7hSH84/2GBJCxcZSrC+GxY7U1NQePXoghPr375+fn0/jnsvLy7lcLp/PZ21agD4Ri8Xdu3dHCOXl5TF0CDXHCevqmv7Q1mO+Fa/X1qq3ZwUeD3l7o7AwlJODnj1DsbEoJAT17IkePEB796J581D37sjDA33+OcrNRfpy4+vevXsnTZpUVlY2bdq0y5cvu7m50bjzs2fPyuXyCRMmqHuHDUAImZiYLFiwADE6YKheZjdsaOpLFy+2vsH1600brFyp/W+IV2QyKieHCgujAgIoY+NX7dHOrulyTmkpnYdjUV1dXVBQEFJhWQqN4VmqjH6q0W9XrlxBCNnb29P1Eb0ZNUP4xRdNP/1tfbrIyGhzAIMulZVUTAy1fDnl6PgqjVwuNWYM9Z//UJmZFInHCWjm3r17eC0mS0vLuLg4Jg4hl8vxWe6tW7eY2L+BwOcmJ06cYGLnaoYwIqLph/7nn1vfIDKyaYM9e7QvrmP4cs7MmRSf33RcY+NBDg4zZ84MDw/X8TGxU6dO2djYIIQGDRp08+ZNho6Sm5uLEHJycmJo/wZix44diLH7jdQM4bVrTT/rb7/d+gYffNC0QWam9sWpob6eOnWK+uCDsunTlU+2hw4dumHDhvPnzwvbGbdknfKyFG+++Saj665//fXXCKFVq1YxdwhDUFJSYmRkZGJiUl5eTvvO1QyhXE717k0hRHXtStXWNv9qY2PTKaKDA8FzwgcPHoSHhwcFBXXt2lWRRjMzs4CAgLCwsBzSox21tbX4DjIjI6MtW7Yw8SFQma+vL0Lo6NGjjB7FEOApYP/9739p37P6t61t29bU69asaf6lrVubvvTFF7QUpyWpVJqTk7NlyxZ3d3flJQB79uy5ZMmS2NjYqqoqlku6c+fOa6+9hhDq1q0bfjgZo2pra42NjXk8Hvvfqf45fPgwQmjMmDG071n9EAqFr6ZQBAZSSUlUYSGVkUGtXNn04uDB7d2zRsjz589jY2NDQkJ69eqlSKORkZG7u7tAIEhPT2e6I1EUdfz4cXwD5+uvv15YWMj04aj/DTR7e3uzcCy9JxQK8blVWw8X0JhGU5mePKGGDWt9KtOwYdSTJ/SWSLuCgoKwsLCAgAB8fybWvXv3oKCg8PDwJwzUL5VKFWsxLVy4kLVB89WrVyOEtm7dys7h9N6qVasQQqGhofTuVtOZ9Y2N1E8/UW+8QdnbU8bGlJ0d9cYb1M8/N02GiImhAgOpX36hdPv65MuXLxMSEtatW9enTx/lyzlDhgwRCAQJCQnazN9TqKiomDRpEkKIx+OFhYVpv0PV9e3bFyF05coVNg+qx/Cy3L169aL3qdrMLG+xcGErt5u1vJCjSwoLC/HlHEtLS0Uau3TpEhAQsGvXrocPH2q222vXruG1mOzs7JKSkmgtuQN37tzBHZ6FM23DMWjQIIQQvZ/nmQnho0dUeDg1Zw5lbf0qjXw+NXky9d13VEEBIwelSUNDQ0JCgkAgcHd3V17Ms2/fviEhIbGxsbUq/zZRrMXk7u7O/qAlngsXHBzM8nH129atW2n/v8rwQk9SadPtZl5e/5hc36MHFRREHTig45Prnz59euDAgaCgIDyqjvH5fMVoR1uLySsvS7FkyZKGlnMvmYefAUrvbAygeKo2jRecWVxtrby8aXK98u1mypPrJRL2ilGTRCJJS0vbvHmzh4eH8mhHqzNcnj9/jtdiMjU1JbWchEgk6tKlC4fDKe20d9XqLPyPu7+t2XzqI7TkYfuT64uLyVSlmvLycjza4ejoOGfOnGZfvXLlSu/evRFCjo6OWVlZRCqkKAo/emnkyJGkCtBjv//+O0LIx8eHrh2SXndUMbm+2fJtnWFyvVwuf/HP02nFshQ+Pj6MLojQoQ0bNjBxMR1QFPXy5Ut6n6pNOoTK2p9cz9gtzrQQiUQrV67E56g0LkuhsaFDhyKEUlJSyJahr95++22E0JYtW2jZmy6FUKHDyfUqPIiPTcXFxXhFXT6fHxERQbocqri4mMPhdOnShekFMw1WUlISQqhPnz60DP/oZAiVlZVRsbHUkiVUt26v0sjjUe7u1JYturCU8IULF/CEvd69e+vIsPj+/fsRQrNnzyZdiN6Sy+V4+Dc1NVX7vel8CBWkUuriRWrLFmrsWMrI6FUge/W6/umn0dHRFRUV7BcVHh5ubGyMEJo6dWplZSX7BbQKT9X/6aefSBeiz/7v//4PIbRs2TLtd9V5QqissrJptMPZmUJok7s7QojL5eK7sRMSElj4SCYUCvGDe/CyFPTex6QNqVTarVs3hBBdlw1Aq+7du8fhcCwsLOrq6rTcVecMobLr1//73XcTJ040NTVVDN/Z2NgEBQXt37+fibuxKYoSiUQjRoxACFlaWsbHxzNxCI1lZmYihAYOHEi6EP2HH1Jw6NAhLffT+UP4P/X19YrbzZTvxsa3m504cYLGyfWFhYVjx47t3r17ge7dgvfZZ58hhD744APShei/8PBwhFBAQICW+9GfECpTTK7H8/cwGifXZ2dnI4Ts7e0luneXD14++OTJk6QL0X/V1dVmZmZcLvfRo0fa7Ec/Q6igPLle+W5sV1dXfDe2xncA4gdunjp1it6CtVRZWYmXQtH+gwpQBV6S9Ouvv9ZmJ3oeQmWKyfX4aUeYxpPrt23bhhCaN28ecwVrAC/BoP0JElDRmTNnEEIDBgxo61Z+VRhQCBVkMllOTk7LyfV2dnZ4cn1JSUmHO3ny5ImRkRGfz3+hSxNBli5dihD6Vt0HgQBNyWQyJycnhJA29wkbYgiVaTO5Hs+X/+WXX9gsuB1yuRyvoEPvoyxA+z7++GOE0JqW656pzNBDqEwxud5C6Ukb7Uyuj4yMRAiNGzeORLGtyMvLQwg5ODhoc2oE1HXz5k2EkLW1tcazRiGErWhoaDhz5sz69evx1ReFwYMHr1+//u7du4rN8NXX27dvky0Y2759O0Jo+fLlpAsxOHhULDY2VrO3Qwg7oJhcr1hK+PLly4qv4gd6bt68mWCFCm+88QZCKCYmhnQhBmfPnj0IoRkzZmj2dg6lL08XY5pUKs3KykpOTv7Pf/6jmFyflpY2YcIEJyenoqIiIyMjguXV19fb2tpKpdKysjJbW1uClRigyspKR0dHmUz2+PFj5WvvKlLz+YQGjMfj+fj4bNmyRXl5Cx8fn379+j158iQ1NZVcaQghlJycLBaLR48eDQlkn62t7fTp06VSaVRUlAZvhxBqhcPhLFmyBDH6BEnVnDt3DiE0ZcoUsmUYLHw3f0REhAbvhdNRbRUVFfXt29fc3Pzp06fKa5ayrH///oWFhVlZWZ6enqRqMGRSqdTJyamsrOzq1asjR45U673QCbXl4uLi4+NTX18fFxdHqoaHDx8WFhba2NiMHj2aVA0GjsfjzZ8/H2l0TgQhpAE+FSF4Rnr69GmE0OTJk8leHDJw+McgMjKysbFRrTdCCGkwb948CwuLCxcuPHjwgEgB8IFQF4waNWr48OGVlZX4hlLVQQhpYGFhgRd0wffQsKyxsTElJQUhFBAQwP7RgTLNrtJ17gszFRUVX375ZV8l+NkP7EtISJg8ebKrq2thYaHynCkWJCcnT5w40c3NLT8/n83jgpbKysqcnJy4XG5JSUn37t1VfBeP0ZqY9vfff//www/Kr9jY2PRtwcXFRXlwjwkTJ050dnZ++PBhZmamt7c3o8dqBp+L4oc5A7J69OgxefLk06dPR0dHv//++yq+q3N3wuLi4iNHjjz4n6KiIrFY3HIzPp/fMpl9+/Y1MzOjsZhNmzZ98803K1eu3LdvH4277dCIESOuX7+emJg4ceJENo8LWhUbGzt//nwPD48rV66o+JbOHcKWqqqqHrSAJ0C03Jjetnn37t3BgwdbWlo+ffqUtbPiZ8+e9erVy9zcvLKyUnmpK0CKSCTq1atXVVVVfn6+m5ubKm/RtxC2SiQSlZaWNkvm7du3GxoaWm5sYmLi5OTULJmDBg1Snt/UFk9Pz0uXLkVFRS1cuJCB76MVv//++7Jly2bMmHHy5El2jgg6tGbNmvDw8E8++QTPa+mQQYSwLbS3zZ9//vndd9+dMmXK2bNn2fkWFi5cGB0dvWfPng8++ICdI4IOZWVljR8/vlevXo8fP1Zl5NagQ9gqtdqmqampo6OjIpM9evRYvXq1VCotKipydnZmulS5XN6zZ8/y8vK7d+8OGDCA6cMBFdXU1PTu3dvOzi4xMdHFxaXD7SGEqlKrbZqZmQ0ZMoTpi7SXLl3y9PR0dXUldZMAaOnWrVuBgYF3796dOHFiYmKiKm/p3EMUbLKxsXF3d2+2snDLtnnt2rX79+8LhcLc3Nzc3FzljZu1TWzw4MFdunTRrCQYnNA1f/3115IlS2pqal5//fW9e/eq+C7ohDSTSqXOzs7Pnj07ePAgn89v1jlbfUurnzZdXV07HPT38vK6ePHisWPHZs+ezcC3AtQgk8m2bt26detWuVy+cOHCffv2qf67FUJIvw0bNnz//ffvvffejz/+qPx6q582b926JRQKW+6kw7ZZXV1tZ2fH4XAqKiqsrKzY+MZAG168eLFw4cLz58/zeLyvvvpKIBCo9XYIIf0KCgrc3Ny6detWWlra4didVCotLi5+8OBBYWGhcjirqqpabszlchXJbGhoiImJmTBhAvFJ/QYuLy9v7ty5Dx486N69e3R0tAa3TEAIGTFy5Mi8vLy4uLg5c+ZotgdF27x58+atW7dwMh8/fiyVShXb2NjYmJubnzhxYtSoUTQVDtQTFRW1atWqhoaGUaNGxcfHN1u9VlUari8F2rVz506E0KxZs+jdrUQiKSwsPHfu3PDhwxFCPB4PIWRiYvLll1+y8EhGoEwikShOO5csWaLxoqMULHnIkLKyMmNjYx6P9/TpU9p3ju8MtrW1vXbtmkAgwMMew4cPz83Npf1YoFXPnz/HC0yampru2rVLy71BCJkya9YshNDOnTvp3e3WrVsRQmZmZhkZGfiVjIyMgQMH4sYoEAjaWbcf0CInJwefdjo6OmrzCAoFCCFT8JIzI0aMoHGfkZGRHA7HyMgoLi5O+fWGhgZFS3Rzc9P+AYygLQcOHMCTb7y9vek6zYEQMkUsFuNpnXl5ebTsMCkpCT9Das+ePa1uAC2RUSKRaNWqVfhDYEhICI0fwiGEDHrvvfcQQh999JH2u8rNzcXTODZt2tTOZsotcdiwYVeuXNH+0ICiqCdPnuC1JPl8/m+//UbvziGEDLp8+TJCyN7eXsvfmg8ePOjZsydCKDg4WJUnLmVmZg4aNEjREkUikTZHB2lpafj/v7Ozs/KTSOgCIWTWsGHDkHZPkK+oqMCJ8vf3V/0ME7dEPI8GWqI2wsPDjY2NEUJ+fn5lZWVMHAJCyKywsDCEUFBQkGZvb2ho8PLywpdbqqur1X07tERtCIVC/ORjDocjEAikUilDB4IQMqukpMTIyMjExKSiokLd90qlUnzDjYuLi8YX4pRb4tChQ5k4m9JLjx498vDwQAhZWFgcOXKE0WNBCBmH1+T96aef1H0jnixva2ur/UNIL168iB94Ci1RFWfOnOnWrRtCaMCAATdu3GD6cBBCxuHHZY0dO1atd3311VfNBuW1JBQKoSV2SC6Xh4WF4f9LM2bMqKqqYuGgEELGCYVC/JRf1RvaH3/8weFwuFxus0F57WVlZUFLbEttbe3cuXMVHwJlMhk7x4UQsmHlypUIoU8//VSVjRWD8rt372aiGOWWOGTIkEuXLjFxlE7n77//Hjp0KELIysrqzz//ZPPQEEI2pKen41sNO7zClp+fb21trXpiNZaVlfXaa68pWlH51KcAAAloSURBVKJQKGT0cDrur7/+wmcrgwcP1v4TuLoghCzBN5SdP3++nW0Ug/ILFy5UZVBeS8otsX///mlpaUwfUQfhD4H4HqP58+e/fPmS/RoghCz54osvEEKLFi1qa4OKigr8ac3f35/Nj2rZ2dm4JXK53JCQkPr6etYOTVxNTQ1ensfIyCgsLIyFX3ytghCypKioiMvlmpmZtTrmrjwoz84VOWXKLbFfv34XLlxguQAirl+/3q9fPzwIlJCQQLASCCF7/Pz8EEK//vprs9dlMhkelHdyciouLiZSG0VR165dGzFihKIlEjkxY83hw4fxklkjR47Ei8cSBCFkT0REBELI19e32et4UL5bt27sXxJoprGxMSwsDN8q2a9fv9TUVLL1MEF5WYrFixfrwuk3hJA9L1++tLCw4HA49+/fV7z49ddf4wky6enpBGtTlpeXp68tsby8HK+GxuPxwsLCSJfTBELIKvw45c8//xz/NSoqCg/KHz16lGxhzSi3xL59++pHS8zNzcVPhrC3t09JSSFdzisQQlbhhxO4uLjI5fLk5GS8KilDg/Lay8vLGzlyJL6DpLO3xIMHD+JlKby8vEpLS0mX8w8QQlbJZLLevXsjhCIiIvCgfGhoKOmi2oNbIr6Dp2/fvjrVQFQkFovXrVunWJZCB1f9gBCybfPmzQghfGmOnUF57V2/fl25JdbV1ZGuSFUlJSXjxo3DaxPu37+fdDmtgxCyDa95gS+TdqL7p5u1xOTkZNIVdSw9Pd3BwQGP/ejyLbIQQlY1NDR4e3vjEO7du5d0OWq7fv06XnJf91tieHg4/pXh6+v77Nkz0uW0B0LIHplMhmfK2NjYIIQmTZpEuiJNKLdEV1dXHWyJQqFw+fLlTKxNyBAIIXvw5QFra+uLFy+amZlxudzHjx+TLkpD+fn5+HmputYSHz9+PHr0aLwsRUxMDOlyVAIhZMm2bduUB+XnzZuHEPrmm29I16U5iUSi3BKTkpJIV0Slpqba29vjSSH5+fmky1EVhJANLQflT506hRAaOHBgp7g62g4daYlyuXzXrl34MVXTp09/8eIFkTI0AyFknGJQXvnxPRKJBF+4y87OJlgbLXBLxN+ji4tLYmIiywXU1dUFBQWxvywFXSCEzMrPz8dTtgUCQbMvbdy4ESG0du1aIoXR7saNG3iNQNwSa2tr2Tnu3bt38QrLlpaW8fHx7ByUXhBCBhUXFzs5OSGEFixY0PLXc0FBAb5S2olGC9vHfks8efIk/h03aNCgW7duMX04hkAImVJZWYlnrPv5+bUVMzzmxvTasixjpyUqL0sxa9YsDZYn1x0QQkYIhUI8KD9s2LB2Zsrv3r0bITRz5kw2a2OBckvs06cP7fPWa2pq/vWvf+FlKbZs2dLZL25BCOmnGJR3cnJqfySwoqLCxMSEoadqE1dQUICH7Ohtibdv38anGLa2tufOnaNln2RBCOmnGJRXZagKLzT03XffsVAY+5q1xPYXm1NFdHQ0vvd9xIgRDx48oKVI4iCENPvmm2/woLyKKwjGx8fjs1amCyOooKBgzJgxuCUuWbJEs0E8qVQqEAg4HA5CKDg4WBeWpaALhJBOhw8fxoPyql9raWxstLOzQwhdu3aN0drIUm6JDg4OJ06cUOvtFRUVkyZN0rVlKegCIaRNSkpKy0F5VeCFntavX89QYbrj5s2buCUihIKCglRsiVevXnV1dUUI2dnZ6eD94tqDENLjxo0beMDqk08+Ufe9OTk5iI6nancKUql0165d5ubmuCUeP368/e0jIyPxxu7u7o8ePWKnSJZBCGlQXFzs7Ozc1qC8Ktzc3BBC6p6kdV737t3z9fVVtMTKysqW2yivTaiby1LQBUKorerqahyhdgblO7Rjxw6E0Ny5c+mtTZfJZLLw8PC2WuLz58/9/f3xshT79u0jVSQ7IIRaUXFQvkPPnj3j8XgmJibl5eU0lqf77t+/37IlZmRk4LvbHR0d9eAG9w5BCDUnk8neeust/LOi/fTcadOmIYR+/PFHWmrrRHBLxKN/9vb2q1atwnMUfXx89PIehpY4FEUhoJH169fv3r3b2to6LS1t+PDhWu4tJiZmwYIFo0ePVqwE1YkIhUKRSCQUCquqqpr9oa3Xm21QWVnZ2NiIEOLz+SKR6MMPP9yxYweeH6j3IIQa2rFjh0AgMDExOX36NF5ZXUsikcjBwaG6uvrGjRt4bg7TGhsb6+vr6+rqxGJxbW1tQ0ODWCyuqqoSi8UNDQ2qv05XPcbGxsbGxitXrhw/fvz8+fPp2q3uM4jfNLSLjo7+9NNPuVxuZGQkLQlECPH5/Hnz5u3duzcyMjIsLKz9jTXoPM3++uLFC7FYTEvluHgzMzM+n29jY9PsDyq+bmtri0dZDRB0QrWlpqZOnTpVLBbv3Llz/fr1NO754sWLXl5elpaWCxYsqKmpEYvFLTsVnrNDy+GMjY0tLCwsLCxMTU2tra1xMKytrU1NTVV5HYfH2toazycCGoMQqqegoMDHx6e6uvrjjz/G4wo0oihq9erViYmJDx8+bH9L7TtPt27d+Hw+vfUDzUAI1YDXVC8uLp4/f35UVBRDHeDo0aMvXrxQ7jwmJiZdu3ZVdCToPHoGQqiqmpoaX1/f/Px8Pz+/s2fPGuwHGEA7CKFKGhsbp02blpycPHTo0IyMDHybKAC0gBObjsnl8kWLFiUnJzs6Op45cwYSCOgFIezYhg0bjh49am1tffr0aXyjNgA0ghB24Ntvv921a5eJiUlcXJz2t8UA0BJ8JmxPdHT0okWLKIo6ePDg4sWLSZcD9BPcMdOm1NTUpUuXyuXynTt3QgIBc6ATtk4xKL9x48Zvv/2WdDlAn0EIW8HOoDwAGISwOcWg/IQJE86dOweD8oBpEMLmAgICkpKS3Nzc0tLSYEgQsAAuzDQXGhpaWlqqeNwPAEyDTtgKmUxmZGREugpgKCCEABAG1/0AIAxCCABhEEIACIMQAkAYhBAAwiCEABAGIQSAMAghAIRBCAEgDEIIAGEQQgAIgxACQBiEEADCIIQAEAYhBIAwCCEAhEEIASAMQggAYRBCAAiDEAJAGIQQAMIghAAQBiEEgDAIIQCEQQgBIAxCCABhEEIACIMQAkAYhBAAwiCEABAGIQSAMAghAIRBCAEgDEIIAGEQQgAIgxACQBiEEADCIIQAEAYhBIAwCCEAhEEIASDs/wGvfu65Xz5SwAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -848,7 +871,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAF70lEQVR4nO3dy3baSBRAUejV///L\n9MCDdGyH2EbSqcfeo2SQRJTr1AWxAvfH43EDOv/UFwC7EyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRE\nCDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIsX/rC2BU9/uvXz8e3XWsT4R85n7/Lbx3v+VQno7ywcfkHo/fBiOHEiHERAgxEUJMhBAT\nIR98vA3j7uiZvEXBZ951qMAziZA/EN5VPB3dnjcAayLcmxd7AxAhxES4MWNwDCLc1ZMCvUq8lgj5\nnfF4ORFuSWkjESH/I86CCPfzp9IUGBHhZpQ2HhFyu93EWRLhTpQ2JBHu4v78jUFxdkS4PQXWRLiF\n+/3+UNqoRLi+ZwUagwMQ4b6evUrkQiJcnCei4xPhpsQ5DhGu7E+lKXAoIlyW0mYhwu2IczQ+8vBS\n96f/af3ANpQ2ET+q6/w1jOeJPvH1H6I4B2QSDuTHeXxxwCpwTCK8yKkB/HXAam9kbsxcYYQMRrgG\nPiXC9T0eDwWOTISnEwDPifBcgxT4NgzrqzjL7A9NhMxtkGPuFSI80VD7Y+1hODURnmWoAle1xiKL\ncCOLDcM1CryJ8CTL7A8uIMLjjVzgMsNw5EX+LhEyn5UKvInwcOPvj2WG4TJEyGTGP+a+S4RHmmV/\nzDsMZ1nhbxHhYZbcH1xAhJuacRiuesyJ8Bir7o9xLLzCIjzApPtjxmG4JBEygUmPuS8S4aum3h+G\n4QhE+JKpC5zF8osswt0NPgyXL/AmwlfssD+4gAh/aKUChx2GKy3yEyJkUJsUeBPhz6y3P4YdhjuY\n+2PwL/uSo3f/6GIFDmirRZ47wvxLjlYyzgd1D3IZl5k7wufO/pIjOMReR87rlj+k8weYX8D13Jj5\nHjcwTrVhgTcR8o5T5no7HjyvW/vA/jTCCx7v2qv6xMo3ZviBP5XwxfH4ys2wPQu8ifBnxrmbf5kv\nPtivtLrVun2FCPnl9ZPlK3+8ero7rL2O82MtNgzbh7PYYn6Lu6MQE+HPrXQ3Px9EKy3md4mQvsDN\nifAlO5/fh9t2MUW4O2MwJ8JXTX1+j1bg1Iv5YyKEmAgPMOn5PdoYfDPpYr5ChJsas8A9ifAYG57f\n59ltMUW4I2NwKCI8zCzn9xQFzrKYhxAhxER4pPHP7ynG4JvxF/MoIoSYCA828vk90Rh8M/JiHkiE\nu5iuwDc7dCjC4+2wbziQCLcw6Rh8s/yhJsJTDLVvpi5wByJkAkMdaocT4VkG2TfG4PhEuLKVChzk\nUDuDCE+08L7hQCJc1kpj8M2qh5qPwT/XX/fNSZ2sV+DCRHi65zH8+Gjfs7Elv4pHhLFXvkvsjL+W\n6612qLCDxYahGzMQEyHzWew2qQghJkKmtNIwFCGzWubejAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKI\niRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQ\nYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAgh9h9pbA1awLjaKAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAfO0lEQVR4nO3deVxU5f4H8M8ZYGBYZkBwAculDCUELCi3yiWza6bp1SwzxQU001xzuZk/10wzS5LcklQy62aamXk1c7lJ5C4qqCC4ghsoMwMIA7P8/jg2FzeWYeZ8mZnv+y84Hc750IuPz5mZ5zxHMJlMYIzRkVEHYMzZcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkFmJyYTVq9GmDby94e2N1q2xZg11JvsgmEwm6gzMIYwbh7g4+Puje3cIArZuxc2bmDgRn35Knay24xIya0hORvv2aNIE+/ejfn0AuHYNrVvj0iX89RfatKHOV6vx5SizhoQEAPjggzsNBNCgAaZNA4BVq8hS2QkuIbOGv/4CgC5d7tr48sv/+0/s4fhylFmDjw8KC6HXw8XlfxtNJri4wNsbWi1dMjvAJWTW4OoKmQylpfduVyhQVga9niKT3eDLUWYNXl4oK0NZ2V0bjUbodPD2JspkN7iEzBoaNwaA8+fv2njhAkwmNG1KksiOcAlZ9WVl3bulfXsA2LHjro07dwLA889LksmOcQlZNR0+jBYtMHz4XRtjYiAImD8fV67c2ZKXh/nzIZNh2DDpM9oXV+oAzK7o9Rg+HHo9fH3v2h4ZiSlTMH8+wsPRqxcEAVu24MYNzJqFiAiirHaD3x1l1TFzJmbNQnAwUlKgUNz7X9etQ3w8UlMBIDwcY8bgzTelz2h3uISsyk6eRFQU9Hrs2YMXXqBO4zj4NSGrGr0ew4ahtBTvvssNtC4uIauaRYtw6BAaN8a8edRRHA2XkFVBRgZmzQKAFSvg41PRnkYjpk7FxYvS5HIMXEJWGaMRMTEoLsawYXfmZFdg2TIsWICuXWE0ShLOEfAbM6wyX3yBsWMRGIi0NPj5VbTnxYsIC0NBATZtQu/eUuWzezwSsgpduHDntsClSytpIIARI1BQgDff5AZWC5eQPZzJhBEjUFiIt95Cr16V7Pz119ixA/7+iIuTJJzj4MtR9nBffYXhwxEQgLQ01KtX0Z5XryI0FPn5WL8e/ftLlc9B8EjIHuLKFUyZAgBffllJAwGMGoX8fHTvzg20AJeQPYTYqx490K9fJXt+9x1++gkqFZYvlySZo+HLUfYg69Zh4ECoVEhLQ8OGFe2Zl4fQUNy4gYQEDB0qVT6HwiMhu09eHiZMAIDFiytpIIDRo3HjBjp3xpAhEkRzSDwSsvv064cNG/Dii9i5E4JQ0Z5bt6JHD3h54cQJPPaYVPkcDZeQ3e2XX9CzJ7y8cPJkJStTaDQIDUVODuLjMWqUVPkcEF+OsnLUaowcCQALF1a+Nsz48cjJQdu2d36EWYpHQlZOdDQSE9GhA/bsqeRCdPdudOkCuRzHjiEkRKp8jolHQnaHfvt2JCbC0xOrVlXSwKIixMbCZMKcOdzAmuORkAGAVqt9PipqZVDQM6+9Jhs/vpK9R43C0qV46ikcPAhXXqaopngkZAAwefLkE2fPji0pMY0ZU8muyclYvhxyOdau5QZaBZeQYe/evStXrnR3d09ISHAp/zCJ+xUXY/BgGI2YNg1hYVIFdHBcQmd3+/bt2NhYk8k0ffr00NDQSvaePh1nzyI8HFOnSpLOKfBrQmc3YcKEzz//PCIi4tChQ25ubhXtevAg2rWDIOCvvxAVJVVAx8cldGoHDhxo3769IAj79++PjIysaNfSUkRGIjUVU6fi44+lCugU+HLUeel0umHDhhkMhilTplTSQCA5Pt50/jyaN8eMGdLEcx5cQuc1e/bstLS05s2bf/jhhxXvefz48Y5Tp3by9y9evRoeHtLEcx5cQid1/PjxhQsXymSyVatWeVTYK71eP2zYsLKysla9eyvatpUsofPgEjojc6/GjRv33HPPVbzzJ598cuTIkSZNmsydO1eaeM6G35hxRnPnzp0+fXrTpk1PnDjhXeGTdNPT01u1aqXT6bZv3961a1fJEjoVHgmdzpkzZz766CNBEFauXFlxA41GY0xMTElJSWxsLDfQdriEzsXcqxEjRnTp0qXinePi4pKSkoKCghYsWCBNPOfEl6POZdGiRe+//37Dhg1TU1N973nQ590uXLgQFhZWWFi4efPm1157TbKETohHQidy/vz5GTNmAFi6dGnFDTSZTMOHDy8sLHz77be5gbbGJXQWJpMpNja2qKgoOjq6Z8+eFe+8cuXKnTt3BgQEfPbZZ9LEc2Z8Oeosli5dOmrUqAYNGqSlpdWpU6eCPa9cuRIaGqpWqzds2NC3b1/JEjotHgmdwqVLl6ZOnQogPj6+4gYCGDlypFqt7tmzJzdQGlxCpzBixIiCgoJ+/fr16dOn4j0TExO3bNlSp06dFStWSJON8eWo41uzZs2QIUP8/f3T0tLq169fwZ65ubmhoaG5ubmJiYkDBw6ULKGT4+UJaiQlJeXYsWM+Pj6+vr4qlUqpVCqVSh8fn4o/BJfStWvXJk6cCCAuLq7iBgIYOXJkbm5ut27duIFS4hJaLjo6Ojs7e/fu3Q/8rx4eHn5+fn5+fgqFwvy12f0bFQqFr6+vUPEyZ9UnCMILL7xQVlY2YMCAivfcsGHDxo0blUolX4hKjC9HLbRp06Y+ffooFIoePXro9XqtVpufn6/VagsKCrRa7e3bty04ppubm1KpVKlU5kFVHFdVKpWvr6/5W/ELPz8/8Vt3d/dKj1xcXKxQKCrY4ebNm6GhodevX1+xYsXw4cMtCM8sxiW0hFqtbtmyZU5OzrJly9555537dxBrqVarNRqNWEuRRqPRaDTau6nVavELnU5nQRh3d3exluIlsbml9/dZFBgYeH8h33777W+//bZjx467d++2+mjMKsYltER0dHRiYmKHDh327Nlj3T/Z4uLi/HJKSkoq3nLr1q3qVnfKlCm9evVq06aNecu2bdu6d+/u6el5/PjxZs2aWfHXYVXBJay2//znP6+88krt+ZMtLi6+f1AVFRQUiBfJ5m9v3LiRm5vbrFmz1NRUcXVDrVbbsmXLy5cvL168eOzYsdS/jVMyserQaDSPPvoogEWLFlFnsYRerw8ODgbwzTffiFtiY2MBtGnTRq/X02ZzWlzC6hkxYgSA1q1b2++f7OrVqwE0a9asrKwsIyNDJpO5u7ufOnWKOpfz4svRati7d2/nzp3lcvmRI0cqXye3tjIYDKGhoenp6WvXrh00aNAff/yRkZERExNDncuJUf8rYDeKiorEV4Bz586lzlJTa9euBfD444+XlZVRZ2EmnjtaVdOmTcvMzIyIiJg8eTJ1lpoaMGBAixYtsrKyvvnmG+osjCdwV82BAweWLFni6uqakJBQyVrx9sDFxUVca3TWrFmlpaXUcRyNyWSKiYn5/fffq/EDrGIlJSXiK8Bp06ZRZ7EavV4fEhICYNWqVdRZHM2qVasA1KtXr7CwsCr7cwkr969//QtAixYtiouLqbNY0/r16wE0btxYp9NRZ3EcOTk5fn5+AL7//vsq/giXsBIpKSlubm4ymSwpKYk6i5UZDIawsDAAK1asoM7iOHr16gXg1VdfrfqPcAkrUlZW9vTTTwOYMGECdRab+Pe//w2gUaNGJSUl1Fkcwbp16wCoVKrs7Oyq/xSXsCKzZ88G0LRp04KCAuosNmE0GsPDwwEsXbqUOovdy83NrVevHoDVq1dX6we5hA91+vRpDw8PQRB27txJncWGNmzYACAoKOj27dvUWexbv379ALz44otGo7FaP8glfDCDwdCuXTsAI0eOpM5iW0ajMSIiAkB8fDx1Fju2ZcsWAF5eXllZWdX9WS7hgy1cuBBAw4YN8/PzqbPY3KZNmwAEBgbyYGgZtVrdsGFDAF9++aUFP84lfIBz5855eXkB2LZtG3UWKRiNxqioKABxcXHUWexSdHQ0gHbt2hkMBgt+nEt4L6PR+OKLLwIYPHgwdRbpbN68GUCDBg2Kioqos9iZ33//XRAEhUKRkZFh2RG4hPf68ssvxT/HmzdvUmeR1DPPPAPg888/pw5iTzQaTaNGjQB8+umnFh+ES3iXixcv+vj4ANi4cSN1Fqn98ssvPBhWl7jC0LPPPluT+0u5hHf5xz/+AaBfv37UQWi0bt26hv+oO5W9e/cKgiCXy0+ePFmT43AJ/+frr78G4O/vf+3aNeosNLZt2wYgICDAUScnWJH5/tI5c+bU8FBcwjuuXLkizrv99ttvqbNQEldh++STT6iD1Hbjx48HEB4eXlpaWsNDcQnv6N27N4Du3btTByG2fft2cTDUarXUWWqv/fv3u7i4uLq6Hj58uOZH4xKaTCbTd999J867vXz5MnUWes8//zyAjz/+mDpILWW+v/SDDz6wygG5hKa8vDxx3i3f3irauXOn+NqYB8MHmjZtGoDmzZtb6/5SLqGpf//+ADp37lzdebcO7IUXXgDw0UcfUQepdcz3l+7bt89ax3T2Eoofjnl6emZmZlJnqUV27doFwNfX1xmmzlZdWVlZZGQkgPHjx1vxsE5dQrVa/cgjjwD44osvqLPUOh07dgQwe/Zs6iC1yJw5cwA0adLEuh/hOHUJhw4dCqBt27aWzbt1bPv27RPfrLp16xZ1llrBfH/pb7/9Zt0jO28Jd+3aJQiCu7t7WloadZZaqlOnTgBmzJhBHYSewWBo3749gHfeecfqB3fSEhYWFj722GMAFixYQJ2l9kpKShIHQ2eby36/RYsWiesP2OJFspOWcNSoUQCeeuqpmk93cGxdunQBMH36dOoglM6dO+ft7Q3g559/tsXxnbGEycnJMpnM1dX16NGj1Flqu+TkZABKpdJpB0Oj0Sj+SzRo0CAbncLpSlhSUiKuPD1z5kzqLPaha9euDrb6eLUsXboUQN26dW/cuGGjUzhdCd9//30AYWFhvOx0FR06dEgQBG9vb9v9FdZa2dnZvr6+AH788UfbncW5SnjgwAEXFxcXF5eDBw9SZ7En3bp1AzB16lTqIFIT7y99/fXXbXoWJyqhTqdr2bIlgClTplBnsTOHDx8WBMHLy+v69evUWaQjPtJYgvtLnaiE//d//wcgODiYF/azwKuvvgpg8uTJ1EEkcvXq1Tp16gBYt26drc/lLCU8fvy4XC6XyWR//PEHdRa7dOTIEXEwdJJlB/75z38CeOWVVyQ4l1OUsKysTFxXc8yYMdRZ7FjPnj0BTJw4kTqIzX3//ffiBzOXLl2S4HROUcJ58+aJD+LjpVNq4ujRo4IgeHh45OTkUGexoby8vPr16wNYuXKlNGd0/BKeOXNGnHe7Y8cO6ix2T1wEZNy4cdRBbOitt94C0KlTJ8nuLxVMJlNVnqqdmpq6YcMGpVLp4+Pj5+enLMfHx0f8LKUWMhqNHTp0SEpKiomJ+eqrr6jj2L3U1NSIiAi5XJ6ZmSk+fcHB/Prrr6+++qqnp+eJEycef/xxaU5a1RImJiaKC+4/jIeHh5+fn0KhEL8wu3+LeWP9+vVdXFys9Is8WFxc3Lhx4wIDA9PS0sTF1FgN9e3bd+PGjWPGjImLi6POYmUajaZly5bZ2dlxcXFjxoyR7LxVLWFKSsrmzZu1Wm1BQYFGo1Gr1dq/FRQUaLVaS84tCL6+viqVyjyiKpVKlUrl6+tbfotSqRTHXvFbT0/PKh7/woULYWFhhYWFP/30k/gQY1ZzaWlp4eHhcrn87Nmz4i3RDiMmJiYhIaFNmzZJSUm2Hh7Kq2oJK5Wfn39PLdVqtUajMX+r1WrN7RW3FBUVWXAiV1dXpVIpttfcUnN7zVt8fHxmzJiRlJQ0YMAA8SHGzFreeOONH374YdSoUfHx8dRZrGb37t1dunSRy+VHjx598sknpTy11UpomeLi4vy/lZSUlP/2YVvy8/OrePB69eqVlJRkZWUFBATY9LdwNqdOnQoLC3N1dc3IyGjcuDF1HCsoKiqKiIjIysqaP3/+lClTJD47cQktUFpaKo6r+fn55jFWVP4iOTc39+DBg3K5/Ny5c4GBgdSpHU3//v2///77kSNHijcZ2Lv33nsvPj6+VatWBw8edHNzk/r00rwJS0Kc9DB27FjqIA4oPT3d1dXVzc3t3Llz1Flqivz+UkcuYWpqqkwm8/Dw4HW1bWHAgAEAhg8fTh2kRsz3lxIupePIJTSZTK+//jqA0aNHUwdxQBkZGQ4wGE6ePBlASEhISUkJVQYHL2FaWppMJnN3d+fB0BYGDhwIICYmhjqIhY4ePerm5kZ+f6nLzJkzpX4ZKqG6deuePn36+PHjOp2ue/fu1HEcTVhY2LJly1JSUgRBuHz58oULF65evXrr1q3i4mKj0ejq6irlp23Vpdfre/TokZOTM2nSpIonotia/b07Wl0ZGRlPPvmki4tLenp6kyZNqOM4mhYtWhQVFWVnZz9sh6rPoBK/DggIkMvlEiSfOXPmrFmzgoODU1JSFAqFBGd8GMcvIYABAwasX79+xIgRy5cvp87iUDZv3ty7d2+FQtGnTx+j0Xj/x0V6vd6Cw3p5eZWflmyeUyVuKT+nyjyPqrpzEk+ePBkVFaXX6/fs2SM+/YaQU5Tw7NmzTz75pCAI6enpTZs2pY7jIDQaTWhoaE5OTnx8vLiO6/1u375tnkRVfk6VuMU8p8q8RZxTZdnf5D21rGBGpJeX16BBg44dOzZ69OglS5bU7H+DFThFCQEMHDhw3bp1sbGxK1eupM7iIIYMGbJmzZp27drt27dPJpNZ8cjFxcX3T5aqeE5Vbm5utUZdpVKpUCgyMzPFVX1pOUsJMzMzQ0JCBEE4c+aMuAA+q4ldu3a99NJLcrn82LFj4uds5MpPSzbPqbpnizj25ubmXrp0qUGDBufPn5fm9WclCN+ZlZj4DtjQoUOpg9g985M8Fi5cSJ3FEgaDITw8HMDy5cups5hMDv85YXmZmZnim+bp6enUWezbyJEjATz77LN6vZ46i4V++OEHAI8++ijhZ/RmTlRC098PJBw8eDB1EDu2d+9eQRDkcvnJkyeps1jOaDRGREQAWLp0KXUWJyvhhQsX5HK5i4vLmTNnqLPYpaKioieeeAIO8QTfH3/8EUBQUBD5OrTOVUKTyRQTEwNg4MCB1EHs0oQJEwCEh4c7wCPljEZjq1atACxZsoQ2idOV8OLFi+JgePr0aeosdmb//v0uLi6urq6HDh2izmIdP/30E4DAwEDawdCaH+/YhUaNGg0ZMsRgMMyZM4c6iz3R6XTDhg0zGAyTJk0SV1J2AK+99tozzzxz9epV4pX4CP8BoHLp0iV3d3eZTGbXby1IbNq0aQCaN29eXFxMncWafv75ZwANGjQoKiqiyuCMJTT9/Sb7m2++SR3EPqSkpLi5uclksn379lFnsb5nn30WwGeffUYVwElLmJOTo1AoZDLZ8ePHqbPUdmVlZZGRkXDchbe3bt0KoG7dulRPSXDSEppMptGjR8P2z390AHPnzgXQpEkTB36SR+vWrUE3Ach5S3jlyhWFQiEIQkpKCnWW2sv8JI/ffvuNOosNbdu2DUBAQIBWq5X+7E737qhZYGBgbGysyWTit0kfxmg0xsTElJSUDB8+/KWXXqKOY0PdunV77rnn8vLyli1bRnB66Xtfe1y9etXT01MQhGPHjlFnqY0WLVoEICgoKD8/nzqLze3YsQOAv7+/9IOhU5fQZDKNHz8eQK9evaiD1Drnzp0T77XbvHkzdRaJiLfYz5s3T+LzOnsJr127Jg6GtOtt1TZGo7FLly5wsvl9v//+uzgYajQaKc/r7CU0mUwTJ04E0LNnT+ogtYj40qhu3bo3btygziKpDh06AJg7d66UJ+USmnJzc318fAAcOHCAOkutkJ2dLT719ccff6TOIrXdu3cD8PX1lfJlsPO+O2oWEBAgTqCZPXs2dZZa4d1331Wr1X379u3Tpw91Fql16tSpY8eOarX6iy++kO6sktW9NsvLyxMHw/3791NnIbZmzRoA/v7+165do85CIykpCYBKpbp165Y0Z+SREAD8/f3FCTSzZs2izkLp2rVr4h2Dixcvrl+/PnUcGu3bt+/cubNGo5HueeDSdL32y8vLUyqVABxyjnIViQ+Te+WVV6iDEPvzzz8BqFSqmzdvSnA6Hgnv8Pf3f++99wA47QSaH374YdOmTUqlktcpb9eu3UsvvaTRaD7//HMpzidB0e1Ffn6++K7gf//7X+osUsvLyxOvP1esWEGdpVZITk4G4O3tLcGHNDwS/o+vr++YMWPglG+Tjh079vr16506dYqNjaXOUiu0bdv25ZdfLiwsXLx4sc1PZuuW2xe1Wi0+WmTv3r3UWaTz66+/AvD09MzMzKTOUoscOnRIEARvb+/r16/b9EQ8Et5FpVKNHTsWzvQ2qVarfeeddwDMmzfv8ccfp45Ti0RFRXXr1q2wsPCzzz6z7ZlsWnF7pFar69SpA2DPnj3UWaQgrgHZpk0b+11O23YOHz4sCIKXl5dNB0MeCe+lUqnEWys+/PBD6iw2t2fPnoSEBHd394SEhNr8VF0qkZGR3bt3Lyoq+vTTT214Gtv1234VFBTUrVsXwK5du6iz2FBRUZF4/fnxxx9TZ6m9jhw5IgiCp6en7aYQ8Uj4AN7e3uPGjQMwffp06iw2NHXq1KysrFatWon3kbAHevrpp3v27Hn79u1PPvnEVuewUbntXUFBQb169QA46toqycnJ4nLaR44coc5S2504cUImk3l4eOTk5Nji+DwSPpi3t7c4i3LGjBnUWaxPp9PFxMQYDIYPPvjg6aefpo5T24WFhfXq1aukpGThwoU2OYEtmu0YCgsLxcFw+/bt1FmsbMqUKQBCQkIcbDlt20lNTRUHw+zsbKsfnEtYEfFlQFRUlNFopM5iNUePHhWX0/7zzz+ps9iTvn37AnjvvfesfmQuYUUKCwvFGZW//vordRbrKCsre+qppwBMmjSJOoudEQdDd3f3y5cvW/fIXMJKiMv+RUZGOsZgKL7EfeKJJ8ifjGmP3njjDQCjRo2y7mG5hJUoLi4OCgoC8Msvv1BnqalTp06Jj6NywttErOLUqVMymUwul58/f96Kh+V3Ryvh4eExadIkADNmzDCZTNRxLGcwGKKjo3U63bvvvisusMmqKyQk5I033igtLV2wYIE1j2vFQjuq4uLihg0bws6XwZ0/fz6Axo0bkzxuwWFkZGS4urq6ubmdO3fOWsfkElaJuPZWWFiYwWCgzmKJ9PR0hUIBR/y4RXpvv/02APFBJlYhmOz5EksyOp2uWbNm2dnZvXv3joqKUiqVPj4+SqVSqVT6+vqqVCrxW/EPvbYxGo0dO3bct2/f0KFDExISqOPYvczMzJCQEEEQzpw589hjj9X8gFzCqlqzZs3WrVs3btxY8W4eHh5+f1MoFOW/feCWOnXqeHh42DT5kiVLxowZExgYmJaWJt6yzGooOjo6MTFx2LBhq1atqvnRuITVcPr06S1btqjVaq1WW1BQoP1bfn6++K1Op7PgsB4eHuJAKg6q5YdZlUrl6+tbfotSqfTz8/Px8XF1da3KwS9evBgWFlZQULBp06bevXtbEI/dLysrq0WLFiaT6dSpU8HBwTU8GpfQmnQ6ndjP/Px8bTkFBQVqtVqj0Zi/1Wq1Go1G7LNer7fgXJ6enuZaikU18/HxMV8kf/TRR8nJyf3791+/fr3Vf19nNnTo0NWrVw8ePHj16tU1PBSXsFYoLi7Ov1tJSck9G8tvuXnzZmlpaVWO/Mgjj+h0urS0NPEOSWYtFy9eDA4ONhgMaWlpzZs3r8mhuIT2qrCw0DyumgfV8tfJ4mjctWvX119//dFHH6XO64BiYmISEhIGDRq0du3amhyHS8iYhcyDYWpqaosWLSw+Ds+YYcxCjRs3Hjx4sMFgmDt3bk2OwyMhY5a7dOlScHCwXq8/efJkSEiIZQfhkZAxyzVq1Gjo0KEGg6EmjzDhkZCxGrly5UqzZs10Ol1KSkpYWJgFR6jSB76MsYcJCgoaO3asTCYTZ/lbgEdCxojxa0LGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWJcQsaIcQkZI8YlZIwYl5AxYlxCxohxCRkjxiVkjBiXkDFiXELGiHEJGSPGJWSMGJeQMWL/D6bWq3986bHQAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -860,7 +883,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAIB0lEQVR4nO3dbZbaxhaGUemuO6PM\nfwbxmMgPOZiAoIUQek9V7f0rbTuLos3DKX00ni+XywTk/C+9ABidCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghrGiE\n8zynlwAnKRohjKNohJfLxTBkEEUjhHGIEMLqRmhHyiDqRgiDECGEiRDCSkfosJARlI4QRiBCCKse\noR0p3aseIXRPhBDWQIR2pPStgQihbyKEsDYitCOlY21ECB0TIYSJEMKaidBhIb1qJkLolQghrKUI\n7UjpUksRQpdECGGNRWhHSn8aixD68//0Avp1O7Evl9w6qE6E3zHP/wnv7ku40d52tIHDwsfkLpep\n+JrJaS9C6IwIowqPx8elXX/lxW+xQ5MRNrAj3WjZplZ9LlXX1ZsmI1zM89xDipdL2SPGquvqTatn\nRy//nvm47fBS5Azk8uJ96+zo9fVe5ClwolYjvLoNr1CQd0Nky2KWP1PsYsbj+8mirQn569ef5f71\nV6Fv76L5CG/VCnLfg0ZH4mpvqx3efVm5yV+/5tvw7r6soKsIb9UK8mrLoEuMxD72wsvEe91YtQKn\naZqrHEedJR/k9tf7KWU8e5DHo9rp+ftDfBP9Or8tcQYNF+GtZJDbX7Zfe4G/bvxFaaUi3B5Y2RSH\njvBWIMjNg25Z24GrGmfzufp/Veuw22PCdwWOITcf+y1rmOcD3jEHzK9gdXdEuGI1yG/VuPl06PU+\noX0rGTC/VtiObnLIFPrxMTYmsmMxZx6zfeOx5nn+++9peie/21yLXycU4VYndTgdfJR4+PHkFgdO\n3R3rb25a2o5WcuhRYiS/xSFXOkfIbyHCejYf+z07Sgzmd2v3zT/j5LcQYUXbT4fe/cki+V1dR+K0\nLcXR8ls4JnzDGYeFD484FT72e8vhm+cO8luYhKUVP/Z7y4Gb527yW4iwAS+uEJ4/nD/x+J7y7vqX\naxXd5Ldo6a+wguyL/vHR24rwasf0a2Xg72AStuTDm2bqeOtGvD6e8gsibMyB95HG/fie0n1+ix7+\nLk9WKoBSi9ltdZs9DZDfwiSklqHyW4iQKgbMbyHChvWxF1309Fze1fCH/6b08/nflQxb4CRCiBMh\nhIlwDzvSA418NLgQIYSJEMJEuJMdKUcRIYSJEMJECGEi3M9h4UGGvj4xiRDiRNgq17i7IcKP2JHy\nORFCmAghTISfsiPlQyIkKfiP3dchQggTIYSJ8AAOC/mECA8zz7MU2cFHHh7g7p8Zuv66O1rYQoSf\nurt97Pa/BckWIvzI6xs4vxekG0d7IsL93irBhFw19rP/TYQ7fTKLBMktEe5x4G5QkIjwbd87HhPk\nmERYlCDHIcL3RE5LPguSPjjT/YY6FwauKRZZD59w29pWpQq8/KvFwfi45OuvvPitjolwkzoF3lk6\nbC7F1tb7XSL8WakCHxfT4ki8XHT4hwh/UKrAFxodiUzOjr5WrcAtt6pWW/MzyzB8XOmAbyMifKqV\nV/Od69a0/uJXO7z7coQmbUfXNVrgotpR4jwP0dJuJuGKmgW+u6oKI3Fp78XjO0MzifBRzQL3uR4l\nTqen+GN+Vzrs5wV3iLIFfr6w057a9vxYmIR/lC3wECfsTuW3jwgbcNS7w/euYcjvEyL8re8xeOvY\nkTjPcwtXQ0oT4TSNVODikJEYP/XajbFefKuKF/jV5e0LSX7HGn0SFi/w294difL7hqFfgvULPPG6\nwg91ye97xp2E9Qs804uRKL9v80KsK/I2cZuc/M4x7iTkzvVTM6aHFHX4VSJkherO5EeZijJ/xiFC\nCBNhRcbgUEQIYSIsxxgcjQh5xTvCCUQIYSKsxeQZkAghTISFGINjEiGEibAKY3BYbuBOqvNJ9dM0\nrb4BeFc4gQi/63VmRh+TCA/xojSZ8SMR/sezAzMDje8R4bq76mTG94jwj9sxqDpO4xLFD0qdwKRL\nIvxt9Mt0z/79+JG/J2cR4Sujl8kpRDhNYiNKhE8pk3OIUGyEiXCdMjnN6BGKjbjRI4Q4Ea4YcTyu\nPt/RvgkhQ0c4YmzUM3SEq5TJycaNUGwUMW6Eq5TJ+QaNUGzUMWiEUMeIP9T74jMshh6Ptz85OfL3\n4XQjRsiKux8d9JOEJxpuO2oMrnhM7nKZfKTAWYaLEKoZK0JjkILGihAKEiGEDRShvehTj6dhnB09\nkUsUTNP00KECTzRKhMbgz3wfQgbajkJNQ0RoDFLZEBFCZf1HaNxRXP8RPiNOiug8QqVRX+cRPiNO\n6ug8QqVRX+cRrjIGKWXECKGUESM0BillxAihFBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGH/AFzVFKJJFV+HAAAAAElFTkSu\nQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1hUV/oH8O/Qi4BSpIgSFVSwxhgL2KNsVDaWrL9gQaxYUFbdGDSJ4ia2GGOwIXYxriYas2rMJtFYEjVKLEQFXEIACzgUgaGMDDAz5/fHZUeaOsLMnBnm/Tw+PszcO/e+8NzvnFvOvUfEGAMhhB8T3gUQYuwohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohAaushKLF6NlS9jY4M03kZ7OuyDy0iiEBu7997FvH2Jjce4cpFK8+SYqKnjXRF6OiDHGuwbSUOXlcHbG+vWYOxcAHj1C69Y4dgxjxvCujLwEagkNWWIiSksxaFDVSw8P+PoiPp5rTeSlUQgNWU4OALRs+fQdNzfk5vIqhzQMhdCQWVkBqHEQWFEBkYhXOaRhKISGzMMDALKzn76TkwM3txrz0DG/3qMQGrJ27WBvj9Onq15mZuKPPxAQ8HSGo0fRowcKCrhUR9REITRkFhaYPx9r1uDrrxEfj5AQdO2KwMCqqUolNm3C7dtYuJBrleQF6BIFN4wxmUxmbW3dqKXI5Vi6FHFxkEoxZAi2b0ebNk+nZmSgWzeUluLrr/H2240smGgJhZCbBw8eeHl5+fr6Jicna3E1W7diwQK4uCAxscZ5VKI3aHeUm6ysLAB2dnYaW2JiYj1vhocjMBB5eZg9W2MrIhpFIeRGCKGHcIaz8ebNQ7duOHOm9vsiEXbuhL09jh/HV19pZl1EoyiE3Dx69AhAq1atNLM4Ly8whmnTUFhYz6QNGwAgPLzG9QyiHyiE3Gi4JVyyBP37IysL//hHPVNnzcKIEcjPR1iYZlZHNIdCyI2GW0ITE+zeDWtr7NuHf/+7nhl270aLFvj2Wxw4oJk1Eg2hEHKj4ZYQQMeOWLMGAMLD67lA7+GB6GgAiIjAw4caWylpNAohN0IINdYSCiIiMGgQxGIsWFDP1ClT8PbbKCrC9OnUnU1/0HVCbuzs7EpLSyUSiYODgyaXm5GB7t1RUoKjR/G3v9WempeHLl2Qm4udOzFrlibXSxqKQshHcXGxg4ODjY2NVCrV/NK3b8e8eXB2RmIiXF1rTz1+HGPHwtYWt26hfXvNr528JNod5UMr+6Iqc+bgzTfx+HH9F+jHjMH//R+kUsyaRTul+oBCyIeGT43WIhJVnQs9cQKHD9czw7ZtcHUtKig4umuXVgogL4NCyId2W0IArVpVXaCfNw+ZmbWnOjv/sXev85070xYv/vPPP7VVA1EPhZAPzV+fqGv6dIwaBYmk6jFQNXUYOXLCpElSqXTKlCkKhUKLZZAXoRDyIeyOajeEAHbtgqMjTp3C/v11J27ZsqV169ZXrlyJFq4fEk4ohHxofXdU4O6OzZsBYOFCVmen1MHBYc+ePSKR6IMPPkhKStJuJeTZKIR8aPfETHWTJrF33rnao8fomTPrXo4aPnz4jBkzysvLp0yZUllZqfViSL0Y4cHT0xNARkaGDtaVk5Pj4uICYPv27XWnlpaWtm/fHsCqVat0UAypiy7Wc6BUKi0tLRUKRVlZmaWlpQ7WeOLEiTFjxtja2v7+++/e3t61pp47d27YsGFmZmZXrlx57bXXdFAPqY52RznIzc2Vy+XOzs66SSCA0aNHBwcHS6XSqVOnKpXKWlOHDh06b968ysrKGTNmVNBQFjpHIeRAR2dlatq+fXurVq0uX768ZcuWulPXr1/v4+Nz69atVatW6bIqAgohF7q4SFhH8+bNY2NjASxdurTuo6VsbGzi4uJMTU3Xrl177do1XRZGKIQc6O7UaE1BQUFTp06VyWQzZsyoe4G+X79+CxculMvloaGhMplMZ1W5uaF796cvnZ1x6VLV+7t3V70pkUAkqnq/6aEQcsClJRRER0e3adPm6tWrn332Wd2pq1ev7ty58927d6OionRZ1d27+OUXXa5Qv1AIOeDVEgJwcHDYu3evSCRasWLFnTt3ak21tLQ8cOCAubn5hg0bLl68qNVKCgrw558QbuQKDER9B6rGwox3AcaIY0sI4I033ggLC9uxY0doaGh8fLy5uXn1qT179lyyZMmaNWvWr18/YMCAl114WRkKC2v8E4vx6FHtN/PyIJcDwNmzADBlCqZNQ2YmPD018zsaFgohBxxbQsFnn3129uzZhISEtWvXrlixotbUqKgoe3v7iIgI4aVCoSh4EU/PnefPd6/7sMXncHSEo2PVzy1bYvRoxMai1qnZ2bMxZ05Df0nDQSHkgMsliupsbW33798/cODAjz/+eOTIkb169RLev3bt2v79+4Vcff311/n5+QUFBUVFRS9coI1NkZBAKyu0aFHjn4cH3N1rv+nigpoNMObPx9ixWL68xptRURg3DgBKSuDvr5FfXR9RCHVNJpMVFhZaWFg4OztzLCMgIGD+/PmbN28ODQ29ceOGlZVVdHT0d99999NPP9Wa08TExMnJyfG5nJzat2jxtGVrAH9/eHriyJEaY5x6eKBLFwCQSBq+ZP1HIdS1rKwsxpi7u7uI95C6a9eu/eGHH5KTkz/++OPly5evX79eLBbPnz/f39//f9FycnR0bN68uW7qCQ/H1q1Vow8bFQqhrnE/IFSxsbHZt2/fwIED8/PzY2NjxWJx79696+1PoxsTJmDJEjx5wmv93FAIdY37AWF1/v7+ycnJXl5ewo0Uy2sdk+mWtTVmzMCnn0Imw9KlKC3lWItO0XVCXeN7faKuDh067N27Nysrq3v37qNGjdJ9AdnZGDy46uf168EY7OywYQNkMnTtWvV+8+ZgDP376746XdDHEGZnZ69YseKTTz6JjIwsLi7mXY6G6ejBFmqrrKz89NNPASxfvpz7YaqgTx+8+y4UCoSGoqyMdzU6wPuGxhpu3749bdo04QYfYRzptm3bXrlyhXddmhQcHAzg4MGDvAupsmfPHgC+vr4KhYJ3LU/JZKxrVwawRYt4l6J9+hLCixcvBgUFCd/EJiYmQUFBBw8e9Pf3B2BmZhYVFSWXy3nXqBlCN5Tz58/zLoQxxuRyeYcOHQD861//4l1LbTdvMnNzZmLCLlzgXYqWcQ5heXl5XFxc1//t+zdr1iwsLOzu3bvC1MrKyqioKBMTEwBDhgzJzMzkW61GtGvXDkBKSgrvQhhj7ODBgwDat29fWVnJu5Z6REUxgLVty4qLeZeiTdxCmJubu27dOtVJQjc3t6ioqPz8/Lpznj17VjiCcnZ2PnHihO5L1SxhN7ukpIR3IUypVHbp0gXA3r17eddSv8pK1qsXA9i8ebxL0SYOIUxNTY2IiLCxsRHi16NHjx07dpSVlT3nI7m5uUFBQcL8ISEhUqlUZ9VqVn5+PgAHBwfehTDG2NGjRwG0adOmvLycdy3PlJTErKyYSMR++IF3KVqj0xBevHhx/PjxpqamwoHfsGHDTp48qVQq1fmsUqmMjo4Wztn4+fndunVL29Vqw+3bt4X6eRfCGGPCM53qfQSbXlmzhgGsVStWUMC7FO3QRQjLy8uPHDnSu3dvoSmztLQMCQlJSkpqwKISExOFPSihr6PGS9U24Rhs4MCBvAthJ0+eBODu7v78fRB9oFCw/v0ZwKZP512Kdmg3hEVFRdHR0a1btxbi17Jly6ioqLy8vMYs88mTJ6q7bMaMGVPvYaQeSkhICAsLs7S09PLysrKy2rFjB996hDPPhvJF9t//MmtrBrBTp3iXogXaCmFaWlpERIStra2Qlg4dOkRHRz958kRTyz927FiLFi0AtG7d+ueff9bUYjVOoVB8++23Q4YMEf4OZmZmPj4+ws+TJ08uKiriUtWPP/4IwNXV1YCOrj/7jAHM3Z0ZyLfuS9B8CK9fvx4SEiIc+AEICAhQ/8Dvpdy/f79///4ATE1NIyMjKyoqNL6KxpDJZHFxcX5+fsLfwc7OLiIi4t69e4yxuLi4Zs2aAfDy8rp8+bLuaxOuVX7yySe6X3WDKRRs0CAGsEmTeJeiaRoLoUKhOHnyZL9+/YRtzsLCIiQk5M6dO5pafr2EC4lC4Pv06ZOWlqbV1akpJycnKipKdbugu7t7VFRUQc2zCunp6cLfSuiKoMveKhcuXADg6OhYbGhX39LTmZ0dA9jRo7xL0SgNhLC4uFh4hpewzbm4uERGRgp3zenG+fPnhaEd7O3tDx06pLP11pWSkhIRESFcCQTQs2fPuLi4Z10H59UVYdiwYQA++ugj3axOs7ZtY5aWslGjonJzc3nXojGNCmFGRkZkZKTqpk9vb+/o6GguhxkSieSdd95RXUgsLS3VcQF1u92dOXNGnQ/+9NNP7u7uQleEkydParvOq1evCt9WBYZ5vl+pZMHBYQD+9re/8a5FYxoYQuHAz8zMTNsHfi8lLi5O6APQqVOnhIQEHaxR6HYnXDWp2+1OTbm5ucI9RCKRKCwsTKvfYsKKPvzwQ+2tQtsyMzOF732+ez0a9HIhFA78AgICVAd+48ePj4+P11JxDZCcnNy9e3fhauS6deu0d6ylfrc7dVTvitC5c+fbt29rtlpBQkKCSCSytbU19H253bt3A2jevPnDhw9516IB6oawpKRkx44dHTt2FLY5BweHiIgI/fwTlJWVRURECHuGgYGBYrFYs8uv2+0uLi5OI+dmb9y4IdzTYG1trY0reOPGjQOwZMkSjS9Z90aOHAkgKCiIdyEaoG4Iw8PDhW3Ox8cnJiZG/68vHT9+3MnJSegh8P3332tkmfV2u9PIklWqd0UYN26cBrsiJCUlmZiYWFlZ6fKcmfZkZWU5OjoC2LdvH+9aGkvdECYlJQ0ePPjEiRN6devn82VnZwcGBgrHWhEREQ3upqzBbndqOnr0qNAVoU2bNr/88otGljlhwgQAERERGlmaPvjiiy+EnbL79+/zrqVR9OWmXi0RjrWEJ7336tUrNTX1pT4ukUiqd7tzdXVtfLc7Nd27d0849jY1NW38Pc2pqalmZmbm5uaGvr3W8vbbbwN44403tHpSsLIyXyZLLS2Nl0j+k59/MCdn86NHKx88iEhPn5yW9k7jl28Uw2X/9ttvEydOTEtLs7Ozi4mJmTx58gs/kp6evmnTpj179kilUgDdunULDw8PCQlRXQPUAblcvmrVqlWrVikUir59+x46dKht27YNW9TUqVPj4uJmz54tDFHYZOTl5XXt2jUnJyc2Nnb27Nnqf1CpVNZ6kv+QISUiUY5CUSCXFwj/q34AnpkRkci0Z8+KioqszMxFJSUXlMoyK6tOHh7/dHAIUr8YowghgOLi4rlz5x46dAjA+PHjd+7c+axn2l66dGnz5s3ffPONMIJfQEBAZGSk6hqg7p0/fz4kJCQrK8vBwWHHjh2qy6Hqe/DggTBOfUpKSoNjrLdOnDgxZswYW1vb33//3dvbWyKR5OTkPGvMDOHB/gUFBYV1xs24caMdY+n1rsLMzNHU1FH1f62X9vZvpqYOMzGx9fTcaGpqn5e3PTt7XZcuKRYWr6j7OzS+MTUgqk6br7zyyq+//lp9knD1pW/fvsKfRTjw03a3OzXl5eW99dZbQmEN6IoQFhYGYOrUqVoqjzvh2VkBAQEKhULYQX0hkUjk5OTk4+PTp0+fESNGTJo0KTn5w6ysqJycTfn5ByWS/5SWXpXJ/qisfMzYi3d0b9ywlEie3t8hFq+Wyf5Qv35jaQlVUlJSJkyYkJCQYGZm9sEHH6xYsUIqle7du3fjxo0PHjwA4OLiMn369IiICP15KqHgwIEDc+fOffLkia+v7+HDh7tXH9722TIzM729veVyeVJSkuoKUxOTn5/fpUuX7OzsTZs23b9//7vvvnv+yBkCDRaQlORnZeXr5bXLzKxBi23AF4+hk8lkCxcuFHYvfXx87OzshD+Fn5/frl279Pkm16SkpG7duuF/9zSrczZiwYIFACZMmKCD8jj69ttvAdjY2HB5gpZUei0pqfONGxYpKYOzszfK5YUv9XFjDKHgzJkz7u7uwk09etLtTh1CVwThW2P06NGPHz9+zszZ2dnW1tYikUhLXXD0SmhoKIB+/frxejqmVHpTLF59547PrVse5eUZ6n/QeEPIGBOLxdnZ2Yb4uJpvvvlG2KFydXX94dmPQHr33XcBjBs3Tpe18VJYWOju7m5mZqapK6sNo1A8SUzs+PDhu+p/xKhDaNAePHgwcOBA/K8rQt1+c48fPxb2tK9du8alQt0bOnSovb39c76VNEIul8hk6VLptaKiH/PzD+fl7UpNHaFUPm1+U1P/ev/+HPUXaHQnZpoShUKxYcOG5cuXV1ZW9u7d+9ChQ8LgSoIPP/xw9erVo0aNOnXqFMcidSY1NdXX19fMzCwtLa0Bg16VlkrMzfNV1wZrXSpUKArk8qqpjCmqf9DFZVZBwdfNmwe5uS01MbErLj7z4MHc9u2POziMUHPVFEKDFx8fP3HixPT0dHt7+5iYmEmTJgEoKip65ZVXJBLJpUuXVHe9NG2hoaHCCeSYmBjVm2VlZYV1iMXiR48eVX/n8ePHs2Z1mz79hjorMjW1/98FQydTU0cHhxHW1l2zst5/8uSaUllhZeXj6rrY0fHFHUJUaHxCg9enT5+bN2/OmTPnyy+/nDx58o8//hgTE7N582aJRDJs2DAjSWB6evqhQ4fMzc1nzZrVt29f1dV59dsYiURkadlOyNWzrssLP4hE9aTGx+eHBhdPLWHTceDAgXnz5kmlUh8fn7y8PIlEcuHChUGDBvGuSxdmzZq1e/fu6dOnb9myRfWMPwBWVlYt6vDw8HB3d6/+jouLi9DBmAsKYZOSnJw8YcKE27dvm5iYdOvWLSEhgXdFuvDw4UNvb2+FQpGcnNyhQ4f4+HjVFXk9GXHx+fRxkFDSYL6+vkOHDhV+FovFEomEbz268cknn1RUVAQHBwu3RPfp08fHx8fJyckgEggYZY+ZpkqpVP79738HYGFh4evrCyA0NJR3UVonFouFDgl60tG3ASiETYRSqRSefmBpaXn8+PG0tDShq/qxY8d4l6ZdixcvhoE/fI1C2BTI5XKh05aNjc3p06eFNzdt2gTAxcUlJyeHb3na8/jxY+G75vr167xraTgKocGTy+XCbcq2trZnz55Vva9QKAYPHgwgODiYY3latWzZMgB//etfeRfSKBRCw1ZeXj527FgADg4Ote6QZIxlZGQIPdeOHDnCpTytkkgkwp3ZXMbz0CAKoQGTyWTCzb4tWrR41tNfhedZODs7Z2dn67g8bVu5ciWAwMBA3oU0FoXQUEmlUmFUiZYtW/7+++/Pmk2pVI4YMQLAW2+9pcvytK2kpEQYcofvPRMaQSE0SKWlpcKYh66uri88NZ+ZmSk8QPHgwYO6KU8H1q5dC2DQoEG8C9EACqHhKSwsFJ6F07p16z/+UOtZJvv27UMTem68VMpGjPjS3NxGzVF39ByF0MAUFBQIjyH28vL6888/1f+gcP5m+PDhBvEAgefbuJEBbORIjQ38zBeF0JDk5OQIz5jp0KHDy7Zpjx49EsYF2LNnj5bK0w2ZjLVqxQD23Xe8S9EQCqHBEIvFnTt3BtCpU6eGjSchPHbV3t5eGLXbQG3dygDWowcz/Ba9ivGGsMFDU3Bx//594QG+PXr0aMzAZuPHjwcwdOhQA90prahgr7zCAPbNN7xL0RwjDeH9+/c7duxoKGcLMzIy2rVrB+C11157/uPVXigvL8/V1RXAtm3bNFWeLu3axQDm58cMZ1yiFzPGEKalpXl5eQHo27ev/g8y9d///tfT0xNAQEBAUVFR4xd4/PhxoZepmmdW9Ydcznx8GMAOH+ZdikYZXQhV2/Trr7+uGv0vMTHxpc406kxycrLwIPCBAwcWFxdrarETJ04E4O/vz+sRnQ1z4AADmLc3M6iqX8y4QqjapgcMGFB9mx4zZgyAdu3ahYWFHTlypKSkhGORKgkJCUKnkMGDB2u2pMLCQuGbaOPGjRpcrFYpFKxLFwaw/ft5l6JpRhTC52zTs2bNqj44gY2NzciRI7ds2cKxebx+/bpwRWHkyJHaeDL/6dOnRSKRpaVlYmKixheuDV99xQDWpg3TxMDk+sVYQvjCbVqhUFy5cmXdunUBAQEmJk+f+sGlebx06ZK9vb1wk45MJtPSWqZPnw6gT58++r9TqlSynj0ZwHbs4F2KFhhFCNXZpi9dutS6devffvuNMZaXl3fkyJGwsDA3NzdVGq2trYcNG7Zu3TqtDpTNGPv555+F+4+Cg4MrKyu1t6KioqI2bdoAWLt2rfbWohHHjzOAeXoyrX0j8dT0Q6japt95551nbdPnzp0TnpM3d+7c6u8rFIrr16/rsnn8/vvvhcGAJ02apNUECs6ePSvslOr5iDGvv84Atnkz7zq0o4mHUJ1tWs3tXgfN46lTp6ysrACEhYXp7NrJ3LlzhT4AdUez0BPff88A5urKnjSRvqK1NeUQqrNNN2C711LzeOTIEeH5s/PmzdNld5bS0lKhL87KlSt1ttKX0r8/A9inn/KuQ2uabAjV2aYbv91rqnk8fPiwmZkZgPfee68BZTTSpUuXTE1NzczM9HD8pnPnGMCcnJjmrpLqnaYZQnW2ac1u941pHnfv3i18JDIysvGVNMzChQsB+Pn56dtAxbdvs6Agtno17zq0qQmGUJ1tWqvb/Us1j7GxsUIlH330kcYrUV9ZWZmfnx+AZcuWcSzjWQyzt7m6mloI1dmmdbbdv7B5XL16tUgkEolEn3/+uVYrUceVK1dMTU1NTEwuXrzIuxbj0qRCuGHDhhdu01u3buWy3efk5MTFxQUHBwt9BlTNo4mJSWxsrC4reY7IyEgAHTt2fMLvRKSrK+vW7elLJycmfCe4urJdu6reLCxkAGsy3xVNJ4Tr1q0DIBKJtmzZ0ph5tE0ul//666/Lly/v1atXTEzMF198wauSumQyWdeuXQEsWrSIVw2urszcnP38c9VLCqHBENJlamq6d+/exsxDbt68aW5ubmJicuHCBR2vWipl5eXM1ZWNGsVUQ0sYQwibwki9wuDspqam+/btCwkJqXee5cuXr1q16vnzEACvvvrqsmXLPvroo2nTpt26dUvobNQYZWUoLHzxv0ePIJFg/34AmDIF06YhMxOeno3/hQyAYYeQMbZo0aJNmzZZWFgcPnx43LhxDZuHCEpLSzdu3Dhv3rz//Oc/169fX7p06bZt2+qds6SkpKCa/Pz86i+dnEbGx4cVFKCgAOXl6q7d2hoyGQC0bInRoxEbi1WraswwezbmzGnM76enDDiEjLEFCxZs27bN0tLyq6++Gj16dMPmISqxsbFRUVGXL1+Oi4t77bXXtm/fLpVKnZycCuqoqKh4znIGDHBJSgoTfrayQosWL/7n4YEWLQAgKgoA5s/H2LFYvrzGYqOiIHyFlpTA318bfwA+DDWECoVi5syZ+/fvt7GxOX78+PDhwxs2D1GRyWQbN24EsHjxYj8/vxUrVnz55ZdxcXH1ztysWTPHapycnKq/dHHxbt4cjo5wdISlZUOK8feHpyeOHEH1wXY9PNClCwA0sQGIDTKECoVi6tSpBw8etLW1PXnypGqA6Jedh1S3c+dOsVjcs2fPwMBAAO+9915oaGhMTIxjfSwsLLRdT3g4tm6FlZW216MH+J4XaoDy8nLhuK7ewcDUn4dUV1FRITz86sSJE3WnTp8+fdq0abp5hL6rKzt/njHGnjxhjo7Myqrpnx01sBCqMxhY9XmuXr2q4woNlDCCWvfu3et2ZE9LSzMzMzM3N8/IyNBBJaoQMsaWLHkaNgqhXpBKpcJx3XMGA1NnHlJLRUVF27Zt8YyxRGfOnAlgxowZui/MSBhMCNUZDOylBgwjKsKYTZ06dap7R+WDBw8sLCxMTU1TUlK41GYMDCOE6gwGVlhY2K9fv+fPQ+qSy+UdO3YEUG8HuvDwcACTJ0/WfWHGwwBCqM5gYA0eMIwIo8S0a9eu7qM9xGKx0MWcdiu0St9DmJ+fL3Qpfs5gYI0ZMMzIKZVK4c+7e/fuulMXL14MYPz48bovzKjoewjlcvnEiROfMxhY4wcMM2bHjh0TduDrjlH1+PHjZs2aiUSi69evc6nNeOh7CBljlZWVqkEjatHUgGFGq1evXnjGCE3Lli0D8NZbb+m+KmNjACF8FtWAYT179mzkgGHG6dSpUwDc3Nzq3sIrkUiaN28O4PLly1xqMypPn7lgWFJSUgYMGJCenv7666+fOXOm+u3qRE1r164F8N577wmPXa3u888/l0gkf/nLX/ybUkdpvcX7W6AhnjW4ElHfmTNnADg5OdV9DFxRUZEwPM4vv/zCpTZjY3gduBMTE4cMGfL48ePAwMB///vfNjY2vCsySP4xMUcHDhQHBTVr1qzWpG3bthUUFAwePHjAgAFcajM2IsYY7xpeTlFR0fDhw11cXI4dO2ZlFH3steDKFfj7w8EB9+/DwaH6lCdPnrRt2zY3N/enn3564403eBVoVAyvJXRwcDh9+rSNjY0O7qZpslauBIBFi2olEEBsbGxubm6fPn0ogTpjeC0haaybN9GrF+zscO9e1d3sKuXl/V999fLdu6dOnRo1ahSn+oyO4bWEpLFWrgRjCBMgf5AAAAPwSURBVA+vnUAAe/ZcfPjw10mT/EeO5FGZkaKW0MjcuoVXX4WNDdLT0bJljUmVlejQAffu4ZtvMHYsp/qMkaFeJyQNtGoVGMOcObUTCCAuDvfuwc8P9Dgs3aKW0JjcvYsuXWBhgbQ0eHjUmKRQwNcXqak4fBjBwZzqM1LUEhqT1auhVGLmzNoJBHDoEFJT4e2N8eN5VGbUqCU0Gmlp6NQJIhFSU+HlVWOSUonu3ZGYiP37ERrKqT7jRS2h0VizBnI5pk6tnUAAX3+NxES0aYOJE3lUZuyoJTQODx7AxwcKBe7ehY9PjUmMoVcv3LyJHTsQFsapPqNGLaFxWLcOFRWYNKl2AgGcPImbN+HpSTuivFBLaATEYrRvj/Jy3L6Nzp1rT+3dG9euYfNmLFjAozhCLaExWL8eZWUYP76eBP7wA65dg6srZs7kURkBKIRNX3Exdu2CSIT3369n6po1APDuu6hzXy/RGdodNQJ37uD0afzjH7XfP38eQ4fCyQkZGWj0YKCkwagDtxHo2hVdu9bzvjAG56JFlEC+qCU0Vlevol8/ODjg3j00b867GqNGx4TG6tYtWFkhIoISyB21hE1dZSUiI3HwIEpLMXAgYmLQrl3VJLEY1tYUQu6oJWzq3n8f+/YhNhbnzkEqxZtvQjXcvLs7JVAfUEvYpJWXw9kZ69dj7lwAePQIrVvj2DGMGcO7MvIUtYRNWmIiSksxaFDVSw8P+PoiPp5rTaQ2CmGTlpMDoMZN9G5uyM3lVQ6pF4WwSROey6o6CBR+Fol4lUPqRSFs0oQ76LOzn76TkwM3N17lkHpRCJu0du1gb4/Tp6teZmbijz8QEMC1JlIbdVtr0iwsMH8+1qyBtzdat8bSpejaFYGBvMsiNVAIm7p//hPl5Zg7F1IphgxBXBxMTXnXRGqg64SEcEbHhIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLC2f8Dga3RtNmn+pMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -872,7 +895,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGw0lEQVR4nO3d3XKjRhSFUUjl/V9Z\nuSBRVGiEEH/7dLPWlcZlezD0pwNYtsfH4zEAOX+lNwDuToQQJkIIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQg4wjuM4\njumtaNXf6Q2geeM4Ph6P6cH0lumfrDTaX2w2Vfe+hD69nT8SIRs9B+DCO0wPrLFlImSLrwXO3nl6\nYLH9kQj52U8Fzj5wemDVvRIhPzjqYk+Nr0TIWpsH4PLnHG6foghZ5YwCXz/59OCeq1GEfHdqgbP/\naHpwq2UpwrzKp2SpbbtVjSIMm73cpNThuGwALm/DUGy3HC6/l2/rj8urzgSoUOBTnd1yhkI7+lZW\nvtwkdXRKFfiqy8FYdF/3bf0Sv34C1F/lZZ8gNvNTFFf7aQ093/OaNvpb300Q4XX2hHTBzwopMMV+\nv8ixS/zwwdhWgW1t7VdVJ+E4DrO9PHvL689xlz8eh9+GOXAw1r8I7F7VCJe9B1l4Da152t72rcL9\nV4ydjZRGNRjhe3KPR80OL5tv2z5QgUU0GGEjNi/xzfPtpw9UYB2FI2z5t3cdssRPGowuAqspHOH7\njZn1pnfu4uUms/k2rO7nj4OxjwH4eDz6+EImhSPcYzo8z267eLnJztNUA7CsBiN8vw3z6a7M842X\nDMbLnpu3naZO0+PEzWKrBiMc/uvw9Z9f3384dzBef3Z08SvaOE/VCN+X1Pu3JTZ/zqNrzF6f+O3X\nrasa4aleahz/fcPGhVtnCq0ZjJ3dz+iGQzIMW1uqvKAXfkF92W3+VTdfyy0n4ZsN9w+Lr4DK28aM\nCP+3/uKqeIG0RYRzyxdXdS4C6YYIP3o/RzUAOYMIv+js5SZukBbkz2WvYtVyHhHu5bVgKd28EE+E\nECbCtbp53qUaEUKYCPdqbkI2t8HdEyGEiZCG9THVRQhhIvxBH8+7VCNCCBPhAZqbkM1tcN9ECGEi\npG0dTHURQpgIf9PB8y7ViBDCRHiM5iZkcxv8SQe/KMCvt6BV3fzOERHSpA4G4JPTUdrTU4GDCGlO\nZwUOItygm1sazRnHsb8CBxEeqHic79tWfINnpvz6K3AQ4U20PkBa3/5l7o52roP7+H0XOIiwb2uW\nb+Ul3sEzyBoi7NbXup7vUHOtV352OJYIt6j/Z1WWN29WXcG/el989x5LhEeqEOfXsfZpC9f81ftr\nxPfhxUTYlfWnoAuCgzHef4QI+3FIgU+zwTic38bdBuCTCHuwZoBsXuLXnKbetsBBhIe7fiWtGYDD\nERt23mnqnQschuHWX/xOFZbOsaegv/7Xw+4U73kROGMSNixY4HDEYKzwLFaBCJt06kXgTzZfMSrw\nyY7YLnUqVfnFaCsHowJf2Rd7Xfz9tMtuw+z0abcU2bxSRHiYC5ZX9iJwm9fdUnDzKrBTDnbSYKxz\nEbiNAbig7mFr3YE1Vr4IZD9H7nQ7a1Rg9xy865xxSuY0rwMivNrFp6nU5yjGXHCaShMcyLwNNSqw\nJ45lIV5uck8OZ0Wfbre4DdMlEdY1G4wGYK8c1wYYgH0TIYT5WxQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQgj7\nB8lwkcY9VZheAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAbxklEQVR4nO3de1BU5/kH8GeXq7iLXEQRRKsIGO8Ea1KxxbYkHRWNTcWJaWg1tttmJkMnTaZrJklJp/Ozm0w7ZZJpm41GpYkZXR3NYCbaMmq8JdFIYgyigHgB8YKCXOW6+/7+eO2KIHDYPWefA3w/42Qmybk8HvjunvOc95zXIIQgAOBj5C4AYLhDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCHoV2lpaVFR0VtvvVVbW8tdi4YMQgjuGgAeYN++fU8//XRoaOjly5eDgoKWLVuWlZW1ePFiPz8/7tJUhhCC7ggh3njjjVdeecXlci1YsCAkJGT//v1Op5OIJk6cuGbNmtWrV0+cOJG7TPUIAD1paWnJysoiIoPBYLVanU6nEKKqqspms8XHx8tfWqPRmJqaarfbm5ubuetVAUIIOlJRUZGSkkJEZrN59+7dPRc4efKkxWIZOXKkTGNYWJjFYiksLPR9qSpCCEEvDh06NGbMGCJKSEg4c+ZMH0vW1dXZ7fbU1FT3Cd20adNsNtutW7d8Vq2KEELQBbvdHhAQQESLFi26ffu2wrXOnDljtVpHjx4toxgUFJSZmVlQUOByuTStVl0IITBrbW1ds2ZNt4vAgW7B4XBkZGS4G6dxcXFWq/XixYsa1Ks+hBA4XblyZd68eURkMpl27Njh5dYqKyttNtukSZPc/Zv09HSHw9HW1qZKtRpBCIHN0aNHo6OjiSg+Pv706dNqbdbpdBYUFGRlZY0YMUKmMTw83GKxnDp1Sq1dqAshBB52uz0wMJCI0tLSqqurtdjF7du37XZ7cnKyu3+TkpJit9sbGhq02J3HEELwtY6OjuzsbJkKi8XS3t6u9R5PnjyZnZ0dGRkpdxocHKyr/g1CCD5VXV29cOFCmYTNmzf7ctctLS0OhyM9Pd1gMMg0JiYm5uTkXL582Zdl9IQQgu989dVXcrhZbGzsiRMnuMqoqKiw2WzugW9+fn6yf+OD7+QHQgjBR7Zu3So7JQsWLLh27Rp3OXf7N5mZmfL+JBFFR0dnZ2er2CJSCCFkc/PmzcrKyqKiIu5CNNfZ2Wm1Wt0XgXq7YVBbW2u322fNmtWtf9PY2OibAhBCHrI7n5aWJn/kubm5NTU13EVp4tatW+np6XI4y4YNG7jL6YscmGo2m2UUQ0NDs7KyCgoKtN4vQsjgnXfekd35yZMnjxo1Sv7IR44cuXr16iNHjnBXp6ZvvvlG3jofN27cZ599xl2OInfu3OnWv5k6darNZrtx44ZGe0QIfapnd163LTvvbdu2TT7u8PDDDw/Gv865c+esVuvYsWPlzyUwMDAjI8PhcHR0dKi7I4TQd/ruzuutZecNl8uVk5MjP1Z+/vOf37lzh7siz3V2dnbr38TExFit1vPnz6u1C4TQRxR2590tO3m+ytiy81h9ff2yZcuIyN/f32azcZejmqqqqvXr1yckJMifi8Fg+NGPfrRt2zbvt4wQ+oIH3XnZsps9ezZXy84zJSUlDz30EBFFRkbu37+fuxxNyP6NyWSSY+4+//xzLzeIEGrL++58t5ad2WyWLTudDLnq6uOPP5Z9pjlz5gyWx4g8VldX99vf/paIFi1a5OWmEEINqdid79m/0bplNyAul8tmsxmNRiJ66qmnhsarX/p19uxZIpo0aZKX20EItaJRd76kpKRry87dv1G9ZadcY2Pjk08+KYux2Ww6/IrWSHt7e0BAgNFo9PJDByHUxPbt2zXtzvfWsisrK1N9X30rKyubPn06EUVERPznP//x8d7ZTZ06lYi8fFIRIVSZj7vzV69ezc3NnTFjRrf+TVNTk6b7lfbt2xceHk5ESUlJZ8+e9cEe9Wb58uVE5GWPdIAhzMkRRKLbQJ7ISJGUdO9fm5rEyy+L+HgRGCgiI8WKFaLPN2cNJYzd+a4tOyIaNWqUxWLRdPxNbm6ufKdLRkZGXV2ddjvSs5dffpmIXn/9dW82onYIOzrEggWCSDzxhMjNFS++KEaOFGaz+Pprb6ocFPTQna+vr8/Ly5PdIEm+C1DdR9dbWlp+8YtfkBevZhoytmzZQkSrVq3yZiNqh/Bf/xJE4vnn7/3fgwcFkViwwJsq9c/dnZ89e7Zn3fkPP/zwb3/7m1ppOXv2rNVqla/xpP+9CzA/P7+zs9PLLVdWVs6dO1feLNm1a5cq1Q5eX3zxBRElJyd7sxG1Q5iaKojElSv3LTB/viASFRVe1KlfanXn5X15dbudbW1t+fn5mZmZ/v7+Mo2xsbFWq/XChQuebfDw4cOyMTtlypTh8BBWv+rq6ogoJCTEm9MBj0L4wQfi4sV7f8LD74UwJETExnZf64UXBJHIz/e4St1Sqzvvcrk++uijpUuXutMyfvz4V155Ra0Bij3nckhPT8/LyxvQR4Zn7+cd8saNG0dEly5d8ngLHoWw5x8Zwjt3BJGYPbv7WuvXCyKxaZPgu5elhbKyMtmWVLE7f+3aNe26nU6n88iRIxaLJSQkRG5czuXw1Vdf9b1ia2vrs88+i4vAB/rhD39IRPv27fN4Cx6F8E9/Ert33/tjNt8Xwlmzuq/1f/8niMTf/y4iIoTFIobEI3Nad+c17XYOaC6HqqqqRx55hIhGjhzpcDhUKWAoee6554goNzfX4y2ofU1oNosxY7qv9bvfCaK7/5R/kpPF22+L2lpPy2bms+681t3ObnM59HwX4LFjx+TpVlxc3MmTJ1XZ6RCTm5tLRM8995zHW1A7hAsXCiLR7UrmkUeE0Siqq0VxsbBaRVTU3SgGBYnMTJGfL7xu2fkMV3deu26n6H0uh/Xr18snqn7wgx/oZJCqDu3bt4+IFi5c6PEW1A7hhg2CSKxZc+//Hj4siMTSpff+S1ubyM8XmZnC3/9uGsePF1ar8LRl5zPs3fneup3l5eWqbL/bXA7y0Y0XXniBcWCq/l26dImIoqOjPd6C2iHs7BRpaYJILFkicnPFSy8Jk0lERooHjmm8ckXYbGLy5LtRNBpFerrIyxO6fBBbV915TWeudTqd+/btmzlzJhEtW7bM+w0ObS6XS16613p6eaXBsLXmZvHqq2LKFBEYKKKixKpV3c9Ou3E6xZEjwmIRISF30xgWJiwW0V/Lzpf02Z13uVyy26nFzLVbt24lop/97Gfeb2rIk9NdePx0r54GcNfVCbtdpKTc69+kpIjcXME6/eqg6M5rMXNtYWEhEU2fPl3FOoeqVatWEZHHb/XXUwjdioqE1SpGj74bxeBgkZkpCgqEzx9UG3TdeRVnrm1ubjYajYGBgbgg7Nfrr79OROvWrfNsdV2GUGptFQ6HyMgQfn530xgXJ6xW4cXQhAEZvN15tWaunTBhAhGVlpZqU+bQsW3bNiJavny5Z6vrOIRuFy6I114TcXEyip888khGRsauXbs0fRege/a8Qd2d93Lm2scff5yI8ofieEN1nTp1ioimTp3q2eqDIYSS0yn27hUrVqz435XP2LFjX3rppeLiYnX309HR0fXVTIPxtZ/dyG7nypUrg4KC5N9rzJgx77zzTr8ryvcUv/nmmz4oclBraWnx8/MLCAjw7Ldl8ITwf+T0q3PmzOk2ulKV6Vdv3rwphwIGBQVt2rTJ+w3qSteZa7ds2dLv8v/85z+JaO3atT6obbCTpxueDWAcfCF0k9OvRkRE9DbkaqC6vp/3+PHj6larKydOnFAyIvzAgQNElJqa6oOSBrvFixcT0e7duz1YdxCHUOr5LsCkpCSbzXb9+vUBbefDDz+UzxakpqbqYfY8Pbh69SoRRUREcBcyCPz+978nor/85S8erDvoQ+hWWlqak5PjwVwOOp89j1dYWBgRqft2jCHJbrcT0erVqz1Yd+iEUOo5/eq4ceOys7O//fbbBy5fU1Mjn1Hw9/d/6623fFyt/snbpIcPH+YuRO8OHTpERI8++qgH6w61ELrV1NT0O/3qN998M3nyZCKKioo6ePAgX7H69ctf/pKI3n33Xe5C9O7GjRty2KAH6w7ZELp1ezrWPf2qw+EY1LPn+cb69euJ6MUXX+QuZBCIjIwkIg8aCkM/hFJDQ8PGjRvnz5/v/mKUr2ZavXp1S0sLd3X6tWvXLiJasmQJdyGDgPzt8uCUykjDg9lsXrt27bFjx+T0qyaTyWQyPfvss5s3bw4ODuauTr/ka97PnTvHXcgg4PGxGi4hdJM3MCwWS0NDg/t5POjNlClTAgICLl682Nrayl2L3iUlJRFCqJz80CopKeEuRO8CAgImT57scrnKysq4a9E7fBMODM6ylMOxUgghHBj38RJCcNeidwihQpMnTw4KCqqoqGhubh7QisM0hFFRUZGRkQ0NDdeuXeOuRe88vtQZbvz9/ePj44UQpaWlA1pxmIaQFHzAO53O8+fPHzt2zIdF6RG+CZXz7FgN3xDKacz6OF5VVVUJCQkrVqzwYVF6JA9USUkJTt375VnDb/iGUJ5l9XG84uLiTCbT9evXb9++7cO6dCcsLGzs2LHNzc2VlZXcteidZ6fuwzeE/Z45GAyGxMREwp0MnJEqhtPRgVFyvPDLJ+E4KDR16lSDwVBSUuJ0OpWvNXxDOGnSpODg4MrKyqampt6WQWNQ6vfUHaTQ0NCYmJjW1taKigrlaw3fEPr5+U2ZMqXvhjK+ASQcB+U8OFbDN4Sk4Hjhl0/CcVAOIRyYfhvKiYmJfn5+5eXl7e3tPqxLdyZOnBgSEnL16tX6+nruWvTOg1P3YR1CebzOnj3b2wLBwcETJ07s7OwsLy/3YV26YzQaExISCJeFCuCbcGDQIFUOx0EhhHBgZEO5tLS0j4YyfvkkPPyl0Pjx400m040bN2praxWuMqxDaDKZYmNj29ra5GSrD4TuvIS7NQoZDIaB/s4M6xASGqSK4TgoN9BjhRD2c7zk8OU+mjfDRFJSktFoPH/+fGdnJ3ctejfQs4bhHsJ+zxzw5KEUEhIyYcKE9vb2CxcucNeid/gmHBg0SJXDcVAIIRwYhFA5HAeF5BiPCxcutLW1KVl+uIcwNjY2NDT05s2bNTU1vS2DBqmE46BQUFDQd77zHeVjPIZ7CN0NZTRI+4XjoFBtbW1ra2tiYmJjY6OS5Yd7CAl3KRSTx6G4uJi7EF0rKiqaN29eVVVVTEyMnNOqXwhh/2dZ7lfZ9fHk4XAQHR0dHh5eV1dXXV3NXYtO7dmzJzU1tby8PDk5ecuWLQrXQgj7/6JzP3mIt1Bj3ExvhBBvvPHG8uXLGxoaVq1adfToUfd8tf1CCAfQIMUte5yZP1BjY+OTTz65bt06g8Fgs9ncU68r5K9dZYNFQkKCv7+/bCgHBQU9cBkMX5bQIO2prKxs+fLlxcXFERER27dvlxM/Dwi+CSkwMHDSpEnyVb+9LYPTMAnfhN3s3bt33rx5xcXFs2bN+vLLLz1IICGEEhqkCuE4uMmLwIyMjLq6uszMzM8++0xOve4BhJBIWQj7ffJwOIiPjw8ICLh06VJLSwt3LZyamppWrly5bt06IYTVat2+fbucet0zCCGRgrNNs9ksX2V3+fJlH9alOwEBAfHx8cN8usLKysqFCxfu3LnTbDbv3r3bZrMZDAZvNogQEmEE6UAM80bx4cOH586dW1hYmJiYePz48SeeeML7bSKERF0mh+ljzpMhH0KFQxGG/HHow7vvvpuenl5dXb148eLjx4/LXxvvIYRERBEREVFRUU1NTVVVVb0tM7TvUpw6dWrmzJkbNmzod8nheZeitbV1zZo1v/nNbzo7O61W6549e8LCwtTaOEJ413BukG7dunX+/PmXLl3atm1bv/OfDeHj0Juqqqq0tLQtW7aYTKYdO3bYbDajUdXgCBBCCPHrX/+aiN5+++3eFpATg40ZM8aXVWlNfq7L3wSLxdLW1tbvKnKiuJCQEKfT6YMK2R09ejQ6OpqI4uPjv/32Wy12gRDe9de//pWInn/++d4WcLlcoaGhRHTr1i1fFqadmpqaxx57jIj8/f1tNpvCtRobG81ms9FozM7OPn/+vKYVsrPb7YGBgUT0k5/8pLa2VqO9IIR3ffzxx0SUnp7exzJz584lomPHjvmsKu2cPn1a3lwePXr0wYMHFa5VXl4+a9YsIgoODpbfnykpKXa7vampSctiGbS2tv7qV79ynyN0dHRoty+E8C75EPT48eP7WOaZZ54hovfee89nVWkkPz9ffqsnJydfunRJ4VqHDh0aM2YMESUmJu7YscNisZhMJvlrOmrUKIvFcuTIEU3L9pnq6uq0tDT5WbNlyxatd4cQ3uV0OkeMGGEwGOrr63tb5s9//jMR/eEPf/BlYepyuVzuvsLTTz/d3NyscEW73R4QEEBEixcvvn37tvyP9fX1eXl5XQdMTps2zWazVVdXa/Y30FxhYeGECRPkJ/KJEyd8sEeE8B55ovXll1/2tsCOHTuIaNmyZb6sSkUNDQ3Lly8nIj8/P+UXgS0tLatXryYig8FgtVof2I85e/as1WqV35NEFBQUlJmZmZ+f39nZqerfQHMffPDBiBEjiGjBggXXr1/3zU4RwntWrlxJRO+//35vCxQVFRHRQw895Muq1FJaWjpt2jQiioyMLCgoULjWlStX5s2bR0Qmk2nnzp19L9zW1pafn5+Zmenvf/cRudjYWKvVWl5e7nX5muvo6OjaKG5vb/fZrhHCe/74xz8S0auvvtrbAh0dHSUlJZpeo2vkk08+kTeXZ82adeHCBYVredydr6qqstls8fHx8nfaaDSmpqba7XblZ78+duvWrR//+MfyO3zjxo0+3jtCeM/WrVuJaMWKFdyFqKnrReDKlSuVtzFV6c6fPHnSYrG4nzAICwuzWCyFhYWebU0jp06dmjRpEhHFxMR8/vnnvi8AIbynsLCQiGbMmMFdiGoaGxtXrFjhvpxzuVxK1lK9O19XV2e321NTU7v1b/Rwx3Xbtm3yVRTf+973rl69ylIDQnhPU1OTwWAIDAwcjCecPZ0/f37mzJlEFBoa+tFHHylcS9Pu/JkzZ6xW6+jRo7v2bwoKChR+OqhLjhaSTyE988wzd+7c8X0NEkJ4H9mbLisr4y7EW59++mlUVJS8p1dcXKxwLd9051tbWx0OR0ZGhp+fn0xjXFyc1Wq9ePGiRnvsqb6+funSpQMdLaQRhPA+jz/+OBHt2bOHuxCv2O122Z9csmRJXV2dwrV8352vrKy02Wzyekz2b9LT0x0Oh5IhrN44d+6cHIY+evTo/fv3a7ovJRDC+2RnZxPRm2++yV2Ih5Tc0+uJsTsvhHA6nQUFBVlZWfIjgIjCw8MtFsupU6e02N2ePXtGjRpFRHPmzPHld28fEML7/OMf/yCitWvXchfiicrKyu9+97sK7+m58Xbnu7p9+7bdbk9OTnb3b+TA1IaGBlW237VR/NRTT+nnfglCeJ/9+/cTUWpqKnchA3bkyJGxY8cS0ZQpU5Tf02Pvzj/QyZMns7OzIyMjZRSDg4O97980NDT89Kc/HehoId9ACO8jn6wPCQk5cOAAS8vOM+6BnQO6p6eH7nwfWlpaHA5Henq6+zVKiYmJOTk5ly9fHuimysrKpk+fTkQRERH//e9/tajWGwhhdxs3bpRdDd+37DzQ9Z5edna2wrGa+unOK1FRUWGz2dxTO/j5+cn+jcJr171794aHhxPRzJkz9TmADiHs7tatWzk5ObJTL3/kixcv3rlzp9YtOw9UVVU9+uij8oQtLy9P4Vq66s4rJ/s3mZmZ8jufiKKjo7Ozs0+fPt3bKvIiUN4IWbp0aR/Px/BCCB/M3bJzz+yhacvOA13v6fXx5Ec3XbvzBw4c0LRCjdTW1trtdvnIS9f+TWNjY9fFWlpasrKyBtooZoEQ9uOBLbvc3NyamhrGqt5//33Z0P/+97+v/J6eDrvz3pADU81ms/y5hIaGZmVlyQdEKioqUlJSiEi+n5e70n4ghEoVFRVZrVZ1W3Ye8OyeXtfu/KpVq/TTnfdeY2Pje++913Vganx8vHxvQFJSknyXrM4hhAOjYsvOAx0dHQsXLpQfAZs3b1a4lp678yo6d+6c1WqV92lmzJixaNEi9xsAdA4h9JCXLTuPvfbaazExMV988YXC5cvKyuSzvPrszquuvb19//79NTU1er4I7AYh9Iq7ZScfvVPSsvN+jzdv3lS48N69e+WzvLrtzoNACNUiW3azZ8/uu2XnM4OlOw8CIVRdt5ad2WyWLTtf9m9aWlrk2xn1350HgRBqpGf/ZurUqTab7caNG1rvenB150EghForKSlxt+yIKDAwMCMjw+FwaPTwvvv9vAkJCWfOnNFiF6A6hNAXOjs7uw25iomJsVqt6s7l8MD384L+IYQ+dfXq1dzc3BkzZnTr33g5l4OcPQ8XgYMUQshD9m9Umcuh6/t5d+zYoXqpoDWEkFNvczkovxPY9f282t2cBE0hhLpQXFzswVwO7vfzpqWlDeo5WIY5hFBHepvLoeeL69va2uTUwqT97HmgNYRQj3rO5ZCenp6XlyeffqiurnYP4/bB7HmgNYMQgkCXXC7XwYMHN23atGvXrtbWViKKjIx87LHHPv300+vXr0+YMGH37t0PP/wwd5ngLYRwEKivr9++ffu///3vY8eO+fn5BQYGpqSk7Ny50z0GAAY1hHAw+frrr0+cOJGcnJycnOy+7w+DHUIIwMzIXQDAcIcQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMz+Hwxq3SsJIQvTAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -884,7 +907,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAIq0lEQVR4nO3d3ZaayhqGUdlj3f8t\nsw9cyxgERC14v4I5Rw7SnY6NyGOV/OgwjuMNyPlfegHg6kQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDAR8scwDOlFuCIRQpgI+dcwDOM4ppfiikQIYSKEMBFyu5mLRv2TXoDzet7TaPtmmQj3\nMQx/hTf5shjDYJbpKISJEMJEeHXmonEihDARYhgMs3d0H+PYxSGK2nttr0KEu1nfum3+/Md0NGQy\nVHJhIoQwER5idtBLD4ZmxEWI8BDp3qhMhFHiRITH0RsLRJgWitMLwjpEeCCDIXNEeKzZDhNxGgbr\nEGEN4+g9Py9LhIczKeVvIqxiNBhelQgTFgZDHV6TCEP0xn9EWMtOg+Ew/DX0yr8UEcYs9WZSejUu\n6k2699bqfZaWLtV4/MVZMjWJsKKVOJ8Gyem/CqxTIgxb6u3+ndd56S/DpsGwJhHmTTp8Ds87gl6B\nCGvZ+614na5TkL2jJQT3iGoyzlugF5J6R3ovFLOMhFUEPxPCHDVLhNxu6Q6HYbjy+Ql2zJRQ4aOR\nIgcw7u09H4+Jr4fjiZA/juzwNblHilfr8HJ3uKBqm93eHb4d8aqtkL1d694WVHOD26nD7RPOS01N\nTUeZ0Xxe+mlUl5qaXuJOllV8I2uyeD+OacVXURPnv4dldbF5fb2Qj0MOv08+Tz81NR1lzRdXPH7U\nzJYfPv3U9LR3rLi+NqmNXTXP7/f/0gUjIe+9HYv2zm/jYnTqbPenC/1uRq9Lfkx+bxeja6e6M13o\nfQN6LH8kv/1uMMh0lM88Ln1M5fdYjFv/z2h3IjzUOTaaW5mzXtq+XV2KCI9zgs1loyPnip+OzAWJ\n8LPDyqyL9ND71LTX5W5l6W3Obq23pH43kYn1N0TN3sdOV/KlR8LJYza7833pX3mokN9dp1PTS0e4\nbr3J1x9Y0ekz9Eal7lqPU9PrRvjp4/T6wxuHyr42CI530QibhGH6WsEJnuOuGOFOD9tSk71vIuzt\nchFu+LSjNtksfaILTFwuwiXP4TX8LKRznNLBrq4V4cYe3u6Dmf2ZK+jiCaWLhXx2oQh/eWxkyX6u\nEmHzZ8f1LCfnAHT33MyRLhHhMQ3I7HjneHbzgTBHGHMfP0h954/wHE+WnNjJI1Qg9Z05wlIFmpGy\n5LQRlirwHKzSnXwT4eQJ/fHlMPz75/mfJl8CE81GwvuH+Nz/xGOr+ZxtRnqAmg/9umbHCZfu+MqH\nbD1vkG0/hau7h4Er+zLCJk/oz6W83uB3HSmQ7nwZ4VI/979PKlgZDGdv8OVmP/h41+IFOoWNVy1P\nW2v72a7PZ1/edrjeD4poFuF6gb/vrVm63u/5DQu7iNNg2MppVmPjkfBh15UzG+TsZQ3neJAqmP08\nJqu3iW8ifH3J9/rN15/c6fHyLhIpnb7JZ0EnOWNm9hBc2eNyZRfsU+M4nua+BJ0kQoJ0+KPzRGhT\nCLqv/Pj67/Rl6nkinFW2zLIL9upe19vMTE2/dom3t+A7k/0uWz7m4ci9NT0OerNONRL29UxcfGnv\nsb1u6IbE5k4V4axSG0SdJVnxmH8u/cCWzEqt9uJMR49Tf7fBRzPJt6f+HHwgsd/mq28WX6h5bsfK\nZ2DEl+3uuyXZktne9/F5Geqsz+36W+K3Zh+G7GOz8ttLnHQye/HLZzfwZvXudDdnb7bEKv3ECaej\nHZ0h/VjO5Oeotbj45e3Ms/kwtfLruhsSTxhhNVsmos/Xgky+s+uS3X9TkxvbfgDjl7u2ff309Fzc\nxVJ+qs6M9OuXgrvX2Pbqz79u+M1s8Lvp4pH/62DnjPBWY/fM+kvBjQszDMNjuGy4ZPtebLbtWWb7\nGrj9FlLxIdF0dC/DsLjdfLRN/PnJxy74X7anplPQFRtfJa5rNY4Vn5rWXbIfZWekKyNNg2X4OqT9\nB8C537nXkY8Kt9nEaSO8RWeky+/y2G4BmgyMh/h05nnbM5WCQ6LpaHtHFHh7au+oGebXtpw6c+Rp\n39U6rLU0zR0/GK680/Fxa/qwd/v50NJrhNvhs8RSU1MjYUtVCnz+ZYnXgUsmQ2KwhFIH9EXYUr7A\n8uL5TRamQocnv5Tp9YIal9hUMHulYsTbyyMPcPII4wyD9cWvQr5ihIc9ByuwI8EOzx9hauUqsDup\nqakdM7tIFjiOZQ9R1BfZa5rfNXSMCjvB6MiRG8z5p6MP8Z1gdMRIuKPXDq+2BqjmchG+espyvHkN\nxeFEOGWnBgezd3Rqct7l7PehIRGumQ1y6RIiBwb5jgi3Ehg7udAhij1MDozDF0QIYSL8lcGQH4kQ\nwkTYgMGQX4gQwpwxA2FGQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEsP8D4Bf63EIOGHIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU5f4H8M+wDIuKIIiAC6ik7KhkekXN676gaYqmhll2IbXf2L1qmNWluyW3uollGaZdSdMb5gZaiRkiLqkgyK64gBuIqIAiDDDz/P54bByHRcCZeYbx+371R5w5c853hM+cc57znOeRMMZACBHHRHQBhDztKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEYxCSIhgFEJCBKMQEiIYhZAQwSiEhAhGISREMAohIYJRCAkRjEJIiGAUQkIEoxASIhiFkBDBKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEYxCSIhgFEJCBKMQEiIYhZAQwSiEhAhGISREMAohIYJRCAkRjEJIiGAUQkIEoxASIhiFkBDBKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEYxCSIhgFEJCBKMQEiIYhZAQwSiEhAhGISREMAohIYJRCAkRjEJIiGAUQkIEoxASIhiFkBDBKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohKRZcnNzk5KSlEql6EKMEIWQNMuaNWtGjBjx4Ycfii7ECEkYY6JrIIaurq6ua9euJSUlGRkZvr6+ossxNnQkJI938ODBkpISDw8PSqAuUAjJ48XGxgKYNWuW6EKME4VQx86exR/+AAsL+Pri+HHR1bRGbW3t7t27AcycOVN0LcaJQqhLjGHGDAwdiqIizJ+PqVNx/77omlosISHh9u3bvr6+Xl5eomsxThRCXUpLw8WL+Nvf0KkT/vIXSKVISBBdU4vxc1E6DOoOhVCX8vLg7g5rawCQSODri9xc0TW1jFwu37NnD4AZM2aIrsVoUQh1qaoKHTo8/LFDB1RWiqumNfbv319eXt6/f38PDw/RtRgtCqEude6M8vKHP1ZUPJLJtoDORfWAQqhLvXvj/PmHR7+MDKjfZzP4LmDV1dXx8fGgc1EdoxDqkrc3+vZFRAQqKhAVBRMTjBr14KWsLAQGYvNmofU9xo8//lhRUTFw4EB3d3fRtRgzM9EFGLvYWLzyChwd4eGB3bthYfFgeVoafvsN+fkYNw6OjkJLbBSdi+oH9R0VZ8oUxMdj9mxs3Sq6lAbcv88GDgzIzU2/ePGim5ub6HKMGZ2O6svdu6ire2TJ2rVo3x7btmHPHkE1NWXfPklOzukXXsihBOoahVAvDh6Etzc++eSRhT164J//BIBFix5pRDUM338PAMOH050JnaPTUb04dAgjR0IqRVoaPD0fLlcqMWwYjh3D4sVYu1ZcfZoqK9GlC+7fR0EBevQQXY2xoyOhXowYgfnzIZdj4UKof+uZmGDjRlhYYN06HDkirj5NcXGorERgICVQHyiE+rJ6Nbp2RVISNmx4ZLmHB8LDoVTi9ddRXS2oOE2xsQBAzaL6QaejerR9O2bOhI0NsrPRrdvD5TU1GDAA2dl4/338/e/i6nvg7l106QK5HFeuwMVFdDVPAToS6lFwMKZNQ0UFFi58ZLlUio0bYWqKVauQni6ouId270ZVFYYNowTqCYVQv774Ara22LsXO3Y8snzQICxciLo6hIVBoRBU3AP8XJQeo9cbOh3Vu+hovPEGnJyQkwM7u4fLKyvh64tLl7B6Nd56S1R1ZWVwckJdHa5dQ5cuoqp4utCRUO9CQzFqFIqLsXz5I8vbtcPataxDh//t3Xvp0iVBxWHXLsjlGDGCEqg/FEK9k0iwbh2srPDNNzhw4JGXJk5cMWvW7IMHw8LCRJ2hULuo/tHpqCCrVmHlSri5ISsL7dqpFpeWlnp5ed28eXPTpk2vvPKKnou6cwdOTlAqce2awfYqN0J0JBRk+XIMGICCAvztb+qLHRwc/vOf/wD4y1/+cuPGDT0XtWMHamowahQlUK8ohIKYmeGbb2rd3N4/dCglJUX9lZCQkMmTJ9++fXvJkiV6LurHHwEgOFjPu33qMSLOO2+/DcDf37+mpkZ9eWFhYYcOHQDs3r1bn/XU1LB9+9jt2/rcJ2EUQpEqKyv5Q+sffvihxktRUVEAXFxc7ty5I6Q2ojcUQsESExMlEomFhUVOTo76coVCERgYCGDhwoU6LeDOHQawNWse/Ojvz9LSdLpDoomuCQUbMWLEq6++KpfL33jjDabWUm1iYrJhwwYLC4vo6Ojk5GSd1mBtjfXrdboH0hQKoXiffvpp165dDx8+vP7RKHh4eKxYsUKpVL7++uvVunzAwtYWdnYG9SjV04VCKF7Hjh35FeDbb7999epV9ZdWrlzp7e197ty5f/Jn8J/AnTtITcX27fj3vxEWhsmT8eyzePFFAKipQVgYoqOfcA+klehmvaF48cUXd+3aNWnSpL1796ovP3HiRGBgoEQiOXnyZP/+/ZveSG0tu3JFUliIwkIUFDz4r7AQV69qDnDD9e2L336DuzuuXkXv3sjMxMiR2LQJ/fpp8ZORx6AhDw3FF198cejQoX379m3fvj1Y7VbdoEGDFi1a9Pnnn//888+qENbU1Fy9evX69etFRUUX1VhZOWRnn2hw+3Z26NXrwX/OznBxQa9e6NPnwTMblpaYORPffguJRPcflTyKjoQGZP369WFhYQ4ODrm5uQ4ODgAUCsW5c+fy8vKSkpKsrKwKCwsLCwsLCgqKiooa/MU5ODhaW99wdYWbG9zcwP/H1RU9ekAqbXinZWVwd0dpKXJzMX062rXDF1/gwAEsW/ZwkFSiUxRCA8IYGzNmzMGDB1999dVvvvnmzp07W7duffPNN+uvaW5u7uDg4OLi0utR3bt3Nzc3b9FOVSEEMHw4zpzB8OHYuxcTJ2LHDlhaauWTkaZQCA1Lfn6+v79/VVXV/v37d+3a9dVXX9nb2/fv39/Nzc3V1dXV1bVnz56urq4uLi6mpqZa2aN6CL/7Di+/jJ07sXgxiorw/PPYuxft22tlP6RxAu9RkgatWrXKwsJixYoVJiYmUqk0Oztb/zXk5jIXFwaw4cPZ3bv63//ThW5RGJxly5alp6fv379fqVQuXbpUyCTVHh5ITETXrjh8GBMm4O5d/ZfwFKEQGhwzM7P9+/enpaX16NHj3XffFVVGnz44cgQ9e+LIEYwfj4oKUYUYP7omNDjFxcUeHh7l5eVxcXGTJ08WW0xhIUaOxMWLCAhAQgI6dRJbjnGiI6HBWbJkSXl5+bRp04QnEICrKxIT4e6O1FSMHo1btwTXc+/evfXr1/v7+7/77ruff/65kRxCRF+UkkckJCQAsLa2vnTpkuhaHioqYl5eDGD9+rGSEjE1XLlyZfny5R07duR/tyYmJgCCgoJKRBWkPRRCA1JdXd23b18AH3/8sehaNBUXM29vBjBPT3b9ul53nZaWFhISorr/GRAQEBMTs2PHDnt7ewCOjo4//vijXgvSNgqhAYmIiADg7e2t8aC9gbhxg/n6MoD17cuuXdP57pRK5YEDB4KCgiQSCT/0BQUFHTt2TLXC5cuXn3/+eQASiUQmk8nlcp3XpBsUQkORn59vaWkpkUgSExNF19KokhLm789cXGqHDn35ypUrOtpLdXV1TEyMt7c3P/R16NBBJpMVFBTUX1OpVEZFRfGDZEBAwNmzZ3VUkk5RCA3FhAkTALz22muiC3mM0lI2btyfALi7uxcWFmp34yUlJZGRkS6/T4Lh7OwcERFx+3GD3pw4caJ3794ArKysoqKitFuSHlAIDcK2bdsAdOrUqU00M9y5c2fQoEEAevTocf78ea1sMz8/XyaTWVtb8/j169cvJiam+afl5eXlL7/8Mn/v9OnTH5tbg0IhFK+8vLxr164ANmzYILqW5iorK/vDH/4AoHv37vn5+U+yqeTk5ODgYN4V1sTEZPTo0XFxca3bVExMTPv27fm3Q3Jy8pNUpU8UQvH+7//+D8CgQYMUCoXoWlrg3r17f/zjHwE4OTm1ooNrTU1NbGwsP6ICsLCwCAkJeex2cnNzm17h0qVL/NvBzMwsIiKirq6upYXpH4VQsNTUVFNTUzMzs/T0dNG1tFhlZeWoUaMAdOnSJTMzs5nvqqioiIqK6vH7TNyOjo7h4eHXH3ffIzk5mbeUHjlypOk1a2trIyIi+I3EwYMHX7x4sZmFiUIhFEmhUAwePBjAsmXLRNfSSpWVlWPGjOFZysjIaHrlS5cuhYeH29ra8vg988wzUVFR9+/fb+It1dXVGzZsUG8p/e9//9ucwg4ePMgbeDp27Lht27bmfyL9oxCK9OWXX/LLqrtt+Xmh6upq3sPOzs7u1KlTDa6TmpoaEhJiZvZgOJXAwMC4uDilUtnEZsvKyqKiovjVMj/pjYiIuHXrVvMLu3nzpqrrX0hIyL1791r2wfSFQihMcXGxnZ0dgJ07d4qu5UnJ5fIXXngBgK2t7YkTJ1TLFQpFXFzc6NGjeRLMzc2Dg4PVV2jQ+fPn1VtK/f39o6Ojq6qqWldbTEwM35SHh8fp06dbtxGdohAKM3fuXADjx48XXYh2yOXyadOm8dO/48eP8xvuHh4ePEg2NjYymezy5ctNb0S9pVQikfCW0qYPmM2RnZ3t5+fHm38iIyMNrQGMQihGUlKSRCKxsrK6cOGC6Fq0pqamZsaMGbwDuqqnda9evdasWdP0+TY/YPJWTVVLaVZWlhZrq6qqkslkvAfcmDFjHtsOpE8UQgHkcrmnpyeAf/3rX6Jr0bK6urqgoCDeIsJ7WtfW1jaxPm8pdXV15fHr3LlzeHj4NZ31TN21a5eq2/e+fft0tJeWohAKwIfT7tOnT3V1tehatO/rr7/mDxk1vdr169cjIiL4VTHvBBcVFVVZWanr8oqLi8eNG6fq9m0IvwIKob4VFBS0a9cOwMGDB0XXohN///vfAbzzzjuNrXD69Gn1R5MCAwNjY2P1eVedd/uWSqUABgwYILzb91Mdwk2bNr322mtDhgwJCwv74osvDh8+rIfJAIOCgniLua53JMrChQsBfPbZZ/Vf2rdv3/Dhw1UtpXPmzElNTdV/hdzJkyf55JDCu30/vSGMjIwE0L7eqJrOzs6jR4+WyWQxMTEpKSnaPV3ZsWMHbz80qIYB7eL3Knbs2FH/pT/96U/4/dEkrT+B0QoVFRWG0O37KQ3hzp07TUxMTExMtmzZkpycHB0dLZPJAgMD+YmiOnNzcy8vr+Dg4IiIiLi4uCdpzKysrHRzcwOwbt06LX4WQzNw4EAAx48fr/9SXl7e6tWrKyoq9F9VE2JiYvjk5G5ubuoPDevN0xjC06dP87D9+9//rv/qtWvX4uLiIiMjQ0JCvLy8eBdEdba2toGBgaGhoVFRUcnJyc3vh7F06VIAzz77bJvoVdxqvI+LIRzomu/SpUtDhgyRSCSrV69uujlXF566IQ+LiooGDRp05cqVV155ZdOmTY9dv6amJj8/PzU1NScnJzs7++TJkyUlJRrrODs7BwQEeHt7e3l5BQQEeHp61o9uVlbWgAEDlErlyZMnBwwYoK2PY2iUSqWFhYVCoaiurpY2NgeNQZLL5e3bt1coFFVVVRb6nQrn6QphVVXViBEjTp48OXTo0F9++aV1/9bXr1/ngVQlU2MaXalU6u7uHhAQwJPp5+fXuXPnoUOHHjt2TCaTrVmzRkufxhAVFRW5uLg4OjreuHFDdC0tU1xc7Ozs7ODgcPPmTX3vW89HXoGUSuVLL70EoGfPnlp8gF0ul6enp2/evPntt98eN26camgGdXyeMxcXl/Lycm3t1zClpKQA6Nevn+hCWiw1NRWAv7+//nf9FE0S+t577/3vf/+zsbGJi4vr3LmztjYrlUr9/f39/f1VS8rKyrKyslRHyzNnzpSWlnbp0mXMmDE2Njba2q9hun79OoAGv4kMnMDKn5YQfv/996tWrTI1Nd22bZuPj0+D68yZM+fEiRP8uo5f4Hl5eUlaPnWtra3t0KFDhw4dyn9UKpXR0dGLFi1KT09/os/QFrSJEK5duzYxMXHRokX8iWSOQqhbR48efeWVVxhjn3322cSJExtb7cyZM3zSadWs8XZ2dn5+fr6+vr6+vv7+/t7e3vXvKz6WiYnJggUL/vrXv545cyYjI4N35zdWbSKER44c2blz54svvqi+kEKoQwUFBS+++KJcLl+yZMmiRYuaWDMtLU29ITQlJaW4uDgpKSkpKUm1jkZDqIeHR3Mm65RKpcHBwevWrfvuu+8ohMI1WGRRUREAZ2dnAQXp/zJUnyoqKnx9fQGMGzeuFfd/bt++nZycHBUVFRoaGhgYaGVlpfGvJ5VKvby8QkJCIiMj4+Li+FTyDTp69CgAFxcX475JyE80Wj1cmn7wQUrz8vLUF06aNAnA7t279V+PMYeQP1YDwNPTUyudQmtra7OysrZt27ZixYpJkyaphipS5+zsPH369Abf/swzzwD45ZdfnrwSg9WvXz8AKSkpogtpCn/QXqPjTv/+/QGcPHlS//UYcwjffPNNAA4ODtoaoLa+8vLylJSUmJgYmUw2evRofisiMDCwwZX/+te/Apg/f76OijEEjo6OAAy5Z+zt27cB2NjYaCzv0qULgKtXr+q/JKMNIX+qTSqVHjp0SG87VSqVFy5caGzwwvz8fIlE0qFDBz08NSdETU2NiYmJqampIZ9yZ2VlAfDw8FBfWFtbyyvXf581Zqxz1ickJCxcuFAikWzYsIFP3KMfEomkV69e6vcM1bm7uw8aNOju3bt79uzRW0n6VFRUpFQqnZycmtNYJUpjrTJKpbJLly6q8eD0yQhDmJeXN2vWrLq6uvfeey8kJER0OY/gD85s2bJFdCE60XabRsVWbmwhvHXr1uTJk8vKyqZPn/7BBx+ILkfT7NmzpVJpQkJCcXGx6Fq0j0LYOo8PYVkZJBLcu/fgRwcHaHT84Ct89tmDH/v101xBb2pra4ODg8+fPz9gwICYmJj6jzII16lTp/Hjx9fV1X3//feia9G+a9euoY2EUON+oKGHsDmsrbF+vVa29EQWL16cmJjo4uKyZ8+e+o/nGggjPiMVeb+72QzuTr22QmhrCzs7HDmilY210qpVq77++msrK6vdu3d369ZNZClNmjx5sq2tbUpKSnZ2tuhatIz/fasGrjdMDRYp9hiunRDW1CAsDNHRWtlYa+zcufO9994zMTHZunUrH17BYFlaWvIRcvnEoMaErglbp7kh7N0bTk5wcsLt2w28yhhmzMCvvzb86iefYOJErFiBrVuRkYHa2ieotyFpaWnz5s1TKpWRkZFTp07V8tZ1QHVGqlQqRdeiTYYfQsZYcXGxRCIxqGvC5t4VOX4cfH6O3+eo0mRpiZkz8e23qP/oz6FD+Okn/PTT77s0Q58+8PaGlxcCAuDtjZ49G3hXMxUVFU2ZMqWysnL+/PnLly9v5Vb0a/jw4W5ubgUFBUeOHFENAWgEDD+EN2/erKmpsbe3t7S0VF8u9kS6uSF0dAR/iKeJtISGYvp01G8QWbsWr72GzExkZiIjAxcuICcHOTkPV+jUCX5+8PWFry/z8zvZ/CeGqqqqpk6devXq1WHDhn311VfN/CzCSSSS2bNnr1q1asuWLUYTwqqqqjt37kilUj7OvGFq8Guiurr6zp075ubmwip/bJ+aO3cYwFTzedjbs7Q0zRXs7R/8/7BhzMZGcwUNcjnLymIxMSw8nAUFMScnBjz4z9W1hlfl7OwcFBQUHh4eExOTlZXVYDcopVI5a9YsaHu4Cv3IyckB0LFjx6anyGxDzp8/D8DNzU10IU3Zt28fgHHjxqkvvHDhAgBXV1dBRWl7eIuwMPw+mGqjpFJ4ez9yWnv9+oODZHFx8a+/9svJySkqKtq7d6/q4Vpra2s+YpLq+Vp7e/uVK1d+//33NjY28fHxWhyuQj88PT0DAgJSU1P37dvH22naOsM/F0UjraDCK398CG1toT4gW2kpACiVeP113L2LsjJ8/PGDhQDmzsXcuS0uwsUFLi4YNw5AdyCttrb27NmzWVlZZ86cyczMzMzMvHz58qlTp06dOqV6i4ODQ2lpqbm5+Y4dO7wbu041bC+//HJqauqWLVuMI4Rt6E592wthgy5exMCBWLgQBw/iv/+FdkfxMzc39/Hx8fHx4YOjAaioqMjPz1eNMpienl5aWurg4DBixAjVLLBtzpw5c5YvX/7jjz/yzyK6nCcl/E+5OfhNeUMLYSvvE7q7Y+FCANi9G2qD5eiKjY1NQEDAvHnz1qxZc+DAgZKSknXr1pWWlvLrkDbK0dFxzJgxtbW127dvF12LFjT4983J5fL4+Hi9V9QAA+wugye5Wa9Q4M9/hrs7pkzRYj3NIpFIXnvtNXt7+/T09MzMTI1Xy8vLDeRX/lj8huHmzZtFF6IFTRxPVqxYMWXKlHnz5t1TdUEWpMEihZ9ItzKEjGH+fIwejSVLtFtPc/Ghk1CvE2ZNTU2vXr2mTp16+fJlMZW1xNSpUzt06HD8+PFz586JruVJNRFCT09PKyurzZs3DxgwgI+xK4phXhO2MoTx8UhMxObNeOklREZqt6TmUvU7USgUqoVSqXTs2LFKpfK7774TU1ZLWFtbT5s2DW2/C1tSUlJubq5UKs3IyKj/amho6OnTp/v165efnz948OAPPvhASFchhUJRUlJiYmLi5OSkvlx8l1dR90a0gg+dpDHlLb+x4enpKaqqFjlw4ACA3r17K5VK0bW0RllZWWhoqPoQyQsWLGhwpqrq6urw8HD+fNnIkSN1NzF9E0pKSrKysjQW8nnR9DA/bGPadgj50Emvvvqq+sLa2lo+aI/AWWCbT6FQ8Gc+hMyM94Ti4+O7d+8OwNzcPDw8fOPGjfwJsr59+zb2j5+QkMCbQBwcHAxhZMS7d+8CsLKyElhD2w4hHzrJxsZGY+gkmUwG4M9//rOowlpk2bJlABYtWiS6kBYoLi5WDR0yZMiQ7OxsvjwnJ4ePemhubh4REaFQKOq/98aNG3x4UolEEhoaKnbYq7y8PADu7u4Ca2jbIWSMDRo0CMC2bdvUF548eRKAo6OjkMGzWoqP/9WpUyftTs2tO7GxsbybpbW1dWRkpEbSqqqqZDIZP0EdNWpUg6edSqUyKiqKT2Do5eV15swZfdWu6ddffwUwfPhwUQUwIwjh559/DmDSpEkayz08PAD89NNPQqpqKT42vpDhn1vk4sWLY8aM4QfAiRMnNjEd7/79+3n7R+fOnePj4xtcJyUlpU+fPgAsLS2joqKEXBXz1vWXXnpJ/7tWafMhLC0tlUqlZmZmxcXF6sv/8Y9/AJg7d66owlrko48+AjBjxgzRhTRKoVBER0fzp1s6deoUHR392LcUFxdPmDBBddrZYFf1+/fv82sHAFOnTi0tLdVB7Y0qKSnh3ylBQUH63K+GNh9CxtjkyZMBrFmzRn1hQUGBRCKxtrbWGO1crOzs7OHDh1++fFlj+bVr10xNTS0tLW/evCmksKadOXPmueee41EJDg5ufpHqp53e3t4ZGRkNrvbDDz/Y2dkBcHJy+vnnn7VXeKPy8/NlMhkfD5/3GQwJCbmrelZIv4whhHzksoEDB2osHzZsGICYmBghVdVXVFTEp69YsmSJxktKpbJHjx7dunXr2LFjSEhIXFycoVzNVlVtiYw0NzcH4Obm1rqEnDp1it9MsrKyioqKanCdwsJC/vuSSCQymUwulz9Z3Y1KTEwMCgrid0pMTEyCgoJWrlzJG3V79uwppI3aGEJYVVVla2sLIDc3V315dHQ0gDFjxogqTF1VVdXgwYN5W2L9Bhh+r8XCwkJ1t83JyWnx4sVJSUkNNjDqyZEjzMPjmqOjna1taGjok5xTVFRUhIaG8o82bdq0W7du1V+ntrY2IiKCj949cODA/Pz8Jyhdk0KhiIuL478C/k8dEhKiatTNzc3ljbpmZmaNNerqjjGEkDG2YMECAO+99576wrKyMisrKxMTkytXrogqjFMqlXPnzuUHE41rV8ZYbGysRCIxNTWNj4/PysqKiIjo27evKo0ODg6hoaHJycl6bbcoK2NhYUwiYQDz8bl16pRWtrp9+3Z+2tm9e/fG5gg5fvx4r169AHTo0GHz5s1PvtOKioqoqCjVFFqdO3cODw+v32ar3pegsUZdHTGSECYmJgJwdXXV+EudPn06gI8//lhUYVxERAT/q6p/UXTq1Cl+ZfLZZ5+pL+dp5GdxXLdu3WQymT7SuHcv696dAczcnIWHM63eOCkoKOATiZuYmMhkspqamvrrlJWVzZ49W3UJ2uq+LNevX4+IiOBnSfxmYFRUVNO3JRMSElSNunrrS2AkIVQqlW5ubgAOHz6svnzXrl0A/P39RRXGHj3QabxUUFDAO/csWLCgsbefOHFi6dKl6nMhurm5vf3222m66A9UXMxCQh6MNTJkCPv9bE271E87n3vuucYmrouJiWnXrl379u3PnTvX0l2kpqaGhISoZncJDAyMjY1t5lxRN27cUG/U1UNfAiMJIWPsnXfeARAaGqq+UC6X87YvUbeDGzvQMcYqKir47UH+VOFjN8WPjfxUDcCMwYOZqyuTyVhysnZqjY1lDg4MYNbWLDKS6Xh6s2PHjvXs2ROAjY3Nli1bGlwnNzd37969zd8mv/BTPedtbm4eHBz822+/tbQ2jUZdXf/xGE8IGxs6aeHChQCWL1+u/5KaONApFIopU6YA8PDwaNHplkKhOHz48Jtvvrl3zJiHI2T17cvef5/V65rcXBcvsrFjH2xqwgTW+C147SorK1MNnvCEdwiqq6tjYmI8PT351mxsbGQyWRN9CZpDoy/Bk2yqacYTQsbYgAEDAPzwww/qC0VNFl9RwcaOPefm1qfBA91bb70FwN7evvVtgAoFS05mMtkj49V5ebGICJaT04KNREez9u0ZwJ3jaSwAAAeiSURBVOzsWDNuwWsdP+1s9R2CGzduREREqMYHcXNzi4yM1NYjEfrpS2BUIfz000/5P5bGcv59ps/J4uvq2KRJDGCDBt0qKyvTeHXjxo38ZOnXX3/Vzs54Grt00UxjXl5Tb8zIYM8992D94GAmbtjI1t0hOHfunEwms7Ky4iHhU3Hp4v6qqi9Bt27ddDHxs1GF8MaNG2ZmZlKpVKNLB2+c1Odk8W+9xQBmb8/qH+eSkpL4xcb69eu1vFdVGjt31kwjb9vIy2ODBzOplPn4sGPHWFgYH+yVGUAP2xY9bZicnBwUFMT7iPMb7gcOHNBpeRp9CRps1G01owohY2z8+PEAvvzyS/WF58+fl0gk7du3b/BhU63buPFB837941xeXh7/Tl2xYoUOK5DLWXw8CwlhHTs+iKKPD1MqmY8PW7aM3brFPvmEOTqy69fZypVMUF+tBqmeNmzwDoFcLo+NjVVN+GNpaRkSEqLRQ0N3dNeXwNhCyDvFDxkyRGM57yqxdetWXReQlMSkUgaw+se5W7eU/v79eZcRPfXJqKpiu3ezOXPYf/7DUlOZtTXjDe5KJevWje3apY8aWqjBpw3Ly8ujoqJUM9516dIlIiJCz729uePHj6sadbXSl4AZXwgrKyv5aAVnz55VX7527VoAEydO1One8/KYnR0DWP3jXE0NGzGC9emTPnbsC/o5IGv67jvm5/fwxwkT2IcfCiijGRQKxUcffcRP2j09PefMmaOa8tXPz2/Tpk2661naHNrqS6BibCFkjM2bNw/ABx98oL6wsSeetOjWLdanDwPYtGms/nGOX385O7N6T1Doy4YNLDDw4Y8zZ7J33xVUSrPwOwRmZmb8DDAwMDAuLs5wRuJRNeq6ubkdPXr0STZlhCFMSEjgfZQ0fmHr1q07evSojn6LNTVs5EgGsP79Wf3j3EcfMYBZWbETJ3Sx8+bZs4f5+Dz8cfx4FhkprppmuXv37s8///zll19mZmaKrqUBubm5/fv3b2mjbn1GGEKFQsGHrzt+/LjednrzJnv2Webiwq5e1Xxp3z5masokEvboEBx6l5XFLC0ffkO4uLB9+4QWZAw0GnWv1v/1N4MRhpAxtnTpUgCLFy/W504rKxu4LZeW9uBOuEFcf/n7s6VLWXk5W72adeum3Z7ZT7MDBw6ohpDbs2dPS99unCFMT08H0KlTJ7FX8EVFrEcPBrB58wRWoebsWTZ4MLOwYP7+LCVFdDVGRdWoy7vgtajbt3GGkDHm6+sLoBVfS9py/z4bPJgBLDCQDjlPBd7tmz+Z3aIh5Fo/IYyBUw2SL2TvjGHBAvz2G9zcsHMn1J6YJ0ZLIpEsWbLk2LFjffr0ycnJ4f20mkWn3w0C8aGTLCwsLl68qP+9v/8+A1iHDqyRkY2IMbt3796SJUuKioqaub6EqU/Da1zGjRuXn59/6dIlOzs7Ly+vgIAAb29v/j+qXr+6EBuLl16CiQl270ZQkO72Q4yEMYdQoVAsW7Zsw4YNGtPimZube3h4+Pr6+vn5+fr6+vr68gkVtOLUKTz/PKqqsHYtFi/W1laJMTPmEHKMsYsXL2ZkZGRmZmZmZmZkZFy4cEF9NjUAdnZ2fn5+Pj4+gweHu7t39/FB+/at3N369Vi0CG+8gbVrtVA8eRoYfwjrq6mpyc/PT01NzcnJyc7OTklJKS4u5i95ed3LyWkHwNkZAQHw9oaXFwIC4OEBU9MGNlVWBjs7rFkD/uRnv37YtAn37+O55/D7+CaEPMbTGML6ioqK+EHy7Nm3UlPNcnIglz+ygpUVvL3h5wdfX/j6ws8PnTsDQFkZunZFz57IygJ+D2G/fgI+Amm76OsaAJydnZ2dnceOHct/rKvDuXPIzMSZM8jMRGYmCguRkoKUlIdvcXKCry++/hq2trCzw5EjGDpUTPGkraMQNsDMDF5e8PLCrFkPllRUID8f2dlITUVODtLTUVyMykrY2KCmBmFhiI6mEJJWotPRVrp0CVeuwM8P7u64ehW9eyMzEyNH0ukoaTE6ErZSz57o2RNlZQBgaYmZM/Htt1CbuZ2Q5qIQakdoKKZPx+/PfxPSAkbbd1TPPD3h4IBz50TXQdogCqHWhIWhokJ0EaQNooYZQgSjIyEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEYxCSIhgFEJCBKMQEiIYhZAQwSiEhAhGISREMAohIYJRCAkRjEJIiGAUQkIEoxASIhiFkBDBKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEYxCSIhgFEJCBKMQEiIYhZAQwSiEhAhGISREMAohIYJRCAkRjEJIiGAUQkIEoxASIhiFkBDBKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEYxCSIhgFEJCBKMQEiIYhZAQwSiEhAhGISREMAohIYJRCAkRjEJIiGAUQkIEoxASIhiFkBDBKISECEYhJEQwCiEhglEICRGMQkiIYBRCQgSjEBIiGIWQEMEohIQIRiEkRDAKISGCUQgJEez/AVrU8kFx0LYSAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -896,7 +919,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAEvElEQVR4nO3d207bQABFUVz1/3/Z\nfaBqRS8mQZ7Z43itR5BIJLI5kxgl277vb0DnW30H4O5ECDERQkyEEBMhxEQIMRFCTIQQEyHERAgx\nEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFC\nTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBAT\nIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE\nRAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQI\nMRGWtu3zr/Dyvtd34O627W3fj7771A979tb3g9tmFhHG9v2owycbebqobdt0mHMchZgIe+9jGN30\nvnkaWhPhEsIOyYnw7oxhToSrMIa3JcKFVK9TGsOWSxSlv6v7X4ePNfJoSC5LLMVlIn5yzbDiONpY\n8PTnUFoRYeD4X9W4GxHymzFMiHA2M8gfRMgHxnA+EU5lBvmbCOe5SoHGcDIR8g86nEmEk1xlBplP\nhDNcsUBjOI0IISbC4a44g++M4RwihJgIx7ruDL4zhhOIcKxLF8gcIuQTxnA0EfI5HQ4lQoiJkIcY\nw3FECDER8ihjOIgIISbCE9znsz6N4QgiPMfrPTLFNo0Iz/FinyRx8EbAxvB0IuQ53qj7dCI8zcuM\nocwmE+GZXqbD/9HnCCLkA5nNJ8KTvfAY6nMQEZ7vug9UmSVEeILHP+vzuvQ5jggbCx5ZDzJT4FAi\nbKz21FFmIRGOtVRpX6PP0UQ41sHirTOGMmuJkCP6nECEwy0+hjLLiXCGFWL7An3OIcJY26fLEisQ\n4SQXHUMmEGGv6tMMLkKE83z2Cs3UEGW2DhFOdYlDqT4nE+EqZr53i4PoUkQ42yXGkJlEmPh3hXPG\n0AyuRoSBg9i8oeANifBezOCCRNgwhvwiwhsxg2sSYWb+GCpwTSJclCruQ4SlFZ7+mcGcCCEmwlg7\nhmZwBSKEmD+ES6jG0G9/BSKEmOMoxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQI\nMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDER\nQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJM\nhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQ\nEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMh\nxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEULsB76cJlqY\nAIEgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO2deXxNV/f/PzeJSDTGmtqUmkoJTUhpiaGlSmuqFsVDTU+pChlEyECCECEila+pWkNLKU350arS1vDQ4ClRRKqoueakEpmTu39/7OPktk9Lhn3uPufe9X75YzevnM9ZPed+ss/dZ621TYwxEAQhDwfZARCEvUMmJAjJkAkJQjJkQoKQDJmQICRDJiQIyZAJCUIyZEKCkAyZkCAkQyYkCMmQCQlCMmRCgpAMmZAgJEMmJAjJkAkJQjJkQoKQDJmQICRDJiQIyZAJCUIyZEKCkAyZkCAkQyYkCMmQCQlCMmRCgpAMmZAgJEMmJAjJkAkJQjJkQoKQDJmQICRDJiQIyZAJCUIyZEKCkIw9mrBlS5hMyr8ePR72m9OmKb/WsqW1giPsD3s0oSW7duHECdlBEPaNvZsQwMKFsiMg7BsyITZswLVrsoMg7Bi7NmH16gBQUIDFi2WHQtgxdm3CgQOVwYoVyMyUGgphx9i1CTt1QsOGAHDvHj76SHY0hL1i1ybMyIC/vzL+4AMUFkqNhrBX7NqE2dkYPRrVqgHApUv44gvZARF2iZPsAGSSlwc3N4wbh5gYAIiNxeDBjz5qxgyt4xJM9erfpqcflB1FKXBzcwsODpYdhfWwaxMyBgATJyIuDgUFOHoUe/fipZcecdTs2dpHJpQuXXbv22ekl6G1a9euX7++i4vLG2+8ITsWa2DXj6Mcd/fiCTA2VmooBAAgPT19yJAhvr6+WVlZsmOxBnY9E6pMnoxPPwWAHTuQmormzR/2yzNnWicoYVSr1rNr1yqyoygp+fn5CQkJBQUF165dmzdv3mzDPXiUAWZ/eHgwgAFs9uziH3brpvxwzJjiH06dqvzQw8P6Ydovq1ev5h9OFxeXCxcuyA5Hc+hxVGHyZGWwbh1u3pQait0zYsSIdu3aAcjNzbWHFRoyoULPnmjRAgDy8pCQIDsa+8ZkMsXHx5tMJgCbN2/eu3ev7Ii0hUyoYDIhMFAZL1uG7Gyp0dg97du3Hzp0KB/7+/sXFRXJjUdTyITFDBuGOnUAIC0N/FuJA10eecTExDz22GMAfv75549sOquQPmXFVKyICROU8aJFMJtRoYLUgOwbd3f3qVOn8vH06dP/+OMPufFoB5nwT4wfD1dXADh/Hlu2KGNCFlOmTGnQoAGA27dv2/C7CjLhn6hZEyNGKOPYWKXgkJCFi4tLDE8pBBYvXpySkiI3Ho0gE/6VgACYTABw6BDOnpUdjd0zaNCgLl26ACgsLAwICJAdjiaQCf9K06bo00cZb9woNRQCABAfH+/o6Ahg9+7dO3bskB2OeMiEf4P64p56z+gBLy+vMWPG8LGfn19+fr7ceIRDJvwbOnfG88/LDoKwICoqqlq1agDOnTu3ZMkS2eEIhkz496iTIaEHatWqFR4ezseRkZE3btyQG49Y7MuEmzcjL69EvzlgAOrX1zgaojRMmjSpWbNmADIyMiIjI2WHIxIT45WtdsB336F7dzRujNhY2EexqK3x9ddf9+7dG4CDg8ORI0e8vb1lRyQGe5kJi4qU1NDz57Ftm+xoiDLRq1ev1157DYDZbPbz87OZ+cNeTLh0KU6eBIDKlTFnjuxoiLISFxdXoUIFAAcPHkxMTJQdjhjswoTp6cXl8GFheOIJqdEQ5eDZZ5+d8CDBNzAwMNsmql3swoTTp+PuXQBo1Ki40ShhUCIiImrVqgXgypUrcXFxssMRgO0vzJw+DU9PpbHv1q3o1092QES5Wb58+fjx4wFUqlQpNTW1vsEXsm1/JgwMVBzYtSs50EZ49913PT09AWRnZ4eFhckOp7zY+Ey4dSv69wcAR0ckJ6NVK9kBEYI4cOBA586dGWMmk2n//v0dO3aUHVHZsWUT5uejZUulEsLXV2bnmMxM7Nol7ewuLidzc3+VdfY+ffo4OztroTxgwAC+QOrt7X3kyBEH4/ZBkNnqTWPmzVMaFlavzm7flhlJSooSiZR/XbrIzMG7c+eORlf10qVLlSpV4mdZs2aNRmexAob94/Eobt5EdLQynjULNWtKjYbQgPr166sVhlOnTs3IyJAbT5mx2cfR0aOVZk3Nm+PnnyV3i7l6FX5+0s5ev/4nly//P1lnX7t2rZubm0bi2dnZzZs3v3z5MoCQkJC5c+dqdCJNsU0THjuGtm1hNgPAzp3o0UN2QIRmfPrpp++88w4AZ2fnU6dOPfPMM7IjKjU2+DjKGPz9FQf260cOtHGGDRvm4+MDID8/f9q0abLDKQs2OBN+9hn+9S8AcHbGyZNo2lR2QITGHD16tF27dmazGcC333776quvyo6odNjaTJiTg9BQZRwQQA60C7y9vYcNG8bHAQEBhUbb99zWTDhvHi5dAoDatRESIjsawlrMnz+/SpUqAE6fPr1y5UrZ4ZQOmzLhlSvFu3xGR6NqVanREFakTp06arvu8PDwuzxh3yDYlAmDgpSNXFq3xsiRkoMhrMzkyZObNGkCIC0tzVjtum1nYebHH9GxIxiDyYR9+9Cpk+yACKuTmJg4YMAAAE5OTsnJyS1btpQdUYmwkZnQbIafH/jfk8GDyYF2yltvvdW9e3cAhYWF/sapHLWRmXDlSowdCwCurkhNxdNPyw6IkERKSoqXlxdfIN2+fTtvDKVzbGEmzMzEjBnKeOpUcqBd4+Hh8e9//5uP/f3980rY4lIqtmDCmTPBm8E+9RSCgmRHQ8hmzpw5jz/+OIDz588nGGHrc8Ob8Px5/N//KePYWDz2mNRoCB1Qo0YNtV33rFmzrl+/LjeeR2J4E/r7K021O3TAoEGyoyH0ga+vL18azczMnKF+V9Erxl6Y4U21ATg44NAhtG0rOyBCN3z33Xd8pdTBweHw4cPP63iLHwPPhIWFUDeNHD2aHEj8iVdeeaVXr14wQrtuA5twyRKcOgUAlStj1izZ0RD6Iz4+vmLFigB+/PHHTZs2yQ7nHzGqCdPSoGYmzZhBTbWJv6FJkya+vr58HBQUlJWVJTeef8KoJgwPV5pqN26MiRNlR0PolYiIiLp16wK4evVqrJrdrzMMuTCTkgIvL6Wl77ZtxVvME8T/snLlyrFjxwJwdXVNTU19Wn/JHIacCQMCFAd260YOJB7BmDFj+NJoTk5OqFrxrSeMNxN++SXeegsAnJyQnAyDJMoTMjl48GCnTp0YYyaTad++fZ10luBvsJkwPx9qL58JE8iBRInw8fEZOHAgAMaYn58f70ajHwxmwthYpa19jRqYPl12NIRxiI2N5e26k5OT165dKzucP2EkE968iZgYZTx7Nh5/XGo0hKGoV69e0IPs/pCQkHv37smNxxIjmTA4GLzTeYsWSvUgQZScadOm8Z0Mb968Ga3ukaADDLMwc/Qo2rVTWvp++y2M1lqS0AXr16/nzRGdnZ1PnjzZVB8tMY0xE1o21e7fnxxIlJGhQ4fypdH8/Pzg4GDZ4SgYYyb89FO88w4AODvj1CkYcLsBQi8cO3asbdu2fIF0586dPXSwTYIBZsLsbDwo0cTkyeRAoly0adNmxIgRfBwYGFhQUCA3HhjChHPn4vJlAKhTB8bc8IPQF9HR0Wq77hUrVsgOR/cmvHIFixYp45gYVKkiNRrCJqhTp07Igz0SZsyYcefOHbnx6N2EgYFKU+02bTB8uOxoCFshMDCQ72SYnp4+c+ZMucHoemHmwAF07qw01d6/Hx07yg6IsCG2bt3av39/AI6OjsnJya1atZIViX5nQrMZ/v5KU+1//YscSAjmjTfe4EujRUVFctt163cmXL4c48cDQKVKSE1F/fqyAyJsjtOnT3t6evJ23Vu3bu3Xr5+UMHQ6E2ZkIDJSGYeEkAMJTWjRosW4ceP4ODAwUFa7bp2aMDISN28CQL16CAyUHQ1hu8yePZu36/7tt9/i4+OlxKDHx9Fz5+Dhgfx8ANi0CQMHyg6IsGkSEhImTZoEoHLlymfOnHnC6l3D9DgTTpqkONDHBwMGyI6GsHXef/99vjSamZmp9s+3JrqbCXfsQK9eAODggCNH4O0tOyDCDvjhhx+6desGwMHBISkpqV27dtY8u75mwoKC4m+A775LDiSsRNeuXfv27QvAbDb7+/tbeWbSlwkTEnDmDABUqVK8OkoQViAuLo63605KStqwYYM1T60jE96+XdxUOyICdetKjYawMxo3buzn58fHwcHB1mzXrSMThofjjz8AoEkTTJggOxrC/ggPD+dLo9euXVuwYIHVzquXhZmff4a3N4qKAODrr/H667IDIuySVatWjRkzBoCrq+vp06cbNGhghZPqZSb091cc2L07OZCQxsiRI9u2bQsgJydnmrWqV3UxE27erGyy6+SE48fh4SE7IMKOSUpK8vHx4b7Yu3dvly5dtD6j/JkwNxdqx52JE8mBhGTat28/ePBgPvb39y/iT2haIt+ECxbg4kUAqFEDMtIVCOKvzJ8//7HHHgNw/Pjx1atXa306ySa8dq24qfbcuahRQ2o0BAEAeOqpp6ZMmcLHYWFhWrfrlmzCadPA38d4eGDMGLmxEEQxwcHBfCfDW7duRUVFaXoumQszhw6hQweldn7XLnTvLisQgvgbNm7cOGTIEADOzs4nTpxo1qyZRieSNhMyBj8/xYEDBpADCd0xePDgzp07A8jPz1c3k9ECaTPhmjUYNQoAXFxw+jQaNpQSBUE8jOTk5LZt2/IF0m+++aZnz55anEXOTHj/PsLClHFQEDmQ0CmtW7ceOXIkH2vXrluOCefOxe+/A4C7O6ZOlRICQZSIuXPnVq1aFUBqaurSpUu1OIUEE/72W3FT7ehouLlZPwSCKCm1a9cOe/DYNnPmTC3adUswYVAQcnMB4MUXMWyY9c9PEKXDz8+P72SYnp4+Y8YM4frWXpjZswdduwKAyYSkJLzwgjVPThBlZPv27bz03tHR8dixY88995xAcavOhEVFUDsdv/MOOZAwDH369OFLo1q067bqTLh0qVKt6+aGM2fw5JNWOzNBlJfU1FRPT0++QJqYmPjmm2+KUrbeTJiejogIZRwSQg4kDEbz5s3H840ZgKCgoFy+sCEC65kwMhJ8YalhQ2qqTRiSyMjImjVrArhw4cIidYm/3FjpcTQ1FZ6e4K86ExMhbiYnCKuydOnSCRMmAHBzcztz5syTIp7orDQTBgYqDnz5ZXIgYWDGjRvHl0bv378fGhoqRNMaM+H27ejbFwAcHXHsGISu7hKEtVHbdZtMpqSkpBfKvcqv+UyYnw81AX3sWHIgYXi6du3Kt/hljAlp1625Cc+dUzadr1YNs2ZpfTaCsAaxsbEuLi4ADh06tH79+nKqWeNxNCsLMTF44gk8WOAlCMMTEhIyb948AO7u7r/88otbOXKgddHykCAMx/3795s1a/b7778DCA8Pn61u4VB6yIQEUUbWrFkzatQoAC4uLqdPn25Y1rpY+S0PCcKgjBgxgu9kmJubG6w2zy09NBMSRNk5dOhQhw4duIn27Nnz0ksvlUGEZkKCKDsvvvji0KFD+djX17ewsLAMIqU2YcuWMJmUfz16POw3p01Tfq1lyzIERhDGICYmhrfrTklJ+fjjj8ugUK6ZcNcunDhRHgGCMDzu7u5THzRKCg0NTUtLK61CeR9HFy4spwBBGJ4pU6bwnQzT0tLK0K67vCbcsAHXrpVTgyCMjYuLy/z58/k4ISEhJSWlVIeX3YTVqwNAQQEWLy6zBkHYCAMHDuQ7GRYWFgYEBJTq2LKbcOBAZbBiBTIzyyxDEDZCfHy8o6MjgN27d+/YsaPkB5bdhJ06KZ2z793DRx+VWYYgbAQvL68xD7YW8/Pzy8vLK+GBZTdhRkZx67QPPkCZXpAQhE0RFRVVrVo1AOfOnVuyZEkJjyq7CbOzMXo0qlUDgEuX8MUXZVYiCBuhVq1a06dP5+OZM2feuHGjJEeV3YR5eXBzw7hxyn/GxpZZiSBsB19fX96uOyMjY/PmzSU5pOwm5DmnEyeiQgUAOHoUe/eWWYwgbARnZ+eOHTuaTKaePXvyPUYfSXnfE7q7Y/BgZUyTIUHcunUrMTGRMbZz584NGzaU5BABCdyTJyuDHTuQmlp+PYIwMGFhYffu3QPw7LPPvvfeeyU5RIAJPT3RrRsAMEZZbIQBOHz4cFZWlhbKx48fX716NR/HxcVV4F/VHoWYUiZ1Mly3DjdvCpEkCE1IT0/v3bt306ZNP/zwQ7PZLFbc39+f763dq1ev1157rYRHiTFhz55o0QIA8vKQkCBEkiA0ISIi4s6dO7///ntMTEx+fr5A5c8//3zfvn0AKlSosLA0z4RiTGgyFW8vsWyZ0uOQIPRGamrq8uXL+VhtWyiEnJycadOm8fGkSZOaNWtW8mOFVdYPG4Y6dQAgLQ38qdiBqvYJnREYGMj3Nnv55Zd5A19RzJ8//+LFiwBq164dHh5eqmOFGaViRWXvQQCLFsFsRsm+lBKEldi2bdvOnTsBODo6xsfHC1S+du3aggUL+FjNXCs5Imer8ePh6goA589jyxZlTBB6ID8/f8qUKXysbuoiiuDgYL7c6uXlNXr06NIeLtKENWtixAhlHBurFBwShB744IMPfv31VwDVq1efOXOmQOWkpCT1pbxazVQqBH9vCwiAyQQAhw7h7Fmx2gRRRm7dujVnzhw+Vjf6FILZbFb3hBk0aBCv6y0tgk3YtCn69FHGGzeK1SaIMhIaGsqzWCy3vBbCmjVrjhw5AsDV1TUmJqZsIuJXMNUX99R7htADycnJZchiKQmZmZnqQqja66kMiDdh5854/nnhqgRRRvz9/XlmTJ8+fXr27ClQec6cOdevXwfg7u5enjb4mrzLUydDFcaQk6PFqQjiYWzcuHH//v0AnJ2dY4WW+fz222/qew61/2/Z0MSEAwagfv3i/8zJQadOKGUHKoIoL5ZZLH5+frzWVhSBgYG8i0z79u3VTvhlhGlMcjIzmRjAHB3Z8eOanGLPHpaYqIkyYWgiIiL4h7x27dp//PGHQOXvv/+eKzs4OBw+fLicapqbkDH22msMYADr2JGZzSKVb99mAwYwgNWqxdLTRSoTRufKlSvqI+LKlSsFKhcWFrZq1Yorjxo1qvyC1jBhaiqrUEHx4ebNIpVzcljDhoqyv79IZcLoDH7Q8aF169aFhYUClRMeFAq5ubn9/vvv5Re0hgkZY/7+ilXq1WNZWSKVN29WlJ2c2KlTIpUJ4/Ljjz+aeNYIsG/fPoHKaWlp6rv+6OhoIZpWMmF6OqtVS3HL7NmCxV96SVF+5RXByoQRKSoqatu2LffJ22+/LVbc19eXKzdq1CgnJ0eIppVMyBhbtkyxSqVK7NIlkcqnTjEnJ0X8q69EKhNG5KMHDeFdXV0vXLggUDklJUV9179lyxZRstYzYWEh8/RUrDJ8uGDxceMU5SZNWG6uYHHCQGRkZDzxxBPcJxEREWLFezzYFrdr164CZa1nQsbYDz8oVjGZ2H/+I1L57l1Wo4YivnChSGXCWKj1Sk899dT9+/cFKm/dupUrOzo6njhxQqCyVU3IGHvrLcUq3t6sqEikclycolylCrt+XaQyYRTOnTtXsWJFbpXPPvtMoHJeXp76rn/ChAkClZn1TXjpEqtUSXHLmjUilQsKmIeHojx2rEhlwij07duX+6R9+/Zmoa+k582bx5WrV69++/ZtgcrM+iZkjIWFKVapU4fduydSedcuRdnBgf33vyKVCf3z3XffCcxiseTmzZtVq1bl4osXLxaozJFgwqwsVq+e4pbQUMHir7+uKPv4CM7OIfRMQUGBmsUyevRoseJqx4rmzZvn5+eLFWdSTMgYW7tWsYqzM/v1V5HKZ8+yihUV8U2bRCoTeuaDDz7gPqlcubKQLBaVY8eOOTxoHLhz506ByipyTGg2Mx8fxSpvvilYPCBAq+wcQp+kpaU9/vjj3CcxMTEClc1mc6dOnbhy3759BSpbIseEjLGffmIODopbvv1WpPK9e6xuXUV51iyRyoQ+mfCg2WajRo1yhb4mXr9+PVd2dnY+c+aMQGVLpJmQMfbOO4pVWrRgBQUilZcvV5RdXQVn5xB6IyUlxcnJiVtl69atApWzs7OffvpprhwcHCxQ+S/INOGNG6xKFcUtS5eKVC4qYt7eivKwYSKVCb3x6quvapHFwrQsR/wLMk3IGIuKUqxSowa7c0ek8oEDSjGx8OwcQj98+eWXGmWxWJYjfvzxxwKV/xfJJszNZU2aKD708xMszut9AdamjeDsHEIP5OXlPfPMM9wnEydOFCv+9ttvc+XWrVsXafzpkWxCxtgXXxQXBJ48KVL58uXi7JzVq0UqE3ogOjpazWK5I/Q56uDBgxqVI/4t8k3IGOveXbFKt26ClcPDtcrOIeRy48aNKlWqcJ8kJCQIVC4qKnr+QdPOIUOGCFT+J3RhQsuCwO3bRSpnZbH69RXlkBCRyoRcRo4cyX3SokULsVksK1eu5Mqurq4XL14UqPxP6MKEjLH33lOs0rix4ILATz7RKjuHkMXRo0c1ymKxLEeMjIwUqPwQ9GLCu3fZ448rblmwQKSy2cw6dlSU+/cXqUxIwWw2d+zYkfvkjTfeECseFBTElYWXIz4EvZiQMbZokWKVypWZ0Ow/DbNzCOuzbt06NYvlV6HPNpbliBs2bBCo/HB0ZMKCAtaypWKVf/9bsPiIEVpl5xDWJDs7u/6D7u5Tp04VK967d2+u3KFDB7HliA9HRyZkjO3erVVBoGV2zpIlIpUJazJ9+nTukzp16ojNYrEsRzxy5IhA5UeiLxMyxnr1UqzSoYPggsA5c7TKziGsw+XLlytVqsStsmrVKoHKBQUFLVu25MpjxowRqFwSdGdCy4LAjRtFKuflsWeeUZQnTRKpTFiHQYMGcZ+0adNGbBaLur+S8HLEkqA7EzLGJk9WrPLUU0zsAlViolbZOYTWHDhwgGexmEym/fv3C1S+e/euWo44f/58gcolRI8mzMgoLgicOVOwuHbZOYR2WGaxDB06VKy4uoF248aNxZYjlhA9mpAx9uGHxQWBYpMWLLNztm0TqUxox4oVKzTKYrEsR9wm6QOhUxMWFbHnn1esIvoPHxs/XqvsHEILMjIy6taty30yU/SjkVqO2E3eo5FOTcj+XBAo9CuAhtk5hBZMfrD9er169bKEdg1KTEzkyk5OTmLLEUuFfk3IGBs0SLFK69aCCwLj45Vs0h49km7cuCFSmhDK2bNn1SyWzz//XKCyZTniJKnL5bo2oWVBoNDXQiw/n/Xrd61Bg1elvBciSk6vXr00ymKZO3cuV65Ro4bYcsTSomsTMsamTy8uCBTb5mP37t2yMiSIEmJ5j/4rNIXKshxxiewUKr2bMDu7uCBQdKqgtFxBoiQUFBR4eHjwG/Tuu++KFR8xYgRXbtGiRYHsZGK9m5Axtm5dcUGg2NaPllnzG8Wm5xDlZtGiRWoWy3Wh+2z99NNPajnitzooqzGACc1m1qmT4sN+/QSLS6kfIx6JZRZLbGysQGXLcsT++igwNYAJGWNHjxYXBIrdDsDyHZTVKqmJR/Lee+9plMXy6aefcmXh5YhlxhgmZIyNHFlcECh2Y5wPP/xQo2wMomycOnVKzWLZLrTpUFZWllqOGKKbpkOGMaFlQaDQ5loSumsRD6d79+78drzyyitilcPDw7lynTp17umm/Z5hTMgYi45WTFi9OhO7WaqV+0wSD+GLL75Qs1hOCi11sSxHXK2nRrRGMqFlQaCvr2Bxa3ZcJv6J3NzcJk2a8BvhJ7ol+4ABA7iy8HLEcmIkEzLGtmxRTOjoyMTm+l25ckX9M6n13gPEPxEVFaVRFotlOeJ/dLY5icFMyBh79VXFh6I34WEzZszgnwCtd+Eh/pbr16+rWSxLhW7TVVRU5O3tzZWH6W+bLuOZ8ORJpSCwadOcr79OEqhstf3oiL9l+PDh/OJ7eHiIzWJZvny5ugB+SX8bVhrPhIyxyZOzO3f+zNHRuUmTJkbcmZX4XyyzWHbt2iVQ+d69e+qr4Fm63LrZkCa03KN83rx5ApWts0c58RfMZrOPjw+/7G+++aZY8YCAAK4svBxRFIY0IWNs8eLF/MoKb4917NgxjfY5IP6JtWvXapTFcvbsWWdnZy6+adMmgcoCMaoJCwsLW7VqxS/u6NGjxYqPGjWKKzdv3lzsjj/E/5KVlVWvXj1+wUNDQ8WKv/7661zZx8dHt4UyRjUh+3PL5MOHDwtUvnHjRtWqVbn44sWLBSoT/0toaCi/1MKzWHbt2qV+Qn766SeBymIxsAkZY3379uVXuX379mL/zs2bN48rV69e/bbY9BzCgt9++83FxYVf6rVr1wpUtixHHDt2rEBl4RjbhJYFgevXrxeonJeX17RpU648YcIEgcqEJW+99Ra/yN7e3mKzWBYuXMiVq1SpIrYcUTjGNiFjLDg4mF9rd3d3sQWBW7du5cqOjo4SW3HZMD/88AO/wsKzWG7dulWtWjUuvnDhQoHKWmB4E1purRoRESFWvEePHly5q/D0HLunsLDQ09OTX97hw4eLFR83bhxXFv4mWQsMb0LG2EcffcSvuKur64ULFwQqp6SkVKhQgYtv2bJFoDKxbNkyfmErVaokNovl+PHjjo6OXPyrr74SqKwRtmDCoqKitm3b8ov+9ttvixX39fXlyo0aNcrJyRErbrekp6fXqlWLX9ioqCix4i+99BJXFl6OqBG2YELG2I8//qgWBO7du1egclpaWs2aNblydHS0QGV7xt/fn19S4VksmzZt4spOTk6nTp0SqKwdNmJCxtiQIUP41ffy8iosLBSonJCQwJXd3Nysv3md7ZGamqo+5G/evFmgck5OToMGDbhyQECAQGVNsR0TXrly5bHHHuM3YOXKlQKVLbNzRo0aJVDZPnnttdf4xezYsaPYt7uzZ8/myjVq1Lh7965AZU2xHRMyxiIiIvg9EF4Q+MkYmBEAAAYHSURBVP3333Nl4dk59sZXX32lXkmxWSxXr151c3Pj4suWLROorDU2ZULLgsCgoCCx4v369ePKwrNz7If8/PxmzZrxyzhu3Dix4sOGDePKwssRtcamTMgY27BhA78Tzs7Ov/zyi0Dl8+fPq9k569atE6hsP8TGxvILKDyLJSkpSV2ZE1uOaAVszYSMsc6dO/Ob0bt3b7HKU6dO5crCs3Psgbt376pZLHFxcQKVzWZzu3btuPKAAQMEKlsHGzShZUHgN998I1DZMjtn+vTpApXthG3btjVu3LhJkyZ5eXkCZdesWcNvSsWKFc+ePStQ2TrYoAkZY2PGjOF3RXhB4KpVq7iy8OwcOyE3N1ds2W5mZuaTTz7Jb0pYWJhAZathmya8efOmWhAYHx8vUFlt112vXr39YnfxJspESEgIv9F169bVT1PtUmGbJmSMzZ8/n98b4QWBBw8ejIiI0Ge3Envj/PnzajniJ598IjucMmKzJrQsCBw/frzscAhN6N+/P7/FL774onHfG5kYY7BRtm/fzkvvHR0djx079txzz8mOiBDJnj17unbtCsBkMiUlJb3wwguyIyojDrID0JA+ffr07NkTQFFRkZoxTNgGlvd0+PDhxnUgbNuEAOLi4niu8J49e7788kvZ4RDCWLFixYkTJwC4ublFR0fLDqdc2LgJmzdvPn78eD4OCgrKzc2VGw8hhPT0dDVPOCQkRH1FYVBs3IQAIiMjeUHghQsXFi1aJDscQgCRkZF37twB0LBhw8DAQNnhlBdbXphRWbp06YQJEwC4ubmdOXPG6H847ZzU1FRPT8+CggIAiYmJb775puyIyovtz4QAxo0bx5dG79+/r7aaJQxKYGAgd+DLL79sAw6EncyEAH744Ydu3brB+MvZdo7la6ejR4+q/doMjV3MhAC6du3KX+wyxvz9/e3kT4+NkZ+fHxQUxMdjx461DQfCfkwIIDY2lqc4HTp0SN2HkDAQixcv/vXXXwFUr1591qxZssMRhh2ZsFGjRurr3WnTpt2/f19uPESpuHXrlrqjfUREhNoCzwawIxMCCAsL40uj165di4mJkR0OUQrCwsLu3bsH4Nlnn33//fdlhyMSe1mYUVmzZg3fftDFxeX06dMNGzaUHRHxaJKTk9u2bVtUVARgx44dar8228C+ZkIAI0aM4K0QcnNz1c1kCJ3j7+/PHdi7d28bcyDscCYEcOjQoQ4dOvD/8T179qhd0wl98vnnnw8ePBiAs7PziRMn1H5tNoPdzYQAXnzxxaFDh/Kxr69vYWGh3HiIh5CTkzNt2jQ+njhxou05EPZpQgAxMTG8XXdKSsrHH38sOxziH5k/f/7FixcB1K5dOzw8XHY4mmCnJnR3d1f7F4aGhqalpcmNh/hbrl69umDBAj6OiopSOybaGHZqQgBTpkzhm4ekpaWpL6AIXREcHJyVlQXAy8tr9OjRssPRCntcmFHZvHnzoEGDADg5OR0/ftzDw0N2REQxSUlJPj4+/PO5d+/eLl26yI5IK+x3JgQwcOBAfmsLCwsDAgJkh0MUYzab1RTfQYMG2bADYeczIYDjx48///zz/B3U119//frrr8uOiACAVatW8Q7Orq6up0+fVncdtEnseiYE4OXlpbbr9vPzy8vLkxsPASAzM1NdCFW/utsw9m5CWCy7nTt3bsmSJbLDIRAVFXX9+nUA7u7u9pDVZO+Po5y4uLjJkycDcHR0bNOmjbOzs+yI7Jfc3Nzk5GSz2Qxg/fr1alqFDUMmBICCgoJWrVrdvHnzjz/+kB0LATc3N5PJ1LJly4MHD6q7DtowTrID0AUVKlTYuHGju7t77dq1ZcdCoFKlSj/99FNWVpY9OBA0E/6FAwcOyA6BgLOzs7rppz1AJiQIydDqKEFIhkxIEJIhExKEZMiEBCEZMiFBSIZMSBCSIRMShGTIhAQhGTIhQUiGTEgQkiETEoRkyIQEIRkyIUFIhkxIEJIhExKEZMiEBCEZMiFBSIZMSBCSIRMShGTIhAQhGTIhQUiGTEgQkiETEoRkyIQEIRkyIUFIhkxIEJL5/5hXX1UbFbyUAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -908,7 +931,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAJAElEQVR4nO3da3byRhaG0aJXZpT5\nz6B7TMoPfe1gBBiDpPdU1d4rPxwny5ahHo4uXC7LsjQg5z/pDYDZiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwv5K\nbwD7u/zv8vX18veyfmf9goJEOJqb3uRXn93RwSmwPpPwMJd/9wnbogQeEuExLpdv4d38K1yxOwph\nIhzc9ZlSarI7Oprl72V7iYLKLotjlSM4JuRldkenYwe1GpPwMIUvUbiCX4pjwsMUC4+y7I7u7dLB\nzt7NyRuyRDgpHdYhwuP1MBsJEuG8DMMiRLir3q4H6rACER6styw5nwhnZxjGuVi/q+3c62QSXi5W\nQoxJSGutLctycRY3RIQQJsL9dLLn+YhhmCLCI/WWpQ4jPIGbb9YODzpJsy3c2aAmwh1dWpt8Qf04\nRbfJOSvbRHioTrN8NAzfaIxXiHAfgz2i3z04POIPPHTvtxci5KFz2tChs6NH6Xphnbzxk5+VFSFn\nm7m3u0S4g66H3tbRf86jA85p4xQhVUzboQj55r2LE7/1qLc5OxQhGXP2dpcIP/VodAxzlOhM6dFE\nyL+K9DZbhyL81LpqL5fLkOsmcqb0yfeH5Bkzn1rXyleK6xc97ouOtAvdF5Pwfev0W5bla+1O9fi9\nF8NQhO/Y5vdlpKVz2mycvEMR/s6T/L70uHTi+6I93mh7cUz4mv8vkBdX6gCvDCiy/QPckj8yCX9y\nuaxvFfN8+m119NBeZJVPu1MqwgfW9tZ3anp3gfa7elJZztmh3dGN9c7eaQkuy1L8LdeKjMGZifDK\nrvl9WZbu3vow6dFB4DkHh9cfy7H8vazfWb84jghba0fl96WvDuOzMdXhTW8n5LcSYWvtwPyuf0PB\nDuO9/dbnHd79CKq7sZ1TYJsrwusj+8xZh4od3iiS5Rux3Tlz8997P/mstF43TYQ3y79+Dccr0tsj\nz3dK7/7/p2zX/qaJsIYuhmEX+k1uy3XCs60d1lRtNt4deqdt5GkfYGwSBlSYh9V6e+TUFxl//+Tw\n044e+7gndlDvmDC7CdsIu8iyi438LbujMaUKJGia3dGbQzFL8LsusuxiI98wTYRNeH+MupT7NVOE\nU3rxxQeyDJoywgJnZT70oKxXL2H3OAx73OYXTRlhPTdPIL9+lLjb24PVOOYaHZ4Iqzvi0b+794zo\na2t/yyWKKk5+Js3Yr1XviwjnpcMiRFhI5aeVBo29L9pEODnDsIIpIyw8cc7ftOIdDj8G26QR8l3x\nDofnEkUJ14/1oz/u/8IMY7CZhKwMwyARhtVZ+TpMEWFS/09iPdAk+6Jt2gg94N9lGEZMGmEFNcdg\nkQ7nGYNNhCk1C1wV6XAek16i6O5lBMMY7H17dzFphFmVx+Bqn3ehf/CTX/lRU2Upwj++1tBUd/8T\nTzo0zfY110POtRdX2O63T/0xeO38oTTbGGwm4db2LXEf/Jd39FUg5xDhD67Lm/CNS08+gzXhGGzn\n746WupU/2ZivIF//Af2OwePute3hZZ3lcZpAEnU63GVLDv6k7Sreu61+PGW6/Zl1lsdpArujpa7R\nravkk42p8XdkvNHYj0otj3Nkjgkr3NDXG3C9mKa6+19392k0bqtdJEsIdvjkVwuygvhj9JkKjaOC\nv/T6+kSbe8/zfPN0ONclit8eAW6uGV7/p/02i3sqHLOcIxzhmTf057/o5qN+734ffqvEI80JHR76\nK26uGT75dBd+a4ZhWOL1hEe/gO3oO3JZ/vzD7mZ4cWOJCNuRt3XkobTw2wv3Zxn91qwSYTumwxl2\nZuhdoQjb3h1mCxz94ftcQ9+atSJsO3V4uVzMwNGM22G5CNvHHa75VShw3GXDnipG2D7o0AAc2aCP\naqWX7BvvNVT5z2Efw114LToJV7+ahwqkU6UjfJ0CJzLcTmn1CF8Zhgqczlh3d/UI29MOXYpgAB1E\n2B50WOdSBHyijwjbpkMDkGF0E2G76lCBjKSnCNtMr7ZmHp1FuBY4/AvMmEpPU+XmTQo72nKO1fl7\njXSzlLfV6ZDWNs9i6/BJbX3sjt7tzX4pY+ggwicTT4cMoHqEP+5z6pDelY7QUR8zqBvh6wUahnSt\n6Kh5YwYam/NyiWJ3b+ekQ3pUbnf0k5Dsl05niLu7UIS7vDhQh3SnSoQ7vjhQh7Po8Mkxd5WIcPdj\nOR3SkXyEB51N0eHgRhmDLR7hoeczdUgXkhGecEVBh2MaaAy2YISnXdPTIcVlInRVnfeNNQZbJMLz\nCzQMqezsCFMzUIeDGG4MtpMjTH90rg6p6LwIKxwH6rB3Q95550UYL3Clw35VeBw/Qv4ZM+fTIaXM\nGGErM5Z53ahjsE0bIdQhQjow8BhsIoQ4EVLd2GOwiRDiREhpw4/B1tpf6Q2Abya8hCtCTvVjY9u5\nN/wwHPzP42RvNPbijx14oZqEvG+b3MCpHGfkBxhGMvAwdHaUPgz8tHsR0o1ROxQhhImQngw5DEVI\nZ8brUIT0Z7AORQhhIqRLIw1DEdKrYToUIR0bo0MR0rcBOhQhhImQ7vU+DEXICLruUIQMot8ORQhh\nImQcnQ5DETKUHjsUIaPprkMRQpgIGVBfw1CEjKmjDkXIsHp5i0QRQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFM\nhBD2Dxa90kmtyWvGAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1xT9f8H8Pc2GOMiiAjIBqhcxBtpICJewBRNETW1UBOVTC3vt4zKvlGWaXaRNPNaqKnlXTE1tSglvA3kovwEEZTLBshdbhtj+/z+OIY4LnLZ9tnG+/no4YMdtp2XxovPzu1zWIQQQAjRw6YdAKGODkuIEGVYQoQowxIiRBmWECHKsIQIUYYlRIgyLCFClGEJEaIMS4gQZVhChCjDEiJEGZYQIcqwhAhRhiVEiDIsIUKUYQkRogxLiBBlWEKEKMMSIkQZlhAhyrCECFGGJUSIMiwhQpRhCRGiDEuIEGVYQoQowxIiRBmWECHKsIQIUYYlRIgyLCFClGEJEaIMS4gQZVhChCjDEiJEGZYQIcqwhAhRhiVEiDIsIUKUYQkRogxLiBBlWEKEKMMSIkQZlhAhyrCECFGGJUSIMiwhQpRhCRGiDEuIEGVYQoQowxIiRBmWECHKsIQIUYYl1Hml8tLgR8EWiRZdk7ouzFooUUiY5WfKznS70800wXRp9lK6CVHzsIQ6b17mvIfSh0l9ku70uZMqSV0tWs0sn2wxOc89b5H1Irrx0AsZ0A6A2qWotuhM6ZkYt5ju3O4AENE9IrE6kXYo1DpYQt32sOahAhQeJh7MQycjJycjJ7qRUGvhx9H2EYth4kQwMYFu3eCLLzS//pLaEiOWEZfF1fyqkargSNg+M2eCpSVkZ0NGBowfD/b2EBKiyfXbGNpIibRaUW3MNtbkepEK4UjYDhkZcPUqfPUVWFmBlxcsXAg//aThCM5GzqZs05uVN5mHhbWFcx7NUYBCwzFQe2AJ2yE5GXg8cHN7+tDDA+7c0XAEM7bZ/K7z14rWZkgzCmoLQjJDDFgGbPzfqlPw42g7VFWBhcWzhxYWUFGh+RSb+JtWi1YPShnEYrGmdZ4Wbh8OAKmSVL80PwAol5fLifxwyWFrjnVqv1TNx0MvxCKE0M6gs6KiICAAJE8PjsPx4/DOO1BURDWTsisVV0anjbY2sE7sk2hjYEM7DmoEfm5pBxcXkEohOfnpw9hYGDCAaqBGjDAbMdJsZJ4sD7cVtRaWsB0cHWH0aPjgAygqgthY2LsXFiygnUkZG9iHehyyNbS9+OTid/nf0Y6DGoElbD2hEMaNgx07AAAOHQIAcHCAwEBYuxZmzqQbrVG2hrYR3SNYwPpI/NH1yuu04yBlWMLWi4mBixchPh4AwNYWzp6FqirIy4NJk6CsjHa4xo03H7/CZoWMyIIfBZfJtTRkh4UlbD2hEADAy0t5+dSpYGkJSUmaT9QSmwWbvU29M6QZC7K07jNzB4clbL1btwAalLCsDO7fBy4XevemEuqFDFmGh3ocMueYHys59nPRz7TjoGewhK1UUgLp6cDjQb9+zy2PjQWFAgYOBK72nsbpbOS823E3ACzPXn5Pco92HPQUlrCVhEIgBDw8wNBQeTkADB5MJVTLTbecPqfLnEpFZdDDoGpFNe04CABL2GpNla2pDUXt86Pjj715ve9W310rWks7CwLAErZaU2VrdENRK5myTY/2PMpj87YXbD9Veop2HIQlbK1GS5iXBzk5YGEBvXpRCdVa7sbum/ibAGBe5rxHNY9ox+nosIStIRKBWAydO4OLy3PLmWHQ0xPYOvPvudxm+WSLyW4VbgveXCCTyWjH6dB05odGK9R95mSxnluuI3tl6mMBa6/tXtFM0Z8n/ly/fj3tOB0alrA1mtog1J29MvV1Net66OAhDofz5Zdf/vXXX7TjdFxYwtZotGyEQGxsI8t1ga+v77p16xQKxaxZs/Lz82nH6aDwesIWIwS6dIHSUhCJgM9/tvzBA3B1hW7dIDeXXri2UygUY8aMiYqKGj9+/Llz51hKn7SR+uFI2GJpaVBaCnZ2zzUQdPWzaB02m71//34rK6sLFy6Eh4fTjtMRYQlbjNkr4+2tvFzHSwgA9vb2+/fvZ7FYoaGhN2/epB2nw8ESttT39+597+OTMnq08jd0cNdoQxMmTFiyZIlMJps1a9aTJ09ox+lYcJuwpYYOHXr9+vVLly6NGTOmbqFcLq/28jJLTgaRCLp2pRiv/aRSqY+PT3x8fFBQ0JEjR9S6LolEIhKJxGJxVlaWSCQSiUTZ2dkmJiZr164doH1ThKgblrBFZDKZhYWFRCIpKiqytLSsW56UlDRgwAB3N7eklBSK8VTlwYMHHh4e5eXl+/btmzt3bjvfTSKRiMVisVicm5ubkZHBfMH8+ejRI4VCecIbY2NjiUQSERHR/lXrFpzysEXu3r1bXV3dq1ev+g0EgFu3bgFAv5dfppRLxVxcXL7//vt58+YtWbLE29u7dwuujSwpKWHGMZFIlJOTk5OTU/ewtLS0qVdxuVw+n29vb+/g4MDn8x0cHOzt7ePj4zds2NDyVesNLGGLMGXzarD3RSgUNrpcd7311ltRUVEHDx4MCgq6efOmsbExAJSUlDQ6oD148KCs6Rk9jIyMBAKBnZ0dn89n/nRycmK+6N69O4fDUXr+tGnTMjMzmVXfunWLx+Op96+qNbCELdJU2Zjlg3V8r4ySH3/88caNG3fu3OnTpw+HwxGJRFKptKknm5ub1w1ojo6OAoGg7osuXbq0dtU7duwQCoV37tz54IMPOs7xEtwmbJEBAwYkJSXFxMQMHTq0bqFEIjE3N1coFGVlZaamphTjqdzOnTvXrl1b8d+E4jwer/44VveFs7Nz586dVbvquLi4oUOHymSyU6dOTZ48WbVvrqUIepHKykoDAwMDA4Oqqqr6y2NiYgDgpZdeohVMfSZOnAgA8+fPT0tLq66u1vDav/nmGwCwtLTMzMzU8KqpwOOEL3b79u3a2lp3d3dmA6mO/m0QMtLS0s6dO2dkZPTFF1+4uLhoftts9erVEydOLCkpCQ4OlsvlGl675mEJX6zj7JVhfP/99wqFYs6cOba2tlQCsFisn376ic/nR0dHf0Hj1qsahiV8sQ61V6a0tHT//v0AsHTpUo2ttLi4WGnEs7a2Pnz4MIfDWb9+fVRUlMaSUIElfLFGS1hWVpaWlsbj8fr3708pl1rs3r27oqLi1VdffemllzSzxqtXr7700ksbNmxQWu7n5xcaGqpQKObOnVukZfe6UjHaG6XarqioiMVimZiYyGSy+ssvXboEAD4+PrSCqYNMJnN0dASACxcuaGyl//zzD4fDYbPZUVFRDfMMGzYMACZMmKBQKDQWScNwJHwBoVBICPHw8DAwMFBaDnq3QXjixImsrCw3N7exY8dqbKV+fn7vv/8+sxWqNOIZGBj8+uuvXbp0OXfu3Pbt2zUWScOwhC/QofbKMMfHV69ezX5+xqpff/11x44dlZWValrv+vXrhw0blpOTM3fuXPL8gWsHB4c9e/YAwHvvvRfP3IRH/1AeibUec8Ts8OHDSssFAgEApKamUkmlDteuXQOALl26VFRU1F8ul8udnZ0B4PTp0+pbe1ZWFnOGzbZt2xp+99133wUAFxeXJ0+eqC8DLVjCF7hz587OnTuZcxo3bNhw5syZ2tpasVgMABYWFnK5nHZAlQkKCgKAdevWKS0/efIkAPTs2bO2tlatAY4fPw4ARkZGt2/fVvpWdXU1c4nTW2+9pdYMVGAJX+DJkyfh4eHM7gpms3DhwoWxsbHOzs6jR4+mnU5lsrOzDQ0NDQ0Ns7Ozlb7l6+sLAFu3btVAjHfeeQcAXF1dG454ycnJJiYmAPDLL79oIIkmYQmb9PDhw9DQ0LpzI11dXVetWsWcI/rJJ58QQmpqamhnVJn33nsPAIKDg5WWx8XFAYC5uXlZWZkGYtSNePPmzWv43d27dwOAmZlZSkqKBsJoDJawEbdv3549e3bd7tBhw4ZFRkYyu8jPnj3LLA8PD6cdU2UqKiqY7bFbt24pfSs4OBgA3nvvPY2FqRvxDh482PC7b775JgB4enpKpVKNRVI3LOEzcrk8MjLS39+f6R6Xy33jjTca/lz+8ssvLBaLzWYfOXKESk6V27p1KwD4+voqLReJRFwul8PhZGRkaDLPrl27mBGv4X6v0tLSnj17AsCaNWs0GUmtsISEECKRSPbv39+nTx+mfubm5suXL8/Kymrq+V9++SXT0osXL2oypzooFAo3NzcAOHnypNK31q1bBwBBQUGaTzVz5symRrxbt25xuVwWixUZGan5YOrQ0UuYn58fFhbW9b85mnr27Llp06bS0tIXvnDVqlUA0KlTp7i4OA3kVJ8zZ84AQI8ePZR2flZVVTH/LNeuXdN8qroRr9FPwps2bQIAa2trkUik+Wwq14FLmJxM5s8f5enJ1G/IkCHHjh1r+V545pxG5kdBp48Wjhw5stFNXOYz4aBBg6ikIs2OeHK5nDmnx8/PT90HTjSgQ5bwzz9JQABhsQjAmSFDpk6d+u+//7bhbWpqasaNGwcATk5Oubm5Ko+pAUlJSSwWq1OnTkqDv0Kh6Nu3LwD89ttvtLIRQjZu3NjUiJefn29nZwcAGzZsoJJNhTpSCWtqyNGjZPBgAkAACI9HZs8m9+615y0rKyt9fHwAwN3dvaSkRFVJNYYZzFevXq20/MKFCwAgEAjoHoaRy+XMLK+NjnhRUVFsNtvAwKBtv0PboKS2ZNbDWeYJ5laJVgsyF1TLn845cLr0tG2SrUm8yZKsJW14245RwrIyEh5OHBye1s/WloSFkcJClbx3QUEBs2Nj5MiRmp8Joj3y8/N5PB6Hw0lPT1f61quvvgoAmzdvphKsvuZHvPfffx8AHBwcioqKNBBmSvqUoSlDH0kfiWvEvqm+i7IW1f/umpw1WMLGPHxIQkNJ585P69erFwkPJ89PFdN+WVlZDg4OADB58mQd2kT53//+BwDTpk1TWp6SksJcvaWZn+wXunjxYlMjnkwmYz6JTJ06Vd0xCmWF7Dj29YrrzMN0SfrJkuf2J2MJG4iLI7NnEwODp/UbNoxERhK1XZOWmJhoYWHB5XLDwm6qaRWqJZFImNkrGv5kL1iwAACWLGnLz5OarF27tqkRLzMzk5mReceOHWpae4GsILEq8eKTixAHUkWTJwl01BKKRCQwkBgbE1tb8vnnhBAil5PISOLv/7R7XC554w3S4IC7Ovzzzz8+PhcByPr1GlhbezHXB3l6eiotLyoqMjExYbFY99q3taxazY94x44dAwAej5eQkNDmVRTXFt+tvnv5yeVdBbvCxGELMxf63/fvm9zXPMEc4gDiYGXWSqPbRs28Q5tLqOOT/86cCZaWkJ0NGRkwfjzY28PQofDaa6BQgKUlvPsuLF2qfDtBtfHz8/vgA5g2DT75BDp3hmXLNLPaNtq2bRsArFmzRmn5jz/+WFVVNXHiRK2aiN7AwODgwYMeHh4nT57cuXMnc2VTnddff33+/Pl79+598803hUIhc9ZbQ7W1tXl5efVvQaOYrhB2FubU5IhlYhmRNbV2S46lgCvoathVSqTVimpjtnFTz2yjtv7i0ALp6QSA1J3L++GHZPhwQghZsoRs3UrKy6mE2r2bABAOhxw7RmX9LcLMzcHn85V2ftbU1Njb2wPAX3/9RStbM44ePQpNjHjV1dXMpDhvv/22SCSKjY09evRoeHh4aGjo7Nmz/f39nZyclOZGAAC/U37MKAdxYJlg2Te5r/99/4WZC8PEYbsKdkWWRsZWxpbWPj14Uy4vN403/fvJ38zDAlnB7Iez5eTZtWwd8uNoZCTh8Z49PHaMWFjQS/PMZ589/SB8+TLtKE0YP348AGzcuFFp+YEDBwCgf//+Wjuhy/z5842MjBq9mikpKcnIyKiZqdA5HA6fzx8yZMjUqVOXL1/+9ddfn4g9EV0enSHNkCgkLVn7iuwVg+4NSpekP5Y9nvBgwluPnru4sc0l1OVp8I8cgRUrIC/v6cPLl2H8eKitpZrpqZUr4fvvwdwc/vkHtO2WTffv3+/Tpw+Px8vKyrKysqr/rcGDBwuFwoiIiJCQEErpXqCqqur+/fsDBw5s+C2FQsHsubGysnJycrK3txcIBA4ODgKBQCAQODo62traNhwMW0WikKwWrf6t+DcWizWt87Rw+3ATtkmqJNUvzQ8AyuXlANCJ08mCbZHaL7UV79uG4mqLv/4iRvU2lI8dI1260EvzHLmcBAURAGJnRzR7BcKLMRfOLlq0SGn5P//8AwA2Nja6dbSzzunTp0EjMwConC5P9OTiAlIpJCc/fRgbC1pzk1c2G375BcaOhdxcGDMG8vNpB/pPSUnJwYMHWSzWsgY7jphZnpYsWaKj9yTbsmULAKxcubLhTde0He3fAu0zejQJDCSFhUQoJFZWpMF0THQ9eUI8PAgAGTSIaMkERcxFWBMmTFBanpGRweFwjIyM8vLyqARrp6SkJNDgDACqpeMlzMt7dpxw0ybaaRrx+DHp1YsAkFGjiKRFG/9qVLfz83KDXUbLly+HJiaV0Alz5swBnb3SV8dLyLh+nbz8Mpkzh3aOxqWnk27dCACZMYPQnZzt4MGD0NjOz9raWicnJwBITEykla09mjkJVifo8jZhHQMDiI+Hu3dp52ickxNcugSdO8Nvv1E+gs9MY7Fq1SoWi1V/OYfDSU5OjoyM1Nj9J1Rr27ZtEolkypQpzK8SnaPLhyjq5OWBnR3Y2GjRDpAGoqIgIAAsLSEhATRzx7G8vLy6U0NEIlFiYuL58+etrKxycnJ0dNdLo6RSaffu3fPz85Xuo6xDdPy0NYaNDXC5UFAAUikYGdFO07hRo+DYMejXT8UNLCkpycjIEIvFubm5zJ/Mw8zMzIaz1nfr1q22tlYikehTCQ8cOJCfnz9o0CAdbSDoyUgIAD16QGYmpKeDLnwgYbFgwQLYvRsAIDwcEhJg374mn1xTAyIRiESQnQ1iMWRnQ04OiMVgbX3x3LkJzdzI1sbGhs/n29vbOzg48Pl8Pp+/devWxMTEadOmMXNd64cBAwYkJSUdPnyYmRtKF+nFSAgA9vaQmQkika6U8NQp2LgR6s5Xqa6GrKznOpaVBSIRiMXPzghS4uvLl8vllpaWdnZ2fD7fycmp/heOjo6dOnVSesnIkSM9PDxOnDixa9cu5pC9rrt06VJSUpJAIHj99ddpZ2k7PSohAOTk0M7RIoTAhAmwZw988MHTJd98A5980viTDQ3Bzg4cHMDeHvh8cHQEPh/s7cHRsbetbY2hoWHL1+vk5LRnz56goKCVK1cOGTJkgNac29BmzAH6ZcuWterfQdtgCel45x2YMQPee+/pw549wcUFBAJwcACBAASCZ2Xr1g2e35dZpy0/dm+88cbbb7/9008/NX/Vj05ITU29dOmSiYnJ/PnzaWdpF30poUAAACAS0c7RUn36QK9ecOrU04fBwRAcrKFV//DDD0KhMCkpadWqVcy8hjpqy5YtCoUiJCRE6TR0naMXxwlB90ZCAFi+HL7/vqlRTo14PN7hw4eNjY13797966+/anr1KlJcXNzUSbA6B0tIzYQJkJcHSUkUVt2vX79vvvkGABYtWvTw4UMKCdpt586dlZWVAQEBWjUDQNtgCalhs2HJEqB1sGDx4sXTp08vKyubPn16TU0NnRBtJZPJduzYAQDMzQh0nb6U0M4OOBzIy9OSi3qbsm8f3L797OG8eaBQUAuzc+fOHj16CIXCsLAwaiHa5MiRIzk5Of379x81ahTtLKpA++RV1eHzCQBpcKNZ7fHoETE2JhyOFl3me+PGDUNDQzabfenSJdpZWsHLywsAfv75Z9pBVENfRkLQgU+k778P1dUwcyb07Ek7yn+8vb0/+eQThUIRHBycm5tLO06LREdHC4VCa2tr3T1FRgmWUEOuXYNjx8DYGDZsoB3leR999JG/v//jx49DQkIUFD8ctxhzgH7x4sV6cwas/pQweeDAs35+V0tKaAdphEIBK1cCIfDBB+DoSDvN89hs9sGDB21tbS9dusTsMtVmjx49ioyMNDIyUpp6VKfpTwnPGRlNunLl7P37tIM0Yv9+EArB3h4azLWrFWxtbSMiIlgs1rp1665fv047TnPCw8Plcvmbb77ZrVs32llURn9KyEzckKN9H0crKmDdOgCAzZuh6UkxKRs/fvzKlStra2tnzJhRopWfJgCgvLx83759ALBixQraWVQJS6h2X34JubkwZAjMmEE7SrO++uorb2/vrKyshQsX0s7SuL1795aVlY0ePVoPTj1/Du3dsyqTnp4OAD169KAd5DlZWcTEhLBY5KYu3KzpwYMH5ubmALBnzx7aWZTVTYRz9uxZ2llUTH9KKJFIWCyWoaGhnO5sSs97/XUCoLVzUDXiyJEjAMDj8bRt0ifmQmRXV1et+v+rEvpyZT0AANjY2BQUFOTl5dlqZhaXF7l2DYYPB2NjuHdP63aKNiMkJGT//v39+vUTCoXGxqq+AxFAdXW10mQcdV8sW7bsww8/bPRVw4cPj4mJ2b59++LFi1UeiS59uZQJAADs7e0LCgpycnK0oYQKBaxYoaWHJZq3ffv2mzdvJicnr1mz5scff2zbmxQUFIjF4uzs7JycHLFYXP+GZBUVFU29qqlN+ri4uJiYGEtLS2Z+UT2jbyWMj4/Pycnx9PSknQUiIiA2VnsPSzTD1NT06NGj3t7eO3bs8PX1ndH0DiWZTJaQkFA3oZtIJMrKyhKLxTk5ORKJpKlXmZmZOTo6CgQCPp/PfFF355auXbs2+pLvvvsOABYuXGhmZtb+v6C20bcSQmO/TUtKStavX+/l5eXl5eXi4sJS/zV85eXwv/8BAHz9Nejixevu7u6bNm1asWLFokWLhgwZ0qNHj0afVlpaOnjw4Ea/xePxGs58w+fzmT9bFUYsFh8/ftzAwGDJkiWt/YvoBL0qoUAgAABRg+vrhUIhc7cTADA3N3d3d/f09PT09Bw+fLiapotlDkv4+MD06ep4e01YtmxZVFTUmTNnpk+f/u+//zY6iUvXrl2HDBliY2PDjGP29vZ1NyRT4cbktm3bampqZsyY4eDgoKr31C609wypEnMkd/bs2UrLHzx48Pnnn0+aNMnOzk7pry8QCF577bUNGzZERcWVlKgmRkYG4fF05rBEM4qLi7t37w4AH3/8Ma0MlZWVzOwVN27coJVB3fSqhH/++ScAvPLKK808RyQSRUZGhoWFBQYG1t8CGTnyE+Z2goGBZNMmEh1NKivbGGPaNAJA5s5t48u1ytWrVzkcDpvNbngPGc3Ytm0bAAwdOpTK2jWj1YcokpOTeTyes7Nzu8Zf9UhNTe3du7erq+v9lp1BSgi5f/++UCgUCoUFBUGnTg2rvzfBwADc3cHLCwYPBi8v6NsXWnKb15gYGDECTE0hNRVaue2jpT799NPPPvvM1tY2ISFBTWdsSqXSoqKihkcscnNzMzMzFQrFnj173n77bXWsWhu0roQJCQmjR4+2tLSMiYnRhsMASiorK83MzIyNjauqqtrwcpkM7t6FW7dAKIRbt+D//g/qT29tagp//glDhjT3DgoFDB4McXHwxRdPzxfVAwqFYsyYMVFRUePGjTt//nybd2tVVFQ0esRCJBIVFhY29So2m61QKMaPH3/u3DkN7FGjonUlrKqq8vf3v379uru7+9WrVzt37qy+ZG1jaWlZWloqFosbbv61VmUlxMdDXNzT/1JS4PFjaH5yvb17YcECcHCAlBSd3CnaFJFINHDgwMLCwm+//Xb16tXNPJM5EN9wQGP+bOpVXC7Xysqq4U5UJycnDoczaNCgwsLC7777Tj9mlGmo1R9HCwsLR4wYkZKSMnLkyAsXLmjVhZUZGRne3t5yuby8vLxXr16e/xk8eDCXy23nm5eUgKVlc08oLwc3N8jNhSNHICionWvTOufPnw8MDDQwMIiOju7Vq1ejHXvw4EFZWVlT78ActFDqGPNFjx492OwmryWov2pvb2/1/P1oastpa9nZ2cOGDcvOzp48efKJEye05BbhsbGxAQEBBQUFNjY2RUVF9e+UYmZm5uHhwRwnHDx4cE/1TC8RGgqbN4OPD8TEUJhNVANWrFixdetWQ0NDmUzW1HMsLCzqbkHj4OBgb29fd0TesvnfYc1avnz5tm3bnJ2db9++zZxirk/aeO7o3bt3fX19S0pK3n33XWbyObqioqKmTJny5MkTf3//kydPstns+Pj4uP/cu3ev/l/TwsKif//+zHFCX19flWzcVlVBjx5QVAQ3b8KgQe1/P20klUr37t27ZcuW4uLiRgc0Z2dnNW2hSKVSHx+f+Pj4oKAg5hRzvdLm/apXrlxhPouuX79eBbtp2+HEiRNMkuDg4JqamoZPePz48blz5z799NMJEybY2Ngo/Qv07Nlzxgzp5s3k77/Jkydtj5GXRyIi2v5yXdHov7AGpKWlMfeZ2rdvH5UA6tOu44RnzpwxMDAAgK1bt6oqUGtt27aN2ZxYvnx5Cy9yqX+osEuXLs7OfQFI3X9OTmT2bBIeTqKjSVWVuuOjVoiIiAAAU1NT5qON3mjvwfrdu3cDAIfDOXbsmEoCtZxCoWBmrWWxWGFhYW17E7lc/n//J46IIIsXEy8vwuWS+oXkcomXF1m8mEREkLt3SW3tc68FIAsWPP16yxY9OTqv5YKDgwHA3d29So9+QargjJnPPvsMALhcriZPqqitrV2wYAEAGBgY7N27V1VvK5WSmzfJDz+QuXNJ376EzX6uk506ET8/8t575OJFQghhsUjXrqSwkBAsoaaUl5e7ubkxH3xoZ1EZ1Zy2xky8Y25uHh8fr5I3bJ5EIpk2bRoAmJiYnDt3Tn0rKi8n0dEkPJzMnk369iUs1tM2Mn1jvti4kRAsoQbFxsZyuVwWi3X69GnaWVRDNSWUy+VBQUEAwOfzM9Q8yXtxcfHw4cMBwNLS8t9//1XrupTk55PffydhYYSZ5QSAXLtGHB2JTIYl1Khvv/2W+QHIzMyknUUFVHYCt1QqHTt2LAA4Ozvn5eWp6m2ViKGzNkQAAA3lSURBVMViZqYtPp+flJSkprW0EAApKSH+/uToUSyhRikUikmTJgHAiBEjapW21HWQyqY85HK5x48f9/DwSE9PDwwMbGYKgzZLSUkZMmRIYmJi3759b9y44e7urvJVtAGte312ZCwWa+/evQKBYCibTb78knacdlNtpx8/ftyrVy8AGDVqlEQiUeE737p1y9raGgC8vb0LCgpU+M5txoyEcjlxdibz5uFIqGll//xD2GzC4ZArV2hnaRfVX0+Ynp7OXPAyY8YMVc1Od/nyZeZA7cSJEyvbfJ2fqjElJIR89x0xN8cS0rBuHQEgAgHRjt/LbaOWi3oTExOZ05cWL17c/nf75ZdfmLkV5syZQ+t0jUbVlbC0lJiZYQlpkMnIsGEEgAQEEIWCdpo2UteV9X///beRkREAbGR24bdVeHh43QkxCp39V0ZqlJVFrKwIAKF32lY7qXF6i1OnTnE4HGYbug0vVygUoaGhAMBisb7++muVx0P648QJAkCMjMjt27SjtIV655hhLrDgcDgnTpxo1QtlMhkznQGXyz18+LCa4iH9sWgRASAuLu06B58StU/09PHHHwOAsbFxdHR0C19SWVkZEBAAAKamphcuXFBrPKQnqqvJgAEEgISE0I7SapqYbW3p0qUAYGFhkZCQ8MInFxcXDxs2DAC6dOly7do1DcRDeiI5mZiYEADyyy+0o7SOJkpYW1vLnOopEAgePXrUzDNFIhFzCL5Hjx4pKSkayIb0yp49BICYmRGd+uHR0Lyj1dXVvr6+AODq6pqfn9/oc5KTk5kplvv165edna2ZYEjfvPkmASCenkQqpR2lpTQ3+W9ZWdnAgQMBYPDgweXl5UrfvXHjBjMVr5+fX2lpqcZSIX1TXk5cXQkAWb2adpSW0ugM3CKRiLm1iL+/v7TeL6rIyEgTExMAmDx5sj5drInouHGDGBoSFovExNCO0iKangY/LS2NmVhp1qxZzMH3/fv3MyfEhISEyGQyDedB+unbb8lXXxEduacvhTv1xsbGvvLKKxUVFe+//z6fz1+1ahUhJDQ0dNOmTRpOgpBWoFL9P/74o+5WW2w2e/v27VRiIP0nEpHAQGJsTGxtyeef007TOJVdT9gqr7zyipeXl6GhIZvNfuedd/TvLuRIW8ycCRwOZGfD2bMQHg779tEO1AgKH0crKiqmTp16+fJlHo8nkUgMDQ0jIyPHjRun4RhI/2VkgLMzpKSAmxsAwEcfQXQ0REfTjqVM0yNhcXHx2LFjL1++bGtrGxMTExoaKpPJpk2bdu3aNQ0nQfovORl4vKcNBAAPD7hzh2qgxmn0dtmPHj0aN25campqz549L1686Orq+vLLLxcWFv7000+TJk2Kjo7u06ePJvMgPVdVBRYWzx5aWIAaZl1pP82NhMnJySNGjEhNTXV3d//3339dXV0BgMVi7dq1a8qUKUVFRWPHjs3KytJYHqT/rK2htPTZw7Ky5zqpNTRUwitXrgwbNiwnJ2fkyJHR0dH8evew5XA4hw4dGj58eE5OTkBAQHFxsWYiIf3n4gJSKSQnP30YGwsDBlAN1AQN7IE9ffq0sbExAEyZMqW6urrR55SWljJzGXp7e1dUVGggFeoQRo8mgYGksJAIhcTKimjltalqL2FERARz05glS5Y0P+9TTk5O9+7dASAwMBBPnUEqkJtL8vKeHSfctIl2oMapt4R1J8GEhoa25Pn3799nbl02e/ZsnFEGtUtpKenUiYwaRZr48KU91FVChULB3GGcw+Hs3Lmz5S+8efOmmZkZAHz00UdqyoY6hK+/JgBk7FjaOV5MLSWUSqXTp08HACMjo6NHj7b25efOnWNOavvuu+/UEQ/pv9pa0rMnASDnz9OO8mKqL2F5eTlzU4rOnTtfaevUyAcPHmSxWCwWa//+/aqNhzqEI0cIAOnVSycupFBxCfPy8jw8PACgW7du7bxN2ubNmwHA0NDwjz/+UFU81FH4+BAAsmMH7RwtosoSZmRkMIfgnZyc0tLS2v+Ga9asAQATExOc8Qm1glBIAIilJdGRY10qK2FSUhJzCH7QoEFNzSLTWgqFIiQkBAC6du2K8z6hlpo+nQCQDz+knaOlVFPCqKgoc3NzABg1alRZWZlK3pNRU1Mzfvx4AOjZs6dYLFbhOyP9lJNDDA2JoSHRnbnCVFDCkydP8ng8AJg2bZpqb4fGqKysHDp0KAD079+/uLhY5e+P9Mr77xMAMmsW7Ryt0N4S/vDDD8wNW5YtW6aqG6E1VFhYyFxg4efn19SJbwiRysqnN4e5eZN2lFZoVwmZE2JYLFZYWJiK8jQpOzvb0dERACZNmoQntaHG/fADASDDh9PO0TptLGFtbe0777zDnBCze/du1WZqyt27d7t06QIACxcu1MwakS5RKEjv3gSAtPLuQ9S1pYQSieSNN95gTog5fvy4yjM148aNG6ampgCggbEX6ZizZwkA6d6d1NbSjtI6rS5hSUkJM6G9paVly2+0pEJnz55lLssIDw/X/NqR9ho1igAQHTzVsXUlzM3NZaayt7OzS0xMVFOmFzpw4ACLxWKz2W04MRXppYd37lS5uZFOnYgO3kOhFSVMT093cXEBgD59+mRmZqovU0ts2LABALhc7qVLl+gmQdrgrbfeAoD9n3xCO0hbtLSEQqGQudLPy8vr8ePHas3UQsylUubm5nFxcbSzIJry8/N5PB6Hw3nw4AHtLG3R0hIyN+4MCAiorKxUa6CWUygUc+bMAQBra+vU1FTacRA1YWFhADB16lTaQdqopSUUi8Vr166tqalRa5rWqqmpefXVV5lTxnNzc2nHQRRIJJJu3boBwNWrV2lnaSMKM3CrVlVVlb+///Xr11966aUrV6507tyZdiKkUT///PPbb7/t4eERFxdHO0sb0bkXhQqZmJhERka6ublZWVkxJ9ChDmXr1q0AsHr1atpB2k7nR0KGSCSytrbmcrm0gyCN+vPPP8eMGcPn8x8+fKi7//c1Og2++ggEAtoREAXh4eEAsHTpUt1tIOjNSIg6oLS0tN69exsZGWVnZ1tZWdGO03a4EYV01ZYtW5jDVDrdQMCREOmokpISBweHqqqq5ORkXb+ZF46ESCft2rWrsrJy3Lhxut5AwJEQ6SKZTObs7JydnX3p0qUxY8bQjtNeerJ3FHUQNTU1YrE4IiIiOzu7X79+/v7+tBOpAJYQaR2pVFpUVJSbm5uRkSEWi+t/kZmZKZfLAaBLly6+vr4sFot2WBXAj6OIjvLy8uzs7JycHLFYnJWVJRKJRCJRVlaWWCwuKipq6lWGhobdunUzNja+f/++paVlQkICM/OQTsMSIjWqrq5udEDLyMgoKSlp6lVcLtfKyorP5zs5OdnZ2dX/wtHR0cDAgBAyZcqUM2fOeHt7R0dHM7cP0l1YQqQCiYmJmZmZdQNadna2SCTKycmprq5u6iWmpqaOjo58Pt/e3t7BwYHP5zs4ONjb2/P5fObK1eaVlJQMHDgwKyvr448//vzzz1X6t9E0LCFSAR8fnxs3bjRczuPx6o9j9Yc1Ozu7dm7RRUdHv/LKK4SQixcv6vQeGiwhUoHQ0NB79+4pDWiOjo4mJiZqXe+nn3762Wef2draJiQkMFcV6iIsIdJhCoVizJgxUVFR48aNO3/+vI7uLMUzZpAOY7PZBw4c6Nq16x9//LFlyxbacdoIR0Kk886fPx8YGGhgYBAdHe3t7U07TqvhSIh0XkBAwNKlS2Uy2axZs548eUI7TqvhSIj0gVQq9fHxiY+PDwoKOnLkCO04rYMjIdIHRkZGR48e7dSp09GjR/ft20c7TutgCZGecHFxYSZ9Wrp0aUpKCu04rYAlRPojJCQkODi4srIyKCiomZN1tA2WEOmVHTt2uLm53blzJzQ0lHaWlsIdM0jfxMXFDR06VCaTnTx58rXXXqMd58VwJET6xtPTc+PGjYSQefPmZWZm0o7zYjgSIj1ECHnttdciIyNHjBjx999/czgc2omagyMh0kMsFmvv3r18Pj86Olr7L3TCkRDprStXrowePZoQcvny5VGjRtGO0yQcCZHe8vPz+/DDD5kJggsLC2nHaRKOhEifyeXyMWPG/P333wEBAb///rt2XuuEIyHSZxwO58CBA1ZWVufPn9+2bRvtOI3DkRDpv99//33SpElcLvfatWseHh604yjDkRDpv8DAwEWLFkml0unTp5eXl9OOowxHQtQhSKXSIUOGJCQkzJ07V9sus8ASoo4iLS3N09OzvLz8wIEDs2fPph3nGfw4ijoKV1dXZh6axYsXp6am0o7zDI6EqGMJDg4+dOiQh4fHtWvXjIyMaMcBwJEQdTQ7d+7s1avX7du3P/zwQ9pZnsKREHU4t27dGj58eG1t7e+//x4QEEA7DnA+/fRT2hkQ0iiBQMDj8QBg8eLFZmZmtOPgSIg6JObHXkvOYsMSIkQZ7phBiDIsIUKUYQkRogxLiBBlWEKEKMMSIkQZlhAhyrCECFGGJUSIMiwhQpRhCRGiDEuIEGVYQoQowxIiRBmWECHKsIQIUYYlRIgyLCFClGEJEaIMS4gQZVhChCjDEiJEGZYQIcqwhAhRhiVEiDIsIUKUYQkRogxLiBBlWEKEKMMSIkQZlhAhyrCECFGGJUSIMiwhQpRhCRGiDEuIEGVYQoQowxIiRBmWECHKsIQIUYYlRIgyLCFClGEJEaIMS4gQZVhChCjDEiJEGZYQIcqwhAhRhiVEiDIsIUKU/T+75buP/xWOZQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -920,7 +943,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAGaUlEQVR4nO3d0XLaRgBAUej0j9L/\n/4L6m+gDGeoaAm7Q6kqrcyYP6UzGXtZ7tZKg8vlyuZyAzh/1AODoRAgxEUJMhBATIcRECDERQkyE\nEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBAT\nIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE\nRAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQI\nMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDER\nQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJMhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHERAgxEUJM\nhBATIcRECDERQkyEEBMhxEQIMRFCTIQQEyHE/qwHwHvO559/uVzScfD7RLhn5/O/7X3+O7vidBRi\nB9oJz7czt0VdDr//mNg3HSXC8/k86Ic67ivvgol931EinNPl4sbMBA5xTTj0mHq5XAadj71w/aaX\ny88/xRjmnNjVHSJC2LL5T0fvj9bvH7+/fIXrMfsgFzA3X17yUrvWASd28lc4osDRX/n7I/jPdeC6\n7xOu+WKn79DpKMRmjnDoZnV/2+A4NxJW3pqmn9iZI4RdmDbCFa7ZjrkZJldoc0/snBGutlDCDj/+\nfvafg4T3SCbucM4I701/h439mjDC/LbBrMfs/EA268ROGOG9fPXAE7NFmLyHfoTNcCMHsvkm9jRZ\nhJu6bTDTctlIgVczTezVVBHe29TqgYfmWaMPe1s5wv4DpQNs8yVsc1S/Z+adcKafExObJMKN9Dbf\nleFGJvbe3if2sxki3MKJ6M1MHW62wKv9TuwXM0QIu7b7CDe1DV7NsRlufBu82uPE3tt9hKxjI2t9\nI8NYVna0+/Zkvvh3W9sGnwzjmwvo71f/P8SPH89e3cfH6+/y11+vh7HBif3VAL43sa9HXr24Bab1\n4S9EuD2P78s/WFy+Mr5p3Dhv1T2P8//a4Hue61x63K/nlyv8TUOetvZ5oCt0eGQfH+dl23uiffbZ\nuo+WerFcl13Py1wTns8//1zdj2/cw2l3cWk+dAF9fJy/cwr6fx15Yu+X68sV/o5Rp6Onu23wyCel\nKwxvxJa4nTvPa47k83J9cjp6Wm4/HHV39H580ZPaexs/QDzxcDPcxQ75vpfLdcFNZdQ14enRleu4\npbjZRzWPHtWguzI3W5jYakN+0uFthS8yhC0u3N+Tr5WHht4U/RzeuDs0+UlpPoDR5nmzfoOnSXMs\nlHZipy/wNFOEp3q5fDHTQqk+iHeEAk+TRciaNnXI27XZItzIypjvaL3+xB5kGzzNF+FpMx0ewcpT\nPWWBpykjzM26VtZMbtY5fGjal1r9FNf7vtEvCV3ng90b/Pj4OHZC3rX4Djlxbw9NG2FyZXiE1WNi\nFzdthCe3DYYZ+rbhoU5Er2aOEHZhyAe4t+Ph54+XOmZ//rLTH62/uJ/YRT7qfcBt8DR9hKdfLJdw\nPBN7f2IPWODJ6egiDrJWvvChiKUcZfWM6+SYBd6Y2PfZCSF2lIPNadhzY48zgb9iYt90oAhhm5yO\nQkyEEBMhxEQIsfk/MTO5QU9mZ0Ui3LMRz2RndU5HISZCiIkQYq4J9+zzryxxQbhbItw57e2f01GI\niRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQ\nYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoj9A8YR7rOnyLmfAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAUl0lEQVR4nO3df1iN9x/H8fcp/SAZk8zv1mzRNhPbaH5c4mu2+VlM5EeF6zuENWsSXehKirDyY3XNmFyzGobMtbFZl6Ehme98J22WkS8iGqNWqvP5/nH73s63c5Bz7vu8z328Hn+5Pm3355bzvM+v+/7cOiEEAQAfB+4dAHjcIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBkiBGCGCAGYIUIAZogQgBki1Kz166lTJ3ruOYqL494VsIhOCMG9D/Do/viD+valEyfIzY169KBVq6hfP+59AjPhmVCbcnJo0CDy8KCGDWnsWNq3j3uHwHyIUJvKyqh587t/9vCga9dY9wYsggi1qUULKi29++fSUvL0ZN0bsAgi1Kb+/WnvXiotpcpK2rKF3nyTe4fAfA24d0AVNTU1ERERKm28S5cuU6dOdXR0VGn79dK+PcXHU58+pNdTWBj5+zPuixCipKRk0aJFKm1/4MCBgYGBzL9wVQm7k5ub+9xzz6n3G/Px8fH19a2oqOD56xUWithY8dln90ZKS0VsrEhN5dkfITZu3Pjiiy+q9wv38/MLCAjQ6/Vcf0G12dtXFHq93t/fPy8vb/DgwUOHDlV8+0KIlStXnjlzJi4ubsGCBYpv/+G++oqGDaMhQ+irr+6OFBZS587k40OFhdbfndu3b/v4+Fy6dCk8PLxHjx6Kb7+ysjI+Pv769euZmZljxoxRfPs2gfsooLD169cTUZs2bW7fvq3SFIcOHdLpdA0bNjx37pxKUzzIrl2CSAwZcm/k9GlBJHx8GHZGiLlz5xJRz5491XumWrduHRG1bdtWvX9TXnYV4V9//dWqVSsi2rx5s6oTjR49mohCQkJUncU0W4qwqKjI1dVVp9MdPXpUvVlqa2tfeeUVIlq4cKF6szCyqwjnzJlDRP7+/mq/fyguLm7UqJFOpztw4ICqE5lgSxGOGDGCiMLCwtSeKDc3l/PVh8rs59PRs2fPpqamOjg4pKSk6HQ6Vedq167d+++/Hx8fHxkZeezYMQeHx/GbnpycnJ07dzZu3DghIaHOj/bv33/s2DGzt+zi4jJr1izDkddee2306NFffPFFTEzM559/bvaWbRT3UUAxw4cPJ6Lw8HDrTFdRUdG+fXsi2rBhg3VmvMs2nglramq6dOlCREuWLDH+6XvvvWfJY9Ld3d14mxcuXHBzcyOiH374Qf2/n1XZyTNhTk5Odna2u7u74VH55MmT4eHhK1as6Gfxyc01NTVpaWlZWVn79+93cnIiooYNGy5ZsmT8+PExMTFBQUFPPPGEhVNoS3p6+smTJ729vU32FhAQYMnXeq6ursaDbdu2jYqKiouLi4yMzM/Pt6tXH9xHAQXU1NRI31MlJSUZjg8cOJCIIiMjLZ/izp07Pj4+RLRy5Up5UK/X9+nTh4iio6Mtn6K+bOCZsKyszMPDg4i2b99utUmFEBUVFR06dCCiTz75xJrzqs0eIly9ejUReXt7V1ZWyoNbt24loieffPLatWuKzLJ7924iatKkyeXLl+XB48ePOzg4ODs7//bbb4rM8nA2EOHMmTOJqH///labUSa9IfT09Lxx44b1Z1eJ5iOUj8o7d+6UBysrKzt27EhEaWlpCs715ptvEtE777xjOBgWFkZEI0aMUHCiB+GOsKCgwMnJydHR8eeff7bOjHVIrz7mzJnDMrsaNB/hjBkzjI/KixcvJqLnn3++urpawblOnz7t5OTk4OCQn58vD5aUlDRp0oSI9uzZo+Bc91Odt6dq1GuVCdPkkZoLv1aNeq1yZqAVZhdCvPHGG0Q0ffp060xn7KeffpJeffz6669c+6AsbUd46tQp6ah88uRJefDy5ctSFd9++63iM0ZGRhJR7969Db+KTExMJCJfX987d+4oPmMdN27sys+nM2fuPRP+/ffp/Hz65RdrPBNmZ2cTUbNmzUpLS60w3f1MmjSJiIYNG8a4DwrSdoSDBg0iohkzZhgOTpgwgYhGjhypxox//vlnixYtiGjr1q3yYFVV1bPPPktEq1evVmNSQ4wRVlVVSWfGp/KdLC65cuWK9HH0N998w7snitBwhDt37jQ+Kh8+fFin07m4uJw5c0aledPS0oioXbt25eXl8uCOHTuknVHqc6D7YYxw2bJlRNS5c2crPOE/1NKlS21nZyyk1Qjlo7Lhk49er5dO5J8/f756U9fW1nbv3p2I4uPjDcdff/11Ipo5c6Z6Uwu+CG3tyUd+AKxatYp7Xyyl1QiTkpKMD4QZGRlE9NRTT928eVPV2Q8ePKjT6Ro1anT+/Hl58NSpUw0aNKjzBlVxXBFOnjyZiIYOHarqLI/E5EshLdJkhCUlJdJR2fADyVu3brVu3ZqINm3aZIV9GDlyJBFNmDDBcFC6nF/VL9BYIrTZDySlDwUiIiK4d8QimowwPDyciIYPH244OG/ePCLq3r17bW2tFfbh/Pnz0oUUBw8elAfLysqaN29e50tLZbFE2LdvXyL64IMP1JvCPOxfWipCexGaPCqfPXtWurDNMAm1zZ8/3zj7VatWGZ++oyDrR5iZmWnLJ6kwnr6jFI1FKJ+uWeeEiaCgICKaOHGiNXemvLxcupBi48aN8qB8IuvSpUvVmNTKEdr+6ZryKVM7duzg3hczaSzCzZs3Gx+Vc3JyiKhx48YXL1608v5s2rSJiFq2bGn4UdC+ffuIyN3d/dKlS4rPaOUIFy5cSER+fn41NTVqbF8R8snDf//9N/e+mENLEcpH5fXr18uD8oVtCQkJ1t8lvV7fu3dvIoqJiTEcHzZsGBFNmjRJ8Rlv3TpQUNCtuPjepSFVVX8UFHQrKlL+5AStXMInv/pITEzk3hdzaClCaXUzPz8/w/dgH330ERE9/fTTXEdB6dq2OhdS/P777y4uLg4ODqouvqI2aXWzMWPGcO/Iw33//fdcr4YsV68IT5wQvXrd/XNoqDA4YUucOCF0OiF9RBId/X8/UtaFCxeMl3WR3w9s27ZNrYnrYeLEiUQUFBRkOKjygje1xcUzCwq6FhR0LSoaVVur/AHoxx9/1NayLqoueGP8OH9AFI9KgcuTvbzoww8t38xDREVFVVRUjBkzRvpgRrJ79+7r16/369dP+taOS2JiYuPGjb/77ruLFy/Kg7Gxsa1atTp8+HBWVpbiM5aX51dUnOjc+afOnU84O3coLz+i7Pb1ev27774rhJgzZ470FsD2rVixwsXFZdOmTXl5eWpsX73HuQLLW/ToQf/6F12/buJHL7xAp0495H/39NRfvfrwpRDc3NxcXV2lE2VkEyZM6NixI/vSEq1bt87KyurWrZu04KLE3d09Pj5+ypQpoaGhISEhD91IixbNv/nG1C/RiJubv7d3ZnV1SXn5ETe3Hm3bLr99+8fjx+u1ttWNG73+8Y/c+vyXrq6unp6e0vO5Jnh7e0+fPj0lJaWeaxC/+GKvf//7UH3+y7AwevfdBz3OLVTfZ8L8fPLyIi8v2rat7o+EoH/+k9LSFN4zo1lMrxTu7+/v6+ur7tz1MHjwYMMC1ebs3OGZZ74sK/v89OlXi4un6fUVVps6Ozu7VL4hFJ8tW7bcunXLmjMaP84fEMWjbrpeL4gf8J4wOFhUVoqXXhLvvafie0INfUggkVcizszMVGeGu281L1z44D//mafspmtra1999VUiWrBggeF4bGwsGa0tYH1Hjx7V6XReXl6GZ0QUFRWp92GY8ePctt4TEpGLCwUF0e7dimzMtOTkZDc3t6ysrAMHDqg4jXLi4+MvX77s7+8fHBys+MZLS9cWF08nEkTk6OgmxB1lty8v35qcnHzu3Dl5fNy4cU5OTuvWrTt+/LiyM9afEGL27NlCiJCQEBcXF3l89uzZVVVVoaGh0uFDDWo9zut5GKgT/dWrIiREREaKsDARHCyEEFevCldXFZ8JhcEXx9Y5O9QS8lcUeXl5amy/trb87Nlxv/zSqaCg65kzQ6qrVbmMYOzYsUQULP0D/4+0xmGvXr24bpNk8gQJ6SsKlU6QEP97JhQGj/MHRPGoy9+Y+T1hUZGQLpodPNi8DZjD9k+hkkk3hJo8ebLiW2b5sn7//v3y4M2bN1u2bEn/v7aA1cinCmZkZMiD91vz0srMjsKiL+tTUkR6uiUbeGSaWPHOnk5bk2792bVrV8PT1kyuLWAdLCfNPxIzojAzQr1eREcL6y79epfNXlYjqa6ufuGFF4ho2bJlamzf+idwe3l5EdG6devkwfutLaA2rsvH6snsKMyMMDNT9OwpoqNFdLSw8uliNnuBqSQ1NZWInnnmGbu5lEk62aDOqw+TawuozeSF1CbXvGRhdhRaOndUZrMr3l2/fl06KmdnZ6s0BeNFvVFRUYaDo0aNIqLx48erN68h6VoZ4yVFjNe81BxNRmhriw7Jpk+fTkQDBgxQbwqu5S0cHR2dnZ0LCwvlQfkmjVa4kLqmpuall14iosWLFxuOm1zzUnM0GaGwyRXvpIWeGjRoYJcLPU2ZMoWIhhguv3+fj0nU8OBlJrHQEw8bXPFOWvJw1qxZqs5iU0semlxbQHHsCy6rTasRCptZkl2yfft2svfFf5OTk41ffZj86lxZJm89YHLNS43ScITCZla8k4/Ka9asUXsuW1gGPyUlRR6839oCSrnfTXiM17zULm1HaCMr3i1ZsoSIfH19lb0JlEm8N4TZtWuX8asPk2sLKEW6Hd3UqVMNB02ueald2o5Q2MCKd/Kt0fbu3WuF6Wzk1mjTpk0zHAwNDSWiwECF90G6MWvTpk2vXr0qD8o3ZrXNL4rNoPkI2Ve8U+nxd182eZNQNY5E8i3KP/zwQ3mQ5xblKtN8hEKINWvWENOKd4/n7bJnzZpFRAEBAYaDCQkJyr4mX758ORF16tTJ8KMXk2teap09RMi14p38mcTcuXOtN6sNRCi/+vjyyy/lQfnTqbVr11o+xZUrV5o2bUpEX3/9tTxocs1LO6DAGjPsHB0dU1JSBgwYkJCQMHHiROm2MIaOHj26zbIVCBYsWODu7l5ncPPmzYcOHWrZsmVMTIwlG9ecZs2axcXFRUREREVFvfXWW66urkTk7OyclJS0du1aw5W4zObm5jZjxoyCggLpgxlJUlLS+fPn/fz8wsLCLJ/ChnAfBRTzgBXv0tPTLfwtGV+UJH9P/emnn1rjryezgWdCwbHmsnyWnOGal/bBHp4JJStWrNizZ09GRsa0adPqLHDQs2dP6S6zZpM+dTCUmJhYXFzcrVs3adHRx4306qN///6JiYlhYWHGrz4UJ615GRISosgzrW3hPgooKTo6mlRcb/cea567XJdtPBNKAgMDiSg0NFTtiXJzc7W1EvEjsasI5QXOPvvsM1Unevvtt4lo3Lhxqs5imi1FWFRUJN2R7siRI+rNUltb+/LLLxPRokWL1JuFkV1FKITYsGEDEbVp0+b27dsqTXHo0CHpqGzN61nvsaUIhRDSh1I9e/ZU79XHxx9/TERt27ZV79+Ul/28J5SEhoamp6fn5eUFBwdLqy0pSwixcuVKIURMTIz0wcxjbt68eRkZGUeOHJk8eXI9l75+JJWVlfHx8US0fPlyadUpO8R9FFBebm6udJ6xSnx8fHx9fSsqKnj+eoWFIjZWGL7eLi0VsbEiNZVnf4TYuHGj9D2tSvz8/AICArhWWLQCnbjP8vKaVlNTExERodLGu3TpMnXqVEfHh98/4zEhhCgpKZHWZVPDwIEDAwMD7fgXbp8RPhbWr6fkZNLradw4WriQe2/AfIhQm/74g/r2pRMnyM2NevSgVauoXz/ufQIzKXMvCrC2nBwaNIg8PKhhQxo7lvbt494hMB8i1KayMmre/O6fPTzo2jXWvQGLIEJtatGC5JsElpaSpyfr3oBFEKE29e9Pe/dSaSlVVtKWLWRwqQFojr19Wf+4aN+e4uOpTx/S6yksjPz9uXcIzIdPRwGY4eUoADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMAMEQIwQ4QAzBAhADNECMDsv/gMeV7mM17WAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -956,7 +979,7 @@ "metadata": { "id": "apAo3BJlc_9o", "colab_type": "code", - "outputId": "9b05ab5f-8c4b-45eb-f626-03240816dbae", + "outputId": "9fa46804-1eda-4fc2-94ae-6eb8e9378683", "colab": { "base_uri": "https://localhost:8080/", "height": 119 @@ -975,11 +998,11 @@ { "output_type": "stream", "text": [ - "TIMING: dataset construction took 0.046 s\n", + "TIMING: dataset construction took 0.043 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.011 s\n", + "TIMING: dataset construction took 0.010 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.014 s\n", + "TIMING: dataset construction took 0.010 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -1030,7 +1053,7 @@ "metadata": { "id": "OG3FfI20c_9u", "colab_type": "code", - "outputId": "991bf436-1fd6-4ad1-bdf5-bd85253724e9", + "outputId": "e051ad14-72f6-485e-9b45-1a52a44d69bc", "colab": { "base_uri": "https://localhost:8080/", "height": 51 @@ -1049,8 +1072,8 @@ { "output_type": "stream", "text": [ - "computed_metrics: [0.1455729054263113]\n", - "{'r2_score': 0.1455729054263113}\n" + "computed_metrics: [0.15642379593769684]\n", + "{'r2_score': 0.15642379593769684}\n" ], "name": "stdout" } @@ -1071,7 +1094,7 @@ "metadata": { "id": "pT9oo7rUc_9x", "colab_type": "code", - "outputId": "e567ea92-e5cf-4d00-c4ca-8e0210d2bb88", + "outputId": "416935f3-1514-4053-d236-da720aea32f7", "colab": { "base_uri": "https://localhost:8080/", "height": 765 @@ -1099,48 +1122,48 @@ "text": [ "Fitting model 1/8\n", "hyperparameters: {'n_estimators': 10, 'max_features': 'auto'}\n", - "computed_metrics: [0.13866099937883025]\n", - "Model 1/8, Metric r2_score, Validation set 0: 0.138661\n", - "\tbest_validation_score so far: 0.138661\n", + "computed_metrics: [0.09665505290123866]\n", + "Model 1/8, Metric r2_score, Validation set 0: 0.096655\n", + "\tbest_validation_score so far: 0.096655\n", "Fitting model 2/8\n", "hyperparameters: {'n_estimators': 10, 'max_features': 'sqrt'}\n", - "computed_metrics: [0.2538575265438803]\n", - "Model 2/8, Metric r2_score, Validation set 1: 0.253858\n", - "\tbest_validation_score so far: 0.253858\n", + "computed_metrics: [0.23579449650480744]\n", + "Model 2/8, Metric r2_score, Validation set 1: 0.235794\n", + "\tbest_validation_score so far: 0.235794\n", "Fitting model 3/8\n", "hyperparameters: {'n_estimators': 10, 'max_features': 'log2'}\n", - "computed_metrics: [0.1297733089466333]\n", - "Model 3/8, Metric r2_score, Validation set 2: 0.129773\n", - "\tbest_validation_score so far: 0.253858\n", + "computed_metrics: [0.34247837589159946]\n", + "Model 3/8, Metric r2_score, Validation set 2: 0.342478\n", + "\tbest_validation_score so far: 0.342478\n", "Fitting model 4/8\n", "hyperparameters: {'n_estimators': 10, 'max_features': None}\n", - "computed_metrics: [0.1033216553203602]\n", - "Model 4/8, Metric r2_score, Validation set 3: 0.103322\n", - "\tbest_validation_score so far: 0.253858\n", + "computed_metrics: [0.08090864929431707]\n", + "Model 4/8, Metric r2_score, Validation set 3: 0.080909\n", + "\tbest_validation_score so far: 0.342478\n", "Fitting model 5/8\n", "hyperparameters: {'n_estimators': 100, 'max_features': 'auto'}\n", - "computed_metrics: [0.14669594256297458]\n", - "Model 5/8, Metric r2_score, Validation set 4: 0.146696\n", - "\tbest_validation_score so far: 0.253858\n", + "computed_metrics: [0.16336185759403687]\n", + "Model 5/8, Metric r2_score, Validation set 4: 0.163362\n", + "\tbest_validation_score so far: 0.342478\n", "Fitting model 6/8\n", "hyperparameters: {'n_estimators': 100, 'max_features': 'sqrt'}\n", - "computed_metrics: [0.2987059189222484]\n", - "Model 6/8, Metric r2_score, Validation set 5: 0.298706\n", - "\tbest_validation_score so far: 0.298706\n", + "computed_metrics: [0.27579222554127303]\n", + "Model 6/8, Metric r2_score, Validation set 5: 0.275792\n", + "\tbest_validation_score so far: 0.342478\n", "Fitting model 7/8\n", "hyperparameters: {'n_estimators': 100, 'max_features': 'log2'}\n", - "computed_metrics: [0.29910307975871175]\n", - "Model 7/8, Metric r2_score, Validation set 6: 0.299103\n", - "\tbest_validation_score so far: 0.299103\n", + "computed_metrics: [0.24703294022193945]\n", + "Model 7/8, Metric r2_score, Validation set 6: 0.247033\n", + "\tbest_validation_score so far: 0.342478\n", "Fitting model 8/8\n", "hyperparameters: {'n_estimators': 100, 'max_features': None}\n", - "computed_metrics: [0.1428007486712679]\n", - "Model 8/8, Metric r2_score, Validation set 7: 0.142801\n", - "\tbest_validation_score so far: 0.299103\n", - "computed_metrics: [0.9424213526630559]\n", - "Best hyperparameters: (100, 'log2')\n", - "train_score: 0.942421\n", - "validation_score: 0.299103\n" + "computed_metrics: [0.16150468003802176]\n", + "Model 8/8, Metric r2_score, Validation set 7: 0.161505\n", + "\tbest_validation_score so far: 0.342478\n", + "computed_metrics: [0.9294923903685178]\n", + "Best hyperparameters: (10, 'log2')\n", + "train_score: 0.929492\n", + "validation_score: 0.342478\n" ], "name": "stdout" } @@ -1161,7 +1184,7 @@ "metadata": { "id": "TS0-7gVYc_90", "colab_type": "code", - "outputId": "c8913bde-27b4-4ee1-9905-4a953c7eac40", + "outputId": "add9a488-30f6-4c48-c9c2-2d689f18f875", "colab": { "base_uri": "https://localhost:8080/", "height": 479 @@ -1191,31 +1214,31 @@ "output_type": "stream", "text": [ "Fitting model 1/1\n", - "hyperparameters: {'learning_rate': 0.0002473807343696684, 'decay': 2.0100536048962377e-05, 'nb_epoch': 20}\n", + "hyperparameters: {'learning_rate': 8.919202494973016e-05, 'decay': 1.6763602453067613e-06, 'nb_epoch': 20}\n", "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "If using Keras pass *_constraint arguments to layers.\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", - "computed_metrics: [0.20106845265671158]\n", - "Model 1/1, Metric r2_score, Validation set 0: 0.201068\n", - "\tbest_validation_score so far: 0.201068\n", - "computed_metrics: [0.6660189147153563]\n", - "Best hyperparameters: (0.0002473807343696684, 2.0100536048962377e-05, 20)\n", - "train_score: 0.666019\n", - "validation_score: 0.201068\n" + "computed_metrics: [0.06523513916253021]\n", + "Model 1/1, Metric r2_score, Validation set 0: 0.065235\n", + "\tbest_validation_score so far: 0.065235\n", + "computed_metrics: [0.37744743198346]\n", + "Best hyperparameters: (8.919202494973016e-05, 1.6763602453067613e-06, 20)\n", + "train_score: 0.377447\n", + "validation_score: 0.065235\n" ], "name": "stdout" } @@ -1236,7 +1259,7 @@ "metadata": { "id": "s8TqBD6pc_94", "colab_type": "code", - "outputId": "0bba718d-2194-4091-b499-8c935d4cdb0c", + "outputId": "1e1cafee-8560-40c9-ec9c-e1fd513bca95", "colab": { "base_uri": "https://localhost:8080/", "height": 51 @@ -1252,8 +1275,8 @@ { "output_type": "stream", "text": [ - "computed_metrics: [0.35314636080523587]\n", - "RF Test set R^2 0.353146\n" + "computed_metrics: [0.28272032368047584]\n", + "RF Test set R^2 0.282720\n" ], "name": "stdout" } @@ -1264,7 +1287,7 @@ "metadata": { "id": "U-clxvGhc_96", "colab_type": "code", - "outputId": "2b91e3ef-1c57-4ef6-9c0c-e11cfddc1694", + "outputId": "93d7dd8e-b29b-445b-f0e8-f5c79fa577f9", "colab": { "base_uri": "https://localhost:8080/", "height": 51 @@ -1280,8 +1303,8 @@ { "output_type": "stream", "text": [ - "computed_metrics: [0.2861950851545907]\n", - "DNN Test set R^2 0.286195\n" + "computed_metrics: [0.13437790030940677]\n", + "DNN Test set R^2 0.134378\n" ], "name": "stdout" } @@ -1302,7 +1325,7 @@ "metadata": { "id": "887Zb1-5c_98", "colab_type": "code", - "outputId": "86693051-f66b-416a-f9f8-2032333bf512", + "outputId": "cfa514af-250e-49f9-9ba0-50271d0ab947", "colab": { "base_uri": "https://localhost:8080/", "height": 295 @@ -1323,13 +1346,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZwcdZ3/8debMEg4AxJWGYiJImFF\n7oBARAVRbolBQQUVdUFwFUSBDeIKeCz5EbxxZUERVEREIARBOTYsKsqRkECIEkUgxEE0COHKAJPk\n8/ujvh06PV3V1T1d3VVdn+fj0Y9MV3dXfbpmUp/63jIznHPOlc9a3Q7AOedcd3gCcM65kvIE4Jxz\nJeUJwDnnSsoTgHPOlZQnAOecKylPAK6tJF0i6cvh570lLerQcU3S1p04Vrfk7TtK+j9J/zbS90oa\nJ+k5SaNq3yvpKEk3Jey3Y39jvcgTQA5JekTSYPhP8Xi4qG5Q9folkl4Kr1ceR3Yz5nrM7DdmNrHR\n+yQdI+m3nYipXaoTnRsZM3vUzDYws5V1XrvMzN5ZeV6bBNP+jbn6PAHk16FmtgGwE7AzcHrN6+eG\n/zSVxxXtDkDS2u3eZ1n4uXNF4Akg58zsceBGokQwYuHO9QJJN0t6VtJtkl5T9bpJ+ndJfwb+HLYd\nImm+pGWSfidph6r37yzpnrCvK4B1q157m6S/Vj3fStLVkpZK+qek8yX9K3ABsGcoySwL732FpPMk\nPSrp7yHm0VX7OlXS3yQ9JumjCd/3SElzaradLGlW+PkgSX8I8Q9IOiXFOTwOOAo4LcR8Xdj+iKT/\nkHQf8LyktWvvWGtLDknntkEMG0v6YTiXiyV9XtJa4bVRkr4q6QlJD0v6ZIijblKStHX4O3g6fOaK\nqtf2knR3eO1uSXvF7OMsST+uej6+zjFfJ+kuSc9IulbSpgnvrexndelQ0q/D5nsrpd46f2NbSLoq\nnJeHJZ1Y9drukuaE4/9d0tfSnOte5gkg5yRtCRwIPNjG3R4FfAnYDJgPXFbz+hTgTcAbJO0MXAx8\nHHgl8D/ArHCBXgeYCfwI2BS4Ejg85nuMAn4BLAbGA/3AT83sj8DxwO9DSWZM+Mh0YBuixLd1eP8X\nwr4OAE4B3gG8Htgv4bteB0yU9PqqbR8AfhJ+/j7wcTPbEHgjMDthXwCY2YVE56xSCju06uX3AwcD\nY8xsRdJ+ks5toxiAbwMbA68F3gp8CPhIeO1Yor+ZnYBdiH6fSb4E3ARsAmwZ9k24QF8PfCvE9zXg\nekmvTBFfPR8CPgq8GlgR9puamb0l/LhjvVJvSIDXAfcS/b28Hfi0pP3DW74JfNPMNgJeB/ysxe/R\nMzwB5NdMSc8CS4B/AGfWvH5KuGtcJumJJvd9vZn92sxeBM4guvvequr1c8zsSTMbBI4D/sfM7jSz\nlWZ2KfAisEd49AHfMLMhM/s5cHfMMXcHtgBONbPnzewFM6tb7y9J4bgnhzieBf4LeF94yxHAD8zs\nfjN7Hjgr7oua2XLgWqILMyERbAvMCm8ZIkp0G5nZU2Z2T9y+UvqWmS0J566RpHMbKyTT9wGnm9mz\nZvYI8FXgg+EtRxBd6P5qZk8RJdMkQ8BrgC1qfi8HA382sx+Z2Qozuxx4ADg0bkcN/Kjqd/afwBHh\nu7TLbsBYM/uimb1kZg8BF/Hy380QsLWkzczsOTO7o43HLiRPAPk1JdyVvo3ogrVZzevnmdmY8NgM\nVveYqDQK/zJh30sqP5jZc8CTRBfnYa8TXRg+W5VslgFbhfdvAQzYmjMKLo455lbA4kZ3xcFYYD1g\nbtUxfxW2E45bHWPcMSt+QkgARHf/M0NigKjEchCwOFSD7JkiviRLGr9ltaRzm2QzosRb/b0XE931\nwvDzs/pnRb1mKn8jC8Pm0wABd0laWFWltgXDz231cZpV+zvrY/jf9Ui8Btii5nx+DviX8PrHiEqV\nD4TqrEPaeOxC8oaqnDOz2yRdApxHg6K8mV3G8Oqcelbf7SvqXbQp8Fj1rqp+XgJ8xcy+UrsTSW8F\n+iWpKgmMA/5S55hLgHGS1q6TBGqnpH0CGAS2M7OBOvv6W/V3CMdMcjMwVtJORIng5NUHNrsbOExS\nH/BJomqBreruJTnmuO3LiZJZxauASp117Llt4Alevmv/Q9g2Dqicq78RVeVUrP4+ZvYbYIOq1yrt\nTMcCSHozcEuob38sHKPaOKJkXOt5hn/PWrW/s6HwXdKc7zSWAA+b2evrvWhmfwbeH6qKpgI/l/TK\nUCIpJS8BFMM3gHdI2rFN+ztI0ptDHf6XgDvMLO7O9SLgeElvUmR9SQdL2hD4PVFd7omS+iRNJarq\nqecuogvT9LCPdSVNDq/9HdgyxIOZrQrH/bqkzQEk9VfV5f4MOEbSGyStx/DqsTWY2RBR+8QMomR3\nc9jnOqHUtHF4zzPAqqR9Vfk7Uf17I/OBDyhqmD2AqL6+IuncJn2flUTn4CuSNlTUiP8ZoNII+zPg\npHDOxgD/kbQ/Se8NbU0ATxElsVXADcA2kj6gqEH7SOANRG059b7nWxT16d+Y4b3WAI6u+p19Efh5\nva6fDSSd97uAZxU1xI8O5/yNknYL3/NoSWPD39ey8Jm0v++e5AmgAMxsKfBDQiNoG/yE6KL5JLAr\ncHTCsecQ3R2eT3RxeBA4Jrz2EtGd1DFhX0cCV8fsZyVR3fHWwKNEd8GVsQuzgYXA41XtGf8RjnWH\npGeAW4CJYV+/JEqKs8N7Gjbchu+8H3BlTQnkg8Aj4RjHEzWQVw9OiitdfJ+o7WCZpJkJxz0pfO9l\nYd+r35t0blP4FNFd90PAb8P3uzi8dhFRo+59wDyiC/kKIO5iuxtwp6TniNpGTjKzh8zsn8AhwGeB\nfxJVFR1iZsPanMzsZuCKcMy51E8SPwIuAR4n6i12Yp33NHIWcGk470fUxLAyxLsT8DBR6eJ7RI3l\nAAcAC8P3/CbwvpRtNT1LviBMuYTqpL+a2ee7HYvrDEkHAheYWW11jis5LwE412NC9cdBodqmn6i0\nd02343L54wnAud4j4GyiaqV5wB9pX/Wh6yFeBeSccyXlJQDnnCupQo0D2GyzzWz8+PHdDsM55wpl\n7ty5T5jZ2NrthUoA48ePZ86cOY3f6JxzbjVJdUfLexWQc86VlCcA55wrKU8AzjlXUp4AnHOupDwB\nOOdcSRWqF5Bzrn1mzhtgxo2LeGzZIFuMGc2p+09kys6tTvXvisgTgHMlNHPeAKdfvYDBoWiC0IFl\ng5x+9QIATwIl4lVAzpXQjBsXrb74VwwOrWTGjYu6FJHrBk8AzpXQY8vqT4Mft931Jk8AzpXQFmNG\nN7Xd9SZPAM6V0Kn7T2R036g1to3uG8Wp+0/sUkSuG7wR2LkSqjT0ei+gcvME4FxJTdm53y/4JedV\nQM45V1KeAJxzrqQ8ATjnXEl5AnDOuZLyBOCccyXlCcA550rKE4BzzpWUJwDnnCspTwDOOVdSngCc\nc66kPAE451xJeQJwzrmS8gTgnHMl5QnAOedKqqsJQNIBkhZJelDStG7G4pxzZdO1BCBpFPAd4EDg\nDcD7Jb2hW/E451zZdLMEsDvwoJk9ZGYvAT8FDutiPM45VyrdTAD9wJKq538N29Yg6ThJcyTNWbp0\naceCc865Xpf7RmAzu9DMJpnZpLFjx3Y7HOec6xndXBN4ANiq6vmWYZtzzrlg5rwBZty4iMeWDbLF\nmNGcuv/Etq3lnFgCkDRK0mVtOdJwdwOvlzRB0jrA+4BZGR3LOecKZ+a8AU6/egEDywYxYGDZIKdf\nvYCZ89pzr5xYAjCzlZJeI2md0FDbNma2QtIngRuBUcDFZrawncdwzmUjy7tS97IZNy5icGjlGtsG\nh1Yy48ZFbTnfaaqAHgJulzQLeL6y0cy+NtKDm9kNwA0j3Y9zrnMqd6WVC1PlrhTo2STQrYT32LLB\nprY3K00j8F+AX4T3blj1cM6VUNJdaS/KuhomyRZjRje1vVkNSwBmdjaApPXMbHlbjuqcK6ys70rz\nJutqmCSn7j9xjdIWwOi+UZy6/8S27L9hCUDSnpL+ADwQnu8o6b/bcnTnXOFkfVdabea8ASZPn82E\nadczefrsjtx11+pmwpuycz/nTN2e/jGjEdA/ZjTnTN2+bYknTRvAN4D9CT10zOxeSW9py9Gdc4WT\n9V1pRV7aGrYYM5qBOhf7LBJePVN27s/s+6YaCGZmS2o2raz7Rudcz8v6rrQiL20Np+4/kdF9o9bY\n1krCy0NpplaaEsASSXsBJqkPOAn4Y7ZhOefyLMu70oq8tDVUvudIegHlpTRTK00COB74JtE8PQPA\nTcAnsgzKOVd81V0nNx7dhwTLlg+lvoB2u+ql2kgTXjcbkpOkqQKaaGZHmdm/mNnmZnY08K9ZB+ac\nK67arpPLBod4avlQU90o21X1kgd5Kc3USpMAvp1ym3POAfXveKulqcvvVFtDJ3Sy51QzYquAJO0J\n7AWMlfSZqpc2Ipq6wTnn6kpzZ5vmPZ1oa+iETvWcalZSG8A6wAbhPdUjf58B3pNlUM65Yourv699\nT1m0oyE5C7EJwMxuA26TdImZLe5gTM65gjt1/4l8+or5sa/n4e630/JYmoltA5D0jfDj+ZJm1T46\nFJ9zroCm7NzPJuv11X1tlFTYuvxek1QF9KPw73mdCMQ5l51uzGZ55qHb1a339ot/fiRVAc0N/97W\nuXCcc+3WqUFI9ZLMOVO3z129t3tZUi+gBYDFvW5mO2QSkXOurToxCCkuyZwzdXtun7ZvW46RdGxP\nMq1JqgI6pGNROOcy04lBSN0a6ZrXKRaKIikBXAj8CvilmT3QoXicc23WiSkV2plkmrmjz+sUC0WR\nNBL4w8BTwFmS7pH0XUmHSVq/Q7E559qgE1MqtGuka7Orb+V1ioWiiE0AZva4mV1iZu8DJgE/BHYF\nbpJ0i6TTOhWkc651nZhSoV1JptkpoPM6xUJRpJkNFDNbBfw+PL4gaTOiRWKccwWQ9SCkeiNd99l2\nLDNuXMTJV8xP3Tjb7B19XqdYKIqGCUDSucCXgUGiNoEdgJPN7McZx+acK5DqJNNq42yz7RV5nWKh\nKNKUAN5pZqdJejfwCDAV+DXgCcA5V1erjbOt3NHncYqFokiTACrvORi40syelpRhSM65dknToyaL\nfvRxE8E1miDO7+g7K00C+IWkB4iqgE6QNBZ4IduwnHMjlaYapt57Tr5iPp++Yj79I7j4jpJYacPH\nkY5KcfPod/Sd03BBGDObRrQuwCQzGwKeBw7LOjDn3Mik6VFT7z2Vy3balbvqqXfxT9ruuiNpKoip\ndbZVP706i4Ccc+2RpkdNo/7yrQ6q6o9pzO0Pjbk+fUM+JFUBHZrwmuEJwLlcS9OjJs3CLa0Mqkpq\nzPXpG/IjaSDYRxIeH+1kkM655qUZnFXvPbUMmDx9dtNVQa9Y++XLyybr9a0efNbsYK8szZw3wOTp\ns5kw7fqWvmPRpRkHsDFwJvCWsOk24Itm9nSWgTnnRiZNj5rq9wwsG0TUnwK4mbv02jt8gBeGVq3+\nOS/TN3hJBGQNGmUkXQXcD1waNn0Q2NHMhrURZG3SpEk2Z86cTh/WuY7IQ714JYa4aqH+MaMbTu88\nefrs2Pr/26ft2/D1evFkcU6aiaPoJM01s0m12xv2AgJeZ2ZnmtlD4XE28NoRBjND0gOS7pN0jaQx\nI9mfc0XX7CRoWZmycz+3T9uXuM6aae7SG93hp503KOtzkpeSSDelSQCDkt5ceSJpMtGYgJG4GXhj\nWFTmT8DpI9yfc4WWp3pxGNkka40+m3ZyuqzPiU8kly4BnAB8R9IjkhYD5wPHj+SgZnaTma0IT+8A\nthzJ/pwrurzdjda7SxfRXXijxtI0d/iVksbD0w/m9mn71q3WyfqcdGKa7Lxr2AhsZvOBHSVtFJ4/\n0+YYPgpcEfeipOOA4wDGjRvX5kM7lw/tXLSlHfXmSY3DjRpL007n0CjOrBey8Wkn0jUCjwE+BIyn\nKmGY2YkNPncL8Ko6L51hZteG95xBtNbAVGsUCN4I7HpXvZ4zo/tGNT1vf7v2Uy2LxtI0cWbxXcoq\nrhE4zVxANxBV0ywAVjV472pmtl+DgI4hWnf47Wku/s71snbdjWaxRGIWVTFxcZ593cLVcfodevbS\nJIB1zewz7TyopAOA04C3mtnydu7buaJKMwlao2qTLC7WWVTFxMXz1PIhPj9zAbc+sNQv+h2QphH4\nR5KOlfRqSZtWHiM87vnAhsDNkuZLumCE+3Ou56XpFplFz5YsGkuT4vnxHY92vTtsWaRJAC8BM4iW\ng5wbHiOqiDezrc1sKzPbKTxG1KvIuTzIelqBNN0is7hYZ7GmcDPxdLM7bK9LUwX0WWBrM3si62Cc\nK6pOTCuQZpGVrOrN2z1H/5Sd+zlr1kKWDQ6len+ZBmd1UpoE8CDg9fTOJcii8bVW2kVWirKgylnv\n2m5YL584ZRqc1UlpEsDzwHxJtwIvVjY26gbqXJl0YiBX0iIrE6ZdX7gG09qxBnHKNjirk9IkgJnh\n4ZyLkfWgJYhfZAVYo8EUspvNst2Ts1VKK/X6/AOMGd3HWe/arjBJrWjSjAS+tNF7nCu7pAVQWlV7\nsd1n27FcNXcgscqk3dVO1XE0OyK4Gd7nvzsajgTOEx8J7PKsnXfHcaNgD9+1f3Uf+aT/uSNZ0L1R\nHPWO1WvTJ/eakYwEds6l0M7G17hG5VsfWLr6Yhs3RQO07+68Xhy1vIdOcXkCcC6H0jQq77PtWC67\n49HYkkB1//lWSyZpLu7eQ6e40iwJuQ1wKvAa1pwMzst8zqXUbPVQo0blmfMGuGruQGI1ELxcEmh1\nfEKjReObaefIw4pnbk1pRgJfCdwDfJ4oEVQezrkUWlnZqtGI3jRVMxCNEahXlXT61felij1uXQBo\nbkRwXlY8c2tKUwW0wsy+m3kkzvWoVgaJNeoVk6ZqZnTfqNgkMTi0is/PXMCXp2yfuI88z1LqRi5N\nArhO0ieAa1hzINiTmUXlXA9pdZBYUqNyXNXMKIlVZqsv1EmDrC6/c0nDBNAojrTytuKZi6SpAvow\nUZXP72jTZHDOlUmnZugU0ajg6rv0pPr5uJHFcUYy2Z2vv5tPDROAmU2o83htJ4JzrhdkPUMnUHeA\nVqMLdO0cQklGWofv6+/mU+xAMEn7mtlsSVPrvW5mV2caWR0+EMwVVZY9YOLGA4wZ3ceLK1bFtgMc\nvce4VFVASceorXKqTOtQ77t6L6DuaWUg2FuB2cChdV4zoOMJwLl26uQFKcsZOuPq0ZOmWm7m4p90\njEo1UqVEMGfxk2tMV1Hb7dQv+PkSmwDM7Mzw70c6F45zndGJ+fs7pVFf/VqCpi7+aY8xOLSSy+9c\nMqxtwXv75FeaRmDnek6a1bWKIq5+fZP1+uq+v5WG1322HUuaFoO4hmXv7ZNPPhWEK6Ve6pYY11cf\nqDuR2/MvrljdeFv5zJj1+jCDpweHhlWHpR11DPGL1nhvn3zyBOBKqRPz93dSUv362dct5KnlL7cH\nLBsc4tQr7wXB0MroYl39em11WNyo4+qeR/DybKW1U1Z7b5/8algFJGmupH+XtEknAnKuE+L60e+z\n7djuBJSRKTv3s946w+/zhlbZ6ot/PdXVYXGlIoNhC8V/ecr2bV9A3mUnTQngSOAjwN2S5gA/AG6y\nIi0k4FyNKTv3M2fxk2vMpmnAVXMHmPSaTVPPb1OEbo2tVmtVPhdXWopbB6CdvX2Kco6LKs1AsAfN\n7AxgG+AnwMXAYklnS9o06wCdy8qtDywdVq+dtiE4zcCoZkfOjmSkbZJWq7Uqn+vWIC6fQC57qXoB\nSdoB+CowA7gKeC/wDNE4AecKaSQNwY16ETV78cryYlfvAt63lugbFd+vp/oCXz3qOK5aJ4vk1Us9\ntfIqzXoAc4FlwPeBaWZWmRDuTkmTswzOuXapV5UwkobgRsmj2dkvs5wtM6mXUJpeQJV9xMWR1ZiK\nRufYq4dGLk0bwHvN7KHqDZImmNnDZlZ3mgjn8iTuAjWSHiuNkkezpYusu6XGXcDbccHMKnklneNe\nGsjXTWmqgH6ecptzuZS0vm6rPVbi6sX32XYsk6fPju0z3+ysmEXolppV8kpqe/DqofaILQFI2hbY\nDti4ZkK4jYB1sw7MuXZJukC12mOlXrXKPtuOHVaiqJZUujh1/4nDBm0Vpf98VmMqkhajOfmK+XU/\nU8SBfN2UVAU0ETgEGMOaE8I9CxybZVDOtVOWF6jq5DF5+uzYi39/gzrqdq281Q1ZJq+4BN1rA/m6\nJWkyuGuBayXtaWa/72BMzrVVp+6u4+4+BXX7y9cq6myZ3UheRS4x5UlSFdBpZnYu8AFJ76993cxO\nzDQy59okrrpmxo2LOPmK+W27YJX5rrTTyavIJaY8SaoC+mP4N7MVWCR9FjgPGGtmT2R1HOeqL1BZ\n9SDZZ9ux/PiOR+tud+1X1BJTniRVAV0X/r00iwNL2gp4JzD8f4xzGcqq2+KtDyxtantZef/9/Eiq\nAroO4meANbN3jfDYXwdOA64d4X5cyTV7Qcmq22Knp5gu4oXU++/nS1IV0HlZHVTSYcCAmd2rBgtT\nSzoOOA5g3LhxWYXkCqqVC0pWdfVZtwFUX/A3Ht3H8y+tWD2jZ1EupK2WvoqY7IogqQrotpHsWNIt\nwKvqvHQG8Dmi6p+GzOxC4EKIFoUfSUyu97RyQcmqB0mWPVNqE1299X47ufRiqxfkVkpJXmrITlIV\n0M/M7AhJC1izKkiAmdkOSTs2s/1i9rs9MAGo3P1vCdwjaXcze7zZL+DKrZULSlY9SLLsmRK3KEut\nTgyEGskFuZVSUpbzJJVdUhXQSeHfQ9p5QDNbAGxeeS7pEWCS9wJyrWi12iWrHiRZ7Tfthb0TXU5H\nckFupZTUS8t35k3sXEBm9rfw72LgRWBHYAfgxbDNua7r1lz1tbKay78izYW9U997JBfkNFNL1yry\nPEl5l2Y66H8DvkA097+Ab0v6opld3I4AzGx8O/bjyikPA4KaqRJpte683p1z31pig3XXZtny+lM4\nZ2Wkjd3NlpJ81G921GhlR0mLgL3M7J/h+SuB35lZx8/+pEmTbM6czMalOdeSydNnp1oysTZRVGyy\nXh9nHrpdw4tiXnrC1Pseo/tGZbr2b16+e1FJmmtmk2q3p1kP4J9EE8BVPBu2OedIXyUS15D71PKh\nVI2oeRn52o1SV16+e69J6gX0mfDjg0Srf11L1BvoMOC+DsTmXCGkrRJJqiOvbUSt7fMv0fGqniR+\nQe4NSSWADcO/fwmPCh+56zJVtOJ+vTpqMXwOoLhEUTGwbHB1dZJ4ue91dZ9/7wPv2qlhG0CeeBtA\n7+tG/XI7HHXR77n9L0+usa027rg2gIrqi34jte0LziVpuQ1A0q3U+bs0M//rc21XxEE/M+cN8Lua\niz8Mj7vy71mzFg4bydvMxR/y0Qe+aCU1N1yaRuBTqn5eFzgcWJFNOK7sijjoZ8aNi2Iv3rVx10sC\nm6zXx1PLh0/tkCTrPvCNLu4+PUNvaJgAzGxuzabbJd2VUTyu5Iq4qEpScqqNu1410AtDqxgzuq/u\n/D71ZN0HPs3FvYglNTdc7EjgCkmbVj02k7Q/sHEHYnMllJeRvc2IS06CYXHHXTglhn3vOFm3hyRd\n3CviGrPzXFJzwzVMAMBcolXB5gK/Bz4LfCzLoFx5tTJVQLfVS1oCjtpj3LC44y6Qy5YPrfG9R8VM\nk94/ZnTm56JRNdzMeQPETeKe55KaGy5NFdCETgTiXEXR+pg3MzAqqYoradlK6FxJqFE1XFybR70S\nj8u3pIFgU5M+aGZXtz8c54opbdJKO69NN+c4ahRjXAnB8AbgokkqARya8JoBngCca1IzF/ZulYQa\nxRhXQuj36p/C8YFgzrmmFHWwXpmNZCDYxsCZwFvCptuAL5rZ0+0N0TlXBHmYgtu1R5qBYBcD9wNH\nhOcfBH4AJLYROOd6V9Ea6l19aRLA68zs8KrnZ0uan1VAznVDVtMadGu6BJ+mwaWRJgEMSnqzmf0W\nQNJkwEd7uJ6R1bQG3ZouwadpcGmlGQh2AvAdSY9IWgycDxyfbVjOdU6aka952m9ej+uKJ81AsPnA\njpI2Cs+fyTwq51rQarVHVhPQtXu/ab9fESfUc92RphfQSUSNvs8CF0naBZhmZjdlHZxzaY2k2iOr\nCehGst/ai/0+247lqrkDqb5fESfUc92Rpgroo+Gu/53AK4l6AU3PNCrnmhRX7XHWrIUNP5vVBHSt\n7reSzAaWDWJEF/vL7ng0dbVOESfUc92RJgFU5n06CPihmS2s2uZcLsROsjY4xMx5A4mfzWoCulb3\nWy+ZpV1vYCTHdeWTphfQXEk3AROA0yVtCKzKNiznmpO03m6aOeqz6tfeyn6bqauPq9bxfvoujTQl\ngI8B04DdzGw5sA7wkUyjcq5JSdUbRWv8TFpfoJpX67iRapgAzGyVmd1jZssknWVm/zSz+zoRnHNp\nTdm5n03W66v7WtEaP+Pq8I/aY5xX67i2SlMFVO1dwFkZxOHciJ156HZdm0O/nXyuHdcpzSYAb/x1\nudVLF06vw3ed0GwC2DWTKJxrE79wOpdemoFg36p5DvA0MMfMrs0oLuc6zidQc2WTphfQusBOwJ/D\nYwdgS+Bjkr6RYWzOdUy9wVenX72g4RgC54osTRXQDsBkM1sJIOm7wG+ANwMLWj2wpE8B/w6sBK43\ns9Na3Zcrt3bcuSdNoJaHUkA3SideIup9aRLAJsAGRNU+AOsDm5rZSkkvtnJQSfsAhwE7mtmLkjZv\nZT/OtWvq4zxPoNaN6Z19SulySFMFdC4wX9IPJF0CzANmSFofuKXF454ATDezFwHM7B8t7seVXLum\nPo4bK5CHMQTdmN7Zp5QuhzTTQX9f0g3A7mHT58zssfDzqS0edxtgb0lfAV4ATjGzu+u9UdJxwHEA\n48aNa/Fwrle1eufeaLZNyM8Ygm6UTvJcInLtk6YEALAbsHd4pOoKKukWSffXeRxGlHg2BfYgSiI/\nU+heVMvMLjSzSWY2aezYsSnDdWXRyp17vQbfq+YOcPiu/bkcaduN0kmeS0SufdJ0A51OlAAuC5tO\nlLSnmX0u6XNmtl/CPk8ArtaKKQwAAA/5SURBVDYzA+6StArYDFiaOnLniKZNaHb0b1z1xq0PLOX2\naftmFmurWvmORTym67w0jcAHATuZ2SoASZcStQMkJoAGZgL7ALdK2oZogrknRrA/V2Aj6W2SNPo3\nbr9Fq97oxgjnXhpV7eKlHQk8Bngy/LxxG457MXCxpPuBl4APh9KAK5l29DapN/o3ab9FXDGrGyOc\nfVR170vTBnAOME/SJeHufy7wlZEc1MxeMrOjzeyNZraLmc0eyf5ccXVjQXZfMcu5SJpeQJdL+j+i\ndgCA/zCzxzONypVGNxZk9+oN5yKxCSAs/l7tr+HfLSRtYWb3ZBeWK4tuLcju1RvOJZcAvprwmgH5\n6y7hCier3ibei8W5xmITgJnt08lAXDllVR3j1TzONaYidb6ZNGmSzZkzp9thOOdcoUiaa2aTaren\nHQnsnHOux3gCcM65kmqYABQ5WtIXwvNxknZv9DnnnHP5lmYk8H8Dq4h6/XwReBa4ipfHBTjXFb5g\niXMjkyYBvMnMdpE0D8DMnpK0TsZxOZeobAuWeLJzWUjTBjAkaRRR338kjSUqETjXNWVasMTXK3ZZ\nSZMAvgVcA2weFnD5LfBfmUblmjJz3gCTp89mwrTrmTx9dikuDEWb0XMkypTsXGelmQvoMklzgbcD\nAqaY2R8zj8ylUraqkIoizujZqjIlO9dZaXoBjQOWA9cBs4DnwzaXA2W9OxzJjJ5FKzH56lwuK2ka\nga8nqv8XsC4wAVgEbJdhXC6lst4dtjrVQxFLTD6vkctKmiqg7aufh1lCP5FZRK4pZaoKqdXKjJ5J\nJaa8JgCf18hlJe2KYKuZ2T2S3pRFMK55fnfYnLiS0cCyQSZMuz63F1efvtplIc2i8J+peroWsAvw\nWGYRuab43WFz4kpMwBpdLGHNKqHqfvhj1uvDDJ4eHPLz7Qqt4Wygks6seroCeAS4ysxeyDCuunw2\nUDdStW0AcfrHjOb2afum+szovlGcM3V7TwIut+JmA00sAYQBYBua2SmZReZcB9WWmOJuf6qriuq1\nG1TLexuCc3GSloRc28xWSJrcyYCcy1p1ffrk6bMbNqKn6VHV672uXG9KGgdwV/h3vqRZkj4oaWrl\n0YngnMtamvEEaXpUlaHXles9aaaCWBf4J9FsoIcAh4Z/nSu8KTv3c87U7ekfMxoR1f3X1ufXSxLV\nvNeVK6qkNoDNQw+g+3l5IFhFcdaRdK6BRl0sa9sNvBeQ6xVJCWAUsAFrXvgrPAG4UvF++K4XJSWA\nv5nZFzsWiXPOuY5KagOod+fvnHOuRyQlgLd3LArnnHMdF1sFZGZPdjKQrPhSes45V1/Tk8EVSRGn\n/nXOuU5JMw6gsMq6WIpzzqXRlRKApJ2AC4gGma0APmFmdyV/qnllXSwl77xazrl86FYJ4FzgbDPb\nCfhCeN52vpRe/lSq5QbCRGyVarm8L8voXC/qVgIwYKPw88ZktL7ASNaNddnwajnn8qNbjcCfBm6U\ndB5REtor7o2SjgOOAxg3rrm16H2xlPzxajnn8iOzBCDpFuBVdV46g2iMwclmdpWkI4DvA/vV24+Z\nXQhcCNGCMM3G4UP4m5N1/XyZ1zB2Lm8ySwBmVveCDiDph8BJ4emVwPeyisOl14lus76GsXP50a02\ngMeAt4af9wX+3KU4XJVO1M+nmX7ZOdcZ3WoDOBb4pqS1gRcIdfyuuzpVP+/Vcs7lQ1cSgJn9Fti1\nG8d28bx+3rly6emRwK453m3WuXLp6bmAXHM62W3WRwM7132eANwaOlE/75P0OZcPngBcxyX1NuqV\nBOAlHFcEngBcx/X6aGAv4bii8EbgHJo5b4DJ02czYdr1TJ4+u+cmSuv1Sfp8viNXFJ4AcqYMs2X2\nem+jXi/huN7hCSBnynD32Opo4KKUjHq9hON6h7cB5ExZ7h6b7W1UpHp1n+/IFYWXAHLG7x7rK1LJ\nyOc7ckXhJYCc8bvH+opWMvL5jlwReAkgZ/zusT4vGTnXfl4CyCG/exzOS0bOtZ8nAFcIvrync+3n\nCcAVhpeMnGsvbwNwzrmS8gTgnHMl5QnAOedKyhOAc86VlCcA55wrKZlZt2NITdJSYHELH90MeKLN\n4XRCEeP2mDvDY+6MIsYMw+N+jZmNrX1ToRJAqyTNMbNJ3Y6jWUWM22PuDI+5M4oYM6SP26uAnHOu\npDwBOOdcSZUlAVzY7QBaVMS4PebO8Jg7o4gxQ8q4S9EG4JxzbriylACcc87V8ATgnHMlVZoEIOkK\nSfPD4xFJ87sdUxqSPiXpAUkLJZ3b7XgakXSWpIGqc31Qt2NqhqTPSjJJm3U7lkYkfUnSfeE83yRp\ni27H1IikGeHv+T5J10ga0+2YGpH03vD/b5WkXHcJlXSApEWSHpQ0rdH7S5MAzOxIM9vJzHYCrgKu\n7nZMjUjaBzgM2NHMtgPO63JIaX29cq7N7IZuB5OWpK2AdwKPdjuWlGaY2Q7hb/oXwBe6HVAKNwNv\nNLMdgD8Bp3c5njTuB6YCv+52IEkkjQK+AxwIvAF4v6Q3JH2mNAmgQpKAI4DLux1LCicA083sRQAz\n+0eX4+l1XwdOAwrRM8LMnql6uj4FiNvMbjKzFeHpHcCW3YwnDTP7o5kt6nYcKewOPGhmD5nZS8BP\niW4gY5UuAQB7A383sz93O5AUtgH2lnSnpNsk7dbtgFL6ZCjiXyxpk24Hk4akw4ABM7u327E0Q9JX\nJC0BjqIYJYBqHwV+2e0gekg/sKTq+V/Dtlg9tSKYpFuAV9V56Qwzuzb8/H5ydPefFDPR72dTYA9g\nN+Bnkl5rXe672yDm7wJfIrob/RLwVaL/6F3XIO7PEVX/5Eqjv2kzOwM4Q9LpwCeBMzsaYB1p/h9K\nOgNYAVzWydjipLx29JyeSgBmtl/S65LWJqrL27UzETWWFLOkE4CrwwX/LkmriCZ5Wtqp+OppdJ4r\nJF1EVDedC3FxS9oemADcG9UQsiVwj6TdzezxDoY4TNpzTXQhvYEcJIAU/w+PAQ4B3t7tm5mKJs5z\nng0AW1U93zJsi1W2KqD9gAfM7K/dDiSlmcA+AJK2AdYh5zMTSnp11dN3EzWg5ZqZLTCzzc1svJmN\nJyo679Lti38jkl5f9fQw4IFuxZKWpAOI2lneZWbLux1Pj7kbeL2kCZLWAd4HzEr6QE+VAFJ4Hzmq\n/knhYuBiSfcDLwEfzssdU4JzJe1EVAX0CPDx7obT06ZLmgisIpom/fgux5PG+cArgJtDaesOM8t1\n3JLeDXwbGAtcL2m+me3f5bCGMbMVkj4J3AiMAi42s4VJn/GpIJxzrqTKVgXknHMu8ATgnHMl5QnA\nOedKyhOAc86VlCcA55wrKU8AJSJpZZg58n5JV0pabwT7ukTSe8LP30uadErS2yTt1cIxHqk3K2fc\n9qxJ+r9Gs0FWn5ea7ZMkfSv8fIyk88PPx0v6UNX2pmb0bHTu2y3lOdhD0kXh9/6LsO1dldkpJU3p\nZMwunieAchkMM3S+kWhcwRr9r8NI6aaZ2b+Z2R8S3vI2oOkE0EvMbI6ZnVhn+wVm9sPw9BigqQSQ\n4tx3w4HAr6o3mNksM5senk4hmq0ytVb/Nl0yTwDl9Rtg63CX9htJs4A/SBoV5my/O0zo9nGIZlGV\ndH6Ya/wWYPPKjqrvCsN85PdIulfS/0oaT5RoTg6lj70ljZV0VTjG3ZImh8++UtG89gslfQ9Qoy8h\n6TOhRHO/pE9Xbf/PEOtvJV0u6ZQ6n11f0vUh1vslHRm2v13SPEkLwoR2r6jz2eeqfn6PpEuqXt5P\n0hxJf5J0SHjP6rvhmv2cJemUUGqYBFwWztPBkmZWve8dkq6p8/nqc/+cosnh7pV0h6R/iTnepeF3\nvljSVEnnhu/6K0l9ac5B+Du5JJy3BZJOrnr57cAtNe8/Jvz97AW8C5gRvufrwuNXkuaGuLYNn7lE\n0gWS7gRyvxZGEXkCKKFwN3UgsCBs2gU4ycy2AT4GPG1muxFNQHespAlE0zpMJLpz+xB17ugljQUu\nAg43sx2B95rZI8AFvLxGwG+Ab4bnuwGHA98LuzgT+G1Y++AaYFyD77Er8BHgTUQT5h0raWdFs6Ye\nDuwYvmdclcUBwGNmtmMoFf1K0rrAJcCRZrY90Wj5E5LiqGM80dS8BwMXhH0mMrOfA3OAo8L8/jcA\n24ZzSvieFzfYzfpEI2t3JJq7/tiY970O2JfoQvxj4NbwXQeBg1Oeg52AfjN7Y3jPDwAUVc0NmdnT\nMd/zd0TTE5wa/h7+QrSA+afMbFfgFOC/qz6yJbCXmX2mwXd3LfAEUC6jFa2ENodo0ZPvh+13mdnD\n4ed3Ah8K77sTeCXweuAtwOVmttLMHgNm19n/HsCvK/sysydj4tgPOD8cYxawkaQNwjF+HD57PfBU\ng+/zZuAaM3vezJ4jWuRnb2AycK2ZvWBmzwLXxXx+AfAOSf9P0t7hojUReNjM/hTec2mIqxk/M7NV\nYcrxh4Btm/w8YcqPHwFHK1o1a08aT538Ei9PvjeXKBHV80szGyL6/qN4ubpmQfhMmnPwEPBaSd9W\nNL9PZW2CdwI3NYhztfB73wu4Mvw9/A9QPZ/UlWa2Mu3+XHO8Xq1cBsPd5WqK5mN5vnoT0d3YjTXv\na+fSjmsBe5jZC3ViyYyiFb8qyeACM7tA0i7AQcCXJf0vkHbq3+o5VGrv8GvnV2l1vpUfEMX7AtGF\ncEWD9w9VzRW1kvj/35UFhlZJqv7MqoTPrMHMnpK0I7A/URXfEUTTfh8IfC3NPoK1gGW1f5dVno/Z\n7trASwCu1o3ACVV1wdtIWp+oSuHIUPf7asIspTXuAN4SqoyQtGnY/iywYdX7bgI+VXmiaPI4wjE+\nELYdCDRaTOY3wBRJ64UY3x223Q4cKmndcId5CICZLalaqvICRT1ulpvZj4EZRFVhi4DxkrYOx/gg\ncFudY/9d0r9KWisct9p7Ja0l6XXAa8M+01jjPIWS1mPA5wlVLB3S8ByEqp61zOyqEN8uijL4DkCj\n9bZXf8+wqtnDkt4b9quQWFwHeAnA1foeUTXAPeE/9FKiXhvXENUb/4Go+uj3tR80s6WSjgOuDhfG\nfwDvILqL/bmiVbc+BZwIfEfSfUR/g78muos8G7hc0kLgdzRYm9fM7gmNr3dVYjezeQCKGrXvA/5O\nVLVRr056e6LGyFXAEHCCmb0g6SNEVRJrE02xe0Gdz04jqm5ZSlSltkHVa4+GmDYCjg/7TPoqFZcQ\ntRkMAnua2SDRPP9jzeyPaXbQDinPQT/wg/B7hmht312BeSlmrP0pcJGkE4H3EK1m9l1Jnwf6wuuF\nWpmtqHw2UNeTJG1gZs8pGuvwa+A4M7un23E1S9F4gXlm9v2Gb+6ycAF/0Mx+2u1YXDqeAFxPkvQT\noh5L6wKXmtk5XQ6paZLmEtWBv8PMXux2PK73eAJwzrmS8kZg55wrKU8AzjlXUp4AnHOupDwBOOdc\nSXkCcM65kvr/LW2PqfIuVlQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3debwbdb3/8debw0HKWpF6vS2UVpFyVShLkaVuILIjtSiIuIBeELwKooBFuAoul/6ou6gIyqIiAgIFRGW55aKiLN2goFSRrZ6KFqGsB+jy+f0x35Q0nUwmySQzyXyej0ce52SSzHxmcs585ruOzAznnHPls1beATjnnMuHJwDnnCspTwDOOVdSngCcc66kPAE451xJeQJwzrmS8gTgMiXpQklfCr+/WdLCLm3XJG3ZjW3lpWj7KOn/JP1nu++VNFbSM5IGat8r6XBJNySst2t/Y/3IE0ABSXpI0nD4p3g0nFQ3qHr9Qkkvhtcrj0PzjDmOmf3WzCY0ep+kIyT9rhsxZaU60bn2mNkjZraBma2Iee1iM9ur8rw2Cab9G3PxPAEU14FmtgGwHbA9cErN62eFf5rK49KsA5C0dtbrLAs/dq4XeAIoODN7FLieKBG0LVy5niPpRklPS7pF0hZVr5uk/5L0F+AvYdkBkuZLWirp95K2rXr/9pLmhnVdCqxb9drbJP2t6vnmkq6UtETSvySdLek/gHOAXUNJZml478skfUXSI5L+EWIeUbWukyT9XdJiSR9O2N9DJc2uWXaCpGvC7/tJ+mOIf0jSiSmO4dHA4cDJIeZrw/KHJH1G0t3As5LWrr1irS05JB3bBjFsLOlH4Vg+LOk0SWuF1wYkfVXSY5IelPTxEEdsUpK0Zfg7eDJ85tKq13aTdGd47U5Ju9VZx+mSflL1fFzMNl8j6Q5JT0m6WtImCe+trGdV6VDSb8Liuyql3pi/sdGSrgjH5UFJx1W99kZJs8P2/yHpa2mOdT/zBFBwkjYD9gXuz3C1hwNfBDYF5gMX17w+BdgZeJ2k7YHzgY8CrwC+D1wTTtDrADOBHwObAJcDB9fZjwHgF8DDwDhgDPAzM/sTcAzwh1CSGRk+Mh3YiijxbRne/7mwrn2AE4F3AK8F9kzY12uBCZJeW7XsfcBPw+8/BD5qZhsCbwBmJawLADM7l+iYVUphB1a9fBiwPzDSzJYnrSfp2DaKAfg2sDHwauCtwAeBI8NrRxH9zWwH7ED0fSb5InAD8HJgs7Buwgn6OuBbIb6vAddJekWK+OJ8EPgw8O/A8rDe1MzsLeHXiXGl3pAArwXuIvp7eTvwSUl7h7d8E/immW0EvAa4rMX96BueAIprpqSngUXAP4HP17x+YrhqXCrpsSbXfZ2Z/cbMXgBOJbr63rzq9TPN7HEzGwaOBr5vZreb2Qozuwh4AdglPAaBb5jZMjP7OXBnnW2+ERgNnGRmz5rZ82YWW+8vSWG7J4Q4ngb+B3hveMshwAVmdo+ZPQucXm9Hzew54GqiEzMhEWwNXBPesowo0W1kZk+Y2dx660rpW2a2KBy7RpKObV0hmb4XOMXMnjazh4CvAh8IbzmE6ET3NzN7giiZJlkGbAGMrvle9gf+YmY/NrPlZnYJcB9wYL0VNfDjqu/sv4FDwr5kZSdglJl9wcxeNLMHgPN46e9mGbClpE3N7Bkzuy3DbfckTwDFNSVclb6N6IS1ac3rXzGzkeGxKazqMVFpFP5VwroXVX4xs2eAx4lOzmu8TnRi+HRVslkKbB7ePxoYstVnFHy4zjY3Bx5udFUcjALWA+ZUbfPXYTlhu9Ux1ttmxU8JCYDo6n9mSAwQlVj2Ax4O1SC7pogvyaLGb1kl6dgm2ZQo8Vbv98NEV72w5vFZ9buiXjOVv5F7w+KTAQF3SLq3qkptNGse2+rtNKv2Oxtkzb/rdmwBjK45np8F/i28/hGiUuV9oTrrgAy33ZO8oargzOwWSRcCX6FBUd7MLmbN6pw4q672FfUu2gRYXL2qqt8XAV82sy/XrkTSW4ExklSVBMYCf43Z5iJgrKS1Y5JA7ZS0jwHDwOvNbChmXX+v3oewzSQ3AqMkbUeUCE5YtWGzO4GDJA0CHyeqFtg8di3JMddb/hxRMqt4FVCps657bBt4jJeu2v8Ylo0FKsfq70RVORWr9sfMfgtsUPVapZ3pKABJbwJuCvXti8M2qo0lSsa1nmXN/axV+50tC/uS5ninsQh40MxeG/eimf0FOCxUFU0Ffi7pFaFEUkpeAugN3wDeIWliRuvbT9KbQh3+F4HbzKzelet5wDGSdlZkfUn7S9oQ+ANRXe5xkgYlTSWq6olzB9GJaXpYx7qSJofX/gFsFuLBzFaG7X5d0isBJI2pqsu9DDhC0uskrcea1WOrMbNlRO0TM4iS3Y1hneuEUtPG4T1PASuT1lXlH0T1743MB96nqGF2H6L6+oqkY5u0PyuIjsGXJW2oqBH/U0ClEfYy4PhwzEYCn0lan6T3hLYmgCeIkthK4JfAVpLep6hB+1DgdURtOXH7+RZFffo3Zs1eawDvr/rOvgD8PK7rZwNJx/0O4GlFDfEjwjF/g6Sdwn6+X9Ko8Pe1NHwm7ffdlzwB9AAzWwL8iNAImoGfEp00Hwd2BN6fsO3ZRFeHZxOdHO4HjgivvUh0JXVEWNehwJV11rOCqO54S+ARoqvgytiFWcC9wKNV7RmfCdu6TdJTwE3AhLCuXxElxVnhPQ0bbsM+7wlcXlMC+QDwUNjGMUQN5NWDk+qVLn5I1HawVNLMhO0eH/Z7aVj3qvcmHdsUPkF01f0A8Luwf+eH184jatS9G5hHdCJfDtQ72e4E3C7pGaK2kePN7AEz+xdwAPBp4F9EVUUHmNkabU5mdiNwadjmHOKTxI+BC4FHiXqLHRfznkZOBy4Kx/2QmhhWhHi3Ax4kKl38gKixHGAf4N6wn98E3puyraZvyW8IUy6hOulvZnZa3rG47pC0L3COmdVW57iS8xKAc30mVH/sF6ptxhCV9q7KOy5XPJ4AnOs/As4gqlaaB/yJ7KoPXR/xKiDnnCspLwE451xJ9dQ4gE033dTGjRuXdxjOOddT5syZ85iZjapd3lMJYNy4ccyePbvxG51zzq0iKXa0vFcBOedcSXkCcM65kvIE4JxzJeUJwDnnSsoTgHPOlVRP9QJyrohmzhtixvULWbx0mNEjR3DS3hOYsn2rU+Y71z2eAJxrw8x5Q5xy5QKGl0UTbQ4tHeaUKxcAeBJwhedVQM61Ycb1C1ed/CuGl61gxvULc4rIufQ8ATjXhsVL46eTr7fcuSLxBOBcG0aPHNHUcueKxBOAc204ae8JjBgcWG3ZiMEBTtp7Qk4ROZeeNwI714ZKQ6/3AnK9yBOAc22asv0YP+G7nuRVQM45V1KeAJxzrqQ8ATjnXEl5AnDOuZLyBOCccyXlCcA550rKE4BzzpWUJwDnnCspTwDOOVdSngCcc66kPAE451xJeQJwzrmS8gTgnHMl5QnAOedKKtcEIGkfSQsl3S9pWp6xOOdc2eSWACQNAN8B9gVeBxwm6XV5xeOcc2WTZwngjcD9ZvaAmb0I/Aw4KMd4nHOuVPJMAGOARVXP/xaWrUbS0ZJmS5q9ZMmSrgXnnHP9rvCNwGZ2rplNMrNJo0aNyjsc55zrG3neE3gI2Lzq+WZhmXPOuWDmvCFmXL+QxUuHGT1yBCftPSGze1AnlgAkDUi6OJMtrelO4LWSxktaB3gvcE2HtuWccz1n5rwhTrlyAUNLhzFgaOkwp1y5gJnzsrlWTiwBmNkKSVtIWic01GbGzJZL+jhwPTAAnG9m92a5DedcZ3Xy6tTBjOsXMrxsxWrLhpetYMb1CzM5zmmqgB4AbpV0DfBsZaGZfa3djZvZL4Fftrse51z3Va5OKyeoytUp0DdJIO8Et3jpcFPLm5WmEfivwC/CezesejjnSizp6rQfdLr6JY3RI0c0tbxZDUsAZnYGgKT1zOy5TLbqnOt5nb46zVunq1/SOGnvCauVsgBGDA5w0t4TMll/wxKApF0l/RG4LzyfKOm7mWzdOdezOn11CtFV+OTpsxg/7TomT5/V1avvIiS4KduP4cyp2zBm5AgEjBk5gjOnbpNZAkrTBvANYG9CDx0zu0vSWzLZunOuZ3X66jTvNobRI0cwFHOyzzLBpTFl+zEd299UA8HMbFHNohWxb3TOlUanr07zbmM4ae8JjBgcWG3ZiMEBdt96VG6lkqylKQEskrQbYJIGgeOBP3U2LOdcL+jk1WneVTCV/aruBbT71qO4Ys5Q3/R8SpMAjgG+STRPzxBwA/CxTgblXB7qdfnLuytgWRWhCqY2wU2ePiv3huEspUkAE8zs8OoFkiYDt3YmJOe6r1598+yHH++rK75e0uk2hlbkXSrJWpo2gG+nXOZcz6pX33zJ7Yv6uq97J7Xbg6fTbQyt6EbPp26qWwKQtCuwGzBK0qeqXtqIaOoG5/pGvSu4FWZNvd9FsurB08k2hlYUsVTSjqQSwDrABkRJonoE8FPAuzsfmnPdU+8KbkBq6v0ukncPnk4pYqmkHXVLAGZ2C3CLpAvN7OEuxuRc19W7sjt4xzGrtQFUlvfqFV+39FtdebWilUrakVQF9A0z+yRwtqQ1ysFm9s6ORuZcF8V1+av09pm0xSbeC6hJRejB4xqT1anjlLSjmc2R9Na410MJoasmTZpks2fP7vZmnWvIu4qurrYNAKKSUy9Xl/QySXPMbFLt8qQqoDnhZ9dP9M71krynLChi8kkqUbniSKoCWgDEFw8AM9u2IxE512PynDUy7+STJOu68iImul6XNBDsgK5F4VwPy7PBswhTFndDkRNdL0tKAOcCvwZ+ZWb3dSke53pOng2ezSSfXr6CLkui67akcQAfAp4ATpc0V9L3JB0kaf0uxeZcT6g3a2Q3uoqmHZlahLtbtaOfu5XmqW4CMLNHzexCM3svMAn4EbAjcIOkmySd3K0gnSuyPAcHpU0+vT4wq9+mYCiKNJPBYWYrgT+Ex+ckbUp0kxjnHPkMDqpU6QwvW8GAxAozxtSp2un1K+h+m4KhKNLcEvIsSRtJGpT0v5KWAPuY2cVdiM85F6O6SgeiOYsqJ8S4RNTrV9D9NgVDUaQpAexlZidLehfwEDAV+A3wk04G5pyLN3PeEJ++7K41JqpLahTthyvofpqCoSjSTAddSRL7A5eb2ZMdjMflJM+bb7v0Klf+zc5SWnsFPXLEIOsOrsUJl87377vE0pQAfiHpPmAYOFbSKOD5zoblusn7WBdTXLfNuMbcaklVOpUraP++XUXDEoCZTSO6L8AkM1sGPAsc1OnAXPf0eg+RflSv22bceIOKtFU6/n27iqSpIKbGLKt+emUnAnLd1+s9RPpNUh1/pbdPrQEpdaOof9+uIqkK6MCE1wxPAH3Dp+4tjkZ1/JXePu3Msunft6tImg30yG4G4vLTDz1E+sUZ196bWMc/pqotoNI2sPvWo5hx/UJOuHR+qikeivR99/L0FP2gYSOwpI2BzwNvCYtuAb7gvYH6h0/dWwwz5w3xxHPL6r5e3c+/8t200qBblO/bG6PzV/eGMKveIF0B3ANcFBZ9AJhoZmu0EXSa3xCmWPzqLVuTp8+q28g7IPHVQyaucXzrfWbMyBHcOm2PhtvM8ztsN3aXXtM3hKnyGjM7uOr5GZLmtxnMDKI2hheBvwJHmtnSdtbpusuv3rKX1Agbd/JP+kyaBt28v0NvjM5fmoFgw5LeVHkiaTLRmIB23Ai8IdxU5s/AKW2uz3WZdyXMXr1G2JEjBuuekNuZ4iHv77DXp6foB2kSwLHAdyQ9JOlh4GzgmHY2amY3mNny8PQ2YLN21ue6z6/esldvZs/T3/n6Nd5bGbk9tHQY1byWtkE37+8wz2m0XaRhFZCZzQcmStooPH8q4xg+DFxa70VJRwNHA4wdOzbjTbtWeVfC1WVRl562cba26sYAhZ/1ZgON08x32Im2gqI0RpdZmkbgkcAHgXFUJQwzO67B524CXhXz0qlmdnV4z6lE9xqYao0CwRuBi6T2JATN90fvF90+Flk1nqaN27/r3tdOI/AviappFgAr027QzPZsENARRPcdfnuak78rFr96e0m3b1eYVdVN2u8wbmyC346xP6RJAOua2aey3KikfYCTgbea2XNZrtt1T9mm561XDdLtuvQsq98afYdJYxMa7Z93Ey6+NAngx5KOAn4BvFBZaGaPt7Hds4GXATeG+YVuM7O2Gpad66SkLpPdbg/p5kjepB5BSfuXZxdTTzzppUkALwIzgFOJ2pkIP1/d6kbNbMtWP+vKpwj/0PWqeT592V0ctvPmXDFnqGtTK3Sz+i3pKj9p/7pdLVaR99iGXpMmAXwa2NLMHut0MM7VKso/dL0T4QozrpgzxME7juHm+5Z0LUl1q/qtXukmaWwC5NfFNK/E06vSJID7Aa+nd7koyj90vRNhJZ6b71vSl9MX1KtuihubUC2vbsJ5j23oNWkGgj0LzJf0fUnfqjw6HZhzUJx/6LhBS9W6EU8et+1s9WbseQ3y8tHFzUlTApgZHs51XVEGnFVOeHE3aomLJ+t2izyrwlqpbsqrm3CRprruBWlGAl/U6D3OdUqR/qErJ69G8WR5sq4kkrgk2EpVWDcb1PPoJuzjU5qTpgTgXG6K9g+dJp6s2i3iRuDWWrx0OPVJvSgN6p1WtvEp7Wg4FUSR+FQQrheMn3Ydcf9VAh6cvn/q9STdH6Di5esN8vyylammafD598ur3lQQaRqBnetp3W48rdc+YdDU9hs1LI8YHMCM1FM6F6VB3RVHwwQgaStJ50m6QdKsyqMbwbnyyfpkXan2GFo6jPFStUcnk0BSj6Fmtp/U0F3pjfPkcPppGpJ6yOTRw8jlL00J4HJgLnAacFLVw7lMdeJkncdNT6q7TsZJu/24RDK4lnj5eoMsXjrMGdfeW/ezcSf7el0zd996VNeTpCuGNAlguZl9z8zuMLM5lUfHI3Ol04mTdV7VHlO2H8Ot0/ZY42YtzWy/tg/+yBGDIHjiuWUYL/2sVa+XVL0+/Tfft8Tv7lZSaXoBXSvpY8BVZDcZnHNr6MTJOu9xBO1uv7pHy+Tps1hap8qnYkBKHKgV10PmhEvjb/HtbQP9L00J4ENEVT6/B+aEh3fFcZnrxCjO3bce1fItE7OQ5YjYNCfklWapu0BW6v3r9QP00bP9L81AsPHdCMS5RoO+mh3ENHPeEFfMGVrtBCfg4B271088y3EMSfMRVb8njUZjDHz0bDnUTQCS9jCzWZKmxr1uZld2LixXRkkny1YGMcW1KRhw831LOrcTMVoZmBSX7OISZLVKg+7k6bMaJpu4Y1PRzH2FXW9LKgG8FZgFHBjzmgGeAFzm6p0sWxld26v93usluzOnbsOZU7dZlRhGrjeIGTw5vIzRI0ew+9ajVrsvQVKSrHcMBD4orETqJgAz+3z4eWT3wnEuXr2qj6QqkbwbgFuVlOxunbZH3YQ3efqs1EmyV4+Ny5aPBHY9YUDxHSrrLYf8piRuV5qSS9zArWZKPL16bFy2fDI41xPipmBOWg7Fmkiuuk6/tuqmNqZGV+f1qohGrjcYewP3uKv6Th2bIty+06XnCcD1hDF1Tor1RttWFGFmyNoTdvVJOq6evlFvqHpVRC9bey1GDA6knjo762NTltlG+0mauYDmSPovSS/vRkCu/7Uy70wvV1kk9biBNUfdNroLV72qnieHl7V0966s5DHthmtPmhLAocCRwJ2SZgMXADdYL80j7ZrWqaJ8q1eJRarOaVaaXke170m6Oi9qA26v9roqszQDwe4HTpX038ABwPnACkkXAN/0KSH6T1ZF+bgk0mx3zn6oU85yABfUryKqTOqWVxVMUROTqy9VLyBJ2wJfBWYAVwDvAZ4iGifg+kwWRfl6M3vWOxHGXSW2OztoUaY4bnRD+Warsoo6qVsvV9OVVcMSgKQ5wFLgh8A0M6tMCHe7pMmdDM7lI4uifL0kMiCluql60joa3Vpx5rwhzrj23oaNrd1SW33VqBdQ2nV2alK3VktdvVxNV1Zp2gDeY2YPVC+QNN7MHjSz2GkiXG/Loihf76Szwix1T5VWElHSHDet3Jc3K93ojZTF99Zu9V8Rel259NJUAf085TLXJ7Ioytc76VSqK9L0VKm3jo1HDNat2mnU46afGySz+N68J0+5JE0GtzXwemDjmgnhNgLW7XRgLj9ZFOWT+rKnvUqMW8fgWuLZF5evmhe/9gq10Qm+nxsks/jevCdPuSRVAU0g6vUzktUnhHsaOKqTQbn8tVuUz+JkFLeO515cvsZo1+qqnaQeN2VokGz3e/OePOWiRt35Je1qZn/oUjyJJk2aZLNn+71oymz8tOtib2Ai4MHp+9dtAxg5YpDT3/l6r59uIO74jRgc6OqAMpc9SXPMbFLt8qQqoJPN7CzgfZIOq33dzI7LOEZXEEXue9/oCjWu1LD71qO4+b4lnHDpfGZcv7BQ+1M03pOnXJKqgP4UfnbsklvSp4GvAKPM7LFObcelV/T5XBrNkwOrV4MUfX+KyHvylEfS/QCuDT8v6sSGJW0O7AU80on1u9a02ve+W5q9Qi36/lQUudTl+ldSFdC1UPd+0ZjZO9vc9teBk4Gr21yPy1CevUDSngSbuULtxv60e/L2UorLS1IV0Fc6tVFJBwFDZnaXEm7oEd57NHA0wNixYzsVkgvy6gXSqZNgu/vT6OSeRdy9Ukqp8NJK/6g7EMzMbkl6NFqxpJsk3RPzOAj4LPC5NAGa2blmNsnMJo0aNSr9nrmW5DWfS6cGILWzP2nmIsoi7l7qex93TE64dD6nzVyQd2iuBUlVQJeZ2SGSFrB6VZAAM7Ntk1ZsZnvWWe82wHigcvW/GTBX0hvN7NFmd8BlK69eIJ06CbazP2muzLOIu5f63scdEwMuvu0RJm2xiZcEekxSFdDx4ecBWW7QzBYAr6w8l/QQMMl7ARVHHr1AOnkSbHV/0pzcs4g7Tc+moqh3TAwKW2Xl6kuqAvp7+Pkw8AIwEdgWeCEscy4zWVY9ZTUNdL2TePXyLOJudAewIklKbEWssnLJ0kwH/Z9E9fWziKp/vi3pC2Z2fhYBmNm4LNbjeltWVU+tNMrWa9RMO+Ygi7h7pe/9SXtP4IRL58d2DyxilZVLlmYqiIXAbmb2r/D8FcDvzazr5VOfCsI1Mnn6rLo3j7912h5rLI+b+kDA4buM5UtTtvEeLzFOm7mAi297ZLUk4NNFFFvTU0FU+RfRBHAVT4dlzhVOs42yaRo1/aS2ui9N2YZJW2ziibEPJPUC+lT49X6iu39dTfS/cRBwdxdic65pzTbKttOomVfpoAilEk+M/SGpBLBh+PnX8KjwkbslUoSTTTOa7VGTNH300NJhxk+7rq0BYFkfPx817LKUNBfQGd0MxBVP0U82SSfXtCfdpEZNYLUBYLB6o2+jMQKdOH69NmrYFVuaXkA3EzMnkJmt2aLm+kqRTzaNTq7N9Pg5fJexazRq1mplAFgnjl+zbRy9VoJz3ZWmEfjEqt/XBQ4GlncmHFckRZ6ioJWTa72kcebU1Rs16yWC6iqhjUcMrrotZbXqtoYsjl/tCXzkeoNr3BGtdrvVny1yCc7lr2ECMLM5NYtulXRHh+JxBVLkKQpaObkmJY1bp+2x6qRYryspvFQlNDggBtcSy1a+lC5q2xqymIiu9gQ+uJYYHBDLVtTfbpr99QTgIGEkcIWkTaoem0raG9i4C7G5nOU1MVwaaUbp1kqbNOL2u9ayFcYG666dOHq33eMXdwJfttJYf53k7dbbr0bL68lqZLUrnjRVQHOILnxEVPXzIPCRTgbliqHItwdsZf6ctFfktftdr0po6XPLmPe5vepur93jV+9E/eTwMuZ/vv52K7IowXk1Un9LUwU0vhuBuGIqan/vVk6uzSSN6v2uVyWU5kTazvFr9wSexSRzXo3U35IGgk1N+qCZXZl9OM6l1+zJtdUr8rxm62x3u1mU4IrcEcC1L6kEcGDCawZ4AnA9p5Ur8ryqwrLYbrsluCJ3BHDtazgZXJH4ZHDOdVfcZHk+8VvvaXkyOEkbA58H3hIW3QJ8wcyezDZE51zRFLkjgGtfml5A5wP3AIeE5x8ALgAS2wicc/2hqB0BXPvSJIDXmNnBVc/PkDS/UwG5zivT9ACt7GuZjo8rtzQJYFjSm8zsdwCSJgPeBaBHlalfd6t3ByvL8XGu4Uhg4FjgO5IekvQwcDZwTGfDcp2S1K+737Syr2U6Ps6lGQg2H5goaaPw/KmOR+U6phf6dWdVBdPKvnZiAjevQnJFlWYuoOPDyf9p4GuS5kpqPA7dFVIrc+h0U6UKZihMwVCpgombf6bRHDWt7Gu7x6eZ+J3LW5oqoA+Hq/69gFcQ9QKa3tGoXMcUdYK3ysn8k5fOT1UFk+ZE28q+dmICN69CckWVphFY4ed+wI/M7F5JSvqAK64i9uuOG2xUq7YKJs0cNa3sa6cmcCtSFZtzFalmA5V0AzAeOEXShsDKzoblOqlo/brjTua1aqtg0p5oW536Ia8J3JzrpjRVQB8BpgE7mdlzwDrAkR2NypVKo6vjuCqYorZlFLWKzbk4DROAma00s7lmtlTS6Wb2LzO7uxvBuXJIOmnXu+FJUU+0U7Yfw5lTt0l1wxbn8tbUZHCS5prZDh2MJ5FPBtefWp1wzLtbOpdOy5PB1a4no3icW6XVhteitWU412uaTQA7diQKV3p+Mneu+9JMB/2tmucATwKzzezqDsXlnCsIr2rrX2l6Aa0LbAf8JTy2BTYDPiLpGx2MzTmXMx/Z3N/SVAFtC0w2sxUAkr4H/BZ4E7Cg1Q1L+gTwX8AK4DozO7nVdbn+dtrMBVxy+yJWmDEgcdjOm/OlKdvkHVaifrlq9pvC97c0CeDlwAZE1T4A6wObmNkKSS+0slFJuwMHARPN7AVJr2xlPa7/nTZzAT+57ZFVz1eYrXpe1CTQT1NK+8jm/pamCugsYL6kCyRdCMwDZkhaH7ipxe0eC0w3sxcAzOyfLa7H9blLbl/U1PIi6Kf5gIo64M5lI81AsB8CuwEzgauAN5nZD4QYhgIAABAVSURBVMzsWTM7qcXtbgW8WdLtkm6RtFO9N0o6WtJsSbOXLFnS4uZcL6me5XNFnXEq9ZYXQT9dNRd1wJ3LRtpuoDsBbw6/rwQWN/qApJuAV8W8dGrY7ibALmHdl0l6tcWMSjOzc4FzIRoIljJe16PSTAwHMFDg+Qj7aT6gIk4e6LKTphvodKKT9MVh0XGSdjWzzyZ9zsz2TFjnscCV4YR/h6SVwKaAX+KXXJqJ4QAO23nzLkTTmpP2nhA7srlXr5p9jEb/SlMC2A/YzsxWAki6iKgdIDEBNDAT2B24WdJWRBPMPdbG+kqj2d4lvdYbpVE1SS/0AvKrZtcr0lYBjQQeD79vnMF2zwfOl3QP8CLwobjqH7e6ZnuX9GJvlHrVJ2NGjuDWaXvkEFFr/KrZ9YI0vYDOBOZJujBc/c8BvtzORs3sRTN7v5m9wcx2MLNZ7ayvLJrtXdKLvVG80dG57klzU/hLJP0fUTsAwGfM7NGORuViNdu7pBd7o3j1iXPdUzcBSKqd9vlv4edoSaPNbG7nwnJxmu1d0qu9Ubz6xLnuSCoBfDXhNQN6p0K2TzTbu6TfeqM457JVNwGY2e7dDMQ11mz1iFenOOeSNHVHsLz5HcGcc6559e4IlqYXkHPOuT7kCcA550qqYQJQ5P2SPheej5X0xs6H5pxzrpPSjAT+LtEEcHsAXwCeBq7gpXEBroR6bYoJ59ya0iSAnc1sB0nzAMzsCUnrdDguV2C9OMVEOzzZuX6Vpg1gmaQBor7/SBpFVCJwJdWLU0y0yu+J6/pZmgTwLaIbwbxS0peB3wH/09GoSqb6BiiTp88q/MmlF6eYaFWZkp0rnzRzAV0saQ7wdkDAFDP7U8cjK4lerE7p1SkmWlGmZOfKJ00voLHAc8C1wDXAs2GZy0AvXmG2OmNnr5V0wO+J6/pbmkbg64jq/wWsC4wHFgKv72BcpdGLV5itTDHRiyUd8PmUXH9LUwW02q2XwiyhH+tYRCXTq9Upzc7YmVTSKXIC8PmUXD9Le0ewVcxsrqSdOxFMGfX7FWalC2VckoNil3QqfHpq16/S3BT+U1VP1wJ2ABZ3LKKS6ecrzNpqnzh5lnQ60b/fxwy4XpKmBLBh1e/LidoEruhMOOXUr1eYcdU+1fIs6XSiTaJX2zlceSUmgDAAbEMzO7FL8bg+klS9Mybnq+NOtEn0ajuHK6+kW0KubWbLJU3uZkCuf9Rr4B4zcgS3Tsv3hnKd6H3Viz26XLkljQO4I/ycL+kaSR+QNLXy6EZwrre1Ol6gGzrRv9/HDLhek2YqiHWBfxHNBnoAcGD46VyiKduP4cyp2zBm5AhEdOV/5tRtClEd0onkVOSE51ycpDaAV4YeQPfw0kCwit65j6TLVVEbuDvR+6qfe3S5/pSUAAaADVj9xF/hCcD1vE4kp6ImPOfiJCWAv5vZF7oWiXPOua5KagOIu/J3zjnXJ5ISwNu7FoVzzrmuq1sFZGaPdzOQTvGh+c45F6/pyeB6iQ/Nd865+tKMA+hZvXizFeec65ZcSgCStgPOIRpkthz4mJndkfyp5vXj0Hyv0nLOZSWvEsBZwBlmth3wufA8c/02NL9SpTW0dBjjpSqtXri1onOuePJKAAZsFH7fmA7dX6DfhuZ7lZZzLkt5NQJ/Erhe0leIktBu9d4o6WjgaICxY5u7F32/Dc3vxyot51x+OpYAJN0EvCrmpVOJxhicYGZXSDoE+CGwZ9x6zOxc4FyASZMmNT0FRT8NzW/2/sHeXuCcS9KxBGBmsSd0AEk/Ao4PTy8HftCpOPpJM/cP9i6wzrlG8moDWAy8Nfy+B/CXnOLoKc1Mr+ztBc65RvJqAzgK+KaktYHnCXX8rrG0VVreXuCcaySXBGBmvwN2zGPbZdFse4Fzrnz6eiRwmfVbF1jnXPb6ei6gMsujC6z3OnKut3gC6GPd7ALrvY6c6z2eAFwmknodFSEBeOnEuTV5AnCZKHKvIy+dOBfPG4GJThCTp89i/LTrmDx9lk+u1oIiT7znYyKci1f6BOAzbGajyL2Oilw6cS5PpU8AfnXYWJoSUjOjlLutyKUT5/JU+jYAvzpM1kz9eVEn3mtmDiXnyqT0JQC/OkzWDyWkIpdOnMtT6UsAfnWYrF9KSEUtnTiXp9KXAPzqMJmXkJzrX6UvAYBfHSbxEpJz/csTgEvUb7fVdM69xBOAa8hLSM71p9K3ATjnXFl5AnDOuZLyBOCccyXlCcA550rKE4BzzpWUzCzvGFKTtAR4OO84amwKPJZ3EE3weDvL4+0sj7c1W5jZqNqFPZUAikjSbDOblHccaXm8neXxdpbHmy2vAnLOuZLyBOCccyXlCaB95+YdQJM83s7yeDvL482QtwE451xJeQnAOedKyhOAc86VlCeAjEj6hKT7JN0r6ay840ki6XRJQ5Lmh8d+eceUhqRPSzJJm+YdSxJJX5R0dzi2N0ganXdMSSTNCH+7d0u6StLIvGNKIuk94f9spaTCdrGUtI+khZLulzQt73jieALIgKTdgYOAiWb2euArOYeUxtfNbLvw+GXewTQiaXNgL+CRvGNJYYaZbWtm2wG/AD6Xd0AN3Ai8wcy2Bf4MnJJzPI3cA0wFfpN3IPVIGgC+A+wLvA44TNLr8o1qTZ4AsnEsMN3MXgAws3/mHE8/+jpwMlD4Xgtm9lTV0/UpeMxmdoOZLQ9PbwM2yzOeRszsT2a2MO84GngjcL+ZPWBmLwI/I7pILBRPANnYCnizpNsl3SJpp7wDSuHjoch/vqSX5x1MEkkHAUNmdlfesaQl6cuSFgGHU/wSQLUPA7/KO4g+MAZYVPX8b2FZofgdwVKSdBPwqpiXTiU6jpsAuwA7AZdJerXl2Me2QbzfA75IdGX6ReCrRP/4uWkQ72eJqn8KIyleM7vazE4FTpV0CvBx4PNdDbBGo3jDe04FlgMXdzO2OGnide3zBJCSme1Z7zVJxwJXhhP+HZJWEk0CtaRb8dVKireapPOI6qlzVS9eSdsA44G7JEFUPTFX0hvN7NEuhriatMeX6GT6S3JOAI3ilXQEcADw9jwvXCqaOL5FNQRsXvV8s7CsULwKKBszgd0BJG0FrEMxZgCMJenfq56+i6hRrZDMbIGZvdLMxpnZOKKi9A55nvwbkfTaqqcHAfflFUsakvYhal95p5k9l3c8feJO4LWSxktaB3gvcE3OMa3BSwDZOB84X9I9wIvAh4pwFZXgLEnbEVUBPQR8NN9w+s50SROAlUTTlx+TczyNnA28DLgxlLJuM7PCxizpXcC3gVHAdZLmm9neOYe1GjNbLunjwPXAAHC+md2bc1hr8KkgnHOupLwKyDnnSsoTgHPOlZQnAOecKylPAM45V1KeAJxzrqQ8AZSIpBVhhsp7JF0uab021nWhpHeH33+QNNGVpLdJ2q2FbTwUN/NnveWdJun/Gs0+WX1capZPkvSt8PsRks4Ovx8j6YNVy5uaObTRsc9aymOwi6Tzwvf+i7DsnZUZMSVNKeLEaGXkCaBchsPsn28gGq+wWl9vSS2NCzGz/zSzPya85W1A0wmgn5jZbDM7Lmb5OWb2o/D0CKCpBJDi2OdhX+DX1QvM7Bozmx6eTiGaITO1Vv82XTJPAOX1W2DLcJX2W0nXAH+UNBDmh78zTBb3UQBFzg7zm98EvLKyouqrwjAH+lxJd0n6X0njiBLNCaH08WZJoyRdEbZxp6TJ4bOvUDR//r2SfgCo0U5I+lQo0dwj6ZNVy/87xPo7SZdIOjHms+tLui7Eeo+kQ8Pyt0uaJ2lBmCzvZTGffabq93dLurDq5T0lzZb0Z0kHhPesuhquWc/pkk4MpYZJwMXhOO0vaWbV+94h6aqYz1cf+2cUTUJ3l6TbJP1bne1dFL7zhyVNlXRW2NdfSxpMcwzC38mF4bgtkHRC1ctvB26qef8R4e9nN+CdwIywn68Jj19LmhPi2jp85kJJ50i6HSj0PTZ6lSeAEgpXU/sCC8KiHYDjzWwr4CPAk2a2E9HEdkdJGk80ZcQEoiu3DxJzRS9pFHAecLCZTQTeY2YPAefw0v0Hfgt8MzzfCTgY+EFYxeeB34V7KlwFjG2wHzsCRwI7E03Ed5Sk7RXNxnowMDHsZ70qi32AxWY2MZSKfi1pXeBC4FAz24ZotPyxSXHEGEc0HfD+wDlhnYnM7OfAbODwcB+BXwJbh2NK2M/zG6xmfaJRvBOJ5so/qs77XgPsQXQi/glwc9jXYWD/lMdgO2CMmb0hvOcCAEVVc8vM7Mk6+/l7oikRTgp/D38lunH6J8xsR+BE4LtVH9kM2M3MPtVg310LPAGUywhJ84lONI8APwzL7zCzB8PvewEfDO+7HXgF8FrgLcAlZrbCzBYDs2LWvwvwm8q6zOzxOnHsCZwdtnENsJGkDcI2fhI+ex3wRIP9eRNwlZk9a2bPAFcCbwYmA1eb2fNm9jRwbZ3PLwDeIen/SXpzOGlNAB40sz+H91wU4mrGZWa20sz+AjwAbN3k5wlTifwYeL+iO3TtSuNpml/kpYn95hAloji/MrNlRPs/wEvVNQvCZ9IcgweAV0v6tqK5hCr3QNgLuKFBnKuE73034PLw9/B9oHquqsvNbEXa9bnmeL1auQyHq8tVFM398mz1IqKrsetr3pflbSPXAnYxs+djYukYRXcVqySDc8zsHEk7APsBX5L0v0DaqYar51CpvcKvnV+l1flWLiCK93miE+HyBu9fVjUH1Qrq/39Xbly0UlL1Z1YmfGY1ZvaEpInA3kRVfIcQTSm+L/C1NOsI1gKW1v5dVnm2znKXAS8BuFrXA8dW1QVvJWl9oiqFQ0Pd778TZj+tcRvwllBlhKRNwvKngQ2r3ncD8InKE0UT0xG28b6wbF+g0Y1qfgtMkbReiPFdYdmtwIGS1g1XmAcAmNmiqttgnqOox81zZvYTYAZRVdhCYJykLcM2PgDcErPtf0j6D0lrhe1We4+ktSS9Bnh1WGcaqx2nUNJaDJxGqGLpkobHIFT1rGVmV4T4dlCUwbcF5jdY/6r9DHdPe1DSe8J6FRKL6wIvAbhaPyCqBpgb/qGXEPXauIqo3viPRNVHf6j9oJktkXQ0cGU4Mf4TeAfRVezPFd3Z6xPAccB3JN1N9Df4G6KryDOASyTdC/yeBvf/NbO5ofH1jkrsZjYPQFGj9t3AP4iqNuLqpLchaoxcCSwDjjWz5yUdSVQlsTbRtL7nxHx2GlF1yxKiKrUNql57JMS0EXBMWGfSrlRcSNRmMAzsambDRPcTGGVmf0qzgiykPAZjgAvC9wzRfYR3BOalmAn3Z8B5ko4D3k1017TvSToNGAyv98zd33qZzwbq+pKkDczsGUVjHX4DHG1mc/OOq1mKxgvMM7MfNnxzzsIJ/H4z+1nesbh0PAG4viTpp0Q9ltYFLjKzM3MOqWmS5hDVgb/DzF7IOx7XfzwBOOdcSXkjsHPOlZQnAOecKylPAM45V1KeAJxzrqQ8ATjnXEn9fxgeV7KngHGVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -1339,7 +1363,7 @@ "metadata": { "id": "sai82xRPc_9-", "colab_type": "code", - "outputId": "083ae71c-541a-4a3b-822f-f3d01ed0ac59", + "outputId": "54a2edce-bafb-4f44-dd3c-7174947776c1", "colab": { "base_uri": "https://localhost:8080/", "height": 295 @@ -1360,13 +1384,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZwcVbn/8c83YYCwRiCIBEIiSLgg\ne1AhgrJIQEAwCOjlquDCBX+4oAaDXGVxIZeoKIIiaAAFERUI0ahBbhQURUxIMKBEkdUJaBDCEgZI\nMs/vjzqd9HS6q6uX6qrqft6v17xmurq76lTPzDl1nnPqOTIznHPO9Z5hWRfAOedcNrwBcM65HuUN\ngHPO9ShvAJxzrkd5A+Cccz3KGwDnnOtR3gC4VEkySTuEny+T9JkOHPMkSb9N+zhZyts5Shobftfr\ntPpaSZ+W9O1qr5X0c0nvjdl3R/7GuoU3ADkg6WFJA5Kek7RM0u8knSppWNlrrgr/CK8r27aDJCt7\n/GtJL0ratmzbIZIe7tjJxDCzU83sc/VeF87jA50oU7uUN3SuNWb2RTOr+vs3s8PN7Gqo3ggm/Rtz\nEW8A8uMoM9sY2A6YBnwK+E7Fa54CPl9nP8uBVK6Aklzduer8s3N55A1AzpjZM2Y2CzgBeK+k15Y9\nfTWwm6Q3xeziYuBdkrZPcrxw5foRSQ9KelLS9FLPI1xh3SHpIkn/Bs6VtJ6kL0l6VNI/Q5d7RNn+\npkh6XNISSe+rONZVkj5f9vhoSQslPSvp75IOk/QFYH/gEknPS7okvHYnSb+U9JSkxZKOL9vP5pJm\nhf3cBdQ89xBCOL1i2z2SJitykaR/hX0tqvj8a+3z9vDjPaHMJ0h6s6R/SPqUpCeAK6tdsVaEyGI/\n2zpl2E/SHyU9E77vV/bcOEm3hx7mrZIulXRNzL5OCn8Pz0l6SNKJYfswSf8j6ZHwGX1X0qY19vGw\npEPKHp9b5ZjvC38nj0v6ZJ3Xlp77taQPSPoP4DJg3/CZLwvPV/6NHRn+xko9693KnvuUpP5wnosl\nHVzrM+lW3gDklJndBfyDqDIseQH4IvCFmLf2A1cA5zVwuLcDE4C9gKOB8or79cCDwCvDcacBOwJ7\nADsAo4HPAkg6DPgk8BbgNcAh1KAolPVdYAowEjgAeNjMzgZ+A5xuZhuZ2emSNgR+CXwf2BJ4J/AN\nSTuH3V0KvAi8KpR9SMNT4TrgXWXl2Jmo1zUbODSUY0dgU+B44N8x+wLAzA4IP+4eynx9eLwVsFnY\n/yn19kPMZxtH0mah/BcDmwNfAWZL2jy85PvAXeG5c4F3x+xrw7Cfw0OPdD9gYXj6pPB1IPBqYCPg\nkgTnVcuBRH8nhwKfKm8w6jGzvwCnAr8Pn/nIytdI2hOYAfw30bl/C5gVGtrxwOnAPuE8JwEPt3Au\nheQNQL4tIapAyn0LGCPp8Jj3XQAcJWmXhMf5XzN7ysweBb5KWQUJLDGzr5vZSqJK9hTgjPD654ga\npHeG1x4PXGlm95rZcqLKppb3AzPM7JdmNmhm/WZ2f43XHknUOFxpZivNbAFwA3CcpOHAscBnzWy5\nmd1L1FOq5SZgD0nbhccnAjea2UvACmBjYCdAZvYXM3s8Zl/1DALnmNlLZjYQ90JJIv6zjXME8Dcz\n+174fK4D7if6GxgD7EP0+bxsZr8FZiUo92sljTCzx83svrD9ROArZvagmT0PnAW8U82Ht84Lv7NF\nwJUM/btrh1OAb5nZH8xsVRg7eAl4A7AKWA/YWVKfmT1sZn9v8/FzzxuAfBtNFPdfLVRUnwtfVZnZ\nUqIrs/MTHuexsp8fAbau8dwoYANgfuhSLwN+EbYT3le5r1q2BZL+w20HvL50zHDcE4musEcB6yQ9\nbqhYZ7OmYn0XcG14bi7R53Yp8C9Jl0vaJGEZq1lqZi8mfG29zzbO1qx9zo8Q/f1sDTxlZi+UPbf6\nswphpufD16dDw30C0dX145JmS9qpxnEeIfrsX5nwHCvF/d21w3bAJyr+brYFtjazB4CPEV2k/EvS\nDyS1+/i55w1ATknah+gfuNpUvyuJwiaTY3YxnaiLvXeCw21b9vMYop5HSXm62CeBAWAXMxsZvjY1\ns43C849X2Vctj1E7Vl+ZovYx4LayY44M3f7TgKXAygaOCyEMJGlfYH3gV6sPbHaxme0N7EwUjplS\nZ19xKs9jOVElD4Ckrcqeq/fZxllCVNmVG0MUDnwc2EzSBmXPrf6swqyZjcLXF8O2OWb2FqKQ2v1E\nIcVqxxlD9Nn/s0qZhpwrUWNdKe7vLol6qYwfA75Q8XezQeghYWbfN7M3Ep2TAf/b4PELzxuAnJG0\niaQjgR8A14Tu8RAhHHMO0UyhqsxsGfBl4MwEh50i6RWKpo9+FLi+2ovMbJCoMrhI0pahvKMlTQov\n+SFwkqSdQ4VzTswxvwOcLOngMLg4uuxK859EMeaSnwI7Snq3pL7wtY+k/zCzVcCNRAPUG4SYfs15\n4sHPiP7pzweuD+dF2OfrJfURVWAvEoVDkqgsczX3ALtI2kPS+pSFyBJ8tvXOZ0dJ/ylpHUknEDVg\nPzWzR4B5RJ/PuqHRO6rWjiS9UtHg/IZE4ZLnWfMZXAecEQaVNyIKUV0f/h4rLSQKD/VJmgC8o8pr\nPhN+Z7sAJ1Pj7y7GP4FtJK1b4/krgFPD71SSNpR0hKSNJY2XdJCk9Yh+zwMk/113DW8A8uMnkp4j\numo5m2gg7+SY119HdHUX52tEsc56bgbmE/3Tzmbt6aflPgU8ANwp6VngVmA8gJn9nGgMYW54zdxa\nOwmD3CcDFwHPALex5urya8A7JD0t6eIQtjmUKGyzBHiC6GptvfD604kGJJ8AriLqIdUUwmg3Eg1S\nf7/sqU2IKo2niUIS/ybqSZVuTvp5zG7PBa4OoYbjq73AzP5K1OjcCvyNtXt3NT/bOufzb6Jxkk+E\nMp8JHGlmT4aXnAjsG577PFFF+1KN3Q0DPk70OT8FvAk4LTw3A/gecDvwEFHF+eEa+/kMUQ/vaaIJ\nCd+v8prbwvn+H/AlM7ul3rlWmAvcBzwh6cnKJ81sHvBBorDe0+FYJ4Wn1yMadH+S6O9mS6IxjZ4i\nXxCmtym6kew1ISbqeoCk64H7zSyuh+Z6gPcAnOtyIbS1fQi1HUY01Xdm1uVy2fO7E53rflsRhbw2\nJ7q35LQwldb1OA8BOedcj/IQkHPO9ahChYC22GILGzt2bNbFcM65Qpk/f/6TZrbWTYWFagDGjh3L\nvHnzsi6Gc84ViqSqd8d7CMg553qUNwDOOdejvAFwzrke5Q2Ac871KG8AnHOuRxVqFpBzLj9mLuhn\n+pzFLFk2wNYjRzBl0niO2XN01sVyDfAGwDnXsJkL+jnrxkUMrIiSzfYvG+CsG6PM5d4IFIeHgJxz\nDZs+Z/Hqyr9kYMUqps9ZnFGJXDO8AXDONWzJsupLHNfa7vLJGwDnXMO2Hjmioe0un7wBcM41bMqk\n8YzoGz5k24i+4UyZVHcBM5cjPgjsnGtYaaDXZwEVmzcAzrmmHLPnaK/wC85DQM4516O8AXDOuR7l\nDYBzzvUobwCcc65HeQPgnHM9yhsA55zrUd4AOOdcj/IGwDnnepQ3AM4516O8AXDOuR7lDYBzzvUo\nbwCcc65HeQPgnHM9yhsA55zrUZk2AJIOk7RY0gOSpmZZFuec6zWZNQCShgOXAocDOwPvkrRzVuVx\nzrlek2UP4HXAA2b2oJm9DPwAODrD8jjnXE/JsgEYDTxW9vgfYdsQkk6RNE/SvKVLl3ascM451+1y\nPwhsZpeb2QQzmzBq1Kisi+Occ10jyzWB+4Ftyx5vE7Y551zXmLmgn+lzFrNk2QBbjxzBlEnjc7OW\ncmwPQNJwSdemdOw/Aq+RNE7SusA7gVkpHcs55zpu5oJ+zrpxEf3LBjCgf9kAZ924iJkL8nGtG9sD\nMLNVkraTtG4YqG0bM1sp6XRgDjAcmGFm97XzGM65fMvz1XE7TJ+zmIEVq4ZsG1ixiulzFufiPJOE\ngB4E7pA0C1he2mhmX2n14Gb2M+Bnre7HOVc8pavjUgVZujoGclE5QusN1JJlAw1t77Qkg8B/B34a\nXrtx2ZdzzjUt7uo4D9oRvtl65IiGtnda3R6AmZ0HIGkDM3sh/SI553pB3q+O2xG+mTJp/JBeDsCI\nvuFMmTS+rWVtVt0egKR9Jf0ZuD883l3SN1IvmXOuMGYu6GfitLmMmzqbidPmJrpKzvvVcTsaqGP2\nHM0Fk3dl9MgRCBg9cgQXTN41NyGuJGMAXwUmEWbomNk9kg5ItVTOucJoNpaf96vjrUeOoL9KZd9o\nA3XMnqNzU+FXSnQjmJk9VrFpVdUXOud6TrOx/LxfHU+ZNJ4RfcOHbMuigWqmd5VUkh7AY5L2A0xS\nH/BR4C9tK4FzrtBaCZXk+eq4VK4sp6mmPVMqSQNwKvA1ojw9/cAtwIdaPrJzril5mDtfXoZhEqvM\n1npNXmL5rci6gUr7PoIkDcB4MzuxfIOkicAdLR/dOdeQPMydryxDtco/T7H8Ikt7plSSMYCvJ9zm\nnEtZHubOVysDwHCpoVh+mrHtbpH2TKmaPQBJ+wL7AaMkfbzsqU2IUjc45zosD3Pnax1r0IyHph2R\naB956MkUQdozpeJ6AOsCGxE1EuV3AD8LvKMtR3fONSQPc+fbUYY89GSKIO2ZUjV7AGZ2G3CbpKvM\n7JG2HM0515I8zJ1vRxny0JMpijQHouNCQF81s48Bl0haa5THzN6WSomcczXlYWpiO8rQrpusXGtk\nVUbwASTtbWbzJb2p2vOhh9BREyZMsHnz5nX6sM4VQh6mhyZVOQYAUS8iTzeCdRNJ881sQuX2uBDQ\n/PC94xW9c64xeR1UrdUo5aEn4+JDQIuA6t0DwMx2S6VEzrmG5XHhkXqNUtY3WTWiSL2rRsTdCHZk\nx0rhnGtJHgdV89goNSOvvat2iGsALgd+AfzczO7vUHmcc03Iw6Bq5VVytfJA8Wb6dEtDVk3cfQDv\nBZ4GzpV0t6RvSjpa0oYdKptzLqGsM1dWWz1LNV5btJk+eexdtUvNBsDMnjCzq8zsncAE4LvA3sAt\nkm6VdGanCumci5d1auVqV8kGazUCRcwRlIeb79KSJBkcZjYI/D58fVbSFkSLxDjnciKtQdUkA6C1\nroaNqDEq8uBpHm6+S0vdBkDShcDngQGiMYHdgDPM7JqUy+acy1jSAdBaMf/RI0dwx9SDOlPYlHTz\nlNUkPYBDzexMSW8HHgYmA7cD3gA41+WSDoA2e5VclOmVRZqy2ogkDUDpNUcAPzKzZ6RawzvOuU5L\nqxKduaA/8UyeZq6Su3l6ZVEkaQB+Kul+ohDQaZJGAS+mWyznXBJpVaKl/dZiwMRpc4dU8o1eJXfz\n9MqiqLsgjJlNJVoXYIKZrQCWA0enXTDnXH1ppVWutehLuVJj0+xCLt08vbIo4lJBTK6yrfzhjWkU\nyDmXXFqVaNL3l1+xNxqKysPNa70uLgR0VMxzhjcAzmUurUo07k7eSkuWDTQViurm6ZVFUTMddB55\nOmjnhmpHWuVqV+7AWvsV1bNDjg6NTb1poLWO0+gAdlFmDuVJrXTQdRsASZsC5wAHhE23Aeeb2TNt\nL2Ud3gA4t7ZWKsS4BgSGVs4H7jSKG+b3V33tGdcvrNo4CHho2hFty//v6wg0p+H1AMrMAO4Fjg+P\n3w1cSXQ/gHMuQ61eDccNIt8x9aC19jVhu82qHm/6nMWxoah2zfjJ08yhbuiJJGkAtjezY8senydp\nYSsHlTSdaIzhZeDvwMlmtqyVfTrXa9oxBbTRQeRaUz3rxfPbNVidl5lD3XIPQ91poMCApDeWHkia\nSHRPQCt+Cbw2LCrzV+CsFvfnXM9pxxTQdiU6q5eMrl3HyUtitrSm33ZakgbgNOBSSQ9LegS4BDi1\nlYOa2S1mtjI8vBPYppX9OdeL2nE13K400vXCIe06TtZpr0vy0hNpVd0QkJktBHaXtEl4/Gyby/A+\n4PpaT0o6BTgFYMyYMW0+tHPFVWuq5sgN+hLvox2JzpKEQ9qVUK3WfiC6M7lT8fhuuYchySygkcB7\ngLGUNRhm9pE677sV2KrKU2eb2c3hNWcTrTUw2RLMR/VZQM6tMXNBP1N+fA8rVg391+kbJqYft3vH\nYtETp83NNBNoFjODijYbqZVZQD8jCtMsAgaTHtDMDqlToJOI1h0+OEnl75wb6pg9R3PurPtYNrBi\nyPYVg9bRWTHtCIe0MqMmi5lB3ZIiOkkDsL6ZfbydB5V0GHAm8CYze6Gd+3auHYoyxe+Zisq/pJOx\n6FbDIa3OqMlq7eFuSBGdZBD4e5I+KOlVkjYrfbV43EuAjYFfSloo6bIW9+dc21Rb37aVpGdpysOs\nmFYHZpPMqJm5oJ+J0+YybupsJk6bu/p3MXNBf9esPZyFJD2Al4HpwNmsuRPcgFc3e1Az26HZ9zqX\ntrzcbJSkF3LgTqO49s5Hh9yF2+lZMa2GQ+qFkOJ6CNPnLK55B7LnFKovSQPwCWAHM3sy7cI4lwd5\nmOKXJCwyc0E/N8zvH1IBCjh2786HJloJh9QLIcU1yHFrERc9PNMJSUJADwAep3c9Iw9hlSRhkWqv\nMeBX9y/tRBHbpl4IKa5BrvU7Ge3hn0SSNADLgYWSviXp4tJX2gVzLit5uNkoSS8kDz2VZlTG84Gm\n7yLOw++qyJKEgGaGL+d6Qh6m+NUKiwyTGDd1NluPHMHIDfp4+oW1ZwHlefCzVmjrgsm71rxnIC7P\nUB5+V0Xm6wE4l0PVbjSq1DdMDAKrBtf8D/cNF9PfUf0msDxMbW32prE8lL3IWrkRzDnXYZVXtsMk\nVlVcrK0YXPvibdWq6hd0ecle2WzYqhvm3OdRkjEA51wGjtlzNHdMPYiHph3BYMKe+iBw7qz71tqe\nl+yVeRhgd2t4D8C5FDQTsoh7TyNr9FamhoD8DBj7OsD5UrcBkLQjMAXYjqHJ4NLP8uRcxpqtyBsN\nt9R7T7WKsxHNpmtod+zdB23zJUkP4EfAZcAVQHN/fc4VULNx8yR3EldWrC+8vDL2PdUqzmUvvMzy\nl9f+l3xFSAddfoyRG/TRN0xDxg3qXXmnNW7g8fz8SNIArDSzb6ZeEudyptmUEM2kNkiyr8qKs1o6\n6L7h4pyjdlnrGE+/sIK+4WLkiD6eGViR6Mo7LykxXHqSNAA/kfQh4CbgpdJGM3sqtVI5lwPNxs2b\nSW0Qt69a4sIpE6fNXesYK1YZG663DgvPOTTRsfMybuDSk6QBeG/4PqVsW0vJ4Jwrgmbj5s0ukF7N\n8pdWMnNBf80r7lrhlHZU3s2cv8/XL5a600DNbFyVL6/8XddrNs1AswukjxzRtzp+X7JsYEVTqajb\nMd2y0fOvlkb7jOsXMrYihbPLj5o9AEkHmdlcSZOrPW9mN6ZXLOey18qMlbiBzlo9hHPftgvT5yxe\nK71DM3H3dky3bOT8Zy7o5xM/vGetm9VKj5IOIHsPorPiQkBvAuYCR1V5zgBvAFxutasiSWPGSlzF\nesb1C6u+p9G4ezsXYU867bWy8q9UryHLy93KvaRmA2Bm54TvJ3euOM61rggVSa2KtdXlFZMco90a\nGdSOa8h81lHneSoI13XykvagGUVMb9zowHKj+/FZR+nxVBCu6xSxIqm8aWu9dYbVnK+ftzh50jQV\n5Q1ZtXNoZ+/HJeM9ANd1ipZwrHL2zNMvrOCllYNcdMIe3DH1oLUq/7wtWD9l0viaC7MPl9aaCVXr\nHA7caVThej9FV7cBkDRf0v+T9IpOFMi5Vk2ZNJ6+YUOrpL5hym1F0kjIKo/hrWP2HF11YXaAQTMe\nmnbEkIas1jn86v6lsdNnXfslCQGdAJwM/FHSPOBK4BYr0koyrmV5CzvUVXlJWusSNQcaCVllFd6q\n9/sf3UD4Ju4cPE9QZ9VtAMzsAeBsSZ8BjgRmAKskXQl8zVNCdL8izKopN33O4iH5cSBKg5BkNkll\nRXfgTqP41f1LU234Gol9ZxEnT/L7b+S+A4/150eiMQBJuwFfBqYDNwDHAc8S3Sfgulweww5xmr1K\nrhabvubOR1OPtzcy8yeLWUJJfv/17n4ul8U5VC5E73clR5KsBzAfWAZ8B5hqZqWEcH+QNDHNwrl8\nKNqsmmavMJPMZx9YsYpzZ93X1l5AIzdtZZFPP+nvP2n4ptPnkKQHU7gQZ5skGQM4zsweLN8gaZyZ\nPWRmVdNEuO5StC57s2kQkjZoywZWxCZoa0Yjse9Ox8nT+P138hzq3WBWtBBnOyUJAf044TbXpdrd\nZU+7O95IOKJcIxVaXsNfaSjizWnl6vVgihbibKe4ZHA7AbsAm1YkhNsEWD/tgrn8aGeXvVNXW81c\nYTay7GJew19pKPoyjvV6MEULcbZTXAhoPNGsn5EMTQj3HPDBNAvl8qddXfY853tpZNnFvIa/0lLk\n6Zn1QoJFC3G2U1wyuJuBmyXta2a/72CZXBfL+9VWtWUXW02r7LJVrwfTjtTZRRUXAjrTzC4E/lPS\nuyqfN7OPpFoy15U6ebXVjpkd7Q5/FTWMUnRxPZiih7haERcC+kv4Pi+tg0v6BPAlYJSZPZnWcVx+\ndOpqq51jDe0If/TyTJMiKHKIqxVxIaCfhO9Xp3FgSdsChwKPprF/l0+dutrK21hD3spTVN6Laq+4\nENBPoGaOJ8zsbS0e+yLgTODmFvfT04r4D9GJq628jTU0Up4i/k47wXtR7RcXAvpSWgeVdDTQb2b3\nSPFZuiSdApwCMGbMmLSKVEj+D7FGZaU5coO+tdbWhexmdiQd+/DfaW1F7UXluUGPCwHd1sqOJd0K\nbFXlqbOBTxOFf+oys8uBywEmTJjgGUjLFPUfot2qVZp9w0TfcA1JCpflzI6kYx9Jfqd5rlDSlLde\nXRJ5b9DjQkA/NLPjJS1iaChIgJnZbnE7NrNDaux3V2AcULr63wa4W9LrzOyJRk+glxXxHyIN1SrN\nFYPGyBF9bLjeOrmoKJOOfdT7nea9QklTEefr5/0iLS4E9NHw/ch2HtDMFgFblh5LehiY4LOAGlfE\nf4g01Ko0nxlYwcJzEnU0OyLJ2Ee932neK5Q0FXG+ft4v0mrmAjKzx8P3R4CXgN2B3YCXwjaXsaLn\naGmXoi0BCbXzIdX7nea9QklTszmespT3v80k6aA/AHyWKPe/gK9LOt/MZrSjAGY2th376UW9fANL\nuaRXhnmJnScJ49QqZ6/3+oo2Xz/vvRbVW9lR0mJgPzP7d3i8OfA7M+v4GUyYMMHmzUvtvjRXYOWV\n+6Yj+pBg2QsrVlegQNV/xCyuICdOm1u1Eh89cgR3TD0o9r21UlPk/Uq4l+XhwkPSfDObsNb2BA3A\n74A3m9nL4fG6wK/NbL9UShrDGwBXT60Kcr11hrFsYO1poUkq3XYbN3V21RtsBDw07Yi6789DheKK\npVYDEDcL6OPhxweIVv+6mWg20NHAn1IppXMxklR8tQZJa6V4ziJ23kgYp9Y5e4Xv2iFuDGDj8P3v\n4avE79x1HZd0+mOjFXp5pdupK+taceEDdxrFxGlzhyxIf8P8/panfHqPwdUSdyPYeZ0siHNxkk5/\nrHV1/YoN+nhxxWDNwbhOrhtbbaC3WmV/7Z2PrhUqanTKZy/fN+Dqq7skpKRfSZpb+dWJwjlXknT6\nY61plOcctUvsFMJ6ywKWKtL+ZQMYayrSZpezPGbP0dwx9SAuOmEPAK6589G1jl9rdK6RXk6Wyx2m\nvfSna12SReE/Wfbz+sCxwMp0iuNcdUnj5vWmUda66q1VqfYvG2Dc1NkMk1hVMWGi1Ruwqg1YJ9HI\nlM9655VWSMh7HsVQtwEws/kVm+6QdFdK5XGuqkbmUzczSFqrgYHoSryy8i9pZRC52tV5JTG0J9Do\nHPJ655VWxdzLdywXSZIQ0GZlX1tImgRs2oGyObda2neBVgsdJdHKDVj1Go8RfcM58Q1jWjrnJOfV\njpBQZbinVqPTC3csF0mSENB8oosFEYV+HgLen2ahnKsmzemPlaGjJGlnW72jM+7qfHSbQjNJz6uV\nirlauKey51LSK3csF0WSENC4ThTEuayVNzC1rmKHSwyatSV2Xius1e67epOcVysVc7VwT+mKsZXw\nlUtf3I1gk+PeaGY3tr84zuVDJyrnLHI5pZGbplbvwYh6Mn7/QX7F9QCOinnOAG8AXNfqVOXc6bt6\n0zivWqGsLNJsuMbUzQWUJ54LyLn88QR1+ddwLqCyN24KnAMcEDbdBpxvZs+0t4jOuSLytOTFlWQW\n0AzgXuD48PjdwJVA7BiBc653eIK6YkrSAGxvZseWPT5P0sK0CuRcWoqYFC1JmYt4Xi4fkjQAA5Le\naGa/BZA0EfC7OVyhFDE1QdIEdUU7L5cfde8EBk4DLpX0sKRHgEuAU9MtlnPtlWVStGYlKXMRz8vl\nR5IbwRYCu0vaJDx+NvVSOddm7VhMvdOhliRl7uVF4l3rkuQC+mio/J8DviLpbkmHpl8059qn1p2u\nSe+AbXc66CRGbtBXd3uS8/K0zK6WJCGg94Wr/kOBzYlmAU1LtVSuJ6VZUdVaJyDpHbBZhFpq3aJT\nvr3eeWXRcLniSNIAKHx/K/BdM7uvbJtzbZF2RdVqNtEsQi3PVFnEvnJ7vfPyMQIXJ1E2UEm3AOOA\nsyRtDAymWyzXazqRP76VueqNLOTeLo0sgtPoQjc+RuAgWQ/g/cBUYB8zewFYFzg51VK5npP3iqrV\nEFJWx2x17MN1t7oNgJkNmtndZrZM0rlm9m8z+1MnCud6R94rqrQXpEnrmFk0XK44GkoGJ+luM9sr\nxfLE8mRw3csTiqXH7xR2TSeDq9xPm8rj3BCeUCw9nqfH1dJoA7B3KqVwDq+onOu0JOmgL654DPAM\nMM/Mbk6pXK5gPMzgXPEkmQW0PrAH8LfwtRuwDfB+SV9NsWyuIPxmI+eKKUkIaDdgopmtApD0TeA3\nwBuBRc0eWNKHgf8HrAJmm9mZze7LZasTc/jTFteDKWrvpqjldp2TpAF4BbARUdgHYENgMzNbJeml\nZg4q6UDgaGB3M3tJ0pbN7MflQ97n8NcTl1IZKGS6ZU8T7ZJIEgK6EFgo6UpJVwELgOmSNgRubfK4\npwHTzOwlADP7V5P7cTmQ90vKzYsAABBySURBVDn89cT1YIqaSqGo5XadleRGsO8A+wEzgZuAN5rZ\nt81suZlNafK4OwL7S/qDpNsk7VPrhZJOkTRP0rylS5c2eTiXpqLfbBTXg2lXGulOZ+Mseq/MdUbS\naaD7APuHnweBJfXeIOlWYKsqT50djrsZ8Iaw7x9KerVVuSvNzC4HLofoRrCE5XUdVPQ5/PVy7rSS\nAyirUEwWuYtc8SSZBjqNqJK+Nmz6iKR9zezTce8zs0Ni9nkacGOo8O+SNAhsAfglfkEVeQ7/lEnj\nq96FXOrBxD1XT1YD5PXOyTlI1gN4K7CHmQ0CSLqaaBwgtgGoYyZwIPArSTsSJZh7soX9uYJqZqZK\nu2e3JOnBNHu8rEIxRe+Vuc5IGgIaCTwVft60DcedAcyQdC/wMvDeauEf192aCY+kFVKJ68EULY10\nSZF7Za4zkswCugBYIOmqcPU/H/hCKwc1s5fN7L/M7LVmtpeZzW1lf66YmpmpUrTZLUUfIHfdLcmi\n8NdJ+jXROADAp8zsiVRL5XpCM+GRos1u8VCMy7OaDYCkyrTP/wjft5a0tZndnV6xXC9oJjxSxNkt\nHopxeRXXA/hyzHMGHNTmsrge08xMFZ/d4lz71GwAzOzAThbE9Z5mwiMeUnGufRpaESxrviKYc841\nrtaKYElmATnnnOtC3gA451yPqtsAKPJfkj4bHo+R9Lr0i+accy5NSe4E/gZRAriDgPOB54AbWHNf\ngOtSvqCIc90tSQPwejPbS9ICADN7WtK6KZfLZcwXFKnPG0hXdEnGAFZIGk409x9Jo4h6BK6LFS3l\nQqf5OsiuGyRpAC4mWghmS0lfAH4LfDHVUrnMdSrlQhaLpbSDN5CuGyTJBXStpPnAwYCAY8zsL6mX\nzGWqEykXihxmKlpOIueqSTILaAzwAvATYBawPGxzXawTWSyLfBXd6DrIRe3puO6WZBB4NlH8X8D6\nwDhgMbBLiuVyGetEyoUiX0U3kpOoyD0d192ShIB2LX8csoR+KLUSudxIO4tlETN7ljTSQGa1LKRz\n9SRdEWw1M7tb0uvTKIzrLUXP7FnZQJbCPJUNQpF7Oq67JVkU/uNlD4cBewFLUiuR6xlJrqLj5trn\naR5+XJinyD0d192S9AA2Lvt5JdGYwA3pFMf1mrgwU1ylCuQqrh4X5il6T8d1r9gGINwAtrGZfbJD\n5XFutXqzhPIUV48L8/gaBi6v4paEXMfMVkqa2MkCOVfSzjWD01YvzOPLQro8irsP4K7wfaGkWZLe\nLWly6asThXO9LW6ufaPz8NPWifsmnGu3JKkg1gf+TZQN9EjgqPDduVTFVap5q3CP2XM0F0zeldEj\nRyBg9MgRXDB5V7/qd7kWNwawZZgBdC9rbgQrKc46kq6wksTO8xRX9zCPK5q4BmA4sBFDK/4SbwBc\nR8RVql7hOteauAbgcTM7v2Mlcc4511FxYwDVrvydc851ibgG4OCOlcI551zH1QwBmdlTnSyI6115\nSungXC9pOBmcc+3kqZKdy06S+wCcS02RF4Vxrugy6QFI2gO4jOgms5XAh8zsrvh3NcfDC/nmqZKd\ny05WPYALgfPMbA/gs+Fx25XCC/3LBjDWhBd8Ob78yFtKB+d6SVYNgAGbhJ83JaX1BTy8kH95S+ng\nXC/JahD4Y8AcSV8iaoT2q/VCSacApwCMGdPYWvQeXsg/T5XsXHZSawAk3QpsVeWps4nuMTjDzG6Q\ndDzwHeCQavsxs8uBywEmTJjQUAqKoq7E1GvjFp7SwblspNYAmFnVCh1A0neBj4aHPwK+nUYZirgS\nk0+LdM51SlZjAEuAN4WfDwL+lsZBipii18ctnHOdktUYwAeBr0laB3iREONPQ9HCCz5u4ZzrlEwa\nADP7LbB3FsfOu6KOWzjnisfvBM4ZnxbpnOsUzwWUMz4tMrlemy3lXLt5A5BDRRu3yILPlnKudd4A\nuMy0cgUfN1vKGwDnkvEGwGWi1St4ny3lXOt8ELiLzFzQz8Rpcxk3dTYTp83NddK7Vu938CRyzrXO\nG4AuUbTMp61ewftsKeda5w1AlyjaHcStXsF38i7vIvWsnGuEjwF0iaLFxNuRp6kTs6V8tpHrZt4D\n6BJFi4kXJU9T0XpWzjXCewBdooiZT4twv0PRelbONcJ7AF2iKFfURVO0npVzjfAeQBcpwhV10RSx\nZ+VcUt4AOBfDczO5buYNgHN1eM/KdSsfA3DOuR7lDYBzzvUobwCcc65HeQPgnHM9yhsA55zrUTKz\nrMuQmKSlwHLgyazL0qQt8LJnwcueDS97NqqVfTszG1X5wkI1AACS5pnZhKzL0Qwveza87Nnwsmej\nkbJ7CMg553qUNwDOOdejitgAXJ51AVrgZc+Glz0bXvZsJC574cYAnHPOtUcRewDOOefawBsA55zr\nUYVsACRdL2lh+HpY0sKsy9QISR+WdL+k+yRdmHV5kpJ0rqT+ss/+rVmXqVGSPiHJJG2RdVmSkvQ5\nSX8Kn/ktkrbOukxJSZoe/tb/JOkmSSOzLlNSko4L/6ODknI/JVTSYZIWS3pA0tQk7ylkA2BmJ5jZ\nHma2B3ADcGPWZUpK0oHA0cDuZrYL8KWMi9Soi0qfvZn9LOvCNELStsChwKNZl6VB081st/D3/lPg\ns1kXqAG/BF5rZrsBfwXOyrg8jbgXmAzcnnVB6pE0HLgUOBzYGXiXpJ3rva+QDUCJJAHHA9dlXZYG\nnAZMM7OXAMzsXxmXp5dcBJwJFGrmg5k9W/ZwQwpUfjO7xcxWhod3AttkWZ5GmNlfzGxx1uVI6HXA\nA2b2oJm9DPyA6EIzVqEbAGB/4J9m9resC9KAHYH9Jf1B0m2S9sm6QA06PXTnZ0h6RdaFSUrS0UC/\nmd2TdVmaIekLkh4DTqRYPYBy7wN+nnUhutRo4LGyx/8I22LldkUwSbcCW1V56mwzuzn8/C5yePUf\nV3aiz3wz4A3APsAPJb3acjIft07Zvwl8jugK9HPAl4n+qXOhTtk/TRT+yaV6f+9mdjZwtqSzgNOB\nczpawBhJ/lclnQ2sBK7tZNnqSVjPdK3cNgBmdkjc85LWIYrP7d2ZEiUXV3ZJpwE3hgr/LkmDRMmb\nlnaqfHHqfe4lkq4gikfnRq2yS9oVGAfcE0UN2Qa4W9LrzOyJDhaxpqSfO1EF+jNy1AAk+F89CTgS\nODgvFzolDXzuedcPbFv2eJuwLVaRQ0CHAPeb2T+yLkiDZgIHAkjaEViXgmQdlPSqsodvJxokyz0z\nW2RmW5rZWDMbS9Q93isvlX89kl5T9vBo4P6sytIoSYcRjbu8zcxeyLo8XeyPwGskjZO0LvBOYFa9\nN+W2B5DAO8lh+CeBGcAMSfcCLwPvzdtVUYwLJe1BFAJ6GPjvbIvTM6ZJGg8MAo8Ap2ZcnkZcAqwH\n/DL0vu40s0KUX9Lbga8Do4DZkhaa2aSMi1WVma2UdDowBxgOzDCz++q9z1NBOOdcjypyCMg551wL\nvAFwzrke5Q2Ac871KG8AnHOuR3kD4JxzPcobgB4iaVXIKHmvpB9J2qCFfV0l6R3h52/HJZ6S9GZJ\n+zVxjIerZe2stT1tkn5dLytk+edSsX2CpIvDzydJuiT8fKqk95RtbyjTZ73Pvt0SfgZvkHRF+L3/\nNGx7WylDpaRjOllmV5s3AL1lIGTxfC3RPQhD5mOHu6sbZmYfMLM/x7zkzUDDDUA3MbN5ZvaRKtsv\nM7PvhocnAQ01AAk++ywcDvyifIOZzTKzaeHhMUQZKxNr9m/TxfMGoHf9BtghXKX9RtIs4M+Shocc\n7n8MSd/+G6LMq5IuCfnGbwW2LO2o/Kow5CS/W9I9kv5P0liihuaM0PvYX9IoSTeEY/xR0sTw3s0V\n5bu/T9K3AdU7CUkfDz2aeyV9rGz7Z0JZfyvpOkmfrPLeDSXNDmW9V9IJYfvBkhZIWhSS3q1X5b3P\nl/38DklXlT19iKR5kv4q6cjwmtVXwxX7OVfSJ0OvYQJwbficjpA0s+x1b5F0U5X3l3/2zytKGneP\npDslvbLG8a4Ov/NHJE2WdGE4119I6kvyGYS/k6vC57ZI0hllTx8M3Frx+pPC389+wNuA6eE8tw9f\nv5A0P5Rrp/CeqyRdJukPQGHWzSgSbwB6ULiaOhxYFDbtBXzUzHYE3g88Y2b7ECWr+6CkcUSpH8YT\nXbm9hypX9JJGAVcAx5rZ7sBxZvYwcBlr1hH4DfC18Hgf4Fjg22EX5wC/Desk3ASMqXMeewMnA68n\nSq73QUl7KsqweiywezjPWiGLw4AlZrZ76BX9QtL6wFXACWa2K9Hd8qfFlaOKsUTpeY8ALgv7jGVm\nPwbmASeGvP8/A3YKnynhPGfU2c2GRHfa7k6Uw/6DNV63PXAQUUV8DfCrcK4DwBEJP4M9gNFm9trw\nmisBFIXmVpjZMzXO83dEKQqmhL+HvxMtYv5hM9sb+CTwjbK3bAPsZ2Yfr3PurgneAPSWEYpWT5tH\ntCjKd8L2u8zsofDzocB7wuv+AGwOvAY4ALjOzFaZ2RJgbpX9vwG4vbQvM3uqRjkOAS4Jx5gFbCJp\no3CMa8J7ZwNP1zmfNwI3mdlyM3ueaGGg/YGJwM1m9qKZPQf8pMb7FwFvkfS/kvYPldZ44CEz+2t4\nzdWhXI34oZkNhjTlDwI7Nfh+QnqQ7wH/pWgVrX2pn0r5ZdYk6JtP1BBV83MzW0F0/sNZE65ZFN6T\n5DN4EHi1pK8ryvdTWrPgUOCWOuVcLfze9wN+FP4evgWU55z6kZmtSro/1xiPq/WWgXB1uZqi/CzL\nyzcRXY3NqXhdO5d/HAa8wcxerFKW1ChaEazUGFxmZpdJ2gt4K/B5Sf8HJE0BXJ5DpfIKvzK/SrP5\nVq4kKu+LRBXhyjqvX1GWV2oVtf+/S4sRDUoqf89gzHuGMLOnJe0OTCIK8R1PlBr8cOArSfYRDAOW\nVf5dllleY7trA+8BuEpzgNPKYsE7StqQKKRwQoj9voqQ0bTCncABIWSEpM3C9ueAjctedwvw4dID\nRQnmCMf4z7DtcKDegjO/AY6RtEEo49vDtjuAoyStH64wjwQws8fKlrO8TNGMmxfM7BpgOlEobDEw\nVtIO4RjvBm6rcux/SvoPScPCccsdJ2mYpO2BV4d9JjHkcwo9rSXA/xBCLB1S9zMIoZ5hZnZDKN9e\nilrw3YB6a3SvPs+w2tlDko4L+1VoWFwHeA/AVfo2URjg7vAPvZRo1sZNRHHjPxOFj35f+UYzWyrp\nFODGUDH+C3gL0VXsjxWtyvVh4CPApZL+RPQ3eDvRVeR5wHWS7gN+R521e83s7jD4elep7Ga2AEDR\noPafgH8ShTaqxaR3JRqMHARWAKeZ2YuSTiYKSaxDlGb3sirvnUoUbllKFFLbqOy5R0OZNgFODfuM\nO5WSq4jGDAaAfc1sgCj//ygz+0uSHbRDws9gNHBl+D1DtNbv3sCCBNltfwBcIekjwDuIVjn7pqT/\nAfrC84Vcua1oPBuo60qSNjKz5xXd63A7cIqZ3Z11uRql6H6BBWb2nbovzliowB8wsx9kXRaXjDcA\nritJ+j7RjKX1gavN7IKMi9QwSfOJYuBvMbOXsi6P6z7eADjnXI/yQWDnnOtR3gA451yP8gbAOed6\nlDcAzjnXo7wBcM65HvX/AZjk8pgn0sNeAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO2dedgcRbX/P9+EAGENSxAJBCJIEGQPKsSNRRYB4YKCXlzAhQv+cEEJgigEXIhGRRGuiKwuICoQoqgBbhTcEBOSGFCiLAF8AxogYQ2Q5fz+6Jpk3sl0T89M90z3zPk8zzwz3V1Tdbp6pk7VqVOnZGY4juM4/ceQbgvgOI7jdAdXAI7jOH2KKwDHcZw+xRWA4zhOn+IKwHEcp09xBeA4jtOnuAJwckWSSdoufL5E0uc7UObxkn6fdzndpGj3KGmb8KzXaDetpM9KuqxeWkm/kvSBhLw78hvrFVwBFABJ8yUtkfSspMWS/ijpJElDqtJcFf4Ir6s6t50kqzr+raQXJW1Vde4ASfM7djMJmNlJZvaFRunCfXy4EzJlRbWic9rDzL5sZnWfv5kdYmZXQ30lmPY35kS4AigOh5vZ+sDWwCTgM8DlNWmeAr7YIJ/ngVx6QGl6d059vO6cIuIKoGCY2dNmNhU4FviApNdWXb4a2EXSWxKyuBB4j6Rt05QXeq4fl/SgpCckTa6MPEIP6w+SLpD0JDBR0lqSvibpEUn/DkPu4VX5TZD0mKQFkj5YU9ZVkr5YdXyEpNmSnpH0gKSDJX0JeBNwkaTnJF0U0u4g6VZJT0maJ+mYqnw2kTQ15HMXEHvvwYRwSs25OZKOUsQFkv4T8ppbU/9xed4RPs4JMh8r6a2S/iXpM5IeB66s12OtMZEl1m0DGfaR9BdJT4f3faqujZF0Rxhh3ibpYkk/TMjr+PB7eFbSQ5KOC+eHSPqcpIdDHX1f0oYxecyXdEDV8cQ6ZX4w/E4ek3Rag7SVa7+V9GFJrwEuAfYOdb44XK/9jR0WfmOVkfUuVdc+I2kg3Oc8SfvH1Umv4gqgoJjZXcC/iBrDCi8AXwa+lPDVAeB7wLlNFPdfwDhgD+AIoLrhfj3wIPCKUO4kYHtgN2A7YBRwNoCkg4HTgLcBrwYOIAZFpqzvAxOAEcCbgflmdhbwO+AUM1vPzE6RtC5wK3ANsBnwbuB/Je0YsrsYeBF4ZZB9kOKp4VrgPVVy7Eg06roZODDIsT2wIXAM8GRCXgCY2ZvDx12DzNeF482BjUP+JzbKh4S6TULSxkH+C4FNgG8AN0vaJCS5BrgrXJsIvC8hr3VDPoeEEek+wOxw+fjw2hd4FbAecFGK+4pjX6LfyYHAZ6oVRiPM7O/AScCfQp2PqE0jaXfgCuB/iO79u8DUoGjHAqcAe4X7PAiY38a9lBJXAMVmAVEDUs13gdGSDkn43vnA4ZJ2SlnOV8zsKTN7BPgmVQ0ksMDMvm1my4ga2ROBU0P6Z4kU0rtD2mOAK83sHjN7nqixieNDwBVmdquZrTCzATO7LybtYUTK4UozW2Zms4DrgXdJGgocDZxtZs+b2T1EI6U4bgR2k7R1OD4OuMHMXgKWAusDOwAys7+b2WMJeTViBXCOmb1kZkuSEkoSyXWbxKHAP83sB6F+rgXuI/oNjAb2Iqqfl83s98DUFHK/VtJwM3vMzO4N548DvmFmD5rZc8CZwLvVunnr3PDM5gJXMvh3lwUnAt81sz+b2fIwd/AS8AZgObAWsKOkYWY238weyLj8wuMKoNiMIrL7ryQ0VF8Ir7qY2UKintl5Kct5tOrzw8AWMddGAusAM8OQejHw63Ce8L3avOLYCkj7h9saeH2lzFDucUQ97JHAGmnLDQ3rzaxqWN8D/Chcm05UbxcD/5F0qaQNUspYj4Vm9mLKtI3qNoktWP2eHyb6/WwBPGVmL1RdW1lXwcz0XHh9NijuY4l6149JulnSDjHlPExU969IeY+1JP3usmBr4NM1v5utgC3M7H7gk0SdlP9I+rGkrMsvPK4ACoqkvYj+wPVc/a4kMpsclZDFZKIh9p4pituq6vNoopFHhepwsU8AS4CdzGxEeG1oZuuF64/VySuOR4m31deGqH0UuL2qzBFh2H8ysBBY1kS5EMxAkvYG1gZ+s7JgswvNbE9gRyJzzIQGeSVRex/PEzXyAEjavOpao7pNYgFRY1fNaCJz4GPAxpLWqbq2sq6C18x64fXlcG6amb2NyKR2H5FJsV45o4nq/t91ZBp0r0TKupak310aGoUyfhT4Us3vZp0wQsLMrjGzNxLdkwFfabL80uMKoGBI2kDSYcCPgR+G4fEggjnmHCJPobqY2WLg68DpKYqdIGkjRe6jnwCuq5fIzFYQNQYXSNosyDtK0kEhyU+A4yXtGBqccxLKvBw4QdL+YXJxVFVP899ENuYKvwC2l/Q+ScPCay9JrzGz5cANRBPU6wSbfqyfeOCXRH/684Drwn0R8ny9pGFEDdiLROaQNNTKXI85wE6SdpO0NlUmshR12+h+tpf035LWkHQskQL7hZk9DMwgqp81g9I7PC4jSa9QNDm/LpG55DlW1cG1wKlhUnk9IhPVdeH3WMtsIvPQMEnjgHfWSfP58Mx2Ak4g5neXwL+BLSWtGXP9e8BJ4ZlK0rqSDpW0vqSxkvaTtBbRc15C+mfdM7gCKA4/l/QsUa/lLKKJvBMS0l9L1LtL4ltEts5G3ATMJPrT3szq7qfVfAa4H7hT0jPAbcBYADP7FdEcwvSQZnpcJmGS+wTgAuBp4HZW9S6/BbxT0iJJFwazzYFEZpsFwONEvbW1QvpTiCYkHweuIhohxRLMaDcQTVJfU3VpA6JGYxGRSeJJopFUZXHSrxKynQhcHUwNx9RLYGb/IFI6twH/ZPXRXWzdNrifJ4nmST4dZD4dOMzMnghJjgP2Dte+SNTQvhST3RDgU0T1/BTwFuDkcO0K4AfAHcBDRA3nx2Ly+TzRCG8RkUPCNXXS3B7u9/+Ar5nZLY3utYbpwL3A45KeqL1oZjOAjxCZ9RaFso4Pl9cimnR/guh3sxnRnEZfId8Qpr9RtJDs1cEm6vQBkq4D7jOzpBGa0wf4CMBxepxg2to2mNoOJnL1ndJtuZzu46sTHaf32ZzI5LUJ0dqSk4MrrdPnuAnIcRynT3ETkOM4Tp9SKhPQpptuattss023xXAcxykVM2fOfMLMVltUWCoFsM022zBjxoxui+E4jlMqJNVdHe8mIMdxnD7FFYDjOE6f4grAcRynT3EF4DiO06e4AnAcx+lTSuUF5DiOU2HKrAEmT5vHgsVL2GLEcCYcNJYjdx/VbbFKhSsAx3FKx5RZA5x5w1yWLI2C3Q4sXsKZN0SR010JpMdNQI7jlI7J0+atbPwrLFm6nMnT5nVJonLiCsBxnNKxYHH9LZbjzjv1cQXgOE7p2GLE8KbOO/VxBeA4TumYcNBYhg8bOujc8GFDmXBQww3UnCp8EthxnNJRmeh1L6D2cAXgOE4pOXL3Ud7gt4mbgBzHcfoUVwCO4zh9iisAx3GcPsUVgOM4Tp/iCsBxHKdPcQXgOI7Tp7gCcBzH6VNcATiO4/QprgAcx3H6FFcAjuM4fYorAMdxnD7FFYDjOE6f4grAcRynT3EF4DiO06d0VQFIOljSPEn3Szqjm7I4juP0G11TAJKGAhcDhwA7Au+RtGO35HEcx+k3ujkCeB1wv5k9aGYvAz8GjuiiPI7jOH1FNxXAKODRquN/hXODkHSipBmSZixcuLBjwjmO4/Q6hZ8ENrNLzWycmY0bOXJkt8VxHMfpGbq5J/AAsFXV8ZbhnOM4TiGZMmugpzaiTxwBSBoq6Uc5lf0X4NWSxkhaE3g3MDWnshzHcdpiyqwBzrxhLgOLl2DAwOIlnHnDXKbMKm+/NXEEYGbLJW0tac0wUZsZZrZM0inANGAocIWZ3ZtlGY7j9DdZ9tgnT5vHkqXLB51bsnQ5k6fNK+0oII0J6EHgD5KmAs9XTprZN9ot3Mx+Cfyy3Xwcx+kv0jTslR57pdGu9NiBlhrsBYuXNHW+DKSZBH4A+EVIu37Vy3Ecp+OkNcUk9dhbYYsRw5s6XwYajgDM7FwASeuY2Qv5i+Q4jhNPWlNM1j32CQeNHTSiABg+bCgTDhrbUn5FoKECkLQ3cDmwHjBa0q7A/5jZR/MWznEcp5akhr3aNDREYrnZaula7bFXlEsveQGlmQP4JnAQwUPHzOZIenOuUjmO48SwxYjhDNRRAhsOHzaoh16v8W+3x37k7qNK3eDXkmohmJk9WnNqed2EjuM4OTPhoLEMHzZ00Lnhw4YisZppCGCohIBRI4Zz/lE7l64BnzJrgPGTpjPmjJsZP2l6pm6naUYAj0raBzBJw4BPAH/PTALHcZwmiDPFnHrd7LrpV5jx0KRDOyliZmTtyVRLGgVwEvAtojg9A8AtgNv/HSclvbZ6tFMk1Vs9U8zkafPqmobK7KWT99qDNCagsWZ2nJm9wsw2M7P3Aq9pu2TH6QN6cfVoJ2il3uJMQ2X20sl77UEaBfDtlOccx6kha1/0IpGnbbqVejty91Gcf9TOjBoxvNQ2/2ryXnsQawIK7p/7ACMlfarq0gZEoRscx2lAL64ehfxt063WW6956eS99iBpBLAmke//GgxeAfwM8M5MSnecHqcXV49C/iObXq23Zsl7VBM7AjCz24HbJV1lZg9nUprj9Bm9uHoU8h/Z9Gq9tUKeo5okE9A3zeyTwEWSVltRYWbvyEUix+khenH1KMQvxsqqh96r9VY0ZHVWywFI2tPMZkp6S73rYYTQUcaNG2czZszodLGO0zNk5ZJaOwcAUQ+97JOuvYqkmWY2rvZ8kgloZnjveEPvOE72ZDlx28keuq+jyI8kE9BcoP7wADCzXXKRyHGcXMh6UVEnPG7SKi1XEq2RtBL4sI5J4ThO7pTRJTWN0srbJbWXSXIDvRQ4ChhuZg/Xvjokn+M4GVFG18o0SitOSZz7c99hthFJCuADwCJgoqS7JX1H0hGS1u2QbI7jZEgZQyWkUVpxSmLRC0s95EYDYhWAmT1uZleZ2buBccD3gT2BWyTdJun0TgnpOE77lDFUQhqllTSC6YWQG3mSJhooZrYC+FN4nS1pU6JNYhzHKRHdDpXQ7GRtGm+jCQeN5ZMxoaCLPL9RBNJsCflV4IvAEuDXwC7AqWb2w5xlcxynh2h1sraR0jpy91FMnHovi5csXe1akec3ikCaaKAHmtkzRF5B84HtgAl5CuU4TjFpJwJonvGDJr5jp9LNbxSBNCagSppDgZ+a2dOSchTJcZxu0Mg802wPvja/eqEjIBszjYeOaI00CuAXku4jMgGdLGkk8GK+YjmO00nSNO7NLCSrl5+ov7K0HTONLwBrj4YmIDM7g2hfgHFmthR4Hjgib8Ecx+kcacwzzSwkq5efAbW2g3bMNL7bWvskhYI4qs656sMb8hDIcZzOk6ZxbyYCaFx+RuR+mqbH3qh3n/d+uf1Akgno8IRrhisAx+kZ0jTuzcToj8tv1Ijh/OGM/RrKk8YkVcbQFkUjKRroCZ0UxHGc7pGmca+daB2xzjDM4NTrZjN52rxBPfR2N3RJCu9QKX+IxPI64ezd9TM9adYBbAicA7w5nLodOM/Mns5TMMdxOkdaL5qKT36jHnq7XjlxHkOLXljKohcif/96jb+7fjZH7IYwKxNI1wP3AFeHU+8DdjWz1eYI8sY3hHGcVXTTA2b8pOltmXgase2Zv6zbwNdjqMQKs9R10I+eQ01vCFPFtmZ2dNXxuZLqr7tOL8xkojmGl4EHgBPMbHE7eTpOP9HtEMh529/TNv4AK8x4aNKhqdJ2u96KRpqVwEskvbFyIGk80ZqAdrgVeG3YVOYfwJlt5uc4fUWeq2rTkHdo6VFN5NNMmd2ut6KRRgGcDFwsab6kh4GLgJPaKdTMbjGzZeHwTmDLdvJznH6jlR54O2Ecask7tHS9/IcNEcOGDl5J0GyZ7jk0mIYmIDObDewqaYNw/EzGMnwQuC7uoqQTgRMBRo8enXHRjlNOmvHJh/ZMH0k287xs6XH5t1JmtfzuOTSYNJPAI4D3A9tQpTDM7OMNvncbsHmdS2eZ2U0hzVlEew0cZY0EwSeBHadCbYMOUW84Lr5/q5O2zZZTNOrJX0uZ7qdV2pkE/iWRmWYusCJtgWZ2QAOBjieKMLp/msbfcZxVNNsDb9X0UZbVtnGjlHryQ/OeQ71KGgWwtpl9KstCJR0MnA68xcxeyDJvx+kG3XAtbGZzl2ZNRhXKYDNPMm/FyZnGc6gf3EXTTAL/QNJHJL1S0saVV5vlXgSsD9wqabakS9rMz3G6RhmCkrU6adutjeSbmbBOGqW0Kn8ZnmkWpFEALwOTibaDnBlebRnizWw7M9vKzHYLr7a8ihynm5TBtbCyH/CI4cNWnlt72Op//9qGd98dRnZ8o5VmG9+kUUqriq8MzzQL0iiATwPbmdk2ZjYmvF6Vt2COUxbKYCap8NKyVdN4i15YOqhhrdfwXj9zgKP3HNXRjeSbbXyTevkVxdes/GV6pu2QZg7gfsDt9I4TQ6v29U7TaEI37vpv7luYSXiHtDTb+DYKPNfMXEmFsjzTdkkzAngemC3pu5IurLzyFsxxykLei6KyolHDGnc9LjBbXjRrt2+1l59EWZ5pu6QZAUwJL8dx6tCJ/Wiz8Ehp1KuNu65Qfqc8YFoJJd1KLz+JftljuOFCsCLhC8GcfiSrxVifmzKXH935yKB9eavzmTJrgFOvm1133964BWN5uUr2gwtmJ2lnIZjjOF0ki8VYU2YNcN1dj67WuB+956qe85G7j+KT19UP9FvPPJRnZM2se/ROfdLMATiO00Wy8EiZOPVelq5YvW//izmPDTqOi8JZz/7eL66SvYyPABwnY7I2XzTjkRJX9uIlS+vmXXu+Gft7v7hK9jJptoTcHpgAbM3gYHCd8wtznBzJssHOwyyStlFOKjstzUx+ximmDYcPY/yk6W6/LwFpooHOAS4hWgG88hdoZjPzFW11fBLYyZqso102G3UzrfJplG7KrAE+/ZM5dUMdjxoxnBdeXrZyL91qNlpnGLPOPrDZ21xZZm3dDRsiECxdvkqOfoi2WXTamQReZmbfyUEmx+k6WUe7bMYs0sxoIWlStJJP3DaKCxYv4YJjd2PCz+YMapiHDRXnHL5T45uKod5ooZ6iKWL0UCcijQL4uaSPAjcCL1VOmtlTuUnlOB0iazt2M/b6rJRPXMjj6rLz8muvVUxjzri5bjqfFygmaRTAB8L7hKpzBng8IKf0ZL3kvxuTqEnpWwmJkMbcFHe9X0Io9AoN3UCrAsCN8WBwTq+R9ZL/ZsISZBVqOS79UKkp2/uUWQPsft4tfPK62bGROBtF6uyXEAq9QuwksKT9zGy6pKPqXTezG3KVrA4+CezkQbdWnWY1AZ1FPo22TqxMYsdNclfSNLNvr6/27RytTAK/BZgOHF7nmgEdVwCOk4ZmG5ZurTrNyi6fRT6N5hEaBYyDVaOB84/auWH00DxXETvpiVUAZnZOeD+hc+I4TnuUrWHJSvm0m0+jeYdGAeMqpJ3ELstew72Oh4JwegoPT9AaSfMO1Tb8fXcYiRrklWYS21cRFwMPBeH0FL3QsNSasPbdYSS/uW9hrrbyet5LACOGD2PiO3ZaGS30+pkDdaOFVpNmEtu9hYqBKwCnpyh7w1LPhPXDOx9ZeT0vk1aaeYRG8wSQ3uOnlZj/TvakiQU0E7gCuMbMFuUvkuO0TlxP9oWXl3V0U5NWSdPI5mUrbzSP0GgU1Yzbab9suFJ00owAjgVOAP4iaQZwJXCLlWknGaerdNLdr5LvxKn3Dop0WdkAvTpNEUlrquqGSavRBPAKs6bqtlbhTJk14EHkOkyahWD3m9lZwPbANUSjgYclnStp47wFdMpNo4VDafMYP2k6Y864mfGTpsd+t5Lu1Otm8+yLy1a7XobJ4LSmqm6YtOot8qqmHZmy+J04zZPKC0jSLsDXgcnA9cC7gGeI1gk4TizteuWkbRhq0yUFRisyjRpZ6J6tvLLKecTwYZnL5N5b3SHtHMBi4HLgDDOrBIT7s6TxeQrnlJ92vXLS+ounsZ1DMSeDa01kR+85apDXTye8gNJSMdtkbdaLMy3FnfdVxNmQZg7gXWb2YPUJSWPM7CEzqxsmwnEqtOuVk1aBpFEoRfQyqef1c/3MgcLHz8969fRQqe6obahWX3VQtsV+RSaNCehnKc85zmqkDQ4WZ+dPGzAtKSBao6Bs3cRNHxFxJrt6573OsiN2BCBpB2AnYMOagHAbAGvnLZjTG6Rx90vq0aX1F49LV8RGv5peWLiWBaNiRor1Nqn3OsuOJBPQWOAwYASDA8I9C3wkT6Gc3qKRuSCpR1cJKtbI3ltWv/KyL1zLimYWhnmdZUdSMLibgJsk7W1mf+qgTE6f0ahHl9be3K2onu3gK2IjmlHgXmfZkWQCOt3Mvgr8t6T31F43s4/nKpnTN7TToyu7N0hWI5ey1wM0p+ihfKO9IpJkAvp7eM9tBxZJnwa+Bow0syfyKscpNq326HrFG6TdkUuv1EMzlHG0V0SSTEA/D+9X51GwpK2AA4FHGqV1eptWe3QeUz7C6yGZXhgd5UWSCejnEB/51cze0WbZFwCnAze1mY/TJkX4g7TSo+tlb5Bmnkkv10O79OPoqBmSTEBfy6tQSUcAA2Y2R3UWetSkPRE4EWD06NF5idS3lPkPkmbuoAjKrVmafSa97hXTzjP00VEySSag29vJWNJtwOZ1Lp0FfJbI/NMQM7sUuBSiTeHbkclZnTL/QRrNHZRVuTX7TLrtFZOnkm33GfroKJkkE9BPzOwYSXMZbAoSYGa2S1LGZnZATL47A2OASu9/S+BuSa8zs8ebvQGnPcr8B2k0d1BW5dbsM+mmV0zeSrbdZ9jro6N2STIBfSK8H5ZlgWY2F9iscixpPjDOvYC6Q9n/IElzB2VVbq08k255xeStZNt9ht0eHRWd2FhAZvZYeH8YeAnYFdgFeCmcc3qAtLF6ykjaOEJFoyjPJM0+DHkr2XafYSWE9agRwwsdE6pbpAkH/WHgbKLY/wK+Lek8M7siCwHMbJss8nFaoxcW1cTZoMva+yvCM0lr2sl7BJnFM/Q1A/Go0c6OkuYB+5jZk+F4E+CPZtbxf9G4ceNsxozc1qU5JaS2oYLBQeDymqAso3dRM4yfND02OFslPhM0rv8s6PW67gSSZprZuNrzafYDeJIoAFyFZ8M5x+k6jWzQefT+yupd1AxpTTudGK14Dz4/kryAPhU+3k+0+9dNRN5ARwB/7YBsTo+QZw+uGxO97U58lqFH24xpxxvo8pI0Alg/vD8QXhV85a6Tmrx7y93wYmpH6STVBxRnLmbCQWOZ8LM5LF0+2EQ8sHgJ4ydNL6TScponaSHYuZ0UxOlN8nYTzGqit5leeTtKJ64+Jk69l5eWrSiWWSlmerAQsjmZ0HBLSEm/kTS99tUJ4Zzyk7eJJgs3v0qvfGDxEoxVDVw9t0doz00zbpPzxUuWdmWbwzhXz8nT5rF0RbyDiG/B2BukmQQ+rerz2sDRwLJ8xHF6jU6YaNq1QTc7Skm7zWXtdQjL6JuQLU5RZjGPkGSOSqOgi76gzmlMQwVgZjNrTv1B0l05yeP0GGXwxW9llJKkdOIa1rWHDanb+AsYsc4wFr2wdLVr9RRlVvMqSYovTnE3ks0pF2lMQBtXvTaVdBCwYQdkc3qAMqzEzHrFcFzDWq+Bh2hEcM7hO6U2K8Xl/+mfzElctVtLkuKrZ+ZKI5tTLtKYgGYS/UZFZPp5CPhQnkI5vUXR3QSzHqU0axoZNWJ4U/70cfkvD4s6044IksxztfKMWGcYZvD0kqVd91BysiONCWhMJwRxnG6R9WKmuIZ1xPBhgzx9YLCiSaso05hn0nhaNVJ8RVfcTvskLQQ7KumLZnZD9uI4TnfIsrGLa1gnvmMnoH1FUy//ejQaiRQh5pDTXZJGAIcnXDPAFYDj1KFRw9puA1ub/xBppfmnmjRzGN7L728aBoMrEh4MznFWpxMB2Zxy03IwOEkbAucAbw6nbgfOM7OnsxXRcZxWcFOO0yppvICuAO4BjgnH7wOuBBLnCBzH6RxuynFaIY0C2NbMjq46PlfS7LwEcpy86WQ0zjJE/uw2XkfdI40CWCLpjWb2ewBJ4wFfA+6Ukk7G8u+HfQPaxeuouzRcCQycDFwsab6kh4GLgJPyFctx8iEp/EGZyyorXkfdJc1CsNnArpI2CMfP5C6V4+REJzeQabesoppGspSrGxv6OKtIEwvoE6Hxfxb4hqS7JR2Yv2iOkz1Zx/3Jq6xmQ1RnSVyI6Dzk6uTzcFYnjQnog6HXfyCwCZEX0KRcpXIKSVLDUBbaieXfybK6ZRpp1MBnLVcnn4ezOmkmgRXe3w5838zulaSkLzi9R69M1nXSZ76dsrplGmm0N0LWcvkahu6SKhqopFuAMcCZktYHVuQrllM08t7asZN00me+1bK6sdcxNFY8ecjlaxi6RxoT0IeAM4C9zOwFYE3ghFylcgqHT9Z1lm6ZRhrZ5N1k01s0VABmtsLM7jazxZImmtmTZvbXTgjnFAefrOss3dpIp1EDX4YNfpz0NBUMTtLdZrZHjvIk4sHguocHHOsfiup+6rROy8HgavPJSB6nZPhkXf/gNvn+oVkFsGcuUjilwBsGx+kt0oSDvrDmGOBpYIaZ3ZSTXE6f42YIx8mfNF5AawO7Af8Mr12ALYEPSfpmjrI5fUo3V8E6Tj+RxgS0CzDezJYDSPoO8DvgjcDcVguW9DHg/wHLgZvN7PRW83J6i26sOchzxNFq3j4KcvImjQLYCFiPyOwDsC6wsZktl/RSK4VK2hc4AtjVzF6StFkr+Ti9SafXHOS5yrnVvHtl5bVTbNKYgL4KzJZ0paSrgFnAZEnrAre1WO7JwCQzewnAzP7TYj5OD9LpNQd5xt1pNW8Pk+x0gjQLwS4H9gGmADcCbzSzy8zseTOb0GK52wNvkvRnSbdL2isuoaQTJc2QNGPhwoUtFueUiU6vNs1zxNFq3p0YBfVCcD+nPdK6ge4FvCl8Xk0iy3AAABB9SURBVAEsaPQFSbcBm9e5dFYod2PgDSHvn0h6ldVZlWZmlwKXQrQQLKW8Tonp9JqDPOPutJp33rGA3MTkQDo30ElEjfSPwqmPS9rbzD6b9D0zOyAhz5OBG0KDf5ekFcCmgHfxHaCzaw4mHDS27irnLEYcreadp0zQW8H9nNZJMwJ4O7Cbma0AkHQ10TxAogJowBRgX+A3krYnCjD3RBv5OU7L5DniqM17w+HDkODU62Yzedo89t1hJL+5b+Fq5eY9CvLgfg6kiAUk6a/AW83sqXC8MfBbM9ul5UKlNYEriNYXvAycZmbTG33PYwE5ZaZePKVaOhVfafyk6XVNTKNGDOcPZ+yXa9lO54mLBZTGC+h8YJakq0LvfybwpXaEMbOXzey9ZvZaM9sjTePvOGWnntmllk55+nhYZwfSbQp/raTfEs0DAHzGzB7PVSrH6UHSmlc6YYbx4H4OJCgASbVhn/8V3reQtIWZ3Z2fWI7Te8R59tRL1wk8uJ+TNAL4esI1A9xQ6DhNUM+zpxY3wzidJFYBmNm+nRTEcXqdemaXOC8gx+kEze4H4DhOG7jZxSkSabyAHMdxnB7EFYDjOE6f0lABKOK9ks4Ox6MlvS5/0RzHcZw8STMH8L9EAeD2A84DngWuZ9W6AKfk+MYjjtOfpFEArzezPSTNAjCzRSGUg9MDeFTI8uKK22mXNHMASyUNJfL9R9JIohGB0wP4xiPlxPdNdrIgjQK4kGgjmM0kfQn4PfDlXKVyOoZHhWyNbm+m4orbyYI0sYB+JGkmsD8g4Egz+3vukjkdIe+NR3qRIpjNXHE7WZDGC2g08ALwc2Aq8Hw45/QAHhWyeYrQ+25n3+Ruj16c4pBmEvhmIvu/gLWBMcA8YKcc5XI6hEeFbJ4i9L5b3TGsCKMXpzikMQHtXH0cooR+NDeJnI7j4Qmaowhms1YVt28F6VTTdCwgM7tb0uvzEMZxykDe+/WmpRXF3czoxd1Me580m8J/qupwCLAHsCA3iZyepp1GpSgNUpnNZmlHL24q6g/SjADWr/q8jGhO4Pp8xHF6mXYalaI1SGU1m6UdvbipqD9IVABhAdj6ZnZah+Rxeph2GhVvkLIh7eilCBPdTv4kbQm5hpktkzS+kwI5vUs7jYo3SNmRZvRShIluJ3+S1gHcFd5nS5oq6X2Sjqq8OiGc01u047vezned5vH1If1BmlAQawNPEkUDPQw4PLw7TlO006h4g9RZjtx9FOcftTOjRgxHwKgRwzn/qJ3d3NZjJM0BbBY8gO5h1UKwCparVE5P0o73TJk9b8pKWSe6nfQkKYChwHoMbvgruAJwWqKdRsUbJMfJliQF8JiZndcxSRzHcZyOkjQHUK/n7ziO4/QISQpg/45J4TiO43ScWBOQmT3VSUEcp9coSugKx4mj6WBwjuM0pmihKxynHmnWATiO0yRF2DTGcRrRlRGApN2AS4gWmS0DPmpmdyV/qzV8GO50Aw9d4ZSBbo0Avgqca2a7AWeH48ypDMMHFi/BWDUM9y3wnLzx0BVOGeiWAjBgg/B5Q3LaX8CH4U638NAVThno1iTwJ4Fpkr5GpIT2iUso6UTgRIDRo5vbi96H4U638NAVThnITQFIug3YvM6ls4jWGJxqZtdLOga4HDigXj5mdilwKcC4ceOaCkHhIW2LSb/My3joCqfo5KYAzKxugw4g6fvAJ8LhT4HL8pChKHu3Oqtw90jHKQ7dmgNYALwlfN4P+GcehXhI2+Lh8zKOUxy6NQfwEeBbktYAXiTY+PPAh+HFwudlHKc4dEUBmNnvgT27UbbTXXxexnGKg68EdjqKu0c6TnHwWEBOR+kl98h+8WZyehdXAE7H6YV5GfdmcnoBVwBO5vRDzzjJm6nX7tXpXVwBOJnSLz1j92ZyegGfBHYyJS8//ymzBhg/aTpjzriZ8ZOmdz2gnwd7c3oBVwBOpuTRMy5iVFf3ZnJ6AVcATqbk0TMu4urhIq8yL9poySkuPgfgZEoe8ZeKam8vojdTv8zBONngIwAnU/LoGbu9PT1FHC05xcVHAE7mZN0z9qiu6SnqaMkpJj4CcApPke3tRcNHS04z+AjAKQVFtLcXER8tOc3gCsBxeoheirXk5I8rAMfpMXy05KTF5wAcx3H6FFcAjuM4fYorAMdxnD7FFYDjOE6f4grAcRynT5GZdVuG1EhaCDycUXabAk9klFencdm7Q5llh3LL77K3x9ZmNrL2ZKkUQJZImmFm47otRyu47N2hzLJDueV32fPBTUCO4zh9iisAx3GcPqWfFcCl3RagDVz27lBm2aHc8rvsOdC3cwCO4zj9Tj+PABzHcfoaVwCO4zh9St8oAEkTJQ1Imh1eb49Jd7CkeZLul3RGp+VMQtKnJZmkTWOuL6+6v6mdli+JFLJ/QNI/w+sDnZavHpK+IOmvoT5vkbRFTLpC1nsT8heq7iVNlnRfkP1GSSNi0s2XNDfc34xOyxlHE/J3v60xs754AROB0xqkGQo8ALwKWBOYA+zYbdmDbFsB04gWwm0ak+a5bsvZiuzAxsCD4X2j8HmjAsi9QdXnjwOXlKzeG8pfxLoHDgTWCJ+/AnwlJt38uP9C0eUvSlvTNyOAlLwOuN/MHjSzl4EfA0d0WaYKFwCnA2WctW8k+0HArWb2lJktAm4FDu6UcHGY2TNVh+tSsrpPKX/h6t7MbjGzZeHwTmDLbsrTLCnlL0Rb028K4JQwLLtC0kZ1ro8CHq06/lc411UkHQEMmNmcBknXljRD0p2SjuyEbI1IKXsh6x1A0pckPQocB5wdk6xw9V4hhfyFrfvAB4FfxVwz4BZJMyWd2EGZmiFO/kLUe0/tCCbpNmDzOpfOAr4DfIHoR/MF4OtED6cQNJD9s0TDykZsbWYDkl4FTJc018weyFLOemQke1dIkt3MbjKzs4CzJJ0JnAKcUydtV+odMpO/4zSSO6Q5C1gG/CgmmzeGet8MuFXSfWZ2Rz4SDyYj+btOTykAMzsgTTpJ3wN+UefSAJG9usKW4VzuxMkuaWdgDDBHUkWmuyW9zswer8ljILw/KOm3wO5EdsZcyUD2AeCtVcdbAr/NRdga0v5miP7Ev6ROA9qteg9ltit/V+q+kdySjgcOA/a3YDSvk0el3v8j6UYis0pHFEAG8netrRlEtydMOvUCXln1+VTgx3XSrEE0CTaGVRMzO3Vb9hoZ51N/InUjYK3weVPgnxRkAjuF7BsDD4V72Ch83rgA8r666vPHgJ+Vqd5Tyl+4uieag/gbMDIhzbrA+lWf/wgc3O06b0L+QrQ1Xa+sDj6UHwBzgb8CUysKAdgC+GVVurcD/yDqwZ3Vbbnr3MfKRhQYB1wWPu8T7m9OeP9Qt2VNK3s4/iBwf3id0G1Zg0zXA/eE38zPgVFlqvc08hex7oMcjwKzw+uScH7lf5XIe2ZOeN1bpP9qGvnDcdfbGg8F4TiO06f0mxeQ4ziOE3AF4DiO06e4AnAcx+lTXAE4juP0Ka4AHMdx+hRXAH1EVdTKeyT9VNI6beR1laR3hs+XSdoxIe1bJe3TQhnz60UPjTufN5J+Kylxc+/qeqk5P07SheHz8ZIuCp9PkvT+qvN1I3YmlJdY91mTsg7eIOl74bn/Ipx7RyXipaQjOymzE48rgP5iiZntZmavBV4GTqq+KKmlleFm9mEz+1tCkrcS+cv3LWY2w8w+Xuf8JWb2/XB4PJGveDP5Nqr7bnAI8OvqE2Y21cwmhcMjgaYUQKu/TScZVwD9y++A7UIv7Xchjv3fJA0N8cz/EgLn/Q+AIi4K8ctvAzarZFTdKwwxzu+WNEfS/0nahkjRnBpGH2+SNFLS9aGMv0gaH767iaK49fdKugxQo5uQ9KkworlH0ierzn8+yPp7SddKOq3Od9eVdHOQ9R5Jx4bz+0uapSjW/BWS1qrz3eeqPr9T0lVVlw9QFBzuH5IOC2lW9oZr8pko6bQwahgH/CjU06GSplSle1sId1D7/eq6f05R8Lc5igLTvSKmvKvDM39Y0lGSvhru9deShqWpg/A7uSrU21xJp1Zd3h+4rSb98eH3sw/wDmByuM9tw+vXioK6/U7SDuE7V0m6RNKfga/W3ovTPq4A+pDQmzqEaOUqwB7AJ8xse+BDwNNmthewF/ARSWOA/wLGEvXc3k+dHr2kkcD3gKPNbFfgXWY2H7gEuCCMPn4HfCsc7wUcDVwWsjgH+L2Z7QTcCIxucB97AicArwfeEGTdXVIl313DfcaZLA4GFpjZrmFU9GtJawNXAcea2c5ES/ZPTpKjDtsQxaU5FLgk5JmImf0MmAEcZ2a7EcXt2SHUKeE+r2iQzbrAnaHu7wA+EpNuW2A/oob4h8Bvwr0uAQ5NWQe7Ea0sfm1IcyWAItPcUjN7OuY+/0i0En9C+D08QLRp+sfMbE/gNOB/q76yJbCPmX2qwb07LeAKoL8YLmk2UUPzCHB5OH+XmT0UPh8IvD+k+zOwCfBq4M3AtWa23MwWANPr5P8G4I5KXmb2VIwcBwAXhTKmAhtIWi+U8cPw3ZuBRQ3u543AjWb2vJk9B9wAvAkYD9xkZi+a2bNEYRDqMRd4m6SvSHpTaLTGAg+Z2T9CmquDXM3wEzNbYWb/JIr3skOT38eiJfo/AN6raEepvYkPi1zhZVYFOZxJpIjq8SszW0p0/0NZZa6ZG76Tpg4eBF4l6duSDgYqew8cCNzSQM6VhOe+D/DT8Hv4LvDKqiQ/NbPlafNzmsPtav3FktC7XImiKJ3PV58i6o1Nq0lXdwvNFhkCvMHMXqwjS25I2opVyuASM7tE0h5EMVm+KOn/gJtSZlcdQ6W2h18bX6XVeCtXEsn7IlFDuKxB+qW2KrbLcuL/3y8BmNkKSdXfWZHwnUGY2SJJuxJtKHMScAxRTKFDgG+kySMwBFhc+7us4vmY804G+AjAqWUacHKVLXh7SesSmRSODbbfVwL71vnuncCbg8kISRuH888C61elu4UoOiUhXeXPfwfw3+HcIUTRKZP4HXCkpHWCjP8Vzv0BOFzS2qGHeRiAmT0azA67hcZ/C+AFM/shMJnIFDYP2EbSdqGM9wG31yn735JeI2lIKLead0kaImlboqBl8xrcR4VB9RRGWguAzxFMLB2iYR0EU88QM7s+yLeHIg2+C1EAtCRW3qdFu5Y9JOldIV8FxeJ0AB8BOLVcRmQGuDv8oRcSeW3cSGQ3/huR+ehPtV80s4WKdma6ITSM/wHeRtSL/Zmi3cE+RrQ/7cWS/kr0G7yDqBd5LnCtpHuJwvs+kiSomd0dJl/vqshuZrMAFE1q/xX4N5Fpo55NemeiycgVwFLgZDN7UdIJRCaJNYC/EM1h1HIGkbllIZFJbb2qa48EmTYATgp5Jt1KhauI5gyWAHub2RKiOP4jzezvaTLIgpR1MAq4MjxngDOBPYFZVSOKOH4MfE/Sx4F3Eu1W9h1JnwOGheuNdr9zMsCjgTo9iaT1zOw5RWsd7gBONLO7uy1XsyhaLzDLzC5vmLjLhAb8fjP7cbdlcdLhCsDpSSRdQ+SxtDZwtZmd32WRmkbSTCIb+NvM7KVuy+P0Hq4AHMdx+hSfBHYcx+lTXAE4juP0Ka4AHMdx+hRXAI7jOH2KKwDHcZw+5f8DUGzWBbmFc9gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] diff --git a/examples/tutorials/04_Introduction_to_Graph_Convolutions.ipynb b/examples/tutorials/04_Introduction_to_Graph_Convolutions.ipynb index acafc8770f..3db47b723a 100644 --- a/examples/tutorials/04_Introduction_to_Graph_Convolutions.ipynb +++ b/examples/tutorials/04_Introduction_to_Graph_Convolutions.ipynb @@ -58,74 +58,47 @@ "metadata": { "id": "EoCLxSnBcj1N", "colab_type": "code", - "colab": {} - }, - "source": [ - "%%capture\n", - "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" - ], - "execution_count": 0, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iEMqPVorcj1R", - "colab_type": "text" - }, - "source": [ - "Ok now that we have our environment installed, we can actually import the core `GraphConvModel` that we'll use through this tutorial." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "Ph78CIgAcj1S", - "colab_type": "code", - "outputId": "82d7839e-0000-4be6-a0ea-370bdc7f5767", "colab": { "base_uri": "https://localhost:8080/", - "height": 253 - } + "height": 479 + }, + "outputId": "03512dfd-b2a4-4808-8d53-53d5a7d16111" }, "source": [ - "import deepchem as dc\n", - "from deepchem.models.graph_models import GraphConvModel" + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 2, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 93800 0 --:--:-- --:--:-- --:--:-- 93800\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "remove current miniconda\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", " warnings.warn(msg, category=FutureWarning)\n" ], "name": "stderr" }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, { "output_type": "stream", "text": [ @@ -139,9 +112,48 @@ "\n" ], "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.53 s, sys: 996 ms, total: 3.52 s\n", + "Wall time: 4min 10s\n" + ], + "name": "stdout" } ] }, + { + "cell_type": "markdown", + "metadata": { + "id": "iEMqPVorcj1R", + "colab_type": "text" + }, + "source": [ + "Ok now that we have our environment installed, we can actually import the core `GraphConvModel` that we'll use through this tutorial." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ph78CIgAcj1S", + "colab_type": "code", + "colab": {} + }, + "source": [ + "import deepchem as dc\n", + "from deepchem.models.graph_models import GraphConvModel" + ], + "execution_count": 0, + "outputs": [] + }, { "cell_type": "markdown", "metadata": { @@ -157,7 +169,7 @@ "metadata": { "id": "JMi2V8Jncj1W", "colab_type": "code", - "outputId": "3f42b8e3-e959-411e-d419-874fca5916ff", + "outputId": "4bc49fff-0338-454d-ac2b-b77c65d50cf5", "colab": { "base_uri": "https://localhost:8080/", "height": 476 @@ -185,20 +197,20 @@ "Featurizing sample 5000\n", "Featurizing sample 6000\n", "Featurizing sample 7000\n", - "TIMING: featurizing shard 0 took 18.303 s\n", - "TIMING: dataset construction took 20.896 s\n", + "TIMING: featurizing shard 0 took 20.352 s\n", + "TIMING: dataset construction took 22.873 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 2.852 s\n", + "TIMING: dataset construction took 2.841 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 1.358 s\n", + "TIMING: dataset construction took 1.359 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 1.225 s\n", + "TIMING: dataset construction took 1.203 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 2.644 s\n", + "TIMING: dataset construction took 2.634 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.421 s\n", + "TIMING: dataset construction took 0.286 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.314 s\n", + "TIMING: dataset construction took 0.286 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -220,7 +232,7 @@ "metadata": { "id": "Y9n3jTNHcj1a", "colab_type": "code", - "outputId": "c08c5b87-f839-4b37-c744-4cdd943565f4", + "outputId": "82ea6005-7ff1-407d-b30c-17bb6d678069", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 @@ -245,47 +257,47 @@ "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "If using Keras pass *_constraint arguments to layers.\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/layers.py:194: The name tf.unsorted_segment_sum is deprecated. Please use tf.math.unsorted_segment_sum instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/layers.py:194: The name tf.unsorted_segment_sum is deprecated. Please use tf.math.unsorted_segment_sum instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/layers.py:196: The name tf.unsorted_segment_max is deprecated. Please use tf.math.unsorted_segment_max instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/layers.py:196: The name tf.unsorted_segment_max is deprecated. Please use tf.math.unsorted_segment_max instead.\n", "\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/losses.py:108: The name tf.losses.softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.softmax_cross_entropy instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:108: The name tf.losses.softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.softmax_cross_entropy instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/losses.py:109: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:109: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", "\n", "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/math_grad.py:424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", @@ -308,16 +320,16 @@ { "output_type": "stream", "text": [ - "Epoch 0 loss: 0.179874\n", - "Epoch 1 loss: 0.180224\n", - "Epoch 2 loss: 0.171549\n", - "Epoch 3 loss: 0.159281\n", - "Epoch 4 loss: 0.160095\n", - "Epoch 5 loss: 0.153980\n", - "Epoch 6 loss: 0.152169\n", - "Epoch 7 loss: 0.134809\n", - "Epoch 8 loss: 0.142448\n", - "Epoch 9 loss: 0.142864\n" + "Epoch 0 loss: 0.187494\n", + "Epoch 1 loss: 0.179481\n", + "Epoch 2 loss: 0.173996\n", + "Epoch 3 loss: 0.129795\n", + "Epoch 4 loss: 0.165851\n", + "Epoch 5 loss: 0.157878\n", + "Epoch 6 loss: 0.154927\n", + "Epoch 7 loss: 0.128199\n", + "Epoch 8 loss: 0.145040\n", + "Epoch 9 loss: 0.149751\n" ], "name": "stdout" } @@ -338,10 +350,10 @@ "metadata": { "id": "qbDXnYs7cj1d", "colab_type": "code", - "outputId": "2bdbbed2-1844-4808-92ff-5a3c2445987b", + "outputId": "e994dfa2-b8b6-486b-fa00-7b5a3845d099", "colab": { "base_uri": "https://localhost:8080/", - "height": 279 + "height": 282 } }, "source": [ @@ -359,13 +371,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAATrElEQVR4nO3df6xf9X3f8ecrF7PckiVmw6rqaxK7\nLb0tLUncXVhTFqqmi0zUDTxKGkhWjSkaWjvaZBt3w/tjUtkmULy2KSuboGmqVUuKIuZYbE12yQJL\nJq3tfMGAY7wreYyAr9PNSLslLFeNbd77434v3Hv52P5ec7/3XN/7fEhX/p7P+cH7HnG/r3M+n/Mj\nVYUkSUu9pesCJElrkwEhSWoyICRJTQaEJKnJgJAkNV3UdQEr5bLLLqvt27d3XYYkXVCeeOKJl6pq\nS2veugmI7du3Mzk52XUZknRBSfLNM82zi0mS1GRASJKaDAhJUpMBIUlqMiAkSU3r5iqmC9n+g9Ps\nnZji+MwsWzcPM75rlN07R7ouS9IGN9AziCTXJ5lKcjTJXY351yV5MsmpJDcvmfepJIeTHElyX5IM\nstau7D84zZ59h5iemaWA6ZlZ9uw7xP6D012XJmmDG1hAJBkC7gc+BFwJ3JrkyiWLvQDcBnx+ybo/\nCVwLvBv4MeBq4KcGUef+g9Nce+9j7LjrD7j23sdW/Yt578QUsydPL2qbPXmavRNTq1qHJC01yC6m\na4CjVfUcQJKHgBuBZ+cXqKrne/NeXbJuAW8FLgYCbAL+90oXOH/0Pv8FPX/0DqxaF8/xmdlltUvS\nahlkF9MI8OKC6WO9tnOqqj8EHge+1fuZqKojS5dLcnuSySSTJ06cWHaBa+Hofevm4WW1S9JqWZNX\nMSX5QeBHgG3MhcoHkrx/6XJV9WBVjVXV2JYtzUeJnNVaOHof3zXK8KahRW3Dm4YY3zW6ajVIUssg\nA2IauHzB9LZeWz/+BvBHVfVKVb0CfBl43wrXtyaO3nfvHOGem65iZPMwAUY2D3PPTVd5FZOkzg1y\nDOIAcEWSHcwFwy3AR/tc9wXg7yS5h7kxiJ8CPr3SBY7vGl00BgHdHL3v3jliIEhacwZ2BlFVp4A7\ngAngCPCFqjqc5O4kNwAkuTrJMeDDwANJDvdWfxj4n8Ah4Gng6ar6Dytdo0fvknRmqaqua1gRY2Nj\n5eO+JWl5kjxRVWOteWtykFqS1D0DQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQm\nA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIg\nJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElS00VdF6C1Y//BafZOTHF8Zpatm4cZ3zXK7p0j\nXZclqSMGhIC5cNiz7xCzJ08DMD0zy559hwAMCWmDsotJAOydmHotHObNnjzN3ompjiqS1DUDQgAc\nn5ldVruk9c+AEABbNw8vq13S+mdACIDxXaMMbxpa1Da8aYjxXaMdVSSpaw5SC3h9INqrmCTNG2hA\nJLke+E1gCPhMVd27ZP51wKeBdwO3VNXDvfafBn5jwaI/3Ju/f5D1bnS7d44YCJJeM7CASDIE3A98\nEDgGHEjySFU9u2CxF4DbgDsXrltVjwPv7W3nLwBHgUcHVask6Y0GeQZxDXC0qp4DSPIQcCPwWkBU\n1fO9ea+eZTs3A1+uqu8MrlRJ0lKDHKQeAV5cMH2s17ZctwC/35qR5PYkk0kmT5w4cR6bliSdyZq+\niinJ9wFXAROt+VX1YFWNVdXYli1bVrc4SVrnBhkQ08DlC6a39dqW4+eBL1bVyRWrSpLUl0EGxAHg\niiQ7klzMXFfRI8vcxq2coXtJkjRYAwuIqjoF3MFc99AR4AtVdTjJ3UluAEhydZJjwIeBB5Icnl8/\nyXbmzkC+NqgaJUlnlqrquoYVMTY2VpOTk12XIUkXlCRPVNVYa96aHqSWJHXHgJAkNRkQkqQmA0KS\n1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElN\nBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRA\nSJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUNNCCSXJ9kKsnRJHc15l+X5Mkkp5LcvGTeO5M8muRI\nkmeTbB9krdJS+w9Oc+29j7Hjrj/g2nsfY//B6a5LklbVRYPacJIh4H7gg8Ax4ECSR6rq2QWLvQDc\nBtzZ2MTvAf+iqr6S5G3Aq4OqVVpq/8Fp9uw7xOzJ0wBMz8yyZ98hAHbvHOmyNGnVDPIM4hrgaFU9\nV1XfBR4Cbly4QFU9X1XPsOTLP8mVwEVV9ZXecq9U1XcGWKu0yN6JqdfCYd7sydPsnZjqqCJp9Q3s\nDAIYAV5cMH0M+Mt9rvtDwEySfcAO4D8Dd1XVor/YJLcDtwO8853vfNMFa23Yf3CavRNTHJ+ZZevm\nYcZ3ja76UfvxmdlltUvr0VodpL4IeD9zXU9XA9/PXFfUIlX1YFWNVdXYli1bVrdCDcR81870zCzF\n6107q93/v3Xz8LLapfVokAExDVy+YHpbr60fx4Cnet1Tp4D9wI+vcH1ag9ZK1874rlGGNw0tahve\nNMT4rtFVrUPqUl8BkeSSJG/pff6hJDck2XSO1Q4AVyTZkeRi4BbgkT7rOgBsTjJ/WvAB4NmzLK91\nYq107ezeOcI9N13FyOZhAoxsHuaem65ygFobSr9jEF8H3p/kUuBR5r7APwJ87EwrVNWpJHcAE8AQ\n8NmqOpzkbmCyqh5JcjXwReBS4K8n+dWq+tGqOp3kTuCrSQI8Afz2+f6SunBs3TzMdCMMuuja2b1z\nxEDQhtZvQKSqvpPk48C/rqpPJXnqXCtV1ZeALy1p+6cLPh9gruupte5XgHf3WZ/WifFdo4suLwW7\ndqSu9B0QSd7H3BnDx3ttQ2dZXjov80fsXV/FJKn/gPgksAf4Yq+b6PuBxwdXljYyu3aktaGvgKiq\nrwFfA+gNVr9UVb8yyMIkSd3q9yqmzyd5e5JLgG8AzyYZH2xpkqQu9XsfxJVV9TKwG/gyc3c3/8LA\nqpIkda7fgNjUu+9hN/BIVZ0EanBlSZK61m9APAA8D1wCfD3Ju4CXB1WUJKl7/Q5S3wfct6Dpm0l+\nejAlSZLWgn4Hqd+R5NeTTPZ+fo25swlJ0jrVbxfTZ4FvAz/f+3kZ+N1BFSVJ6l6/N8r9QFX93ILp\nX+3nURuSpAtXv2cQs0n+yvxEkmsB35wiSetYv2cQfxf4vSTv6E3/X+BvDaYkSdJa0O9VTE8D70ny\n9t70y0k+CTwzyOIkSd1Z1hvlqurl3h3VAP9gAPVIktaIN/PK0axYFZKkNefNBISP2pCkdeysYxBJ\nvk07CAKs/jsgpQ1o/8FpX6CkTpw1IKrqz69WIZLeaP/B6UWvYJ2emWXPvkMAhoQG7s10MUkasL0T\nU4vezw0we/I0eyemOqpIG4kBIa1hx2fa96OeqV1aSQaEtIZt3dwe6jtTu7SSDAhpDRvfNcrwpqFF\nbcObhhjfNdpRRdpI+n3UhqQOzA9EexWTumBASGvc7p0jBoI6YUBI6ov3Y2w8BoSkc/J+jI3JQWpJ\n5+T9GBuTASHpnLwfY2MyICSdk/djbEwGhKRz8n6MjclBaknn5P0YG5MBIakv3o+x8djFJElqMiAk\nSU0DDYgk1yeZSnI0yV2N+dcleTLJqSQ3L5l3OslTvZ9HBlmnJOmNBjYGkWQIuB/4IHAMOJDkkap6\ndsFiLwC3AXc2NjFbVe8dVH2SpLMb5CD1NcDRqnoOIMlDwI3AawFRVc/35r06wDokSedhkF1MI8CL\nC6aP9dr69dYkk0n+KMnu1gJJbu8tM3nixIk3U6skaYm1PEj9rqoaAz4KfDrJDyxdoKoerKqxqhrb\nsmXL6lcoSevYIANiGrh8wfS2Xltfqmq69+9zwH8Bdq5kcZKksxtkQBwArkiyI8nFwC1AX1cjJbk0\nyZ/rfb4MuJYFYxeSpMEbWEBU1SngDmACOAJ8oaoOJ7k7yQ0ASa5Ocgz4MPBAksO91X8EmEzyNPA4\ncO+Sq58kSQOWquq6hhUxNjZWk5OTXZchSReUJE/0xnvfYC0PUkuSOmRASJKaDAhJUpMBIUlqMiAk\nSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLU\nZEBIkpoMCElSkwEhSWoyICRJTQaEJKnpoq4LkCSdn/0Hp9k7McXxmVm2bh5mfNcou3eOrNj2DQhJ\nugDtPzjNnn2HmD15GoDpmVn27DsEsGIhYUBI0jIN+si9H3snpl4Lh3mzJ0+zd2LKgJCkLqzGkXs/\njs/MLqv9fDhILUnLcLYj99W0dfPwstrPhwEhScuwGkfu/RjfNcrwpqFFbcObhhjfNbpi/w0DQpKW\nYTWO3Puxe+cI99x0FSObhwkwsnmYe266yquYJKkr47tGF41BwMofufdr986RgY57GBCStAzzX8hd\nX8W0GgwISVqmQR+5rxWOQUiSmgwISVLTQAMiyfVJppIcTXJXY/51SZ5McirJzY35b09yLMlvDbJO\nSdIbDSwgkgwB9wMfAq4Ebk1y5ZLFXgBuAz5/hs38M+Drg6pRknRmgzyDuAY4WlXPVdV3gYeAGxcu\nUFXPV9UzwKtLV07yl4DvBR4dYI2SpDMYZECMAC8umD7WazunJG8Bfg248xzL3Z5kMsnkiRMnzrtQ\nSdIbrdVB6l8CvlRVx862UFU9WFVjVTW2ZcuWVSpNkjaGQd4HMQ1cvmB6W6+tH+8D3p/kl4C3ARcn\neaWq3jDQLUkajEEGxAHgiiQ7mAuGW4CP9rNiVX1s/nOS24Axw0GSVtfAupiq6hRwBzABHAG+UFWH\nk9yd5AaAJFcnOQZ8GHggyeFB1SNJWp5UVdc1rIixsbGanJzsugxJuqAkeaKqxlrz1uogtSSpYwaE\nJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiS\nmgb5wiBJWlH7D06zd2KK4zOzbN08zPiuUXbv7OtV9zoPBoSkC8L+g9Ps2XeI2ZOnAZiemWXPvkMA\nhsSA2MUk6YKwd2LqtXCYN3vyNHsnpjqqaP0zICRdEI7PzC6rXW+eASHpgrB18/Cy2vXmGRCSLgjj\nu0YZ3jS0qG140xDju0Y7qmj9c5Ba0gVhfiDaq5hWjwEh6YKxe+eIgbCK7GKSJDUZEJKkJgNCktRk\nQEiSmgwISVJTqqrrGlZEkhPAN9/EJi4DXlqhci507ovF3B+LuT9etx72xbuqaktrxroJiDcryWRV\njXVdx1rgvljM/bGY++N1631f2MUkSWoyICRJTQbE6x7suoA1xH2xmPtjMffH69b1vnAMQpLU5BmE\nJKnJgJAkNW34gEhyfZKpJEeT3NV1PV1KcnmSx5M8m+Rwkk90XVPXkgwlOZjkP3ZdS9eSbE7ycJL/\nkeRIkvd1XVOXkvz93t/JN5L8fpK3dl3TStvQAZFkCLgf+BBwJXBrkiu7rapTp4B/WFVXAj8B/L0N\nvj8APgEc6bqINeI3gf9UVT8MvIcNvF+SjAC/AoxV1Y8BQ8At3Va18jZ0QADXAEer6rmq+i7wEHBj\nxzV1pqq+VVVP9j5/m7kvgA378P0k24CfBT7TdS1dS/IO4DrgdwCq6rtVNdNtVZ27CBhOchHwPcDx\njutZcRs9IEaAFxdMH2MDfyEulGQ7sBP4424r6dSngX8EvNp1IWvADuAE8Lu9LrfPJLmk66K6UlXT\nwL8EXgC+BfxpVT3abVUrb6MHhBqSvA3498Anq+rlruvpQpK/Bvyfqnqi61rWiIuAHwf+TVXtBP4f\nsGHH7JJcylxvww5gK3BJkr/ZbVUrb6MHxDRw+YLpbb22DSvJJubC4XNVta/rejp0LXBDkueZ63r8\nQJJ/121JnToGHKuq+TPKh5kLjI3qrwL/q6pOVNVJYB/wkx3XtOI2ekAcAK5IsiPJxcwNMj3ScU2d\nSRLm+piPVNWvd11Pl6pqT1Vtq6rtzP1/8VhVrbsjxH5V1Z8ALyYZ7TX9DPBshyV17QXgJ5J8T+/v\n5mdYh4P2F3VdQJeq6lSSO4AJ5q5C+GxVHe64rC5dC/wCcCjJU722f1JVX+qwJq0dvwx8rncw9Rzw\ntzuupzNV9cdJHgaeZO7qv4Osw8du+KgNSVLTRu9ikiSdgQEhSWoyICRJTQaEJKnJgJAkNRkQ0jIk\nOZ3kqQU/K3Y3cZLtSb6xUtuT3qwNfR+EdB5mq+q9XRchrQbPIKQVkOT5JJ9KcijJf0/yg7327Uke\nS/JMkq8meWev/XuTfDHJ072f+cc0DCX57d57Bh5NMtzZL6UNz4CQlmd4SRfTRxbM+9Oqugr4Leae\nBAvwr4B/W1XvBj4H3Ndrvw/4WlW9h7lnGs3fwX8FcH9V/SgwA/zcgH8f6Yy8k1pahiSvVNXbGu3P\nAx+oqud6Dzz8k6r6i0leAr6vqk722r9VVZclOQFsq6o/W7CN7cBXquqK3vQ/BjZV1T8f/G8mvZFn\nENLKqTN8Xo4/W/D5NI4TqkMGhLRyPrLg3z/sff5vvP4qyo8B/7X3+avAL8Jr771+x2oVKfXLoxNp\neYYXPOkW5t7RPH+p66VJnmHuLODWXtsvM/cWtnHm3sg2/wTUTwAPJvk4c2cKv8jcm8mkNcMxCGkF\n9MYgxqrqpa5rkVaKXUySpCbPICRJTZ5BSJKaDAhJUpMBIUlqMiAkSU0GhCSp6f8DMqLHYtGQ2jsA\nAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEJCAYAAACOr7BbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVsUlEQVR4nO3dcZBdZ33e8e/DWg4LBOTGGiZaGaQER0XEgOjaDXFwBlJGdtLYqmMHOyQTdzrjIakTaGu1Vv9oB7cdSBQyCYnbsZOSNFOIx0OFRm2g6wxQyEwI1cqyLWR3O6oq7F2RZpnpxtBsQJJ//WPv2lerI3zX3rNntff7mdnRPe855+q3d6R99rzve86bqkKSpKVe1nUBkqS1yYCQJDUyICRJjQwISVIjA0KS1MiAkCQ1ajUgklyfZCrJ8ST3NOy/LskjSc4kuWXJvl9J8pXe13varFOSdL7WAiLJCHAfcAOwA7g9yY4lhz0F3AF8Ysm5PwG8DXgr8LeBu5O8uq1aJUnnu6TF974GOF5VJwCSPAjcBDyxeEBVnezte3bJuTuAL1bVGeBMkseB64GHLvSXXX755bV169aVrF+S1r3Dhw9/vao2Ne1rMyDGgKf7tqdZuBoYxGPAv0zyEeAVwDvpC5YmW7duZXJy8sXUKUlDK8lXL7SvzYB40arq4SRXA38KzAJfAs4uPS7JncCdAK973etWtUZJWu/aHKSeAa7o297SaxtIVf2bqnprVb0bCPA/G455oKrGq2p806bGKyRJ0ovUZkAcAq5Msi3JpcBtwMFBTkwykuR7eq/fDLwZeLi1SiVJ52mti6mqziS5C5gARoCPVdWxJPcCk1V1sNeN9CngMuAnk3ywqt4EbAD+JAnAM8DP9gasJUmrpNUxiKr6NPDpJW3/ou/1IRa6npae99cszGSSJHVkTQ5Sr6YDR2bYNzHFqbl5Nm8cZc+u7ezeOdZ1WZLUuaEOiANHZti7/yjzpxcmSM3MzbN3/1EAQ0LS0BvqZzHtm5h6LhwWzZ8+y76JqY4qkqS1Y6gD4tTc/LLaJWmYDHVAbN44uqx2SRomQx0Qe3ZtZ3TDyDltoxtG2LNre0cVSdLaMdSD1IsD0c5ikqTzDXVAwEJIGAiSdL6h7mKSJF2YASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpUasBkeT6JFNJjie5p2H/dUkeSXImyS1L9v1qkmNJnkzy0SRps1ZJ0rlaC4gkI8B9wA3ADuD2JDuWHPYUcAfwiSXn/jBwLfBm4AeBq4EfbatWSdL52lyT+hrgeFWdAEjyIHAT8MTiAVV1srfv2SXnFvBy4FIgwAbg/7RYa6cOHJlh38QUp+bm2bxxlD27trtOtqTOtdnFNAY83bc93Wt7QVX1JeDzwNd6XxNV9eTS45LcmWQyyeTs7OwKlLz6DhyZYe/+o8zMzVPAzNw8e/cf5cCRma5LkzTk1uQgdZI3AG8EtrAQKu9K8o6lx1XVA1U1XlXjmzZtWu0yV8S+iSnmT589p23+9Fn2TUx1VJEkLWgzIGaAK/q2t/TaBvH3gD+rqm9W1TeBzwBvX+H61oRTc/PLapek1dJmQBwCrkyyLcmlwG3AwQHPfQr40SSXJNnAwgD1eV1M68HmjaPLapek1dJaQFTVGeAuYIKFH+4PVdWxJPcmuREgydVJpoFbgfuTHOud/kngfwFHgceAx6rqP7dVa5f27NrO6IaRc9pGN4ywZ9f2jiqSpAWpqq5rWBHj4+M1OTnZdRkvirOYJHUlyeGqGm/a1+Y0Vw1o984xA0HSmrMmZzFJkrpnQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIa+agNPcdnQknqZ0AIeH5lu8XFixZXtgMMCWlI2cUkwJXtJJ3PgBDgynaSzmdACHBlO0nnMyAEuLKdpPM5SC3g+YFoZzFJWmRA6DmubCepn11MkqRGBoQkqZEBIUlqZEBIkhoZEJKkRq0GRJLrk0wlOZ7knob91yV5JMmZJLf0tb8zyaN9X3+dZHebtUqSztXaNNckI8B9wLuBaeBQkoNV9UTfYU8BdwB3959bVZ8H3tp7n78BHAcebqtWSdL52rwP4hrgeFWdAEjyIHAT8FxAVNXJ3r5nv8P73AJ8pqr+qr1SJUlLtdnFNAY83bc93WtbrtuAP1yRiiRJA1vTg9RJvhe4Cpi4wP47k0wmmZydnV3d4iRpnWszIGaAK/q2t/TaluOngU9V1emmnVX1QFWNV9X4pk2bXmSZkqQmbQbEIeDKJNuSXMpCV9HBZb7H7di9JEmdaC0gquoMcBcL3UNPAg9V1bEk9ya5ESDJ1UmmgVuB+5McWzw/yVYWrkC+0FaNkqQLS1V1XcOKGB8fr8nJya7LkKSLSpLDVTXetG9ND1JLkrpjQEiSGhkQkqRGBoQkqZEBIUlq5JrU0gUcODLDvokpTs3Ns3njKHt2bXfNbg0VA0JqcODIDHv3H2X+9FkAZubm2bv/KIAhoaFhF5PUYN/E1HPhsGj+9Fn2TUx1VJG0+gwIqcGpuflltUvrkQEhNdi8cXRZ7dJ6ZEBIDfbs2s7ohpFz2kY3jLBn1/aOKpJWn4PUUoPFgWhnMWmYGRDSBezeOWYgaKjZxSRJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRq0GRJLrk0wlOZ7knob91yV5JMmZJLcs2fe6JA8neTLJE0m2tlmrJOlcrQVEkhHgPuAGYAdwe5IdSw57CrgD+ETDW/wBsK+q3ghcA/xFW7VKks43UEAkeWWSl/Ve/0CSG5NseIHTrgGOV9WJqvo28CBwU/8BVXWyqh4Hnl3y9+0ALqmqP+4d982q+qvBviVJ0koY9Arii8DLk4wBDwM/B/z+C5wzBjzdtz3daxvEDwBzSfYnOZJkX++KRJK0SgYNiPR+g78Z+LdVdSvwpvbK4hLgHcDdwNXA97HQFXVuUcmdSSaTTM7OzrZYjiQNn4EDIsnbgfcCf9Rre6Hf6GeAK/q2t/TaBjENPNrrnjoDHADetvSgqnqgqsaranzTpk0DvrUkaRCDBsQHgL3Ap6rqWJLvAz7/AuccAq5Msi3JpcBtwMEB/75DwMYkiz/13wU8MeC5kqQVMNCSo1X1BeALAL3B6q9X1S+/wDlnktwFTLBwtfGxXrjcC0xW1cEkVwOfAi4DfjLJB6vqTVV1NsndwGeTBDgM/M6L/SYlScuXqnrhg5JPAO8DzrLw2/2rgd+sqn3tlje48fHxmpyc7LoMacUdODLDvokpTs3Ns3njKHt2bXetbK2YJIerarxp36BdTDuq6hlgN/AZYBsLM5kktejAkRn27j/KzNw8BczMzbN3/1EOHBl0OE968QYNiA29+x52Awer6jTwwpcekl6SfRNTzJ8+e07b/Omz7JuY6qgiDZNBA+J+4CTwSuCLSV4PPNNWUZIWnJqbX1a7tJIGCoiq+mhVjVXVj9eCrwLvbLk2aeht3ji6rHZpJQ36qI3XJPn1xZvSknyEhasJSS3as2s7oxvOveVodMMIe3Zt76giDZNBu5g+BnwD+One1zPA77VVlKQFu3eO8aGbr2Js4ygBxjaO8qGbr3IWk1bFQPdBAN9fVT/Vt/3BJI+2UZCkc+3eOWYgqBODXkHMJ/mRxY0k1wKOkknSOjboFcT7gD9I8pre9v8Ffr6dkiRJa8Ggj9p4DHhLklf3tp9J8gHg8TaLk7R2eEf38FnWinJV9UzvjmqAf9xCPZLWIO/oHk4vZcnRrFgVktY07+geTi8lIHzUhjQkvKN7OH3HMYgk36A5CAJ4K6c0JDZvHGWmIQy8o3t9+45XEFX13VX16oav766qQWdASbrIeUf3cPKHvKQXtDhbyVlMw8WAkDQQ7+gePi9lkFqStI4ZEJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWrUakAkuT7JVJLjSe5p2H9dkkeSnElyy5J9Z5M82vs62GadkqTztXYndZIR4D7g3cA0cCjJwap6ou+wp4A7gLsb3mK+qt7aVn2SdLFrexGnNh+1cQ1wvKpOACR5ELgJeC4gqupkb9+zLdYhSevO4iJOi+t0LC7iBKxYSLTZxTQGPN23Pd1rG9TLk0wm+bMku5sOSHJn75jJ2dnZl1KrJF1UVmMRp7U8SP36qhoHfgb4jSTfv/SAqnqgqsaranzTpk2rX6EkdWQ1FnFqMyBmgCv6trf02gZSVTO9P08A/w3YuZLFSdLF7EKLNa3kIk5tBsQh4Mok25JcCtwGDDQbKcllSb6r9/py4Fr6xi4kaditxiJOrQVEVZ0B7gImgCeBh6rqWJJ7k9wIkOTqJNPArcD9SY71Tn8jMJnkMeDzwIeXzH6SpKG2e+cYH7r5KsY2jhJgbOMoH7r5qhWdxZSqpiWnLz7j4+M1OTnZdRmSdFFJcrg33nuetTxILUnqkAEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRm0+7luS1qW212FYKwwISVqG1ViHYa2wi0mSlmE11mFYKwwISVqG1ViHYa0wICRpGVZjHYa1woCQpGVYjXUY1goHqSVpGRYHop3FJEk6z+6dY+syEJayi0mS1MiAkCQ1MiAkSY0MCElSIwNCktTIgJAkNTIgJEmNDAhJUqNWAyLJ9UmmkhxPck/D/uuSPJLkTJJbGva/Osl0kt9us05J0vlaC4gkI8B9wA3ADuD2JDuWHPYUcAfwiQu8zb8CvthWjZKkC2vzCuIa4HhVnaiqbwMPAjf1H1BVJ6vqceDZpScn+VvAa4GHW6xRknQBbQbEGPB03/Z0r+0FJXkZ8BHg7hbqkiQNYK0OUv8i8Omqmv5OByW5M8lkksnZ2dlVKk2ShkObT3OdAa7o297SaxvE24F3JPlF4FXApUm+WVXnDHRX1QPAAwDj4+P10kuWJC1qMyAOAVcm2cZCMNwG/MwgJ1bVexdfJ7kDGF8aDpKkdrXWxVRVZ4C7gAngSeChqjqW5N4kNwIkuTrJNHArcH+SY23VI0lanlStj56Z8fHxmpyc7LoMSbqoJDlcVeNN+9bqILUkqWMGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIatRoQSa5PMpXkeJJ7GvZfl+SRJGeS3NLX/vpe+6NJjiV5X5t1SpLOd0lbb5xkBLgPeDcwDRxKcrCqnug77CngDuDuJad/DXh7VX0ryauAr/TOPdVWvZKkc7UWEMA1wPGqOgGQ5EHgJuC5gKiqk719z/afWFXf7tv8LuwKGyoHjsywb2KKU3PzbN44yp5d29m9c6zrsqSh0+YP3jHg6b7t6V7bQJJckeTx3nv8ilcPw+HAkRn27j/KzNw8BczMzbN3/1EOHJnpujRp6KzZ38yr6umqejPwBuDnk7x26TFJ7kwymWRydnZ29YvUits3McX86bPntM2fPsu+iamOKpKGV5sBMQNc0be9pde2LL0rh68A72jY90BVjVfV+KZNm150oVo7Ts3NL6tdUnvaDIhDwJVJtiW5FLgNODjIiUm2JBntvb4M+BHAXyGHwOaNo8tql9Se1gKiqs4AdwETwJPAQ1V1LMm9SW4ESHJ1kmngVuD+JMd6p78R+HKSx4AvAL9WVUfbqlVrx55d2xndMHJO2+iGEfbs2t5RRVpLDhyZ4doPf45t9/wR1374c45NtSxV1XUNK2J8fLwmJye7LkMrwFlMarI4gaF/jGp0wwgfuvkq/328BEkOV9V40742p7lKL8runWP+h9d5vtMEBv+9tGPNzmKSpH5OYFh9BoSki4ITGFafASHpouAEhtXnGISki8LiOIMTGFaPASHpouEEhtVlF5MkqZEBIUlqZEBIkhoZEJKkRgaEJKnRunkWU5JZ4Ksv4S0uB76+QuVc7PwszuXncS4/j+eth8/i9VXVuF7CugmIlyrJ5IUeWDVs/CzO5edxLj+P5633z8IuJklSIwNCktTIgHjeA10XsIb4WZzLz+Ncfh7PW9efhWMQkqRGXkFIkhoNfUAkuT7JVJLjSe7pup4uJbkiyeeTPJHkWJL3d11T15KMJDmS5L90XUvXkmxM8skk/yPJk0ne3nVNXUryj3r/T76S5A+TvLzrmlbaUAdEkhHgPuAGYAdwe5Id3VbVqTPAP6mqHcAPAf9wyD8PgPcDT3ZdxBrxm8B/raq/CbyFIf5ckowBvwyMV9UPAiPAbd1WtfKGOiCAa4DjVXWiqr4NPAjc1HFNnamqr1XVI73X32DhB8DQPls5yRbgJ4Df7bqWriV5DXAd8O8BqurbVTXXbVWduwQYTXIJ8ArgVMf1rLhhD4gx4Om+7WmG+AdivyRbgZ3Al7utpFO/AfxT4NmuC1kDtgGzwO/1utx+N8kruy6qK1U1A/wa8BTwNeAvq+rhbqtaecMeEGqQ5FXAfwI+UFXPdF1PF5L8XeAvqupw17WsEZcAbwP+XVXtBP4fMLRjdkkuY6G3YRuwGXhlkp/ttqqVN+wBMQNc0be9pdc2tJJsYCEcPl5V+7uup0PXAjcmOclC1+O7kvzHbkvq1DQwXVWLV5SfZCEwhtXfAf53Vc1W1WlgP/DDHde04oY9IA4BVybZluRSFgaZDnZcU2eShIU+5ier6te7rqdLVbW3qrZU1VYW/l18rqrW3W+Ig6qqPweeTrK91/RjwBMdltS1p4AfSvKK3v+bH2MdDtoP9ZrUVXUmyV3ABAuzED5WVcc6LqtL1wI/BxxN8miv7Z9X1ac7rElrxy8BH+/9MnUC+Psd19OZqvpykk8Cj7Aw++8I6/Cuau+kliQ1GvYuJknSBRgQkqRGBoQkqZEBIUlqZEBIkhoZENIyJDmb5NG+rxW7mzjJ1iRfWan3k16qob4PQnoR5qvqrV0XIa0GryCkFZDkZJJfTXI0yX9P8oZe+9Ykn0vyeJLPJnldr/21ST6V5LHe1+JjGkaS/E5vnYGHk4x29k1p6BkQ0vKMLuliek/fvr+sqquA32bhSbAAvwX8h6p6M/Bx4KO99o8CX6iqt7DwTKPFO/ivBO6rqjcBc8BPtfz9SBfkndTSMiT5ZlW9qqH9JPCuqjrRe+Dhn1fV9yT5OvC9VXW61/61qro8ySywpaq+1fceW4E/rqore9v/DNhQVf+6/e9MOp9XENLKqQu8Xo5v9b0+i+OE6pABIa2c9/T9+aXe6z/l+aUo3wv8Se/1Z4FfgOfWvX7NahUpDcrfTqTlGe170i0srNG8ONX1siSPs3AVcHuv7ZdYWIVtDwsrsi0+AfX9wANJ/gELVwq/wMLKZNKa4RiEtAJ6YxDjVfX1rmuRVopdTJKkRl5BSJIaeQUhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhr9f0oDuScGeRWmAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -389,7 +402,7 @@ "metadata": { "id": "MeX-9RNWcj1h", "colab_type": "code", - "outputId": "d8ed150d-6a3f-4234-b16c-d17fdd8b3ffc", + "outputId": "5839b650-1bd1-4db4-deda-2f6e00d2cf70", "colab": { "base_uri": "https://localhost:8080/", "height": 122 @@ -411,10 +424,10 @@ "output_type": "stream", "text": [ "Evaluating model\n", - "computed_metrics: [0.8752507599237542, 0.9317176461143224, 0.9216110353258482, 0.9071836603643049, 0.8085335468451595, 0.8950413619597894, 0.9163170299657835, 0.8578393713439281, 0.9150434463367274, 0.8497569522752113, 0.9287126431500636, 0.8930951781618839]\n", - "Training ROC-AUC Score: 0.891675\n", - "computed_metrics: [0.7691584623756988, 0.8363921957671958, 0.8597597050926138, 0.8286731062531776, 0.6752727272727272, 0.7173707812131225, 0.7484423676012462, 0.8443129242114658, 0.8532611255003532, 0.7628326141675655, 0.8896979568372896, 0.8280792420327303]\n", - "Validation ROC-AUC Score: 0.801104\n" + "computed_metrics: [0.856695644197583, 0.9277883148683366, 0.9162266517645925, 0.8993123176038667, 0.790893979188138, 0.8848570453915527, 0.9080505953582783, 0.8503534098231695, 0.8895928885115149, 0.8532033377860277, 0.9163754240290927, 0.8774665771661911]\n", + "Training ROC-AUC Score: 0.880901\n", + "computed_metrics: [0.7864740513530896, 0.7545469576719577, 0.8586219451144587, 0.8444966954753432, 0.6791590909090909, 0.7470301313822674, 0.79932502596054, 0.8434204654876816, 0.848316458676713, 0.7243122977346279, 0.8887398500562889, 0.8223514211886305]\n", + "Validation ROC-AUC Score: 0.799733\n" ], "name": "stdout" } @@ -474,11 +487,11 @@ "metadata": { "id": "71_E0CAUcj1n", "colab_type": "code", + "outputId": "de35eb15-96e8-4607-9038-9d1d68ab8b0b", "colab": { "base_uri": "https://localhost:8080/", "height": 207 - }, - "outputId": "6ce899d1-456d-4a75-f060-98acca3297e6" + } }, "source": [ "from deepchem.models.layers import GraphConv, GraphPool, GraphGather\n", @@ -502,16 +515,16 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n" + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n" ], "name": "stdout" } @@ -596,7 +609,7 @@ "metadata": { "id": "59WW4rhwcj1w", "colab_type": "code", - "outputId": "8664b6c2-fd35-4676-cc1a-f098baddb365", + "outputId": "daae0b31-08ec-4b2d-b430-d970acc1d61e", "colab": { "base_uri": "https://localhost:8080/", "height": 479 @@ -615,16 +628,16 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n" + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n" ], "name": "stdout" }, @@ -643,16 +656,16 @@ { "output_type": "stream", "text": [ - "Epoch 0 loss: 0.190473\n", - "Epoch 1 loss: 0.182911\n", - "Epoch 2 loss: 0.176649\n", - "Epoch 3 loss: 0.135745\n", - "Epoch 4 loss: 0.163365\n", - "Epoch 5 loss: 0.161067\n", - "Epoch 6 loss: 0.156090\n", - "Epoch 7 loss: 0.144639\n", - "Epoch 8 loss: 0.149375\n", - "Epoch 9 loss: 0.147722\n" + "Epoch 0 loss: 0.185946\n", + "Epoch 1 loss: 0.178740\n", + "Epoch 2 loss: 0.173465\n", + "Epoch 3 loss: 0.137110\n", + "Epoch 4 loss: 0.159967\n", + "Epoch 5 loss: 0.157812\n", + "Epoch 6 loss: 0.154875\n", + "Epoch 7 loss: 0.145511\n", + "Epoch 8 loss: 0.150205\n", + "Epoch 9 loss: 0.146304\n" ], "name": "stdout" } @@ -673,7 +686,7 @@ "metadata": { "id": "SaPi5y8icj11", "colab_type": "code", - "outputId": "4c48130f-6d3e-4970-9784-a3304f913619", + "outputId": "de59a390-73b7-45a9-8613-89ea4bbfd7a5", "colab": { "base_uri": "https://localhost:8080/", "height": 295 @@ -693,13 +706,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAYLUlEQVR4nO3df5TddZ3f8efLIeiIYqxkOSaAiYqp\nUdFsB/y1skdYGywrpF1QqD+WnrbsumVXW0mX7B9bpev+yrq2KNsD/tjVo0ipjTlYscGqq57qWgYC\nxEDTE2mETHANWwOioybh3T/unXBn8k0yA3PznZn7fJxzD/f7+f6477mHzGu+n8/3+/2kqpAkaaqn\ntF2AJGluMiAkSY0MCElSIwNCktTIgJAkNTIgJEmNDAhpnkvye0k+2nYdWngMCC0ISXYm+ZWe5UuS\n/DDJL7dUz1VJvt7QflKSnyd56Wx9VlX9YVX9i9k6njTBgNCCk+TXgWuB86vqazPc97hZKuNTwGuS\nrJjSfgmwtaq+00JN0owYEFpQkvwG8AFgTVV9s9v2rCQfS/JgkrEkf5BkqLvusiT/M8kHk/wd8N4k\nL0jylSR/l+ShJJ9OsrjnM363e5wfJdme5NypdVTVLuArwNunrHoH8MnucX41yZ1J9ib5ZpIzej5j\nZ/dz7gZ+nOS4w31ukvcm+VTPvhck2dY97l8nefGU416Z5O4kDyf5z0me9mS/dy1MBoQWkncCVwPn\nVtVoT/tfAfuBFwKrgX8I9HbJvBK4DzgZeD8Q4I+ApcCLgVOB9wIkWQlcAZxZVc8E1gA7D1PPJ+gJ\niO6+rwBuSLIa+DjwG8BzgOuAm5M8tWf/S4HzgcXAC6bzuUleBHwGeDewBLgF+HyS43s2ezNwHrAC\nOAO47DD1a8AZEFpI3gD8DbB1oiHJycA/At5dVT+uqh8AH6TT1TNhd1V9qKr2V9V4Ve2oqi9V1c+q\nag/w58DEWMYB4KnAqiSLqmpnVX33MPV8Djg5yWu6y+8Avtg95uXAdVX17ao6UFWfAH4GvKpn/2uq\n6oGqGp/B574F+EK3/n3AnwHDwGt6trmmqnZX1f8DPk8ntKRDGBBaSN4JvAj4aJJ0254HLAIe7Ha5\n7KXz1/ov9Oz3QO9Bkpyc5MZud84jdMYTTgKoqh10/jp/L/CD7nZLm4qpqp8A/wV4R7eet9LtXurW\n9Z6Jmrp1nUrnrOWQumbwuUuB7/Xs91j3OMt6tvl+z/ufAM9oql8yILSQ/C1wLvA64C+6bQ/Q+cv8\npKpa3H2dWFUv6dlv6iON/7Db9rKqOhF4G51up87GVTdU1S/R+SVfwJ8coaZP0OnSeQPwTDp/sU/U\n9f6emhZX1dOr6jOHq2uan7u7ux6AbjCdCowdoUapkQGhBaWqdtMJifOSfLCqHgRuBT6Q5MQkT+kO\nQh/p8tdnAo8CDydZBqybWJFkZZJzumMFPwXGgceOcKxvAHuB64Ebq+rn3faPAL+Z5JXpOCHJ+Ume\n2XSQGXzuTcD5Sc5Nsgh4D52A/OYRapQaGRBacKrqfuAc4KIkf0Sn7/944B7gh8Bngece4RDvA34R\neBj4ArCxZ91TgT8GHqLTVfMLwPoj1FJ0upWex+PdS3QH0f8l8OFuTTs48mDxtD63qrbTOeP5UHfb\nNwFv6gkmadrihEGSpCaeQUiSGhkQkqRGBoQkqZEBIUlqtGAeAnbSSSfV8uXL2y5DkuaV22+//aGq\nWtK0bsEExPLlyxkdHT36hpKkg5J873Dr7GKSJDUyICRJjQwISVIjA0KS1MiAkCQ1WjBXMT1Rm7aM\nsWHzdnbvHWfp4mHWrVnJ2tXLjr6jJC1wAx0Qm7aMsX7jVsb3HQBgbO846zd2JiMzJCQNur52MSU5\nrzu5+o4kVzWsPzvJHUn2J7loyro/SfKd7ust/ahvw+btB8Nhwvi+A2zYvL0fHydJ80rfAiLJEHAt\n8EZgFXBpklVTNrufzjPwb5iy7/l0nsf/CjoTyl+Z5MTZrnH33vEZtUvSIOnnGcRZwI6quq87WcmN\nwIW9G3QnXr+bQ2fGWgV8vTuJ/I+Bu4HzZrvApYuHZ9QuSYOknwGxjMmTwe9i8sTpR3IXnSkjn57k\nJOD1dObVnSTJ5UlGk4zu2bNnxgWuW7OS4UVDk9qGFw2xbs3KGR9LkhaaOTlIXVW3JjmTzjy6e4Bv\nAQcatruezly/jIyMzHhqvImBaK9ikqRD9TMgxpj8V/8p3bZpqar3A+8HSHID8H9mtbqutauXGQiS\n1KCfXUy3AacnWZHkeOAS4Obp7JhkKMlzuu/PAM4Abu1bpZKkQ/TtDKKq9ie5AtgMDAEfr6ptSa4G\nRqvq5m430ueAZwNvSvK+qnoJsAj4RhKAR4C3VdX+ftUqSTpUX8cgquoW4JYpbb/f8/42Ol1PU/f7\nKZ0rmSRJLfFZTJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEB\nIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIaGRCSpEZ9nVFO07NpyxgbNm9n995xli4eZt2alaxd\nvaztsiQNOAOiZZu2jLF+41bG9x0AYGzvOOs3bgUwJCS1yi6mlm3YvP1gOEwY33eADZu3t1SRJHUY\nEC3bvXd8Ru2SdKwYEC1bunh4Ru2SdKwYEC1bt2Ylw4uGJrUNLxpi3ZqVLVUkSR0OUrdsYiDaq5gk\nzTUGxBywdvUyA0HSnGMXkySpkQEhSWrU14BIcl6S7Ul2JLmqYf3ZSe5Isj/JRVPW/WmSbUnuTXJN\nkvSzVknSZH0LiCRDwLXAG4FVwKVJVk3Z7H7gMuCGKfu+BngtcAbwUuBM4Jf7Vask6VD9HKQ+C9hR\nVfcBJLkRuBC4Z2KDqtrZXffYlH0LeBpwPBBgEfC3faxVkjRFP7uYlgEP9Czv6rYdVVV9C/gq8GD3\ntbmq7p26XZLLk4wmGd2zZ88slCxJmjAnB6mTvBB4MXAKnVA5J8nrpm5XVddX1UhVjSxZsuRYlylJ\nC1o/A2IMOLVn+ZRu23T8Y+BvqurRqnoU+CLw6lmuT5J0BP0MiNuA05OsSHI8cAlw8zT3vR/45STH\nJVlEZ4D6kC4mSVL/9C0gqmo/cAWwmc4v95uqaluSq5NcAJDkzCS7gIuB65Js6+7+WeC7wFbgLuCu\nqvp8v2qVJB0qVdV2DbNiZGSkRkdH2y5DkuaVJLdX1UjTujk5SC1Jap8BIUlqZEBIkhr5uG8dtGnL\nmPNSSDrIgBDQCYf1G7cyvu8AAGN7x1m/cSuAISENKLuYBHRmtJsIhwnj+w6wYfP2liqS1DYDQgDs\n3js+o3ZJC58BIQCWLh6eUbukhc+AEADr1qxkeNHQpLbhRUOsW7OypYoktc1BagGPD0R7FZOkCQaE\nDlq7epmBIOkgu5gkSY0MCElSIwNCktTIgJAkNTIgJEmNDAhJUiMDQpLUyICQJDUyICRJjQwISVIj\nA0KS1MiAkCQ1MiAkSY0MCElSIwNCktTIgJAkNeprQCQ5L8n2JDuSXNWw/uwkdyTZn+SinvbXJ7mz\n5/XTJGv7WaskabK+zSiXZAi4FngDsAu4LcnNVXVPz2b3A5cBV/buW1VfBV7RPc7fA3YAt/arVknS\nofo55ehZwI6qug8gyY3AhcDBgKiqnd11jx3hOBcBX6yqn/SvVEnSVP3sYloGPNCzvKvbNlOXAJ9p\nWpHk8iSjSUb37NnzBA4tSTqcOT1IneS5wMuAzU3rq+r6qhqpqpElS5Yc2+IkaYHrZ0CMAaf2LJ/S\nbZuJNwOfq6p9s1aVJGla+hkQtwGnJ1mR5Hg6XUU3z/AYl3KY7iVJUn/1LSCqaj9wBZ3uoXuBm6pq\nW5Krk1wAkOTMJLuAi4Hrkmyb2D/JcjpnIF/rV42SpMNLVbVdw6wYGRmp0dHRtsuQpHklye1VNdK0\nbk4PUkuS2mNASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRtMK\niCQnJHlK9/2LklyQZFF/S5MktWm6ZxBfB56WZBmduaHfDvxVv4qSJLVvugGR7pzQ/wT4i6q6GHhJ\n/8qSJLVt2gGR5NXAW4EvdNuG+lOSJGkuOG6a270bWE9n+s9tSZ4PfLV/ZUnt27RljA2bt7N77zhL\nFw+zbs1K1q5e1nZZ0jEzrYCoqq/RndmtO1j9UFX9Tj8Lk9q0acsY6zduZXzfAQDG9o6zfuNWAENC\nA2O6VzHdkOTEJCcA3wHuSbKuv6VJ7dmwefvBcJgwvu8AGzZvb6ki6dib7hjEqqp6BFgLfBFYQedK\nJmlB2r13fEbt0kI03YBY1L3vYS1wc1XtAxbGZNZSg6WLh2fULi1E0w2I64CdwAnA15M8D3ikX0VJ\nbVu3ZiXDiyZfqDe8aIh1a1a2VJF07E13kPoa4Jqepu8leX1/SpLaNzEQ7VVMGmTTCogkzwL+HXB2\nt+lrwNXAw32qS2rd2tXLDAQNtOneB/FxOlcvvbm7/HbgL+ncWS2pj7wfQ22ZbkC8oKp+rWf5fUnu\n7EdBkh7n/Rhq03QHqceT/NLEQpLXAl7vJ/WZ92OoTdM9g/hN4JPdsQiAHwK/3p+SJE3wfgy1aVpn\nEFV1V1W9HDgDOKOqVgPnHG2/JOcl2Z5kR5KrGtafneSOJPuTXDRl3WlJbk1yb5J7kiyf1k8kLSDe\nj6E2zWhGuap6pHtHNcC/OdK2SYaAa4E3AquAS5OsmrLZ/cBlwA0Nh/gksKGqXgycBfxgJrVKC4H3\nY6hN0+1iapKjrD8L2FFV9wEkuRG4ELhnYoOq2tld99ikA3eC5Liq+lJ3u0efRJ3SvOX9GGrTkwmI\noz1qYxnwQM/yLuCV0zz2i4C9STbSee7T/wCuqqpJo3VJLgcuBzjttNOmeWhpfvF+DLXliF1MSX6U\n5JGG14+ApX2s6zjgdcCVwJnA8+l0RU1SVddX1UhVjSxZsqSP5UjS4DniGURVPfNJHHsMOLVn+ZRu\n23TsAu7s6Z7aBLwK+NiTqEeSNAMzGqSeoduA05OsSHI8cAlw8wz2XZxk4rTgHHrGLiRJ/de3gKiq\n/cAVwGbgXuCm7nSlVye5ACDJmUl2ARcD1yXZ1t33AJ3upS8n2UpnQPwj/apVknSoVC2MaR1GRkZq\ndHS07TIkaV5JcntVjTSt62cXkyRpHjMgJEmNDAhJUiMDQpLUyICQJDV6Mo/akDRAnNlu8BgQko7K\nme0Gk11Mko7Kme0GkwEh6aic2W4wGRCSjsqZ7QaTASHpqJzZbjA5SC3pqJzZbjAZEJKmxZntBo9d\nTJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZ\nEJKkRgaEJKlRXwMiyXlJtifZkeSqhvVnJ7kjyf4kF01ZdyDJnd3Xzf2sU5J0qL7NB5FkCLgWeAOw\nC7gtyc1VdU/PZvcDlwFXNhxivKpe0a/6JElH1s8Jg84CdlTVfQBJbgQuBA4GRFXt7K57rI91SJKe\ngH4GxDLggZ7lXcArZ7D/05KMAvuBP66qTVM3SHI5cDnAaaed9iRKlaTp27RlbCCmX53LU44+r6rG\nkjwf+EqSrVX13d4Nqup64HqAkZGRaqNISYNl05Yx1m/cyvi+AwCM7R1n/catAAsuJPo5SD0GnNqz\nfEq3bVqqaqz73/uAvwZWz2ZxkvREbNi8/WA4TBjfd4ANm7e3VFH/9DMgbgNOT7IiyfHAJcC0rkZK\n8uwkT+2+Pwl4LT1jF5LUlt17x2fUPp/1LSCqaj9wBbAZuBe4qaq2Jbk6yQUASc5Msgu4GLguybbu\n7i8GRpPcBXyVzhiEASGpdUsXD8+ofT7r6xhEVd0C3DKl7fd73t9Gp+tp6n7fBF7Wz9ok6YlYt2bl\npDEIgOFFQ6xbs7LFqvpjLg9SS9KcMzEQPReuYur31VQGhCTN0NrVy1q/YulYXE3ls5gkaR46FldT\nGRCSNA8di6upDAhJmoeOxdVUBoQkzUPr1qxkeNHQpLbZvprKQWpJmoeOxdVUBoQkzVP9vprKLiZJ\nUiMDQpLUyICQJDVyDELSvDEoE/XMFQaEpHlhkCbqmSvsYpI0LwzSRD1zhQEhaV4YpIl65goDQtK8\nMEgT9cwVBoSkeeFYPFpCkzlILWlemEsT9QwKA0LSvDEXJuoZJHYxSZIaGRCSpEYGhCSpkQEhSWpk\nQEiSGhkQkqRGBoQkqZEBIUlq1NeASHJeku1JdiS5qmH92UnuSLI/yUUN609MsivJh/tZpyTpUH0L\niCRDwLXAG4FVwKVJVk3Z7H7gMuCGwxzm3wNf71eNkqTD6+cZxFnAjqq6r6p+DtwIXNi7QVXtrKq7\ngcem7pzkHwAnA7f2sUZJ0mH0MyCWAQ/0LO/qth1VkqcAHwCu7ENdkqRpmKuD1L8F3FJVu460UZLL\nk4wmGd2zZ88xKk2SBkM/n+Y6Bpzas3xKt206Xg28LslvAc8Ajk/yaFVNGuiuquuB6wFGRkbqyZcs\nSZrQz4C4DTg9yQo6wXAJ8E+ns2NVvXXifZLLgJGp4SBJ6q++dTFV1X7gCmAzcC9wU1VtS3J1kgsA\nkpyZZBdwMXBdkm39qkeSNDOpWhg9MyMjIzU6Otp2GZI0ryS5vapGmtbN1UFqSVLLDAhJUiMDQpLU\nyICQJDUyICRJjQwISVIjA0KS1Kifd1JLT8imLWNs2Lyd3XvHWbp4mHVrVrJ29bSe8yhpFhkQmlM2\nbRlj/catjO87AMDY3nHWb9wKYEhIx5hdTJpTNmzefjAcJozvO8CGzdtbqkgaXAaE5pTde8dn1C6p\nfwwIzSlLFw/PqF1S/xgQmlPWrVnJ8KKhSW3Di4ZYt2ZlSxVJg8tBas0pEwPRXsUktc+A0JyzdvUy\nA0GaA+xikiQ1MiAkSY0MCElSIwNCktTIgJAkNUpVtV3DrEiyB/jekzjEScBDs1TOfOd3MZnfx2R+\nH49bCN/F86pqSdOKBRMQT1aS0aoaabuOucDvYjK/j8n8Ph630L8Lu5gkSY0MCElSIwPicde3XcAc\n4ncxmd/HZH4fj1vQ34VjEJKkRp5BSJIaGRCSpEYDHxBJzkuyPcmOJFe1XU+bkpya5KtJ7kmyLcm7\n2q6pbUmGkmxJ8t/arqVtSRYn+WyS/53k3iSvbrumNiX5191/J99J8pkkT2u7ptk20AGRZAi4Fngj\nsAq4NMmqdqtq1X7gPVW1CngV8K8G/PsAeBdwb9tFzBH/EfjvVfX3gZczwN9LkmXA7wAjVfVSYAi4\npN2qZt9ABwRwFrCjqu6rqp8DNwIXtlxTa6rqwaq6o/v+R3R+AQzsxAxJTgHOBz7adi1tS/Is4Gzg\nYwBV9fOq2ttuVa07DhhOchzwdGB3y/XMukEPiGXAAz3LuxjgX4i9kiwHVgPfbreSVv0H4N8Cj7Vd\nyBywAtgD/GW3y+2jSU5ou6i2VNUY8GfA/cCDwMNVdWu7Vc2+QQ8INUjyDOC/Au+uqkfarqcNSX4V\n+EFV3d52LXPEccAvAv+pqlYDPwYGdswuybPp9DasAJYCJyR5W7tVzb5BD4gx4NSe5VO6bQMrySI6\n4fDpqtrYdj0tei1wQZKddLoez0nyqXZLatUuYFdVTZxRfpZOYAyqXwH+b1Xtqap9wEbgNS3XNOsG\nPSBuA05PsiLJ8XQGmW5uuabWJAmdPuZ7q+rP266nTVW1vqpOqarldP6/+EpVLbi/EKerqr4PPJBk\nZbfpXOCeFktq2/3Aq5I8vfvv5lwW4KD9cW0X0Kaq2p/kCmAznasQPl5V21ouq02vBd4ObE1yZ7ft\n96rqlhZr0tzx28Cnu39M3Qf8s5braU1VfTvJZ4E76Fz9t4UF+NgNH7UhSWo06F1MkqTDMCAkSY0M\nCElSIwNCktTIgJAkNTIgpBlIciDJnT2vWbubOMnyJN+ZreNJT9ZA3wchPQHjVfWKtouQjgXPIKRZ\nkGRnkj9NsjXJ/0rywm778iRfSXJ3ki8nOa3bfnKSzyW5q/uaeEzDUJKPdOcZuDXJcGs/lAaeASHN\nzPCULqa39Kx7uKpeBnyYzpNgAT4EfKKqzgA+DVzTbb8G+FpVvZzOM40m7uA/Hbi2ql4C7AV+rc8/\nj3RY3kktzUCSR6vqGQ3tO4Fzquq+7gMPv19Vz0nyEPDcqtrXbX+wqk5Ksgc4pap+1nOM5cCXqur0\n7vLvAouq6g/6/5NJh/IMQpo9dZj3M/GznvcHcJxQLTIgpNnzlp7/fqv7/ps8PhXlW4FvdN9/GXgn\nHJz3+lnHqkhpuvzrRJqZ4Z4n3UJnjuaJS12fneRuOmcBl3bbfpvOLGzr6MzINvEE1HcB1yf553TO\nFN5JZ2Yyac5wDEKaBd0xiJGqeqjtWqTZYheTJKmRZxCSpEaeQUiSGhkQkqRGBoQkqZEBIUlqZEBI\nkhr9f48hkeV1UbroAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAXDElEQVR4nO3df5BdZ33f8fcHWYbF/BCNFQ+SHaSAURFgEF07gIOZ2KGyS7BVasAOgbrT1oTUCbSgxsofKbhJoChAanA6NoSEDBiXUqExxVRmMAGmBOq1ZSxkd2eEK2ytTJDTLObHBkvyt3/cu/bV6ki6i/buWe19v2bu6J7n/Lhf3ZH2s+d5zjlPqgpJkmZ6QtsFSJIWJgNCktTIgJAkNTIgJEmNDAhJUiMDQpLUyICQTnBJfi/JR9uuQ4uPAaFFIcnuJL/as3xZkr9L8sqW6rk6yVcb2k9N8kiSF8zVZ1XVH1XVv5qr40nTDAgtOkn+OXAd8Oqq+sos9z1pjsr4BPDyJKtntF8G7Kiqb7dQkzQrBoQWlSRvAd4PrK+qr3fbnp7kz5I8mGQiyR8kWdJdd0WS/5Xkg0n+FnhXkmcnuS3J3yZ5KMknkyzr+Yzf7R7nh0nGk1wws46q2gPcBrxpxqo3A3/ZPc6vJbkryWSSryc5q+czdnc/527gx0lOOtLnJnlXkk/07Htxkp3d4/5VkufNOO47k9yd5AdJ/muSJx3v967FyYDQYvJW4Brggqoa62n/C+AA8BxgHfCPgd4umV8C7gNOA/4QCPAeYAXwPOAM4F0ASdYAVwFnV9VTgfXA7iPU83F6AqK774uBG5OsAz4GvAX4OeB64OYkT+zZ/3Lg1cAy4Nn9fG6S5wKfAt4OLAduAT6X5OSezV4PXAisBs4CrjhC/RpyBoQWk1cB3wB2TDckOQ34J8Dbq+rHVfV94IN0unqm7a2qD1XVgaqaqqpdVfXFqvppVe0DPgBMj2UcBJ4IrE2ytKp2V9V3jlDPZ4HTkry8u/xm4AvdY14JXF9V36yqg1X1ceCnwEt79r+2qh6oqqlZfO4bgM93698P/DEwAry8Z5trq2pvVf0/4HN0Qks6jAGhxeStwHOBjyZJt+1ZwFLgwW6XyySd39Z/vme/B3oPkuS0JDd1u3MepjOecCpAVe2i89v5u4Dvd7db0VRMVf0E+G/Am7v1vJFu91K3rndM19St6ww6Zy2H1TWLz10BfLdnv0e7x1nZs833et7/BHhKU/2SAaHF5G+AC4BXAH/abXuAzm/mp1bVsu7raVX1/J79Zj7S+I+6bS+sqqcBv0Gn26mzcdWNVfXLdH7IF/CfjlLTx+l06bwKeCqd39in6/rDnpqWVdWTq+pTR6qrz8/d210PQDeYzgAmjlKj1MiA0KJSVXvphMSFST5YVQ8CtwLvT/K0JE/oDkIf7fLXpwI/An6QZCWwcXpFkjVJzu+OFfw9MAU8epRjfQ2YBG4AbqqqR7rtHwF+M8kvpeOUJK9O8tSmg8zicz8NvDrJBUmWAu+gE5BfP0qNUiMDQotOVd0PnA9cmuQ9dPr+TwbuAf4O+AzwzKMc4t3AS4AfAJ8HtvSseyLwXuAhOl01Pw9sOkotRadb6Vk83r1EdxD9XwMf7ta0i6MPFvf1uVU1TueM50PdbV8DvKYnmKS+xQmDJElNPIOQJDUyICRJjQwISVIjA0KS1GjRPATs1FNPrVWrVrVdhiSdUO64446Hqmp507pFExCrVq1ibGzs2BtKkh6T5LtHWmcXkySpkQEhSWpkQEiSGhkQkqRGBoQkqdGiuYrpZ7V1+wSbt42zd3KKFctG2Lh+DRvWrTz2jpK0yA11QGzdPsGmLTuY2n8QgInJKTZt6UxGZkhIGnZD3cW0edv4Y+EwbWr/QTZvG2+pIklaOIY6IPZOTs2qXZKGyVAHxIplI7Nql6RhMtQBsXH9GkaWLjmkbWTpEjauX9NSRZK0cAz1IPX0QLRXMUnS4YY6IKATEgaCJB1uqLuYJElHZkBIkhoZEJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKnRQAMiyYVJxpPsSnJ1w/rzktyZ5ECSS2ese1+SnUnuTXJtkgyyVknSoQYWEEmWANcBFwFrgcuTrJ2x2f3AFcCNM/Z9OXAucBbwAuBs4JWDqlWSdLhBTjl6DrCrqu4DSHITcAlwz/QGVbW7u+7RGfsW8CTgZCDAUuBvBlirJGmGQXYxrQQe6Fne0207pqr6a+DLwIPd17aqunfmdkmuTDKWZGzfvn1zULIkadqCHKRO8hzgecDpdELl/CSvmLldVd1QVaNVNbp8+fL5LlOSFrVBdjFNAGf0LJ/ebevHPwW+UVU/AkjyBeBlwNfmtMIFYuv2CTZvG2fv5BQrlo2wcf0aNqzr62RLkgZmkGcQtwNnJlmd5GTgMuDmPve9H3hlkpOSLKUzQH1YF9NisHX7BJu27GBicooCJian2LRlB1u395ulkjQYAwuIqjoAXAVso/PD/dNVtTPJNUkuBkhydpI9wOuA65Ps7O7+GeA7wA7gW8C3qupzg6q1TZu3jTO1/+AhbVP7D7J523hLFUlSxyC7mKiqW4BbZrT9fs/72+l0Pc3c7yDwlkHWtlDsnZyaVbskzZcFOUg9TFYsG5lVuyTNFwOiZRvXr2Fk6ZJD2kaWLmHj+jUtVSRJHQPtYtKxTV+t5FVMkhYaA2IB2LBupYEgacGxi0mS1MiAkCQ1MiAkSY0MCElSIwNCktTIgJAkNTIgJEmNDAhJUiMDQpLUyICQJDUyICRJjQwISVIjA0KS1MiAkCQ18nHfeszW7RPOSyHpMQaEgE44bNqyg6n9BwGYmJxi05YdAIaENKTsYhLQmdFuOhymTe0/yOZt4y1VJKltBoQA2Ds5Nat2SYufASEAViwbmVW7pMXPgBAAG9evYWTpkkPaRpYuYeP6NS1VJKltDlILeHwg2quYJE0zIPSYDetWGgiSHmMXkySpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqNNCASHJhkvEku5Jc3bD+vCR3JjmQ5NKe9l9JclfP6++TbBhkrZKkQw3sPogkS4DrgFcBe4Dbk9xcVff0bHY/cAXwzt59q+rLwIu7x/kHwC7g1kHVKkk63CBvlDsH2FVV9wEkuQm4BHgsIKpqd3fdo0c5zqXAF6rqJ4MrVZI00yC7mFYCD/Qs7+m2zdZlwKeaViS5MslYkrF9+/b9DIeWJB3Jgh6kTvJM4IXAtqb1VXVDVY1W1ejy5cvntzhJWuQGGRATwBk9y6d322bj9cBnq2r/nFUlSerLIAPiduDMJKuTnEynq+jmWR7jco7QvSRJGqyBBURVHQCuotM9dC/w6arameSaJBcDJDk7yR7gdcD1SXZO759kFZ0zkK8MqkZJ0pGlqtquYU6Mjo7W2NhY22VI0gklyR1VNdq0bkEPUkuS2mNASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqVFfAZHklCRP6L5/bpKLkywdbGmSpDb1ewbxVeBJSVYCtwJvAv5iUEVJktrXb0Ckqn4CvBb406p6HfD8wZUlSWpb3wGR5GXAG4HPd9uWDKYkSdJC0G9AvB3YBHy2qnYm+UXgy4MrS5LUtpP62aiqvgJ8BaA7WP1QVf3OIAuTJLWr36uYbkzytCSnAN8G7kmycbClSZLa1G8X09qqehjYAHwBWE3nSiZJ0iLVb0As7d73sAG4uar2AzW4siRJbes3IK4HdgOnAF9N8izg4UEVJUlqX7+D1NcC1/Y0fTfJrwymJEnSQtDvIPXTk3wgyVj39X46ZxPH2u/CJONJdiW5umH9eUnuTHIgyaUz1v1CkluT3JvkniSr+vw7SXNi6/YJzn3vbay++vOc+97b2Lp9ou2SpHnVbxfTx4AfAq/vvh4G/vxoOyRZAlwHXASsBS5PsnbGZvcDVwA3NhziL4HNVfU84Bzg+33WKh23rdsn2LRlBxOTUxQwMTnFpi07DAkNlX4D4tlV9R+q6r7u693ALx5jn3OAXd3tHwFuAi7p3aCqdlfV3cCjve3dIDmpqr7Y3e5H3Ud9SPNi87ZxpvYfPKRtav9BNm8bb6kiaf71GxBTSX55eiHJucDUMfZZCTzQs7yn29aP5wKTSbYk2Z5kc/eM5BBJrpzu9tq3b1+fh5aObe9k8z/vI7VLi1G/AfGbwHVJdifZDXwYeMvAquoMnr8CeCdwNp2zlStmblRVN1TVaFWNLl++fIDlaNisWDYyq3ZpMeorIKrqW1X1IuAs4KyqWgecf4zdJoAzepZP77b1Yw9wV7d76gCwFXhJn/tKx23j+jWMLD30pHVk6RI2rl/TUkXS/JvVjHJV9XD3jmqAf3eMzW8HzkyyOsnJwGXAzX1+1O3AsiTTpwXnA/fMplbpeGxYt5L3vPaFrFw2QoCVy0Z4z2tfyIZ1/faSSie+vu6DOIIcbWVVHUhyFbCNzqPBP9Z9Euw1wFhV3ZzkbOCzwDOA1yR5d1U9v6oOJnkn8KUkAe4APnIctUqztmHdSgNBQ+14AuKYj9qoqluAW2a0/X7P+9vpdD017ftFOl1akqQWHDUgkvyQ5iAI4GidNA+2bp9g87Zx9k5OsWLZCBvXr/HMRvPiqAFRVU+dr0IkHW76hr3pezKmb9gDDAkN3KwGqSXNL2/YU5sMCGkB84Y9tcmAkBYwb9hTmwwIaQHzhj216Xguc5U0YNMD0V7FpDYYENIC5w17aotdTJKkRgaEJKmRASFJamRASJIaOUgtqS8+E2r4GBCSjslnQg0nu5gkHZPPhBpOBoSkY/KZUMPJgJB0TD4TajgZEJKOyWdCDScHqSUdk8+EGk4GhKS++Eyo4WMXkySpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmRASFJamRASJIa+SwmSZqlYZl+daBnEEkuTDKeZFeSqxvWn5fkziQHklw6Y93BJHd1XzcPsk5J6tf09KsTk1MUj0+/unX7RNulzbmBBUSSJcB1wEXAWuDyJGtnbHY/cAVwY8Mhpqrqxd3XxYOqU5JmY5imXx1kF9M5wK6qug8gyU3AJcA90xtU1e7uukcHWIckzZlhmn51kF1MK4EHepb3dNv69aQkY0m+kWRD0wZJruxuM7Zv377jqVWS+jJM068u5KuYnlVVo8CvA3+S5NkzN6iqG6pqtKpGly9fPv8VSho6wzT96iC7mCaAM3qWT++29aWqJrp/3pfkr4B1wHfmskBJmq1hmn51kAFxO3BmktV0guEyOmcDx5TkGcBPquqnSU4FzgXeN7BKJWkWhmX61YF1MVXVAeAqYBtwL/DpqtqZ5JokFwMkOTvJHuB1wPVJdnZ3fx4wluRbwJeB91bVPYd/iiRpUFJVbdcwJ0ZHR2tsbKztMiTphJLkju5472EW8iC1JKlFBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKmR80FI0glq0PNSGBCSdAKanpdi+tHj0/NSAHMWEnYxSdIJaD7mpfAMQtIJY1im+uzHfMxL4RmEpBPCME312Y/5mJfCgJB0QhimqT77MR/zUtjFJOmEMExTffZjPualMCAknRBWLBthoiEMFuNUn/0a9LwUdjFJOiEM01SfC4VnEJJOCMM01edCYUBIOmEMy1SfC4VdTJKkRgaEJKmRASFJamRASJIaGRCSpEYGhCSpkQEhSWpkQEiSGhkQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRgaEJKnRQAMiyYVJxpPsSnJ1w/rzktyZ5ECSSxvWPy3JniQfHmSdkqTDDSwgkiwBrgMuAtYClydZO2Oz+4ErgBuPcJj/CHx1UDVKko5skGcQ5wC7quq+qnoEuAm4pHeDqtpdVXcDj87cOck/Ak4Dbh1gjZKkIxhkQKwEHuhZ3tNtO6YkTwDeD7zzGNtdmWQsydi+fft+5kIlSYdbqIPUvwXcUlV7jrZRVd1QVaNVNbp8+fJ5Kk2ShsMg56SeAM7oWT6929aPlwGvSPJbwFOAk5P8qKoOG+iWJA3GIAPiduDMJKvpBMNlwK/3s2NVvXH6fZIrgFHDQZLm18C6mKrqAHAVsA24F/h0Ve1Mck2SiwGSnJ1kD/A64PokOwdVjyRpdlJVbdcwJ0ZHR2tsbKztMiTphJLkjqoabVq3UAepJUktMyAkSY0MCElSo0FexST9TLZun2DztnH2Tk6xYtkIG9evYcO6vu6xlDSHDAgtKFu3T7Bpyw6m9h8EYGJyik1bdgAYEtI8s4tJC8rmbeOPhcO0qf0H2bxtvKWKpOFlQGhB2Ts5Nat2SYNjQGhBWbFsZFbtkgbHgNCCsnH9GkaWLjmkbWTpEjauX9NSRdLwcpBaC8r0QLRXMUntMyC04GxYt9JAkBYAu5gkSY0MCElSIwNCktTIgJAkNTIgJEmNFs2EQUn2Ad89jkOcCjw0R+Wc6PwuDuX3cSi/j8cthu/iWVW1vGnFogmI45Vk7EizKg0bv4tD+X0cyu/jcYv9u7CLSZLUyICQJDUyIB53Q9sFLCB+F4fy+ziU38fjFvV34RiEJKmRZxCSpEYGhCSp0dAHRJILk4wn2ZXk6rbraVOSM5J8Ock9SXYmeVvbNbUtyZIk25P8j7ZraVuSZUk+k+T/JLk3ycvarqlNSf5t9//Jt5N8KsmT2q5prg11QCRZAlwHXASsBS5Psrbdqlp1AHhHVa0FXgr8myH/PgDeBtzbdhELxH8G/mdV/UPgRQzx95JkJfA7wGhVvQBYAlzWblVzb6gDAjgH2FVV91XVI8BNwCUt19Saqnqwqu7svv8hnR8AQzsxQ5LTgVcDH227lrYleTpwHvBnAFX1SFVNtltV604CRpKcBDwZ2NtyPXNu2ANiJfBAz/IehvgHYq8kq4B1wDfbraRVfwL8e+DRtgtZAFYD+4A/73a5fTTJKW0X1ZaqmgD+GLgfeBD4QVXd2m5Vc2/YA0INkjwF+O/A26vq4bbraUOSXwO+X1V3tF3LAnES8BLgv1TVOuDHwNCO2SV5Bp3ehtXACuCUJL/RblVzb9gDYgI4o2f59G7b0EqylE44fLKqtrRdT4vOBS5OsptO1+P5ST7Rbkmt2gPsqarpM8rP0AmMYfWrwP+tqn1VtR/YAry85Zrm3LAHxO3AmUlWJzmZziDTzS3X1JokodPHfG9VfaDtetpUVZuq6vSqWkXn38VtVbXofkPsV1V9D3ggyZpu0wXAPS2W1Lb7gZcmeXL3/80FLMJB+5PaLqBNVXUgyVXANjpXIXysqna2XFabzgXeBOxIcle37feq6pYWa9LC8dvAJ7u/TN0H/IuW62lNVX0zyWeAO+lc/bedRfjYDR+1IUlqNOxdTJKkIzAgJEmNDAhJUiMDQpLUyICQJDUyIKRZSHIwyV09rzm7mzjJqiTfnqvjScdrqO+DkH4GU1X14raLkOaDZxDSHEiyO8n7kuxI8r+TPKfbvirJbUnuTvKlJL/QbT8tyWeTfKv7mn5Mw5IkH+nOM3BrkpHW/lIaegaENDsjM7qY3tCz7gdV9ULgw3SeBAvwIeDjVXUW8Eng2m77tcBXqupFdJ5pNH0H/5nAdVX1fGAS+GcD/vtIR+Sd1NIsJPlRVT2loX03cH5V3dd94OH3qurnkjwEPLOq9nfbH6yqU5PsA06vqp/2HGMV8MWqOrO7/LvA0qr6g8H/zaTDeQYhzZ06wvvZ+GnP+4M4TqgWGRDS3HlDz59/3X3/dR6fivKNwNe6778EvBUem/f66fNVpNQvfzuRZmek50m30JmjefpS12ckuZvOWcDl3bbfpjML20Y6M7JNPwH1bcANSf4lnTOFt9KZmUxaMByDkOZAdwxitKoearsWaa7YxSRJauQZhCSpkWcQkqRGBoQkqZEBIUlqZEBIkhoZEJKkRv8fP2pKqOg6bHUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -720,7 +734,7 @@ "scrolled": true, "id": "f3prNsgGcj14", "colab_type": "code", - "outputId": "e44e662d-bb34-432d-f91a-47f01feb21f6", + "outputId": "330767ae-04b3-4fcd-fc10-2100391f3475", "colab": { "base_uri": "https://localhost:8080/", "height": 102 @@ -757,10 +771,10 @@ "output_type": "stream", "text": [ "Evaluating model\n", - "computed_metrics: [0.8543572433764939]\n", - "Training ROC-AUC Score: 0.854357\n", - "computed_metrics: [0.7828069015052957]\n", - "Valid ROC-AUC Score: 0.782807\n" + "computed_metrics: [0.8543051173844746]\n", + "Training ROC-AUC Score: 0.854305\n", + "computed_metrics: [0.7688187132522871]\n", + "Valid ROC-AUC Score: 0.768819\n" ], "name": "stdout" } diff --git a/examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb b/examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb index fabf2884ef..021dc41d23 100644 --- a/examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb +++ b/examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb @@ -53,20 +53,75 @@ "metadata": { "id": "Fc_4bSWJg37l", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "93f0664e-df45-4641-fecd-4e2f1aa8426e" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 65441 0 --:--:-- --:--:-- --:--:-- 65441\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.52 s, sys: 535 ms, total: 3.05 s\n", + "Wall time: 4min 19s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -83,10 +138,10 @@ "metadata": { "id": "FGi-ZEfSg37q", "colab_type": "code", - "outputId": "e75ebc2e-5cf6-4d6b-d2f3-b944103fb5bd", + "outputId": "ed7058d7-9de8-4122-c8dc-b11d87c162ea", "colab": { "base_uri": "https://localhost:8080/", - "height": 321 + "height": 85 } }, "source": [ @@ -111,40 +166,6 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n", "Columns of dataset: ['MUV-466' 'MUV-548' 'MUV-600' 'MUV-644' 'MUV-652' 'MUV-689' 'MUV-692'\n", " 'MUV-712' 'MUV-713' 'MUV-733' 'MUV-737' 'MUV-810' 'MUV-832' 'MUV-846'\n", " 'MUV-852' 'MUV-858' 'MUV-859' 'mol_id' 'smiles']\n", @@ -169,7 +190,7 @@ "metadata": { "id": "KobfUjlWg37v", "colab_type": "code", - "outputId": "1ba6dcfc-473d-4114-e900-111f843ae2c4", + "outputId": "e472a388-bf6f-441d-fb29-fa580d06cf9b", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 @@ -206,7 +227,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAIQ0lEQVR4nO3d2ZKjRhRFUXD4/38Z\nP9CWZc0SZJ6bsFb0Q0cPVSiTLUZR87IsE5DzV3oB4OxECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwv5OLwC8Ms/z+ptl\nWbJL0o4IqWstcM3vUuN0uCBFSFHzPC/L8nBLeLAgRUhFa4HP/vZgQYqQcl4XeOMAQYqQ4xg0SBFS\ny1ebwRceBlmzRtcJKWSvAm8sy1Izv9XYEc7/Si8IO3hY4PUJ0o12/FL7Gnh39HrOBjoA4KFG28Ah\njBrhzZwNekTO6swFToNGeKqLSIfXs8B1j7TamjBehGe7iHRsBZPob7AI7+fs+vbC1wRZjQJXI43C\niznbElXxi0hH9XmBu7daLf5htoTtjgPvb9KHnsaIsMNxYM1D9qMy1NcGiHDLhDkOLCheYLU33OoR\n7jhYA91MeGCl1v4iSkfYbsKsBxEKfKjuvaP9J6zsvYUcW9EIvWUeUp23uTpLMtWMUIFcKxVMC+Ui\nzBZ4+PmmoFoR2gbSTZ033EIRKvAM6qz6dVSJsE6BpdYSjw44g7rXCetkmeLRAa0VuXWmSoRFhqOO\nAz86wFzfqBLhvTNP1W8fGZnGbJK6EQZl+//5IyPT+BvJ/iq81xeKsMJwxG0cgSPttZ5HoQiZ5z1r\nqfypkTpvuBXOPFe5RPFQ8GpB/289z1O7dbL4I6hT1jeC+EWpWhHGhyOlaYE8VGRTPFWL8Jy6FXja\n97h7dQqc6kdovTmqr2Z239WgVIFTwQiz1d2cUeywJHZEO2v9Y2d+UC7CoIfT03RuFNhZtW3gaoAI\ne22RHjzb+3LqrMWN1JECS+3ed16YmgVOrhOunhW4/r7RFfCS68NhvS0weOmyYoSdh+N1gTfugryE\n2m4B2arsNnBVMcKevirwxv+DvPmrPRauldILt7viBU6jRNho27jrk4VvvvLjP69gWQqdEGq911O/\nwKnsiZkOh+zPzoXuMmfL8ucXn2j09IBvZzN11mqMLWEf7d41r7c8dbZCFcxXP15y389GDrENXA0T\n4b77LVsOBX/9joXaK7JHehnzy9Wgm7/d/pWHUDfCdkcL/Qucyqz3dXxyzeDm3394fWjLbEYuVNSN\n8N4uQxMpsKDsm8JvY/7Jcz1GnM2RItwuW+C63rPLmD/bdx2uwKn+z6wf+jjw6hs5MfPHszH/ZC46\nzlfXLopeori2y/nr+DaQacx9xQ5K747u9fRbx4EVGPNn6ka449NvzX1c5fun44pG+NvTbz+cwuxk\nn/BaxXB1dX5HqBjhV6//2yCHWyFGZ8DfKhfhxiut11/n/s+tEJ0NOuCdF7tWhLt+rOFBkCOuEO08\nvHCyDtUu4/Tb/dPxOeq/DIUuUbR78ff3JWbVuWp/vxjrhz/m+c+vDV95/9lMfbamtSoRdrl7s9Dj\nVYp49nZw+SjWpcavRq7p+2m7STz14y0q7IR099+jMSq7npZ5nqbp/Y596/un63/C+1slIiTo833j\nZZkubxzZ+6d37zC7GchHeMrNYPIkxP1Vyh+OUV/fP93t4KLRB2s6Cx8Tdn79DguvC7we+O2TsNfZ\nr8/naJfZjBc4ZSOs8PpP5Xh36mzssMgaGIuwyOsP6rxZ7llgz5d2gL2bTITBAg8wZz9oXWB2VJd/\nf1TBV/+rzmYgEGGdF38Sw+2F/pD0ekT6+f8qtRL2jrDUi4/rcgvIYAVe/LBx+3A8q62EXS9RVHvx\nRVw/e3P3r5zd7d9+L/4Pnx19/X0LroTJn7sSVGphVlseHfDsC3Z+jTffcfcF+HyItjzJpr9+W8KC\nL76UjZ9UvlFhbdv9238+RA+3hxXG5KH8HTPcG/TRAT2/5dshuumwbIGTCOsb+NEBvZ7k8WKI1tEo\nNCaPlF64popPzFtFHx1wU1305OwoH+a2JRyVRwe8NcpoiPAI6q5tvfZIh1blk/X9nfP+tebqPLpj\nHOeNEIoQIY3ZNr4jQvamui+dOkKHhZ04MfPSqSOkFdV94+wR1j25z2mcPUKIEyGEiRDCRAhh7h2l\nsctFIOfAnhAhLT38GYj8n91RCBMhhIkQwhwT0tL1zdwOCJ8QIY1p7x27oxAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYT9A0tpBxC6f9BgAAAAAElF\nTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVgT1/oH8DeEIJugbNaNVnCDisXSuoGoiGIV0NoHtVq011asbS9uVSzWH1ptpS5Vr14V14qKXmrVgmvBhQIuFYtF7MWtiooFXAAFakKS8/vj9MYYQphMZnKivp+nf/QZJzMnwDeZOXPOeySEEEAIsWPFugEIvegwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhC9Dx4/Pjx1atXp0yZsmPHjlu3brFujnEkhBDWbUDIJCqVasSIEYcPH1YoFHRLy5Ytg4KCAgMDg4KCunXrZmVl0V82GEL0bFOr1dHR0SkpKQBgY2MzaNCg3NzciooKzQ5ubm6BgYF9+vQJCgoKCAiwtrZm11j9MIToGUYImTx5clJSkpOTU3V1NSGkrq5OKpX+8ccfOTk5ubm5GRkZ169f1+xvb2/frVs3+iUZHBzs7OzMsPEaGEL0DIuLi1u8eLGdnd2hQ4ciIyMfPnxYUVHRrFkz7X3u3LmTm5tLM/nrr79q/uClUmmnTp2CgoJCQ0P79evn7u7O4h0AYAjRs2v+/Pnz5s2TyWR79+4dOnToyy+/fPPmzRs3brz88ssNveThw4e//PJLZmZmTk7O2bNnNfeQAODl5UXvIQMDA1999VWzvIO/YQjRM2nVqlWxsbFSqXTHjh2jRo0CgK5du164cOH8+fOvvfYalyPU1NTk5+fTL8ns7OyqqirNP5m7X4cg9Kz57rvvJBKJRCLZsGGDZmNQUBAAZGVl8TigQqE4efLkkiVLIiIiXFxctAPi4uIyatQo4dquB4YQPWN++OEH2sO5bNky7e3h4eEAkJaWZvoprl27tnXr1piYGC8vLwDw9PQcPny46YdtiAWFsLy8fPPmzfv376+srGTdFmShjhw50qRJEwD46quvdP5p7NixAJCcnCzsGa9du0Z7ei5duiTskTUs5SHmd9995+3tHRsbGx4e3qxZM29v70mTJiUnJxcXF7NuGrIUubm5I0aMkMvlU6dOjY+P1/lX+rxB+9ZOEF5eXhEREQCwf/9+YY/8hEjhNkpKSgq99x08eHBQUBD9qNPw9vYeP378pk2bioqKWLcUMXPmzJmmTZsCwMcff6x3BxrLhQsXCn7qXbt2AUD//v0FPzLFPoRpaWkymQwAFi1aRLfU1dXl5eWtWLEiKipK5y7Zw8MjPDw8MTExOztbLpezbTkym4KCAldXVwB47733VCqV3n2++eYbAJg5c6bgZ6+srLSxsbG2tq6oqBD84IR5CI8ePWprawsA8fHxendQKpWFhYVJSUnR0dGenp7agXRwcAgMDIyLi8vIyKitrTVzy5HZXLlypWXLlgAwbNiwurq6hnZbt24dAEycOFGMNoSEhADArl27xDg4yxCePn3a8AVGfSUlJampqTExMb6+vhKJRBNIa2vrgICA2NjY1NTUe/fuidpsZE63bt165ZVXAGDAgAF//fWXgT137twJACNHjhSjGd9++y39Hhbj4MxCWFBQQC81o6OjG7rAMKy0tDQtLS0uLi4wMJBe0Gp4eXnFxMRs3br1+vXrQjccmU95eXnnzp0BoGfPno8ePTK886FDhwBg0KBBYrTk6tWrAODi4mLgq5g3NiG8fPnySy+9BADDhw/X+6727Nlz7Nixmpoajgesqqo6ePBgfHx8nz596PWtdiDHjx9/9+5dQd8BEl1lZWW3bt0A4LXXXnvw4EGj+588eRIAevToIVJ7OnXqBAA///yz4EdmEMKbN2/S0X2hoaGPHz/Wuw+9AtG+yOSeovr9OjY2NmPHjn348KFwbwKJq6amho6A6dixY2lpKZeXXLx4EQA6d+4sUpNmzJgBAHFxcYIf2dwhLCsro58ovXr1onNP6lMoFFOnTg0ICJBKpZovNIlE0qVLl8mTJ9Op0xxPp1Qq8/PzfXx8AGD37t3CvQ8kIrlcHhYWBgCenp7FxcUcX1VSUgIAL730kkitOn78OAD4+voKfmSzhrCiosLf3x8A/P39uVxgVFdXZ2dnJyYmhoaG2tnZaV9ktmzZMioqasWKFXl5eY3eUtLO6/fff1+g94FEpFAo6AC0Vq1aXbt2jfsLq6urAcDOzk6khimVSvqY5MqVK8Ie2XwhfPjw4ZtvvgkAnTp14niBoU37IpP+LDScnJxCQ0Ppw0O917f0QsXd3Z1fDxAyG5VKNXr0aABwc3O7ePGisS+n/XMN3eOY7t133wWAlStXCntYM4Wwtra2X79+dPhLSUmJiUdTqVQFBQWrV68ePXp069atdR4eDhgwoP5nVfv27QHg1KlTJp4aiUetVsfExNBP1bNnz/I4Av10Li8vF7xt1Pbt2wFg4MCBwh7WHCFUKBRDhw4FgNatW//xxx+CH58+PIyNjQ0ICKAzXO7fv6+zz5QpUwBgzpw5gp8dCWXatGkAYG9vn52dze8I3t7eYlwuaty/f9/a2lomkwk7x0D0ECqVSlMuMIxVVlZ25MiR+tszMjJoZ7fYDUD8yOXyadOmyWSygwcP8j7I66+/DgD8vkU5Cg4OFryTT9wQqtXqiRMnAoCzs3NeXp6o5zJMoVDQUfb4+N4yVVVV2djYSKVSUwY89e/fHwAyMzMFbJiOxYsXC97JJ+5UppkzZ27YsMHe3j49PT0gIEDUcxkmk8kGDhwIAAcPHmTYDNQQJyen4OBglUp15MgR3gehE/8En82kjfbcHjhwQKVSCXVMEUM4d+7cZcuW2djY7N69u0+fPuKdiCPNj491Q5B+pv+C6MVOZWWlYG2qx8fHp3379nfv3v3ll1+EOqZYIVy5cuXChQulUun27dvfeustkc5ilCFDhkil0qNHj9IHSsjS0Lmzhw4dUiqV/I4g0rxeHbSXUcBPc1FCuGXLlmnTpkkkkvXr10dFRYlxCh7c3d27d+8ul8uPHj3Kui1IDy8vLx8fn4qKitzcXH5HMMPlKPzvGzs9PV2oAwofwh07dnz44YcAsGbNmgkTJgh+fFPQH5+IdQqQaUwsJGGGy1EA6Nu3b7NmzQoKCm7cuCHIAQUOYVpa2vvvv69WqxctWvTRRx8Je3DT0d/xgQMHyLNQbfWZW13IdPRKz8QQiv1NKHgnn5AhPHbs2KhRo5RK5dy5c+Pi4gQ8slD8/PxeeeWVP//889y5c6zbYsiuXbsmTZrk6enZqlWrkSNHrly58ty5c2q1mnW7RBcYGOjq6lpUVHTlyhUeLzdPCEHwSyoBH3ckJSVZW1v/85//FPCYgvvkk08AICEhgXVDGpSenk7HQDo6Omr/ptzc3IYNG7Z06dLTp0+LMbXUQtDKhcuXL+fx2szMTBCzIpPGvXv3pFJpkyZNBJkfJ2QIO3ToAAA5OTkCHlNwdP51QEAA64bod+zYMTop+fPPPydaVWjbtWunHUh7e3taXyctLe05K9NKq1QMGDCAx2vPnj0LAK+//rrgraqvd+/eALB3717TDyVkCOnYP/rXY7EeP37ctGlTiUTCfVKi2RguuqMzRFYTSKlU6uvrGxMTk5qaKt7YZbOprKyUyWQymYxHaTN6Eevt7S1Gw3R8/fXXAPDhhx+afighQ0i7/v38/LQ3/vDDD8OGDcvNzRXwRCYaPnw4ACQlJbFuyFM0RXcMVPXTqKqqysjIoPV1bGxstL8kvby8oqOjk5KSCgsLzdNywdEJN//5z3+MfWF5eTkAuLq6itEqHQUFBQDQsmVLtVpt4qGEDKFCoaAParSnSsycORPEqQbJ28aNGwEgIiKCdUOeuHLliuGiOwZopj6Hh4frrHpp1NRny7F06VIAGDdunLEvlMvlAGBtbS1Gq+qj9wi//PKLiccReAD3yJEjAWDVqlWaLSdOnAAAHx8fYU9kirKyMisrKzs7O+6FpER18+ZNWlPHQNEdjhQKxalTp5YsWRIZGakz9dnFxSUiImLJkiWnT58WquUiKSoqol9oSqXS2NfSCgwNVU4RVlBQkJub27fffmvicQQOYXJyMgCEhYVptohXFMAUdI7//v37WTeElJWV0ap+vXr1arSqn7F0VheiunbteuLECWFPJLiOHTvy6+SjFxSmTxxv1Jo1a+iduc79Fw8Ch/D+/fv1u27HjBkDACtWrBD2XKaYP38+AHz00Udsm1FRUWFUVT9T3LhxY9u2be+9955EImnevLmFP+SYPn06AMyePdvYF9JPtN9//12MVmls27bNyspKIpHY2tqa3skn/HzCwMBAANizZ49mS0pKCr3WEvxcvP36668A0KpVK9Pvqnl7+JCEhr4FAL6+vuYsi+rr6wsAx48fN9sZeaCdfF26dDH2hT169ACAkydPitEqat++fXSBxG+++ebtt982vZNP+BAuWrQIACZMmKDZYkqns0jUanWbNm0AID8/n0kDamtJv37Ey+vCm28GmuHaSRsdzDRjxgxzntRYejv5uBg0aBAAHDp0SKSGZWZm0ge5dLzHpk2bTO/kEz6EhYWFAODh4aHdHde3b18ASE1NFfx0vE2aNAkAvvzyS/OfWqEg4eEEgLRuTUSoudOI7OxsAOjUqZO5T2wkuhK9dicfF7RrcOfOnWI06dSpU3QYk2ZYmCCdfMLPonj11Ve9vb3Ly8vz8vI0Gy1w+gKrOb4qFYwbB/v3g5sb/PQTPD0Sxhx69erl5uZ26dKly5cvm/vcxuD3NyPe8NHffvttyJAh1dXV48ePX7lyJd3o4eHxxhtv/PXXX8eOHeN9ZFHmEw4ZMgSe/vGJURTARAMGDLC3tz979mxpaanZTkoITJ4Mu3aBszMcPgy+vmY78xNSqXTw4MFgYZ+J9Q0ZMsTa2vrEiROPHj3i/iqRQnj58uWwsLCKiooRI0Zs3LhRe8SS6Z/mooSw/mdY586dO3TocP/+/TNnzohxRsPUavXu3bt1NtrZ2YWEhKjVanNWnZk1CzZsAHt7SE8HhjV3LPDCpD4XF5eePXvK5XJaKY8jMUJ48+bNgQMHlpWVDRo0KCUlhfbKaNAfZlpaGuE9P06Yi+WnyeVyOgbyxo0bmo2sRpZqSsrWLzoaHx9vZWXl6OhonmElc+cSAGJjQ0wo6icMsZeeFUpiYiI83cnXqFWrVoExK142qqSkhD5lDQwM1DsGQNPJ9+uvv/I7hVglD0eMGAEAa9eu1WzRO7LUDGbNmgUAdnZ2Ok+oCwsLXV1dtdecAQBXV9fIyMilS5eeOnVKoVAI2IwVKwgAkUqJhXROibr0rFD0dvIZRoeLjB07VpAG3L17lz7R6d69u4FZS3T+Ou9OPrFCuHnzZgAYOnSoZgvvTmdTzJs3DwBkMhmdTa9x9erVVq1aAUBYWFhRUVGj04VM/MbYvJlIJEQiIZs2mfZ+hCPq0rMCousXcB9ql5aWRi8RTT91VVXVG2+8Qb85DFdDpfVmunfvzu9EYoVQb9dt/ZGlovrXv/4FAFKpVOfz/vbt2zRvISEhOiswX79+PTk5OSYmxsfHR2c57ujoC9Onk337iLHP1b//nkilRCIha9aY/p4EI+rSswKKjY0FgC+++ILj/llZWQAQFBRk4nlrampose327dvfuXPH8M61tbX29vZWVlZ//vknj3OJWIG7Z8+emhtWqv7IUvF89913dF2KDRs2aG/XXGD06NHD8LRo7elCTZo08fJ6DEDof15eJDqaJCWRRmcLqdUkMpIAkG++Mf09CUy8pWcF9NNPPwGAv78/x/3Pnz9v+l2PXC6ndTrbtGnDsWQ7LV+0ideljoghXLBgAQDExMRotugdWSqGH374gXZhLVu2THt7ZWUlLQTu5+dXf9EYA6qrqzMy1AkJJCSE2NsTTRoBSNu2ZOxYsnYtKSwkdAxcfj6RSMilS4QQEhdHdu4k4jw6NtX8+av79ftywQKuq3AyobeTzwBaAc3T05P3GZVKJa3T6e7u/t///pfjq5KSkgDg7bff5nFGEUNIP5N0Zj3WH1kquCNHjjRp0gQAvvrqK+3tNTU1tBB4hw4d+F02UAoFOXWKLFlCIiOJq+tTgXR1JR9+SPLzSbt2hA4Oj4sj339v4hsSy/HjBICIsPKswPr06SORSPz8/L7++uuGlqDUqKioAAAnJyd+51Kr1R988AEAODs7G9XbWVJSIpFIHBwcdG5wuBB3QRi6Nv25c+c0W+qPLBVWTk6Og4MDAEydOlV7u+YCo23bthw/Uzm6do1s3UpiYki7dgSAjBpF8vPJ6NGkZ09y755Fh1Cp/PtDxJImmek6duyYTCazsnryQNva2jogICA2NjY1NbX+5YxKpaLzG/g9bTJleTa6JhSPYavihnDy5MkAMG/ePM0WHp3O3J05c0ZvjRbNBYaHhwf3CwwebtwgRUUkP5+MGkW2bCELFlh0CAkh775LAIjQK88KRvMLlUgkNjY2MTExfn5+2oGUSqXdunWLjY39/vvvNVc3Tk5OAMCjQ3v27NkAYGNjc/jwYR6t/b//+z8A+PTTT419obghpGN53njjDe2N7dq1c3R0FHyOb0M1WtRqNS0E3qxZM96PU41CQyiXk27dyLRpFh3CHTsIABF65VlhaP9CaSffjz/+SAh5+PBhRkZGQkJCaGgondCgQct5NG/eHIxfA++rr76iT7PS09P5NZguEcPjdlTcED5+/NjR0VEikdy+fVuzsaioSPBVxa9cudKyZUsAGDZsmHafu1qtpg9SmzZtanotEI5oCAkhCxaQ9u0tOoQPHhBrayKTEUsrm6jzC124cCEATJw4UWc3hUKRl5dH6+vQ7GmPuwgPD09MTMzOzm503MW///1vALCyskpJSeHdZrVaTRdvLygoMOqFoq/UGxkZCQA6zwmEdevWLU2NFp3bYjp3zs7OzpxzWDUhvHeP2NtbdAgJIcHBBMCyGln/F6q3k0+HUqksLCxMSkry8PCApzk6OoaGhiYkJGRkZNTvOElOTqa3kaYX4KOrsHz99ddGvUr0EK5fv55+nol0/PLy8oZqtHz55Zf0AoNVLZlp00j79kTkshWmWryYABBBV541SUNFd2gsuaz3TBe0WL9+PR0I5evrqzPuQrtfZ+/evfRp1uLFi01v/N69ewGgd+/eRr1K9BDeuXNHIpHY29vX1tYKfvDKysqGarTQgbxSqVSk+Z1chIYSAGLCBY45/P47ASDu7sT4ymbCM/AL/fjjj3U6+RpCC+knJydrtpSUlOzcufPTTz/t2rWrTr8OrdrK5bBcVFdX29raWllZlZWVcX+V6CEkhNABeAeFnjtQU1MTFBQEAB07diwtLdX+p61bt9ILjPXr1wt7UqMsX04AyJgxDJvASYcOBICIWZaFEwO/UEIInXGm08mnF41rQ6MjHz16pN2vM3369Pj4eAFa/z/0SdjWrVu5v8QcIZwxYwYAdOrUad26dYWFhULVViovL/f39/fy8tLu9SGE7Nmzh15gLF26VJAT8XbtGgEgzZsTyx6eSaZOJQBE0D9Fo9XW1vbv35/2LhYX6xnEo7eTT6/PP/8cABYuXMjlpIJfoNE+nqioKO4vET2E9+7d69ixI33aQzk5OWnukk3sJq2oqNB58v7TTz/R4TILFiwwreHC8PEhACQri3U7DMrMJACka1dmDVAoFHRqbOvWra9du9bQbsOGDaM3e4aPRmchsir6fvPmTYlE4uTkJJfLOb5E3BBWVVXRMrve3t6JiYljxoyh0x81HBwcQkJCEhISMjMzTa+anJubS4fLTJkyRZD2m27mTAJALGkRAD3kcuLkRKytiTE3MoJRqVSjR48GADc3t4sXLxrYc8OGDVw6+datW6f3eYbZdO3aFQAyMjI47i9iCGtra+nKHt7e3tpV/URaXSg/P5/OV/zHP/7BsJqojqwsAkAsaREA/bKz2fTiauoeODk5nT171vDOmk4+w6XN6OJqI0eOFLSlRpgzZ45R3wRihVChUNCe4tatWxuYxaszXUj7S9Ko1YUuXLhAi+2PHTvWolY+0YzPvHyZdVMs0meffQYA9vb2Wdwu2Wknn84UbR10CUrzzJjT6+TJk/QPmOP+ooRQqVTSopHu7u6GLzC01dTU8Ftd6OrVq3R0RWRkpAVOUR0zhgAQXivPmo/O9CvzPLungy1tbGy495zTUgmTJ082sA/NQI8ePYRoIx8qlcrNzQ04V+MXPoRqtXrixIkA4OzszOXRql51dXV5eXkrVqyIioqi70ejadOm2v06t27dotPkBwwYwGMWiRmkpBAAwmvlWfMx//QrWrpTKpUaVRKaFrNt27atgTuOixcvAtPqxqdOnbK1tY2MjOT4Byl8COkDCXt7e6GmbKvV6sLCwrVr144dO9bT01M7kPb29vQqtHfv3uZZDYuHykoikxGZjFhyZTOd6VfTp5M+fcicOeTgQVJVJfzptmzZQusebNy40agXakqbnT9/vqF97t+/Hx0d3bx5cyYV33/77Tc67nzcuHEc74wEDuEXX3xBLzDEWwxAu1/HysqqTZs27u7uFl66r29fAmApddb00pl+NXDgk5nKUinx9SUxMWTrVqLvAZ7Rdu/eTYvc8VvZj3bkGH4MSNeylkqlW7Zs4dlKXi5fvkzXZnv77be53xkJGcIVK1bQd/69uYYDFxcX29jYSKVSw8WwmFuyhDg4VH/22bnGdzU7+rBaZ/pVcjLJyCAJCSQ0lNjaPlU9oGVLEhX1d30dHp3QaWlpMpkMABYtWsSvwbSeWs+ePQ3vRp8WSiQS0xfx5OjmzZt0FvvAgQONegAuWAg3b95MLzA2b94s1DG5oKvwbN++3ZwnNdalS7dtbW3d3d15LD0rqqoqEhBA4uIMTb+qrSUnTpAFC0hYGGnaVDeQEyZ8snLlyvz8fC5v7ejRo3QGYP1CzNxxL222evVqOlI0Li6O9+k4Kisro4WzeNwZCRPC7du307Ga2tV+zYPe348ePdrM5zVWhw4dACA3N5d1Q56oriaBgQSAdOxIsrM5Tb9SKklhIUlKItHRpG1b4uHxp+b+XHu6kN6xYKdPn6YDpz755BMTW06ffnH5uN+2bRsdwzhr1izxnh7fvXv31VdfBQB/f38ed0YChPDHH3+k7zMxMdH0oxmLVtdydnYWtmC24FitAtAQuZy89RYBIG3aECPnoD9x6VLlxo0bx48f7+3trd1h1qRJk6CgoPj4+AMHDlRVVRGtafLR0dGmP8hdu3YtALzzzjtcdt63bx99BP3RRx+J8QxZUyO4S5cu/G6LTA2hZs3EuXPnmngo3uiH0DOx9Kz5VwHQS6kkUVEEgHh4EKFq7pSUlOzatUvvdKEuXbrQui9hYWELFizQLkXL+1wSicTR0ZHjrdeBAwfs7OwAYMyYMcJ+WNfW1tK1N729vRutEdwQk0KoWTORR3EbAT3fS88KTq0mH3xAAEizZkSkmjs604Vob2FoaCj9BouMjDT9FP7+/gBw5MgRjvtnZWXRD4KIiAihnicrFAq6CmCbNm1M+bXyD+Fvv/1Gq3pwfx4iErr0bPv27Rm2gQszrwLQkGnTCABxcCA5OeKeKC8vb/jw4TNmzMjKyrpz505dXR0d/GniurbU3LlzQWvFXC7Onj1LB37079/f9PLT2sPCOI6MaQjPEF6+fLlFixbGPg8RiVKppD/cS3TYlaUy5yoADZk9mwAQOztihot3vdXH6Kwaw4M/uaALXb788stGverixYt0IaDu3bsbVYJdh1qtpuVknJ2dtcvq8sMnhMXFxfyeh4jnvffeg3pF7y2N2VYBaMjChQSAyGSEb1E/46jVavoXf+HCBc3G+fPnNzr4kwuVSkUfi3MZ36/tjz/+oOsNduvWjcdkHWr69OnAt0ZwfUaHsLS0lPfzEPHs2rWLXmawbkgjzLAKQENWryYAxMrKrAtj0JLy2tXHzp071+jgT45oOVkeffLFxcUdO3YEgM6dO9+6dcvYl8fHx4MJNYLrMy6EmuchhtdMNL9nZelZsVcBaMiOHYeaN1dLJMTIoZqmql99TDP4Mz8/38SD79mzB/iuglZaWvraa6/RC1qj6lAvX75c8GFhRoTQ9Ochonpel541HR2r2anTqFWrzP0oVW/1MTr40/T6I5qDZ2Zm8hiKVFFR0atXLwB46aWXOJbr1dQI3rFjh/HtbRDXENbW1nJfM5GJZcuWwbOw9Cx9rr1+/Xrz3E5riu7Mnz/fDKerr371MTr4U5D5flOmTOnSpQsAODg40GWVGxqvo1d1dfXAgQMBwMXFpdHFgLdt20aHha1bt87khj+FUwhVKlVYWBiIsKSRgJ6VpWcTExPpB7Dh1YUEoSm6ExsbK8bxuVi9ejU8XX3MxHVtdcyePZsOCdSwsbHp3bt3XFxcenr6g8aKdjx+/Hj48OG0n9NAL8u+ffvosLBvRFjtles34Zo1a1q0aGHi8xCx0R4jQTqsRLVq1aqGVhdKTU0V5E+TaBXdef/99xkW3SkuLq5ffYzWVhNwrH9paWlaWhqtk0JnaWh4eXnFxMRs3fWIAlwAAAYOSURBVLq1oSVi6urqxo0bR3s79fa1ZGRk0CEHCQkJQjVYm3H3hGK0QEB0PrEZhswLotHVhWh9HX75KSoqoksyvPPOO8ynbtDqY5mZmZotdOjMiBEjxDid9ngdOlpN5wdL66Ro/2CVSiV97mdjY6PT43Ly5Ek6LMyogQFGMUfxX7M5fvw4APha/tqz9RhYXahFixbcVxeirl69Sh/QRUZGWsK4dtqnr71s661btyQSSXNnZ4XIN8badVLoCHINDw8PzQ9WLper1Wr6IS6VSjVf0efPn6e/jvHjx4t3NfFchVCpVNIftOCLH5qTZnWh6Ojotm3bav/dNDpdiBBy+/ZtWnQnJCTEQoru6K0+dvHdd1VuboTz4E/TqVQqzQ+WjjbR0PTr0O9DiUSyfPnyS5cu0WFhI0aMELWj4bkKISGElpFdabFrzxrv2rVrXFYXojuXl5f7+vrSvkedNaoYUqlU7u7uwW3b3i8qerJ17lwCQES7xmvU1atXt2zZMmHCBPrgXvv+nP4Pnf04aNAgsfuxn7cQbt++HQAGWubasyYzMF3I399/0qRJtGuqa9euInW38lb96acEgGgvP3bmDAEgRg7+FElZWZmmX4eu0wQArq6ugYGBZhgWJiGEwHPkwYMHLVq0sLKyunfvnvYCGM+f6urq06dP5+Tk5Obm5uTkPH78GAA6d+6sUql+/vlnOq7SguzeDVFREBwMWVl/b1GroXVrKC2FCxegSxemjXvKo0ePcnNzf/zxx1mzZrm5uZnjr0jslJsfHVSwe/du1g0xn7/++isrK2vhwoUFBQWWOZSCPHpEmjQhUinRHms1YQIBIHwrPj03rBpN6TOHFiDZv38/64aYj62tbXBw8Jw5c/z8/Ggxcovj6AjBwaBSwZEjTzaGhwMAvEi/Kb2ewxBGREQAwIEDB9RqNeu2IC1DhwI8HblBg8DWFk6fhnv3WDXKEjyHIfTx8Wnfvv3du3fppFJkKSIiAAAOHoS6ur+3ODhAv36gUsGhQwzbxdxzGEJ4Ia9InwFeXuDrC1VVcPLkk431vx5fPM9nCOnQxPT0dNYNQU+rfxMYGQkAcPgwKBRsmmQBns8Q9u3bt1mzZgUFBbQqKbIU9UPo6Ql+fvDwIeTksGoUc89nCGUyWVhYWGBg4IMHD1i3BWnp3RtcXaGoCK5cebLxhe8jfT5DCAApKSk5OTmvv/4664YgLVIpDB4M8HTkwsPBxQX+N07lBfS8jZhBlm7XLnj3XQgJgaNH/96iVgMh8L8Rmy8ga9YNQC+YwYNh0CAYNuzJFqvn9nKMI/wmROxs2gRLlgAhMGYMJCSwbg0zGELEyPXrEBwM+fng6Ai9esG330L//qzbxMaLfiWAmDl2DMLCwM0NbG1h1KinxpS+YDCEiJEHD8DV9e//d3V9kYePYggRI+7ucPfu3/9/9y5Y5uQPs8AQIkZCQuDIESgvB7kcUlNhyBDWDWIGH1EgRjw9YeFCCA4GQmD8eOjVi3WDmMHeUYQYw8tRhBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWLs/wFFO9mssTqu9wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -218,7 +239,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHYklEQVR4nO3dW5baxgJAUZR1Z+T5\nzyA9JuWDG4J5mYekU8DeXxh3S0DrdBWiZE/zPO+Azl/1A4BvJ0KIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKI\niRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQ\nYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIi\nhJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIjRjhNE31Q4DtjBghfBURQkyEEBMhp6Zp8rZ8S/+r\nHwAD2bc3z/PJbVYlQna7S8kdUtTh2saM8KN/6oeZ3gAH92Haea20eZ51uLYxI/xc0/Rfe8e3gwdy\ndbZ58lf7Dq99Ma8T4Xe5PfRdi22tqelIk4KQCL/F7dHsnrFuganpvrr9FoaZFORGjHCev/yHsrDX\n8zt4fmp6nB+/GzHCT7b/BXO4vbIF8zt4eGr6UH5f+dtXhBvaH2GHydgmHnrv99Bmb3c4TdPhxM5D\n212jw8FPLInwuyx4OF6bmt67i2uTgsP9SzzIt1h+MGiE471Qb2+NQ/BkavrwLq595fmZm8e90fKD\nQSNkcesdeWt9kPjUydh3XH4w1qP5ZJufkd/yUFtvX/dv+fbygyfnzJtwFQVP2uZKi8Mwe+Nh7M3z\nfHv0O7nnj1vejOkoo3v1DND1jQwyNR0uQusoOPfqGaBLGzncmU9NR5yOjjFHWNh05Tb32wdze+Z5\n50ZO7mmnpiNGePwBEuPbeEb3+r4OMZ/f+eKWnzPcdPSiVeelPz//f+l//TL3vdcIb6VeeQxDTU0H\nivC4tJPBcNFFFL/5+Zm097XOT8wkH+gPMR2dpgtj3fkfl5qm/vxMh9Hv/I9rG2EM4WCEqWl/QDw6\n1XxlSNzHdnHoOwyJK42Nx2f2tnnNV93R8carZ7Tsflfd+G3ldPS5nI4uQnjgZbqR34lfv+b1Olx8\nmzf2lf96fS/hZ4bZj2qRJ/zHt9HTNP399253Pb9rZ2WW7fBkLf8Gr/nae8lHwi2f4Nqi9JeeSOyO\nUjwecF7Zy/2D5/2P7XDn2i+7CBfc19qCCFd6en9cPv+c54bEPz6Yd49EhEvua+MI3/HN9EObvf+D\nps1OnCy+r+ocxmYRbvzmcNMTM2/6wt3zGe4T4/A8zystQjg/A7Tex9DOAL1uuwiTCcxSbpxTeeXg\nXnwRwo0zQMnH0NxjoBUz4zsZTxYZWw6fuDy9mX+HvcvX6Vy8U4dD2S7C4x//IodCcjAtmN/vm31m\nSPz9Wy5850orJDW8rA8ZCd9uIf+lbe52Dw6Jd37leiskq+UHHzaYb7p29HhJXnsF17BWOrQWXyH5\n+nV9HLz1SDhfuc0FS01N8+vQP8/WEa5xYsC/gnG/p6emK62FYNdeyvTadOjDwzt+Yfa3l5q8Pzo1\nPZ55KnANbz0d/XDr/aK58UHi0d7HHfo+ZsHaXjASOiVzp/nsIub91c/Lbf/yD2LMoe+DD5t4JHz6\nLeLhOz5+Xnps8We6xvKD9ay0+C5/1k2E1m3c6XwwXGEXb5DfwbKL7wZ51v17wheDrF/A1W3Q4W6A\nA/EhLx4zo73d7SPkouPDY397jANmFM9NTe+/GmZLWYRmpLzo/qnpPddY3/6CVQ0xEgqSp90+eO4c\n+tpjr4xQeyzi4tT0dl1DvS2MGxAhC3rTxXd9AyeXqPx799VHdX7Jz1d9VMht1zocYdp5zRDvCZ/7\n/aQ9zl1cfrAbNb+9PsJXPiHUIefea/nBboQIYQ1vkd/eEP8r09O2WU0Cq3rvCHfWkfD++rOj8OXe\nfiSEdydCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSY\nCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAgh\nJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGL/AL0ebZp1/jhvAAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAfVUlEQVR4nO3de1hU1foH8HcYEFQEAkTFW3nX1FTwlve8paFmhpo8pKRNHk9qap7xlIY9nlOodcIiFa2TSKlhadnJTnlLPVopiuUNxQsgogIGaFwH5v39sXD/RkSc294L7ft5+qM9zOy18OE7e+2110XHzAQA8rjIrgDAnx1CCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCCZWiEsLS29cuWKyWRS6fwADwy1QtirV6/AwMDjx4+rdH6AB4ZaIfT39yeinJwclc4P8MBQN4TZ2dkqnR/ggaFWCOvXr0+4EgJYwVWl8/r5+RFCeP+7ceNGfHx8Zmamr69vRESEr6+v7Bo9gNQKIa6E97vk5OR169bFxsbm5eXp9fry8vKYmJiEhITu3bvLrtqDBh0zcJvS0tLNmzcPHTq0Q4cOS5cuzcvL69OnT0xMTK9evVJTU/v167dixQrZdXzgsDp2795NRAMGDFDp/PeN69d54kSeOZMjIrisTHZtqnP58uWoqKgmTZqIPwwvLy+DwXD8+HHxU5PJZDQaxY8mTZp08+ZNubV9kKgVQvGE8NFHH1Xp/PeN5cv588+Zmd98k7/9VnZtqmA2m3fs2BEaGurqWnFv0r59++jo6CpjtnXrVm9vbyJq27atkk9wkFohvHLlChE1aNBApfPfN2bP5kOHmJnj4nj1atm1uU1eXl5sbGyHDh1E9mrVqhUaGrpjx47qP3XmzJlOnToRkaen54YNG9St4v3TjnCEWiEsLS0dOHDboEE/m80qlXCfeO89Fn+pixfzDz/Irk2FI0eOGAyGunXrivgFBgZGRkZeu3bN8j0lJSUJCQlDhgw5fPhwpY8XFha+8MIL4rMGg6GkpMT5VSwv5+Tkmt+OcAq1QsjMPj5MxNevq1dCjbd0Ka9ezRMm8MyZbDCw7C+k4uJikSuRHxcXlyFDhiQkJJhMJsu3paenL1y4sGHDhkrMqjxbXFxc7dq1iSgoKOjChQtOq2VeHsfGcocO7OPDM2bc1o64dMlppdQkKoawdWsm4jNn1CuhZisoYJ2O3d25vJyZOSWFO3TgF1+UUpdz584ZjUbRZU1E3t7eBoPh1KlTld62f/9+y5vDdu3a3e3mUDhy5EiLFi2IyM/Pb/v27Y7W8tAhnjKFPTyYiIn4kUd4/vz/b0ds2sSNGvHYsZyX52hBNYyKIezdm4n4wAH1SqjZTpxgIm7btuLwu++YiAcP1r4iM2bMcHGpeBbVo0ePTz75pKioyPIN+fn5sbGxjz76qE03h8pnn3nmGSLS6XRGo7HMjju34mJOSOA+fSqy5+LCQ4ZwQgKXlXFubsU9ocHAP/zA9eoxEbdvzydP2lxKDaZiCEeNYiL++mv1SqjZtm1jIn7yyYrDDz9kIu2vhGvXru3evbubm1toaOj//ve/Sj+98+bQaDResrHVZzabo6Oj3dzciGjgwIFXrlyx8oO5KSk8dy77+lbEz9+f//Y3rqZle+YMd+7MRFy7Nn/8sU2VrMlUDGFEBBM9SP9WNoqOZiKeMaPi8NVXmYjfekvjWjz33HNEtGrVKssXrbw5tMmPP/7YqFEjImrcuPGdabdUXl4uHoo08fY2e3oyEQcFcWwsFxTcu5iiIp42rSK04eFcWGh3hatXUFDw0UcfjRgxIiYm5qefflKpFEHFEM6fz0QcFaVeCTXb7NlMxMuXVxyOG8dEvGmTxrXo2bMnEe3fv1955dNPP1VuDn19fefNm5eSkuKUsq5duzZ48GAicnV1jYqKMt/REXXt2rV//vOfzZo1E6XXqVPn9Guv8ZEjNpcUF8e1azMRd+vG5887pfKKM2fOzJkzx8fHR/mGqlWr1ooVK5xbiiUVQ7h0KRPx/PnqlVCzjR7NRPzllxWHXbsyEf/yi8a1CAgIIKLLly8rr4jBTEFBQbGxsQXWXHxsYTKZIiMjxS3omDFjcnNzxeuJiYkGg0H0phJRq1atoqKicnJy7C/p6FFu2ZKJ2Nubt2xxvObi+hwSEqLT6UQlg4KCVq1aNW/ePPHK008/nadOn5CKIfz4YybiiAj1SqjZOnZkIj56tOJQPLHJztayCjdv3iQiDw+PctFDy8zMZrP5qFIrdWzbtu2hhx4SYVu0aFHnzp3Fn7Wrq+vYsWN37Nhx50XSHr//LjoeNvfu/frrr9vTJ8TMzFevXo2KimrevLmopIeHR3h4eFJSkvKGr776SlwY27Rp89tvvzmh5rdTMYRff81EHBKiXgk1m7jbEZeC69eZiOvV07gKv/32mxiGpnG5zJySktKlSxcicnd3F2OnjEZjamqqk4sxm/PfffchHx8ieuKJJyqNN7gncX328PAQ8WvdunVUVNT1qh5tnz17VnyVeHh4fPTRR06qfQUVQ3jwIBNxr17qlVCDXb3KROzrW3F4+DAT8WOPaVyLr776iohGjhypcblCQUFBrVq1iGjdunWqjKq5Ze/evaJPKCAgYNeuXfd8/40bN2JjY5Xrs+iX2rZtW/XX56KiohdffFF8JDw8vNB5fUIqhrCkhNPT1eu+qtnEN1BwcMVhQgIT8dixGtfiX//6FxG9/PLLGpcrZGRkiGBoUFZWVpbo7HV1dY2MjLxbnJKTk41Go2gqE1HDhg2NRmNaWlo1Z167du3Zs2eVw7i4uDp16hBR165dzzupT0jFEMbHs5jJ9PbbfMfwwwfchg0bWj700Nu3BnydX7kyp1u3mwsXalyNmTNnEtG7776rTXH5+fn79u3LzMwUh/v37yeiXlq1hcrKypQ+odGjR//+++/Kj5RxsJadLnFxcaWlpdWfc8+ePS4uLl5eXl8qHWzMSUlJrVq1IiIvL68vvvjC8ZqrG8IRI3j37j9jCJcsWUJERqNRHL700ktE9MEHH2hcjZCQECLaunWrNsWJfte+ffuKw7i4OCJ67rnntCld+Oabb8SFrnnz5ocOHcrMzIyKimratKnIXr169QwGg/WdKzdu3JgwYcKdQ9Xz8/OfffZZMU5o1qxZ9wxz9dRdgXvyZPr4YyIiZsrPV7WomuXixYtE9Mgjj1geimGWWrpw4YJlNbQpTvk1Kx1qIyQkJDExsVu3bmlpaX369GnatOmCBQsuXbrUuXPnVatWZWZmxsbGiqlY1qhXr96mTZtiY2Nr1aq1Zs2avn37pqWlEZGXl1dCQkJ0dLSrq+v7778/ZMgQMXfPPqqE8JdfSKxr4e5OwcF08CB9+y21aEFr1hCzGgVWraTkwsWLYZcvv3bhQmh5uabfAZVSp3EYBGZOTU3Vstwqv3o0/q2JqEWLFgcPHhw3bpyvr69OpxPjYI8dOzZ9+nRPT087TmgwGA4cOPDwww8fPnw4ODj4+++/JyKdTjd79uxdu3YFBgbu27evS5cuO3futLPGjlxGq7R5M9euzX368Cef8NatXFjIjRrxkCEVI40GDNBu8O31659eufI2M5eUpJWV3dCoVGZmFg+dxEiUsrKyWrVq6XQ6J/anWSMzM5OI/P39NStx0qRJRBQXFycO+/XrR0S7d+/WrAKWPvjgAyKaMmWKs06Yk5Pz5JNP0q2h6sqj16ysrKFDhxKRXq+PjIy0fCRrJSeHMDqaXVyYiKdN40rt5IQEbtCAidjNjWfNYlXXKCkuvlBSkmo2m7KyYlJTp6al/bWsTLv5L6WlpXq9Xq/Xi1sIcTkKDAzUrALCgQMHiKhHjx6aldirVy8i2rdvnzhs3LgxEV28eFGzCliaO3cuEUU5ddik2WyOiorS6/VE9MQTT1y9elW8btknNGrUKMs+IWs4LYQmE0+fzkSs03FkZNXvyc3lWbNYr2cibtyYb31jOlF5fv6O8+dDjxxxTU2d+scfB8vK8pk5O/uj7OzVhYUarYmSkpJCRM2bNxeHe/bsIYvuCs3Ex8cT0YQJEzQrUQyRy8jIYOaioiIXFxc3Nze7B7I46OmnnyaihIQEp5959+7dDRo0IKImTZocPHhQef0///mPWJe1WbNmv9gyPtE594S5uTRsGK1eTXXr0tattHhx1W/z8aEVK+jQIerZky5fpsmTadQoSk11QgXKynKuXl124kTrlJShubmbdTpXna4Wszk9fXpGxt9u3txdXHz+9OmuV68uJVL9rrTSvZCUG0LSvF+koKAgOzvbw8NDPDdPTU01m83NmjUT1w3tVbotX7hw4cqVK8vKyhw/86BBgxITEx9//PGMjIz+/fsvXbpUvP7UU08dO3asZ8+e6enp/fv3t2FtSMe/GM6f5/btmYgbNbL2UURZGb//Pnt7MxEHBNxcvvw9uzt5CwoSU1MNR4/WSUykxEQ6frzllStRJlPlIZqXLs1PTNQlJtL586Fq3x+uXr2aiF544QVxuHDhQiKKvFvzQDVTpkwhojVr1mhTnBgi165dO3G4fft2Iho6dKg2pd/Jy8uLiMQYtLy8PCKqW7euc8asMvOtNSDFg8exY8cqY7uLi4tnzZpFRBMmTLByYUhHQ3jwIAcEMBF36sTVDjyoQmYmP/ccDxgwl4hat279gy3rIBUUFKSlxZ861U1kLzHRJSUlJC9vO/Ndb4tzc79OSvJJTKTjx1sXFv5qW11tIdbnXLJkiTgU3RXr1q1Tr8QqDRgwgIh27typTXFff/01WQyRi4mJobuvT6M2sRORt7e3ODx69CgRdezY0ekFJSQk1KtXj4g6depkeSERY+K+//57a07iUHN0w4aN06cnZWXRU0/RwYN0a5qYtRo1og0b6M03R3fo0CElJWXYsGHjx4+/du1a9Z86d+7cggULmjVr9vnnsYWFR/V6n4CAWR07nmvV6htv7xHVPHTx8Rndvv3h2rUfKylJSU7umZPzkW3VtVpwcPDIkSN/+umnV199NSIi4uzZsySvOarxQ0LpzycsK6PBE8vQ0NAjR4507tx5ypQpYm0B4caNGzaUaN8XgNlsXrx4sU6na9iw8fz5uQ7ee5eWlkZHR4tFFnx8fKKjo++8mzeZTFu2bBk6dKgy8ujJJwfl5HxqNhfbVFZ5eVFqqkFcPy9eDC8vd+aEuj/++GPNmjVdu3YVNRTD8xs0aLB8+fL8/HwnFnRPJSUler3e1dXVwcEc1hNtsHfeeUccjh07log+FwsWam7jxo1ENG7cOHG4fPlyInrllVdUKq6wsNCyoVupe/ye7AlhSUnJ888/T0R6vd6JM47Pnz8/cuRI8efbrVs3pX/pntO97JCTEyduI0+d6lpcfM7xyp89e9ZoNCqbFgUEBBiNxsTExOpnmqvnzJkzRPTII49oVqIYIrfl1vxaMY/pzjVLtfHWW28R0auvvioOZ8yYQUSqzo63dO7cObLoHr8nm0N4/fp1cbPh6em5bds2Wz9+T1988YXYDkGv10+cOHHcuHFiOgwRtWvXbsWKFc6a3VxQkHT8eKtffnEbPry33cNwq5yOHRsbqzyXv9tMc7X997//JaLBGi7uJhZrO3bsmDgUq+U7NHfeAWLO0YcffigOxUN2Nf5cq/TDDz8Q0cCBA618v20hPHfuXNu2bYkoMDDwiB1Lg1inoKAgMjLSzc1NTGd2cXEJCQlx2nRsC2VleTExs+jWGAibljm6cuXKnddn5U+wEmWmeevWrX/9VcU+IcXKlSuJaNq0aZYvTp061XKohxOZzWYxwUe0usVuXPU0n8SsEA2Q7777Thy2adOGiE6cOKFN6ZW6x+/JhhAeOHBA7DrYuXPn9PR0u6png7/+9a9E1KtXL8v1UZzOcrm+/v37W1NWYmJieHi4chfepk2bu03HtpSamip29vPw8FD7sUFpaeno0aOJ6LXXXlNePHbsmHhkN3z48Gxnr7Ihhi/7+fmJw0OHDhFRly5dnFuK9USPyJkzZ5i5vLxczO7XbCepSt3j92RtCDdt2iS6GUaMGHHjhirP2T777LO9e/cq97LDhg0jdUY83Gn//v2BgYFEVL9+/bsteltpOrZer7f1+lxYWDh16lTxcaPx09sX4HUOcX0WM3caNWrk6+trOdN8z549YnH7Jk2aHHDqqsxiiFz37t3F4eeff05EzzzzjBOLsJ7JZHJzc3NxcSkuLmbmS5cuEVHDhg01q8D48eOJ6LPPPrPy/daGUHR2zZkzR43GDDOXl5eLxqe4xppMJvH4RZkhqrasrCwR+zuH4Z4+fdpoNCpr4FkzHbsa69evf/jhXgEB5V268DkndAkxM5vN5l27do0bN85yezNxk+bq6vrOO+8o3xQZGRl9+vRR+oqcUzzz8ePHp02bpnz3v/3220Q0b948Z53fJuKBRNOmTcXh3r17iah3796aVSA4OJiILEe0Vc+qEKanp+v1+tq1a1e6BjrxJi0pKcmyN+/w4cPiDspZ57eG5TDckJCQq1evVpqO3adPn4SEBMc7/X/91SQ26vDx4a++cuhUYgX7jh07ihoqK9ibzea7zTS3HOqh0jJ+BoOBiGJiYpx+ZmuIKUX9+/cXh5988gkRhYWFaVYB0UmuDO++J2uvhKJHdOXKleLw3Llz48ePDw8Pt6eOVRED7SZPniwOxeIoU6dOddb5racMwxWXYiLy9vaeNWvW6dOnnVjKjRs8fnzFePdZsyrPOLFGUhK//PIcZQX7pk2bLlmy5M4l6CvNNFdeV3UZP7HcixO2iLHLmjVryGIS0xtvvEFEixYt0qb0/Px8IqpTp471lyhrQyha+R06dBCnzszMdHNzc3Nzc1aviVgsQFlMTrR+tR/qJVy8eHHgwIHTpk2rZs9ap4iN5Vq1mIj79WMr/yFLSjghoWJ+Zr9+LynX52q6dtPS0nr06CH6hKKjo5XXlWX8ateu7dxl/Fq2bElEycnJTjyn9f7+978T0ZtvvikOw8PDiejf//63NqWLNp1NQ+SsDaHJZBLTw5TZYuPGjbOpC6h6Yui96M4ym81iUoyzVrOyj6qr9CkOHeLmzZmI69e/xyaiFy/yggVcv37F9OiHHuI33kg9Y93Wc8qoYiIKDw9XFt4uKiqaNm2a8rrj047FDjOenp7+/v5FanQ9WWHixIlEtH79enEo7oH37NmjTelffvklEY0aNcr6j9jwiEJc1pV1e0TLu2nTpo7sIiKI4R3K3tonT54UnXsOnvZ+ce1axZVNr+e33qq8lWh5Oe/YwaGh7OpaEb9u3Tg2lv/4w+aC4uPjRfO1ffv2lpsTKsv4devWzb4vvqKiori4OLHvBRG5uLhI3NFeXPaVTWnE97vdHWm2EkPkZs+ebf1HbAjh5cuXKzVBRf+b44t5ffbZnkaNmjz77LPiUDzrnDhxooOnvY+YzRwVxS4uPH78ba/HxHCLFhXZ8/Dg55/nn392qKDTp0+LTerr1atn+fgnKSlJtCErLe93TxkZGZGRkeIBMt3afvSk1P0DRWVEv3pRUZFOp9NybrEYImfZ7L8n20bMiO0g//GPf4jD6OhocsacscmTmYg//LCijTR9+jyyGHP057FzJ69de9tirWKxghYtOCqKs7KcU0qlZfyUzt7c3NwxY8aIIN1z7IGyvZkyZ1elHWZsJaYveHh4iM6LkpKSbdu2fazhBn0jRowgG4fI2RbCHTt2WDZB8/Ly6tatq9PpHLwFF1/2ypDsZs3Y3//aiRMaDbOsUSot1nr2LG/fzmo8mhXL+BFR3759laaN2WxeunTp5s2bq/lgbm5udHS0MkfJ3d29yu1HZfn1119FD6KsCohxnTa1xm0LodlsFmUoTVDxRGjOnDk2ncdSRgYTsZcXi/ZCampFr4M6gwJquvh43rSJw8K0WDH58OHDDz/8MBH5+/tbM/200vZmLVu2jIqKcvoIOAdt3bpV9BhLKd1sNouBZTb1qNs8i0I0QYcNGyYOjx07RkQ+Pj5/2NFRwMzMGzcyEY8YUXEYH89EbEvf0gMlPp63buX33uNRo7RYtjw7O3v48OFU7XJ9otNFmSSpbOsrawWn6l27dm3MmDEuLi72rT7oIDFETulitJLNIVSaoErn+OOPP275iM9WM2bcto20wcBEvGyZfSe774kQisVatZmLJ5bxEwNrRo4caXk3KCZJ+vn5ifiJSZKyljC03qJFi+xefdBWlc6/b98+sn2InD2TesVkrblz54pDsbSe3UPmO3ViIlbuKdq1YyJH+wDBVsoyfk2bNj1w4ED1kyRrvp07d4pHzc2aNftZhT8mZYeZwMBAy2GM69atI6JJkybZdDZ7Qqg0QUVXWElJifiF7fhtb95kd3f28ODiYmbm7GzW6bhOHdbkOXlNFB/Pa9cyM8+bp/UuOunp6WL1XuWuz9PT86WXXrrbJMkaTvl13N3dbXpgcM/TLly4UExGET3Jlv8+kZGRRLTQxu237Fxjpnfv3kSk9PwuWLCALEZ+2qSggBMTK/7/yy+ZiDWcDl7jSAwhM5eUlMycOXPx4sVWTpKs4cRQdZGWsLAwu7sthP3794eGhirzVNq1a3fnkMawsDDLXFjJzhCuX7+eiLp27SoO09LS9Hq9u7u7rfsVV/LKK0zEixc7co77W3w8DxnCs2dzt27S9pMzm81aLoejti1btoi1Ntq1a2fH5HoxT0WMSyGLeSqV3ia2H61Tp07btm2VoZ1WsjOExcXFogmqLMck1vlZunSpfScUgoKYiK3Y8PiBJfdK+KBKTk4Ws708PT03btxo5afEOFhlnkpgYKDRaBSL/CtKS0s3bdok5hgJdvRQ2r/4r7jQK01QseKyI5Opb95kV1d2c2PZgy5kQghVUlhYGBERoYwTqmZ0fnFxseh0EW/W6XTikUylMdIObj9qyf4QpqamiiZoVlYWM5eXl1tOV7ODycT79rFTp9QA3CY2NlasNxMcHHzhwoU732A2m8WqUETk6+s7b948sb+dJXFzqCwyVOXNoU0cWgZfNEGXOeOh3p95g3vQ0pEjR8SYOz8/P2U5Nktz584Vj2QqdeTc7ebQ8ftnh0L47bffElGLFi1sGppgMvGVK3z8OP/4I2/ezCtX8t69f+oN7kFjOTk5YplpsdRlpaE/d7ZUq7w5vHTpkrPqo2MHNrBm5rZt26akpGzfvl0MHs/Nzc3Ozs7Jybl+/XpOTk5OTk5WVpZe3/PUqWdzcuj6dcrKory8yud5+WXq2ZPc3Oibb6hjRxoyhIKD7a4UwL0x87Jly15//fXy8vJBgwZt3LhRjFWwJGZgrFmzRkyd1el0gwcPNhgMY8eOVR5UOK02jli2bBkReXl5NWzY8G41e+yxmWJGnPhPr+cGDfjRR7l/f37mGZ4+nTdt0nrMJAAz//jjj1WuAanxJEmHroRElJOTs3HjRmXpBG9v74CAAH9/fz8/P39/f39///r16wcGdvDyCvH3Jz8/ql+fbu3XcJtPPyVPTxo+nFq2pG3bcCUEjVy+fHnChAkHDhxwdXVdsmRJUFDQ2rVrt2zZUl5eTkRBQUEGgyEsLExpi6rB0RASETOfPHlSpM5ydyiA+4LJZFqwYMF7772n0+nMZjMReXh4TJw48S9/+YtYKUNtTgghwANgy5YtycnJmzdvDgsLi4iIUOaOaAAhBJDMoZ16AcBxCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZAghgGQIIYBkCCGAZP8HC7DHrnnCuoMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -230,7 +251,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAI+klEQVR4nO3d3ZaiSAKFUZk17//K\nzAWdNgOKCBFxQth71UV1daZ/8BkBIgzjOD6AnP+kHwDcnQghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBESMwxD+iF04b/pB8AdTfmN45h+IF0QIa0NwyC/ORHSjgHw\nJRHSigHwDRFS37QDRoFviJDKhkF+20RINQbAfURIHQbA3XxYTx0K3E2EEGY6SgnPA9AMgN8TIafN\nN/9sCn7PdBTCRAhhIoQw24ScNo52zJxhJKSEcZTfYSKEMBFCmAghTIQQZu+oQ64Iu32EDrkizXSU\nYpxF9BgRQpgIIez224TrQ65sGdKWkfCvPeGdNo6jy0scIMKV+dgI9Ynw8XgIjyQRUpgZ6bduv2Pm\npWlgtJX4jfnFXlz45Ssi/CO8ExZXO5PiV0xHX7vMjGo+N5z+Xna2OAzDu+sNjuM47S81Qd0mwn/N\n15Qr7W2v9zym/OYFrl+0eYqXeUnLMh3917SuNJ4+NZizrSfa56/U8u5hP9+8Fv/r+Z/mqGsijKm9\nJ2NjC7dGfrMb33pGNhfXRJhRdU/GeqAr9Tno/pmCFPcT4VuVZqcba16RVfPdALjd4ccvNh97VFLc\n42qXET+/RKfwnrsQmk0R1w/j23svck3OlzdS5M1o4xm13xTvyhWe/Hyf2/PN9cRIUmVT7Vgh+x9A\n2fX4eb/Fh6mXN3jzCH91OroOr5T1MFhidD04QO15ADWmc+ffyz7e8uPeU9C5X4pwf3hnNufWvzhb\nb8bHl6NZkSnixor7o2PILz7menqP8PCId6zDjV+ZfdI1/8ftWyt5GNwixcaDyY/W/hM6jbDSfpGP\nd7rn7vZ/6l3psT/fXxyAcg2dRvgokV+DI2BSY4NB6Uoufuzo/uHifK7rQ6Vhj4tHuFOpAfNi7Znx\ntnH9CD+uSQWnrA3OkpEKo+r93rz260f4uP0ypnO3iPDxvsPie25anjLKzplruEuEL1Xad1p7z6X2\nLuZGES4Gw6pjoE8Q2O9GET5sHNKle0X4dJGDsJyz+BJuF2HkRDKw4XYROuryMK9bJbeLkK8Ir4F7\nRficiF5n3TKv/n39fouiuCabgkOLj/GuFV7qG5L9uMtI+PL78hcZDBuqce655zm8n+fqLnsX/btL\nhC+N43i/JX5EjTDeXcTihh3eYjrqM4kzapyaaXuJ3G1qev2R8NPy9nH3Ls+54vlh6t0SWZxP6D5D\nYqdDRLkTwu96gqXOyNTu/Tt6lOrhp/nuF29+XuAep6PP1z1yuqeTWhyRM3/PSFzY9NjS2RgAbz41\n7e5t5uUiObYYvorh/Mq8OHV3xRc2HeHCx6VzYAB8eSO9rauldPTEdi7L7Z+Z/3CDp/b3iF6flnf9\nj8XutacIJxullZpnnr+6waSfdX7SS4Tr13fjFf9YY+0CX26RvRvDyz+SLiOc7LySx5nzo7+7zfWP\nzc1/pbdBtYtH81WBix97fPPuW9vr+63RSd9fH97O793/+ur2F1EtfmBPpT2s+ZP8Qzlc4Pznp7+0\n2B7b92CWD6Cz8aqB2vOC89PLfjoM7x09X+Dj/64Skd+N9vqN4PlxZB9LvYHFXuIai+bMO3VXkhEW\nKXDu/Me7662tY2PYuP7N6e/3GxIfFcacPTe4WBPeHR/XQ5OxCIsXWEqxTF6Ofoez/mVNdlN/vVn4\n6KbDQITrmcnJuUrZ13GdyfGJ5MvRL73Ir+T8JLOHDltHWHsArPGanr2x+20QTiqt3/PbLHLj8Q6b\nHsDd7RR0YSx+VPc43vNQ8e4W7RvZg8XbRVivwBqvYJV3hv7ebn5OvXftYIexrzJ1OwYu/l7xMQ7D\nP38u7KfG/1SHmb2jfRbYVMeHntFYZiS8e4Ec0uC9OzIYtouw2dPLbmTz69qvPxc5vYXw+vVTm4WT\nxqtTj9+sv4XRhdS+02AumtpVIcKc+7T3a8+0cY0XmY5ybRceBh8ihLimEVbd3p3fuP00HNZ+SDQS\n0rv1l4Or3kV7dsxQ33o/8JuWPhYW/8ZDDZeK8GLL5iJeHqD3Zkm9W36Lry/V6zBS+DWno9d7s7y5\nxUZ+2W3++NpywQjjryk1VO0w61IRDsOgwPso0mEPK0zrCOcv3NRMqVseZtd8pSPTAXrTn3NLZ13d\nNealyR0z85OlP87tVunh/Yy3+j6HUFx+7+j6I6BvX+LrLRU2LDo8k2Una05mm/DlFGL8M/zZeVM9\nvI60VGMnTXBFyt3xjnHv488o8M7Wl4X50S2a/Eq8v8afOF0iLRXs8NYRPu2/zk4PF36hE0U6dOzo\nP9Ynxn+8Ks0AyIav1o1OPu7vfYVe1KhA1g5cpGnSybr0M+u0KSgb1pPSxQ/0vOb8TISwbf8+hd6I\nEMIudQA3/CIRQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGH/AyWb\navDT+Y1sAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVyU1f4H8O8sCAOyyiaCWyoqhPuKCyYuGBZalPkTlzK01MG85rjl5LW8lJVT11JCU7Tu9aKW4ZKKC4oSGi6UIq4oiCwDSOwww5zfHwefJjZneWYO4vf96tULxpnnHGA+85znnPOcIyCEAEKIHSHrCiD0rMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDFmvhBWVVUdOnQoMzNTrVabrVCEWj5zhPDhw4cffvihl5dXcHDw6NGj/f397927Z4ZyEXoqCAghJjo0IeTkyZObNm06cOBAbW0tAPj6+iqVyry8PBcXl127dk2YMMFERSP0NCEmUFpaGhUV9fzzz9Mi2rRpExoaGh8fTwgpKCiYNGkSAAgEAqlUWlNTY4oKIPQU4TmEt27dkslkjo6ONH7u7u4ymSwrK0v7ORqNRqFQWFhYAMCoUaOys7P5rQNCTxd+QlhbWxsfHx8cHCwQCGj8BgwYEBMT08yJ7vTp0x4eHgDg4uJy5MgRXqqB0NPI2BAWFxdHRUX17NmTZs/S0jIsLOzKlSvaz0lJSQkPD1+0aFG91+bn59PLQoFAIJPJ1Gq1kZVB6GlkeAivX78ulUptbGxo/Lp27RoZGVlQUMA9obKycseOHQMHDqRPsLW1LS8vr3cQjUYTGRkpEokAYMyYMQ8fPjS4Pqgp8+bNCw8P//PPP1lXBDVO7xDW1tbGxcUFBgZyLU9/f//Y2Fjt89jDhw/lcrmLiwt9goODg1QqzcjIaOqYp06dat++PQC4urrS/hvEo3bt2gGA9ucjalH0DuGQIUNotOzs7KRS6Y0bN7T/NTExMTQ0VCwW0+f0798/Kiqq4Qmwoby8vHHjxgGASCSSy+W1tbX6Vgw1xc7ODgDwTNhi6RfCiIiITp06eXp6RkZGPnr0iHu8srIyJiam0TEJ3anVarlcLhQKAWDs2LG5ubl6vRw1xdraGgB0+ShETOgXQn9/fwA4deoU98jt27dlMpmTk1MzYxJ6OXHihLu7OwB4enqePXvW4OMgDh0NwiHZFku/GTOenp7Z2dn37t3r1KkT/bt26NChoKAAAEaMGLFw4cKpU6fSP7kxsrOzp02bdvbsWbFYvGrVqjVr1tDTIzKMUCgkhGg0Gu4yHulCrVYrlUo6xys/P1+pVObn5+fm5r7++usDBw6kV9q80COENTU1EolEKBRWVlZyV31yuTw7O3vhwoV9+/blq04AoFarP/roo3Xr1mk0muDg4JiYGO5ki/SiVqstLCxEIhHOm6+nsrLy0aNHOTk5Dx8+1P6C+zo/P59Ot6yne/futra2ycnJxp9vKD1CePv27e7du3fu3DkjI4OXsp/o0KFDs2bNKiwsVCgUERER5im0lamqqpJIJFZWVpWVlazrwl5JScnYsWPz8vKUSmVVVVXzTxYKhS4uLi4uLq6uru7u7vRrR0fHTz75JDMzc+XKlR9//DEvtdIjhCdOnAgMDAwICDh16hQvZevi/v373bp1k0gkeXl5EonEbOW2GqWlpXZ2dra2tiUlJazrwtiVK1cCAgKqq6tp/KysrBwdHT08PNq3b+/o6Kj9Nf3C1dWVa/FpS0pKGjVqFCHk5MmTo0ePNr5ijZTRFHr/Eb0aNBsrKyu1Wm1paYkJNAxthTb6ZnrWREZG/vnnnzNnzly3bp2Li4vB76jhw4fLZLL169fPmTPnypUrdATIGHp0eNy/fx8AOnfubGSRT5ScnJyWlkbfPUyS35rYqVQ1Xl65HTuyrghjd+/e3bdvn4WFxbp16zp27GjkZ/ratWsHDRqUkZGxePFi4+umRwjNlodp06b5+PjQzNNCzZD81kqkUllkZbUpKGBdEcY2bNigVqtnzpzZ0YjPo/Pnz7/22ms1NTVisTgmJkYikWzfvn3Pnj1G1q3FnQnVanV2drZQKPTy8jJboa0Z7RR9tpuj+fn5MTExAoFgyZIlAFBWVtZot2fzamtrZ86cuWfPng8//BAAevXq9cknnwDAu+++m5OTY0z1WtyZ8MGDB2q12sPDo02bNvA4hNgcNZxKBQDAU2f6U0qhUFRWVk6ZMqV3794AIJfLvb29jx8/rtdBRCLR9u3bRSLRJ598cvr0aQBYuHDhpEmTCgoKZs+erdd4e306DuqrVCqxWCwSiUw98SIhIQEARowYQb+lt+H//PPPJi20NUtLIwCkVy/W9WCmpKTEwcEBAJKSkgghhYWFbdu2BYBLly4ZcLSVK1cCQJcuXehc3OzsbDpq//XXXxtcQ13PhFlZWfQExdcAZVPqnW/xmtBY9Ez4DDdHN2/eXFxcPGbMmGHDhgHApk2bysrKgoKC+vXrZ8DR1q5dO3jw4IyMDDpw7eHhER0dDQDvv/9+enq6gVXUMax0bHDkyJEGx11HtMG9atUq+i390CouLjZ1ufzLySGhoeTNN4lCwbIaFy8SANK/P8s6sFNVVUUXcKCrN5SXl9M77BISEgw+5vXr1+mc+NjYWPrIzJkzAaB///7V1dUGHFDXM6HZuka1LwKVSmVZWZmjo6O9vb2py+Xf1q2wYAFs2wZHjtSdjph4tq8Jd+7c+fDhwz59+owfPx4Atm3bplQqBw8ebMwge8+ePet1yXz99dfdunW7dOnSunXrDDigfiE0Q7NQuzv0qewa/fxz+OEHAICsLKC94a6uUFjIrD7PcAg1Gs1nn30GAMuXLxcIBGq1+osvvgCAFStWGHnkBQsWaHfJtG3bdseOHSKRaP369WfOnNH3aLqG0Gy9lNqn3KdspL62FhYsgKVLYe5cyM4GLy+gaxwrleDszKxWFhbQtSt06MCsAuz8+OOPN2/e7Nq166uvvgoAu3fvvnfvnre390svvWTkkQUCQXR0dLt27Y4dO7Z582YA8Pf3X7p0qUajmTNnTmlpqX6H07HZOmbMGAAw9doTtbW1bdq0EQgElZWVhJANGzYAwOLFi01aKD/KysjkyQSAWFqS//yHEEJyc8nrr5PwcPLNN6wr94waOnQoAGzevJkQotFo6I0+3333HV/H/+mnnwDAysrq6tWrhJCamppBgwYBwNy5c/U6jq4h7NKlCwDcvHlT75rqIzMzEwDat29Pv124cCEAbNy40aSF8uDhQzJgAAEgTk7kzJm6B69fJ8wXB2ghnUMsxMfHA4Crq2tFRQUh5MCBAwDg6elpWN9JU2bNmgVaXTJpaWl0QtyePXt0P4hOIaT3pHEnKNNJTEwEgGHDhtFvJ0+eDAA//fSTSQs11tWrpFMnAkCee46kp9c9eO4ccXYmAwaQsjKWdVu3jtBuwIkTiRnvrK+qqioqKlIqlWYrsaHAwEAAWL9+Pf12xIgRAPDFF1/wW0ppaWm3bt0AYPXq1fQRhUIBAM7Ozjk5OToeRKcQ0gtCDw8P7Qf/9a9/1Vtf1Hi7du0CgGnTptFv6aI1hg2qmsmJE8TBgQCQoUNJfn7dg7GxxMqKAJApUwjblV3Cw8ndu4QQMnMmyckhqamksNCkBWo0mtjY2Oeee278+PHW1tZyubyqqsqkJTbq8uXLAoHA1taWroSUnJwMAE5OTiUlJbyXdfbsWZFIJBQKT58+TQjRaDRBQUEAMGHCBI1Go8sRdAohnaQzZMgQ7pFDhw4BgEQiiY6ONqzqjaI9vMuXL6ff0pGJoqIiHovg0YHvv9fQBL72GuHaCAoFEQgIAJFKCfM149atIydPEkJIUBApLyfe3sTJiSgUJqrYmTNnBg8eTPsaXF1d6Rfe3t7Hjh0zRXHNCA0NBYBly5bRb2mT6oMPPjBRcTKZbOzYsdzSSg8ePLCxsRk/fjxtCT+RTiFMT0+fMmWKjY3NoUOH6COVlZVSqZT+lmfMmFFaWmpY7euZO3cudyVdWFgIAHZ2drwcmV8ajWbNmjUCgeDDQYPI8uWEfuCpVGTePAJARCLy1Ves60gI+XvnUE4OeeEFAlB33ua1fXHjxo3Q0FC6ho2Hh0dUVJRarU5ISPD19aVvkuDg4Hv37vFYYjPu3LkjEoksLS3pNidpaWlCodDa2jqfa6rwTaVSaZ/0srKyLCwsxGKxji1SXTtmpk+fTntmV6xYoVKp6IN79+6lJytvb+/U1FR9q97QqVOnIiMjaV/TpUuXAMDPz8+A42zeTA4cIISQF1+s+3bWLEJI3f+NVF1dHRYWBgAikeivGYMlJSQoiAAQGxvSkme6xsWRjh0JABEKSVgYMfqyraCgQCaTWVpaAoCNjY1MJtNu8tXU1CgUCltbWwAwW+s0PDwcAN5++236LZ3O0nAXBtN57733AGD69Ok6Pl/XENbbSunBgwf08Rs3bvj5+dGO2qioKEOq3IQff/wRACZPnmzAaxuGcOJEkplZF8Jr10henoG1KioqCggIAIC2bdseoGUQUpGZSXx9CQBxdye//Wbgoc2mvJzI5aRNm7ruXENbp9XV1QqFgn4KC4XCsLCwpnYxyM7Oph9bANC9e3eT7v9z5coVS0tLoVDILUudkJAwadKkZhaA55cBE8T1W3f0/PnzdP6Ks7PzL7/8Qh/UbpqGhYWV8dQfSCc3GPYBtnkzeeklEhFB6Hl082aybx9ZvrwuhCNGEADSvj0JDSUKBUlJIbpdP5O7d+/26tWLDqJcvHiRPpiamtrRyytj+HDSuzcxV4uLB1evkoAA2jqtGT36d3362GjvCx21AoDAwEDtdlBKSkqjY3GnTp3y8fHhWqf379/n4ad47OrVq5GRkf7+/kKhsHPnzj169ODx4HpZu3YtAAQFBen+Er2XwVcqlbTzp95WSjt37qSbw/Ts2fOPP/7Q97D1VFRU0FXx161bZ8DLG54Jf/2VLFpEpkwhhJDgYNK2bd3FEf3P2Zm89BL59FNy7hypqlI1eswLFy64ubkBgK+vL/cGOnjwIP3YmzJxItFakvypERdHvLw2jB5NT2W67Fdx4sSJ/v370yz5+Phw3QSEkKysrPDwcKFQaGVl1egVYMPWqTGjdjU1NfHx8YsWLdKe2CiRSGh7be/evQYf2WCGTRA3ZFcm7abp6NGjuUbI9evX6aCCRCLZunWrAUcmhGRnZ8vlcmdnZwBwc3Pr37+/AYOT2iEsKyOrVpFffyVXr5IOHeqeoFaTq1dJVBQJCyNduvyVRgsLYmvrNmDAAKlUGhsby13KJycn04nz48eP5zZ1iI6OpgsozZo1i98hYLP688/VMhn9Qdzc3GJiYprqWL9+/TrtdaSj3rT3hf7To0ePli1bZmVlRS9Mli1b1syNL9qt0x49ehw9elSv+hYVFcXGxoaFhdG7BClnZ+ewsLDY2NjS0tJNmzYBgKOjozErwRvmq6++AoDBgwfr9SrDt0ZLSEjgdvnkfo8VFRW0h5M2TXXf/0Cj0cTHx7/88st0mzQA6Nu3L+3mDg0NNWZ/mBUriEhEmp91k5FBdu0i77xDXnyxUHu1b4FA0KtXr7lz50ZHRw8dOnTOnDn0nmaNRiOXy+kT5HK5jsNBLVl6ejod3QaAkSNH1utmUyqVUqmUBrVt27ZyuZzrfK+pqYmKiqJ/KYFAEBoaeufOHV1KPHnyJL3PnbZOMzMzm39+RkZGVFRUcHAwXXKB6tq1q1QqTUxM1H6HaDSaF198EQDGjRtnzj+NSqWi52R9p5cYtUkot8tnva2Utm7dSifv9OnT54mbAZWUlERFRXF92dqbyVy7do1+2q1YscKwGt68SSwtiVBIkpN1fUlxcfHhw4dXr14dEBBAz36c8ePHE0KqqqreeOMNWtWYmBjDKqYHM049i4uL8/T0BACxWCyVSouLi8vLyyMjI+mqfmKxODw8XHujnri4uO7du9NfzrBhw86dO6dXcbR1StvzNjY2DVuntbW1KSkpcrl8wIAB3F9BJBL5+/tHRkamc/OTGsjLy6OfC5s2bdL3l2CwnTt30ssxfc8Zxu7UW2+XT25gJC0tzcfHZ86cOc289ubNm9ob3Ldv314mk3H9rtSpU6foJ59hywdMnEgAyLx5BryUEELUavXVq1ejoqLCwsLc3NycnJzeeOONkSNHAoCtrS3XNWVa5p16VlxcHBERQU967dq1c358/0dISIj2m/7ChQujRo2i/+Tt7c3d3mqABw8ecK1Tb2/v+Pj4ioqK+Ph4qVRKm1qUjY0N3RDhkW7X3tzsauN7KHTBTRDfvn27vq/lZ8/6kydPNtzls6SkpNHmqL4b3H/33Xf08y8uLk6vWv3vf3Wd8LzMYaSL3/Tt21cikXTq1OnatWs8HFQX9aaemUVqaqq/v7+1tbVEIhk4cKB2N8P9+/fDwsLo365du3YKhYIbNzbG4cOH6SRMgUBARx2pLl26SKXS48ePG7C40ezZs8GIG971YswEcX5CSAjJy8ujFxXN7PJZXFysUCi4rm0rK6uGG9w3avXq1fTkc/nyZR3rU15eN63622/1+0GakpaWBo8nYek+N5cH2lPP+Hi764jeFCeRSLjLqqKiovfee482TKytrVetWsXvVMyampoNGzbY2tqKxeLevXvL5fKUlBRjLuq42dXcaimmY8wEcd5CSJrd5fOJG9w3T6PR0BaLh4fHE6/gqfffJwBk4EDepknSHeAcHR35OZyO8vJIbCyZMKFu6tm1a+TyZWKWnthHjx4BgIODA/dIbm6ura2tUCgMDQ010dh3cXEx8DpXkZtdbcyiMk/ETRA3bP4mnyGkjh8/TsfTPD09z5w5Qze4p9kTCASBgYH1NrjXUU1NzdixYwHAx8fnies+XbtGLCyIUEjOnzf0x2hAo9HQ+7nMOhpBm9SvvVb3rY8PASBXr5qhZKVSCQDOzs7aD37//fe83zrzxEKNtHz5ctBapNAU6ATxNWvWGPZy/kNICMnKyqJ7+tKBIwCwt7ePiIgw8p7g4uJi2ok6YcKE5q9DXnnlAQB55x1jSmsE7Seo13VkWt9/TwAINwuxRw8CQB5PyDKphw8fgtYN1qazb9++tWvX0mzTQt3d3Xk8PnfD+5tvvsnjYTnGTxA3SQgJISqV6tVXX3VycrK3t1coFHzdZpGRkUFPs2+99VZTz/nvf/8rkUgmTfqS91ugaPeXWe9v3LGDAPw18ZxOLNBtIM5I9CbSjh07mrqgOXPmAMC2bdvI46UVvLy8+C2Cu+HdmF7cphg/QdxUa8KKxeK5c+fu3bt33LhxPO7v2blz54MHDwYEBGzbtq1bt260paGttLR06dKllZWVr7zS9vHYB2/o0FNeXh7Px21GvbXS6MYSZlk6TaVSgVn2VKPbb9EJWLRQ3heY7tWrV2RkZERExLvvvjtixAjak98ouiZAMzv4ZmVlFRcXcwPIWVlZu3fvFovFdJcLw5jwV0zfsvn5+fweduDAgbt37w4JCVm5cqWnp+eMGTO0/3Xt2rXZ2dmDBg2i3dP8MtFP1Jx662ebcf1C7WyYlHbwTJf8RYsWHTly5Jdffpk9e/aRI0e44TEA+Pjjjw8dOpSXl5eXl1deXv7EQxUUFHBbO3322Wc1NTUzZswwZmHOpy+EABAcHLxhw4YlS5a89dZbHTp0oCvBAUBaWtpXX30lEomioqK0Z5/xxcOjY6dO3UpLRbwfuUn1Tn1mDKGJTkrNF2S65AsEgq1bt/r5+R07dmzLli3vvPMO90/37t379ddf6dd0+95mdvD19PTk5s0VFRV99913AoHgH//4h1GV47FxXE9NTY1AIBCLxcbM/GwGvX/KycmJm8lB02i62zf/9S8CQB6vmWAWn39OAMiSJXXf2tsTAGKWTQHoTdV9+/Y1dUEvv/wyAOzfv58QcvnyZZMWSm9Stba21p79k5aWdu7cuZs3b+rbc0HnDwcHBxtZKxOeCS0sLBwcHGhjmu5cw6+NGzdmZmbu378/KCgoOTn52LFjp06dcnV1/ec//8l7WZSbGwCAOVuj9U992Bw1zpQpU8LCwnbt2vV///d/v/76Ky2U3iPalIqKivz8/NzcXKVSqVQqc3Nz8/PzlUplXl7e+fPnAWDZsmVG1sq0l91ubm6PHj3Kz883RQiFQuF//vOfF154ITk5OSgoiO4K8Omnn2rf4cIvunaROftlGF4TtrLmKOff//53YmLixYsXP/roo7Vr11ZWVjbsg6nXGdPUobp06bJp0yY6l9gYpg2hq6trenp6Xl5e8x82BpNIJD/99NOwYcNo28nf35/2F5sIDaE5z4S/tW1bEhDg7uxM70hPHT68jUbTyyz7nJk5hPTsZ4ZC7e3td+zY8cILL2zYsOGjjz7SaDTNP18ikbi4uLi7u7u6ujo7O9MvXFxcXF1dO3TowK0VYAyThxBM3J3o7u6+cePG0NBQoVDYrVs37V4v3pk/hPuVyvUJCR8FBvoAqNXqvqdPi0QitSl/Rg49KTEZojB1oQ4ODiKRyMbGprKy0srKSrvfpWFnTPv27U36poJWEEJCyJdffqlWq0UiUUxMzMCBA+ni+abAXRMSAmYJwt/eoGa7SKNaa3O0rKxs2rRpKpUqJCRky5Yt3E3kDPHfj6+NhpBOCDSRXbt2JSQkuLm5ffvttwKBYPHixT///LOJyrKyAjs7qK6GkhITlVBfw06L1hpCszVH58+fn56e7ufnR0ezTFeQ7swRQtNNMSkpKaGTZjZs2PDmm2+uWbOmtrZ2+vTpFy5cMFGJZu6b0W4TMglhK2uOfv311z/88IOtrW1sbCydyNYSmCOEpmuOfvDBBzk5OSNGjKDzZuRy+ezZsysqKkJCQujUR96Z+bKwYVPNDKmgmAxRmLTQ1NTU999/HwC2bNni7e1tiiIM8xSH8I8//vjmm2/EYvGmTZvopbNAIPj222/HjRuXk5MzadIkenMav155BSIiwMWF9wM3zsxNtYZFMxknNEWhxcXFU6dOraysXLRoEV1OvuV4WjtmCCELFy5Uq9VLlizp06cP97iFhcXevXtHjhz5+++/T5ky5ejRo9qLcxnPiGm6hjDD5OammK24hk1u3s/2hJC33nrr7t27gwYNojvPtihP65lwx44dZ86ccXd3X7NmTb1/srOzO3z4sKenZ0JCwvz583ksdMsWoNPCTTA5vHHmnE1ST8PW76NHj8aOHWvAnuzN27VrV3x8vLu7O5isOSr48suX8/I82rf/3//+p72ATQth2hA6ODhYWlr++eefVVVVPB62pKRk1apVAPD555/TvRDq6dChw88//9y2bdvt27fT7daMl5UFAJCXV/eFedA3ZXp6+pUrV44dOwZMz4RffPHFyZMnAwICwsLCcnNz+SpoxIgRgYGB9P5vk5x+z58HmWxmUtLtqChufaOWxci5p09E17Hkd+OBBQsWAMDIkSObXwXo0KFDYrFYIBAYszpodTWJjSWBgcTamnz22d/2tPjiC5KYaPCBdXLgwAG6suBzzz0HAL6+vvxuCNmUoqIiOhv++eefL3y8r+gTlwk1Ht3mNjw8nLcjFhXV3QnNTYJveUweQrpvwW/87VV06dIlkUgkFot12YwtKioKACwsLI4fP65vQdnZ5IMPiJtb3Qr5jo5kyZK/9rRITSViMREIyKxZJtmaPicnJzw8nLYG7ezspk6d6uTkBACWlparV6/WcfdJA1RXV3/++ee0LLpphLOzc3R0NHcrTFZWFrdMqJ+fXyJ/n0Px8fGdO3d2d3e3sLCgS4wau7mQRkNCQggAGTzYPKtjGcbkIZw4cSIAaG8bYgyNRjNs2DAAWLp0qY4vobc829vb674IbEoKCQsjFhZ18evZkygUpKysbmMZuqdFdTWJjKzbFdvBgSgURP/FqxrX1KLXhYWFUqmU3ifp6elpisW/4+Li6CkXAMaOHbt//3765wOA/v37J2stY378+PGePXsCgEAgoK1TY8q9fPkytxqYu7s7dy+onZ3dzJkzDx8+bMCio4QQ8umndR+f5toXzTAmDyGdUW3AssSN2rp1K/07PXHBNU5tbe3UqVMBoHPnzs2/V8rLy3/44XyfPn9tDvPaa+T06eYOfucOCQ6ue36fPuTsWd1/lMarGhsb26lTJ/oWDAwMbPjBkZKSwm1JPXbs2OvXrxtV5GPJycl05UwA6Nmzp/ZaLHFxcbRKdOcm5eOllOn+hHQZSwcHB8NWAX7w4EF4eDidueLo6BgZGVlZWfngwQOFQuHv789N2nR0dAwLC4uLi9OjiORk0qYNEQjI/v361srMTB7CpUuXAsD8+fONb0EVFRXRfad2796t1wsrKiro+XPAgAGNtnDu3Lkjk8natWtnb+9gY1Pm6kpkMqL7ZWxcXN11h0BAwsIM3IE0Pj6eG2upt+h1PWq1etOmTfSOLSsrq40bzxjzq711K4N+SAFA+/btv/3224YLUpaXl8vlctqv6OTkpFAouNbpnTt3goOD6cv79OlzVufPobKyssjISHqFaWFhER4e3nC1snv37ikUCm4jCrFQWOPjQ8LDSZPPIZcAAAhySURBVGLiE/aULCysW/tZJtOxPgyZPIQHDx6kXQt0WeXw8PCYmBjD+mnoeMOoUaMMWJVZqVTSrUtefPFF7k2m0WiOHj06efJkrv0zZMiQPXtuGXD5UFFBPvigrnXar1/FN998o/vaqteuXePex15eXlFRUbqsRUBbp126eFtaVnXtSh7vGqyHwkIikxFf33KhUGxtbS2TyZpfmfPGjRt0/x/6MXFea1HXuLg42vFIW6d5zX4OqVSqqKgoOiYBAMHBwbdv326+qr///vvKlSv/SbcWof916UJWrCBN9Qv8+98EgIwYYc41yw1m8hASQrZv396/f/96k2W7d+8+a9as6OjotLQ0XUKVkpIiEonatGmTlpZmWDVu375NT6SLFy+mW0FxN4PRraB0/xRvyq1bJCiI9Ov3DwDo16/fE3cparQxpleJSUllXPt58uS6TSueqLKSREbWrZUhEpGVKw81tdN1Q3FxcXSZo3r7ilZUVKxZs4aONERERDT18vj4eG4HriFDhujdr3P1KpHL/7anZO/eRC4nDXdo+v57Ys4VYo1gjhBSZWVliYmJkZGRwcHBjn9fjdDOzi4wMFAul9MdeRq+tra2dujQoQAgM6J1kZGRsW3bNtqm4ibvenl5rV+/3uBlWxsVFxdH195q5rRAG2O0+5E2xpo/ezSjtpbExJB27QgAkUiIXE6aCbJGQ2Jj/3oPBwYSAxbULisrk8vldCpSvdbprVu3pk+fzo1qaPvtt98CAgLor71Hjx6xsbGG7zNRW0sSEsj8+cTZ+a80rlxptj3k+GW+EGrT3nKs3vipWCxuuFEuHWnw9PQ0ZhFhOr4fEhISEhJiYWHh6+u7c+dOXnYUaqiiokIul9PTgqOjo0Kh4FqntbW1MTEx2o2xW7duGV9iTg4JCyMCAQEgzz1HDh5s5DlJSWT48L/OH40+R3c3btygW5oDwKBBgy5cuNDUMzMzM+k22jS0kZGRVVVVRpXNUatJYiKRSomzM3n7bXPuIccjNiGs5/79+z/88MOCBQv8/Py0W60CgaBnz54zZsyg/fVGLp9ML00PHjxICElKSgLTr/F+69atoKAg+rP069cvKSkpPj6e7ihOG2Nnzpzht8TTp8nzz9fFTHvROZWKvPRS3eOenmT7dt72yYmLi/Py8qKt0/Dw8Hq91o8ePZLJZPTDqE2bNlKpVMfdBfVWWclkDzletIgQaistLeVardySTb6+vuPGjTPmsDU1NdbW1gKBgLaU6KaqISEhPNW6OXv37qUXUVyHe/fu3fft22ei4lQqolAQOzvyzjt1M3vo/6dPJzY2RCYjPO1I8Bft1qm7uzvd9b7hNtp3dbxgNRijPeSM1+JCqE2lUl24cGHjxo2XLl0ysgFDN6/y8fGh386bNw8ANmzYwEc1n4x28YeGhvr4+PDZGGtaQQHZvJlMnEgyM+tC+PChgWMnOkpNTeXWHfPz8+NGO1944YWLFy+asGBObi55/fW6PeSeKi06hDz67LPPQGtSIu2gS0pKMnM1jNnyUl+bN/9tpqt5xMbGurm5ubm50UsJU2zA0vqY6b4Y5s6dOwcAdMO24uLitLQ0S0tLOq/VnEy9blc9Hh5QXm6+FXEAIDQ0dPz48Xfv3i0oKBgzZozZbrx6qj0rvyO62QANYVJSkkajGTx4cAu8tYx38+bB4wF2M7G3t+/Xr59Zi3zKPRMhvH37dm5urpubG52drH1WbMW4+5kfPGBaD/Qkpr2pt4U4e/YsAHATlJ+REG7ZAgcPAgA8nhKHWqhn4kz4emrq+KFDcyZMAACVSvXbb78JBILhw4ezrhdCAM9ICCVHj0quX/f48ksAEF65kt29++/e3vS+1dYtOhqOHzfrehzIAM9Ac7SoCG7cAIkE+vYFAFFiokNq6iiT7dzUorz9NigU4OXFuh6oWc9ACM+dA40GhgwBuvbhuXMAAK39ghA9RZ6B5ihN3eNeGUhKAngmQsj1jtLuGdRiPQNnwrNnAR6n7tYtyM0FNzd4vJIKQsy19hBWV8PFiyAUwtChAA3Oigi1AK09hCkpUFUFvr5Ae2LwghC1PK09hPVShyFELU9rD6GtLfTuXZe6wkJIT+fGKhBqIQSEENZ1MJf0dAgPBxsb+OUX1lVB6C+tPYS5uSCVgq0t+PlBRATr2iDUiNbeHN26FRYsgG3b4MgRUKlY1wahRrT2EGZlQceOAACurlBYyLo2CDWitYfQywvu3QMAUCrB2ZlxZRBqTGu/JszLg4gIsLeHvn3hnXdY1wahRrT2ECLU4rX25ihCLR6GECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWLs/wF4qmiGe4rccQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -242,7 +263,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAJS0lEQVR4nO3dXZbitgKFUTvrzqgz\n/xGkxsR9cJomBowBS0eS9155qLAooMFfSf7Bni+XywTk/JV+AXB2IoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE2Ip5nud5Tr8KAv6XfgFM0zTN\n83y5XJYflluW/+UMZh921lLd/afw7HbGI8Kk6wC4cYflBx/TwEQY87LA1Z2XH3xe4xFhwDdTUNPU\n8Yiwtp1TUNPU8xBhVfunoDtHPDUOQISVfDaN3N+YaWq/RFjDW9tgnj3CJMVBibC47wu8fajlh40H\nPPDpqMMRMwUdPi5dH8qINxIRllJ0RLo9xk2KvRNhEXXmhFIcg/WHg7WQhNXCvhgJj2Tp5wO+Twhh\nIizL93R5SYQQJsIjXS4XQx/vEiGEiRDCRFhWZIJqVtwXEUKYCCFMhAczFeRdIoQwEUKYCCFMhBAm\nwjHZPtQRER5PALxFhMVVa1L5nfLN+hG0cE4NPibC7jmnRu9MR/v2rEBldsRI2CuX+B2GCItYNsaU\nK8EAOBLT0RqODUOBgzES9mRjqqnAfomwoGPD2BgAJyuBPRNhEddgjirEFHRgPsKDPazumxRNQYfn\nUzzSdhUfXF9+4wEVOAwf5GH2V7H/2tdWAs9AhMf4YFz6rCUD4HhO84kuU8EC/9gvx6W3fl2BQxrx\nQ71+o+f+n3Z0ikdVsWd1UYGjGu5znec/jd3+vLrPdECKJao4fOMq7TvlfsJlaf4uxULj0v3eRQPg\n8E4Z4eImxfnN3QZT4XHp2B39NO4EEW6PeJfLNE2Xr3cblOBcNScxXISXy3rDzO3k8/b29e/9GXym\nJzWaGVLCcBFOTwa92xufbz69NnY/MCqQQs69YL1aIbydDabeKPEPb8SRcL9XK4SlvyAP09kj/O3Z\n1kgFUoEI/7BjgAgRrq02k0JpTvT02OVyMRhShwhbZ5f98ES4RQBUIEIIEyGEiRDCRPiSbaRtGW8t\nXYQdsH1oMc/zcgzTYO+GCOnDkt+y83awDkVI664D4O2NI3XosDWatnEM/bXD3o9tMhK+cPtN/dO6\nfQeWnyu8Jw8HwJVlgtr7kChCdqm8nN+uAb7Ue4ci7EN8ObufEcxzkTL3DID34u/PN0TIU9tL9eVy\n/FUF3hoA715Prx2KkMfuT1/+cvX4m7HxswFwpdMORfhaO9veqi1hzy4gsP1WLGPjkuJbr/SbAfDu\nNfTXoXOo9OHw628/f6JpOujvzu9z2b24ys32HT596p4W7J5e6znVvETMswHw64d9/GqLptJRh928\n0HM6/Prbm89VduK9usrNVH4ney+78kXYrsOvv735CJVWfeuH0f6Q2PrrO62a19/+4Le+Ub+Kxjt0\n7GhzNtagHt5+9cFMr/Gl8yiNn0m93VfWiD1X/j306V58IjvXAxu//nbkqZvt0Ej42n17B27H/+/D\nvl5KNq4btf9uvWyxOAkRvrbsgL5dYo+43vbau3+n91xQcXo0R212QCiq5X+1CB/bM/M8KsVvxqXV\niPfscVxmo2Xt/nkIergeuB3bxyke/he6l9JqDk0tD4NTLyNhzQVr47DJjWMSb0INb5zcOU2lHR1E\nmD1s8n5VcMPvi47ueqlF/zzv3H5DC5oepns/bPLZcCSMqeIUsfG56NTySPjsvSsx3Sq0A/DhcKTA\nRbUd6P/8U/oZvtVohHvO8HO95/TdMl1nUbg9NVh3X3ijqBYjfKuKL4eXmnMVo199Pz/zr1+tv+1t\nRVj5sMn9d4ZyGopw+zSv05tHh2zcbfu5qKb0amEXw+DUToTVDpvc+VxFNX5QP5U1EWHNwyY37l+O\n6tgQjtBhkxTSy1x0ykZ41OCwZ5pqx0CbzBGm4BEz5d76jeNUgh/26tkteVfeisxI6LDJFl8TIbUj\nrBnG6lmyMx/V8UzV0+AfeLbz7m1/M+pMrK7XGwnPPvW/P0kGN1YdnmpRiW0dPXuT3Hh2oOLV6psQ\nb+17+PmZ3/2VymKnGDjjSe9WI6GB8VNLV1d7Arv9ldaCFGHVpxdhadfYNkr7+Zl//T1NUytXvTtX\nhMHnvT69Dst5+yiZ20lv7oOot3V0tRHMNjFK+PmZV5PVLZfLn/++uc7wd6oOCy0MhkbCM1iGxPY3\nySya+BbFiWycy42jLfm1vElmYSSke9dVwZdbZVrbJLMwEjKO+6HvwR2W+trYJLM4XYS+O8M0Tes1\n89WN97eUlIxQD3zvgC/vrpbAypekrHwAN5TW0Rfqr6pGaN/gv5ZdUt4Kpmk64TphXvXZzth+/d39\nlzVrr5LZSyHCg5U4/qHuhpmzrBM6Yo43XI9lq+IUEdoGO6whphLhdcLSeylaPNfT7YktmnphA+iz\nyZE3zLQ7ALb5qggZNsJnBbY4NnJutdcJ62wU2SjQ6d6GMsRHmR8Jj01iY6Brd3bKUfr8fPMRHsgU\nlB6NE+H2FLT+64GdMvsJD18tVCD9Sl6VaTpoiviwNFNQehEeKPZcX/7lrzd4QWzYr5WF9YMaTUEZ\n49ij5pbXndNIU1CG+T5Kc1tHby8xPz0vyhSUYTQX4WJ1td3p1fimQPrVaIRXL699bQpK7zobQFYD\nowHw7GyYCTIAMoxeI4RhnOL0FtAyEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDAR\nQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggT\nIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQw\nEUKYCCFMhBAmQggTIYSJEMJECGH/B96vArbLKGxJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXhTVf4/8E+W7ktKW0o3wLIWUAqUYqE4pVCWgbKItohYnAcxjM+MRR2/XkfGKaMjc4UHH3BmnAkIDov+eAoqwyJoO9iyiEBYCxToAi3d6b4lpUnO749TQkwXkjS555Z+Xn/49LlJ7/lU8s6995x7z5EQQgAhxI6UdQEI9XUYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsSYnHUBfZROpzt9+nR+fv7YsWMnTJjAuhzEEoaQgXv37i1duvT48eMymUyr1UZGRiqVymXLlnl4eLAuDTEgIYSwrqFvOXnyZFJSUllZWVBQUGxs7A8//FBTUwMAPj4+y5cv/+1vfztq1CjWNSJhESQglUrl5OQEAL/61a/KysoIIVqtNi0tLT4+3vgvEhkZqVKpWlpaWBeLBIIhFEhjY+OSJUsAQCKRpKSk3L9/3+wN169f5ziuX79+NIr9+vVLSUnJz89nUi0SEoZQCDdv3nzyyScBwMvLa+/evd28s6GhQaVSjR8/nkZRKpXGx8enpaW1tbUJVi0SGIbQ4fbv369QKAAgPDz82rVrFv6WWq1WKpXu7u40jUFBQRzHFRYWOrRUxASG0IHa2to4jpNIJADw4osvNjU1dfq2zMxMjUbT6Ut1dXUqlYoeRU0PjDqdzpGFI0FhCB2loqJi+vTpACCXy3me7+ptZWVlzs7OCoVCqVRmZ2d39Ta1Wp2cnEw7dQBg6NChPM9XVlY6pnYkKAyhQxw/fjwoKAgAQkJCfvrpp27eeenSpaioKBotiUQyY8aMvXv3duy2ocrLy3meDwsLo+93dnZOTExMT083GAyO+TuQEDCE9mcch4iNjaXjEI9ErwA9PT1pugIDAzmOKygo6PTNer0+PT09MTFRLm+/12LkyJE8z1dXV9v170ACwRDaU2NjY1JSknEcwtouzfr6epVKFRERYWHXaGFh4Zo1a+ghFwA8PDxWr15tj78DCQpDaDc3btwYM2YMAHh7e+/bt68nu6IHRjc3N5qukJAQjuOKioo6fbNOp0tPT09ISJBIJJMmTdqxY0dPmkbCwxDax7fffkvHIUaNGnX9+nW77LO2tlalUo0ePZpGUSaTJSQkdHMFuG3bNgCIi4uzS+tIMBjCnqLjEDQny5Yt62ocwmYGg4FeARq7RocPH87z/L1798zemZubCwCDBg2ybwHI0TCEPVJSUhITEwMALi4umzZtcmhbxcXFf/nLX0JDQ2kU3dzcvvzyS9M3tLW1OTk5SaVSrVbr0EqQfWEIbZeVlUU7RUJDQ7sfh7Aj067Rq1evmr06ZMgQAMjJyRGmGGQXGEJbGAyGTZs20fPDadOmlZeXC19DSUlJx40zZ84EgEOHDglfD7IZTm9hNULIkiVL3njjDZ1O995772VkZAwYMED4MoKDgztuHDp0KADk5+cLXg6yHT5Zb7W8vLympiY3N7fdu3cvXryYdTm/gCHsjfBIaLUrV64cOXJk6tSpYksgAAwbNgwwhL0NhtBq9GhTUlLCupBO0Nry8vJYF4KsgHPMWK2pqcnLy8vV1bW5uVkqFde3WEtLi6enp7Ozc3Nzs0wmY10Osoi4PkO9gqenZ0BAgFarLSsrM25ctGhRYGDg3bt3GRYGAO7u7oGBga2treI8UKNOYQht0fGs7969exUVFWK4GMMz0l4HQ2iLjp2Q4umWFE8lyEIYQltgCJEdYQht0XEkQDwfffFUgiyEIbRFxw+6eAboxFMJshCG0BYdOz/oFvowEVvYMdPrYAhtERAQ4O3tXVdXR5eRAID+/fsrFIqGhobq6mq2tfn5+fn4+DQ2Nt67d49tJchCGEIb0YeGTM/66BYxHILwsrB3wRDaqKszUjF89PGMtHfBENoIRymQvWAIbYQhRPaCIbRRx5EA8YwNYAh7Fwyhjbo6EorhSkw8XwfIEvgok40MBoO7u/v9+/cbGxvpWvMGg8HDw0Or1TY2NhontGeCEOLh4aHRaBoaGry8vBhWgiyBR0IbSaXSJ554ghBy+/Zt0y0AUFBQwLIyAIlEIpJKkCUwhLYTQ98MIWTDhg0dz4HxjLQXwRDaruNFoMAf/bq6ukWLFr3zzjtJSUkGg6H72pBo4WxrtmN7JLx8+fJzzz2Xn5/v6+u7bt06s4k2qqqqZDJZbW2tAJWgHsIjoe0YhnD37t1TpkzJz88fP378uXPn5syZY3xJq9W++uqru3fvVigUb7/9tqMrQT2HIbRdx5PP4cOHjx49mt5E6iCtra2rV69OTk5uaWlJTk4+deqUaXN3796dNm3a559/7urqun79ej8/P8dVguyG5fTfvZxWq5VKpXK5vKvVre3u7t270dHRAODq6rplyxazV//3v/8FBAQAwODBg8+ePStMSajnMIQ9MnDgQADIy8sToK1jx47R+fYHDRp05swZ05cMBgPP8/SycN68eTU1NQLUg+wFQ9gjcXFxAPD99987tBWaMTqP6Ny5c83Wpq+urv71r38NADKZLDU1Va/XO7QYZHcYwh5ZuXIlAPzzn/90XBP19fXPPvssAEgkEo7jzDJ24cIFek3o7+/v6O8C5CAYwh557rnnJBLJiBEjDh065IhD0MWLF2mPq5+f39GjR81e3bFjh7u7OwBERkbevn3b7q0jYWAIbaTRaOhhkN44SrtD/vrXv5aVldmriZ07d9KMTZgwoaCgwPQlOg5B21Uqla2trfZqFAkPQ2iLoqKiSZMm0V7KTz/9VKVSjRkzhkZCJpMlJCSkp6cbDAab96/ValNSUugO6WiE6auFhYXG1rdt29bjvwYxhiG02nfffefr6wsAw4YNu3z5Mt1oMBjoKtZ0+V4AGD58OM/z9+7ds3b/RUVFTz/9NM3Y1q1bzV49fPhwx9ZRr4YhtILpSEBCQkKnIwFlZWU8z9OHGADAxcUlMTExPT3d8lbOnDnj4uIyaNAgs7E+S1pHvVHvDKFOR06cELjNqqoqeneYJSMBer2eHhiN65OFh4fzPG9hcg4fPlxbW2tz66h36SUhfP99EhdHYmPJ+vWEELJ/PwEgI0cSnidVVQK0f+HChbCwMBtGAoqLi3meDw0NpVH08vJSKpUXLlywqvXz588bW//hhx+srB2JXW8I4cmTJCaG6PWkrY2MG0cuXSK7dpGgIAJAAIiHB3nlFXLunOPa37Fjh5ubW09GAlpbW9PS0uLj4yUSCU1jZGSkSqVqamqyvPWJEyfeuXPHhtaRyPWGEH7yCfnTn9p/Xr2a0L4KnY6kp5OEBCKRtKcxMpKoVKSx0Y4tazQa+44E3Lx5k+M4433VCoVCqVReuXKlq9bpKAiOQzzeekMIN24ka9a0/7x6Ndm+/Rev5uYSjiP9+7dH0dubKJXk0qWeN1tYWBgVFeWIkQCtVksPjMbb6OmBUaPRdGzdzc1tu9mfjB4vvSGEJ0+SyZPbT0fHjyfXr3fyHo2G7NpFYmLaowhAnnnmwr59Wq3WtjaNIwHDhw933EjAtWvXUlJSjLNCDRgwgOO4goKCQ4cO9evXj7be1XESPTZ6QwgJIWvXtnfMrFxJli8nP/3U5TtzcgjHEV9fg0Lh7+7u4+OjVCqvXbtmeVOmIwHz588366V0hPr6+n/+859PPfUUjaJUKqWXjs8++2x9fb2jW0fM9ZIQGsXFtR/oIiLIv/5FGho6f1tjY97u3ePHjzd+rGfNmvXNN9+0tbV1v/uqqqrZs2ezGglQq9VKpdLFxcXHx2f16tU9uecG9SK9LYTFxYTnSWhoexS9vIhSSbru8acfa+PtnUFBQRzHddXHKJKRgEWLFgHAV199xaoAJLDeFkKqtZWkpZH4ePOu0S56/Ovq6lQqlen5Xnx8fFpamk6nM75HPCMB77zzDgB8+OGHDGtAQuqdITS6eZNwHPHza4+iQkGUSpKd3el7DQbDjz/+uGTJEmdnZ5rGIUOGHDhwQGwjASqVCgB+85vfsC0DCaaXh5Bqbibbt5NJk2gU9QEBc+Lj09LSupr6paKigud5+izs3r17jSMBX3zxhbB1dy4jIwMAnnnmGdaFIIE8FiE0On+evPpq5syZ9LAWGBj43nvvdXVuqdfrP/roIxGOBNy5cwcAgoODWReCBPJ4hZAQQkhDQ4NKpYqIiDC7AjTrGs3MzKQjAYsXLxbVSIBer3dxcZFIJJbc1IYeA49hCI1o1yh9OJ0eWziOKyoqoq/+4Q9/8PX1ff3110U4EjBixAgAyO7i4hY9Zh7nyX/pvWAlJSX0yffS0tKPP/44LCxs5syZBw8ezM7OrqmpmT17tvGmavHA5Vz6lMc5hBS9aSY7Ozs9Pf25556TSqUZGRkLFizw9vYGsS6Zgsu59CmPfwgpiUQSHx+/b9++O3fufPDBBwsXLqRTWYvzaIPrXfcpfW5VpuDg4Pfffx8A9u/fD2L9oGMI+5S+ciTsSMzXXRjCPqXvhnDIkCESieT27dt6vZ51LeaGDBkilUoLCwvb2tpY12Lu558hIaH956lT4epVptU8FvpuCN3d3QMDA+/fv19cXMy6FnMuLi4hISE6na6oqIh1Lcjh+m4IAc9IbXX2LMyZA3PmwLVrrEt5LPTpEIp5JEDMXxCTJsHRo3D0KDyYdhz1CIZQpB90MdcmcrW1tVu3bs3MzKypqWFdi0X63BCFKTF/0MV8lBazvXv3/v73v6+srHR1dQ0NDT148GB4eDjroh4Bj4SiDqEIa4uOhkOH2n8+eRKefJJpNSZu3bo1Y8aMpKSkysrKKVOmDB06NC8vLyYm5tixY6xLexTWN6+yVF3dPG5czbBhAq04b5X6+noAcHd3F9v95adPEycnQldqe+65rp6gFtT9+/d5nnd1dQUAX19flUplMBiamproRCFyudyhq7j2XJ8OISGkXz8CQCoqWNfRGX9/fwAoKSlhXcgvnD5NoqPJihWEiCOEWVlZo0aNAgCJRJKcnGy6DJbBYEhNTaUHm5SUFNEu4NGnT0cBYMgQAADxnfQBiPiM9Mknobqa/f+0mpqaVatWTZs2LScnZ8SIERkZGTt37qTfXJREIlm7du22bducnZ0//fTThISEhoYGhgV3pa+HcNgwAAyhlQiBNWvgww+BPgT25pswcybs3QuC3XpECNm5c+fIkSO3bNni6uqampp65cqV6dOnd/rmFStWHDt2rH///keOHHnmmWdEeP9DXw/h0KEAAOLsgxTbUGFTE3AcaDQAAFFRUFsLd++CTgdffQUZGZCUBOHhsGEDVFU5toxbt27Fx8e//PLLVVVVcXFxFy9eXLt2rYuLSze/EhMTc/r06fDw8CtXrkRHR587d86xJVqL9fkwY9u2EQDy0kus6+jMjh07AGDp0qWsCyGEkJwcMno0ASALFpBXXiGEkLNnCQDJzibl5YTnSVhY+5R3zs4kMZGkpxO79yi1tLSkpqbSyfICAwN37Nhh1a/X1NTQo6Wrq+uXX35p5+J6oK+HMDOTAJDJk1nX0ZmTJ08CQFRUFOtCyP79RKEgACQ8nHS1pIBeT9LTSWIikcvb00jXj6yutk8N//vf/+isH1KpVKlU2jYtUFtb2+9+9zsAkEgkqampIul57ushvHuXAJCAANZ1dKasrAwAfH19GdbQ1kY4rn2O5aVLu5pd+RdKSgjPk4ED26Po6koSE8nJk7bXUFpampycTE/cIiIiTp8+bfu+CCGEbNq0ia6gvGTJkpaWlh7uref6eggNBuLmRgCImOZbe8jLywsAqu11NLFSZSWZMYMAELmc8Lx1v6vTkQMHHk6SHhV1yPJ1UY30er1KpaITkbi7u/M8/8jVRCx05MgRutvJkydXsB6h6ushJKT9UufiRdZ1dHDixAlvb++AgICwsDCe501HwARw/Hj7asghIeTUKdv3c/MmeestEhu7hB7KfHx8UlJSLFkn69KlS08//TT9rYSEhMLCQtuL6MyVK1cGDx4MAGFhYVat22V3GEIyfz4BIPv2sa7jlz755BO5XA4A9AubdicsX778p26WhbMflYo4OREAEhtLysrssMOu1kXt9GywubmZ4zh6xhgSErJ37147VNCZ0tLSSZMmAYCXl9ehQ4cc1MojYQjJm28SAPLxx6zreKCxsXHJkiW08yAlJUWr1aanpycmJtIPJQCEh4fzPF9TU+OY1klSEgEgEglJSSFdrCRgu5ycHI7j6MTnxgNjXl6e8Q0HDhwYNGgQAMjl8pSUlIauVr+zE41G8+KLLwKATCbbvHmzQ9vqCoaQ/OMfBIAolazrIIQQcuPGjTFjxtDvZrMjQHFxMc/zoaGh9OPr5eWlVCovdL0snA2uXbu2ePFOurLO/v123LE5Oku66QKS8fHx//73v5999lm6ZcKECefOnXNgBSbo3W10+lmlUmmvy07LYQhJRQW5fp3Yuq62PX377bcKhYIe6653uio4Ia2trfS8zjhnsQ0dHp3as2cPXbj7hRfO3rrVw51ZynQBSbo0nY+Pz2effSb8fZ579uyhBcyaNauurk7Ipvt6CEXyTEBbWxvHcTRXL774oiWJunnzJsdxfn5+NIoKhUKpVNq2rA1tne5n2bJlwq+BUVNT87e//U0mk8nlcoaLQ/70008DBgwAgCeffLKAfiYEgSFk/0xARUUFvZNDLpfzVg4FdNXhodFoLG89Li7Ottbta+zYsQCQlZXFsIaCgoLRo0cDgJ+fn2CVYAjJypVk4UKSl8cmhMePHw8KCgKA0NDQbno+58+fn5iYmJ6e3tUbrl27lpKSQs8nAWDAgAEcxz3y6zwrK8uS1oXx+uuvA8AHH3zAtoy6urrZs2fT7ugzZ84I0CKGkLzyCjl7lrz8Mnn+eZKdTV57jSiVAg0bqlQqJycnAIiNjS0vL+/qbSUlJcau0cjIyK1bt3Z1xkg7PMaNG2fa4dFxWThCiMFg2LRpE2192rRp3bQumH379gHAjBkzWBdCdDrdggULfH19Dx8+LEBzfTeEDQ3ko4/IqVPttyMvWECefpqcPk1cXdvvt4qJIbt2EYtP66xtvSExMdE4DvHIHrnc3FyO4/r370/T5e3trVQqL1261NX7O10Wzjjebdo6x3E6nc6ef5utKisrJRKJu7s78xXLCSHz5s0DgA0bNgjQVh8N4dWrJDycAJBXXzV/JuDGDcJxxNe3PYo+PkSpJFev2rP1nJwceuHh7e29z5q7BIxXgGZdo83NzZ2+v7a2li4LR98sk8ni4+M/++wzY+tff/21nf4m+6CFnerJHTr2UFhYKJPJXFxcKisrBWiuL4bw22+JtzcBIKNGkS4GAohGQ9LSSExMexTpgTEtzQ6D11999RXtkY+IiMjNzbVtJzdu3OA4ztfX1zjkrVQqu7n36sSJE4mJifTkk3bER0REmA6Ri8Rrr70GAOvWrWNbxpo1awDgJaGecOtbIaTPBNBQLVtm0TMBajVRKomHR/tvBQYSjiO3b9vW+sORgJdeeqmrw5flNBpNWlpaTEwM3Sdd/i0tLe1+F18VpaWlH374Ic/z69atE8PTAx3t2bMHAGbPns2whra2tuDgYAA4ceKEMC0KHUKG//YlJe1HNhcXsmmTdb9bX09UKjJ2bHsUp0693VWHR1eKi4unTJkCAC4uLpusbf5RTIe8ASAwMJDjuNu2fVUwVVZWJpFIPD09u/oeEUBaWhoAjB49WrCnDYULYVZWVnR0dHR0dDd37jqy9fZnAkJDSU+eR8vKIkuXkgkTfkc/7k888cS6dese2bWYlZUVGBhIRwJ6/jhcV2prazdv3kynHqNXgAsXLvzxxx8d1JyDjBw5EgB+/vlnVgXQMdt//OMfgrUoRAgNBsP69evpMwHGuUACAgI4jsvPz3d862TTpvZnAqZNI3bpiqcdHrQXAQCcnZ3pIF7H704mIwH0wEiv/VJTUwVo0Y6USiUAfMzohvrc3FzaQ1tbWytYow4PoVlveFNT044dO8zu3O3mMqbHrZPExPZnAjiO2LcrXq/X0+cbaMYAYPjw4aYP/jU0NDz//POsRgIqKip4nr97966Qjfbcl19+CQBz585l0vpbb70FAK+++qqQjTo2hKZ98Wa94WaXMUFBQRzH2fe+wezs7Oef/5QOMxw4YMcdmystLeV5nj4hSo/2iYmJ27dvN/7t33zzjQObf7yUlpbS/2nCj15qNBp6L65arRayXQeG0LQvvqve8Lq6OpVK9dRTT5kdGHv+D/Dll196eHhIJJLExHRhuuKNB0Z6dwsdKB8zZkxqauq2bduEqOBxQSdcFTgJ5MH0dsLPrOWQENrQF08PjHQ5AdqBkZqaatvkH3YfCbBcWVnZqlWrli5d+s4776xfvz41NZXOmBYRESFYDY+BFStWAMDGjRsFbnfy5MkAIPw3pv1D2JO++PLycp7nh9C56bvt8HBE6z1XVVUFAF5eXsYttbW1AODp6SmS2fV6BXpEWrBggZCNtrRcPn9+5KZNM4X81qbsHEIL++LnzZvXzT3+xvM62qEKACNHjuR5vqqqqvvWMzMzBRgJ6B6duMH0die6RQx3SPcWdKb6fv36Cflob2Hha2o1FBWlCNaikd1CaNoXHxcX181n7tKlS8YrwHnz5h08eLCrK8CSkhKe5+mMIwDg6ura1eM8lrfuaJGRkQBg+lhQVFSUGO6H7F1oL1c3d6jbl17fePGit1oNLS0Mnii1Twit7Yvv9B7/oqKiTt+s0+nS09MTEhLM7lpubGy0rXWHSkpKAoBdu3YZt7zwwgsAsHPnToZV9TrLly8HAMFmXqqs/JdaDTdvxgrTnBk7hDAnJ4fepWFtX3zHe/wTEhK6uQLs9HGeb7/91rbWHeSPf/wjAKxdu9a4hd4N3OsGzdnatm0bACxevFiY5q5fn6BWQ3X1V8I0Z6anIaQjAQAwbtw4m29/Mb3Hv+OQtxmNRrNr1y7jXcu09fHjxws5KUg3Pv/8cwBITk42btm+fTsALFu2jGFVvU5eXh4A+Pn5CXBZ2NR0Wq2GS5f8DQY2s33ZHkLTkYDk5OSe9ymVlZXxPP/EE0+YDnl3M6HDlStXFi9eLJPJQkNDLZ9SxdEyMzMBYMqUKcYtWVlZABAdHc2wqt6I9gVkO37Gkdu3X1arobiYc3RDXbExhMXFxXRQxe4jAWZD3tDtXLd37tyhd9vYsYAeunv3LgAEmCwxU1xcDAD9+/dnWFVvtGzZMnD8jdQ6Xe2FC+5qtUSrtfHZzp6zJYTGkYCBAwc67m73goKCd999l05BRwffVq1aZfa9qNfrXVxcJBKJ8LP0dcVgMNA7p41rdxkMBtoFJfBslr3dli1bACAxMdGhrZSXf6JWw61bcxzaSvesCyEdCaDDd3FxcQIsZ2M2123H7jL65Itt8206CL1l1LR7nXY+2Xe27MfezZs36TmFQ+9zuHp1tFoNtbWOnG/8UaxYLps+D/HGG2/o9XqO4zIyMgICAiz/ddsYb5q5du3am2++SXuuTYlwYXdaUp7JGtwiLFL8RowYERwcXFlZSdPoCI2Nx7Ta605OwQrFPAc1YQlLQ3j58uXIyMivv/5aoVB88803PM9LpYKudz9q1KhPPvnEx8fHbLvYFnaHziL34qRJf502bXRFBbuieqVnnnkGAGjPliPcu6cCgP79lRKJ3EFNWMLSIL333nt5eXkTJky4ePHiokWLHFqTVUR4kPlNRMR/J01aVllp3LKkX781mZmjL19mWFVvFBsbCwAHDhwoLS3VarV2339o6IagoDX+/ivtvmerWPQFcOzYsWPHjoWFhZ06dcr4oINIdDz3Yy5iwICIs2fBy+vhpqFDAQDEVGSvEBsbGxwc/N1334WEhACAh4eHr6+vr6+v3wP0Z/rfceP69++vkMv9ZDJfC49szs6DgoP/CgCVlf+orv6Pt3e8QpHg6TnF8oOTXVhUa0BAgFardXJyElsCQZRHQhg2DADAtCQaQlEV2RuMHj364sWLM2bMqK6urqmpaW5ubm5upoNAHW3dGjV+/Dn6s0ymkMt95XJ/mcxXLveTy32NP7i6jnJ1HXPnzm8AdIQYZDLvwYM/b2g42tJyvqXlfHn5x05Ogd7ev1Yofu3tPUsmUwjwZ0oIIY98k0aj8fDwcHJyamlpMQ7fiURrayu9aUaj0RjvuWGsrQ3c3IAQaGkBOqeOTgfu7qDXP9yCrNfc3EzTWP0A/bmmpqampub1112Cg6/qdDV6fTUh+q524uf3sr//ioqKzUOHfg0A1dU7vL1ny2SKpqZT9fUH6+r+e/9+IX2nRCJzcxunUCT4+Mx3d58AIHHQ32VRCAEgJCSktLT09u3bxjtaMjMzr169mpSUJEAfafcGDx5cVFSUm5tLO2lEISwM7tyBmzdhxIj2LUOHQkEB5ORAeDjTyvoEvb5ep6vS6ar1+hqdrsb0By+vab6+L+TnJzo5BXl5TVMo5srl/qa/q9Fcra//rqHhSFPTSUJ0dKNX69gRu6bA3LkwfTo8mJPFbiwcyqD9VBkZGcYt9KL5hx9+cMTIiVXoyl5Hjx5lXYiJ+HgCQL777uGWmTMJAGG3MDoyc/9+aXX1/7t2bWxzc+fjt3p9U13dgTt3lJcvh1R+8mAydrmcxMQQniddz3duLUsvQDuOBIjnYuzUtYIAAAp3SURBVEyEoxSd9MR0vFBEgtPpagCgru7b2tp9Tk5Bvr4veHvH19X9t9M3S6UeCsX8wYNVY8fe9Z37d/jwQ4iOBoMBTp2Cd9+FMWNgxAh44w344Qdobe1JVZaGsGPkxBNC8VTyUMeeGOybYU2nq7l82e/q1eGenjE1Nbvz8xfl5y/SaLLLyv6SnR1WWLiqtnavXt/Y2a9KZCPHw5/+BKdPQ0UF7N4NS5eCnx/k5sLmzTB7Nvj5wcKF0EWP0SNZOkbZcSRAPMcfDCGyhEZzBQDkcn+5PGDo0P0A0NKivnFjskTicv/+naqqLVVVW6RSV0/PaQrFXIVirovL0E724u8Py5bBsmVgMMDFi5CRAQcPwk8/wfffQ79+thVmXQg7HgnFMEAnnkoe6iqEoiqyj6EhdHMba9zS0nKZEJ2v75LAwD/W1x9qbMxobMxsaDja0HD07t0UF5chXl7xPj4J3t6zJJIOfdpSKURGQmQkcByUlsKlS/BgmWRrWRrCbq4JCSHGiSeYoJXQh3rZVvLQ0KEgkUBBARgMQO/vo1vu3AG9HkQ2zNNHaDTZAODm9lTHLW5uY9zcxgQGcjpdVWPjj/X1B+vrD7e2FrS2bqmq2jL+9XESD39ISIBnn4UHMx79QnAwBAfDn/8MJ0+CwQDz5sH//Z8VlVneh9Nx1jA6XXFZWZm9uolsRue8KCkpYV2IiQEDCAAxnTiHLknzYLlcJLCcnElqNTQ2Zhm33Lw5Xa2GurpO1sQ2GHSNjSeKi/+Y/3MskUgerlMZEUHefZccP07MFuQ6eZLExBC9nrS1kXHjiDVTVFlxe474+2bEfka6di18/jl4e7OqqG8zaDTXoPMj4diO75ZIZJ6eU0NC1g15OhPKy2HHDkhMBIUCLl8Gnodf/Qr69YP582HLFigtBQA4exbi4kAqBbkcYmPh3DnLK7NDCMXw0RfP18FDGzfCmTMQFfVwi1IJr7wCHR4EQQLQavMMhmZn50EyWXv3SVtbqU53Ty73dXYOfcQvBwTA8uWQlgaVlZCRAW+9BSNHQlMTHDoEq1bBwIGwcSMQAqb3vVhzxWFFCHGo0DrR0TBpEnh4wJ//DNOnw7RpsGED65r6ro69Mh23PJqzM8yYARs3wo0bUFAAKhUkJoK7O4wdC08/DceOgcEAOh0cPw7R0Zbv1YrHqMR/OiqGSsydOgXHjsHx42AwQFQUzJoFERGsa+qLOvbKtLRcMdtinbAwUCpBqYSWFnB2BrkcZs+G+HgwGGDFCniwVKslrA4hDhVax3ipIJW2XypgCFl4cNzrpGu0p7t+MIc1pKbatoPHqmMmNzeXdSEd9OBSAdlRW30uWNwrIzArQhgcHOzu7n7v3r2Ghga6JTAw0MPDo6qqqq6uzjHlWWrAgAFeXl51dXV0FSQR6cGlArKbpqbwSTcmJA9zdWl/hIUYdK2aWwBSN7cxbEsDq0IokUjCwsLA5NAnkUjoMmYFBQWOKM4qtBIxHJZ/ISam/VIhPt7aSwVkN9nZoNdLXL0k0vbrL8n1G+NjpeM+mi6V2nibix1Z9xi/SM5Ia2tr29raOq1NDOMl5lJT4dgxyMyE3/+edSl91ZUrAABjTc48L1+G5maZVIgH5x/JPiEU8qN/8eLFiRMnvv3224+sDaF22dkAAE891d0WdnrZkXDbtm1TpkwpKCg4c+aM2fRbdOkCDCHqRMcjYcct7FgXQobj9a2tratWrVq5cqVWq1UqlcePHzeddaqoqEilUg0cOHDJkiWOrgT1PlevAvzyuCemEFo3DT4dAxg0aJBxCz0RHThwoFX7sVZRUdGkSZMAwNXV9fPPPzd79eDBg/Tm8hEjRnS10ijquwoLCQAxXZCnupoAEA8PIuBy3N2wLoRtbW1yuVwqlWq1WuOWr7/+2qFLQRw+fNjX1xcAhg0bdvnyZdOXDAaDcS7w+fPn19bWOq4M1FsdPEgASHz8wy3HjhEAIprF6qxelYmOBNy4ccMR1ZgxzVhCQoLZ6mhVVVWzZ88GAJlMlpqaKsBqkqhX+ugjAkDeeuvhls2bCQBRKtnV9AtWzzQsWHdodXX13Llz3333XYlEkpqa+t///refyfQBFy5ciIqK+v777/39/Y8ePbp27VqB18ZAvYa4u0bBhum+hemJuXjxYlRU1NGjR/39/Y8cOWKWsZ07d06dOvX27dsTJ05Uq9Xx8fEOLQb1bjk5ACLulQErO2YIIRs2bACAxYsXO27VuB07dtB1NidOnHj79m3TlzQazSuvvEIrVyqVra2tDqoBPT7u3ydXrhDjR0WvJx4eBIB0tvYzE1aH8Ny5c0lJSQAwbNgwnucrKyvtWI1Go1m5cmVXGbtz587EiRMBwM3N7YsvvrBju6hvqa4mJ06wLuIhW5bL3rNnz8CBA2lUXF1dk5OTT5061fNSCgsLo6Ki6D63bdtm9qrpOISo1uVFvcD775O4OBIbS9avZ11KJ2wJISFEr9enp6cnJibSpbMBIDw8nOf56upq23Z46NAhmrHhw4ebZUyn06WmptJrwgULFuA4BLJOD6ZgEoaNITQqLi7meT40NNT0wHj+/HmrdpKVlUWnKly0aFFdXZ3pS/fu3Zs1axYAyOVynucdunw5ejx98gn505/af169mmzdyrSaTvQ0hFRra2taWlp8fLxx2s/IyEiVStXU1GTJrxsMhsTExI5jfWq1mi4C1b9/f9O1aBCywsaNZM2a9p9XrybbtzOtphP2CaHRrVu3OI7z929fa0qhUCiVSksu4Toe4lQqlbOzMwBMnTpVXBOKot7l5EkyeXL76ej48eT6ddYFmbNzCCmtVksPjMaBEHpgbGlpseTXNRrNihUrcBwC2c3ate0dM3//O+tSOuGQEBpdv36d4zjjnS4BAQEcx9GZ87uSm5s7duxYAPD09NyzZ49Dy0NIDBwbQqqhoUGlUo0bN45GUSqVxsfHp6WltZlNJE7IgQMHfHx86DhEdna2ALUhxJwQITRSq9VKpdL9wRRxQUFBHMcVFhaSX45DLFy40KyPFKHHmKVr1ttRTU3Nf/7zH5VKdevWLQCQy+Vz5swpLy9Xq9VyuXz9+vVvvPGGWBZXQsjxGITQ6Pz585s3b96zZ09bW1tISMj9+/f37Nkzffp0VvUgxATLEFLl5eW7d++eM2eOn59fUFAQ22IQEh77ECLUx+GDsAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjP1/nSApovDRQ24AAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -254,7 +275,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHbUlEQVR4nO3d3XbiNhiGUejq/d+y\ne+CWoSYQG/+8n6S9Vw5mkplgIz1YMQHfp2m6ATl/pTcARidCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihLDhIrzf337mw5fmP88fcKzhIrz9FNua/zJN/37okGONGOEXIU3TOZsCY0a4x3xIhAP9nd6A\njPlg+JrT5yOkAjnDoBHe3nS4+OvixIwCOYPl6CoK5DxDR+hUJxWMuxydre/w+Z85KnKg+2RCQdTQ\ny1GoQIQQNm6ETslQxLgRQhEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQNnKEXkZB\nCSNHCCWIEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkaM8O59f6lkrKsyzfm5Bg6ljBKh/Cq734e+\nOtgQEQ4+xpU9HhxHfpTsfHZ+HtqRBz7uxzt/zBHpNsL1wznmwGd9XpuMNiIdRrhpCB+zwZL1Gh4c\nX3U38+73lVeUfx3jcUY94ru7d4QHx472cH72b/dD7Aijfr0992r3D45dTLjV+d3WzYbuR/1KR92Z\nHQ9K+xHuWH8e++9ZOOMO7HJQWo7w6APguxtp9x4K2nSHbx2dzn5kaHZnTjsA/nhTt7Wx8/0JmE3/\nq6dDYoMRHnQC5rSbHdrOY9SYKTYV4aYOzllHSvGdA3sYLcV2Ilwf1fmhSPHZSQ2Mk2I7Ea5xbRxS\nvJ1/jmSEczbtbfFbofOYw6Z42ZGn+0NiFxEW6GCoZzIis7zjFBuPsEB+o8mu97pMsdkIC+f3elR8\nfObDl+qrM6E7S7HeK+uf34Xp3b1WfuaW38Btqk3ira8+K/5qtWIRLibvu7lc8q58Nk39dFh27nbz\nphiVInydtj3NZU7wOMTdWk6xUoR9efcA4k1PD9d6iiI80Y8dvp6YaVS1ZWq7KY74Dtx0bJqmx8+K\nrRDhueaDIRdzJPzW64Tt4qxM+3vAuYr9TLjosM35+7rVj898+BLDKhbhzaxkOJWWozAkEZ7IKRnW\nECGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJkF809/K85ogQwkQIYSKEMBGeyo9S/E6EECZCCBMh\nhIkQwkQIYSKEMBGeyC98sYYIIUyEdKitBUi9d+CGHVq8NJoI+VK1id5ifjMR0rx285vVi7D9qzJx\npWoXDP5CsQgXFyTs4vqEnGT9AbD4obJShD9e373ZDh8DX3wGfFZzL7rJb1YpwvVql7kY+PkPTcyG\nZ2X3Yv36s5WVapsRPi7oW+8ufjfwdSbxrz5sZHYvOjsAPrQZ4e2//CqluGbgH5O47PxYs23X70Wv\n+c2ajXBWI8WtA1/tR6xZzb3YdBOVH90+KLbRe86OhlLcM/BFUty5GeftxaYf/07ahgsUi/C2+3nC\nC1M8auCDE+jAmz52L/pefy7Ui/AQJ6d4xsBfv5Q64xb3f88R1p8L7ezDF09LnPNMxnkDf9mD+qk3\n9PU335rfd7dSUDsR3r45vqXWSGVvpWznmx7a+jgAPjS4M6EULx74mmvF+C32dAB8aDDC2YUp1n9u\n+spvlbrpLvObNRvh7KsUNy17bumBL/v8wZWb0dn6c6GLfduY4soJUWrgv5jERfJ71sdeHK7QPNvr\nuBTLDnwfv7u8ctvKjsLh6g7VlzY+LbGYEPUH/tctrL8Lt3V7UXwXDtThru45AdPKvfHjPjaR37M+\n9mK/ZqbdViM881vzFbdb9bEXe3Qb4ayPxdtnDR3AP+hjL74zxJ6/K23kgaeOxl9PuE5Dr2pnQENE\nOJMiNQ13LYppmiYXS6KS4SKcORJSx6ARQh0ihDARQpgIIUyEECZCCBMhhIkQwkQIYUNH6LdmqGDo\nCKECEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhI0dobcApoCxI4QCRAhhIoQw\nEUKYCCFMhBA2aoT3+5+Pxedf/yWcaaDLZf9xv//vGcLFX+Fa4x0JX5ObJoc7gsaLEIoZcjn6maMi\n1xLhi8ViVZOczHIUwsaL8PU0jLOjRA25HF10qECi7pMpCFHjLUehGBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQtg/\nPlvq9uQ3fHwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAd6klEQVR4nO3da1BTZ/4H8F/CRbkIAt4qiFUsFxVrQUHxiuK2Kottt/TfnW10utOlTDsbdzta2r5Jnd3ppm53jZ3ZOrzpNm6729LZ7S5Wa0W8V7lI8VIFKXhB8IpAq6AQk+f/4sEDRIkn4SRPcvh+Ji80OSd5SM73ec5zOYmGMUYAII5WdAEAhjqEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDD1hPDpp0mjof/8p/eeWbMoP7/30cTEftuHhvY+CiCQekJIRFot/fnPogsB4CRVhXDRIqqooEOHRJcDwBmqCuHo0fTMM2gMwcf4iy6AkqxWWr+e5s6l2lr7HiARMUa3bokoFoBDqmoJiSg9nTIy6P33H/BQXR2NGNF76+jweOEAHkRtISSidevok0/oyhX7+2Nj6eDB3ltQkIjCAdxHVaejXE4OTZxIH3xAfn797g8Kovnze/+rVWH9Az5JhUeiVkuvv05bttiH0IFz5+hnP6PISJo4kTZvdmfhAO6jwhAS0Zo1FBBAFRVObJ+aSi0t9M03ZDBQebk7CwfQnwpD+NlntHUr/eY3ZLXK2p4xysmh9etJq6XEREpOplOn3FxEgD40jDHRZVDYlCnU0ED19RQX5/S+zc2UlERHjtC0aW4oGcCDqLAl5CMuNpvTO7a307PPkl6PBIJHIYQ9rl6lxYtp3jz64x/dUSiAASGEREStrZSZSb/6Ff31r24qFMCAVBhCjYaIyKmu7ssv01NP0fr1bioRgCMqDKGzLeGlS/Tll/TRRzRqVM/NYHBf6QDsqXDFjLMhHD/euWYTQFloCQEEQwgBBFNhCF0YmAEQSIUhREsIvgUhBBAMIQQQDCEEEAwhBBBMhSHE6Cj4FhWGEC0h+BaEEEAwhBBAMIQQQDAVhhADM+BbVBjCkJD/I9JYrTtEFwRAFhWGsKurg4jU9y1yoFYqDKFWqyUiGzqF4CMQQgDBEEIAwRBCAMFUGEKNRkMIIfgOFYaQt4QYHQVfodoQoiUEX4EQAgiGEAIIhhACCIYQAgiGEAIIpsIQ8nlCTFGAr1BhCNESgm9RTwjPnj372WefEUIIvkYNv0/Y2dm5cePG9957jzGWmpqKEIJv8fkQfv755+vXr7948aJGo3nxxRfDwsIQQvAtPhzC2tratWvX7tq1i4hSUlI2b948f/58wunokHf58uXy8vKOjo6nnnoqKipKdHEezif7hG1tbWvXrk1OTt61a1dkZKTJZKqoqOAJpHshbGtrE1pGEMBisWzevDkxMfGFF15YvXr1lClT3nvvva6uLtHlehjmU6xWq9lsHjNmDBH5+/vn5eVdv37dbpvdu3fPmzdv+PDhBQUFN2/eFFJO8LwdO3bEx8fzo3rp0qWLFi3i/37sscf+97//iS6dI74UwvLy8vT0dP7OLl68+MSJEw/czGaz/fKXv+SbTZgw4ZNPPrHZbB4uKnhSfX19bm4u/8Tj4+O3b9/O7y8pKZk+fTq/PzMzs7q6Wmw5B+IbIWxubtbpdHwWPiYmxmw2P3SXsrKyuXPn8g9g1qxZBw4c8EA5wcM6OjoMBsPw4cOJKCQkxGAw3Llzp+8GFoulsLCQnzpptVqdTnf58mVRpR2It4ewu7vbZDKNGDGCiIKCgpw6w7RYLEVFRbGxsTyK2dnZZ8+edWtpwZOKi4snTpxIRBqNxnG6WltbCwoKhg0bJmX19u3bniyqY14dwpKSkqSkJBcidOvWLYPBkJGRYbVaOzo6jEZjaGgoEQUGBur1+h9//NGtxQZ3q66uXrBgAT8wUlJSvv32Wzl71dXVSWetEyZMMJvNXtJP8dIQ1tXVZWdn8/crISHh66+/lrmj1Wr96KOPxo4dS0R+fn7Sx9PU1JSXl8cHTh955JHCwsK7d++6rfjgLq2trXq93s/Pj4iioqJMJpOzn2Npaenjjz/OD6309PTDhw+7qajyeV8If/qp4U9/CgwMJKKRI0eaTCaLxSJz16NHj2ZkZPD3d/bs2WVlZXYbVFZWSjMZTzzxxL59+5QuPbgLHxgfPXo0HxjX6/Xt7e2DeSpeU2s0mtzc3PPnzytbWqd4UwhtNlZUxCZMYBrNy9On63S6K1euyNy1paVFr9fzhm78+PEOzjRsNltRUdGkSZOks9z6+nrl/gZwi/3790vNV2Zm5smTJwf/nLzPwgd1goODBU5oeU0Ijx5lGRmMiBGxOXO6jx6VuZ/FYjGZTOHh4UQUEBAgs8vX2dlpNBrDwsKkvVyuVsGtXBgYd0pjY6P0/NHR0YWFhVarVdmXeCgvCOGNG0yvZ35+jIiNG8cKC5nsd6G0tFSaCMrKyjp9+rRTr3zp0qW8vLy+HQz5p77gbl1dXX0Hxg0GQ2dnp5tey25C6+DBg256oQcSGkKLhRUWslGjGBELCGB6PZM9bnnx4kWdTsfftSlTpmzbts3lUlRVVS1cuPDeqc6aXbtcfiZQTHFx8eTJk6Uuw7lz51x4kjt37jQ3N8vcmPdThExoiQvh3r1sxoye88+lS9n338vcr7Oz0/H8rGuKi4vj4uIyMs4TsawspkSnA1xRV1e3YsUKaWB8586dLj/Vxo0bne3sCZnQEhHCpiam0zGNhhGxuDhWVCR/1+Li4kcffVQa1Lpw4YKC5bpz585779nCw3sb5hs3FHx6eAg+UsKn1EeOHGk0Gru6ugbzhL/+9a+lWcFPP/1U/qyghye0PBvCzk5mNLLQUEbEgoOZwcBkL1yoqal58sknpdkF9521t7QwvZ75+zMiFhHBjEamREMLjthsNrPZPG7cOGlx2dWrVxV55iNHjsyZM8e1zl7fS3PcOqHlwRAWF7NJk3rOP7OzmeyZmdbW1t/+9rf+/v5ENGrUKM+MX9XUsBUregobH+9Uaw3Oqaqq6ju7e+TIEWWffzCdPc9MaHkkhGfOsOXLe47oxET2zTdyd7RamdncNWPGqOBgXkHef+GSW5WUsGnTevutx4978sXVj8/u8tFpftbnvuq1b2ePL0KW39lz94SWm0N48yYzGFhgYM+5ncnE5M8BHDrEUlJ4Ag6//PJAFy65W3c3Kyxko0czIqbVMp2OyV5BAAPiFzfwy97lz+4OHh9U57OCznb23Deh5c4QXr3Kxo5lRMzPj+Xns5YWuTteutQ7chMdzcxmJnqhbWsrKyjoqUxCQ53qzIK9PXv2JCcnS7O7p06d8nABKioq5s2bJ63/dqqzV1VVJV0unJiY+NVXXw2+PG5uCZ99lqWlsfJyudt3dzOTiYWFMSIWGMj0euZNl8afOcNyc3vOTmNjvaFy8DF2s7tF4rravLPHR9pd6OzxCS2pHhnkMjr3n47KP05LStjUqb0jNw0N7iyZ63bv7p3gnDOHKT2OoE68W8W7ZMHBwV5yRR8vFV+U42xnj1/pKq2XzMvLu3btmmvF8IJla4yxH37obWLi49mOHaIL9BBWKzObe861NRqWm8sUnbBUG2l2l7c5ys7uDl5zc7PLnT0+tsSH7iMiIoxGowtLR5QO4eHDbPFiFhzMRoxgK1Y8fB1MRwczGNiwYb2drcHNz3pSeztbt66nozh3Llu1ihGxf/+7d4PUVPbKKz3/XrWKJST02z0kpPdRtaqtrZVmd2fOnOnNXzLSd/ViYmKi9EU1ctTU1EirfOLj4509zVY0hN99x4YPZ+nprKiI/eMfLCGBRUQ4aiOKi1lsbE9r4rPDjj/8wJ55hu3axVatYlotmzOn96GhHMK2traCggJ+XSj/WkqfuIrarrP3vezVlHzfhIQEvu+yZcvq6upk7qhoCLOzWWQkk86qGxqYvz/Lz3/Alt99x+bP7zn/TE1lXnB18+CtWsUyM5lWy6RVGUM2hC0tLfy7lfz8/F577bUbPrX8bzCdve7u7sLCwtGjR/v7+//973+XuVBOuRBaLGzYMKbT9btz0SIWG9vvnr4XLkVFMZNJ/oVLXm7VKvb88+wXv2A5OT33DNkQbtiwITY2dtasWcd9dn1D34UEvLMnfyFrS0sLX3cqs/FX7hu4m5upq4vufftqj4QEamyk7m4iIpuNtm6lhAT64APSakmvp4YGWruWtD75LeAPZLXS+vW0bRvV1j7gUcbo1q3em4odOHCgsbHRaDTOmDFDdFlcFBUVtXnz5pMnT65YsaKtre3NN99MTk7+4osvZO7L0yvztxiUC8Dt20REwcH97gwKIiLq7CQi+vFHWreOWlpoyRKqrqbNmyk8XLFX9xrp6ZSRQe+//4CH6upoxIjeW0eHxwvnKar5ndakpKTt27eXlJRMmzatrq7u+eefz8rKOnHixEN3dOoHUZQLYUgIEdnX8K2tpNH0PBQRQX/7G335JZWW0rRpir2u91m3jj75hK5csb8/NpYOHuy98QpKlVT2mzxZWVnV1dWbNm2KiIgoLS1NTU199dVXHf/EhVPVkHK/yhQdTUFBVFPT7876epo8mQICev5771sf1S0nhyZOpA8+ID+/fvcHBdG9K2OISE2n4fZUFkIiCggI+N3vfrd69eqNGzdu2rSppqaGX/c4EEEtoVZLy5fTjh1040bPPefPU1kZ5eQo9hI+Qqul11+nLVvsQzh0qC+EXGRkpNFoPHbs2JYtWxxvKSiERLRhA929S08+SUVF9M9/UnY2jRlDBQVKvoSPWLOGAgKookJ0OQRRawi5pKSkxMREx9uIC+H06bR3L4WF0UsvUX4+xcXRwYM0dqySL+ELKipo82ZauZKsVtFFEcRxj6i0tPSLL75obW31bKE8yqkQKv1LvWlptGePws/pI/77355/HDhAb75J69ZR34NQelSi4lkKx4fg22+/XVFRUV5enpaW5tlyeY64lhCI6N6Ii0rPxWRxfAiq+2SVc2p0FCFUHkKIEKIlFAwhdHwIqmYq3wGEUDCEEC0hQiiYRkNEpOqK/iEct3UIof3Gbi7MUISWEC0hQigYQogQYnRUMIQQIURLKBhCiBAihIIhhI5PxjBFYb+xmwszFGF0FC0hQigYWkKEECEUDCFECDE6KhhCiBCiJRQMIUQIEULBMDAjZ3QUIezd2M2FGYrQEsppCTFF0buxmwszFCGEOB1FCAVDCBFCp065EULlIYQIoVOn3Aih8rTabUQam23IfeGqBNcT4nRUsKGwNtIxtIQIoWBD4SBzDN8xgxAKhhCiJUQIBRsKB5ljCCFCKNhQOMgcQwixgFuwoXCQOYbRUbSEgg2Fg8wxhBAhFGwojP45Jmd0FCHs3djNhRmKhkJN7xgWcCOEgiGEGJhBCAUbCgeZYwghRkcFGwoHmWMYmBH6S70wNA4yxxy/A6tXr05PT58xY4ZnC+VRCKFgCKHjd2DGjBk+ncDu7u7a2lrHfwL6hIJhikLF1VBpaWlKSsqyZcva29sdbIYQCqbiQ1AmVb4D9fX1OTk5WVlZp06dioyMbGpqcrAxQiiYKg9Bp6jsHejs7HznnXeSk5O3bdsWEhJiMBiOHTs2ffp0B7u4c3T06acpMbHfPaGhlJ/f+98jRygzk0JCKCyMVq6kU6ece35VUNkh6AI1nZBv27Zt6tSpGzZs6Orq0ul09fX177zzzrBhwxzvJa4lrK6mJUvo9m36+GP68ENqaKAFC6ixUcmX8AUIoTregWPHji1cuDAnJ+fChQspKSmHDh3aunXruHHjHrrj3bt3GxoaSP47wJyyahVLSOh3T0gIe+WVnn9nZ7PISNbe3vPfhgbm78/y8517Cd9XXV1NRI8++qjogohx8eLFBQsWREREREdH79+/X3RxXNHa2qrX6/38/IgoKirKZDLdvXtX5r579+5NTk4mopdeeqmlpUXOLsqF0GJhw4Yxna7fo4sWsdhY517CxxUXF8fGxoaHh2u12rS0tMOHD4suked0dHQYDIagoCAiCg4O5rX8c88919DQILpoclmtVrPZPHr0aCLy9/fX6/XtUqPyMOfPn3/uuef4Xx0XF/fVV1/J3NH5EMbHs5s3e29SCM+fZ0TsD3/ot31eHiNiXV3OvYpvOnnyZGZmpvQZREVFEZFWq12zZk1TU5Po0rldcXHxpEmT+J+fnZ195swZo9E4YsQIIgoICHDqaBZl//79jz/+OP8TMjMzT548KXPHzs5Oo9EYGhrKax+DwXD79m35r+t8CInsbzyENTWMiP3lL/22X7uWEbG2Nudexde0tbUVFBQEBgYSUWRkJD97uXXrlsFgGD58OP9gCgoKbt68KbqkblFbW/vUU0/xY3fmzJkHDhyQHmpubs7Ly3PtvM6TmpubdTodH0+KiYkxm83y97Wrfc6fP+/sqzsfwthYdvBg7y0oqCeEjY2MiG3Y0G97nY5pNKy7m+l0zGBgd+44Wz4vx89exowZwxs9nU53/fr1vhs0NjZKn250dHRhYaHVahVVWsU9sPa5f7OjR48uXLiQH6ZJSUnbt2/3fFEH0tXVZTKZeIsdFBRkMBg6Oztl7uug9nGKcn1Cq5UFBbEXXuj36Ny5LC6OVVf3tJlTprAvv3StoF6ooqJizpw5/DNYtGjR8ePHB9qyrKxs7ty5fMtZs2a5/Gl5D5vNZlf7XLt2zfEuxcXFkydP5m9CVlbW999/75miyixSdnb2uXPnZO7Yt/aJiIgYZAuv6Ojos8+ysDAmjQidO8c0Gvb73zPGWEkJS07uiWJmJquudrnE3uDSpUt5eXl8ID46OtpsNttsNse72Gy2oqKi2NhY6SM/e/asZ0qruMrKSpm1jx3e7ISHh/OOYl5e3kOj6yZ1dXUrVqzgf0JCQsLOnTtl7shrn7Fjx8qvfR5K0RCePMmCg1lqKvv8c/bpp2zaNDZ2LLtypedRi4UVFrIxYxgR02qZTscuXx5k6T2vu7vbZDKFhYURUWBgoF6vd6qn19HRIfXg+e4//vij+0qrOBdqn/u1tLRIEwCRkZFGo7HLg0N3vK/OZ9tHjhzp1KtXVlZKZzQLFy48duyYIkVSNISMsfJylpnJgoPZiBEsJ4fV1dk/Q1sbKyhgw4YxIhYSwgwGJvsUXLiSkpKpU6dKTZnLI+9NTU3SoTxq1CivHa7o6/7a56effhrME54+fXr58uX8zYyPjy8qKlKqqAPhjRifbeeN2NWrV2Xue/nyZekjGz9+vGu1z0CcDKFS6upYbm7P2WlMDDObmXJ/kjv88MMPubm50hGjyNBCZWXl/Pnz+XM+8cQT+/btG/xzusnu3bunTZs2+NrnfiUlJdIzL126VP6ZrbOqqqoyMjL4C82ePfvIkSMyd+xb+/C5lkHWPvcTFEJuzx42c2ZPFNPS2LffiizMAPgENJ9p4It37yg6xms3wF1fX6/gkw9efX294rWPne7u7sLCwlGjRkkN1BWpC6OEvme/jzzyiFMD1H1rn6ysrJqaGgULJhEaQsaY1crMZjZuHCNiGg3LzWXOT7O4D1/+QkQajUan0112TyeWT/X2rWvbvGBm1d21j50bN25I442hoaGKvJzFYiksLOSrJvgbK78H3rf2eeyxx+Qvf3GB6BByt24xg4ENH86IWHAwKyhgSrf4zqqurl6wYAH/DFJTU791fyvNxzyk4QqTyWSxWNz9ogMpLi6eOHGiu2uf+9XW1kqH/pQpUwbZUSwrK+MztCtWrDhz5ozMvTxc+zBvCSHX2NgzuU/Exo9nhYVMxLz2jRs37BbvenJ6vaqqatGiRfwoTExMdGsF/EB9a5+UlBQP1D73Kykp4WugiSgzM7N6EBNab7311rZt2+Rv37f2yc3NbWxsdPml5fOmEHIHD7JZs3o6irNnd3lwAfRgFu8qq7i4OC4uTuqKyF/EOBiDuXRAcfxMsu9iAHe3xqdPn162bJlU+xw6dMitL9eX94WQMWazsaIiNnEiI3ptxgxlh+MGsm/fPumre5YsWeKZ494BPijH57X9/f3dOq/tPbWPHb4whc/p8TND+WvK5Otb+zhYfOc+XhlC7tatpvff51fEDB8+/K233lJ8aJhramqSlndOmDDBqcW77sZH9vz9/YkoIiLCaDQq3j9x+dIBj+k7P8RXVys1R2dX++Tl5cm8AlBZXhxCxpib57X7Lt514QoUj6mpqZHWWCk4rz2YSwc8b8+ePTNnzuRvQlpa2uA7q+Xl5WlpaVLtc+LECUXK6QJvDyFXWVkpjRZMnTr166+/Hvxzurx4VxQF57UHc+mAQLzh4kte+MCJa5+at9U+vhFCru+8Nv/mOdee58yZM1LDkpiYKH/xrnB8XpufPrk8r+1ztY+d+y/UlN9P4T1tqfbxkos8fSmE7F4V7vK8tt3iXbFzcS5rbW21m9eWeRbt8qUDXqjvhZrjx4+Xsw6mpKQkKSlJqn285yoWHwshd/36dbvhrIdmaTCLd73TmTNnpOGK2NhYx8MVg7l0wJuVl5dLK0JTU1MHulCzrq5u5cqVUu2jSHdGQT4ZQu67775bvHix9M46mJM9evRo38W7ZWVlniynW+3evVuaWZkzZ87965LVV/vY4Rdq8hl2um99uU/UPj4cQs5uXttujMtu8a6yV6B4CT5cwS8z5cMVFy5c4A9VVVXNmzdPqn3kXzrgc/iFmryzx6+0am9vLyoqmjBhAt1bfKfsunAF+XwI2b3e9siRI6XZnqtXr1oslr4Xcfvc5bPOunnzZt8Vj2+88carr77q2qUDvuvixYsvvvgi7yjyQBLR3LlzKysrRRfNETWEkLt27Vp+fj6f1w4PD4+JieGfwcqVK+vuv7ZYpS5cuKDT6YiIxy8wMPCNN95w0yIHr8UntFavXu0r36ylYar4wQCz2XzlypU1a9a0t7evW7du586dfDJj06ZN2dnZ77777k8//fT222/zYVXV27dv3/Hjx1taWnQ6XXx8vOjiCMAYs1gsRMTHkL2cSkI4e/bso0ePVlZWzpo1i4hOnToVFBQUExPDP4OYmJjm5uampqbo6GjRJQWwp5Jf6rX7BRJpZckDHwXwKir5fULHMUMIwZshhACCqSSEjn+VEiEEb6aSEDqOmZp+OBbUZ0iEEC0heDOEEEAwhBBAMJWEkPf6EELwRSoJIY/ZQEMvGJgBb6aqEKIlBF+EEAIIhhACCIYQAgimkhBi2Rr4LpWEEMvWwHcNiRCiJQRvhhACCIYQAgimkhA6XrY2LiRk0siRfugTgldSyXfM/Eur/RcRDRCzz+/cofZ2QksIXkklLSFptUQ0YMwcPwogFEIIIBhCCCAYQgggmFpCqNEQDTgwgxCCN1NLCB3HzHFEAYQaGiFESwheDCEEEAwhBBBMLSHkvT6EEHyQWkLIYzbQ0AsGZsCLqSuEaAnBByGEAIIhhACCIYQAgqklhFi2Bj5LLSHEsjXwWUMjhGgJwYshhACCIYQAgqnki55o2TIKCqJ58x786IsvUmoqLVjg2TIByKLBl8MDiKWW01EAn6XGEB45QpmZFBJCYWG0ciWdOiW6QACOqC6E1dW0ZAndvk0ff0wffkgNDbRgATU2ii4WwIBU1yf8+c/p8GE6e5bCw4mIzp6lhAR6+WXaskV0yQAeTF0hvHuXQkPp+edp69beOxcvpnPn6MIFccUCcERdp6PNzdTVRfHx/e5MSKDGRuruFlQmgIdQVwhv3yYiCg7ud2dQEBFRZ6eA8gDIoK4QhoQQEd261e/O1lbSaHoeAvA+6gphdDQFBVFNTb876+tp8mQKCBBUJoCHUFcItVpavpx27KAbN3ruOX+eysooJ0dosQAcUdfoKBF9/z2lp1NSEr3xBt29S+++Sy0tdPw4jR0rumQAD6aulpCIpk+nvXspLIxeeony8ykujg4eRALBm6muJQTwNaprCQF8DUIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQgggGEIIIBhCCCAYQggg2P8DZ8/X67zoa8YAAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -266,7 +287,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAIN0lEQVR4nO3da3KjRhiGUZTKjmb/\nO8isifzQRMHoYizR/X4N59T8SFwuSSAemktbuszzPAE5f6VfAJydCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARDuxyuaRf\nAjsQ4agul8s8z+lXwQ5ECGEiHJJh8EhECGEiHI9h8GBECGEiHIxh8HhECGEiHIlh8JBECGEiHIZh\n8KhEOAYFHpgIIUyEAzAMHpsIIUyE1RkGD0+EECbC0gyDZyBCCBNhXYbBkxgpQp9rxCGNFOGpGAbP\nQ4RFzfNs5D8JEUKYCOsyGJ6ECEvT4RmIkI9cLhe7iQ/9nX4BfOM6GNa8Unp7YcsOa77UykTIm5a7\nhmV4tyDVuJEIBzDP8+UyldqkXwzOt58bHjcaK8LzvpHzPNXpcOPhseFxo7EiJO+9E9T74VGNNyIc\nRoXB8FmB28t0sHpPhGz1eYFL9werp01xmPuE8UGggutgGLFvgSunze9qmAgJalrg1ZnnBolwMMHB\ncKXsFILhiHA8nbf8h7HtUuBph74VEfJKuwK5GSZCb3p/rQtcnQee9rRwmAjpzBjYjQh5QIE9iZC1\nYIHnPCI1Y2ZgywkMt//esA1/+Y1VWp0LrPzXkt2IcGz3E4m2/HnD10d41eTkKLQ9EY7t81ndD//g\naPkTBbY2wDnhcsM43/lCV6tTskiBJzwtHCDCSXsvtZvI1qfAitVdLn/+3f63pboRLhe8zoTJmhww\n7ul6fH/912WzqxjhdR/0esPS5GoVHanDumNjG7UuzFwX8+H2tNorVfgz80Nyz+Cxliuk0Eh4Owp4\n5v5afLXdZTcH2wGVGPpyL6DESPhiAFz9/FmHR9oimfoPyMu92nLv3uUF5CP8+DbXDg8yllMtbA/f\nznhovLqTh6PXrzHYZQHPfGi6uxIHh90U2KVlRsIWn641z21vLv/+/We7/PXLMLS/zAWhAgVOkQjr\nzwa+7+3370uR9mpsNj00z7LMquwaYYePl3z7nbuFNz0Z666/UCDFy1G/DqD1B7qtHrdIgdM09TsA\n6HmwsbH266/98880ba4rPiR2W43xu4XtvnctvmgrsaujTVfE7c17tnNd/tp7IjVW23raafe9awXX\nYWwkbLculo+819704VWZ/h12PppIbaxbnvq9GgsWOPWMcHqSR9NnmRqfiHbu8AwR/vR5f7R7FWGP\nwfD+MVuv924d9t+AhnvG18NjzQKnCjNmmiq73j9xyIWa9liuF9+7Vnn6QaEJ3J+LbJ2/fs3L2xsd\npGa0XGc4tXvwHd+7eZ6vj3ZdV8V3W10j7Lz1dFv1HTpcLUukw+uWfVnY65FbXyqvXOCUHQn33ZKy\ne7umHT5cS7ceGj3p9OQNmhd2CbLbG1d2Tmz4zHvHN+B+CsRw1xVWD3X7729ve7ZbzO0P/t5NoNbv\nUbcbY5847IWZ4CeFfXIfeflQGx98nuemc7A2LtHDW+rTyyBrJtFf7wgbzcp9tBVm3t3bMU+LAeTZ\ng7f44+blE/10lNtyn1aBN4EV0eIIYRVhhdm5L5br88mQzw9Nd1jw1zuRXSb9BWfAFoz/sIejcasx\nf99ZyM8PTT8dEr/dRu+X6KeL0zODRkde+zpghBWGwavl5bjdt4Nnp4LXn7yxEn46v++9/Us8iRqb\nxheBCHffOdWp7l7TDe7FuPdGgW+/1IeXZOpMHKu6afwvPxLu22TlIFt4e9y7+S/jfdba64ljJQ4L\n53IfWZuP8HOV1mfGe9tV00+L3HKBtJN61a0cIcKb2qu6rZ9ekum5rkoMgEvFssxMWys7gWho87av\nMNnyVR/0VOKvKPZq0oY1fbcSvv2ugWPasnPKKREh3Zwuv2cqZVklwnKnDdBLLEKnhXR1P/SV2e+H\nr46uOjQe7mh59cWVmMqSET6cWb/6la+/3/gFHY72vqi6LmrdJ3w9Ej48mrC/f6HY/TAeqxXha882\nJtsZQ6tydfQTla42l2Pl1HeECHnNYUJxIx2OvmB/f2/Zng6/6PuV9N86zkhYY31S3m3mXpk99/AR\n2t8zuuEjhNGJEMIOcmEGtlqeCtY4gREh51OjvRuHoxAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYT9C0arWv3OnrPdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1yUVeIG8GdmEBCVwUsYaeQVd71hmmLrDYUsXN3SoNJNs0zatjJ/1kc2JK3UxLTWLpuSba3uaptmpbVpGd6wTMVbVt4AlbyhyDDcBOdyfn8cGkcU5TLvewZ8vp/+wMPwngPNM+95z3vecwxCCBCROkbVDSC60TGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGEdU9hYaHqJpAnMYR1TG5ubps2beLj4+12u+q2kGcwhHXMa6+9lpeXd+rUKR8fH9VtIc8wCCFUt4Gq6vTp0x06dLhw4cL27dt79+6tujnkGTwT1iWvvvpqSUnJqFGjmMD6hGfCOiM7OzssLMxms+3Zs6d79+6qm0MewzNhnTFz5syysrLRo0czgfUMz4R1Q0ZGRufOnZ1O588//9ypUyfVzSFP4pmwbnj55ZdtNtv48eOZwPqHZ8I64NChQ126dDEajYcOHWrbtq3q5pCH8UxYByQlJTkcjvj4eCawXuKZ0Nvt37+/R48evr6+R44cad26termkOfxTOjtEhMTnU7nU089xQTWVzwTerWdO3dGREQEBARkZWUFBwerbg5pgmdCr5aYmCiEmDx5MhNYj/FM6L22bt06YMAAs9mclZXVrFkz1c0hrfBM6L2SkpIAPP/880xg/cYzoZdat25dTExMixYtsrKymjRporo5pCGeCb3USy+9BCAhIYEJrPd4JvRGn3/++ciRI0NCQjIyMgICAlQ3h7TFM6HXcTqd8jSYmJjIBN4IeCb0Oh999NGYMWNCQ0MPHz7s5+enujmkOZ4JvYvD4XjllVcAvPjii0zgDYIh9C5Lly49ePBghw4dHnnkEdVtIZ0whF7EZrPNmjULwIwZMxo0aKC6OaQTBSHMz89/9tlnX3vtNf2r9nLvv/9+VlZWp06dRo8erbotpB8FAzOHDx/u1KlTx44dDx8+rHPV3szpdIaFhWVmZq5cuTI2NlZ1c0g/Cs6EVqsVQGBgoP5VezOj0XjXXXf5+Pi0b99edVtIV8pCaDab9a/ay/n7+9vt9kcffdRms6luC+lHQQgLCgrAEF7N7Nmz27Vrt2/fvjfffFN1W0g/7I56kYCAgMWLFxsMhunTp2dkZKhuDumE3VHvMmTIkLFjx164cGHixImczHSDYHfU67zxxhstW7bctGnThx9+qLot1bZ06dI333yzffv2TzzxxMqVK+UHLl2H0N2UKVMAzJs3T/+q64rly5cDMJvNJ06cUN2Wali8eLHRaHSfbefr6zto0KDZs2fv3LnT4XCobqCXUhDCCRMmAHjvvff0r7oOuffeewHExcWpbkhVyQQCmDVrVnp6enJycnR0tPu8n+bNm8fFxaWkpBw7dkx1Y72LghDGxcUB+Pjjj/Wvug45efKk7LF/+umnqttyfe+9957RaDQYDH//+9/dywsLC9evX5+QkNC5c2f3/le7du3i4+NXrFhhtVpVtdl7KAjh0KFDAaxdu1b/quuWd955B0BISIjFYlHdlmtJSUkxGAwGg2HBggXXeFlmZmZKSkpcXFxQUJArjT4+Pr169UpISEhLS7th+6sKQhgREQHg+++/17/qusXhcPTr169r14lTp3pvCBctWiQT+NZbb1XxR+x2+1X7qy1atJD91ePHj2vaZm+jIIR33/1jz57f/PKL976xvMfBg+cbNhQGg9i8WXVTrmbhwoUygW+//XbNjlBYWLhmzZr4+Pg2bdrcsP1VBSG85RYBiF9/1b/mOunllwUgwsLEhQuqm3K5N954A4DBYHjnnXfcy/fs2XP27NkaHPDQoUNvv/32iBEjGjdu7Eqjn59fVFTU3Llz7Xa7hxrudRSEsFEjAYiCAv1rrpNsNtGjhwBEYqLqpriZP3++TOA//vEP9/IdO3YEBQV169bt/PnzNT74lf3VW2+99c0336x1q72U3iG024XBIIxG4XTqXHMdtn27MJmEj4/YvVt1U4QQQsybN08m8N1333UvT09Pl+sUx8bGXrx40SN15ebmLl26tEGDBkaj8dy5cx45prfRO4R5eQIQQUE6V1vnPfusAESPHsJmU9wS+TS20Wj88MMP3cvT09ObNm3q2QS6REZGAli1apVnD+sl9A7h0aMCEKGhOldb5xUXi3btBCDmz1fZjLlz5wIwmUz/+te/3Mu/++47OSP/gQcesGnwOTFz5kwAf/3rXz1+ZG+gdwj37hWA6NZN52rrg7VrBSACAkRGhpoGJCcnywQuWbLEvXzr1q2aJlAI8f333wPo1KmTFgdXTu8QbtkiANG/v87V1hMPPywAMXiwgivqGTNmyAQuXbrUvXzr1q1yof6HHnpIowQKIWw2m5w/lJ2drVEVCukdwi++EIAYNkznauuJ3FwRHCwAcfnlmOamT58uE/jvf//bvTwtLU2jBK5evXrUqFFffvmlq2TEiBEAKnSD6we9H2WSj7bwMaaaad4cf/87AEybhrIynSqdPn36K6+8InuhDz/8sKs8LS0tJiamsLDw0UcfXbZsmY+Pjwcr3b9//6effvq///3PVRIVFQUgNTXVg7V4C51D/49/CED85S86V1uvJCaKAwd0qmvatGkATCbT8uXL3cs3b94sb6k/9thjWsz53LZtG4CwsDBXyf79+wHccsstHq9LOb1DOGeOAERCgs7V1jdpacLPT8iHDQcNEhrdP0tMTATQoEGDCk9ybNq0qVGjRgAmTJig0axru90u53m7nntyOp0333wzgF9++UWLGhVS0x3l+jK1Fx6OuXM1PH5iYuKrr77q6+u7YsWKkSNHusq/+eabmJiY4uLixx9/XD7BpEXtJpNp4MCBADZu3ChLDAbDkCFDUB97pJ7sx1fFnDl44QV49PLhBtWnDzIycPo0AHz2GRISEBgIsxmBgZe+CAqC2XypMCioqEmTI2azOSgoKDAwsLKrOCHElClTFixYIBMoHy+Wvv766/vuu6+0tHTixImLFi3SKIFSVFTUmjVrUlNTx48f7ypZvnx5amrq008/rV29+tMvDVu3IjoamZlo1QqRkfjkE7RooVvl9ZAQmDoVc+fCYIDVCosFFst1fuT227fv2RPt+mdAQIDZbA4MDAwMDHQl02w2//jjj6mpqX5+fqtWrfrjH//oev26detGjhxZWloaHx8vn2DS6FeTXCMxQghZV3R0NIBNmzY5HA6TyaRp7XrS9ZQke1BvvaVnnfVZZCTmzEF+PsaNw4QJyM+H1YqCAhQUXPrCYrn0dbNmJqczvKCgID8/32q1lpSUlJSUnJYnUzfBwcH+/v4rVqyokMD77ruvrKxs0qRJCxYs0DqBADp37hwSEnL69OkDBw7IB/NDQ0Pbt2+fmZm5a9euPn36aN0A3egaQvceFHnE1KmIjobRiKZN0bTpdV8eCex1/aOoqMhqtRb8RibTYrHMmDGjtLT09ttvd//JDh06yIdu33jjDR0SiN8uApctW5aamupaHSM6OjozMzM1NdUbQ5iYiO++g92O8eMxcWI1flCf8Z/cXJGWJp56SmzcKJ59VkRGajWgdyNwOERMjHj9dVFaqsnxhw8fDqDC3DQhRE5Ojib1Ve6DDz4AcO+997pKVqxYASAqKkrnllzfxo3lU5lKSkTHjtV6Xlbz0VGbDXPn4rbbcPAgAERG4sAB5OcDQGoq9uzRuv56aMMGrF2LBQu0Gt+q7LZ4cHCwJvVdryXyIlCWDBkyxGg0fvfddxcuXNC5MVdRXIxXXoHcOGTnTkRFwWBAw4aIiMDevdf74Uu0DeH27ejZE3/7G0pKsHt3eeHUqdi7F8ePIzYW/ftjxQpNm1AP/fOfADBhAjQam5Bv/W+//VaTo1dHaGhohw4drFZrenq6LGnevHn37t1LS0vl3XyVioowbBhmzMDkyQBgMMC1YroQ1ft/o9HJubhYJCQIk0kAon178e23FV9QViYmTBCAMBhEQoK4URfaqrbz54W/vzAahXaLd7puix/QbWJO5f7yl78AmD17tqvkueeeA5CodqGBoiIRGSkA0bq1OHJECCHS0kRkpHA6xYULIixMnD5d9YNpEsK1a0WbNgIQPj5i0iRRVFTpK1NSRIMG5VO68/O1aEt9s2CBAMQ992hbi9wquMLiMUqsXLkSwJAhQ1wlX331FYA+ffooa5MrgbfeWp5AKSlJDBkiBg4U1Zxl7uEQ5uWJ+HhhMJQ/Bp6efv0f2bxZ3HSTAESnTuLgQc82px4KDxeAWLlS21ref/99ACNHjtS2mirIzc01Go3+/v4lJSWypLi42M/Pz2Qy5eXlKWiQ1SruvLP8yfQKT3Z+/LGo0WpUngzhihXlcWrYUCQnV6M9GRmia1cBiGbNxPr1HmxRfbN9uwBEixZajYu6HD9+HEBQUJA3rHEmb5asd3tnDBgwAMDnn3+ud1Py80XfvuUJzMy87FsvvCAAMX58DY7qmYGZ7OyTw4eLBx7AuXOIjsZPPyEhoRqXpu3bY9s2jByJvDzcc4+2UyLrNDkkM3483PZc0YS8LZ6fn7/bNZ6mjpwo4z5aq+axJqsVd9+NH37Abbdh0ya0a3fpW0lJmDMHJhOGDq3JkWv50eB0OlNSUpo0aTJw4N6gIJGSUvOHvp1OkZxc3pV9/HFRVlbLplWVw1GSlTU6I2PUkSPDsrOf1anW6isqEoGBAhA//6xHdfHx8QDmzJmjR2XXtG7dOgC9e/d2laSlpQHo3Lmzfo2wWESfPgIQbdqIrKzLvpWYKADRoIGo6a4htQrhzz///Ic//EGGedy4v545U5uDlfvvf0VAgDyx7zvjkSNeT0FBalbWaPl1Ts6bdruXLvn8wQcCEP366VTdxx9/DCA6Olqn+ip35UWgzWaTq9rotHWcxSJ69y5P4NGjl31L9kJ9fcVnn9X48DUM4cWLF5OTk+VOdCEhIZ988kmNW3ClXbvE0KFnfHz8Q0NDd2u51KbNds5i+cxutx4+HH38+BN5eR97bQKFEP36CUB88IFO1V05IqLQoEGDAKxevdpVMmzYMAAVltvQQm5u7uNDh9patxZhYcI9805n+UKUvr6idlenNQnh999/36VLFwAGg2Hs2LG1WWu5MufOnZNLTfr7+1dYWaiWHI5iq3X9iRMJv/zSKz3dmJ6O0tLDQoiysl9zc//188/dSkuzrnsQ/f3yix0QTZpc636Px/Xo0QO/Pceg1vbt23/66Sf3ktdffx3A+BoNhFTduXPnwsPDAYwbOFCcPHnpG06nmDSpPIFuHw01U70QFhcXJyQkyKdI2rdvr+n/nrKyMrmdqMFgSEhIqM0T3E7nxcLCtFOnXjp4cMCuXQ3S0yH/27274eHD0WfOzLNYyv+OR4+Os1hq3q/QznPPPde1651JSWk6Vwrlt8UrsXfvXgCtWrXSroqzZ892794dQKdOnU5WSOAzz5QncM2a2ldUjRCuXbv2tttuA+Dj45OQkHBBlw1KUlJS5G4Ew4YNy6/O7Xyn02m17jtz5vUjR4bt3t3YFbxdu0wHDkScOJFYUJDqcFwQQly8eCYj408ZGfdlZPzp6NFHnM4Lv/46xWLxoq05y8rK5LzN7du361mvvC0eERGhZ6VVVFJS0qhRo8aNG4eHhyckJKxfv96zy73l5OR069bt6gl86ikBCD8/8cUXHqmrqiGcLCfIAb179963b59H6q6izZs333TTTfLPcfB6t/NPnjy5YsWK+Pj4Vq1azZw50JW9/fvbHTsWn5e3wm6/zh1ei2V1ejp27fK1WHS/DVUJOWukm+5LJiu+LV65kpISudWsv7+/a5y/efPmDz744D//+c/ar02ak5PTtWtXAL/73e9OnTrlKnc4HK9NmWIPCRENG4pvvqllLS5VCuGpU6diY2N9fHySk5OV3L3NyMiQf5RmzZqtv+J2fk5OzkcfffT444+3bdvW/e7L2LF3Hz06/vz5f1+8eOqqh63MiROJv+Wwtt19j7jnnnsAKNmWSNlt8cqVlJTcddddAIKDg3fs2HHt7bir1XuSzpw5I99sv//970+7TQF1OBzy+mjE737n9OiFWJVCeOzYMQCBgYEK508UFhbK5YZMJlNycnJRUZH86/fq1ct9pZMmTZpER0cnJyenp6c7a7FO9YkTL8gc5ud7oNNfG7/++qvJZPL19VWyJ9FLL70E4JlnntG/6qsqLi6W9+5btmxZYajGI9txnzlzRg46hoeHu++y6HA45FI3AQEB3175OELtVLU72q5dOwA7d+6sUF6bN3p1ORyOadOmyce63ZcYCQgIGDp06Ny5c9PT0z24At+JEwnekEMZg9GjRyupXcFt8coVFxfLBddatmz5c+VTFmq8Hffp06flGTU8PNz9I89utz/yyCPynabFYGRVQ3jl/InVq1eHh4cnJSV5vE3XNnnyZD8/P9cn3Pr167UbIjpxYupvOfzy+q/WgMPhkINhHv/0rSK9b4tXzpXAm2+++RoJrKCwsHD9+vWTJk2qcKly5XbcOTk5HTt2BHD77bfn5ua6jmC328eNGwegUaNGGzZs8PwvVvUQXjl/4ssvvwTQt29fLZolFRYWTpw48bvvvnMvlFfk83XaIsyZnf1Mejp27fJTkkM5Y6tt27YarbFbFbrdFr+GoqKiwYMHA2jduvUR96eHquMa/dUZM2bs2LHjoYceujKBY8eOlQncuHGjZ36ZK1Q1hFfOnygsLGzQoIGPj08Nrn2raPHixQAGDhzoKsnOzjaZTP7+/lrMEKiEMzv7aXlTsaBA79NRXFwcgJkzZ+pcrzt9botfQ1FRkZy5ceutt9Y4ge5sNtuWLVuSkpIiIiLcr2uCg4Pj4uLWrVsnX2a32+XeG40aNdq0aVPt661MNe4TyqkD7mfkfv36AVjjifuVV9W3b19cvuKQ3KBrzJgxGtVYCefx40+kp2P37gCrVZMOyVXl5ubKOwTuY+5nz559/vnnS7V+lsnNNW6Lz58//9NPP9XuU1gIUVRUJOeshYaGZmiwM2NhYeGaNWvi4+PbtGkjoxgbG/v111/b7fY///nPAMxm87Zt2zxer7tqhHDKlCkApk2b5iqRO2Y9+6wmTx7IDUDMZnNxcbEscV0gqZhI5Tx+/Mndu1uMHNlNowuDK8lT0PDhw90LZeewb9++7vevNOV0Olu2bAng0KFD7uUFBQVy2MNkMrmuzz27UXZ+fr78IA4NDc2s8PyeBg4ePChPfSNGjBgzZox8+/3www9a11uNEMp9qtznT2zevBlA165dNWhY+fSAJ5980lWydu1apRdIjuTk/5Odky1btmhXTVFR0VdfffXcc8/JWTIfXD5l+8cff5RjDLfccotuE2gefPBBAO+++657YV5e3syZMwcOHOg+AhkUFHT//fcvWrQoK6u2U3Dz8/MjIiIA3HbbbTokUDpx4oS80TV8+PCgoCAdEiiqFcKioiJfX1+TyWSxWGRJWVlZ48aNDQaDxz+Vy8rK5CyZdLcVMmJjY3H5mj86czqdTzzxhBaX6e6j6n5uT+waDIZWrVqlX75MSG5urhwn9PPz+1CX7ULfe+89APfff/9Vv+t+z/aqI5CuN0zVWSwWVwJrn+dqCQsLA7Blyxbdtn+q3gTu/v374/InSuRkjmXLlnm2Wf/9738BdO/e3VVy7tw5eWfisol8unM4HPKWUaNGjTZv3lybQzmdzr17977++uvDhg2Te/1JJpMpIiIiMTHxs88+k5dD/v7+FZbitdlsCQkJ8vWTJk3SehLF0aNHUbXVLk6dOrVkyZK4uLhmzZq5/0bV6q9aLBa5wHabNm2OVnh+T3tPPvkkgFmzZulWY/VCKMdFJk2a5CqZN28egMcee8yzzZLzkt5+++0KFY0YMcKzFdWAw+GQw9aBgYE1uGR3n9161fOG+0RNm832zDPPuMJWoR++cOFC2RWMiYnJz9dwqGbz5s0NGzZs0aLFTTfdJO93X/ej0G63b9u27eWXX+7Xr5/79k/NmjWLi4tbvHhxZT9osVh69+4NoGPHjr9WZx1rT/nkk08ADB48WLcaqxfCLVu2AOjSpYurRK5BEhoa6sE2HT9u69nzuYCARu5vRzmVwUsmMboGr6t44X727FkZvHbuC5MAN99887XncEiuR0liYmIqdO22bt3asmXL/v3f79hRaNF7On/+/Pjx4+UsJfeTm9Fo7NWr1wsvvLBhw4ay661EcmV/1b2P4y4vL++OO+4AEBYWpmp6gMVikfMEi/R6drN6Ibx48aLsOLn+QA6HQ168eeQGjjR9ugDExImXHujeunWrfMt6dvCtNtyHsK86QOLZ2a1paWlynCYsLKzCmrxHj2bfcYcTEEFBYu1aD/xqLmvWrJGna39//xkzZpSVlbnudzdp0sT1GwUEBFT9N8rMzFy4cOGVG10IIfLy8mRKw8LC1F50yGZ847nnJK6t2k/Wx8TEAPjPf/7jKpE3lBctWuSRBjkcIjRUAML9RkBCwkc+Pv5/+9vfPFKFp9jtdtdA9o4dO4QQNpvNNb7i6+vreps2bNhQvk3T0tJq/NhbdnZ2z549ATRt2rTC+6OoSNx/vwCEySSSkz3wq506der++++Xje/fv/+VS3GXlJS4PmLcN2lq2bKlPLdXd6zu7NmzV39+T4WpU6cCSNBrV/dqh3D+/PkAHn30UVfJokWLAMTFxXmkQV99JQDRrt2lVdusVtGokWjZ0n7kyNlr/qgCNptNjtkGBgb2799f7uQu+fj43HnnnUlJSRs3bvTUvfXCwsJRo0bht0dJ3L8l16ozGgUgRo8WNV4Xxul0LlmyRPY8zWbzggULrntDKCcn58qrXNlflYMx1/31XU/QVnh+T5Wvv/4awB133KFPddUO4Z49eypcBB45cgRA8+bNPXL7Tn6iv/rqpZKUFAGIyMjaH1sTdrv9oYcecl3t1GZcviqcTueLL75oMBgMBmNCQlaFt/eXX5Yvi9izp6jBo60ZGRny5geA4cOH12BcRPZXhw8f7v64rXt/9cofqewJWoXk08xGo1Gfx8eqHUKn0ykvAg8fPuwqlFN+ar8y2rlzws9P+PhctqaOXO5R6fzh67h48WJeXt6yZcv0WaNRCLFy5cq77koFxJ13Vtx6ZN8+0batAES1Nmuw2RyzZ8+WyQkJCVm1alUtW1hZf1WORS1ZskTO/nU9v1fhCVrl5GzV2v8dqqImq6098MADABYuXOgqeeyxxwDMmzevlq2ZN08A4k9/ulTy448CEGaz+G3uGpXbt698151bbhE7dlz2rXPnREyMuOLZz0rt2SN69RJ9+vxJLp/n/hiBR5w8efLDDz8cM2aM/PiW5M3DkJAQXPH8njeYNWuWv49Pii7DEDUJYUpKCoDY2FhXybJlywDcU+u9gjp3FsBlS8jJdeWeeqqWB66fcnPF4MECEP7+4mrDjddXXCymTCnfwe4Pfziuw7TYzMzMBQsWREdHy7Pu4MGDe/To4W0JFEJYd+xwNm4swsJ0qKsmIczIyKhwEXjmzBmDwRAQEFCbEYiffhJGowgJEa7hw7Iy0aKFAISWKwDXbTZb+ep7gJg0qXrbPG7eLMLCqrSDnRbkFNljx44VFhbqWnEV2WzCbBZATa6tq6mGK3DLOcS7du1ylciefS1nch0/ftl2osuXl48x0LW5tnmMiRFVGQ+yWC7tYNe9e8XeLJUbMUIA1d1ssAZquCuTHENz3xYnOjrax8fnwIEDNTugFBqKqKhL/3TtC03XFh+PDRsQHIy1axERgYMHr/XiL75A16547z34+2PGDOzcid699Wpo3SLfizrs/VSz7C5fvhzA3Xff7So5c+aMa7kOj8jKEkajaNhQeNmal94rO1v07CkA0bTp1RfFPHVKjBpV3ncdMIBbsl7P/v3lA18ar2ZWwxDm5OTU/iLw2pKSBCDGjdPo8PVTYaEYOVIAonFjUWGwY/Hi8luITZuK99/X+n1VLzidIiREAJrMynVTw+5ocHBwly5dSkpKfvjhB4+emMs5HFiyBGBftJoaN8aqVZg+HQsX4uBB+Pvj5EkAiIzEsWMoKMDw4fjxR0yYALdbd1QJgwGDBwOa90hrvlPvlfunetDZs2jfHmFhGDBAi8PXZwYDXn4ZDz8MAOHhl7Y9fvpprFuHL75A69YKW1fX6HJZWPMQyi2LV69evW/fvqNHj1osFqfT6almhYRg40bs3s0P7Frp0wcZGTh9GgB8fHD33aobVOdERwPApk1wOLSrxOf6L6nEoEGD2rZte/jwYbmLndS4cWOz2Rz4m6CgILPZbDabQ0Imm0ytAwNhNsNsRlAQ5NeBgWjY8NIxt25FdDQyM9GqFSIj8ckncJsRTdUmBKZOxdy5/CyrqdBQdOiAjAzs2oU+fTSqpOYhbNKkSVZW1pAhQ3JzcwsKCgoKCiwWS1FRUVFR0Ul5IeKmXbsJWVlXP06DBuVpbNoUjz9e3oN6660at4suExmJOXOQn6+6HXVXVBQyMpCa6o0hlDZs2OD+z4KCAqvVWuDGYrFYrdbS0uE0WVQAAALFSURBVFa5uSgogNWKggLk58NqLf+6rAy5ucjNBYBHH72sB0UeMXVqea+KaiIqCikpSE3FCy9oVINBCKHRoauorKw8jVYrzp/HmjWIjcXnn2PfPqxciRYt1LaObnh5eVi6FHfdhS5dNKqh5gMznuLnh+BgdOiAXr0QEAAAkZE4cIA9KPIOzZph8mTtEghvCOFVTZ2KvXtVN4JISkzEoEHo1w+LFwPA1q24777yb3XtWn4pVQu1vSb0rP790b8/AERFQXU3mQgAsGkTfvgBmzahtBTh4YiJ8XgN3hVCIq+zcyeiomAwoGFDRERg714EBWHbNtxzDwAcP177GhhComsyGC71yoSA3Ertzjvx+ecA0LVr7Wvw0mtCIm/Rty9SUyEESkuxcyduv93jNfBMSHRNcqAiOhp2OxITcfPNyMjwbA3q7xMS3eDYHSVSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUowhJFKMISRSjCEkUuz/Ac+vw8Xk3Z2xAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -278,7 +299,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAI1klEQVR4nO3d3baiuAKFUehx3v+V\n6Qvq2JY/iJCwkjjn6Is9qqsQkc8ERPa8LMsE5PyTXgH4dSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihDARQpgIIUyEECZCCBMhhIkQwkQIYf9LrwDVzPOfH5Yluh58IMJBzfN/7d3/THtMRyFMhBAm\nQghzTDioZfnrxIzDwoaJcGjC64HpKISJ8Dfcz05pjAjHJbxOXHdMOBfaIZafPc55OLnigphRXBdh\nqXjmef65DtfeHgp0QcwoTEePux/a15+rzP7Wxs5nZnbaqv4iXJal1Mz2vOorcnKUE14P+ouwKc87\n+TwX2u3XBT0XeGLpcmxTlx/Wr4Nhm0eG51dqnufl5YLujwwfLojZWNo0tbiZuNNlhE0pOONbp9mv\n31yeR8Xvc2/5zeuX9RphU/vTdofPpzZf/Z33+U3Ofw6u1wiznk9Y3iaJz9Y/fJfi5/zeLZdRdHxi\nJnWa9NiwtEY7z9M8z7fVXgfzlwXOtxMz5wps4WRyagXiT3ynVmZ0h105KS04LG0MgB/GxkOPdb+0\na7fYn+dS/Em1+bjHmI7uVfa4bN0tHnaRLvaYnR6ey8vnO9LjntH9SDhd8tZe78zIuvJV95Lb9rlm\nX/z4KJVWI/W454lwz/Irnhm5bM+4JsX9r0XB1fhqUQ2mOEKEU80O6xd+xUvw/Ci3kxblLqxfl3Z2\nxb5/3LdL2P5fUzMpOibc0s5HkWe8fBZ/H4ieepZnzledmYp//IcbC79NClp4fZtYiSJqbNBLjjab\nGGkPh1Rqrl51SnnluegDjIRvDVDgfttXFLxU9jqCncerx5rZWHgLp09b2QmKKLhPpw7VWlj+vuvs\nrj5ZVaqTBkfFXxwJ91xIkfp0u6DDq71nVKy6PR5Gp7JtbBwNpkbFLnevDd8GtrGcCzrs96TuZapu\noun9znDlBhxqJBxmzzup+HYY8o42LRwNrjq+gLuqh+ueW7gMeqdqg3bxRR5R/FVYL6C/v6r+euNE\naBicam6EZei71dxSjDz6OBE+OL9BuxsMvQ2dlNp6g0RY6TxKdx1WNfZgGDRIhFwzDBpoaxghwqof\nJ3QxGNYucNl7bzeOGCHCi7XWoUPB3nX/OeEFn6ovde7sdnKZxb+LRErfEV42CDx0WCnLjx4mxrc/\n1GHX+o7wwXi748O8N3aZ/yhXybSp4wgvvonYNYPhgepSw/I1xn52q44jjCu1f7ycZPI7eo3w4mFw\nVby6UlcP/8JwMbBeI0w5PCl9Hu66ysYvd6qoywgjw+A7H+/F8PGvlVqNrqrmP11GmLWxuzdyMpO+\n9BdhU8Pg1NJpFYNhp/qLsAX3V64d2+nVwk1n1442MgzO//+VZq2F1Np1rX3xpd5dnr/TEFyZNunw\ngPX2FqndyXT0a785k2zkWVe6RMmNnr4zyjt99Svs2l9m1m30i7+5dDkSBk8DNjIgXOb5C83XP/1b\n/6Ue+uMdRws+1h5dRshHZ4LZ+LSzeA873a4xOv/QG5vFbfC/E3lXHnUY3L7G4OFZB6+5O5nixj/M\nHhn2GiEflbqy5+VylvW2M4m99kCK7dzx/qWOI7x4MIy/VCed+Wjn9abOdTjtHpBbO/x7vRrxNTjp\nsjbKPtBle2/BW9G83gLpb91vTzIbz2/V8Uh4pU6HwRp3f3w9Hk6xeyFuzE6bnX8+aGttjqm9Tevc\nxqL6Tltrs7xb9fSQOO0Y35oaAG9GiHCq3GFrb5x71F3nd0NfAx1Ob0prM7+V6egHCnxhXfhzctFT\nNXdr8dcEteX8VoNE6Kt0AS+Ta+Yl6OgeIoNE+OzwhY4tfFXqjEvXOX1W5qMuXr5xIlyebsGUXZ+I\nwLvGu6kpu/X3LYoNZa/0r3RS9OXPhRaeG7cVeMJQEXah0veBepw5sxpnOroqOBhW2qefT2ecP6pq\nrkC/zfAbo0U4dXg0eDuqmg7ttC0WeFsfx4o7DBhh+5ZXv/z9PsVpd43NFcj3HBNe4V1yz5blz3/z\nHLv5FxczElZ3PyO7b297AFuWaZo+XO1hGByDV7GuIsdE7y6GbPe1c2LmG0bCDjx/W6fpAiftfaft\n17JzNU4Ntn85Mt9yYqaWSifn5TceEVbh4zH2E2F58zwrkP1EWFjrp0xojwghTIQlXTAMGmnHI8Ji\n5MExIixDgRwmwjLG+/V9XEaEECbCYgyGHCNCCBNhSQZDDhBhYTrkWyKEMBGWZzDkKyKEMBFWUWkw\ndF3OkERYi0kpO4kQwkRYkcGQPUQIYSKsq9RgOM+zQXVUzrZd4dhZzfvqvEwDcwfutgjvBxkJL/Ju\nMHyYZHo5fpCRMMBwxz0j4XVu7dnm3BMhhPmIAsJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAm\nQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhh\nIoQwEUKYCCFMhBAmQggTIYT9C0b8S9+0nz87AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3da0BU1doH8GdmGBARBMwLmHm/kamAdzRCMVDR11KSPAffMqPs6HjJxONt7I7msUE9JpkpZlpYaZMKhcc0VLwhmngD8ZYGisp9hIGZ5/2wcDcOAsOw96w5vM/vkzMMe63B+c/ee+21nyVDRCCE8CPn3QFC/r+jEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCBsvoxHefBNCQyEoCDIyePeG1IhC2Hjt3g1lZZCUBCtXwty5vHtDakQhbLzS0+HZZwEA/P3h0iXevSE1ohA2XjIZIFb9W6Hg2hVSGwph49WvHxw8CACQng49evDuDamRDIUvS9LIIMJbb8HVq1BZCWvXgqsr/PYb9O0LPXvy7hl5BO0JG6+KCnjlFUhMhH37oEcPWLUKJk+GhATe3SLmKISNV7duMGgQZGdXPRw8GAAgNZVjj8hjUQjrlpQEs2cDAFy7BqGhvHtjOT8/AIAjR6oeDhkCAJCaCgYDty6Rx6EQNl5muz5vb2jfHoqK4MIFjp0i1Tnw7sB/h1274OJFePAAnJ15d8VybNcn7AnZM9evw5Ej0KsXr06R6mhPaJHx4yEpCeLjefejXvr1AycnyMiAwsKqZ+i00C5RCP87WTIv1MkJ/PzAaIRjx6qeqb5vJHaAQvjf48QJGDq06ozOwnmhZqnr0weaNYOsLMjLk767xFKWnhNmZmYeOHBAeFhYWGg0GoWHJSUlFRUVwsMHDx6UlZUJD8vLy3U6nfCwsrKyuLi4Y8eOK1ascHd3t7rrNhMaWjUo2qEDJCXx6EFODrzzDmzbBoiwfDls3mzpvFCz408HB+jXDw4cgNRUGDdO+n4Ty6BltmzZIm67TzzxRLNmzS5evGhhBzhKTEQvLywrw+JiDAmxbdsVFajRoJsbAqCzM6rV+OABIuK77+IXX1S9pmPHGn89NxcB0M0NKyurnlm4EAFwwQKJ+03qwdI9Yffu3aOiooSHbm5uCpM5wc2aNVMqlcJDZ2fnJk2aCA8dHR1dXFyEhw4ODq6urmvWrNFqtTNmzEhOTrY+yrbi5QVffQUREbZt9cABmDmz6pQvLAxWr4aOHat+1K8ffPMNvPZaHfNCW7eGDh3g2jU4dw569wao2jdiaqpM8t4Ti/FK/71795544gkA+OGHH3j1wUKJifjeexgcjEVFttoT3ryJkZEIgADYpQvu2WP+gqwsfPNNDAnBESPwwoXaNjV5MgLgZ5+xR/q7d2f17ftUixZ6vV6arpN64zYw4+np+e677wLArFmzSktLeXXDQkoljBoFWi0AwL/+BWPHwr59IMnU94oKiI2Fnj3hq6+gaVNQqyEjA0aP/usFN2/ClCnQqxfMmQNJSVXzQmt2feTIjUOHrjh/vuqNtGiR9ODBjXv3Tp8+LUHviVU4fgEYDIb+/fsDwNKlSzl2o06Jifjxx1hUhM8/j6Gh2L171S6qTx/84gvU6URraM+ePXsnTKja+qRJ+Mcfj/xYp0O1Gp2dq07zdu2yZJtpaWkA0KVLF+GZV199FQA0Go1o/SYNwzOEiHj48GGZTObk5JSZmcm3J4/14AG+8AJ++il+/DEi4oIFGBqKt29jTAw++WRVWJo3R5UKr11rUEPZ2dnjxo0DAEeFoiA0FPfvN3+FVosdOyIAymQYHo43bli45crKymbNmgFAbm4ue+bzzz8HgEmTJjWox0Q8nEOIiFOmTAGAsWPH8u6IOYMBX3oJAbB7978GFwXl5ZiQgAEBVVGUyzEsDJOT692KTqdTq9VsHMvFxUWtVpeXlz/yiqwsHD36r51vSkp9mxg+fDgA7Hq458zIyACAtm3b1ruvRBr8Q5ibm8uuFu7evZt3Xx7x9ttVx32nT9f2sqNHcfJkdHSsiomvL27aZHzALiTURavVduzYEQBkMll4ePgNs/1baSmq1ejkhADo7o4azWO+DCywePFiAIiOjmYPjUajp6cnAJg3RzjhH0JEXLVqFQB07tzZws+uDaxfjwCoVOIvv1j0+tzcv45R+/ff4+7urlKprl+/XtPrs7KyRj8cbunbt29Ktf1b5Y4dVZuTy3HaNLxzx+r3smfPHgAYNmyY8MyoUaMA4JtvvrF6m0REdhHCioqK3r17A8AHH3zAuy+IiD/9hAoFymQYH1+/Xywrwy1bMDxcxdKlVConTZp0+PBh09eUlpaq1WonJycAcHd312g0lY/u3y5evBgSErI7MBAB0M8Pjxxp4NvJz8+Xy+VNmjQRDnTfe+89AJg1a1YDt9z4pKenX7ly5e7du7Zs1C5CiIgpKSkymczZ2fnq1at8e3LiBLq4IAB++KH1Gzl58mRkZKQwgcHX1zcuLk6n0xmNRl9fXwCQy+XTpk3Ly8sz/a3CwsI5c+aw33rKy6t80yY0GBr6fhAR0cfHBwCOHj3KHu7btw8A+vfvL8rGGyI7O3vmzJmrV6/+5ptvjEYjx578+eefkZGRMpmsT58+7u7uMTExNjsus5cQImJERAQATJw4kWMfsrOxdWsEwGnTRNhaTk5OTExM27ZtWRRbtWoVHR29fPlyPz+/I4/u34xGY0JCQrt27Vg+IyMjzfLZQNOmTQOAVatWsYclJSUODg5KpbK0tFTEVupFp9MtXbqUjUg5OjoCwKBBg440eLdvBb1ev2LFCldXVwBo2rTp008/zf6/OnfuvGPHDht8NdhRCG/evMkG0xMTE7l04O7dqmuAo0ZhRYVomy0rK9u0aZMfKzYBoFQqIyIi7t27J7wgPT196NCh7Kf9+/c/duyYaG0/tHHjRgAIDw8XnmE75AMHDojeliVMR6T+/ve/f/7550899RT7C4SFhV2+fNlmPdm/f7+QurCwsCtXriBicnJynz592JMDBgw4dOiQpH2woxAiYkxMDAB07dq1rKzMxk3rdOVDhiAA+vtjcbEkTQjHqB4eHuyCQX5+vkqlYrNw27RpExcXZxDp+NPM+fPnAcDb27uwsDArK2vp0qVz58599dVXT9c+8iuBzMzMx45IlZaWxsTEsN2RUqlUqVT5+fmS9uTmzZuRkZGsJ127dt27d6/pTw0GQ3x8fJs2bYSxa5ZPKdhXCMvLy3v06AEAn3zyiS3bNRgMEyZMCAiI69LFmJMjbVvfffcdAAQEBMTHx7dq1QoAHBwcVCpVQUGBdI0ajcZ27doNGzZs+PDhzZs3Zx+s4OBgrVZrszMx0xEpDw+P6iNSiHjr1q2oqCj2reTp6RkTE2N+1VQMer1eo9Gww66mTZuq1eqavvRLSkpiYmLYKx0dHSX6b7KvECIiu6nC1dX15s2bNmt01qxZ7JNx4UK21G0lJCSwIx8PDw8ACAoKysjIkLpRRDQYDGzCmqen56RJk5wfVsvp3r372rVriyXa+z+k1Wrbt2/Pwh8ZGXn79u1aXpyWlhYUFMS6161bt4SEBBF7kpyc3OPhbNuwsLBaLiMJbt68GRUVJZfLAaBFixYajaZCxNMVOwwhIr7wwgsA8Le//c02zbGrlI6Ojvv27bNBc2vWrAGAt95666uvvvr2229t0CKzdOlS9sXPxkgLCgo0Gk2HDh3Yx9HV1TUqKur8+fOit3v2LE6Z8k/h/Or48eMW/mJycnKvhwWphg8ffurUqQb25PLly+Hh4cJXz88//1zTK7///vvU1FSzJ0+ePBkYGCj8uohfDfYYwuvXr7P7D3/99Vep29JqtQqFQiaTbdmyReq2GDZ/5d1337VNcwwbmFEoFLsenfZtMBi0Wm1wcLBMJmMDsyIeo5aUoFqNjo7Yvn2Wl5f3Y48/a6fX6+Pi4thBu1wuDw8Pv2bVJN265waayM/Pb9GiBdtPZmebHxlptdouXbqwKI4YMUKUk2p7DCEisrucnn76aUlvezt27FjTpk0BYPny5dK1YoZdLYiLi7NZi/v372fXANauXVvTa06fPj116lThVuwXXri+bh2WlFjZotGI8fHYpg0CoEKBM2bg/fvW/z/m5+dHR0ezvjVt2jQ6OrqoqMjyX9dqtWyHz46EhYnsNSkpKVm8eDH7YDRp0iQ6OtrsPJB9NbRs2VK4nvTnn39a88YestMQlpWVde3aFQBiY2MlauLy5cvsKzYqKkqiJh4rLCwMTKZTS+3s2bNsJGbhwoV1vjgvL++jjz4aMOBlubxq3mxUVB33DFeXnv7XvPb+/VGsCy7Xr19nF9PZMG9cXFyd+9XMzEw2QY+NxNbrSgM7D2RDRC1atKg+RHT//v3o6Gg2zuTi4hIdHW31ebWdhhARf/zxRwBwc3Nr4NfMY+Xl5bGQjxkzRtyT7DqxWyiFySuSunnzJpsAEBERYfkRpsGAWi0GB/91g0hwMGq1WOcG8vNRpUKFAgGwTRuMj6/7V+rr2LFjAQEBLFc+Pj57qtccQETLRmItkZaW9txzz9VyHpiZmRkeHs6+Gtq2bWvJV0N19htCRBwzZgwATJ06VdzN6nS6wYMHA0C/fv1KrD7kshZLhQ1m5xUWFrIZuYGBgdZdd01Px6gobNq0Ko3duqFG8/hjVHb82aoVAqCDA6pUWFjY0P7XhM0u6tSpE8tGcHDw2bNnTV+g1WrZpX9LRmItkZycLFzQHz58eHp6utkLUlNTh7DqkgB+fn71Hcuw6/UJs7Oze/XqVV5e/u6777Zu3dr0R/n5+aYP2VG78LCoqMhgsuyJWUXGM2fOZGZmdurUKTU1lR2R2gwiOjs7sxqQzlKW1K+oqBg9evS+fft8fHwOHTrELodYJy8PvvwS1q2DGzcAANzc4JVXYM4ceDiwCiUlMHw4nDgBADB8OKxZAz4+DX4DddHr9Z999plarS4sLHRwcJg6dep7771XUFCgUql++eUXAPD391+7du2gQYNEaa6iomLTpk1Lliy5c+eOXC6fMGHCypUrhVk+AGA0Grdt27Zw4cI//vgDAMaPH79q1aqOQmGu2jXwS0Jq4eHh7AxYRM7OzkqlksuNPPfv3weA5s2bS9qK0Whkt0p7eXlZN5xYXWXlI8eor776SBnI8ePR21uS48/a3b59+80333RwcAAAFxcXdgrXqlWrjRs3SjH3yPQ88LFDRDqdLiYmxs3NTS6Xb9iwwcJTALveE+r1+p49e165cmXAgAF9+/Y1/ZHZV3vz5s3ZtVSm9oqMO3fu3L59u5+f3/HjxxW2Xcz9woULPj4+3bt3v3jxonStLFq06KOPPnJ1dT148CCbIyqikyfh3/+GUaNg+XKYPh0iImDiRNiyBVxcwKSupU1dunRpwYIF+/fvr6iomDhx4qpVq1ghP4ncuHFj8eLFW7duRURvb2+1Wv3aa6+ZfpByc3OffPJJg8Gg1+tNP3g1Ev3bQkQrV64EgJ49e4o7dqLT6diY9fr160XcrCV+/fVXAHj22Wela2LDhg0AoFQqk5KSpGuFQxnIWt29excAPD09bdbib7/9xsbYAMDPz8/syge7oGLhzVD2uxZFfn7+Rx99BACffvopO94Qi7Oz8yeffAIACxcuZP95NpObmwsAbFqwFBITE6dPnw4Aq1evDgkJkagVxrQMJHdsR2S6NIPUhg0bduzYsYSEhI4dOzo4OJgNLrD+GCxbj9V+Q6hWq+/fvx8aGirFh2nixImhoaH3799fsmSJ6BuvBQuh2SCTWE6dOvXSSy9VVlaq1eo333xTiibMvP46bNkCMjuo5l2vD71Y2N0V586dS0hIkD36V2C7jcrKSku2Y6chzM7OjouLUygUK1askKiJ1atXOzk5ff7558ePH5eoiepu374N0oTw2rVrY8aMKSkpmTx5slqtFn371WVlwaZNYDJAyFP1D/3XX38dERFhg0UWnJ2d2dx0U41hTzh37ly9Xj9t2rRnnnmGPfPjjz9mZmY2ZJs6nW7JkiWrV69mD7t27apSqYxG44wZM2x2GMNCKPrhaGFh4bhx43Jzc4OCgjZt2iSTft/ElqmaNQsGDoTERKlbq1v1D/2RI0e+/fbbrKwsO+lPbaQ5a20QtgZbs2bNch7e25eXl+fu7q5UKi9dumT1ZtnlI1dX11u3brFnioqKWO2JL7/8UoR+W4DNovrpp59E3GZ5efmIESMAoFevXlLfCGuKFUMV9a1Yj+0DFQqF8MzMmTMBYPXq1Vz6w75nLZzsZXd7QqPROG/ePAD45z//Kewxli1bVlBQMHLkyG7dulm95ZEjR44fP764uDg6Opo94+rqunz5cgBYsGBBQUFBg/teN9H3hIj42muv/ec///H29t67d68t13vMzQUAkOb0tt7YrTDs2qDwDFh8ViY6dnj837on3Lx5MwA8+eSTQg2iixcvKpVKhUJhNjvJCuwmKZlMZjqxiE0OtE39P29vbwD4w2yRiQZ45513AMDNzc32hSratkUAy+vxS05IHXvIvsptXKJBwM4SLZwpYV8h1Ol0bCoQuxLKsNsOpk+fLkoTy5YtA4Cnn35auPaYkZHBQi7159hoNCqVSplMJkoFnaKiIvZelErlLxaWKBaP0YhKJcpkaPNiQDVit2sJ9zqw452YmBgunWFTW6vfjvhY9hVCdhuhr6+vMOdo//79AODq6pojUu0X4SYp07MFlUoFAEOHDpW04EpeXh407ILyrVu3EhISVCpVQECAUqls3bq1QqGw/ZQDRMzLQwC04bXxurE7AIUDqIULFwK/ctLsvMnCIQw7CmFubi4rtvXbb7+xZwwGg7+/v+jfZ8JNUkKwCwsLvby8AODrr78WsSEzZ8+eBQAfHx/Lf+XBgweHDh365JNPxo8fb3ZhQ6lUurm5AcA777wjXZ9rkpGBANizp+1brhH78AiTOVk5DxtXMBD07NkTACwsF2JHIZw6dSoATJgwQXiGFWUwPT8US/WbpL788ksAaNOmTaFkN+Gwa1ZBQUG1vywnJ0er1arV6uDgYNNVxwGgefPmwcHBarU6OTlZp9OlpaUpFApHR8cL9b3xtsH27UMArOut2BQblBLGh9lRFa+lL1l1HAtHMewlhGfOnGGfJ2GhQp1Ox26927Ztm+jNXb58uUmTJjKZTKjnYzQa2U2G0u1Ytm7dCgAvv/yy2fOVlZUZGRlxcXGRkZE+j94FpFAofHx8IiMj4+LiMjIyqh8tR0VFAUBwcLBEfa7J1q0IgBERNm62NmzStlC5/IMPPgCARYsWcekMu9+g+p2Hj2UvIXz++ecBYO7cucIzbNrHgAEDJDpPY+cMfn5+wnga27EolUopio7hw/nos2fPRsSioqLk5GS1Wh0WFmZ2XaFZs2YBAQHR0dFarda0UPdj3bt3j334vv/+eyn6XJN//QsBcPZsW7ZZB3a4Lkyk/vjjjwFgwYIFXDrDTqNOnjxpyYvtIoS7d+8GAA8PD2E1nFu3brGCa9XXDBNLaWkpu5fCtObSG2+8AQAjRowQvTmj0ciOt/v169ezZ0+zSS1du3adMmXK+vXrf//99/reCLdu3ToAaNeunS2rBMyfjwBVCxjbCXb5R5iJweboz5s3j0tnBgwYAAAWrmjAP4SVlZWsdoDpKuqvvPIKPLp2ghRYHV5PT0/hGEbYsXz33XcN335JSUlKSopGowkPD2ebZbWc2bCKv7+/SqVKSEhoYP0Fg8HA7qlZsmRJw/tsoTlzPhw4cPz27ebFOTliF7eEYr6snOycOXO4dIZVuzBbFa8m/EP473//GwA6d+4sXOE5ffq0XC53dHTMysqSunV2i4bpRcjPPvusITuWq1evfv311zNmzPDz8zO7A4vdkf3GG28cPXpU3FKOR44ckclkTk5ODZnWVy/s72a2fgNfrJaEsGJEbGwsAKhUKi6dGTZsmOk4f+04h7CoqIgdyu/cuVN4Mjg42GYHEufPn1cqlXK5XKgMbTAY2LHE4sWLLdlCRUXFyZMnNRpNZGSkUNDadFglKioqPj4+IyODLfTT8ErSj8WOHUJsdYOtpO/FOqwmr/DFzb7c33rrLS6dYdOwLKz4xDmE8+fPB4DAwEDhGa1Wy84P6xyTEMvbb78NAIMHDxZGgI4fP852xTXtWHJzc4WrCGb1mtzc3NhVBK1Wa1Y0ln3dSFHBERFv377NBnjEnR1eE/ZehBMwe9C9e3cAEK7WrF+/nh13cOkMm1KfnJxsyYt5hvDq1avsOsGJEyfYMxUVFez80JaT34uKitg5/ebNm4UnzXYs7CpCfHx8VFSUj4+P2bBKp06darmKIGxBoVDI5XLpypxqNBp2YC/1ErPCe5G0Pnp9sU+OsLoOK/MxTZTVXuuPHa5bWGGEZwjZ0rxTpkwRnmGLpXTv3t3G/7vsCt7rr78uPCPsWCIiIkaMGMFmYwhcXV2Dg4OXLl26d+9eC+8eysnJAYBWrVpJ9iawsrKSHSW+//770rWCiKw+QMuWLSVtpb5YkdUzZ86wh5s2bQKAV155hUtn2BqMNdUmNsMthCdOnGCL1N8wmYd/7dq1iIiIH3/80cadMRqN1a+FzJkzhxWQZ7y8vMLDwzUaTUpKihWL5p0+fRoAnnnmGZG6/HgpKSnsryppcWHbvJf6YnXlhNPULVu2AEBkZCSXzowdOxYAtFqtJS8Ws4BSvbRp08bf37+8vJxNi2Hat2+/fft223dGJpMJC1YziJiamlpYWDhs2LC5c+cOHjy4gTUppC7xxAwdOjQiImL79u3z5s1jq5FKQdJKOVYzq3AxePDguLg4YQUl6ej1+oMHD44cObKWztSO2029Dg4OmZmZZ8+eTbSH6gjVJCQkHD16tHXr1nv27Kk+edoKNvvgrlq1ys3N7fvvv5fuDytRkY4GMqso0aVLl6ioqOHDh0va6P79+319fUeNGnXmzJlaOlM7biFs06bNokWLAGDWrFnl5eW8uvFYer2e9e3DDz80Oxu0ms0+uDb4wwp79S+++OLcuXNSNGEFGxdcu3bt2osvvjhixIjz589369atrKzM6s7wLG8xe/bsnj17ZmVlseuq9kOj0WRnZ/fu3ZuNkYpCujpr1c2ePbtHjx7S/WHZeyksLHzjjTeGDh3KKhpzx44AHzx4IHVDer0+Njb2mWee2blzJ1tyND09feDAgcILLl++fOzYMbOq8LWR+AS1Dvv27QOAZs2a2XKF+trduXOHjcfUspyyFSZPngwAX331lYjbrAW7bUrcP+yNGze2b9+uUqnYQrYbN258+eWXAcDR0dFm76sWn3/+eadOnby8vOLj46W7OVur1QoLQoWFhd14tLxHaWnpokWL2NSo6rfL1IT/tLUJEybUq8dSe+uttwBgzJgx4m72tdeuBgae/vXX6+JuthYN/8NWVFQI91iZLTC0cuXKkpISo9HIbnaRyWRqtVq8vlujoKCAXaUAgMGDBx85ckTc7WdlZbHbUAGgR48e1UuK1HdJYAH/EN64cYPdMLF//37effmrqJRwzVcsTz+NAPj77+JutTbW/WELCgrYPVbVJwOxq6Pz5s175513TK+OxsbGslOgqVOn8r18bzAY4uPjWZEEqGHReSuwJUfZDdbu7u4ajcZsxsWlS5dCWSVWAF9fXwvnbQv4hxAR33//fZB+hXpLsKJSUkw4bNECAbDB61XWj4V/2Ozs7NonA2k0mpMnT7Jlhvr37y+TyZYtW2Z6yLdz505W4uX555+XrjSBhUpLS2NiYtiImqOjo0qlakg51tr3byUlJQ1fEtguQlheXs4K45jezWR7QlEpyw8kLKTXo1yODg4owZp5tanpD1tcXJySkhITExMWFubp6WmaOhcXl4CAAHaPlXCHl6mNGzeyIZD//d//Nc32sWPH2KIovXv3toczfNNF5z09PasvOl+nOvdvwpLAcrk8MjLyzp071nXVLkKIiElJSSDZCvWWkKioFHPzJgKgl5foG66b8IdNT083rdRmGjwvL6+wsLCYmBgLJwP9/PPPbD8zYsQI00nq2dnZbBZ1hw4dJKpOUF+mi85369at+qLzj1Xn/u3ChQvC1fl+/fodPXq0IZ20lxDiw0NBXpP9WFGpdu3a6XQ60Td+8iQCoK+v6Bu2SFBQkNlBpqOj46BBg+bMmbNjxw7r7oQ4c+YMW0GgV69epiOEd+7cYStUnw4NRcvuprOBOhedNzNjxgwAUCgU06dPN7ubJz8/X6VSsWOBFi1aaDSahi8JbEchFIovWXgrpIiEolLbt2+XYvu7dyMAhoZKse063Llzp3379o6Ojh4eHuPHj1+xYkVKSooot1lcvXqVFfbz9vY2/VjrdLrfZs1CAHRywm+/bXhDotDr9XFxceyAWS6Xh4eHC/fgV5eTkxMSEpKWlmb6pNFojI+PZ1d6HRwcoqKihGosDWRHIUREtlqgr6+vFWe3DcHG2QcOHCjR9aWNGxEAbb+P1+l0rM6Cv79/cXGx6Nu/f/9+YGAgO5FOTEz86wdGY1UVGpkMeV+6MMUWnWfjnI9ddL4mp06dYn9JAHj22WeFezVEYV8hFBayXrdunc0atUFRqQ8/RAC0ceEvg8Hw4osvsjM0seqXV1dWVsbmITzmkr1Gg3I5AuC0aV9jVdAAAAvtSURBVCjZXZRWuH79emRkJDtE9/b2jouLq+VL//79+yqVig3wSDQTwL5CiIhs7r+Hh8djh+akwOamvfTSS9I1oVIhAH76qXQtPMasWbMAoHnz5r9LfHXSYDCw1VfGdelSaTas9cMP6OyMAPg//4NiV3BuoKNHjwYEBLCdm4+PT/V6OeyqY8uWLQFAqVSqVCqJrr7YXQjx4SJ+tilMYJuiUpMmIQBKUMS4RqzGqaOj43/+8x/btLhx3bqKp55CAHz99Uf2e6mp2LIlAmD//ra+TloXo9HIFp1nUQwODhZqZp84cUKYDhoUFCT65A1T9hjCzMxMJycnuVxuYdnGhrBNUanAQARAm80ISkhIkMvlMpnM1lM6d+3Cpk0RAEeORNOdxuXL2LUrAmDHjnjxok27ZIHy8nKNRsMmDDs4OEyZMuX1119nc6/btm0bHx8vdQfsMYT4sABUv379qo//fvDBB8HBwQMHDvQ30bNnz04mvL29PUywap8bN2402xRbGcbT01PqolJ5efj77yjByMhjHDt2jE1e4bM037Fj2KoVAmDv3mi6DOPduzhkSNVKTnZz6cLU3bt32bUHuVwul8vZ8acUo1nV2WkIi4uL2WWo6slhwwBW2LBhg+l2Kioq2MIPa9aske6NJCailxeWlWFxMdqgHOHly5fZOUxUVJTkjdXkyhXs3h0BsG1bNB1FLCnBsWNRoUCbly+xXEZGRmxs7Jo1ay5fvmyzRmX4cHlhe7N9+/bJkye3atXq0qVLpqs1nDt3Licnx9XV1bS0btOmTdn8BsbJyYntDRilUimUvhasWbNGpVJ179797NmzZjNIRJSUBIsWwfTpEBEBEydCUpJE7QAA3L17d8iQIWyy/65du8xKD9vU/fswfjykpICHB+zcCYGBVc8bDJCaCo9WEiF2uidkgoKCAGDmzJmibzk/P5/VpbewFI/VEhPxvfcwOBiLijAkBKW7/KnT6dhUlX79+tlyUYoalZVVjUc5OqKUqz42AnYdQukWsmZD6s8995y4m60uMRE//hj/9S/cuhVDQnDZMvT3x/h4FPd2kcrKyvHjxwNAx44dRZ99bj2jEaOjH7lkbzDgG29gSAg+9xxatnbf/wf2ezjKzJ49OzY21tfXd/ny5ezqalFRkWnpjtLSUr1eLzwsKyszLXCg1+tLS0uFhwaDoaioqKSkZMeOHQaD4cSJE35+ftJ1HhF+/hlOn4Z//AMmTgS5HP74A1hNlrZtYfp0iIqCli1FaGjmzJlr165t0aLF4cOH2RRqO/LppzBvHgQFQVIS7N0LP/wAmzdDWhr885/wyy+8O2cfeH8L1KGgoKB169amZRFFMXr06Pnz50va86IiDAjAZcuq1g9bsABDQ7GsDOPj8ZlnEKDqSC08HFMbtrRRTEwMADRp0uTQoUOi9Fx8e/Ygu9li2TIURtqeeopjj+yKve8JAeDu3bsbNmxgN/sBgNmQjIuLi6Ojo/CwSZMmpveDmw3JKBQKts5779692RmURCoqYMwYSE6GXr3g9GlQKMxfcOgQrF4NO3cCq0zp7w8qFbz8MtR3hOjbb79lw8UJCQmsnoVde+89aNsWXnsNAKBTJ7hyhXeH7APvb4FGyGjEV15BAGzZEmufh5OdjW+/je7uVTvGJ5/EmBiD5fP1Dh48yMaEP7XxjDir7dmDrCT2qVM4ahTv3tgLCqH4li5FAGzaFC281fPBA4yPx169EAAHDbrp5OQUHh5e532i58+f9/DwAH7rYFrDaMQ338SQEBwxAh8un0QohCJjdy0pFLhrV/1+0WjEX37B119fKxSrDAwM/O677x47wf/PP/9s3749AIwdO9bGt30R0VEIxbR/Pzo6IgCuXWv9RrKzs6Ojo4XSL15eXmq12vQYtbS0lM0tHjBgQKmd3ZpArEAhFM3Zs9i8OQLgwoUibK24uDguLk4oyuDk5BQZGXnmzJnKyspx48YBQOfOnRu42D2xExRCcdy8ie3aIQBGRKCI93wajcakpKTRo0cLx6hsSm2rVq1sObmRSOq/4BKF/SsoKH7uuWZnzsjYFWmTKyaiyc7O3rBhw/r16xFRqVT+9NNPgwcPFr8ZwgOFsKEqKirGjBlz756fQvHhzz8rPDwkbGvv3r1jxowZOnRoSkqKhM0Q2+K5KlMjgIhTp05NTk7Ozf3qu+/+lDSBAFBcXAwAQpl30jhQCBtk8eLFW7dudXV13b1791NPiTy3rjrbLPdLbIxCaL0vvvjio48+UiqVO3bsYAumS82WixwSm6EQWikxMXH69OkAEBsbGxISYptGKYSNEoXQGqdOnXrppZcqKyvVajWLom3Q4WijRCGst2vXro0ZM6akpGTy5MmsdLfN0J6wUaIQ1k9hYeG4ceNyc3ODgoI2bdpkttCK1GhP2ChRCOtnyZIlZ8+e7dOnz65duxyluCpfM0S8c+eOTCZjq5qQRoNCWD+urq5yuXz+/Pns5mBbunfvXkVFhbu7u2ldOdIIUAjrp3nz5kajcdmyZeXl5TZump0Q0rFo40MhrJ/Zs2f36NEjKysrNjbWxk3TCWFjRSGsH0dHxzVr1gDA+++/f+vWLVs2TUOjjRWFsN6Cg4NffPHFkpIStmCGzdCesLGiEFpDo9G4uLhs27bt119/tVmjtCdsrCiE1mjXrl10dDQAzJw5s6KiwjaNUggbKwqhlebPn9+tW7dz586tW7fONi3S4WhjRSG0kpOT0+rVqwFg6dKlOTk5NmiRhZD2hI0PhdB6ISEhYWFhRUVFCxcutEFzdJ2wsaLyFg2SnZ3dq1ev8vLygwcPDhs2TLqGjEajk5OTwWAoLy+XbjVFwgXtCRukc+fObL37WbNmma4VJbq8vLzKysonnniCEtj4UAgbauHChR06dEhPT9+wYYN0rdDQaCNGIWwoZ2fnlStXAsCiRYvu3r0rUSs0NNqIUQhFMGHChNDQ0Pv37y9evFiiJmhP2IhRCMWxevVqJyenDRs2HD9+XIrt056wEaMQiqNr164qlcpoNP7jH/8wGo3ibrykpOTkyZNAe8JGii5RiKakpKRHjx63bt368ssvX3311QZu7c8//0xLSzt8+PChQ4dOnDih1+uff/75BQsWBAUFidJbYj8ohGLatm3b3/72t1atWl26dMnd3b1ev6vX69PS0lJTU48cOXLkyBHTWTgODg6+vr4LFix48cUXxe4y4Y9CKLKgoKADBw6oVCpL7vq9ffv28ePH2R7v8OHDDx48EH7k5uY2YMCAgIAAf3//Z599tnnz5lL2mvBEIRTZuXPnfH19jUZjWlpanz59zH5qMBguXrwoHGdeuHDB9O/fqVOngICAoUOHBgQE+Pj42LiUG+GFQii+2bNnx8bGDh069LfffpPJZMXFxWfOnGGpO3z4cH5+vvBKFxeXvn37stQNGTKkRYsWHLtNeKEQiq+oqKhHjx45OTlBQUF37ty5cOGC6Xhpp06dhgwZMnjw4ICAgF69eikUCo5dJfaAQiiJzZs3x8bGnj59GgAcHBz69OnDzu4CAwPbt2/Pu3fEvlAIJYGIBoNhzZo1gwYN8vPzo0qhpBYUQkI4oxkzhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeHs/wAgxn8cvQQd4wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -290,7 +311,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAJSElEQVR4nO3d3XbayBaFUXFGv/8r\ncy5IHCwBllGpVlF7zpGLZKTbwTKftn6QdLlerwuQ87/0C4DqRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSJcu1wu\n6ZdALSL85nK5XK/X9KugFhFCmAj/MQaJEOEfCiRFhMuiQKJECGEiXBZjkKjyEV4uiwKJKh8hpNWO\n0BhkAIUjVCBjKBwhjKFqhMYgw6gaoQIZRtUIYRgihDARQpgIIUyEEPZf+gV08XXbGAdFGU+BCO9P\nCTo9yHhsjkKYCCFMhBBWYJ/wenVghpEViHD53p5jMwzG5iiE1YvwfusUBlAvQhhMyQgNQ0ZSMkIY\niQghrGqEtkgZRtUIl0WCDKJuhNfr1ZOxGUHdCGEQpSM0DBlB6QhhBNUjNAyJqx4hxInQMCSsxvWE\nO6w69ABtuhHhcnn0zPo9s1GoNCHCx/YE9jBUZfJb1SN8OAZ3em9+wsr7b8EJrApsslt4pGpqqjsJ\nt7Ws/vh6rCmNVupG+KPXmT0bm7cTHhJlv6IRHu9EZrRS8WT92ZPK2X9+pVyEthUZTbkI+zAM2a9W\nhMYgAyoUYecCDUN2qhKhGciwip6i4HPNd71LifkQHIMmcFvb5flsm/+DFvv8k1AGc3v2w/2gOMd7\ng26fqrtamr95wSMUOMJrmEOTJXkf5yA/l8Em4f1jdL9+v1pS35tcre4GWaw012pd9vVFxjl2PViE\ne6wuffj+ly/22lMTyUe6j9uzK/jbJTzOz+UDI3zpxfWBzOS3V1SPENszQ6wJ/nm4OXro660v23WY\n9OM03xVcvm+Uxn8ug03C+yeWpRcNI2i+KzigMT4xc7+Wul7//Gph9dmxnh8l2656bR4PaISfywAR\nttjsHM0IGzkTKLIYB4jwZMFheK/I+6mhbkssPgzTERqDlJeOsIuew/DZ/bybZXm5/Pk1tVLXnUWP\njs44BrcaF9j0FM6Yqm1KlJiES69V3cMPdpR6Px2X/WBT/393CUZ4ia7Iz1jieuM9mc3R+d6vp+8K\njqrtRQnZJZb6NGkgwkE+SH32Ej/liz/8RFFum+L1wzy+7FwOFdZZD/WOcMoF3XVXcOClN8H1tZFh\nONhnR092xjAMrFZWo+82Hru/ofd/4zvjLHtMq2uERRbr6d9mqLrmxrzurP8w7Hd0dJAC2564H+Wc\nxP2+YhfNv83tDyL+abJu+kU4QoFtJQvsXl0pnfuvcrL+3nYYBl9MMx2zPGldkx2GwalbMcIm8hui\noWF4ucyy2rqTvQND0QiPr2KH2BX8rkORZx8PqrlnWOsUxcrxO3Z9fZ1Mgd8Pk45z+7DPEr8RUd0I\nHy7oPSvdod7ll81NH0/8t7qcFtmuSk5ducQLXCpH+NCeH0Cr+dlEt8/iTXFicm2QDQcR/tqPd6Gd\nT+cCOw/DL6kmix6YaWi0IwdnvJ4BpkV7I2yI3ojw4422FjhJ229znAIXETYxWgajvZ439L8PUJAI\nZ/D1lr38tcy4s3pSmfEmHZiZx8MP8Xz/T7797UjD4IGTDsYMtSF6I8I24ifKH06J169nO1TS78af\nHVzOIyS3JcJJvPH2evifb2+qGDxD2HbVlv+47xP2CZsJHg5p+2YafF/yvCZTRMja9vKM4C2/W63a\nxkluS4QtRYZhh7fXtdmz6mLG3BC9EeFnO+362oE2Spuv2oYqcHFg5qOd+mYaqsPlp1uz/errDFXg\nIsLm4ucqDlrdS3EZ47zFdnl+3EVnL4jwU3106se9d9HZzv+xs9I/yPOcXUjxAifjwAyEifDzGIOT\nEeEpzjthqMD5iBDCRHiWM4ahMTglpyjO9dXh8XgUOCsRnsVTbNlJhJ08S+iDnmLLSaxfT9HkAcD3\nf/RjmphJOKg9m7LMwdHR9jo8xZaZiBDCRNhY2xsTff3eMJyYCFua8im2nE2E41pNP8NwViJsZson\n+NGBCNs4qUDDsAIRNmAGcoQIR2cYTk+ERxmDHCTCozoUaPrNTYSfR5OTEeFnEN7ERPiRNDkTEX4M\n4c1KhE/dHsr39Wv5/vTMeA6anIaLev9ZvaV/fJp0f5/+tBkeEuE/e97b2We4r2hyDiU2R7ebkZ+7\nHWcrdD4lIlyaVjfU0zM1OYEqm6PbzcjbW/e9Tblshz8+MdMG6mepEuHWG2/U1VNsR9g5fLhPONNT\nbCsoFGHz8RXv8NlRmZmeYltBoQiX9GZkWwePi+ptHCUOzNy3d3vvtXoHzlQ1KSUinI/TgzMR4VH9\nh6EbK06mRIQjHMZsZabvhZsSEZ7NniFHiLCVHhUag1MSIYTNH2Gf6dHhM5zG4KxqnazvaXWz0OAr\nYXAVIrwsS48GVlf3PX/U7vXuf9n7xY3BiVWIMO/ZJLxv83VjCpzY5BEO/smSgV8a/cx/YKYnl9jy\nhsknYYRLbPmVKhH22S7dd4ntOwdmmNjQu0wHrZK4xXDe9/tG53tussj0qkzC5W9+J6X43qT98dam\nzkxUUCjCmzNSbL6tq71SZj46ejtW+exmKn//9ui/csbepssySpl8Er6ee3//9vb7d76+62s5bvII\nb35KcVneSvHUjUbDsI4SEd7sTHFnVx1223RYxMynKF64XC5vH5c5svkKW0UjvBltE5SaCm2Obv12\nb1CBnKF0hDc7U1QgJym9ObqlNPqb+WT9GxRIfyKEMBE+sH28NpxHhI9pj25E+JhPq9CNCCFMhE8Z\nhvQhwlecsaADJ+shzCSEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFM\nhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQgj7P4qaEy6MFAATAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxUVf8H8M8w7IIIKeOwqbivIIg+prjigqI+lbsYmoWZiuaSabllPzVXNKMsNfVBLTX3HRMTzQRCcEtTUBm2IWQRZJ85vz8uTRMgwnBnLjN8369evOwy3POl/My5c88954gYYyCECMdI6AIIqe8ohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIjEJIiMAohIQIrH6FMDY2NicnR+gqCPkXEWNM6Bp0JCMjw93d3cTEJDw8vHnz5kKXQ0iZetQTvvvuu8nJyU5OTs7OzkLXQsg/6ksIQ0JCjh8/3qhRo//9739isVjocgj5R724HL17966Xl1dBQcGBAwfGjx8vdDmE/Ivh94SFhYWTJk0qKCiYNm0aJZDUQYYfwgULFsTFxbVq1Wrz5s1C10JIJQz8cvTs2bPDhw83Nja+evVq9+7dhS6HkEoYck8ol8unTp3KGFu7di0lkNRZBtsTKpXKIUOGXLx4cfDgwefOnROJREJXREjlDLYnzPnqK9GjR/b29nv37qUEkrrMQHvCqCj06sXMze8eOdLJx0foagipiiH2hHl58PdHSYlo2jRKIKn7DLEnDAjA3r3o1AlRUTA3F7oaQl7B4EJ46BDGjoWlJaKj0b690NUQ8mqGdTn6+DHeew8AgoMpgURfGFBPWFqKPn1w/TrefBM//SR0NYRUlwH1hCtW4Pp1ODnh22+FLoWQGjCUnjAiAv37gzFcvIj+/YWuhpAaMIieMCsL/v5QKPDpp5RAoncMoidMS4O/PwoK8MsvMDYWuhpCasYgQghAqUR2NuzshK6DkBrT58vRhQsxaBC8vXH0KIyMKIFET+ntxdvFi7h/H2FhyMlB164YOhQWFkLXRIgm9LYnjIoquwdjY4OWLfHokdAFEaIhvQ0hY1B9mmUMRnr7i5B6T2//7nbvjkuXACAnB48fo2VLoQsiREP6fHd00SLExKC4GP7+6NwZ//mP0AURogl9DiHnwgX4+qJLF9y8KXQphGhCby9HVfr2hUSC2Fj8/LPQpRCiCf0PoZkZZs4EgI0bhS6FEE3o/+UogMxMuLggPx+3b6NjR6GrIaRm9L8nBGBnh4AAMAZaY5voIYPoCQE8fIh27WBigidP0LSp0NUQUgMG0RMCaN0aI0agqAghIUKXQkjNGEpPCCAiAn36wM4OiYlo0EDoagipLkPpCQF4e6NHD2Rm4n//E7oUQmrAgEII4MMPAWDzZiiVQpdCSHUZVgjfegvNmini49MuXBC6FEKqy7BCaGwc+8knbRwcxq9dK3QphFSXAd2YAQDk5ua6uLhkZ2ffuHGD9iQkesGwekLA2tr63XffBRAcHCx0LYRUi6H1hACSk5NbtGjBGIuPj3dxcRG6HEJewdB6QgCOjo5jxowpLS3dunWr0LUQ8moG2BMCiImJ8fT0tLa2lslkNjY2QpdDSFUMsCcE4OHh0a9fv9zc3J07dwpdCyGvYJg9IYBTp06NGDHCyckpISHBxMRE6HIIeSnD7AkBDB8+vH379klJST/RNmmkbjPYEIpEorlz5wLYsGGD0LUQUhWDvRwFUFBQ4OLikpGRMWHChB49ejj8TSqVmtNe9qTOMOQQlpaWtmvXrqioKCkpqdy3zM3NuTSW++rq6urs7EyfIYkuGXIIly5d+vnnnzdp0iQwMPD58+dJSUlpaWlJSUlyuby4uPhlPyUSiSQSSdOmTR0dHaVSKfdV1YtKJBIjWu2b8MpgQxgREdG/f3/GWFhY2IABA8p9Vy6Xy+VymUyWlpaWnJycmprKfU1JSZHL5QqF4mWnFYvFEonE0dHxwoULjRo10vIvQeoFwwxhdna2u7v706dPP/3001WrVtX0x7OyslJSUrhMlvv69OlThUJhampqZWX1888/u7u7a6N+Ur8wQzRu3DgAXl5excXF/J65qKgoMTFx4sSJACZPnszvyUn9ZIA94bfffjt9+nQrK6uYmJjWrVurf+vw4cO5ublNmzZ1cnJq2rRpkyZNNGvi6dOnrVq1EolE8fHxzs7OfFRN6i9DC+HDhw89PDzy8vJCQ0MnTZpU7ruvv/769evXVf9qamr62muvVXqbVCqVSqVSkUj0sobGjRt38ODBRYsWraUJxKR2DCqERUVFPXv2vHnzZkBAwO7duyu+YMOGDbdv3+Y+4KWkpGRlZVVxNktLS0dHR1W3uWDBAgcHB9V3o6Ojvby8GjZsKJPJGjZsyPvvQuoPgwrh3Llzt2zZ0rJly5iYmOoEo6io6NmzZ5XegElISCgX0fj4eFdXV/Uj3t7eV69e3bJlS1BQEM+/CalPDCeE586dGzZsmFgsjoiI+A8fexXm5uZyQ4vc6MXs2bPLPWdz7NixN954o3nz5g8fPjQ2Nq59i6R+MpAQpqenu7m5paWlffHFFx999JFuGlUqlR07drx///6hQ4dGjx6tm0aJ4TGEhz8YY++8805aWlrfvn3nz5+vs3aNjIxmz54NYN26dTprlBgeQ+gJN27cuGDBgsaNG8fFxanfO9GB/Pz8Zs2aZWRkXLt27fXXX9dl08Rg6H1PGBMTs2TJEpFItGPHDh0nEIClpeX06dMBbKQtSomm9LsnfPHiRbdu3e7fvz9r1qwvv/xSkBrS09ObNWtWXFz84MGDVq1aCVID0Wv63RMGBQXdv3+/Y8eOAn4qs7e3nzBhglKp3LJli1A1EL2mxz3hTz/9NHr0aHNz8xs3bnTp0kXASu7cudOlSxcLC4vExMTXXntNwEpIRX/88YeJiYmjo6OFhYXQtVROX0Mok8nc3d0zMzNDQkJmzJghdDkYOnTo+fPnV69evXjxYqFrIWUKCgpmz5598+bNmJgYvHwmt1QqbdasmZWVlVB1aieECxciNhaFhZg3D2+8wfvplUrlwIEDL1++PGzYsFOnTlXxhKfOhIWFDR48WCKRPHnyhNbOqCNmzpwZEhLy2muvWVtbp6amFhUVVfFie3t7iUTi7OzMfVWf1S2RSMRisfbq1EIIL17Eli04eRI5OejaFXfvgu/LgBUrVqxcudLR0TE2NrZx48b8nlxjXbt2jY2N3b17d0BAgNC1EJw5c8bPz8/U1PT69etdu3YFkJGRwS2tkJaWJpPJ5HK5+mILpaWlLzuVkZGRRCJRX6PIw8NjxIgRfJWqhRCuWQMzM8ybBwCDBmHTJoSEYPduODhAKv3nq6tr2R+cnVGTNV2uXr3ar18/xtiFCxcGDhzIc/G1sGfPnilTpnTq1OnWrVt1oXOuz5KTk93d3TMyMjZt2vQht3Xsq7xyJrf6i729vfv3779y5UpeqtVCCFevhpkZuCdXfHywZQs+/RTHjr309UZGsLeHg8OSjh2fWVio3my4iwGJRKL+Fzo7O7tr165PnjxZvHjx6tWrea68dkpKSlxdXZOSki5cuDBo0CChy6m/lErl4MGDf/755yFDhpw9e7b2b4glJSXp6emqLjQhIWHbtm0KheL+/fvlJqxqiP95wmFhbNgwxhjLzmaurqyggDHGMjPZnTssLIzt2cPWrmVBQWzMGNarF3N1ZcbGDGCAS2WbRhgbGzs6Ovbo0WPUqFEzZ8708PAA0K1bt6KiIv4rrzXufWHIkCFCF1KvrVmzBoC9vX1qaqr6caVSmZaWxksT06ZNAzBjxgxezsZ3T5ibC6USq1cjJgbFxfjoIwwf/oofKS2FXI6UlBOpqerX6NxVe3p6uvpr7e3t8/LyoqOj27dvz2fZPMnKynJxccnLy4uNjXVzcxO6nPooOjq6V69eJSUlJ06c8PPzU/9WRkZGkyZNajOTW+XBgwcdOnQwNzd/+vQpD3cleInyP/z9WfPmLCqKr/MVFhY+efLk2rVrhw8fDg4OlkqlAA4dOlTuZTKZjK8Wa2nWrFkApkyZInQh9VFubm6bNm0AfPjhhxW/++eff75yFNfc3NzV1bV3795jx46dM2fO+vXr//e//4WHh//555/lzubr6wtg1apVtS+b1xD++CMDWIMG7I8/+Dytmq+++gqAl5eX6khRUdGAAQMsLCzS09O11GiNJCQkiMViU1PTlJQUoWupdyZPngygc+fOBdyHoMoUFhYmJydHR0efOHFi+/bty5cvDwwM9PPz8/T05N7iK9WhQ4dy57l48SIAe3v7KtqqJv5CGB/PGjZkANuxg7dzVvDixQuu97927ZrqIHfVsWLFCu21WyNvvvkmgCVLlghdSP3y448/ArC0tPyjFn1AXl7e/fv3f/nll9DQ0I0bN3744YcTJkzw9vYOCAio+GJu5GPnzp2aF80Y4y2EJSWsZ08GsLfe4ueEL/fJJ58AePPNN1VHwsPDATRp0iQ/P1/brVfHtWvXANja2ubm5gpdS32RkJDALWjy3Xff6azRvXv3AujYsaNSqazNeXgK4eLFDGBOTuzZM35O+HJyudzc3NzIyOjhw4eqg927dwfw7bffarv1ikpLSyse5OoJCQnRfT31UElJSc+ePcu9NetAcXExt+Dl2bNna3MePkL4yy9MLGZGRiw8nIezVcPUqVMBzJo1S3Vk//79ANq2batQKHRTA0epVI4aNSowMLBcJ9y/f//mzZvfuXNHl8XUW0uWLAHg5OT0TPt9QDncgpc+Pj61OUmtQ5iZyVxcGMCWL6/tqart9u3bIpHI0tIyIyODO1JSUuLi4gLg1KlTOiuDMcZNYrS1tVW/PcutttigQYP79+/z2diCBczHh/XuzY4c4fO0eu7KlStisdjIyOjSpUu6bz0nJ4e7DL5586bGJ6l1CP/7XwawXr1YSUltT1UTQ4YMAbB69WrVEW4zUG4TGN24c+cONzvmhx9+UB189OgR93/l+++/57OxsDDm58cYY9nZrEULVjc+/QouMzOTe/NdtmyZUDVwC16+/fbbGp+hdiEMCWEAs7Fhjx/X6jw1d+HCBQASiUR1g/j58+c2NjYAIiMjdVBAQUEBN4nxvffeUx0sKSnhVlscPXo0z+2tXs02biz7s48Pu3WL5/Prp7FjxwLo3r0775uOVN/jx4+NjY1NTEw0HqzWPIR/3LnzsG1bBrAff9T4JLXB7Yi0e/du1ZF58+YBmDRpkg5a5yYxtm7dWv0WKLfaorOzc2ZmJs/t/d//sQ0byv48cCCjT5uMff311wBsbGwSEhKErYRb8PLjjz/W7Mc1DGFBQUHnzp2trawiFi/W7Ay1x3306tSpk+oGsUwmMzExMTExefr0qVabPn36tEgkMjMzi4mJUR28fPmyWCw2Nja+evUq/01WfCK3oIB99x07epT/tvTB3bt3LS0tAezbt0/oWlhkZGRtBqU0DCH3cFarVq2eP3+u2Rlqr7i42MnJCcCFCxdUB8ePHw9g4cKF2ms3KSmJe2Bg8+bNqoN//fUXt9bbZ599pq2GP/qI+fiwPn0Yd/Np/34GsA4dWO0GqfRRYWEhdx00depUoWspwy14uXXrVg1+VpMQnjlzRiQSmZiY3LhxQ4Mf51HFWQvR0dEAGjZsmJ2drY0WFQoFN4lxyJAhqh6YG6gA0Lt370qHDXnz4AHLyir7c3Fx2X3pM2e02GKdxN0LadmypYB9QDk//fQTgBYtWmjwF6DGIUxLS5NIJAA2qD6iCCczM5NbGiQ2NlZ1sE+fPuW6KR5xsS83TYYbqGjUqNGTJ0+00WiZlSuZkRFbs+afI+vWMYANHKjFRjVSVFR0/PhxZ2dnV1fXXr16jRkzJigoaO3atXv27AkLC4uPj6/NTDRuiqCJiclvv/3GY821pFAouAUvDx8+XNOfrVkIFQqFj48PgMGDB+t4WPxluAtj9cuS48ePA2jWrFkJ36MmUVFRpqamIpFIfTRSNVBx4MABfpsr79w5BjAHB6b6G5yTw2xsGMDUPprWBQsWLKh6sgL3CapDhw4+Pj6TJ09etGhRcHDwwYMHIyIi4uPjq/gfJ5fLmzZtCmDdunW6/I2qg3svVp9dUE01C+EXX3zBPaVZd6YIcLMWzMzMVCUplUputuGPvN62VU2TmTdvnupgpQMVWuTmxgC2Z88/R+bOZQDz99dF69Vz4cIFIyMjY2Pj06dP37p16/Tp0zt37ly5cuWMGTNGjhzp5eXl4OBQ9bpJYrHYwcHBy8tr5MiRM2bMWLly5c6dO0+fPh0bGzt48GAA/fr1qyN9gLoXL15wU6V+/fXXGv1gDUIYHR3N9QMnTpyoYXnaxc1a+OSTT1RHuJvX3bp147EVf39/VJgmww1UtGrVSkfPau/axQDWufM/N2OePGHGxszEhCUm6qKAV0lPT+cmBH3++edVvzIzM/POnTthYWF79uxZu3ZtUFDQmDFjevXq5erqWkVEra2tbW1t604fUA634GVNR4mrG8K8vLy2bdsCmDNnTs1r0y5u1oKdnV1eXh53JD8/n7uBGRERwUsT3DSZBg0aqE+TqXSgQrsKC5lUygAWFvbPwbFjGcA++khHNbycUqnk1iDz9vauzQ2q4uJimUz266+/HjlyZOvWrUuWLAkICBg8eHCLFi3EYrGrq2stZy1oT1pamrm5uVgsfvToUfV/qroh5Jbx69SpUx2ZLlQO9xD9V199pTqydOlSAP/9739rf/L4+HjuSbQdalMlKx2o0IXPP2cAGzr0nyNRUQxgDRuynBydVlJBcHAw92FPS+O0lc5aSE1N/fjjj1euXKmNFjXAJSUoKKj6P1KtEBYUFAwYMMDS0vLevXua1qZdhw4dAuDq6qp6A05LS5s+fXpt5ndyVNNk3lKbKlnpQIWOPHvGGjRgAIuL++dg794MYMHBOq3k327fvs3doOL3o3g53F0J9VkLsbGx3GWqlgalaoqbXdCgQQPV7IJXqm5PqFAoavOcuLaVlpa2bNkSwFG+nyDhrvLLTZOpdKBCdz74gAHsnXf+OXL0KANY8+Y6foxehXuCCsD777+v1YYqnbXQr1+/OjJmxuEWvFy7dm01X6+FJQ8Fwm2K1Lt3b35Pu379egsLC/XPlqqBipMnT/LbVnXFxzOxmJmZMdVbgELBWrcubtbs9vHjglTEbdLYoUOHFy9eaLutOXPm4N+zFk6ePMm9UQr4GLe6c+fOAXBwcKjmcKjhhDAvL4+7QXz9+nV+z6y+WGWlAxUC4GaQLV2qOnBp1y5jI6MePXrovpYjR44AMDMz0821UsVZC6pBqf379+ugAHWlpaXLly8v97y+QqFo3Ljx4MGDq7n4mOGEkDG2aNEiAGPHjtVeE5UOVAggIoIBTCIp/vs+mWoJLK08Pv5yMhnz9d1sbGy8ZcsWnTU6ZswY/HvWwvbt2wF4enrqrAbOZ599BqDce9+mTZsANG3atJp/SQwqhMnJyaampmKxeM+ePXfu3OF9PlGlAxVCiZs8uY+zs/oyNtwSWG+88YbOaigtZX37cp9Pb+vyBlXFWQuFhYXc05SXL1/WWRk3btwwMTExMjIKUxsxunXrFrct17Fjx6p5HoMKIWNs6tSp3PP1HDMzM6lU6unp6efnFxgYuHz58u3bt584cSI6OrqmEa10oEJA3DtC69atVc+OVLoEllatWsUAZm/PdH9/qlevXvj3rIXly5cDGDlypG4KyM7ObtGiBYBFixapDr548aJdu3YAPvjgg+qfytBCqFQq9+7d279///bt21tbW1fxbBQAKyurdu3a9evXz9/ff+HChcHBwT/++CP3+GK5Cwmh1vOqQmlpqaurK4DjajdjuCWwZs6cqYMCIiOZiQkTidjp0zporTzug6j6rIX09HQLCwuRSKSbgbSJEydyF8Dqd1/effdd7gZVjYbTDS2E5XBruV6+fDk0NHTDhg1z584dP368t7d3q1atXrl5sp2dXceOHQcPHhwQEMC977q4uPA/Zb4WNm/eDKBPnz6qIxWXwNKS3FzWujUDmDZnblal0lkL7733ng6GSRhj33//PSqs5cXNZjIzM1Of01MdBh7CquXn58fHx0dERBw8eDA4OHjRokWTJ0/28fHp0KFDuc2TTUxMrKysjtSxZc6eP3/eqFEjAOqTeiougaUNkyYxgHl4MAF3x9q2bRv+PWvh/v37RkZGFhYWf/31l/baffToEXeRpb60ikwms7OzA7Bt27aanrBeh7Bqcrk8Li6OmwTQqVMnAMt1uKxjNS1cuBDA+PHjVUcqLoHFu927y/Yc4XdJx5qqdNbC8OHDoc31DYqLi3v06AFgzJgxqoMKhaJ///4AfH19NbhBRSGsll9++QV1aaV9laSkJO6GcHx8vOpgxSWwePToUdmeI/wu6agZbtlf9ScKL126BJ72aakU965Xbi0vbsteiUSi2f6HFMLq4t7/tm/fLnQh5U2aNAn/3gys4hJYfCkpYf/5DwMY70s6aqbSWQteXl5auokdHh7OTZVU34+o0oGKGqEQVteBAwcAtGnTpq5NJ42LixOJRNbW1ll/Lz9TVFTk4OBgZGTE+yMsixYxgDk762DPkeqaMmUKgNmzZ6uOhIaGQgt7IqimSqrvSVjpQEVNUQirq6SkpFmzZgAEe2T05bgPJOvXry8pKUlKSpoyZcrEiROXLVt27Nix69evy2Qyvh6qPHKE2dsz3T6T8woVbwgXFxdzy3Kf4W8JLKVSOXLkSFSYKlnpQEVNUQhrYOPGjQD69esndCHlnTp1CoCjo+Onn37KrbxYjkgkatq0qbu7u5+f33vvvbd8+fI9e345eZL9/jtLSWE16jD+njhdh3BrXqxRWwJr3bp1AAbytwTW1q1bUWEtr127dlUcqNAAhbAGVCvtC77WYzlKpfKtt95avHgxtzXKggULVq5c+f77748YMaJbt25SqbTighF9+hwAGPePsTFzdGTdu7ORI9kHH7DPPmO7drHTp9mtW+zMGWZlVXbx6ebGGGPh4Uy1xLmjo2C/srrz58/j37MWcnJyuP9TvCx68LJNR7iBij3qS/5ohEJYM/PnzwcwceJEoQspLysri7taVl9rR6W0tDQ5OTkyMvL48eMhISHLli1bsiRy2DDWpQuTSJgqjRX/WbaMeXmVzdaosyFkjLm5uZXLw9y5c93d3Wu/volqLa/AwEDVwUoHKjRGIawZbqV9Y2Njba+0X1Pc0uNeXl4afPwrKmKJiezaNfbTT2zrVrZ4MXv7bTZoEOvYkYWEsPnzmY8Py87+J4RSKRsyhA0Zwqyt+f9FNMNdGXbu3Fl1Q5ivIYr3338fQPv27dWnSnJrOvK16QiFsMYmTJgAYMGCBUIX8o9vv/0WgJWV1Z9//snvmcPD2fz57OhRtmoVc3cvO1IHe8LCwkLu1qXG4wSVSklJsbGxKfckWqUDFbVBIawxba+0X1MPHz7kPpyEhobyfnIuhEol69uXdepUdqQOhpAx9vnnnwMYqr4EFh8eP3588OBB1b9Wf03H6qMQaqJv374ANm3aJHQhrLCwsGvXrqjdJpVV4ELIGNu3j5mblx2pmyF89uxZgwYNAMSpL4HFq5cNVNQShVATJ06cgHZW2q+puXPnAnB1dc0Rer3DuuCDDz4A8I76Eli84tYx4n3TERFjrOKwEqkaY6xjx45//PHHDz/8MG7cOKHKOH/+vK+vr1gsjoiI4HYIrucePXrUtm1bS0tLa2trBwcHqVRa6VfNTn737l0vL6+CggLe/6dTCDW0ffv2999/v1u3blFRUYIUkJ6e7ubmlpaWtnbtWm5xHQLgt99+8/f3j4+Pf9kLzM3NbW1tHRwcXF1dy+XTycmJG12sqLCwsEePHrdu3Zo+ffo333zDb80UQg0VFhY2b95cLpdfuXLF29tbx60zxkaOHHnq1Km+ffv+/PPPVe+vUt/k5+cnJyenpaUlJSVV/Jqfn1/Fz9rY2Dg6OnKxVJFKpd98801oaGj79u2jo6O5HYJ5RCHU3PLlyz/77LNRo0YdO3ZMx01v2rRp/vz5tra2sbGx3HOSpJoKCgpSU1NTUlIqfpXJZLm5uZX+1GuvvZaXl3fjxg3uqQB+UQg1l56e3rx588LCwnv37nHL++jG7du3u3fvXlhYeOzYMW6HYMKXjIwM9W5TLpfLZDK5XD5o0KChQ4dye2Lzj8ebPPUQt7DPjBkzdNZiXl4eF3jdrOZEdIB6wlp58OBBhw4dzM3Nnz59yq29q23vvvvuzp07O3ToEB0d/cq1qoheMBK6AP3Wtm3boUOH5ufn837HrFJHjhzZuXOnubn5/v37KYEGg3rC2rp06dLAgQPt7e2fPn3KLb2sJUlJSW5ubpmZmV999RU3Kk0MA/WEtTVgwICuXbump6fv379fe60olcq33347MzPT19eX26ObGAwKIQ/mzZsHYP369dq7rFi1alV4eLiDg8PevXtFIpGWWiGCoMtRHpSUlLRs2VImky1btmzYsGFOTk4SicTY2Jiv81+7dq1fv35KpfL8+fM+Pj58nZbUERRCfgwfPjwmJiYtLU11xNbW9mXPLrq4uFQ/ojk5Oe7u7k+ePPn444/XrFmjnfKJkCiEPIiMjOzdu3dpaenrr79eWFiYkpIil8uVSuXLXm9sbCyRSJycnJo2bVrxa7mhjokTJx44cMDT0/PXX381NTXV/m9DdI1CWFt5eXmenp5//vnnvHnzuOXYAJSWlqanp5d7apF7/CItLe2vv/6q4oTcdm7cE4w5OTlhYWHW1tYxMTHc/ifE8FAIa2vy5MmhoaGdO3eOjIys5hBFcXFxRkbGy55g5JZSV73Yzs5u1qxZ3ELrxCDxdvOgfjp48GBoaJYFmCAAAA88SURBVGiDBg0OHjxY/UFCU1NT7vF8T0/Pit8tKChQdZ67du26ePHi3bt3ea2a1C3UE2ouISGha9euz58/37Fjx7Rp07TRhFwub968eUlJyYMHD1q2bKmNJojgaJxQQ6Wlpf7+/s+fP3/rrbe0lEAAEolk/PjxCoWCW1iBGCTqCTW0ZMmSNWvWODk5xcXFcbtDasmdO3e6dOliYWGRmJjIbcdHDAz1hJq4cuXKunXrjIyM9u7dq9UEAujUqdOgQYPy8/O/++47rTZEhEIhrLFnz/InTZqkUCiWLl3KbYfEu3v37qlHjlt7/8svvywuLtZGc0RYdDlaY2+8gdTU1EaNFpw6tYfHZ9NUMjIyHB0dlUplfHy8aukKd3f3uLi4PXv2vP3227y3SIRFPWHNfP01jh3D/fvSb77Zp40EAmjcuPHo0aNLS0vVb8Zw64tu2LCB3jQND/WENXDvHry8kJ+P/fsxYYIWG4qLi3N3d7e2tpbJZNwifMXFxc2bN09NTQ0LC6NnuA0M9YTVVVSEiRORn4933tFuAgG4ubn169cvNzd3x44d3BFTU9NZs2YBUD0ZRwyHEAvb6KXZsxnAWrViz5/rormTJ08CcHJyUm11lpmZaWVlBW3utUAEQT1htZw9i23bYGKC0FBYW+uixeHDh7dv3z4pKenw4cPcEVtb24CAAAA0cG9ohH4X0ANyedl2tuvX67Td7du3A/D09FQdSUhIEIvFZmZmKSkpOi2FaBP1hK/AGKZOhVyOQYMwb55Omw4ICJBIJL///vuVK1e4Iy1atBg5cmRRUVFISIhOSyHaRCF8hQ0bcOYMmjTBnj0w0u1/LTMzM26vZvWbMdzAfUhIyIsXL3RaDdEeobviOu3ZM2ZtzUQidvKkMAWkp6dbWFiIRKJ79+6pDnK7oIWEhAhTE+Eb9YRVsbPDlStYuxZ+fsIU0KRJE39/f8bY1q1bVQe5xd02b95cxQoaRI/QYH15ly9jxAg8fQo7O7i7IzZW4Hq4lfbNzMwSExO55WcUCkXbtm3j4+NpQxjDQD1hJdq3R3Cw0EX8rW3btr6+vgUFBV9//TV3RCwWz549GzRwbyjqb0+YkYHkZMhkSE5GSgoSE5GcjNJSLFuGU6cQF4fDh9G3r/A9IYDw8PABAwaor7Sfm5vr4uKSnZ3922+/9ejRQ+gCSa3o0xozly9jxw6EhgKAkxOSkl596ZiVhZQUpKYiIeFff5DJUOlukGIxFAoAmDkTX36JOrLUdf/+/b28vKKiovbt28fN4re2tg4MDFy3bt3mzZt/+OEHoQsktaJPIawUd+n42WcA8PPPOHUKycllXVxqKkpLX/qDNjZwcoKzMxwc4OwMR0c4OsLFBdxyhKNGITi4qh/XsTlz5vj7+69fv37q1KlGRkYAgoKCgoODDx8+nJCQ4OrqKnSBRHN6FsJLlzB0KAA8f152pE8fXL+OnBwAiIws/1nO1hZSKRwcyr66upb9oWVLNGpUeROXLwOASITAQGht7ZgaGzt27JIlSx48eHD+/HlfX18Ajo6OY8eODQ0N3bZt26ZNm4QukNSCwEMkNREeziZNKvuzo2PZkfnz2dGjbNUq5u7OIiPZ+vVs3z525QqLj2eFhbVqLj2dBQWx0aNrWzZf1q1bB+Djjz9WHYmLixOJRNbW1llZWQIWRmrJEEKoVLK+fVmnTjw3l5nJrKwYwOrIpIXs7OzY2NhyB7n1NSZMmHD58uU//vgjLy9PkNpIbejZ5WiltHTpaGuLgAB89RW2bMHOnTyfXAM2NjZubm7lDvbs2TMuLu7AgQMHDhzgjpibm1e6C41UKnV2dm7YsKHOCyevoN9DFDEx+P57+Ppi2DCtnP/xY7RuDWNjPH4MqVQrTdRGYmKiu7t7VlZW9+7dTU1NuVX0CwoKqvgROzs7qVRabhcaiUTi7OwskUhMTEx0VjxR0e+e8OJFbNsGpVJbIWzRAiNH4uhRhIRg1SqtNKExpVI5ZcqUrKwsX1/f06dPq3YOzcrKSklJ4Xa2SE5O5r6mpaXJZDK5XJ6ZmZmZmVnpuvoikUgikTRt2pTbi2bGjBkeHh66/Z3qKf3uCceMweHD+P57TJmirSauXUPv3rCzQ2IiGjTQVisaWLly5YoVKyQSSVxcnEQiqeZPcRGtdC+axMTEUrUxmbNnzw7l7kQTLdPvEDZrhsRE3L2LDh202ErPnvjtN4SEoO7sFc/tiKhQKHjcu1ehUMjlclUXOmrUKGkdvAQ3RHocwvR0SCSwtkZWFsRiLTZ06BDGjkXr1rh/X9dTCitFe/camDrwd0pTkZEA4Omp3QQCePNNtGyJhw9x8qR2G6qmGTNmPHnyxNPTkzYtNAx6HMKoKADo3l3rDYnFmD0bAOrCpIVdu3YdOHDAyspq//79tHu2YdDjEHI9oZeXLtp65x00aoSICNy4oYvmXubRo0fcUtwhISFt2rQRshTCHz0O4e+/A7oKobU1AgNZjx5p+/YJtjVScTEmT56Wm5s7ceLEyZMnC1UG4Z2+3phJSEDLlmjSBOnpOmoxKSnZ1bUFY+zRo0fNmjXTUatqFi7E6dP5jRvPPnVqMz34Ykj0tSfkPhDqcjqrk5PjuHHjyu3TojNhYdi0CQ8fWn7xxU5KoIHR7xDq5lpUZeHChSKRaMeOHdnZ2bps96+/EBAApRIrVqBnT122THRBX0OYnf2rp+ez7t1LdNloly5d+vfvr75Piw4whmnTkJoKb298/LHOmiW6o5efCRUKRaNGjfLy8tLT05s0aaLLps+cOTN8+HBHR8fHjx+Xe9z5yJEjFhYW3FPRPFa1dSvmzEGjRoiLw99bhhKDopchvHXrlpubm6ura3x8vI6bZox16tTp3r17+/btmzhxovq3Gjdu/OzZM+7PZmZmqiehHR0dnZzWSSRmjo6QSuHoCBub6jZ39y68vFBQgB9+wLhx/P4qpM4QbCZjLXBXg+PGjROkdW43eQ8PD/WDCoUiICBg0KBBHTt2tLW1Vf8vbG5uLhIpAab6x9KStW7NvL3Z1KlVNVRQwLp0YQCbPl27vxERll5OZYqKigLgpePbMn+bPHny0qVLY2JiLl++3K9fP+6gkZHR7t27Va8pKCjgnoROSkp69izv8WNRWhqSkiCXQybDixd4+BAPHyI5uaqG5s7FrVto3x60goyBE/pdQBNdu3YFcOXKFaEK4B7a9PPz0+zHc3PZvXvs0iV27txLX3P0KAOYmRm7eVPDIom+0L/PhIWFhQ0bNlQqldnZ2dzOtbqXmZnp4uKSn5//+++/c+8I/FIo0LEjHjxAcDDmzOH99KRu0b/L0Zs3b5aUlHTp0kWoBAKws7Pz8PCIjo728PCoYk0XFxcXa4329RWLER6O7dsRFMR77aTO0b8QRkZGosIHQqVSaaTDqX4rVqyIiIgwMTExMzMrLCxMSEhISEio9JWNGzceOHBtTs60pk3h5AT1rxIJjNX+81dcTXzFCt38NkRg+hfCindl5HJ5z54958yZM2vWLLGWJxcqFIpZs2Z98803YrF427ZtgYGBBQUFla4WkZCQIJPJMjIykpLMr12r5FRGRrC3Lxu0cHDA4MH/Wk2c1CNCfyitMW4KT0xMjOrI6tWrud/F3d09PDxce00XFhaOHTsWgJmZ2aFDh175eqVSmZaWFheXd+oU++47tmIFmz6djRjBPD2ZVMqMjJj6uMWPP7L585mPD8vOZm5u2vslSJ2jZzdmcnJybG1tzczMnj9/rv7AysmTJ+fOnctdE/r5+QUHB7ds2ZLfpvPy8t58882wsLBGjRqdOHHC29u7licsLYVcjuRkcKMXbdrg3Dn07o07d/DTT7h5k5eqiT4Q+l2gZu7evdu6dWtra+vLly+X+1ZRUVFwcDA3w8DExCQoKCgnJ4evdlNTU93d3QFIpdKKy2DzQquriZO6TM9CyBgLDAzk3j7GjBnz+PHjct9NTk4OCAjgbtL07j18506mUNS2xfj4+FatWgFo167d06dPa3u6l+BCyBjbt4+Zm2upEVIX6V8I8/Pz165dy936NzU1rbTHi4yM7NWrV5cuVwHWtSv75RfNm4uKirK3twfg5eWVnp5eq9IJqYz+hZCTnJwcGBjI9XhSqXT79u2lpaXlXnPiBGvRouy2h58fi4+vcSsXLijbtBkEwNfXl/ZaIVqiryHkREdH9+7dm7s69fDwqPggW34+W7uWWVszgJmasqAgVv3Pifv2MVNT5upaNH36R8XFxTyXTsjf9DuEnBMnTjRv3pyLop+fX0JCQrkXJCWxyZOZSMQAJpWyCvd0KrF1a9kQQlAQD58qCamCIYSQMfbixYsVK1ZYWloCaNGi9dKliooXj1FRrHdvZmHBqr63olSy5csZwEQi9sUX2iuZkDIGEkKOTCabOHFir16hAHNwYNu3l+/ElEp2+3ZVZygtZe+9xwBmbMx27tRqsYSU0bPB+uqIjsbcueCeFPP0RHAw/v7Y+Ar5+Rg7FqdPo0EDHDoEX1+tlklIGQMMIQDGcPgwFi7E06cA4OeHL7/E3x8bK5eVhZEjcfUq7Oxw8iRef10nhRJiqCHk5Ofjyy/x+efIy4OFBYKC8MknqHRqUUoKfH1x6xaaNcO5c2jXTue1knrMkEPISU7G4sUIDQVjcHDA8uV4991/7XBWUIAOHfDkCTp3xrlzcHAQrlZSLxl+CDnXruHDD8uWDPbzK7/JWWgoQkJw8iRee02Q6ki9pq+L/9ZUr164cQMHD8LFBW3awNoamZkA4O4OAP7+uHqVEkiEUV9CCEAkwpgxuHsXw4eXTZ9VVxe24CX1U737q2dlBSMj9OmD69eRkyN0NYTUwxCqzJyJL7+ESCR0HaTeq78hHDUKFy+itFToOki9V39DKBIhMBCPHgldB6n36ssQBSF1Vv3tCQmpIyiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwCiEhAiMQkiIwP4fgeF+INCkyY4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] @@ -302,7 +323,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAInklEQVR4nO3dYZaaSBiGUZgzO+rs\nfwXpNTE/SDsGBRGh3iq498yPTiZJc9SHryzR7odh6ICcf9IHAFcnQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCPs3fQDUpO//fDEM0eO4\nFhHyo+//b+/+aw5mOQphIoQwEUKY54T8GAYbMxEmIX9visqvOBFCmAghTIQQVmpjxjN+mFFkEo6X\nX4z/3Wrsur++hquKLkfHJqWYNblCzQVrxaWfEz6OR7iYdIQjI5ELK7IxM7kU4+mCZ/wdayGup9Qk\nvG3MdItz7+CRaFeICoWWowtPBfd+ljiJWnsT/eIvKaCC3dGZ/9X3ff9ZMWN+k8shH7+nLMlKv4vi\n1sTDU8FhGLqu6/t+ePNZ4rvXBcw9S4Uy0hF2L7ZkhmFY3+FMzk++4WT6zZ8K4HAVRDian0djh93P\nbHzU933XDd07CT3tsCu+O/v9/ecgvr4y9W9YaLC7uu6Dl7FN/tfyn996DEd1OCZ36+37u0+1dzO5\nSTUZUc0k7Lru1fPA29L0tmFzxCPmiKXpJL+Xv8+lVHrmmxtx+46+5aH3+VhYudq8jcTys9EkrEFd\nk/DmcSQesfJcHnpv7QlNbBtxX19DDWtUCqv9zHdr79CT9MJIfOv79n3/+3fXrctvbk4WXqPen91M\nwog2bvQjxuDDt/iow92PsMBInOTXHXwLM6eNCLsiJ+mFpenCY/S4h+9BHS5sa5mEEc3c6MUeHwvf\n6HEbozt4euy7NF1zwEZieW1EWPgMvTz3Xl48cMTxfPi93j1gI7GkNm7ryGNi7ptWdTAv/9b4xea/\nW8m579wqfYmiBuUn3o4H8/mR/2zYlLiO7+JbRCJcUtXG/ZqD2f1aoqPfYvKYXFW3eRkifK2qR8Pc\nS6bHDZCD3mKyfMBHvzJcFRG2Z7I0LbB+2/EtJn3fjW/ff3nAVT0dOFQbJ5t6Tor1HEmX2TvZ3uHm\ncVrVbX4Ek7Bh5R+aG5amn/8AhPJL08JnNxHynvVL0x2fSRZbmkYWwA1EePrVSIuW75AjNnIO3TU9\n9B2qLzUQYWWcDl477pG8+0isYe9HhDRmr5FYQ34jEdKkzbs12ZXnUyLkI/c7NIU/q678pXwHESGf\nCn50cuRSvt2J8A0+qPupo68vXXEApS/l25cIOYPyl/LtqPYIvUjYhKGCn7bcYn6jOn5SL+2r52Hf\nVoFdcxF++MPS2N0w7HB16MU1FuH9Z+DDOTQWYffTYSRFZ3qOUHuET0ffMAxGIo8a3carPcJufvTp\nkHNoIMJufvQFl6aMXMDwuTYiHFmackotRdhZmnJGjUXYWZpyOu1FOCq5NL3/98avlX7HbfGpViPs\nDl6a9v2T9uAItV/AvWzu7WSffBLJ0w8peny3zhGfZcQ1tR3h6Onbyd79JJJ3L4CUX20afaW+O0eE\n3fzoW/NJJCtnWg3v1uGUThJht7g0ffrnf543vnH21OFEu8OnKueJcLRu9L33dPH+D45fe+Cxo7NF\n2M0vTev/wB+u6YQRdg9L0xY/8oDrOGeEo+v8gDua1vCL9SspkMqdP0KOMF6r5Lr5XZx5OcoRJiv8\nSn64fA3HsJkIWWvuCXYlHbbrzBF6ZOzl5f6WDj9x5gj53PrtZR1uJkKe2/Dqjg63sTvKE2NLG3JK\n7Zc2Xb4I+cvttYfN/4LXLd5lOcofO15d5Fqlt4iQQ66tffdN1Vcmwks7el7ZqllDhBdVbLmow5dO\nuzHjjl+wefNzG1s1y04bIVXR4QIRUogO54jwioIvqevwkQgpSoePREhpOpwQIYSJkNK8ejQhwouy\nJqzHOSN0rq2Wu+bROSOEhojwun7/Lv0djcGnRAhhJ4zQfsNKX1/D93e528oYnHOqtzJ5NzctOkOE\nfuZZ/YzBBW1HaPRxAq2en+S3l+/v/uvr2JvRGFzW2CS08uR8monQ6OOsal8nGH2tsxZ9qd5JaPRx\nETVGKL/TMAbXqCtC+XFBdUXYKfBI9xepHf2yRGcMrlZdhOzg7urZ77u3ShQIjw3qOlc5d240uWa9\ngtvQXbleRZPQ3bbdZ7fbbZk6jsrHt1YYoYeq6HEvwog1l609Zvnr11+/nNxx7sq3VHRjueeONmlp\nMvc+GXeP7+F0V65X0eNehGvdHvFzN9emjZkCV3LzVEXPCVml7/9v7/b1/MbMV7EDYysRnsIHK4hd\nlqN8QoSXNlmCWpFG1PJBT54QclkmYWuG4fXGDE0RYYO0dy61LEfhskQIYSKEsCr2JG2Nxty/9P/4\nS4owCSFMhBAmQggTIYSJEMJECGH51wa8PsHFmYQQJkIIEyGE5SP0hJCLy0cIFydCCPPO+svzYRlp\nIry2p59iSlmWoxAmQggTIYR5TnhtPsW0AiK8PO2lWY5CmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFC\nmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMh\nhIkQwkQIYSKEMBFCmAghTIQQ9h+Be6szjCdFkwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1xUZf4H8M8wM9xEERVlQC6SElRogpnlpYvg+ivNrGjbEql+imsp0hXt9Stst63RvODWq8JLha5WlLqL7aqB5CqV5oApIF64KPebgFyGgbk8vz8OTshFucycZwa+79f+wZ4Z5nwhPp7vec5zniNhjIEQwo8N7wIIGewohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiHp3u7dCAiAnx+io6HX865mwKIQkm4UFeGNN5CainPncOYM9uzhXdCARSEk3ThyBA8/DIUCMhkWL8bhw7wLGrAohKQbVVUYObLt61GjUF3NtZqBjEJIuuHqisrKtq+rqqBQcK1mIKMQkm6EhCA1FSUl0OuxezcefZR3QQOWjHcBxPJkZ+PYMdxzDzZtQkgI9Ho8/jieeIJ3WQOWhDHGuwZiYbZsQXQ0VqzARx+1bSkrw0svYfJkvPMO18oGJmpHSSdXrgCAt/fvW3Jz8c9/4tAhXhUNbBRC0knnEHbeQkyHQkg6ESLn5dVxC4XQPCiEpBM6EoqrlyGkyYQDnlqN6mrY2WHMmN83FhYCFEJz6U0Iu5xM2NqKzz6jQA4cxl5UIum4kUJoHr0JYZeTCd98E8uXY84clJebqUQiqi7zVlQE3HiWSEynNyHscjLh449DoUBqKiZOpDm+A0HnzrOqCk1NGDECQ4fyKmpg600Iu5xM+OCDOHMGc+agqgr/8z9YvZpaU+tGozKi600Iu5tM6OqKQ4egVMLGBuvWISQEpaXmqJWIgUIout6EcOzYtsmEAQGwt0dIyO8vSSSIiUFKChQKHD2Ku+/m0ppmZUEiwdmzABAXh7g48Uuwft2FkE4IzaaXlyieew45OVi3DgcP4p57kJFxw6sW0Jr6+uLDD0Xe58BSXAzQlXpR9eli/eTJmDoVubm4/35s2XLDS7xb00mTUFjYNphHekun0w0rL3/Qy8swdqxxY0VLS6uPj97Hh19dA1yfQujjg//+F1FRaGlBdDSeeAJ1db+/KrSmhw9jzBgcPYrg4MvHjpmq3C5pNPjyS3z7LQAYDIiKoka0j4qLixs0mjyDwUYuN26ce/Kk3eXLp6kdNZu+Tluzs8OWLdi3D8OHY/9+3H03Tp684Q2zZyMzE3PmVHh6jn/oodWrV+vN0JqWlWHtWnh54YUX8NZbMBgAYOFC/Pgjrl2DwYD4eBqs7YUrV64A8L6x8ywsLOy8kZgS66eCAnbvvQxgdnYsLq7jqzrd5vfes7GxAfDwww+XlZX1d3fXHTvGwsKYTMYABrDgYPbll+y339iCBYwx9vHHzM+PzZ7NAPbAA6ykxFS7HeB27twJ4NlnnzVuaWhoAODg4GAwGDgWNrD1O4SMMY2GRUW1pWHhQlZb2+H1H3/8UaFQAHB1dT106FA/d5WYyKZNa9ubXM7CwlhycturmZltIWxqYiNHshUrmLs7A9ioUezgwf7sdrD461//CmDNmjXGLVlZWQD8/f05VjXgmSKEgn372PDhDGDe3uzEiQ4vVlRUzJkzB4BEIomJidHpdL39+NJSFhvLRo1qi9/o0SwmhhUW3uK7KivZ3LkMYBIJi4pira293a3JGYqKXjt3LujcueCLF+fqdDW867nBkiVLAHz66afGLf/+978B/OEPf+BY1YBnuhAyxi5eZJMnM4DZ25d98UWHFw0Gg1KplEqlAB588MHS0tIefuqxY/VPPsmk0rb4TZ3Kdu1iLS09LcpgYHFxTC5nAJs1i3Nr2tSUce5cMGMGxlhZ2bqamq95VtNJaGgogP/85z/GLZ988gmAyMhIjlUNeCYNIWtrTbXu7re5uCxcuLC2H62pRqNJSEiYOHFicPAagNna3tB59tbRo22tqasrn9bUYNDqdNdaWgrPnvWur081GHrdC4jAz88PQHZ2tnFLTEwMgL/97W8cqxrwTB1CxhhjKd99N2zYMADjx4/PyMjo8OotW9OCgoI33nhjxIgRwtCRu7uHUtnc/zEdXq2pVltRVqY8e9arqOgVxphafbawcGVOzrSCgvDW1nKDgX+LLDAYDA4ODgDq6+uNG5955hkAu3bt4ljYgGeWEDLGCgoKpk6dCsDOzi6u06ipTqd75513jKOmFRUVwvbjx4+HhYXJZG0LMQYHB8fHxzc3N/eths4xE7k1bWpSFRREpKfbqVRQqXD+/HShCuHV8vKNFy/+ITNzXEPDT+ato2cqKioAjBw5sv3G++67D8CxY8d4VTUYmCuEjDGNRhMVFSXE6SatqZeXV2lpaUJCQmBgoPBmW1vbsLCwn37q75/mkiVswQJW02ns48cfmULRNrrz44+5/dxLZwZDa01N4sWLIUL2VCqbixdD6uqSGDNUVcVfvvyikMPKys/OnvVQqZCebltevskYTl5+/fVXAEFBQe03uru7A7hy5QqvqgYDM4ZQsG/fvuHDhwPw9vY+0WnU9MSJEy+++KKx83Rzc4uJiSkuLu7/fouKmLMzA5ivLzt1quOrQms6Zcp/pFJpVFRUq4l609bW8rIy5dmznkL8Tp92LiyM0mjyjW/Q65sLCp7Pyrrj3Lm7L1x4qLn5QnFxjEolUalw6dJ8rfaqScrom2+//Vb459K4paWlxcbGRiaTabVajoUNeGYPIeu+NT1w4IDQkQKYMWPGN998Y6owCC5fbruiKJczpZJ1uNqs1zOlcrNxtLakf71pU5Pq8uXIjAwHIX5ZWbdXVMTp9Y09+d7a2n/99tsIlQpnz3pybE03bNgAYNWqVcYtubm5wr+evEoaJMQIIeuqNc3LywsICHB0dAwLC/vll1/Mtl8WFcUkEgZ03ZoePXpU6LhcXV0P9n7YVKPR7Ny5MyUlXMheerosL+/J+vofe/s5LS1XcnLuEz6hpCSWMX1vP6H/jh079tprr7333nvz5s177733li5dKlwknDVrlvjFDCoihVDw9ddfG0dNP/vsMwAPPPCACPvdv5+5uDCAeXmxznmvrKycO3euMFrb89a0rKxMqVSOHTsWwKxZPqdPuxQWRrW0XO5zkQaDlmNrWltbu2HDBl9fX+EfSicnJwC33377tm3bjh49KmYlg5CoIWTXW1O5XL5mzRoAzz//vDj7zc1lwcFtU1y3by/o8KrBYIiLixNGZR944IGbt6Y//fTTM888I79+n8HkyZN37Nih1fZxCLcD8VvTCxcuREVFDRkyRPhxfH19lUrliRMnhHEye3v7zoPbxLTEDiFjrLm5+ciRI2+//TaA2NhY0fYrtKYKRdGIEaMWLFhQ06k3vXlr2tLSkpiYKAzZA7CxsZk3b15yn2cPdE+c1lSv1ycnJ8+bN09yfWnD6dOnJyYmGi/bqtXqyMhI4aXw8PDGxh6d35I+4BBCweLFiwHs2LFD5P3u35/i7Ows/JN/qtOwaZetqdB5CvkEMHr06JiYGLOO2hsMLYWF0SqVJDXV9YUXnuv870V/1NXVxcXF+Vy/SdfJySkyMjIrK6vLNyckJAgHSX9//7Nnz5qwDGLELYQPPPAAgJSUFPF3ffny5WnTpgGQy+VKpbLDTTp6vf4vf/mLMGo6ZcqU+fPnt5888OWXX2o0GnHqrK3dv2DBLAA+Pj4nT57s/weeP3++fed52223KZXKWyY8JydHaE0dHByoNTUHbiEU/iW+dOkSl70Lo7VCJ9Zda+rm5iYMI0mlUjN1nrd05coVoQGWyWSxsbF9u6lPr9cnJSWFhIQIP69EIgkJCWnfed6SWq1eunSphbSmBoMhOTm5sLBwwEwh4BNCnU4nl8slEkmfp6SZxP79+11cXIRLYZ0vk+zatUsYIeznJcR+0mq1MTExQn4ee+yxq1d7MWoqdJ7Gm+KHDh0aGRnZfn52r3BvTZubm40zq4KCgpydnb/99lvxyzA5PiEsKioCoFAouOy9vdzc3ODgYGEYsPDG2xM//vhjAMuWLeNVW3v/+te/hHlFnp6ePZnQd/r06cjISEdHRyF+48ePVyqVnWcO9lZWVtYdd9wBYPRo3127enw7Wb/l5ua+8sorwtQrAB4eHhMnThSO6q+++qpp53iIj08I09LSAEybNo3L3jsQWtM333yzw/Y33ngDwPvvv8+lqs7at6adT2UFxs7TOIQbEhKSlJRkwsUpGhsbIyIiZszIB1h4ODN3ZyrM6RdO0YXT8oSEhNbWVuGqkq2trXDqnpeXZ946zIlPCHfv3g3gj3/8I5e9d6nzn+nTTz8NYPfu3Vzq6dJNWtPKykqlUul1fU20YcOGRUZGnjt3zkyVJCSwIUMYwPz9mTk60/r6+vj4+DvvvFP4cezs7LqcWXXq1Klx48YBsOrWlE8I33//fQCdDz4WRRhBTUtL411IR8bW1MvL66effsrIyIiMjBRuBQTg5+cXFxfX0NBg7jJyclhgIAOYgwOLjzfZx+bm5sbExAjn6sI5S2xsbFVVVXfvr6ure+qpp4xXlVp6vuaCxeATwmXLlgH4+OOPuey9h4QVAIqKingX0gXjnHjj5RMbG5vHHnssOTlZzGXR1Gq2dGnbsiP9bE0NBpaczMLC2IwZz7XvPHtyA4e1t6Z8QihcED9w4ACXvfeERqOxsbGRy+V9WJNKHC0tLatWrXrppZecnZ2joqLy8/Nv/T3m0c/W9No1tmUL8/NrC3NQ0MmlS5eeOXOmt5/z66+/WkJrqtFohJlVKpWqh9/CJ4QBAQEALHkGxqVLlwCMGzeOdyG3JtrkgZto35pu3drT77p4kcXEtK3RBzB3dxYby6qr+14G39a0qKhozZo1rq6uwpF8xYoVPfxGPiEUJunX1dVx2XtPpKSkAHjwwQd5F2I1et6a6vUsOZnNm9d2ixnApk9niYnMJHcOc2lNVSpVeHi4cU5/UFBQfHy8Wq3u4bdzCGF1dTWA4cOHi7/rntuxYweAiIgI3oVYmc8/Z46ODGB33snarRfV5to1Fh/PAgLasmdvz8LDzTK4Kk5rKiwIOGnSJCF7wrIsfZhZxSGE6enpACZNmiT+rnvunXfeAfD222/zLsT65OSwu+5iy5axzEwGMOHkbvNm9vjjbaeOALvtNrZxY+e12k3JrK1pSUlJbGzsqFGjhPiNGTMmJiam8JZrUXeDQwj37dsnXOYSf9c9FxERAWD79u28C7FKjY1MrWaZmczXly1axBhjmzez8PDfO09xRrvM0ZoKnWeHBQF73nl2qa9PZeqHLh/9Y2msokiLNWQIhMuW7R8XOWkScnKQloawMFyfAGNeEolk1apVaWlp48aNU6lUQUFB3333Xd8+qqWlZefOnZMmTZoyZcquXbtsbGzCwsLS0tJUKlX7i7R9wy2EXpb9vLvGxh/uuqve2/te3oVYt/aPi5RK4e/PoYZ77rnn9OnTTz311LVr155++ulVq1a1trb2/NtLS0vXrl3r4eERERFx9uxZYUHAvLy8xMTE6dOnm6bE/h+ge2vhwoUAEhMTxd91D+n1zNaWSSSM6z0eVk94SJZezyZPZmvXss2beRbToTXtyWVV0y5FfRMcQhgUFATAJHepmklxMQOYmxvvOqyc8Ul1wuMi+YZQ0JNR0/Y3TMF0S1HfBIcQCmNK5eXl4u+6h376iQHs3nt512HlMjNZaChrbm57XKQlhJAxVldX9+STT6KrUdO8vLyYmBhzLEV9c2KHsKmpCYC9vb0lP/l1zx4GsLAw3nVYP+GahPknk/dO59a0uxumxKlHZpozyx4zjsoYF/myQFeuAACNjPZTdTWamuDiAicn3qXcSBg1nTp16jPPPKNSqSZOnNjY2AjA3t4+IiJixYoVkydPFrMePiG08KH/wkKAQthvFv5v2X333Xf69OlZs2bV1NTI5fKoqKgVK1YYr7+LSexLFFYRQgv/67EWlv9rHDFiRHBwcFlZ2Ycffrh27VouCQSvEHa+SKjRaOLj4w0Gg8j1dMny/3qsglX8GoU/SOMqrFxYypEwOjr6z3/+8yOPPFJVVSVySZ0J7ahlzyawAkIILfzXaAmtGZ8Qjh49usP2sLAwNze3w4cPBwYGCrcR8VJTg4YGDBuG60t7kT6y/COhXq8vKSmRSCTCg314ETuEa9ascXFxWbly5dmzZ9tvnz17tkqlmjlzZkVFxdy5c9euXcurNbX8Px1rYfm/ydLSUq1W6+bmZm9vz7EMsUPo7+/v4eGRm5s7bdo04Z49Iw8Pj9TUVOERMe+++25oaGh5ebnI5cEa/nSsheX/JgsLC8G7F4X4IbzttttOnToVFRXV3Ny8ZMkSYU1146symWzt2rU//PCDm5tbamrq3XffLX5r6uaG8HDMni3ybgeaxkbU1MDBAddXe7BElnBCCPCYwC3YtWuX8UmUnVf1KS4unjlzJgCpVBobG6vXc3hyLemPrCwGsNtv513HTVnI0pscbmUSLFq0SJiscOHChXvvvXfLli3tX+XSmmZlQSKBcK4aF4e4OGRlYcqUtldXr267JYf0hFVMeLCQIyG3EAK4/fbbT548GRUVpdFooqOjLaE19fXFhx+aeyeDguWfEMJibm3lGUIA9vb2W7Zs2blzp5OT0z/+8Y8pU6bwHTVtfyc46Y/a2s9nzlwSGHicdyE3Q0fC34WHh3NsTQ0GfP89oqPbvjbeCS7IzISPD3x88OmnJtznwJeZmXL8+A4Xlyu8C7kZYXSU+5GQ28BMZ83NzVFRUUJVixYt6vw0hZSUFDc3NwAeHh7Hjh3r/x47rMC3Z0/HO8EzM1lwcNubY2Is5Y44q3D//fcDMMl/JjMR5mZZwtKbFnEkFPS8NS0pKXnooYf605pmZ2P5cri7Y9ky5OTgttuwcSPGjQMAGxv87/9iz57+/0CDmoWcbt2EhfSisJB2tL2etKarV682GAzvvvvu66+/3qsPNxiQkoL58xEYiM8+Q1MTpk9HYiIuXMCrr/5+29sLL+DqVVP9QIORVqstLy+XSqUeHh68a+mWhVypByypHW2vJ63p+PHjz58/38MPrKtjcXFs3Li2ztPJiUVGssxMU9dNGGOM5eXlAfDy8uJdyM1s3rwZwMqVK3kXwulZFD0ktKbo5oJ+Tx6axRjLyipdurRtbXaATZjA4uKYBT8FYyBITU0FMHPmTN6F3Ex0dDSADRs28C7Eks4JO7t5a2pci65LBoPhwIEDoaGhQUETDhzQNzcjJASJicjJwapVcHY2c+mDm+Wcbt2E5Zy1WnQIcasL+l26evXqunXrxo0b99hjj6WkpNjbS19++fT580hOFm/t50HOikJoEUXyPhT31M1bU8Hp06cjIyMdHR2FH238+PFKpbKmpkbkUsmLL74IYGvPn1TIw8iRI2EZS29aTQgZY+fPn584cSIAe3v7uLg443a9Xp+UlBQSEiKs4GZjYxMSEpKUlGTJqyoObLNnzwZw+PBh3oV0y7i8miX8kVhTCFmnUdPi4uK4uDhjRzFs2LDIyMhz587xLnOwGz9+PICej12LLzs7G4Cfnx/vQhizuhAKEhIShgwZAkBYvxVAQEDAJ5980vlKBhGfwWAQblRvamriXUu3Dh48CCA0NJR3IYxZ+OhodxYvXnzq1CkXFxdHR8cZM2YkJSVlZ2cvX77cydJWmR18Ghsb33rrLQcHB2dnZ+GRzJbJgkZlxF/811QCAgJ0Ol1DQ8P333/vTBccLIBWq42Pj3/33Xerq6slEgljbMaMGT/88IM/l+eh3YpFhdAqj4QAampqGhoahg0bRgm0BCkpKUFBQStXrqyurp42bdqhQ4dmzJhRVFQ0ffr0kydP8q6uC5ZzkRDWG0JLWLOVAEhPT3/ooYdCQ0OzsrImTJiQmJj4888/z5kzJyUl5fHHH6+pqQkJCeG7hmWXLOpIaJUDM4yx/fv3A5g3bx7vQgavoqKiyMhI4UlGI0aMUCqVGo2m/Ru0Wu3zzz8PwM7Obu/evbzq7JKw0GhBQQHvQhiz0tFRxlhcXByAl19+mXchg1FjY2NsbKzwoHZbW9uoqKja2tou32kwGIQpmlKpdMeOHSLX2Z3W1lapVCqVSkV7+NnNWWsIX3nlFQDr16/nXcjgotfrExIShFurhU4kLy/vlt+lVCoBSCSSjRs3ilDkLeXn5wPw9PTkXUgbaw2h8LDVb775hnchg0hycrLxIdJTp049fvx4z7/3o48+srGxARATE2O+Cnuovr5+3759X3/9Ne9C2lhrCKdMmQLgxIkTvAsZFLKzsx955BEhfl5eXgkJCX2Y7bVr1y7hxpeXXnqJFpJtz1pD6OrqCqCsrIx3IQNcSUmJcfTFxcWl8+hLryQlJQlnks8++6yFnI9ZAqsMoVqtlkgkdnZ2ljD7dqBqbGxUKpVDhw4FIJfLIyMjKysr+/+xR48eHTZsGIBHH31UrVb3/wMHAKsMYU5ODoAJEybwLmRgEkZfFAqFcfTl0qVLJvx8lUolNDKzZs2qozUOrDSEhw4dAjB79mzehQxAycnJkyZNEuJ3zz33/Pe//zXHXnJycjw9PQEEBQVVVFSYYxdWxCpnzFjWdIeBIicnZ/78+aGhoWfOnPH09ExISDh58uSsWbPMsS9/f//jx4/7+fllZGTcd999wjWDQYtCSFBdXb1q1arAwMDvv//eyckpNjb24sWLixcvFm6SNhNvb+/jx49Pnjw5Pz9/xowZWVlZ5tuXpeN9KO6LRYsWAfjyyy95FzJACNd75HJ5VFRUdXW1mLuuq6sTnoE3YsSIX375RcxdWw46Eg523333XX5+vq+vb1ZW1pYtW4SVV0Tj7OycnJy8cOHCmpqa0NDQ5ORkMfduISiEg52Li0tNTY2bm5ufnx+XAuzs7BITE59//vnGxsb58+fv3buXSxkcSRhjvGvoHZ1O5+DgYDAYmpubjctbkD6rra0dOXKkg4NDfX29lN+CkIyxV199NS4uTiqVbt26VVivbZCwviNhSUmJTqdzd3enBJqEi4uLj4+PWq2+cOECxzIkEsnmzZuVSqVer1+yZMnGjRs5FiMy6wuhRd0TPTAEBwcDSE9P510IYmJiPvroI4lE8vrrr69evZp3OSKx1hDSCaEJTZ48GUBGRgbvQgBgxYoVn3/+uUwmW7du3Q8//MC7HDFQCEnbkdBCQgggIiJiyZIl9vb2wtPLBjzrC6EFPVZuoDCGsM8PXTUtvV5/5MgRjUYzfPhw3rWIwfpCSEdCkxs1apSnp2djY2Nubi7vWgBg7969ly5d8vX1XbhwIe9axEAhJAAQFBQEyxibAbB+/XoAMTExHC+ZiMnKQsgYKyoqAiDMwSemIoTw9OnTvAtBSkpKenr66NGjw8PDedciEisLYVVVlVqtHjlypHCzKTEVy7lKIRwGo6OjhXvwBwMrCyFdJDQTYQ53RkYG3xlUZ86cSUlJGTp06PLlyzmWITIrexYFnRCayZgxY/7v/+Z7elZoNAUODr68yvjggw8YY8uWLRsk46ICawqhWq1OTEwEhdA8IiIM1679qtFk8AphQUHB3r175XL5ypUruRTAi3W0o6WlpWvXrvX29v72228XLlw4qGb3isbRMRiAWs3tkv2GDRt0Ot2iRYsG2+mGpR8JU1NTP/7446SkJL1eD2DatGnh4eHCQ7OJaTk6Tga/EFZWVn7xxRcSieS1117jUgBHFhpCjUaTmJi4YcOGzMxMALa2tk888UR0dPT999/Pu7QBy9ExCIBazWeA9KOPPmpubl6wYMGdd97JpQCOLO5+wvz8/K1bt27fvv3q1asA3NzcIiIiVq5c6eHhwbu0ge/MmdE6XVVg4BVbW1EbwqamJm9v76tXr6alpU2fPl3MXVsCCzoSpqWl/f3vf9+/f79OpwMQHBwcFRX1pz/9SS6X8y5tsHB0DKqvP6xWZ4gcwm3btl29enXGjBmDMIGABSz01NDQEB8ff9dddwn12NnZhYWF/fzzz7zrGoyKi9eoVCgpeVvMnba2tgrD3QcOHBBzv5aD55EwLy9v27Zt27Ztq6mpAaBQKCIjI19++WVheWYivuunhaKOzXz11VdXrlzx9/c3PnNmsOEQQsbYkSNHtm7dum/fPmHMkzpPC3E9hCrR9sgY27RpE4DVq1cLz04bjMQ87NbX18fHxxuHv+zs7MLDw3/77TcxayA3ZfjttxEqFVpbS8XZ3/fffw9g7NixLS0t4uzRAol0JMzNzd2+ffvWrVtra2sBuLu7L126dMWKFaNGjRKnANIzEgeHuxsaUtXqDGfnR0XY37p16wC8+uqrg3rZLrNGXK/XJycnz5s3z7ig+vTp0xMTE7VarVn3S/qsqOh1lQqlpe+KsK+TJ08CcHFxqa+vF2F3FsuMR8KvvvrqnXfeEW7WHjJkyHPPPbdy5UrjKCixTEOHztJocuzsJoiwrw8++ADASy+9NMhvTDPXxfr09PT169cnJiaOGzdu2bJlS5YsEXl9ddIZYy063VWdrlarLdNqS/X6ti+MW8aP/7cweU0EFy5cuOOOO2xtbQsKCtzc3MTZqWUy15Hw4MGDiYmJTz75ZGJi4uAd9RKZWo2KCpSXo6oK5eW/f1FR0TxrzIWnUvT6upt/gFZbCtxdXPxGQ8OPgEQmc/X13SOVupij2PXr1xsMhhdeeGGQJxDmC6Fw419ISAgl0LxaW/HQQ0wFFYoAAAapSURBVG3Za2rq7l1Sl2n6hXUApFIXuVwhk7nI5e5yuUIqdbG1dZfLFcL/lclGq9W/NTQcDQhQAZLy8vX19T+4uPzR5FWXl5fv2bNHKpW+8sorJv9wq2PeENKNf2Zna4szZ9ri5+AAV1e4u8PVFaNHQ6GAqyvGjIGbm8xzzCQvV5ns1mcEMtkona66oeGok9MsN7c3r137T37+M7a2XnZ23ra2bf+TSof1s+pNmzZpNJqnn356wgQxTj4tnLnOCf39/S9cuJCdnX3HHXeY4/MHtd278d570OvxyCPYuBEZGXB2hkIBEw1vNDdnVldva2o6ZW8/QSodU1m5ocMbpNLhtrbetrZednY+whe2tl42Nl4ODoqefH59fb2Xl9e1a9dUKpWwts0gZ5YQMsacnJzUanV9ff0gH/gyvaIi3Hsv0tPh6orQULz4Iky/KhkDJAAqKjY1Nh53cXmqtbWwtfVKa2thS8uV1tbLBoO68/fU198/d65q7NixCoXC3d3d9zqFQuHr69t+1SalUrlmzZqQkJDB+TTCzszSjtKaaGZ05AgefhgKBQAsXozDh/sUQoNWW6nTVWm15TpdhVZbpdWW6XQVcrnCzs63qemkt/d2QGJjM8TGxn7EiOc6fLNOV90ulpeFLwoKXFpbW/Pz8zs/gF4qlSoUCh8fH29vbw8Pj23btgF48803+/TzD0BmCSGdEJpRVRWMF3tGjUJ1dRfv0WpRVYXKSpSVobJS+KIkQq12zNdqy3W6Kq22EuhixXsHhzv9/VWNjb9kZ99lY2Mrlbp4e2/r/DaZbJRMNkqYaGoUEACNpqWkpCQ/P7+0tLSsrCz/usLCwuLi4uLi4rS0NAB+fn6BgYGhoaH9/l0MEBRCa+PqCuOTW6qqoFDg+HHs3XtD5LpKZut9AfW+Odf/n0QmGy2Xu8pkY+RyhUzmKpePqavb29Skqq8/6OPzhfCmmpo9ly7NGTHiT+7u7/WkNDs7O6EF7bBdq9WWlJRcuc7f3z8sLKwvP/sAZcYQDrblekQSEoKYGJSUwM0Nu3dj+XJkZmLLlhveI5Vi9Gi4ukKhaPvC3d11oudIxTC53F0mc5XJXCWSjv/pm5pOAKr2a3/pdDUtLfl6/bV+liyXy318fHx8fPr5OQMVHQmtzdix2LQJISHQ6/H443jiCWRnY/NmuLrCzQ1jxrSl7vpkXSOnW30wYzoAN4ZTB8Cill8YkCiEVui55/Bcu8GSwEAEBvb/UzuHsKtYEtMzy3QWeoSgNaIQ8mKWENKR0Dp1bD4phOIwfQgbGhpqa2sdHR3phl3r0t2REBgUDwnkyPQhpMOglerquKcHIJFQCM2LQkjadHUk1IPaUfMzVwjpIqHVoYEZXuhISIw6XxWk64RiMP3vl0Jopby/u4PVucpXy3H9hgfnrOEOp2faz3bGGK6VDXSmPxLSRUIrNWRnhtPmo7L63/8khiaVj3zr+JD0Fo5VDQbUjpLr9HoAkLVrjnS6jluIGZg4hK2treXl5TKZTKHo0U3WxIJ0jhyFUBQmDmFRUZHBYBg7dqyM/stZHQohJyYOIfWiVoxCyIlZQkgXCa0ShZATOhKS6yiEnFAIyXUUQk5MHEK6SGjFuguhlCZwmxcdCcl1wnXC9pHrfOWQmIEpQ2gwGIqLiyUSiaenpwk/lohBr8fw4ZDLb1ichtpRUZjy96tWq+fPn9/Q0NB+uWViHaRS1NR03PjPf0KnM9Xq+qQ75noWBbFWHR50QSeE5kfPLSPtFBXhjTeQmopz53DmDPbs4V3QoEAhJO0YH3Qhk7U96IKYH4WQtNOTB10QU6MQknZcXVFZ2fa18KALYn4UQtJOSAhSU1FSAr0eu3fj0Ud5FzQo0CUg0k7nB10Q86NLFIRwRu0oIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4ez/AVgsU6C7g+/GAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -314,7 +335,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAJFElEQVR4nO3d25aiugKGUdxjvf8r\nsy9ci6ZREZHkT+Kcoy+qu6ssD3wmHITbPM8TkPO/9B2AXydCCBMhhIkQwkQIYSKEMBFCmAghTIQQ\nJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQI\nYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyE\nECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJE\nCGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgZ3O12u91u6Xux55/0HYAilvDmeb7/9f5F\ng9q9Z3DCpr3Nf7W5tDd6t+AjO+1tvq3BBb7F+wQHHWzv8UeaWuxFSH8+au9pdU0NiQ3dFdh3vL31\n5tBX39xOh63cD9hxcA756ey0kQ7toqAPOwPa2+/Zuc0WOhQh/fkmvI0WOsy/DcC+dSSFtm1mOzQS\n0pNCqdzHw3K3v8+xozBN0zTP85JiZSKEPyIdipCm1V9bq9+hCGGrcocihGn6e7dHZSKEMBHSrtTu\nu8q/V4QQJkIIHzEjQggTIfyl/qgoQhoV/3BDNSKEMBFCmAj5dfF5rwhp0SaMaseURYIUIR1IfdKv\nDhHSnKe9Ddyh01vQireXcGnhpEwliJCwVycLfZpc0Q5ThYuQgIPnLKzQYQtDqwip58T1W56eBy17\ncrTLiZDiTrS39nQVsf1Lfx43wmOgTV+29/QGy136M9izkZDrFZor1t9UU4f9hBRR+lTZb//xI9k9\nkEZCOnPheHj5hPmcvsfxPct726gPsFV1JoffrB820t5i0JHwdvvT3vprRvFq18XOj7TW3mLQCB/d\nX4DGnn2+cXAvRbPtLX4mwvsLYI46nFdrg+23t/iZCO9Wc9RbB69OfyJ7C9YddtTeYqwIl9W/eX4z\n6M3zbIo6kK4PZBto6+jZDTBSvJCtYCeMMhJ+8eKv1xYtQNQ3SoRfkx8pQxy2dukcaH0A06CnU6At\n/UdYYC1Ee+dYITyn8wjLvOzrbav9ud3+/UMnOl4n7P0DLEU4Xq9DXUZYYY9Q34PhI0E2rF6ETz8G\ndu526gyAQ3V4fzCFnzeZn1Mvwp2j+z76kdIFLrsN53mspapKh5zQ9GrV/uB5bZCb5bPjxXX/eL2O\nH9iwml4n3B8JBzi5SBH77yXGw/Z0votiPNfuYHi6XjvUyu4IOotwc0qfQhcJiQ0Vy5rohZ3cb2pz\na9fdvgOMvtdZhIUMPkF7WvV171/a+1J/EdYZDAf00OH9qTvx7G2mzKa3X2p6w8wrNsmc9LBV5vjJ\n5NeZeeKv1WWEG1c0eZum+fVfq7jnUfosOJ+ctPN2+/M87N+dzWA4+PT+av1NR++GnYWWP0Tg7Ums\nb/+Z53nZTnTgZv/6esgXp5ARRsLJBPVDOyexnj48nHDT3vpr4+FBvY6E02BbaKovsJunazX0XXY3\njIcHdRzhVCa8/IhaK8jHd7ECv0KH7/Ud4Ubfg2FChWdMh291H6HwvlRhdXqew9cea1z3EW6ca/JH\n5p9B3it3jBDhVS/wucNHLjZukDp8ZcBdFB/Nr55umai8bSZxZEDGhSerH+lkOoNEuHHwWlmvvjO4\n17F+kJUf6fED5RaPnwBZ/r3r9hbjRLhTzmYWdOTlr9Zhfo9IwoGp6foA11c3MkiH40S48f0esJ85\nCif2AH/guT1kqAjX76+XvMA/02ENJZ7JMXZCDhXhVODNtWaH9YNPTecufKQDdDjCLorS5nku9DIb\nZk8b6WkT4SEDvN1mebvZIcKjSnR4+gQTrPX+FinCD1z7Yq8/PRS53nrvK4Rdh7c22oaZ0r7cN7X+\nBN96QbQZ9ktd7zMU4cc+fb1fnCJp+/P1O+x0kV10Hd6aCM/46IU//s2peekY+m3SOmFb1quIwyg3\nwve+SeZOhC0ar8NF0Sl3p02K8CuPV2K47hISw3Z4rYfw+nvSRPitcqXo8LC+T7onwm89ToEuvbRZ\nidPJPf+6Xz2GtybC6117Eu1LlrDN+0LPS+x73TVpF8UFSm8POLfrYucSLjW35q+3xDgg4SkRXqNC\nh9OBhfi/EeB+rp2C96c1m0Md+joCSYRfebwSQ9HXfffySf9+w+Gbch2lVoiwM+sOvzyNwOZCbIU6\nrDYcrX9RR8PgtDmMmF4UOrrt3mShJaLaibOm3o77MxJ2qdxRYFPPU9O+BsCFXRRsldjIVGGfQacF\nTkZCnrpqFXGz1lpurthvgZN1QnacXrL3txhdnmK/8+c7EbLnw/PVf7C1tsRFKTolQt44fITAmaJu\nt9s3JQ5Q4CRCjrjqCIHXt3+/nY9/aoyF14YZDrnqCIGnll0j0+EUhylwEiEHXX6dj2e/YpqOpThS\ngZPpKG9t5qK1DnwZKrN9dtbzgWq7436nwEmEECdCmvYLJwQQIXtaOBxs1PYWIuSoVJCdnk30OBGy\n55e2j8SIkKOCQY49GIqQ11raW9fMHbmeCDkmFOTyO1t6Q7iYCCFMhBAmQl4YeP7XGBFygCBLEiGE\niZAXDH21iJADBFmSCCFMhPRi2OPWRAhhIoQwZ1vjhfW1CynJSMgz973z9z9tfIhofc7FwYgQwkQI\nYSKEMBtmeGa9KtjShpkWzv52uQEfEmMrd7nfFBHSpZFSFCEdK32hqDpEyAi6HhhFyDg6TVGEjKa7\nOaoIGVYvA6MIGVz7KYqQn9ByiiKEMMeOQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkII\nEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKE\nMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZC\nCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEi\nhDARQpgIIUyEECZCCBMhhIkQwkQIYf8H5RMbusYRgKsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU9foH8M/MAAMCKqAoIuCCpYiVKKTiVmKp4ZKmWVewsrh5VcrSa167P/Tel0V6NbTypqVJau6iuHZRUXFhM9xXxIVAAQVB2Zl5fn+ccRhxG5jlO+jzfvXqxRxnzvdr9vGcOed8n0dGRGCMiSMXPQHGnnUcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGaiKilJSU6dOnp6amnj9/3tTDyYjI1GMwVi+o1erDhw9v27Zt48aN6enpANzd3UtLS7du3dqjRw/TjcshZM+68vLy3bt3x8TEbNmy5ebNm9LGli1bDh48+Pz583v37rW3t1+/fv3AgQNNNQNi7JlUUlISGxsbEhLSqFEjbRxat24dHh6ekJCgVquJqKqq6qOPPgJgZWW1bNkyE82EQ8ieLbdu3YqOjh45cqS9vb02ez4+PhEREampqQ++X61WR0REAJDJZHPnzjXFlDiE7JmQm5sbHR0dHBxsbW0tBU8ul3fp0iUiIuL8+fNP/PjChQvlcjmA8PBw6SBpRBxC9jTLyMiIiooKDAyUyWRS9hQKRWBgYFRUVFZW1kM/olarT5w48eD2lStXSgEODQ2trKw04iQ5hOwpdOrUqYiIiC5dumhPOO3s7IKDg6OjowsKCh76kaqqqoSEhPDw8JYtW8pksqtXrz74nt27dzs6OgIYPHhwSUmJsWbLIWRPleXLl7du3VqbPScnp5CQkE2bNhUXFz/0/dIdiA8++KBJkybaT3l6eu7bt++h709OTm7atCmAbt263bx50yhz5hCyp0dMTMxrr70GoEmTJiEhIbGxseXl5Q99Z3FxsXRptGHDhtrstWnTRvfS6KOcPXvW09NTupyTmZlp+LQ5hOzpERoaCuDzzz9XqVQPfUNtL40+SnZ29gsvvADAy8vr3LlzBk6bQ8ieHs899xyAo0eP1th+7dq1xYsX17g0GhgYGBkZeeHChbqNlZ+f37NnTwDOzs6HDx82ZNocQvaUuHXrlkwms7Ozq6io0G4sKiry9/fXXhq1sbEZMGDAkiVLcnJyDB+xuLj4jTfeAGBvb79z584674dDyJ4SO3bsANCrV68a2zt27Ki9NHr79m3jDlpVVfXhhx9K8V69enXddmJV+wfdGLNESUlJALp161Zj+4YNG7y8vOzs7EwxqEKhWLJkibu7+6xZs959992srKzPP/+8tjvhpUzsKZGYmAjg5ZdfrrG9ffv2JkqgRCaTzZw5MyoqSiaTTZky5YsvvqBaLorgVRTsaUBELi4uBQUFf/75p7u7u5A5rFy58oMPPqisrBw7duzPP/9sZaXvaSYfCdnT4Ny5cwUFBR4eHqISCGDMmDE7duxwdHSMjo4eMWJEaWmpnh/kELKngfSF8MFzUTMLCgr6/fffnZ2dY2Njhw0bpudpJoeQPQ0sJIQAunfvfvDgwcaNGzdo0CAzM1Ofj3AI2dNAuirz4KVRITp06NCgQYPNmzfreUbKF2ZYvVdcXNy4cWOZTHb79u0GDRqIng4yMzM9PT0bN26cn5+vfU7gMfhIyOq9lJSUqqqqF198UVQCAwMDhw4dqq1PIx2Wu3fvrk8CAfDNelbvif1CmJeXd/jwYXt7+8aNG9dtPnwkZPWe2BBKx72AgADtjcHafkHlELJ671EPrAkZvbKyMi0tTSaTBQQE6LkHDiGr365evZqdne3i4uLt7S1kAjUelzt+/HhJScnzzz/v5OSk5x44hKx+05776XkVxLjUanVqaioAf3//GvPRfyccQla/if1CeObMmcLCwlatWrVo0aLO8+EQsvpN7G36B0fnIyF7tlRWVh47dkwmk3Xt2lXIBGoc927dunXp0qUGDRr4+vrqvxMOIavH0tLSSktLO3TooP9VEOOqcdxLTEwkIn9/f/3XMYFDyOo1seeid+7cOXv2rI2NzUsvvSRtqdvNEg4hq8cedRWksrLSDKMnJyerVKrOnTvb2tpKWx61uv/xOISsHnvokXDx4sU9evTIy8sz8+hElJKSAg4hexbk5eX9+uuvb7zxxs2bN5VKpW6DwfLy8vnz56empvbq1evq1asmnUaN4/CZM2du377t5eWlvV2hLyOVfmPM5M6fPx8ZGRkQEKC9Ly9d//D09Dx79qz2bTdu3PDz8wPg5uZ27Ngx082nWbNmADIyMqSXS5cuBTBq1Kja7odDyCzdY1osXblypVevXgCcnZ0PHTqk/cidO3ekphSNGzc+cOCAKWZ16dIlAK6urtotYWFhAObNm1fbXXEImSVSqVSpqakRERFSZXuJk5PTyJEjo6Oj79y5o31nWVnZiBEjANjb2+/YsUO7vby8fNSoUQCUSuWGDRuMPsNVq1YBGDJkiHaL1J1C9+8CPXEImQXRNgnU/Vr1xBZLup3lly5dqrv9448/xr0Svcadanh4OIDZs2dLL4uKihQKhbW1dR36FnIImXglJSVSozLtulgAXl5e4eHhcXFx+rTF1e0sP2fOHN1fioyMlLZHREQYcc7z5s3z8/OLj4+XXu7ZswdAQEBAHXbFIWTCFBQUrFu3LiQkxMHBQZs9Hx+fadOmPbFJ4EM9qrP8okWLpO2TJk16VNc0A3311VfS/uvwWQ4hM7e8vLzo6Ojg4GAbGxvd7EVEROhe5KybVatWaTvL67ZniomJkW6p/+Uvf9HdbixDhw4FsHLlyjp8lkPIzCo7O1vbJNDKyqpfv34//PDDn3/+acQhHtVZPj4+XurL269fv6KiIiOOSETNmzcHkJ6eXofPcgiZ+ZSVldnZ2Tk6Ovbr1y8qKurGjRsmGkjbWf7ll1/W7Sx/4sQJ6ZKPv79/bm6usYbLyMgA0LRp07p9vP6EUKWisDB6/XV65RU6fVr0bFhdHD58GECnTp3MMNajOstnZGS0a9cOQPv27a9evWrgKNI9zFatWjVr1kz3dkWt1J8QbtlCH35IRJSURIMGiZ4Nq4v58+cD+Oijj8wzXHZ29osvvogHOstfv35d2t6mTZuysrLa7raqqmrPnj0TJ05s2bKl9jvtK6+8UudLPvUnhDNnUnS05uc2bWjnTnqgNTmzcG+//TaAn3/+2WwjPqqzvPRITbT2/yg9lJaWxsXFhYeHS0+rSTw8PMLCwmJjYw252FN/QjhrFi1frvm5XTtq04YACgyk2Fiq/bVsJoSXlxeAU6dOmXPQsrKy4cOH44HO8nreAikuLpbuYUoXdSRt2rQJDw+v232UB9WHEJaV0axZFBNDY8cSESUl0eDBNGUKNWpEAAHk40M//0y1P69g5pSTkwPA0dGxqqrKzEPrdpb/7bff9PnIrVu3oqOjR44caW9vX+M+SmpqqnGnZ/EhVKlo1CgCaNQoGj+eXn+dgoLo/HkioqIiiooiLy9NFF1dKSKCdC6FMYsSExMDICgoSMjouo/UzJ0791Fvu3bt2uLFi4ODg7X3UeRyeWBgYGRk5IULF0w0N4sP4SefEECNGlFa2sPfUFFBq1aRn58mivb2NGFCSXqWeWfJnuyLL74A8OWXXwqcw4IFC6RHZ6ZNm6Z7JpmRkREVFRUYGKhdJKVQKAIDA6OiorKzs009K8sO4cyZBJCdHemzGiUhgUaOJIWiSmHTrlVFcDDFxZl+hkxvffv2BbB161ax01i5cqV0lBs7duzx48cftUjq9u3bZpuSBYfwxx8JIIWCNm6sxadOn079Yr1SqTku9uhBGzeSaZ4WZLVQVVUlPSCak5Mjei60Y8cOe3t73Yrdzs7OoaGhMTExdVgDYThLDeHmzaRQkExGdbqcnZNDERHUpIkmiq1bU1QU3b1r9FkyfaWlpQHw9vYWPRGNI0eOzJs3r23btuPHj4+LizPF06T6s8gQxseTrS0B9PXXhuymrIyio6l9e00UGzWi8HAy6lOKTF/R0Vl9+34zefK3oidiiSwvhCdOUOPGBNDf/maU/alUtHEj9eihiaKdHa1dS+7uVFFBBQU0dKhRBmFP8P77BNB334meh0WyrGprVZcuoX9/3L6Nd9/Fd98ZZZ9yOYYPx6FDSE1FSAiCg9GwIZo3x6pVRtk900tiIgAI6tpi6WREJHoOGnl5eQNffTXG0dGjQQNs3w6l0hSjqFSIi0NKCg4dwurVeP99bN5sinHEUasxfjyuXkVFBb7/Hj4+oieEwkI4O8PGBoWF0FlCyDQs5UhYVFT0+uuvHz116h0i9ebNJkogAIUCAKytERSEHTtMNIhQ27ZBrcauXYiMxNSpomcDAElJUKvRpQsn8OEsIoQVFRVvvfVWWlqat7f3pi1b5DrFDkwnLAy//AIRjSVNLC0NvXoBQEAAzp0DgNJSjByJ48dFzYjPRR9PfAjVavWYMWPi4uJatGgRFxfn6upq6hFVKty6BRsb+PmZeigRZDJov2JIx/3//AcbNqBPH+zfL2RGSUkAh/AxRF8Z0pSOa9SokUmLJeu6cIEAatvWPKOZ3fbt1U+6v/kmEVF5OY0eTQAplbRunZmno1ZrbtgavID2qaVvF7VDhw5FRkZ6eHi4u7t7eHi0bNnS3d3d09PTzs7OkL8CIiIiFi5caGdnt3XrVmmdpRn8+ScA6CzIfLoMHIht2zBgAFQq/PADANjY4Lff4O6OefPwzjvIz8df/2q26aSn4+ZNuLnB09NsY9Yz+obw9OnT27Zte3C7ra1tixYt2rRp4+bmpvuDt7e3bpuOh/rxxx//9a9/KRSKlStXSsXMTSQpCQ0b4rnnNGdnT3kIZTIsWgQACxYgNhZTpmg2/uc/aNoU06fj449x+TIiI80zHekLoaAOgvWDviEMDg7esmVLZmZmVlbWn3/+ee3aNemHsrKyjIwMqdBNDU5OTtLR0t3dvWXLltIP0hYHB4fNmzdPnDhRJpMtXrxYWnNpOkOGIDcX16+jeXPgqQ+h5OJFTJmCqirk5GDOHM0FqGnT0Lw5PvwQ33yDu3excCHkJr8owF8In0jfELZo0WLIkCEPbs/Ly8vKysrMzNTmU/ohMzOzoKCgoKDg1KlTD36qYcOGlZWVKpUqMjJy3LhxBv0OnqS8HHl5sLaG9oqPxYXQFHf22rXDunV491385z+4cQPLlkFaIDd2LJycMHo0fvgB2dn47Tfca3BpIpWVaNCAQ/g4JrxZX1paev369YyMjOzsbN0f0tPTCwsLmzRpIpfLs7OzFdI5IgDgzJkzTk5Obm5uRpxGRgbatkWrVrh8WbNl6FDExiImBsOGGXEcA8TGYutW/PQTkpMxaxa2bzfanuPjMWwYiooQFIRNm+DoqNm+fz+GDkVhIV59FTEx0CncYApVVZDJoPPnzO4n5HLQ9evX27ZtC2DRokXajb/88ouVlVVoaKhxx9q/nwDq2bN6i7QAOCXFuOMYoEYNK+NKTSVXVwIoIIDy8qq3nzxJ7u5lbdu+9corJlpetHMnP6OrFzH3CZs3bz5nzhwAX375ZX5+vrSxT58+VlZWK1asSE5ONuJYmZnA/SefFnc6+uCdPSPq0gVHjsDbG8nJ6N1b858DgK8vDhwY26zZhvj4Xr16XblyxcjjAgA/o6sXYTfrhw8fHhQUlJ+fL3XSANC6devJkycT0aeffkrGO0mWIufhoXn54FdE8bp2RXw8ACQnw9fX+Ptv0wYJCXjpJZw9i27dcPKkdvuCTZv8/PwuXLjQvXv3Y8eOGWW0khJs3IhlywBg6FCsWQOLeTzZUgk8Ch87dkyhUNjY2JyXCjcR3blzR/pCuHr1amONMmkSARQVpXl56RIB1KqVsXZvmIQEOnyYSktr1rAyhYIC6t2bAHJyooMHtZuN1dQ2P5/WraOQEHJw0JTd2r6dvv6a5s6llSv5dPRxBD8xIxWiG6rzR/Tzzz8DaNmyZXFxsVGGGDu2xNaWtK1a9+0jgHr1Msq+Dda3LwGkLbuSl0eXLplwuLIyeustsrb+qmfP7du3azeXl5dLZXmVSuX69etrtcvsbPrvf6l/f7K21qzYlMupe3eaM4e2bKGvv6bCQurXj954gwYNIoN7Lj2dBIcwJydHuqf/+++/S1tUKlXXrl0B/Pvf/zbKEP7+/gCSkjS1IjduPNm376HJky8aZecGqaoiBweSyUjbmWTBAgJo4kSTDrpt+nQA1tbWK1as0G5Wq9WTJ0+G3k1tr1yhqCgKCiIrK032FAoKDKSoqOraBTt3akojTJ1KbdsSQE2aUGKiSX5b9Zr4Z0e//vprAD4+PtqGrAcPHpTJZA4ODllZRqhcKPWs0u5K6ts6depUw/dsqLQ0Aki37Ir0hOdPP5l0WN0KnN98843uLz2xqe2JEydmzZrl59fVxUWlrVQwdCgtX063bj1u0LIyGjFCU5JSp7E8I7KEEJaXl3t7ewP48ccftRtHjBgB4L333jNw5xUVFXK53MrKSlv1eeLEiQAWLFhg4J6N4L//JYDGjKne0ro1AXTihBkG/+6777RNbXU7mSxbtszKygrAxIkTpe1qtToxMfHvf/+71MxI0r//yXfeofXra1E+q6qKPvqIALKyIp3G8swCQkhE69evB9C0aVNtsceMjAxbW1u5XJ6cnGzIni9fvgzA09NTu2XYsGEANtaqjKKJvPfefXVXcnIIIEdHMleV+I0bN0rNa0NCQnTLjW3evNnW1nbMmDEHDhwIDw/X7T3k4uISEhISGxtbh2ZGRKRWU0QEASST0f2N5Z9pFhFCIurTp0+Ns8Rp06YB6N69uyE9Nw4cOACgR48e2i3SF86kpCSDpmsUUh047UMDmzcTQP36mXMKe/bskfqcBAcHa6+EJSQkDBkyxMXFRZs9T0/PTz75ZN++fUZpI7FwIcnlBFB4OPfyIbKcEKalpcnlchsbG23F/6KiIul2xdq1a+u8299++w3A22+/rd0i9bUyyrdNgxQUkFxOtrZUXq7ZMn06ATRjhpknkpKSom1qm5eXd/To0bFjx0rZM27vIV2rVmmupoaGktCSnxbBUkJIRB988AGAN6V1qEREtGTJEgAeHh51vl0hPZfz+eefSy/Ly8vlcrm1tbX5GwPVtGuXprWb1iuvEECxseafS3p6uvQUoY+Pz5gxYwAMGDDgzJkzJh10925ydCSABg8mI92Nqq8sKIQ3btyQTo3+97//SVtUKpXUJ2D27Nl126e0bH/+/PnSS2nJlZeXl1EmbBCpzca9vx2oqooaNiSATNbG/fGkprYeHh4dO3YEkJCQYIZBk5OpaVPq2PFOnz6Dbj7D7bQsKIRENHv2bAAvvvii9kgVHx8PwMHBoW7NcVQqVVZW1q17l8+lr4iBuscfUQYOJKC62MTx4wQY/+nt2sjPzz958qSVlZW1tbWxnpR4orNn1Z069QHg6+v757NaHd2yQlhWViadF+neL37zzTcBfPDBB4bv/8GviEKoH6y7sngxAfTuu0LnRfv27QPQpUsXcw76qM7yzw7x1dZ0KZVK6XnuL7/8srCwUNo4d+5cpVK5fPnyP/74w8D9Z2ZmAmgpegFFenq6t0o177XXquuuWMb688TERADdzFuLws3NLT4+vmfPnlevXu3Ro8eRI0fMObolsKwQAhg1alTv3r1zc3OlJ2kAtG3bdtq0af/85z/bt29ft30WFRXt3bt3zpw5P/30k/FmWndHjhy5VFBwWKe86vhr15b27FnQo4fAWQFISkoC8LLZ/y5wcnLavXv38OHD8/Pz+/fvv2vXLqMPsWsXWrZEZSVu37aYxdxaog/FD/HHH3/UuF1RWxUVFadOnYqOjg4LC/Px8ZHrVFJxdnZ2dHTcs2ePcedcK3/7298AaB8Zu337tlwuVyqVdbsDbkQtWrQAYLq+0I9Xh87yDyotpcuX6eBB2rCBFiyg6dMpNJT+/W/auZO6dKFffrHEFcaWGEIieu+99wCMGDFCz/dXVlampaX99NNPYWFhnTt31jYclyiVyoCAgAkTJixdunTUqFHSH/OaNWtM+lt4DD8/PwD79++XXv7vf//D/U8UCCGt63VxcTH6XUH96dNZvrS0NCMj4+DBg+vXr1+wYMGcOQmhofTaa9SxI7m4aJ4mr/FPz560cyf961/0+uuUn29xIdS30JOZRUZGbtq0aePGjbt37w4KCnroe7Kzs48ePXro0KGDBw+mpaWVlJRof0mhUPj4+HS5p2vXrrb3yhm9//77Xl5ec+fOfeedd7Kzs6WlA+ZUWloqXYTUdmmWvomZ/ySwBu0XQpm43gAymWzmzJkNGzacMmXK1KlTjx075u/vf/369evXr0sFiq5fv64txSDp02fK/v09tS9tbODqCg+P+/7dpg1KSiy3AYmFhrBZs2ZTp0795z//OXXq1NTUVKkYlJQ6SWJi4s2bN3U/4ubmJkWuZ8+e3bt3t7e3f+ieZTLZnDlz3N3dJ0+e/Nlnn+Xk5ESaqwKnJCUlpbKy0s/PTztDUd/EarCQaQD47LPPXF1d33vvvQMHDqx6oDyGjY1Ns2bNWrZsKf27Xbue771XHblmzR6+T+lrZlgYhg+vrndlISw0hACmTJmydOnSY8eOjRgxQqVSpaSk5OTk6L7B3d3d39/f39+/a9eu/v7+Tk5O+u/8k08+cXZ2Hjdu3DfffJObm7tkyRJp6YAZ1LgCSUTS//1mvib5oKNH/4BlhBDAmDFjZsyYce3atdGjR/v6+rq7uzdv3tzd3b1Zs2aGdCtp2BBNmmi6RJm+5KreRJ8PP86aNWtatWqlnWrDhg0DAwPDw8Ojo6MzMjIM3//WrVsbNGgAYNiwYaWlpYbvUB9SpePoe+XVLl68CMDNzc08oz9KeTk5Olb4+KQWFOi9NsmUbt68KZPJ7O3ttatMjUKl0iwv3rLFiHs1lEWHUK1Wl5WVTZ8+ffXq1enp6aYYIjExUVou0LdvX+1CKpNyd3cHoC2rs2LFCtz/xKwQSUkEkI+P2FlU27p1q/SHYvQ9f/stAfTqq0bfcd1ZziH5IWQymXT7fvTo0dKTNEb38ssv79u3z93dfd++fX/9a+T9J7zGJ5Und3Z21i6QtZBvYpbWMcJ0p+jjxqFRI+zdCyMVlzMCiw6hefj6+h46dCg4eNzmzTMDA/GwthpGo70Qqr0CaSGXRi3jiZ1qNf6zZGVlxcfH37171/A9Ozri/fcBYOFCw3dmJKIPxZbi1i3q3p0AataM/vjDVKOkpqaOGzcuNDR0zJgxv//+e2Zmpo2NjUKhuHPnjqmG1E+bNgTQ8eNiZ6GhVqsbN24MnWWf33//PYCxUt/FOjl7lq5c0fx8+TIpFKRU0vXrBs/VGDiE1e7epQEDCCAHB7q3msporl27tnjx4uDgYO2DBDY2Nm3bth00aNDAgQONPFgtSYU17O3JqBdB6k5qIqS74iwkJAT3N02ole+/J5mM/vrX6i1vvkkAPaKclblxCO9TXk7vvKPpaWvAgv5qZ8+enT17dteuXbXnn0qlctCgQfPmzZOWDri5uZmtRfGjxMYSQK+8InYW1aTas7qLXaSv0H/U9RTlwgWSy8nOjrSLFqUOJa6uZK6L4o/DIaxJraYpUzSFNP/73zru4ejRY//4xz86dOigPe13cHAYOXLk6tWrCwsLpbcZq/S14WbMIICmTxc4hft89NFH0FmKfevWLZlM1qBBA0NuV7zxBgH01VfVW/z9CaBlywycrBFwCB8uMpJkMgJo2jR9P6JSUUICTZtG7dpRYOCPUvacnZ1DQkLWrVt392G1AcvLy6VnWZVK5QZtkXCz69ePANq8WdT4NXXq1AnA4cOHpZfbt28H0Lt3b0P2GRdHALVoUV3T59dfCSBfX/HFpjiEj7R8uaa89IQJpFOYs6byctqxgz76SNOATPrntdf+nDBhwu7du5/4l3dVVdX48eOhd+lro1OpNIU1LOQqRVFRkUKhsLa2Likpkbb83//9H4C///3vBu75hRcIoFWrNC/Ly8nNjWQy2r+/yMA9G4hD+DgxMWRrSzIZxcXV/KWSEoqNpZAQatSoOnutWlF4OCUkPC60D/XE0temc+IEAdS6tZmHfaQ9e/YACAgI0G6RTtoNLxX7008EkG7ZgIUL0729hw4ePNjAPRuIQ/gE+/fTvHn39bvs25eGDiU7u+rsvfQSzZplaOFsbenrSZMmqWobYgNkZtKsWRQZabYBn0CqMxQeHi69VKvV0lPBhlegKSmhpk0JoIMHNSegeXl5dnZ2MplMbFkNDqFedJeEvvqqpvdQly4UEUFG/OOLiYmRlly9++67Fc9qOc4hQ4YAWHXvrPHMmTO4v4a6ISIjbwYGLho9OkS7RVpGPGnSJKPsv244hHqpsSQ0OprqVPztyeLj46U2Vf369SsqMu13FctsZy1VZ750r0XcsmXLAIwcOdIoO8/JyVEqlQqFQrsA4NSpU1L3oYKCAqMMUQf82Jq+dJeEhobCzc0ko/Tt2zchIaFFixZ79uzp169fXl6eSYa5x9LaWV++fDknJ6dp06Zt2rSRthj32VpXV9dRo0apVKpFixZJWzp27BgUFHT37t2lS5caZYg64BDWQlgYfvkFpl533qlTp4MHD7Zr1y4lJaV3797Xrl0z7v5Pn8bMmejQARcuWFw76wfLvRm9ANynn34KYMmSJUVFRbpbvvvuu6qqKmONUiscwlpo2BB+fqHk2uAAAAu/SURBVOYYqHXr1gkJCZ07dz537ly3bt2OHz9u4A6rqrB7NyZMgLs7fH0xaxbOnUNy8n2H97t3UVBghMkbosZxr7i4+PTp09bW1n7G++/u5+fXu3fvoqKiX3/9VdoycODADh06XL16dfPmzcYapXZEnQezJ7pz507//v0BODk51a0ufWkpxcZSWBg1a1Z9LdfTk8LCKDaWtm2rbmc9ZAgNGEA+PnTtmtF/H7UgxW/37t3Sy7179wLw9/c37iibNm0C4O3trb0K/cMPP0BcaXYOoV527tS0jbh40azXMMrKyrSP1Oh/o+z27dsbN1556y2yt6/Ono8PzZhBqanVb9NtZz1wIHXqpImoqM7yZWVlSqVSLpdrn+yTas9ONHb/cJVKJS1Pjb3Xfqe4uFha2y2kZx6HUC+iQkhEVVVVH3/8MQCFQvHTYztp37x5Mzo6Ojg4WKlUdus2XJu9iAg6ffrJAxUUUK9eBJCzMx06ZLT560+qve3r66vdInV0XbFihdHH+vbbb729vTfrPKon9cN8V0QnAg6hXnbupFat6PXXqVcvMVfzH/NIzZUrV6Kionr37i3VpJPiOmDAGwsX1vrcUmxn+W+//RbAhx9+qN0iFSO+ePGi0ccqLy+v8UTEtm3brKysxo8fb/SxnohDqBeBR0Kt77//XrfL/KVLl6KiogIDA3UXSQUFBUVFRV034DFQgZ3lR48eDUB7tJdanZunGPGuXbscHBwAzDB7k1biEOrJEkJIRGvXrlUqlQCk3roSBweHUaNG6S6SMpCozvJSZb2TJ09KL8vLyw8cOLB+/XpTjxsdHS2ttA4NDRXyoBKHUC8WEkIi2rt3b+fOndu2bfv4RVKGM3NneamorKOjo5mbKEdFRUmnEuHh4aLq/3MI6x/pXNS4BTkfSttZ/rPP8k03XFlZ2Y4dOwYOHAigVatWZiu3U1VVJXXmUSgUP/zwg3kGfSgOIXuc3bupQ4dyV9cXBg8ebNz2vSUlJbGxsSEhIdKzsgCaN28OwN3dfeXKlaY+KJWVlY0cOVL6Ir3WKIVMDMAhZE+QlJTSpEkTAD179szPzzdwb7du3Vq+fPnQoUPt7Oy0X2tfeumlWbNmrV27tse9Do3+/v5HjhwxyvwflJ+f36tXL+kpCLGFRSQcQvZk6enp0t1tHx+fzMzMOuwhNzdXuodpY2MjxUwul3fp0iUiIkJ3LZ9arV63bp2Hh4f0hpCQkBs3bhjv90FEdOVKptRt1svL68yZM8bded1wCJle6tZZ/vLly9J9FG2fVoVCERgYGBUVpa0p+qC7d+9GRERI14EbN24cGRlZrq0MY5iTJ6ldu2Jf326+vr51+9vEFDiETF/5+fk9e/YE4OzsrK3C9FCnTp2KjIwMDAzUnnDa2toGBwcvXrw4JydHz+EuXLgQHBwsffz555/fYfDTA3Fxmmo6b755w1i3c4yCQ8hqoaysTOoqZW9vXyMVKpUqNTU1IiLi+eef12bP3t4+ODg4Ojq6zguUt27dqu3bER6+o87NuNavJ1tbAuittyyi1qguDiGrnRqd5auqqhISEsLDw6VuUxIXF5eQkJDY2FijnEZWVFRERUX5+fVWKKpsbCg8nGqb6Kio6nueZizfoy8OIau1tWvXjh07VnqW1VGn7W2rVq0mT56ckJBgikJVWVnqkBBNMVgPD1qzRq9HCLSlnM389E+tcAhZ7ZSXl0sLjiIjI4cNGyaTyTw8PMaNG5eQkGCGJ05SUjR9ewAKCKDHLzwqK6O339Y0NVi92tRTqzsOIasdqd5Ex44diUitVl+5ckX6lrhmzRrzTECtpuhozTJluZxCQuih13ry86l3bwKocWPav988U6sjLm/Bake36ItMJvPy8pK2GLECxePJZAgNRXo6IiJgbY0VK9C+PRYsgG6BmMJC9OqFAwfg4YGDB9G7t3mmVkccQlY7NcrAXL16NTs728XFxdvb25zTcHDAzJlIS8Nrr6GgAJ9+ij590LIlKitx+zbGjkW/fujYEYcOoWNHc86rLjiErHZqlD/TvpSZugrdw3TogN9/R1wcOnTAgAH3VXCcPx+HD8PDw/yTqjUOIauF3Nzcy5cvOzo6+vj4SFuMWxe0boKCcPw4/P3vq+CoUKBhQ4GTqgUOIasFqQxMQECAtpSGJYQQgNT+WLeCYz1iJXoCrD6pEbnKysq0tDSZTObv7y90XtXCwjB8OHRuXtYDfCRktVAjhGlpaaWlpR06dJAaJ1kCsxVoNiI+EjJ9qdXq1NRU6ITQ6DXqDTFgAAYMwKJFuHABU6eKnk1t8JGQ6evc6dNFRUWtW7eWGifBYr4Q6kpLw5YtOHVK9Dxqg4+ETF8+SUmqZs2yhg7VbrGoI6GkRQsAuH5d9Dxqg0PI9JaYKM/J8WjdWvMyL++UtfXFoKCOlnQ7XGpZl50teh61waejTG+JiQCgPe4lJtqdP/+CSqW9XWEJpBDWryMhh5Dpp6gIZ89CqcSLL2q2JCUBOpm0DNLpKB8J2dMoKQlqNfz8oFRqtkgHRku6KgM+ErKnWY3jnlqN1FTA4kLYvDkUCuTkQFDX3brgEDL9SCHURu7MGRQWolUrNG8ucFIPsrJCkyZQq5GbK3oqeuMQMv0kJwP3XZW576UlqXdfCzmETA/p6cjNhasrvLw0W2ocGC1JvftayCFkepAid69GffUWSz0S2tggN7dC9ET0xSFkeqhx3LtzB2fOwMYGnTsLnNSjeHjMraiQZWZ+JXoi+uInZpge+vdHaSn69dO8TE6GSoWuXatvV1iSpk0dAFyvP+ejHEKmh8GDMXhw9UtbWwwebLFLhqRO99n158oMh5DpR63G+PG4ehUVFfj+e8TGip7QI7m5uaFeHQn5OyHTz7ZtUKuxaxciIy18uV69OxJyCJl+0tLQqxcABATg3DnRs3mc5s2by+Xy3NxclUolei564RAy/chkmjJmACxp2cSDrKysmjRpolKpcuvJUzMcQqafrl0RHw8Aycnw9RU9myeoX2ekHEKmn4ED0aABBgzAjBmIjBQ9myeoX9dm+Ooo049MhkWLRE9CX3wkZEww6Uh48eJF0RPRi2LmzJmi58CYkd29ezcrK2vDhg3p6enPPfecq6ur6Bk9Dh8J2VNoyJAhvXv3VqvVK1as6NSpU3BwcLx0VckiyUh73Zmxp0tGRsaCBQuWLl1aXFwM4KWXXpo8efI777xjLXWusBgcQvaUKywsXL58+dy5c7OysgC4ubmFhYV98sknllO6n0PIngkVFRVr1qyZO3fuqVOnADg6Or7//vuff/65p6en6KlxCNkz5uDBg99888327duJSC6XDxo06MsvvxRbyZ9DyJ5Fx48fnzdv3po1ayorKwEEBgZOmzYtODhYSL9hDiF7dt24cePHH39cuHBhQUEBgHbt2k2YMCEsLMzOzs6c0+AQsmfdnTt3li1bNn/+/GvXrgFwdXUdP378pEmTXFxczDMBDiFjAKBWq7dv3z579myp35tSqRw1atQ//vGP9u3bm3poDiFj99m7d++8efN27twpXbl58803Z8yY0dmUJa34iRnG7vPqq69u3779woUL4eHhSqVy48aNZ8+eNemIfCRk7JFycnKWLl06depUkz5kwyFkTDA+HWVMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTLD/B19czSwHIR6HAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -326,7 +347,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAHXklEQVR4nO3c3ZKiVhhAUU3l/V+Z\nXJgYu+1m/AH2AdeqXEy6pqYVz/YDRM7TNJ2Azl/1A4BPJ0KIiRBiIoSYCCEmQoiJEGIihJgIISZC\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKE2N/1A3jI+Xye/wvTNG3zSGBxQ0T4fmPn81mH7NQQEZ6MMj5Yf0y4\nyBCbpumP4xTGNMok/KOZxi4NXzo0UdmdOMJv2fyxNHjcZTmNv3LGmoRvbi/DkIvb/MZPsVyyKwWj\nww/34wIYOcWxJiG8Y6a0kadiNjRWnVeG4Qd6/EUfLcX+I4o1+MTio5zP598K/HEZTNN0WSGDLJJm\nd9Sk+jjX5b706z6f38wyG2cH9bDHhM6UDuR8/r+9658vWb7xAv3Wz1NdjZBiEOFmbXxUh/u7xv29\nFGcG4AvPtE3xsJPwSB45dNnrNe7Pp7jIAPzlsTQpbh3hxkvhMMPwAE9hzk2K539/8PPz3eAzwO3P\n6h1/Eu69w6UefLkdpumhEzOXa4BPp9PX4T8/oHb94l5sGuEg2+vr+9zc47ksnm/nFG5/si9Bh9eN\n9eQvvb+ieO0BGC7Ow07C2236bQfj2W0dVjfI29aLFtpw9/uHI3yusKDtIszX08u//X76vX12PbP3\nnfPTAAtpcc0VM2sf+N5/Q2rZl22atihwpdW20YmH1fYfDlbgacsIb1/73V1WdntmYctfu/2vXMZ+\nj5sLB7x2dKUxuPGiWnUZ7+5N8Ng2jXCPw/C2hOt5vj088Mx5hfePvayW15STcI0tu/bR4DY22Jtb\naVnvdIO3to7w/tOCPb7DHWMY7nTjH08wCdd77bccg+t1uN+TGrseg+GxUn9ixvtxaMGNv+sCW02E\na+yUbn80OE2rfOC58Upe6ch82X/w2A572do2DnAByoOe+r7i52yWRWQRfnud3nzZjnFStPLIMHz2\n+4o6fFw5CZftsLLTh33vzadwmO2wvf7EzK3Xjk/yMbj3c0vLfmXx6/++/68eXxzh3pfvxeNP4Xz+\n8t/1h7d/YdfuOlzsGR1jqfyoPzHz/k7pCEeDs0vk9kjp579xpK8sXgbg9Z/c9degt9FHeG9fxxXX\nRXy9C8NLd/s61Er99nQWf3brfclr8X/zEUMcEy61p5GfGMgfwLM2vP3kknva00j3z37fiJNwxmjb\nfcFFfIzrUa/up9+ysa93e8Lj3/LwNw8Ow5HnzPtBbtzh2mNw2b3Qy/K4/zTytGg2yb7MKBFejNzY\nvTW+Ljz9dwPOXW2JFd1eVH37k8VTDG8eNcoxzO6Opk6nL60s/vjX7nCzDf7yE5mvYtn7ILbLb6xJ\nuCem1WOe3UjX23DPV/Hb9Ht2Ko5w98Qh5s/ex+BKQa6X+Zgb/OUbSb42FUfI78IkfMn6BZ4O9+Hh\njDfv4/rCVBzqbaiPcKjN8ZCdlzHUBl/wNsrzKd78xlEG4FUf4b6tHOTle8NDrZhlLf7M5o8Jx9yY\n8RUzY26UOZuPwWUvXA43+JbXqU/T9O2qmsufx1xsJuGTbl/Fne+Xbm/jDbbeVTXLKifhsO9MoznM\ntbXJpXmXqbj1b32GSfiGDV/a1763PtqltvwoizB/Vz6G+cwG3MIHu059ESbhbvy4UzpgZn+kw2+a\ncWQMwpVJ+LDru7e3DxYVRLjLMbjJdWp8piFubwGfbOsIdzkGYU0mIcTMpYc5McM6nB19mPZYh91R\niIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJ\nEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBi\nIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKE\nmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgI\nISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEm\nQoiJEGIihJgIISZCiIkQYiKEmAghJkKIiRBiIoSYCCEmQoiJEGIihNg/EAfV+vhD8fUAAAAASUVO\nRK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAdvElEQVR4nO3de1wV1doH8IeboBvZeCUIxbxViEl5Fy1fRfGWZoplHNTXCyV+vORreXk19Gi6S+tgWImKHkjD8HJOJqZpminHS5z8oGhYRwEVAa0NqCAq7PX+sXTOfhFxX2b2w9Hf9+Mf7Nl71gzqbz8za2atcRJCEADwcebeAYDHHUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjAzNXB27t161bJPcXFxcXFxSX3uXbt2oYNG/z9/Z2cnBy8ewCO5ySEUKWhsrKyvXv3VomTeczkD+Xl5Za0ptPpli9fPnnyZFX2DaA2UyeEubm5q1evNhgMD/2km5ubXq/X6/Xe3t7e3t766pw5c+a9997T6XQnT55s2bKl/bsHUJupE8I333xzzZo1AQEBvXr1UrJUJWby53r16lnS4KhRo7Zs2dKnT599+/bhoBQebSqE8MKFC23atKmsrDx9+vTTTz+tym79/vvv7dq1u3Llytq1aydOnKhKmwC1kwohjIqKWrt27ZgxYxITEy35fGlpabWnjh07duzbt6/yseTk5DfeeMPLyyszM7NZs2Z27iRArWVvCKstgzdv3jQYDFWSVlRUJH+oqKiotqkZM2b85S9/MV8yYsSI7du3Dxo0KDU11Z6dBLCE0WicN29eu3btLly48M477zRt2tQx27U3hNWWwfLy8rp16z5olbp165p3wyinji+++OLLL79s/smCgoJ27doZjcbExMQxY8bYs58ANdu+ffuUKVMKCgp0Ol1paalOp5s8ebJjomhXCGs4G1y0aJGXl5eStAYNGig/16lTx/JNJCUljR07Vq/Xnz59+sknn7R5VwEepKioaM6cOWvWrCGikJCQ2bNnf/HFF1u3bhVC6HS6CRMmzJkzx9fXV8M9EHaYNGkSEY0ZM8aeRh5q2LBhRDRkyBBNtwKPp5SUlCZNmhBRvXr1DAZDZWWlXJ6RkREeHi575nU63bRp0y5fvqzRPtgewtzc3Dp16ri4uGRlZam4Q/fLy8tr0KABEX355ZeabggeKwUFBSNGjJClqFevXr/++uv9n3FMFG0PoWPKoLRu3ToiatSoUUFBgQM2B4+8lJSUxo0bE5GXl1dsbKxSAKuldRRtDKHDyqBiwIABRDRs2DDHbA4c5/ZtEREhQkPFa6+J8nKtt5afnz98+HBZAMPCwnJzc5W3iouL9+zZ86AVtYuijSGUF9AdUwal3Nzc+vXrE9GWLVsctlFwhORksXChEEK8/77YsEHTTaWkpDRs2JCI9Hp9fHy8yWRS3vr222+bNWvm7u5+5syZGlrQIoq2hDAnJ8fBZVD6/PPPiahx48aFhYWO3C5oa84c8d13Qghx8KB4+22xc6eIjhZbt4rff1dxI5cvXx46dKgsgIMGDbp48aLyltFoVC6AdevWrdqTwyrUjaItIZRlcOzYsTZv1TYmk6lfv35ENHr0aAdvuvYrKirKycnJyMj48ccfv/nmm40bN3766adLly599913o6KiRo0aFRYW9s033+Tn53Pv6X3mzBHyIPDgQTFzphg/XhDd/dOypYiKEikporjY5uZNJlNiYqLs2/P29o6Pjzd/NzU11d/fn4jq1q1rMBgqKiosb1mtKFp9nTA3N7dt27bq3ilquZycnPbt29+4cWPbtm2vvvqqg7fO4tixY7m5ucqgsGpHYBYXF1vSlL+//5NPPpmWlubi4qL1blth82Y6fZoWL6Zly6hZM2rXjnbtov376R//IGXgm5sbde1KffpQ377UrRtZfKk5Jydn0qRJ+/btI6IhQ4asXr1audpsfnmwR48eCQkJzzzzjA27f/LkySVLlth1XdHa1HKVQcXKlSuJ6Iknnvjjjz+49sFhli1b1qNHD0v+Hb28vJo1axYUFBQSEjJo0KDRo0e/9dZbs2fPNhgMq1evTk5O3rp1q5+fHxEtX76c+9cyk5sr8vNFRIQYOFBERIhbt/79VlmZ2LdPzJsnunUTrq5KeUwPDe3fv7/BYPjpp59qKFwmkyk+Pl72IzRo0KBKAdyxY4f827ChAFYrPT395ZdfVqpiTk6O5etaF0Kus0FzlZWVL774orpfBMnJokuXuz9s2CCSk4X8jxoXp3VPQU2OHj1KRB4eHsOHD580adKsWbMWL14cFxeXlJT09ddf//DDDydOnDh//rzRaDTvYKjB3r17nZyc3N3dT58+rfXOW8RkEi+9JHx8xJEjD/lkSYnYsUNMny7at5/XqZPy1ePp6RkaGmowGNLT083/Es6fP9+nTx/5mfDw8CtXrihvFRYWhoeHy7d69ux59uxZFX+hjIyMoUOHNmrU6JVXXrF8LetCyF4GpXPnzul0OiL6+9//bmdTxcXi+nWRnCyCg8XRo7UrhAMHDiSiefPmqdjmuHHjiKh79+72f/erID5eEInGjcXVq5avVFhYuHnz5kmTJrVq1cr8WMDX1zciImLdunUffPCBp6cnEfn4+MijRIVyebDK/TEqMhqNRKTX6y1fxYpzQt6zwSo++uijWbNm+fn5ZWZmynNuIiorK7t/6EZ5eURhoa6khO7/U1RERBQTQ888Q/n5lJlJ/fpReTl5eNDChdSiBV24QO++S+PGMfyC6enpXbp00el058+fl/dVqaKkpCQoKOjSpUuxsbHTp09Xq1lbFBRQYCAVFdHmzfTaa7a1kZ+ff/jw4X379u3evfvChQtyYcOGDY1GY3h4+GeffSYjR0SFhYXR0dHbt28nov79+8sx6Kr8HlWYTCZXV1cnJ6c7d+44O1s2kZrlea0lZVCqqKjo2rUrEfn6+rZu3bpJkyZubm7V/oKBgTeUzrb7/9SvLxYsEMnJ4osvxIQJIja2tlRCeXOCumVQ2rlzJxHVq1fvt99+U71xK4wYIYjEwIFqtXf69Om4uLjmzZsT0YwZM8zfSklJadSoEVV3eVAL8kS02OIeXUtnW8vNzU1KSnJxcZk7d66Fq6jLZDKZf6+4uLiMHDny1KlT+fn5ykIPDw/zQVJy6Ebz5jecnHR6PVX506AB6fUkm9y8mYho0iSKjqapUx39q90vPT19z549np6eM2bMUL3xwYMHR0REbNq0aeLEiQcOHOCZPSQ1lbZto/r1KT5erSYDAwMDAwN/++23Tz75pEWLFsrygoKCiRMnXrt2bfDgwfHx8VqMxZkyZcqlS5cSExO9vb2JyNvb+/r16yUlJXq93pLVLQ3hkiVLbt++PXbsWK4D0aVLlx44cGDFihXPP/88EVVWVq5fv76srGz+/PmRkZFyXKK7u7s9m+jalVxcSAiybEY4DS1YsEAIMX36dBUPRM2tXLly3759Bw8e/Pzzz6Ojo7XYRE2uXaO33iIiWrqU1J4zQf6/N79m88QTT8TFxRGRdkNSv/322+zsbKPRKEOo1+svXrxYXFwsy/LDWVIur1y5UqdOHVdXV0tuJtBCSUmJvNvowIEDcsmmTZuIKCAg4JZ5p7bdLl0SYWFi8GAVm7TakSNHiMjT09O8T091X3/9NRHpdLpz585pt5XqvfWWIBJduwoNOodWrFhBRG+//bbqLdcgODiYiP75z3/KlyEhIUT0448/Wri6RSeOOp2ud+/eHh4eMujSuXPnhg0bdvnyZeu+NGyycuVKo9EYEhLSu3dvIqqsrFyyZAkRLViwwKohwg/l7Ew//USpqZSUpGKr1lm0aBERaVcGpaFDh4aHh5eWlk6aNEmoNPesRY4epTVrqE4dSkggDe4ZkJWwpKRE9ZYt36jV+2BJUk0mU1hYGBGNGjVKWThy5EgiGjp0qJXfGlZzWBmUEhMFkdDrxaVLqrf9cMeP/+rs7Fy/fv3fVb1zslpXr16VczesXbtW621J5eXl/wwPF87OYsECjTaxZcsWIhoxYoRG7VdL3pX6t7/9Tb584403iGjjxo0Wrm5p72hOTo7s81EuvChjbTdt2mTtTlvlz3/+MxGFhITIlxUVFfL2ooSEBI22OGyYIBIsQ/kHDBCtW5/68MPNjtlccnIyEXl5eV24cMEBm3vvvfeIaPHgwdoNWfruu++IqG/fvhq1Xy15trnhXk+6nDl+1apVFq5uxSWKTz/9lIiaNGminKskJCSQxmNt7y+DGzdu1K4MSnl5okEDQSQcPJT/yBFBJDw9rbp2bS95C25oaKjWHfe//PKLu7u7s7PzoUOHtNvKsWPHiKhTp07abeJ+U6dOJaLY2Fj5cs6cOUT0/vvvW7i6FSE0mUyhoaFEFBERoSyUl7O0Oyh1fBmU1q0TRKJRI+HIofxhYYJIzJ/vuC0KIfLz8+XX3F//+lfttlJZWSm7KyZPnqzdVoQQWVlZRNSmTRtNt1LF/PnziWjRokXy5bJly4jo3XfftXB1625bO3/+vLwhaPv27XLJpUuXZG9NSkqKVU1ZgqUMKgYMEETCYUP5WcqglJSURPc61jXaxCeffEJEvr6+RUVFGm1CKigoIKKmTZtqupUqli9fTkQzZ86ULz/77DMievPNNy1c3epRFLGxsfJv02g0yiWrV68mbcbacpVBKTdX1K8viIRjhvKzlEHFK6+8QppNaZeXlyc7DJWuC+3cvHmTiOrUqaP1hsytXbuWiCZMmCBffvnll0T02muvWbi61SGsrKzs1asXEY0bN04uMZlM/fv3J6LXX3/d2tZqwFsGpc8/F0QiJOSnqxqXJ8YyKGnazSYnrRw5cqTqLVdL3rNx8+ZNx2xOCJGSkmLeJSsnjB8wYICFq9sysv7s2bNygu1du3bJJdnZ2bLvdNu2bTY0WC3eMiiZTGLixPWurq5aj+XnLYOSRt1ssgNWr9dfctQ1H3ndxZFzCOzZs0d2bsmXhw8fJqLu3btbuLqNEz3Jg2A/Pz/lEF/eGaTWWNvaUAal7OxseRqs4vdLFexlUKFWN1t5eXlhYeGvv/76/fffy1sO1qxZo7ybkZFx5KEDCO3Qpk0bInLkkFfZJdu5c2f5MjMzk4gCAwMtXN3GECqdXfJ+C7nkpZdeIqLIyEjb2jRXG8qgQnYqaDeWvzaUQelB3WxlZWV5eXmZmZmHDh3asWNHSkpKYmJibGxsTEzMtGnTIiMjhwwZEhISEhgY6Ovrq4wsk5o2bfrUU08p1z9OnDjh6enp4+NjPtegujp16kREx44d06j9+1Xpkr148aIsURaubvvkv7/88ouHh4eTk9Pu3bvlEqXv1M7z7/vL4BdffEFErVq1un37tj0t20YZy6/FFI8mk1i8WAQEiFoyWYec0q5+/fqBgYH+/v7yLMNabm5ujRs3btWqVVBQkIuLi5OT01dffSXbr6ioGDRoEBEFBwffuHFDi19BXkj7Ts7g5hByKI/SJXvt2jUi0ul0Fq5u17Moli5dKg8Rr127Jpd8/PHHVfpObfCgMrh+/Xp79tYeKo7lr1ZtGOYuXb9+XafT+fj4mIfKw8PD19c3MDAwJCQkNDR0yJAhkZGR06ZNi4mJiY2NTUxM3LFjx6FDhzIzM8+dO5eXl2d+3V8+7q5u3brHjx+XS4xGozxifPXVV7W4Q0BObq/FNbMHKSsrIyJ3d3f50mQyyam07ty5Y8nqdoXwzp07nTt3JqLo6Gi5pLKysmfPnkQ0fvx429qsrKyUo6XuL4MW/koakbfn+/n52fP9Yq7KxDa1hMFgIKLnn3/+5MmTcpY3+9uUT0zw8/PLy8uTS7KysuRxr3KBW0Xjx48nB94QK1XpkpXH5BbeAGxXCIUQZ86ccXd3d3Jy2rt3r1yiHKampaXZ1ub169eTkpLkz7WhDErK98vEiRMt+bzJJIxGcf68OHFC/PCD+PprkZQk4uLEkiXinXdEamrViW1qgxs3bsiuxRpmg7fB7du3ZX9B9+7dy+/dNbp79+4qR6pqefvtt4loxYoV6jZbsxYtWvj6+iqpk6OKLRwmZumg3gd59tln582bFxMTExUVdfLkSU9Pz2eeeebDDz90cXHp3r27bW16enpGRkbKn5OTk7Oyslq1aqUs4bJp06aePXump6cnJCQEBAS0atWqyhOIzTVseDYj44GPSSUiFxfq0IHGjKE1a6hfP4f9Eg+xatWqK1eudO/eXV74VYubm9vWrVu7dOly5MiRqKgo+TzZsLAwg8Ewf/7iNWuCn36aOnRQbXMso5mys7PNX8o6b+k+2P8dcOfOnY4dOxLR9OnT7W/NXO0pg+Xl5XKe5sjISNlpVLP27UuIhLe3CAgQzz0nevUSQ4aIiAgRHS3mzhUGg0hLqzqxDTuNyqDixIkT8rz6448/VhbOmHGVSAQECBUHMMubuqZOnapai9aTlX///v2WfNjeSkhErq6uCQkJnTt3jouLGzFihLyfRhW1pwyuW7fu0qVLQUFB69aty8vLi46OLioqateuXZMmTfTVq2c2/rl6cnKw2jOxjUZlUBEcHJyUlDRy5Mh33nmnbdu2gwcPJqJlyxofPUpHj9Lw4fT992Tf/CR3VVsJMzIyDh8+PHHiRDvnQLGQEOL+fajp06qQN5K3bdu2rKzMzqaMRmN2dvbPP/8sJ5asPWVQuV6/a9cuInruuefsaVZWQiFE587if/9XaNPtaimty6BCDikMDV2jTLqbny/8/QWRuHcfpL3kvIZVnqInx936+PgYDAZN72grLS2dPXu2k5PT6NGjLbwWqloIb926FRQURESzZs0yXy6v8547d0651FvlOm94eLj5pV5X138X5+bNm7du3Zq3U1QIsWrVKiIKCgpS5oqVsy2qdep//LhwdhYNGwrNnsf8cLJT1PI7rWxmMpmmT/+Hk5N4+mmhDKj4+WdRr54gEnFxKmxi//79RNS7d2/zhdu3b+9w77zT399/1apV5RoMLP7++++feuopInJzc1u2bJmFa6kWQiHE8ePHXVxcnJ2dg4KCWrZs2bBhQ9sePKLX65s3b96+fft58+YpVyC53F8G5e25jRs3vn79ulpbYRzLLxxYBqWyMtGxoyAS/foJ5Qv2yy+Fk5NwdRUHD9rV+JkzZ/70pz8RUcOGDVNTU83fMplMO3bskP0XqldFWQDlrJzPPfdcenq65euqGUIhRJs2bao8j8bDw6NBgwbKpd4q13nj4+PNL/Xm5eWx3BNTA63LoMQ1ll+Sg1AdUAYVOTmiaVNBJO4NwRNCiLlzxYABNj4ErbS0dMOGDfJWSlmI5A9dunRxQBR3794tZzd0c3ObPXu2tbc3qxnCtLQ0Iqpfv/7+/fv/9a9/Xb16tbYlylqOKYPS2rUMY/mFWRl05H1eQojDh4W7uyASykX1ykphw7MhMjMzZ8+erXRZe3l5RUVF7d+/Pz4+Xj53iYg6dOiQkpJifneOWlEsLi6OioqSEygHBwf//PPPVv8C6oawb9++RBQTE6Nim7wcUwYlk+nundwOG8svOb4MKjZsEETCzc2WQ9CSkpL4+PgXXnhBOebq2LFjfHy8+ZdjeXm5VVH09/ePjY21PIq7du1q1qyZPNyz5/lqqoVQlkG9Xq/WXV38ystHd+nimDIo5eQ4dCy/4CuDiqlTBZHw8RGWz/b2449izBjRtm2QTE7jxo1nzpxZw4PmZRSVsyRVolhUVBQVFSU/371795ofc/9QqoXw0SuDYtUq4eqa+frryj+YdmVQ8dlndx8WpvZUIdVjLINSRYUYOFAQieBgUfOYCqNRxMeL9u3vPsnnv/5rWb9+/b766isLT8AsieK2bduUHtSlS5c+qKmdO3fKB1qo9YBRdUIohxI/YmXw7tWre1Na7f32W3nyUFpaqt1mTSbRr58gEm+8od1G7mIvg9Iff4jWrR94faKyUuzdKyIjRd26d+Pn6ytmzxa2Td5fWloaGxv70Cj26tWr2v/JRqNRKYAhISFqjRtWJ4TyqagLFy5UpbVaIS5OEImgIKWvwNSjx289eyarciWrRtnZokWLgm7dRipT2mmEvQwqzpwRH3wgqoxqyssTBoNo2fJu9pydRWioSEkR9l82fmgUq5WSkiJnCVD9AaMqhPBxKIMiNfXuYaI2Z4NVfPLJKrJ7WGbNakkZNGc+tut//ke4uNyNX8uW4v33xb1RUKqxPIqFhYXyoQ9E1KtXL9Ufi6RCCB+HMii6dhVEwlGjY5Sx/No9krX2lEGF+diu+Hjh4yPCw8WOHdqOeK4SxeDg4CpRVJ6w7eXlFRsbq8UTtu0N4WNUBn18hJZng1VoOpb/xo0b8shKGQVaGyQni48/FuPH3x1gqdnjKqpRbRQvX748fPhwuSQsLEy7SXHsDeFjUQa7dBFE4qOPHLwjqo/lV8h5SXr06KFus3ZiH9t148aN5cuXy6N0ee5HRN7e3gkJCZo+qMOuED4WZXDnTseXQcnasfwWqp1lUNwL4dGj4oUXOAdYKlVxwoQJAwcOdMDzquwKIcqg1rKysqpMaWezsrKy/Pz8rKysKVOm1MIyKP7/2C72Uc43b97U4vSvWk7C1qe0pqWl9ezZU6/XZ2dnV5lq8j/YiRP03ns0fjzJk4HUVBoyhHx86Px5qlePZY8MBsPcuXMDAgJOnTplPgHhzZs3i/6/8vLy+xeavytXdHJy0uv1W7ZskVMDAj+b4/sIlsH7sZZB6c6dO3I2W39//2effdbPz0922FjL3d29adOmbdq06dSpk3bPkwQb2FgJH80yWMW1axQRQenpdO4cVxmUTp06lZCQsHLlSvOFcoyYom7dulWWVHn3kf1n+s9nYwj79Olz4MCBhQsXxsTEqL5PbO7cof/+byospEaNKDHx7oQnRiNZMLOT1ioqKo4fP67MYGPbxNhQO9kSwke2DG7eTGfPUkwMLV1Kfn40bhz3DsFjwdmGdRYsWEBEM2fOfKQSSEQZGdSjBxFRz5508iT33sDjwuoQpqWlHThwQK/XT5s2TYsdYqYcFzg5se4HPEasDqFSBr0fOrHmf5wOHejQISKitDR6/nnuvYHHhXXnhMrZYE5OziMYwtu3afz4uz0x69dTnTrcOwSPBetm4C4uLg4ICBg/fvwjmEAiqlOHNm7k3gl47FjdO3r79u2Kiop6rNfNAB4ltt+2BgCqsOUSBQCoCCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRghhACMEMIAZghhADMEEIAZgghADOEEIAZQgjADCEEYIYQAjBDCAGYIYQAzBBCAGYIIQAzhBCAGUIIwAwhBGCGEAIwQwgBmCGEAMwQQgBmCCEAM4QQgBlCCMAMIQRg9n8OhMFC1fsNhQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] @@ -338,7 +359,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAID0lEQVR4nO3dbXaiygKGUbjrzChn\n/iNox8T9YZqDoqhQxVvI3qt/ZKUNQeWx+E4/DEMH5PwvPQNwdiKEMBFCmAghTIQQJkIIEyGEiRDC\nRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAgh\nTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwv5Jz8AB9f3vF8MQnQ++hAhfuUuu\n7/9rb/o1rCXCG2NxXdcNXd91hjuqO2+ED4e02+Lkxx7OG2F3nNXJfjJAD4eYYz5x6giH4fMOrz8z\nfl1f3/fT8KZB/p0LWR7bqSNcabrQVx5M7wrsHiUny6M7e4TTge2gFrJU4yE4WL9tJKsZ8XwYfNMw\nDOXz6/vff5R23gh337j7zOoCR8MwzNdUV89NNwy//3RY2nkjLKbCcrm9QA5EhF3XbY2obIIFCyw5\nGFKNCAuwrLPFefeOtnmkvsKKaImpNb4BfXBGwgKu5WwfDGtsChbYYu0n59CWm73+r1ITPK7zjoSl\nlCrnVDtjpk/WyQZnjrDfvqo2XZjmg+HZFqZ1nAN05ginCgc5fufZg+ePrLecrTlFtqaXT3Y5y+8L\n0jbhen3fTdep5gvH8Fx/q+UF6/Ln/ost7lZE39wyHF+3AnPQnpOOhHeLwop39/ZyxI+nsHxhRHGr\nl97Lpf/5KbkzZvrEX74IDz/XGv/MWqHdCJt9rfvbC+6n4+E6X7lgferh0//utdBRi+/99aUf93PU\nmMPVU77buCq1rXWGCO1GfqatkfCujesXZVOcTm3FlHe8lvCrFD8Xr26HC3f3qqCVCBd6GIPZ+LrP\nf8WWyMu+L9+9Rnqwp7b7DfXyET5rYL4Rv2EdcukHJym+O+3DjYEPlysnon3gbk9AUckIX7axfe30\n/Qf/nfj165cPfueXt2X+wTHNsuu6P3/+2wtSb49oEYEVh+9bHX2zjYfVvbl2um7YnA4RO5dWe8Fa\nOGQ/vrQPf/By+Y1zRZkHWxEN2TvCVftCHqe4sB776a+Y/cbrdA454pU1P044Ntm9yrLyZ0q1z6zd\nLxnZ74OqyE7OZ6eG1diPGlFpwbrbDnz/NywPg+P//vvv73fujr9XfS/KTz/0ubtrhKUOE3WPzr2c\nf7OInXeVFV+wrvO8/Vm8eerMw8Pr1T5Zik42t+aTOXd0y4la03Mv776/eb4eO+4lbw9v7191Sdvz\nJM+h+J2sQvKHKNYpdfDwvd+133tUcFOnyDyv3iszfSKtHwVNb/0f+yqKdt/X47vm9/MzFDxc0aJ0\ngd3RI9zNcLTbbTawaN2sLpZcdey6bnaC8fqJxF+m466O7m+3DrevvLWxaFV09/oc/WKLzN7RCvsA\nG97k+Nx0AFnxs2VeikL7hcf5qXEVxca7Gcy/GWEkbNF0IXv2X4dTfPfMs7sZLDx+Pj+lZmYLETbt\n2flAzx5TZY2gpbXbLU9wPn42sts2EGELT/u4lrNs8IUtetCl4hZNkJHw8Goti+Nky01/S5AFC2xk\nABw5REF127e+6o2BLWwZipBdrVjoaxTYQnsjEbKHphb6O/G1UhGyt4+GsooropMZyp4PJUKeKP1H\n6htZEZ3OUCPnIh47wmbXcA6vr/VH6ufXoC3Y74BENMjAIYp6l/bSuK88E2i7/SJcuCvMR+T3BT46\nE6jiMDi9VPQkF/VuPJF3+cYW4jy0hSy//j3NnDfwaTDv31dGisW4N/BeMjtmxvvEvHzkdTv+7rYl\nD795M+WLHTabjTtmqCx8Bt3CwLVxoOsv/fDd92XgWzRxGuvDSzMfbiR8dpz30nddJ0Ua10SE3ash\nbsuWniGRt+S2gVuJ8Gr5BttQy+5/Dm2qresJp0ca5MdJNHfa2rjj9OHOz7LsRKUFbY2Eo0r5jdXZ\nSqQdjUZYw3QPjb013Bj2/nNoUyeKcEqB3MvtfWhumxDO5qQR2iVDO060Ojr8DHbM0KC2DtbDCZ10\ndRTaIUIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQ\nwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgI\nIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJ\nEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGEiRDCRAhhIoQwEUKY\nCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhIkQwkQIYSKEMBFCmAghTIQQJkIIEyGE\niRDCRAhhIoQwEUKYCCFMhBAmQggTIYSJEMJECGEihDARQpgIIUyEECZCCBMhhP0fV0ViK0//RNAA\nAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVzUdf4H8PfMAKLigZAHKR4gGp5loWZraSiG9wHlrqhpC2v1QzMV3XZlO1RqM821AtM1tbVE12wzjzTz2lJ3UBBB7lsZUEBAQI6Z9++PD06jog4z3/Fj+no++iPG4T0flNfM5/v5fg4VMxMAyKOW3QCAhx1CCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUIIIBlCCCAZQgggGUJ4i9paysqiqVMpKIh+/FF2a+DBp2Jm2W2QqrSU0tIoIYFiYigxkc6epSVLSKejadOoZ0968UX6979lNxEecHayG3BP1dRQYiKdO0epibVvx02g+HjKzb35SenpVFZGHTuSnR095O9QcE88mCFcvZp0OoqIoBkzaPJkOneOzp6lc+coOZnq6sRT7Jd2OKvJzyMHB/L0pAEDqFcv8vamXr2oWzf6y18oJ4ecnMjeXu4PAg+DBzOERJSeTpWVlJVF48f/+qBGQz16UN++1Ls3lT7+dZvH2lG3bqS+5cI4JITCwqiyksrK6ORJGjjwXrYcHjYP5jXh6tXUsSOVlND+/VReXp+6Pn3I25scHc2u8pe/0LJlNHQoHTliw7behsFgiI2NzcrK8vT09PT0bNas2b1vA9wbD2wIx4yhlStJpaJPP7W0SmkpeXhQURHt308jRyrZvruprq729fVVq9VHjx4Vjzg7O3e7ztvbu1evXp6enq1atbqXrQIbeWC7o0Q0bJh1Q5utWlFYGC1aRIsWka9vA71WmwkNDT1+/Lirq6u/v39WVlZ6enpJSUlMTExMTIzp09q1a+d5i9atW9+zdoIiHsxPwhdeoMpK2rSJunSxrtC1a+TlRbm5tG0bBQYq0ra72rJly/Tp0x0dHY8fPz5gwAAiMhgMeXl5abeoqqq69dtdXV1FGmfNmjVs2LB702awxoMZwtatqbSUioqoTRura61bRyEh1L07JSaSnc07DrGxsU8//XRVVdWGDRtmzZp15yeXlJRkZGRkZGQkJCQkJiZmZGSkpqaWlZWJP/Xz85s4cWJISIjyrczKoiVLyM6OZs6k559Xvv7Dhh84Oh0TsbOzQuXq6vixx5iI161TqOJtFRUVde3alYjmzJljcZH8/Pxjx47NmzePiDw8PAwGg4ItrBcWxvHxXFvLkyYpX/zh8wCG8PhxJuKBA5mZDQb+v//jlStZr7ei4rZtTMQdO+orKxVqYwP0ev0LL7xARD4+PteuXbO+WufOnYnoxx9/VKR5N5g+nUtKmJknTlS++MPnAZw7mpZGROTpSUSk09E//kEREdaNqgQElIwfv7ht25Vr1yrSwgYtXbp07969Li4u27Zta9KkiZXV1Gr17NmziSgqKkqJ1t2oUyfKyaG6OkxmUIbsdwHl/fWvTMTh4czMR48yEQ8ebG3N/fv3E5Gzs3NxcbHVDWzAd999p1arNRrN/v37lap58eJFe3t7e3v7ixcvKlWTdTqOieHERJ46lYOC+MgRxSo/xB7AT8LUVCIiDw+iGz8VrTFy5Mjhw4eXlJSsXLnS2lq3SEtLCwoKMhgMy5cvH6ncDckOHTqMHj26trZ206ZNStWk7dtpwAD6+GPaupXefZc2bKBPPlGs+MPqAQyhCF737kRE6elE1wNppYiICJVKtXr1ap1Op0C566qqqgIDA69cuTJ+/PiFCxcqWJmIxNDounXrDAaDMhXFX6h4V0tIoM2b6dtvlan8EHsAQ2j6eyI+Fa3/JCSip556asKECRUVFe+9954C5a6bM2fOmTNnvLy8Nm3apFKpFKxMRH5+fp6enpmZmQcPHlSmomnXwvTdDqzwoIWwqKioadPBzzyz1NWViEilyvHyuta9u16R4itWrLCzs1u3bl26CLrVPv74402bNjk5Oe3cudMWc9BUKtWsWbPc3Drt2VOmTEXTdzUFuxk3Ki0t3bhx44cffrhr165z585du3ZN8Ze4v8i+KFXYL7/8QkRPPvmk+FL8ZhcVFVlTMyEhoaamRvz/yy+/TER/+MMfrG0o888//+zg4KBSqbZt22Z9tdvR6SodHevs7PjCBatr6fXcpAmrVCxu1bzwAhPxt99aXfcGZ8+ebdWqVadOnUx/S52dnQcMGBAQEBAeHh4dHa3VasvKypR9XYketBBu2bKFiF566SVmLigoEP9+1hSMiYlp3br12LFjxb277OxsBwcHtVodEBCwbNmybdu2xcTElJaWNrasTqd79NFHiWjBggXWNM8cU6YwEb/7rtWFMjKYiDt1qv+ye3cm4sREq+v+qqysrGfPnkQ0ePDgefPmjR49ukePHg4ODg1+fnTo0GHo0KGzZs1avnx5dHT06dOnf6PJfNAmcKelpRGRp6en8f+7W3HREh8f7+fnd+XKFXt7e41GQ0QZGRlE1K5du+3bt2/fvt34TNNVDkLv3r3bt2/fYNm6urrAwMALFy4MGTJk+fLlFjfPTCEhtGMHrVtHS5aQRmNFIdMLQr2esrNJraauXRVpJBEx88yZM5OSkvr163fw4EHj6i29Xp+Tk5Oenm6cNJuampqRkZGfn5+fn29caCK0bdu2e/fua9eu7d+/v1INs7UHLYTias3Dw4NuDKQFUlNT/fz8Ll++PGrUqK1bt9rZ2Z04cWLcuHE1NTU+Pj7+/v6mvxYNrnJwcXERc6m7d+9uXOXg4uKycOHCo0ePtm/ffvv27fa2v9/9/PPk5UUpKbR/P/n7W17nikdO5edPtXR92onIUJCtcndTsboxCzTvYtmyZTt37nR2dt65c6fp+kmNRtO1a9euXbv6+vqaPl9MnTXOm83IyEhJSSksLCwsLAwKCgoPD58yZYpSbbMt2R/FChs4cCARHTt2jJmXLl1KREuXLrWgTlpamugujhgxoqqqipnPnDnj7OxMRNOnT9ffMgsuLy/v8OHD69evX7x48ZQpU/r379+iRYsG/8JbtmypUqkcHBx+/vln639eM33wARPxuHFWFcnNna/VUn7++8xcWrpPq6XkpOeVaR/zwYMHNRqNWq3+/vvvjQ+mpKQYrwbDwsI2bdqk1WqvXLlyhzp5eXlz584lIl9fX6XaZmsPWghdXFyIKD8/n5lnzpxJRJs2bWpskawsHjs22c7OcdiwYZWVlcwcFxcnKk+ePLm2ttbMOsXFxVqtNjo6OiIiIjg4eMiQIWKxX5s2bYYNG9bYVlnj0iVu0oQ1Gs7OtrxIWto4rZZKSv7NzIWFa7Vays4OUaR52dnZrq6uRPT222+bPr5nz54G38hMkxkVFXXs2LESMZeVmZmvXLnSvHlzlUqVkpKiSPNszYYhrK6ujoqKGjhwYGBgYERERF1dne1eSygpKSEiJycn49IBnU7X2FGTvDz28GAiDgpKKy8vZ+akpCRxdTdhwgTjMKnFjh8/rlKpWrVqdfXqVStLNcpLL/06m88y5855a7VUWRnHzDk587Ra0uk+sL5hVVVVTz75JBGNHj36pi6GXq/Pzs7+8ccfo6KiFi5cOHHixD59+jRt2rTBZJp2ecQqsEWLFlnfvHvAJiGsq6vbuHGju7u76d/RE088odVqbfFygsFgWLFiBRG1a9cuLy/PsiIFBeztzUT8+OMsZommpqa6ubkR0ciRI61f3CAMGTKEiDZs2KBINTMdPsxE3L+/xQX0p0831WpVev1VZk5NHaPVUknJN9Y3TEw079Kly+XLl838FmMXIzw8PCAgYMCAAS1btvz888+NTzh58iQRubq6KvVPZq7MTH7pJZ42jQ8eNP+blA/hgQMH+vXrJ4LXq1ev6Ojo77//vkuXLkSkVquDg4MtGNC/q2PHjj3zzDNEJG4MOjg4BAUFpaamNqpISQk//jgTcd++LH4fMjLYz+9C06Ztnn/+eXFlqIjNmzcTkY+Pj1IFzWEw8L//zRb/TlZXZ2u1FBfnJr48d66nVkuVlfFWtkos8nB0dIyJibGy1E2dlCeeeIKIvvrqKyvLNo5FKy2VDOHx48d/97vfifh17tw5KirK2AWtrKwMDw8XN3zc3NwsuE67nVOnTj1/fXG3m5vb0qVLAwMD1Wo1Ednb28+ePTstLc2cOrW1PGAAE3GvXlxYyMycm8tduzIR/+EPF5XtOlZVVbVp04aIrP/Na5RVqzgsjJk5pPGXcmVlP2q1lJQ0lJmZ9TExTbRalV5fYU17Tp8+LfqWGzdutKZOgz777DMieu655xSv3ADjpZZFKy2VCWF8fHxAQIBIgqura0RERIPdgLi4uEGDBomnjRkzJtuaUQLm8+fPBwQEiPmWzs7OERERFRX1vxPp6enBwcF2dnbi4zcgICDRjHvK69dzjx71M0sKCurX0w8cyLa4A/zGG28QUYgFabDCqlU8ZQpXVHBICG/bxqtX8+7dnJTE1dV3/96ysp/Onx+cm/sGM1dXZ2q1dPZsR2saY9xG4LXXXrOmzu2Ul5e3bNmSiBISEmxR/1dVVTxwIEdEMDO/9RbHxXFtLQcGml/A2hBmZmYGBweLTx4nJ6ewsLBbe5uZmZkfffSRGFQ0GAxRUVHib6dZs2aWDdjk5uYaM9asWbOwsLAGl/mlpaXNmjVL3IhTq9Xz50fF3633JN46Cgu5V6/6KyjrZrzdVlJSkkqlcnJyskXn/HZWreLt23ndOg4J4ZEjmaj+P42Gu3blESN4zhyOjLxWUrKrqirBYLhtz7WurrS4eNvly5stboler/fz8yOiQYMGVZvzHmCR4OBgIpo/f76N6tebOZOJ2NOTy8s5J8eClZaWhzAvLy80NFT0MB0cHIKDgwsKChp85tixY4moX79+J06cEI9cvHgxKChIfCT279//5MmTZr5oUVFRWFiY6MPY29sHBwdfuNucyOzs7NDQUCcnpy5dUlQqHjOGT5260/NLSur7pX36sNkjBZZ49tlniSgyMtKGr3GjVas4NZX/9CeeM4e/+IJfe439/NjDg+3sfg2kj0+5VktaLWm16rNn3ZOTh2dlBet0H5SU7CwrO5iVNSs7+9XLlzda2ZLFixcTUdu2bXNzc5X4yRoWGxtLRC4uLgpez9/ss8+YiJs25dOnmZlzc7nx90UsCaFpEuzs7IKCgjIzM+/w/EOHDnl5ed06MLN7926xD4p4/M4T/65evRoRESHus6lUqoCAgEbdBbpw4UpoKDdtykQsonj9DeEGpaX81FNMxF5erOB69AZt3bpVvDfZ9mWYmbmykidM4AULODWVt227ua9UU8MpKbxnD69Zw+vXZ6Sm+p875xUTY389jfX/ZWX9sbR0LzNXVSVeurQhPz+iuHhHZWWsXl/eqMZ8++23KpXKzs7up59+Uu5HbJi4+bFlyxabVD95kps0YSL+4gtm5mvX2MeHW7XiY8caVaZxIayoqLgpCcnJyeZ8o+nATIcOHYwDMxUVFeHh4aLH6Obmtn379lu/t6amJioqyjgP09fX1+LxjMJCDg/nVq3q3/WHDLl5JHnUqPqehQJrDu6murq6bdu2RHTqzh/NSpgxo/6z3fwNrwyG2mvX0ktL9xcWfpKb+0Zq6piqqoSLF9/JzHz5ypX/nD8/2DSfcXHtk5J+l5n5cn7+Mp1u+x3mtaSkpIgR7A8//FCxH+/2Pv/8cyJ65plnlC99+TJ36cJEHBpa/0hwMBOxuztfutSoSuaGUK/Xf/LJJ8YkjBw50oIkxMXFDR482Dgwk5WVJR6PjY0deP3QFdMBG71eHx0d7XF9xdqgQYMOHTrU2Be91aVL/Oc/c8uW9VEcNoz//vf6YcNJk7h/f87IsP5FzCKW0s+ePdumr/LJJzf0mCxWVnaY2cBsSEubePny5tzcN9PSxick9Dp92tE0kCdP9m9wXsuBAwfS0tJ69+4tpj3YZC/GW1RUVIjPjPi7jgc0Sl1d/VX1oEH141pbtjAROzry//7X2GLmhjAhIUHsBu3j42PNLnoGg2HTpk1igN50YEav1xsHbJo3bx4REbF//37jRHhvb+/o6Ghl/9nKyjgigtu04dGjbxg2vCe/G/XS0tLUanWzZs1MZ10p68SJ+h6TNXeFamoulpUdLir6MitrVk7O3IKC1Tf+uaG6Oqes7NClS+vy8sKOHAnt169f8+bNqSEqlcrLy+terjl69dVXiSjU+HmlBENYGBNx+/b1XabYWG7WjInYogkY5oZw2rRpRDR37lxFkpCfn9/gwExeXt7EiRNN/826du26efPmWydMK6W0lLOzbxg2vMfETc61a9faonhBAXfsyEQ8d65VdS5dWq/VUmbmDGauqclPS5uYn7/srt914cKFI0eObNiwYcmSJQEBAY8//niTJk3UavU9WEJpKi4ujohat25tvINlpV27dj3bv39+hw58+DAzc3Exd+vGRBb/9pgbwsmTJxNRg9dsFrtpJo3x3XHXrl0ODg6Ojo5r1qyx3fi1KdNhw3ssOjqaiPr06aN45bo6HjGifsdHK/8W8/IWa7V08eK7zFxWdkirpaSk31lQZ/fu3UTk4eEh3lVPnTo1adKkezA+LO5OfyGGT6yTlJQk+muffvwxM7NeX7/DgI+PxdORzA2hv78/Ee3evduyl7mdq1evvvnmm+KO3+bN9fedxDknjo6Oyr7WHYgQ3jpseA/U1taKuamKr2xauJCJuF07tnQi7a/S06dotVRU9BUzX7q0TqulzMyXLahj3Bf84MGDbMs3oJts3LiRiAZbvf9seXl5r169iOjFF18Uj/xv5Uom4kcesWZ9irkhFOf7iHGR5cuXt2/ffs2aNRa/6k3OnDnz+uuvGzu6xcXFZPW2FL8hS5YsIaIZM2YoWHPHjh3PPfeeg4Ph6FEFqiUm9tdqqaLif8ycl7dIqyVzuqMNeuedd4goICCAbfkGdJPKykqxFvS0FWNTBoMhMDCQiHr06CFus4ktm2cPHcoHDljTPHNDKD7Qf/nlF2ZesGABEX3wgQLLWBqUl5cn7ljYqP79Jjs7W6PRNG3a1MoNqYzOnz8vlhRHRSmwyoGZz5xpodVSXV0xM6elTdJqqbjYws2p8vPzTfcFt8UbUINCQ0OJ6NVXX7W4wt///nciatGihZgCmZmZKZaYRogJa1YwN4R9+/YlotjYWGZ+7bXXbDeWwMypqaniysFG9e9DYg7X6tWr7/7UuykvL/f29qbru11Zr6bmolZLsbGu4suEhL5aLVVUWD71XIy9rVixgm3wBmR04sSJ9evXG788ffo0ETk5OXXr1s3X1zc4ODgiIkJs3FZpxjk/x48ft7e3V6lUO3bsYObKykqxSmPcuHHWD1WaG0KxXZK4NS9WTNpuOdzZs2eJqHfv3jaqfx/auXMnEXXv3t3K9W/GLlPPnj2Vug1QXn5Uq6Xz58UFleH06eZaLdXV3WmPiTvbt2+fGPcWwzOjRo1S6g3IqLCwUGyaaFzKJDYjt2vohEk7OztPT89Ro0a9/vrrq1ev3r17d1JSkumIYH5+focOHYhoyZIl4hGxaUP37t3vvNeGmczd6EkMloipaqb/bwu2rn8fGjt2bMeOHcvKyhwdHZ2dncWp9MaN23r27Hm72243WblyZXR0dIsWLXbu3Hm7TW4aq/n3Wf3X9K2d+gz1JH25rnW6+7WONRqN5VsVjxw50tPTMy0t7cCBA35+fiEhIfv27YuMjAwNDVVkD3K9Xj9t2rTc3NzBgwdPmjSJiL788suoqChHR8dDhw61bNnypgOPc3Nzxf+YFtFoNO7u7mJvro4dO3bu3Nnd3f1vf/sbEa1du/aLL75o3rz5N998o8yWzWaGVXR/L126xMzjx48nom++UeZ641aHDx8moqFDh9qo/v1JHEfR4Fu1Wq12d3cfPnx4cHDwBx98sHPnzrNnz97aifrpp5/s7OyMXSbFvPUWE/Hf/sZ8fX3+kCFWlhQbPU6cOJGZa2trxZ5aRxUZRGJetGgRmWywEBsbK/Zuu13fraamJj09/cCBA1FRUWFhYQEBAd7e3g3+Q3z99ddHjhwRsy+Ng/nWMzeE4scQa1vFyUH79u1TqhE32bt3LxGNGjXKRvXvZzU1NampqXv37v3HP/4RGhrq7+/v5eV1u91vH3300WeffXb27NkrVqz4/PPP27VrR0R//vOfFW5TYCAT8ZdfMjOvX89EbPU4ik6nc3BwsLOzEzn561//Sgrta75r1y4xO/zw4cPMXFxc3K1bN2r80s2ampqUlJQ9e/asWbMmNDT0hRdeEB96opc7b94865tqZG4IxYpB0YkXy+eP2OxsOnGBNBGnwJq4cOGC6Vv1gAEDbu2guri4+Pr6Kr+h1hNPMFH9qpMlS5iI33nH+qpiFfi7777LzDk5ORqNxsHBoVBsamCp5ORkEZWPPvqIlT78WMwFf+qpp+bMmWP9fl+mzAqhOJGjSZMm4kuxPMR2c///9a9/EdHvf/97G9V/MOj1+qysrIMHD0ZGRi5YsGDChAlarfZSI+fvm0WsOhGjlwEBTMRbt1pfVRwU1alTJ/GuMWbMGLJuacWtd9LFB2ybNm3uvNTOTFevXhUJV3guuJkhFHfPW7duLb4UP6riTTESbzm2XlsAZikoYCI2Tpzo35+J7rIs2jwGg0GsMhXTsL777jsi8vDwsHjEv8E76Wq1WsHrJlvMBWczT+q9abgSo6MPkZsOITQ9/NE6KpXqlVdeISKx4Zq/v3/nzp3T09PFsFxjGYeFv/nmm5YtW2ZlZc2cOVMcfizuwSpC3OfYvHlzZWWlUjXJzPMJGwyh6WkBykII7yP29uTnR888Q0Sk01F5Obm4kLOzIrVffvllR0fHPXv2ZGdnq9VqsQHpjh07Glvn559/XrJkiUql+uc///nYY49VVVVNnjy5qKho3LhxYqRUKX379h00aNCVK1fErFfFmPNxGR8fT0S9evUSX4pVkrZbAifuxlh2hgTYUGUl79nDiu7kOXXqVCIKDw9n5vz8/H379jV22Vp+fr6YgLp48WLxiLJ30m8i5oIPGjRIwZpmhfDUqVNkcvKmGDG33d7GYWFhdH1aE8hn0a7SZhKdzw4dOph/woepuro6sZ358OHDxQDPmjVriMjJyencuXNKN5bZZC54UlycUjUb0R0V/U9m7tixo4uLy+1uXlkP3dH7S2QkvfUWbdxIn36qeO1nn33W29s7Pz//dme/3JlGo/nTn/7Uo0ePr7/+WqPRnDhxQqwu2LBhgxg+VFzTpk13vPFGRc+ePSIjlarZ6GtClUqVnp5++fJlRWYY3eHlbHfNCY2Tn08dO5KdHTHborwYnnn//fdTU1Nra2sb++3Tpk2Lj49/5JFHCgoKpkyZUlNTM3/+fDFSaiPDp0xplpxMX35J5eWKFLRkYEZZmZmZ06dPF2fN34OXg0br1IlycqiujmxznumMGTM8PDwSExPF3CA3N7cRI0aEhIS8//7727dvj4mJuetQpL29fV1d3YsvvnjhwoWnn35anAtkQ489RkOGUHk5bdumSD2zJnBrNJpWrVqdOXMmMzOzq3LHIxcUFLz33nvr1q2rqanR6XQ//PCDeFz8pSOE94uQEAoLIzs7eu01W5Rv06ZNamqqv79/cnJyTk6OOATb9AkajaZTp06eN/Lw8HA0OSQ4LCzsyJEj4vBj210o/SokhI4fp6goeuUVBaqZee0oJhmJ/dGsn7NTXl4eEREh9uoQZ0UYj20pKyvr2bMnESm4ch9+K6qrq5OTk7///vvVq1e//vrro0aN8vT0bPBEcZVK1alTp2HDhv3xj3+cPn26SqWyt7dXagr43V27xo88wkSsxGl/5oawqKgoODhYXAf26dPH4v0IxMmhYqoxEfn6+oqFwsY/Elubtm7d2pxtueFhUFtbe9MqhwEDBtw0ZODu7n6v37Xnz2ciDg62vlLjduA+fPiw+JhSqVRBQUHmn+rI13fyNfZmn376aeMUcHGoqNgCSPzR1KlTxVoSd3f3b7/9tlGNhIdBXV1dRkbGDz/88Omnny5evNgWtwTvIimJVSp2cmKrj/Rp9FkUVVVV4eHhTZo0IaL27dubedLggQMHxAYZRNS7d+/o6GjTPzIeKio2+RWP325bboD7xXPPMRF/9pmVZSw8lSklJWX48OEiIf7+/neYpW48Q5eunxxqnBLx3//+d+jQocbuhOmhokJdXd3HH38sVoi3bNkycmtkncHmB98DmGvHDp461YJ9729i+dFoYkN7V1dXImratGl4ePitG/Xq9XrxAejm5hYZGWkc0THzUFHBeI6az399Hj//+KkKmx+fAnAvWXtIqE6nM25o37dv31sHbPbt22d6hq45h4o2aM+pPZ3iO1EM2Z22ezPvzat6Jc+vBrCQ6Zy+Vav4l1+Yma8vaDSTMsdl//TTTz169DAO2DS4fV1hYWFYWJg5h4reToW+IiwvTHNaQzH06NlHd5QoupMKgAXCwjg+nmtredIkyTmu+2IAAAMoSURBVCHk6ycQNjhgU1xcbDxUVNwVtGalc2xlrE+SD8UQxdCYtDE51TkKtB7AMtOns1hONHEir1rFL77Ic+dyQECjaigWQiE5OVlsmC8GbBITEyMiIsSs80YdKnpndYa6VQWrnM44UQytyMdiC5Dnrbc4Lo5razkwUP4noZFer4+MjBRrDo2bEY0cOVKrxNwCUznVOaG5odnV2VMzpr6S/cqWoi0V+op5ufPC8sKUfSGA28rJ4alTOSiIjxyxOIQqts3UeJ1O98Ybb3h5ee3fv3/58uXG+xmKW6ZbNqLFCJ/mPr9U/DK4+WBdrW514eqIRyNs9HIAijN3B+7Gat++/VdffUVEb7/9to1eQrhYe9HdwZ2IBjcfbNMXArARs5Yy3c/cHdwzazKJ6D+l/5HdFgBL2Ko7es9crrv8Zt6bjmrHIU5D2tu131u291TFqUDnwLlt58puGoBZfvMhBPit+813RwF+6xBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMkQQgDJEEIAyRBCAMn+H4o5oyW+17pvAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -366,7 +387,7 @@ "metadata": { "id": "eqEQiNDpg37z", "colab_type": "code", - "outputId": "be8df391-37bd-4a0c-fb4a-6e90164addbc", + "outputId": "2140755d-0b13-44e9-c103-80ea2731407e", "colab": { "base_uri": "https://localhost:8080/", "height": 357 @@ -402,12 +423,12 @@ "Featurizing sample 6000\n", "Featurizing sample 7000\n", "Featurizing sample 8000\n", - "TIMING: featurizing shard 0 took 29.120 s\n", + "TIMING: featurizing shard 0 took 26.406 s\n", "Loading shard 2 of size 8192.\n", "Featurizing sample 0\n", "Featurizing sample 1000\n", - "TIMING: featurizing shard 1 took 6.476 s\n", - "TIMING: dataset construction took 35.992 s\n", + "TIMING: featurizing shard 1 took 5.849 s\n", + "TIMING: dataset construction took 32.666 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -429,7 +450,7 @@ "metadata": { "id": "-f03zjeIg372", "colab_type": "code", - "outputId": "e90e1372-0d0e-4def-d9f8-d7f6582bcee1", + "outputId": "b806aa40-4293-48f2-ebd5-60a43f4e8c46", "colab": { "base_uri": "https://localhost:8080/", "height": 136 @@ -448,11 +469,11 @@ "output_type": "stream", "text": [ "Computing train/valid/test indices\n", - "TIMING: dataset construction took 0.455 s\n", + "TIMING: dataset construction took 0.471 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.222 s\n", + "TIMING: dataset construction took 0.236 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.226 s\n", + "TIMING: dataset construction took 0.230 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -474,10 +495,10 @@ "metadata": { "id": "BvfbTbsEg376", "colab_type": "code", - "outputId": "9182b0b7-eec6-4be2-c4cb-d5ac28c3e774", + "outputId": "bc3cc023-c3fc-4726-b5ce-42d2c663bb4d", "colab": { "base_uri": "https://localhost:8080/", - "height": 887 + "height": 989 } }, "source": [ @@ -524,19 +545,19 @@ "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "If using Keras pass *_constraint arguments to layers.\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/losses.py:108: The name tf.losses.softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.softmax_cross_entropy instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:108: The name tf.losses.softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.softmax_cross_entropy instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/losses.py:109: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:109: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", "\n" ], "name": "stdout" @@ -544,27 +565,33 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n", - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n" ], "name": "stderr" @@ -572,20 +599,20 @@ { "output_type": "stream", "text": [ - "computed_metrics: [nan, nan, nan, 0.21584699453551914, nan, nan, 0.5759493670886076, nan, 0.08955223880597016, 0.47850318471337583, nan, 0.6918604651162791, 0.2638121546961326, nan, nan, nan, nan]\n", - "Model 1/1, Metric mean-roc_auc_score, Validation set 0: 0.385921\n", - "\tbest_validation_score so far: 0.385921\n", + "computed_metrics: [nan, nan, 0.8181818181818181, nan, nan, nan, nan, nan, nan, nan, nan, 0.7116477272727273, nan, nan, 0.7777777777777778, nan, nan]\n", + "Model 1/1, Metric mean-roc_auc_score, Validation set 0: 0.769202\n", + "\tbest_validation_score so far: 0.769202\n", "computed_metrics: [1.0, nan, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]\n", "Best hyperparameters: ('relu', 0.9, 50, 'glorot_uniform', (1024,), 0.001, 1e-06, 1, False, (0.5,), 1, False, (1000,), (0.1,), (1.0,), 0.0)\n", "train_score: 1.000000\n", - "validation_score: 0.385921\n" + "validation_score: 0.769202\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ - "/usr/local/lib/python3.7/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", + "/root/miniconda/lib/python3.6/site-packages/deepchem/metrics/__init__.py:368: UserWarning: Error calculating metric mean-roc_auc_score: Only one class present in y_true. ROC AUC score is not defined in that case.\n", " warnings.warn(\"Error calculating metric %s: %s\" % (self.name, e))\n" ], "name": "stderr" diff --git a/examples/tutorials/06_Going_Deeper_on_Molecular_Featurizations.ipynb b/examples/tutorials/06_Going_Deeper_on_Molecular_Featurizations.ipynb index 76b38f8a59..5606835b51 100644 --- a/examples/tutorials/06_Going_Deeper_on_Molecular_Featurizations.ipynb +++ b/examples/tutorials/06_Going_Deeper_on_Molecular_Featurizations.ipynb @@ -22,7 +22,8 @@ "colab": { "name": "06_Going_Deeper_on_Molecular_Featurizations.ipynb", "provenance": [] - } + }, + "accelerator": "GPU" }, "cells": [ { @@ -63,20 +64,76 @@ "metadata": { "id": "tS3siM3Ch11-", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "7bbeb07c-f447-499a-8012-efb5759dbd65" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 65441 0 --:--:-- --:--:-- --:--:-- 65441\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.54 s, sys: 549 ms, total: 3.09 s\n", + "Wall time: 4min 11s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -93,11 +150,7 @@ "metadata": { "id": "Sp5Hbb4nh12C", "colab_type": "code", - "outputId": "ada7db94-8aa1-441d-f036-3ee0198ee7a0", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 253 - } + "colab": {} }, "source": [ "from __future__ import print_function\n", @@ -112,49 +165,8 @@ "from deepchem.feat import BPSymmetryFunctionInput, CoulombMatrix, CoulombMatrixEig\n", "from deepchem.utils import conformers" ], - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n" - ], - "name": "stdout" - } - ] + "execution_count": 0, + "outputs": [] }, { "cell_type": "markdown", @@ -217,7 +229,7 @@ "metadata": { "id": "3dt_vjtXh12N", "colab_type": "code", - "outputId": "2cab5c6f-2a3f-41b0-c814-f067d46f8056", + "outputId": "08945e4f-19e7-4619-ad20-a92d39492f4c", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 @@ -232,117 +244,117 @@ { "output_type": "stream", "text": [ - "NumSaturatedCarbocycles\n", - "MaxAbsPartialCharge\n", - "NumSaturatedHeterocycles\n", - "SlogP_VSA9\n", + "PEOE_VSA11\n", + "Kappa2\n", + "SlogP_VSA12\n", + "SlogP_VSA7\n", + "MaxAbsEStateIndex\n", "Chi1n\n", - "Kappa3\n", - "VSA_EState9\n", - "NumAliphaticHeterocycles\n", - "BalabanJ\n", - "SlogP_VSA8\n", - "NumAromaticCarbocycles\n", - "MinPartialCharge\n", - "EState_VSA5\n", - "PEOE_VSA14\n", + "NumAromaticHeterocycles\n", "NumAromaticRings\n", + "SMR_VSA5\n", + "VSA_EState8\n", + "SMR_VSA10\n", "PEOE_VSA4\n", - "SlogP_VSA10\n", - "NumHAcceptors\n", - "VSA_EState1\n", - "Chi2v\n", - "NOCount\n", - "Chi1v\n", - "PEOE_VSA10\n", - "SMR_VSA8\n", - "MolMR\n", - "SMR_VSA9\n", - "SMR_VSA7\n", - "Chi4v\n", - "EState_VSA4\n", - "PEOE_VSA12\n", - "Ipc\n", - "Chi0\n", + "HeavyAtomMolWt\n", "Chi4n\n", - "RingCount\n", - "VSA_EState6\n", - "PEOE_VSA3\n", - "SMR_VSA1\n", - "VSA_EState10\n", - "NHOHCount\n", - "EState_VSA6\n", + "SlogP_VSA5\n", + "EState_VSA2\n", + "MinEStateIndex\n", + "SMR_VSA3\n", + "Kappa3\n", + "TPSA\n", + "PEOE_VSA13\n", "EState_VSA10\n", - "MaxPartialCharge\n", - "FractionCSP3\n", - "MolLogP\n", - "NumHDonors\n", - "EState_VSA9\n", - "MinAbsEStateIndex\n", - "PEOE_VSA5\n", + "NumAromaticCarbocycles\n", + "ExactMolWt\n", + "BertzCT\n", + "PEOE_VSA3\n", + "RingCount\n", + "BalabanJ\n", + "Chi3v\n", "MolWt\n", - "PEOE_VSA13\n", + "PEOE_VSA12\n", + "VSA_EState7\n", + "SlogP_VSA3\n", + "LabuteASA\n", + "SlogP_VSA1\n", + "SMR_VSA4\n", + "EState_VSA9\n", + "NumAliphaticCarbocycles\n", + "EState_VSA1\n", "NumSaturatedRings\n", + "SlogP_VSA4\n", + "NumSaturatedHeterocycles\n", + "SlogP_VSA10\n", "NumHeteroatoms\n", - "SlogP_VSA3\n", - "Kappa1\n", - "BertzCT\n", - "VSA_EState8\n", + "MaxAbsPartialCharge\n", + "SlogP_VSA11\n", + "VSA_EState4\n", "EState_VSA3\n", - "NumAromaticHeterocycles\n", - "SlogP_VSA2\n", - "SMR_VSA5\n", - "SlogP_VSA12\n", - "SlogP_VSA6\n", - "EState_VSA2\n", - "ExactMolWt\n", - "SMR_VSA4\n", "NumAliphaticRings\n", - "SlogP_VSA5\n", + "Chi2n\n", + "PEOE_VSA6\n", + "SMR_VSA6\n", + "MaxPartialCharge\n", + "NHOHCount\n", "EState_VSA7\n", - "Kappa2\n", - "VSA_EState2\n", - "MaxAbsEStateIndex\n", - "MinEStateIndex\n", - "NumValenceElectrons\n", - "Chi3n\n", - "NumAliphaticCarbocycles\n", - "Chi0n\n", - "HeavyAtomCount\n", - "MinAbsPartialCharge\n", - "PEOE_VSA2\n", - "HallKierAlpha\n", - "TPSA\n", + "NumHDonors\n", + "NumHAcceptors\n", "PEOE_VSA7\n", - "VSA_EState7\n", + "HallKierAlpha\n", + "VSA_EState10\n", + "SlogP_VSA9\n", + "PEOE_VSA10\n", + "MaxEStateIndex\n", + "MinAbsEStateIndex\n", + "Chi4v\n", "EState_VSA8\n", - "EState_VSA1\n", - "LabuteASA\n", + "VSA_EState5\n", + "Chi2v\n", + "VSA_EState6\n", "PEOE_VSA8\n", - "SlogP_VSA11\n", - "EState_VSA11\n", - "Chi1\n", - "PEOE_VSA1\n", - "PEOE_VSA11\n", + "EState_VSA6\n", "Chi0v\n", - "Chi2n\n", - "HeavyAtomMolWt\n", - "SMR_VSA10\n", - "PEOE_VSA9\n", - "VSA_EState4\n", - "SlogP_VSA4\n", - "SMR_VSA2\n", + "Kappa1\n", + "MinAbsPartialCharge\n", "VSA_EState3\n", - "VSA_EState5\n", - "SlogP_VSA1\n", + "NOCount\n", + "SMR_VSA9\n", + "Chi0n\n", + "NumAliphaticHeterocycles\n", + "PEOE_VSA9\n", + "VSA_EState9\n", + "SlogP_VSA2\n", + "FractionCSP3\n", + "MinPartialCharge\n", + "Chi3n\n", + "Chi1\n", + "Chi1v\n", + "PEOE_VSA5\n", + "VSA_EState2\n", + "PEOE_VSA2\n", "NumRotatableBonds\n", - "SlogP_VSA7\n", - "SMR_VSA3\n", - "Chi3v\n", - "MaxEStateIndex\n", + "EState_VSA5\n", + "MolMR\n", + "NumSaturatedCarbocycles\n", + "HeavyAtomCount\n", "NumRadicalElectrons\n", - "PEOE_VSA6\n", - "SMR_VSA6\n" + "SMR_VSA2\n", + "MolLogP\n", + "EState_VSA4\n", + "NumValenceElectrons\n", + "Chi0\n", + "PEOE_VSA1\n", + "SMR_VSA7\n", + "SlogP_VSA6\n", + "VSA_EState1\n", + "Ipc\n", + "SMR_VSA1\n", + "SMR_VSA8\n", + "SlogP_VSA8\n", + "EState_VSA11\n", + "PEOE_VSA14\n" ], "name": "stdout" } @@ -353,7 +365,7 @@ "metadata": { "id": "KfyDpE81h12Q", "colab_type": "code", - "outputId": "3e971a11-8f7e-4f61-8c4b-10b1d7e7293e", + "outputId": "7225bac2-c558-4cd5-b460-339cdfc1d83f", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -434,7 +446,7 @@ "metadata": { "id": "IuPE4MXZh12Y", "colab_type": "code", - "outputId": "c2ba9d53-4768-4ecd-d6c6-ad57c58ffdbc", + "outputId": "4bca2307-208b-4042-c342-42a4fbeec56d", "colab": { "base_uri": "https://localhost:8080/", "height": 357 @@ -495,7 +507,7 @@ "metadata": { "id": "1rbcGUf6h12c", "colab_type": "code", - "outputId": "7e024a45-1a86-4555-920e-c256695c9c55", + "outputId": "1ce28cc8-cc23-4cb0-9b78-de248699e76f", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -558,7 +570,7 @@ "metadata": { "id": "evLPEI6mh12g", "colab_type": "code", - "outputId": "c2a45ce2-78e0-4c75-bd85-d9a5024d763c", + "outputId": "aa05c66b-643a-4d6c-9cef-f0221e375dd6", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -613,7 +625,7 @@ "metadata": { "id": "ShTPO4wIh12l", "colab_type": "code", - "outputId": "2cb5e1cc-1253-490d-ebf6-c89f6da141dd", + "outputId": "921a1154-438e-4ec9-f3b9-8e7d0dba419c", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -662,7 +674,7 @@ "metadata": { "id": "XnNZB-Kxh12q", "colab_type": "code", - "outputId": "f7ff7660-f4c6-48a9-86db-2288fe2b1d4b", + "outputId": "dfbf6b76-3222-42bc-d521-319c1bde4673", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -707,7 +719,7 @@ "metadata": { "id": "_8PBHQYLh12v", "colab_type": "code", - "outputId": "bef9414a-0f99-4761-b3c2-2c26145a5709", + "outputId": "0bd7d61c-54ed-4c8e-f769-6653bbc07b00", "colab": { "base_uri": "https://localhost:8080/", "height": 34 diff --git a/examples/tutorials/07_Uncertainty_In_Deep_Learning.ipynb b/examples/tutorials/07_Uncertainty_In_Deep_Learning.ipynb index debcb3d51e..91b45f9f27 100644 --- a/examples/tutorials/07_Uncertainty_In_Deep_Learning.ipynb +++ b/examples/tutorials/07_Uncertainty_In_Deep_Learning.ipynb @@ -54,20 +54,76 @@ "metadata": { "id": "p0MdAUAvkMdD", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "c472e433-bdc4-46af-e6c0-aa5b358e3ca0" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 11725 0 --:--:-- --:--:-- --:--:-- 11725\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.96 s, sys: 773 ms, total: 3.74 s\n", + "Wall time: 4min 37s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -84,10 +140,10 @@ "metadata": { "id": "4mHPuoOPkMdH", "colab_type": "code", - "outputId": "5f0fcd4a-64fa-4d14-ebaf-7f9669ddcb2c", + "outputId": "02ca54c8-2de6-43fb-c1ca-0ebcb57df0bb", "colab": { "base_uri": "https://localhost:8080/", - "height": 984 + "height": 768 } }, "source": [ @@ -107,82 +163,48 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n", "Loading raw samples now.\n", "shard_size: 8192\n", "About to start loading CSV from /tmp/SAMPL.csv\n", "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", - "TIMING: featurizing shard 0 took 2.384 s\n", - "TIMING: dataset construction took 2.476 s\n", + "TIMING: featurizing shard 0 took 2.623 s\n", + "TIMING: dataset construction took 2.686 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.035 s\n", + "TIMING: dataset construction took 0.033 s\n", "Loading dataset from disk.\n", "TIMING: dataset construction took 0.019 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.021 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.032 s\n", + "TIMING: dataset construction took 0.019 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.022 s\n", + "TIMING: dataset construction took 0.036 s\n", "Loading dataset from disk.\n", "TIMING: dataset construction took 0.020 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.029 s\n", + "TIMING: dataset construction took 0.025 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.009 s\n", + "TIMING: dataset construction took 0.028 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.008 s\n", "Loading dataset from disk.\n", "TIMING: dataset construction took 0.009 s\n", "Loading dataset from disk.\n", "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "If using Keras pass *_constraint arguments to layers.\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n" ], "name": "stdout" @@ -212,7 +234,7 @@ "metadata": { "id": "iLgia0GVkMdM", "colab_type": "code", - "outputId": "3cd342eb-1bea-476a-8005-94db738b5829", + "outputId": "959036cf-96c2-45bc-d1a3-eba8725578f4", "colab": { "base_uri": "https://localhost:8080/", "height": 265 @@ -233,13 +255,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXhV5bn+8e9DCCRhSIAwmJAQxjAk\nMgUQaR1wgDoi1h6n1rHY2XOOh58EKY5FW1qP9FLrwapU26pHCRERBVGLcxUF2SEhzELCEKZAgCRk\neH9/EHoiAklg76w93J/r4jJ778Vet5rcLNZ61n7NOYeIiIS+Fl4HEBER/1Chi4iECRW6iEiYUKGL\niIQJFbqISJho6dWOExMTXVpamle7FxEJSV988cUu51zn473mWaGnpaWxbNkyr3YvIhKSzOzrE72m\nUy4iImFChS4iEiYaLHQze9bMSsws7yTbnGdmK8xslZkt9W9EERFpjMYcoc8Bxp/oRTNLAJ4ErnDO\nDQKu8U80ERFpigYL3Tn3PrDnJJtcD+Q45zbXbV/ip2wiItIE/phy6QdEm9k/gHbALOfc88fb0Mwm\nAZMAUlNT/bBrEQlmucuLmbmokK2l5SQlxDJ5XDoThiZ7HSts+aPQWwLDgQuAWOATM/vUObfm2A2d\nc7OB2QBZWVn6mEeRMJa7vJjsHB/lVTUAFJeWk53jA1CpB4g/plyKgEXOuYPOuV3A+8BgP7yviISw\nmYsK/1XmR5VX1TBzUaFHicKfPwr9NeA7ZtbSzOKAUUCBH95XRELY1tLyJj0vp6/BUy5m9iJwHpBo\nZkXAvUA0gHPuKedcgZm9BawEaoE/O+dOOOIoIpEhKSGW4uOUd1JCrAdpIkODhe6cu64R28wEZvol\nkYiEhcnj0r9xDh0gNjqKyePSPUwV3jz7LBcRCW9HL3xqyuWbKqpqiGphREf5/0Z9FbqIBMyEockR\nX+D1fbxuF1Pn+bhuZCp3nNvb7++vQhcRCbC9Bw8zY2EBr3xRRGrHODKS4wOyHxW6iEiAOOeY/9VW\nHng9n9LyKn5ybm/uvKAvsa2iArI/FbqISABs2XOIabl5LF2zk8Hd43nhtlEMTGof0H2q0EVE/Ki6\nppY5H2/iD4vXYAbTLxvITWenEdXCAr5vFbqIiJ/kFe8jO8eHr3gfY/t34cEJGSQ349y9Cl1E5DQd\nOlzNY0vW8syHG+kQ14rHrx/KpZlnYBb4o/L6VOgiIqfh/TU7uSfXx5Y95Vw7IoXs7w0gPi7akywq\ndBGRU7D7QCUPvVHAvOXF9Epsw0uTzuKsXp08zaRCFxFpAuccc78s5qE38jlYWc2vxvbhZ+f3ISY6\nMKOITaFCF5GQ1dwLaGzadZB7cn18tG43w3t04OGJmfTr2i5g+2sqFbqIhKTmXECjqqaWpz/YwKwl\na4mOasGDEzK4YWQqLZphFLEpVOgiEpJOtoCGPwt9xZZSpsxdyertZYwb1JX7r8igW3yM397fn1To\nIhKSAr2AxoHKav6wuJA5H2+iS7vWPHXjcMZndPPLeweKCl1EQlIgF9B4d/UOps3LY9v+Cm4c1YPJ\n49NpH+PNKGJT+P8DeUVEmsHkcenEHjNZcroLaJSUVfDzv3/JrXOW0aZ1S179yWgenJAREmUOOkIX\nkRDlzwU0amsdLy/bwsMLC6ioquWui/pxx7m9adUytI55VegiErL8sYDGupIDTJ3n47ONexjZsyMP\nT8ykd+e2fkrYvFToIhKRDlfX8tTS9Tz+7jpiolvwyMRMfpCVEnSjiE2hQheRiPPF13uYMtfH2pID\nXHrmGdx7+UC6tAvOUcSmaLDQzexZ4DKgxDmXcZLtRgCfANc65171X0QREf/YX1HF795azV8/3UxS\nfAzP3JTFBQO6eh3LbxpzhD4HeBx4/kQbmFkU8FtgsX9iiYj411t527l3fh4lZZXcMiaN/7o4nTat\nw+skRYP/Ns65980srYHNfgnMBUb4IZOIiN9s31fB9NfyWJy/g/7d2vE/P8xiSEqC17EC4rT/eDKz\nZOAq4HxU6CISJGprHX/759f89q1CqmpquXt8f27/bk+io0JrFLEp/PH3jceAu51ztQ2tzmFmk4BJ\nAKmpqX7YtYjIt63ZUcaUuSv5cnMpY/p0YsZVmfTo1MbrWAHnj0LPAl6qK/NE4BIzq3bO5R67oXNu\nNjAbICsry/lh3yIi/1JRVcMT763jqaXradu6JX+4ZjAThyU3+1JwXjntQnfO9Tz6tZnNARYcr8xF\nRALp0w27mZrjY8Oug1w1NJlplw6gU9vWXsdqVo0ZW3wROA9INLMi4F4gGsA591RA04mINGDfoSoe\nfrOAlz7fQkrHWJ6/dSTn9OvsdSxPNGbK5brGvplz7ubTSiMi0kjOORas3Mb9r+ez99Bh7jinF3de\n2Je4VuE1itgUkftvLiIhq7i0nF/n5vHu6hIyk+OZc8sIMpLjvY7lORW6iISMmlrHXz7exO8XF+Ic\nTLt0ADefnUbLMB5FbAoVuoiEhPyt+5mSs5KVRfs4t19nHpqQQUrHOK9jBRUVuogEtfLDNcx6Zy1P\nf7CBhNhoZl07hCsGJ0XMKGJTqNBFJGh9uHYXU+f52LznED/I6s7USwaQENfK61hBS4UuIkFnz8HD\nPPRGPjlfFpPWKY6//3gUZ/dO9DpW0FOhi0jQcM6Ru6KYBxcUsL+8ip+f35tfju1LzDFrh8rxqdBF\nJChs3n2Ie3J9fLB2F0NSEnjk6kz6d2vvdayQokIXEU9V19TyzIcb+e8la4gy4/4rBnHjWT2ICuGl\n4LyiQhcRz6wsKmXKXB/52/Zz4YCuPHDlIJISYr2OFbJU6CLS7A5WVvPo22t47qONdGrbmj/dMIzx\nGd00iniaVOgi0qzeKyxh2rw8ikvLuX5UKneP7098bLTXscKCCl1EmsXOskoeWJDP619tpXfnNrzy\nk9GMSOvodaywokIXOQ25y4uZuaiQraXlJCXEMnlcOhOGJnsdK6g453hlWRG/WVhA+eEa/v3Cvvz0\nvN60bqlRRH9ToYucotzlxWTn+CivqgGOfAJgdo4PQKVeZ+Oug2TnrOTTDXsYkdaBhydm0qdLO69j\nhS0Vusgpmrmo8F9lflR5VQ0zFxVGfKEfrq7l6Q82MOudtbRu2YIZV2Vy7YgUWmgUMaBU6CKnaGtp\neZOejxRfbt5L9lwfhTvKuCSzG/ddPogu7WO8jhURVOgipygpIZbi45R3pM5Rl1VU8ftFhTz/6dd0\nbRfD0z/K4qKBXb2OFVFU6CKnaPK49G+cQweIjY5i8rh0D1N5Y/Gq7Ux/bRU7yir40Vk9+K9x6bSL\n0Shic1Ohi5yio+fJI3nKZcf+Cu6bv4o387aT3rUdT944jGGpHbyOFbFU6CKnYcLQ5Igq8KNqax0v\nfr6ZR95cTWV1LZPHpTPpnF5Eayk4T6nQRaRJ1pWUkZ3j4/NNexndqxMzJmbSM7GN17GERhS6mT0L\nXAaUOOcyjvP6DcDdgAFlwE+dc1/5O6iIeKuyuoYn31vPk/9YR1yrlvzu+2dyzfDu+vyVINKYI/Q5\nwOPA8yd4fSNwrnNur5l9D5gNjPJPPBEJBp9t3EN2zkrW7zzIFYOTmH75QBLbtvY6lhyjwUJ3zr1v\nZmknef3jeg8/BbqffiwRCQb7yqt45M3VvPjZZpITYnnulhGcn97F61hyAv4+h34b8OaJXjSzScAk\ngNTUVD/vWkT8xTnHm3nbuXf+KnYfqOT27/TkPy7qR5vWuuwWzPz2f8fMzudIoX/nRNs452Zz5JQM\nWVlZzl/7FhH/2VpazvTXVrGkYAeDktrz7E0jyOwe73UsaQS/FLqZnQn8Gfiec263P95TRJpXTa3j\nhU82MXNRITXOMfWS/tw6pictNYoYMk670M0sFcgBfuicW3P6kUSkua3evp8pc32s2FLKd/smMuOq\nTFI6xnkdS5qoMWOLLwLnAYlmVgTcC0QDOOeeAqYDnYAn68aXqp1zWYEKLCL+U1FVwx/fWcvs9zfQ\nPjaax/5tCFcOSdIoYohqzJTLdQ28fjtwu98SiUiz+HjdLqbO87Fp9yGuHtadey4dQMc2rbyOJadB\nl6xFIszeg4eZsbCAV74oIrVjHH+9bRTf6ZvodSzxAxW6SIRwzjH/q6088Ho+peVV/PS83vxqbF9i\nW2kpuHChQheJAFv2HGJabh5L1+xkcPd4XrhtFAOT2nsdS/xMhS4Sxqprannuo008+vYazGD6ZQO5\n6ew0orQUXFhSoYuEqbzifUzJWUle8X7G9u/CgxMySI7Q1ZQihQpdJMwcOlzNY0vW8syHG+kQ14rH\nrx/KpZlnaBQxAqjQRcLI0jU7mZbrY8uecq4dkUL29wYQH6el4CKFCl0kDOw+UMmDC/LJXbGVXolt\neGnSWZzVq5PXsaSZqdBFQphzjrlfFvPQG/kcrKzmV2P78LPz+xATrVHESKRCFwlRm3Yd5J5cHx+t\n283wHh14eGIm/bq28zqWeEiFLhJiqmpqefqDDcxaspboqBY8OCGDG0am0kKjiBFPhS4SQlZsKWXK\n3JWs3l7GuEFduf+KDLrFx3gdS4KECl0kBByorOYPiwuZ8/EmurRrzVM3Dmd8RjevY0mQUaGLBLl3\nCnbw69w8tu2v4MZRPZg8Pp32MRpFlG9ToYsEqZKyCu5/PZ83Vm6jX9e2vHr9aIb36Oh1LAliKnSR\nIFNb63h52RYeXlhARVUtd13UjzvO7U2rlloKTk5OhS4SRNaVHGDqPB+fbdzDyJ4deXhiJr07t/U6\nloQIFbpIEDhcXctTS9fz+LvriIluwSMTM/lBVopGEaVJVOgiHlu2aQ/ZOT7WlhzgsjPPYPrlA+nS\nTqOI0nQqdBGP7K+o4ndvreavn24mKT6GZ2/OYmz/rl7HkhCmQhfxwFt527l3fh47yyq5dUxP7rq4\nH21a68dRTk+D30Fm9ixwGVDinMs4zusGzAIuAQ4BNzvnvvR3UJFwsH1fBdNfy2Nx/g76d2vH7B9m\nMTglwetYEiYac0gwB3gceP4Er38P6Fv3axTwp7p/ikid2lrH3/75Nb99q5CqmlruHt+f27/bk+go\njSKK/zRY6M65980s7SSbXAk875xzwKdmlmBmZzjntvkpo0hIW7OjjClzV/Ll5lLG9OnEjKsy6dGp\njdexJAz546RdMrCl3uOiuue+VehmNgmYBJCamuqHXYsEr4qqGp54bx1PLV1P29Yt+cM1g5k4LFlL\nwUnANOtVGOfcbGA2QFZWlmvOfYs0p0837GZqjo8Nuw5y1dBkpl06gE5tW3sdS8KcPwq9GEip97h7\n3XMiEWffoSpmLCzg5WVbSOkYy/O3juScfp29jiURwh+FPh/4hZm9xJGLoft0/lwijXOOBSu3cf/r\n+ew9dJg7zunFnRf2Ja6VRhGl+TRmbPFF4Dwg0cyKgHuBaADn3FPAQo6MLK7jyNjiLYEKKxKMikvL\n+XVuHu+uLiEzOZ45t4wgIzne61gSgRoz5XJdA6874Od+SyQSImpqHX/5eBO/X1yIczDt0gHcfHYa\nLUNoFDF3eTEzFxWytbScpIRYJo9LZ8LQZK9jySnS3wdFTkH+1v1MyVnJyqJ9nNuvMw9NyCClY5zX\nsZokd3kx2Tk+yqtqgCN/08jO8QGo1EOUCl2kCcoP1zDrnbU8/cEGOsRF88frhnL5mWeE5CjizEWF\n/yrzo8qrapi5qFCFHqJU6CKN9OHaXUyd52PznkP8IKs7Uy8ZQEJcK69jnbKtpeVNel6CnwpdpAF7\nDh7moTfyyfmymLROcfz9x6M4u3ei17FOW1JCLMXHKe+khFgP0og/qNBFTsA5R+6KYh5cUMD+8ip+\nfn5vfjm2LzHRUV5H84vJ49K/cQ4dIDY6isnj0j1MJadDhS5yHJt3H+KeXB8frN3FkJQEHrk6k/7d\n2nsdy6+OnifXlEv4UKGL1FNdU8szH27kv5esIcqM+68YxI1n9SAqTJeCmzA0WQUeRlToInVWFpUy\nZa6P/G37uXBAVx64cpDOJ0tIUaFLxDtYWc2jb6/huY820qlta/50wzDGZ3QLyVFEiWwqdPFMMNyl\n+F5hCdPm5VFcWs71o1K5e3x/4mOjmzWDiL+o0MUTXt+luLOskgcW5PP6V1vp3bkNr/xkNCPSOgZ8\nvyKBpEIXT3h1l6JzjleWFfGbhQWUH67h3y/sy0/P603rluExiiiRTYUunvDiLsUNOw8wdZ6PTzfs\nYURaBx6emEmfLu0Ctj+R5qZCF080512Kh6trmf3+ev747jpat2zBjKsyuXZECi3CdBRRIpcKXTzR\nXHcpfrl5L9lzfRTuKOOSzG7cd/kgurSP8es+RIKFCl08Eei7FMsqqpi5qJAXPv2abu1jePpHWVw0\nsKtf3lskWKnQxTOBuktx8artTH9tFTvKKrhpdBp3XdyPdjEaRZTwp0KXsLFjfwX3zV/Fm3nbSe/a\njidvHMaw1A5exxJpNip0CXm1tY4XP9/MI2+uprK6lsnj0pl0Ti+iQ2gpOBF/UKFLSFu7o4zsHB/L\nvt7L6F6dmDExk56JbbyOJeIJFXoIC4Zb571SWV3Dk++t58l/rCOuVUt+9/0zuWZ4d33+ikS0RhW6\nmY0HZgFRwJ+dc48c83oq8BcgoW6bKc65hX7OKvV4feu8lz7buIfsnJWs33mQKwYnMf3ygSS2be11\nLBHPNVjoZhYFPAFcBBQBn5vZfOdcfr3NpgH/65z7k5kNBBYCaQHIK3UicYHffeVVPPLmal78bDPJ\nCbE8d8sIzk/v4nUskaDRmCP0kcA659wGADN7CbgSqF/oDji6nEs8sNWfIeXbImmBX+ccb+Zt5975\nq9h9oJLbv9OT/7y4H3GtdMZQpL7G/EQkA1vqPS4CRh2zzX3AYjP7JdAGuNAv6eSEImWB362l5Ux/\nLY8lBSUMSmrPszeNILN7fKN/fyRfZ5DI46+5ruuAOc657sAlwAtm9q33NrNJZrbMzJbt3LnTT7uO\nTJPHpRN7zGLF4bTAb02tY85HG7no0aV8uG4XUy/pz2s/H9PkMs/O8VFcWo7j/64z5C4vDlxwEQ81\n5gi9GEip97h73XP13QaMB3DOfWJmMUAiUFJ/I+fcbGA2QFZWljvFzEJ4L/C7evt+psz1sWJLKd/t\nm8iMqzJJ6RjX5PeJxOsMEtkaU+ifA33NrCdHivxa4PpjttkMXADMMbMBQAygQ/AAC7cFfiuqavjj\nO2uZ/f4G2sdG89i/DeHKIUmnPIoYSdcZRKARhe6cqzazXwCLODKS+KxzbpWZPQAsc87NB+4Cnjaz\n/+DIBdKbnXM6ApdG+3jdLqbO87Fp9yGuHtadey4dQMc2rU7rPSPlOoPIUY0aE6ibKV94zHPT632d\nD4zxbzSJBHsPHmbGwgJe+aKIHp3i+NvtoxjTJ9Ev791cH9ErEiw09yWecM4x/6utPPB6PqXlVfz0\nvN7ceUFfYqL9txRcOF9nEDkeFbo0uy17DjEtN4+la3YyuHs8L9w2ioFJ7Rv+jacg3K4ziJyMCl2a\nTXVNLc99tIlH316DGdx7+UB+NDqNKC0FJ+IXKnRpFnnF+5iSs5K84v2M7d+FBydkkKyLkyJ+pUKX\ngDp0uJrHlqzlmQ830iGuFY9fP5RLM8/QpyKKBIAKXQJm6ZqdTMv1sWVPOdeNTGHK+AHEx2kpOJFA\nUaGL3+06UMlDC/LJXbGVXolteGnSWZzVq5PXsUTCngpd/MY5x9wvi3nojXwOVlbzq7F9+Nn5ffw6\niigiJ6ZCF7/YtOsgU+f5+Hj9bob36MDDEzPp17Wd17FEIooKXU5LVU0tT3+wgVlL1tIqqgUPTsjg\nhpGptNAookizU6HLKVuxpZQpc1eyensZ4wZ15f4rMugWH+N1LJGIpUKXJjtQWc3vFxXyl0820aVd\na566cTjjM7p5HUsk4qnQpUneKdjBr3Pz2La/ghtH9WDy+HTax2gUUSQYqNClUUrKKrh/fj5v+LbR\nr2tbXr1+NMN7dPQ6lojUo0KXk6qtdby8bAsPLyygoqqWuy7qxx3n9qZVS3+tXigi/qJClxNaV3KA\nqfN8fLZxD6N6dmTGxEx6d27rdSwROQEVunzL4epanlq6nsffXUdMdAt+e3Um1wxP0SiiSJBTocs3\nLNu0h+wcH2tLDnDZmWcw/fKBdGmnUUSRUKBCFwD2V1Txu7dW89dPN5OcEMuzN2cxtn9Xr2OJSBOo\n0IW38rZz7/w8dpZVcuuYntx1cT/atNa3hkio0U9tBNu+r4Lpr+WxOH8HA85oz+wfZjE4JcHrWCJy\nilToEai21vG3f37Nb98qpKqmlrvH9+f27/YkOkqjiCKhrFGFbmbjgVlAFPBn59wjx9nmB8B9gAO+\ncs5d78ec4ieF28vIzlnJl5tL+U6fRH5zVQY9OrXxOpaI+EGDhW5mUcATwEVAEfC5mc13zuXX26Yv\nkA2Mcc7tNbMugQosp6aiqoYn3lvHU0vX07Z1S/5wzWAmDkvWUnAiYaQxR+gjgXXOuQ0AZvYScCWQ\nX2+bHwNPOOf2AjjnSvwdVE7dpxt2MzXHx4ZdB5k4NJl7Lh1Ap7atvY4lIn7WmEJPBrbUe1wEjDpm\nm34AZvYRR07L3Oece+vYNzKzScAkgNTU1FPJK01QeugwDy9czcvLtpDSMZbnbx3JOf06ex1LRALE\nXxdFWwJ9gfOA7sD7ZpbpnCutv5FzbjYwGyArK8v5ad9yDOccC1Zu4/7XV7H3UBV3nNOLOy/sS1wr\nXQMXCWeN+QkvBlLqPe5e91x9RcA/nXNVwEYzW8ORgv/cLyml0Yr2HmL6a6t4d3UJmcnxzLllJBnJ\n8V7HEpFm0JhC/xzoa2Y9OVLk1wLHTrDkAtcBz5lZIkdOwWzwZ1A5uZpax5yPN/GHxYU4B9MuHcDN\nZ6fRUqOIIS13eTEzFxWytbScpIRYJo9LZ8LQZK9jSZBqsNCdc9Vm9gtgEUfOjz/rnFtlZg8Ay5xz\n8+teu9jM8oEaYLJzbncgg8v/WbV1H9k5PlYW7ePcfp15aEIGKR3jvI4lpyl3eTHZOT7Kq2oAKC4t\nJzvHB6BSl+My57w5lZ2VleWWLVvmyb7DRfnhGh57Zw1//mAjHeKimX75IC4/8wyNIoaJMY+8S3Fp\n+beeT06I5aMpYz1IJMHAzL5wzmUd7zVdJQtRH6zdyT3z8ti85xA/yOrO1EsGkBDXyutY4kdbj1Pm\nJ3teRIUeYvYcPMxDC/LJWV5Mz8Q2/P3Hozi7d6LXsSQAkhJij3uEnpQQ60EaCQUq9BDhnCN3RTEP\nLihgf3kVvzi/D78Y24eY6Civo0mATB6X/o1z6ACx0VFMHpfuYSoJZir0ELB59yHuyfXxwdpdDElJ\n4JGrM+nfrb3XsSTAjl741JSLNJYKPYhV19TyzIcb+e8la2jZogUPXDmIG0b1IEpLwUWMCUOTVeDS\naCr0ILWyqJQpc33kb9vPhQO68uCEQZwRr3OnInJiKvQAOpWbQg5WVvPo22t47qONJLZtzZ9uGMb4\njG4aRRSRBqnQA+RUbgp5b3UJ03LzKC4t5/pRqdw9vj/xsdHNlllEQpsKPUBmLir8xnQCQHlVDTMX\nFX6r0HeWVfLAgnxe/2orfbq05ZWfjGZEWsfmjCsiYUCFHiCNuSnEOccry4r4zcICyg/X8O8X9uWn\n5/WmdUuNIopI06nQA6Shm0I27DzA1Hk+Pt2whxFpHXh4YiZ9urRr7pgiEkb0UXwBMnlcOrHH3PQT\nGx3Ff1zYl8ffXcv4WR+waut+ZlyVycuTRqvMReS06Qg9QI53U8g1w7vz9AcbKdxRxiWZ3bjv8kF0\naR/jcVIRCRcq9AA6elNIWUUVMxcVMuvdtXRrH8PTP8riooFdvY4nImFGhR5gi1dtZ/prq9hRVsFN\no9O46+J+tIvRKKKI+J8KPUB27K/gvvmreDNvO/27teNPNw5jaGoHr2OJSBhToftZba3j759t5rdv\nrqayppbJ49KZdE4vorUUnIgEmArdj9buKCM7x8eyr/dydu9O/OaqTHomtvE6lohECBW6H1RW1/Dk\ne+t58h/riGvVkpnfP5PvD++uz18RkWalQj9Nn23cQ3bOStbvPMiVQ5L49WUDSWzb2utYIhKBVOin\naF95FY+8uZoXP9tMckIsz90ygvPTu3gdS0QiWKOu1JnZeDMrNLN1ZjblJNtdbWbOzI67InU4cM6x\n0LeNCx9dysufb+bH3+3J2/95jspcRDzX4BG6mUUBTwAXAUXA52Y23zmXf8x27YA7gX8GImgw2Fpa\nzvTX8lhSUMKgpPY8e9MIMrvHex1LRARo3CmXkcA659wGADN7CbgSyD9muweB3wKT/ZowCNTUOl74\nZBMzFxVS4xxTL+nPrWN60lKjiCISRBpT6MnAlnqPi4BR9Tcws2FAinPuDTM7YaGb2SRgEkBqamrT\n03qgYNt+puT4+GpLKd/tm8iMqzJJ6RjndSwRkW857YuiZtYCeBS4uaFtnXOzgdkAWVlZ7nT3HUgV\nVTX88Z21zH5/A+1jo3ns34Zw5ZAkjSKKSNBqTKEXAyn1Hneve+6odkAG8I+6susGzDezK5xzy/wV\ntDl9vG4XU+f52LT7EFcP6860SwfQoU0rr2OJiJxUYwr9c6CvmfXkSJFfC1x/9EXn3D4g8ehjM/sH\n8F+hWOZ7Dx7mNwsLePWLInp0iuNvt49iTJ/Ehn+jiEgQaLDQnXPVZvYLYBEQBTzrnFtlZg8Ay5xz\n8wMdMtCcc8z/aisPvJ5PaXkVPz2vN3de0JeYaC0FJyKho1Hn0J1zC4GFxzw3/QTbnnf6sZrPlj2H\nmJabx9I1OxncPZ4XbhvFwKT2XscSEWmyiL1TtLqmluc+2sSjb6/BDO69fCA/Gp1GVAtd9BSR0BSR\nhZ5XvI8pOSvJK97PBf278MCEDJLrFm+W/5O7vPgbS+hNHpf+r6X1RCT4RFShHzpczWNL1vLMhxvp\nENeKJ64fxiWZ3TSKeBy5y4vJzvFRXlUDQHFpOdk5PgCVukiQiphCX7pmJ/fM81G0t5zrRqYwZfwA\n4uO0FNyJzFxU+K8yP6q8qoaZiwpV6CJBKuwLfdeBSh5akE/uiq306tyGlyedxahenbyOFfS2lpY3\n6XkR8V7YFrpzjrlfFvPQGztHrYQAAAUiSURBVPkcrKzmVxf05Wfn9dYoYiMlJcRSfJzyTtK1BpGg\nFZaFvmnXQabO8/Hx+t0M79GBhydm0q9rO69jhZTJ49K/cQ4dIDY6isnj0j1MJSInE1aFXlVTy9Mf\nbGDWkrW0imrBgxMyuGFkKi00ithkR8+Ta8pFJHSETaEv37yX7Bwfq7eXMX5QN+67YhDd4mO8jhXS\nJgxNVoGLhJCQL/QDldX8flEhf/lkE13ateZ/fjiccYO6eR1LRKTZhXShv1Owg1/n5rFtfwU3jurB\n5PHptI/RKKKIRKaQLPSS/RXc/3o+b/i20a9rW169fjTDe3T0OpaIiKdCrtDfW13Cr15aTmVVLXdd\n1I87zu1Nq5ZaCk5EJOQKvWdiG4aldmD65QPp3bmt13FERIJGyBV6WmIb/nLrSK9jiIgEHZ2rEBEJ\nEyp0EZEwoUIXEQkTKnQRkTChQhcRCRMqdBGRMKFCFxEJEyp0EZEwYc45b3ZsthP4+hR/eyKwy49x\nAi2U8oZSVgitvKGUFUIrbyhlhdPL28M51/l4L3hW6KfDzJY557K8ztFYoZQ3lLJCaOUNpawQWnlD\nKSsELq9OuYiIhAkVuohImAjVQp/tdYAmCqW8oZQVQitvKGWF0MobSlkhQHlD8hy6iIh8W6geoYuI\nyDFU6CIiYSJkC93MrjGzVWZWa2ZBOa5kZuPNrNDM1pnZFK/znIyZPWtmJWaW53WWhphZipm9Z2b5\ndd8Dd3qd6WTMLMbMPjOzr+ry3u91poaYWZSZLTezBV5naYiZbTIzn5mtMLNlXuc5GTNLMLNXzWy1\nmRWY2Wh/vn/IFjqQB0wE3vc6yPGYWRTwBPA9YCBwnZkN9DbVSc0BxnsdopGqgbuccwOBs4CfB/l/\n20pgrHNuMDAEGG9mZ3mcqSF3AgVeh2iC851zQ0JgFn0W8JZzrj8wGD//Nw7ZQnfOFTjnCr3OcRIj\ngXXOuQ3OucPAS8CVHmc6Iefc+8Aer3M0hnNum3Puy7qvyzjyQ5HsbaoTc0ccqHsYXfcraKcRzKw7\ncCnwZ6+zhBMziwfOAZ4BcM4dds6V+nMfIVvoISAZ2FLvcRFBXDqhyszSgKHAP71NcnJ1pzBWACXA\n2865YM77GPD/gFqvgzSSAxab2RdmNsnrMCfRE9gJPFd3OuvPZtbGnzsI6kI3syVmlnecX0F7pCvN\nx8zaAnOBf3fO7fc6z8k452qcc0OA7sBIM8vwOtPxmNllQIlz7guvszTBd5xzwzhyevPnZnaO14FO\noCUwDPiTc24ocBDw67W1lv58M39zzl3odYbTUAyk1Hvcve458QMzi+ZImf/NOZfjdZ7Gcs6Vmtl7\nHLleEYwXoMcAV5jZJUAM0N7M/uqcu9HjXCfknCuu+2eJmc3jyOnOYLy2VgQU1fvb2av4udCD+gg9\nxH0O9DWznmbWCrgWmO9xprBgZsaR85AFzrlHvc7TEDPrbGYJdV/HAhcBq71NdXzOuWznXHfnXBpH\nvmffDeYyN7M2Ztbu6NfAxQTnH5Q457YDW8wsve6pC4B8f+4jZAvdzK4ysyJgNPCGmS3yOlN9zrlq\n4BfAIo5ctPtf59wqb1OdmJm9CHwCpJtZkZnd5nWmkxgD/BAYWzeqtqLuiDJYnQG8Z2YrOfIH/dvO\nuaAfBwwRXYEPzewr4DPgDefcWx5nOplfAn+r+14YAszw55vr1n8RkTARskfoIiLyTSp0EZEwoUIX\nEQkTKnQRkTChQhcRCRMqdBGRMKFCFxEJE/8fGlzeUJyI8CYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAW/UlEQVR4nO3df2zc9X3H8dc7TiAGkhjwGRInIaHYB+FnqAdFgdjhV0I3FbZpE3Sr1I42ageM/ljaRpq6jkpTp2hVO4l1yhhlW6si1mYRW1ndVosToL/iECAQck5Ggdih+AJxfoCTOPZ7f9xdcg723Tm58/e+n3s+pAjf3Tf+vhWFV17+fD/fO3N3AQDib0rUAwAAyoNAB4BAEOgAEAgCHQACQaADQCCmRnXixsZGX7BgQVSnB4BY2rJly153T4z1WmSBvmDBAnV3d0d1egCIJTN7fbzXWHIBgEAQ6AAQCAIdAAJBoANAIAh0AAhEZLtcgBCs39qnNZ0p7RkY1JyGeq1antRdi5ujHgs1ikAHTtH6rX1avW6bBoeGJUl9A4NavW6bJBHqiARLLsApWtOZOh7mOYNDw1rTmYpoItQ6Ah04RXsGBif0PFBpBDpwiuY01E/oeaDSCHTgFK1anlT9tLpRz9VPq9Oq5cmIJkKt46IocIpyFz7Z5YJqQaADp+Guxc0EOKoGSy4AEAgCHQACQaADQCAIdAAIBIEOAIEg0AEgEAQ6AASCQAeAQBDoABAIAh0AAkGgA0AgCHQACASBDgCBINABIBAEOgAEgkAHgEAQ6AAQCAIdAAJBoANAIIoGupk9amb9ZvbSOK//iZm9aGbbzOznZnZ1+ccEABRTSkN/TNKKAq//RlK7u18p6WuS1pZhLgDABE0tdoC7bzKzBQVe/3new19Kmnv6YwEAJqrca+j3Svqf8V40s5Vm1m1m3el0usynBoDaVrZAN7NlygT6l8Y7xt3Xunubu7clEolynRoAoBKWXEphZldJekTSHe7+djm+JwAUs35rn9Z0prRnYFBzGuq1anlSdy1ujnqsyJx2oJvZfEnrJH3M3XtOfyQAKG791j6tXrdNg0PDkqS+gUGtXrdNkmo21EvZtvh9Sb+QlDSzXjO718w+bWafzh7yFUnnS/pHM3vezLorOC8ASJLWdKaOh3nO4NCw1nSmIpooeqXscrmnyOuflPTJsk0EACXYMzA4oedrAXeKAoilOQ31E3q+FhDoAGJp1fKk6qfVjXquflqdVi1PRjRR9MqyywUAJlvuwie7XE4g0AHE1l2Lm2s6wE/GkgsABIJAB4BAEOgAEAgCHQACQaADQCAIdAAIBIEOAIEg0AEgEAQ6AASCQAeAQBDoABAIAh0AAkGgA0AgCHQACASBDgCBINABIBAEOgAEgkAHgEAQ6AAQCAIdAAJBoANAIAh0AAgEgQ4AgSDQASAQBDoABIJAB4BAFA10M3vUzPrN7KVxXjcz+wcz22VmL5rZteUfEwBQTCkN/TFJKwq8foekluyvlZK+ffpjAQAmqmigu/smSe8UOOROSf/mGb+U1GBms8s1IACgNOVYQ2+WtDvvcW/2ufcxs5Vm1m1m3el0ugynBgDkTOpFUXdf6+5t7t6WSCQm89QAEKm3DhzWE5t36zPf3aIfbumtyDmmluF79Emal/d4bvY5AKhZQ8Mjeu71ferqSasrldYrbx6QJF04c7pu+MD5FTlnOQL9SUn3m9njkq6XtN/d3yzD9wWAWHnrwGFtTKXV1dOvp3fu1cHDxzR1iumDF52rL624VB3JhC69cIbMrCLnLxroZvZ9SR2SGs2sV9JfS5omSe7+T5KekvRhSbskvSfpExWZFACqzLHhET33xoC6Uv3akNfCL5h5pj58xWx1JBNa0tKomdOnTco8RQPd3e8p8rpLuq9sEwFAFRurhddNMbVNUgsvpBxLLgAQrPwW3pVKa3vELbwQAh0ATtJ/4LC6etLamErr6Z1pHci28A9edK6+uCKpjtYmXTY7mhZeCIEOoOYdGx7R1t3ZtfAdJ1p404wzteKKC7Us2VQ1LbwQAh1ATRq3hc+v7hZeCIEOoCbkt/CuVFov7xndwjuSTVpySaNm1Vd3Cy+EQAcQrP6DuR0paT3dM7qFr1qe1LJk/Fp4IQQ6gGAcGx7R87sH1JVKa0OqP8gWXgiBDiDWirXwjmRCi2bPDKaFF0KgA4iV/Bbe1dOvl/oyLTwx40wtvzzTwm9sCbeFF0KgA6h66YNHtLEns4zyzM692j84pLoppmvnN2jV8qTaWxO6fE5ttPBCCHQAVWd4xPX87n3asOP9Lfz2RRfUdAsvhEAHUBVyLbwrlXmPlLFa+KLZMzVlSm238EIIdACRyLXwrlTm/cK39e2XlGnhty26QB3JhG66JKFZZ9HCS0WgA5g06YNHtKknsyNlU09a+weHNMWka+efq7+8vVUdySZa+Gkg0AFUTKaFn7g7M9fCG8+hhVcCgQ6grPYeOnJiX/jOtAbeo4VPFgIdwGnJtfCNqX519aT1Yu+JFn7LpdkW3tKohrPOiHjS8BHoACZs76HMWviG1OgWvpgWHikCHUBRwyOuF3oH1LUj08K39e2Xu9R4zhm08CpCoAMYU66Fd2Vb+L68Fv75WzMt/PI5tPBqQqADkJTXwlOZm3vyW/iyS5vUkWzSUlp4VSPQgRr29qEj2rQzrQ07Rrfwa+Y10MJjiEAHakh+C9+Y6teLtPCgEOhA4HItvCuVuTszv4V/7tZWdSQTumLOLFp4AAh0IDDDI64Xc2vhPWm92Dsgd+n8s8/QsmST2pMJLW1J6NyzaeGhIdCBALzz7tHsvvD+4y3caOE1h0AHYogWjrEQ6EBM5Fp4V6pfm3bu1TvvHj3ewj97S6aFX9lMC69lBHoFrd/apzWdKe0ZGNSchnqtWp7UXYubox4LMTEy4nqxb7+6Uv3akBrdwttbE+qgheMkBHqFrN/ap9XrtmlwaFiS1DcwqNXrtkkSoY5xvfPuUT29M60NO0a38Kvn0sJRHIFeIWs6U8fDPGdwaFhrOlMEOo7Lb+FdqbReyLbw8/Ja+E0tCZ1HC0cJSgp0M1sh6VuS6iQ94u5fP+n1+ZL+VVJD9pgvu/tTZZ41VvYMDE7oedSOXAvP7Qt/O6+FP3hLi5Ylm2jhOCVFA93M6iQ9LOk2Sb2SNpvZk+6+Pe+wv5L0hLt/28wWSXpK0oIKzBsbcxrq1TdGeM9pqI9gGkRpZMS1rW+/ulKZbYW0cFRKKQ39Okm73P1VSTKzxyXdKSk/0F3SzOzXsyTtKeeQcbRqeXLUGrok1U+r06rlyQinwmTZ9+7RUXdnntzCO7ItvI4WjjIqJdCbJe3Oe9wr6fqTjvmqpJ+Y2QOSzpZ061jfyMxWSlopSfPnz5/orLGSWydnl0ttyG/hXT39emH3gEayLXxpS6M6kk26qaVR559zZtSjImDluih6j6TH3P3vzewGSf9uZle4+0j+Qe6+VtJaSWpra/Mynbtq3bW4mQAPWK6Fb0yltTGvhV81t0EP3NyijmRCV81toIVj0pQS6H2S5uU9npt9Lt+9klZIkrv/wsymS2qU1F+OIYFqMDLiemlP3lp4toWfe9Y0LW1NaBktHBErJdA3S2oxs4XKBPndkj560jFvSLpF0mNmdpmk6ZLS5RwUiEJ+C9+0M629h2jhqF5FA93dj5nZ/ZI6ldmS+Ki7v2xmD0nqdvcnJX1B0j+b2eeUuUD6cXcPfkkF4clv4V2pfj1/UgvP3Z1JC0c1sqhyt62tzbu7uyM5N5Bv4L2j2rRzb+Y9UnryWnjzLLUnm7SMFo4qYmZb3L1trNe4UxQ1Z2TE9fKeA9n3SDnRwhvOmqalLQktu5QWjngi0FETCrXw+7Nr4VfTwhFzBDqClN/Cu3rS2vrGvlEtvCOZ0NLWhBpp4QgIgY5g7H9v6PjdmRt70tp76Igk6aq5tHDUBgIdsTUy4tr+5gFt2EELByQCHTFTsIUvu0TtySZdM48WjtpEoKOq5Vp47v3Cn8tr4Te1JNTRmmnhiRm0cIBAR9XZ/96Qnt6Vzt7cc6KFX9k88RbOxwCilhDoiJx73o6UVFpbdw9oeMQ1qz57d+YptnA+BhC1hkBHJPJb+MaetNIHT7TwP+/4wPEdKVPrppzyOfgYQNQaAh2TItfCN/Zk3iPluTdOtPCbsu8X3l7mtXA+BhC1hkBHxewfHNIz2bszu/Ja+BXNM8vWwgvhYwCjxzWMyUWgo2zccztSxm/hS1sb1TRj+qTMw8cAFlfJwOUaxuQj0HFa8lv4xp60+vNa+GfaMy38mnmVa+GF8DGAhVU6cLmGMfkIdEzIeC185vSpuin7qT2ltvDJ+HGcjwEcX6UDl2sYk49AR1H7B4f07K692rBjdAu/fM6pt3B+HI9epQOXaxiTj0DH++S38I2ptLa8sW9UC+9oTag9mTittXB+HI9epQOXaxiTj0CHJOnA4dFr4W8dONHCP91+sTqSTVpcxrVwfhyPXqUDl2sYk49Ar1HurlfePKiunszdmVtez7TwGdOnHn+nwvbWhJpmVmZHCj+OR28yApdrGJOLQK8hBw4P6dmde7Vhklp4Ifw4Xh0I3LAQ6AE7uYU/9/o+Hctr4e3JzHp4pVp4Ifw4DpQfgR5jY237u/myJj27c+/x90j57YHDkqRFs2dq5dJMC792fjT7wk9GOwTKi0CPqbG2/X3+ieclSSMuzZg+9fjdmVG1cACTi0CPoYOHh/TQf21/37a/EZfOOXOqHv3471RNCwcweQj0GHB37fjtweN3Z27JroWP5d0jx3TdwvMmeUIA1YBAr1IHD2fuzsx9ak9uLfyy2TP1qaUX6z+6d2vvoaPv+31s+wNqF4FeJdxdqbcyLXzDjhMtfMaZU3VjS6OWJZvUnkzoguxaePKCGWz7AzAKgR6h/Ba+sSetN/ePbuEdrQlde9G5mjbGWjjb/moD7yeOiSDQJ1F+C+9K9av7tdEt/LO3JtTe2qQLZ5W2I4Vtf2HjDcwwUQR6hWVa+NvamL25J9fCL71wRtEWjtrGG5hhokoKdDNbIelbkuokPeLuXx/jmD+W9FVJLukFd/9oGeeMDXdXz1uH1JXq14YytHDULt7ADBNVNNDNrE7Sw5Juk9QrabOZPenu2/OOaZG0WtISd99nZk2VGrgaHTpyTM/s3DtmC//kTRerI5nQB2nhmCDewAwTVUpDv07SLnd/VZLM7HFJd0rannfMpyQ97O77JMnd+8s9aDXJb+FdqbS6X39HQ8Ouc86cqhsvadSDt2TeJ2X2LP7Hw6njDcwwUaUEerOk3XmPeyVdf9IxrZJkZs8qsyzzVXf/8cnfyMxWSlopSfPnzz+VeSNz6MixEztSUv3ak9fC/+zGhVqWbKKFo6zYyYSJKtdF0amSWiR1SJoraZOZXenuA/kHuftaSWslqa2tbexbHauEu2tnf3YtfMf7W/hf0MIxCdjJhIkoJdD7JM3Lezw3+1y+Xkm/cvchSb8xsx5lAn5zWaacJMVaeEdrpoWfMZUWDqD6lBLomyW1mNlCZYL8bkkn72BZL+keSd8xs0ZllmBeLeeglZDfwrtSaW1+7UQLX3LJ+XrglhZ10MIBxETRQHf3Y2Z2v6ROZdbHH3X3l83sIUnd7v5k9rXbzWy7pGFJq9z97UoOfqrezbXwnswHIOd2ESQvoIUDiDdzj2Ypu62tzbu7uyt+HnfXrv5D2jBOC+9INqm9NcFWMACxYGZb3L1trNeCvFO0YAtfslDtyYTaLjqPFg4gKEEEeq6Fd6XS6urp1+bf7NPR4RGdfUadllzSqPtvvoQWDiB4sQ30d48c08//7+3jFzRzLbz1gnP0iSULaOEAak7sAn3za+/omz/reV8Lv2/ZJWpPJtRMCwdQo2IX6CMjrvTBI/r4kgXqaE2obQEtHACkGAb69Refr598rj3qMQCg6lBtASAQBDoABIJAB4BAEOgAEAgCHQACQaADQCAIdAAIBIEOAIEg0AEgEAQ6AASCQAeAQBDoABAIAh0AAkGgA0AgCHQACASBDgCBINABIBAEOgAEgkAHgEAQ6AAQCAIdAAJBoANAIAh0AAgEgQ4AgSDQASAQJQW6ma0ws5SZ7TKzLxc47g/NzM2srXwjAgBKUTTQzaxO0sOS7pC0SNI9ZrZojONmSHpQ0q/KPSQAoLhSGvp1kna5+6vuflTS45LuHOO4r0n6O0mHyzgfAKBEpQR6s6TdeY97s88dZ2bXSprn7j8q9I3MbKWZdZtZdzqdnvCwAIDxnfZFUTObIukbkr5Q7Fh3X+vube7elkgkTvfUAIA8pQR6n6R5eY/nZp/LmSHpCkldZvaapA9JepILowAwuUoJ9M2SWsxsoZmdIeluSU/mXnT3/e7e6O4L3H2BpF9K+oi7d1dkYgDAmIoGursfk3S/pE5Jr0h6wt1fNrOHzOwjlR4QAFCaqaUc5O5PSXrqpOe+Ms6xHac/FgBgorhTFAACQaADQCAIdAAIBIEOAIEo6aIoatP6rX1a05nSnoFBzWmo16rlSd21uLn4bwQQCQIdY1q/tU+r123T4NCwJKlvYFCr122TJEIdqFIsuWBMazpTx8M8Z3BoWGs6UxFNBKAYAh1j2jMwOKHnAUSPQMeY5jTUT+h5ANEj0DGmVcuTqp9WN+q5+ml1WrU8GdFEAIrhoijGlLvwyS4XID4IdIzrrsXNBDgQIyy5AEAgCHQACASBDgCBINABIBAEOgAEwtw9mhObpSW9foq/vVHS3jKOU2lxmjdOs0rxmjdOs0rxmjdOs0qnN+9F7p4Y64XIAv10mFm3u7dFPUep4jRvnGaV4jVvnGaV4jVvnGaVKjcvSy4AEAgCHQACEddAXxv1ABMUp3njNKsUr3njNKsUr3njNKtUoXljuYYOAHi/uDZ0AMBJCHQACERsA93M/sjMXjazETOryu1KZrbCzFJmtsvMvhz1PIWY2aNm1m9mL0U9SzFmNs/MNpjZ9uzfgQejnqkQM5tuZr82sxey8/5N1DMVY2Z1ZrbVzP476lmKMbPXzGybmT1vZt1Rz1OImTWY2Q/MbIeZvWJmN5Tz+8c20CW9JOkPJG2KepCxmFmdpIcl3SFpkaR7zGxRtFMV9JikFVEPUaJjkr7g7oskfUjSfVX+Z3tE0s3ufrWkayStMLMPRTxTMQ9KeiXqISZgmbtfE4O96N+S9GN3v1TS1Srzn3FsA93dX3H3av7E4usk7XL3V939qKTHJd0Z8UzjcvdNkt6Jeo5SuPub7v5c9uuDyvxPUbVv3O4Zh7IPp2V/Ve1uBDObK+l3JT0S9SwhMbNZkpZK+hdJcvej7j5QznPENtBjoFnS7rzHvari0IkrM1sgabGkX0U7SWHZJYznJfVL+qm7V/O835T0RUkjUQ9SIpf0EzPbYmYrox6mgIWS0pK+k13OesTMzi7nCao60M3sZ2b20hi/qrbpYvKY2TmSfijps+5+IOp5CnH3YXe/RtJcSdeZ2RVRzzQWM/s9Sf3uviXqWSbgRne/VpnlzfvMbGnUA41jqqRrJX3b3RdLeldSWa+tVfVH0Ln7rVHPcBr6JM3Lezw3+xzKwMymKRPm33P3dVHPUyp3HzCzDcpcr6jGC9BLJH3EzD4sabqkmWb2XXf/04jnGpe792X/229m/6nMcmc1XlvrldSb99PZD1TmQK/qhh5zmyW1mNlCMztD0t2Snox4piCYmSmzDvmKu38j6nmKMbOEmTVkv66XdJukHdFONTZ3X+3uc919gTJ/Z/+3msPczM42sxm5ryXdrur8h1Lu/ltJu80smX3qFknby3mO2Aa6mf2+mfVKukHSj8ysM+qZ8rn7MUn3S+pU5qLdE+7+crRTjc/Mvi/pF5KSZtZrZvdGPVMBSyR9TNLN2a1qz2cbZbWaLWmDmb2ozD/0P3X3qt8OGBMXSHrGzF6Q9GtJP3L3H0c8UyEPSPpe9u/CNZL+tpzfnFv/ASAQsW3oAIDRCHQACASBDgCBINABIBAEOgAEgkAHgEAQ6AAQiP8HtVhxt5b+RgwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -265,10 +288,10 @@ "metadata": { "id": "hVoRaGn6kMdQ", "colab_type": "code", - "outputId": "c1e58e58-becf-41d4-afc6-88ad42b943fa", + "outputId": "f1aa9bc6-a989-44e0-cebe-1fc63fb10b52", "colab": { "base_uri": "https://localhost:8080/", - "height": 215 + "height": 211 } }, "source": [ @@ -286,13 +309,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAADGCAYAAADPPnYvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3hc1Zn/P2e6ei+W3Ds2zeDYpgZC\nJ4SStoS0TVnSw6aQhGyyWbIhZdlfEtiUXUIKWcjSAoYAwTQTTHMw2Lj3ri7b6pp+fn9MkSzPSDP3\n3tGMNO/nefxYmrlz5mike+973vN9v6/SWiMIgiAIgiAIQgRbticgCIIgCIIgCLmEBMiCIAiCIAiC\nMAwJkAVBEARBEARhGBIgC4IgCIIgCMIwJEAWBEEQBEEQhGFIgCwIgiAIgiAIw5AAWRAEQRByFKXU\n75RS7UqpzcMeq1RKPauU2hX9vyKbcxSEyYgEyIIgCIKQu/wBuHzEY98CntdazwOej34vCIKFKGkU\nIgiCIAi5i1JqJvCE1vrk6Pc7gAu01i1KqSnAi1rrBVmcoiBMOiSDLAiCIAgTizqtdUv061agLpuT\nEYTJiCPbExhOdXW1njlzZranIQg5w5tvvtmpta7J9jySIeesIAyRjfNVa62VUkm3gpVSNwI3AhQV\nFZ25cOHCcZubIOQ6o52zORUgz5w5k3Xr1mV7GoKQMyilDmR7DqMh56wgDDGO52ubUmrKMIlFe7ID\ntdZ3AXcBLF26VMv5KghDjHbOisRCEARBECYWjwMfj379ceCxLM5FECYlEiALgiAIQo6ilPo/4DVg\ngVLqsFLqU8CPgUuUUruAi6PfC4JgITklsRAEQRAEYQit9YeSPHXRuE5EEPIMySALgiAIgiAIwjAm\nTYDcPRDgp8/swBcMZXsqgiCkwP++foDtrT3ZnoYgCIKQYXq8AV7Z3ckvV+/ml6t3MxF6cEwaicUf\nX9vPnS/sZsWcKs6eU53t6QiCMAqt3V6+u3IzH14+nduuOyXb0xEEQRAywJE+H5+8Zx1vH+o67vEV\nsys5c0ZllmaVGpYEyEqp/UAvEAKCWuulSqlK4AFgJrAf+KDW+pgV7zeScFjz0JuHAWjv8WXiLQRB\nsJAXd0RcqVq6vVmeiSAIgpAp/vOZnWxp6uarl8xnyfRy5tYWc+lPX+K+1w/mfIBspcTiQq316Vrr\npdHvx61X/Np9Rzl4dACA1h654QpCrrM6GiA3dw1meSaCIAhCJtjS3M39bxzk42fP5MsXzeO8eTVM\nKSvg2iWNPLGpha4Bf7anOCqZ1CBfA9wT/foe4NpMvdFD6w5R4nZQ4LTTJgGyIOQ0/mCYl3d1AhIg\nC4IgTEa01tz6+FYqCl18+aJ5xz13w/Lp+INhHo7u/OcqVgXIGnhGKfVmtK0lpNgrXil1o1JqnVJq\nXUdHR9pv3OsN8NTmFt5zegNTyj0isRCEHGfdgaP0+0OcOaOCHm+QXm8g21MSBEEQLOTJTS38ff9R\nvn7pAsoKnMc9d9KUUs6cUcGf1h7M6WI9qwLkc7XWZwBXAF9QSp0//Ekd+QQSfgpa67u01ku11ktr\natJvYf/Exha8gTAfXDqNuhKPSCwEIcd5cUcHTrviA2dOBUSHLAj5RjAUzvYUhAwy6A/xo6e2s2hK\nKf/wjmkJj7lh2XT2dvbz2t4j4zy71LEkQNZaN0X/bwceBZYR7RUPMFaveDM8uO4Q82qLOW1qGfVl\nHpFYCEKOs3p7O8tnVTGvrhiAJpFZCELe8OTGFuZ/56+8+841/OCJrbywvY1Bv9izTibuemkvTV2D\nfO89i7DbVMJj3n3qFMoKnPxp7cFxnl3qmA6QlVJFSqmS2NfApcBmxqFX/O72XtYf7OKDS6ehlKK2\n1E17jy+nU/aCkM8cOjrArvY+LlhQQ0N5AQAtXbKoFYR8wB8M85OntzOtspASj4M/vnaAT/5hHdf8\n8mUJkicJvd4Ad6/Zy+WL61k+uyrpcR6nnfefOZVVW1rp6M1NaawVGeQ64GWl1NvA34EntdZPMw69\n4h9adxiHTXHtkkYA6ks9+ENhjg2IplEQcpEXd0bqDC5cWEttiQe7TUmhniDkCQ+uO8TBowP829WL\nuf/Gs9j4b5fy8384nZ1tffzwqW3Znp5gAQ+8cYheX5DPXzhnzGM/tGw6gZDmoTcPjcPM0se0D7LW\nei9wWoLHj5DhXvF/ebuZCxbUUlPiBqCu1ANEmhBUFrky+daCIBjgxe3tTKssYHZ1EUop6ks9EiAL\nQh7gDYS48/ldLJ1RwQXzI/VGHqeda5c0srmpm7tf3scFC2q46KSE9fzCBCAQCvP7V/azbFYlp04t\nH/P4ubXFnNJYxpqdnXz+grnjMMP0mNCtpjv7/MytLY5/HwuQ23ply1YQcg1vIMQrezq5cEEtSkV0\naQ3lHtEgC0Ie8MfX9tPe6+PmyxbEz/8YN1++gIX1JXzj4Y05u90ujM1Tm1po6hrkxvNmp/yahfUl\n7O7oy+CsjDNhA+RwWOMPhXE7hn6EutJIJrlNquIFIef4+76jeANhLlxQG3+sobxAXCwEYZLT6w3w\n6xf3cP78moS6VLfDzp0fWkKvL8g3Hn5b6ogmIFprfrNmL7NrinjXwtqxXxBlXl0xHb2+nGwaMmED\nZH/UJsbtHPoRakuiGWTxQhZyAK21XOiHsWZXBy6HjRXDbpCRAHmQcFg+J0GYrPz25X0cGwhw86UL\nkh4zv66Eb1+xkNU7OnjgjdzUpArJeX3vUTY39fDpc2djS+JckYh5tSUA7G7PvSzyhA2QfYFogOyw\nxx9zOWxUFbnEC1nICf7hrtf53uNbsj2NnKGj10d9qYcC19A521DmIRDSdPbJolYQJiP+YJjfrtnH\n5YvrOWVq2ajHfvzsmSybWclPnt5OtxTbTyh+s2YvVUUu3ntGY1qvi8lkJUC2EF8oYgkzXGIBER1y\nuwTIQpbRWrPhUBd/WnuQw8cGsj2dnMAXDJ9wvsas3kSHLAiTkx2tvfT6glx12pQxj1VK8b2rF9E9\nGOBnz+0ch9kJVrC7vZcXtrfz0bNm4HHax37BMBrLCyhw2tklAbJ1DGWQRwbIbskgC1nnSL8ffzBM\nMKy566W92Z5OyiilvqKU2qKU2qyU+j+llMeqsX3B8AkXz7gXsuiQBWFSsqmpG4BTG8d2NQBY3FDG\nh5ZN539fP8DOtt5MTk2wiF+t3oPHaeOjK2ak/VqbTTGntkgCZCvxBWMa5ONvuJFuerJdK2SXWPOL\nxvIC7n/jEO0TwFlFKdUIfBlYqrU+GbAD11s1vi8YSppBFqs3QZicbGrqoqzAybTKgpRf87VLF1Dk\nsnPrX7ZIHUeOs6ejj5UbmvjoihlUFbsNjTGvtoTdObgYmsABckRi4bIf/yPUlng40u8jIL3ehSwS\nkwzccuVCgqEwv315X5ZnlDIOoEAp5QAKgWarBvYFwscV1QKUehwUuewisRCEScqmpm5OaSw7wdpt\nNCqLXHzt0gW8svsIq7a0ZXB2E5Meb4C9HX1sPNzFq7s7eWlnB0f7s+MCcefzu3A77HzmnWM3BkmG\nPximudvLzG89yTk/foGV65tMzWnl+ibO+fELzDI5nulGIdliKIN8/A23vsyD1pGCoFh2ShDGm1hG\n9Ow51Vx1agP3vnaAz71zDuWFudvARmvdpJT6T+AgMAg8o7V+ZuRxSqkbgRsBpk+fnvL4vmCY0gLn\nyLFoKC+QDLIgTEJ8wRA7Wnv5dBq+uDE+vHw6f1p7kB88uZXz51dT6Bq/cKW5a5BjA34G/CH6fUHs\nNsWC+pK4U1amWbm+idtX7aC5a5CG8gK+dul8ZtcU8+KOdv62s4O3D3WRyPhnfl0xy2ZVcsmies6f\nV53WosQIu9p6efztZj5z/hyqDWaPV65v4tmtQ4ugpq5BbnlkE0C8S3K6493yyCYGAyHT403cAHkU\nDTJAa49XAmQha7R0D+J22KgodPL5C+fw+NvN3PPqAW66eF62p5YUpVQFcA0wC+gCHlJKfURrfe/w\n47TWdwF3ASxdujTl/U9v4ESJBYgXsiBMRlaub+K2J7cRCGke+PshFtSVpBWgOOw2vn/NYv7hrtf5\n4VPb+MG1p1g6t+EB6Ncvnc+smmKe2dLKqi2t7OnoT/i66mIXJ00pZcXsKq44uZ7ZNcUJx7v5sgWG\ngrvYWCMDvK89+DYaUApOnVrOl941j9k1RRS7HRS7HYS0Zv3BLtbuO8qjbzVx7+sHWTazkm9esZAz\nZ1QYmsdYc7x91Q6augZRwNQK47HW7at2xG17YwwGQty+aoehz/D2VTvin53Z8SZugByMuVgcr0GO\nddMTJwshmzR3eWksL0ApxcL6Ui4+qY7fv7qPT503i2J3zp52FwP7tNYdAEqpR4CzgXtHfVWKJHKx\ngEiAvKW524q3EATBIJkM8o4O+A1l8ZbPruLT587i7pf3cdHCOi5MowFFqnNr6hrkq9EA1G5TrJhd\nyYeXz6ChvIAit50itwNfIMz21h62NvewpbmH21ft4PZVO1hYX8LM6iJWb2+P72qbzYD+x9PbTwjw\nNFBR6OS5r74zqc737DnVfOHCiFzhgXWHuOO5Xbzv169y6aI6ls+q5Hev7M/I71YDtz25jWK3w9CY\nyXYPje4qWjlezt6px8IfTJZBjgTIrZKRErJIc/fgcTsY/3j2TJ7b1sYb+48e10kuxzgIrFBKFRKR\nWFwErLNqcF8wlNACqKHMQ2efH28g8fOCICRGKXU5cAeRgtq7tdY/NjKOldvSYG0W7+uXLeDl3Z18\n+f71FLkctEV3h40GeYnmpoHyQicvfv2CpDK4s+YMNThq6R7kr5ta+evmFp7e3HrCsUZ+1vZeL39+\ns4nmJLFL10AgpSI4lyPiJvHeJY387uV9/GL1bp6xUMJg5e8WIgmSRDUoRhUAVo43gYv0IgGyZ4QG\nubLQhdOuaJN+7kIWae4aZErZkF6tuiRy0R30h5K9JOtordcCDwNvAZuIXB/usmr80TLIIFZvgpAO\nSik78EvgCmAR8CGl1CIjY40W9BjByiyex2nn6tMa6PUGae3xohkK8owUXyUrCO4eCKRcIzKlrIBP\nnjuLhz579qjv8/reI/R4AwmdOLyBEG8dPMZPn93JNb94meU/fJ6fPL39BOOBGOkGeEVuB1+6aB7l\nI+o+IHd+twA3X7aAghGJkQKnnZsvS951cbzGm7AZ5HiR3giJhc2mqC3x0CY3WyFL+INh2kcUiXqi\nf6feQO4GyABa6+8B38vE2BEXiwQZ5GFWb7OqizLx1oIwGVkG7NZa7wVQSt1PpIZga7oDWR30WJ0V\nvG/twRMeSzdrqbXmiY0t2BQJC9yMzq0xyc8KcP1drwNQ6LJTX+ahqsjFsYEA7T1eerxBAGwKTp9W\nzlcuns+Vp0xhc1P3cdl8MBcwtidJFhr93daVehL2mjD6+cV+f999bDO93iBTyjx88/KFhiUg1y5p\nJBzWfPWht4HI78fobsMEDpCjNm8JMlJ1pW7aJoDvrDA5aevxojU0lA9lkGPSgdjCLt/QWif0QYbI\nBQzEC1kQ0qQRODTs+8PAciMDWR3Q3nzZAr758EZ8w4qvzAR5ZgP4Q0cH+P4TW3l2axvTKwtp6/Ee\ndy02m7FMFNB+7z2LqCp2s6+zj9ZuH609gxzp8zO3pphz5lRRW+phRlUh58yppqJoKHMda71slR48\n2e+2sih9R6VAKEyB68Qkh5nPDyJBrcth4/P3vcVvPraUkxtHb0k+FlecMoWvPvQ237x8IZ+7wLj9\n3MQNkJO4WEBkhSMdeIRsEbtoH5dBjkqBcj2DnCkCIU1YJzlfyyK6uuYuWdQKgtWkYsuYLMgzGvRc\nu6SRl3d38vCbhwFzWTxIHuQNl7Elot8X5Ncv7uGuNXuxKfj2lQv55DmzeGJji2UBaOx1ycerMzSm\n0fmMJNHvVhHp9vrTZ3Zw08XzsdtSs4P7z2d2sK+zn4+dNYPnt7Vb8vnFmBddGOxu7zMdIA+ZOJhT\nEVsWIEf1UOuAJq31VUqpWcD9QBXwJvBRrbVlTtbJJBYQCZBf3tVp1VsJQlrEtLTHB8gxiUV+ZpCT\nuc7EHqspcUsGWRDSowmYNuz7qdHHjiMVW8ZYcPP1h94mGNamA1qISAcqi1y8+Z2LTfvxJgryAMoK\nnWxr6WF+XUk8yNNac+DIAC9sb+d/XtpDW4+Pa09v4JtXLGRKWeSabGUAmonxrCRRAH/TRfN4Y/9R\n7nxhN2v3HeXWaxazsL501HGe3tzK//xtLx9ePp3vX3My37/G2nnOqCrCYVPsajef3EzWJyNdrMwg\n3wRsA2Kf8k+An2mt71dK/TfwKeDXVr3Z6BILD72+IP2+IEW5a6klTFJimY6GsqEAOVZ4ka8Z5GRF\ntTEaygto7pYAWRDS4A1gXjQZ1USkLfwNRge7dkkjv39lHxVFLv7wiWWmJ7fxcPod9EabGxwf5J07\nt5qH3zrMFXesocTtYMmMCupL3by29wiHjkauJadNK+dXHz4zI17AE4lEAfwHlk7lHTMrue2pbVx5\nxxo+smIGX7l4/nFyD4CDRwb4yartPLmxhZMbS/nuVYbqQMfE5bAxo6qQXW19psfyj5JATQdLokel\n1FTg3cBtwFdV5Ix4F0Mn6z3Av2FhgOwPhnHaVcKtgfrolm1bjzdu5C0I40Vz1yAVhc7jtFo2m8Ll\nsOEN5neAnOyC1VjuYUeryKIEIVW01kGl1BeBVURs3n6ntd5iZky3026J0443EGJXex8Xn5S+vCAZ\niYK8my6ex9p9R1i3/xjr9h9jw8FjLJtVxT+dN5vz59Uwo6ow493kJipKKT74jmlcsqiOnz+3k3vX\nHuSxDc0sm1VJY3kBDeUeWrt93Pv6Aew2xU0XzePG82dn1IpzXm0JOy3JIOeWxOLnwDeAkuj3VUCX\n1joY/f4wkYKCEzDTtjbZzbYu2g6yVQJkIQu0dHvjW3nD8Thsce18vuGLZs6TbXlNKStg9fYOtNZy\nQxOEFNFaPwU8ZdV4BU47XYMB0+NsbekhFNacMtWclnQsGsoLuG7JVK5bMjWj7zOZqShyces1J/Ph\nFTO48/ld7Grr47U9R+jzBVEK3n/GVL526QLqx9B7W8G8umKe3dYWLeg2Hoh7R6lRSwfTAbJS6iqg\nXWv9plLqgnRfb7RtbbKKeIC6slg3PfFCFsaf5q5BplYUnvC4x2nPe4lFsnO2obyAwUCIroHACVt8\ngiCMDx6nDV+P+WvU5qZIZ8xTTBZbCePH/LoSfnHDGfHve7wB/MEw1Sk0J7GKubXFhMKa/Z0DLKgv\nGfsFSYjdbxJJcNPBikYh5wBXK6X2EynKexeRzj7lSqlYAJ6weMAMvkA46Q8f76Yn7aaFLNDUNUhj\n+Ymr7XwOkGM/d7KsQEN0USs6ZEHIHlZdozYd7qaqyDWmy4SQu5R6nOMaHAPMie747+kwp0MerSg8\nHUwHyFrrW7TWU7XWM4kUCbygtf4wsBp4f/SwjwOPmX2v4STrygVQ7HZQ7I60pBSE8aTXG4iYnSfw\nD/U4bXnsYjF6BrmmJHIhPtJnmdGNIAhp4nHYT3CKMMKBIwPMqS0WuZSQFjHnJ7Oxm1UuFplsNf1N\nIgV7u4lokn9r5eBjaVRqS90isRDGnUQWbzE8TrsU6SUp8KiKZiqO9Ms5KwjZwqpFfFPXIFMNNhkR\n8peKQidOu6LNZOw2Wp+MdLDUA01r/SLwYvTrvURaYWYEfzA86uqgPkk7REHIJPEmIQm2Fj2O/JVY\nxIv0klywqoojuuPOXskgC0K28LjMX6OCoTCtPV4aKyRAFtJDKUVtiYd2k7GbP2SNzVsmM8gZZTSJ\nBUR0yCKxEMabWDe4RBlkt9OWt62mx/JBLnE7cNltdEoGWRCyhsdhxxcMEw6nXC9/Aq09XkLRZiOC\nkC61pW7aek1KLMZIyKTKBA+Qk68OKotcHO2XbJQwvjR3DWK3KWpLTixuiBTA5HeAnOycVUpRVewS\nDbIgZJGYx62ZhXzTscgummSQBSPUlXhMy2MnggY5o4xm8waRAHnAH8rbLW0hOzR3D1JX4sZhP/Fv\n0+2wxVe2+YY3hRV9dbGbI32SQRaEbBHb4TFz34x1EpUMsmCEulK3dUV69nyVWIxi8wZQFfVSPSJZ\nZGEcibVBTUQ+27yNlUGGiA5ZzldByB4F0QyymWLiWAY52XVQEEajttRDjzdoqqNj3OYtfzPIo2uQ\nK6MB8lHZshXGkZZub0KLN4hWiOetBnnsC1ZVkVskFoKQRWISCzNSsKauQaqLXRltSSxMXmLyxHYT\nOuSYi4UrwU5uOkzgAHl0m7dYVbzYRgnjRTisaeny0pCgSQjku4vF2LY71cUuOvt8aG28QEgQBOPE\nJBZmsneRRkmSPRaMEWv01t5rPHbzh8K47DZsNnM+3BM2QB7L5q2qKLIKkUI9Ybzo7PfhD4VpKBtd\nYpGPAaAvGJFEjdY4oKrYhS8Ypt/EzVkQBOO4LZJYSIGeYJRYgGxGh+wLjK4wSJUJGyCPKbGIZZBl\ny1YYJ1pGsXiDSHYmrCEQyscAefSiWhha1EqhniBkh7gG2eBOl9ZaMsiCKWISCzPNQnzBkGn9MUz4\nADm5xKLE7cBpV1L0I4wb8SYhySQWFmRnJirewOjnKwxrFiIBsiBkhbjNm0ENcmefH18wLAGyYJjy\nQicuu82cBjkYNq0/hgkaIAdDYUJhPWpGSikV9UKWm60wPjTH2kwnkVi4TWZnxgOlVLlS6mGl1Hal\n1Dal1FlWjJtKBrk62m66U3Z9BCErxDXIBq9RcYu3ikLL5iTkF0opakvdpryQfcFw/H5rBktbTY8X\nMcuo0WzeACqL3KJBFsaN1u5B3A4b5YXOhM97on+vRrMz48QdwNNa6/crpVyAJXc6XzCctItejCqR\nRQlCVvE4zC3i401CJIMsmKC2xJwXsi8wdkImFSZkBnnIU3UsTaP4qgrjR0evj9pSd9JCtKEuVbmZ\nQVZKlQHnA78F0Fr7tdZdVoztS0ViIRpkQcgqBS5zNm/NXdJFTzBPXanHXIA8Ro1aqkzQADnmqTr6\nDVfaTQvjSUefj5riE1tMx4idsDncbnoW0AH8Xim1Xil1t1KqaORBSqkblVLrlFLrOjo6Uho4laIJ\nl8NGqcchi1pByBKmM8hdg5S4HZQVJN5FE4RUqCv1mLN5G6NGLVUmZIDsTzGDXFnkkkYhwrjR0euj\npiR5gOzJfQ2yAzgD+LXWegnQD3xr5EFa67u01ku11ktrampSGjjVFX11sVuK9AQhS8QWsUYLiQ+L\nxZtgAbWlbnq9QQb8QUOvz2sXi1Ta1kJEYtHrC+bslrYwuUg9QM7ZDPJh4LDWem30+4eJBMymiWjC\nxl7RVxW7RIMsCFnC7bChFHgNepGLxZtgBbUl0WYhBgv18ltikUJXLhjyQj7WH8j4nIT8xh8Mc2wg\nQE1xYos3GKoQz9UMsta6FTiklFoQfegiYKsVY6d6waoqckv3S0HIEkqpSMfPoLFFfNOxAckgC6ap\nK421mzYeII9l4pAKpkdQSnmUUn9XSr2tlNqilLo1+vgspdRapdRupdQD0Yp4SxjSII9dpAfSblrI\nPLG/sZQyyLm9o/El4D6l1EbgdOCHVgwacbGQDLIg5Doep83QIr7XG6DHG5QMsmAas930IraiuaFB\n9gHv0lqfRuSGerlSagXwE+BnWuu5wDHgUxa8V+QNYzZvYxhBV8ar4uWGK2SWjt4UAmRHzkss0Fpv\niOqLT9VaX6u1PmbFuKna7lQVuzk64CcYyt3PSBAmMx6n3VCA3BRvlCQBsmCOoW56BgPkXGk1rSP0\nRb91Rv9p4F1ENIwA9wDXmn2vGOm4WADiZCFknJQC5ByXWGSSiHF7KkV6LrSGYwMiixIEpdQHojuz\nYaXU0hHP3RLdod2hlLrMqvf0OO0MGljExz2QRWIhmKSswInLYTMssfCHciRABlBK2ZVSG4B24Flg\nD9CltY6VIB4GGq14L0hdg1wdazwgAbKQYVIJkCdCJ71MMVZr+BhxL2SRRQkCwGbgvcBLwx9USi0C\nrgcWA5cDv1JKmd9TJnJfNZNBnioZZMEkSinqSt20m8kgW9BJz5IAWWsd0lqfDkwFlgELU32tEU9V\nfyi1ALnU48RuU9JuWsg4sQA5tihLRCyD7DNYADOR8aYosaiWbnqCEEdrvU1rvSPBU9cA92utfVrr\nfcBuIvde0xS4DEosjg3istviLeMFwQy1JR7aDLhYaK2jGuQcySDHiHbdWg2cBZQrpWKtrKcCTUle\nk76naiyDPMYKwWZTVBRKsxAh83T0+SgrcI6aJXXZoxZKeZZBDobCBMM6RZu3yM1VvJAFYVQagUPD\nvrdsl9bjsMfvselwuGuQhnIPNlviTqKCkA51pW7aetPPIAfDmrAeO4GaCla4WNQopcqjXxcAlwDb\niATK748e9nHgMbPvFSOuQU7JNkqq4oXMM5YHMkS2jdwOW95lkGM7Pp4UNcggGWQhf1BKPaeU2pzg\n3zUWjZ/WLq3HaWPQYAZZ9MeCVdSWeAz5IMdNHCwIkB1jHzImU4B7ovonG/Cg1voJpdRW4H6l1A+A\n9cBvLXgvIL0PQNpNC+NBR+/obaZjGK0Qn8ikWjMAEVmUw6ZEgyzkDVrriw28rAmYNuz7UXdpgbsA\nli5dqsca2IyLxYULUtsFFoSxqCv10OcL0u8LUuROPVT1BWIJVPMaZNMBstZ6I7AkweN7sUgTNRJf\niq2mIdIsZFtzTyamIQhxOvt8nDq1fMzjPI48DJCDqUmiICKLqpRdH0EYi8eBPymlfgo0APOAv1sx\ncIHTnrZXuzcQoqPXR2N5oRVTEIS41Vt7r49Z6QTIacSHYzFBO+lFTt6xfJAhKrGQDLKQYVKRWEDM\nhD+/JBbpSKIgokPulABZEFBKXaeUOkykrudJpdQqAK31FuBBIp0unwa+oLW2ZOXtdtrTvka1dEe0\noiKxEKzCaLMQfzwhkxsSi3En1rZWqbGLASqLXHQPBgiEwjhTCKgFIV36fUH6/aEUA+T8yyB74xKL\n1La8qotdUqQnCIDW+lHg0STP3QbcZvV7epw2vP70rlFxD2SxeBMswmi76aEMco7YvI03sQA5FWLt\npo9JFlnIELFgLhUNsttpx98+PDsAACAASURBVJtnRXppZ5CLXKJBFoQs4TEgsWiNZvmmlHkyMSUh\nD6ktifwtpeuFnO79ZjQmboCcogl0vN20BMhChoh7IKeSQTZowj+Ria3oPSmes9XFbtEgC0KWKHDa\nCYQ0ofCY9Xxx2qN2XLWl4oEsWENpgQO3w5a2xMJKF4sJGiCnbgIt7aaFTBPvopeii4Uv3wLkQHqa\nsKpiNwP+EAP+4NgHC4JgKTE7xnQW8u09PordDgpdE1K1KeQgkW566TcL8aUp6RuNCRogh1NeHVRJ\nu2khw3T0jd1mOoYU6Y1NlXghC0LWiO30pOOF3NHni7sOCIJV1JW647sTqSISi0A45dVBPIMsRT9C\nhujo9WFTQ39ro2FE3zfRSbdooloWtYKQNTzR8zSdDHJHjy8liZkgpIORZiE+C10sJmaAnIbEoqLQ\nhVIisRAyR0evj6piN/YUWqy681CD7A2kW6QXrRuQRa0gjDseVyxATn2nq73XKxlkwXJqS93Gbd7y\nWWKR6s3WblNUFIoXspA5Uu2iB1ENct65WKSrQRaJhSBkC48jfQ1yR68v7jogCFZRXeym3x9iMA3b\nwbyXWPjTcLEAaTctZJaOvtSahEB++iDHihI9Ka7oYxnkTrF6E4RxJ6ZBTvU6lY4PvCCkQ8ym9+hA\n6vGbdNJLI4MMkQBZMshCpki1ix7EbN7CaJ26hdJEJ90McoHLTpHLTmevnLOCMN4MBcip7XTFGjmI\nxEKwmqEasjQC5IDYvKUVIFdJBlnIEOGwpjONDHJs5yOfZBZxX8o0OllWFbulWYggZIF0bd5iNpfi\ngSxYzZALWer3giGJRb5qkAOp27yBSCyEzBFpY67T0iDD0Co3H/AFQzhsCkcaAXJ1sUs0yIKQBQpi\nGeQU3XZiNlwisRCsJtboLZ34zRcMoxQ47WMXzY/FxAyQg6nbvEEkg3xswJ9WZyBBSIV0PJBhWHYm\nh63elFJ2pdR6pdQTVoznDaQniYJIBrlTXCwEYdyJ+yCnWBgVs+GSIj3BaioL02/05o9KcJXK2wA5\nPYlFZZELreFYGkJvQUiFeBe9lDXI6XuMZoGbgG1WDeYLhtIqqoXI5xn7bAVBGD/c8UV8artcHX0+\nnHZFeYEzk9MS8pDSAgcOm0qrhizdBOpoTNAAOZyWCXRlcfppekFIhbQD5DQLYMYbpdRU4N3A3VaN\n6QuE49ZRqVJb4uZIv59AKDc/J0GYrAzJwFLPIFcXu7Gl4AMvCOmglKKiyJVekV6aCdTRMD2KUmqa\nUmq1UmqrUmqLUuqm6OOVSqlnlVK7ov9XmJ8uaK2jKfT0JBYgvqqC9aQfIKfvMTrO/Bz4BmBZZOpL\n05YRoK40sl0rWWRBGF8K0rR5kyYhQiapStOFLN0atdGwYpQg8DWt9SJgBfAFpdQi4FvA81rrecDz\n0e9N4w+l73EXtwqRDLJgMR19PtwOGyVuR0rHp+sxOp4opa4C2rXWb45x3I1KqXVKqXUdHR1jjmtk\nRR+74bZLgCyMEwP+INtbe/LKgjERTrsNu00xmIaLRY3oj4UMETFZSMfFIv2al2SYHkVr3aK1fiv6\ndS8R7WIjcA1wT/Swe4Brzb4XGDOBjptNi22UYDExD+RUCwJif7c5avN2DnC1Umo/cD/wLqXUvSMP\n0lrfpbVeqrVeWlNTM+agRi5YsQxyum1GBcEotz25jct/vobLf76G37+yj+6BQLanlDVifu2pkI4P\nvCCkS7ouZJGETA5qkJVSM4ElwFqgTmvdEn2qFaiz4j1i9ljp3HArogFyp0gsBItJxwMZcjuDrLW+\nRWs9VWs9E7geeEFr/RGz43oD6V+wYp6q7RIgC+OANxDi8bebOX1aOR6njVv/spVlP3yOh9YdyvbU\nskKqHT8DoTBH+v0isRAyRtoSizRr1EbDsgBZKVUM/Bn4Z611z/DndGTPKuG+lZHtWkjPBNppt1FZ\n5IpbcgmCVXT0+lL2QIbhNm85mUHOCEYuWFVFbmxKJBbC+PDijnZ6vUG+esl8HvviuTz55XOpLHLx\n3La2bE8tK0QC5LGvUbG6HmkSImSKyiI3vd4g/hTvmTklsQBQSjmJBMf3aa0fiT7cppSaEn1+CtCe\n6LVGtmsh9ba1MWpL3HG/RkGwinS3F90Tw+YNrfWLWuurrBjLF0jfdsduU9SUuEViIYwLj65voqbE\nzdlzqgBY3FDGvLoSWrvz8+/P47Sl5NUebxKSRpJAENKhMtpNL1Wb3pyyeVMR8eVvgW1a658Oe+px\n4OPRrz8OPGb2vYD4KiLtop9ST/xkFgQrCITCHB3wG5JYpGqhNBmI+CCnf6mpLfHQJotaIcN0DfhZ\nvb2Dq09rOK7b45RSDy15GyDb8abQKCTeJKRUivSEzFCVpsmCL5BDNm9ECns+SqSgZ0P035XAj4FL\nlFK7gIuj35tmqEgvTdsoyUYJFnO034/WUG1EYpGjPsiZwOiWV12pWyQWQsZ5alMr/lCY65Y0Hvd4\nfZmHjj5fXnpxe5z2lDLIMdmiaJCFTJGuC5k/aJ3NW2reVKOgtX4ZSFbCf5HZ8UcSy7wZqYrv7Iu0\nm7aLoblgAbEFVzo3h1wu0ssURre8aks9rD/YlYEZCcIQj64/zNzaYhY3lB73+JQyD1pHdPCN5QVZ\nml12KHDaU7J5i2WQ00kSCEI6xPtYpJpBziWJxXhjWINc6iYU1hwRqzfBIpq7IgFyQxo3z5jHaCrZ\nmcmC1+CWl3TTEzLNoaMDvLH/GNctaTzBqrG+LCIbaO0ezMbUAFBK3a6U2q6U2qiUelQpVT7suVuU\nUruVUjuUUpdZ+b4epy2lRXx7r5eKQqdlGTtBGEk8g5yiyYJRSV8iJtxfdSxAdtnTtI2KGplLoZ5g\nFc1dkRtnOgEypOcxOhkwarsj3fSETPPYhiYArj6t4YTnppRFzuss65CfBU7WWp8K7ARuAYg247oe\nWAxcDvxKKWVN2gxwp5pB7vXF762CkAnKC10olYYGOddcLMaTuM1bmjfcuqgNjeiQBato7hrE47RR\nUehM63WpeoxOBoy0ho8h56yQSbTWPLq+iWUzK5lWWXjC80MZ5Oz9/Wmtn9FaB6Pfvg5MjX59DXC/\n1tqntd4H7AaWWfW+Hoc93nNgNDp6fWLxJmQUu01RUZi6F3J+SywMNAqBoWyUFP0IVtHS7aWhrCDl\nLnox3HmUQY7t+HgMuliAnLNCZtjS3MOejn6uWXJi9hig1OOg0GWPS6lygE8Cf41+3QgM72JyOPqY\nJaQqsUjXB14QjJBqN72hhEyOFOmNN/6QMReLWBGBZKMEq2jqGkxbXgGRDLIvTzTIRl1nQLrpCZll\n1ZZWbAouX1yf8HmlFPVlHlp7MqtBVko9BySaxL9orR+LHvMvQBC4z8D4NwI3AkyfPj2l1xSksMul\ntY4EyJJBFjJMZYrd9OIS3HwNkI26WLgcNqqKXOKrKlhGS/cg588bu7nNSNwpdqmaDAx1vkz/giXd\n9IRMsmpLK++YWUnVKBnQKWWZ90LWWl882vNKqX8ErgIuinalBWgCpg07bGr0sUTj3wXcBbB06dKE\nHW1H4olqkLXWSXfIugcD+ENh0SALGaeqyMWu9r4xj/MZ7JORjIknsTDoYgER26gOaRYiWIA/GKa9\n12cwg2zLnwyyQUkUSDc9IXPs6+xnZ1sflyXJHseoLy3IqgZZKXU58A3gaq31wLCnHgeuV0q5lVKz\ngHnA3616X4/TRlhDIJQ8no4tXNNplCQIRkhVYjFUo2aNBnniZZDjLhbGbKMkgyxYQVuPF60x5I/q\nceRPkZ7ZC1ZdqXTTE6xn1ZZWAC47efQAeUqZh/ZeH8FQ+Lgue+PILwA38Gw0k/u61vqzWustSqkH\nga1EpBdf0FpbdlGJ+7UHQ0m3q+Nd9CRAFjJMZZGLYwNj97Ewk5BJxAQMkEPYbcrQxaqu1M22lp4M\nzErIN2IWb1PK099e9DhtdPYFxz5wEuA1ecGqLXHTlDtFUsIkYdWWVk5pLBtzgTul3EMorOns88dd\nLcYTrfXcUZ67DbgtE+87vKFRqSexS09HX/qNkgTBCJVFLrSOtIUfTRI1VKOWrxKLgPEKxUg3PR+h\ncEoyLEFISnO3MQ9kyC+btyEXC2MZ5NpSjxTpCZbS2u1l/cEuLltcN+axU6JBcUsWm4Vkg3iA7E9e\nKxHLIIvEQsg0qbabHsog56vNmwkLj9pSD2ENR1LsyCIIyYh30SszGCDniwbZRJEeSDc9wXqe3RqV\nV4yhP4aIBhmy64WcDWK2jKNdp9p7fRQ47RS7J9xGtDDBqCqKLMLGDJAN9slIxoQLkI02HYChrSDR\nNApmae4apKLQSYEr/b/FiMdofgR8ZquKpZueYDWrtrQxu7qIubXFYx47lEHOswDZMSSxSEasSUi6\nPvCCkC4pZ5Bj9xuL6gUmXIBsps927GYrVfGCWZoNeiBDZPsnbyQWcVtGo0V64l8uWEf3QIDX9x7h\n0sX1KQV25YVO3A4brXn29xdb+I+2kG/v9UqTEGFcqCqOBMhjeSGbcTlLxAQMkM1okKONByQbJZik\npdvLFAPyCoicvKm0cZ0MmL1gSTc9wUqe395GMKxT0h9DpFnIeHgh5xoxicXgKAv5dmkzLYwTFYWp\napDNJWRGMiEDZKNdUqqL3Sgl2SjBPE1dgzQacLCAyPalPxTOi2JRs7Y70k1PsJJVW1qpL/Vw2tTy\nlF9TX+ahNc+K9NypSiykSYgwDrgcNko8jjEDZHGxCIYMrw6c9kg3vXZpFiKYoNcboNcbNCyxiFWI\n+4OTP4scK5ow6mIR66YndQOCWTr7fKze3sEVp9RjG8VLdSRTygryMIM8eoDc5wvS6w1KBlkYN6pS\naDedky4WSqnfKaXalVKbhz1WqZR6Vim1K/p/hRXvZcbmDSJbtu1ysxVMELtZTjEcIEcrxPNAh2y2\nSC/WTU8WtYJZHnjjEP5QmA8vn5HW6+rLPLT1eAnnwY5PjJgGOZkUrCXqA2+kUZIgGCHSTW/02C1X\nNch/AC4f8di3gOe11vOA56Pfm8aMBhkiOuQ2udkKJmiK3xwMSiyGdanKJZRS05RSq5VSW5VSW5RS\nN5kdcyhANr6il256gllCYc2f1h7k7DlVKblXDGdKmYdASNM5xs15MuFxjK5BbpIAWRhnKovcHOlL\nzebNSKflRFgyitb6JeDoiIevAe6Jfn0PcK0V72XG5g0iGWS52QpmiHXRMy6xiGWQc05iEQS+prVe\nBKwAvqCUWmRmQG8ghFLgtBu3gqotcUuRnmCK1dvbaeoa5KMr0sseA9RH3Y/yyQt5LIlF3AdeAmRh\nnKgqcqVu85ZjGeRE1GmtW6JftwKplQ2PgRmbN4hkkDv7fASl8YBgkJYuL3abMlygkorHaDbQWrdo\nrd+Kft0LbAMazYwZ2/Ex45Uq3fQEs/zx9QPUlbq5ZFH6t6GYW00+6ZCHAuTE98nmrsHoNVA0yML4\nUFns4tiAH62TS51ikqCcyiCPhY78RAl/KqXUjUqpdUqpdR0dHWOOZVZiUVvqQeux/fQEIRnNXYPU\nl3qwp1HoM5yxsjO5gFJqJrAEWGtmHF/AeFFtjLoSD0f6/XlR1ChYz/7Ofl7a2cENy2bgMHDjrC/L\nvwyy3aZw2lVSGVjsGmjk8xQEI1QVuQiEND3eYNJjfMEQDpuy7O8yk3/dbUqpKQDR/9sTHaS1vktr\nvVRrvbSmpmbMQc3YvIE0CxHM09w9GO+wZQR37kosAFBKFQN/Bv5Za92T4PmUF7W+YDguKTFKrFK+\nU1rECwa49/UDOGyKDy2bZuj1VUUunHaVVxlkiCzkB/3JNcgNBmswBMEIqXTT85tMoI4kkwHy48DH\no19/HHjMikHNZqSk3bRgluYuryntXa4W6QEopZxEguP7tNaPJDomnUWtz2TNAEg3PcE4g/4QD715\nmMtOrqe21FhAZ7Mp6krzzwvZ47THi55G0txtvJOoIBhhKEBOHrv5gmHcBi1FE2GVzdv/Aa8BC5RS\nh5VSnwJ+DFyilNoFXBz93jTmXSxinbnkZiukTzisaTF5c4j9/fpyTGKhIkLh3wLbtNY/tWLMiG+5\nyQyydNMTDPLntw7TPRgwVJw3nHztppdolysU1rR2m0sSCEK6VBVFEiWjOVlYcb8ZjsOKQbTWH0ry\n1EVWjB8jFNYEw9pURqq62BXtpic3WyF9Ovt9BELa1PbiWAUwWeQc4KPAJqXUhuhj39ZaP2V0QG8g\nbLqiWLrpCemycn0TP/rrNtp6fLjstrhvr1HqywrYeLjLotlNDDwOe8I6ic6+yDVQLN6E8aSyOJJB\nPjYwWoBsToI7EksC5PHCb4GFh8Nuo6rILTdbwRBxe6MyCyQWOZZB1lq/DBi3m0iAmc6XMaqK3Dhs\niuY8y+AJxli5volv/Xkj3uj9wh8K8+1HN6OU4tolxkxZ+n1BDhwZYOa3nqSxvICbL1tgeKyJQoHL\nntAH+fAx8UAWxp/KwkiAPJrBgtlGciOZUCWoMT2U2Q+grtQtekbBEGY9kGHIhN+XB64MVlyw7DbF\n9KpC9nX0WzQrYTJz+6od8eA4xmAgxO2rdhgab+X6JtbsHCpGbeoa5JZHNrFyfZOpeeY6yTLIVlwD\nBSFdClx2Cpx2jo4pscgxDfJ4YUVXLojokEXPKBhh6OZghcQitzLImSDiYmH+gjW7uph9nRIgC2PT\nlERO0WxQZnH7qh0ERrSZNhNwTxTcSTTIVlwDBcEIVcWu0TPIFrtYTCiJRdwE2oIM8sbD3VZMScgz\nmru8FLrslBU4DY+Rwxpky7GqaGJ2TREv7eogHNbYDPpP5zMr1zdx+6odNHdFCkwnq0Sg3xfEaVcE\nQifa7hvNeCYLrI0G3BMFj9NOR4JEUnPXICUeByUe49dAQTBCpKtq8t1/f9B8zctwJlgG2RqJRU2J\nhyP90k1PSJ+WqAeymc5wY5nwTyasWtHPqi7CHwwnzQ4KyVm5volbHtlEU9cgmskrEVh/8BhX3rmG\nYEif0EmrwGnn5ssWGBo3WWA92SUGBU57QhlYU5dX9MdCVqgr9YxqsGCFrehwJlYGOS6xMJ9B1ho6\n+/zxLkmCkApNXdb4fybT9002vBZ00gOYXV0EwL7OfqZVFpoebzKitebwsUE2HOpiw6Eudrb14nbY\neGX3kROKrWISgcmQRQ6Gwvxy9R7ufGEX9aUeHvjMWTR3DVqWMb/5sgXc8sim4z5DMwH3RMHjtCVs\nFNJs0TVQENKlrtTDy7s7kz7vC4YsazMNEy5AjmaQTWoaYyf3waMDEiALKRMOa3a39/GBM6eaHsvt\ntOeJxMKaLa9ZNUMB8vnzx+64mU/0egM88MYh7nltP4eORjLsboeN+XUlhMI6oRMBJNfqTgRCYc2G\nQ8d4dms7z2xpZW9nP9ee3sD3rz2Z0ujWv1XBf2ycfJCoDMfjtCfc5WruHuSMGeVZmJGQ79SVeuj1\nBhnwByl0nRi+WnW/iTHBAmRrMshza4oB2N3ex7JZlabnJeQHB44OMOAPsbihzPRYHqct5xqFZAKr\nbHdqit2UuB3s7eizYFbp0z0QYO2+I9SXeVhYX2qp16ZRWru9/GbNXh544xB9viDLZlZy43mzWTK9\nggX1JTijmZRzfvxC0mD4mw9v5EsXzWVqRW5n5Vu7vWxq6mZLczebm3p46+Axjvb7cdgU75hZydcu\nXcC7T52Ssfe/dkljVgJipdS/A9cAYaAd+EetdXO0qc8dwJXAQPTxt6x8b4/zxF2ufl+QroGAZJCF\nrFAX98T3MbM6QYBssc1bXgbIjeUFFDjt7G7Pzs1WmJhsaY4Udi5qKDU9ltthm/QaZK01vmDIEhcL\npRSzaorYO45OFp19Pp7a1MKqLa2s3XuUYNTJwGW3cVJDKctnVfLJc2aN+y6ULxji7jX7+OXq3fiD\nYd596hQ+de4sTp2aOKuXSCLgcdhYPruKRzc08cj6w9ywbDpfuWQ+5VGv0fFmZBHhl941l4oiF6/s\n7uTlXZ3x37tSET36O+fXcOHCWt45v8ZUwewE4Hat9XcBlFJfBv4V+CxwBTAv+m858Ovo/5bhie5y\naa3jNRct3eKBLGSPWCfkth4vM6Oyu+FYbfM2sQLkgDU2bzabYnZNEbuzlI0SJiZbm3tw2BTz6opN\nj+XJA4lFMKwJa/ML2hizqotYt/+YJWONxc62Xm74zVo6+3zMqSnin86fzQXza+js8/P24S7ePtTF\n717exz2v7udjZ81gRlURv35xT8a34Fdvb+fWv2xh/5EBLltcx3fevWhMTfZoEoHmrkF+sXo39649\nyBMbW/juVYu45vQGU0Wo6RIrIowF8E1dg3zrkU0AFLrsLJ9VyQ3Lp7NkejkL60spck+o25YptNY9\nw74tAmL2HNcAf9Raa+B1pVS5UmqK1rrFqvf2OIf82mOL3KZYoyQJkIUsEMsgtybpY+HPa5u3aMbN\niu3NebXFvDFON1thcrC1pYe5tcWWrFATbV9ONqzyLYdIEPXC9nZ6vUHO/tHzfOPyhRnb8t7a3MNH\nfrsWu03x+BfPOSEzG9vKP3R0gJ8/t4u7X96HHuYqFnOJAOM62JEZ1U+fN4vX9hzhma1tzKkp4n8/\ntYzz5qWuxU4mEWgoL+CH153CR5bP4JZHN/HPD2zgz28d5gfXnsyMqhMzNJngP57enlAnXV3k4tVb\nLsoJOUs2UUrdBnwM6AYujD7cCBwadtjh6GPWBciOIb/2WIAsTUKEbFIbzSC3J3GysFqDPKGuPFZJ\nLADm1hbT1DVIvy9oeqxU2N/Zz21PbuVHf93GH17Zx9ObW9jV1jsu7y1Yw9bmHkvkFRDJzkz2ADn2\n85m9YMUyjL3eyLna3O3NmE3ZxsNdfOg3r+N22HjwM2cllS0ATKss5P998DRqit0nPGe2c9tIW7Zb\n/7KV1Tva+eblC/nrTeenFRynwqKGUh753Nl8/5rFrD/YxaU/eyku4cgU4bDmiY3NSVuIH+n350Vw\nrJR6Tim1OcG/awC01v+itZ4G3Ad80cD4Nyql1iml1nV0dIz9giiJ/NqbuwaxKagrOfFvXhAyTYnb\nQYHTnrATcjAUJhjWeSyxiAXIFqwQ5tZGtsn3dPSNehM0S3PXIP/1wi4eXHcYmwKFwj/Mf/mihbV8\n/bIFnDTFmsBrsuMLhtjc1M26/cfY1NTN9MpCzplbzZkzKizRuiajo9dHe6/PkgI9iGRnugYCloyV\nq1i1oL191Y5xsSnb2tzDh+9eS6nHyf03rkjZTi5RMwUw7hKR6OcFqCx08bkL5hgaMxXsNsXHzprJ\npYvqufUvW7h91Q4e29DED687haUzrStm1lqzaksrP3t2FzvaenHYVFzfPZx8yVJqrS9O8dD7gKeA\n7wFNwLRhz02NPpZo/LuAuwCWLl164gedhAJX5LwdvpBv6hqkvtSDw0IrLUFIFaUUdaVu2hJcc2Nx\nlZWL6okVIMcyUhasEObWlgARJ4tMBci/enE3P392FwAfXTGDz18wh+piN0cH/LR2e/nbzg7+5297\nuOKONbzntAa+fun8cdvWnGjsaO3lZ8/u5IUd7fGsVmN5AU9vbuVXL+7B5bBxzpwqfvjeU5hSZu2N\ndeX6Jv79ia0A/Hr1bqqKXKYCs5Xrm3h1T8Sb9pwfvzBpLaOsOl/Ho5NZMBTm5offpsBp58HPnpVW\nEVJDeUHSYPirD27gS++ax6wEBSXJSDZWe5JA3Grqyzz8+iNn8tzWNv71sc28/79f49rTG7jp4vlp\n/Rwj0Vrz/LZ2fvbcTrY09zC7uog7rj+dUEjzLys3553PcCoopeZprXdFv70G2B79+nHgi0qp+4kU\n53VbqT+GIYnF8N+LeCAL2aa21JMwgzxUo5anAXJshWDFBzCjqhCHTbErQ04Wj7x1mP94egdXnFzP\nd65adNwNt7rYTXWxm5Mby/jI8hnctWYPv3t5P89tbePb7z6JjyyfPq5FMt0DAdbs7uClnR0cPDpA\n10CAo/1++nxBGsoLmFVdxOzqIhY3lnHhghpKPM5xa1174Eg/P39uFys3NFHscnDDsumsmF3FmTMq\nqClx0+cL8sa+o7y8u5P7/36Q6375Kr/7x3dYJoUYWUDU2e83pS9NVJBkVq+ai6xc38QPn9oGwPf/\nEllcGP35kgWgVt6o//jaAbY09/DLG85Iu0I/mUvEitlVPLWphZXrm7jilCm8a0Et58ytPsH1QmvN\ntpZeVm1pZdWW1qTvM96BycWL6jhrThX/9cJu/vDqPv6ysYX3LmnkyxfN480Dx1I+/3u9AR7b0Mx9\naw+yraWH6ZWF/L8PnMY1pzfEM5E2m8o7n+EU+bFSagERm7cDRBwsIJJJvhLYTcTm7RNWv3HMHWRn\nW298h7O5y8vp08QDWcgedaUeNh3uOuFxK2teYkyoANnKFcKTGyOL7V+/uIfHNzRbekHeeLiLbz2y\niRWzK7nzQ0vifqSJKCt0cvNlC/nIihl84+GNfHflZp7b2sa7FtZy10t7LbthjAxov/yuufjDmsc3\nNPHWwS5CYU1ZgZMFdSVMryzk9GnlFLjsNB0bZP+Rfv62owN/KIzLYWN+bTE72noJhCK7dZkI8nq8\nAe54bhf3vLofh11x4/mz+ez5c6goOt6Gqtjt4MKFtVy4sJb3nTGVT/7hDa771SsUux0c7feb/uys\n3t4fL7lANhm5CDg6YG5RkelOZq3dXn767E7On1/DlafUp/360Vwi2nu93PW3vfz5rcPxa87smiLq\nSz14AyG8gTBH+/209nhRCpbOqOB9ZzTy5MYWvMP0v9nKqBa5HXzrioV88tyZ/PeLe7l37QEefusw\nCoipIkae/7GOfpuaulmzq4PHNjQz4A+xaEop//G+U7nujMYTronZ8hnOdbTW70vyuAa+kMn3Xj67\nigV1Jfz02Z1ccfIUHDZFS/cgV56SOb9pQRiLuhI3z/X4jrMfhGGN5CZSBlkpdTkRQ3M7cLfW+sdG\nxlm5vonfvrwPgHN/y1vyYgAAE1NJREFUstpU0BO7gcd0b1ZWnTdFixjKCpz88oYzRg2OhzOlrIA/\nfnIZ//v6Af79ia38bedQMYXZ+SXKWn4zOt7C+hI+f8EcLlhQw+nTKrDbEmeuI52runhyYwv3vLqf\nkD5eymY2yBv++VUUOgmGNX2+INe/YxpfuXh+vHp1NBY1lPLZd87m1r9s5UjQH/9ZzXx2Vm/vj4dc\nINtYvQgYHoDGzq8fvfcUywKqf39iK/5QmH+/ZrHhnZtkAV5tiYfvXLWIb195Ettae3htzxFe23OE\n7sEAhS4HlUU25tUVs2J2FRefVEdNtPjpvHk1OZVRrS3x8K/vWcSN58/mkp/+jd4Rxc2DgRA3P/Q2\n97y2n/2d/RyL6us9ThtXn9bADctncNrUsnHdGRPMYbcpvnXlQj7x+ze4b+0B3n3KFAIhTWO5dJ8V\nskddqYfBQIheXzDeNROISy8nTCc9pZQd+CVwCREbmjeUUo9rrbemM47V29JW38BHzi+sYcAfYs2u\nzrTGUypSJPOLF3afoDe0OmsJUF3s4q83nZfSTctuU5w5o4IzZ1Twu1f2JTymqWuQUFgnDbKTsXJ9\nE9/688Z4xuzYQACl4KsXz+dLF81La6zfrNnHyCoUM5+d1dv74yEXyDaZWATEAtC71+zlB09u450m\n200PX5ABXHlyfUb1/zabYnFDGYsbyvj0ebPHPD5XM6r1ZR76kjj/BMKaQpedSxfVc8rUMk6dWsaC\n+hJLtzyF8eWC+TWcM7eKO57fxexoB9rJdK0SJh51ZTGrN+9xAXImJBaZLkVdBuzWWu/VWvuB+4kU\nGqTFaAGtEay+gSeany8YNjw/q6rig6Ewz29rS/q6I31+Qxmd0TSa5/7kBX7+3E4OHR1IaaxwWPP9\nv2w9bjsZQGu4/41DSV6VHKt/tzdftgDXiF0AM9vdN1+2gIIRbhuTrSAp2Q3Uihvr7JpIEGumo95w\nG7UYL2xvz4ht3GQk2e+xsbyA+z69gp+8/1Q+smIGp04tl+B4gqOU4ttXnkT3YIDv/2ULIAGykF1i\nFoNtI7yQMyGxyHSAnMzMPC2sDnqsvoGP1/wU8J2Vm9g5in+y1pqtzT384ImtrPjRC3zqnnUkS+ga\n/XkTBXkeh41PnDOTubXF/Py5XZz3H6u54PbVfPvRTTyxsZk3Dxxjc1M3O9t62Xi4i9+/so/P/u+b\nLL3tOY4O+BO+j5HPz+rf7bVLGrn69Ib4943lBaa2969d0siP3nsKjeUFKAvGy0UyuQiYVR3JYu0z\nESAnWtB6TSxo8418WOQJQyxuKOO6JY3s6Yicc40VEiAL2SPWbrp1hH96rEZtUtm8KaVuBG4EmD59\nesJjrN6WtrroZzzm57bbOHVaGQ+uO8y9rx9kemUh0yoLmFZRSG2ph9buQXa397Gno5/uwQBOu+Ki\nhXW894xGegYDfPexLZb9vKMVJQEcPDLAs9vaeHV3J49vaOZPaw8mHGdqRQEXLqhl9fb2hEGykc8v\n0WcH8G4ThSVOu42yAicb/vUSSzSUubp9bhVj/X2YYVpFAQ6bYq+JNvH5oAPPJJn8/Qq5ydcvXcCT\nG1tw2W3HbWsLwnhTG2033dY7IkC2sJFcjEwHyGOamadiYm51QDuy6KfAaTeVxfvYWTP40V+3H/dY\npgLQo/1+/vzmYd4+3MXhY4M8t62Nzj4/NSVu5tQUcdWpUzi5sYzLF9cf5/jgsNssvaGNFuRNryrk\nU+fO4lPnziIYCrO1pYej/X4CIY0/GMam4NRp5XGpxkgNNxj//EZ+dlOieqVH1h/mn86fHS+CSoet\nzd0smlKaFwVGVhXVZmoR4LDbmF5VaCqDnA868Ewz2Rd5wvE0lBdwyxULTZ13gmAFhS4HJR7HCe2m\nhyQWE8fm7Q1gnlJqFpHA+HrghnQHyUTGInaB/8Tv/05Lt9fUWG8dPIbbYaOi0EVbjzejAWhlkYt/\nOv/4Ip9gKDxmZ6Ns3dAcdtuYjVis/v2O/Fl3tvVy1Z0v84Mnt3LH9UvSGisYCrO9tZePrphhaC4T\nCauKajPN7Opi9nYYv1F/7ZL5fO2ht48r5hSJgCCMzj+eMyvbUxAEICKzGNksxMpOyzEyGiBrrYNK\nqS8Cq4hkpH6ntd5iZKxMBXhza4t5Zc8RQ+4LAG8eOMqqLW189ZL5fDlNxwWrmAxtPzMZwM+vK+Gz\nF8zhzud38Q/vmMbZc6pTfu2+zn58wbBljUdynHhRLUC0S9c1QG4FyDVFvLSrg3BYYzNwztrtCk2k\ndfOxAfNe2YIgCML4UVfqTh4gTyCJBVrrp4h0/clJ5tWW4A+GOXR0gJlptlHVWvPDp7ZTU+Lm0+fJ\n6jqX+fwFc1i5vonvrtzMX286P2Uh/9aWHoB8CZATFdUuz9JckjKruihyzh4bSNuaLRzW/HL1bubX\nFfP0TecbCrAFQRCE7FFX4mHtvqPHPTYRbd5ynjm1kar43QZaTv9tZwdvHjjGP188j0JX1usdhVHw\nOO3cevVi9nT0xxvOpMKqLa2UeBzMiXqACpHCWqXUOqXUuo6OjrFfYDHLZlUCHNdMJ1We2drKzrY+\nvnDhXAmOBUEQJiC1pR7ae73oYQ3LfNEaJitdLPI+QJ4bC5DTrIrXWnPn87toKPPwgTOnjf0CIetc\nuLCWyxbXcefzu1LylD5wpJ+nN7fykRUzUu6IOMEZs6gWIoW1WuulWuulNTXmGnYYYU5NMbNrinhm\nS1tar9Na818v7GZWdRFXndow9gsEQRCEnKOu1E0gpOMdOyEzEou8uOuPRlmBk9oSd9oZ5Ff3HOGt\ng1187oI5lq5YhMzyr+9ZDMCtj285bvWZiLvX7MNhs/GJs2eOw8xygnhRrVLKRaSo9vEszykhlyyq\n4/W9kZbNqfLctna2NPfwhQvnGqo3EARBELJPzAt5uA5ZAuQMMbe2mO2tPWm95s7nd1FX6uYDSyV7\nPJFoLC/gpovn8czWtlE79R3p8/HgukNcu6SB2ujJONnRWgeBWFHtNuBBo0W1mebSRfUEw5oXd7Sn\ndLzWmjue38mMqkKuPV2yx4IgCBOVupgX8nEBcgiXw2apHasEyMA5c6vZ3NSTssfj2r1HWLvvKJ85\nfw4ep7RSnWj803mzOW9eNd97bAsbD3clPOaPrx3AFwxz4whLvcmO1voprfV8rfUcrfVt2Z5PMpZM\nK6e62M0zW1OTWbywvZ3NTZHs8WRwfREEQchXEmWQd7X1UT2s94MVyJ0CeN8ZU7EpePjN5BnF4fzX\nC7upLnbxoWWJO/8JuY3dprjj+iXUlLj53L1vcaz/+C5+g/4Qf3xtPxefVMvc2pLsTFIYFZtNcfFJ\ntfxtR0fcID4ZkezxLqZVFnCdWLkJgiBMaGINv9qizUKauwZ5cUc7151h7fVdAmSgvszDO+fX8Oc3\nmwiFR9elvnngGC/v7uTG82dT4JLs8USlssjFrz58Bh29Pm56YMNxv/eH3jzEsYEAn3nnnCzOUBiL\nSxbV0ecL8vreo6Me9+KODjYe7uaLF87Nl2JLQRCESYvbYaeyyBXPIN//xiE0cP07rE1ayt0iygeX\nTqO1x8uaXcmto7TW3L5qOxWFTj68fPJ3VpvsnDatnH+7ejEv7ezg+rte4ysPbOBfH9vMr1/cw5Lp\n5SydUZHtKQqjcM7cagpddp7d2pr0GK01P39+F1MrCnjvGVPHcXaCIAhCpqgtcdPW4yMYCvPAGwc5\nf14N0yoLLX0PCZCjXHRSHRWFTh5adzjpMQ+8cYjX9x7l65ctoMgtvseTgQ8tm8ZNF81jwB/izQPH\nePztZo4N+PnyRfMsFfsL1uNx2jl/Xg3Pbm0jnGTn5+nNrbx9qIsvSPZYEARh0lAX9UJ+YXs7bT0+\nblhuveRVorwoLoeNa5c0ct/rBznW76dihNi7tdvLbU9uY8XsSj5kcRpfyB5KKb5yyXy+csn8bE9F\nMMAli+p4eksrm5q6OW1a+XHP7W7v5eaHN3JyYynvk+yxIAjCpKGu1M321h7+9PeD1Ja4uWhhreXv\nISmVYXzgzGn4Q2Ee2/D/27v3GKnOOozj34d1t7Arl14AgeVmpDUoUOuytqkxShTbWkVbsZi0TRsj\n/2CsUVOtt9Q/Gm01qDGmSqp/oAZC0tYSq7SQkmpNEVguUqDFtdIK1uwSayuplsL+/GPOmumyOzNh\nduY9M/t8ksnOzuzOPDPZZ887Z8687+vXRogIvvarA7w2MMDd1y/2ClxmObHsrdNoGSe2DpnN4qX/\nvMan1/cwvnUc627q8lzlZmZNpLAH+VUeP9LPDUtn12R2Im81iiycOYlFsyazachhFpv3/51th/v4\n4vJLmHthR6J0ZjbU+R1tXP7mC1j3+2e5c/NB+l7+L2cGgs9u2MuxF1/h3hvfycwpE1LHNDOzUTRt\n0ngG1/q6YWlt1qPwIRZDrOzq5BsPHeTHj/+FjvPewKnTA/xoey9LZk/h1ivnp45nZkOs/cSlrH30\nCD/f8Rwbdj7P4s7J7Dr6It+6bhFL512QOp6ZmY2y6dlUb++9eCqd54/uh/MGeYA8xIols7hnyzN8\n+7dP//+yKe2t3HP9Yi9Pa5ZD0yeN5+6PL2bN+97CDx/7Mw/sPc7NV8z1POVmZk1qwfSJtIwTt9Rw\nx6UHyENMbm/lD19axslTp2lrGUdbyzgmtLX4GEaznJtzYTvfWbmEr394IRM9y4w1EUlfAL4LTI2I\nEypMsfMD4BrgFeCWiNiTMqNZPc2/qIMDdy6nva12/+u9FRnG5PZWJre3po5hZudg0nh315qHpNnA\ncuD5oouvBhZkp3cB92ZfzcaMWg6OwR/SMzMzy7PvAbcDxZN9rwDWR8EOYIqkGUnSmTWpqgbIklZK\nOihpQFLXkOvukNQr6RlJH6wuppmZ2dgiaQVwPCL2D7lqFvC3ou+PZZeZ2Sipdv/0U8B1wE+KL5S0\nEFgFvA2YCWyTdHFEnKny/szMzJqGpG3Am4a56qvAVygcXlHN7a8GVgPMmeMPrppVqqoBckQcBoZb\nkncFsDEiXgX+KqkX6AaerOb+zMzMmklEvH+4yyUtAuYD+7NtbCewR1I3cBwonvy1M7tsuNtfB6wD\n6OrqGn5NdjM7S62OQa747R9JqyXtlrS7v7+/RnHMzMwaR0QciIhpETEvIuZR2I5eFhH/ADYDN6vg\ncuCliHghZV6zZlN2D3Kpt38i4qFqAxS/upXUL+m5Mr9yEXCi2vsdRc5TWp7y5CkLVJZnbj2CnKue\nnp4TZTrbiM95PTlPaY2Wp159/Q2FKd56KUzzdmslv1RBX6HxnvN6ylMWcJ5yqtrGlh0gj/T2TxkV\nv/0z5L6mlvsZSbsjoqvcz9WL85SWpzx5ygL5y3MuynU2b4/ReUpzntJS5sn2Ig+eD2DNOdyGt7FV\nyFMWcJ5yqs1Tq0MsNgOrJJ0naT6FuRp31ui+zMzMzMxGTbXTvH1M0jHgCuBhSY8ARMRBYBNwCNgC\nrPEMFmZmZmbWCKqdxeJB4MERrrsLuKua2x/BuhrcZjWcp7Q85clTFshfnlrI22N0ntKcp7S85amF\nvD3GPOXJUxZwnnKqyqPCoUxmZmZmZgZeatrMzMzM7HUaaoAs6aps6epeSV9OnOVnkvokPZUyR5Zl\ntqTtkg5lS3/fljjPeEk7Je3P8nwzZZ5Bklok7ZX06xxkOSrpgKR9knanzlML7uvI3NmKMrmvdZSn\nvmZ5ctNZ97WiTE3X14Y5xEJSC3AE+ACFCdN3AZ+MiEOJ8rwHOAmsj4i3p8hQlGUGMCMi9kiaCPQA\nH0343AjoiIiTklqBJ4DbImJHijxFuT4PdAGTIuLaxFmOAl0Rkac5I0eN+1o2jztbPpP7Wid562uW\nKTeddV8rytR0fW2kPcjdQG9EPBsRp4CNFJa0TiIifgf8M9X9F4uIFyJiT3b+38BhRli5sE55IiJO\nZt+2Zqekr8QkdQIfAu5LmWMMcV9LcGdLc1/rLld9hXx11n0trVn72kgD5IqXrx7LJM0D3gH8MXGO\nFkn7gD5ga0QkzQN8H7gdGEicY1AAj0rqkbQ6dZgacF8r5M4Oy32tL/e1Qu7rsJqyr400QLYyJL0R\nuB/4XES8nDJLRJyJiEsprKLYLSnZW2SSrgX6IqInVYZhvDsiLgOuBtZkbyfaGOPOns19tbxyX8/W\nzH1tpAHyOS1fPVZkxyHdD/wyIh5InWdQRPwL2A5clTDGlcBHsuOSNgLLJP0iYR4i4nj2tY/CXOLd\nKfPUgPtahjs7Ive1/tzXMtzXETVtXxtpgLwLWCBpvqQ2YBWFJa3HvOyA/Z8ChyNibQ7yTJU0JTs/\ngcIHP55OlSci7oiIzoiYR+Hv5rGIuDFVHkkd2Qc9kNQBLAeSf1J7lLmvJbizI3Nfk3BfS3BfR9bM\nfW2YAXJEnAY+AzxC4QD5TdmS1klI2gA8CVwi6ZikT6XKQuEV3E0UXrnty07XJMwzA9gu6U8U/vFu\njYjkU7/kyHTgCUn7gZ3AwxGxJXGmUeW+luXONg73NYGcddZ9bRyj1teGmebNzMzMzKweGmYPspmZ\nmZlZPXiAbGZmZmZWxANkMzMzM7MiHiCbmZmZmRXxANnMzMzMrIgHyGZmZmZmRTxANjMzMzMr4gGy\nmZmZmVmR/wHKQ/mkv8aKugAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAADCCAYAAABUrzQ5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3ib13X/PxebJAhS3EN7WLIkW5Itb8dJvOSR2MqejdOkddskTTPqxG7apmniJP05aUYzXcet0zpxHG/HSeQ948qWLEvWsCRqc4ggJXFj4/7+eAGQIgES4wUBCufzPHpIYtz3AsKL99xzv+d7lNYaQRAEQRAEQRAMLIWegCAIgiAIgiAUExIgC4IgCIIgCMIYJEAWBEEQBEEQhDFIgCwIgiAIgiAIY5AAWRAEQRAEQRDGIAGyIAiCIAiCIIzBVugJjKWurk7Pnz+/0NMQhKJh8+bNvVrr+kLPIxVyzgrCKHK+CsLMYrJztqgC5Pnz57Np06ZCT0MQigal1KFCz2Ey5JwVhFHkfBWEmcVk56xILARBEARBEARhDBIgC4IgCIIgCMIYJEAWBEEQBEEQhDFIgCwIgiAIgiAIYyiqIr1c6B8J8YuXDvDpty/CabMWejqCIEzBL18+yDnzazi92VPoqQiCIAh5YmfnAHu6B/EO+vEOBKgqs/OZSxejlCr01CbllAmQ73zpAD98ai/nL6zhwkV1hZ6OIAiT0OYd4p8f3sFHz5/LN9afUejpCIIgCHng+T09fOzOVxJ/2yyKcFRz0ZI6zpo7q4Azm5pTIkAOR6L85tUjAHgHAgWejSAIU3H/a+0AHO2X81UQBOFUxB+K8I8PbWdhXQW3f+xsGjwuFHDeN5/i3lePFH2AfEpokJ/Z3cPRAT8A3bGfgiAkRyl1p1LKq5TaPua225RSbyqltimlHlRKVefr+JGo5sHXOgA5XwVBEE5VfvR0G4ePj/CNd61kcUMlHpedSpeda89o5tGtnQwHwoWe4qScEgHyr185TH2lk3KHlW7JIAvCVPw3cNW4254AVmqtzwT2ALfk6+AvtfVydMBPfaWTrn4JkAVBEE412ryD/Pz5fbx7TesE2esHz53DcDDCY9u6CjS79JjxAXJHn49nd3v5wNo5NHlcdA/KBVcQJkNr/TxwfNxtj2ut48v5/wNm5+v4921up6rMzvvOns2x4QDBcDRfhxIEoch4qa2Xi779NB//r1f4wZN7eX5PD75gpNDTEkxEa80/PLidcoeNf7j29An3nzV3Fosb3Nzz6uECzC59ZnyA/JtXDqMxViQNHifdkpEShFz5BPCHfAw84A+xYcdRrlvVwtyacrQGryxqBaEkiEY1tz62i0A4Qlefn+8/tYeP3fkK1/3oRUaCxb3dLqTPfZvbeeXAcW6+ehl1bueE+5VSfGDtHF473Mfe7sECzDA9ZnSAHI5E+c2mI7z1tHpmzyqnUTLIgpATSqmvAGHg7kkec6NSapNSalNPT09G4z+2rYtAOMp7z55NU5ULEB2yIJQKf9xxlJ1dA/zDNaez4fOXsO2rV/L9D6ymrWeIf310Z6GnJ5hAIBzhtg27OWtuNR9YOyfl4951Vit2q0oYLBQjMzpAfvpNL90DAT507lwAI0AeCKC1LvDMBGHmoZT6OPAO4CN6kpNIa3271nqt1nptfX19Rse4b3M7SxrcnDm7KhEgiw5ZEE59IlHN957Yw6L6Cq5f3QpApcvO+jWt/M1bF3HPq0eKXpMqTM39mzvwDgb4whVLsVhS+xzXuZ1csbyRB7Z0EAgXp8TGlABZKXVQKfWGUup1pdSm2G01SqknlFJ7Yz9N9/P49SuHafQ4uWxZA2AEyMFwlH5fyOxDCcIpjVLqKuBLwHVa65F8HONA7zCbD53gvWfPRilFs6cMgKMSIAvCKc+jWzvZ6x3iC1csxToucPr8Faexek41Nz+wjfYTefn6EaaBcCTKz5/fx5mzq7hoce2Uj3//2jkcHw7y5E7vNMwuc8zMIL9da71aa7029vfNwFNa6yXAU7G/TWXjgeOsW9GEzWq8jEaPoXU5Klu2gpASpdSvgZeBpUqpdqXUJ4EfAZXAE7GF7s/MPu6DWzqwKHjXGiN75Cmz4bJbJEAWhFOcUCTK95/cw7KmSq5e2TThfrvVwg8/uAat4XP3vE44IoW7M5Hfbz/KoWMjfOpti9LqkveWJfU0eVw89kbnNMwuc/IpsbgeuCv2+13AejMH11rjD0XwuOyJ2xo9cU2jWL0JQiq01h/SWjdrre1a69la619orRdrrefEFrmrtdZ/bfZxjxwfoXVWGQ2x81QpRXNVmSxoBeEU54HX2jl4bIQvXpl6231ubTm3vmslmw6d4D9fODDNMxRyRWvNT5/dx6L6Cq5cPnERlAyrRbFqThW7jxZnoZ5ZAbIGHldKbVZK3Ri7rVFrHRcUHQUaTToWAOGoJqrBaRt9CU0eKfoRhGIlEI7gsllPuq3R45QMsiCcwkSjmh8+1caq2VVcfnrDpI+9fnUrVyxv5D+e3ivfCzOMZ3f3sKtrgL9+66JJtcfjWdJQyaFjI0Vp92lWgHyx1vos4Grg00qpS8beGSv4SVr0k21FfPzNdNpHX0J9pSGx8EqALBQB3QN+hoq8U9B0EghFTzpfAckgC8IpzoFjw3T0+fjweXPT2nb/p2uXE45qvvn7XdMwO8EsfvJsGy1VrkQBZrosbnATjmoOHRvO08yyx5QAWWvdEfvpBR4EzgW6lVLNALGfSVXY2VbEB+IB8piMlMtupbrcLhdcoSj4yB0b+fTdrxV6GkVDIBxNkkF20T3gJxoV5xlBOBXZ3tEPwJmz0+teP7e2nL++ZCGPbO1k4/5j+ZyaYBKvHjzOqwdPcOMlC3HYMgsrFze4AWjzDuVjajmRc4CslKpQSlXGfweuBLYDjwA3xB52A/BwrscaS9wWxDnuP6MpZvUmCIUkEtUc7B3muT09bD50fOonlACBcCRJBtlFKKI5PhIs0KwEQcgn29r7cdosLIkFQunwN29bTGt1GV99ZIcU7BU5Wmu+s2E3dW4HHzhnbsbPX1TvRinYW4QBss2EMRqBB2NbJzbgV1rrPyqlXgXujVXIHwLeb8KxEgRCEyUWAA0el0gshILTOxQgHMuKfv/JvfzPJ88r8IwKjz8UpXJMUS2MFtYe7fcn7bgkCMLM5o2Ofpa3eBJuU+lQ5rDylWtP51N3v8avXjnMxy6Yn78JFiEPbengtg276ezz0VJdxk3rlnLtmc1sPnSC5/f08FJbLz2DAXyhCL6QkSw8a+4sLlpcx4WLajmjtSqj9zsXnt/by8YDx/nadSsoc1infsI4yhxWWqvLijKDnHOArLXeD6xKcvsx4LJcx09FXGLhsI7bsq10sqdIKyKF0qGzzwfAeQtqeGFvL5sPHefseTUFnlVhCYQjE3Z8mqtGA+SVrVWFmJYgCHkiGtXs6OjnvWfPzvi5V69s4sJFtXz38T1ctbKJhkpXHmaYHlrrtPTTZvDQlg5ueeCNRODb0efji/du5cv3byMQjmK1KM6eO4sLF9dRZrdS5rASDEfZeOA4t23YDUBrdRlfvnoZ7zyzOa/zjkY1t214k9mzyhIN27JhcYPb1AA52QJj/ZrMtNFgTga5IKSSWDR6XPQMBYhE9QQzckGYLuLd4b501VJu/OVmySJjLGonSKLi3fRk10cQCopZQcVY9vcOMxyMZLX4VUrxr9ev5NofvsCX79vGnR8/x7RgL9Vr3dczxB+3H+WFvT30DAbo94UZ8IdAw/y6chbWuVnUUMHqObO4cFEtFU7bpONlw20bdieC4zgRrXFaLPzso2dz4eLak+xtx3JsKMCLbb38/Ln9fPbXW/ivlw7wj9cu5+x55vZpi7/ejlgi6CPnzc1YezwWBezsGmD+zY/RmuP7l2yBccsDbwBkPOYMDpCTSywaq1xEoppjQ4GE36ogTDfxDPLCOjd/9daFfPP3b5Z8FjkQip5UVAtGu1GrRdEtlk6CUDDMDCrGjvm1R3cARtBnt1oyHmtxg5tbrl7Gvzy6k7s3Huaj58/Lai7j5zX+tf79b7fyrT/sStQvrWz1sLSpkqoyO54yO2gj2N/rHeTJXd2EoxqH1cJ5C2uorXDwh+1HEzFJLu/dnu7BRNA5Hl8wwlVJmqyMpdbt5PrVrbzjzBbuf62d72zYzXt++icuXlzH/p4huvr9OQfw498/gPs3t3PO/JqsxnxoSwcvtvUm/s71s5dsgeELRbhtw+4SCpBDE10swJBYgNEsRAJkoVAc7ffjsluoLrfz0fPn8fPn9pd8FjkQjuAat6C1WhQNlc5Exl0QhPSJtYj/AWAF7tBafzubccwMKmBiEOUdDGQd9Hzsgvk89aaXf310Jz98ai89g4GcgrxkrzUc1ZwYDvG161Zw5YpGmqvKUj4/GI6y6dBxnt3dw9Nvenlhb++Ex2Ty3h06NswTO7v54/ajbDp0IuXjWqpTz2k8Vovi/WvncO0ZzXzq7td4bs+ohW4+AlB/OJr1Z+W2DbsJRU52Mcrls9eZYoGR6vbJmLkB8iQSCzDaTZ+BaBqFwtDV76elqgylFOUOWyKLvKOznxUtpfm59IeiOO0TiziaqlzS3EcQMkQpZQV+DFwBtAOvKqUe0VrvzHQsM4MKMDfgtlgUly1r4IW9vXgHjQxvLkFeqgxtKBLlhgvnT/l8h83ChYvquHBRHf9wzenMv/mxlMe5bcObzKupwFNmw1Nmx2W30tXn5/DxEQ4fH+a1Q33s7jZqppY1VXLz1ctwO23c+tiuk96/MruVm9Ytzeh1AlQ4bUm1vcUSgOZjvJbqsqT/x5ksMOLM2AA5WaMQGNU0ygVXKCSd/T6aq0d3MC5cVAdAxwlfSQbIWuukRXpgWDPu6ZbCWkHIkHOBtlihPEqpe4DrgYwDZDODCjA/6EnWejqbIK+zz4fLZsGfpGtbtq+1NcV7Z7cqfvbcfiIpPN5rKxyc1ljJP71jOVcub2ROTXniPrfTZpqmOdV7nmqhMBXNVS46k+z4Zfv+mf3Zu2ndUm6+f9tJ/8fZLjBmbICcrFEIGB86i5JuekJh6erzc/GSusTfcWlBsi/mUiBZa/g4TVWupNuUgiBMSitwZMzf7UBWGq6b1i2doCvNNqiA4gu4Q5Eov3z5EN99fDdRDTaLSthwQm6vNdV79613n8FVK5voHQrQ7wsx4AvjC4Vp8pQxp6ZsguXlWNavac25QDJOqv+LMrsVfyiCK8mu3mScOaeazv6jE8Yy+/3Ldrz1a1oJR6L8/X3bAHIq+pseo7w8kEpiYbNaqHM7pVmIUDDCkSjeQT8tVaMZ5PhCzj9u27EQKKXuVEp5lVLbx9xWo5R6Qim1N/bT1LLnVAtaMDLIQ4Ewg/6QmYcUBAFQSt2olNqklNrU09OT9DHr17TyrXefgT3m/NRaXca33n1G1kHaTeuWYree7DiRa8CdjKaqyeuMtNb84Y0u1n3veb7+u52cu6CGp774Vr7zvlW0VpehyP21xt+7ZOO57FZmzypnRUsVFyyq5dJljSxv8UwaHJvNTeuWUjYuCLZZFP5QhPf+7E8ZZfWf2mVopc+ZP4uWKpep719FzEO5pcqV03gAV53RDMBXrjmdl26+NOuxToEM8sQYv9HjknbTQsHoHgwQ1dA0ptAjvkoPFEGADPw38CPgl2Nuuxl4Smv9baXUzbG/v2zWAeOve3yRHpwsi5rOC4cgzHA6gDlj/p4du+0ktNa3A7cDrF27NmVP9/VrWrnr5YO4nbaci4nXr2nlgdfaeWFvL5rcsniQPMsIRqD3UlsvZ8+bdVImtN8XYuP+Y/z0uX1sOdzHkgY3d3xsLZed3oBSijk15aZlaMHcjK/ZxOc1XrLhdtr43G9eZ933n+dLVy3jw+fOndQad3/PEJ+753VWtnr4n0+el3Hmeao5DvhD/PPDO3jgUxdNufCZivj1ZrwEN1NmboAcc7FI5r3X6HHRfmJkuqckCAAc7TdW5GM1yAmJRajwEgut9fNKqfnjbr4eeFvs97uAZzEzQJ4igwxGYePihkqzDikIpzqvAkuUUgswAuMPAh/OZUCXzWraLtdIMMLZ82Zx399cmPNYyYK8a85o4lcbD/OROzbisFlYO28W82oreP1IH28eHUBraPQ4+bf3nMF7zpo9bZ3lipFUAfyjf3sxX3nwDf7poe3ct7mdW9evnOBZ3e8L8V8vHeAXLx7AbrPw8z9ba2pwHGdxrBV5m3co9wB5kgRqJszcADkhsZj4H9XocfLa4dR2KYKQTzr7jN2LlmQZ5HBRZJCT0ai17or9fhSjhbxp+CdZ0cctlY6K1ZsgpI3WOqyU+gywAcPm7U6t9Y5cxixzWOkZDOc8t0hUs6NzgA+eO2fqB6dJsiDv7y4/jVcOHOOltmP8ad8xtrV3smpOFZ+77DTOXVDDmrnVeQnmThUW1FVw91+cx8Ovd/KNx3Zy3Y9e5PRmD0sa3CxprMQfinDXnw4y4A+zbkUjN61bSmuWOvKpGA2QB0+q38mGRKfl0g2QoyjFBJ0TGBnk48PBWNW8nBzC9NKVJINssygsqjgyyFOhtdZKqZRbsUqpG4EbAebOTa+96GQr+gaP4V0uAbIgZIbW+vfA780az2W3mJJB3tczhC8U4Yw8t493O21cuqyRS5eZup4vKZRSrF/TytuXNnDHi/vZ1t7PqwdP8NDrnQCsW9HIZy9bknf3pXq3E4/Lxl4TWk5PlkDNhBkdIDttlqStJ+Nbtt6BwEnWKYIwHXT2+XE7bSe1A1VK4bKbt32ZB7qVUs1a6y6lVDPgTfXAdDWNY5lMYuGyW6mpcEjdgCAUGJfNit+EXa432vsBOHN26VlazlSqyu188crRIsqhQJjhQDjRWyLfKKVY0liZ1Lc5U4ImSSxmrCgnGJ7YtjZOPCPlHZQLrjD9dPX7aE6ioXLZzbn45IlHgBtiv98APGzm4ImiiRRfWI0el2SQBaHAOO1WfMHcd7ne6Oin3GFlQZ3bhFkJhcDttE1bcBxncb3blAB5soRMJszYADlV0wEY7aYnVm9CIejq9yctMnDZLEUhsVBK/Rp4GViqlGpXSn0S+DZwhVJqL3B57G/TSHxhpdADNleJ84wgFJoyu9UUp5027xBLGtyTuiIIwngWN7g5NhzkxHAwp3HiJg4l7WKR6sWPBshywRWmn65+P6c3eSbc7rJbE4FiIdFafyjFXZfl65j+NDLIW4/05evwgiCkgctuMWWXq6PPx/Lmid+BgjAZixtjhXo9Q5xTUZP1OHENsiNH5xLTMshKKatSaotS6nexvxcopTYqpdqUUr9RSjnMOhbENcjJs1Gzyu04rBbJSAnTTjAcpXcocFKBXhyHzZwCmJlIfGGQzAcZjAzysVhhrSAIhcFltxKKaMKR7Bfy0aimo89H66z8uB0Ipy4LaisAOHQsN5ve0R3LIgmQgb8Ddo35+9+A72mtFwMngE+aeCwC4UjK1YFSigaPE69ILIRppnvAj9YnW7zFKfIivbwylSZsbGGtIAiFIeHXnsNOV+9wgGA4mjc7MOHUxaz6sWAxaZCVUrOBa4E7Yn8r4FLgvthD7gLWm3GsOIFwaokFGFu2IrEQppt4285kGWSX3ZLQRpUaqVrDx5HCWkEoPHHP4FwW8h0njO/A2ZJBFjKk3GGj0mnLOVEy1fUmXczKIH8f+BIQv/rXAn1a67jjeDuQtA9jOn3ikxEIRSd98U3SblooAF0xJ4bmVBnkEpUQJIomUqzo69xGgHxsKLfiDEEQsseUADmWJBCJhZANDR5nzokSszrp5RwgK6XeAXi11puzeb7W+nat9Vqt9dr6+vq0nzdVE5Bat0MutsK00xlvEpLUxcJawhnkyTVhNRVGicKxHKuXBUHIntEAOfvvqXgGWSQWQjYYu/85ZpBDxdNJ7yLgOqXUNYAL8AA/AKqVUrZYFnk2Rq9404g3CklFTYWDfl+IUCSKvYR7sAvTy9F+Px6XjQrnxFPLaVKF+ExkKheLeIB8XAJkQSgYrtj5mWsG2eOyUTmmUZIgpEtDpZNNh07kNIZZnfRyjhy11rdorWdrrecDHwSe1lp/BHgGeG/sYaY3HgiGoyk9VQFqYxfcEyNywRWmj84+Py0pMicuW2kX6TlSdL4EI3PldtroHZIiPUEoFGZpkFtnSQdbITsaPS68gwG0TqtJa1KC4ShKgd2amw93PlOrXwa+oJRqw9Ak/8LMwafOIBuaRslICdNJqi56EPMYLVmJRerGPnFq3Q45XwWhgJQ5TJBY9PlEXiFkTYPHRTAcpd8XynqMeHyYKiGTLqY2CtFaPws8G/t9P3CumeOPZaoLbmLLVnTIwjTS1e9n1ZzqpPeVus3bVNtdNRVSNyAIhcRlyy2DrLWm/YSP8xfWmjktoYRoqDSSm90DAarLs2ufEQhHc24SAjO51XRo8gturVuKfoTpxR+KcHw4SEuKDLIz1kkvl62jmUogFE3ZJCRObYVTzldBKCCjPsjZBcgDvjBDgbBkkIWsMaMTciAcmVSCmy4zN0COaRpTIUU/wnQTt3hrSmLxBqMFasXQbnq68acjsahwcEw0yIJQMOIaZF8wuwC5vc/ogCYWb0K2NCY88bO/FkxlA5wuMzJAjkY1wcjkb8CscgdKSQZZmD66YhZvqTLI8YtPKVq9TbXjA6Ma5FLMsAtCMeDMsZOeWLwJudJQaUIGeYr4MF1mZIAcjEzdZ9tqUVSX2Tk+LBkpYXro6os1CUnlYpHj9uVMxtjymvzrpqbCQTiqGfCFJ32cIAj5oSyxiM/uO0qahAi5UuawUumy4c0lQE4jIZMOMzJAnqorV5yaCqmKF6aPrkmahEDuBTDTgVLq80qpHUqp7UqpXyulkr+YDJnKdQbGdNOTRa0gFIRcbd46Tvhw2S0Jm1VByIa41Vu2BMKRnJuEwEwNkCPp9dmurXBKVbwwbXgHA1SV2RMXmfEkJBZFqkFWSrUCnwXWaq1XAlYMb/OcSdfFAkQWJQiFwm61YLUofDlkkFuqy3K21xJKm4ZKZ45FeiUssRjNIE+9ZSsZZGG66BkMUB+zqEmG04QuVdOADShTStmAcqDTjEEDocjULhZx5xlZ1ApCwXDZsvdrFw9kwQxybTcdmKKRXLrMzAA5HNcgT5GRksYDwjTSOxSgzp16a3F0+7I4M8ha6w7gO8BhoAvo11o/Pv5xSqkblVKblFKbenp60ho7nQxybYVILASh0JQ5svdr7zjhY7boj4UcafA46cmhm16wpDPI4XQlFg5OjASJRqUqXsg/RgY5tWQ3UaRXpBlkpdQs4HpgAdACVCilPjr+cVrr27XWa7XWa+vr69MaOxCa2uZNmvsIQuFx2qxZLeJ9wQjHhoPMljbTQo40VLoIRqL0jWTXTS+dzq3pMEMD5PQlFlENfTm0LBSEdOkdCqaZQS7OABm4HDigte7RWoeAB4ALzRjY2PKa/Hx12CxUumyiQRaEAuKyW7L6jko4WIjEQsiRuBdy92B2OuRAaPI+GekyMwPk2Op2qjdgtFmIbNkK+cUXjDAUCE+qQXbl6DE6DRwGzldKlSujyuYyYJcZA6cjsQDDyUICZEEoHC57dhKL9hPSJEQwh3g3PW+WOuR0rzdTMTMD5ITEIk1No2zZCnmmN9YBLm5Vloz45zVbj9F8o7XeCNwHvAa8gfH9cLsZY6e75VUj3fQEoaCU2a1ZebVLBlkwi4ZYoilbJwuzJBa2nEcoAJlILEBso4T8E/dsnNTFovgzyGitvwp81cwxI1FNKKJT2t+NpbbCweHjI2YeXhCEDHDZrVnZvHWc8GGzqET2TxCyJd5NL1sv5GAakr50mKEZZCPASNs2SgJkIc/EM8j1k2SQXTl2qZqppFtUC8Y52ys7PoJQMHLRIDdVubBaxANZyI0yhxVPlt30tNbFI7FQSrmUUq8opbbGOnB9LXb7AqXURqVUm1LqN0op01rrBMPpddKbVS5V8cL00JNGBnkmdNLLB+n6loMhixLnGUEwUEq9L3ZdjSql1o6775bY9XW3UmqdWcd05pBBFnmFYBYNWXohByPpX2+mwowMcgC4VGu9ClgNXKWUOh/4N+B7WuvFwAngkyYcyzhgmhmpeFW8FOkJ+SaeQa6ZpMWq3aqwqOL1Qc4X6fqWg/H+RaKafnGeEQSA7cC7gefH3qiUWo7R5XIFcBXwE6VU7ikzjIV8IIvvqI4+nxToCabR6HFm5WKRrgQ3HXIeQRsMxf60x/5p4FKMgh+Au4D1uR4rzmhGKj1No0gshHzTMxigpsKB3Zr6lFJK4bRZEwu8UiFTiQWILEoQALTWu7TWu5PcdT1wj9Y6oLU+ALQB55pxzDJH5hKLUCRK94Cf2ZJBFkyisdKVlYtFJjuWU2GKBlkpZVVKvQ54gSeAfUCf1joce0g70GrGsWBsRiq9qnjppifkm6m66MUx9H2llUGOv970ivTizjOy6yMIk9AKHBnzd8prbKadL122zG3ejvb7iWqxeBPMo97jxDvoz7ib3qjEogg0yABa64jWejUwG2MVuyzd52bXttY4eR2TZOvi1FQ4JUAW8k7PYGBSi7c42XqMzmSyySDLOStMNzs7B/j3J/ZwZJpdVJRSTyqltif5d70Z42fa+TLuYpFJYNJ+Im7xJl30BHNorHQRimhOZNhNL14Eb4aLhak2b1rrPqXUM8AFQLVSyhbLIs8GOlI853ZiXqtr165N64wMhKOGnjONatnaCgdb2/vSfQmCkBW9Q0HWzK2e8nEuu7Wobd7yQSDNolowzleAXgmQhWnmFy8e4P7X2vnR03u59swW/uqShaxsrcr7cbXWl2fxtA5gzpi/U15jM8VltxDVEIpoHLb0HCm6+o0AublaLN4Ec0g0Cxn0T1rbM5749SadBOpUmOFiUa+Uqo79XgZcgdF96xngvbGH3QA8nOux4gRC6Vt41LgdnBgOZpymF4RMSDeD7LRlZ6E0k0lowtJY0c+qEOcZoTDs6hrgrLnV/OVbFvLsm17e8R8v8j8vHyz0tFLxCPBBpZRTKbUAWAK8YsbAcSlUJs1C4n614oEsmEVDvN10hjrkTCS4U2GGxKIZeEYptQ14FXhCaxBUhCIAACAASURBVP074MvAF5RSbUAt8AsTjgVk1iWltsJBOKoZ8IWnfrAgZMFwIIwvFJnU4i2O025NnMClQiYSC7vVQlWZnWPiPCNMI6FIlDbvEOcsqOGWa07npVsupbW6jI0Hjhd0Xkqpdyml2jF2ZR9TSm0A0FrvAO4FdgJ/BD6ttTZl5Z0IkDNYyHsHApQ7rLidM7L3mFCENMaahWTaTS8hsTBBg5zzp1lrvQ1Yk+T2/ZhUVTsewwQ6zQA5URUfoKrcno/pCCVOOm2m47hKMYOcgcQCjHNWXCyE6WRfzxDBSJTlzR4APC479ZVOBvyFTaxorR8EHkxx363ArWYfMxEgB9NfyHsH/Yn2wIJgBvEMck+G3fSKzQd52jHaCKYpsYhVxUvRj5Av0mkSEsdlt5ZcJ734gmCqzpdxaisc4mIhTCu7ugYAOD0WIAN4yuwMlKAfd/w8zURi0TMYSOv7TxDSxWU3uullnkEuMheL6SZTiQWIr6qQP0YzyGLzloyMM8jiPCNMM7u6BnHYLCysq0jc5nHZGPCXYICcRcfPnsEADZWiPxbMpdHjyjxAjhfplWoGOROJRbz6US64Qr7INIOcSWZmulFKVSul7lNKvamU2qWUuiDXMUc1YWmes24Hx6RIT5hGdnUNcFqjG9uYyncjg1x6tStljniAnInEQjLIgvk0ZtFuOpOal6mYmQFyJi4WEiALeaZnKIhSUFM+dQbZabNk1cZ1GvkB8Eet9TJgFYYjTU5kWlVcV+HgxEiQSFScZ4TpYVfXAKc3eU66rbJUM8hxiUWaGeSRYJihQDihGRUEs2iodGasQS42F4tpJxCOpJ0+d9mtVDiskpES8kbPYIDaCsdJ2adUFHMGWSlVBVxCzHFGax3UWudsIp6pL2VNhYOohr4ROWeF/OMd9NM7FDxJfwxGoV4wHC25otp48smX5uuOtwMWiYVgNtl00wtmKOmbjBkaIKcvsQBjy/a42EYJecJoM51e9qTIO+ktAHqA/1JKbVFK3aGUqhj/oEy7X/pDEWwWldYCAqDWLYW1wvSxq2sQYGKAXGa4HpVaFjlTm7e4B7K4WAhmU1fhJBTRGbnJiMQiHM0ofV5T4ZQiPSFvZFLBbdi8RYu1cY0NOAv4qdZ6DTAM3Dz+QZm2rg2Eo4mLbjokuunJro8wDezsNBwslk/IIBsuqKWmQ45rkNOVgnkHjSIqkVgIZpONRDb+uS3hIr1IRunz2gqHZKOEvJFJBjluT1ikzULagXat9cbY3/dhBMw5kYnrDEgGWZhednUN0FLlmuCTX7IZZFtmNm8isRDyRY07HiCnrwAIhKNYFNgs6bVJn4wZGSAHM5VYSIAs5AmtdUYZ5PjnthgDZK31UeCIUmpp7KbLMDp15YRRVJvZ+QpINz1hWtjVNTBBXgGGBhkoOS/k+G6PL5i+xMJuVcySRlyCySRsejPYTYwnUJXKPUCekX0hM9UgG40HgmitTXnTBCHOUCBMIBxNywMZRi8+gVAEyorygvK3wN1KKQewH/jzXAcMZNDYB2BWuR2lMvtSFIRs8Ici7O8dZt2Kpgn3VZXFJBYF7qY33YxqkNOXWNS7nXJtFUwnm93EYIYS3MmYmQFyKLMLbk2Fg2AkylAgTKWrKIMSYYaSiQcyZH7xmW601q8Da80cM1OJhc1qobrMLhlkIe/s7R4iEtWSQR6D1aKwW1XaEgvpoifki2wavWWaQJ2MGSex0FpnfMEVL2QhX8QLydJ3sci8jetMx5+hxAKMzIGcr0K+GW0xXTnhvlLVIENmbjtGgCz6Y8F8XHYr5Q5rZkV64agpBXowAwPkcFQT1el7qgLUuqXdtJAf4hnktAPkLNq4znQC4UhGOz5gLGrFxULINzu7BiizW5lXO8HNEKfNgsNqKTkXC8gsQPYOBsTBQsgbmdaQZWriMBkzLkDOpktKTUVMxyIXXMFkeocyk1jEP7fFWKSXL7LZ8qpzOzg2JBILIb/s6hpgaVMl1iQV70opPGU2Bksyg2xJSwYWDEc5PhwUD2Qhb9RWODKTWGSxY5mKmRcgh+Im0Jn7qsqWrWA2PYMBLApmpdFmGjI34T8VyKQ1fJyGSleiAYEg5AOtdUoHizgel73kivTA2OlK5zsqniAQizchXxgZ5PSvBcFIEQXISqk5SqlnlFI7lVI7lFJ/F7u9Rin1hFJqb+znrNynOyaDnJVtlATIgrn0DgWodTuTZqCSMSqxKKUMciTjquL6SieD/nDaVlOCkCmd/X4G/GGWJ9Efx6kss5dckR4YzULSCZCli56Qb2oqnBnt/meTkEmFGWF2GPii1no5cD7waaXUcowOXE9prZcAT5GkI1c2ZCOxKHdYKbNbE6tdQTCLTJqEwJgivRLKIGdTpNfoMTJS8S5dgmA2e7qNFtNLmybLINtKs0jPZk1rEe8dkC56Qn6pdRsSi3S7zwbCkeIp0tNad2mtX4v9PgjsAlqB64G7Yg+7C1if67HA0DxBZhILpRQNHqds2Qqmk6nFUUlKLDJsNQ3QGLvgdg/IOSvkh33eIQAWN7hTPsZTohlkp92CL6MMskgshPxQU+EgEI4ykuZuYtHavCml5gNrgI1Ao9a6K3bXUaDRjGMEwnENcoYZqUoX3QOSjRLMpXcomHaTEBj93PpLqkgvM1tGGM0gyzkr5Iu93UPUVDgSErxkGBnkEtQgp+li4R0MoBQZfQcKQiZkatObaWOqyTAtQFZKuYH7gc9prQfG3qeN3HjS/LhS6kal1Cal1Kaenp4pjxPIIoMMxhaQVy62golk2mYaSJy4gRLLIGdepGe8p7LrI+SLtp4hFtenzh5DrEivBDPIZXZrWk47PYMBaisc2DKwXRWETMi0WUiw2DLISik7RnB8t9b6gdjN3Uqp5tj9zYA32XO11rdrrddqrdfW19dPeaxAKHMNMhgZKe9gIG0diyBMxYA/TDASpT4LDXKp2LxprbP6wqoqs+OwWWRRK+QFrTVt3iEWN04RIJfZCYSjJSWJgrjN29SvuWfQn1ENhiBkymgGOb1kSTY7lqkww8VCAb8Admmt/33MXY8AN8R+vwF4ONdjwajEIpNGIWBkpEaCEYYCpbddJuSHTJuEgPG5Vap0NMjZFNWCUTfQ6HGKxELIC71DQfp9oTQyyDYABktMZuGyW9PWIDd4RH8s5I/aWB+LY2k6WQRCxdVJ7yLgz4BLlVKvx/5dA3wbuEIptRe4PPZ3zmR7wR3VNMqWrWAOR/uN4K2pKv0LhFIqbY/RU4HEjk8WtjtG3YCcr4L5tKVRoAel2246bQ3yQEAs3oS8UuPOQoNsks2bLdcBtNYvAqlMYC/LdfzxjBbpZa5BBsOWZqovRUFIh85+HwAtVWUZPc+ZZpeqQqGUsgKbgA6t9TtyGSt+vroyXNCCcc7uPjqYy+EFISltPWkGyK5YgFxiOmSXzfiO0lpjbBJPJBrV9A5JgCzklwqHFYfNkpYGORrVxdUoZLoZzUhl66sqGSnBHLr6jAxyY1VmFwiXzZoIHIuUv8Owa8yZbItqIdZNTzLIQh7Y5x2iwmGleYrdH0+ZkUMqNScLlyNWTDxJrcTxkSDhqJYAWcgrSimj3XQaEotgJDuFQSpmXICceAMyDJDjJ7FoGgWz6Or3Ued2Zhz8uYo4g6yUmg1cC9xhxnjZ2jKCsagdDIQZCZZWcCLknzbvEIsa3Cmzo3FKN4M8tV97fPEqGmQh36TbbjqXhEwyZlyAPOpikdkb4HbaKHdYRdMomEZHn4+W6swvDunq+wrE94EvAaZE8P4sd3xgjNWbnLOCyez1Dk5ZoAeF1yArpW5TSr2plNqmlHpQKVU95r5blFJtSqndSql1Zh53tKFR6q+BeJdLySAL+cYIkKfOICdMHEpWYpFlRsqoinfRLa1rBZPo6vdPuUWbDKfdWpSNQpRS7wC8WuvNUzwube/yxPmahXG7NAsR8sGAP0T3QIBFadSijGaQC7aL8QSwUmt9JrAHuAVAKbUc+CCwArgK+EmsdsAU4jUDk2aQpYueME3UVjjS0iBnK8FNxQwMkKNYFNgsk2+NJaOh0kmPZKMEE9Ba09Xno6U6swI9ME7eIs0gXwRcp5Q6CNyD4Uzzv+MflIl3eS5fWIl201I3IJhIvMX0kjQCZJfdgt2qGCxQBllr/bjWOh6d/x8wO/b79cA9WuuA1voA0Aaca9Zxy+IZ5ElqJeI2l5k0ShKEbKipcKaZQZYAGYfNMqV2LBmSQRbMYsAfZjgYydjBAozty2JsFKK1vkVrPVtrPR8jO/W01vqjuYwZf52uLDLIcW2jNAsRzCRdizcwdh49Lnux2Lx9AvhD7PdW4MiY+9pjt00g0261kJ7EomcwQKXTRpnDtMS1ICSl1u1gJBiZMrEUFA1yJOsX31BpNB6QbnpCrnTFLN6as9Eg2ywl02o6lyI9j8uG02YR5xnBVNp6hnBYLcytKU/r8Z4ye14lFkqpJ5VS25P8u37MY74ChIG7Mx0/0261MOoC4AtOJrHwU++R7LGQf2rSbDc9KukzJ7TN2Qd5ugnk0Ge70ePCH4oy4A9TFSu+EIRsiFu8NWeZQS5SiUUCrfWzwLO5jpPLlleibkAyyIKJ7PMOMb+uHFua3Vg9LlteM8ha68snu18p9XHgHcBlejS70wHMGfOw2bHbTMGVhsRCmoQI00Wi3fRQkNZJZI2J602GnZZTMfMyyOFo1quDeLOQHpFZCDmSaBKSlYtF8dq8mU18IZBNkR4g7aYF02nzDmXULMrIIBfMxeIqDFeZ67TWI2PuegT4oFLKqZRaACwBXjHruHGbt8l2uryDASnQE6aF2kQGefLdxGw7LadiBgbI2UsspN20YBadfT6sFpXVBcJps06amTmVyLVoosEjzUIE8/CHIhw+PpKWxVucSpetkI1CfgRUAk8opV5XSv0MQGu9A7gX2An8Efi01tq0L5W4rjjVQl5rjXfQLxlkYVpIZJCnkliEsuu0nIoZJ7EI5iCxkGYhgll09flprHRizcJNxWW3JNwdTnXirzObIj0wztnnRIMsmMTBY8NENWlZvMXxuAqXQdZaL57kvluBW/Nx3LjNmy9FBvnESAh/KEpzFi4+gpAptRVG7DZVgJxtI7lUzMAMcg4BsmSQBZPo7M/O4g1iGuRwpCSKRXMp0gNj12coEGYoIN30hNzZ252+g0UcT1nRuFhMG1N10uvsMyRmk+lBBcEsPGU2bBY1dZFeqORdLKJZv3i304bbaUt0ABKEbOnq92edPXHZrWg9uto9lcnFtxxGvZDF6k0wgzbvEErBogwkFh6XDX8omljslQJT2by1n5AAWZg+lFJGN72hqVwsjM9rSXfSy0WA3eBxiqZRyAmtNV39flqy6KIHo9nUUijUM3Z8rFn5lsNoly6xehPMoK1niDmzyjOS/MTbTQ8WToc87Yx+R02RQZ4lAbIwPdSk0U0v1x3L8czAADmKIwcLj7gXsiBky7HhIMFwNKs20zCanSkFL2R/KLcFbaKbnpyzggm0dWfmYAFj202XjszCYlGTdvzs6PPhsluYVS52qcL0UOt2cHwKF4tgMbpYKKXuVEp5lVLbx9xWo5R6Qim1N/ZzlhnHMmzesteXSDc9IVfi2ZNsJRbx1W0xdtMzG0MSlcuOT7ybnmSQhdwYCYZp6xliRYsno+d5yoxa9gI6WRSEyfzaO/t8tFaXZb0zJAiZkk676YTEosh8kP8buGrcbTcDT2mtlwBPxf7OGaOTXi4ZKcM2qhQKpIT80BlrEpJNm2kYq+879TPIgXAkawcLwGhla7dKBlnImR2dA0SimlWzqzN6XilmkGFyv/aOvuyLlAUhG2rTlFjYLCrtJkBTYcooWuvngePjbr4euCv2+13AejOOlYuLBRgSi0A4mtfWocKpTS5tpmHqAphTiVzPV6WUUTcgGmQhR7Ye6QPgzDlVGT0vrkEuOScLe2q/9s4+H7NFfyxMIzUVDgb94YSMIhmBUNS0Aj3Irwa5UWvdFfv9KNCY7EFKqRuVUpuUUpt6enqmHDQYzt7FAsZYvYnMQsiSrn4/Dpsl0d0nU+Ieo6XQLCSQ4/kK0Fgp7aaF3Nna3k9LlSvj5j7xDHIpFekBlKWQWPhDEXqHglnvoAlCNsSbhZwYSZ1FzjUhM55pKdKL9Y9PqmnQWt+utV6rtV5bX18/5Vi5tJoGaJRmIUKOdPb5aKlyZa2/KyWJhT9HSRQgGWTBFLYe6WPVnMzkFTBGg1xiEgun3YovyS6XOFgIhSDRbnoSq7dcE6jjyWeA3K2UagaI/fTmOmA0qglGclshNErRj5AjXf1+mnPIniSK9IpMYqGUmqOUekYptVMptUMp9Xe5jpnrghYMqzdZ0Aq5cGI4yOHjI5yZof4YjEyqzaJKT2KRwsWiIxYgiwZZmE7SaTedqw3wePIZID8C3BD7/Qbg4VwHHG0jmIvEIpZBFomFkCVdfb6s9ccwJoNcfBKLMPBFrfVy4Hzg00qp5bkMGAhHcpdYeJyMBCPSTU/Imq3thv54VYb6YzB08J4ye8nVrbjs1qRWlNJFTygEte5YBnkSq7eilFgopX4NvAwsVUq1K6U+CXwbuEIptRe4PPZ3Toy2Ecx+2uUOG5Uum2SQhawIR6IcHfDnpL8bbeNaXBlkrXWX1vq12O+DwC6gNZcxA6FoQnOdLY2JFvGyqBWyY+uRfpSCM1ozD5DB6KZXahlkQ4M88Tuq44QPi4KmLH3gBSEbaiqM5ObkGWRzi/RsZgyitf5QirsuM2P8OPEuKbm+AdIsRMgW72CAqM7ewQLGFOkVsQZZKTUfWANszGUcM4r0GsY0C8mkRbAgxNnW3sfiejeVruwaWxgZ5NIKkF12C74k31HtfT4aPS7sJllpCUI6VJfZsag0JBYzRINsOnET6FxT6I0elxT9CFkRt3jLRX/nLPIiPaWUG7gf+JzWeiDJ/Wk7zxhfWLlrkEHqBoTs0Fqztb0vK/1xnEqXTRqFxIg3CRGE6cRiUcwqn9wLOViMEovpItFnO4fGAxDrpicZZCELcm0SAsXdSU8pZccIju/WWj+Q7DGZOM/4c+ykB9JuWsiNjj4fvUNBVmehP47jcZViBjl5gCxNQoRCUed20jNJcrMoNcjThd8EDTLEbKOkm56QBbk2CQHj86sUSQtgCokyfOt+AezSWv+7GWMaVcW5LWjdThtVZXYOHx8xY0pCibH1SD9AVhZvcTwue8lpkI1GIScv4iNRzdF+v1i8CQWhscqFd5JESSA0c2zeTGfUxSL3LdtgJErfSGl94Qm509nnx+20JZoHZINSCqfNMuHiUwRcBPwZcKlS6vXYv2uyHUxrTSAcxZXj+aqUYlF9Bft6hnIaRyhNtrX34bBaWNbkyXoMT5mtBF0sLATDUSLR0URSz2CAUERLBlkoCI2VTo5OFiCHI8VXpDddjLpY5LZCaIpVxXf2+5iVZTc0oTTp6vfRbEL1dqrty0KitX4RyK77SRJCEY3WuUuiABbVu3l2z9SdNoXkPLSlg9s27Daa3FSXcdO6paxfk5NByYzh9SN9nN7iyenC6XHZ8YUiBE2uki9m4naUgXCEcocRKsQ9kGdLgCwUgKYqFz2DASJRjdUy8VJltsRiZgXICQ1ybm/AwvoKAPb1DLOiJXtdmlB6dPb5aTbh4uCyFV+AbDaJ89WEL6xFDW5+u7mdfl+IqrLss/enMr5ghH09Q+zvHeZAzzBd/T5q3Q68AwEefr0zsQPX0efjlgfeADjlg+RIVPNGRz/vO3t2TuMcPDYMwGn/+AdaS2SBEd/58YeilMfySNIkRCgkDR4XUQ29Q4GE/edYgiY0phrLDAuQzZFYLKirwKKgzStbtkL6RKKafT1DfGD+nJzHctotReeDbDZm1QwACXu3/T1DrJk7K+fxThUMh4Z+frXxEI9u7UrYcikFNeUO+nyhk7bI4/hCEW7bsPuUD/L29QwxEozkpD9+aEsHj2ztTPxdKgsMVxK3nc5EgCweyML00zTGEz9ZgGyGrehYSjJAdtmtzK0pp807aMa0hBLh0LFhRoIRljdnr2WM47JZExnWU5XRDLIZEovRXR8JkI3A+LE3uvjps/vY0TlAucPK9atbeOtp9SysdzOvthyX3Uo4EmXxV/6QdIyOPh+bD53g7Hmn7vv5+hGjg14uFm+3bdhNKHLyIqMUFhhljokBcscJHx6XLWs/aUHIhVFHo+ROFmbYio5lZgXIIfMuuIsbKiWDLGTEzi7DEvh0MwLkEsggJxa0Jmx5za0px25V01aoFwhH+Mkz+9h86AS+UISRYIRQJMolS+r52AXzmF9XMS3zSMbuo4N89ZHt/N/+4yxpcPP19StZv7oladBis1porS5LbI2PxaLgPT/9ExcuquUzb1/MBYtqMYxMTh2e3uWlzu1gYQ7/X51J3rvJbj9ViF9nfeMyyK2zygs1JaHEiWeQkxXqRaKaUESXcJGeSRlkgCWNbp7b4yUUiU5LR6COPh/3bWqnzGFhfm0F8+sqmFtTntjGEoqfnZ0D2CyKJY25d3NzFmGRnpk8tKWDb/5+FwBfe2QnWue2HW2zGufNvmlY1O7qGuDzv3mdN48OcubsKjwuO7PKHYSjUX758kH+608HeNtp9Xzi4gW8ZcnkPtBmMhQI893Hd/PLlw9R6bLxjfUr+dC5c5MWq4zlpnVLueWBN04KdMrsVv7lncsZDIS5/fn9fPiOjZy3oIa/X7eUc+bX5PulTAt9I0GeftPLR8+fh2WK92gyWlIsME51HW5cRvHKgeOJWp2OPh+zxeJNKBC1bicWRVKrt2DYHBOHsczQANmEDHK9m1BEc+jYCIsb8te+9kDvMD99to0HXusgPE4LWOGwcuMli/jLSxYkqoSF1IQjUfZ6h9jROcD2jn7avEOc1ljJ1Wc0cdbcWVMGCrmys2uAxQ1uUz5/LruV/lO08cBDWzpOCsiOjwRN0WwuqnezN4+yqEhU858v7OffH9+Dp8zOnR9fy6XLGk96jHfAz90bD/OrVw7zZ794hWvPaOZfrltBfaXT1LmMd51Yv6aFh1/vpKPPx4fPncvfX7k0bQee+HueysXio+fP455XDvPjZ/fxvp+9zCWn1fP5y5fMeCnL77Z1EYxEefdZuckgUi0wblq3NNcpFjVnzq7m/IU1/PiZfXzwnLmUOax09Pk4b8GpsYASZh5Wi6K+0snR/skC5BLNIAdN3LKNZwHbvEN5CZC11nz7D2/yny/sx2618JHz5nLjWxfhdtg4eGyYg8eG+eP2o3zvyT3cvfEQX7zyNN579py8B3npEI1qTowEGfSHafS4Elq0QhGKRLl/czv/8XRbIpNT7rCyoK6C/914iDtfOkCd28k7VzXzpXXL8jbfnZ0DXLykzpSxnDZL0TUKMYvbNuw+KZiA3DWbD23p4MW2XoYCYS781lN86aplpus//+2Pb3L78/u5emUTt77rDGqSBKANHhefv+I0Pv32xfznC/v5wZN7eWlfL9ee0cwzb3rp6vfnbKM2foHR0efjx8/so87t4Ld/dQFrs8jwrl/TmnI+LruVj1+0gA+cM5dfvnyQnz23j3f95E+snTeLv3jLAq5Y3jTheylT2zitNd7BAEf7/QQjUYLhKOGoZmljJU1VLtNt6B7a0sG/ProTgBt/uSmnz8tUC4xTmS9euZT3/exlfvnyQT503lwG/eFTPnMuFDdNHhfdSbrpmeVyNpYZFSDH3wCHCZKIeFW8UajXlPN447nzpYP8/Pn9vH/tbP5+3VIaKkcrLleVV7NqTjXXr25l86Hj3PrYLr58/xvcvfEw3//AahbW5y+jnYw27xBP7urm6V1eDhwb5vhw8KTK9yaPi3m15Zze7OGqlU2cM7+GR7d25v2CEY5EeWBLB//x9F6OHPexanYVX7jiNFbNqWZBXQVWi2IoEOaZN738cftR/vtPB9nZOcAvPn4Obqe5H+2ewQDewYApBXoPbengxb29+EIRLvr206fcxdZszeb4gLGz32+6i8ALe3u4/fn9fOS8uXxj/coptbgOm4VPv30x61Y08hd3beLujYcT9+XqcpBsgQFgt1qyCo7Tpcxh5a/euoiPnD+Pe189wp0vHeCv//c15tSUcf2qVt62tJ7Vc6r53bauCQH82Nertaajz8fWI/1s6+hjZ+cAOzsHODYcTHrcerfT+M6JdTbN9f17aEsHX75/W8LWzozPy2QLjFOZc+bXcMlp9fzsuX2snW/sKEgXPaGQNHhcHD42sauqmQqDODMmQH5oSwd3vHAAgLf8v2dyDiqe2NmNVSm+8/gefv3KEVODlGd3e7n1sZ2sW9HIt9995qT6t7Pn1XD/31zIo9u6+OeHt3PtD1/kq+9cjtNm4TuP7zE1ozI2oP3U2xZxYiTIA691sL/X8Phc0eLhsmUN1Lmd1LkduF12uvp8HDw2wsFjw/z6lcP8958O4nba8IUiiSDaDNujZFvKT+3y8ubRQc5oreJrH1/B25c2TAhc3E4b71zVwjtXtfDw6x184d6tXPODFwiFoxwdyD2bF5/b139nZKN+9uw+6txOU7ODp5pllNmazXxkpMdybCjAF+7dypIGN//0juUZFaotbqhM7GyZNb9k7x2QdFsxH7idNj5x8QJuuHA+j+84yl0vH+Snz+3jR8+04XHZCIajE7pA+kIR/uHBN7j/tfaTgmG7VbGkoZJLlzWwosVD66xynDYLDpsFBbzR0c93NuxOBMdjx8v2/bttw+7ExdKM8QqJUurrwPVAFPACH9dad8bawv8AuAYYid3+Wj7m8IUrTmP9j1/i1seMmoJWySALBaTJ4+LVg8cn3J5IoM4kiYVS6iqME9kK3KG1/namY5gdVMTHMytjER/ztg276ejzoYDmahff+8DqtIpDlFJct6qFc+fX8MXfvs7ND7yBRUE8iWvW6x37/n3loe0AXLiolj+/aD6XJ/2BLAAAFPRJREFUnd44ZQAzHAjzzG4vN/122wRv1VwuQKm2lGeV2/npR87iqpVNaQUt169u5Y32fu548UDiNrPfu97h3PS0+Q72igGzNZv5cBEYe766bBbCUc0vP3FuVkWzXSkC144+H1rrtAPu4UCYezcdOencH8t0b21bLYqrz2jm6jOa6R8J8WJbL8/t8XLvpvakjx8JRuj3hXj7sgZWza7izNnVLGuunDSjc97C2kTgNZ5UC4WpSPW8Geo6cZvW+p8AlFKfBf4Z+GvgamBJ7N95wE9jP01n9ZxqLj+9gSd3eQEJkIXC0uhx0jcSwh+KnPR9babvfpy82jcopazAjzFO5uXAh5RSyzMdZ7KgIhvMHi8eRMW/mDVwbCjI4zu6MxqnqcrF/3ziPDwu24QLpNmvF6Ch0smv/vJ8/uyC+WldfCucNt5xZktK94WOPh8HY9loM+ZXZrdy9RnNGWX0/rD96ITbiumzUgqWUevXtPKtd59Ba3UZCuOC+q13n5H1AiDVZzPbgHH8+eoPR1EY9mlmzg/g+h+/xKNbOwlHUlv6eQf83LbhTS789tN87dGdLKirmPAlX+iisKpyO9ee2cz/e++qlAFSa3UZj3zmYr7zvlX82QXzWTWnOq3tzlTvn1LwzJvejOda505evDgTtbNa64Exf1ZgXF7AyCr/Uhv8H1CtlGrO1zw+f8VpgCFvrHObW5AqCJkQbxDiHeeFHJdUzaQivXOBNq31fgCl1D0YJ/bOTAYxO6gwe7xkQVQgHM0qK2ixKAb9YdPmt72jP2VGpSeJ0D0dUm2hA7ztO89y4aJa3nPWbC5eUpe0202ccCTK9s6BlGOlysxNRrF/VkrFMspMzabZGelk52soqrPO4iebn8tm4Z2rWth06AR/++st1FQ4WNLgZmG9m4V1FQwHw+w+Osju7kEO9g6jgatWNPEXb1nI2fNmmV60ZiZm/38kG89pMwKxT9z1Kp+77DT+9tLFaVu1LW5w0zt08hZsoRcYuaCUuhX4GNAPvD12cytwZMzD2mO3deVjDitaqnjXmlb29QzlZJknCLnSOMYLeW7tqCd3IDTzNMjJTuKMt4HMDirMHm+6giiX3crmQyc4a271pFnVoUCYR7d2cs8rh9na3o9iNO0w/jjZkOoCefPVyxj0h/j1K0f44m+3ArCwvoILFtbSUl2GzaKwWy34QhE2HTzOqwdPMBRIvhjIdn7F/lkpdssoMyRRZjPWRSAuYfrmu1ZmHTCafb5O5nIQjWqe3NXN4zu7OdA7zB+3d3FiJIRSMK+mnKVNlVy3qoX1q1tPaj5SzEVhZrs6pBpv3YomvvLgG3zvyT1sa+/j3z+wmqqyyTu4DfhD7OgY4Jz5s+js8xflAmM8SqknSV4p/hWt9cNa668AX1FK3QJ8BvhqhuPfCNwIMHfu3Kznedt7z0wq/RGE6aSparTd9FhOSReLdE7e6chY5DLedARRVosiqjXv+emfWN7s4dJlDTRXu2iucjGr3MHh4yPs6hrkzaMDvHrgOMPBCKc1uvnndyzHZbfw9d/tMu31TnWB/NTbFrOza4CX9x3jT/t6eWhLB8PBkzN2i+oruH51C+cvrKXfF+LWx8yZX7L3Timj0CQbblq3lC/ft43AmC3yfL53hWSMJOoKjMXsq0qpR7TWGe345IN4wHjXnw7y1Ud2cFEOdnv5yOKnCmgtFsWVK5q4csVo/NM3EsRhs8xo73OzA/hU4333/atYNaear/9uJ9f84AV++KHVnD0vuZNH/0iIj9250SgYvOb0GePjrLW+PM2H3g38HiNA7gDmjLlvduy2ZOPfDtwOsHbt2qxDXNs0NNQShKlorEwVIBvXaDNczuLk+xt6ypM4nZM3nxmLjj4f5Q4r33xX9hrJ9Wta+PEz+066LR9B1BXLG3no9Q5+tfEwP31u34RCObtVsbihkutWt/Des+eclGkud9hMDcomu0BaLIqVrVWsbK3iLy9ZSDSqCUWjhCOacESjLOAZ1xbX7TRnfuPfu+pyOydGQhwbzk5Osn5NKy/vO8ZvNhkbIa15fu8KjCmSqHwSt2fc5x0+yToxE25at5Qv3rv1JOeE6cziV5en1+BDMAqYb7jQ0DN/9tdbeP/P/4/PXbaET7198UnezMeHg3z0jo20eYf42UfPnjHB8VQopZZorffG/rweeDP2+yPAZ2Ln6HlAv9Y6L/IKQSgmPGU2XHZLygDZNYMyyK8CS5RSCzAC4w8CH85moHxlLD50+//hD0eyHjsa1bywt5fqcjvldqspjQLGzm88HzlvHh85bx6RqKZnMEBnv49jQ0Hm1JSxsM6d0uKkkEGZxaJwWqxMZk1s5vzGjqW15q/+ZzPffXwPl5/emJXHtMNmodJpY+tXrzzV9XemSKLyyaIGQ4bQ1jPEBYtqsxrj9GYPUa1xO20MB8JFlcUXkrN6TjWPffZi/vGh7Xz3iT08saubixbXcXqzh7k15Xz5vm0cPDbM7R87m7ctbSj0dM3k20qppRg2b4cwHCzAyCRfA7Rh2Lz9eWGmJwjTi1KKRo+Lo+OL9GaaD7LWOqyU+gywAUPTeKfWekc+j5kpSxrdPPhaR0Z2TGN5dFsn29r7+e77VvGes2fnYYbJsVoUTVWuhB5HSI5Sim+8ayWXffc5vv67nfzXn5+b8Rg7uwY4vdlzqgfHaWOWpjEbmjwuyh1W9nmHsh7j35/Yjdtp4/kvvT3tds1C4al02fn+B1ZzyZJ67njxAP/5/H7CsV20MruVOz9+DhctNqfTZbGgtX5Pits18Olpno4gFAWNla7UGuQZ5GKB1vr3GKvdomRxg5vBQBjvYGBSx4VkBGNOFcubPbxLsk9FS0Oli7+9dDHf/P2bPL+nh0tOq0/7udGo5s2uAd63ds7UD575pKVrNEvTmA1KKRbVu9nXk12A/EZ7Pxt2dPO5y5dIcDwDUUrxnrNn856zZxMIR2jzDrH76CArW6s4rbGy0NMTBGEaaKxysa2976Tb8uFiUfKq+8UNxpb73u7ML7j3bW6n/YSPL121VLKLRc4NF85nXm0533hs56SetOM5fHyE4WDElBbTM4CEJEop5cCQRD1S4DlNYHGDm/09mfttg5E9ri6384mLF5g8K2G6cdqsrGip4t1nzZbgWBBKiMZKJ90DfvSYOpJEkd5MaRQyE4gHyG3ezJoEhCJRfvJsG6tmV/HWDDKSQmFw2qzccvUy9nQPcc+rR6Z+QoydXYZP//KWUz9A1lqHMWykNgC7gHuLTRIFhgNKR5+PkWBqi8BkbGvv45ndPfzlWxZOKBIVBEEQZgZNVS78oSgDvtFrQD5aTZd8gFzvdlJVZmdvhprGh7Z00H7Cx2cvW5KVdlmYftataOK8BTV874k9DPhDaT3n2d1enDZLYiF1qqO1/r3W+jSt9SKt9a2Fnk8yljUZi5XNh05k9LwfPtWGx2XjYxfMy8e0BEEQhGmgISaH7R4c1SEHw1HsVnWSu02ulHyArJRicYM7I4lFOBLlJ8/uY0WL4UcszAyUUvzTO5ZzfCTIj59um/Lx3QN+HtrSyfvXzjmp57tQWC5eUkel08Yjr3em/ZydnQM8uaubT1y8gErJHguCIMxYmuLd9MZ02+0dClBm8nW65ANkgLXzZ/Ha4RN4B9Nrbfy7bV0c6B3mby9dLNnjGcbK1irec9Zs7nzpADs7ByZ97J0vHiAcjfKXb1k4TbMT0sFlt7JuZRN/3H4U/7iW0an40TN7cTtt/PmFoj0WBEGYyTR6nMBos5BAOMKGHd2mWzxKgAy8f+0cwlHNA68lbUR0EtGo5kfPtLG0sZIrlyfrDioUO/9wzelUlzv4u3u2pAyw+n0h7t54mGvPbDmp37tQHFy3qoXBQJhnd/dM+di93YP8YftRPn7hfKrKJXssCIIwk4k7jnkHDS/kp3Z56feFeK/JVrsSIGN05zpn/izuffXISVWRyfjD9qO0eYf4zKWLxblihlJT4eD/t3evwVHVZxzHv4+5cUuCSgwhQaWIVgwQaYyXqsxYL0jR0I5VbLXTqY62Y2d0OrXW4UWrHX1RO7Re6nSY1hdWLHZEB2tpBRFrdUS5yNXIRYTKRRNaFYIlmOTpiz3YFZLdlL38z66/z8wOOXs2Z38b8mSfs+d//mf21ZPY3N7JvQvb+nzM3Ne209nVzc0X6tPjODpv7PGMGFbOM2vS79Q+tHQLg8tKNHOFiEgRGFRWQvXgsk+HWMxfuYORVYOyPg+6GuTINWedyNY9+1m+rf8Tfw580sMvF21kbM1Qpk2oy2M6ybYLxtVw4/ljePTV7Sxpe/8z6w580sMjL2/jgnEjaKyvDpRQUiktOYbpE0fxfFs7+1KccPl2Ryd/XrOL6885ieM077GISFGorUpM9daxr4sXN3Uw48z6rJ6gB2qQPzVtwkgqK0qZt/yf/T7m/iWbeWfPfu5ubcz6f4Tk3+1TT+P0uipuf3LtZ8afP7VqJ3s6u/j+lLEB00k6V0waxcHuXhZteL/P9T29zh1PrmVoeSk3ahy5iEjRqK1KXE1vweqd9PQ6V30p+xdrU4McGVJeypVNo1i4bnefU4Bt2PURc17aytXNDUV3OdPPq4rSEh6Y2cT+rm6m/OJFLr//H9wydxUPvrCZiQ3VnDv2+NARJYXJJw6n4djBLFjT92wWv/3726zY/gF3zziDmsqKPKcTEZFcSTTIXTy5cgeTRg/nlBOyf7EgNchJrjlrNAc+6T1i+qjunl7umL+WY4eUM2va+EDpJBfG1VbyhxvO5tqWExlZVcGbu/fywccHue1izW8dd2ZGa9MoXtmyhz2dXZ9Zt27HR/xq8SamT6xjRpMuAy8iUkxGVg3ivb0HeOu9fVw1OTd/40tzstUCNaG+mtPrqnhi+btcd87/LibwyCvvsH7nXh7+1mSdBV+EWsYcR8uY40LHkKPQ2lTPb5a+zcJ1u/n2uScD8J+DPdz6xBvUVFZwz4wJ2tERESkyh6Z6Ky85hismjcrJc6hBTmJmzDxrND99ZgMPLNmMkZju67HXtnPJ+Foub9S0biJxcmptJV8cWcm9C9tYsHoXp42spH1vF1s79vP4jWdrh1ZEpAgdmurt4vEnMHxIbk7AVoN8mBlN9dz33EZmL94EwOCyEsbWDOPnrY36JEokhh649kzmLttO23v7eHbNLvYe6OamC7/AeTpXQESkKI2rraT0GOObLSelf/BRUoN8mOohZbxyx0Uc7OmlenAZ5aUapi0SZ6fWVnJXayMA7s6/9h/keE3pJiJStMaMGMran13KkPLctbEZdX9m9g0z22BmvWbWfNi6O81si5ltNLPLMouZX9VDyqiprFBzLFJgzIwRwyp0tEdEpMjlsjmGzGexWA98HXgp+U4zGw/MBM4ApgIPm1lJhs8lIjliZveZ2VtmttbMnjaz4aEziYiIhJJRg+zube6+sY9VrcA8d+9y93eALUBLJs8lIjm1GGh094nAJuDOwHlERESCydUYgnrg3aTlHdF9RzCzm8xshZmt6OjoyFEcEUnF3Re5e3e0uAxoCJlHREQkpLQNspk9b2br+7i1ZiOAu89x92Z3b66pqcnGJkUkM98F/trfSu3UiohIsUs7wtndLz6K7e4ERictN0T3iUggZvY80Ndk3rPcfUH0mFlANzC3v+24+xxgDkBzc7PnIKqIiEhQ5p75+5uZvQj8yN1XRMtnAI+TGHc8ClgCjHP3njTb6QC2p3m6EcCeTDNnkfKkFqc8ccoCA8tzkrvn5dCKmX0HuBn4irt/PMDvSVezhfgzzyflSa3Q8uStXo+G3mMzFqcsoDzpZPQem1GDbGZfAx4EaoAPgdXuflm0bhaJQ7XdwG3u3u8h2//zOVe4e3P6R+aH8qQWpzxxygLxymNmU4HZwBR3z9q4iTi9RlCedJQntbjlyYW4vcY45YlTFlCedDLNk9Ekcu7+NPB0P+vuAe7JZPsikjcPARXA4mgO4WXu/r2wkURERMLQlfREBHc/JXQGERGRuCjES8XNCR3gMMqTWpzyxCkLxC9PLsTtNSpPasqTWtzy5ELcXmOc8sQpCyhPOhnlycpJeiIiIiIixaIQP0EWEREREcmZgmqQzWyqmW00sy1m9pPAWR4xs3YzWx8yR5RltJktNbM3zWyDmd0aOM8gM3vdzNZEee4KmecQMysxszfM7NkYZNlmZuvMbLWZrQidJxdUr/1TzQ4ok+o1j+JUr1Ge2NSs6nVAmYquXgtmiIWZlQCbgEtIXLp6OXCtu78ZKM+FQCfwqLs3hsiQlKUOqHP3VWZWCawEZgT82Rgw1N07zawMeBm41d2XhciTlOuHQDNQ5e7TA2fZBjS7e5zmjMwa1WvaPKrZ9JlUr3kSt3qNMsWmZlWvA8pUdPVaSJ8gtwBb3H2rux8E5gFZudz10XD3l4B/h3r+ZO6+291XRV/vA9qA+oB53N07o8Wy6BZ0T8zMGoCvAr8LmeNzRPWagmo2NdVr3sWqXiFeNat6Ta1Y67WQGuR64N2k5R0E/AWNKzM7GTgTeC1wjhIzWw20A4vdPWge4NfAj4HewDkOcWCRma00s5tCh8kB1esAqWb7pHrNL9XrAKle+1SU9VpIDbKkYWbDgPkkrly4N2QWd+9x9yagAWgxs2CHyMxsOtDu7itDZejD+e4+GbgcuCU6nCifM6rZI6leJa5Ur0cq5notpAZ5JzA6abkhuk+AaBzSfGCuuz8VOs8h7v4hsBSYGjDGl4Ero3FJ84CLzOyxgHlw953Rv+0krkbZEjJPDqhe01DN9kv1mn+q1zRUr/0q2notpAZ5OTDOzMaYWTkwE3gmcKZYiAbs/x5oc/fZMchTY2bDo68Hkzjx461Qedz9TndvcPeTSfzevODu14XKY2ZDoxM9MLOhwKVA8DO1s0z1moJqtn+q1yBUrymoXvtXzPVaMA2yu3cDPwCeIzFA/k/uviFUHjP7I/AqcJqZ7TCzG0JlIbEHdz2JPbfV0W1awDx1wFIzW0viD+9idw8+9UuM1AIvm9ka4HXgL+7+t8CZskr1mpZqtnCoXgOIWc2qXgtH1uq1YKZ5ExERERHJh4L5BFlEREREJB/UIIuIiIiIJFGDLCIiIiKSRA2yiIiIiEgSNcgiIiIiIknUIIuIiIiIJFGDLCIiIiKSRA2yiIiIiEiS/wJ+ge0BDk8TkQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -326,7 +350,7 @@ "metadata": { "id": "r3jD4V4rkMdU", "colab_type": "code", - "outputId": "7ea95f5c-a141-412a-e483-6a719c53a7bc", + "outputId": "cdec7cce-0a92-428e-ab88-925b5f6613ea", "colab": { "base_uri": "https://localhost:8080/", "height": 279 @@ -344,13 +368,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEGCAYAAAB7DNKzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de7gcdZ3n8feHQ4AgSBCyDgRCGMUw\nKpDgAQUcBRSCjgILqCDrADKbZUZWcTXPwjCLwj6zwKDODCK4EVnwMhhFJhsVDewQRFm5nJAESADN\nqEgCOxwu4SJRk/DdP6pO0qfTXX05XV3V3Z/X8/Rzqquqq7+n+5z61u9Sv58iAjMzs3q2KToAMzMr\nNycKMzPL5ERhZmaZnCjMzCyTE4WZmWXatugAWrX77rvHjBkzig7DzKynLF269OmImNrOa3suUcyY\nMYORkZGiwzAz6ymSHmv3ta56MjOzTE4UZmaWyYnCzMwyOVGYmVkmJwozM8vUc72ezMwGzcJla7li\n8aM8sW49e06ZzLw5Mzlx9rSuvb8ThZlZiS1ctpYLbn6Q9Rs2AbB23XouuPlBgK4li9yqniTtIOle\nSSskrZR0cY19zpQ0Kml5+viLvOIxM+tFVyx+dHOSGLN+wyauWPxo12LIs0Txe+DoiHhJ0iTgp5J+\nGBF3V+23ICLOzTEOM7Oe9cS69S2tz0NuJYpIvJQ+nZQ+PEuSmVkL9pwyuaX1eci115OkIUnLgaeA\n2yLinhq7nSzpAUk3Sdq7znHmShqRNDI6OppnyGZmpTJvzkwmTxoat27ypCHmzZnZtRhyTRQRsSki\nZgF7AYdKenPVLt8DZkTEgcBtwA11jjM/IoYjYnjq1LbGtDIz60knzp7GpScdwLQpkxEwbcpkLj3p\ngK72elK35syWdBHwckR8rs72IeDZiNgl6zjDw8PhQQHNzFojaWlEDLfz2jx7PU2VNCVdngwcAzxS\ntc8eFU+PBx7OKx4zM2tPnr2e9gBuSEsK2wDfjojvS7oEGImIRcDHJR0PbASeBc7MMR4zM2tD16qe\nOsVVT2ZmrStl1ZOZmfUHJwozM8vkRGFmZpmcKMzMLJMThZmZZXKiMDOzTE4UZmaWyYnCzMwyOVGY\nmVkmJwozM8vkRGFmZpmcKMzMLJMThZmZZXKiMDOzTE4UZmaWyYnCzMwyOVGYmVkmJwozM8vkRGFm\nZplySxSSdpB0r6QVklZKurjGPttLWiBptaR7JM3IKx4zM2tPniWK3wNHR8RBwCzgOElvq9rnbOC5\niHg98PfA5TnGY2ZmbcgtUUTipfTppPQRVbudANyQLt8EvEuS8orJzMxal2sbhaQhScuBp4DbIuKe\nql2mAY8DRMRG4HlgtzxjMjOz1uSaKCJiU0TMAvYCDpX05naOI2mupBFJI6Ojo50N0szMMnWl11NE\nrAOWAMdVbVoL7A0gaVtgF+CZGq+fHxHDETE8derUvMM1M7MKefZ6mippSro8GTgGeKRqt0XAGeny\nKcDtEVHdjmFmZgXaNsdj7wHcIGmIJCF9OyK+L+kSYCQiFgFfBb4uaTXwLHBqjvGYmVkbcksUEfEA\nMLvG+osqln8HfCCvGMzMbOJ8Z7aZmWVyojAzs0xOFGZmlsmJwszMMjlRmJlZJicKMzPL5ERhZmaZ\nnCjMzCyTE4WZmWVyojAzs0xOFGZmlsmJwszMMjlRmJlZJicKMzPL5ERhZmaZnCjMzCyTE4WZmWVy\nojAzs0xOFGZmlsmJwszMMuWWKCTtLWmJpFWSVkr6RI19jpT0vKTl6eOivOIxM7P2bJvjsTcCn4qI\n+yXtDCyVdFtErKra7ycR8b4c4zAzswnIrUQREU9GxP3p8ovAw8C0vN7PzMzy0ZU2CkkzgNnAPTU2\nHyZphaQfSnpTndfPlTQiaWR0dDTHSM3MrFruiULSTsB3gfMi4oWqzfcD+0TEQcAXgYW1jhER8yNi\nOCKGp06dmm/AZmY2Tq6JQtIkkiTxzYi4uXp7RLwQES+ly7cAkyTtnmdMZmbWmjx7PQn4KvBwRHyh\nzj5/lO6HpEPTeJ7JKyYzM2tdnr2ejgA+AjwoaXm67q+B6QAR8WXgFOAvJW0E1gOnRkTkGJOZmbUo\nt0QRET8F1GCfq4Cr8orBzMwmLrPqSdKQpEe6FYyZmZVPZqKIiE3Ao5KmdykeMzMrmWaqnnYFVkq6\nF/jt2MqIOD63qMzMrDSaSRT/LfcozMystBomioj4saTXAoekq+6NiKfyDcvMzMqi4X0Ukj4I3At8\nAPggcI+kU/IOzMzMyqGZqqcLgUPGShGSpgL/B7gpz8DMzKwcmrkze5uqqqZnmnydmZn1gWZKFD+S\ntBi4MX3+IeCW/EIyM7MyyUwU6ThMV5I0ZL89XT0/Iv4578DMzKwcMhNFRISkWyLiAGCr0V/NzKz/\nNdPWcL+kQxrvZmZm/aiZNoq3AqdLeozkzmyRFDYOzDUyMzMrhWbaKOYCj3UnHDMzK5tm2ii+lLZR\nmJnZAHIbhZmZZXIbhZmZZWomUczJPQozMyutulVPko4GiIjHSIbxeGzsAbylWwGamVmxstooPlex\n/N2qbX/T6MCS9pa0RNIqSSslfaLGPpJ0paTVkh6QdHCTcZuZWZdkVT2pznKt57VsBD4VEfdL2hlY\nKum2iFhVsc97gP3Sx1uBa9KflrOFy9ZyxeJHeWLdevacMpl5c2Zy4uxpRYdlZiWUVaKIOsu1nm/9\n4ognI+L+dPlF4GGg+kx0AvC1SNwNTJG0R+OwbSIWLlvLBTc/yNp16wlg7br1XHDzgyxctrbo0Mys\nhLJKFH8saRFJ6WFsmfT5vq28iaQZwGzgnqpN04DHK56vSdc9WfX6uSQ3/jF9+vRW3tpquGLxo6zf\nsGncuvUbNnHF4kddqjCzrWQlihMqlj9Xta36eV2SdiJp4zgvIl5oIbbNImI+MB9geHi4YWnGsj2x\nbn1L681ssNVNFBHx44keXNIkkiTxzYioNfrsWmDviud7pessR3tOmczaGklhzymTC4jGzMout5nq\n0nGivgo8HBFfqLPbIuDP095PbwOej4gn6+xrHTJvzkwmTxoat27ypCHmzZlZUERmVmbN3HDXriOA\njwAPSlqervtrYDpARHyZZKa89wKrgZeBs3KMx1Jj7RDu9WRmzVBEc1X+knaMiJdzjqeh4eHhGBkZ\nKToMM7OeImlpRAy389qGVU+SDpe0CngkfX6QpKvbeTMzM+s9zbRR/D3JeE/PAETECuAdeQZlZmbl\n0VRjdkQ8XrVqU80dzcys7zTTmP24pMOBSLu7foLkLmszMxsAzZQozgE+RnLH9FpgFvBXeQZlZmbl\n0UyJYmZEnF65QtIRwF35hGRmZmXSTInii02uMzOzPlS3RCHpMOBwYKqk/1Kx6dXAUO1XmZlZv8mq\netoO2CndZ+eK9S8Ap+QZlJmZlUejQQF/LOn6dPpTMzMbQM00Zl8vaatxPiLi6BziMTOzkmkmUXy6\nYnkH4GSSaU7NmuapV816V8NEERFLq1bdJenenOKxPjQ29erYrHpjU68CThZmPaCZQQFfU/HYXdIc\nYJcuxGZ9ImvqVTMrv2aqnpYCQTJX9kbgV8DZeQZl/cVTr5r1tmaqnvbtRiDWvzz1qllvy7rh7qSs\nF9aZA9tsK/PmzBzXRgGeerVZ7gRgZZBVonh/xrYAnCisKZ56tT3uBFAsJ+ktmp4KtSw8Fap1S9En\niiMuu71mld20KZO563zfxpSn6iQNSSn40pMO6NlkkfdUqLtI+oKkkfTxeUkNez1Juk7SU5IeqrP9\nSEnPS1qePi5q5xcwy8PYiWLtuvUEW67mFy5b27UY3AmgOO6pN14zo8deB7wIfDB9vAD8ryZedz1w\nXIN9fhIRs9LHJU0ccyAtXLaWIy67nX3P/wFHXHZ7V09Wg6oMJ4p6jf3uBJA/J+nxmuke+7qIOLni\n+cWSljd6UUTcKWlGu4FZwvXUW3SzKqhTJ4qJxOxOAMVxT73xmilRrJf09rEn6aRFnUqrh0laIemH\nkt5UbydJc8eqvkZHRzv01r2hDFe2ZdDtqqBOXM1PNOYTZ0/j0pMOYNqUyYikbaKX68h7ybw5M5k8\nafxsCoOcpJspUfwlcEPaLiHgWeDMDrz3/cA+EfGSpPcCC4H9au0YEfOB+ZA0ZnfgvXuGi8CJrISZ\nx4mzE1fznYj5xNnTnBgK4J564zVzw91y4CBJr06fv9CJN648TkTcIulqSbtHxNOdOH6/cBE40e2E\n2YkThZN8b3OS3qJhopD0CZLG6xeBr0g6GDg/Im6dyBtL+iPg3yIiJB1KUg32zESO2Y8GuZ66sn5/\nG4lNNbpy55kwJ3qicJK3ftFMG8VH06v/Y4HdgI8AlzV6kaQbgZ8BMyWtkXS2pHMknZPucgrwkKQV\nwJXAqdFrN3V0waDWU1fX79dKEmVPmK7ntn7RTBuF0p/vBb4WESslKesFABFxWoPtVwFXNfH+A28Q\ni8C16vcBhiReieiJOmPXc1u/aGr0WEm3AvsCF0jaGXgl37AsL0XfbdysevX4r0Twq8v+rMvRtG8Q\nk7z1n2YSxdnALOCXEfGypN2As/INy/LQS/dkuH7frDwatlFExCvADOAiSZ8H3hERD+QdmHVeL92T\n4fp9s/JoptfT1cDrgRvTVf9J0rsj4mO5RmYd10vdNV2/b1YezVQ9HQ38yViPJEk3AKtyjcpy0WvV\nOd2q3++VdhuzojTTPXY1ML3i+d7AL/IJx/Lk6pytlWGUWLOyq5soJH1P0iJgZ+BhSXdIWgI8nK6z\nHjOo92Rk6aV2G7OiZFU9fS5jm2+M61HurjleL7XbmBWlbqKIiB/XWp+OJHsacGdeQZl1S6+125gV\noZk2CiTNlnSFpF8D/52k+sms57ndxqyxuiUKSW8gKTmcBjwNLCCZY/uoLsVmljt3wzVrLKuN4hHg\nJ8D7ImI1gKRPdiUqsy5yu41Ztqyqp5OAJ4Elkr4i6V1sGSDQzMwGRN1EERELI+JUYH9gCXAe8O8k\nXSPp2G4FaGZmxWpmrKffRsQ/RcT7gb2AZcB/zT0yMzMrhWaG8NgsIp4jmbt6fj7hmFm3eQgTa6Sl\nRGFWFj65dUYvDT1vxWnqPgqzMvH4TJ3jIUysGS5R9LBBvarOOrkNwu/fSR7CxJqRW4lC0nWSnpL0\nUJ3tknSlpNWSHpB0cF6xlN3CZWs54rLb2ff8H3DEZbc3dWU8yFfVPrl1Tr2hSjyEiVXKs+rpeuC4\njO3vAfZLH3OBa3KMpbTaPeEPcpVBGU5u7ST3MvIQJtaM3BJFRNwJPJuxywnA1yJxNzBF0h55xVNW\n7Z7wB/mquuiTWz+V5jz0vDWjyDaKacDjFc/XpOuerN5R0lySUgfTp0+v3tzT2j3hD/Kop0WPz9Rv\nbSQewsQa6YnG7IjYfO/G8PBwX82F0ewJv7rh+qj9p/LdpWvHnbAGqcqgyJPbIJfmbDAV2T12Lcm0\nqmP2StcNlGaqUWpVdXx36VpOfss0VxkUoAxtJJX6pb3EyqvIEsUi4FxJ3wLeCjwfEVtVO/W7ZqpR\n6lV1LHlklLvOP7qr8VqS3CtvUoPiSnO+Yc66IbdEIelG4Ehgd0lrgM8AkwAi4svALcB7gdXAy8BZ\necVSdo2qUVzV0Xmt3INSa99LTzqgFPew9Ft7iZVTbokiIk5rsD2Aj+X1/v2knxuui7hpsJWr8Hr7\nXnrSAaUozfkiwrrBQ3j0gKK7g+alqG6mrXRJLvv9KmVrL7H+5ETRA/q1r3tRJ+FWrsLLfsXe7kWE\nG8CtFT3RPdba6w5a9rGgijoJt1KVV/Zqv3buKalXnTby2LMseWS0tH8vVhwnij5Vtt4wtZJWUSfh\nVnotlamHUz2tXkTUK8l98+7fMHaTUtF/L1YurnrqU2WqW6/XFnHU/lMLaXtppSqvH6v96pXYqu9k\nLVNbjBXLJYo+Vaa69az7QIrqZtrKVXi/DXFRryRXS1naYqxYThR9qkx161lJq99Owr2gVnWa2LpE\nAeVpi7FiueqpT+XZpbbVHjOD2oWzrD2LalWnnf626X3ZBds6wyWKPpXXCKvtNJL3QoNwp+XdmWCi\nPdpqleSG93lNqXvJWXGU3CDdO4aHh2NkZKToMAbWEZfdXrNKa9qUyZl3Kpe9q26ntfs5NaM6CUGS\neHu9kd3yJWlpRAy381qXKKwlrTSSD1pyqJRnZwKP72Td5kRhLWll/oxGVS/9nEjy7ExQph5tNhjc\nmG0tabaRvNF9HLXurThvwXJmX3JraRp9JyLPzgSD2jnAijMQJYp+vnLttmYbyRtd9dZKJADPvbyh\nL+4IznO61kHsHGDF6vtEUbahLPpBM/c+NKp6yaomqVffXms62LKNTdSNi5Ki5wy3wdP3icINf8Vo\ndNXb6O7g6kRSK+F/4+7fbN5ehguAbl6U+EZF66a+b6Nww18xGo2RVKsOv1J1fXu9qqpKRY9NlNf4\nWmW9cc8GR9+XKMo0lMWgybrqHVv/2UUrWbd+w7htterbm03sRV4A5HFR4qpTK4O+L1H06+xweenm\n1euJs6ex/DPH8g8fmtVwdNZmE3uRFwB59EYq0yjANrhyLVFIOg74R2AIuDYiLqvafiZwBTB2Nroq\nIq7tZAxu+GteUVevzdS312rzqFb0BUAevZFcdWplkFuikDQEfAk4BlgD3CdpUUSsqtp1QUScm1cc\n4Ia/ZpW54b9Wwi9br6c8LkrqVZ3uMnlS28c0a1WeJYpDgdUR8UsASd8CTgCqE4WVRNmvXnsh4Xc6\nxnlzZjLvOyvY8Mr4Mdl++4eNLFy2tvSfh/WHPNsopgGPVzxfk66rdrKkByTdJGnvWgeSNFfSiKSR\n0dHRPGI1fMdvGZ04exo77bD19dyGTeF2CuuaohuzvwfMiIgDgduAG2rtFBHzI2I4IoanTp3a1QAH\nSVEN/2Xu/lmG2Na9vKHm+rKU9Kz/5Vn1tBaoLCHsxZZGawAi4pmKp9cCf5djPNZAEQ3/Ze7+WZbY\n3MXbipZnorgP2E/SviQJ4lTgw5U7SNojIp5Mnx4PPJxjPC0bxDGiut0OUEQDerPfa1ka9z22kxUt\nt0QRERslnQssJukee11ErJR0CTASEYuAj0s6HtgIPAucmVc8rSrL1WSvaTW5drsBvZXvtSyN++7i\nbUXL9T6KiLgFuKVq3UUVyxcAF+QZQ7vKcjXZS9pJrp2qVsmjlFCmKp8y9/gaxJL3oCm6Mbu0ynI1\n2UvauYu4Ew3otea2uODmB2s2PLfyvfqu/sZa+eytdzlR1NHNrqJl6FnTCe0k1+rBA3fdcRLbb7sN\nn1ywvOnPopUE1cr32mhgQ/MQI4Oi7wcFbFe3GhD7qS2k3aqasWqVdj+LVksJrXyvZa7yKQOXvAeD\nSxR1dOtqcqJXZGUqjUy0qqbdz6KoUkKZPvuiYvJNmoPBJYoM3bianMgVWdlKIxPtndPuZ1FEKaFs\nn31RMeVR8nbjePk4URRsIj1r6l2Bf+rbK/jkguWF/JNN5CQ8kaor6G730TL2iisipk5/9mVMwOZE\nUbiJXJHVu9LeFMkAcr32TzaRz6LVBDXRq9Yy1s0XFVMnS95lTMDmNorCTaTOvJlSRy/1QOlWu1An\nunSWsW6+jDG1qowJ2FyiKIV2r8iamcwHeuufrBvtQo0azZspaZRxWI1OxFR0+0CZbnK0LZwoelh1\n/fA20uZqp0r+JxuvXuIcK1k0Uz+ed7tIOyfsicZUVPtA5e86ZcdJTNpG4+bfKDoBGyhqnFjKbHh4\nOEZGRooOo5Sq/9Eh+SfzTWLjHXHZ7TWvWofqJNppUyZz1/lHdyM0oLjvsd7nkufvX+t3nTQkXrXd\ntjy/foN7PXWQpKURMdzOa12i6CMePG68elfl9apo6lXhdbvqrqgG3SLaB2r9rhs2Ba/afluWf+bY\n3N7XWuNE0Wd8J3GimWqU6iRyxeJHS1E/XlSDbhHtA2687g1OFNZxRTeIQuOr8noJtQwN1EU16BbR\nQO/G697gRGEdMZYc1q5bj4Cxmv6i7uVod4BCKL7qrqgeVUX8/mXsPWZbc6KwCauu5qluDi7ihqmJ\nDlBYpCITVrd//7IkZ8vmRGETVquap1q365znzZnJvJtWsGHTlrQ1aUg9c6VahoTVLYP0u/YqJwob\np7p94aj9p7LkkdHMq71mkkAhdc7VRZve6gluVhpOFLZZrZ5C37j7N5u312tvqFfNM6aIOucrFj86\n7qYtgA2vxISqwMrQSG9WhFzHepJ0nKRHJa2WdH6N7dtLWpBuv0fSjDzjsWzNVCHVGjuq1jwUSn8W\nNStcp7tdespPG2S5lSgkDQFfAo4B1gD3SVoUEasqdjsbeC4iXi/pVOBy4EN5xWTZmj2JVu9XxgbJ\nTne79KimNsjyrHo6FFgdEb8EkPQt4ASgMlGcAHw2Xb4JuEqSotfGFekTjaqQKverVrYGyU53u/SN\nYTbI8qx6mgY8XvF8Tbqu5j4RsRF4Htit+kCS5koakTQyOjqaU7hWqwqpWq/0ce/0kOX9MIS3Wbt6\nojE7IuYD8yEZFLDgcPpWrSqkZno9lVUnSzm+McwGWZ6JYi2wd8XzvdJ1tfZZI2lbYBfgmRxjsgbK\nVoVUFmVshzHrljwTxX3AfpL2JUkIpwIfrtpnEXAG8DPgFOB2t09YWTmJ2qDKLVFExEZJ5wKLgSHg\nuohYKekSYCQiFgFfBb4uaTXwLEkyMTOzEsm1jSIibgFuqVp3UcXy74AP5BmDmZlNTK433JmZWe9z\nojAzs0xOFGZmlkm91slI0ijwWE6H3x14OqdjT0RZ4wLH1q6yxlbWuMCxtaMyrn0iYmo7B+m5RJEn\nSSMRMVx0HNXKGhc4tnaVNbayxgWOrR2distVT2ZmlsmJwszMMjlRjDe/6ADqKGtc4NjaVdbYyhoX\nOLZ2dCQut1GYmVkmlyjMzCyTE4WZmWUaiETRxNzd+0j6F0kPSLpD0l4V2/5O0kpJD0u6UpKqX19g\nbJdLeih9dHQKWUnXSXpK0kN1tiv9PFansR1cse0MSb9IH2d0Mq4OxPYjSeskfb/TcU0kNkmzJP0s\n/Vt7oCzfZ/r3d7+k5Wls53QyronEVrH91ZLWSLqqTLFJ2pR+bsslLSpRXNMl3Zqe01ZJmtHwDSOi\nrx8kI9f+K/DHwHbACuCNVft8BzgjXT4a+Hq6fDhwV3qMIZLh0I8sSWx/BtxGMrDjq0iGdX91B2N7\nB3Aw8FCd7e8FfggIeBtwT7r+NcAv05+7psu7dvg7bSu2dNu7gPcD38/p763dz+0NwH7p8p7Ak8CU\nEsS1HbB9urwT8GtgzzJ8ZhXb/xH4J+Cqsnyf6baX8vgb60BcdwDHVHynOzZ6v0EoUWyeuzsi/gCM\nzd1d6Y3A7enykortAexA+s8CTAL+rSSxvRG4MyI2RsRvgQeA4zoVWETcSTL0ez0nAF+LxN3AFEl7\nAHOA2yLi2Yh4jiSZdSyuCcZGRPwL8GIn4+lEbBHx84j4RXqMJ4CngLbuou1wXH+IiN+n+2xPDrUQ\nE/k+Jb0FeC1wa6fjmmhseWo3LklvBLaNiNvS47wUES83er9BSBTNzN29AjgpXf73wM6SdouIn5Gc\nnJ9MH4sj4uEyxJauP07SjpJ2B45i/IyCeasXezO/U97KEEM9DWOTdCjJxcm/liEuSXtLeiDdfnma\nyLqpZmyStgE+D3y6y/FUyvo+d5A0IuluSSeWJK43AOsk3SxpmaQrJA01OtggJIpmfBp4p6RlwDtJ\nZuTbJOn1wJ+QTOM6DTha0p+WIbaIuJVkro//C9xIUi22qe5RrCekV6NfB86KiFeKjgcgIh6PiAOB\n1wNnSHpt0TGl/gq4JSLWFB1IHftEMnzGh4F/kPS6ogMiqar+U5LzyiEk1d5nNnrRICSKhnN3R8QT\nEXFSRMwGLkzXrSO5gr87LZ69RFLnd1hJYiMi/jYiZkXEMSR1kT/vYGyN1Iu9mbnS81aGGOqpG5uk\nVwM/AC5MqwtKEdeYtCTxEMmJppvqxXYYcK6kXwOfA/5c0mUliY2IGPv5S5J2gdkliGsNsDyt7t4I\nLCRp68g0CIli89zdkrYjmW51XA8ESbunxViAC4Dr0uXfkFzNbytpEskVfSerntqOTdJQWgWFpAOB\nA8mpnraORST/mJL0NuD5iHiSZOrbYyXtKmlX4Nh0XTfVi60MasaWfv//TFKvfFOJ4tpL0mSA9Pt8\nO/BoGWKLiNMjYnpEzCC5Qv5aRGzVc7CI2NK//+0h+R8GjgBWFR0XyTlniqSx9q+jm4qr1db2XnyQ\n9AD4OUmd74XpukuA49PlU4BfpPtcy5ZeHkPA/yRJDquAL5Qoth3SmFYBdwOzOhzXjSTtMhtIrkLO\nBs4Bzkm3C/hSGveDwHDFaz8KrE4fZ+XwmU0ktp8Ao8D69LVzyhAb8B/S1yyveHTsO51AXMeQdJRY\nkf6cW6bvs+IYZ5JPr6d2P7fD0+cr0p9nlyGuqu/0QeB6YLtG7+chPMzMLNMgVD2ZmdkEOFGYmVkm\nJwozM8vkRGFmZpmcKMzMLJMThZWKpAu1ZQTV5ZLemq4/T9KOHXyfX6f929t9/ZmqMVppun40HR7h\nF5IWSzp8Au9ziaR3NxHLnhXPr03H9DHriG2LDsBsjKTDgPcBB0fE79MT+Xbp5vOAbwANBzDLKbah\niGh2iJQFEXFu+rqjgJslHRVtjBMWERc1sduZJHdMP5G+5i9afR+zLC5RWJnsATwd6WilEfF0RDwh\n6eMkQ28vkbQEQNI16YBrKyVdPHaAtKRwsZI5FB6UtH+6fjclY/CvlHQtyQ1JY69ZKGlpum1uxfqX\nJH1e0grgMElnSfq5pHtJ7rRtKCKWkMxbPDc95uuUzImxVNJPJO0vaRdJj43dgS/pVZIelzRJ0vWS\nTknXXyTpPiXzj8xP77o9BRgGvpmWwCYrmbdkOH3Naenn8JCky6t+t7+VtELJoHVlGb/JSsiJwsrk\nVmDv9GR8taR3AkTElSRXy0dFxFHpvhdGMuDagSTDrBxYcZynI+Jg4Bq2jCz6GeCnEfEmkqEyplfs\n/9GIeAvJCffjSodGIZnn456IOIjkDteLSRLE20mGeW/W/cD+6fJ84D+n7/dp4OqIeJ7kTux3pvu8\nj2Sk4g1Vx7kqIg6JiDcDk5WD2qAAAAJ0SURBVIH3RTLcxwhweiTjfq0f2zmtjrqcZJiGWcAh2jKK\n6atIxjE7CLgT+I8t/D42YJworDQiGXjxLSRX36PAAkln1tn9g5LuB5YBb2L8ifvm9OdSYEa6/A6S\nqisi4gfAcxX7fzwtNdxNMpDafun6TcB30+W3AndExGgkc4csaOFXE4CknUiGdviOpOUkw8OMzV2w\nABib1e7UOsc/StI9kh4kOfm/qcH7HlIR80bgmySfA8AfgLFZ/io/J7OtuI3CSiVtB7gDuCM9IZ5B\nMh7NZpL2JR0mOSKek3Q9ydhXY8Ym2tlEg79xSUcC7wYOi4iXJd1RcazftdAukWU2yXhh2wDrImJW\njX0WAf9D0mtIkuXtlRsl7QBcTTJmz+OSPsv437lVG2LL+D0NPycbbC5RWGlImilpv4pVs4DH0uUX\ngZ3T5VcDvwWeT+vW39PE4e8kmRcASe8hmaYVYBfguTRJ7E8ybWQt95BUce2mZCThDzT5O72TpIT0\nlYh4AfiVpA+k2yTpINhcmrqPZFrP79dIUGNJ4em0ZHJKxbbKz6bSvWnMuyuZnOY04MfNxG1WyVcR\nViY7AV+UNAXYSDL67Fjj8nzgR5KeiIijlEzk9AjJLF53NXHsi4EbJa0kmezpN+n6HwHnSHqYZPjs\nmvNARDJ09GdJJohaR9KmUM+HJL0d2BH4FXByRY+n04FrJP0NydS63yIZYRSS6qbvAEfWeP91kr5C\n0rvp/5EklTHXA1+WtJ6K+VLSmM8nmaVRwA8i4n9nxG1Wk0ePNTOzTK56MjOzTE4UZmaWyYnCzMwy\nOVGYmVkmJwozM8vkRGFmZpmcKMzMLNP/B9iiok9hiIIDAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dfbQcdZ3n8feHcJEgDwGSdSAQgzOIAwpELiDCjIDjBBGBQVDwYY06m/WBUc4qOzC6IJwzKw7OeFQUN6KCrqOMiFlUNDLDk7IC3pBACCHKgAy5sIfwcEHkikn47h9VN3Q63X2rH6qruuvzOueeVFdVV/9+93Z+36rfoyICMzOrrm2KToCZmRXLgcDMrOIcCMzMKs6BwMys4hwIzMwqbtuiE9Cu2bNnx/z584tOhpnZQFm+fPljETGn0bGBCwTz589nbGys6GSYmQ0USQ82O+aqITOzinMgMDOrOAcCM7OKcyAwM6s4BwIzs4obuF5DZmZVs3TFOBcvW8vDE5PsOWsmZy/cj5MXzO3Z9R0IzMxKbOmKcc69ehWTGzYBMD4xyblXrwLoWTBw1ZCZWYldvGzt5iAwZXLDJi5etrZnn+FAYGZWYg9PTLa1vxMOBGZmJbbnrJlt7e+EA4GZWYmdvXA/Zo7M2GLfzJEZnL1wv559hhuLzcxKbKpB2L2GzMwq7OQFc3ta8Ndz1ZCZWcXlFggkbS/pdkl3Slot6YIG5yyStF7SyvTnr/NKj5mZNZZn1dBzwLER8YykEeDnkn4cEbfWnXdlRJyZYzrMzKyF3AJBRATwTPpyJP2JvD7PzMw6k2sbgaQZklYCjwLXRcRtDU57i6S7JF0lae8802NmZlvLNRBExKaIOBjYCzhM0ivrTvkBMD8iDgSuA65odB1JiyWNSRpbv359nkk2M6ucvvQaiogJ4AbguLr9j0fEc+nLy4BDmrx/SUSMRsTonDkN1142M7MO5dlraI6kWen2TOANwL115+xR8/JEYE1e6TEzs8by7DW0B3CFpBkkAedfIuKHki4ExiLiGuDDkk4ENgJPAItyTI+ZmTWgpHPP4BgdHY2xsbGik2FmNlAkLY+I0UbHPLLYzKziHAjMzCrOgcDMrOIcCMzMKs6BwMys4hwIzMwqzoHAzKziHAjMzCrOgcDMrOIcCMzMKs6BwMys4hwIzMwqzoHAzKziHAjMzCrOgcDMrOIcCMzMKs6BwMys4hwIzMwqLs/F67eXdLukOyWtlnRBg3NeJOlKSfdJuk3S/LzSY2ZmjeX5RPAccGxEHAQcDBwn6TV157wPeDIi/gT4LPDpHNNjZmYN5BYIIvFM+nIk/Ym6004Crki3rwJeL0l5pcnMzLaWaxuBpBmSVgKPAtdFxG11p8wFHgKIiI3AU8DueabJzMy2lGsgiIhNEXEwsBdwmKRXdnIdSYsljUkaW79+fW8TaWZWcX3pNRQRE8ANwHF1h8aBvQEkbQvsAjze4P1LImI0IkbnzJmTd3LNzColz15DcyTNSrdnAm8A7q077Rrg3en2qcD1EVHfjmBmZjnaNsdr7wFcIWkGScD5l4j4oaQLgbGIuAb4KvBNSfcBTwCn55geMzNrILdAEBF3AQsa7D+vZvv3wGl5pcHMzKbnkcVmZhXnQGBmVnEOBGZmFedAYGZWcQ4EZmYV50BgZlZxDgRmZhXnQGBmVnEOBGZmFedAYGZWcQ4EZmYV50BgZlZxDgRmZhXnQGBmVnEOBGZmFedAYGZWcQ4EZmYV50BgZlZxeS5ev7ekGyTdI2m1pI80OOdoSU9JWpn+nNfoWmZmlp88F6/fCHw0Iu6QtBOwXNJ1EXFP3Xk/i4gTckyHmZm1kNsTQUQ8EhF3pNu/BdYAc/P6PDMz60xf2ggkzQcWALc1OHyEpDsl/VjSAf1Ij5mZvSDPqiEAJO0IfA84KyKerjt8B/DSiHhG0vHAUmDfBtdYDCwGmDdvXs4pNjOrlpZPBJJmSLq304tLGiEJAt+KiKvrj0fE0xHxTLp9LTAiaXaD85ZExGhEjM6ZM6fT5JiZWQMtA0FEbALWSmr7NlySgK8CayLin5qc80fpeUg6LE3P4+1+lpmZdS5L1dCuwGpJtwO/m9oZESdO874jgXcBqyStTPf9HTAvff+XgVOBD0jaCEwCp0dEtJcFMzPrRpZA8D86uXBE/BzQNOdcAlzSyfXNzKw3pg0EEXGTpJcAh6a7bo+IR/NNlpmZ9cu03UclvRW4HTgNeCtwm6RT806YmZn1R5aqoY8Dh049BUiaA/wrcFWeCTMzs/7IMqBsm7qqoMczvs/MzAZAlieCn0haBnw7ff024Nr8kmRmZv3UMhCkffw/T9JQfFS6e0lEfD/vhJmZWX+0DAQREZKujYhXAVuNDDYzs8GXpa7/DkmHTn+amZkNoixtBIcD75D0IMnIYpE8LByYa8rMzKwvsrQRLAYe7E9yzMys37K0EXwxbSMwM7Mh5DYCM7OKcxuBmVnFZQkEC3NPhZmZFaZpIJB0bERcHxEPStonIh6oOXYKbkA2K42lK8a5eNlaHp6YZM9ZMzl74X6cvGBu0cmyAdGqjeAzNdvfqzv2iRzSYmYdWLpinHOvXsX4xCQBjE9Mcu7Vq1i6YrzopNmAaBUI1GS70WszK8jFy9YyuWHTFvsmN2zi4mVrC0qRDZpWgSCabDd6bWYFeXhisq39ZvVaNRa/TNI1JHf/U9ukr/fJPWVmlsmes2Yy3qDQ33PWzAJSY4OoVSA4qWb7M3XH6l9vRdLewDeAl5A8QSyJiM/VnSPgc8DxwLPAooi4I0O6zSx19sL9OPfqVVtUD80cmcHZC/crMFU2SJoGgoi4qctrbwQ+GhF3SNoJWC7puoi4p+acNwL7pj+HA5em/5pZRlO9g9xryDqVZRxBRyLiEeCRdPu3ktYAc4HaQHAS8I2ICOBWSbMk7ZG+18wyOnnBXBf81rG+LDkpaT6wALit7tBc4KGa1+vSffXvXyxpTNLY+vXr80qmmVklZQ4Eknbo5AMk7UgyDuGsiHi6k2tExJKIGI2I0Tlz5nRyCTMza2LaQCDptZLuAe5NXx8k6UtZLi5phCQIfCsiGq1wNg7sXfN6r3SfmZn1SZYngs+SzDf0OEBE3An8+XRvSnsEfRVYExH/1OS0a4D/rMRrgKfcPmBm1l+ZGosj4qGkXN9sU7NzaxwJvAtYJWlluu/vgHnpNb8MXEvSdfQ+ku6j78mWbDMz65UsgeAhSa8FIq3q+QiwZro3RcTPmWYqirS30IeyJNTMzPKRpWro/SSF9VyS+vuDgQ/mmSgzM+ufLE8E+0XEO2p3SDoSuCWfJJmZWT9leSL4QsZ9ZmY2gFotTHME8FpgjqT/VnNoZ2BG3gkzM7P+aFU1tB2wY3rOTjX7nwZOzTNRZmbWP9NNOneTpMsjwstSmpkNqSyNxZdL2mohmog4Nof0mJlZn2UJBB+r2d4eeAvJFNNmZjYEpg0EEbG8btctkm7PKT1mZtZn0wYCSbvVvNwGOATYJbcUmfXJ0hXjXszFjGxVQ8tJlpoUSZXQA8D78kyUWd6WrhjfYnnH8YlJzr16FYCDgVVOlqohL1RvQ+fiZWu3WOMXYHLDJi5ettaBwCqn1YCyU1q9scn6AmYD4eGJybb213KVkg2bVk8Eb25xLAAHAhtYe86ayXiDQn/PWTNbvs9VSjaMWg0o89oAFTasd71T+RqfmEQkdzRTZo7M4OyF+7V8v6uUbBhl6TW0C3A+L6xKdhNwYUQ8lWfCrDjDetdbn6+pHhABzM0Y7LqpUjIrqyyzj34N+C3w1vTnaeDreSbKitXqrneQNcrXVBC45ZxjMwW5ZlVH01UpmZVZlkDwxxFxfkTcn/5cALws74RZcYb1rrcX+Tp74X7MHNly8t0sVUpmZZYlEExKOmrqRboozbT/cyR9TdKjku5ucvxoSU9JWpn+nJc92ZanYb3r7UW+Tl4wl0+d8irmzpqJSJ4mPnXKqwa6yswsy4CyDwBXpG0FAp4AFmV43+XAJcA3Wpzzs4g4IcO1rI/OXrjfFnXpMBx3vb3K18kL5rrgt6GSZUDZSuAgSTunr5/OcuGIuFnS/K5SZ4WYKuSGrdfQsObLrFuK2GqG6S1PkD5C0jj8W+ArwKuBcyLip9NePAkEP4yIVzY4djTwPWAd8DDwsYhY3eQ6i4HFAPPmzTvkwQe9PMIgG9auqWZlJml5RIw2Opalaui9EfE5SQuB3YF3Ad8Epg0E07gDeGlEPCPpeGApsG+jEyNiCbAEYHR0tHXkKoFOC7oqFJDD2jXVbJBlaSxW+u/xwDfSu3a1OD+TiHg6Ip5Jt68FRiTN7va6RZsq6MYnJgleKOiWrhjP5X2DZli7ppoNsiyBYLmkn5IEgmWSdgKe7/aDJf2RJKXbh6Vpebzb6xat04KuKgXksHZNNRtkWaqG3gccDNwfEc9K2h2YdvoJSd8GjgZmS1pHMjp5BCAivgycCnxA0kaS7qinx3QNFgOg04KuKgVkp3P8FKkKVXZWbVl6DT2fNvq+M127+OcR8f0M7ztjmuOXkHQvHSqdFnSDWEB2YtC6prpNw6pg2qohSV8C3g+sAu4G/qukL+adsEHV6cjTqoxYHbQBWVWpsrNqy1I1dCzwp1PVNpKuAO7JNVUDrNO+6lXq4z5IA7KqUmVn1ZYlENwHzAOmOu/vDfw6txQNgU4LukEqIKuiKlV2Vm2tVij7AcnkjDsBayTdnr4+HLi9P8mz6bghM1+D1qZh1olWTwSfaXFs4Hv3DAM3ZOavSlV2Vl2tVii7qdH+dCbSM4Cb80qUZePVsjrT7lOUq+xs2GVpI0DSAuDtwGnAAyRzBFnB3JDZPj9FmW2tafdRSS+XdL6ke4EvAP9BMkndMekYACvYsK4bkCd3BzXbWqtxBPeSdB09ISKOiogvAJtanG99VpWxB73kpyizrbUKBKcAjwA3SPqKpNfTg8nmrHcGbXBWGfgpymxrrRqLlwJLJb0YOAk4C/hPki4Fvp9lPQLLnxsy2+PuoGZbm3aKiYj4XUT8c0S8GdgLWAH8be4pM8uBn6LMtjbtCmVlMzo6GmNjY0Unw8xsoLRaoSzLegRmZjbEMo0jMKsaT91hVeJAUEIuhIrlQWdWNa4aKpmqrF1cZh50ZlXjQFAyLoSK50FnVjW5BQJJX5P0qKS7mxyXpM9Luk/SXZJenVdaBokLoeJ50JlVTZ5PBJcDx7U4/kZg3/RnMXBpjmkZGC6EiuepO6xqcgsEEXEz8ESLU04CvhGJW4FZkvbIKz15W7pinCMvup59zvkRR150fcd1+i6EiudBZ1Y1RfYamgs8VPN6XbrvkfoTJS0meWpg3rx5fUlcO3rZy8QLoXSm1z2tPHWHVclAdB+NiCXAEkhGFhecnK30eoEYF0LtcXdPs+4UGQjGgb1rXu+V7hs4buDN13R3+16pzaw7RQaCa4AzJX0HOBx4KiK2qhYaBHvOmsl4g0J/0Bp4yziQLcvdvgPx8Or1d7KM3/EyyC0QSPo2cDQwW9I64HxgBCAivgxcCxwP3Ac8C7wnr7TkbRimNi5r9Uqzu/0LfrB683/obSQ2NZg8MWsgduFQTr3+Tpb1O14GuQWCiDhjmuMBfCivz++nYWjgLWv1SrO7+ief3cCTz24AaBgEpgvEU4X/+MQkAqau4MKhPHr9nSzrd7wMBqKxeBAMegNvWatXmlW7NTJD4vmIaQNx/Z1hfRhx4VAOvf5OlvU7XgaeYsKA8g5kazSuopnnI3jgojdxyznHtizEG90Z1nPhULxefyfL+h0vAwcCA1oPZOvVYLlOTA3u2nWHkc37mi2cnfU/dJZC3oVD8Xo9uNKDNZtz1ZABzds5gFI0sP1+w/ObtxsNJGnnP/R01U0uHMqh121vw9CWlxcvVWktHXnR9Q0LzbmzZnLLOccWmoasbQL16tsIgM0NxnMHsHBwryfLotVSlX4i6KFh/A9Zhga2Zp811SbQrmG6M3SXSOsFB4IeGdb/kGUYLLfLzBEmJjf0NA2D3strirtEWi+4sbhHhnVBmaIb2JauGOd3f9i41f6RbeR6fMrxxGaDz08EPTKs/yGLrka5eNlaNmzauh1rx+23zZSGYayuq1WGJzYbfA4EXagtZLqd5qDMiqxGaRZIJ57duqqoXtmq6/IISsMwvYkVz4GgQ/WFTCfTHNj0urnj7ab+PI/JzvIISkU/sdlwcCDoULPRqZ12aRw0/apy6eaOt9PqujwK7TwbdYel4duKU8lA0ItCrNddGgdJP6tcurnj7fRpIo9Ce1jbkGw4VC4Q9KoQq3IjXb+7LHZ6x9vp00QehXaVvy9WfpXrPtqrbp5Fd6ssUtaCssg5iqDzRejzmJysyt8XK7/KPRH06m6vyo10We5uy9Jjp5OniTx64lT5+2LlV7lA0MtH9Ko20mUpKNutPipTf/+8Cu2qfl+s/CoXCNzvuntZCspmT1jjE5McedH1W5xflqeHWi60rUpyDQSSjgM+B8wALouIi+qOLwIuBqYqjy+JiMvyTFPVH9F7dec9XUHZaqrn+oLe8+WYFSvPxetnAF8E3gCsA34p6ZqIuKfu1Csj4sy80tFI1e72er0+b5Zg0ujJq1ZtQe+ulWbFyvOJ4DDgvoi4H0DSd4CTgPpAkLsy1T/3W6/X581ajVP75NXsyWCqoHfXSrNi5dl9dC7wUM3rdem+em+RdJekqyTt3ehCkhZLGpM0tn79+rYSMVVwjU9MErxQcPW7K2NRer0+bzvdb09eMJdbzjmWudN0x2yna2U7XVKL7r5qNiiKHkfwA2B+RBwIXAdc0eikiFgSEaMRMTpnzpy2PmBYp4fOqtfr83ZSjTNdQZ+1v387Qb3qNwBm7cizamgcqL3D34sXGoUBiIjHa15eBvxDrxNR9frnTtfnbVad1kk1TpYG+iztNu00KrsB2iy7PAPBL4F9Je1DEgBOB95ee4KkPSLikfTlicCaXiei3YJr2NoTGjXaTrc+b6t2gE673/aigb6doF71GwCzduQWCCJio6QzgWUk3Ue/FhGrJV0IjEXENcCHJZ0IbASeABb1Oh3tFFxl7M/erU66y7a6m55asL6IYNlOUHcDtFl2igbz6JfZ6OhojI2NtfWerHf5R150fcPCY+6smZsLwCrY55wfbdW7CJIniSJnVq0P1JAE9VbtCVnONasCScsjYrTRsUqMLM5aLeHqhERZ7qYbBfBPnfKqTEG96gMHe2nYqktta5V4IsjKTwSJMtxN9zIN3RRkVS8Ey/BdsN6o/BNBVlWbh6hVIfeibbfZ/HvYdYcRzn/zAX35j187CrpeJ71+umn3KUubUZHByL2vqqHocQSl0un89YOoWT/7TyxdxblXr2Ji8oXF4X+/4fm+p6mZ8YnJtsYCdDOOpAxjUIoeD+Hq0mrwE0GdqsxD1KyQ+/ZtD7GprrqwX3eAWUZBA23dlXdTkJWhECz6jrws7UWWLz8RVFSzwqw+CEx3fi9l/Yx27sq7WW0sj5XK2lV0MPLKatXgQFBRzQqzGVJb5/fC1JxA7XRbyFoQdlOQ9bMQbDYvUtHBqErVpVXmqqGKatYw/pZD5vK95eN9azBv1Csli6wFYTfdSPvVBTWPkdy9VJXq0ipzIKiAVr1OGu0ffelufeulkrVdoFY/C8J+FIJlHclt1eFAMOSm6wLZbDBWvwqaduq6BR2NAyhDF9BWpmsH8B255c1tBEOuDF0gW8laxTN31kweuOhN3HLOsW0VimXPPxTfDmDmQDDkiuh10s6CMI0aZOt1UxVUdK+bLNwzx4rmQDDk+n232e4AqEa9Ut75mnk966UyCHfb7pljRfNcQ0Ou33PFlG2+Js+VY5bwXEMVlrULZK/msylbVUyvuoD26vdT9UnsrJwcCCpgul4nvexZU8YpCbrtddOr388g9GCyanIbgfW0Z80wNnz26vczCD2YrJr8RGA9r87ZfuSFKaxnzRzhkyf2ZwrrXmhUddOr30/Zqs3MpuT6RCDpOElrJd0n6ZwGx18k6cr0+G2S5ueZHmusVz1rpqo+nnz2hSmsn9vYnymse6FZj6dZO4w0PL/d388g9GCyasotEEiaAXwReCOwP3CGpP3rTnsf8GRE/AnwWeDTeaXHmutVdc6gV300S38EPfn9DGO1mQ2HPJ8IDgPui4j7I+IPwHeAk+rOOQm4It2+Cni91GT6S8tNr/qxD3rVR7N0PjW5oSe/H48XsLLKs41gLvBQzet1wOHNzomIjZKeAnYHHqs9SdJiYDHAvHnz8kpvpfViPpsy9hhqR6v092q+H88bZGU0EL2GImJJRIxGxOicOXOKTo41MehVH4OefrNO5flEMA7sXfN6r3Rfo3PWSdoW2AV4PMc0WY76NX9/XgY9/Wadym2KibRg/xXwepIC/5fA2yNidc05HwJeFRHvl3Q6cEpEvLXVdT3FhJlZ+wqZYiKt8z8TWAbMAL4WEaslXQiMRcQ1wFeBb0q6D3gCOD2v9JiZWWO5DiiLiGuBa+v2nVez/XvgtDzTYGZmrQ1EY7GZmeXHgcDMrOIcCMzMKm7gFqaRtB54sGbXbOoGoA2hYc/jsOcPhj+Pw54/GPw8vjQiGg7EGrhAUE/SWLMuUcNi2PM47PmD4c/jsOcPhjuPrhoyM6s4BwIzs4obhkCwpOgE9MGw53HY8wfDn8dhzx8McR4Hvo3AzMy6MwxPBGZm1gUHAjOziit1IMiw5vE8STdIWiHpLknH1xw7UNIvJK2WtErS9v1N/fQ6zZ+kEUlXpPlaI+nc/qc+mwx5fKmkf0vzd6OkvWqOvVvSr9Ofd/c35dl0mj9JB9d8P++S9Lb+pz6bbv6G6fGdJa2TdEn/Up1dl9/ReZJ+mv4/vGdg112PiFL+kMxY+u/Ay4DtgDuB/evOWQJ8IN3eH/hNur0tcBdwUPp6d2BG0XnqYf7eDnwn3d4B+A0wv+g8dZjH7wLvTrePBb6Zbu8G3J/+u2u6vWvReeph/l4O7Jtu7wk8AswqOk+9zGPN8c8B/wxcUnR+ep0/4EbgDen2jsAOReepk58yPxFkWfM4gJ3T7V2Ah9PtvwTuiog7ASLi8YjYRLl0k78AXpyu+TAT+APwdP5JbluWPO4PXJ9u31BzfCFwXUQ8ERFPAtcBx/Uhze3oOH8R8auI+HW6/TDwKFDG5fe6+Rsi6RDgJcBP+5DWTnScP0n7A9tGxHUAEfFMRDzbn2T3VpkDQaM1j+uXivok8E5J60imu/6bdP/LgZC0TNIdkv573ontQDf5uwr4Hcld5H8An4mIJ3JNbWey5PFO4JR0+6+AnSTtnvG9Resmf5tJOozkbvTfc0pnNzrOo6RtgH8EPpZ7KjvXzd/w5cCEpKvT6tuLJc1gAJU5EGRxBnB5ROwFHE+yyM02JFVDRwHvSP/9K0mvLy6ZHWuWv8OATSRVCvsAH5X0suKS2ZWPAa+TtAJ4HclqdmV7eutGy/xJ2gP4JvCeiHi+mCR2rVkePwhcGxHrikxcDzTL37bAn6XHDyWpXlpUUBq7kuvCNF3Ksubx+0irCyLiF2mD8GySqH5zRDwGIOla4NXAv+Wd6DZ0k7+3Az+JiA3Ao5JuAUZJ6tHLZNo8ptUipwBI2hF4S0RMSBoHjq577415JrYDHecvfb0z8CPg4xFxa19S3L5u/oZHAH8m6YMk9efbSXomIrZqkC1QN/lbB6yMiPvTY0uB15CsvDhYim6kaPZDEqTuJ7njnWrEOaDunB8Di9LtPyWpQxdJ4+IdJA2p2wL/Cryp6Dz1MH9/C3w93f9i4B7gwKLz1GEeZwPbpNt/D1yYbu8GPJD+LXdNt3crOk89zN92JDcmZxWdj7zyWHfOIsrZWNzN33BGev6c9PXXgQ8VnaeOfg9FJ2CaP9LxwK9I6k4/nu67EDgx3d4fuCX9Y6wE/rLmve8EVgN3A/9QdF56mT+Su6vvpvm7Bzi76Lx0kcdTgV+n51wGvKjmve8F7kt/3lN0XnqZv/T7uSH9u079HFx0fnr9N6y5RikDQQ++o28g6aG4Crgc2K7o/HTy4ykmzMwqbtAbi83MrEsOBGZmFedAYGZWcQ4EZmYV50BgZlZxDgRWKpI+XjMj50pJh6f7z5K0Qw8/5zeSZnfx/kWNZtNM969Ppxz4dTrNyWu7+JwLJf1FhrTsWfP6snQeHLNMyjyy2ComHYl6AvDqiHguLai3Sw+fBfxvoJBJvSTNiOwTF14ZEWem7zsGuFrSMRGxpt3PjYjzMpy2iGS8zMPpe/663c+xavMTgZXJHsBjEfEcQEQ8FhEPS/owybxKN0i6AUDSpZLG0qeHC6YukN7pX5BONrhK0ivS/bun88avlnQZyQjtqfcslbQ8Pba4Zv8zkv5R0p3AEZLeI+lXkm4HjsySoYi4gWQ68cXpNf9Y0k/Sz/uZpFdI2kXSg+k8Ukh6saSHlKw7cbmkU9P950n6paS7JS1R4lSS6UW+lT5BzVQyZ/5o+p4z0t/D3ZI+XZe3v5d0p6RbJb2k3T+WDQ8HAiuTnwJ7p4XtlyS9DiAiPk9yt3tMRByTnvvxiBgFDiSZEOzAmus8FhGvBi7lhZkvzwd+HhEHAN8H5tWc/96IOISkQP1wzeygLwZui4iDSEadXkASAI4iGfWd1R3AK9LtJcDfpJ/3MeBLEfEUycji16XnnAAsi2QuqVqXRMShEfFKkunHT4iIq4Ax4B0RcXBETE6dnFYXfZpkDv2DgUMlnVyTt1vTvN0M/Jc28mNDxoHASiMingEOIbl7Xg9cKWlRk9PfKukOYAVwAFsWzFen/y4H5qfbf05StURE/Ah4sub8D6d3/beSTEC2b7p/E/C9dPtw4MaIWB/JvPVXtpE1weYJy14LfFfSSuB/kTwFkV5vapWy05tc/xhJt0laRVK4HzDN5x5ak+aNwLdIfg+QrGHxw3S79vdkFeQ2AiuVtB7+RuDGtMB7N8kcLptJ2od06t+IeFLS5UDtUqTPpf9OTRXclKSjgb8AjoiIZyXdWHOt37fRLtDKAmANyY3XREQc3OCca4D/KWk3kmB4fe3BdObZLwGjEfGQpE+yZZ7btSFemF9m2t+TDTc/EVhpSNpP0r41uw4GHky3f0eJnEAAAAE4SURBVAvslG7vTLIwz1Np3fYbM1z+ZpLpu5H0RpIZTSFZ+e3JNAi8gmQa4UZuI6mC2l3SCHBaxjy9juQJ5ysR8TTwgKTT0mOSdBBsfhr6Jcmyjj9sEICmCv3H0ieLU2uO1f5uat2epnm2kgVTzgBuypJuqxbfBViZ7Ah8QdIsYCPJrKNTjbdLgJ9IejgijlGySMi9JKtL3ZLh2hcA35a0Gvi/JCu7AfwEeL+kNcBakuqhrUTEI+ld+C+ACZI6/WbeJukokmnQHyCZv36qx9A7gEslfQIYIVka8c702JUks8oe3eDzJyR9haR30P8jCRpTLge+LGkSOKIuzeeQLK8o4EcR8X9apNsqyrOPmplVnKuGzMwqzoHAzKziHAjMzCrOgcDMrOIcCMzMKs6BwMys4hwIzMwq7v8DvtWPvtoPEXMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -373,7 +398,7 @@ "scrolled": true, "id": "IrD6swafkMdY", "colab_type": "code", - "outputId": "166c3b20-2b8e-45bb-a619-bbd237985d23", + "outputId": "1e797a9f-eaae-433c-dcd8-af84ea526884", "colab": { "base_uri": "https://localhost:8080/", "height": 265 @@ -388,13 +413,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAANEElEQVR4nO3dfYxlhVnH8e+vLNgipFR3UhGYDiYN\nCZJWcIJUktqUNsHSgIn8AUkr1JpNNFpqTJqtJhL9C6NpfKmRbAoWlVAMpYrQaklLQ0xadEHaAktb\nrNhSqSwlQl+MuPr4x1zKdpxl7txzdu6dh+8nmex9OXfOs2dnvzlz7r3npqqQJPXyknkPIEkan3GX\npIaMuyQ1ZNwlqSHjLkkN7drOle3evbtWVla2c5WStOPde++9T1bV0lYes61xX1lZYf/+/du5Skna\n8ZL861Yf42EZSWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1tGnck1yf5IkkDxx22+8meTjJ55J8JMlJ\nR3dMSdJWTLPn/kHgwnW33QmcVVWvAb4IvHfkuSRJA2wa96q6G3hq3W0fr6pDk6ufAU49CrNJkmY0\nxjtUfx64+Uh3JtkD7AFYXl4eYXVbt7L3jkGPf/Sai0aaRJK2x6AnVJP8BnAIuPFIy1TVvqpararV\npaUtnRpBkjSjmffck1wJvBW4oPysPklaKDPFPcmFwHuAn6qq74w7kiRpqGleCnkT8GngjCSPJXkn\n8H7gRODOJPcnufYozylJ2oJN99yr6vINbr7uKMwiSRqJ71CVpIaMuyQ1ZNwlqSHjLkkNGXdJasi4\nS1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTc\nJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIY2jXuS65M8keSBw277gSR3JvnS5M9XHN0xJUlb\nMc2e+weBC9fdthf4RFW9GvjE5LokaUFsGvequht4at3NlwA3TC7fAPzMyHNJkgbYNePjXllVj08u\nfx145ZEWTLIH2AOwvLw84+p2rpW9d8z82EevuWjESSS9mAx+QrWqCqgXuH9fVa1W1erS0tLQ1UmS\npjBr3P89yckAkz+fGG8kSdJQs8b9NuCKyeUrgL8eZxxJ0himeSnkTcCngTOSPJbkncA1wJuTfAl4\n0+S6JGlBbPqEalVdfoS7Lhh5FknSSHyHqiQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZek\nhoy7JDVk3CWpIeMuSQ3N+mEd227Ih15I0ouNe+6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtS\nQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJamhQ3JP8apIHkzyQ5KYkLx1rMEnS7GaOe5JT\ngHcBq1V1FnAMcNlYg0mSZjf0sMwu4GVJdgHHA/82fCRJ0lAzx72qvgb8HvAV4HHg6ar6+PrlkuxJ\nsj/J/oMHD84+qSRpakMOy7wCuAQ4Hfhh4PuTvG39clW1r6pWq2p1aWlp9kklSVMbcljmTcC/VNXB\nqvpv4FbgJ8cZS5I0xJC4fwU4L8nxSQJcABwYZyxJ0hBDjrnfA9wC3Ad8fvK99o00lyRpgF1DHlxV\nVwNXjzSLJGkkvkNVkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZek\nhgadW0ZH18reO2Z+7KPXXDTiJJJ2GvfcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1\nZNwlqSHjLkkNGXdJasi4S1JDxl2SGhoU9yQnJbklycNJDiR53ViDSZJmN/SUv38A/G1VXZrkOOD4\nEWaSJA00c9yTvBx4PXAlQFU9Czw7zliSpCGG7LmfDhwE/jTJa4F7gauq6tuHL5RkD7AHYHl5ecDq\n5mfIh2bMy079oI+dOre0aIYcc98FnAP8SVWdDXwb2Lt+oaraV1WrVbW6tLQ0YHWSpGkNiftjwGNV\ndc/k+i2sxV6SNGczx72qvg58NckZk5suAB4aZSpJ0iBDXy3zK8CNk1fKfBl4x/CRJElDDYp7Vd0P\nrI40iyRpJL5DVZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaM\nuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPG\nXZIaMu6S1NDguCc5Jsk/Jbl9jIEkScONsed+FXBghO8jSRrJoLgnORW4CPjAOONIksYwdM/994H3\nAP97pAWS7EmyP8n+gwcPDlydJGkaM8c9yVuBJ6rq3hdarqr2VdVqVa0uLS3NujpJ0hYM2XM/H7g4\nyaPAh4A3JvmLUaaSJA0yc9yr6r1VdWpVrQCXAZ+sqreNNpkkaWa+zl2SGto1xjepqk8Bnxrje0mS\nhnPPXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIZGObeMelnZ\ne8egxz96zUUjTSJpVu65S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIa\nMu6S1JBxl6SGjLskNTRz3JOcluSuJA8leTDJVWMOJkma3ZBT/h4Cfq2q7ktyInBvkjur6qGRZpMk\nzWjmPfeqeryq7ptc/iZwADhlrMEkSbMb5cM6kqwAZwP3bHDfHmAPwPLy8hir04Ib+mEf81ivHzCi\nbgY/oZrkBODDwLur6pn191fVvqpararVpaWloauTJE1hUNyTHMta2G+sqlvHGUmSNNSQV8sEuA44\nUFXvG28kSdJQQ/bczwfeDrwxyf2Tr7eMNJckaYCZn1Ctqr8HMuIskqSR+A5VSWrIuEtSQ8Zdkhoy\n7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktTQKJ/EJL3Y+SlQ/Q39hLHt/nd2\nz12SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJamh\nQXFPcmGSLyR5JMnesYaSJA0zc9yTHAP8MfDTwJnA5UnOHGswSdLshuy5nws8UlVfrqpngQ8Bl4wz\nliRpiCEf1nEK8NXDrj8G/MT6hZLsAfZMrn4ryRe2uJ7dwJMzTThfO3HunTgzjDB3fmekSbZmN/Dk\nnNY9xIv252SIGf+dn5v5VVt94FH/JKaq2gfsm/XxSfZX1eqII22LnTj3TpwZnHu7Off2GTLzkMMy\nXwNOO+z6qZPbJElzNiTu/wi8OsnpSY4DLgNuG2csSdIQMx+WqapDSX4Z+DvgGOD6qnpwtMmeN/Mh\nnTnbiXPvxJnBubebc2+f2Q9pV9WYg0iSFoDvUJWkhoy7JDW0MHHf7FQGSb4vyc2T++9JsrL9U/6/\nmTab+cokB5PcP/n6hXnMuV6S65M8keSBI9yfJH84+Xt9Lsk52z3jBjNtNvMbkjx92Lb+ze2ecSNJ\nTktyV5KHkjyY5KoNllnE7T3N3Au1zZO8NMk/JPnsZObf2mCZRezINHNvvSVVNfcv1p6Q/WfgR4Dj\ngM8CZ65b5peAayeXLwNu3gEzXwm8f97bd4PZXw+cAzxwhPvfAnwMCHAecM8OmPkNwO3znnODuU4G\nzplcPhH44gY/J4u4vaeZe6G2+WT7nTC5fCxwD3DeumUWqiNbmHvLLVmUPfdpTmVwCXDD5PItwAVJ\nso0zrrdjT79QVXcDT73AIpcAf1ZrPgOclOTk7ZluY1PMvJCq6vGqum9y+ZvAAdbe3X24Rdze08y9\nUCbb71uTq8dOvta/YmTROjLt3Fu2KHHf6FQG63+QvrtMVR0CngZ+cFum29g0MwP87ORX7VuSnLbB\n/Yto2r/bonnd5FfbjyX50XkPs97kEMDZrO2ZHW6ht/cLzA0Lts2THJPkfuAJ4M6qOuK2XpCOAFPN\nDVtsyaLEvau/AVaq6jXAnTy/x6Dx3Qe8qqpeC/wR8Fdznud7JDkB+DDw7qp6Zt7zTGuTuRdum1fV\n/1TVj7H2jvlzk5w175mmMcXcW27JosR9mlMZfHeZJLuAlwPf2JbpNrbpzFX1jar6r8nVDwA/vk2z\nDbXjTi1RVc8896ttVX0UODbJ7jmPBUCSY1kL5I1VdesGiyzk9t5s7kXe5lX1H8BdwIXr7lq0jnyP\nI809S0sWJe7TnMrgNuCKyeVLgU/W5JmGOdl05nXHTS9m7bjlTnAb8HOTV3GcBzxdVY/Pe6gXkuSH\nnjt2muRc1n625/6fdjLTdcCBqnrfERZbuO09zdyLts2TLCU5aXL5ZcCbgYfXLbZoHZlq7llactTP\nCjmNOsKpDJL8NrC/qm5j7Qftz5M8wtoTa5fNb+KpZ35XkouBQ6zNfOXcBj5MkptYe6XD7iSPAVez\n9iQOVXUt8FHWXsHxCPAd4B3zmfR5U8x8KfCLSQ4B/wlcNu//tBPnA28HPj85pgrw68AyLO72Zrq5\nF22bnwzckLUPEnoJ8JdVdfsid2Rimrm33BJPPyBJDS3KYRlJ0oiMuyQ1ZNwlqSHjLkkNGXdJasi4\nS1JDxl2SGvo/THFWAuNSk7oAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAM+ElEQVR4nO3db4xlhV3G8e9TFmwppFSZVASmg0lDgqQKTpBKUpvSJlgaMJEXS9IKtWYSjZYak2ariURfYTSNf2okG8CiEoqhqAitQloaYtKiC6UtsLTFiu1W6m5LhNY24pqfL+aCy+3uzN17z957f/L9JJM995xz5zxzZs6zZ86fOakqJEn9vGzRASRJ07HAJakpC1ySmrLAJakpC1ySmtoxz4Wdeuqptba2Ns9FSlJ7Dz744DeqamV8/FwLfG1tjT179sxzkZLUXpJ/Pdx4D6FIUlMWuCQ1ZYFLUlMWuCQ1ZYFLUlMWuCQ1tW2BJ7kpyf4kjxwy7neTPJ7kc0n+KskpxzamJGncJHvgHwIuGRt3L3BuVb0e+CLw/oFzSZK2sW2BV9X9wNNj4+6pqoOjl58GzjgG2SRJWxjiTsyfB2470sQkG8AGwOrq6gCLO3pru+6e6f1PXnfpQEkkaTgzncRM8hvAQeCWI81TVburar2q1ldWvudWfknSlKbeA09yNfB24OLyuWySNHdTFXiSS4D3AT9VVd8ZNpIkaRKTXEZ4K/Ap4Owk+5K8G/ggcDJwb5KHk1x/jHNKksZsuwdeVVceZvSNxyCLJOkoeCemJDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDVlgUtSUxa4JDW1bYEnuSnJ/iSPHDLu+5Pcm+RLo39ffWxjSpLGTbIH/iHgkrFxu4CPV9XrgI+PXkuS5mjbAq+q+4Gnx0ZfDtw8Gr4Z+JmBc0mStrFjyve9pqqeGg1/HXjNkWZMsgFsAKyurk65uJemtV13T/3eJ6+7dMAkkpbRzCcxq6qA2mL67qpar6r1lZWVWRcnSRqZtsD/PclpAKN/9w8XSZI0iWkL/E7gqtHwVcDfDBNHkjSpSS4jvBX4FHB2kn1J3g1cB7w1yZeAt4xeS5LmaNuTmFV15REmXTxwFknSUfBOTElqygKXpKYscElqygKXpKYscElqygKXpKYscElqygKXpKYscElqygKXpKYscElqatoHOryk+GAFScvIPXBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmZirwJL+a5NEkjyS5NcnLhwomSdra1AWe5HTgPcB6VZ0LHAfsHCqYJGlrsx5C2QG8IskO4ETg32aPJEmaxNRP5KmqryX5PeArwHeBe6rqnvH5kmwAGwCrq6vTLm6mp+IsUtfckpbfLIdQXg1cDpwF/BDwyiTvGJ+vqnZX1XpVra+srEyfVJL0IrMcQnkL8C9VdaCq/hu4A/jJYWJJkrYzS4F/BbgwyYlJAlwM7B0mliRpO1MXeFU9ANwOPAR8fvS5dg+US5K0jalPYgJU1bXAtQNlkSQdBe/ElKSmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmLHBJasoCl6SmZirwJKckuT3J40n2JnnDUMEkSVvbMeP7/wD4u6q6IskJwIkDZJIkTWDqAk/yKuCNwNUAVfUc8NwwsSRJ25nlEMpZwAHgT5N8JskNSV45PlOSjSR7kuw5cODADIuTJB1qlgLfAZwP/ElVnQf8J7BrfKaq2l1V61W1vrKyMsPiJEmHmqXA9wH7quqB0evb2Sx0SdIcTF3gVfV14KtJzh6Nuhh4bJBUkqRtzXoVyq8At4yuQPky8K7ZI0mSJjFTgVfVw8D6QFkkSUfBOzElqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKassAlqSkLXJKamrnAkxyX5DNJ7hoikCRpMkPsgV8D7B3g80iSjsJMBZ7kDOBS4IZh4kiSJrVjxvf/PvA+4OQjzZBkA9gAWF1dnXFxmtTarrunfu+T1106YJL5eSl+zXppm3oPPMnbgf1V9eBW81XV7qpar6r1lZWVaRcnSRozyyGUi4DLkjwJfBh4c5K/GCSVJGlbUxd4Vb2/qs6oqjVgJ/CJqnrHYMkkSVvyOnBJamrWk5gAVNUngU8O8bkkSZNxD1ySmrLAJakpC1ySmrLAJakpC1ySmrLAJakpC1ySmrLAJakpC1ySmrLAJakpC1ySmhrkb6FIh5rlwQqSJuceuCQ1ZYFLUlMWuCQ1ZYFLUlMWuCQ1ZYFLUlMWuCQ1ZYFLUlMWuCQ1ZYFLUlMWuCQ1ZYFLUlMWuCQ1NXWBJzkzyX1JHkvyaJJrhgwmSdraLH9O9iDwa1X1UJKTgQeT3FtVjw2UTZK0han3wKvqqap6aDT8LWAvcPpQwSRJWxvkgQ5J1oDzgAcOM20D2ABYXV0dYnE6xnwgg9TDzCcxk5wEfAR4b1U9Oz69qnZX1XpVra+srMy6OEnSyEwFnuR4Nsv7lqq6Y5hIkqRJzHIVSoAbgb1V9YHhIkmSJjHLHvhFwDuBNyd5ePTxtoFySZK2MfVJzKr6ByADZpEkHQXvxJSkpixwSWrKApekpixwSWrKApekpixwSWrKApekpixwSWrKApekpixwSWrKApekpixwSWpqkCfySC91szzF6MnrLh0wiY6VWZ9UdSy+z+6BS1JTFrgkNWWBS1JTFrgkNWWBS1JTFrgkNWWBS1JTFrgkNWWBS1JTFrgkNWWBS1JTFrgkNWWBS1JTMxV4kkuSfCHJE0l2DRVKkrS9qQs8yXHAHwM/DZwDXJnknKGCSZK2Nsse+AXAE1X15ap6DvgwcPkwsSRJ25nlgQ6nA1895PU+4CfGZ0qyAWyMXn47yRemWNapwDemeN+8LHs+WP6MC82X35lotmOSccJlT2LZv8ew/BmPWb4Zv8+vPdzIY/5EnqraDeye5XMk2VNV6wNFGtyy54Plz7js+WD5My57Plj+jMueb9wsh1C+Bpx5yOszRuMkSXMwS4H/E/C6JGclOQHYCdw5TCxJ0namPoRSVQeT/DLw98BxwE1V9ehgyV5spkMwc7Ds+WD5My57Plj+jMueD5Y/47Lne5FU1aIzSJKm4J2YktSUBS5JTS1NgW93W36S70ty22j6A0nWljDj1UkOJHl49PELc853U5L9SR45wvQk+cNR/s8lOX/J8r0pyTOHrL/fnHO+M5Pcl+SxJI8mueYw8yx6HU6ScWHrMcnLk/xjks+O8v3WYeZZ6LY8YcaFbssTq6qFf7B5EvSfgR8GTgA+C5wzNs8vAdePhncCty1hxquBDy5wPb4ROB945AjT3wZ8DAhwIfDAkuV7E3DXAtffacD5o+GTgS8e5nu86HU4ScaFrcfRejlpNHw88ABw4dg8i96WJ8m40G150o9l2QOf5Lb8y4GbR8O3AxcnyZJlXKiquh94eotZLgf+rDZ9GjglyWnzSTdRvoWqqqeq6qHR8LeAvWzecXyoRa/DSTIuzGi9fHv08vjRx/iVEgvdlifM2MKyFPjhbssf/6F8YZ6qOgg8A/zAXNKNLX/kcBkBfnb0q/XtSc48zPRFmvRrWKQ3jH61/ViSH1lUiNGv9eexuXd2qKVZh1tkhAWuxyTHJXkY2A/cW1VHXIcL2pYnyQjLvS0Dy1Pg/1/8LbBWVa8H7uX/9jI0mYeA11bVjwJ/BPz1IkIkOQn4CPDeqnp2ERm2s03Gha7HqvqfqvoxNu/OviDJufNc/iQmyNhiW16WAp/ktvwX5kmyA3gV8M25pBtb/sj3ZKyqb1bVf41e3gD8+JyyTWqp//xBVT37/K+2VfVR4Pgkp84zQ5Lj2SzGW6rqjsPMsvB1uF3GZViPo2X/B3AfcMnYpEVvyy84UsYG2zKwPAU+yW35dwJXjYavAD5Ro7MNy5Jx7FjoZWwen1wmdwI/N7qS4kLgmap6atGhnpfkB58/FprkAjZ/Pue2YY+WfSOwt6o+cITZFroOJ8m4yPWYZCXJKaPhVwBvBR4fm22h2/IkGRtsy8Ac/hrhJOoIt+Un+W1gT1XdyeYP7Z8neYLNE2E7lzDje5JcBhwcZbx6nhmT3MrmFQinJtkHXMvmCRqq6nrgo2xeRfEE8B3gXUuW7wrgF5McBL4L7Jzzf9IXAe8EPj86Pgrw68DqIRkXug4nzLjI9XgacHM2H/jyMuAvq+quZdqWJ8y40G15Ut5KL0lNLcshFEnSUbLAJakpC1ySmrLAJakpC1ySmrLAJakpC1ySmvpfPc4zzwiLH/8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] diff --git a/examples/tutorials/08_Introduction_to_Model_Interpretability.ipynb b/examples/tutorials/08_Introduction_to_Model_Interpretability.ipynb index 9e33cd5a4d..2e5fe77c04 100644 --- a/examples/tutorials/08_Introduction_to_Model_Interpretability.ipynb +++ b/examples/tutorials/08_Introduction_to_Model_Interpretability.ipynb @@ -68,20 +68,76 @@ "metadata": { "id": "xdgY3YQLkP1m", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "fadfa806-5cf6-439a-a070-8c77f6427991" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 7385 0 --:--:-- --:--:-- --:--:-- 7385\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.93 s, sys: 770 ms, total: 3.7 s\n", + "Wall time: 5min 2s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -100,10 +156,10 @@ "metadata": { "id": "57IdQLKOkP1q", "colab_type": "code", - "outputId": "3fc5bc43-c000-4aca-a7c7-455fd137e9aa", + "outputId": "11624b60-b593-4bf7-ac2f-3985736ece3a", "colab": { "base_uri": "https://localhost:8080/", - "height": 712 + "height": 476 } }, "source": [ @@ -119,40 +175,6 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n", "Loading raw samples now.\n", "shard_size: 8192\n", "About to start loading CSV from /tmp/tox21.csv.gz\n", @@ -165,20 +187,20 @@ "Featurizing sample 5000\n", "Featurizing sample 6000\n", "Featurizing sample 7000\n", - "TIMING: featurizing shard 0 took 19.608 s\n", - "TIMING: dataset construction took 19.928 s\n", + "TIMING: featurizing shard 0 took 31.873 s\n", + "TIMING: dataset construction took 32.182 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.340 s\n", + "TIMING: dataset construction took 0.383 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.167 s\n", + "TIMING: dataset construction took 0.191 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.168 s\n", + "TIMING: dataset construction took 0.186 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.275 s\n", + "TIMING: dataset construction took 0.313 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.037 s\n", + "TIMING: dataset construction took 0.045 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.036 s\n", + "TIMING: dataset construction took 0.041 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -200,7 +222,7 @@ "metadata": { "id": "u0ZLMRiHkP1v", "colab_type": "code", - "outputId": "e2e0d987-df2d-4aee-b209-7094f18af6dc", + "outputId": "50ce1c66-25c9-4d91-dee5-42f2dead6ffc", "colab": { "base_uri": "https://localhost:8080/", "height": 88 @@ -241,7 +263,7 @@ "metadata": { "id": "cnp0tJ2NkP1y", "colab_type": "code", - "outputId": "90293698-a5d5-449f-e639-f2a22303e534", + "outputId": "6ad0e36f-1605-4fcc-a69a-77dff8095bda", "colab": { "base_uri": "https://localhost:8080/", "height": 445 @@ -260,30 +282,30 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/losses.py:108: The name tf.losses.softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.softmax_cross_entropy instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:108: The name tf.losses.softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.softmax_cross_entropy instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/losses.py:109: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:109: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", "\n", - "Epoch 0 loss: 0.225389\n", - "Epoch 1 loss: 0.148365\n", - "Epoch 2 loss: 0.125899\n", - "Epoch 3 loss: 0.117782\n", - "Epoch 4 loss: 0.111761\n", - "Epoch 5 loss: 0.101762\n", - "Epoch 6 loss: 0.100397\n", - "Epoch 7 loss: 0.095577\n", - "Epoch 8 loss: 0.089669\n", - "Epoch 9 loss: 0.090393\n" + "Epoch 0 loss: 0.229214\n", + "Epoch 1 loss: 0.149100\n", + "Epoch 2 loss: 0.125665\n", + "Epoch 3 loss: 0.113928\n", + "Epoch 4 loss: 0.113030\n", + "Epoch 5 loss: 0.103234\n", + "Epoch 6 loss: 0.100231\n", + "Epoch 7 loss: 0.087424\n", + "Epoch 8 loss: 0.090101\n", + "Epoch 9 loss: 0.090855\n" ], "name": "stdout" } @@ -304,7 +326,7 @@ "metadata": { "id": "5TWg2RelkP12", "colab_type": "code", - "outputId": "bac87712-96ef-4afe-d34f-ce5cc582a1e0", + "outputId": "ef445811-895c-44e4-fa16-252b7138f425", "colab": { "base_uri": "https://localhost:8080/", "height": 156 @@ -332,12 +354,12 @@ "output_type": "stream", "text": [ "Evaluating model\n", - "computed_metrics: [0.9899623319442414, 0.9965543713872832, 0.9760909005272388, 0.9868944735046623, 0.9267687681697456, 0.9872737351555338, 0.9907162874841502, 0.9385570702886361, 0.99194102642623, 0.9768016931804382, 0.9696714344487396, 0.9838725736980478]\n", - "computed_metrics: [0.6137139464700935, 0.8115906084656085, 0.8101363036453829, 0.7339222165734621, 0.6479545454545454, 0.7354850129808828, 0.6837140879196955, 0.7944291787031166, 0.7445726395102426, 0.7318185904350953, 0.8321396919686699, 0.73359173126615]\n", + "computed_metrics: [0.9898439434300528, 0.9972844412331405, 0.9767605731065726, 0.9872000198760422, 0.9196999752503592, 0.987017887981579, 0.9914996890622603, 0.9360360857958208, 0.9911223839981069, 0.9774907621046789, 0.9691255829203553, 0.9806645410303743]\n", + "computed_metrics: [0.6001583139563647, 0.8021453373015873, 0.8102500796431984, 0.7244375953228266, 0.6429772727272727, 0.7435882306663519, 0.6664719626168225, 0.8010756476197187, 0.7443371791853073, 0.7254809421071557, 0.828522838870392, 0.7356589147286821]\n", "Train scores\n", - "{'mean-roc_auc_score': 0.9762587221845789}\n", + "{'mean-roc_auc_score': 0.9753121571491121}\n", "Validation scores\n", - "{'mean-roc_auc_score': 0.7394223794494121}\n" + "{'mean-roc_auc_score': 0.73542535956214}\n" ], "name": "stdout" } @@ -362,10 +384,10 @@ "metadata": { "id": "WV50QNwSkP15", "colab_type": "code", - "outputId": "61fc271e-c414-4c3b-9754-284444074222", + "outputId": "3540b982-b77b-4dda-c6b6-d79d5421f925", "colab": { "base_uri": "https://localhost:8080/", - "height": 683 + "height": 688 } }, "source": [ @@ -377,45 +399,55 @@ "output_type": "stream", "text": [ "Collecting lime\n", - " Downloading lime-0.1.1.37.tar.gz (275 kB)\n", - "\u001b[?25l\r\u001b[K |█▏ | 10 kB 29.4 MB/s eta 0:00:01\r\u001b[K |██▍ | 20 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███▋ | 30 kB 9.8 MB/s eta 0:00:01\r\u001b[K |████▊ | 40 kB 8.5 MB/s eta 0:00:01\r\u001b[K |██████ | 51 kB 7.6 MB/s eta 0:00:01\r\u001b[K |███████▏ | 61 kB 7.9 MB/s eta 0:00:01\r\u001b[K |████████▎ | 71 kB 8.4 MB/s eta 0:00:01\r\u001b[K |█████████▌ | 81 kB 9.0 MB/s eta 0:00:01\r\u001b[K |██████████▊ | 92 kB 9.7 MB/s eta 0:00:01\r\u001b[K |███████████▉ | 102 kB 9.6 MB/s eta 0:00:01\r\u001b[K |█████████████ | 112 kB 9.6 MB/s eta 0:00:01\r\u001b[K |██████████████▎ | 122 kB 9.6 MB/s eta 0:00:01\r\u001b[K |███████████████▍ | 133 kB 9.6 MB/s eta 0:00:01\r\u001b[K |████████████████▋ | 143 kB 9.6 MB/s eta 0:00:01\r\u001b[K |█████████████████▉ | 153 kB 9.6 MB/s eta 0:00:01\r\u001b[K |███████████████████ | 163 kB 9.6 MB/s eta 0:00:01\r\u001b[K |████████████████████▏ | 174 kB 9.6 MB/s eta 0:00:01\r\u001b[K |█████████████████████▍ | 184 kB 9.6 MB/s eta 0:00:01\r\u001b[K |██████████████████████▋ | 194 kB 9.6 MB/s eta 0:00:01\r\u001b[K |███████████████████████▊ | 204 kB 9.6 MB/s eta 0:00:01\r\u001b[K |█████████████████████████ | 215 kB 9.6 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▏ | 225 kB 9.6 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▎ | 235 kB 9.6 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▌ | 245 kB 9.6 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▊ | 256 kB 9.6 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▉ | 266 kB 9.6 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 275 kB 9.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from lime) (1.18.1)\n", - "Requirement already satisfied: scipy in /usr/local/lib/python3.7/site-packages (from lime) (1.4.1)\n", - "Collecting progressbar\n", - " Downloading progressbar-2.5.tar.gz (10 kB)\n", - "Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.7/site-packages (from lime) (0.22.2.post1)\n", - "Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/site-packages (from lime) (3.1.2)\n", - "Collecting scikit-image>=0.12\n", - " Downloading scikit_image-0.16.2-cp37-cp37m-manylinux1_x86_64.whl (26.5 MB)\n", - "\u001b[K |████████████████████████████████| 26.5 MB 60.1 MB/s \n", - "\u001b[?25hRequirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/site-packages (from scikit-learn>=0.18->lime) (0.14.1)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/site-packages (from matplotlib->lime) (1.1.0)\n", - "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/site-packages (from matplotlib->lime) (2.4.6)\n", - "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/site-packages (from matplotlib->lime) (2.8.1)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/site-packages (from matplotlib->lime) (0.10.0)\n", - "Collecting PyWavelets>=0.4.0\n", - " Downloading PyWavelets-1.1.1-cp37-cp37m-manylinux1_x86_64.whl (4.4 MB)\n", - "\u001b[K |████████████████████████████████| 4.4 MB 61.3 MB/s \n", - "\u001b[?25hRequirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.7/site-packages (from scikit-image>=0.12->lime) (2.4)\n", - "Collecting imageio>=2.3.0\n", - " Downloading imageio-2.8.0-py3-none-any.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 76.4 MB/s \n", - "\u001b[?25hRequirement already satisfied: pillow>=4.3.0 in /usr/local/lib/python3.7/site-packages (from scikit-image>=0.12->lime) (5.3.0)\n", - "Requirement already satisfied: setuptools in /usr/local/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->lime) (45.2.0.post20200210)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/site-packages (from python-dateutil>=2.1->matplotlib->lime) (1.14.0)\n", - "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.7/site-packages (from networkx>=2.0->scikit-image>=0.12->lime) (4.4.2)\n", - "Building wheels for collected packages: lime, progressbar\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/27/ee/4aaac4cd79f16329746495aca96f8c35f278b5c774eff3358eaa21e1cbf3/lime-0.2.0.0.tar.gz (274kB)\n", + "\r\u001b[K |█▏ | 10kB 25.2MB/s eta 0:00:01\r\u001b[K |██▍ | 20kB 1.7MB/s eta 0:00:01\r\u001b[K |███▋ | 30kB 2.2MB/s eta 0:00:01\r\u001b[K |████▊ | 40kB 2.5MB/s eta 0:00:01\r\u001b[K |██████ | 51kB 2.0MB/s eta 0:00:01\r\u001b[K |███████▏ | 61kB 2.2MB/s eta 0:00:01\r\u001b[K |████████▍ | 71kB 2.4MB/s eta 0:00:01\r\u001b[K |█████████▌ | 81kB 2.7MB/s eta 0:00:01\r\u001b[K |██████████▊ | 92kB 2.9MB/s eta 0:00:01\r\u001b[K |████████████ | 102kB 2.8MB/s eta 0:00:01\r\u001b[K |█████████████▏ | 112kB 2.8MB/s eta 0:00:01\r\u001b[K |██████████████▎ | 122kB 2.8MB/s eta 0:00:01\r\u001b[K |███████████████▌ | 133kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████▊ | 143kB 2.8MB/s eta 0:00:01\r\u001b[K |██████████████████ | 153kB 2.8MB/s eta 0:00:01\r\u001b[K |███████████████████ | 163kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 174kB 2.8MB/s eta 0:00:01\r\u001b[K |█████████████████████▌ | 184kB 2.8MB/s eta 0:00:01\r\u001b[K |██████████████████████▊ | 194kB 2.8MB/s eta 0:00:01\r\u001b[K |███████████████████████▉ | 204kB 2.8MB/s eta 0:00:01\r\u001b[K |█████████████████████████ | 215kB 2.8MB/s eta 0:00:01\r\u001b[K |██████████████████████████▎ | 225kB 2.8MB/s eta 0:00:01\r\u001b[K |███████████████████████████▌ | 235kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████████████████▋ | 245kB 2.8MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▉ | 256kB 2.8MB/s eta 0:00:01\r\u001b[K |███████████████████████████████ | 266kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 276kB 2.8MB/s \n", + "\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from lime) (3.2.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lime) (1.18.4)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lime) (1.4.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from lime) (4.41.1)\n", + "Collecting pillow==5.4.1\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/85/5e/e91792f198bbc5a0d7d3055ad552bc4062942d27eaf75c3e2783cf64eae5/Pillow-5.4.1-cp36-cp36m-manylinux1_x86_64.whl (2.0MB)\n", + "\u001b[K |████████████████████████████████| 2.0MB 8.6MB/s \n", + "\u001b[?25hRequirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.6/dist-packages (from lime) (0.22.2.post1)\n", + "Requirement already satisfied: scikit-image>=0.12 in /usr/local/lib/python3.6/dist-packages (from lime) (0.16.2)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->lime) (2.8.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->lime) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->lime) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->lime) (1.2.0)\n", + "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.18->lime) (0.15.1)\n", + "Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image>=0.12->lime) (2.4)\n", + "Requirement already satisfied: PyWavelets>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image>=0.12->lime) (1.1.1)\n", + "Requirement already satisfied: imageio>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image>=0.12->lime) (2.4.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib->lime) (1.12.0)\n", + "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx>=2.0->scikit-image>=0.12->lime) (4.4.2)\n", + "Building wheels for collected packages: lime\n", " Building wheel for lime (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for lime: filename=lime-0.1.1.37-py3-none-any.whl size=284274 sha256=af66fb1f41bea27172b3148fef22288b682eec2ecf6b58fc9954c7946e839196\n", - " Stored in directory: /root/.cache/pip/wheels/5d/7a/8d/30e0ea15164fb80d5484e83ab991e188d6a9d8febfada307a6\n", - " Building wheel for progressbar (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for progressbar: filename=progressbar-2.5-py3-none-any.whl size=12074 sha256=b69871bd4d43569b75a3238372073a15782ac5a3439d45fcde2d443c0744379e\n", - " Stored in directory: /root/.cache/pip/wheels/f0/fd/1f/3e35ed57e94cd8ced38dd46771f1f0f94f65fec548659ed855\n", - "Successfully built lime progressbar\n", - "Installing collected packages: progressbar, PyWavelets, imageio, scikit-image, lime\n", - "Successfully installed PyWavelets-1.1.1 imageio-2.8.0 lime-0.1.1.37 progressbar-2.5 scikit-image-0.16.2\n" + " Created wheel for lime: filename=lime-0.2.0.0-cp36-none-any.whl size=284181 sha256=d5b05c4c6122f60e3df6048fa1b9e9f022fc8e124e75adcaa5e07887a9ceef14\n", + " Stored in directory: /root/.cache/pip/wheels/22/f2/ec/e5ebd07348b2b1ac722e91c2f549fcc220f7d5f25497a61232\n", + "Successfully built lime\n", + "\u001b[31mERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.\u001b[0m\n", + "Installing collected packages: pillow, lime\n", + " Found existing installation: Pillow 7.0.0\n", + " Uninstalling Pillow-7.0.0:\n", + " Successfully uninstalled Pillow-7.0.0\n", + "Successfully installed lime-0.2.0.0 pillow-5.4.1\n" ], "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "PIL" + ] + } + } + }, + "metadata": { + "tags": [] + } } ] }, @@ -495,7 +527,7 @@ "metadata": { "id": "VGPZDfmMkP2D", "colab_type": "code", - "outputId": "e91b03c0-9325-4525-98c9-64dca7d4efc4", + "outputId": "820225f0-d8cc-4d66-bf48-2af5dc7e7c64", "colab": { "base_uri": "https://localhost:8080/", "height": 184 @@ -526,9 +558,9 @@ { "output_type": "execute_result", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nO3deVhTx9oA8DdhywYJKIuKiCiLIOBS6kbr2lZFXGprsQqoF/dW6q51gYpXuVYr1WrBlqtY\n96/uti5UoYILKIoooAiIWnEBCSF7SHK+Pw5NuciW5CST4Pye+9znEE7OvMHyMmdmzjs0giAAwzAM\n0xUddQAYhmHmDadRDMMwveA0ipmSigr4+GNgs6F9e1i8GFSqutcZDMjMrDuOj4chQxDFh2GNsEQd\nAIbVM3Uq0GhQVgavXsHo0cDjwZo1qGPCsBbg3ihmMp48gQsX4D//AUdH8PODxYvhp59Qx4RhLcNp\nFDMZeXlAp4O/f92XffrA06dQXY00JgxrGb6px0yGRAIcDtD//tPO5QIAiETA4wEAjBsHVlYAAGIx\n9O2LKEQMawTujWImw8kJhMJ/ppUEAoC/kykA7N4NubmQmwvR0WjCw7Am4DSKmQxPTyAIuHat7sub\nN8HTE2xt6750cAAXF3BxAQ4HVYAY1iicRjGT0akT+PjARx/B6dNQWAgJCTBnDuqYMKxlOI1ipiQj\nAwIDYdw46NMHPv4YFi5EHRCGtYyGn6nHTMXDh+DpCQAgEMDatXD0KGzfDhMmoA4Lw1qA0yhmGhQK\nCAyE3r0hIQGcnAAA0tJg1iwICoLt26FdO9TxYViT8E09ZhqsreHWLfDyAn9/2LULCAKGDoW8PPDy\n+mcJFIaZJNwbxUzA69cgFIK7OwDAnTsQFQVsNvz0U909PoaZNvx3HjMB169DUBAkJIBKBYGBcO0a\njBoFwcFQUYE6MgxrGe6NYqahtBRmz4bXr+Hnn6FPHwCA16/xkChmFnBvFEMtMxPkcvDwgAsXYO5c\nGDkSYmJAocA5FDMXOI1iqCUmQu/ecOUK0Ggwcybk5oJYjKeVMDOCb+oxE3D6NMyfD6NGwbffgp0d\n6mgwTDv4bz6GjlAI584BAISGQl4eqFQwYMA/pUkwzEzg3iiGTmEhjB1bN0dPLrl/8QJcXFCHhWHa\nwb1RDJ0ePeoW2GuW3OMcipkhnEYxNM6ePVtWVgZMJsTGwtmzUFoKNBrqoDBMFziNYmgUFxcHBQUl\nJCSoVCro0wfi41FHhGE6wmOjGDIPHz6cNWtWu3btfv31V9SxYJjucBrFjE0ul+/YsWP+/Pk2NjYE\nQTx9+tTNzQ11UBimO3xTjxmbWCzOzMzs3bv31atXaTQazqGYucO9UQyNo0ePPnz4cMWKFagDwTB9\n4TSKGdWZM2doNFpISAjqQDCMMvimHjMqW1vb6Ojo9evXow4EwyiDe6OYsUml0srKys6dO6MOBMOo\ngXuj6GVkZOzYsQN1FAanUqkWLlxYVlbGZDJxDsXaEpxGUUpPTx86dOj06dPt3oKyRgRBuLi4pKen\now4EwyiGb+obU1EBs2fD+fPAZEJkJGzaBBYWAAAMBvzxBwQHAwDEx8O5c6BrUsjMzIyNjS0tLV2x\nYsWMGTMsLS0pCx7DMOPCv72NmToVaDQoK4NXr2D0aODxYM0aqq6dl5c3d+5cPp+/atWqsLAwCzJB\nAxAEQTP8Q+W5ubkPHz7k8XhsNpvNZtva2trZ2bHZbCaTadB2L1y4IBQKJ06caNBWMAwJnEbf8OQJ\nXLgAubng6AiOjrB4MWzeTGEa5XK5X3755aRJk+h/F3hXKBQpKSmbNm1KS0tzdXWlqqE3zZ079+nT\np7/99luj32UwGPb29kwms8FBiy86ODgwGIzmm+7Zs6e1tbUBPhOGoYfT6Bvy8oBOB3//ui/79IGn\nT6G6Gng8Si7fpUuXLl26kMcKheLQoUPr1q1zcXHZtWuXQXPosWPHEhMTmUxmaGioVCoViUQSiUQk\nElVXV0skEplMJpPJnj9/rtvFbWxs2Gy2ppPL4XC4XC55bGdnN336dG9vb2o/DoaZDpxG3yCRAIfz\nz15AXC4AgEhUl0bHjQMrKwAAsRj69tW5EYVCsWfPnri4OB8fn/379/fr10/fsJslEAgWLFgAAJs3\nb543b16j50ilUj6fL5PJGhw0daw5qKqqksvlcrm8qqqq0SvfuXNn8uTJERERBvyEGIYOTqNvcHIC\noRBUqrppJYEA4O9kCgC7d8O77wIA/PADZGbq3Mi9e/d+//33EydO9K2Xi1++fCmXyw3xjPmSJUue\nPXvWv3//OXPmNHUOk8nUeYRUKpVKJBKBQCAUCiUSiVgs5vP5YrFYIpFcvnz58OHDhYWFYWFh+L4e\na5sIrIG//iIAiKysui+3biU8PeuObWyIjIy6440bicGDqWqzvLz8q6++cnBw2L17N1XX1EhPT6fR\naDY2Nvn5+ZRfvEUqlSogIAAAdu7cafzWMcwIcG/0DZ06wejRsGIFHDwIVVWQkAALFhiutZcvX27d\nujUpKWnSpEl5eXmdOnWi9vpSqTQqKoogiDVr1vj6+lJ78dag0+lr1qz59NNP4+Lipk2bZuglAaio\nVKqnT5/Onj2by+VyOBxyXJgcLGaxWHZ2dnZ2diwWq8EIMuqoMWrgNNqYlBSYPRs8PIDFgqgoWLgQ\nAODuXVCpQCymsJ3CwsLg4OAZM2bcv3/f2dmZwitrxMbGFhcX+/v7L1u2zBDXb42JEyf27t379u3b\nSUlJX331FaowDOr777//97//3dTocFMYDEbrV0Q0OIHH4xlhhRzWGnj5fasFB8OVK/DHHzB8OIVX\nraqqcnBw0HyZnZ197ty5tWvXUnLxO3fuBAUFqVSqzMzMAQMGUHJN3Zw5cyY0NNTR0bGkpMTW1hZh\nJIZQVlbm7+8vEoliY2N9fX1ramrIAeLq6mqxWCwWi0UikUAgII9ramqEQiE5cKxPo5aWlra2th98\n8MHGjRs9PDyo+iyYDnBvtNUCAuDKFcjLozaNanLotWvX4uLi8vPzly9fTsmVlUrlv/71r9ra2kWL\nFqHNoQAwZsyY/v37X79+fceOHW2vxujs2bNFItGUKVNiYmK0eqNUKm39iogGL5KvXLx4MSAgoLS0\n1IncoRpDAvXgrPnYuZMAIKZNo/zCL168+OCDD9zd3ZOSkuRyOVWX3bhxIwC4u7sLhUKqrqmPCxcu\nAACPx+Pz+ahjodLu3bsBoF27di9fvjRmuwqFoqqq6qOPPgKARYsWGbNprAGcRlvtyhUCgOjTh/IL\n19bW7tu3T6FQaF5RqVR6XrOoqIiczDl//ryel6LQkCFDACA2NhZ1IJSpqKho3749AOzbtw9JAHl5\neXQ6ncFgPH36FEkAGIHTqBZqaggajbCxIWprDddIbW3tnj17vLy8bty4ofNF1Gr18OHDAWCaAfrO\n+sjMzAQALpf7+vVr1LFQ49NPPwWAUaNGIY9h3rx5CGN4y+E0qg0PDwKAMMzqS/LJei8vr0GDBp06\ndUqfSyUlJQFA+/btKyoqqAqPKh9++CEArFy5EnUgFDhz5gwAsNns0tJShGE8ePDA0tLSysoKbRhv\nM5xGtTF+PAFAHDxoiGuTBZAuX76s53XKy8vt7e0B4PDhw5QERq0bN27QaDQ2m/3ixQsd3j7j/v2+\nN29q/jfu7l3KI2wlgUBA1kDYtm0bqhg0wsPDAeBf//oX6kDeUjiNamPtWgKAMEpPqrKysqCgQIc3\nTpgwAQBCQkIoD4kqY8eO1XlWZMb9+/uNO5PTlNmzZwNAv379lEol6liI4uJiKysrCwuL+/fvo47l\nbYSr32sjIAAAIC/PoI1UVFSsXLnS29u7qYp2zfj111+PHz9uZ2eXmJhoiNgosX79ejqdvnPnzr/+\n+gttJC9evMjPz9fhjZcvX961a5e1tXVycrKmYixC3bp1i4yMVKlUcXFxqGN5K6HO42alqIgAIDp3\nNlwLUqnU1dV17ty5jx8/1va91dXV5LOkiYmJhoiNQjrPilDSG5VKpYcOHQoJCbG3t9+yZYu2b5fJ\nZD169ACAb775Rs9IKPT48WMbGxs6nX7nzh3Usbx1cBrVhkpFcDgEAFFZabhGRCKRbm+cMWMGALz/\n/vtqtZrakCin86yInmn05s2bCxYscHJyGjRoUFJSkm4raleuXAkAPj4+MplM50gM4YsvvgCATz75\nBHUgbx2cRrXUrx8BQKSnG6Gp27dvf/XVV61cQ5qWlkaWcdJtRNX4dJsVaTDFFP3wYevfO27cOD8/\nv02bNj179kzLYP9x584dKysrOp2emZmp80UMpLy8nMVi0Wi07Oxs1LG8XXAa1dLMmQQA8f33Bm1E\nqVROmDChY8eOW7durb8svylisbh79+4AsGHDBoMGRqFWzoqo1OorAsHSkpIcoZDQrzeq/2JVpVL5\nzjvvAEB0dLSelzKQxYsXA8CYMWNQB/J2wWlUS9u3EwBEVJSh2zl79qxUKm3lyeQvT0BAQGtyrumI\niooCgClTpjRzTp5IpOl7Rt2//2l+PoUz9bm5uQsXLjxy5Egrz9+0aRMAdOnSxUSer31TRUUFWfnl\n2rVrqGN5i+CZei0ZZbIeAEaOHEnuE6dWq9VqdTNn5ubmfv/99xYWFsnJyVbkBidmYs2aNTY2NgcP\nHsxr+ud5t15lwtsiUalUuv/ly/Tqan3qkr148eK7774LDAwcP348h8MhO5gtKisr++abbwDghx9+\nMNlSoe3btyd3i6GqSBjWGjiNaikgAGg0yM8nVCojtHb48OHAwMBTp041dQJZxkmpVC5cuLCV6cB0\nuLm5zZw5U61WN7NMJ08kavDKS4ViSUlJWEHBfZ0Kze3du9fX1zc/P3/btm2lpaXr1q3r2rVri+8i\nCGLWrFlisTg8PHzMmDE6tGs0S5Yssbe3T01NTU9PRx3L2wLXG9XasmHD9t24kZ6T4+XlZei2Fi1a\n9OGHH44cObKpEzZs2LBq1Sp3d/d79+6x2WxDx0O558+fd+/eXSqVZmVlBQUFvXnC6Lt3XykUjb73\nc2fnRdrvpVpdXW1tbc1isbR6V3JyclRUVPv27QsKChwdHbVt1Mji4uLWrl07aNCgTD22C8NaD/dG\ntVbIZj8Xie7cuWOEtr777rtmcmhRUVFcXByNRtu1a5c55lAA6NChw9y5cwmCWLdu3Zvffa5QNJVD\nAcBTp/1IeDxegxxKbjHdzFtevHixdOlSANi+fbvp51AAWLhwoZOT05UrV8jihJih4TSqtcDAQAC4\ne/eu0VoUCAQ3b95s8CJBEHPnzpXJZDNmzPjggw+MFgzlVqxYYWtre+bMmevXrzf41t037ug1Jjk5\nhbZrp0+7SqXyt99+CwsL69q165UrV5o584svvuDz+aNGjQoLC9OnRaPhcDjkrOOqVavw7aYR4DSq\nNX9/fwBoZlaEchMmTDh69GiDF5OSki5duuTi4vLtt98aLRJDaGZWJLeJna8COJyF2t/O11deXt65\nc+cNGzYMHTq0tLS0mb9DZ86cOXr0qK2tLVk3y1x8+eWXnTp1unnz5unTp1HH0vbhsVGtFRYW+vr6\nuru7P3r0yDgt1tbWNpiCLy8v9/Pzq66u/vXXXydOnGicMAynurraw8ODz+enpaWRpZ1JUwoKHkil\nDU52srbe5+PjoPeahEePHrU4uSQQCPz8/J49e7Zjx4558+bp2aKRbdu2LTo62t/fPzc3l07HHSYD\nwj9crXl5ebFYrMePH1dXVxunxTeXMc2fP7+6unrMmDFtIIcCAI/HI3cMXb16teZFkUhU+EbtEms6\n/VsPD/1zKAC0ZoJ+yZIlz54969+//5w5c/Rv0chmz57duXPnu3fvvnkrg1ELp1GtWVhY+Pr6EgRx\n7949Y7YbGxtLzoQcPnz4xIkTJl7GSVuLFi1qMCuSnZ1dtmlT7f9uWbzCzc2P6sm04uLimJiY169f\nN3j9zz//TE5OtrGxSU5ONsfenI2NzapVqwBg9erVSqUSdThtmfn9x2EKAgICwLjDowAQGhoKAFVV\nVdHR0QCwefNmsp5T2/DmrMjVq1f5Fy/eCw19+u23tXy+SiwebGExVr9ppTd99tlnwcHBNTU1DRKN\nXC6fM2cOQRCrV6/29fWltlGjmTFjhoeHR1FR0cGDB1HH0qYhe37KnG3duhUAyF8zI4uMjASAwYMH\nm34ZJ21JJJKOHTsCwMmTJwmCqL/Si2ZlFTx0qCEedb1//35tY5trLVu2DAD8/f0p3KsVCXLjUnd3\nd3P/IKas7aTR8vLy6upq47R18eJFABgwYIBxmquqqsrMzNy1a9fkyZNpNBqTySwqKjJO00aWkJBA\nJq/a2lpyKxRShw4d9CnLpK3c3FyyjNPVq1eN1qiBKJVKsjrqTz/9hDqWNquNzNSfOnXqs88+k8lk\nzs7O3t7eXl5enp6eXl5e3t7e3bp1s7a2pra5169ft2/fnsPhCAQCykfN+Hx+fn5+QUFBaWkpefDo\n0SPNP5OLi4u7u/u1a9eobdREyOVyT0/Pp0+fbtmyhbzHBwAGg3H58uVGn3GikFKptLS0JA/69++f\nk5OzaNGiLVu2GLRR4zh06NDkyZPd3NyKiopsbGxQh9MWIU7jFJkyZUpTH9DCwqJbt24jR46Mjo7e\nsWNHampqWVmZ/nfE5LhkcXGxntcpKys7d+7cli1bZs6cOWjQoPpdMA02m923b9/w8PBly5aRxeUK\nCwv1bNdkkfNmzs7Omo//888/G7rRlJQUZ2fnmpoagiDi4+PBtMs4aUutVpPPjGzfvh11LG1TG+mN\njh8//uTJk60/39ra2tXV1dfX18/Pz6Oe1l9h9OjRZ8+ePXbsGLmFXCuVl5cXFBSQfcz8/Py8vDyh\nUNjgHC6X2717d01svr6+PXr00PR5Z82a9dNPP33++ef79+9vfbtmpLa21sfHp7S0lPzyyy+/3LZt\nm6Eb/euvvywtLV1cXB4+fBgYGCiVSs+fP0/uBd02HD9+/OOPP+7QoUNxcbG29QSwFrWRNDp8+PBL\nly7peRF7e3tNPiWzmLe3d1Ml0VasWPGf//wnNjY2Jiam0RNqa2ufPn2qyZgFBQWFhYVvPrttb29f\nP2P6+fl17dqVRqM1FeSTJ0+8vLxqa2tv3bpFdjHanj179kyfPh0AGAyGl5cXm81ms9n29vYsFovN\nZtva2trZ2ZEvcrlcDodDHvN4PDabzWKx7OzsdGuXIIgPPvjg4sWL06ZNI2dm2pJ+/fplZ2dv3rxZ\nM1qCUcUSdQDUEDX98HXr8fn8nJycnJyc+i/WT3NkpvP29ra0tGzwSKhCoXj48KEmY5LDmjKZrEET\nmquR/9+zZ08XFxetgnRzc5s1a9b27dvXrVvXVpdVCwQCAKDRaDKZTLdVZXZ2dmTOJXMrm83mcDhc\nLpfMs1wu19bWljy2t7cnD2xtbU+ePHnx4sX27dub+/O1jYqNjR09enR8fPysWbMA4Pnz5+SPqNFx\nJEwrbaQ36ufnV1BQYJy2rK2tPTw8OnTokJaWxuVyg4ODCwsLyfHW+qdZWFi4u7v7+vqSd+W+vr4+\nPj5kZXI9vXjxolu3bs0UlzNrT5486dmzp1AoTElJIVd0isViiURSXV0tEonEYrFYLK6uriZfrKmp\nqampkUgkmhfFYrHOf1NZLJZEIjl8+PCkSZOo/VAmYvDgwZcvX16/fn2fPn1Gjx6teb1BN5/FYvF4\nPA6Hw2KxOBwOWROLzWZ/7uDAZDKBzQYWC+zt6w6o+E/a3LWRNNqlS5cnT54Yv10LCwuVSgUAlpaW\nbm5u9XuaPj4+hitet3Tp0s2bN4eEhJw5c8ZATaAyduzY06dPT5o06fDhwzpfRCAQkHlWIBAIhUIy\nz/L5fPJAKBQKBALyWCAQaLLzq1evRCLR2bNnmylOaNYyMjLef/99Ho+3e/fuZcuWaf4+tfLttZ06\nWT571sg3uFxgsYDNBi4XOBxgs4HNBh4P2GwYPhxMu8o1JdpIGnVwcODz+Qa6OI1G4/F4tra2HA6H\nw+HY2dlxuVwAOHr0KJfLTU5O9vX17d69uzE38KisrPTw8BAKhZcvX37vvfeM1q6h7du3Lzw83MHB\noaCgoP5kvXF8++23y5Yt69u3740bN5oZnjZr5CzCmjVr6hd4FYlEEolEJBKRpVfFYnFNTY1QKCTz\nLJ/PJw8SlUqrFy9AIgGxGAQCEIlALIYmqnDV+fpr+Pe/Df6pUGsjadTb27uoqKj5c5hMJofDsbW1\nJcfLyNExe3t7zt+4XK6dnR15TJ5GHjfaqTx37tyoUaOGDRtGLsU3vjVr1qxfv3748OF//PEHkgAo\n9/r1a19f31evXu3Zs4d8WMvIZDJZ9+7dnz17duLEiXHjxhk/ACO4evXqoEGDOBxOSUmJk5MTNRet\nrgaxGCQSqKmBmpq6PEu+2K8feHrC7Nlw/jwwmRAZCZs2gYUFNe2ajDYyxZSamrpz505y3pb0Zn60\noPQf7/79+wDg4+ND4TW1smTJkp07d168eDEtLW3o0KGowqDQggULXr16NXTo0IiICCQBMBiM5cuX\nL1iwYPXq1aGhoeZYjqRFAwcO9PLy4nK50jcqEOqOxwMer8nvfvQR0GhQVgavXsHo0cDjwZo1lDVt\nItAtWTVvZOW07w28YX3zyJ3gBg0ahDAGqvz+++8AwGKx9H+iQR9yudzd3R0ADh06hDAMw8nKyrKw\nsLC0tDTSz/nxYwKAyM2t+/L774nOnY3RrnHhNKojsgN47tw5hDEIhULyvuzs2bMIw9CfSCQiq39+\n9913qGMhyCr35OJc1LFQrLa2tnfv3gCwfPlyIzV5+jRBpxMqVd2XGRkEAMHnG6l1Y2mDty3Ggfym\nHgA4HM6SJUsAYPXq1YQ5j3EvX7780aNHQUFB5G4iaE2fPr1bt25FRUUHDhxAHQvFNm7cePv2bU9P\nzyFDhuzZs+f//u//UlNTr169mpubW1paWllZSeWdPkkiAQ4HNMMjXC4AABWrvE1KG5liMrKamhoe\nj8dgMEQiEdoRtDYwK5KVlTVw4EA6nZ6dnU32lZDbu3dvZGSku7v7gwcPKK9rg8qDBw969eoll8tT\nU1N//PHHpp7dINel1F80Sq4kHermNkutrlvYRC5mYrOBwwEut24BKZcLtrZg+b/TLenpMGwY1NbW\nTStlZsJ770FNTVtbbYq6O2yWsrOzASAwMBB1IARBEOQj5z179lRpbp3Mh1wu9/Pzg7871CZCU1wu\nKSkJdSzUUKlUwcHBADBz5kyCILZt2xYZGfnJJ5+MGDFiwIABAQEBHh4eDg4ODAajqUSxrE8fAqDl\n/1lbE/b2hIcH0bMn0a8fcfUqAUBkZdXFsXUr4emJ8gdhGLg3qotffvklIiLis88+O3ToEOpYQKFQ\neHt7l5WVmePjN2vXro2Li/P29s7NzW3md9j4Dh8+HBYW1rFjx+LiYiaTiTocfe3YseOLL77o0KFD\nfn5+809/qlQqzaLR+s+GdVQqh7x8WbewSSAAobDumM+vW+EkFEJNDahU/3O54mJYsACkUjh4EKqq\nYNQoWLAAFi0y7Kc1PtR53CyRW9ysXbsWdSB1zHRWJC8vz9ramk6nZ2RkoI6lIbVa3atXLwDYtm0b\n6lj09ezZM/KBkWPHjhm8MamUqKwkSkqIO3eIq1cJmYyoqCA+/phgsYj27YkVK4g2t2sDgWfqdfPJ\nJ58AwP79+1EHUkehUHTr1g0AUlJSUMfSWiqVauDAgQAwf/581LE07sSJEwDg4uIiFotRx6KXsWPH\nAsAnn3yCOpA2C6dRXfTs2RMAbt68iTqQf6SkpIBZbblD7mfVsWNHvgkvf+nXrx8AbNq0CXUguiPX\nG3C53L/++gt1LG0WTqNaU6lUDAaDRqOZVHV0zazIrl27UMfSsrKyMrKQ64kTJ1DH0pyzZ88CQLt2\n7cjC+GansrKSXFmcnJyMOpa2DKdRrZWUlACAq6sr6kAaIue73NzcZDIZ6lha8NFHHwHA5MmTUQfS\nssGDBwNAXFwc6kB0MXXqVAAYMmRI29tH1qTgNKo18rHF4cOHow6kIXOZFdmzZw/ZxXv58iXqWFqW\nkZFB3hS/fv0adSzaIbvSTCbz4cOHqGNp4/BTTFozheeXGkWj0WJjYwFgw4YNb+5WYiIqKyuXLl0K\nAFu3bqWswpAhBQcHDx8+XCAQkIO55kIikcyfPx8A1q1b1717d9ThtHE4jWrtwYMHAODt7Y06kEaM\nGzeuX79+L1682LlzJ+pYGvfFF19UVFQMGzaMvN80Cxs3bqTRaAkJCa9evUIdS2utXLmytLS0V69e\n0dHRqGN5C6DuDpufIUOGAMD58+dRB9I48lauffv2Jjgr8ttvvwEAi8UqKSlBHYt2QkJCAGDp0qWo\nA2mV69evk2WccnJyUMfyVsBpVGvkJnSPHz9GHUiTTHNWRCAQdO7cGQASEhJQx6K1nJwcGo3GYDBM\nf9mQ5vnar7/+GnUsbwucRrVDblrJYrFM+QF205wVmTt3LgC8++67SqUSdSy6+PjjjwHgyy+/RB1I\nC8jxcS8vL4lEgjqWtwVOo9rJysoCgF69eqEOpAXDhw8HU6r3cfXqVTqdbm1tfffuXdSx6OjevXvk\nR3j06BHqWJpUWFhILmq+ePEi6ljeIniKSTsmO03fgEnNisjl8qioKLVavXLlSvIBMHPk5+cXFham\nUCg2btyIOpbGqdXqqKgomUw2e/bsYcOGoQ7nLYLTqHZMeZq+vqCgoNGjR4tEos2bN6OOBeLi4goK\nCnx8fFasWIE6Fr3ExsZaWlru3r2bfATD1Pzwww9Xrlzp0KGDySb6Ngt1d9jMTJw4EQAOHDiAOpCW\nmcisSF5enpWVFZ1Oz8zMRBgGVaZPnw4AERERqANp6PHjx7a2tgBw/Phx1LG8dXAa1Q45B3rr1i3U\ngbQK8lkRlUo1YMAAtDFQq6yszNra2sLCoqCgAHUs/yM0NBQAJk2ahDqQtxEu26wFtVrNZrPlcnlN\nTQ1ZWcPE5efnBwQEWFpaPnjwgNzw0si2bNmyZMkSNze3e/fu2baVfSPmzZv3448/NlO0u6ysrEeP\nHkwmk8Fg2Nvbaw7qHzf6InnM5XK13Zlm37594eHhDg4OBQUFzs7OVHxKTJaZ9F8AAA1vSURBVBuo\n87g5KS4uBoDOZrVD7Oeffw4A4eHhVVVVRi7q/OjRI/KPzalTp4zZrqGVl5czmUwajXb79u1GT7h7\n964+v5I0Gs3e3t7V1dXb27tv377Dhg0LDQ1tpuappozT7t27DfWZsWbh3qgWfv/995CQkBEjRqSm\npqKOpbVu3rzZr18/a2trmUxGvtJib6ipExwdHa2srFrf9Icffpiamjp16tRffvnFMB8OmYULFyYk\nJIwbN44s7fwmqVQqk8mkUimfz9ccNHXc4EWBQKBWqxtcUKFQNPXDnzJlyoEDB4YOHXrx4kUajUbx\nR8VawbLlU7C/mctqJw2BQDB//ny1Wi2TyaytrZVKJXn8/Plz3S7I4XDYbDabzdZsGGlnZ2dnZ8di\nsTQvstlsDoeTlZWVmprarl27LVu2UPuhTMHXX3+dnJx88uTJrKwssrRzA0wmk8lk2tvbd+zYUduL\nq9VqgUAgFAolEolYLObz+VKptKkcevbs2QMHDrBYrJ9++gnnUFRwGtWCuax2ItXU1Hz00UfZ2dlW\nVla1tbUKheLKlSsDBw5ssTfU1AkVFRUikUjU6k3Gra2tN2zYYBZlnLTl6Og4f/78+Pj42NhYsogB\nheh0OnkT0OKZYrGYLOO0fv16chcZDAmcRrVgRmlULBaHhoZmZWW5ubkxGIyioiIAWLJkyZUrV8iO\nkg69JACoqakhu0iaDSNFIpFAIBCLxRKJpH4f6vLlyy9fvnz8+DHVn8xULF++PDEx8dy5c3/++SdZ\nxMD4VqxY8ejRo6CgoAULFiAJAKuDenDWnJBzoE+ePEEdSAtEIhH5i+3m5lZaWkou0iIZZ9OOGzdu\nZGdn02g0NpttFrWZdRMTEwMAwcHBSFrXlHEyl+V3bRieYmqt6upqe3t7NpstFApNeRBKLBaPGTMm\nPT3dzc0tLS3Nw8PDz8+voKCA/K63t/fdu3e1minSlkgkGjhw4LRp09LS0s6cObN48WJTeJLKEAQC\ngYeHR1VVVVRUVJ8+fcjBYh6P12AE2cbGhvKmFQpFnz598vPzV69eHRcXR/n1Ma3gNNpaWVlZ/fv3\n7927961bt1DH0iSJRBISEpKent65c+f09HQPDw8A8PX1LSws1Jzz448/zpkzx0ABqFQqCwsLgiBk\nMllxcXGvXr2sra2Li4s7depkoBbRGjZs2IMHD8rLy5s/TdsFpJqDdu3aNZqFY2Ji1q1b5+3tnZub\ny2AwDPPhsNbCY6OtZfrT9BKJhOyHdu7cmeyHkq83+EsZExMzZcoUQyyGl8lkfn5+U6dOXbBgQbt2\n7fz9/SdMmHD06NH4+Pjt27dT3hxyOTk5GRkZarU6IiKCyWSSg8I1NTUNRpAVCoU+qyOYTCabzbaz\ns7O1tSU7vFZWVqmpqXQ6/eeff8Y51BTgNNpaJj6/JJFIQkND09LSXF1d09LS6s/bNkijr1692rJl\nC1mVkloMBiM1NTU+Pj44ODg/P59Op3/zzTfHjx/ftWvXokWLunbtSnmLCCmVylmzZimVytaMWjSz\nIqL5ZRKvX7+WSqVSqbSysrL+BSdOnOjp6RkcHGzIj4i1GtKRWXNCPp9+8OBB1IE0QiwWk4XRXFxc\nCgsLG3zXy8urwT86h8MpLy+nMACVSjV//vzr16+TX0qlUs23pkyZAgBRUVEUNmcKyCpK7u7uQqHQ\noA2JRKJXr16VlJTcunUrMzPz/PnzR44cefNfGUMIp9HWGjlyJI1Gi46OFolEqGP5HxKJhCzS7Ozs\n3Gi9DE9Pzzf/fM6ZM4fCGGpra3fu3Onu7j5ixIi0tLT633r48KGlpaWFhcX9+/cpbBGtoqIiJpMJ\nJrwlF2ZMOI22VlFREVkwwsnJacuWLc0842xMMpls9OjRZA7Nz89v9JxG99e1sLBo6nxtnT17ViaT\nEQShUCh2797t5eV18uTJ+ifMmDEDAMLDwylpDjm1Wk3+3Zo+fTrqWDCTgNOoFjIyMjQLrR0dHePj\n49EmU5lMRu5Y6eTk1ExObOr5lvHjx+sfQ21t7dixYzt16vTdd9+R/XSVStVgt6WysjIbGxsKEzda\niYmJ5PiJSW11hSGE06jWUlNT33333frJFMneYXK5fMyYMWQOvXfvXjNnNvOYYEZGhj4xaIYF8/Ly\nwsPDnZ2dY2Jiqqqq3jxz3rx5APDpp5/q05wpKC8vJx/TPHLkCOpYMFOB06iOUlNTg4KCyGTk5ORk\n5GQql8vJMr1OTk4tbhKnWfn0Jn1mzJRKpZeXV3h4uGZAtrCwMCIiYtSoUW+eXF5ezmKxmikuZy4m\nTJgAACEhIagDwUwITqN6SU1Nfeedd8iU5OzsHB8fX3+S2kDkcvnYsWPJvnBrNtpsdKVRt27dZs6c\nqVAo9IlEKBQmJCR06tRpzJgx2dnZ5ItNVTVduHAhAIwdO1afFtE6cuQIANjZ2T19+hR1LJgJwWmU\nAqmpqX379iXTU+fOnRMSEgyXTOvn0Ly8vNa8hVyqBQBdunSJjIxMSUl5/PgxhSHJZLKkpCRXV9cR\nI0ZcvXq1qdMqKirINf/Xrl2jsHWjqa6uJuu5JCYmoo4FMy04jVJDrVafOnWqT58+ZMJyc3NLSEgg\n568ppFAoxo0bBwD29vY5OTmtfJdSqTx+/HhJSYmNjY1mMHTjxo2DBw+mMDaZTJaYmNi1a9dmNila\nuXIlAHz44YcUtms05GZ277//vlqtRh0LZlpwGqUSmUx79+5tiGSqUCjGjx9P5tCbN2/qcAUK02hT\nl1KpVM28i8/nk/Mz6enpOjeNxKVLl2g0mo2NjantZIeZArxPPZVoNFpoaOjNmzdPnTrVq1evJ0+e\nfPXVV97e3rt27VIqlfpcWaVSRUREnDhxgsfjXbhwQTOGYGqa34uNx+NFR0cDwOrVq40VEQUkEsnM\nmTMJgoiNje3RowfqcDCTg9Mo9eh0emhoaE5OzpEjR3x8fB4/fjx79mxPT0+dk6lKpZo6deqhQ4d4\nPF79SS1ztHjxYkdHx8zMTDPaz2rt2rUlJSUBAQGLFy9GHQtmklB3h9s4lUp15MgRTUGTrl27JiUl\nabVDp1KpnDx5MgDweDzNbLhubGxsHBwcnJ2dnZ2dORyOIW7qW4N8Gv2dd94xi0HG27dvkw+z3rhx\nA3UsmInCadQYyGSqKRHi4eGRlJTU4FGfRimVSnKHZC6Xm5WVpWcYNjY2J0+efP78+fPnz1etWqVn\nGtU5I4tEInIfgdOnT+scgHHU1taSI91Lly5FHQtmunAaNR4ymWoKhfTo0SMlJaWZZKpUKsnySFwu\nV1M8SR/UTjHpk5G3bt0KAP7+/s1PSSG3fv168h7C1OrRYCYFj40aD51O//TTT/Pz81NSUrp3715Y\nWBgZGRkQELB3716VStXgZJVKNW3atP3799vZ2Z0/f77RXXzRcnBwcHFxcXFx4XA42r53zpw5rq6u\nd+/ePXbsmCFio0RRUdH69etpNNquXbvYbDbqcDDThdOosVlZWUVERBQUFKSkpHTr1q2goCAyMjIw\nMHDv3r1qtZo8R6VSTZ8+fd++fSabQ/XEYDC+/vprAIiJidF8apOiVqujoqJkMtmMGTNGjBiBOhzM\ntKHuDr/VFAoFmUzJf4uePXseOXJEqVRGREQAAJvN/vPPP1HH2Dj9xwcUCgX5sP++ffsoDo4KO3fu\nBAAXF5dGK61gWH04jaInl8t37Njh6upKJlNHR0cAsLW1zczMRB2aYf33v/8FgO7du2u1dMEInj17\nxuPxAODo0aOoY8HMAE6jpkIulyclJXXq1KlHjx7kfkqoIzI4pVJJbhH4888/o47lf5BP3I4ZMwZ1\nIJh5wBssmxZyC8mOHTsaYnNzE3TgwIEpU6a4ubkVFRWZyEc+fPhwWFgYl8vNz89vq/tCY9TCU0ym\nhcFgdO3a1UQSihGEhYUFBgY+efIkOTkZdSwAAFVVVeTjqps3b8Y5FGsl3BvFEDt27NjEiRM7dOhQ\nXFzMYrHQBhMZGbl3797BgwenpaXRaDS0wWDmAvdGMcQmTJgQFBT0/Plzco8jhC5duvTLL7/Y2Ngk\nJibiHIq1Hk6jGGI0Gi0mJgYANm7cKBQKUYUhkUhmzZpFEMS6devIiS8MayWcRjH0QkJC3nvvvcrK\nyh9++AFVDKtWrSopKQkMDCQ3O8Gw1sNjo5hJuHjx4ogRI3g8XmlpKVna2Zhu3LgxYMAAGo12/fp1\nk63lipksnEYxUzF06ND09PSePXv279+fxWKx2Wwul2tra0se29vbkwe2trZcLpfFYjGZTEraVSqV\n77777u3bt1esWEEW8cMwreA0ipmK69ev79+/X6v7egaDYW9vz2QyGxw0daw5aNeunWZVWVxc3Nq1\naz09Pe/cuUNVasbeKjiNYiakoqIiPT2dz+dLJBKxWCwUCmtqasRisUQiqa6uFolEYrFYLBZXV1eL\nxWK5XK5PWwwGg8Vi2dnZPX/+XKFQXLp0aciQIRR9DuztgtMoZsakUimfz5fJZA0OmjrWHFRVVWmy\ncFhYWP/+/clV9ximA5xGsbeUVCoVi8U1NTUMBoPcgB7DdIPTKIZhmF7wulEMwzC94DSKYRimF5xG\nMQzD9ILTKIZhmF7+HyyRmTFr7wYnAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1QUVxcA8LvrAtuLQAQUNCsCglggKpZEVBQ1FtSYqJFo1ACWiCUKNrDEWBI/NJaAmBg0xq6xRQ0mERsqiCJFAaUrSNvCNtgy3x9jNgYBYdss8H4nxzMss+/dIXD3zcyb+0gYhgGCIAiiKzLRASAIgrRsKI0iCILoBaVRBEEQvaA0iiAIoheURhEEQfSC0iiCIIheUBpFEATRC0qjCIIgekFpFDFjRUXg7w80Gjg5wY8/AgCoVEAiwdOnr3YICIAtWwgMEEEAgEJ0AAjSsE8+AWdnKCmBpCQICABXV/DxITomBKkLjUYRc5WdDXfuwObNwOXCiBEwaRIcOEB0TAhSD5RGEXOVkQE2NtCx46sve/WC9HRCA0KQ+qGTesRcyWTAZv/7JYcDUumr7X79gEwGAKiuRqf5COFQGkXMjFwOVlZAJoOtLYhE/74uEgGH82r73Dno0gUAYO5c0weIIHWgk3rEzCxbBoMHQ0YGODtDRQUUFr56/cED6NXr1badHXTqBJ06AZVKVJgIooXSKGJOxGK4cAESE8HLCw4dgkGDIDwchEL48084exbmzCE6PgSpB0qjiDkpLoa0NFi0CFQqWLcOXryAnByws4PZs+GHH8Dbm+j4EKQeJFT9HjEXhYXQowf06gWxsVBWBkFBkJUFZDIsXAjffQcWFkTHhyD1Q6NRxGzk5wODATdvgpcXJCZCcjJERgKFAjk5KIci5gyNRhHzIJXC+fMwahSEhUFsLGAY9OwJ+/eDpSXweODkRHR8CNIglEYR87BkCezYAUOGQGwsFBRAcDDk5oKDA+TmgpUV0cEhSGPQST1iHry9wdoaEhKgTx/IyICHD2HZMoiKQjkUMX9oNIqYgcOHgUKBoUMhNBSOHgUA8PGBv/9G00KRFgE9xYQQrbQUFiwAkQjGj4c9eyAwEObNA09PlEORlgKd1CNE69ABvv8erK3h3Dnw8ICcHEhNhe++IzosBGkqlEYRQtXUwPDhwGBAejp89BGIxbB3L1Cp/ylKgiDmDZ3UI4SKjYW//4a//4aPP4bdu2HqVLCzQ6fzSMuCbjEhhMEwTC6V0g8cgFWrQCIBOzt4+hQYDKLjQpDmQSf1CGF+/vlnD0/PKy4ukJUFAQEQHIxyKNISodEoQpiRI0fGx8cDQGBg4A8//MCgUqFdO6KDQpBmQ6NRhBjPnj07derUjh07mEzm06dPaTQayqFIC4VGowgBamtrvby85HL5vn37unTpgmGYs7Mz0UEhiI7QnXqEACUlJWQyOTc396OPPiooKGCj6U1IS4bSKEKA69evJyYmRkVFdezYEeVQpKVDJ/WIqR0+fHjGjBnu7u63bt3icrlEh4Mg+kK3mBBT69Kli6urq4eHB8qhSOuATurNy507dw4dOrRr1y4yuXV+wiUnJ1+/fj0pKUmlUhEdC4IYBjqpNxe3b9/evHnzhQsXAODUqVOTJk0iOiLD02g0Xl5eVVVVGRkZLBaL6HAQxDBa55DHuIqKwN8faDRwcoIffwQAUKmARIKnT1/tEBAAW7Y0vb2bN2+OGzdu0KBBFy5cYDKZixYtGjhwoBHiJh6ZTN6+ffuBAwdQDkVaE3RS33yffALOzlBSAklJEBAArq7g46NzY+PHjz9//jwAcDic0NDQ0NDQ9u3bl5WVKZVKC2Ou4yYQCKRSKYPB4HK5JBLJeB29bubMmdu3b7exsTFNdwhiGiiNNlN2Nty5AydOAJcLI0bApElw4IA+adTT0/PatWvz588PCwvj8Xjl5eXr1q2LioqKioqaPXu2AQN/XVxcXGJiYkxMjPYVKpXK4/F4PB6NRsO3tRsNbeMb77zzDoXSpN+iu3fv8ng8lEOR1gel0WbKyAAbG+jY8dWXvXrBiRP6tBcWFhYWFsZms1+8eLF+/fp9+/bJ5XISifTw4UMDRFuf9PT0oKAgDMPs7OwUCoVQKAQAhUJRUlJSUlKiQ4McDodOpzMYDA6Hw2QyGQwGPsjFN1gsFpvNdnJy+vDDD/v27Wvoo0EQ4qE02kwy2X8qCnM4IJW+2u7XD/Db69XVTR+f4pPPlyxZEh0drVAoSCTSxIkTIyIievfubdC4X9FoNCEhIbW1tfPnz9+zZ4/2dblcLhAIBAKBQqF4c7veF/FtsVgsEolEIlHj/Xp7e1++fPn77783xkEhCLFQGm0mW1t4PWWIRMDhvNo+dw66dAEAmDu3ua0KhcLa2tqxY8euX7/ey8tLpVLFxcWRyeTAwEBDBP2vXbt23bp1y8HBYdOmTa+/TqPRaDSag4ODDm0KhUKpVCqTycRisVgsxreFQqFEIpHJZBKJpLKy8tixY/fv3x8xYsT48eMNdCgIYjYwpFmePcMAsIKCV19On47Nm4cplRgAlpPz6sUJE7DNm5vVakFBQXp6OoZhtbW1cXFxLi4uAGBnZyeTyQwYe35+PpPJBIDffvvNgM02xY4dOwDA09NTrVabuGsEMTY0Gm0mPh8GD4bwcNi7F+7fh7NnISFB/1adnJwAICYmZsuWLfn5+QDg6uq6evVqw96sDw4OlkgkU6dOnTBhggGbbYqQkJDt27enpaWdOnVqypQpJu7d2EpLS6Ojo1NSUhgMBpvNZrFYdS4QM5lMDofDYDDodDqHw2GxWE28L4e0COj/ZfMdOQKzZ4OdHdjawqpV4O0NBnog5+TJk/n5+e7u7mFhYdOnT6dQKGVlZe+8845BGj948OCVK1fat2+PDwxNzMrKatWqVfPmzVuzZs3EiRNbUxIpLCz09PRksVjPnz9v1hubNSPi9RdtbW2NOhkOaS70FJOuiorAyQk6dIDSUkM1mZSUlJeX99FHH5HJ5IcPH37zzTfx8fF5eXn6P3teUVHh7u5eXl4eFxf32WefGSTa5lIqlW5ubrm5uYcOHZoxYwYhMRjDhAkTzp075+fnt3DhQqlUKpFIRCIRfoFYJBJVV1fLZDKpVCoQCPCN6upqsVisVqv16XThwoVBQUGenp6GOgpEHyiN6grDoH17EAqhtBQ6dDBgw7dv396wYcOVK1cAgMlknjlzxs/PT882p02bdvTo0WHDhl29etVkk+3f9PPPP3/++efOzs6ZmZmtYzyFV6vicDiZmZnNvUHXxBkRb75YXl5Oo9G4XG52djYVraJqDoi+ONuSvf8+BoD98YcBm9RoNB4eHgDAYrFWrlxZXl6uf5sXL14EADqd/uzZM/1b04dKpXJzcwOA2NhYYiMxiIqKCvySy4EDB0zZr0aj6dWrFwDs3LnTlP0iDUFpVA8LFmAA2HffGbbVM2fOrF27trKyEsOwsrKy8PDwFy9e6NyaWCx2dHQEgKioKMPFqLtff/0VAJycnBQKBdGx6OvTTz8FgKFDh2o0GhN3ffbsWQCws7OTSqUm7hp5E0qjeoiOxgCwzz4zRttlZWWRkZH45PylS5fq3M78+fMBoF+/fiqVyoDh6UytVuMjqd27dxMdi15+//13fIz/9OlTQgLo378/AGzbto2Q3pHXoTSqh8REDADr3dvgDavVaj6fDwAkEmns2LFJSUm6tZOYmEgmkykUyoMHDwwboT5Onz4NAPb29rqNpKZkZHgnJ2v/26Sdw2tCEonk3XffBYDt27ebvnfc5cuXAcDa2lokEhEVA4JDaVQPEglGJmNWVlhtrcHb3r59e0BAwP379zEMU6lUQqGwuS0oFAp3d3cAiIiIMHh4eurXrx8AfKfT9ZApGRlXKisNHlKzfPnllwDQt29fYsf4Q4YMAYANGzYQGAOCoTSqL2dnDABLSzNS82q1+vjx466urnPmzGnue9esWQMArq6ucrncGLHpAz8jtrGxEYvFzX2vodKoRqMp0Gkke+fOnXbt2lEolJSUFP3D0MeNGzcAgMPhVBL9udLGoTSqn0mTMADs8GFjtK1Wq7UTA7t3715TU9P09z569MjS0pJMJt+4ccMYsenvgw8+AICvv/66uW/UP40WFhZu2bLF2dnZwcGhucPJmpoafCrF6tWr9YnBUPDJcGYSTJuF0qh+IiMxACwszEjNL1myhM/nx8TEKJXKpr9LrVYPGDAAABYuXGikwPR3/fp1AOByuVVVVc16o85pVCgUxsbGvv/++9qZs46OjjnaSghNExERAQAuLi5mMsa/d+8eiURiMpkvX74kOpa2C6VR/Zw+jQFgo0cbqXmJRIIPl5KTk7du3drEd23fvh2fVKTDKbMpDRs2TIdLt3VuMR1uWvpITk6m0Wh49mQwGJ999tnVq1ebWyfl8ePHVlZWZDL5+vXrzXqjUX344YcA8NVXXxEdSNuF0qh+nj7FALCOHY3Xg1KpHDduHH7X/tGjR2/dX1vG6ezZs8aLyiBu3boFAE0ZSdW8lvB0G40qlUp7e/tBgwbFxMTo9umiVqvxNbLmz5+vw9uNJzU1lUwmU6nU4uJiomNpo1Aa1Y9Gg7HZGABmiMeNGvLxxx8zmczly5eXlZW9deeRI0cCwPTp040XjwGNHj0aAFasWNHIPqfKy0c+fDghLe1SZaVao9H5pL66uvr1L9PT01esWBEZGdnEt+MlXRwcHAQCgQ69G9XkyZPN/BpO64bSqN4GDMAAsL/+Ml4PhYWF+FOhb532dODAAXwuYUu5UpacnEwikWg02vPnzxva58O0NO0pfEBa2qhHj36vqNC5x6qqqpiYmEGDBuEn+DwerynPUxFYqrUp0tPTyWSypaVlbm4u0bG0RWiBZb317AkAkJpqvB4cHR05HM7KlSsdHR3xOS71qqioWL58OQDs3LnTUOX1jM3b2zsgIEAul2/btq3eHWoxrKK2VvtlUU1NeW3tnhcvjpeV1Wg0ze1OJpN17tw5ODj41q1bPB4vJCTk4sWLVlZWb30jgaVam8LDw2Pq1Km1tbWbN28mOpa2CKVRfVX27/9wyJBLL18atRcLC4sbN25UV1fHx8c3tM+CBQsqKipGjx6NP+vdUmzcuJFMJkdHRxcVFb353SyZTPVGEbLS2tptRUWR+fnN7YtOp48ZM8bPzy8uLq64uPiHH37ApzQ0jthSrU20bt06CoXy008/ZWVlER1L20P0cLjFw4eH7733nrE7SkpKunfvXkPfvXDhAgAwGIyWeFo3depUAAgODn7zW7+Ulr5+X/71/6ZkZOjQV50yIvfu3ctotJ3y8nJbW1sAiIuL06E7U8JX5A4MDCQ6kDYH1RvVl1gs5nK5VCpVLBYbu6i7Wq0+cuRIp06dfH1968Tg4eFRXFz8/fff488ptiw5OTnu7u4kEunJkyd4MQGtsNzcPwWCN99CIZH2duvmxWLp1uPz589Pnjz5888/P3z4MDAw8ODBgw3taSalWpuioKDA1dVVpVKlpaV1796d6HDaEHRSry82m925c2e5XJ6Tk2OC7jZu3IjPEHz9xRUrVhQXF/fv3x+v59TidOvWbcaMGUqlcuPGjXW+laZdv/q/ljk66pxDAWDatGmLFy9++PChnZ1dF3w91/r8/vvvR48epdPpsbGxZp5DAaBz586zZ89Wq9Xr1q0jOpa2BY1GDQBfRuLo0aOffPKJsfs6c+aMUCicOXMmmfzqI/D69eu+vr4WFhYpKSn4c4otUUFBgYuLi1qtfn0k9bK29sO0tDd3Hmttva7h3NcUcXFxly9fDgwMHDlyZEPnENXV1R4eHkVFRVFRUYsXL9anO5MpKSnp2rWrQqFISUnp3bs30eG0FWg0agB4Ac20+v7gDW7ixImff/65TCbDv6ypqQkJCcEwbNWqVS03hwJA586dP//8c7VavWHDBu2LVx49enPPngzGqs6d9exu5syZR44cGTNmDIVC0Wg0mvpu+oeHhxcVFfXr168FXSext7fHfx8iIyOJjqUNQWnUAPACIo/q+5s3BoVCMWrUKHxNtPXr1z9+/NjNzS08PNw0vRtPREQEjUY7duxY6j+zx5J//VX23/vOthYW27p2tTTQ+fWzZ88iIiL4fD5eTP51d+7ciY6OplAoMTEx7dq1M0h3prFq1SoWi3Xu3Lm7d+8SHUubQegNrlbiyZMnAODk5GSyHr/99tuUlJTU1FQLCwsymXzz5k2TdW1UoaGhABAQEIB/2a9fPyCTecOGdf/1V+/k5Pfu3n0kkRiwO+01xLlz577+ujmXam0K/DPV39+f6EDaCpRGDUCtVjMYDABobrEifahUqvfeew8AQkNDTdapsZWVleEPC929e1cmk1laWr76tCeRqHz+/v37Ddtdbm7u559/fu3atTqzoMy5VGtTCAQCfFHua9euER1Lm9DK0+j9+/cfP37crEqdusHLuSckJBi1F4VCkZqaevTo0YiICB8fH3wIXOdR8ZZuxYoVADB69Gi8kp7WggULTBOA+ZdqbQr82ujgwYOJDqRNaM1pdPfu3fgkFQqF4uzsPHr06MWLF+/du/fq1asFBQWGXc1x7ty5ALBr1y4DtllTU5Oenn78+PHIyMgpU6a4u7vXuUjHZrM//vhjA/ZoDioqKvCF/IKDg7VHOmjQION9Fubl5S1fvlwikWAtpFRrU4hEImtrawCIj48nOpbWrzWnUby+XEPodHqvXr2mTJmyatWquLi4xMREfVZi2LlzJwAEBQXp3EJVVdWtW7diY2OXLVs2atSoLl26vDlRkUKhuLi4BAQErFy5csOGDW8t6tFC4aWR8SwAAI6OjkattHLz5k0AOHjwINZySrU2Bf58fd++fU2//nNb05rnjQ4dOvTatWvNeguPx+Pz+Xw+393d3cPDg8/nu7q64lfrGnft2rWhQ4f279//zp07TelIIBBkZGRkZmbm5ubiG3l5eXX+X1hYWDg6OuKR4P92796dTqdrd5g4ceJvv/0WGhpqzs9660AkEvH5/KqqKgCwsrK6fPlynae2DAvDsMjIyE8++YTJZPbo0UMikZw9e3b8+PHG69E0pFJp165dX758eeHCBby0M2IkrTmN9u3bNzk5Wf92eDyeNqviGdbNza3O+bVQKGzfvj2dTheLxdqJ8VrapIn/m56eXlpaWmcfS0tLZ2dnbcbk8/k9evRovPhQenp6r169LCwscnJyHB0d9T9S8xEcHBwbG/v6LyeVSqXRaFQqlcfjaTca2q7zIofDefN/ypv8/f3/+OOPTz/99JdffjHmwZlOVFTU0qVLe/bs+eDBg6b8BBDdtOY02r17d3wqksHh48TXB618Pt/X17eoqCg7O5vBYGgzZkZGRlpamlgsrtMCh8NxdnbWvt3d3b179+46/KLjT3yHhIT88MMPBjo44qnV6n79+qWkpHA4HCqVKpVKJRKJPg2SyWQOh8NkMhkMBoPB4HK5+AaLxWKz2QwGg06nZ2ZmxsXFWVtbZ2ZmtpQyg2+lUCi6detWXFx88uRJX1/f/fv34wfOZDK5XC6dTmcwGGw2m8Vi4T8EouNtqVpzGnV0dCwuLjZZdxYWFkqlEv+3zrdsbW09PDzc3NzwE/Pu3bs7ODgYpNNGinq0XN99993y5cudnJzS09NZ/zw4L5fLFQqFXC4XCAQCgUC7Xe+LdXbAy12/tV82m7169Wp8qkCrsXfv3gULFnh4eBw6dMjLy6vxnXk8njbPcjiciV27LhSLgcMBFgvodGAwgMd7tcFiAYfzapvDASYTLCxMc0RmqDWnUR6PJxQKTdkjnU6XyWTaiwD4vx4eHvb29sbrdNasWXFxcbNmzcJL37d0+fn5np6eEonk3Llzjd8kbDq1Wi0Wi8VisVQqlclkQqFQIpHIZDKJRCIUCmUymVQqvXTpUkZGxpQpU44fP26QTs2EUql0c3PLzc3dtWtXcXFxdXU1/kMQCAT4RnV1tUgkkkqlCoWiznu/6d9/ZdMfhbK0BAYDgoJgyxYDH4PZa81p1MLCQqVS6dkIhUJhsVj4aSCTyWQymTwej/kPDofDZrPx7TVr1mRmZl68eHHMmDEGib+J8vPzXV1d6xT1aKEwDPP394+Pj58xY8ahQ4dM2XUrLurx008/zZkzp1u3bpmZmY3UctRoNCKRqLq6Gv9cEQgE9iqVh0AA1dUgFoNUClIpiEQgkbzaFgpBKgWZDMRiEItBrQYAWLQIvvoK5s6F69fB1hYiI2HOHNMdKkFacxoNDg7et28fvq1Nglwul8Vi4dtsNhu/ZNZIfqRSqU3szsbGprKysqSkxM7OzmjHVL+QkJCYmJipU6ceOXLExF0bFv4Hb2Njk5GRYfoLlEuXLo2Kiho/fvybj9i3aCqVys3N7dmzZ6dOnZo0aZKxuqmpAbyq4dix4OwM338PSUkQEABXrsDgwcbq1EwQMs3KNDQaTUFBQVVVlQnmzZWVlQEAh8Mxdkf1ev78OY1GI5PJDx8+JCQAgygpKeHxeADw66+/EhJAeXk5fin2zp07hARgJBqNxsvLy8nJqfE6/4aRlYWRSJh2qecZM7DZs43eKdFa8xwIEonk5OTE4/FMUHAXnxLg5uZm7I7q5eDg8MUXX2g0mvXr1xMSgEF8+eWXAoFg9OjR06ZNIyQAGxubBQsWAEArqzIXFxeXkpIilUptbGyM3llGBtjYQMeOr77s1QvS043eKdFacxo1JXwdMVdXV6ICWLlyJZ1OP3PmzL1794iKQR8XLlw4efIkg8HYs2cPgWGEhYVxudwrV64kJCQQGIYBadeL/d///meK6yQyGbDZ/37J4UAD6xe0JsZdO6jtIDyN2tnZLVy4cNu2bevWrfv999+JCkM3YrF43rx5ALB169Z3332XwEi4XG5oaOj69evXrFnTyFrWLcj8+fPx9WKfPHlCIpG082S5XG6dibR0Op3NZrPZbHw+KZfL7clmv0OlApMJHA4wGNCU+wS2tiAS/fulSAQcjvGOzky05ltMpjRu3LgLFy4Y9xL+21RWVvL5fLFYnJCQ8MEHHxAVhg6CgoJiY2N9fHxu3bpF+MM2YrGYz+dXVlbGx8f7+fkRG4yeLl68OHbsWAaDkZaWtnv37v/973/NenvewIFdbt/+92syuZ45pHQ6sNnAZr968f33YeBAKCgAJycAgE8/BQ4H9u416GGZHZRGDcPFxSUnJyc9PZ3YlTwiIiI2btz4/vvv16kyZ84SEhKGDh1qYWHx4MEDvFgy4bZs2bJy5cq+ffvevXvX/Feya0i968Vq58niE2nxbaFQKJVK8afF8DmkMplMJBLF2dg4pKeDTAYCAchkUFPz9l5v3oTwcHB0hL174f59mDABEhLA29u4h0o0lEYNoLa2lsFgYBgmkUiaPkHKGLRFPf78889hw4YRGEkT1dTU9OnT5/Hjxxs2bFi7di3R4bzSOop64NPg+vfvf+vWLcOsg6JS/TuHVCYDoRAkEpDJQCIBkejViwsXApkMs2fD9evQoQN8/TUEBhqgazNH7ESB1iEzMxMAunbtSnQgGIZhX3/9NQAMHDiQ6ECaJCwsDAA8PT1NUFq7WfDz3549e6rVaqJj0UVCQgKJRLK0tExPTyc6ltYPpVEDOH36NAB8+OGHRAeCYRgmkUjwG7K///470bG8xcOHD/G1pG7dukV0LHXJ5fJOnToBwMmTJ4mOpdkUCgX+PNv69euJjqVNQBOeDIDw2/SvYzAYeHGNtWvXYmZ8xUalUs2ZM0epVIaGhg4cOJDocOqiUqmrVq0CgMjIyHqXXzZn2vVi8cE+YnRE5/HWYNasWQAQExNDdCCvyOXyjh07AsDp06eJjqVBW7duBYDOnTub7VpStbW1eNGsw4cPEx1LM7S+9WLNH0qjBoCvLmfs9eyaZdeuXQDg4eFhnpf2cnNz8bVUL1++THQsjfnxxx8BoFu3bkqlkuhYmqRVrhdr/lAaNYD27dsDQGlpKdGB/Kumpgafx37kyBGiY6lLo9Hg8zFnzpxJdCxvoVKp8Gs1P/74I9GxNMm2bdvMfIzfKqE0qq+XL18CAJfLJTqQumJjY81zJIWX3bKxsSkrKyM6lrfDFxTp3LmzQqEgOpa3yMvLw8f458+fJzqWtgWlUX3hD1/7+PgQHUhd2pHUgQMHiI7lX9oyTkePHiU6liZRq9U9e/YEgL179xIdS2M0Gs2IESMAIDAwkOhY2hyURvWFj63M8/z04MGD+EjKfGZl4g/LjhkzhuhAmuHkyZMAYG9vL5PJiI6lQfv3729BY/xWBk140pdZzXaqY/r06e7u7gUFBWayvsipU6dOnz7NZrOjo6OJjqUZJk2a1Ldv35KSErMNu7S0FC/jtGvXLltbW6LDaXuIzuMtHv6woNlOLcJXFnJwcCB8JCUUCvFpWGZ+dlyv8+fPA4CNjY1YLCY6lnpMnjwZAEaPHk10IG0USqP6cnZ2BgBT1BXXiUajwVcW2rFjB7GRzJkzBwAGDBhgnnOw3mrAgAEAsHnzZqIDqQtP8SwWq7CwkOhY2iiURvVSU1NDoVDatWtnzrdx8ZWFbG1tCZwE8/fff5NIJCsrK7P9vHmr+Ph4AOByuQKBgOhY/qUd4+/Zs4foWNoudG1ULzk5OSqVis/nW1lZER1Lg8aPH+/j41NeXr6XoLKPcrn8iy++wDAsIiLCTErh6cDPz8/X11coFO7YsYPoWP711VdfPX/+3MfHJyQkhOhY2i5UKE8vp0+fnjx58tixY/ETK7P1xx9/+Pv7W1tb5+bmsl9f48EkVqxY8e233/bs2TM5OdnCwsLEvRvQrVu3Bg8ezGazc3Nzra2t693n3LlzSqWSw+GwWCy8jDyPx6PT6cb4oMVLtVpaWqakpLTcz6dWAC0iohdiV7JrupEjRw4ZMiQhIWHHjh0RERGm7Do1NXXHjh1kMjk6OrpF51AAGDRokL+//5UrV7777rvNmzfXu8+iRYsKCgrefJ1CobBYLHwNDwaDga/sXe8aHq8v8uHk5ESj0ertqKamJiQkBMOwNWvWoBxKLJRG9WLOs53q2LBhw5AhQ7Zs2VJeXm5ra1vvHy2dTmcymVwu11Al31Uq1ezZs5VK5bJly6SEm24AAAy+SURBVPBbNC3dpk2b/vjjj127di1evLhDhw5v7jBmzJjS0tLq6mqxWIyXkRcKhRKJRKlUCgQCgUDQrO5u377d0M8tIiLiyZMnnp6eeEEvhEAojeqlBaVRJpNJoVBqa2t3797dlP2pVCqPx+PxeDQaDd/WbjS0jW+88847FMqr36tvv/02JSWlS5cu69atM+KxmZC3t/e4cePOnTu3devWepc2augCdG1trXa5DplM1tAaHq8v8lFdXY0/8fWm1NTUqKgoMpkcExNjaWlpyCNEmg9dG9ULj8cTCoVlZWVmPuc5KSlpxIgRIpEIANq1axcSEmJlZfXmHy3+F97cEdOb8EEulUotKSmpqamJj48fPny4IY7DLKSlpfXu3dvS0jInJwcv7WxiKpXKx8fn/v37S5cu3b59u+kDQOpAaVR3paWl9vb27du3r6ysJDqWxjx48MDPz6+qqqpTp07FxcUAMH369MOHDzf+Lrlcjp+EKhSKN7frfRHfFovFarUab6RDhw61tbWlpaWtbMT0ySefHD9+fP78+Xv27DF971u3bg0PD+/cuXN6ejqTyTR9AEhdhE63atmuXbsGAAMGDCA6kMY8ePAAr+M3efJk7eLPJBLp3r17xutUIBAUFxfv2LEDv/nWEh9balxWVhaFQrGwsHj27JmJu87OzsZvOl25csXEXSMNQfNGdWf+t+kfPnyIj0MnTZqEFx7FX8cwDH8E20i4XO69e/cWL148duxYANi4caNcLjded6bn4uIybdo0pVIZFhaWm5tbUVEhk8lM0C+GYfPmzZPL5bNmzRo5cqQJekSaAt1i0p2Z319KTU318/OrrKycOHHi0aNHLSwsXl9TKCEh4fz58+PGjTNG1xkZGTQabcKECZs3b05ISEhKSoqOjl6yZIkx+iLKmjVrjhw5cvXq1a5du2pfpFKpTbwRV+fF9u3bN2Vp7tjY2D///NPGxubbb7815sEhzYPSqO7MOY0+evQIz6Fjxow5cuQIPmGzztJsy5cvHzVqlMHncubl5fXp08fLy2v16tUUCiUiImLcuHHffPPN3LlzWSyWYfsi0KlTp1QqFYlE4vP5IpFIKpUq/gEAJSUlzW3Q0tJSO1efwWBoJ5lqp6OpVKqoqCgA2LNnj42NjeEPCdEVSqO6w0/qzTCNPnr0aPjw4RUVFaNHjz59+rT2+Zk6aTQrK+vHH3807EOEEokkOzubx+PdvXt3z54948aNGzt27IABAxITE/fs2RMeHm7AvgiUnZ29ceNGEol07NgxvFgyrs79t0ZuxNXZoaqqqqampra2tvFpEl5eXp06dfr444+Nf4hIM6A79TqqqalhMBgkEkkqlZrVbegnT54MHTq0tLR01KhRv/322+vPII4ZM+bSpUuv7/zOO+/k5OQY6vFQpVLp4uLSo0eP5cuXP3jwwMfHp3///gBw9erVESNGcLncvLw8LpdrkL4IhGGYn5/fX3/9NXv2bHzNO4NQKBTaufoymaze6WgTJ0708fExq983BADdqdfV48ePAYDD4WRmZhIdy78eP35sZ2cHAKNGjZLL5XW+6+/v/+YvAL6cvUHcvn0bv4lMIpHGjBmTlZWl/Zavry8AREZGGqovAuHFm+3s7KqqqoiOBTELKI3qbsOGDQBAJpOnTJny+PFjosPBnjx5Ym9vDwD+/v5v5lAMw14//dSi0WgGqVM5efLkoKCgBw8eREZGcjgcCwuLvLw87Xdv3rwJAGw2u6KiQv++CPTixQt8QH3ixAmiY0HMBUqjuisqKlq0aBF+gxVPpk+ePCEqGG0OHTlyZL05FMOwhh4lmj17tp695+XltWvXDgAsLS2/+OKL+/fvnzlzps4++Fg4PDxcz76IFRAQAABjx44lOhDEjKA0qq/CwsI6yfT1k1nTyMrKcnBwAIARI0Y0sljIsGHD6k2j7dq10+fSxM6dO7ds2XL37t1PP/0UT6YUCiU0NLTObsnJySQSicFglJaW6twXsY4dO4aPqYuKioiOBTEjKI0aRkFBwaJFi/D7OXgyzc7ONk3X2dnZTcmh2D8XKN9kZWWl83KSEokEr7zJ4/EiIyNTUlLwD5VNmza9ufP48eMBYMmSJbr1RSyhUIj/nGNiYoiOBTEvKI0aUn5+vjaZWlhYBAYG5uTkGLXH7OxsfA2JDz74QCKRNL7zBx98UCeBuru7L1iwQM/HCm/cuIE/rQQATCZz0aJF9+7dE4lEb+756NEjMplMpVJb4mhu1qxZADBkyBCNRkN0LIh5QWnU8PLz84OCgvBicXgyffr0qTE6ysnJwXPo+++/35R1lk6cOMFkMl1cXIKDg48cOWLYk+vr169rZwLQaLT79+/Xuxs+53HevHkG7NoE/vrrL3wtKbOamIGYCZRGjSUvL69OMjVsGYv8/PwuXboAwODBg5u+Vh1+90mpVAKAdqSMP7WpQwxvtrNo0aLAwEAXFxelUlnvWwgs6qEzqVSKP/G5ZcsWomNBzBEqTWIsXbp0iYmJyc7ODgoKwjDs0KFD3bt3Dw4OxkvV6amgoMDX1zc/P3/QoEGXLl1qerW0pjy4rQ97e/uDBw+mpKRoKzfXoS3qsWnTJqNGYkBr16599uxZz549ly5dSnQsiDlCadS43n333ZiYmKysrKCgILVavW/fvq5duwYHBz9//lznNgsLC4cOHapDDjUZBoPRyHc3bNhgaWkZFxeHFyUwc0lJSTt37qRQKD/99FNLX0sKMRKURk2Bz+fHxMSkpaUFBgbiyZTP5wcHB7948aK5TRUWFvr6+ubl5Q0cOPDSpUstsdhHly5dZs6cqVarN27cSHQsb6FSqYKDg9Vq9dKlS729vYkOBzFXRF9VaHMyMjICAwO1k9WDgoKeP3/exPcWFhby+XwAGDBggFgs1jkG/Jomj8eztra2tra2tLTU59qoDu0UFBRYWVmRyeTU1FQd+jUZPNG/++67b50FgbRlKI0SIz09PTAwkEwmA4CVlVVQUNCLFy8af0thYSF+o2PAgAH1TidqOjz93bhxo6ioqKioyN/fX580qls7CxcuBIDJkyfr0K9pZGVlUalUEokUHx9PdCyIWUMn9cTw8PA4ePBgamrqlClTamtr9+3b5+zsHBoaWlpaWu/+xcXFQ4cOffbsmbe398WLFw1Sk8nOzq5Tp06dOnXS876Tbu2sWrWKTqefPn06KSlJn96NRKPRzJ07V6FQzJkzx8/Pj+hwELOG0iiRevTocfz4cTyZyuXy77//vt5kqs2hXl5e8fHxDS2627LY29vPnz8f+6fCi7mJjo6+ceOGnZ3dtm3biI4FMXcojRLP09NTm0xlMpk2mb58+RIASktLR44c+fTp0z59+rSaHIoLCwtjsVgXLlxITEwkOpb/ePHixerVqwFgz549rekHjhgL0VcVkP/AkymJRAIAJpO5cOFCFxcXAOjTp09lZSXR0Rkenq38/PyIDuQ/JkyYAOZ93RYxK6j6vTlKTU3dtGnTiRMnAKBdu3a9evW6evVqqxwWCYVCPp8vEAj+/vvvhiqnmNjRo0enTZvG4XAyMjLwZ20RpHEojZqvxMTEU6dODR8+vH///vha863Sxo0bIyIiBg0ahJd2JlZlZaWHh8fLly/3798/Z84cosNBWgaURhGCSSSSrl27lpWVXb58ud5lTkzps88+O3TokK+vL16LhNhgkJYC3WJCCMZkMpctWwYAq1evJvZD/a+//vrll19oNFpsbCzKoUjToTSKEO/LL7/s2LHj/fv3z58/T1QMMpnsiy++wDBs/fr1zs7ORIWBtEQojSLEo9FoK1asAIA1a9ZoNBpCYli1alVubm6vXr0WL15MSABIy4WujSJmoba21tXVNT8//9ixY3hpZ1O6d+/ewIEDSSTS3bt3vby8TNw70tKh0ShiFiwtLcPDwwFg7dq1KpXKlF1ryzgtX74c5VBEB2g0ipgLpVLp5uaWm5vr5+fn7e3NZrMZDAadTudyuUwmk06nM5lMLpdLp9MZDIZBqgrgNmzYEBkZ2a1bt9TUVBqNZqhmkbYDpVHEjJw4ceLs2bOHDx9uys5UKpVGo1GpVB6Pp91oaLvOixwOBy+vlZWV1bt375qamvj4+OHDhxv5+JDWCaVRxLw8e/bs8uXLEolEKBTKZDKpVCoWi6urq6VSqUwmEwgEUqlUKpVKJBJ9eiGTyRwOh8lkisVikUgUHBwcHR1tqENA2hqURpGWSi6XKxQKuVwuEAgEAoF2u94X6+wgFArx33wmkxkWFvbll19yOByiDwhpqVAaRdoitVotFovFYnFNTQ1e/AVBdIbSKIIgiF7QhCcEQRC9oDSKIAiiF5RGEQRB9ILSKIIgiF7+D7q/LvvYTNB9AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -558,7 +590,7 @@ "metadata": { "id": "BPs0Txu4kP2H", "colab_type": "code", - "outputId": "9ffd85da-adaf-4312-a837-f926175358b8", + "outputId": "c410f052-d115-4aa2-9982-ef29e4ed18b2", "colab": { "base_uri": "https://localhost:8080/", "height": 188 @@ -27966,7 +27998,8 @@ "\t this.color = _d2.default.scale.category10();\n", "\t this.color('predicted_value');\n", "\t // + 2 is due to it being a float\n", - "\t var num_digits = Math.floor(Math.max(Math.log10(min_value), Math.log10(max_value))) + 2;\n", + "\t console.log('CREATING THIS');\n", + "\t var num_digits = Math.floor(Math.max(Math.log10(Math.abs(min_value)), Math.log10(Math.abs(max_value)))) + 2;\n", "\t num_digits = Math.max(num_digits, 3);\n", "\t\n", "\t var corner_width = 12 * num_digits;\n", @@ -37664,25 +37697,25 @@ "/***/ })\n", "/******/ ]);\n", "//# sourceMappingURL=bundle.js.map \n", - "
\n", + "
\n", " \n", " \n", " " @@ -37712,7 +37745,7 @@ "metadata": { "id": "4ja4_jCKkP2N", "colab_type": "code", - "outputId": "72bf5f41-ccdd-4639-8fa1-1022564cdfdd", + "outputId": "5b286770-a5b3-4796-8da2-8e914a803982", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -37754,7 +37787,7 @@ { "output_type": "stream", "text": [ - "RDKit WARNING: [04:14:03] WARNING: not removing hydrogen atom without neighbors\n" + "RDKit WARNING: [02:54:11] WARNING: not removing hydrogen atom without neighbors\n" ], "name": "stderr" } @@ -37765,7 +37798,7 @@ "metadata": { "id": "PAe3ZOhUkP2Q", "colab_type": "code", - "outputId": "ffe66084-d27e-4e18-eb7b-6a58d428274a", + "outputId": "2d65a950-4a4d-4611-c93b-03f83eb8dde3", "colab": { "base_uri": "https://localhost:8080/", "height": 167 @@ -37781,9 +37814,9 @@ { "output_type": "execute_result", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAJkUlE\nQVR4nO3dSUyT6R/A8aeI4AIKii0q4oa4gCsqLmhwi0i4cpr0KBMunXgYSUxM/cdoOomJzRgPxGSS\nzmUSjnXN4L7iRlxQ3EUEoVgWBZRF2v/hnRREhgEe2udt+/3cbKn9seSbt+/yvAav1ysAACMVoXoA\nAAhuZBQApJBR6Njvv4uUFBEVJVJSxLFjqqcBBkZGoVfHj4s9e8TPP4u7d8Xu3eKXX8Tx46pnAgZg\n4BATdGrWLLFli/jzz3/++dNP4upVUV0tDAalYwH9sTUKXXr7VtTUiF27eh/JzRU1NeLdO3UzAQMj\no9Cl+nohhEhM7H1k+nQhhKirUzMP8O/IKHQpOloIITye3ke0vU8R/MVCd/ijhC4lJQkhxIcPvY9o\n26Ha44CekFHoktEokpPFqVO9j5w9K1JSxMyZ6mYCBhapegDgX+zbJwoLxYoVIjdX/P23+Osv8ccf\nqmcCBsAJT1Dt2zfx5IkYO1YsWdL/qWPHhN0u3r8Xs2eLX38VBQXfPfv0qejuFmlpIpKtAahERqGa\nyyUSE4XRKFyu4b3QZBINDaK+XphM/pkMGBL2jQKAFDIKAFLIKABIIaMAIIWMAoAUMgoAUsgoAEgh\nowAghYwCgBQyCgBSyCgASCGjACCFjAKAFDIKAFLIKABIIaMAIIWMAoAUMgoAUsgoAEghowAghYwC\ngBQyCgBSyCgASCGjACCFjAKAFDIKAFLIKABIIaMAIIWMAoAUMgoAUsgoAEghowAghYwCgBQyCgBS\nyCgASCGjACCFjAKAFDIKAFLIKABIIaMAIIWMAoCUSNUDINy1GAy/rVo1bvJk6zBf+L+0tI6kpCKD\nIc4vcwFDZfB6vapnQFhzuVyJiYlGo9Hlcg3rhSaTqaGhob6+3mQy+Wk2YCj4UA8AUsgoAEghowAg\nhYwCgBQyCgBSyCgASCGjACCFjAKAFDIKAFLIKABIIaMAIIWMAoAUMgoAUsgoAEghowAghYwCgBQy\nCgBSyCgASCGjACCFjAKAFDIKAFLIKABIIaMAIIWMAoAUMgoAUsgoAEghowAghYwCgBQyCgBSyCgA\nSCGjACCFjAKAFDIKAFLIKABIIaMAIIWMAoAUMgoAUsgoAEghowAghYxC17q6urq6ulRPAQwmUvUA\nCHfR0dE7duyIj4/v93hLS4vNZnM6nQaDISsr69ChQwkJCX2/IDs7u7m5OTo6OoDDAgMweL1e1TMA\n3+np6Tlx4sT+/fvdbndERIQQwuPxJCQkHDx4cPfu3WPGjFE9IPAdPtRDXy5fvpyRkVFYWOh2u7Oz\ns8vLyysqKnJyctxud2FhYXp6+rlz51TPCHzPC+hDdXW12WzW/ixnzZrlcDj6Put0OufNm6c9m5eX\n9/r1a1VzAv2QUajX3t5utVrHjRsnhJgwYYLVav369euPX9bZ2Wm32ydNmiSEiIqKslgsnz59Cvy0\nQD9kFCp5PJ6SkpLk5GQhhMFgyM/Pf/fu3eAvqa2tLSgo0PaZTp8+vbi4uKenJzDTAgMio1Dm7t27\nGzZs0D6nr169+vr168N67caNG7XXZmRkDOu1wOgio1BgVLYoR7AlC/gDGUVAjfr+zSHuVwX8h4wi\ncPx3tL3vUf6kpCSHw+HxeEbrPwcGR0YRCE+fPt25c6eWucWLF589e9Yf73Lp0qXly5dr75Kdnf3g\nwQN/vAvQDxmFfzU2NlosFu3SoylTptjt9m/fvvnv7Xp6ehwOh9FoFEJERESYzWaXy+W/twO8ZBT+\n093dXVxcrF0IHxkZWVBQ8PHjx8C8dXNzc1FRUVRUlBAiLi7OZrN1dHQE5q0Rhsgo/KK0tDQ9PV37\nfL1t27bHjx8Hfobnz5/n5eVpM6Smpp48eTLwMyAckFGMshcvXuTn52vxWrBgQUlJidp5SktL09LS\ntHm2b99eUVGhdh6EHjKKUdPa2mq1WrWV62JiYqxWq04+Snd1ddnt9smTJwshxo4da7FYmpubVQ+F\n0EFGMQq0Azsmk8l3YKe+vl71UP253e5AHuxC+CCjkFVWVpaZmal9as7MzCwrK1M90WDKy8s3b96s\nTbtixYorV66onghBj4xi5N6/f282mw0GQ9Cd9O50OufOneu7EODNmzeqJ0IQI6MYifb2dpvNFhMT\no12CWVRU1Nraqnqo4fny5YvNZouNjRVCjB8/vqio6PPnz6qHQlAioxgebUGQ2bNn+zblqqqqVA81\ncrW1tb4N6hkzZrDsHkaAjGIY7t27l5WVpQV01apV165dUz3R6Lhz58769eu172vNmjU3btxQPRGC\nCRnFkHz48KGgoEA7zJ2QkBB6h7k9Ho/D4UhMTPQtu1ddXa16KAQHMor/oJ10qS1tp510GcK37mhr\na/Mtuzdx4kSW3cNQkFEMxul0zp8/37cb9NWrV6onCoTBb64H9ENGMbDKyspdu3ZpKVm4cOGZM2dU\nTxRoFy9eXLZsmfYT2LJly8OHD1VPBJ0io+ivqanJYrFERkYKIeLj4+12e3d3t+qh1NCuzpo2bRrL\n7mEQZBS9tKXttGpoS9s1NDSoHkq9pqYm37J78fHxNputs7NT9VDQETKKf1y4cGHp0qXaZ9itW7c+\nevRI9UT68uzZs9zcXN9ejtOnT6ueCHpBRuF9+fKlb2m7lJQU5Uvb6VlpaemSJUt8y+49efJE9URQ\nj4yGNe38Hm1pO87vGaIfl91raWlRPRRUIqNhqt/Z5mazua6uTvVQwaTvsntTp04NvesRMHRkNBzd\nvn173bp1vmsfb968qXqiYHX//v1Nmzb5ro69evWq6omgABkNLzU1Nb6VOGbOnBlES9vpmdPpnDNn\nju8ihbdv36qeCAFFRsOFti6ctrQd68KNur4rB2o/3qBbORAjRkbDAptLgcHGfngioyGu7867lStX\ncs+MAOi763nt2rW3bt1SPRH8i4yGLA4lK8SJEGGFjIYgTmzUiR9Py9XJHacxushoqOEyG73hIrGQ\nR0ZDR9+LvlNTU0+dOqV6IvQ6f/48SxaEKjIaCliCKCiwgFaoIqPBTVsQ02g0siBmsGhsbGQ51xBD\nRoMYy7MHr8rKypycHO13t2jRojC8uUAoIaNBiZsFhYbwvNVV6DF4vV6BoNLS0pKcnNza2hoTE7Nv\n3749e/Zod7JEMOro6Dh69Ojhw4fb2tpiY2Orq6vj4uJUD4XhIaNBae/evVVVVUeOHElOTlY9C0ZB\nXV3dgQMHtMODqmfBsJHRoOT1erULtxFK+LUGKTIKAFIiVA8AAMGNjAKAFDIKAFLIKABI+T8Ph5Ae\nibjtQgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAKkklEQVR4nO3df0zU9R/A8dfxQ0zwR3mpIUpUQBrp/AWK1TTtmz9abm30321YcS3XmG0u/miOP/wH19rOrTbFtWJf+4f+cJ41ty/YEjIRxfkrEUIFIawwARHsQO6+f3zYR7wOvXjf3fvD3fPx14379RLZc5/P3efz/th8Pp8AAMYrTvcAADCxkVEAUEJGAUAJGQUAJWQUAJSQUQBQQkYBQAkZBQAlZBQAlJBRAFBCRmFJ/f3y6aeSny92uyQlSVqavPWWHD6seywgABvn1MNyLl2S11+Xjo4AdxUUyDffSGJixGcCxsTWKCymu1vWr5eODrHZZNs2+eknuXxZDh6UvDwRkW+/lQ8+0D0i8AC2RmEx27fLnj0iIl98Idu23f/50JCsXSvHj4uI1NWNVBWwADIKK/F4ZM4c6emRnBw5f15stgfuPXNGli0TEXnnHfnySy0DAv/ETj2spK5OenpERN5+27+hIrJ0qWRliYgcORLpwYCxkVFYydmzIzeWLw/8gBUrRERu3JCurgiNBDwKGYWVdHaO3Jg/P/AD0tP9HwnoRkZhJX19IzeSkwM/ICVl5Mbt25GYBwgCGYWVmJ+HjvXNp/nzOP50YRX8LcJKpk0buWFulvoxfz59eiTmAYJARmEl8+aN3Lh2LfADWltFRGy2MT88BSKOjMJKFi0auXHyZOAH1NeLiGRm3t9uBXQjo7CSvDyZOVNEpLJSvF7/exsa5OpVEZE334z0YMDYyCisJDFRtm4VEblyRT777IG7hodlxw4RkYQEee89DbMBY+BkUFhMb6/k5IwsTfL++1JYKHa7NDVJWZnU1oqIfPyx7N6te0rgPjIK62lqkg0bRr5N8vPuu1JeztFOsBQyCksaGJDPP5eDB6W5We7ckVmzZNUqKSqS117TPRngj4zCAtxuKSyULVvkq6+CfcrWrXLokHz9NV83QTt2jmABg4PS3T3mIfcB9fVJd7cMDoZtJiBYZBQAlJBRAFBCRgFACRkFACVkFACUkFEAUEJGAUAJGQUAJWQUAJSQUQBQQkYBQAkZBQAlZBQAlJBRAFBCRgFACRkFACVkFACUkFEAUEJGAUAJGQUAJWQUAJSQUQBQQkYBQAkZBQAlZBQAlJBRAFBCRgFACRkFACVkFACUkFEAUEJGAUAJGQUAJWQUAJSQUQBQkqB7AEBOJyX9Lzd3XmqqI+in/Dc1tT039z9JScvDOBcQFLZGoV+rx/NJff2hzs7gn3Kos/OT+vpWjyd8UwFBIqMAoISMAoASMgoASsgoACghowCghIwCgBIyCgBKyCgAKCGjAKCEjAKAEjIKAErIKAAoIaMAoISMAoASMgoASsgoACghowCghIwCgBIyCgBKyCgAKCGjAKCEjAKAEjIKAErIKAAoIaMAoISMAoASMgoASsgoACghowCghIwCgBIyCgBKyCgAKCGjAKCEjMLS2tra2tradE8BPEyC7gEAyc7O3rFjx6JFi0b/sLGx8aOPPmpoaIiLi1u4cKHL5Vq8eLF575YtWzIyMrKzsyM+LODP5vP5dM8APODmzZs7d+7cv3//8PDw9OnTRaS3tzc+Pr6oqGjXrl12u133gMAD2KmHhdy7d6+8vHzBggV79+612WxOp7OlpaW1tbWkpCQ+Pn7v3r2ZmZm7d+/2eDy6JwVG8QHWUF1dnZOTY/xZrlu37sKFC6PvbWpq2rx5s3FvVlbW4cOHdc0J+CGj0K+5ubmgoMBIZGZmZmVl5ViPrKqqeuGFF4xHrl+//uLFi5GcEwiIjEKnvr6+0tLSpKQkEUlJSSktLf37778f/pTBwUGXy2V8ZpqYmFhcXNzT0xOZaYGAyCj0GB4erqiomD17tojExcU5HI7ff/89+KffvHmzuLg4Pj5eRGbOnOlyue7duxe+aYGHIKPQoK6uLi8vz9g3z8vLO3HixPhe58yZM6+88orxOkuWLDl27Fho5wSCQUYRUe3t7Q6Hw2aziUhaWlpFRYXX61V8TbfbnZGRYcT0jTfeuHr1akhGBYJERhEh/f39ZWVlKSkpIjJlypSSkpK+vr5QvfjAwEBZWdnUqVNF5LHHHispKbl9+3aoXhx4ODKKSHC73enp6eYG47Vr18LxLh0dHeambmpqakg2dYFHIqMIr4aGhpdeeskI6NKlS2tra8P9jvX19atWrTLeccWKFT///HO43xExjowiXDo7O51Op/Flut1uj+SX6V6vt6KiYs6cOSJis9kKCgquX78embdGDCKjCD3j0M5p06aZh3b29vZGfow7d+6UlpZOnjxZRJKTk0tLS+/evRv5MRD1yChCzO12P/vss+aJRpcuXdI7T0tLi3mK1Lx58yoqKvTOg+hDRhEyjY2NGzduNIKVnZ39/fff657ovqNHj5oL8a1du/bcuXO6J0L0IKMIgVu3bhUXFyckJIjI448/7nK5hoaGdA/lzzhv6sknnzTPm/rzzz91D4VoQEahZGhoaN++fUabEhISnE6nxdt069atkpKSSZMmGcUvKyvzeDy6h8LERkYxfkePHn3xxReNPeVXX311Au0pX758edOmTdb8/AETDhnFePz666/m9zbPPffcQ5a2s7KqqqoFCxaY34b98ssvuifChERG8e9E2VFE/zw2i2X38G+RUQTL75h2h8Nx48YN3UOFRldXF8vuYdzIKIISC2dYNjQ0vPzyy+Z5qzU1NbonwsRARvEIo9f7mDt3btSv9+F2u59++ulwr6KCaEJGMSZj9TljabuYWn1u9Jp+xj88hGv6IfqQUQTmt1EWg2shx9pmOMaNjMIfV+YY7eTJkytXrjR+G7m5ueO+3gmiGBnFfVwnLqDRV9+LskMUEBJkFD4fVy0OgnHArHEtaOOA2UdeCxoxgozCV1VVtXDhQvNknosXL+qeyLqam5uj4PQthBYZjWlNTU2bN282opCVlfXdd9/pnmhiqK6uzsnJMX5v69atO3/+vO6JoBMZjVHd3d3mQkczZsxgoaN/y1jaym63m0tbdXV16R4KepDRmGN8YTJr1ixz2c0//vhD91AT1V9//WUutPrEE09Yc6FVhBsZjS0//PCDuQj8mjVrzp49q3uiaNDY2Lhhwwbjt/r8888fOXJE90SIKDIaK65fv+5wOLgkUfi43e5nnnnGPGGhpaVF90SIEDIa/UYvbTdlypSJvrSdlXk8HitcEhURRkajmdfrraysnD9/vnm59ra2Nt1DRb/Ozk6n0xkXFyciTz311L59+4aHh3UPhTAio1Hr1KlT+fn5xj7m8uXLjx8/rnui2HL69OnVq1cbv/9ly5bV1tbqngjhQkaj0G+//WZuDaWmprI1pIuxN5Cenm7uDbS2tuoeCqFHRqOK8dnc1KlTRWTSpEnFxcUxsrSdlfX39/t9Nj0wMKB7KIQSGY0eft8UX7lyRfdEuK+9vd1cdi8tLY1l96KJzefzCSa+/fv3O51OEVm8eLHL5VqzZo3uiRDAjz/+uH379nPnzolIeXl5UVGR7okQAmQ0Sty9ezc/P7+wsPDDDz80VrqDNXm93gMHDuzZs6empiY5OVn3OAgBMho9fD6fsc8I6+M/K5qQUQBQEqd7AACY2MgoACghowCghIwCgJL/A3XsPxPOBS/fAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -37808,10 +37841,10 @@ "metadata": { "id": "0_kZg3NCkP2T", "colab_type": "code", - "outputId": "fb41b461-7334-41bb-c35a-c7df70608f86", + "outputId": "e7674b3a-33af-41da-8113-1ba381675bb8", "colab": { "base_uri": "https://localhost:8080/", - "height": 167 + "height": 34 } }, "source": [ @@ -37820,17 +37853,11 @@ "execution_count": 14, "outputs": [ { - "output_type": "execute_result", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAUUklE\nQVR4nO3de1TT9eMG8DeIhiIpRBCCiYjbQFEQWF5AEjTSg9AVLQKUFOSQbDNuhiIoepx6lOGJwttJ\nsItYnWqVWV7SSLwcWYRtY+oChQQkJ4wxYWP7/UGn7+9bfgth23tsz+svj8A+z/GPZ897js9s9Ho9\nAQCAwbKlHQAAYHhDjQIADAlqFABgSFCjAABDghoFABgS1CgMlFwuLysro50CwOzY4A1PMBD37t17\n8sknVSrV5cuXZ82aRTsOgBnBGoUBGT9+fGpqqk6nW7t2LZ56Af4/rFEYKKVSyWQyb9++/dFHHy1b\ntox2HABzgTUKA+Xo6Lh582ZCSGZmpkqloh0HwFygRuEhJCcnBwcHNzU17dq1i3YWAHOBQz08nPPn\nz4eGhtrb20skkkmTJtGOA0Af1ig8nLlz58bFxanV6vXr19POAmAWsEbhoTU1NbFYLJVKde7cubCw\nMNpxACjDGoWH5unp+eabbxJCOByOTqejHQeAMqxRGAy1Wu3r69vY2Hjw4MHk5GTacQBoQo3CIH3w\nwQfx8fGurq4ymWzcuHG04wBQg0M9DNIrr7wSFhbW1ta2bds22lkAaMIahcETiUTBwcF2dnZ1dXUM\nBoN2HAA6sEZh8AIDA5OSknp7e7Ozs2lnAaAGaxSGpLW1lclkdnR0fPPNN1FRUbTjAFCANQpD4ubm\n1v8+fB6Pp9FoaMcBoAA1CkPF4/EYDIZEIsFNncE64VAPBvD5558/99xzTk5OMpnMxcWFdhwAk8Ia\nBQOIjY2NiopSKBSFhYW0swCYGtYoGIZYLA4ICNDpdCKRyN/fn3YcANPBGgXD8PPzS01N7evr43K5\ntLMAmBTWKBiMQqFgMBjt7e2fffZZbGws7TgAJoI1Cgbj5OS0adMmQsi6det6enpoxwEwEdQoGFJa\nWpq/v79cLi8uLqadBcBEcKgHAzt9+nRkZKSjo2N9fb27uzvtOABGhzUKBhYREREbG6tUKvPy8mhn\nATAFrFEwPLlc7ufnp9Foqqur2Ww27TgAxoU1Cobn7e3d//kiXC4Xz9N/6ujooB0BjAI1CkaxYcMG\nd3f36urqDz/8kHYW+rq6ugoKCiZOnHjt2jXaWcDwUKNgFI6OjkVFRYSQ7OxslUpFOw41Op3uwIED\nU6ZMKSwsVKlUp06dop0IDA81CsayYsUKNpvd3Ny8Y8cO2lnouHTp0rx581avXt3W1sZms3/88cc1\na9bQDgWGh/9iAiOqrq6eN2+evb29WCz28vKiHcd0mpqa3nrrrSNHjuj1eg8Pj23btiUkJNjY2NDO\nBUaBNQpGNGfOnOXLl6vV6tzcXNpZTKS7u5vP5/v6+lZUVIwePTonJ0cqlSYmJqJDLRjWKBhXU1MT\ni8VSqVTff/99eHg47TjGJRQKMzIyGhoaCCHR0dF79+61qg1utbBGwbg8PT2zsrIIIVwut6+vj3Yc\nY6mpqQkLC4uJiWloaJg1a9a5c+eEQiE61EqgRsHosrOzvby8fvrpp0OHDtHOYnjt7e0cDofNZldV\nVbm4uBQXF1+6dCksLIx2LjAdHOrBFI4ePbp8+XJXV1eZTDZu3DjacQxDo9GUlpbm5+d3dnaOHDky\nLS1ty5Ytjz76KO1cYGpYo2AKy5Ytmz9/fltbW/+bSS3AyZMnZ86cyeVyOzs7Fy5cWFtbKxAI0KHW\nCWsUTEQkEoWEhIwYMeLnn39mMpm04wxefX09j8c7fvw4IYTJZO7evXvJkiW0QwFNWKNgIoGBgStX\nruzt7c3MzKSdZZAUCgWHw5k+ffrx48ednJy2b9/+888/o0MBaxRMp62tjcFgdHR0fP3114sXL6Yd\n5yFotdpDhw5t2LDhzp07dnZ2ycnJRUVFjz/+OO1cYBawRsF0XF1dN2zYQAhZt26dRqOhHWegTp8+\nPWvWrNTU1Dt37kRERFy5cqWsrAwdCn9CjYJJZWRkMBgMqVRaWlpKO8u/u379elxcXGRkZF1dnY+P\nT2Vl5alTp2bMmEE7F5gXHOrB1IRCYUxMjJOTk0wmc3FxoR3nwVQq1c6dO/l8/v379x0cHDIzM3Nz\nc+3t7WnnAnOENQqmtnTp0meffVahUOTn59PO8gB6vb68vNzHx6ewsLCnpychIeH69esFBQXoUPhf\nsEaBAolEMnPmTJ1OV1NTY1Zn5MuXL3M4nOrqakJISEiIQCCYM2cO7VBg7rBGgQJfX9+0tLS+vj4u\nl0s7yx+am5sTExOfeuqp6upqDw+Pw4cPX7x4ER0KA4E1CnQoFAoGg9He3v7JJ5+88MILFJOo1eqS\nkpKtW7cqlcrRo0dnZGTk5eU5OjpSjATDC2oUqCktLU1PT588ebJYLKb1yuNfbm1XUlIyefJkKklg\n+MKhHqhJTU2dMWPGr7/+unv3btNfXSQShYeH99/aLjAw8OzZs0KhEB0Kg4A1CjSdOXMmIiJi7Nix\n9fX1EyZMMM1Ff//9982bN7/99tt9fX2PPfbYxo0b33jjjREjRpjm6mB5sEaBpgULFjz//PNdXV1v\nvfWWCS6n0WgEAsGUKVNKSkpsbW0zMjJu3LjB4XDQoTAUWKNAmVwunzZtWk9PT3V19VNPPWW8C508\neZLD4YjFYkLIwoULBQKBn5+f8S4H1gNrFCjz9vbm8Xh6vZ7L5RrpSV0mk0VHRy9atEgsFjMYjC+/\n/PK7775Dh4KhYI0CfV1dXUwm87fffisvL09ISDDgIysUCj6fv2fPnt7e3vHjx+fm5vJ4vFGjRhnw\nEgCoUTALhw8fXrFihYeHh1QqHTt27NAfUKfTHTlyJCsrq62tzdbWNj4+fteuXa6urkN/ZIC/wKEe\nzEJiYiKbzW5ububz+UN/tDNnzgQGBiYlJbW1tS1YsKCmpqa8vBwdCkaCNQrm4sKFC3Pnzn3kkUfE\nYvGg379569atvLy8iooKQsjEiROLiooSExMNGhPgr7BGwVzMnj07Pj7+/v372dnZg/hxlUpVUFDA\nYDAqKiocHBw2bdokk8nQoWACWKNgRpqbm1ksVldX17fffrto0aIB/pRer//4448zMzNv3rxpY2Pz\n0ksv7dq168knnzRqVIA/YY2CGfHw8MjJySGE8Hg8rVY7kB+5fPlyaGhoXFzczZs3g4ODq6qqKisr\n0aFgSqhRMC+ZmZleXl6//PLLwYMH//k7f/vtt9TU1NmzZ58/f37ChAllZWUXL16cO3euaXIC/AmH\nejA7x44di4uLc3Z2vnbtmrOz89+/obe395133tm4caNSqRw1atSaNWuKiopwazugBWsUzM7LL7/8\n9NNP3717t6io6O9fFQqFLBaLy+Uqlcro6GiJRCIQCNChQBHWKJij2traoKAgGxubn376adq0af1/\nKZFIeDzeiRMnCCG+vr579uyJioqiGhOAEKxRME8zZ85ctWqVVqvt/5SRu3fvcjgcf3//EydOODs7\nFxcX19XVoUPBTGCNgpm6c+cOg8G4d+9eSkpKZWXlvXv3Ro4cuXLlyq1bt5rtxzKDdUKNgvlKSUnZ\nv39//58XL168e/duFotFNxLA3+FQD+ZIKpUuWbLkzw5dvXr1119/jQ4F84QaBfNy79693NzcgICA\n48ePjx8//vXXXyeEHD16tKWlhXY0gAdDjYK50Ol05eXlLBaLz+drNJqEhASpVHrgwIHFixd3dnYW\nFBTQDgjwYHhtFMzC2bNnORxObW0tISQ8PLy4uDggIKD/S9evX582bZpWq7106VJQUBDVmAAPgDUK\nlDU1NSUmJi5YsKC2ttbT0/Pw4cNnzpz5s0MJIT4+Punp6TqdjsPh4FkfzBDWKFDT3d29Y8cOPp9/\n//79MWPGZGVl5eTkjB49+u/f2dnZyWQyW1paKisrX375ZdNHBfgHqFGgoP/WdllZWY2Njf23ttu5\nc+ekSZP+4UfKysrWrFkzceJEqVQ6ZswYk0UF+Fc41IOpXblyJSwsLC4urrGxMSgo6Ny5c5WVlf/c\noYSQ1atXBwUF3bp1a/fu3abJCTBAWKNgOrdv3y4oKDhw4IBOp3N3dy8oKFi1apWt7UCfy6uqqubP\nnz969GiJRII7ioL5wBoFU+jt7RUIBCwWa9++fXZ2dhkZGVKpNCUlZeAdSggJDQ198cUXu7u78/Ly\njBcV4GFhjYLRCYVCLpcrl8sJIdHR0QKBwNvbe3APdevWLRaLpVarz507FxoaatCYAIOENQpGJJVK\nFy9eHBMTI5fLWSzW8ePHhULhoDuUEDJx4sR169bp9XoOh6PT6QwYFWDQsEbBKO7evVtYWFhaWqrV\nap2dnfPz89PT0+3s7Ib+yN3d3b6+vjdv3nzvvfeSkpKG/oAAQ4QaBQPTarWHDh3Ky8trb2+3s7NL\nTk42+K3tKioqEhMT3dzcZDLZo48+asBHBhgEHOrBkE6dOhUYGJiamtre3h4ZGSkSicrKygx+e9DX\nXnstNDS0tbV1+/bthn1kgEHAGgXDuHbtWl5e3rFjxwghPj4+27ZtM+qvG125coXNZtvZ2V29enXq\n1KnGuxDAv8IahaHq6uoqKCjw9/c/duyYg4PDpk2brl69auxf2QwKCkpISOjt7e3/XHsAirBGYfB0\nOt2RI0eys7NbW1ttbW3j4+N37tzp5uZmmqu3trYyGIzOzs4TJ04888wzprkowN9hjcIgXbx4cd68\neUlJSa2trWw2+8cffywvLzdZhxJC3Nzc+qcoj8fTarUmuy7AX6BG4aH139puzpw5Fy5c8PDwOHz4\n8IULF2bPnm36JJmZmVOnThWLxfv27TP91QH64VAPD6G7u3vv3r1FRUVdXV1jxoxZu3bthg0bxo4d\nSzHSp59++uKLLzo7O8tksscee4xiErBaqFEYKKFQuHbt2sbGRkJIdHT03r17vby8aIcihJCoqKhv\nv/02IyNDIBDQzgLWCDUK/66mpobD4VRVVRFCZs2aVVxcHBYWRjvUf4jF4pkzZxJCRCLR9OnTaccB\nq4PXRuGftLe3czgcNptdVVXl4uJSXFx86dIls+pQQoifn9/q1au1Wi2Xy6WdBawR1ig8mEajKS0t\nzc/P7+zsHDlyZFpa2pYtW8z2Ny/v3r3LYDB+//33L774YunSpbTjgHXBGoUHEAqFvr6+XC63s7Nz\n4cKFtbW1AoHAbDuUEOLs7Lxx40ZCCI/H6+npoR0HrAtqFP5LfX39kiVLYmJibty4wWQyv/rqq+++\n+87X15d2rn+Xnp4+ffr0Gzdu7N27l3YWsC441MMfFApFQUFB/63tnJyccnJyeDzeqFGjaOd6CCdP\nnly0aJGjo2N9fb27uzvtOGAtsEaBaLXaffv2MZnMkpISQkhKSkp9fX1OTs7w6lBCyMKFC6Ojo5VK\nZX5+Pu0sYEWwRq3d6dOnuVxuXV0dISQiImLPnj0zZsygHWrwbty4MW3aNI1Gc+HChZCQENpxwCpg\njVqv69evx8XFRUZG1tXV+fj4VFZWnjp1alh3KCFkypQpa9eu1el0XC4XEwFMA2vUGqlUqp07d/L5\n/Pv37zs4OGRmZubm5trb29POZRhKpZLBYLS0tHz00UfLli2jHQcsH2rUuuj1+oqKipycnJaWFhsb\nm9dee23Hjh1PPPEE7VwGtn///pSUFE9PT6lU6uDgQDsOWDgc6q3I5cuX+29t19LSEhIS0n9rO8vr\nUELI66+/Hhwc3NTUtGvXLtpZwPJhjVqF5ubm9evXHzlyRK/Xe3h4bNu2LSEhwcbGhnYuIzp//nxo\naKi9vb1EIpk0aRLtOGDJsEYtnFqt5vP5LBaroqLC3t4+JydHIpEkJiZadocSQubOnRsXF6dWq9ev\nX087C1g4rFFLJhQKMzIyGhoaCCHR0dElJSWTJ0+mHcp0mpqamEymWq0+e/asud1OBSwJ1qhlEolE\n8+fPj4mJaWhoCAwMPHv2rFAotKoOJYR4enpmZmbq9XoOh6PT6WjHAYuFNWqB3n333fT0dJ1O5+rq\nunXr1uTkZFtbK32+VKvVvr6+jY2NBw8eTE5Oph0HLBNq1ALJ5fKAgICVK1du3rx53LhxtONQ9sEH\nH8THx7u6uspkMvxrgDGgRi1TR0cHKqOfXq8PDw//4YcfsrOz+Xw+7ThggVCjYPlEIlFwcLCdnV1d\nXR2DwaAdByyNlb5kBlYlMDAwKSmpt7c3OzubdhawQFijYBVaW1uZTGZHR8c333wTFRVFOw5YFKxR\nsApubm7978Pn8XgajYZ2HLAoqFGwFjwej8FgSCSSsrIy2lnAouBQD1bk888/f+6555ycnGQymYuL\nC+04YCGwRsGKxMbGRkVFKRSKwsJC2lnAcmCNgnURi8UBAQE6nU4kEvn7+9OOA5YAaxSsi5+fX2pq\nal9fH5fLpZ0FLATWKFgdhULBYDDa29s/++yz2NhY2nFg2MMaBavj5OS0adMmQsi6det6enpox4Fh\nDzUK1igtLc3f318ulxcXF9POAsMeDvVgpU6fPh0ZGeno6FhfX+/u7k47DgxjWKNgpSIiImJjY5VK\nZV5eHu0sMLxhjYL1ksvlfn5+Go2murqazWbTjgPDFdYoWC9vb+/+zxfhcrnYEzBoWKNg1ZRKJZPJ\nvH379vvvv//qq6/SjgPDEtYoWDVHR8eioiJCSHZ2tkqloh0HhiXUKFi7FStWsNns5ubmHTt20M4C\nwxIO9QCkurp63rx59vb2YrHYy8uLdhwYZrBGAcicOXOWL1+uVqtzc3NpZ4HhB2sUgBBCmpqaWCyW\nSqX6/vvvw8PDaceB4QRrFIAQQjw9PbOysgghXC63r6+PdhwYTrBGAf6gVqv9/PwaGhr279+/atUq\n2nFg2ECNAvzH0aNHly9f7urqKpPJxo0bRzsODA841AP8x7Jly+bPn9/W1tb/ZlKAgcAaBfgvNTU1\nISEhDg4ON2/eHD9+PO04MAygRgH+qqysbNGiRd7e3rSDwPCAGgUAGBK8NgoAMCSoUQCAIUGNAgAM\nCWoUAGBIUKMAAEPyfy5p+qPwKm6OAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 14 + "output_type": "stream", + "text": [ + "RDKit ERROR: [02:54:18] non-ring atom 0 marked aromatic\n" + ], + "name": "stderr" } ] }, @@ -37839,10 +37866,10 @@ "metadata": { "id": "Tp5vzQj7kP2V", "colab_type": "code", - "outputId": "b166daf4-43bd-4f57-bd02-5eddf40e0bad", + "outputId": "b4222508-ab82-47e6-c58c-46557ae00ca1", "colab": { "base_uri": "https://localhost:8080/", - "height": 167 + "height": 34 } }, "source": [ @@ -37851,17 +37878,11 @@ "execution_count": 15, "outputs": [ { - "output_type": "execute_result", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAWEUlE\nQVR4nO3de3BU5f0G8CebZM/eLyAE6UgIgQSmFBVBTYeLDDggWrBWVKbUC9CCYG1hFIUEEqxa05uI\n2BB6GaEwtRRkUhSkQmNpajEF4oRKBJJapL+GW7L3y9nNZn9/bAwQbsnZs/vuxufzV3I22X0WmIfv\nOWffczKi0SiIiEgpjegARETpLUt0ALqyqqqqbdu2GQwGi8Wi1WotFoter9fpdDabTavVmkwmk8mk\n1WptNptOp9Pr9RaLJTMzU3Rqoi8j1miKqqur27x5c09/K1apOp3ObrfHvujy7dW2X/yt1WrVaLib\nQtRdGTw2mpqOHDlSV1cXDAZdLpcsy16v1+fzhUIhh8Mhy7Lf7/d4PLIsu93uQCAQDAadTqeKf5XX\nmHmLi4vz8vLUeiGiXoA12qvEKjUQCDgcji5fXPvbi7dfu5Hr6+u/9rWvJfNNEaU47tT3Knq9Xq/X\n2+32gQMHxvM815h5Bw0apFba1HT8+HFZlocOHarX60VnofTAaZQUCgQCHo+nf//+ooOobMKECX/7\n29/2798/fvx40VkoPfBMAvVYOByurKwsKCjYsmWL6Czq8/l8AAwGg+gglDa4U0890N7evn379uLi\n4tzc3B07dowZM0Z0IvX5/X4ARqNRdBBKG6xR6q69e/cuW7ZMkqTKyspJkyaJjpMonEapp1ijdH01\nNTXFxcWtra2rVq2aNWuW6DiJFatRTqPUfazRFPXKK68AuNqHN2PrmgwGgyRJiU5SVlb21ltvvfDC\nC7NmzcrIyOjyaHV1df/+/b/61a8mOkbSxHbqOY1S9/FMfYrKyck5e/Zsd36ycw2SggVLnV+Yzeas\nrCv/n9rS0mK1Wi9/9J///GdxcfF//vOfDRs23HXXXXG+3xQRiUSysrI0Gk1bW9vl/2cQXRGn0RS1\nfPny06dPd354MxQKuVyu2Ic3u6xrCgaDwWAw/lc0Go2SJNlsNkmSLl7LH5t5Y9vz8/Mfe+yxhoaG\n0tLSAwcOlJSUzJ0792r9m446R1F2KHUfp9G017kkqZvrl6643ePxtLW1Xfe1xowZM3r06KqqqiVL\nljz99NO97wPqZ86cGTBgQP/+/c+cOSM6C6WN3jNHfGl1rlyK83muMfPKsux0Ot95552PP/54xowZ\nJ06cMJvNqoRPNTy/RAqwRqlDrBn79u17tR8YPXr06NGjL/+BM2fOvPTSSw899NC4ceMSGzHxeH6J\nFOAqJuquu+++u0uHejye8vLykSNHyrI8bNgwUcFUxGmUFGCNkhI+n6+8vDw/P/+TTz6pra2trKzM\nyckRHUoFnEZJAdYo9UxbW9vatWuHDRtWX1//4Ycfbtq0qTddfpTTKCnAY6PUMxqNprGxcc+ePZdf\ndTQcDmdnZwtJpRZOo6QAp1HqGY1Gs3bt2i4dGolENm7cWFBQcPDgQVHBVMFplBTgNErx2rt37zPP\nPGM0Gt988810v+YTL+9ECrBGSbm9e/cuX75cluWVK1f2jkuW8PJOpABrlBRqbGxcsmRJWVnZAw88\n0GuWTvLYKCnAGiWFhg4dWl9ff3mB1tXV3XLLLWlarDw2SgrwFBMp16Urjxw5MnPmzG9+85unTp0S\nFSlOnEZJAdYoqeDkyZMLFiy4++67v/71r3/66afpe/dQTqOkAGuU4rVz586xY8fm5uY2NTU999xz\nOp1OdCLlOI2SAjw2SvGaNGnSsWPH4r/EVCrgNEoKcBqleJlMpi4d2tLS8sorr0QiEVGRFOM0Sgqw\nRklNHo/nhRdeGD58+KlTpwKBgOg4PcZplBRgjZJqfv/73w8bNqypqam2tvaNN94wmUyiE/UYp1FS\ngMdGSTVDhgzZt29fWt8llNMoKcAaJdXccccdoiPEi2vqSQHu1FNCRKPRrVu3Tps2LRwOi87SA1xT\nTwpwGiX17d69u7i4WKvVvvTSS2l0BdJoNBoIBDIyMnrfHU8poVijpL4DBw6UlpbOmDEjvVbWBwKB\n9vZ2vV6fmZkpOgulE96nnqjD+fPn+/Xr17dv3/Pnz4vOQumEx0Yp4Vwul+gI3cLT9KQMa5QS6Pjx\n44888siUKVNEB+kWfmiUlGGNUqKEw+EHHnjg1ltv/etf/yo6S7dwGiVleIqJEiU7O7u+vl6jSZv/\nqjmNkjJp80+c0lEadSg4jZJS6fSvnNKX2+2uqakRneI6OI2SMqxRSrjPPvusoKBgx44dooNcB6dR\nUobHRinh8vLy/v73v+fn54sOch2cRkkZTqOUDKnfoeA0SkqxRok68PJOpAxrlJLn4MGDGzZsEJ3i\nqnh5J1KGNUrJ07dv39zcXNEprorHRkkZnmKi5MnLy8vLyxOd4qp4bJSU4TRK1IHTKCnDaZSSLRwO\n/+Uvf3n//fclSbJYLHq9XqfT2Ww2SZKMRqPJZJIkyWq16nQ6vV5vtVqTthSK0ygpwxqlpIpGo/fd\nd19LS8uhQ4e6/1uxStXpdHa7PfZFl2+7s/26jZwS0+jhw1ixAh9+iEgEt96KsjJ0Xh/rkUfwwQc4\nffrCD995J9racPCgkKTUiTVKSbVp06Y///nPVqu1tLQ0Ozvb4/H4fL5QKORwOGRZ9vv9brc7FAq5\n3W6/3y/LstPpjEajwWAwGAwCaG5ujufV7Xa7Vqs1Go1ms1mr1Vqt1ljJWq1WSZIaGhoA7Nix49//\n/rckSQaDwWKxaLVai8ViMBgkSeocmdX5s7hcQwMmTsTgwaiogCRhzRpMm4b33kOaXGnwS4tXv6fk\naWlpGTFixLlz5zZt2vSd73yn+78YCASCwWAgEHA4HF2+uPa3F2+PNfK1X8hgMMRm0mszmUxardZm\ns8XmXIvFIknSshEjJrW2QpJgt0OrhdEIkwmSBKsVOh30elit0GphNsNg6PixLh56CO+8g8ZGDBwI\nAD4fCgqQk4PDhwFOo6mL0yglz5IlS86dOzdp0qQ5c+b06Bf1er1er7fb7QNj/aJINBp1Op2xVnW7\n3bIsezye2Mwbm4VXr17d0tIyf/58jUYTa16XyyXLstfr9fl8sdE4NjJ7vV4Ara2tFz//M8EgPvig\nZ5libWs2Y9Ag7N+P3bsxeTI636PRiAcfxNq1aG7GjTcqfuOUaKxRSpLq6urNmzfr9fpf/epXQm51\nl5GRYb98ALzIj3/8YwCrV6++bll7PB5Zlt1ud+ecGwqF8sJhPPooQiE4nZBl+P1wuxEKwe2G3w9Z\n7tju88Hr7fixUAihEBwOGAxobobXi8LCS15p+HAAaGzsqNFoFF7vhUfb2xX9SZDKWKOUDIFA4Lvf\n/W40Gi0rK0vZ9fXdP1NvNpvNZvMNN9wQ70sGgwgE4HYjMxOxgwldTnDFbvXceZzh7FmYzZf8wG23\nxZuB4sYapWQoKytramoaNWrUkiVLRGe5KgFn6nU66HQdB0ljBz0vHjYBxI4bdFZnnz6oqrrw6IIF\nyQhJ18MapYSrr69/9dVXNRrN+vXrs7OzRce5slAo1NbWptVqhSXMyYHViqNHL9l44gTwxa49gOxs\njBt34VGzGW1tycpHV8VVTJRY7e3tCxcuDIfDTz/9dFFRkeg4VyX+uiQZGbj3XlRX4+TJji2BAN5+\nG+PHo08fYamoG1ijlFhr1679xz/+MWjQoB/96Eeis1xLSlwlb9UqSBKmTsXmzdi+HdOnw+lEebnI\nSNQNrFFKoM8//3zVqlUAXn/9dZPJJDrOtYifRgEUFqKmBvn5WLQIjz6K9nbs24cUHuEphsdGKYG+\n//3vezyehx9+eMaMGaKzXEeqLKgfNQrvvnvlh956q+uWAwcSHYe6g9MoJcof/vCHP/3pT1ar9Re/\n+IXoLNeXEgvqKT2xRikhXC7X0qVLAfzsZz+LZ+lR0qTKNEppiDVKCfHss8/+73//mzBhwrx580Rn\n6RZOo6QYa5TUt3///l//+teSJK1fv17Iuk8FOI2SYqxRUpksywsXLoxGoytWrBgxYoToON3FaZQU\nY42Syl5++eWGhobCwsLnnntOdJYe4DRKirFGSU3Hjh0rLy/XaDSxnXrRcXqA0ygpxhol1bS3t8+f\nP1+W5e9973vjLl76nQ5Yo6QYa5RUs2HDhpqamgEDBsQu3JleuFNPirFGSR2nT59esWIFgHXr1tls\nNtFxeiwl1tRTemKNkjqeeuoph8Mxffr0b33rW6KzKJESa+opPbFGSQW7du3avn272Wxev3696CwK\ncaeeFGONUrw8Hs/ChQsBvPzyyzfddJPoOArxFBMpxhqleBUXF586der2229/8sknRWdRjtMoKcYa\npbjU1tb+8pe/zMrKqqyszMzMFB1HOU6jpBhrlJRra2tbsGBBJBJZtmzZLbfcIjpOXDiNkmKsUVLu\nJz/5yccffzx06NCSkhLRWeLFaZQUY42SQo2NjS+++GJGRkZFRYU+djv1dMZplBRjjZJCTz75ZCAQ\nePzxx6dMmSI6iwo4jZJiGdFoVHQGSj9vvvnmE088ccMNNxw9erRfv36i48QrEolkZWVlZma28bbv\n1HOcRqnHzp8/v2zZMgBr1qzpBR0KLmGi+LBGqcd++MMfnjt3burUqd/+9rdFZ1EH9+gpHqxR6pk9\ne/Zs2bLFYDC88cYborOohueXKB68T30Kc7sxfz70euh0sNmg1cJkgskErRY2GyQJBgMsFmi1sFhg\nMECSYLMhkfc+8vv9ixcvBrB69er8/PzEvVCS8fJOFA/WaApzufDHP/b4t7KzL27b1vz8h1tbLRaL\nVqu1WCwGg0GSJJvNJkmS0Wg0mUySJFmtVp1Op9frrVarJEkmk8loNGq12sufu7S0tKmpadSoUT/4\nwQ9UeIMpg8dGKR6s0dRw+DBWrMCHHyISwa23oqwMU6bAbsfWrfD5EArB4YAsw++Hx4NQCC4XAgEE\ng3C5IMvwei/8WDgMhwMOR+yJo8DeQ4cUJMrIyIi1rcFgePzxx1euXFlfX//aa69lZmb+9re/zc7O\nVvX9C8adeooHazQFNDRg4kQMHoyKCkgS1qzBtGl47z1MmYJZs3r8bJe2bUYo9L7P53K5ZFn2er0+\nn0+WZafTKcuy3+93u92hUMjtdvv9/s7tPp/P6/WGw2HHF13scDgikcjcuXPD4fDSpUtvu+02lf8E\nROMpJooHazQFlJYiEsGePRg4EADuuQcFBVi2DIcPK3k2SYIkwW6PfdcHUPbh+Pb2dpfLFQgEgsGg\nXq9/7bXXDh06NGjQoNWrVyt6vpTGaZTiwTP1okWj2L0bkyd3dCgAoxEPPoi6OjQ3C8yl0WjsdvvA\ngQOHDBkSDodLS0sBrFu3zmQyCUyVIJxGKR6sUdGam+H1orDwko3DhwNAY6OQRJd76qmnvF7v7Nmz\nv/GNb4jOkhCcRikerFHR/H4A6DIHxa70EXtItOrq6p07d9rt9ldffVV0lkThNErx4LFR0WL7yF7v\nJRtbWwHAbBaQ5zIWiyU3N3fw4ME5OTmisyQKa5TiwWlUtJwcWK04evSSjSdOAF/s2ovWt2/f5ubm\nmpqahoYG0VkShTv1FA9Oo6JlZODee7FtG06eRG4uAAQCePttjB+Pujq8/37HgiWjESYTJAlWK3Q6\n6PWwWqHVwmyG0YgrfVReLYMHD543b15FRUVpaenWrVsT90ICcRqleLBGU8CqVdi5E1OnoqQEej3W\nrYPTifJy7NyJ8vLuPond3rE81GyGJMFiia0irRo27H2Xy2QymUwmrVZrs9liC5YsFoskSWazObau\nyW63xz5pf8XnXrly5caNG7dt21ZbW3v77ber9sZTBqdRigdrNAUUFqKmBsuXY9EiRCIYMwb79qGo\nCIEALBY4nR2fqHe7EQrB7YbfD1nu2O7zwevtWLl0JUfvuOONjz7qfhaz2SxJksVi0ev1Op3OZrNp\ntdqKiorFixf/9Kc/LSsr27Vrl0pvO4VwTT3Fg5dt7hXa2+FyIRhEIACXC6EQPJ7Y8tDqQOBfLpff\n7/d4PLIsu93u2CfqnU5nKBTyer1erzcUCjmdzmAwGAgErvj0x48f79Onz5AhQ9xud3V19V133ZXc\nt5dw06dP371797vvvjt9+nTRWSj9cBrtFTSazmVLXUwCJvXkmdxutyzLHo8ntjzU4XDIsvyVr3zF\nYDAsXbq0rKyspKSkpqZGldSpgzv1FA9Oo9RdXq83Pz//7Nmzu3btuueee0THUdPYsWMPHjxYW1s7\nduxY0Vko/fADT9RdJpMpdu+Q559/vr29XXQcNXEapXiwRqkHFi9efNNNN9XX12/btk10FjXxA08U\nD+7UU89UVlYuXLiwoKDgk08+ycrqJcfWT548ef78+VGjRvWy66hScrBGqWfa2tpGjhx57Nix3/zm\nN3PnzhUdh0g81ij12JYtW+bMmTNo0KDjx49LkiQ6DpFgPDZKPTZ79uybb775888/r6ysFJ2FSDxO\no6REVVXV/fff369fv6amJnNqXImKSBROo6TEzJkzi4qKzp079/rrr4vOQiQYp1FSaP/+/RMnTrTZ\nbE1NTX369BEdh0gYTqOk0IQJEyZPnux0On/+85+LzkIkEqdRUu6jjz4qKioyGAxNjY05AwaIjkMk\nBmuU4lL6xBOPnTiRN2ZMxpo1orMQicEapfj861+4+WZkZeHTT5GXJzoNkQA8NkrxGTkSs2cjFMKL\nL4qOQiQGp1GK22efYfhwRCI4cgQjRohOQ5RsnEYpbnl5mDsXkQjKykRHIRKA0yipobkZQ4ciEMDB\ngxg9WnQaoqTiNEpquPFGLFqEaBQlJaKjECUbp1FSSUsLhgyB243qavS6e94RXQOnUVJJ375YsgQA\nB1L6suE0SurxepGfj7NnsWsXetc974iugdMoqcdkwrPPAsDzz6N33fOO6Bo4jZKqgkEMG4b//hdb\nt2LWLNFpiJKB0yipSqdDcTEAlJSgrU10GqJkYI2S2ubNw9ChOH4cv/ud6ChEycCdekqALVswZw5y\nc3HsGHjPO+rtOI1SAsyejZtvxsmT2LBBdBSihOM0SolRVYX770e/fmhqAu95R70ap1FKjJkzUVSE\nc+fAe95Rb8dplBJm/35MnAibDU1N4D3vqPfKEh2Aeq8JE3DffSgshIY7PdSbcRqlRIpGkZEhOgRR\nYnFMoERih9KXAGuUEuDwYUybBosFRiPGjcPevRceeuQRdLkV8513YsyYJAckUhFrlNTW0ICJE/F/\n/4eKCmzcCADTpl3SpES9C08xkdpKSxGJYM8eDBwIAPfcg4ICLFuGw4dFJyNKCE6jpKpoFLt3Y/Lk\njg4FYDTiwQdRV4fmZqHJiBKF0yipqrkZXi8KCy/ZOHw4ADQ24sYbASAahdd74VFemZTSHGuUVOX3\nA4DBcMlGvf7CQwDOnu26PPS225IQjShBWKOkKpMJwCXDJoDWVgAXqrNPH1RVXXh0wYLkRCNKENYo\nqSonB1Yrjh69ZOOJE8AXu/YAsrMxbtyFR81mXuCZ0hpPMZGqMjJw772orsbJkx1bAgG8/TbGj+ey\neuqtWKOktlWrIEmYOhWbN2P7dkyfDqcT5eWiYxElCmuU1FZYiJoa5Odj0SI8+ija27FvH4qKRMci\nSpT/B3YzNK9+5fqDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 15 + "output_type": "stream", + "text": [ + "RDKit ERROR: [02:54:18] non-ring atom 0 marked aromatic\n" + ], + "name": "stderr" } ] }, @@ -37870,10 +37891,10 @@ "metadata": { "id": "bgzEgQrikP2X", "colab_type": "code", - "outputId": "40dcba41-3ea2-4640-c54a-4c6b78204899", + "outputId": "af8d8715-ba2f-43e2-d224-e0eb3aced572", "colab": { "base_uri": "https://localhost:8080/", - "height": 167 + "height": 34 } }, "source": [ @@ -37882,17 +37903,11 @@ "execution_count": 16, "outputs": [ { - "output_type": "execute_result", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAS6UlE\nQVR4nO3da1RU5R4G8Ge4CyoXQfFGYnoyQhNzeYOTogSCg6CeQSvtclraMhOX62RWX8xP6qqWCCut\nc4qlVt4wYZzNHVYGKh6SLDuUijcuoig3FQWBmTkftrfqnFKZmXfvmef38dXDPKuDz9r7/e93tsZs\nNoOIiB6Vk+gARETqxholIuoR1igRUY+wRomIeoQ1qiYdHR2iIxDRb2k4qVcLs9kcHBzs7++v1WoX\nLFgwatQo0YmICGCNqsjp06dHjx5994I0NDQ0MTExMTFx3LhxGo1GbDYiR8YaVZP29vaioiJJkrKy\nsi5fviwvDh06NDY2VqvVxsTEuLm5iU1I5IBYo6pkNBrLysoyMjIyMzNra2vlRV9f36ioKK1Wm5iY\n2LdvX7EJiRwHa1T1KisrMzIyJEmqqKiQVzw8PCIiIrRabVJS0sCBA8XGI7J7rFH7cf78eb1eL0nS\ngQMHuru7ATg5OYWFhXEkRWRVrFE71NTUlJ2dLUlSTk7OjRs35MXhw4drtVqdThceHs6RFJEFsUbt\nGUdSRDbAGnUIHEkRWQ9r1LGYzeaKiorMzEy9Xl9ZWSkv9urVKyoqat2CBU899xwCAsQmJFId1qjj\nOnfu3P79+++OpM4OHRp84QLCwqDVYsECcCRF9GBYo4SGhoaSvDxdRgaKi3H32P6YMUhIQGIixo0T\nmo5I6VijdJ+bN1FcjIwMGAxobb29GBSEmTOh1SImBhxJEf0Oa5T+F6MRZWXIyMC+fairu73o64uo\nKGi1mDMHffoIzUekIKxR+jOVlcjIgCThzikpeHggIgJaLZKSwFNS5PBYo/TAzp3D/v2QJBw4gO5u\nAHBy4kiKiDVKD6+xETk5kCTk5ODOKSmEhCA+HlotwsPBU1LkSFij1AMcSRGxRskyHnAklZqK1FTU\n1CAoCCtWYPlygZGJLIU1ShZlNuPoUWRlQa/HnVNS6NULX32F+nokJ2P9ekRHIy8P776LtDQsWyY0\nLpEFsEbJau4fSZ08ialTERmJ7dtv/+mLL6KkBDU13EglteObQclqgoOxYgUKC3HxIjQa1NUhNvbe\nn8bFoa4O1dXi8hFZBmuUrM/fH5cuAUBg4L1F+YHTixfFRCKyHNYo2YS7OwCYTPdW5N0kJ/4Gkurx\nl5hsYsgQAKivv7ciX4fK60Rqxholm+jfH0FBkKR7K7m5GDECgweLy0RkGS6iA5DDeO89LF2KsWMR\nF4eCAuzcifR00ZmILIAPPJENpaUhJQW1tQgMxOTJ+Pxz9O4tOhNRT7FGSYSJE1FejqIizJghOgpR\nT3FvlESYMgUADh8WnYPIAlijJMLkyQBQViY6B5EF8KaeRLhwAUOGwMcHTU18dJTUjr/BJMLgwRgy\nBK2tOHlSdBSinmKNkiDyfT23R0n9WKMkCLdHyV6wRkkQeVjPGiX144iJBOnqgrc3OjrQ2Ag/P9Fp\niB4dr0ZJEFdXjBsHsxnl5aKjEPUIa5TE4X092QXWKInDYT3ZBe6NkjgNDQgMRJ8+aGmBs7PoNESP\niFejJM6AAQgOxvXr994hSqRCrFESivf1pH6sURKKD+GT+rFGSSgO60n9OGIiobq74euLGzfQ0ICA\nANFpiB4Fr0ZJKBcXjB8PsxlHjoiOQvSIWKMkGu/rSeVYoyQah/WkctwbJdGamhAQAA8PXL0KV1fR\naYgeGq9GSbR+/TByJNrbcfy46ChEj4I1SgrA+3pSM9YoKQAfwic1Y42SAnBYT2rGERMpgMkEPz9c\nvYq6OgweLDoN0cPh1SgpgJMTJkwAgH//W3QUoofGGiVl4H09qRZrlJSBw3pSLdYoKcPEid1BQWdc\nXW/duiU6CtHDYY2SMvj4jO3TZ8S33x47dkx0FKKHwxolpZg8eTKAMm6PktqwRkkpWKOkUqxRUoop\nU6YAOHTokOggjqWqqkp0BNVjjZJSPPHEE/7+/vX19TU1NaKzOASz2fz++++HhoYWFBSIzqJurFFS\nCo1GM2HCBPC+3iaMRuPixYvXrl0LoLW1VXQcdWONkoJwe9Q2Ojs7n3/++c8//9zT0zMrKyspKUl0\nInVzER2A6B65Rg/zIXxramtrmzdvXkFBga+vr8FgCA8PF51I9fjVJKQgN27c8PHx0Wg0ra2tnp6e\nouPYoebm5lmzZh05ciQwMDAvL+/pp58Wncge8KaeFMTLyys0NLSrq6uiokJ0FjtUU1MzZcqUI0eO\nBAcHl5aWskMthTVKysLtUSv55ZdfIiIiTp48GRoaevDgwREjRohOZD9Yo6QsrFFrOHr06NSpU2tr\na5999tmDBw8OGjRIdCK7wholZeGUyeK++eab6dOnX7lyJT4+Pi8vz9vbW3Qie8MaJWUZMWLEgAED\nLl++fPbsWdFZ7EFWVlZcXNz169cXLlz49ddf9+rVS3QiO8QaJcWZNGkSeEFqCVu3btXpdB0dHcnJ\nydu2bXN1dRWdyD6xRklxuD1qERs2bHj11VeNRuOaNWs2bdrk5MR/7NbCx+9JcVijPWQ2m99+++0P\nP/zQ2dl58+bNS5YsEZ3IzvHxe1Kc9vZ2Hx8fo9HY2trau3dv0XFUxmg0LlmyJD093c3N7csvv9Tp\ndKIT2T9e55Pi9OrVa8yYMUaj8bvvvhOdRWVu3bqVlJSUnp7u5eVlMBjYobbBGiUlkr97lFOmh9La\n2vrcc8/t27fPz8+vqKgoOjpadCJHwRolJeL26MNqaGiIjIwsLS0dNGjQt99+Kz/tQLbBvVFSourq\n6mHDhvXr1+/KlSsajUZ0HKU7f/58dHR0VVXVqFGjCgoKhg4dKjqRY+HVKCnRY489Nnjw4KamplOn\nTonOonSVlZURERFVVVXjx48vKSlhh9oea5QUSr4t5X39HysvL586deqFCxciIyOLi4sDAgJEJ3JE\nrFFSKG6P/qmioqIZM2Y0NTUlJibm5OT07dtXdCIHxRolheKw/o/t2LEjLi6ura3tlVdeycjI8PDw\nEJ3IcXHERAp169YtHx+fzs7OxsZGX19f0XGU5eOPP05OTjaZTKtXr163bh2ncGLxapQUyt3dPSws\nzGQy8SH839iwYcObb75pNps/+OCD9evXs0OFY42ScnF79DfMZvPKlSvfeecdZ2fnzz777K233hKd\niAB+NQkpGb/C+X6dnZ0vv/zyrl273N3dd+zYMXfuXNGJ6DZejZJyeXt7u7q6Hjx4MCIiYtOmTXV1\ndaITCXPjxo2EhIRdu3b5+PgUFhayQxWFIyZSqJKSktmzZ1+9etXJyclkMgHQaDTjx49PTExMSEh4\n6qmnRAe0nZaWFq1We/jw4QEDBuTl5Y0dO1Z0IvoV1igpkSRJSUlJ7e3tc+bM2bx5c2lpqcFg0Ov1\n165dk/9CcHBwfHx8fHz8tGnTXFzseW/q4sWLM2fOPH78+LBhwwoKCkaOHCk6Ef2OmUhhvvjiC/l1\nF0uXLjUajXfX29vbCwsLk5OTBw4cePcX2N/ff9GiRXv27GlraxOY2UrOnDnz+OOPAwgJCamrqxMd\nh/431igpS2pqqvy6i9WrV/+/v2M0Go8ePbpmzZpRo0bd7VNPT0+tVrtt27aWlhZbBraeioqK/v37\nA5gwYUJjY6PoOPR/sUZJQdavXw9Ao9F89NFHD/g/OXPmTEpKSnh4+N3HJ52dncPDw1NSUmpra62a\n1qoOHDggvwk5Kirq+vXrouPQH2GNkiJ0d3e//vrrAFxcXNLT0x/hJ9TU1Hz66adardbNze3uJWpI\nSMiaNWuOHj1q8cBWtX//fvlNyC+88EJnZ6foOPQnWKMknvzqC/nGPDs7u4c/rbm5ec+ePYsWLbr/\nqzqCg4OTk5MLCwu7urosktl6tm/fLg/Nli1bdv/WMCkWa5QEa2tri4mJAeDj41NaWmrBn6zGkVRK\nSoq8O/EHW8OkNKxREqmpqUk+qhQYGPjDDz9Y6VNUMZIymUxr1qyRt4Y3btwoOg49BNYoCXPhwoXR\no0fLd9xVVVW2+VBljqS6u7sXL14MwM3NbefOnaJi0KPh4/ckxokTJ2JiYmpqakJDQ/Pz8wcNGmTj\nALW1tbm5uQaDoaCgoLOzU14MCQnR6XTx8fHPPPOMzZLcunVr4cKFe/fu9fT03Lt3b2xsrM0+miyC\nNUoCVFRUxMbGXrlyZdKkSdnZ2X5+fgLDtLS0FBUViTol1dbWNnfu3MLCQl9fX4PBEB4ebr3PIith\njZKtHThwICEh4dq1a1qtds+ePfKTPUrQ0dFx8OBBg8GQkZFx8eJFedHf3z82NjY+Pj4uLs7Ly8uy\nn9jc3Dxr1qwjR44MHDgwLy9vzJgxlv35ZBusUbIpvV6/YMGCjo6OhQsXpqeny4c+lcZkMh07dsxg\nMOzevfvEiRPyoqen5/Tp03U63ezZs318fHr+KdXV1TExMSdPnhw+fHhBQYF86JNUSezWLDmUrVu3\nyjfIy5cvV8sTkVYaSf3888/ym5DHjRvX0NBgwcBke6xRshG1PxFpwVNS5eXl/v7+AKZOndra2mql\nwGQzrFGyOpPJtGrVKvk67pNPPhEdp6d6eEqquLi4T58+AOLj42/evGmbzGRVrFGyru7u7tdeew2A\nm5vb7t27RcexpEc4JZWZmSm/CXnRokXKP5ZKD4g1SlbU0dExb948AF5eXnl5eaLjWMsDnpLasmWL\n/B2AycnJatkapgfBST1ZS1tb25w5c4qKivz8/CRJkg992r2ffvpJr9dnZWV9//338j8uV1fXadOm\neXp66vV6jUazbt261atXi45JlsQaJavobmiYEhf33fffDx06ND8//8knnxSdyNZ+c0oqODi4pqZm\ny5Yt8qFPsiesUbKC8+cRE3Omf//ZTU25eXlBQUGiA4nU3NycnZ3t6+sbFBTEB+ztEmuULO0//0FM\nDOrrMX58R06OR0CA6EBE1sX31JNFlZcjMhL19Zg2DcXF7FByBKxRspziYkRFobERCQnIzcV9j1US\n2THWaE99+OGH5eXl3BvBzp2IjcX163j5ZezdCw8P0YGIbIR7oz1y+vTpkSNHAggICJg5c6ZOp4uJ\nibn/sKCj2LwZy5fDZEJyMlJScOf4OZEjYI32yPnz5zdu3KjX66urq+UVb2/vuLi4xMTE2NhY+cyf\n/duwAe+8A40GGzZg1SrRaYhsjTVqGZWVlZIkGQyGw4cPy/9JXVxcJk6cqNPpdDqd7b/a3UbMZvzj\nH9i4Ec7O+PRTvPaa6EBEArBGLay6ujo/P99gMOTn53d1dQFwcnIKCwvTarVJSUkhISGiA1pOdzcW\nL8bWrXB3x1dfYd480YGIxGCNWktzc7MkSZIk5ebmtrW1yYvDhw/XarU6ne7+769UpZs38be/ITcX\nvXsjMxNRUaIDEQnDGrW69vb2oqIiSZL0en1DQ4O8qO6RVEsL4uNx6BAGDEBuLsLCRAciEok1ajtG\no7GsrEySpMzMzFOnTsmLXl5ekZGROp0uISHB29tbbMIHcukSZs7Ejz9i2DDk5+MvfxEdiEgw1qgY\nah1JnTuH6GicPo2QEOTnY8gQ0YGIxGONCvYHI6n58+cr64uR7h6WnzAB2dnw9xcdiEgRWKNK0djY\naDAYsrKyCgsL29vb5cWfo6OffOYZzJmD8eMFP9NeUoLZs3H1KmbMQGYmHOSRWKIHwBpVnJs3b+bn\n52dlZf3yww/lx4/fXg0IwMyZ0OkQEwPbj6QMBsyfj/Z2PP88tm2DIt+KTCQKa1TBjEaUlUGSsG8f\nqqpuL3p5ITISOh0SEmCbkdSXX+Lvf0dXF954A2lpcOL3MBD9CmtUJSorIUkwGHD4MOT/y1xcMHEi\ndDrodLDeSCo1FStXwmTC6tVYv95an0KkZqxRtamuRn4+DAbk56OrCwCcnBAWBq0W8+fDgiMpsxlr\n12LtWmg0+OgjrFxpsZ9MZF9Yo6rV3AxJgiQhNxd3Tklh+HBotdDpEB7eo5GU0Yg33sA//wkXF/zr\nX3jlFUskJrJPrFH1a29HUREkCXo97pyS6tFIqrMTCxciIwOenti7F7GxFo9MZE9Yo3bEUiMpvR5z\n5sDXF5IEx3grMlFPsEbt1O9HUu7u+Otfb9/y3z+SSk1FaipqahAUhBUrsHw5AKSlITISoaFiwhOp\nCmvU3p09i6ws6PU4dAhGIwA4OWHSJCQm4qWXsHcvkpOxfj2io5GXh3ffRVoali0THZpITVijDqOp\nCdnZvxpJ/fgjZs1CZCS2b7/9d158ESUlqKnhW0CIHhwfpXYY/frhpZewZw8uXcLXX2PFCvTpg7q6\nX02Q4uJQV4c7L0QhogfBGnU8Xl6YOxcpKbh0CQACA+/90cCBAHDxophgROrEGnVg7u4AYDLdW5F3\neHjck+hh8B+MA5O/LbS+/t6KfB3KbxElehisUQfWvz+CgiBJ91ZyczFiBAYPFpeJSH1cRAcgod57\nD0uXYuxYxMWhoAA7dyI9XXQmIpXhA08OLy0NKSmorcVjj2HVKixZIjoQkcqwRomIeuS/9aLq0NyP\nIX8AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 16 + "output_type": "stream", + "text": [ + "RDKit ERROR: [02:54:18] non-ring atom 0 marked aromatic\n" + ], + "name": "stderr" } ] }, @@ -37901,10 +37916,10 @@ "metadata": { "id": "UStW3HMakP2c", "colab_type": "code", - "outputId": "4ae56cdc-40d8-4488-ced7-476ef0f0318b", + "outputId": "7539acf8-29b7-42b4-9d02-532d5afa7d4d", "colab": { "base_uri": "https://localhost:8080/", - "height": 34 + "height": 167 } }, "source": [ @@ -37913,11 +37928,17 @@ "execution_count": 17, "outputs": [ { - "output_type": "stream", - "text": [ - "RDKit ERROR: [04:14:09] non-ring atom 5 marked aromatic\n" - ], - "name": "stderr" + "output_type": "execute_result", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAARzUlEQVR4nO3da1BUZ4IG4LebpoEGBUFEQBSNSAhqYikao8agZrQMWzU/ouWUASuTrJvdROIYXUhIgqaii6IDuRoyu0m1psYqY+3uqKgzRCVrEm8NxAsYwOAFFFouLXe66e5vfxxCIuL1QB8O/T7FDzzfofvVsl7O6fOd72iEECAiooelVToAEZG6sUaJiGRhjRIRycIaJSKShTVKRCQLa5SISBbWKBGRLKxRIiJZWKNERLKwRsntFRRgxQqMGQNvbwQFYfZsfPwx7HalY5FqaHgzKLm1rCysXQuns+f2adPw978jMFCJTKQyPBolN3boENasgdOJOXNw6hRsNpjN2LQJOh1MJvzhD0rnI3Xg0Si5sYkTUVyM6GgUFsJg+HX7tm1YuxYADh7EokVKpSO14NEouSuTCcXFAJCSckuHAli1CsHBAGA0KhCM1IY1Su7q2LGubxYv7jmk1+PZZwHgu+9cGonUiTVK7urCBQAIDERISC+jsbEAUFWFpiaXpiIVYo2Su2poAIDhw3sf7d5usbgoD6kWa5TcVUcHAHh59T7q7d31TXu7i/KQarFGyV1Jl5WkMr1d93Y/PxflIdVijZK7kq7Fm829j1ZXA4BWi6Ag10UidWKNkruSLiI1NaGyspfRkhIAiIqCj49LU5EKsUbJXcXHd32Tm9tzyGbDkSO37EN0Z6xRclcxMZg6FQAyM9HScstQTg7q6gDgxRcVCEZqwxolN5aZCY0GFRVYtAgFBXA6YbF0LVYCYNkyTJ+udERSAd5TT+5t+3asWgWHAwC02l+Xepo7F7m58PVVMBqpBWuU3F5REbKzkZ+Pmhr4+mLSJLzwAl56CVqeq9F9YY2Sm8nPx5tvIj4emzbd1/5LlqCqCnv2IDy8n5ORWumUDkDkWvX1OHECYWH3u39hISoq7jhLn4iXmIiIZGKNEhHJwholIpKFNUpEJAtrlIhIFtYoEZEsrFEiIllYo0REsrBGiYhkYY0SEcnCGiUikoU1SkQkC2uUiEgW1igRkSysUSIiWVijRESysEaJiGRhjRIRycIaJSKShTVKRCQLa5SISBbWKBGRLKxRIiJZWKNERLKwRomIZGGNEhHJwholIpKFNUpEJAtrlIhIFtYoEZEsrFEiIll0SgcgcqkGvf6niRODgoOj72//wnHjOgyGqVqtV//mIhXj0Si5l6M226zz59+qrb3P/ZdUVMw6f77K6ezXVKRqrFEiIllYo0REsrBGiYhkYY0SEcnCGiUikoU1SkQkC2uUiEgW1igRkSysUSIiWVijRESysEaJiGRhjRIRycIaJSKShTVKRCQLa5SISBbWKBGRLKxRIiJZWKNERLKwRomIZGGNEhHJwholIpKFNUpEJAtrlIhIFtYoEZEsrFEiIllYo0REsuiUDqBuhYXeQlgjIrJGjFh925BOCMfo0duDg1/p3uhwNNfVfdbYeNBmu9LZeR3QeHqO9PV9Mjj4X/385rg2OxH1Ddao61itFWVl82y2KwA8PPz1+tF2e4PVeslqvdTQsCs8/D9GjkxVOiMRPTDWqOtcufKyzXbF0zNkzJi/+Pv/k7Sxo6OssvLVpqZvrl17y99/sY/PZGVDEtGD4mejLmK3NzQ3HwUQHr6lu0MBeHtPeOSR/9XpggFRW5ujXEAiekg8GnURh8MifePj81iPIa3Wd9y43RqNJw9FidSINeoien2ERqMTwn7z5n6DYVqP0SFDnlEiFP1q//79kZGR7e3tcXFxSmchlWGNuohGox8+/J9ra7dXV2+w2a4GB/+Lr+90QKN0Lrczc+bMPXv2hIeHd28pLS1ds2bNgQMHJkyYUF5e/vzzz2/bti0iIkIa/fTTT1taWkaOHKlQXlIBjRBC6QwqJk14ussOv53wJIT16tV/q6v7EhAAPDyG+fnNHjp0XkDA7/X6SBekpR4aGhrS09M/++wzu90eGBgYFxeXn59vtVqHDBmSlpa2evVqLy8vpTOSCvASk+toNF5jxvxXbOyF0NA0g2GKw9HY2LivsvJP586NLS9f2N5+RumAbsRut3/++eePPvroxx9/7HQ6ExMTf/rpp0OHDpWVlSUmJjY3N6empkZFRe3YsUPppKQGgmQoKPAymVBTk+lwtPf4KijwMJlw48b2O/2s3d5gsfxPRcXywkKDyYTCQt/m5v8TQtjtTS78G7ijw4cPT57cdTUvPj7+zJkzPXY4cuTI3Xcg+i0ejfYBjUan1Xr3+LrnT3l4DAsI+P3YsV9NnFjm7R3jdLZevfqqENYLF6ZWVCyVZulT37p48eLSpUvnz59/9uzZ0aNHG43G3zZmt/j4+KKiIqPRGBwcfPTo0SlTpiQlJdXW1iqSmQY+1qjyPD3Dw8M3AmhvP9fY+I/OzkqL5evi4tjq6vedznal0w0Sra2t69evnzRp0tdff+3r65uenl5aWpqUlHSn/bVabVJSUmlpaUpKik6n27lzZ3R09ObNm202mytjkyqwRl2kuvq98vKFtbWf9Drq6dl1Idjbe0JsbHlQUKLT2Xb9+jvFxRPq63dIl6To4QghduzYMX78+A0bNlit1sTExIsXL65fv97b+95nDMOGDcvIyDh79uzixYstFktqaurkyZMPHDjggtikIqxRF2ltPdHU9A+zeVv3PPzfslj+G4BW66PXj9brR0VG7pgw4ajB8ITNVnX58oqysvi2th9dHnkwOH369KxZs1asWFFTUxMXF/f999/v2LHjQWcvRUdH5+bm5uXlxcTElJaWPvfcc88++2xJSUk/ZSbVYY26SGjouxqNh9V6qbT0mcbGfUJ0Sttttqpr1940m7cCCAp6Uav1kbYPGTI3JqYgMtLo6RnS3PzthQtTL19O6uw0K/YXUJtr164lJSXNmDHj+PHjYWFhRqPx5MmTM2fOfOgXXLBgwZkzZ7Kzs/39/b/55psnnnji9ddfb2xs7MPMpFKcNyrLAy2U19Dw1eXLL0vzTDUavU43zOFo6v70099/8bhxe7prtJvDcbOmJsNszhbCqtX6hYS8ERr6pkbD+Yx31N7e/uGHH27cuLG5udnHxyc5OTktLW3IkCF99fr19fXvvffeJ5984nA4goKC3nnnnddee83Dw6OvXp9Uh0ejrhMY+MLEiT+NHPnvBsM0rdZgt9cBGi+vRwIDl40fv2/8+NzbOxSAh0dAeHhGbOw5f/8Ep7OlunpDcfEki+Vr1+dXhX379sXGxqampjY3NyckJBQXF2dkZPRhhwIICgr64IMPTp06NWfOnPr6+tWrV0+fPv3YsWN9+BakMkrPuKIH0NiYV1wcazLBZEJZ2YK2tnNKJxpACgsLn376ael/9ZQpU7799lsXvOnevXsjIyOlN01ISLh06ZIL3pQGGtaoyjidttranB9/HG4yoaDA8/LllZ2dtUqHUlhdXV1ycrJ0Wh0UFJSdnW2321327q2trRkZGX5+fgAMBkNKSkpzc7PL3p0GAtaoKnV21l+9mizdKPXjj4Fmc7bT6briGDhsNpt0zQeAp6dncnLyzZs3FUlSVVWVmJio0WgAhIeHG41Gp9OpSBJyPdaoirW3l5SVLZTO8c+fj2lsPKR0IpfKy8uLjY2VTqgXLFhw/vx5pROJkydPPvnkk1Kk6dOnHz9+XOlE5AqsUdW7eXPvuXNjpTItL0/o6PhZ6UT9Tpq8KbXVhAkT9u/fr3SiXzkcDqPRGBISAkCr1SYmJlZXVysdivoXa3QwcDqtZnN2UdEQkwkFBfqrV5MH6/omFoslJSVFr9cDCAgIyMjIsFqtSofqxc2bN9944w0pp7+/f9727WJA5qQ+wXmjg0dn5/Xr1zfU1f0n4PT0DAsLSx8+/OVBM6fN6XR+9dVX69atu3HjhlarXb58+datW0eMGKF0rrspLy9PS0s7+Le/1YeF6XU6bNqEJUuUDkV9jzU62LS1mSorX29p+QGAwTAtIuIDP7+nlA4lV35+/urVq8+cOQPgmWeeyc7Ofvzxx5UOdb8uHzkS+dpruHABABYuRFYWYmKUDkV9iTU6KAmLZU9V1Vqb7SqgGTbs+VGjtur1o5VO9TAqKyvT0tJ27twJICIi4v3337/LskwDl92OL75AWhrq6qDT4Y9/xMaNGD5c6VjUN1ijg5bT2VJdvdFszpLuIg0NfWvEiD/dz0KoA0RbW9uWLVs2b97c0dFhMBjWrVuXmpp6P8syDVwNDdiwAZ9+CrsdgYF49128+ip0fB6a+in70Sz1N6v16qVLiSYTiorCJk2KMhqNSie6N6fTuXv37tGjRwPQaDRLliy5cuWK0qH6zoULYtEiAQhAPPqoOHhQ6UAkF2vULTQ1Hd627XnpF+e8efMG8lMxTp8+/dRTXR/mTps27bvvvlM6Uf/Yu1eMG9dVpgkJ4ufBP01tEGONugtpPqN0aVuaz2g2m5UOdYtr166tXLlSq9UCCAsLy8nJcTgcSofqT1aryM4WQ4cKQOj1IjlZNDYqnYkeBmvUvQzMeZdWqzU7O1tah0mv1ycnJze6T6Fcvy5WrhRarQBEaKjIyRGD+5fHYMQadUcD6i6gvXv3jhs3TgqTkJDws3ue3ppMYtasrnP8qVPFsWNKB6IHwBp1X3l5eY899pjUX4rck15SUrJw4UIpQExMzKFD7rUmQE9Op9i9W4wZIwCh0YglS8Tly0pnovvCGnVrSq2QVF9f3720XWBgoIuXthvQWltFerrw9haAMBhEerpoa1M6E90Da5Rcul6nzWbLyckZPnw4AJ1Ot3Llytpad18vtReVlSIxUWg0AhCjRgmjUXDZvQGMNUpdXLB6fF5e3sSJE6W3mD9//rlzXL3/rvLzxeOPd31gOneuKCpSOhD1jjVKt9i7d+/YsWO7L/hUVFT0ycuWlZUt+WVVjqioqN27d/fJyw5+DocwGkVIiACEVisSE0VNjdKZqCfWKPXU1tbW/Rg4Hx+flJSUpqaHX3avubk5PT3dy8sLgJ+fX3p6ekdHRx+mdQsWi0hJEV5eAhABASIjQ/DfcCBhjVLvfvtUDOk57w/6VIzbFzCu4ZGUHKWlIiGh6xw/KkrwiH7AYI3S3Zw6dWrmzJnSyXhcXNwPP/xwnz944sSJGTNmSD84Y8aMEydO9GtON5KbK6Kju8p08WJx/brSgYg1SvfidDqNRuPIkSOlhULu+VSMysrK7sPYUaNG8eFufc9mE9nZIiBAhIeLlhal0xBXv6f709rampmZKS1b5+vru3bt2tuXrZOWttuyZUt7e7vBYFi1atXbb78tPXmY+t6NG/j5Z/xyrgAABQX48EPk58Nshq8vYmKwbBleeaWXtfjWr0dNza9/XLoU8+a5IvNgpXSPk5qUl5d3X3CPiIjoXnZPWtpuzJgx+GVpu8u8A8fF/vznrhvze3xNmybq63vu3P2xgPSVlaVE4sGDNUoP7PDhw5MnT5bKND4+fteuXbNnz5b+OHXq1GO8H9z1Dh7sKsQ5c8SpU8JmE2az2LRJ6HQCEL/7ndL5BjnWKD2Mzs7Ojz76KDAwEMDQoUMBhIaGfvnll4N8absBKzZWACI6WrS23rJ969aueuXi0P2Jn43Sw2toaEhPT4+LiyspKUlLS5OmmpKrmUyIiwOAL77Aiy/eMmSzYdQo1NZi2TLs2qVIOnfAGiVSuawsrFkDADU1CAnpObp8Of76V4wahcpK10dzE4PkIeZE7kt6dHNgYC8dCiA2FgCqqtDU5NJU7oQ1SqRyDQ0A7vi45u7tFouL8rgf1iiRynV0AICXV++j3XN729tdlMf9sEaJVM5gAH4p09t1b+d9EP2GNUqkcsHBAGA29z5aXQ0AWi2CglwXyc2wRolUTrqI1NTU+7X4khIAiIqCj49LU7kT1iiRysXHd32Tm9tzyGbDkSO37EP9gDVKpHIxMZg6FQAyM9HScstQTg7q6gD0nJZPfYo1SqR+mZnQaFBRgUWLUFAApxMWC7KysHYtACxbhunTlY44mPEuJqJBYft2rFoFhwMAtFo4nV3b585Fbi58fRWMNuixRokGi6IiZGcjPx81NfD1xaRJeOEFvPQStDzp7F+sUSIiWfhriohIFtYoEZEsrFEiIln+H+Vn/38da/iXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 } ] }, @@ -37926,7 +37947,7 @@ "metadata": { "id": "z5o3gkGxkP2f", "colab_type": "code", - "outputId": "9ad1bc04-8fd4-47ce-ac0a-7e200e9ab9f5", + "outputId": "eea5235d-48b4-4c76-ac8a-12ae770c57cb", "colab": { "base_uri": "https://localhost:8080/", "height": 167 @@ -37940,9 +37961,9 @@ { "output_type": "execute_result", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAPvUlE\nQVR4nO3da1BTdxoG8BeMlUUUEVfqDaxKUBC5CKho3Fm8MdPKoq0OICNSbdmqY3LEcBMvqIgVCql1\nndVatZ2qa2db63ZnZKZVy04VHBWwIgnBy65XZEUExAiEZD+4U2d37ZaQy3uSPL/xi3x6Jhkenn9O\nkuNiNBoJAAB6y5U7AACAfUONAgCYBTUKAGAW1CgAgFkk3AHsm16vv3r1KncKGxk8ePCoUaO4UwCI\njguu1JujoaFh2LBh3ClsJD4+PjY2Ni0tjTsIWExnZ2dJScmqVas8PDy4s9gx1KhZmpqaYmJiuFPY\nQnd3d319vV6vv3DhQnh4OHccsIyioiKlUhkTE3Pq1CnuLHYMNQo9pVQqi4qKoqOjf/jhBxcXF+44\nYK7GxkapVNrS0nLy5MnY2FjuOHYMl5igpzZu3Dhs2LBz58598cUX3FnAArKzs1taWuLi4tChZsIa\nBRPs37//nXfeGTlypEaj6d+/P3cc6L2qqqqIiAiJRHLlyhWpVModx75hjYIJ3n777YiIiDt37hQV\nFXFnAbMoFAqDwSCXy9Gh5sMaBdOcO3duxowZbm5uarXaz8+POw70xtGjR5OSkoYOHarVaj09Pbnj\n2D2sUTBNdHT04sWLdTpddnY2dxbojZ+eu+3bt6NDLQJrFEx2586dgIAAnU5XVlYmk8m444BpNm/e\nnJeXFxYWdvHiRVdXDCkLwIMIJhs5cuS6deuMRqNcLjcYDNxxwAQ/va6tUqnQoZaCxxF6Iysry8/P\nr6qq6tChQ9xZwARKpbK9vT0hIWHmzJncWRwHDvXQS0eOHFmyZAkuU9gRXB60EqxR6KXExESZTNbY\n2Lh9+3buLPDLDAaDQqEwGo0ZGRnoUMvCGoXew1u47cgnn3yyYsUKfHTCGrBGoffCwsJSUlI6Ozsz\nMjK4s8D/09bWtmHDBiIqLCxEh1oc1iiY5cGDBwEBAS0tLaWlpfPmzeOOAy+XkZFRWFg4bdq0s2fP\n4mtlLA5rFMzi4+Pz/L3cgiB0dXVxx4GXuH79+q5du1xdXT/88EN0qDWgRsFcgiD4+/ur1eq9e/dy\nZ4GXEASho6MjNTU1MjKSO4tjwqEeLODrr79esGCBl5eXVqsdMmQIdxx44dSpU7Nnzx4wYEBdXZ3z\n3KnBxrBGwQLi4+PnzZvX3Nycl5fHnQVe0Ov1giAQUW5uLjrUerBGwTJqa2tDQ0MNBkNVVVVwcDB3\nHCAi2rVrl1wuHzt27NWrV/v168cdx2FhjYJlBAYGpqWldXd3KxQK7ixARPTo0aMtW7YQUXFxMTrU\nqlCjYDFbtmzx9vY+ffr0iRMnuLMAbdiwoampadasWXFxcdxZHBwO9WBJH3300Zo1a8aMGVNbW4sF\nxKi2tjYkJMRoNOI1FhvAGgVLWrlyZXBw8I0bN1QqFXcWpyYIgl6vf/50cGdxfFijYGGnT5+eNWsW\n3mHD6Pjx4wsXLvTy8qqvr/f29uaO4/iwRsHCYmJi4uLi2tracnNzubM4o87OzszMTCLaunUrOtQ2\nsEbB8q5fvx4UFNTV1VVeXh4VFcUdx7ns2LEjOzs7MDDw8uXLEomEO45TwBoFyxs7duzz+4s8/4JL\n7jhO5MGDBwUFBURUUlKCDrUZ1ChYxfOPzZSXlx89epQ7ixPJyspqbW2Nj4+fO3cudxYngkM9WMuB\nAweWL18+YsSIuro6fMelDVRWVkZGRkokkpqaGn9/f+44TgRrFKxl2bJlkydP7urq3ru3jjuL4/vp\nRq1r165Fh9oY1ihYUUXFtblzh+r1AzUa8vXlTuPQDh8+nJyc7OPjo9VqBw4cyB3HuWCNghVNnTru\njTcG6nSEm4xYlU6ny8nJIaIdO3agQ20PNQrWtXMn9e9Px45RWRl3FMdVUFBw69at8PDwpUuXcmdx\nRqhRsK6RI0mpJCJSKKi7mzuNI7p9+/YHH3zg4uKiUqlcXfEbzQAPOlhdRgb5+VF1NR08yB3FEaWn\npz99+jQpKUkmk3FncVK4xAS28Kc/UWIiDR1KWi15enKncSBnz56VyWRubm4ajcYXV/GYYI2CLSQk\n0MyZ1NhI27ZxR3EgP31OLDs7Gx3KCGsUbKSqiiIjqU8f+vFHCgjgTuMQ9u3bl5aWNmrUKI1G4+7u\nzh3HeWGNgo2EhVFqKnV20rp13FEcQmtr66ZNm4ioqKgIHcoLNQq2k59Pnp70179SaSl3FPuXl5fX\n0NAwffr0RYsWcWdxdjjUg00VFlJGBk2YQJcvU9++3Gns1rVr1yZOnNjV1XX+/PmIiAjuOM4OaxRs\nSi4nqZTUatqzhzuKPVMoFB0dHcuXL0eHigHWKNjaN99QXBx5eZFWS0OGcKexQ999992cOXMGDBig\n1WpfffVV7jiANQo2N38+xcZSczNt3MgdxQ7p9XqFQkFEmzZtQoeKBNYoMFCrKSSEDAaqrKRJk7jT\n2BWVSiUIwrhx42pqanALa5HAGgUGEybQe+9RdzcpFNxR7MqjR4+2bdtGRCqVCh0qHqhR4LF5Mw0Z\nQmfO0FdfcUexH+vXr29qapo9e/brr7/OnQVewKEe2OzZQ6tW0WuvUW0tublxpxG9q1evhoaGElFV\nVdXEiRO548ALWKPAJi2NJk2imzeppIQ7ij0QBEGv169evRodKjZYo8DpzBmKiSEPD6qro+HDudOI\n2JdffvnWW28NHjxYq9V6e3tzx4H/gDUKnH77W1qwgJ48oZwc7igi1tHRkZWVRUT5+fnoUBHCGgVm\nN25QUBB1dFB5OU2Zwp1GlPLz83Nzc4OCgqqrqyUSCXcc+G9Yo8BszBgSBDIaSaEg/E3/Xw0NDTt3\n7iSikpISdKg4oUaBX04ODR9OFRV0+DB3FPHJyMhobW19880358yZw50FXg6HehCFTz+lZctoxAjS\naMjDgzuNaFy6dCkqKqpv3741NTXjxo3jjgMvhzUKorB0KUVF0d279P773FFEw2g0yuVyg8GQnp6O\nDhUzrFEQi4oKio6mfv2otpZee407jQh89tlnKSkpPj4+Wq124MCB3HHgZ2GNglhMnUpLltCzZ5SR\nwR1FBJ48eZKdnU1EO3fuRIeKHGoURGTHDvLwoD//mb7/njsKt4KCgnv37k2ePDk5OZk7C/wC1CiI\nyIgRlJlJRLR6Nen13Gn43Lx5s7i42MXFRaVSubril1Ts8AyBuKSn0+jRdPcuqdXcUfgolcpnz54l\nJyfPmDGDOwv8MlxiAtG5eJH8/OjXv+bOweTMmTMxMTHu7u5qtdrX15c7DvwyfCgCRMeZ79LW3d0t\nCAIR5eTkoEPtBQ71IFKhodS/Pz18+O//FhVRaChrIJvYt2/f5cuXfX19n5cp2AXUKIiXXk+7d3OH\nsKHHjx9v3LiRiIqLi93d3bnjQE+hRkG85s+nP/yBdDruHLaSl5f38OHDGTNmLFy4kDsLmAA1CuIl\nk5GPDx048OInmzeTi4vt/slkWhcb2r9/f58+fXbv3u3i4sL3qIPJUKMgXkYjpadTcTF1d3NHsYkp\nU6aUlpaGhIRwBwHT4A1PIFKhobRsGa1cSaNHk0pFt27R559TdTV3LID/gTUKovbKK7RmDRUWEo65\nIFqoURC73/+eNBo6f547B8DPQI2C2A0aRCtW0DffcOcA+BmoURCdixfpn//8j58IglN/UwmIHC4x\ngbjodBQYSI8f09/+RsHB3GkAegBrFMSlqIj+/ncaPZoCA7mjAPQM1iiIyN27FBBA7e30/ff0m99w\npwHoGaxREJHMTGpvp0WL0KFgT7BGQSzKy2n6dOrXj9RqGj2aOw1Aj2GNgigYDKRQkNFISiU6FOwM\n1iiIwqFDlJpKI0ZQXR3178+dBsAUqFHg9+QJBQTQvXv0+ee0ZAl3GgAT4VAP/PLz6d49mjqVkpK4\nowCYDmsUmN24QUFB1NFBFRUUFcWdBsB0WKPALD2dnj2jlBR0KNgrrFHgdPo0zZpFHh5UV0fDh3On\nAegVrFFg091Nz29/uX49OhTsGGoU2Pzxj/TjjzRmDCkU3FEAzIBDPfBobiaplB4+pK++ogULuNMA\nmAFrFHhs2kQPH1JMDDoU7B7WKDBQqykkhAwGqqykSZO40wCYB2sUGKxdS11dlJaGDgVHgDUKtvaX\nv9DvfkdeXqTV0pAh3GkAzIY1CjbV2UlKJRHR5s3oUHAQqFGwKZWKtFqaMIHee487CoCF4FAPttPY\nSFIptbTQyZMUG8udBsBCsEbBdnJyqKWF5s9Hh4JDwRoFG6mqoogIkkjoyhWSSrnTAFgO1ijYiEJB\nBgPJ5ehQcDRYo2ALR49SUhINHUpaLXl6cqcBsCisUbA6nY6ys4mItm9Hh4IDQo2C1b3/Pv3jHxQW\nRqmp3FEArACHerCuO3do/Hhqb6eyMpo5kzsNgBVgjYJ1KZXU3k4JCehQcFhYo2BFFRXX5s4dqtcP\n1GjI15c7DYB1YI2CtRgMhtWrE371q4Bt2yrRoeDAUKNgLQcPHrx06dIrr0jS0gK4swBYEQ71YBVt\nbW0BAQH3798/cuRIYmIidxwAK8IaBavYunXr/fv3p02blpCQwJ0FwLqwRsHyrl+/HhQU1NXVVVFR\nERkZyR0HwLqwRsHyBEHo6OhITU1Fh4IzwBoFCzt16tTs2bMHDBhQV1c3bNgw7jgAVoc1Cpak1+sF\nQSCi3NxcdCg4CdQoWNKePXuuXLkyduxYuVzOnQXARnCoB4tpbm729/dvamo6ceJEXFwcdxwAG8Ea\nBYvZsGFDU1NTTEwMOhScCtYoWEZtbW1ISIjRaKyqqgoODuaOA2A7WKNgGYIg6PX6lStXokPB2WCN\nggUcP3584cKFXl5e9fX13t7e3HEAbAprFMzV2dmZmZlJRFu3bkWHghNCjYK5iouL6+vrAwMD09LS\nuLMAMMChHszy4MEDqVTa2tpaWlo6b9487jgADLBGwSxZWVmtra3x8fHoUHBaWKPQe5WVlZGRkRKJ\npKamxt/fnzsOAA+sUeglo9GoUCgMBoMgCOhQcGZYo9BLhw8fTk5O9vHxqaur8/T05I4DwAZrFHpD\np9Pl5OQQUUFBAToUnBxqFHqjoKDg1q1b4eHhKSkp3FkAmOFQDya7ffv2+PHjdTpdWVmZTCbjjgPA\nDGsUTLZu3bqnT58mJiaiQwEIaxRMdfbsWZlM5ubmplar/fz8uOMA8MMaBRMYDAaFQmE0GrOystCh\nAM9hjYIJPv7443fffXfUqFEajcbd3Z07DoAooEahp9ra2qRSaUNDw7FjxxYvXswdB0AscKiHnsrL\ny2toaIiOjl60aBF3FgARwRqFHnn8+LGvr297e/uFCxfCw8O54wCIiIQ7ANiHQYMGVVdXf/vtt+hQ\ngP+CNQoAYBa8NgoAYBbUKACAWVCjAABmQY0CAJgFNQoAYJZ/AXzUam/e4A/jAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAUUklEQVR4nO3de1TT9eMG8DeIhiIpRBCCiYjbQFEQWF5AEjTSg9AVLQKUFOSQbDNuhiIoepx6lOGJwttJsItYnWqVWV7SSLwcWYRtY+oChQQkJ4wxYWP7/UGn7+9bfgth23tsz+svj8A+z/GPZ897js9s9Ho9AQCAwbKlHQAAYHhDjQIADAlqFABgSFCjAABDghoFABgS1CgMlFwuLysro50CwOzY4A1PMBD37t178sknVSrV5cuXZ82aRTsOgBnBGoUBGT9+fGpqqk6nW7t2LZ56Af4/rFEYKKVSyWQyb9++/dFHHy1btox2HABzgTUKA+Xo6Lh582ZCSGZmpkqloh0HwFygRuEhJCcnBwcHNzU17dq1i3YWAHOBQz08nPPnz4eGhtrb20skkkmTJtGOA0Af1ig8nLlz58bFxanV6vXr19POAmAWsEbhoTU1NbFYLJVKde7cubCwMNpxACjDGoWH5unp+eabbxJCOByOTqejHQeAMqxRGAy1Wu3r69vY2Hjw4MHk5GTacQBoQo3CIH3wwQfx8fGurq4ymWzcuHG04wBQg0M9DNIrr7wSFhbW1ta2bds22lkAaMIahcETiUTBwcF2dnZ1dXUMBoN2HAA6sEZh8AIDA5OSknp7e7Ozs2lnAaAGaxSGpLW1lclkdnR0fPPNN1FRUbTjAFCANQpD4ubm1v8+fB6Pp9FoaMcBoAA1CkPF4/EYDIZEIsFNncE64VAPBvD5558/99xzTk5OMpnMxcWFdhwAk8IaBQOIjY2NiopSKBSFhYW0swCYGtYoGIZYLA4ICNDpdCKRyN/fn3YcANPBGgXD8PPzS01N7evr43K5tLMAmBTWKBiMQqFgMBjt7e2fffZZbGws7TgAJoI1Cgbj5OS0adMmQsi6det6enpoxwEwEdQoGFJaWpq/v79cLi8uLqadBcBEcKgHAzt9+nRkZKSjo2N9fb27uzvtOABGhzUKBhYREREbG6tUKvPy8mhnATAFrFEwPLlc7ufnp9Foqqur2Ww27TgAxoU1Cobn7e3d//kiXC4Xz9N/6ujooB0BjAI1CkaxYcMGd3f36urqDz/8kHYW+rq6ugoKCiZOnHjt2jXaWcDwUKNgFI6OjkVFRYSQ7OxslUpFOw41Op3uwIEDU6ZMKSwsVKlUp06dop0IDA81CsayYsUKNpvd3Ny8Y8cO2lnouHTp0rx581avXt3W1sZms3/88cc1a9bQDgWGh/9iAiOqrq6eN2+evb29WCz28vKiHcd0mpqa3nrrrSNHjuj1eg8Pj23btiUkJNjY2NDOBUaBNQpGNGfOnOXLl6vV6tzcXNpZTKS7u5vP5/v6+lZUVIwePTonJ0cqlSYmJqJDLRjWKBhXU1MTi8VSqVTff/99eHg47TjGJRQKMzIyGhoaCCHR0dF79+61qg1utbBGwbg8PT2zsrIIIVwut6+vj3YcY6mpqQkLC4uJiWloaJg1a9a5c+eEQiE61EqgRsHosrOzvby8fvrpp0OHDtHOYnjt7e0cDofNZldVVbm4uBQXF1+6dCksLIx2LjAdHOrBFI4ePbp8+XJXV1eZTDZu3DjacQxDo9GUlpbm5+d3dnaOHDkyLS1ty5Ytjz76KO1cYGpYo2AKy5Ytmz9/fltbW/+bSS3AyZMnZ86cyeVyOzs7Fy5cWFtbKxAI0KHWCWsUTEQkEoWEhIwYMeLnn39mMpm04wxefX09j8c7fvw4IYTJZO7evXvJkiW0QwFNWKNgIoGBgStXruzt7c3MzKSdZZAUCgWHw5k+ffrx48ednJy2b9/+888/o0MBaxRMp62tjcFgdHR0fP3114sXL6Yd5yFotdpDhw5t2LDhzp07dnZ2ycnJRUVFjz/+OO1cYBawRsF0XF1dN2zYQAhZt26dRqOhHWegTp8+PWvWrNTU1Dt37kRERFy5cqWsrAwdCn9CjYJJZWRkMBgMqVRaWlpKO8u/u379elxcXGRkZF1dnY+PT2Vl5alTp2bMmEE7F5gXHOrB1IRCYUxMjJOTk0wmc3FxoR3nwVQq1c6dO/l8/v379x0cHDIzM3Nzc+3t7WnnAnOENQqmtnTp0meffVahUOTn59PO8gB6vb68vNzHx6ewsLCnpychIeH69esFBQXoUPhfsEaBAolEMnPmTJ1OV1NTY1Zn5MuXL3M4nOrqakJISEiIQCCYM2cO7VBg7rBGgQJfX9+0tLS+vj4ul0s7yx+am5sTExOfeuqp6upqDw+Pw4cPX7x4ER0KA4E1CnQoFAoGg9He3v7JJ5+88MILFJOo1eqSkpKtW7cqlcrRo0dnZGTk5eU5OjpSjATDC2oUqCktLU1PT588ebJYLKb1yuNfbm1XUlIyefJkKklg+MKhHqhJTU2dMWPGr7/+unv3btNfXSQShYeH99/aLjAw8OzZs0KhEB0Kg4A1CjSdOXMmIiJi7Nix9fX1EyZMMM1Ff//9982bN7/99tt9fX2PPfbYxo0b33jjjREjRpjm6mB5sEaBpgULFjz//PNdXV1vvfWWCS6n0WgEAsGUKVNKSkpsbW0zMjJu3LjB4XDQoTAUWKNAmVwunzZtWk9PT3V19VNPPWW8C508eZLD4YjFYkLIwoULBQKBn5+f8S4H1gNrFCjz9vbm8Xh6vZ7L5RrpSV0mk0VHRy9atEgsFjMYjC+//PK7775Dh4KhYI0CfV1dXUwm87fffisvL09ISDDgIysUCj6fv2fPnt7e3vHjx+fm5vJ4vFGjRhnwEgCoUTALhw8fXrFihYeHh1QqHTt27NAfUKfTHTlyJCsrq62tzdbWNj4+fteuXa6urkN/ZIC/wKEezEJiYiKbzW5ububz+UN/tDNnzgQGBiYlJbW1tS1YsKCmpqa8vBwdCkaCNQrm4sKFC3Pnzn3kkUfEYvGg379569atvLy8iooKQsjEiROLiooSExMNGhPgr7BGwVzMnj07Pj7+/v372dnZg/hxlUpVUFDAYDAqKiocHBw2bdokk8nQoWACWKNgRpqbm1ksVldX17fffrto0aIB/pRer//4448zMzNv3rxpY2Pz0ksv7dq168knnzRqVIA/YY2CGfHw8MjJySGE8Hg8rVY7kB+5fPlyaGhoXFzczZs3g4ODq6qqKisr0aFgSqhRMC+ZmZleXl6//PLLwYMH//k7f/vtt9TU1NmzZ58/f37ChAllZWUXL16cO3euaXIC/AmHejA7x44di4uLc3Z2vnbtmrOz89+/obe395133tm4caNSqRw1atSaNWuKiopwazugBWsUzM7LL7/89NNP3717t6io6O9fFQqFLBaLy+Uqlcro6GiJRCIQCNChQBHWKJij2traoKAgGxubn376adq0af1/KZFIeDzeiRMnCCG+vr579uyJioqiGhOAEKxRME8zZ85ctWqVVqvt/5SRu3fvcjgcf3//EydOODs7FxcX19XVoUPBTGCNgpm6c+cOg8G4d+9eSkpKZWXlvXv3Ro4cuXLlyq1bt5rtxzKDdUKNgvlKSUnZv39//58XL168e/duFotFNxLA3+FQD+ZIKpUuWbLkzw5dvXr1119/jQ4F84QaBfNy79693NzcgICA48ePjx8//vXXXyeEHD16tKWlhXY0gAdDjYK50Ol05eXlLBaLz+drNJqEhASpVHrgwIHFixd3dnYWFBTQDgjwYHhtFMzC2bNnORxObW0tISQ8PLy4uDggIKD/S9evX582bZpWq7106VJQUBDVmAAPgDUKlDU1NSUmJi5YsKC2ttbT0/Pw4cNnzpz5s0MJIT4+Punp6TqdjsPh4FkfzBDWKFDT3d29Y8cOPp9///79MWPGZGVl5eTkjB49+u/f2dnZyWQyW1paKisrX375ZdNHBfgHqFGgoP/WdllZWY2Njf23ttu5c+ekSZP+4UfKysrWrFkzceJEqVQ6ZswYk0UF+Fc41IOpXblyJSwsLC4urrGxMSgo6Ny5c5WVlf/coYSQ1atXBwUF3bp1a/fu3abJCTBAWKNgOrdv3y4oKDhw4IBOp3N3dy8oKFi1apWt7UCfy6uqqubPnz969GiJRII7ioL5wBoFU+jt7RUIBCwWa9++fXZ2dhkZGVKpNCUlZeAdSggJDQ198cUXu7u78/LyjBcV4GFhjYLRCYVCLpcrl8sJIdHR0QKBwNvbe3APdevWLRaLpVarz507FxoaatCYAIOENQpGJJVKFy9eHBMTI5fLWSzW8ePHhULhoDuUEDJx4sR169bp9XoOh6PT6QwYFWDQsEbBKO7evVtYWFhaWqrVap2dnfPz89PT0+3s7Ib+yN3d3b6+vjdv3nzvvfeSkpKG/oAAQ4QaBQPTarWHDh3Ky8trb2+3s7NLTk42+K3tKioqEhMT3dzcZDLZo48+asBHBhgEHOrBkE6dOhUYGJiamtre3h4ZGSkSicrKygx+e9DXXnstNDS0tbV1+/bthn1kgEHAGgXDuHbtWl5e3rFjxwghPj4+27ZtM+qvG125coXNZtvZ2V29enXq1KnGuxDAv8IahaHq6uoqKCjw9/c/duyYg4PDpk2brl69auxf2QwKCkpISOjt7e3/XHsAirBGYfB0Ot2RI0eys7NbW1ttbW3j4+N37tzp5uZmmqu3trYyGIzOzs4TJ04888wzprkowN9hjcIgXbx4cd68eUlJSa2trWw2+8cffywvLzdZhxJC3Nzc+qcoj8fTarUmuy7AX6BG4aH139puzpw5Fy5c8PDwOHz48IULF2bPnm36JJmZmVOnThWLxfv27TP91QH64VAPD6G7u3vv3r1FRUVdXV1jxoxZu3bthg0bxo4dSzHSp59++uKLLzo7O8tksscee4xiErBaqFEYKKFQuHbt2sbGRkJIdHT03r17vby8aIcihJCoqKhvv/02IyNDIBDQzgLWCDUK/66mpobD4VRVVRFCZs2aVVxcHBYWRjvUf4jF4pkzZxJCRCLR9OnTaccBq4PXRuGftLe3czgcNptdVVXl4uJSXFx86dIls+pQQoifn9/q1au1Wi2Xy6WdBawR1ig8mEajKS0tzc/P7+zsHDlyZFpa2pYtW8z2Ny/v3r3LYDB+//33L774YunSpbTjgHXBGoUHEAqFvr6+XC63s7Nz4cKFtbW1AoHAbDuUEOLs7Lxx40ZCCI/H6+npoR0HrAtqFP5LfX39kiVLYmJibty4wWQyv/rqq++++87X15d2rn+Xnp4+ffr0Gzdu7N27l3YWsC441MMfFApFQUFB/63tnJyccnJyeDzeqFGjaOd6CCdPnly0aJGjo2N9fb27uzvtOGAtsEaBaLXaffv2MZnMkpISQkhKSkp9fX1OTs7w6lBCyMKFC6Ojo5VKZX5+Pu0sYEWwRq3d6dOnuVxuXV0dISQiImLPnj0zZsygHWrwbty4MW3aNI1Gc+HChZCQENpxwCpgjVqv69evx8XFRUZG1tXV+fj4VFZWnjp1alh3KCFkypQpa9eu1el0XC4XEwFMA2vUGqlUqp07d/L5/Pv37zs4OGRmZubm5trb29POZRhKpZLBYLS0tHz00UfLli2jHQcsH2rUuuj1+oqKipycnJaWFhsbm9dee23Hjh1PPPEE7VwGtn///pSUFE9PT6lU6uDgQDsOWDgc6q3I5cuX+29t19LSEhIS0n9rO8vrUELI66+/Hhwc3NTUtGvXLtpZwPJhjVqF5ubm9evXHzlyRK/Xe3h4bNu2LSEhwcbGhnYuIzp//nxoaKi9vb1EIpk0aRLtOGDJsEYtnFqt5vP5LBaroqLC3t4+JydHIpEkJiZadocSQubOnRsXF6dWq9evX087C1g4rFFLJhQKMzIyGhoaCCHR0dElJSWTJ0+mHcp0mpqamEymWq0+e/asud1OBSwJ1qhlEolE8+fPj4mJaWhoCAwMPHv2rFAotKoOJYR4enpmZmbq9XoOh6PT6WjHAYuFNWqB3n333fT0dJ1O5+rqunXr1uTkZFtbK32+VKvVvr6+jY2NBw8eTE5Oph0HLBNq1ALJ5fKAgICVK1du3rx53LhxtONQ9sEHH8THx7u6uspkMvxrgDGgRi1TR0cHKqOfXq8PDw//4YcfsrOz+Xw+7ThggVCjYPlEIlFwcLCdnV1dXR2DwaAdByyNlb5kBlYlMDAwKSmpt7c3OzubdhawQFijYBVaW1uZTGZHR8c333wTFRVFOw5YFKxRsApubm7978Pn8XgajYZ2HLAoqFGwFjwej8FgSCSSsrIy2lnAouBQD1bk888/f+6555ycnGQymYuLC+04YCGwRsGKxMbGRkVFKRSKwsJC2lnAcmCNgnURi8UBAQE6nU4kEvn7+9OOA5YAaxSsi5+fX2pqal9fH5fLpZ0FLATWKFgdhULBYDDa29s/++yz2NhY2nFg2MMaBavj5OS0adMmQsi6det6enpox4FhDzUK1igtLc3f318ulxcXF9POAsMeDvVgpU6fPh0ZGeno6FhfX+/u7k47DgxjWKNgpSIiImJjY5VKZV5eHu0sMLxhjYL1ksvlfn5+Go2murqazWbTjgPDFdYoWC9vb+/+zxfhcrnYEzBoWKNg1ZRKJZPJvH379vvvv//qq6/SjgPDEtYoWDVHR8eioiJCSHZ2tkqloh0HhiXUKFi7FStWsNns5ubmHTt20M4CwxIO9QCkurp63rx59vb2YrHYy8uLdhwYZrBGAcicOXOWL1+uVqtzc3NpZ4HhB2sUgBBCmpqaWCyWSqX6/vvvw8PDaceB4QRrFIAQQjw9PbOysgghXC63r6+PdhwYTrBGAf6gVqv9/PwaGhr279+/atUq2nFg2ECNAvzH0aNHly9f7urqKpPJxo0bRzsODA841AP8x7Jly+bPn9/W1tb/ZlKAgcAaBfgvNTU1ISEhDg4ON2/eHD9+PO04MAygRgH+qqysbNGiRd7e3rSDwPCAGgUAGBK8NgoAMCSoUQCAIUGNAgAMCWoUAGBIUKMAAEPyfy5p+qPwKm6OAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { diff --git a/examples/tutorials/09_Creating_a_high_fidelity_model_from_experimental_data.ipynb b/examples/tutorials/09_Creating_a_high_fidelity_model_from_experimental_data.ipynb index ced8c7eeb7..a20ab3639f 100644 --- a/examples/tutorials/09_Creating_a_high_fidelity_model_from_experimental_data.ipynb +++ b/examples/tutorials/09_Creating_a_high_fidelity_model_from_experimental_data.ipynb @@ -102,20 +102,76 @@ "metadata": { "id": "tbLbuh6wl8tX", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "9b09fbf5-13a7-4fd1-fa5d-9932f28b120b" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 21813 0 --:--:-- --:--:-- --:--:-- 21813\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.79 s, sys: 609 ms, total: 3.4 s\n", + "Wall time: 3min 40s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -144,11 +200,11 @@ "metadata": { "id": "fYBi59mkl56F", "colab_type": "code", + "outputId": "172f8a13-7050-406b-fdc0-db4a58ec2858", "colab": { "base_uri": "https://localhost:8080/", "height": 190 - }, - "outputId": "65b62378-47c4-4713-bc0a-668773dbc315" + } }, "source": [ "!pip install pubchempy" @@ -159,11 +215,11 @@ "output_type": "stream", "text": [ "Collecting pubchempy\n", - " Downloading PubChemPy-1.0.4.tar.gz (29 kB)\n", + " Downloading https://files.pythonhosted.org/packages/aa/fb/8de3aa9804b614dbc8dc5c16ed061d819cc360e0ddecda3dcd01c1552339/PubChemPy-1.0.4.tar.gz\n", "Building wheels for collected packages: pubchempy\n", " Building wheel for pubchempy (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for pubchempy: filename=PubChemPy-1.0.4-py3-none-any.whl size=13828 sha256=a376d8fd8ab07e38e0db777a6485020d2c1dc3e1630e52ded176bda397359297\n", - " Stored in directory: /root/.cache/pip/wheels/7c/3d/8c/8192697412e9899dc55bbbb08bbc1197bef333caaa2a71c448\n", + " Created wheel for pubchempy: filename=PubChemPy-1.0.4-cp36-none-any.whl size=13825 sha256=bd54eb755f3e83b75a2579701aadc27284d998fe33b1fc1e22342e2c109939d8\n", + " Stored in directory: /root/.cache/pip/wheels/10/4d/51/6b843681a9a5aef35f0d0fbce243de46f85080036e16118752\n", "Successfully built pubchempy\n", "Installing collected packages: pubchempy\n", "Successfully installed pubchempy-1.0.4\n" @@ -260,11 +316,11 @@ "metadata": { "id": "hVJDAGT8mbl1", "colab_type": "code", + "outputId": "3665e5d9-91c2-4804-b6e3-a61562471d4a", "colab": { "base_uri": "https://localhost:8080/", "height": 309 - }, - "outputId": "62d4b33e-2981-48f0-cfe7-fa989240b9f7" + } }, "source": [ "!wget https://github.com/deepchem/deepchem/raw/master/datasets/Positive%20Modulators%20Summary_%20918.TUC%20_%20v1.xlsx" @@ -274,12 +330,12 @@ { "output_type": "stream", "text": [ - "--2020-03-27 06:12:34-- https://github.com/deepchem/deepchem/raw/master/datasets/Positive%20Modulators%20Summary_%20918.TUC%20_%20v1.xlsx\n", - "Resolving github.com (github.com)... 140.82.114.4\n", - "Connecting to github.com (github.com)|140.82.114.4|:443... connected.\n", + "--2020-05-31 02:53:46-- https://github.com/deepchem/deepchem/raw/master/datasets/Positive%20Modulators%20Summary_%20918.TUC%20_%20v1.xlsx\n", + "Resolving github.com (github.com)... 140.82.112.4\n", + "Connecting to github.com (github.com)|140.82.112.4|:443... connected.\n", "HTTP request sent, awaiting response... 302 Found\n", "Location: https://raw.githubusercontent.com/deepchem/deepchem/master/datasets/Positive%20Modulators%20Summary_%20918.TUC%20_%20v1.xlsx [following]\n", - "--2020-03-27 06:12:34-- https://raw.githubusercontent.com/deepchem/deepchem/master/datasets/Positive%20Modulators%20Summary_%20918.TUC%20_%20v1.xlsx\n", + "--2020-05-31 02:53:46-- https://raw.githubusercontent.com/deepchem/deepchem/master/datasets/Positive%20Modulators%20Summary_%20918.TUC%20_%20v1.xlsx\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", @@ -288,7 +344,7 @@ "\n", "\r Positive 0%[ ] 0 --.-KB/s \rPositive Modulators 100%[===================>] 41.85K --.-KB/s in 0.02s \n", "\n", - "2020-03-27 06:12:34 (1.66 MB/s) - ‘Positive Modulators Summary_ 918.TUC _ v1.xlsx’ saved [42852/42852]\n", + "2020-05-31 02:53:47 (1.69 MB/s) - ‘Positive Modulators Summary_ 918.TUC _ v1.xlsx’ saved [42852/42852]\n", "\n" ], "name": "stdout" @@ -318,11 +374,11 @@ "scrolled": true, "id": "ei2QwtnVl57D", "colab_type": "code", + "outputId": "42c4aa3e-4247-4794-e6c6-c1b884753eb8", "colab": { "base_uri": "https://localhost:8080/", "height": 204 - }, - "outputId": "87434c60-b799-452c-8937-d3afa040efeb" + } }, "source": [ "# preview 5 rows of raw dataframe\n", @@ -456,11 +512,11 @@ "scrolled": true, "id": "adUjxQF2l57Z", "colab_type": "code", + "outputId": "acdaa261-e58b-43a3-f2f4-6869ae4ea364", "colab": { "base_uri": "https://localhost:8080/", "height": 119 - }, - "outputId": "77ded6f9-9d76-4cae-fa40-af2044096698" + } }, "source": [ "# remove column labels (rows 0 and 1), as we will replace them\n", @@ -497,11 +553,11 @@ "metadata": { "id": "_AmIYJGjl57j", "colab_type": "code", + "outputId": "d9cdb418-295a-4ec8-e757-07747257ad81", "colab": { "base_uri": "https://localhost:8080/", "height": 204 - }, - "outputId": "90ccc8b2-cf45-429c-e06a-cf80314ba4de" + } }, "source": [ "# preview cleaner dataframe\n", @@ -633,11 +689,11 @@ "metadata": { "id": "yfCp2htdl570", "colab_type": "code", + "outputId": "847e66c8-eb78-42e8-fc03-e35c496685d5", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "7f92b5c2-557e-472c-dae4-9c6fcf7d2411" + } }, "source": [ "get_compounds(drugs[1], 'name')" @@ -663,11 +719,11 @@ "metadata": { "id": "rsesx-l8l58L", "colab_type": "code", + "outputId": "fd80dfc8-b365-4844-ef9f-f1dc91afef41", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "9b135c7f-f4f9-452e-85ea-8dca4a7998a5" + } }, "source": [ "get_compounds(drugs[1], 'name')[0].canonical_smiles" @@ -780,11 +836,11 @@ "scrolled": true, "id": "PMlMlVJTl59t", "colab_type": "code", + "outputId": "75129524-31a7-4e54-913a-f262f35d06a3", "colab": { "base_uri": "https://localhost:8080/", "height": 85 - }, - "outputId": "6ab99bf6-54b0-4e3b-b077-18d346aa889f" + } }, "source": [ "smiles_map = {}\n", @@ -801,10 +857,10 @@ { "output_type": "stream", "text": [ - "Errored on 90\n", "Errored on 162\n", - "Errored on 176\n", - "Errored on 303\n" + "Errored on 237\n", + "Errored on 303\n", + "Errored on 399\n" ], "name": "stdout" } @@ -830,11 +886,11 @@ "metadata": { "id": "xV3mQWwrl5-v", "colab_type": "code", + "outputId": "af23230b-9000-4e62-f6e7-13195c0f25c2", "colab": { "base_uri": "https://localhost:8080/", "height": 204 - }, - "outputId": "281093cd-868d-4ea5-d355-5a4b3524da46" + } }, "source": [ "# preview smiles data\n", @@ -987,7 +1043,11 @@ "metadata": { "id": "Xe0sqLZ0l5-6", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "outputId": "4e0be4fd-83a4-40c8-d636-153bc81943ae" }, "source": [ "import matplotlib.pyplot as plt\n", @@ -996,8 +1056,17 @@ "import seaborn as sns\n", "sns.set_style('white')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", + " import pandas.util.testing as tm\n" + ], + "name": "stderr" + } + ] }, { "cell_type": "code", @@ -1058,11 +1127,11 @@ "metadata": { "id": "HZjb8u_fl5_S", "colab_type": "code", + "outputId": "d4ff3ed7-3580-4f50-f1b5-1a04b35bef1d", "colab": { "base_uri": "https://localhost:8080/", - "height": 300 - }, - "outputId": "4c61f9b4-ad8b-489f-ed47-0ce49e8af281" + "height": 0 + } }, "source": [ "smiles_lens = [len(i) if i is not None else 0 for i in smiles_data['drug']]\n", @@ -1087,7 +1156,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXxU9b3/8deZmcxk35PJSgQSUCAi\n4oKIoKFjKshlb/W29CdX9BblCtqLW73US9Vb21jAe61iqVavrfWCLK2xAgYhiFg3MLJIwhJCIJns\nyWSb9fz+CBmJCVkkk8lMPs/HIw8yM+ecfA5J5p3z/X7P96uoqqoihBBC9JLG2wUIIYTwLRIcQggh\n+kSCQwghRJ9IcAghhOgTCQ4hhBB9IsEhhBCiT3SePHh+fj5PP/00LpeLhQsXcu+993Z43Waz8fDD\nD3P48GEiIyNZs2YNKSkp7Nu3j+eeew673U5AQAArV67khhtuAGDRokVUVFQQGBgIwCuvvEJMTIwn\nT0MIIcQFPBYcTqeT1atX8+qrr2I0GlmwYAFZWVmkp6e7t9m4cSPh4eHs3LmT3NxccnJyWLt2LVFR\nUbz44osYjUYKCwu5++672bt3r3u/nJwcMjMzPVW6EEKIbnisqaqgoIC0tDRSU1PR6/XMnDmTvLy8\nDtvs2rWLuXPnApCdnc3+/ftRVZUxY8ZgNBoByMjIwGq1YrPZPFWqEEKIPvDYFYfZbCYhIcH92Gg0\nUlBQ0GmbxMTEtkJ0OsLCwqitrSU6Otq9zfbt2xkzZgx6vd793OOPP45Go+HWW2/lvvvuQ1GUbmu5\n/vrrSU5O7o/TEkKIISEqKgqAP/zhD51e82gfx6UqKioiJyeHV155xf1cTk4ORqORxsZGHnjgAbZt\n28acOXO6PU5ycjKbN2/2dLlCCOFX5s2b1+XzHmuqMhqNlJeXux+bzWZ389OF25SVlQHgcDiwWCzu\nlCsvL2fZsmU8++yzDBs2rMM+AKGhodx+++2drmKEEEJ4lseCIzMzk+LiYs6cOYPNZiM3N5esrKwO\n22RlZbFlyxagrUlq0qRJKIpCQ0MD9957Lz/72c+YOHGie3uHw0FNTQ0Adrud3bt3k5GR4alTEEII\n0QWPNVXpdDpWrVrFkiVLcDqdzJ8/n4yMDNatW8e4ceOYPn06CxYsYOXKlZhMJiIiIlizZg0Ab7zx\nBiUlJbzwwgu88MILQNuw26CgIJYsWYLdbsflcnHDDTfwgx/8wFOnIIQQogvKUJhWfd68edLHIYQQ\nfXSx9065c1wIIUSfSHAIIYToEwkOIYQQfSLBIYQQok8kOIQQQvTJoL5zXHhPfbMNi9XR7TZhBh0R\nwfputxFC+B8JDtEli9VBfmFVt9tMHRUrwSHEECRNVUIIIfpEgkMIIUSfSHAIIYToEwkOIYQQfSLB\nIYQQok8kOIQQQvSJBIcQQog+keAQQgjRJxIcQggh+kSCQwghRJ9IcAghhOgTCQ4hhBB9IsEhhBCi\nTyQ4hBBC9IkEhxBCiD6R4BBCCNEnEhxCCCH6RIJDCCFEn0hwCCGE6BMJDiGEEH0iwSGEEKJPJDiE\nEEL0ic7bBQj/Vd9sw2J1XPT1MIOOiGD9AFYkhOgPEhzCYyxWB/mFVRd9feqoWAkOIXyQNFUJIYTo\nEwkOIYQQfSLBIYQQok8kOIQQQvSJR4MjPz+f7OxsTCYTL7/8cqfXbTYbK1aswGQysXDhQkpLSwHY\nt28f8+bNY9asWcybN4/9+/e79zl06BCzZs3CZDLx1FNPoaqqJ09BCCHEt3hsVJXT6WT16tW8+uqr\nGI1GFixYQFZWFunp6e5tNm7cSHh4ODt37iQ3N5ecnBzWrl1LVFQUL774IkajkcLCQu6++2727t0L\nwJNPPskvf/lLxo8fzz333EN+fj7Tpk3z1GmIXqhutLLr6wpOVDZxuroJh0tFqygE6BTsDhVjeCDp\n8aFoNYq3SxVC9AOPBUdBQQFpaWmkpqYCMHPmTPLy8joEx65du1i2bBkA2dnZrF69GlVVGTNmjHub\njIwMrFYrNpuNuro6GhsbueqqqwCYM2cOeXl5Ehxe4nC5eHXfKX67sxBLq4MArUJqdDB6rQanS6XS\nYqWuxQ5ATIieW0bHMz41UgJECB/nseAwm80kJCS4HxuNRgoKCjptk5iY2FaITkdYWBi1tbVER0e7\nt9m+fTtjxoxBr9d3OmZCQgJms9lTpyC6YXe6uP9PBzh8roGbMmJ55PuXc3lCGDrtN62fpbXNbD9k\n5nhlI7uPVbDpi1KOljdw53XD0CgSHkL4qkF9A2BRURE5OTm88sor3i5FfMuOw+UcPtfAcwvHM+/q\nZJSLBEGQXktmcgTjksLJL6pi++Fy3j9i5taxCV1uL4QY/DzWOW40GikvL3c/NpvNGI3GTtuUlZUB\n4HA4sFgsREVFAVBeXs6yZct49tlnGTZsWJfHLC8v73RM4XlFFRb2nahm/tXJzJ+YctHQuJCiKEzN\niOXay6LYXVjJgZLaAahUCOEJHguOzMxMiouLOXPmDDabjdzcXLKysjpsk5WVxZYtW4C2JqlJkyah\nKAoNDQ3ce++9/OxnP2PixInu7ePj4wkNDeXgwYOoqsrWrVuZPn26p05BdKHZ5uDtz0uJCzOw9OaR\nfdpXURT+aXwyI2JD2HrwLPXn+z+EEL7FY01VOp2OVatWsWTJEpxOJ/PnzycjI4N169Yxbtw4pk+f\nzoIFC1i5ciUmk4mIiAjWrFkDwBtvvEFJSQkvvPACL7zwAgCvvPIKMTEx/OIXv+Cxxx6jtbWVqVOn\nMnXqVE+dgujCP07V0NDq4P5JlxEYoO3z/lqNwqzxSazLK2LzF6VEBAVcdFuZBFGIwUlRh8CNEPPm\nzWPz5s3eLsOnlNY2d5qg0KWq/HZnIRFBAdxz0wimjoolJSq4T8do98ePTlFpsbLie6MI0HZ94dvT\n8YUQnnWx9065c1z02qmqJmqabFyTFnXJx5qSHkdts50vz9T1Q2VCiIEkwSF67fPTtQQGaBiXHHHJ\nxxoZF8KI2BA+PF4ld/8L4WMkOESvtNicHDpbz/iUyIs2LfWFoijMn5hChcXK8crGfqhQCDFQJDhE\nr3xZWofDpXJNWnTPG/fSlPRY9FoNR8419NsxhRCeJ8EheuXL0joSwgNJigzst2PqdRrS40M5Vm6R\n5iohfIgEh+iR1eHkTE0zoxPCenWzX1+MTgijrsWOucHar8cVQniOBIfo0enqZlwqjIgL6fdjjzaG\nAXCsXJqrhPAVEhyiRycqG9EqCmnR/R8c4UEBJEcG8XW5pd+PLYTwDAkO0aOTlU1t06XrPPPjMjoh\njJKaZpqsDo8cXwjRvyQ4RLdabE7O1bUw0gPNVO0uTwhDBQrNctUhhC+Q4BDdOlXViAqMiAv12NdI\nigwi1KCT5iohfIQEh+jWicqm8yv7BXnsa2gUhZFxIZyubpJhuUL4AAkO0a0TlY1cFhOCTuPZH5Vh\nMSE0tDrcS80KIQYvCQ5xUY1WBxUWq0ebqdoNi26bBbekutnjX0sIcWkkOMRFna1texNvf1P3pITw\nQAK0CiU1EhxCDHYSHOKizta1oABJEf03zcjFaDUKqVHBEhxC+AAJDnFRZ+taiQk1YPgOK/19F8Ni\ngimrb8HmcA3I1xNCfDcSHOKiztW1kNyPkxr2JC06GJfatnKgEGLwkuAQXaptslHfYic50nPDcL8t\ntb2DXJqrhBjUJDhEl46dv4s7KWrggiNYryMu1CDBIcQgJ8EhunTs/F3cSREDFxzQ1s9xurpZbgQU\nYhCT4BBdOma2EBOiJ3CAOsbbDYsOpsXupLrRNqBfVwjRexIcokvHyi0kD2AzVbv2PpWz9S0D/rWF\nEL2j83YBYvCpabJhbrBy9bCobrdzOF3djoCy2p19/trx4Qa0GoVzdRIcQgxWEhyik6/O1gNts9Z2\np8Xu4sCJmou+PmFYZJ+/tk6jISE8UIJDiEFMmqpEJ4fag2OAO8bbJUUGca6uVTrIhRikJDhEJ8fK\nLSSEBxKkH9iO8XZJkYG02J2UN7R65esLIbonwSE6KTRbGB7r+YkNL6a9g7ywvNFrNQghLk6CQ3Tg\ncLo4WdnE8FjPLRXbE2N4IBrlm5sQhRCDiwSH6OB0TTM2p8urwRGg1RAfFihrkAsxSElwiA6KzG3N\nQ94MDmjrID9WbpEOciEGIQkO0UHR+b/y02K8HRyB1DbbqbBYvVqHEKIzCQ7RQWFFI6nRQV4bUdWu\nvYO8fWiwEGLwkOAQHRSZLYyKD/N2GSREBKLwzc2IQojBw6PBkZ+fT3Z2NiaTiZdffrnT6zabjRUr\nVmAymVi4cCGlpaUA1NbWsmjRIiZMmMDq1as77LNo0SKys7OZPXs2s2fPprq62pOnMKS0j6jKMHo/\nOAw6LanRwRw51+DtUoQQ39Kr4Fi2bBm7d+/G5er9kp5Op5PVq1ezYcMGcnNzeeeddzh+/HiHbTZu\n3Eh4eDg7d+7krrvuIicnBwCDwcDy5ct5+OGHuzx2Tk4O27ZtY9u2bcTExPS6JtG94uq2EVUZ8aHe\nLgWAjPhQDktwCDHo9Co4/vmf/5m//e1v3HrrreTk5HDy5Mke9ykoKCAtLY3U1FT0ej0zZ84kLy+v\nwza7du1i7ty5AGRnZ7N//35UVSU4OJhrrrkGg8HwHU5JfFftHeOjBsEVB0CGMZSzdS3UN9u9XYoQ\n4gK9Co7Jkyfz3HPPsWXLFpKTk1m8eDF33HEHb7/9NnZ717/UZrOZhIQE92Oj0YjZbO60TWJiIgA6\nnY6wsDBqa2t7rOfxxx9n9uzZvPDCCzJcsx8VmhtRFEgfRFccAIfLpJ9DiMGk130ctbW1bN68mY0b\nN3LFFVfwk5/8hCNHjvAv//Ivnqyvk5ycHP72t7/xpz/9ic8//5xt27YN6Nf3Z4UVFlKjgr0+oqpd\ne1+L9HMIMbj0alr1+++/n1OnTjF79mxeeukl4uPjAZgxYwbz5s3rch+j0Uh5ebn7sdlsxmg0dtqm\nrKyMhIQEHA4HFouFqKju14BoP0ZoaCi33347BQUFzJkzpzenIXpQZLYwyjg4rjYAokP0xIcZJDiE\nGGR6dcXxgx/8gHfffZd//dd/dYeGzda2tOfmzZu73CczM5Pi4mLOnDmDzWYjNzeXrKysDttkZWWx\nZcsWALZv386kSZNQFOWidTgcDmpq2tZ/sNvt7N69m4yMjN6cguiB3eniVNXgGFF1obFJ4Rwpk+AQ\nYjDp1RXH2rVrmTZtWofnfvjDH7rf9Ls8sE7HqlWrWLJkCU6nk/nz55ORkcG6desYN24c06dPZ8GC\nBaxcuRKTyURERARr1qxx75+VlUVjYyN2u53333+fV155haSkJJYsWYLdbsflcnHDDTfwgx/84Due\nurhQcVUTdqc6qK44AMYkhZNfVEWr3Tng658LIbrWbXBUVlZiNptpbW3lyJEj7o7oxsZGWlp6XqFt\n2rRpnQJn+fLl7s8NBgPPP/98l/vu2rWry+cvdoUjLk1RRdscVRmD4Oa/C41NisDpUikyN5KZEuHt\ncoQQ9BAcH374IZs3b6a8vJz/+q//cj8fEhLCQw895PHixMApNFvQDKIRVe3GJIYDcKSsXoJDiEGi\n2+CYO3cuc+fOZfv27WRnZw9UTcILisyNDIsOHlTNQQ6nC41GIViv5R+nargxPbbD62EGHRHBei9V\nJ8TQ1W1wbNu2jdmzZ3P27FleffXVTq8vXrzYY4WJgVVotgy6jvEWu4sDJXXEhRn4vLiW/MKqDq9P\nHRUrwSGEF3QbHO39GM3NzQNSjPAOm6NtRJVpjLHnjb0gKSKIz0tqcakqmm5G3QkhBka3wXHHHXcA\nbXNVCf9VXN2Ew6UOmqlGvi0xIhCbw0VNk43YUJmGRghv6zY4nnrqqW53fuKJJ/q1GOEd7Uu0Zgyy\nobjtks6vzXGurkWCQ4hBoNvgGDt27EDVIbyo0NyIRoGRcYMzOOLDDGgUKKtv5coUb1cjhOhxVJXw\nf0VmC2kxIYNqRNWFdFoNxvBAyup7vndICOF53QbH008/zc9//nN++tOfdvn6Sy+95JGixMAqNFsG\nzRocF5MYEUiRudHbZQgh6CE4Zs+eDTDgM+CKgWN1OCmubua2cYneLqVbiRFBfFFSh6XVTlhggLfL\nEWJI6zY4xo0bB8B1112HzWbj5MmTKIrC8OHD0etl/Lwvq2+2YbE6OFHZiNOlEhOqp7T2m2HXVrvT\ni9V1lhgZCLT1c0hwCOFdvZrkcPfu3fziF79g2LBhqKpKaWkp//mf/9lpHirhOyxWB/mFVRSU1gFQ\n02TrcIPdhGGR3iqtS0kR34ysGqzDhoUYKnoVHL/61a94/fXXSUtLA6CkpIR7771XgsMPmBusKEDc\nIB/mGhigJSo4gLL6Vm+XIsSQ16v1OEJCQtyhAZCamkpISIjHihIDp8LSSkyoHp2214tBek1SZBDn\n6mRklRDe1u0Vx44dO4C2vo577rmH2267DUVReO+998jMzByQAoVnmRusxIcFeruMXkmMCOTIuQas\ndieGQTp0WIihoNvg+OCDD9yfx8bG8umnnwIQHR2N1Wr1bGXC4xxOFzVNVjKTw71dSq8kRQShAuUN\nraTFyBWvEN7SbXBcuAaH8D+VjVZcKsSH+8YVR/vUI2frWiQ4hPCiXnWOW61WNm3aRFFRUYcrDQkW\n31bR0Pa9NPpIU1V4UADhgTpKa6WfQwhv6lWP6MqVK6msrOTDDz/kuuuuw2w2S+e4HzBbWtEoEBvq\nO/fkJEcFS3AI4WW9Co6SkhJWrFhBUFAQc+fOZf369RQUFHi6NuFhFQ1WYkIMPjGiql1KVBBVjVZa\nB9kNikIMJb16x9Dp2lq0wsPDKSwsxGKxUF1d7dHChOeZG1qJDx/c9298W8r5fg656hDCe3rVx/HD\nH/6Q+vp6li9fztKlS2lubmb58uWerk14kNXhpKbJxvjUwXWHeE+So853kNfKqpRCeEuvgmPhwoVA\n25xVeXl5Hi1IDIyS6mZU2ta68CXBeh3RIXpK5UZAIbymV8FRW1vL//zP//DFF1+gKAoTJ07kvvvu\nIyoqytP1CQ85Vd32F7uvDMW9UEpUEKer5YpDCG/pVR/HQw89RHR0NM8//zzr1q0jKiqKBx980NO1\nCQ86VdXkcyOq2qVEBVPfYqemyebtUoQYknoVHJWVldx///2kpqaSmprKfffdJ53jPq64qomYUAM6\nje+MqGrX3kF+tKzBy5UIMTT16l3jxhtvJDc3F5fLhcvl4t1332XKlCmerk140PGKRhJ8sJkK2u4g\nV5DgEMJbuu3jmDBhAoqioKoqr732GitXrgTA5XIRHBzMI488MiBFiv5labVTVt9KZnKEt0v5TvS6\ntjXIj5RZvF2KEENSt8Fx4MCBgapDDKBj5W1vuAkRvnnFAZAaHcyRcw24XCoajeLtcoQYUno1qgog\nLy+Pzz77DGgblnvLLbd4rCjhWUfbg8NHm6oA0mKC+bS4hsIKC5cn+MbsvkL4i171ceTk5PD6668z\ncuRIRo4cyeuvv85zzz3n6dqEhxwtayDUoCMiyHfX7k6LDgbgs+JaL1cixNDTqyuOPXv2sG3bNjTn\nR+DMnTuXOXPm8LOf/cyjxQnP+LqsgfT4UBTFd5t4okP0RIfo+fx0LT+elNbzDkKIftPrsZgNDd+M\nYLFYpFPSV7lcKl+XW0iP9+3ZjRVFITM5gs9O13i7FCGGnF5dcfz0pz9l7ty5XH/99aiqyqeffsq/\n//u/e7o24QFnaptptjlJjwv1dimXLDM5nD2FlVQ0tPrkHfBC+KoerzhcLheKovDWW29hMpm49dZb\neeutt5gxY0aPB8/Pzyc7OxuTycTLL7/c6XWbzcaKFSswmUwsXLiQ0tJSoG2Kk0WLFjFhwgRWr17d\nYZ9Dhw4xa9YsTCYTTz31FKqq9vZcBXD0/BDWkfF+EBwpbcOJPzst/RxCDKQeg0Oj0bBhwwbi4+OZ\nPn0606dPJy4urscDO51OVq9ezYYNG8jNzeWdd97h+PHjHbbZuHEj4eHh7Ny5k7vuuoucnBwADAYD\ny5cv5+GHH+503CeffJJf/vKX7Nixg+LiYvLz83t7roK2jnGNAsNjfbupCmCUMQyDTiMd5EIMsF71\ncUyePJk//OEPlJWVUVdX5/7oTkFBAWlpaaSmpqLX65k5c2anmXV37drF3LlzAcjOzmb//v2oqkpw\ncDDXXHMNBkPHmVsrKipobGzkqquuQlEU5syZI7P19tHX5Q1cFhtCYIDW26VcsgCthvGpkXwu/RxC\nDKhe9XG8++67KIrCn//85w7Pd/embTabSUhIcD82Go2dVg00m80kJia2FaLTERYWRm1tLdHR0b06\nZkJCAmazuTenIM47Wmbx2TvGu3JNWhQv55+k2eYgWN/r25KEEJegV1cc7777Lj/60Y+4/PLLueKK\nK1i0aBG5ubmerk30s0arg5KaZq5IDPN2Kf3muuHROFwqn0s/hxADplfB8cgjj3DixAkWLVrEj3/8\nY44fP97jPFVGo5Hy8nL3Y7PZjNFo7LRNWVkZAA6HA4vF0u0aH98+Znl5eadjios7cq5tSPWYJP+5\n0/ray6LRaRQ+OiGzNQsxUHp1bV9UVMS7777rfjxp0qQeR1VlZmZSXFzMmTNnMBqN5ObmdrrbPCsr\niy1btjBhwgS2b9/OpEmTur0pLT4+ntDQUA4ePMj48ePZunUrixYt6s0pCKCgtK1falxyBDaHy8vV\n9I8Qg46rUiMlOIQYQL264hgzZgwHDx50P/7yyy8ZN25ct/vodDpWrVrFkiVLmDFjBrfddhsZGRms\nW7fO3TeyYMEC6urqMJlMvPrqqx3uDcnKyuJXv/oVW7ZsYerUqe4RWb/4xS944oknMJlMDBs2jKlT\np/b5pIeqQ2frSQgPJD7Mv+55mJwey1elddS32L1dihBDQq+uOA4fPswdd9xBUlISAOfOnWP48OHM\nmjULgL/97W9d7jdt2jSmTZvW4bnly5e7PzcYDDz//PNd7rtr164un8/MzOSdd97pTdniWwrO1rvv\nffAnk0fG8HxeEZ+cqsE0RpouhfC0XgXHhg0bPF2H8DBLq51TVU3MuSrZ26X0uwnDIjHoNOw7XiXB\nIcQA6FVwJCf735vNUHP4XAOqil9ecRh0Wq69LJr90s8hxIDwvQWnxXdy6Gw9gF/dw3GhyekxHDNb\nqLRYvV2KEH5PgmOIKCitJykikNhQQ88b+6DJI2MB2H9SrjqE8DQJjiHiq7P1jPPTqw2AcUnhhAfq\n2FtY6e1ShPB7EhxDQMP5jvEr/bB/o51Oq+GmUXHsLqzE5ZIZk4XwJAmOIaC9f8OfrzgAskbHU2mx\ncvhcQ88bCyG+MwmOIeCrUv/uGG83bXQcigIfHKvwdilC+DUJjiHgQEkdqdFBxPhpx3i72FADV6ZE\nsutrCQ4hPEmCw8+pqsoXJbVcPezik0f6k6zR8XxZWkd1owzLFcJTJDj83Nm6Fios1qETHJfHo6qw\nR0ZXCeExEhx+qr7ZRmltM+8faVvoKiUqiNLaZveH1e70coWeMTYpnLgwgzRXCeFBsmSan7JYHeQX\nVrH9iJkArcK5ulbMDd8030wYFunF6jxHo1G4ZXQcfz9Ujs3hQq+Tv42E6G/yW+XnSqqbSYkKRqu5\n+Don/ub74xKwtDrYd7zK26UI4ZfkisOP2Z0uyupbuCkjztuleITD6aK0trnT88NjQwg16Nhy4Cy3\nXB7vhcqE8G8SHH6stLYFlwrDooO9XYpHtNhdHDhR0+VrGfGh7Pq6QpqrhPAA+Y3yY2dq2v4aT/XT\n4OjOuOQIGq0OPjohzVVC9DcJDj9WUtNMTIieUMPQu7DMiA8lRK/l3a/KvF2KEH5HgsNPqarK6Zpm\nv22m6olOq2FKRiw7jpixO13eLkcIvyLB4afO1LTQZHVwWWyIt0vxmptHx1HXbOdDGV0lRL+S4PBT\nB8/UATA8ZugGx/XDY4gMDuDtz0u9XYoQfkWCw099WVpHqEFHTKje26V4jV6nYfb4JHYcMVPfbPd2\nOUL4DQkOP6SqKgdK6rgsNgRFGTo3/nVl4TWp2Bwu/vrlWW+XIoTfkODwQ6W1bRMbDo8Zmh3jFxqb\nFM7lCWFskuYqIfqNBIcf+uRU201xw2NDvVyJ9ymKwsJrUvmytJ5Cs8Xb5QjhFyQ4/NAnp2oIC9QR\nH+7fCzf11pyrktBpFP7v0zPeLkUIvyDB4Yc+Ka5hfEokmiHev9EuJtSAaYyRTV+U0mLzz+nkhRhI\nEhx+pqKhlVNVTYxP9e/1xfvqrsmXUddsZ+tB6SQX4lJJcPiZj8/3b0xI9c/1Nr6r64ZHMyYxnD/u\nK0ZVVW+XI4RPk+DwMx8dryIsUEeGMczbpQwqiqJw142XccxsYf/Jam+XI4RPk+DwM/tOVDFpRMyQ\nWript/5pfBLRIXpe3Vfs7VKE8GkSHH7kTE0zZ2pauHFkjLdLGZQCA7T883XDeP+omVNVTd4uRwif\nJcHhR9rXnrgxPdbLlQwO7SsEXvhx61gjAVoNz+04RmltM/XNNm+XKYTPGXoLNfixfceriQszkB4f\nytm6Fm+X43UXWyHw6mGR/P2rcsYkhvNPVyURETx05/MS4ruQKw4/oaoqH52oZvLImCE/P1VPbsqI\nQ0Vlr0y3LsR34tHgyM/PJzs7G5PJxMsvv9zpdZvNxooVKzCZTCxcuJDS0m/mE1q/fj0mk4ns7Gz2\n7t3rfj4rK4tZs2Yxe/Zs5s2b58nyfUqhuZGqRis3jpRmqp5EBeu5KjWKz4prqG2Spioh+spjTVVO\np5PVq1fz6quvYjQaWbBgAVlZWaSnp7u32bhxI+Hh4ezcuZPc3FxycnJYu3Ytx48fJzc3l9zcXMxm\nM4sXL2b79u1otVoAXnvtNaKjoz1Vuk/ad/6v58np0jHeG9NGxXGgpJY3PykhM0XueRGiLzx2xVFQ\nUEBaWhqpqano9XpmzpxJXl5eh2127drF3LlzAcjOzmb//v2oqkpeXh4zZ85Er9eTmppKWloaBQUF\nnirVL3x0ooph0cGkRMmMuL0RF2ZgfGokb39xloqGVm+XI4RP8VhwmM1mEhIS3I+NRiNms7nTNomJ\niQDodDrCwsKora3tcd+773PQelYAABcZSURBVL6befPm8dZbb3mqfJ9idTj56EQ1U0dJM1VfTL88\nHodL5X8+OO7tUoTwKT43qurNN9/EaDRSXV3N4sWLGTFiBNdee623y/Kqz4trabY5mTYq3tul+JSY\nUAMzxiXw53+UMGt8IokRQZ22CTPoZNSVEN/isSsOo9FIeXm5+7HZbMZoNHbapqysDACHw4HFYiEq\nKqrbfdv/jYmJwWQySRMWsKewkgCtwg1y41+fLbwmFYBfvXuM/MKqTh8Wq8PLFQox+HgsODIzMyku\nLubMmTPYbDZyc3PJysrqsE1WVhZbtmwBYPv27UyaNAlFUcjKyiI3NxebzcaZM2coLi7myiuvpLm5\nmcbGRgCam5vZt28fGRkZnjoFn7GnsJJr0qIJNfjcBaTXxYUZuH54NF+U1FJhkb4OIXrDY+80Op2O\nVatWsWTJEpxOJ/PnzycjI4N169Yxbtw4pk+fzoIFC1i5ciUmk4mIiAjWrFkDQEZGBrfddhszZsxA\nq9WyatUqtFot1dXV3H///UDbqK3bb7+dqVOneuoUBrX6ZhsWq4NKi5Wvyy3cd/NISmub3a9b7bLu\nRG9NGx3Pp6dryTtawZ3XDfN2OUIMeh79E3XatGlMmzatw3PLly93f24wGHj++ee73Hfp0qUsXbq0\nw3Opqan89a9/7f9CfZDF6iC/sIrPitvujNZpNOQXfnND24RhMsS0t0INOm4cGcMHxyqZVtdCUmTn\nvg4hxDfkznEfV1jRSHigDqMsE3tJpqTHERigYecRc88bCzHESXD4MKdL5XiFhQxjmEwzcomC9Fqm\nZcRxzGzhdLXMnCtEdyQ4fNjp6iZa7S5GyaJN/eKGkbGEBer4+6FyWSVQiG5IcPiwI2UN6DQKo4yh\n3i7FL+h1GkxXGCmpaebQuQZvlyPEoCXB4aNUVeXIuQbS40Mx6LTeLsdvXJ0WhTHcwPbD5ThcLm+X\nI8SgJMHhowrNjdS12BmbFO7tUvyKRlG4bVwiNU02/nGy81oeQggJDp+VX1iJAoxOkODobxnxoWTE\nh5L3tZkamXZdiE4kOHzU3qIqLosNkbvFPUBRFG6/Mgm7Q+XF3Se8XY4Qg44Ehw8qrmriZFUTYxLl\nasNT4sIMTMmI5e+Hyvm0WJqshLiQBIcP+vuhtgkgx0j/hkfdMjoeY7iB/9h6CLtTOsqFaCfB4WNU\nVWXzF6VkJocTJdN9e5Rep+HB743i63ILa98v9HY5QgwaEhw+5quz9RRVNPL9cYneLmVImJIRyw+v\nSeV3u0/wj5PV3i5HiEFBgsPHbPq8FINOQ9blcd4uZchYNWsMadHBPPjWQeqb7d4uRwivk+DwIVaH\nk20Hz5E9NoGwwABvlzNkhBh0rLtjAhUWK/f9+XOsDpmyXgxtEhw+JO9oBfUtduZPTPF2KUPO+NRI\nnp1/JfuOV7PiLwdxumQuKzF0SXD4kE2fl2IMNzAlPdbbpQxJ8yem8B+3j+Hvh8p5eFMBNoeMtBJD\nk9w95iOOVzTywbEKlt2SjlYjU6h7y91ThtPY6mDN+4WcqGzkdz+6utuFn9pXaryYMIOOCBkdJ3yM\nBIePeGnPCQw6DXdNvszbpQx5y7+XwShjKCs3FTDz+b08/P3LWTgxBZ228wV8+0qNFzN1VKwEh/A5\n0lTlA0prm9l64Cx3XjeMmFBZ6W8wuC0zkb8uu5ERcaE8tvkrstfm807BOen7EEOCBIcPeDn/JIoC\n99w0wtuliAuMiAtl009vYP2iiQAs+/MBbs75gNf3F9Nql5FXwn9JcAxyFQ2t/OXTM8ybkNJtW7rw\nDkVRyB6bwI4Hp/HSjycSF2pg1bbD3Pyb3fzvx6dlqhLhl6SPYxBTVZVV2w6DCktvHuntckQ3tBqF\n749L4PvjEvjoRBW/3VHIf2w9xMi4EL4/NpHkKAl94T/kimMQy/2qjPcOl/OgaRSXxYZ4uxzRS5NH\nxrLxpzfw+59cQ32LnRf3HGfnETMuWcdc+AkJjkGqqtHKqm2HGZ8ayT03Dfd2OaKPFEXBNMbI/959\nHeNTIvngWAVvfHwaq/R9CD8gwTEItdqdPPjWQRpbHeQsuLLLYZ7CN4QFBrBgYgqzxidRaLbw4p4T\n1DbLqoLCt0kfh5dc7MYwq93JY5u/4tPiWn694EoyjGFeqE60czhdlNY2X/R1nQa6u4HcaneiKAo3\njIghLtTAnz85zUt7TvD/brhMBjsInyXB4SVd3RhmabWz8bNSTlQ28uhtl7PwmlQvVSfatdhdHDhx\n8RUAJwyL5EBJXbevt0uPD+Vfp47kjx8V8/u9J/nR9WlMHSXTxwjfI20gg4Cqqnx+uoa17xdxqrqJ\n+VenMPNKWW/DHxnDA/nptJFEBev540en2H643NslCdFncsXhRVaHkwMldXx8spoKi5XLYoKZMyGZ\n+LBAb5cmPCgiKIB7p47gjY9P88t3jtJqd7F02kg0MgeZ8BESHF5wurqJ331wnG1fnqPV7iI5MoiF\nE1MYnxqJRml78+ipbV1G5/i2wAAtd02+jD1Flfxm+zH2Ha/i2flXkhod3GE7mSSxf8j/Y/+S4BhA\nX5TUsn7PCXYcMaNRFMYmhTN5RAyp0cEoSse/NnvTti58m06r4clZY/jeFUaezj1K9tp8fjwpjYUT\nU9yDIi7sC3OpKg0tdmqabDS0OmhstZMWG0x0sIFgg5akiCCSIoNIiwkmMEDrzVMbdGSyyf4lwTEA\nDpTU8pvtx/joRDXhgTruu3kkpiuMHCmzeLs04WWKonDndcOYOiqOZ3KP8sqHp3g5/yRpMcEkRgQS\nqNNSUttMY6uD2mYbdmfPNxEqCqRGBZMeH8rIuBDSYkKICzMQG2ogNlRPbKiBEIP//+o7XSpnapop\nqmiktLaZ4qomQg0BJEQEytIEl8j/f3q86HiFhd9sP8b2w2ZiQvQ8MfMK7rxuGCEGXVszlASHOC85\nMogXfnQ1VY1Wth44y4GSOiosrZyqakIFYkMNZMSHEhtmICbEQHigjrDAACaPjEarUbBYHVQ0WClv\naKWkppmS6mZO1zTz4fGqLhecCgzQEBNiICZUT0J4IMaIQNLjQhiXHIExvGMfmy8149idLvYWVfLX\ng+d4/2gFjV00Txl0GobHhjAmMZzM5AgMcnXWZxIcHnCmppnn84p4+4tSgvU6HjKN4l+mDCd0CPyV\nJy5NbKiBJRfMglxa29xtEwuKwmenvxkObNBpyYgPIyO+ranLpaqMTQonQKuhqtFKVaONqkYr1Y1W\nqptsVFqsHClr4P2jZtpnhI8ICmBkXAgj40IZGRfK7eMTB31wVDdaefOTEv7349OYG6xEBAUwMzOR\nq9MiyTCG0Wx18OHxauqabZysaqLIbOHrcgt/KzjH2KQIggI0JEYEyZVIL3n0nSw/P5+nn34al8vF\nwoULuffeezu8brPZePjhhzl8+DCRkZGsWbOGlJS29bTXr1/Ppk2b0Gg0PPHEE9x00029OqY3Ha9o\n5KU9J9hy4CxajcK/3Dic+25JJzpkcP/SCf+lURTiwgykRAVfdJvS2mY++LqSsvoWSmqaKa5u5uty\nC1+cvz/lL5+WMG1UHJPTY5k0IoaIoICBKr9Hh87W88ePivnrl+ewOVzclBHLL2eP4+bR8eh139xt\nUFrbTElNC8Oig7kyJRJVbWvG+qKkjoKzdTz4f1/y7HvHmHt1MvOvTiE9PtSLZzX4eSw4nE4nq1ev\n5tVXX8VoNLJgwQKysrJIT093b7Nx40bCw8PZuXMnubm55OTksHbtWo4fP05ubi65ubmYzWYWL17M\n9u3bAXo85kCraGjlg2MVbPyslM9O1xIYoOEnN6Rx79QRJEbIncHC+3ozQk+rUUiJCiYlKpjJI9uu\nVMrrWzlR2UhNk43/+6yU1/afBsAYbiAtJoTYUD1BATp0mrbZgQMDtAQGaDHoNBh0GvQBWoIDtCRH\nBjEiPpS4UEOHN/PvQlVVTlQ2seNIOX89eI6vyy0E67XMvSqJWeOT3JOBVlhaO53jhRRFYVhMCMNi\nQtz3TO0+VsHL+Sd5cfcJRsSGcGVKBFckhhMbaiAqJABFUbA7XNidKnanC5vThd3pwu5w0dBqp9Hq\nwOlS0SgKGo2CVlHQKKDRKOi1CqBc8Frb8xpFQatRCNFrCQsMQKtRCNJriQ8zEBcWSHigrtPAmcHA\nY8FRUFBAWloaqaltdz/PnDmTvLy8Dm/yu3btYtmyZQBkZ2ezevVqVFUlLy+PmTNnotfrSU1NJS0t\njYKCAoAej9mfVFXFYnXQ0GKnocWBpdVOXYud4qomTlQ2cqCkjqKKRgBGxIXw6G2Xs2BiCrGySp8Y\nRL7LCD2NopAU2TZKa+qoWOLDAjlQUstnp2s5WdnE6eomjpVbaLE5abQ6aLY5cfRi9cOo4ACM4YHE\nhwdiDDNgDA/EGG4gKkRPqEFHsF5H29RsCla7k4ZWB9VNVkqqmzlZ1cQXp2upbmqb6+vqYZE8OWsM\nc69OwdJqJ7+wipKall6fY7sArYapo2L5f5Mvo8LSyl8PnuPjkzV8fLKGrQfP9XhOnmTQaYgLM5wP\nEgPxYYHffB5uIC40kMjggPNhrUWv06DXaTze5Oax4DCbzSQkJLgfG41G95v/hdskJralvU6nIyws\njNraWsxmM+PHj++wr9lsBujxmP3p3zcW8PYXpV2+Fhuq54rEcOZPTGFKeixjk8IH5V8GQvQHvU7D\n9SNiuH5ETKfX2vthXGrbX+J2p4rj/L9Wh5O0mGBcKlQ0WDFbWqloaKXCYqWw3EJlo7VXy+3qtRpS\no4O4eXQ81w2P4sb02A7Nb5ZWe7+cZ3xYIEtuGuHuZ2potVPTaKPm/MSUeq2GAG3bm7NOo2DQtT2u\ntLTy8ckaNBoFl6qiqnT4d2xSOF+W1nd6vu2jLdjiQg04XSpNVgeVjVYqLVYqLFYqGlqpbLRysrKJ\nf5yqoa659+c6Ljmcd/7tpn75v7nQkOitPXv2LPPmzftO+17dzWtNwI7zH/1t0yB/fTDUMBTOoSeD\n4Rx78nEXz+mApPMffXHq/MdbfdzP0+fYk3d7eP3DXhwj7PxHnxTCvA/W9HUvAKKiooiKiuryNY8F\nh9FopLz8m3l4zGYzRqOx0zZlZWUkJCTgcDiwWCxERUV1u29Px+zKP/7xj0s9HSGEEOd5bJLDzMxM\niouLOXPmDDabjdzcXLKysjpsk5WVxZYtWwDYvn07kyZNQlEUsrKyyM3NxWazcebMGYqLi7nyyit7\ndUwhhBCe5bErDp1Ox6pVq1iyZAlOp5P58+eTkZHBunXrGDduHNOnT2fBggWsXLkSk8lEREQEa9a0\nXVJlZGRw2223MWPGDLRaLatWrUKrbbtJp6tjCiGEGDiKqspCyEIIIXpP1uMQQgjRJxIcQggh+kSC\nY4Dl5+eTnZ2NyWTi5Zdf9nY5HpeVlcWsWbOYPXu2e0h0XV0dixcv5tZbb2Xx4sXU19d7ucpL99hj\nj3HDDTdw++23u5+72HmqqspTTz2FyWRi1qxZHD582FtlX7Kuzvu///u/uemmm5g9ezazZ89mz549\n7tfWr1+PyWQiOzubvXv3eqPkflNWVsaiRYuYMWMGM2fO5LXXXgOGxvcdVQwYh8OhTp8+XS0pKVGt\nVqs6a9YstaioyNtledQtt9yiVldXd3ju2WefVdevX6+qqqquX79e/fWvf+2N0vrVJ598oh46dEid\nOXOm+7mLnefu3bvVu+++W3W5XOqBAwfUBQsWeKXm/tDVeT///PPqhg0bOm1bVFSkzpo1S7VarWpJ\nSYk6ffp01eFwDGS5/cpsNquHDh1SVVVVLRaLeuutt6pFRUVD4vsuVxwD6MJpWPR6vXvKlKEmLy+P\nOXPmADBnzhzef/99L1d06a699loiIiI6PHex82x/XlEUrrrqKhoaGqioqBjwmvtDV+d9Md1NJeSL\n4uPjGTt2LAChoaGMGDECs9k8JL7vEhwDqKtpWNqnUvFnd999N/PmzeOtt9ru962uriY+Ph6AuLg4\nqqurvVmex1zsPL/9c5CQkOB3Pwd/+tOfmDVrFo899pi7qcaff/5LS0s5evQo48ePHxLfdwkO4VFv\nvvkmW7Zs4fe//z1/+tOf+PTTTzu8rijKkJjja6icJ8Cdd97Jzp072bZtG/Hx8fzqV7/ydkke1dTU\nxAMPPMDjjz9OaGjH6dj99fsuwTGAejMNi79pP7+YmBhMJhMFBQXExMS4L9ErKiqIjo72Zokec7Hz\n/PbPQXl5uV/9HMTGxqLVatFoNCxcuJCvvvoK8M+ff7vdzgMPPMCsWbO49dZbgaHxfZfgGEBDbcqU\n5uZmGhsb3Z/v27ePjIwMsrKy2Lp1KwBbt25l+vTp3izTYy52nu3Pq6rKwYMHCQsLczdt+IML2+3f\nf/999+wOF5tKyFepqsrPf/5zRowYweLFi93PD4Xvu9w5PsD27NnDM888454yZenSpd4uyWPOnDnD\n/fffD7Qt7HX77bezdOlSamtrWbFiBWVlZSQlJbF27VoiIy++XoIveOihh/jkk0+ora0lJiaGf/u3\nf+N73/tel+epqiqrV69m7969BAUF8cwzz5CZmentU/hOujrvTz75hK+//hqA5ORkVq9e7X6DfPHF\nF3n77bfRarU8/vjjTJs2zZvlX5LPPvuMH/3oR4waNQqNpu1v8Iceeogrr7zS77/vEhxCCCH6RJqq\nhBBC9IkEhxBCiD6R4BBCCNEnEhxCCCH6RIJDCCFEn0hwCCGE6BMJDiG6MGHChEva/+mnn+40vcp3\ncc8999DQ0HBJNT344IMUFxdfci1CtJPgEKKf1dbW8uWXX3Lttdde8rF+//vfEx4efknHuPPOO9mw\nYcMl1yJEO523CxBisNuwYQN///vfsdlsmEwmHnjgAUpLS7nnnnuYOHEiBw4cwGg08rvf/Y7AwEB2\n7NjBTTfd5N4/JyeHXbt2odVqmTJlCo888giPPvooBoOBo0ePUl1dzTPPPMPWrVs5ePAg48ePd08M\nmJWVxaZNmzrN59VVTc3NzaxYsYLy8nJcLhf33XcfM2bM4JprruHRRx/F4XCg08mvvLh08lMkRDc+\n/PBDTp8+zaZNm1BVlaVLl/Lpp5+SmJjI6dOn+e1vf8tTTz3F8uXL2b59O7Nnz+aLL74gOzsbaLv6\n2LlzJ++99x6KoribnQAaGhp46623yMvLY+nSpbz55ptkZGSwYMECjh49yhVXXNGnmmpqaoiPj3ev\nLGmxWADQaDSkpaXx9ddfM27cOA//j4mhQJqqhOjGvn372LdvH3PmzGHu3LmcPHnS3V+QkpLifnMf\nO3YsZ8+eBaCystJ9hRAWFobBYODxxx9nx44dBAYGuo99yy23oCgKo0ePJjY2ltGjR6PRaEhPT3cf\nqy81jRo1io8++ojf/OY3fPbZZ4SFhbn3iY6O9tlFg8TgI1ccQnRDVVXuvfde7rjjjg7Pl5aWotfr\n3Y+1Wi1WqxUAg8Hg/lyn07Fp0yb279/Pe++9xxtvvMHrr78O4N5fUZQOx9JoNDgcjj7XBLB582b2\n7NnD2rVrmTRpEsuWLQPAZrN1CC0hLoVccQjRjSlTpvD222/T1NQEtK0h0dOKhSNHjqSkpARoW+TH\nYrEwbdo0Hn/8cY4dO+axmsxmM0FBQcyePZu7776bI0eOuPcpLi52T28uxKWSKw4hujFlyhROnDjh\n/us+ODiY3/zmN+5ptLty880385e//IWFCxfS1NTEfffd574CefTRRz1W0+nTp/n1r3+NRqNBp9Px\n5JNPAlBVVYXBYCAuLu6Sv7YQINOqC+ERd955J+vXr7/kobT94Y9//CMhISEsXLjQ26UIPyFNVUJ4\nwKOPPsq5c+e8XQbQ1kE/d+5cb5ch/IhccQghhOgTueIQQgjRJxIcQggh+kSCQwghRJ9IcAghhOgT\nCQ4hhBB98v8BnLWiiLdEExkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXxU9b3/8deZmWSyTfZkEpIQhQTLLuKCqKChMRXkEdZWb2t/UtFblCtoi1VrqaXaW9v0At5rFUu19dpaL8hSjRUhiEFEBQEjiyQBQxJIJtskmWyznt8fIZGYkEUymSWf5+ORh5mZc04+x4R5z/l+v+f7VVRVVRFCCCH6SePpAoQQQvgWCQ4hhBADIsEhhBBiQCQ4hBBCDIgEhxBCiAGR4BBCCDEgOncePD8/n6effhqXy8XixYu57777urxus9l45JFHOHbsGJGRkaxdu5bk5GT27dvHH/7wB+x2OwEBAaxatYrrr78egLvuuouqqiqCgoIAeOmll4iJiXHnaQghhLiA24LD6XSyZs0aXn75ZYxGI4sWLSIjI4O0tLTObTZt2kR4eDg7d+4kNzeXnJwc1q1bR1RUFM8//zxGo5HCwkLuuece9u7d27lfTk4OEydOdFfpQggheuG2pqqCggJSU1NJSUkhMDCQOXPmkJeX12Wb3bt3M3/+fACysrLYv38/qqoybtw4jEYjAOnp6VitVmw2m7tKFUIIMQBuu+IwmUwkJCR0PjYajRQUFHTbJjExsb0QnQ6DwYDZbCY6Orpzmx07djBu3DgCAwM7n3v88cfRaDTceuut3H///SiK0mst1113HUlJSYNxWkIIMSxERUUB8Oc//7nba27t47hURUVF5OTk8NJLL3U+l5OTg9FopKmpiQcffJDt27czb968Xo+TlJTEli1b3F2uEEL4lQULFvT4vNuaqoxGI5WVlZ2PTSZTZ/PThdtUVFQA4HA4sFgsnSlXWVnJ8uXLeeaZZxg5cmSXfQDCwsK4/fbbu13FCCGEcC+3BcfEiRMpKSmhrKwMm81Gbm4uGRkZXbbJyMhg69atQHuT1LRp01AUhcbGRu677z5+8pOfMHXq1M7tHQ4HdXV1ANjtdvbs2UN6erq7TkEIIUQP3NZUpdPpWL16NUuXLsXpdLJw4ULS09NZv349EyZMYNasWSxatIhVq1aRmZlJREQEa9euBeDVV1+ltLSU5557jueeew5oH3YbHBzM0qVLsdvtuFwurr/+er773e+66xSEEEL0QBkO06ovWLBA+jiEEGKALvbeKXeOCyGEGBAJDiGEEAMiwSGEEGJAJDiEEEIMiASHEEKIAfHqO8eF5zS02LBYHb1uY9DriAgJ7HUbIYT/keAQPbJYHeQX1vS6zYwxsRIcQgxD0lQlhBBiQCQ4hBBCDIgEhxBCiAGR4BBCCDEgEhxCCCEGRIJDCCHEgEhwCCGEGBAJDiGEEAMiwSGEEGJAJDiEEEIMiASHEEKIAZHgEEIIMSASHEIIIQZEgkMIIcSASHAIIYQYEAkOIYQQAyLBIYQQYkAkOIQQQgyIBIcQQogBkeAQQggxIBIcQgghBkSCQwghxIDoPF2A8F8NLTYsVsdFXzfodUSEBA5hRUKIwSDBIdzGYnWQX1hz0ddnjImV4BDCB0lTlRBCiAGR4BBCCDEgEhxCCCEGRIJDCCHEgLg1OPLz88nKyiIzM5MXX3yx2+s2m42VK1eSmZnJ4sWLKS8vB2Dfvn0sWLCAuXPnsmDBAvbv39+5z9GjR5k7dy6ZmZk89dRTqKrqzlMQ35DLpWJzuHCpqvyOhPAzbhtV5XQ6WbNmDS+//DJGo5FFixaRkZFBWlpa5zabNm0iPDycnTt3kpubS05ODuvWrSMqKornn38eo9FIYWEh99xzD3v37gXgySef5Ne//jWTJ0/m3nvvJT8/n5kzZ7rrNEQ/OJwuDp4x89HpWg6WmCmta6GioRW7sz0wArQKE5MiuOayaEZGh6AoiocrFkJcCrcFR0FBAampqaSkpAAwZ84c8vLyugTH7t27Wb58OQBZWVmsWbMGVVUZN25c5zbp6elYrVZsNhv19fU0NTVx5ZVXAjBv3jzy8vIkODzoUKmZx974nJMmCxoFxiaGc2VKJLMnJuJSXZyubqa+xU7B2QYOldZzdWoU86ckSXgI4cPcFhwmk4mEhITOx0ajkYKCgm7bJCYmthei02EwGDCbzURHR3dus2PHDsaNG0dgYGC3YyYkJGAymdx1CqIXqqryx/eKee1AGQnhQay/40puviKeiOCAzm3KzS2d93HMmZRI3okqPiiuITo0kJuviPdU6UKIS+TVNwAWFRWRk5PDSy+95OlSxNd8esbMlsNn+d7VKfxi7jjC9L3/Kel1Wm6bkECT1cG7x01EhQYyfXQ05eaWi+4jd5YL4Z3cFhxGo5HKysrOxyaTCaPR2G2biooKEhIScDgcWCwWoqKiAKisrGT58uU888wzjBw5ssdjVlZWdjumcL+aJitvFVRw1chI/nPBRDSa/jU7KYrCgilJ1LfY2HroLAuvSqK4qvmi28ud5UJ4J7eNqpo4cSIlJSWUlZVhs9nIzc0lIyOjyzYZGRls3boVaG+SmjZtGoqi0NjYyH333cdPfvITpk6d2rl9fHw8YWFhHDlyBFVV2bZtG7NmzXLXKYgeOF0q/3ewDK1G4Yk5Y/sdGh10Wg1zJ4/A5nTxztHKvncQQngdtwWHTqdj9erVLF26lNmzZ3PbbbeRnp7O+vXrycvLA2DRokXU19eTmZnJyy+/zE9/+lMAXn31VUpLS3nuuefIzs4mOzub2tpaAH75y1/yxBNPkJmZyciRI5kxY4a7TkH04NAZM+XmVuZNSSI+POgbHSMxIphRcaH887NzOF0yVFcIX6Oow2CQ/YIFC9iyZYuny/ApF3ZsX+i594pxulT+IyONmVfEkRwVMuBjAJyoaOR/PzrDHdekMCk5ssdtZoyJ7fX4Qgj3uth7p9w5LvrtbH0rZ+tbueayqEseTntFgoEREUHsK7747LlCCO8kwSH67UBJHTqNwpUpUZd8LI2ikD0liTJzK2V1Fx9ZJYTwPhIcol+sDiefldUzKTmC4EDtoBxz1rfi0ShwvKJxUI4nhBgaEhyiXz4vb8DqcHHNZdF9b9xPoXodqTGhFJosg3ZMIYT7SXCIfjlcVk9cmJ6R0YPbWT3GaKCioY3GVvugHlcI4T4SHKJPNoeL0toWxiYaBn2OqTHGMACKquSqQwhfIcEh+lRS24xTVRkdFzbox04ID8IQpOOkqWnQjy2EcA8JDtGnU1VNaDUKqTGhg35sRVEYE2+guMoiNwMK4SMkOESfTlU3MTI6hECde/5cxiQYaLO7ep3wUAjhPSQ4RK+arQ7ONbS5pZmqQ1pcGArI6CohfIQEh+jV6Zr22WvT4t0XHMGBWlKiQyiukn4OIXyBBIfoVXFVE3qdhqTIYLf+nJHRIVQ0tOFwutz6c4QQl06CQ/TqVHUTo2JD0Q5w+vSBSokOweFSqWhoc+vPEUJcOgkOcVH1LTbqmm2McmP/RoeUqPYrmjLpIBfC60lwiIsqN7cCDPrd4j2JCA4gPEgnEx4K4QMkOMRFna1vRaNAQsQ3W7BpIBRFITkqhLLzYSWE8F4SHOKiztW3YgwPIkA7NH8mKdEh1DXbaLY6huTnCSG+GQkO0SNVVSk3t7p9NNWFUqKln0MIXyDBIXpU2dhGq91JUtTQBUdSZDAKUFYnzVVCeDMJDtGjLyra7+IeyisOvU5LQkSQXHEI4eUkOESPTposaBWFhHD3d4xfKDkqhHJzCy5VJjwUwltJcIgefVFhwRihRzdEHeMdUqKCabO7qG2yDenPFUL0nwSH6EZVVU6aLCRFuv/+ja8bcb5prKJB+jmE8FY6TxcgvE9ZXSuWNkef/RsOZ+9ToVvtzgH/7HiDHo2CTD0ihBeT4BDdFJytB+hzRFWr3cXhU3UXfX3KyMgB/2ydVkO8IUiuOITwYtJUJbo5dq4RnUbBGK73yM9PjAiSKw4hvJgEh+imsNJCakwIOo1n/jwSI4KwtDkwN0sHuRDeSIJDdFNYZeGy2MFfX7y/Es/3rcjCTkJ4JwkO0UWLzUFZXSuXx3gwOM7fO1IkwSGEV5LgEF10fMq/3INXHCF6HRHBAXLFIYSXkuAQXRSaPB8c0N7PIVccQngnCQ7RRZHJQqBWw4iooZ1q5OsSIoIorW2h7RvcCyKEcC8JDtFFocnCqLhQj42o6pAYEYxTVSkyyVWHEN5GgkN0UWhqYozR4OkyGHF+1cHjFQ0erkQI8XVuDY78/HyysrLIzMzkxRdf7Pa6zWZj5cqVZGZmsnjxYsrLywEwm83cddddTJkyhTVr1nTZ56677iIrK4vs7Gyys7Opra115ykMK81WB2frWxljDPN0KUSFBhIcqOXE+endhRDeo1/BsXz5cvbs2YPL5er3gZ1OJ2vWrGHjxo3k5uby1ltvUVxc3GWbTZs2ER4ezs6dO7n77rvJyckBQK/Xs2LFCh555JEej52Tk8P27dvZvn07MTEx/a5J9K6jMzrdC644NIpCWlwox881eroUIcTX9Cs4/u3f/o0333yTW2+9lZycHE6fPt3nPgUFBaSmppKSkkJgYCBz5swhLy+vyza7d+9m/vz5AGRlZbF//35UVSUkJISrr74avd4zU14MV4Wm9k/33tBUBZAWb+BERSOqrM0hhFfpV3BMnz6dP/zhD2zdupWkpCSWLFnCHXfcwRtvvIHdbu9xH5PJREJCQudjo9GIyWTqtk1iYiIAOp0Og8GA2Wzus57HH3+c7OxsnnvuOXlTGURFJgt6nYaR0UM/nXpP0uLDsFgdlJtlwkMhvEm/+zjMZjNbtmxh06ZNjB07lh/+8IccP36cH/3oR+6sr5ucnBzefPNN/va3v/Hpp5+yffv2If35/qyoqonRcWFoNYqnSwEgPb69r+WYNFcJ4VX6FRwPPPAA3//+92lra+OFF17ghRdeYPbs2fziF7+gubm5x32MRiOVlZWdj00mE0ajsds2FRUVADgcDiwWC1FRUb3W0nGMsLAwbr/9dgoKCvpzCqIfikxNXtEx3mFUXCgaBY5XSHAI4U36FRzf/e53efvtt/n3f/934uPjgfYRUQBbtmzpcZ+JEydSUlJCWVkZNpuN3NxcMjIyumyTkZHB1q1bAdixYwfTpk1DUS7+adfhcFBX177+g91uZ8+ePaSnp/fnFEQfms6PqPKGjvEOQQFaLo8N5YQEhxBepV8LOa1bt46ZM2d2ee573/te55t+jwfW6Vi9ejVLly7F6XSycOFC0tPTWb9+PRMmTGDWrFksWrSIVatWkZmZSUREBGvXru3cPyMjg6amJux2O7t27eKll15ixIgRLF26FLvdjsvl4vrrr+e73/3uNzx1caEiL+sY7zBuRASHzvTd7yWEGDq9Bkd1dTUmk4m2tjaOHz/e2RHd1NREa2vfHZYzZ87sFjgrVqzo/F6v1/Pss8/2uO/u3bt7fP5iVzji0nTcod3Rr+AtxiWG8+Zn52hotRMRHODpcoQQ9BEcH3zwAVu2bKGyspL//M//7Hw+NDSUhx9+2O3FiaFTeH5EVYqXjKjqMDax/QroREUj00bJPTtCeINeg2P+/PnMnz+fHTt2kJWVNVQ1CQ8orGoiLd57RlR1GDciHIDj5yQ4hPAWvQbH9u3byc7O5uzZs7z88svdXl+yZInbChNDq8hk8co35nhDELFheukgF8KL9BocHf0YLS0tQ1KM8IzGNjsVDW2ke9FQ3AuNTTTIkFwhvEivwXHHHXcA7XNVCf/V0TE+Jt67RlQ5nC7KzS2kRIfw0elaSmqa0Gm/GkFu0OuICAn0YIVCDE+9BsdTTz3V685PPPHEoBYjPMNbh+K22l0cPlWH06lid6psOXSOhIivFpiaMSZWgkMID+g1OMaPHz9UdQgPKjQ1ERygJTkq2NOl9KgjLCoaWrsEhxDCM/ocVSX8X1GVhbT4MDReNqKqQ2yYHp1GoaKhjSmeLkYI0XtwPP300/z85z/nxz/+cY+vv/DCC24pSgytQpOFG9JiPV3GRWk1CgkRQVQ0yCy5QniDXoMjOzsbYMhnwBVDp6HVjqnR6nX9G1+XEB7E8fNrc/Q2n5kQwv16DY4JEyYAcO2112Kz2Th9+jSKonD55ZcTGCidkr6socWGxeqgoLwegOjQAMrNXw27ttqdniqtR4mRwRw8Y6axzSFTjwjhYf2a5HDPnj388pe/ZOTIkaiqSnl5Ob/61a+6zUMlfIfF6iC/sIYDX7bPNlzdaCO/sKbz9SkjIz1VWo9GXNBBLsEhhGf1Kzh++9vf8sorr5CamgpAaWkp9913nwSHHzBZ2gjUaogI8e4344TwjuBo41sJ4R6uRojhrV/rcYSGhnaGBkBKSgqhoaFuK0oMnapGK/HhejRe3m+gD9ASHRpIRUObp0sRYtjr9Yrj3XffBdr7Ou69915uu+02FEXhnXfeYeLEiUNSoHAvk6XN66ZSv5jEiCAq6mVklRCe1mtwvPfee53fx8bGcuDAAQCio6OxWq3urUy4XavNiaXNQbzBN26qS4wI4vi5RqwOJ3qd1tPlCDFs9RocF67BIfyPqbG92ccYrvdwJf2TGBGMClQ2tJEaI02lQnhKvzrHrVYrmzdvpqioqMuVhgSLbzNZ2oMjPtw3rjhGRLZPiXKuvlWCQwgP6lfn+KpVq6iuruaDDz7g2muvxWQySee4H6hqtBKo0xDpI8Nbw4N0GPQ6ys3SzyGEJ/UrOEpLS1m5ciXBwcHMnz+fDRs2UFBQ4O7ahJuZLG3EG/Q+cye2oigkRQVLcAjhYf0KDp2uvUUrPDycwsJCLBYLtbW1bi1MuF9VoxWjj3SMd0iOCqamyUqbl93ZLsRw0q8+ju9973s0NDSwYsUKli1bRktLCytWrHB3bcKNGlrtNFkdxPtIx3iH5KgQVOCsDMsVwmP6FRyLFy8G2uesysvLc2tBYmh8WdMMgNFHOsY7JJ/vID8rzVVCeEy/gsNsNvM///M/HDp0CEVRmDp1Kvfffz9RUVHurk+4SUdwxBt864ojRK8jOjSQsgsmZBRCDK1+9XE8/PDDREdH8+yzz7J+/XqioqJ46KGH3F2bcKMva5rR6zQ+OWFgUmSwXHEI4UH9Co7q6moeeOABUlJSSElJ4f7775fOcR/3ZU2zT42oulByVDD1rXbMzTZPlyLEsNSv4LjhhhvIzc3F5XLhcrl4++23ufHGG91dm3ATVVU5VdVEQoR3rjHel+SoEABOVDZ6uBIhhqde+zimTJmCoiioqspf//pXVq1aBYDL5SIkJISf/exnQ1KkGFymRiuNbQ4SInyrY7zDiMggFODEOYunSxFiWOo1OA4fPjxUdYgh1PFJPcHHRlR10Ou0xIfrOV4hVxxCeEK/RlUB5OXlcfDgQaB9WO4tt9zitqKEe31R0f5J3VeDA2BkdCjHzjXicqloNL7XTyOEL+tXH0dOTg6vvPIKo0ePZvTo0bzyyiv84Q9/cHdtwk2+qGzEGK4nONB3pya/LCaEJquDwipprhJiqPXriuP9999n+/btaDTtOTN//nzmzZvHT37yE7cWJ9zjiwoLaT6yeNPFdMyOe6DELEvJCjHE+nXFAdDY+FV7ssUin/J8ldXh5FR1E6PjfDs4okICiA0L5GBJnadLEWLY6dcVx49//GPmz5/Pddddh6qqHDhwgJ/+9Kfurk24QXFVEw6X6vPBoSgKk5IjOVhi9nQpQgw7fV5xuFwuFEXh9ddfJzMzk1tvvZXXX3+d2bNn93nw/Px8srKyyMzM5MUXX+z2us1mY+XKlWRmZrJ48WLKy8uB9ilO7rrrLqZMmcKaNWu67HP06FHmzp1LZmYmTz31FKqq9vdcBV91jKfF+/56KpOSIzhb3yoTHgoxxPoMDo1Gw8aNG4mPj2fWrFnMmjWLuLi4Pg/sdDpZs2YNGzduJDc3l7feeovi4uIu22zatInw8HB27tzJ3XffTU5ODgB6vZ4VK1bwyCOPdDvuk08+ya9//WveffddSkpKyM/P7++5Cto7xvU6DUlRvnnz34UmJUcASHOVEEOsX30c06dP589//jMVFRXU19d3fvWmoKCA1NRUUlJSCAwMZM6cOd1m1t29ezfz588HICsri/3796OqKiEhIVx99dXo9V0n4KuqqqKpqYkrr7wSRVGYN2+ezNY7QF9UWhhjNKDT9Lt7y2uNigslTK+T5iohhli/+jjefvttFEXh73//e5fne3vTNplMJCQkdD42Go3dVg00mUwkJia2F6LTYTAYMJvNREdH9+uYCQkJmEym/pyCOO9EhYVbruj7itEX6DQapoyM5IBccQgxpPodHH//+9/59NNPURSFq6++mjvuuMPdtYlBVm2xUtNk5YoEg6dLGTTXXBbN2l2FNLTafXKmXyF8Ub/aK372s59x6tQp7rrrLn7wgx9QXFzc5zxVRqORysrKzscmkwmj0dhtm4qKCgAcDgcWi6XXNT6+fszKyspuxxQXd/RcAwATkiI8XMngue7yaFQVPj4tszULMVT6FRxFRUU8/fTTTJs2jWnTpvHUU09RVFTU6z4TJ06kpKSEsrIybDYbubm5ZGRkdNkmIyODrVu3ArBjxw6mTZvW6zTf8fHxhIWFceTIEVRVZdu2bcyaNas/pyCAo+XtwTF+hP/cMDdlZBTBAVr2Fdd4uhQhho1+NVWNGzeOI0eOcOWVVwLw2WefMWHChN4PrNOxevVqli5ditPpZOHChaSnp7N+/XomTJjArFmzWLRoEatWrSIzM5OIiAjWrl3buX9GRgZNTU3Y7XZ27drFSy+9RFpaGr/85S957LHHaGtrY8aMGcyYMeMSTn94KTjbwKjYUAxBATS02j1dzqAI1Gm4blQ0H0hwCDFk+hUcx44d44477mDEiBEAnDt3jssvv5y5c+cC8Oabb/a438yZM5k5c2aX51asWNH5vV6v59lnn+1x3927d/f4/MSJE3nrrbf6U7b4mqNnG7jmsp4HHviyG9NieSr3BBUNrST66BojQviSfgXHxo0b3V2HcLOaJisVDW2d9z74kxvSYgHYV1zLoqnJHq5GCP/Xr+BISkpydx3CzT4/638d4x2uMBqICQ3kw+IaCQ4hhoDv3wUm+sUfO8Y7aDQK09Ni+aC4RqagEWIISHAME59f0DHuj25Mi6HKYqW4qsnTpQjh9yQ4honPzzb4ZTNVh45+jr1FMrpKCHeT4BgGOjrGJ/pxcCRHhTAqLpT3TlZ5uhQh/J4ExzDgzx3jF/r2WCMfn66jyerwdClC+DUJjmHg846O8ST/6xi/UMa34rE5XewtrPZ0KUL4NQmOYeBwqZm0+DDC/bRjvMPVqVFEBAew64Q0VwnhThIcfk5VVQ6X1XPVyEhPl+J2Oq2Gm6+IY8/JKpwuGZYrhLtIcPi50zXN1LfYuWrkxWcd9iezxhqpbbZxpKz3hcaEEN9cv+4cF76nocWGxepg94n2ha5GRAZTbm7pfN1qd3qqNLeamR6HVqOQd8LE1NThEZZCDDW54vBTFquD/MIadh6vQq/TUFrXQn5hTeeXzemfTTkRIQFcc1kUu07IypBCuIsEh58rrWshJToETS/rnPibrPEJFJqa5C5yIdxEgsOPWe1OTI1tjIwO8XQpbuFwuig3t3T7mpISiQK88WmZp0sUwi9JH4cfKzO3ooLfBker3cXhU3U9vpYaE8q/jlbys9vGDnFVQvg/ueLwY6V17Z3hKVH+GRy9mZQcQUltCycrLZ4uRQi/I8Hhx8rqWogL0xMcqPV0KUNu/IhwNAq8VXDO06UI4XckOPyUS1UprWvx22aqvhiCApgyMpK3CipkjQ4hBpkEh58qqWmm1e7ksthQT5fiMRnfMvJlTTPHzjV6uhQh/IoEh586UtY+seHlwzg4br4ijkCths2flnu6FCH8igSHn/qsrJ7wIB1RIf49sWFvIoIDyBxvZNuRs1gd/nmnvBCeIMHhh1RV5Uh5PZfFhqIMoxv/evK9q1Oob7Gz87jcSS7EYJHg8EOldS3UNtmGdTNVhxvSYhkREcTrB+RmQCEGiwSHH/r4y/ab4i6LkeDQahQWXZ3CB8U1XSZ5FEJ8cxIcfuiTL+uIDA4g3qD3dCleYfHUZFQV6SQXYpBIcPihT76sY1JKxLDv3+iQEh3CTemxvPZJKXany9PlCOHzJDj8TEVDK6V1LVyZ7P8r/g3Ekhsuw9Ro5e3PKzxdihA+T4LDz3x8ur1/Y3KKBMeFbh4Tz+Wxoby8r8TTpQjh8yQ4/MyHp2qICA4gLT7M06V4FY1GYckNl3GkrJ5DpWZPlyOET5Pg8COqqrKvuJbrR8Wg1Uj/xtctvCoZQ5COlz740tOlCOHTJDj8SGldC2frW5meFuPpUrxSqF7HHdek8K+jlTI0V4hLIMHhRz48VQvA9NGxHq7EO/S0QuB3JiSgAH94t5BycwsNLTZPlymEz5EVAP3IvuIajOF6RseFcra+1dPleNzFVgicMjKSNz87xxUJBm6flEhESKAHqhPCd8kVh59QVZX9p2qZPjpW7t/ow4z0OJwulQ+KajxdihA+ya3BkZ+fT1ZWFpmZmbz44ovdXrfZbKxcuZLMzEwWL15MeflXd/Zu2LCBzMxMsrKy2Lt3b+fzGRkZzJ07l+zsbBYsWODO8n3KSZOF2mYb00dL/0ZfYsL0TE6J5OMva6mXpiohBsxtweF0OlmzZg0bN24kNzeXt956i+Li4i7bbNq0ifDwcHbu3Mndd99NTk4OAMXFxeTm5pKbm8vGjRv51a9+hdP51bTYf/3rX9m+fTtbtmxxV/k+Z1/x+f6NNOnf6I+ZY+JwOFX+IZMfCjFgbguOgoICUlNTSUlJITAwkDlz5pCXl9dlm927dzN//nwAsrKy2L9/P6qqkpeXx5w5cwgMDCQlJYXU1FQKCgrcVapf+LC4htSYEJIigz1dik8whgcxMTmCzZ+WU22xerocIXyK24LDZDKRkJDQ+dhoNGIymbptk5iYCIBOp8NgMGA2m/vc95577mHBggW8/vrr7irfp1gdTj48VcuM9DhPl+JTvv0tI3aHyuxiqccAABb5SURBVHPvFfe9sRCik8+NqnrttdcwGo3U1tayZMkSRo0axTXXXOPpsjzqYImZVruTmWMkOAYi1qDnOxOM/O3jM9w+OZGE8KBu2xj0Ohl1JcTXuO2Kw2g0UllZ2fnYZDJhNBq7bVNR0T7pnMPhwGKxEBUV1eu+Hf+NiYkhMzNTmrCA9wurCdRquF46xgfse9eMxKXCb9/+gvzCmm5fFqvD0yUK4XXcFhwTJ06kpKSEsrIybDYbubm5ZGRkdNkmIyODrVu3ArBjxw6mTZuGoihkZGSQm5uLzWajrKyMkpISJk2aREtLC01NTQC0tLSwb98+0tPT3XUKPuP9k9Vcc3kUoXqfu4D0uDiDnusuj+ZQqVn6OoToJ7e90+h0OlavXs3SpUtxOp0sXLiQ9PR01q9fz4QJE5g1axaLFi1i1apVZGZmEhERwdq1awFIT0/ntttuY/bs2Wi1WlavXo1Wq6W2tpYHHngAaB+1dfvttzNjxgx3nYJXa2ixYbE6qGps46TJwqyxo7tMo2G1O3vZW1xo5pg4DpaY2XXCxJ3XjvR0OUJ4Pbd+RJ05cyYzZ87s8tyKFSs6v9fr9Tz77LM97rts2TKWLVvW5bmUlBT++c9/Dn6hPshidZBfWMPBkvY7o3VaDfmFX93QNmWkTKveX4agAKanxbDnZDU3N7SSGCEj04Tojdw57uMKTRbCg3QYZZnYS3JTWhxBARp2Hjf1vbEQw5wEhw9zulSKq5sYYzTINCOXKDhQy4z0OL6otHCmttnT5Qjh1SQ4fNiZ2mba7C7GGA2eLsUvTB8diyFIx7+OVqKqqqfLEcJrSXD4sGMVjeg0igTHIAnUafj2WCOldS0cPdfo6XKE8FoSHD5KVVVOnGskLT6MQJ38GgfL1NQojOF6dhyrxOFyebocIbySvOP4qEJTE/WtdsaPCPd0KX5Foyh8Z3widc02Pj7dfS0PIYQEh8/KL6xGAb6VIMEx2MYYw0iLDyPvCxN1zTLtuhBfJ8Hho/KLargsNlTuFncDRVG4fVIidofK83tOebocIbyOBIcP+rKmmS9rmhmXKFcb7hJvCOLG9Fj+dbSSAyXSZCXEhSQ4fNA7R9sngBwn/RtudcsV8RjD9fxi21HsTukoF6KDBIePUVWVLYfKmZgUTpRM9+1WgToND317DF9UWli3q9DT5QjhNSQ4fExBeQNFVU18Z0Kip0sZFm5Mj+V7V6fwxz2n+Ph0rafLEcIrSHD4mM2flqPXacj4lizaNFRWzx1HanQID71+hIYWu6fLEcLjJDh8iNXh5J+fnSNrfAKGoABPlzNshOp1rL9jClUWK/f//VOsDpmyXgxvEhw+JO9EFQ2tdhZOTfZ0KcPO5JRInlk4iX3Ftaz8xxGcLpnLSgxfEhw+ZPOn5RjD9dyYFuvpUoalhVOT+cXt4/jX0Uoe2VyAzSEjrcTwJHeP+YjiqibeO1nF8lvS0GpkCnVPuefGy2lqc7B2VyGnqpv44/evYkTkxRd+6lip8WIMeh0RMjpO+BgJDh/x/J5T6HUa7p5+madLGfZWfDudMcYwVm0uYM6ze3nkO99i8dRkdNruF/AdKzVezIwxsRIcwudIU5UPKKtrYduRs9x57UhiwmSlP29w28RE/rn8BkbFhfHYls/JWpfPWwXnpO9DDAsSHD7gT3tPo1Hg3ptGeboUcYFRcWFs/vH1bLhrKgDL/36Ym3Pe45X9JbTZZeSV8F8SHF6uqrGNfxwoY8GU5F7b0oVnKIpC1vgE3n1oJi/8YCpxYXpWbz/Gzb/fw/9+dEamKhF+Sfo4vJiqqqzefgxUWHbzaE+XI3qh1Sh8Z0IC35mQwIenavivdwv5xbajjI4L5TvjE0mKktAX/kOuOLxY7ucVvHOskocyx3BZbKinyxH9NH10LJt+fD1/+uHVNLTaef79YnYeN+GSdcyFn5Dg8FI1TVZWbz/G5JRI7r3pck+XIwZIURQyxxn533uuZXJyJO+drOLVj85glb4P4QckOLxQm93JQ68foanNQc6iST0O8xS+wRAUwKKpycydPIJCk4Xn3z+FuUVWFRS+Tfo4PORiN4ZZ7U4e2/I5B0rM/G7RJNKNBg9UJzo4nC7KzS0XfV2ngd5uILfanSiKwvWjYogL0/P3T87wwvun+H/XXyaDHYTPkuDwkJ5uDLO02dl0sJxT1U08etu3WHx1ioeqEx1a7S4On7r4CoBTRkZyuLS+19c7pMWH8e8zRvOXD0v4097TfP+6VGaMkeljhO+RNhAvoKoqn56pY92uIr6sbWbhVcnMmSTrbfgjY3gQP545mqiQQP7y4ZfsOFbp6ZKEGDC54vAgq8PJ4dJ6PjpdS5XFymUxIcybkkS8IcjTpQk3iggO4L4Zo3j1ozP8+q0TtNldLJs5Go3MQSZ8hASHB5ypbeaP7xWz/bNztNldJEUGs3hqMpNTItEo7W8efbWty+gc3xYUoOXu6ZfxflE1v99xkn3FNTyzcBIp0SFdtpNJEgeH/H8cXBIcQ+hQqZkN75/i3eMmNIrC+BHhTB8VQ0p0CIrS9dNmf9rWhW/TaTU8OXcc3x5r5OncE2Sty+cH01JZPDW5c1DEhX1hLlWlsdVOXbONxjYHTW12UmNDiA7RE6LXMiIimBGRwaTGhBAUoPXkqXkdmWxycElwDIHDpWZ+v+MkH56qJTxIx/03jyZzrJHjFRZPlyY8TFEU7rx2JDPGxPGb3BO89MGXvJh/mtSYEBIjggjSaSk1t9DU5sDcYsPu7PsmQkWBlKgQ0uLDGB0XSmpMKHEGPbFhemLDAokN0xOq9/9/+k6XSlldC0VVTZSbWyipaSZMH0BCRJAsTXCJ/P+vx4OKqyz8fsdJdhwzERMayBNzxnLntSMJ1evam6EkOMR5SZHBPPf9q6hpsrLt8FkOl9ZTZWnjy5pmVCA2TE96fBixBj0xoXrCg3QYggKYPjoarUbBYnVQ1WilsrGN0roWSmtbOFPXwgfFNT0uOBUUoCEmVE9MWCAJ4UEYI4JIiwtlQlIExvCufWy+1Ixjd7rYW1TNP4+cY9eJKpp6aJ7S6zRcHhvKuMRwJiZFoJerswGT4HCDsroWns0r4o1D5YQE6ng4cww/uvFywobBpzxxaWLD9Cy9YBbkcnNLr00sKAoHz3w1HFiv05IebyA9vr2py6WqjB8RToBWQ02TlZomGzVNVmqbrNQ226i2WDle0ciuEyY6ZoSPCA5gdFwoo+PCGB0Xxu2TE70+OGqbrLz2SSn/+9EZTI1WIoIDmDMxkatSI0k3GmixOviguJb6Fhuna5opMln4otLCmwXnGD8iguAADYkRwXIl0k9ufSfLz8/n6aefxuVysXjxYu67774ur9tsNh555BGOHTtGZGQka9euJTm5fT3tDRs2sHnzZjQaDU888QQ33XRTv47pScVVTbzw/im2Hj6LVqPwoxsu5/5b0ogO9e5/dMJ/aRSFOIOe5KiQi25Tbm7hvS+qqWhopbSuhZLaFr6otHDo/P0p/zhQyswxcUxPi2XaqBgiggOGqvw+HT3bwF8+LOGfn53D5nBxU3osv86ewM1XxBOo++pug3JzC6V1rYyMDmFSciSq2t6Mdai0noKz9Tz0f5/xzDsnmX9VEguvSiYtPsyDZ+X93BYcTqeTNWvW8PLLL2M0Glm0aBEZGRmkpaV1brNp0ybCw8PZuXMnubm55OTksG7dOoqLi8nNzSU3NxeTycSSJUvYsWMHQJ/HHGpVjW28d7KKTQfLOXjGTFCAhh9en8p9M0aRGCF3BgvP688IPa1GITkqhOSoEKaPbr9SqWxo41R1E3XNNv7vYDl/3X8GAGO4ntSYUGLDAgkO0KHTtM8OHBSgJShAi16nQa/TEBigJSRAS1JkMKPiw4gL03d5M/8mVFXlVHUz7x6v5J9HzvFFpYWQQC3zrxzB3MkjOicDrbK0dTvHCymKwsiYUEbGhHbeM7XnZBUv5p/m+T2nGBUbyqTkCMYmhhMbpicqNABFUbA7XNidKnanC5vThd3pwu5w0dhmp8nqwOlS0SgKGo2CVlHQKKDRKARqFUC54LX25zWKglajEBqoxRAUgFajEByoJd6gJ84QRHiQrtvAGW/gtuAoKCggNTWVlJT2u5/nzJlDXl5elzf53bt3s3z5cgCysrJYs2YNqqqSl5fHnDlzCAwMJCUlhdTUVAoKCgD6POZgUlUVi9VBY6udxlYHljY79a12SmqaOVXdxOHSeoqqmgAYFRfKo7d9i0VTk4mVVfqEF/kmI/Q0isKIyPZRWjPGxBJvCOJwqZmDZ8ycrm7mTG0zJysttNqcNFkdtNicOPqx+mFUSADG8CDiw4MwGvQYw4MwhuuJCg0kTK8jJFBH+9RsCla7k8Y2B7XNVkprWzhd08yhM2Zqm9vn+rpqZCRPzh3H/KuSsbTZyS+sobSutd/n2CFAq2HGmFj+3/TLqLK08c8j5/jodB0fna5j25FzfZ6TO+l1GuIM+vNBoifeEPTV9+F64sKCiAwJOB/WWgJ1GgJ1Grc3ubktOEwmEwkJCZ2PjUZj55v/hdskJranvU6nw2AwYDabMZlMTJ48ucu+JpMJoM9jDqafbirgjUPlPb4WGxbI2MRwFk5N5sa0WMaPCPfKTwZCDIZAnYbrRsVw3aiYbq919MO41PZP4naniuP8f60OJ6kxIbhUqGq0YrK0UdXYRpXFSmGlheoma7+W2w3UakiJDubmK+K59vIobkiL7dL8ZmmzD8p5xhuCWHrTqM5+psY2O3VNNurOT0wZqNUQoG1/c9ZpFPS69sfVljY+Ol2HRqPgUlVUlS7/HT8inM/KG7o93/7VHmxxYXqcLpVmq4PqJivVFitVFitVjW1UN1k5Xd3Mx1/WUd/S/3OdkBTOW/9x06D8v7nQsOitPXv2LAsWLPhG+17Vy2vNwLvnvwbbZi9/3RtqGA7n0BdvOMe+fNTDczpgxPmvgfjy/NfrA9zP3efYl7f7eP2DfhzDcP5rQAphwXtrB7oXAFFRUURFRfX4mtuCw2g0Uln51Tw8JpMJo9HYbZuKigoSEhJwOBxYLBaioqJ63bevY/bk448/vtTTEUIIcZ7bJjmcOHEiJSUllJWVYbPZyM3NJSMjo8s2GRkZbN26FYAdO3Ywbdo0FEUhIyOD3NxcbDYbZWVllJSUMGnSpH4dUwghhHu57YpDp9OxevVqli5ditPpZOHChaSnp7N+/XomTJjArFmzWLRoEatWrSIzM5OIiAjWrm2/pEpPT+e2225j9uzZaLVaVq9ejVbbfpNOT8cUQggxdBRVlYWQhRBC9J+sxyGEEGJAJDiEEEIMiATHEMvPzycrK4vMzExefPFFT5fjdhkZGcydO5fs7OzOIdH19fUsWbKEW2+9lSVLltDQ0ODhKi/dY489xvXXX8/tt9/e+dzFzlNVVZ566ikyMzOZO3cux44d81TZl6yn8/7v//5vbrrpJrKzs8nOzub999/vfG3Dhg1kZmaSlZXF3r17PVHyoKmoqOCuu+5i9uzZzJkzh7/+9a/A8Pi9o4oh43A41FmzZqmlpaWq1WpV586dqxYVFXm6LLe65ZZb1Nra2i7PPfPMM+qGDRtUVVXVDRs2qL/73e88Udqg+uSTT9SjR4+qc+bM6XzuYue5Z88e9Z577lFdLpd6+PBhddGiRR6peTD0dN7PPvusunHjxm7bFhUVqXPnzlWtVqtaWlqqzpo1S3U4HENZ7qAymUzq0aNHVVVVVYvFot56661qUVHRsPi9yxXHELpwGpbAwMDOKVOGm7y8PObNmwfAvHnz2LVrl4crunTXXHMNERERXZ672Hl2PK8oCldeeSWNjY1UVVUNec2DoafzvpjephLyRfHx8YwfPx6AsLAwRo0ahclkGha/dwmOIdTTNCwdU6n4s3vuuYcFCxbw+uvt9/vW1tYSHx8PQFxcHLW1tZ4sz20udp5f/ztISEjwu7+Dv/3tb8ydO5fHHnuss6nGn//+y8vLOXHiBJMnTx4Wv3cJDuFWr732Glu3buVPf/oTf/vb3zhw4ECX1xVFGRZzfA2X8wS488472blzJ9u3byc+Pp7f/va3ni7JrZqbm3nwwQd5/PHHCQvrOh27v/7eJTiGUH+mYfE3HecXExNDZmYmBQUFxMTEdF6iV1VVER0d7ckS3eZi5/n1v4PKykq/+juIjY1Fq9Wi0WhYvHgxn3/+OeCff/92u50HH3yQuXPncuuttwLD4/cuwTGEhtuUKS0tLTQ1NXV+v2/fPtLT08nIyGDbtm0AbNu2jVmzZnmyTLe52Hl2PK+qKkeOHMFgMHQ2bfiDC9vtd+3a1Tm7w8WmEvJVqqry85//nFGjRrFkyZLO54fD713uHB9i77//Pr/5zW86p0xZtmyZp0tym7KyMh544AGgfWGv22+/nWXLlmE2m1m5ciUVFRWMGDGCdevWERl58fUSfMHDDz/MJ598gtlsJiYmhv/4j//g29/+do/nqaoqa9asYe/evQQHB/Ob3/yGiRMnevoUvpGezvuTTz7hiy++ACApKYk1a9Z0vkE+//zzvPHGG2i1Wh5//HFmzpzpyfIvycGDB/n+97/PmDFj0GjaP4M//PDDTJo0ye9/7xIcQgghBkSaqoQQQgyIBIcQQogBkeAQQggxIBIcQgghBkSCQwghxIBIcAghhBgQCQ4hejBlypRL2v/pp5/uNr3KN3HvvffS2Nh4STU99NBDlJSUXHItQnSQ4BBikJnNZj777DOuueaaSz7Wn/70J8LDwy/pGHfeeScbN2685FqE6KDzdAFCeLuNGzfyr3/9C5vNRmZmJg8++CDl5eXce++9TJ06lcOHD2M0GvnjH/9IUFAQ7777LjfddFPn/jk5OezevRutVsuNN97Iz372Mx599FH0ej0nTpygtraW3/zmN2zbto0jR44wefLkzokBMzIy2Lx5c7f5vHqqqaWlhZUrV1JZWYnL5eL+++9n9uzZXH311Tz66KM4HA50OvknLy6d/BUJ0YsPPviAM2fOsHnzZlRVZdmyZRw4cIDExETOnDnDf/3Xf/HUU0+xYsUKduzYQXZ2NocOHSIrKwtov/rYuXMn77zzDoqidDY7ATQ2NvL666+Tl5fHsmXLeO2110hPT2fRokWcOHGCsWPHDqimuro64uPjO1eWtFgsAGg0GlJTU/niiy+YMGGCm/+PieFAmqqE6MW+ffvYt28f8+bNY/78+Zw+fbqzvyA5ObnzzX38+PGcPXsWgOrq6s4rBIPBgF6v5/HHH+fdd98lKCio89i33HILiqJwxRVXEBsbyxVXXIFGoyEtLa3zWAOpacyYMXz44Yf8/ve/5+DBgxgMhs59oqOjfXbRIOF95IpDiF6oqsp9993HHXfc0eX58vJyAgMDOx9rtVqsVisAer2+83udTsfmzZvZv38/77zzDq+++iqvvPIKQOf+iqJ0OZZGo8HhcAy4JoAtW7bw/vvvs27dOqZNm8by5csBsNlsXUJLiEshVxxC9OLGG2/kjTfeoLm5GWhfQ6KvFQtHjx5NaWkp0L7Ij8ViYebMmTz++OOcPHnSbTWZTCaCg4PJzs7mnnvu4fjx4537lJSUdE5vLsSlkisOIXpx4403curUqc5P9yEhIfz+97/vnEa7JzfffDP/+Mc/WLx4Mc3Nzdx///2dVyCPPvqo22o6c+YMv/vd79BoNOh0Op588kkAampq0Ov1xMXFXfLPFgJkWnUh3OLOO+9kw4YNlzyUdjD85S9/ITQ0lMWLF3u6FOEnpKlKCDd49NFHOXfunKfLANo76OfPn+/pMoQfkSsOIYQQAyJXHEIIIQZEgkMIIcSASHAIIYQYEAkOIYQQAyLBIYQQYkD+PyVAxNJRKlTvAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1130,11 +1199,11 @@ "metadata": { "id": "FDX7tagnl5_e", "colab_type": "code", + "outputId": "c8ff34b3-0299-4302-ec80-5e2dfde22606", "colab": { "base_uri": "https://localhost:8080/", - "height": 210 - }, - "outputId": "6bea8243-2342-419f-8d74-f808077248f2" + "height": 0 + } }, "source": [ "# look\n", @@ -1145,9 +1214,9 @@ { "output_type": "execute_result", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAADICAIAAAB3fY8nAACK1klEQVR4nO3dZ1xTZxcA8HOz2BuU\noSKKA9yKiqKIe68qzrqqYq0W697iLloruKtWkbq17r3rXqDiXogICLJljyTn/fAgL0ISGQlBcv6/\nfqi5N/c+NyT3uc86h0NEIIQQQgghhBCieXjqLgAhhBBCCCGEEPWgBiEhhBBCCCGEaChqEBJCCCGE\nEEKIhqIGISGEEEIIIYRoKGoQEkIIIYQQQoiGogYhIYQQQgghhGgoahASQgghhBBCiIaiBiEhhBBC\nCCGEaChqEBJCCCGEEEKIhqIGISGEEEIIIYRoKGoQEkIIIYQQQoiGogYhIYQQQgghhGgoahASQggh\nhBBCiIaiBiEhhBBCCCGEaChqEBJCCCGEEEKIhqIGISGEEEIIIYRoKGoQEkIIIYQQQoiGogYhIYQQ\nQgghhGgoahASQgghhBBCiIaiBiEhhBBCCCGEaChqEBJCCCGEEEKIhqIGISGEEEIIIYRoKGoQEkII\nIYQQQoiGogYhIYQQQgghhGgoahASQgghhBBCiIaiBiEhhBBCCCGEaChqEBJCCCGEEEKIhqIGISGE\nEEIIIYRoKGoQEkIIIYQQQoiGogYhIYQQQgghhGgoahASQgghhBBCiIYSqLsAStW7NzRqBJ6eYGqa\n9+WsLFi0COLioHZtcHYGZ2d1lY8QQgghhBBCyhAOEdVdBiUZOxb+/hsAQF//4uzZDiNG2NjYAMCL\nF+k//qjz4AGYmsL793D2LLi7q7mkhBBCCCGEEFIWlKMGYffucPo0aGuniESWGRnZAMOGDatZs6aP\nzzaB4JlAIPD3B1dXdReSEEIIIYQQQsqMcjRl9McfITwcHj8+XadO1uPHYrHYz89PKpUCwMyZe+fN\nG6avr+4SEkIIIYQQQkhZUo6CygweDI8ewalT+83MsrOzEdHExMTAwODo0aPe3tQaJIQQQgghhJD8\nytGU0Txu3rw5Y8aMW7dutWzZ8ubNm+ouDiGEEFK2nPp86kH6A0uB5Y+mP+rwdNRdHEIIIWpTPhuE\nAPDy5UsHB4datWq9fPlS3WUhhBBCCCGEkLKoHK0h/JqFhZWLy48GBlXVXRBCCCGEEEIIKaPK7Qgh\nIohEIJFAZiYIheouDSGEEFJOISLHceouBSGEkGIqR0FlvsZxYG4OiBAbq+6iEEIIIeXUyZMnnZ2d\nQ0JC1F0QQgghxVRuG4QA4OAAdetCaqq6y0EIIYSUR1KpdO7cuffu3XNycjp27FjBHdLT07du3ern\n51f6ZSOEEFJI5XPKaGYmLFsGFhYgkYCzMzg7q7tAhBBCSHkUFxc3cuTIkydPAoCHh8fatWu1tLQA\nIDIycvPmzRs2bIiNjbW2tg4JCRGJROouLCGEEBnKYYPwyRP48Ud4/Bh69QJZ/ZWEEEIIKZrs7Oxl\ny5bZ2dmNGDEi3yZEXLt27YwZM7Kysho3bjxjxoxDhw4dOXJELBYDQPPmzSdNmuTu7i4QlNs4doQQ\n8l0rVw1CVift2xd/9+6iqlXhn3+gVSt1l4kQQgj5/r1//97Ozq5KlSqhoaEyd7h3796gQYNCQkK0\ntbUzMjKEQmH//v0nTZrUvHnzUi4qIYSQIik/3XVZWVmdO3f+77//OI6bP3/QzJkOurrqLhMhhBBS\nLnz48AEAKleuLG+HZs2aPXjwoEaNGvHx8ePGjVuwYIG1tXUpFpAQQkgxlZ8G4d27d1NTU01MTPz9\n/Xv2dFB3cQghhJDyIzqaV69eSweHRgr2MTY2zszMlEqlK1asMDIyKrWyEUIIKYnyE2X00qVL9+/f\nd3BwuHLlirrLQgghhJQrb960evLkppnZOgX7JCQkJCcnGxgYUGuQEEK+I6XXINyyBYYNgz59VHV8\nCwsLALhz546vr292draqTkMIIYRonrAwAAD5M0YBvkwrtbW1LZUSEUIIUY7SmzLapQuMGwempoAI\nHFfco+zYAR8/wpUrcPgwGBjk3VKhQgUAEIlEGRkZMTExtHSBEPI9EYshPR38/aFpU5AThCMlJWXo\n0KFSqTTf6xs2bLCxseHz+aovJdFcMTEAAJUqKdqHNQirVKlSKiUihJQvVA+qT+k1CKtUARsbiIiA\nt2+hRo1iHeLjR9i8GR49gowMWLMG5s3Lu5GNELKvAjUICSHfmV27YNQoEAhALIbkZNDXz7f90qVL\nAwcOjI+PLxga+uHDh15eXmPHji2tshJN1LMnODnB8+fQvn3Br2cOahASQoqP6kH1KdU1hK1bixs0\n+PzoUXAx31+xInz+DBkZAAB//ilNSMi7kY0QMtHR0YU9ZoE+BkIIKWskEsnkyZPj4uKGDx9u8PXk\nCE9Pz4iIiHnz5iUmJqqpdEQjDB8OLVvCggXg5ARBQTJ2uHPnzl9//QUAlRQPIxJCSNFRPahSpdog\nbNRodVCQ8dWrPsV8P58PCxcCQFyFCgvs7b1Wr8670dDQEACkUunUqVMNDAyysyXfPuC2bdCmDfj4\nwNOnxSwSIYQoA2rzoaKF1EgHKloAL/+s+k2bNj158qRatWp//fVXp06dOubx+++/t2nTJjo6eunS\npWopOdEcFhbg6AivXsGIEams7QcAWVlZe/bsad68eYsWLZ4+fTp8+PBff/1VveUkhHyPqB5Uo1JN\nTH/16lU3N7cmTZoEBAQU8xBSqf+QIT8dOIAAenp6wcHBKSkpFy9evHjx4pkzZzIyMgBALBYDgJXV\nR46zqlIF9u8H2bNXzp+H7t1BIoGKFeHKFahdu8iF2bEDnJygbt1iXgshhHwRF7fj/ftRHCdAFDdq\nlMzj/X+qTEJCQs2aNWNjY48cOdJHVmCuR48eOTk58Xi8J0+e1KpVq/QKTTRPejpMmyY5fbrr+/cX\nevXqVbduXT8/v8jISAAwMzMbO3bsL7/8oiBXISGEyEP1oBqVah5CW1tbHo/38uXLHj16DBgwoG/f\nvvnGfL+NxzMdOlS6f79IJEpJSXF0dIyLi/uyhdeoUSNLS8uEhISIiI+RkRWzsuDjRzh9GjIy4OZN\naN8exowBgQAA4MWLF/re3pXFYuDxICoK7t4tWoMwLQ2cnCA1FWrUgGnToEsXmXshgpcXpKeDiQnM\nmVO0CyWEEGbBggWxsbHt2rWTWQsCQMOGDX/66aetW7dOnTr15MmTpVs6oll0dGDDBv6+fT+NG3f3\nzJkzx48fB4BatWqNHz9+7Nixurq66i4gUasrV+D6dbh2DVq2hMWL1V0aUn5QPahqpTdCGBIS0qlT\np7dv33Jczknd3F7o69fu2RN694aKFYtwqBo1arx7987Q0DAxMdHU1LR9+/YdOnTo0aNH3kAyYjFE\nRcGHD9CyJQQFQaNGgAiOjvDHH/81a1a3efPmH96/P1alSrf372HGDFixomgX8+kTWFqClhZkZsK+\nfTBwoMy90tJATw90dCAtrWiHJ4RohKVLITkZhPyI8ZLMzNfJydcRAUBibj6K44QHD+pGRqbFxcXt\n2LGD47gHDx7Uq1dP3pGio6Nr1qz5+fPnM2fOdJHTRUWIEh09erRv377m5ub79+9v166duotDyoap\nU4Et57G1hffv1VwY8l2gerBsKKURwqAgmDFj2du3b52cnHr16rVgwQI9PaN79+zT0uDkSQgNhWXL\nCnWc7GyYO9f77du3ANCjR4+ff/7Z2dlZZpBZgQAqVcoJkN2gARw7BlOngolJSPfubY2NjRMTE7W1\ntbu/f3/S07P7778X+XpSUgAA2HnlRVv7spf87YQQTbVjB9SsCevXw6dPoK0d1TcDALS1HSwsxoSF\nTf30yQcADh+2vX49FABsbW0NDAyOHTsWHR3dvn37ggd78eLFli1bmjZtGhYWRrP1SGlq2bIltQYJ\nIcVB9WBZUhoNwmvXoFcvyMpaN2KE6fr1C3bs2GFqamprO+rhQwEAtGwJnz/D/PmwYAEIhYqOExsL\nAwdCTMwEA4NVq1d7jxkzpvBl6NkTunSBbdvuvXplHhsby9IVNm7c2G35cuAVObJORHr6TVfX7PBw\nuypVqhkbW8rZjRqEhBDZRo4EAJg/H1JSUMC3sZGkpQV9/nwsImIBx+lYWc3mONGoUdrdu2fEx8f7\n+vp++PBh/vz5derUefTokUCQ/749ZcqUs2fPCoXC7Ozs2NjY0r8aooFYhgl68CJ5JRoaCuzt01NS\ntOzsDNVdGFLWUT1YpqCKpaejtTUC4MCBmJmZ82J2dvaVK1G//ILt2iEi1qqFABgQoOg48fFYqRIC\noI0N3r+fUOzyJCQkjB49muM4gUBw5cqV4h3kxo0bAKCnpwcAAfLLHRQUpK1t7OzcqZhlJYRojNhY\nv4AACAwUBASARJKcd9OsWbMAQFtbGwDWrl2b740nTpwAAJFIBAADBw4sxSITjTZt2jQA8Pb2VndB\nSBkyZcoU9mxpa2ur7rKQ7w/Vg2qk8rQTBw6AuzsMGQJ79oBIlPOiQCBwc6u4YQNcugQA4OwMAHDn\njqLjmJiAuzu4uEBAADg5GRe7PMbGxn///feIESPEYvG4ceMKZix5+vTpwoULd+zY8erVK3kHSUlJ\nAQBEBAAFcXFSUlIyMhI5LrnYpSWEkLlz51pbW7Moyl5eXnn7PrOzs9lzeXZ2to6Ojre3t9pKSTQM\n5aAnhJQaqgdVTeUNwqdPITAQtm5VNDGzeXMwNk549+6JzK2IMGIEzJgBNjbg7Q2W8iZoFsWmTZua\nNGny+vXr4cOHS7/kpg8JCRk3blzDhg0XLVo0duzYhg0bLlu2LCtLnO+9WVlZV69e1dbW1tLSMjAw\nUDAw/eDBAwBIT09XQokJIeWa2WlekxbCxi15TVoIeelf5V/S19dftmwZAGhpaaWlpd28eTN3U1BQ\nUGRkpLa2NiLOmDGjatWqpVxsorHCwsIAICkpSd0FIWVIfHw8+580CqZHio7qQXVS9RBk48YIgNeu\nKdrn4cOnHMfVqFFD5tZduxAAK1XC9HRlFuz9+/cWFhYA4OXlFRoa6uHhwWYki0SikSNHjh49msfj\n1a07tkEDvHMn5y1ZWbhlC/bsOYN9dPr6+gCgo6OzcuXK7OzsvAd/+vSpu7s7x3HsFG3atHn9+nXB\nMqSmpvr6+nbt2nXAgAH79u1T5uURQr4vfn4IgAIBAmBycr6NUqm0WbNmANC+fXu/rw0ePBgAKlWq\nlJKSopaCE02TmJjo6+traGjIcRzHcUOGDIkIDVV3oYiaxcfHe3p6CoVCAGBPU66uromPHqm7XOS7\nQvWg+qi8QTh+PALgypWK9hGLxfr6+hzHxcTE5NuUni61tUUA9PNTftkuXLjA5/PZekIAEAqF48aN\nCwsLY1uvXLni5pYMgHw++vnhs2dYvToCoKVleLNmzsePH09ISPDw8OA4DgAaNGhw7949RHz58uXA\ngQN5PB5rMfbp08fc3BwA9PT0fHx8xGIxO3hGRoavr2/Fr7Nt9OzZM/fsue7exTFj0M8PfXzw9m3l\nfwiEkDLB3x8FAhSJUCBAWVXarVu3bG1t2Q0nn5o1a+7evbv0i0w0TVAQeniILS1zMjyx2tNISyvL\n3h5nzsTPn9VdQKIGEonE39+/QoUKAMDj8X788cd169ZVrFhxXL16yOPhsGEYFaXuMpLvBNWD6qPy\nBuGePfFt2gT8+utexbvVrFmT47jOnTsfPXo0LS0t9/UVK1Y0berVtetniUQlxVu8eDE7tbu7+5s3\nb/JtTU9HLy80N8ewMExPx0qVsHZt9PfHvIU5f/68nZ0d6xJr3Lgxy4Gho6MzefLkT58+IWJ8fLyH\nhwf7vjZq1Oju3bv+/v7sLQDQvHnzY8eO+fv7m5mZsXajt7e3RCJBxEePHg0fngSAALhjByLigQMq\n+RAIIWWFnx8+eSJvY1ZW1qhRo0YUEBkZKZVKS7OYRAP9/DOy+sjNbWaHDh1++ukn1pf6j50dchwC\noKurustIStujR49y88K1a9cuKCiIvZ6QkBDr5YVCIQKgh4d6C0m+M1QPqoPKG4QvX74EAGtra3k7\nSKXS3377DQCMjY3ZPUVHR6dHjx7+/v4hISGmpqYAcP78eRUVLzMzkw1OhoeHy9vn82f090cfHzxw\nAL+M8H0lLS1t5syZfD6/cePGQqHQw8Oj4NFOnTrFFt+LvoTWadSo0YkTJ3J3+PjxY79+/dgmJyen\nbt26cRzXqtXfeno4cybGxyvpggkhhJAi8vfHQYNQTw89PfH165ynrmfPno3t10+qr48AqKOT03NJ\nNEl4eLi+vn7lypX9/f1lbH75Evv1Qx8f3LCB5jgRUpZxiPiNVYYlg4gWFhZxcXGvX7+uUaNGvq0s\n1Of27dtFIpG3t3dGRsbhw4cDAwNZqfh8vkQi6dKly5kzZ1RXwt69ex8/fvzvv/8ePXp0SY7z5MkT\nPT09Ho8nbz1rcnLy3Llz9fT0Tp8+PX/+/H79+hUc9T558uQvv/wSFRUllUqFQuGECZ4zZqyoUKEk\n5SKEEKLxEhOB48DISO4OO3aAoyOYm0O1avm2bNwId+7AqFHQpAkYFswud/EiTJ4MFhYwfDg4OUHd\nukouOSnbbt261aRJEy0tLXUXhBBSfCpvEALA6NGjr169GhER0aFDB3d39969exsZGQFAamqqu7v7\nmTNn9PX1Dx061KlTJ7Z/WFjYmTNnTpw4cfr06erVq2/btq1169aqK56f30F//xt16ozYsKGx6s5S\neJ8/f75582Z8fHzbtm1tbGzUXRxCCCHfh8REMDKC/D2NiLBzJ8yYAf37g5OT7DbbP/+Ajw88ewbt\n2sHZs/k29u8Phw7lJJGSLTsb4uPh61XxhBBCvhel0SAEgN69e7PpkQCgpaXVvn37zp077969+969\nexUrVjx9+nTjxvkbY1KpVEdHJzs7Oy0tjWWiVJGwMKhSBQwNISbm/5kSCSGEkO/FqVOwYwdERkJm\nJqxaBW3a5Lz+4MEDA1/fGjt3AgDo6MCNG1CgtgUAmDoVVq8GjgMtLYiLA13dvBubNYP79+H27Zyk\nwYQQQsqZUmoQQp5xv3PnzmVnZwOAlpaWjY3NuXPn7O3tC+4fFRVlZWVVoUKFT58+qbpsdevCs2dw\n5Qq4uan6VKTM2LEDPnyAjh2hRQt1F4UQgMxMSEmBf/6Bpk2hVSuZuyQlJQ0cODA3dWquv/76q0qV\nKiyiFdFY0dHQqBF8/AhaWjBw4HRPz0H//PPPhg0bahoZPcnK4qekAACMHQtbtsh488WL0LEj6OpC\nZmbqqVN6nTvn3diz542EBJv9+yvZ2Ajzv1EqBT8/yMyExo2pvUgIKRGqB9Wo9JctRkdHb926ddCg\nQefPn4+MjJS327179wCgSZMmpVCkpUtx4EC8f78UTkXKjPHjkcfDs2fVXQ5CEPEb+ZcQ8ezZs8bG\nxjLDbVtaWm7atKn0i0zKmpQUXLgQO3W6BQACgYDjOB6Px+fz97ZqhcbG6OsrOzAaImZkvHNzW1K1\najVj419//fXrLRkcxwmFQonMYN8rVmDTpvj2rQquhmieRYtw6VL86y8FQSZJeUb1oPrwVN3gLMjC\nwmLMmDF79+7t2LGjpaWlvN3CwsIAoFKlSqVQpDFjoEEDuHQJ7twphbORsqFqVZBK4c8/1V0OQr5N\nLBZPmzYtMTFxzJgxBgYGeTdNnz49Kipq7ty5cXFx6ioeKSP09MDLC3bvruHp6SmVSk1MTFgc9uuO\njvDmDUyaBPK6z7W0JhkYzH///l1i4qlTp/Juefz4MSLa2Niw/LpfCQiA+fMhIACePVPNBRFN8uIF\nLFsG8+fDihWQlKTu0pAyh+pBlRKouwBfk0iksbHPY2JiY2OPHTsGAJUrVy6F0+7bB3PmwMSJNOFF\nrWJiID0dqlT56sV792DYMBg6FDp1UvKfx8MDli6VPnwY9eSJ9Zc0SkVz6hTcuQPt29NUY1JyqCeE\nStaYlcqJ9Dhe/u7P9evXP336tHr16uvWrUtNTU3K87S0cOHCR48eXbhwYcmSJb6+vqVaaFImmZub\nr1mzJjQ09NixY46Ojtu3b2/evPk339WlS5cTJ04IBIJ37941b948NTU1NjY2NjZWIpEYGBiEhYX1\n7NnT3d29b9++7FEsKSlp/YIFM01N+YMHQ69eqr8sUs5Jpk7lZ2WBQAAhIZCRoe7iEDWgelCd1D1E\n+cWZM2hhgRyHQiEvz1jwihUrSuHkU6ciAJbKqYgc27djq1ZoZIR79vz/xcREtLNDAFywQBXnvLR0\nqamOzvDhw4v5frEYx49HKyt8/16p5SKaKDbWLyAAAgMFAQEgkXw1VSYuLs7MzAwA8mYuzevp06cC\ngUAgEDyheVbki59++gkAtm3bVpidg4M//PDDDxzHVSiQ5sjU1LRJkya5/9TR0enbt+/OnTv79+8P\nAO5t22JGhqqvhZR7e/bsaW5t/bpyZQTAwYPVXRyiHlQPqpEapozKlpoKMTGACHy+naGhnp6eUCis\nUKFCfHx8KZw8LAwAoFQGI4kcCQlw7x58/gzDh8fcnSaVpgJA3P2FkJEGTZvCvHmqOGf1H39Mys7e\nu3cvm59cZFIpvH0LkZHQtSuUyheVaKZ58+bFxcW1b9++R48eMneoU6fOmDFjxGLx5MmTS7lspMwS\nCAQAIBaLFe8WFgaTJkHPnmZHjhwTCoWdOnXau3fvlStXnjx5EhkZmZ2dHRcXFxAQEBwc/Mcffzg7\nO2dkZBw5cmTYsGEnTpzQ1dVd+tdfQAnoSMkkJydPnz797sePNcPClrduDatWqbtEpMyhelDVysyU\n0dwVCBkZNaysgkNCACA6OvpOqazqi4x0s7RMsbXdAUAZddXk+nXIygKOi/eo8kHwZ/SLE6amQz+a\n+Mbsr1Kr8l5OWCC0nTLY2tp26NDh8uXLDRo0cHFxadKkSZMmTVq2bMl6ob5NKISDB6FVqzSJZNLI\nkesPHsyXmffjx4/p6enVq1dXReFJebBgASQlgUgQ9qs4MzNYILAA4BCzw8NncZxg3z69iIjUuLi4\nPXv2CASCtWvXKjjSkiVL9u/ff/HixVOnTnXv3r3UroCUWYVpEGZkQKNGEBcHAoHujBn7fv7ZqWrV\nqjL3rFat2rRp06ZNmxYREXHkyJGdO3c+e/ZMX1+/Sr5J/oQUzqRJEBkJurqgozPx7dtXHz9+1NbW\nzsjI0OvXD6yt1V06UoqoHiwbSi/txDckJcGqVWBuDhYWj6yt+aam2traderUQcSYmBhjY2OVnrxK\nlSphYWGvX7+uUaOGSk9E5EKEtWslx3Y9XvkQeULEDIHAQiyOqVp1u5nZKBWdUyqVNm7c+OnTpxKJ\nJPdFHo9Xq1Ytd3f3RYsWyXjPjh350jpLwsKadejw4PXrgQMHbty48fnz54GBgTdv3rxx40ZkZGT/\n/v0PHjyoovKT79iOHVCzJvzwA3z6BNragTcyAEBb28HCYkxY2FS2y+TJttevhwJAlSpVDA0N+/bt\n6+Li0vnrfADMs2fPNm7c+Pr167CwsEOHDtWpU6c0L4WUTZMmTVq7du2aNWs8PT0Lbv38Gfz9QSqF\nx48hKwu8vKBItZ9UKm3atOmDBw9WrFgxY8YMpRWalHenTkFQEFSqBLNmQWQkcBwA8BGlhoaGmZmZ\n1atXDwoKYn0ZpPyjerAsKTMNQll++mn3q1cuU6da/fCDCmekiMViHR0dsVhsYGDQrVu3mYMHN2rf\nHvT1VXdGIk9a6sOQ90MyMl7q6TUzNR0eFbVMW9vBzu4fodBGFafz9/cfOXKkjY3N0aNHWUMuMDDw\nwYMH6enpdevWHTt27FcPUlFR4OgIUimYmMCmTdClS+6WJ0+etGrVKiUlJV9iHGNj4169evn7+6ui\n8KQ82LoVUlORz4sZKE1LC4iPPwjAA5DY2CzlONH581qxsZmJiYkrVqzIzMxExNq1az9+/FhYYMC8\nU6dOFy5cEAgEEonk6tWrrVu3VsvVkDJl6tSpq1evXr58+ezZs/NtEouhWzd48QJOn4biRdQCgMuX\nL7dv397AwODNmzcVK1YsaXGJhjl1CtLSIC0NMzO3AsDff/99//79H3/8cefOneouGildVA+WEWpd\nwfgNK1YgAI4apdqzHDhwwNTUNPe7FdG8OWprY8+eeOqUak9MZJFIUl++dH76tGZwcN8HD0QBAfDs\njq301HGlnyg1NZXFsN25c2fe1zMzMzdu3AgAbdu2/eoNISEIgLq6CIAF1jR7eHiIRCItLS0XFxdP\nT09/f3828Kj0YpPySsFi+nnz5gGAtrY2AKxevTrfG48cOQIAIpEIAIYOHVqKRSZl2r///tu0aVND\nQ0NfX9/s7Oy8m375BQHQ3Lyk6QO7dOkCABMnTizRUUjpSkvL+Z+oKLWW42uvXr0SCoVCofDFi3B1\nl4WoDdWDalSmG4SPHyMAWlqiVKqqU2RlZeWdJqonEon19ZHjEABXrlTVWYl8ycnXAgP5AQG8hw+N\nAgIgMFArvUddBMBhwzAlRYknmj9/PgA0b95cWuDr9fLlSwCwt7fP9+r/G4TnzuV7C4vCd/jwYSWW\nkGiU2NgdAfchIEAYcB8kkq++6qmpqbkrtQwNDaPyPMdlZmayOxjHcTo6OqGhoaVecFJ25U6scnR0\nPPWli/PPP/90dfXU05PculXS4z9//pyF9Xv27FlJj0VKha8v2tvjunX4888oFOLMmZieru4yfTFv\n3ro6de707KnuchD1oXpQjcp0gxARBw/G1asxM1NVx/fx8QGAWrVqHTlyZNSoURs6dECAnP9mz0aK\nXVvK4uLSRrd+GlgtIsIrKyvy9evOUeudkeOQz0eOw0uXlHWesLAwXV1djuOuX79ecGtqamqzZova\ntduft6kY9uzZ6hYt5trabnJxCf76Xe/eveM4zsDAIC2365WQovLzQwAUCBAAk5PzbWTTqEQikY6O\nTt6g2wEBASYmJjo6OgCwePHi0i0x+Q4cP348N65V+/btfX19+Xw+x3FHjlxTyvHHjh0LAL1791bK\n0YjqZGdn//KLGAB5PNy9GxcsyOn67tPnxcmTJ9VdOkTE6Gg0NEQAJVb15HtD9aD6lOk1hADwzz8Q\nEgK3b8P+/WBkpOSDJyYm2tvbx8XFnTx5MicekUQCV6/CkSMQHAynTyv5fOSb+veHQ4ekXdtyp85z\nnABAimtWc9PnQHY29OgBJ04o6zzz589funRpv379/v33X5k7mJlBfDzExIC5ec4rgYGBTk5Oenp6\nqampN2/ebNmyZe7O3t7es2fPpsUPpER27IBRo0AgALEYkpPzLWNGRFdX1xs3bri5uQ0ePDjvposX\nLx48eLBy5covX77U1dUt3UKT70BWVtb69euXLl2akJAgEAjEYvHSpUvnzp2rlINHR0fXqFEjKSnp\n4sWL7du3V8oxSUm8fftWS0vL2tqaz+fnvpiSkjJ48ODPn63v3dvs5wfsFnLzJsyenf3sWZ34+De9\ne/fetm1b/gjbp07BnTtQtSr8+GPpJBdZtgzmzQMPDxgzBj5/znnRxAQqV4YCCTJJeUT1oBqpuUFa\nCJ07IwD27IlKX5A1ffp0AHBzc1PycUnxfPqE9vZoZIQhIV+9fu8e9uuHGRno56esMdsLFy6IRKLm\nzZvLG9OrXx8B8OHDnH+mpaXt2bMHAFgX1H///Zd358aNGwPAsWPHlFI2oqF27UI9PdTRQT09mbOj\n7969a29vz3Fcwdt4nTp19u3bV/pFJt+RuLi45s2bi0Si/v37F5wnXxKLFy8GgEaNGtGqafXKyMgY\nOXIki6UhFAqrVavWrl27n376acaMGbVq1QKAChUq3L37Me9bsrOzfX199fX1K1So8PjxYxkH3boV\neTwcMkSFS3fySE3FX3/F1auxdev/z9ZiS0Z8fLCQk5wlEsmTJ0/CwsJUXFiiAlQPqk9ZHyEEgJAQ\ncHKC+HhYvfr55MmOyjrs06dPmzZtmpmZef/+fbYAjKjf+vUgEMDPP6v6PBERES4uLqGhoT179jx8\n+HDBINc9e0JQENSsCSkp8P498Pm2Hz9+AAAzM7O4uDgAsLW1rVu3br169SpWrDh58mQDA4Po6Gi2\n3LnMio2F0FBITAQr3ifH2GsgkYChIXTrpu5ykTwK5DXJSyKRTJgwIV8wWwBYtmyZubm5zDqSkFx1\n6tR5/vz5+fPnO3bsqMTDpqen16pVKywsbOfOnT/++KMSj0yKZMKECRs3bjQ1Nc3KykpJScm7ydLS\nksfjXblypWbNmvne1b1794SEhNu3b48dO3bLli35D/r4MbRuDUlJkgUL+DJTManGkiVw7RoAACIk\nJsKMGRARAX5+cOcOKB7+iY+Pb9u2LQA8ffq0RYsW7u7ugwYNUkoUXLEYOnUCe3uwtQUlja8TOage\nVAt1t0gL5dw5bNt2Fo/HO35cOdEmHz58WKVKlapVqxoaGr569UopxyQldeECWlri8OGlc7bXr19X\nqFABAIYNG5bbXy6V4oUL2KMHNmiAa9f+v3vSyaljjRo1OnbsOGLEiCZNmrBxwlz6+voWFhYXL14s\nnZIXm4dHzuUsb3405//c3NDPD+/fV3fRCCGq9erVKwAwNjbOVMGifD8/PwCwtraOiYlR+sFJYezf\nvx8AtLS0AgICrL9O7N6mTRsAcHZ2LviuN2/esHcBwI4dO2Qf+uxZsbX1jw4OmzZtyvuyVCoNDg4+\nfPhwKYwMS6XYogUC4JIlinaTSCQskJKFhUVuNS0UCrt16/bPP/+klCwu3blzCIC1a5fkGISUXd9H\ngxARvb29AcDAwCAwMLCEh9q37yK7U+jp6QGAubm5zMgipLS9f48CAQqF+OFD6Zzw7t27+vr6ADBn\nzpz09PStW7f267eTNZSMjDA4GHftwhs3MDw8/2QZsVj8+vXrf//918vLq1+/frVr12YVz9ixV2/e\nLJ2yF01UFPbsidOmYZMm2K4drh95H/v3x4ED8ZdfsG5dHDRI3QUkhKjWsmXLAGDEiBGqOPi5c+dE\nIpGdnZ2ZmZmXl1d8fLwqzkLkef36taGhIQCwNtu///67cuXKX375pVu3bnXr1v38+bOJiQkAFHx8\nYi15NrflrfwkJDv//pu1rDZv3uzv7//bb7+1adPG6Etch3bt2m3cuFG1V4h49SoCoKkpfvqUJG+f\nRYsWsdZgeHh4WlragQMHevTowVIRyIshV3gjRyIALlpUkmMQUnZ9Nw1CqVTq7u5ua2trZGQ0c+bM\npCS5dwQFsrNx5kzU10+qXt3Rw8MjLi6uZ8+eACASieT2jZHSNGgQclzUsmUqOXh4eMF1qKdPn2Yp\nKFndJhBoN2uWvno1Fun7lZKS4u3tbWfXxMBACoBdu2JsrDILXnIscFeDBgXa2qGhyOOhtjYmJqqn\nZIQQVZg3D//4A/ftC7tzJzw8XCwWs5URSl/qnJKSMn78eDZNq8KXuB+GhoazZs2KKlN57sqv9PT0\nhg0bAsDAgQPl7fPbb78BwNixY/O9PmbMGPYns7S0VHyWGTNm5DYdc1lbWzdq1Ii1Fc8VyMakdL/8\nElK1asdffvlF5tYrV67w+Xwej3f27Nm8r8fExKxdu5YNhBb71BkZGZ06HaxTJ/nly2Ifg5Ay7btp\nECJicnLyoi9T2G1sbLZv317UiQr9+iEAamnhjh05j79isXjmzJnsmJ6enrQmXr2SAgN7Vq9ubGxc\nvAa/IitXYqVK2K0bfv6c9+WMjIyWLVuyKMYNGzb09/fPysoq3hkSEyULFqChIdatqzAAUnp66Sd+\nGjAgZ4qotXWBbW5uCCD281N8hNDQ0EePHs2dO/fmzZtisVg1xSREA5w8ifPm4fHjCvIpBQUFffz4\nMSRfeK3Cy8pCPp/95le1aAEAbJm0vr6+clPj3L17l0UrEQqFXl5ehw8fzttm0NHRmTBhQkJCghLP\nSAqaOHEiANSuXTu5QJj+XG/evOHxeDo6OnFxcXlfz53e4u7urvgsb9++5ThOV1fX3d39999/P3v2\nLGvwL1++nIUzNTAwCAoKUsoVyfPy5UuhUCgz72VUVJSVlRUAeHl5FXxjUlISK2GxT82+202aNCn2\nEQgp476nBiFz+/bt3Ij/jo6OeVORyPTpE/r746pViIiXLmGVKnj7dv59Nm7cyOpLChSpdm5ubgDg\n4+OjzIOmp2PduigSIQA2bJgQHs5ejo+PZ4srDA0N9+7dq5RTxcZiUBD6++OgQdihA+ZvXb5/j82b\no4eHUiKmZmRk3L59+5uNZ7FY3LHjNju753p60tGj828N27NncsOG7du2VXCEkJCQatWqVapUif3u\nTE1N3d3dN2/eHP7lkySkqGJjYwcNGtSrVy91F0QdPn/GypWxbl28cyfflufPnw8bNozP5zs7O+vq\n6np7exen/2XFipweIG3tftbWrIWmr6/fU6k5v+fPn8/qzXr16j169AgRz549W6dOHXaX0NbW5vF4\n5ubm//77rxJPSgry9vbW19c/cODA4cOHFezGFtetWrUKEdPT08PCwgIDA3ft2uXo6AgAvr6+is/C\nphybm5svXrw473dy2rRprEeA9dSrNLanWCxmpdXR0TExMalcuXK1atWqVavm4ODAwsa0b99e5u+F\nhYIzNTUt3nmTkpI6deqU++kRoixlqh78/hqEiCiVSnfv3m1ra8sqnoYNG/bu3fvXX39dsWLF7t27\nr1+//u7du5s3b86fP79Xr+k8HgKgvj5u24Y+PnhNTjLeLVu2aGlpDR06tHQvheTH+uF0dXVr167d\npk2boUOHTpkyZfXq1bt37y7+sOGDB2hszB6PHjg7W1lZ3b17NyIiokGDBgBgZWX14MEDpV4ExsTk\nnPCHH/4/DJBw/DgaGbFi4Ner84sqICDA09PTwsJCS0vL3t5e8eD2jRs32EcqFOoeO3Yj39bPnz/r\n6upyHCdvOOLly5c2NjYA0KBBg7p162rlyUbF4/F+++23klwI0ViZmZkCgYDP52dkZKi7LKXu+XOs\nWRMBJBUrzp8+ncW6ePPmDWsKstZUbsvK2dn56dOnRTv+48doZ8e6wBrkSd/266+/KusKQkNDu3bt\nynGcp6dn3r+gVCo9fvx4ixYtAGD16tVsVqGyTkpk6t+/PwDw+XwdHZ1YOcsVHjx4cPz4cfbVMjAw\ngK9VrFhx9uzZis9S90vIx3yjZFKplGWEY/0OjRs3VjBQWULr1q0DALYmMB+RSMTj8f7880+Zb4yK\nimKXWcgTRUfj2bPo7Y1TppyrWbMmj8fT0tLS09M7c+aM8q6GkLJVD36XDUImPT196tSpPB6v4K2B\n3RwBgON4Vatmd+2K69bJzGjyf7t27QKAfv36lVbxiWxTpkyR+QcFgNmzZ4eGhhbzuK9fY61asQ0a\nGGhrA4CWlpa5uTkA1KlTp/jHVOjePTQxQWvr0OHDx6ekpMycObOaiUmWuXnOQGWdOlj0jv+3b996\neXlVr1499zOpVq0a66Tv1auXvGr4119/BQCBQCAUChO/Xit4/Pjxfv36de/eHQBcXV0vX76cb8bs\n8+fP2TwcV1fXpKSkvKfW1dXV1ta2t7efPHlyUS+EEESsUaMGABS5tVM+pKXhzJm+Li4AYGtr2717\nd/ZDFolE48ePDw8PnzBhAnwJ/ygUCmfOnFnkJwaJBCMi7ty+feDAAfbI/uOPPyqr+Fu3bgUAJyen\nDRs2yCzYnTt3MjIy2BUpN+2hJpBKpT4+Pv/++++KFSu+uYrhypUruV+VFStWFNzhxo0bQqGwYcOG\nPB6PtQZFIpGNjU2DBg06d+7cpk0bjuMEAsGpU6fkneL58+e5LbGCo2RpaWnOzs4AYGJioqWllS9P\nr7JER0UZGxuz2sfCwiIkJCQ0NDQ4ODg4OPjZs2erVq0CAD09vdevXxd8b1hYGABUqlSpkOf6+eec\nIfbq1W+x50m2PlbVQ6BEA5WdevA7bhAi4pIlSwCgZ8+ehw4d8vX1nTp16sCBA3MDLpuamp4+fTot\nrVCVKFswvXDhQlWXmShw7tw5juN4PN78+fOfPXt28eLFf/75Z8WKFZMmTbKzswOAKVOmFP/osbGD\nu3VjTSMWAsHNzU2l61sePJA2aNAcAFg1xufz+1tbo0iEPXrg1ws5CiMqKooNabJqacaMGU+ePLl5\n86ZQKGT1dL169fKO8iUkJPj7+3fo0IHjOGNj45YtWx49ejR3K1s9yz4HHR2d3IpWV1e3Q4cOvr6+\noaGhDx48YM3mLl26sKVHKSkpx48f9/DwqFSpkkgkOnXqFGtUK+PTIhpn1fjxy9zcwpWUTKhMCw/H\n7dtxw4Z8KxaCgoKcnJwAwMDAgMfjubu750Z63Lt3r4WFRd77Vfv27Yt9/tOnTwNA586dS3QVeRw9\nepTdOgDg/fv38nZjzY9EillVFJmZmcOGDcv9eB0cHC5fvqz4LfXr12c3cFtb23xzJuPi4th0KtZL\nvnHjxoJ/jgULFgCAvr7+w4cPZR5/zpw5uV9FmX/uT58+rVq1aurUqQAwZ86cIlxt4Y0Y8dbZuaah\nIQD8888/BbcPHjzY1NT8xx8vF+xrDQ4OBgA7O7tvnuTBA3R3x8mT0dEReTzU0kphow779u1jC0zc\n3bcqPcQB0WRlpx78vhuETZs2B4B8yQnnzZvH7ozm5uaFP1Ti8OHBLi4vT55UdhlJYUVHR7PBKB6P\nx+fz8/bznTlzpnr16hzHGRgYfKMJd+0a9uqF69bJWCqKmJ2d/csvv3AcZ2Rk5O7uXgpj9I8fP2Y9\ni6z7XyAQ3Nu0KX8Wi8Jp166dQCDo0qXLhQsXcieIXr58mcUTZ9N1zM3NL126dPjw4b59++bOq2FD\neQBgZWXF1tzGxMSwzNQ8Ho89a7Zr127SpEn16tXLOyTL8rL06tWr4AcllUrfvHmTlZWlp6fHcVxZ\nCycYHR2t/LhEROmmT0cAXLpU3eVQMakUq1TBKlVkJtSJiIjgOE5bW/vFixf5NsXExLA873p6ehYW\nFs2aNVMwhqNYYGCGlZXY2VlpUdNu3ryZe4u4Lz+RabVq1QDgzZs3yjpv+ZGWhjt3YoHGVXx8PFtI\nr6+vv3z5crZkDgB69OjxQX5Cpk2bNuU2IPOGQpBIJF26dMkdP5w0aZLMt0ul0uHDhwOAtbW1zLPY\n29uz+qJ169YKronVIN+M7FAc168jx6FAIDU0PDJqlMwx5/j4+AYNIgEwb5zy+Pj4AwcO9OnTh8fj\n1axZ85vnmTABAXDGDAwMRIEA69fHCRNm+Pj4BAcHx8XFubuf5PGwSxfMzlbitakK1YPfhzJTD37H\nDcL379HcXNKx45P0r2M2rlmzBgDYQFN24X+11tYIgPLz8BCVkkqlLAUIa7rkCxR28uTJ3Cpt5cqV\nco8SH49VqiAAys+JxMJPV6lSRXXrHPJ5/vw5C8xtZmZWkjxIbLigVatWeQf6EPHVq1c1a9bM/XzY\nIxrrD+7cufOuXbtSUlJCQkLatm3LXnd3dz9+/LhAIGAtRj6f7+XlldvCjIqK8vf3d3d319fXt7Ky\nqlGjRlBQkIIOfrbU/sCBA8W+LqUbNWoUAPj7+6u7IORb/v4bAVB58xjLqLt3EQBtbGT2BO3du5c9\nyjs4OERERBTc4fTp07t372bf6i1bthThvPfuYf/+6OmJly+/f48AWKVKsa8hv9evX7POJgBQsLCq\nefPmAHBbVvecprt4MWdWYqVKc8aOXbdu3cOHD9+8eePg4MA67wICAhAxMzNz+fLl7HM2NDSUF/ol\nNTWV9Qz++uuv0dHRua9fuHCB4zhWNTRt2jRTfmDbrKys9u3bsxkf+W746enpY8eONTAwuHv37uPH\nj+UdgU0rNTExUXCW4uveHQGQx0OBAB89krfXhQvIcSgS4alT+Mcf2KYNtm37Z27H6De7gMVirFgR\nAfDhQxSLZYQDDw7GChUQAOW0rMsQqge/G2WmHvyOG4SrVyMAFsy78/Hw4fhGjT5bWEgqVpQWcuAi\nLi4n8gylnSgdoaHYpg0OHZo5a9aff/65a9cuT09P+LJEoVmzZvlWTUil0tyOUhsbG3n1TTpLHNui\nhbzuu6go7NRpCo/HO3LkiNKvSQEWXKFGjRpF6KH42sePH3M/n4I5M+Pj49u3b+/i4lK/fn0jI6NK\nlSp5eXnlm9gjkUh8fHxYF7KlpSWbI2pubn7hwgWZZwwICMh94FMQgpWFnpswYULxrksVvLy8AOCb\nMRKI+t27h87OuGSJusuhWpnz5yMAygnoMm7cOHZnMzU1VRAaauDAgYp/iTJYWeU0OaZOTUlBANTR\nKWrZ5YqPj4cvsSVlzt9jevToAQD5+rAIIqKbG2ppoZZWap4QL+y23KBBg3wL1cLDw9kk0o4dO8rr\nyvT09BSJRNra2vXq1evZs6enp+fq1asPHz7MelpNTEzevXunuETx8fE1atSQmVGwT58+AFC/fv3P\nX+dtymvu3LkgK9WhcqSmYv/+KBLht5aNTJ2K8+bhuHE53317+9cdO3Zcu3ZtYZK4XLr0oHXrV05O\niqrp+/fR3h4DAopUejWgevC7UWbqwe+4Qdi6NQLgvn0FNrCONz09BMBCLtOMicFFi5B+OaXj5Ekc\nMYLdrTPs7VlFqK+vz+PxXF1djYyMZN64WQwD1p7ZuXNnwR22bdtW09Q03M0Ng4PlnfnHHxEAR4/O\nn8JI1TIzM1k4lm3bthXvCOfOncsd/QsMDCy4Q1ZWVkJCQuvWrQFAXhsPEYODg11dXQUCgYmJSePG\njRXUkVKplC0gBICff/5Z3m5s5liZWkbIhlz69u1b8kMFBQVdunRpzJgxN27kj85KSioiAlu1whkz\nSp5/pYyrXavWMAeHSDmzA1gev29+Y7t16wYAJ4u0qKFly5yH4h9+QMQdO/DEieJNV5dBKpWy1uDP\nP/988+ZNmfs8f/7c2tq6YsWKJiYm48ePv/rwqlhKKUy/cHdnf53Qhg1Z01pLS0soFLq5ucmbkdGk\nSRMF0zGioqI2b94MBZiamnIcV8hpnGwx4dSpU/O9/vnzZzYdtHPnznm7NZOTk2/evLlp0yapVMpi\nY3xzuWPx+fnhiRP4rTmQT5/i8uX488/YtSseOIDyG7AyjBw5EgAWLVqkeLft29HH56uJqWUQ1YPf\nh7JUD37HDcIXL3D5clm/9qCg/zcIC39v8vMruOKfqEpiIl68iP/8E7N+/aRJkwYOHGhkZAQAp06d\nkhfzMz093dLSkkW+NjMzGzRo0G+//fbHH3/s3Lnz0qVLZ86cYdELdu3aJe+cV68ix6GODn6rn1Ql\ndu/eDQDW1tapqanslawsPH4clyxBf3/08UHF9TULocbn8/l8voLU0qampgCgeEWfWCy+du3akydP\nvjl/5ocffmCPFLVr1y64VSKRTJs2LSAgQEtLi+O433777erVq8UeAlWi2MeP79ap87nEGYQPHDig\np6fHvpkAULNmTS8vLxXFpC1/QkJCAgICZs+eXXBpHCLirVs541fNmimtjVImPX78mA3Fy/xpsJF/\n1rLy9fV9/Pjx1q1bR48evX79eh8fn7yD/Kyvp2jxG4cOlerpJVhZhbq7I+LGjdihg7xxyuJo166d\niYlJly5dCs4IlUgkq1evzl3YzH5BLldcKgRV+Dn055fpL5VWiO/aixe4bdvlWbNYU0pfXx/kZ7qT\nSCTsXiRzXnGu+Pj4Bw8eHD58ePXq1Z6enj179vztt9/u3r1byBKxKb4y25whISEs19/o0aMR0cPD\no3bt2rlh3tlaDCsrq+KkzVSqadMQACdOLPIbP336xD7hV69eqaBcpY3qwbLg+6oHv9cGIXuGlt1D\nEx+Ps2fjhAm4cyd+/FjaJSPFwho87dq1U7BPfHz8unXr+Hy+zFwjAoFgwIABCt7+/Dm2aaO2Xj2p\nVMr6d5cvX3737t1p0+ZWqCAFQD4fw8Px339RRwflT7zCESNGsMusVauWvH1YZO0ixVJSjC3HZU+r\n+Z5CxGIxKxJrh7NHGQCY3bkz9u+P27ap86eXloY8HgqFqDBc+86dO/fv3z9s2LArV67kC1EglUq9\nvb1ZuJ3evXtPnz49N3axQCDo3bu3iuKqlxvXrl2rWLFibkugSZMmmzdvzg1vsHPnzlWtWiGPh66u\n+OmTeouqImKx+NGjR5s3b27cuDEADB48WOZurJ+INZzY9Ozcpy72P46Ojl5eXrnrkGXODpBnmZcX\nO4iRkREiXr+OAGhkVIwIx7K9f/+eTdkAgPbt21+8eJG9Hhoa2q5du9zfy86dOx8+fDhnzpyGTxtC\nIEAg3Em5o5wSlCORkZG+vr4AUL16dZkzhx8+fMi2qq4MwcHBHMfp6emlyEnSdf/+fTZLZdmyZU2b\nNmV9lPr6+ixkWqVKlRo2bKi64hWGVIq2tgiAcgatvxIfH3/9+nVfX99hw4Y5OjryeDxbW9sWLVqo\nvpilgupBdfvu6sHvtUH4bX5+ZWEElhRSUlIS64JS8MTz7Nkz9sw0f/78Xbt2/fnnn5MnTx4yZIir\nqytbTz9//nx57w0JwVmzcOXKQtUTKnLx4kX4Em4UAOrXv1avHq5cifHxOHUqAiDH4e+/J+S7KYeE\nhCxZsoRd4PLlyxWEZ2CR5du2bausAgcFBbHn1C5dujx//jz3dbFYzIIfsmvR0tJavHjx1KlTHRwc\nLjdsmDNLrU8fZRWjOOzsEABfyh6IyM7Onjx5MntQZn+LypUrz5w5k02gTUpKYgtmBAKBt7c3e4tE\nIrlw4YK7uztrHv/00095P5Ai+87vTmfPnj137txvv/32RNZVbN68mX1KtWrVGjFihKGhIfuQ9fX1\nR44c6e7uzv4ZsGTJ9xGqryjOnDkzffp0V1fX3NhOAGBiYmJnZ1cwY3hcXFyDBg1yv4TscX/IkCG+\nvr4+Pj56enq59wr4sn74pZyvtEzbtm3L7dCJi4tDxA4dEADnzVNaV/SnT59mz56dewnNmjWbPn06\nm6eQG+X41zyDko/SHi2PXL47fveWmC1pErkzHTSTWCyuW7elq+vBs2dlfDIsJ/uIESNUVwC2IFxx\nssrDhw/zeLzcHsBcVapUYaFrli9frroSftOtW09bt35Vr55Y8XBLQkICa37npa2tPXz4cAXreL8/\nVA+qUvmrB8tvg5B8b6ZNmwYAQ4cOlbk1IyOjYcOG8GW+Sj6XLl0CgAoVKqQXjAuGiIhLlxZzGoly\n9e7d29zc3NjYePLkyUFBX6113LwZrazE1tbO/fr1S01NTUhI2Lp1q6urK+ufAwCO43R1dQtO5vn4\n8eOff/65bt26FStWAICnp6eySiuRSMzMzDiO8/DwuHDhQu4UU1aLsAc+XV3dr5YshoTgxo3Ysyf6\n+OCYMVggOEEp8ffHPXvQwwPPn88XKSouLq5Dhw6s/MuXLzc3N2fPMQDA5/Pd3NxYzi6WwKPggaOi\notjoRzFzlt6/j82aYdeuuGVL0Va3lA1SqXTFihV8Pp/FvAWAJk2a+Pr6stZORkbG6NGj2XeVz+dr\naWkFBQWlp6cfOHCA5cNkH6xIJCr2YtqybP/+/WxiJ6OrqysUCjt27MjiRjZr1ixvOJCQkBC2etDe\n3n7+/PknT57MGxySpRrPbQrq6OjweDxjY+OePXsqmDGOiOfP44IFOGECTp58kaUtFQgEfD5/1apV\nycnJt2+jq+uG6tVrxcTEKPHCk5KSfH192egB6w5nT0Kmpqb7ZKzyJ3KtWCEFwG7dZGwaNGgQFDXM\nbBGxFRnfTG2ye/fuxYsX161bd9iwYX/++efly5dZLqiTJ0/y+XyO42Qu8i8d48ePB4BZs2Yp3m3G\njBl6eno6OjouLi6enp6bN2++fv16KaShKm1UD6pGea0HqUFIyorw8HCRSCQQCEJDQ01NTW1sbJo1\na9arV6/x48dnZWVNmjSJ9aDLy6vDpmbJ+4G1a4cAeOiQKi+gEH7//XcAmCinYXrx4m0WZc7KyorN\nImOPlUOGDDlx4sQvv/zCbjEzZ86USqUZGRm7du3q0qULSzdsZmZWtWpVpT8x3L59m4XDgTw562/f\nvm1mZsb6uuSGEGBxg9asUWJhimbmzJyxSlvbQ6tWseVYQUFBLDGahYXFlStXXr58mfs5a2lpsQEZ\nMzMzBwcHBRH5/P39AWDQoEHFKdX69QiAQiECoFIfyktBeno6S1bGcdyoUaPGjx/Pvq7su9G/f38W\ndoI1BgDAw8Mjb7jgV69eOTs7g+riEKqVWCxmbSEWuz/X0KFDIyIi2G+zW7dubCXh06dPK1WqBAB1\n69YNDw+XecDg4GBfX18XFxeO44YNG7Z161b2abdp0yZfLtbUVFy5EletQh8fHDIk51vv5naDFYCt\nTwMAbW3tHj16sIf+6dOnK/0T2LFjB8dxIpFo7dq17u7uHTt2zBcqk3xTfDzq6iLHYe4qtri4jBcv\nXly7do3lsy3RgIx8Uqn0zJkzrA1fkqQRLJ62SCRSYWiZfLKyMCjoyK5dkyZNcnV1ZUsYHsnPS4GI\nUqmU/R41IkQK1YPKVo7rQWoQkjJk6NChAFC7du28T1Ta2tr//vsvx3FCofDOHbmLT3bt2sXeW3DK\nR0ZGpqNjOo+n/jvPhQsXAEDBKgU/Pz9dXd0KFSpwHNeiRYvNmzfnDfO9efNmdrMeMGBAZGQku4mz\nLij2WXl5eRWcmVZCV69enTVrVsOGDXPHKhkTExNFsQq2b88Nb6gekZG4eDHa2WVbWwt4PB6P17hx\nY7bkqVmzZrlP4YmJiZs3b3ZxcQGADh06sJVainM33b1719y8Qu/eMkaqv2306JzquWrV4rxdfcLC\nwpycnADAwMDg8OHD7MWMjIwDBw706NGD9UoYGxuziTE6OjoFRwkGDBjAvr3FfIYo29iE8Jo1a758\n+bJt27azZ88+evToxy8rad+8ecMCcgwdOvTWrVusP0VBPMm83r179/r1a0R8+vRp5cqVAaBOnTos\ne3h6evqWLaGWlgiAI0ciIp4/j15euG4dHjny4cqVK0+ePHn06NHq1atdXFzyLr0WiURBQUFKvPy4\nO3fYn37NmjWImJqaKjN1OEql+OIF+vlhCTKylm8eHjhwIO7di1ZWKBRinTop7E9maGhoYmJSpDnD\nir16hdu3o6cnDh/ux9pRlStXdnBwkP2HK7Rff/2VNSdUHpolNRWbNEEtLQSY06QJ+5SMjY1NTEwU\nj/Vdv36dXWwJr/T7QPWgUpXvelCzGoRbt6KPD0USLbseP37MJo7mwxo8K1asUPDe7OzsKlWqgKwZ\nL//99x8AuLqqr3HyRXx8PMdx2traWXLWeS9ZsoT1PIlEIpn7nDp1it1rqlevzh4rmTp16nh7e8sb\nbVCKT58+HThwYNiwYZUqVVq2bNmDBw8U7R0Sgnp6UW5ual6SIZW+v3p16NChOjo6QqFQT09v0KBB\nMifdPXr06MGDB7NmzYJvTYP5/DknXG3eK0tISNi9e3d0dLS8vyyzecCAy3XqhNeunVEGstAW3s2b\nN9ncmJo1a8oco3j37l2dOnUAYNOmTYMGDQqQlaVr8ODB7LvaoEEDlZe41LEB/Llz58rb4e7du2zl\nFXsacHd3L8YUtYiIiPr16wOAlZXVkiVL7Ozs6tVryWLUfXN2dkxMjL+/P3tqqVy5spmZ2dWrV4ta\nANnevcMKFS43bDhbTo64Z8+eLV26tHv37je7dct5EPzpJ4rsLY+/f06oTACsXTurVq1aLi4ubKZG\njRo1lNXlN3Fi7mDybQCwsbFhPYxeXl4lOaxYLGaZD+VNhFEmMzPkONTV/cfOLu+jwuDBgxU09thP\ndcaMGSovXtlB9aAylPt6UIMahJ8+oY0NLl0qK3UhKTNiY2NzA8YMHTq0TZs2tWvXbtas2aFDh77Z\ntGChSu3s7H7//Xd/f//z588/ffo0Li6OZWj97bffSucSFLO3twcAed3zAwYM+ObN4smTJ3Z2dqyb\nytTU1MPD43rpdrcXsmO1dvXqCq60lCUkJLBJej/88MPvv/8ub7cdO3aA/JiQuaytEQDfvcPkZNyz\nR/rDD4PYg0jNmjXbtWuXb0ZfrszMTJFIxAZal5SBLLSF988//+jp6XXq1Ck+Pl7ePrNnz1b8DLFo\n0SL23dbW1lZ7bHrlkkgkbAWd4iig586d09XVrVix4oQJE4rdURIXF9eyZcvchmXDhg1Pn44p0lBH\naGho9+7d2dOzEpZ7ff6M9eohAHbuLDM6wosXLyZOnMj+9HOaNEFra+zXT1FIZYKYlYXh4Zh38mZq\namqzZs0AoFWrVvKWyhdS//44ZgwuW4aDBuGKFXj5ciJbU3r69GmBQMBx3I4dO0py/OfPn3Mc17p1\n65Ic5Nv8/NDJKSeXY4sWFhYWHTt2HDt2LJu/J69rJjs7m43VP3z4ULXFK5OoHiyJcl8PalCDsF8/\nBMD27ctCtg+iEqdOnWIdYPkGGNlcqaNHj6q7gIiIAwcOBPlrHV/177/NwWFS7dqzPDwUHCQmJiYi\nIuLUqVNlIe+fPCwvxRo1LiP8Wu/evdn3oWXLlvL2uXPnDgA0atRI8aHat0cdHezeHXV1EQCbNl3I\n5/NbtGjBxmzr1q3LZvTlExgYCF+yC3wzckOZwsKfKH6EYs8QCqbB7N+/H76kWFCwNOV7dPPmTQCo\nWrWq4r4StkyrevXqhX0OCAkpGDJeIpH06tULAJo2bXrw4MHiTXsTi8Wenp6QZ01yMQ6CiPj8OcbE\nYJ8+6OiIcp7/5s+fDwBOTk579+79QOnLSuDjx49sFsyAAQMK/skKufQvMhL5fNTSkv3n2rJlCwAI\nhcLcJCIhISHiI0dw/nzs2ROPHCnMKdhS+SFDhhSqQCWxdy8uWoTHj0vyrFY9e/Ys6yvZtGlTwXcc\nPnwY5GTW1RBUDxZbua8HNaVBuGfPTVNTibExyvp+kvIgJiaGddJ379592rRpP/74Y9u2bR0cHNgE\nS0NDwzIyVLVy5UoA+OWXX2Rsy8hAgQA5DgFQ4fzY74Kfnx/HcWZmZtOnT7906VJJYhUoxcyZM1lF\naGxsLG+fxMREVlcpGMCJicHISNyxA11ckMfDVq1w+/YPUVFRiBgeHs5i4VpZWeWdLiIWiy9cuNCz\nZ082XYfjuI/fVYpU9gyxf/9+BfuwZwgFichYinbWf/99PQcoIJFInj9/3qVLFwCYMmWKzAegXGPH\njmXfQDs7u2+PEP79N9aogTVr4teBhWfMmMFuaE+fPi1h4fOuSc4bAbVQQkLQwwP5fBw8GIOCFKzP\nZs1XCjeqFM+ePWO/oNmzZz958mTnzp1Llz5q2xZNTNDHB/39cf58vHVL0RF8fREA+/aVu8PUqVMB\nwMDAoHnz5izdUVqtWjmzSwcMKEyqADar+fjx48W6RCX4+++/WbP2/Pnz+ZINchxnZWVVzNiY5QLV\ng8VW7uvB8tgg/P13XLAA1659e/jwpUuXgoKC7t+/b2BgUKFC/f37lTP5fts2HDsW58xRysGIMkil\ndydO1BYI2rRpU7D3nYVfL1JOZ9XZtWuXo6PjvHnzZGx79AgBcnrbTp8u9aIpWVJS0oYNG3LHaQ0M\nDPr27btlyxbFD82qs337dviSLeOTrDywt27dioyMtLKyAgAWxqOgoCC0s8Mff8QLF7BxYyzYV5iU\nlMSaB3p6eseOHTt//vzo0aPZc1Xe8WoPD4+yPLqbz4IFy+rXb+Xjo+gJ7/PnzwCgo6MjkUhkro4T\ni8WRkZEODg4WFhY2NjZeXl6h3+940cmTOG8eduzYyNaW/VnNzc07duxoaGj4xx9/yHyHRCKxtLRk\nO/fv3//bp1i+HLW12YP4/lGj7t+/j1++w3kHcEro1KlTBgYGRkZGurq6w4YNO378+DdXNr5//370\n6NExTZsiAIpEKPNWlgeL6PjixQulFJjs3buXz+ezuCAA4OY2hzXWJkzAixfRyAgV51wYPnxV3bq3\n9+2TOyYskUh++OEHAGARMrS0tO5UrZrTIJQ/ppTrxYsXAPDNyC6qxpo9BfMl6ujo7NixoxxmmCg0\nqgeLrdzXg+WxQcjmNQMcadOGffNY2s2+CvrEimjAAATADRuUdTxSYhs2IEBCy5YyGxssOdh///1X\n+uUqiLWRxo0bJ2NbUBD26YOWlsjjlY+xbLFYHBAQ4OXl1aRJk9wgpa1bt1bLTIlbt26x+knml+Gf\nf/7R1tauX7++sbGxjY2NoaGhh4dHvsA5R47cZ611Z2fs0iXnIaygzMzMYcOG5U4LYRo0aLB8+fJ3\n794dPnxYV1fXxNg4eNgw/DqHikQiuXbt2oQJEy5fvnxLcT9/6fLzQwD85hQw9gxx7949AwMDd3f3\nCxcu5J3YFhISwrpmcpO2/9a4MfbsiUePFpwYWdY5OrJaZp6TU+XKldu0acOG2jiO4zhu+/btBd/B\nQlux5/g9e/Z8+xRf1keFV6zI4ziO4zp16sTmw8ucC1ds9+/fz/vcbGRkNHTo0EOHDqWmpmZmZkZE\nRAQFBV24cGHPnj1r1qwZOXIke5QcU78+/vQThoQoPnhiYiLHcTo6OmVttcz3iy2V19LSYl1sa9bs\nP3UK2UDL5csoEil6OAkODuY4Tk9PLyUlRcEpQkJCeDxebpvzgKsr6upi8+ZYiEAs8+bNA4AxY8YU\n59qURyqVmpubm5qa6uvrs2SD/v7+AQEBmtwUZKgeLLZyXw+Wuwahn1/OHZHjltva6unp6enpmZmZ\nGRgYKDEcv78/AmCHDso6HimZZ89QRwcB5MUL6tatGwCcOHGilMslE6svFU1Z8fPDe/dKsUSl5MOH\nD1u2bHFzcxMIBM2bNy/9AiQkJLAHqRMnTuRN5pGdnZ07i4Z1irOEcoyTk9PGjRsTEhK8vLw4jmvd\nevPQoZiWhs+eoUCAWlqSV69krC+XSqVeXl7Lli2zs7ObOXNmvohkd+7cuermhgDYqBFGRCAi3r2L\nU6c2+5JwxcLCQkdH599//1XxR4KIiCdO4PXruHmzgplgt2/nFFaBN2/emJubW1pa5iZlAoAaNWqw\nxJi5idRq1Kjx+PHjkydP/vDDD+9cXXNGHpo2VfplqQobG5w6FWfNwiNHMiIj2ct79uzh8Xis10Mo\nFJ4uMMLP1uzxeDwtLa3PhcnFnJqK3t5oaDi+bl0ej8dSfoNqoiOyWYL5Ht3ypf9hbGxseDyeu7t7\nIZMKXLt2jf2IlF5mjcUy7gJAvXr1Cm7dtg21tLBVq43nCoSdlUgkU6ZMAYDevXsrPsWaNWsAoG7d\nulOnTt21a9e758+xcO35rKwsluBOZjbz0vTgwQN2J/+OBqBKB9WDslE9WA4bhJmZ6OCA5uYIMPvL\nfVMoFHIcpzhXaZHEx6NIhPXrJ8fGJijrmKT4YmKwd2+U3yXJ4rgUqlde9UaPHg0AmzdvVndB1CM5\nOVkoFAoEgqSvOwVLwebNm3V0dIyNjY2MjPKGZmVfDzbCAwAeHh6ZmZkPHjyYOHFi7hQXNjIjEAjW\nr9+Ye8DZsx/XqtWwT58+8s6oKFZHcDCylTmenli9OqsP/nJxYRUni0zNcZy8EPCPHj2Kiooq8rov\nWUVEY+OcHMF//pn78qpVq7y9vX19fbdvT9m8GX18UCRCBa3406dPs/qPLdllLR82wjBv3rzNmzez\nD7Br165fhZ6Lj8fNm7FhQ/Tywg0bUFaQ7u/I+vXr4ctUqDZt2rAX09PTb968uXr1ajZRpV27du7u\n7oU/Znpk5JgxY9jzmaWlZbdu3VSRxyUmJiZfLK46deoMHjxYKBRaWVnVq1evfv36lStXZpewoShz\nY/744w8AGD26WMnKSAFpr19PqF9fSyQCgOXLl8vcZ/nyXeyX+PDhw6dPn/r7+3t6enbo0MHU1BQA\n9PT0RCKR4sDUHTt2A4C9e/d+szypqXjjBq5bh7Nnv2jcuLFIJLKwsNDX1y9Ul0ex+fnh/v148KCC\nXWbPngcAE2QOXWk2qgdlFpHqQSyHDcJcYnFsVNTTp0//+++/4cOHg7KzQPbrNw4A/Pz8lHhMUkws\nn9W1azI3vnnzpl27dmWnDVamhivVokWLFgBw5swZpR/54sWLsqdCZWaOHzeO3aBZmD6mYcOGa9eu\nPXr0KIt4pqWltXXr1rzvYwlnu3fvbmBgoKurm2/h1qdPn9h9v5jd4bGxOG0abt2KDRuijQ3+9lvK\nvXu5daevry9rWowdOza3kzskJMTb29vBwQEAOnbsaG9vL2+NR2G9eYMAOWvV8vSY5D4WVKmSxfou\np0/HHTuwd2+cPx/zTfj19fVlLZYePXokJCScO3du0KCc+OPwZWIMx3Fz5syR25gZOBABChnDsCxj\naVSFQuGsWbMmTJjg5OSU29ASCATW1tbFC6306NEj9hX9RvLPEpgzZw77RXh4eDg4OGRnZ+cdWmGL\nyqDQa8MkmZnHjx8fOHCgSCSysrJycXFRe0ypcmLhQgTINDK65+YWEhwscxepVDpo0CD4kpQvLx0d\nHfZTVZA4PiQEhcLsVq3OKp5Wyhw9mjO24eCQwh5/2QNx7969VThJeOtW1NJCLS2Uk0hTKkU7u2wn\npzO3bslIFlfuUT1YZFQPImJ5bhDmER4eXr9+i5YtD715o7Rj/vXXXwDQs2dPpR2RKEtCAh48iDNn\nSrt0qZhnzoO3t7e6S4aIyKJvycxYqiFYop5ZikMfFF10dLRIJDIwMBgzZsyHu3fzbkA3txtubtra\n2iy/1pMnT3777bfc+TBsmpyVlZWC5Qqs+ixY6yxatIjjuMWLF5eo6JGRKKuG+Pfff1nnYps2bRYu\nXMi+OYyFhQVbqGBpacnCjcj0zXQC8UePSkxNc2Zc53lAnDVr1syZMydNmvTbb2keHjhyJLZti5Mm\n5Tz88fmSfv1+3L17d0JCAutuY9kL8tZzCQkJmzdvbty4sa2tbfPmzQ98HSozv8mTEQDl58X6Xkil\n0mHDhuUuvgIAPp9fv379sWPHsogyxQttdf36dShEWouSSEhIYOMABZcVff78WUdHh01Y9VCYDgcR\nMSAAPT2xQoUudnbwZYosALi5ucXFxamo8Brky+JVbNFCwV6RkZF8Pt/AwMDKyqpHjx5eXl7Hjx+P\nior6+eef2RN/GxubVFdXlBVTZPlyBMChQ79RkHPn8LffcM4crF0bx4zBTZuyb968mZyc/PbtW5a8\nu6SJf1evxgULcP78/FP4Hj5EPh8FAgRAc/PIly8LvvX6dQTAKlU0MccY1YMFUT1YSBrRIETEMWMQ\nAMeOVdoBP3z4wOPx9PT02rdvP2/evDNnwmXdWok6PHiQ83sF6GBurq2tze6PCqY0lCaWFXf79u0K\ncpuWb2fPngUAZ2dn5R72yZMnrVq1YkMxkRUqoKMj/vkn/vcf2tggANravv16dCUzM/P48ePu7u4j\nRowYMGBAeHi4goN37twZAI4dO5bv9ZSUFAX1UMldv36dLYFm9Z+xsTELBZmVlZWcnMxGm1kYt7zv\nCg8P9/X1dXFxmTt37qRJk7LkL1VnjXMHAwOfNm1kVsbMf/8hADZrhgEB6OGBLVtezB1wAABDQ0MF\nIeZjYmK+3Yz56y8EwJEjv7Hb9yArKysoKGj06NErVqz477//cqczsSeGIs23zDV3bqyr66bFi7co\ntaT5sYzJP/zwQ77Xt23blvu3vipnTCZHaioaGLB77+1Bg1asWPHhw4dHjx5VrlwZAKpXr54/1iib\nK1Xi/BmaIiYGa9dGLS0EQIX5Xbdu3coGT/K9LhaLe/XqNaZOnUz2Z3JxwQI57ps1QwD8Zs4IFxcE\nQJmzSq9du8Z6AYqfhFYiyblvcxxOmpR/68SJCCDV0Vnk5GRnZ1cwVOavvyJAYSLglENUD+aierCo\nNKVB+PZtTjJWhd/2whKLxf3794c8862rVHkHgHZ2+FwTZyiUMVu35mRuANjSrBn7A3Ecp62tnSAn\ndXKpefPmjZWVFZsCwefzM9q3x6lT8cQJtUeXKk0qXUb48uVLv2XL0NIyp1Pg5Em0ssJWrTAqSt5b\nCjPqMmnSJABYoY7kkK9evbp8+TKr//LNu8vOzmZd/nw+f926ddHR0Rs3bnR1dWVfMPgSdb1jx47y\nlvR06tSJ7enq6qqgDH/+iQD48885/0xMTNy0aVODBg3Mzc1NTExKnlHg9c2brerX71qu43Sx8MLD\nhw8vxnvt7BDgG/nlSu7z5881atSoXbt2vq8Zm3IPAJUrV1a0gjEwEKdMwaFDceZMfPw475aIiIgm\nTZoAgKmp6ZUrV9LT0w8ePPh2woSctk3HjrhhA96+raLrKm+mT8effkKFCdzYn0zmkpbkpCQpC2DL\nPvwCQxabN+PgwVggJM1XQkOR41BXF+Wt3tq3bx/HcTwe78iRIwkJCZcvX964MXLYMKxXD6dORR8f\n/MbswsuXESBnxMbfP/9WsTh98OBRjo5sUKtp06bBwcFnz95auhT790dnZ9y8GYcORYXp4so5qgep\nHiwGTWkQIuLkybhmDaamKuFQM2b4AIBIJJoyZcrRo0fnzfNq2xYNDJDPx82bceVKvHxZCWchxdes\nGerrY+vWL5Yu3b1798uXL9u2bQsA27b5qbdckydPBoDGjRu3adOms719zs1aW7tgN2351rJlS3Nz\n88qVK3t4eBw/fjxd6ZefnY1Hj+KECejnh8ePl7y9vWnTJgD46aeflFI65Vq8eDGbzscWMLAOy/79\n+x88ePDGjRtspuLWwYMxLCzfG+Pj43PXviue3zVt2oY2bVbu2PHVEVJSUjiOE4lEJY/j9+nTJ1CY\nKLkcCAgIAIBatWoV/Y0IgNbWCnqulYZ9W+zt7ZcuXcpe+fjxI5/PZ1+tbwQ49fBAAPT1lbkxOTmZ\nZagXCATs+Wxh06bI52Pnznj4sNIvRJOx+aJaWlpyO0DDw9HGBgUCmSkL4+OxbVvs0gUV/Kw3brxY\nt+6twYMVNSFmzJgBeWLrt279N6vuFi/GmzexYkVFf/Z/Zs9+4uycpquL2tqYmFhwh9TU1GbNmrHH\nMLZMV1vbSCjMqVG/hP7VeFQPUj1YFJrSIMzOxiFD0MsLfXxK2hG5cCEaG0stLQcCgJGRUXR0NHtd\nLMbXr3H9ejQwwJUrlVBmUnyfPuULk71nz39OTmfatlVnLqzU1FQW540tIJSkpeGlSzhvHk6alBMX\nR2P6yDMzM52dnXNXAujp6fXs2XPjxo1R8vsv1evKlSsA0ELhuh01+ueffzw8PHR0dDp06ODv75+3\nHzQkJGSpuzsCoI0NskjLSUm4a9dfHh4soZyZmRnHcaNGjVJwfEdHR5C18FXekpJiMDMzA4CPCsc9\nvgPXrqGcmCtZWVlsJV5R54qHh+OiRaVUp9StW5f9JHPzyB05ckQkErEZgEFBQYre3Lw5AuCVK/K2\nS6XS0aNHszVLTZs23bhmDT25q4Kvry98M/Hyw4d48SL6+RUMsh8cjBYWX42EFMQSqZ04kT+3Sl5z\n585lgzNCodDZ2XnBgr2bN+P9+5iejr//jgCoqys7v1JWVha7G+gKhX7yw4R+/PjR2tpaIBBoa2ub\nmJi0a9du/vzknTvx6dNC5sggRUb1YPmuBzWlQejlhQBYvbqiTq/C2LwZAZDHQ5EIXVyWXylQ+R06\nlJOvk5Qpnz+jri5yXP7AUKWJBSJycXFRWwnKEpaz3tvb28XFJTdn/cqVK3N7WMqUDx8+lP0hrFR5\n8x/i45Gle3JwwEmT2ESsV61a8fn8Tp06DRkyhE2tGT16tMxVFrGxsXw+XygUFhzIZTNtFCycKLyN\nGzfu2LFDtdHqVW3ePNTSQnt7mVNEMjIy7Ozs5E3kU2DlShw9uuDMPpVgMyng61R1+/btAwAHBwcF\nb5RIJM/r1hULBKgw36+Pjw8ADPlmamdSAs2bNweAb4SvUOj2bdTRQWfnsFWrZCwCfPz4MbsZKo4c\na29v/2VssHXBraNHo0iE3brtfP/+fb5NJ06cAAAW8VJxDjqWP3Pw4MGFuCaiBFQPlu96UCMahIGB\ncUIh8ngK+i4La8sWFAjQygr5fJR5p0pNRV1d5PEwPFyDVoV9FwYPRgBctkxtBahfvz6UmXSIZcrH\njx+3bdvGutm2b9+u7uLkFx0d7ebmxuPxNm3apO6yFFdmJnp44OLFOGYM8njo6pqxZUtu2/vw4cPs\n8atTp065VZFYLL5w4cKwYcMMDAyqVKkic/EbW1KykmZEIKJUik2b5qzL0tVdOWNG7hLZrKwsf39/\nlrDbzMzMxsbmw4cPhT/wlCkIgH/8oZpif23AgAHsIZ71Wz1//tzLy6tChQoikWjAgAEK3vj69WsA\nsK9eXfHxR44cCQAbN25UvBsptszMzO7du2tra0eWbPT1+PFQPl/I4/H+/fff5OTkgIAAls/QxcVF\nJBIZGRlpa2uvX79e3tsjAgJqm5mxgWWZt82sLBw1aiMA1KlTJyEhISEh4fr1676+vsOGDbOzs+Pz\n+TweT19fPy0tTUEh2YjN+fPnS3KlpJCoHiz39WD5bxCmpqbWqlWrWbMlc+bIurPImjKhwJ9/orc3\nxsbKbg0ykyadt7Jqum7duqIXlqjQ3bvo4YHe3njjhhrOfvXqVQCwtLSkfFzyrFmzBgBGjBhRyuf9\n8OHDmTNnxo0bd/r06YK5swIDA1lLtVKlSvdkznD6vkRGyoysdefOnQoVKgBAvXr19uzZM3r06Nxk\nxKx5IHOBxMaNG8vskpLS9uFDTuwXHm+XvT0AVKlS5eTJkzt27GBNQQCoW7dunTp1AMDR0TEuLqGQ\nB2bz62bOVGXhv5gwYQIrqoWFRaNGjXK/AHw+n+O4+fPny4s8ceDAAQDo0aOH4uM3btwYAG7evKmC\nspMcffv2BYAOHTooCKtYGCtXrmQLsXKDczA8Ho99H/h8vtxRkd9+Q4Eg0sZmc+vW8iZ9JCYmsinK\nbE1pXmwZWNWqVRXEgXvw4AH7oipeu6XCdIjlC9WDqPH1YPlvELIaztHRMX9X06FDaG+PhoZoaIiF\ne0Znga+cnL6x265duwCgbdu2xS0yUZX0dPT0xEGDSvu8YrG4b9++IpHI1dVVcZenJgsKCgKAypUr\nl+ZJr127VqFCBRatDgCsra1nzpz59u1btnXXrl0sonSrVq3K7PpGZXnz5k2NGjUAIHcGr6Ojo5eX\nl4KlEceOHQOAli1blmY5y660NJw5M612bR2BgI2N5EbUcHBw2L9/v0Qi+fz5c8OGDVu12taihbQQ\neb8Rv0RNnjixNOJOeXl55f0CmJiYjB079urVq+vWrRMIBHp6em9++SVfBCyJRHLx4kWWHEzxXNDs\n7GxtbW2O477vicFlXnh4uI2NDQAoXhBVGNWqVTM3NxcIBI6OjsOGDfP19b1+/Tp7/OXxeDoCwYsO\nHXJWZOWVmzQCALt2VXD827dvi0QiPT09AwMDFxcXDw8PdopPnz7Vq1cPANzdf5L3dDZ9+nQAmDhx\nouJLWLJkScOGDU+dOlWEy9Y8VA/m0uR6sJw3CDMyMpycnAQCwYOvU68gIu7ciQAoEiEAFi5hbkZG\nTo4lxevQEhMTWVT9mJiY4hacqMTLl6ivjwC4RbUJvfKbMmUKq0EBoFq1alEXLpTq6b8TUqmUBZx4\np8SFnmze1O7dePx4wQXEmzdvZgvK27Zt27p1a/YQz2oCNze37t27s39OmDChhH3t34vY2NgNGzYM\nHz7cy8vrm0G0X758WbNmTR0dnXOKQ9RrmId377JxD4FAYGBgYGtru3nz5rz9yhERn21tEQB79CjU\nmvajR48CQM+ePVVY6C88PDxsbW2FQmGPHj38/f3zrsY5c+bMMbYCp0WLnITmDx/itGnOtWuzn4mR\nkZFAINgi/9769OlTdgMshQvRcAEBAawzYlkJ1kh8+vRJIBCIRKKCbYDZs2dXNjQMZq2+SpXyD7Y8\nfYo6OjlJI/75R8Ep2CBk7969C448f/jwoW1bd1PT2BEjZOSXl0qlVatWLcxoMxuTP3v2rOLdyjmq\nB4tCY+vBYjYIHz/GmTPRwwNnzLjfp0+fDh06HDx4sAwGiIuLi2OT3WVMWjh69P+JbkJDC3nAAQPQ\n0FC6ebOiFSBHjx7l8Xi5UdpImbJrFwJgnTppDx8qjJinPDt3XgQAkUi0ZcuWpk2bjq9XDzkOe/TA\nAovpyQ8//ABKXEa4eTPq6uKMGVixIgKgldVbb+9Xr14hYmZm5tixY1k95+HhkZ2dzZajQJ445tbW\n1kKhcOvWrcopzPcmMDDw4sWLY8aMkfnIdeLECSMjIwBo2LBhwbAQGi4zM3PhwoUsS22KrHHAFy/Q\n3BwtLTE4+NvTU27evAkAzqUSqYzNbpX7ZPPkCVatigA4bhzWq8eGgHa0bm1vb79gwYJff/2V/YI8\nPT0LpitMSUkZP348AHQo19kmy46TJ0+yiZ07d+5kr8TExDx//vzatWuHDh0qTBrxtWvXAkCvXr0K\nbpJKpYk///z/ZIYFF1YlJWH//ti2LSocDWbTko8ePSpz64MHOR24ixYhIoaH44kTuGbNwx9++KFy\n5coGBgbGxsaKEmMiPnz4sDDTSss5qgdLQKPqwSI3CE+exAUL0McnZzqAq+tj9u2xsbFxcnIqU9O1\npVLp7t27LSwsAGDu3Ln5toZevbqrdetFVav+3rx5yLNnhTzmkSO3RCL9Vq1aydvh9u3bbFnqInYP\nI2XPvHmvdXXN7e3tE2UlOFKua9dQRwddXI6zRk52dnbixo05A82lvliu7FPWMsK0tLTU0aMRADkO\nV6zAP/5ABwcE+KV+fY7jnJ2dWbWno6Oze/du9pb09PQDBw506NCB5RRi0TW6detW0kv6Pu3evVtH\nR8fY2Jjd3mvVquXt7c0GCqRSqbe3NxvuHjx4sNyQbpotIyMDAIRCobwd7t3DVavQxwdbtkQnJ1y+\nHF+9Ssi3T2Rk5LFjx1jO5apVq6q2xIiBgYEAYGlpqeghOyoKx47Fv/5CJye0sMCJE9Pu3s3duH37\ndjbU0LVrVxZTRywWX79+3cPDw8DAgE0I19HROXbsmKqvheCX/BM6OjoVK1Zk3RO5OnTo8M3BwxYt\nWgDA3r17ZW9OT0cXFwTARo3k5qdX6OXLlwBgbGycISdTCyKePo3a2vjXX7hlS84zZ/PmkewS2MpD\nLy8vBadguRB/+eWXYhSvHKB6sIQ0rR4szgjhgQMYGore3rhpEx448PHQoUMnTpxg603/KJ1QaIXG\n7mhsNku+p/+7d+/ClzUetwud/y05OVlbW5vH48kcDn369ClbgTpu3DgllJ6oRnp6OuuY7N27t+L+\nxRJ69y4noVP+fM7h4ThiBPr4aFTuwcJ48uRJnTp1Fi9eXJKDhIeHN2vW7AdnZ6mBQd7oT+Jbt8aO\nGcMeTC0tLStWrChzcfyLFy/8/f1v3LgBAE2bNi1JSb5HYrF45syZ7LbZtGnT6dOnW1lZsX+ymYQu\nLi4AwOfz//zzT3UXtuxKjomZ5+Q05VurSjIz0cws50nXzq5WnTp1pk+fvnTp0gEDBtja2uY+vvP5\nfJFIVDD/lXKlL1oU3LLloXnzCrV3eLjMCa83btxgnbC1atUaNWoUi9DApp+5uLi0atWKXc4dTR1w\nKGWNGjVimc3YmI+enp6enl716tU5jtPR0YmVnyMkNDSU4zhdXd1kBY29mBhctAjF4qIG52PYgtVv\nhuKIjER/f/T0REND7NABFyxI2b1797Nnz06ePCkQCDiO27Fjh8w35k4rvX79elHLVg5QPVgSmlkP\nKm0N4aVLl9gt5s2bN8o6ZskdPnwYANhK2RUrVuTd9Pz589xNe/bskRc8raDmzZvzeDwHB4fJkyfv\n27cvd5g4LCyscuXKbIpFmRopJQWdOHGCz+dXq1atbdu2YWFhKjpLQABaWWGvXqjKVif5yqNHj9gz\naPXq1aNkjfwnJyd37twZANzc3H6Wn3o5Li6OdUIX/s5QDsTFxbGUSjwej+M4oVD47NkziURy4cIF\nd3d3NoPIwsLCyMiIQr1/Q0gIAqCt7Td3TE/HY8dw4sRI1pmYdyTH0NCwffv2c+bMYXEju3fvrtoy\nOzggAF68WMLDvHnzpnr16rmhIx0cHLy8vHIfDHx9fec4OaFAgGPHomYsSVIjlgxwzpw5eYcHBw4c\n2K1bt4IPRXn9/vvvoOIUf7Vq1QKAC4VbUS/zNrxlyxb2gH5R1peWNWYqV66s0m7fsonqwZLQ2HpQ\nmUFlhg0bBgBt2rQpO18dqVTKlhQDQMWKFdPS0iIiIg4cOODh4cGGNE1NTdnWFi0WNGiA/fuj4gxJ\nly5dEolE+aIkW1padu3alcX1cnNzK5i2kpQpT548YcFLWOAsMzOzw4cPK/H4EgmuXYtr16K/P3p5\nyUxSTVQlOTm5bt26nTt3jo+Pl7fP1q1b2WMEACjoI2cDHarrLyhrXr9+zR4fWVABPp/v7e2dd4eo\nqKiWLVsCwNSpU9VVyO/G48cIgHXrFv4dWVlZLLodALRs2ZI9grBNMTExrEf/1q1bqiku4rNnCIBm\nZoUKdPMt7Em9Vq1aMsK5IUr270dtbQTAsWNLfi4iT1RUFOtWePXq1erVq3fu3HnmzJmHDx9++vTp\n9OmzTZsu6tIlSl7f9fTp04VC4YYNG1RUtk+fPrFegxKu7mMB2wwNDZ88eYKIERERx48f9/Lycnd3\nt7KyEggEg0o/qngZQPVgsWlyPajMBmFsbGzFihUBIO/yU4lEEh8fHxoaqmjigSrt2LGDPfTnbf4x\nFhYWvXr1cnV1tbS0dHU9zObtDBmC/v64ciUuWJB/YCcoKIhNJh47dixLouru7p47JaZVq1b16tVT\n8PMjpUlep+CrV6/Y0H+XLl3Cw8N79uzJ/nzDhg2TGf6hqF6+jGvZMidcUdmLsqQRoqKiFA/RX79+\nHb5MF78hPytl69atC9+BXQ6cPXvWwsKC3dDMzc0vXbqUbwf2gbAfi1pK+D25dw9FIixiJJiaNWuy\nT3jChAn5Ns2dOxdUGpElOjonza4yzJo1CxSv77pzB2vUKMY8Q1J4R45kNm36adw4GV2SUinWrIkA\nKC+P4LZt2wDAzs7uE4soqwJs0t3s2bNLchCJRMJCkZmYmORNGccIhUIjI6NnhQ4SUZ5QPVg8mlwP\nKjntxN69e9n4sp2dnbm5ORuBYWbPnq2WpeRZWVmbNm0yNTVl/RwGBgYdOnTw9vYOCAjI22b4/Fly\n/z7u2YP//YeIuHAhAmDTpnj3bs4+wcHBlpaWADBo0KB8jY23b9+ySe3qavSSvCQSyZw5c8aPH1+t\nWjUPDw9/f//wL0Gx37x5Y21tDQAdO3ZkA7lSqXTt2rVs5rCDg8PlEgznZWdne3t76+npOTgEWFrm\nnbRPypbY2NjcntG///674A4pKSlBQUEs/Nq6detKv4RqwWaR7d69e+LEiTIzf/Tv35/dzDVwSUlx\n+Pnh+vVFWiTcq1Ejax0dbYFg1qxZ+TYlJCSw590rV64os5DM6dM4cCBu3qysFprn8OHa2tr/Kr4J\nsrVntI5aZSZP/n+IzoL+/BMBsHNn2VtTU1ObNWsGAD917YqqyZ17/vx5dhO+9CUOavGkpaX16dOH\nZUcwMTFxcXHx9PT09/d/8uTJ4MGDAaBq1arlPnteMVA9KJMm14PKz0O4dOlSNjWZ4TjOxMSkYsWK\nHMeZmZmV8s8yOxu9vd+zb7ybm9v169cLOZ310CGsVAkBsHXrkcOGDXvx4gXru23Xrp2CiFjf5ueH\n169jkdKV+Pnh7dt48mTxT6pJpFLpTz/9BF9CkOV+CevVqzdy5EjWpG/Xrl2+7PBPnz7V09Pj8/lG\nRkYODg4LFix4/rywEySkUmlgYOCyZcvc3NzYuaZP91Z9+FJSImzOMABMnz4936YPHz40adLE1NS0\nUaNG9vb2e/bsUUsJS9/UqVMBYPny5fJ2mDdvHvvQDAwMys66gHKFRdkHQFkRIBctWgQAzs7OSv7w\nHz7MOa+sh8JiqlQpWyDI+pLYmqhF06YIgAVGODArC3fswPh4bN0aFbTFoqKiJrVtK7aywn79VLQO\nfuvWrbvc3FBHp2gPRbK8f/++YKi/9PR0NruvSZMmSpkBVM5QPViQJteDKklMHxISEhwc/OnTp7y/\nQDY3b8CAAao4o0xhYejqigDYrt2SxYsXF3VhcXIyLlnygU0jZk1KJyenEo0BZmXhkiWop4cGBoWd\nTciWoxkaopYWlqVoPWWTVCr95ZdfAEBXV/fSpUsBAQHe3t49evQwNDRkP2AzM7OGDRsW/CMePHgQ\nAFjIMrano+M9R0f08kJ5OdJjY2PZYlS2dpSdFACaNWum8uskJcaiHY4fPz4o6Kt0lJcuXWLTy9mg\nsZmZ2WeFebTKE7bua3jBlGJf7Ny5E76srAjPl4qalJxUijxeToNwzZqC29esWcPn86tUqTJgwIA0\n+YM2mZmZLN3c4cOHN23atHjxYk9Pz9GjR69Zs+bSpUv5ZpFFRETEtGuHADhsmOzAHcUQG4sAqKdH\n0bTUa/t2HDEC861iSUzM7NgRAdDZGdu0wW3bUFaMyS+eP0cTEwTAAg0GpZk9GwHQwACDVJIZOCYm\nhi3N7d69O0X7y4fqwYI0uR5USYNQptDQULYs/siRI6VzxjlzEABtbPDq1eIf5PXr1126dKlVqxaf\nz7927VqJCnT8+P8TuY4aVai33LiBACgUIgD26VOis5c7//2H+br8pk+fDgA6Ojr5pn1nZmZeu3aN\n9RROmTIl/4EkkjZOTqxRZ2RkdOjQIU/P6ebmUvZgtmcPsuclAwPs0uWBqalptWrV6tWrx/LPMLa2\ntiyfj1Ao5Dju6dOnKr50UiJv376tWLFi5cqVRSKRu7v7hQsXWD/foUOHWIxHdq+3t7d/oklrnK5d\nu6a4RyMgIEBXV5fNvdecJSWlJzkZAVAgQADcvv2rTamp88eNYxMQ2JfTxcUlOjo63wGSkpK8vb17\n9+4NBXAcx77bpqamw4YNO3jwYEZGRmpqapMmTQy1tF6NGIElmfmSz5UrCIAtWijtgKRY/P1xyRK0\nsEAvL8zMREQMDw9v1KiRs7M/ewzR0cE7d751lKtXUVsbFab7KxGpFAcNQgsL1c0cfvHiBYsf4a2k\nJbLlA9WDMmlyPVh6DUJEXLt2LQBYWVklJCSo9ERRUfj33/jHHzhkCMbEKOGAI0aMAICaNWuyZLtf\n+fy5COdo0wYBMptVenvCPiXlS7/c/fvYti16e8teTdGnDwJkNbB+d6j2589fQtw+f45du6KXlwYu\nwDh5EpctQ1/fnJZy375J8+bNu3Tp0rRp0wBAJBKdlDO99sKFCwDQsGHD/Bt275ZYWGy1tTXW1l70\nZb1FdjaeO4dubjhgANapk9Nr36bNndzBQI7j2rZtyxajSqXS169f83g8Pp9fy9T03pw5Kv0ESElc\nPH+ePRyYm5vnDgjXqlVrxYoVL168qFChAp/PBwDF8dnKJbakxNDQUCqVygw6J5FIoqOj7ezsGjVq\ndLUk3WxEJrEYg4Nx8mTcsQMjI///+ocP2LRpct26VqamBw4cePLkCUtRWK1atefPn7NdkpKSlixZ\nkhtUw87OzsDAgKXMZa+sWbNmxowZLNB/7nwntqDa3t4+RinVZF6rV+OcOfkHp0ipW78+p/Lq1Cnp\nypUrbE2drq5+nTpXzcywsPn5wsJUu9ozPR337cOtW1UXZOi///7r2rWrqp88vyNUD8qjyfVgqTYI\nJRIJG6EeOHDg1atXT58+feDAgS1btvj4+CxduvTx48fKmo/bpQtWr46BgUo5GCJienp6/fr1AWBU\n3pG96Gj08kITEywQEU4eadCjyC3OAQG8gAB48aJFVlZ40r8zkeMQAOWlZ337Nnqda8B9LiAAnj51\nyMqKSDw3D/l8BMC+fUt8Zd+rBw+weXMUCNDV9TG7l+no6AgEgoMHD8p7S0ZGRm0rq1UtWmTlna8r\nFmPt2qzOzHJwSPp6XkStWgiArA/o82eMj0+PjY0NDg5u3LgxAOQLkrT4p5/uN20qFQpRS+ur5zlS\ndmzenNi4sb5I1L1798TExNevX8+ePZs9FgMAqwI5jpsxY4ZmTi5iS0quXbsmEAg6dOhw4MCBrDyZ\n4gIDA1m2nvr162tgai/1iI7OSV1fs2bKl+ZfZGRk06ZNWaPu8OHDvr6+ufHbXFxcWNQZlhSX7VO9\nevXo6Oi4uLg5c+awme2598wqVaqoZEbDhQsoEGDt2kjLCNXt8mV0dMQGDSZzHNexY8cvSxtaBger\nu2S5wsKQx0MrK8pLWUqoHlRIY+vBUm0QIuKzZ88EAgGbnZxP27Ztf/3116IdTtYsl0OHEABNTFC5\n0ZKfPn3K7qT+/v4hISETJkx4wqYSstmEPj6F7NwKDR0XEAAPHogeParw4IHeg/sCSSNH9PRE+VO0\nw8NnBQRAYKD2o0dmDx8aBtznxK6N0cNDOaOf37PPn/HcuaBx48YZGBiw6Q1Hjx5V9IZevRAA/fz+\n/8p//yGPl5MU6+v5JPfvIwBaWWHBW+LSpUsBwMPD46tXr11DABSJEADnzi3JdRHlS0/HoUMRADnu\nxerVefuechPOVqxY0d3dXXNWz+dz8+ZNAwMDKysrHR2d3JGlihUrrl27FhH37t3LboAtW7YsGLyB\nqNCMGditG349uJGamtqvXz/4sr49V7169by8vMRi8YsXL8LCwvKGQGMxaXJngrHpEqpKKvDhAzZo\ngAASW9u7+SLap6Xh3r04eDBmZ2NIiDKnqhI5MjKylyxZoqOjIxQKeTyem5tb2Rr2+eMPBMBSDDCh\nuage/BZNrgdLu0F49+5d1jHZsmXLzp07u7u7jx492tPTc8yYMexWdb2wkxgQEXHePLS1xZkz8dUr\n9kJqamqvXi85DtevV37hWR5PkUjEJlg3MDKSsoYEAK5YUciDZGdHP3pkHhzcn7UM37zplZn2jZ46\nsTgpKMjqzZseHz54BgTAq1ft01Oel/hqyo/s7GwjIyP2ux0/fryiXdkEmnyZau/fRzc3tLTMtyRx\n8eLDLi4hM2bI6LN89OgRAFhZWeUf03Z2zpnJWrLcSkT5srKwTRvU11eQD4RlIinHnj59Ku8at//9\nN2sn5Madgy9xkry9vWfOnMle8fDwyGSrkUjpOHkS586VGW9DIpHMnj27bdu27E8jEAhY47BevXp5\nd8vMzIyIiAgKClq0aFHuQGKzZs3OlTiu4zckJ0t79lzcvLlIJPL39xeLxefPn189aRIaGORUmj//\njFWqoLOzkvtuiRzv3r3bvXv36dOn1fgTjomJySowDBjYt6+U4/DwYbUUSbNQPUj1oHyl3SDs1KkT\nyElFymK51qpVq7Bfx+3bc+bSALxp1crR0dHb23vSpEkA8MMPK1U00D1kyBD2hWBV79tWrbBhQ/T3\nlzGKJIvk5eNXr9oGBMDTpzWCg/s8eCCKiJiv+C3S1y/fvukZEACPH9sEBw8KDNQODS3sDFXNwVLT\nCnm8OYoTNwcHo0CAPXt+9aKfHz55gl9nipBIJCx86N27d2UeiS3jCQgI+OrVkydx0SJcsYISLpc5\nCxfiggX4+LG6y6E2EonEzs7OxMRkwoQJrx8+/P+G7GycOfNtq1asnsvKygoMDJwwYULugjR2rxOJ\nRJs2bVJb6Ykcr169Wrp0KZvEzohEoq5du7Zo0aJGjRq5AZYBoFq1agBQt27dAwcOlE60dLFYzGpk\nln2KFSOzWjV0dsZ16/DWLaxSBQGwWrWYL126uSIjI318fNaromeXqM+IESNMTEyGDRt2/Pjx7Oxs\nRHz16hUA1K9dW1re2yFlAtWDVA/KV6oNwhs3JG3anLC0rBYXF1dwa0ZGBgvVOH/+N9pIOW7ezOlo\nFApHfZn9zOPxOI67deuWkov+RVJSUu66/A4dOtwpfB7zuDj09EQ+P/hqi0ePTJ88qREQAAEB3IMH\nOpmZIbLfkpyMXl6opRV6pvWDB/pPnzoEBEBAAC8wkJ+Wprm/Z5nu7twZ0qJFNut7fvFC0a4bNxZm\ncTyLQFO9enV5T07jx48HgIULFxa7zKRUWVkhAIaEqLscavPx40e28AwALjZqhI6O6O2NL1/mJOfR\n1n64f3/e/TMyMg4cONC9e3dDQ0M9Pb3//vtPXSUnhREaGurr69uhQweBQNCuXbvcdqBQKLSysqpU\nqRIAODk5lX7irFWrVhkaGopEopo1ay5atCgq76rCyEhs2vRl69YGBganTp1CxLS0tAMHDvTo0YNN\nw7G2ttbMVUzlFYsiwdjY2EyePJnlPR9VyLjrpISoHqR6UL5SbRC6uSEALl6cLW+H27dv83g8gUDw\n4MGDbx8uLg7XrcMWLcQVK4r4fDZnxszMbOjQocosdAH9+/cHgHnz5hXtbffvI4+HQmHWqjlicXxi\n4qmAAAgMEEWvbCaZMFr2W169QpEIebzs+ZOysz8lJ98MCOACAwVRaxpLRtJs+6+Fhf0/P4ePT8mP\nd+PGjRo1atjZ2UVFRcncYeHChRzHmZqaenp6BioxfhFRkbZtEQDPnFF3OdTs8ePH82fMkFhY5PSm\n/fkn2tujjY2C8PNWVlYAEKLBzxDfl4iIiEePHt28efPVq1e5YRUjIyM5jtPT08so9TV7586dAwVh\n3NPShg4cyBquLVq0yJ3UqqWl1bdv33///ZeNI5Fy48mTJ3PnzmXj1bmGDBny7NkzdRdNA1A9iIhU\nD8pReg3CCxcQAI2NUXHg31GjRgFA5cqVx4wZ4+7uPmLEs9atsUkTvHhR7ltig4MXLVpUs2ZNFjw3\nXw46pVu/fj0ADBs2ogjvOXkS583DWbPw+f/X/n26OErSsFZO1qmCsWvZW7y8ME/b+NONX8Ut6+aE\nLVEcPUUDOTrm/LblZxQtvKSkJEtLSwCoUqXKna/vEcnJyR4eHhzH5QZrblixorRuXfTywjdvSn5q\nohK//JJoaBi1caO6y1E2ZGTg/v3Ysydu3IjHjysOisuGm06fPl1qpSOq0Lhx45o9al55faWUz7ty\n5UoAmDhxorwdpFKpl5eXSCTS09Pj8XguLi6+vr4FsyyScubOnTu5a3AYR0dHLy+vN1SNqg7Vg3lR\nPfi10msQvn2LQ4bgN/OCtm/fXiQS5YYhdXI6zR7yx4/H6dPxhx9QQZRXtl5C+SmVvvb8eVSDBgnV\nq5d44s2bNygS5eScGC1nkDCf8HDU08tp9vzwQ0kLUM78/TeuWIFz5ihr/V5YWBjLZS8QCHIT2t6+\nfbtGjRoAoK2t/fvvv//3338///zzmW7dcv4oLi5KOTVRus0bNgDAuHHj1F2Q788VL6+nrq4xf/2l\n7oKQElnwYQEEwuSwyaV83qFDhwLA1q1bFezz4cMHADAyMvrw4UOpFYyo3fTp0wGgT58+Y8eOZWnx\n2IrTNm3a0FRhVaB6sNg0oR4UQGm5eROaNoW0NMX73Lx06ZJQKIyLi+vUqdOYMWOMjeuLRKCvD3Z2\n0KQJvH8PGzfCxIky3vvp06ekpCQTE5O80YFUoXbtilFR8OkTvH0L9vYlOJC9PUyYAPv3w6hRsGRJ\nod5iYwMzZ8K6dfDjj/DHHyU4d3k0erRyj1epUqWrV6/Omzdv5cqVs2bNunXrlqOj4x9//CGRSOrW\nrbtz586GDRsCQJs2bSArC86fhz17oEMH2LED0tKgcWNwdlZueUhJVLW3BwAWwIAUiZupKVy7Bg4O\n6i4IKZEOJh0Wxyw+m3R2NawuzfMGBQUBQIMGDb65j5OTU276RFLuIeLBgwcBYPr06S1btty0adOV\nK1f++eefo0ePGhgYsGx4RLmoHiw2jagH1d0i/crOkSN5HMdxnFAofPfuXb6tR47k5Pz78EFGJoBr\n164BgLOzcymU090dAVBhj2fhJCVhSkpOlMtCSk/HhISivYWUzMGDB3OD9fH5/Dlz5pTLiMPlW2ho\nKABUrFhR3QX5Dp0/jwDYpo26y0FKJFuabfzI2OqxVYI4odROmpGRIRQK+Xx+amqqgt1YZtcpU6aU\nWsGI2l2/fh0AKleunC/QUWpq6vv379VVqvKN6sHi04B6sPRGCL/t0qUfd+zoUKHCX5UqxTg729nZ\n5dvepw+MGJHx9u2OceOOnz59Ot/W169fA0DNmjVLoaQTJkCfPtChQ4kPZGAAADByZBHeoq0N2tpF\newspmf79+9evX9/BwUEqlV65cqV169bqLhEpssqVK1+/ft2hfHfvqUidOtCtG9SpA5cvQ9u28GXp\nLPm+CDjBYuvFWpyWFqdVaid9/vx5dna2nZ0dy+Ulz+PHjwGgfv36pVUuon579+4FgMGDB3Nf31J0\ndXVZVieidFQPFp8G1IMcIqq7DF+4usL168BxoKUlefuWb2NTcJeoqKg6derEx8fv2rVr6NCh6enp\nqampSUlJSUlJq1at2r1795IlS1g+Q5W6fh3WrIFKlWDQIJoYqBEQkWU0kUql6i4LIerQuzccPw7V\nqqWPHRs7dChN7SOF8fnz50mTJu3cudPHx8fT01PebrVr13716tXDhw/ZPHxS7onF4kqVKn369In+\n6OR7Uq7rQZ66C/BFfDxkZ4OWFiDC+PEyW4MAYGlpuWrVKgAYP348n8/X1dW1sLCoXr16o0aNdu/e\nXaVKldx1ySp17hwcOgTGxtQa1BRZWVkAIBKJ1F0QQtSkY0ewtYV37w6ePGlnZ9e1a9d///1X3WUi\nZZ2RkZGdnR0iTpo0ydPTUyKRFNwnMjLyzZs3AoGABi40R3x8vLOzc4MGDag1SL4n5boeLDMNQlNT\nGDcO5s+H1q1h5kwFO44cOXLr1q01a9aUSqVaWlqmpqbVqlWrX7++jY3Nhw8fIiMjS6GwbEVuqcxO\nJWVCZmYmUIOQaLKJE+HdOzh/PqxxY4FAcPbsWR8fH3WXiXwHvLy89u3bp6Ojs27dum7dun3+/Jm9\nnpmZeeLEieHDh1evXt3CwkIgEBw5ckS9RSWlpkKFCkePHg0MDFR3QQgpinJdD5alKaNFkZycrKOj\nIxD8fw3k6dOnu3fv7uLicuPGDVWffeDA00+eVNy5s36TJkJVn4uUBbGxsRYWFubm5jExMeouCyFq\nFh8fv3v3bltb2169eqm7LOT7cOfOnd69e0dHR9etW3fOnDkXL148dOgQaxzy+fwqVaqEhITweLwN\nf/zx85Qp6i4sIYR8Q/mrB7/XBmFBSUlJFStWdHBofv36ZT09FY58IqKBgUFqampiYqKRkZHqTkTK\njo8fP9rY2FhbW0dERKi7LIQQ8v159+5d586d3759y+Px2GJsR0fH4cOHjxgxwtLScs2aNQtmzXpf\nu7ZJo0bw119A0zEIIaQUlaUooyVjaGjo5JRw44b2rVvQsaMKTxQeHp6ammppaUmtQc1BU0YJIaQk\noqKikpKSAEAqlTZv3tzf379WrVq5WydNmjTU3t5kwAB49AhCQ+H0adAqvWiohBCi4crMGkJlaNlS\nGwCuXlXtWa5fv25gYFCjRg3VnoaUJVWqVAkODma5LgkhhBTJP//A3LmvoqOjW7RoIRAIAgMDxWJx\nvn3Mu3eHW7egcmWoV49ag4QQUprKVYPQzQ0A4MULFZ5CKpX6+PhkZGRMnjxZhachZQyfz69WrVo5\nCzFMCCGqJpXCzJkwYgTcvj1q3rzt165d++mnn8Ri8axZs2Ts3aAB3LsH9evDxo1w506pF5YQQjRU\n+VlDCADp6bBpEyBC9erQp49KTvHXX3+NHz++UqVKL1680NfXV8k5CCGEkHIhNhYaN4aoKFi/Hjw8\nAACio6Nr1qz5+fPns2fPdu7cWd0FJIQQUr4ahAAQHQ19+8KnT/DgARgaKvng8fHxtWrVio2NPXjw\nYP/+/ZV8dEIIIaQcOXUKzMzgwgWoUAHGjfv/6ytWrJg1a5aDg8Pjx4/zRgsnhBCiFuWtQZiZCS1b\nwoMH4O4OBw4o+eAeHh5bt25t3779xYsXlXxoQgghpNw5eBDc3fO/mJmZ6ejo+P79+3PnznXo0EEd\n5SKEEPJ/5a1BCABv3kCTJuDgEOnhcXn06KHKOmxgYGCzZs0EAsGjR48cHByUdVhCCCFE01y5ckVf\nX79p06bqLgghhJDy2CAEgCNHnvfrV09bW+vu3bv16tUr+QHDwsKGDBly48aNiRMnrlu3ruQHJIQQ\nQgghhBC1K1dRRnP17evYsWOH9PT0AQMGvH//voRHO3HiRKNGjW7cuAEAZ86ceffunRKKSAghhBBC\nCCHqVj4bhLdv32btt0+fPjk6Oi5cuDAjI6MYxxGLxQsXLuzTp09cXJyrq2u9evWCg4MHD/Z69EjJ\nBSaEEEIIIYSQ0lcOp4yKX7xo3LXrk9BQgUCQm/rW3t5+zZo13bp1K/xxQkNDBw8efPv2bYFAMHfu\n3AULFqSmpo4aNfvuXd+kJMHRo9C2rWougBBCCCGEEEJKRbkbIQwPF3TufJfPdzA0FIvFI0eOvHLl\nSr169d6+fdu9e/eePXuGhIQoPkB6evqlS5emTp1av37927dvV61a9caNGwsXLuTxeAYGBnv2rG/V\nSpCUBD16QFRU6VwSIYQQQgghhKhE+RohTEyEVq3g2TPQ0sq2sFjcrp3Xtm0CgSA7O3vt2rWLFi1K\nTk52cHBAxFq1ajk7zzYza16jBtSrB2ZmcPMmnD8PV65AcrLHo0dbAUBPTy81NXXfvn0DBw7MexKp\nFCZPhs+foWFDcHYGZ2c1XSwhhBBCCCGElEz5ahBKJDBmDOzbBxkZ0LIlXLgAurq5GyMiIhwcHDIy\nMrKzswGgVavXN27UAABvb5g5EwYOzMlb2Lbt+cTEWc+ePcvOzkZEZ2fn27dvyzuhzAxLhBBCCCGE\nEPJdEKi7AErF54OrK/B4cOcOnDiRtzUIAKGhocnJydbW1qdOnXr79m1EhGmNGvDqFcTEgK8vNGoE\nlSuDmxu0bt3JyKjTtGnT/vzzT5FIZBYdnXjrlnHLljJPSK1BQgghhBBCyPerfI0Q5kpJAX39fK9N\nmDBh48aNM2bMWLFixTcP8PHjR6/u3ackJDiEhUGXLnDqlGoKSgghhBBCCCFqU04bhAVkZ2dbW1vH\nxsYGBQXVr1+/UO/x8ICtW0EohOxsCAyExo1VXEZCCCGEEEIIKVXlLsqoHOfOnYuNjXV0dCxsaxAA\nZs0CgQAkEjA3h/BwVZaOEEIIIYQQQtSgfK0hlG/37t0AMHz48CK8p1o1+O03sLQEHR2oVk1VJSOE\nEEIIIYQQNdGUBmHt2rVtbW0HDx5ctLf98YdqikMIIYQQQggh6qcpawgJIYQQQgghhOSjKWsICSGE\nEEIIIYTkQw1CQgghhBBCCNFQ1CAkhBBCCCGEEA1FDUJCCCGEEEII0VDUICSEEEIIIYQQDUUNQkII\nIYQQQgjRUNQgJIQQQgghhBANRQ1CQgghhBBCCNFQ1CAkhBBCCCGEEA1FDUJCCCGEEEII0VDUICSE\nEEIIIYQQDUUNQkIIIYQQQgjRUNQgJIQQQgghhBANRQ1CQgghhBBCCNFQ1CAkhBBCCCGEEA1FDUJC\nCCGEEEII0VDUICSEEEIIIYQQDUUNQkIIIYQQQgjRUNQgJIQQQgghhBANRQ1CQgghhBBCCNFQ1CAk\nhBBCCCGEEA1FDUJCCCGEEEII0VDUICSEEEIIIYQQDUUNQkIIIYQQQgjRUNQgJIQQQgghhBANRQ1C\nQgghhBBCCNFQ1CAkhBBCCCGEEA1FDUJCCCGEEEII0VDUICSEEEIIIYQQDUUNQkIIIYQQQgjRUNQg\nJIQQQgghhBAN9T/sQ73b2oxTjAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAADICAIAAAB3fY8nAACMMklEQVR4nO3dZ1wT2RYA8DNphN4RBLErYhcLiogFO3asa11dsKLurqJrwS72XlDsva4FK/aui12xoGIDRJQmNZCc9+FiHkKICIEAOf/f+7AvM7lzg8ncue0cDhGBEEIIIYQQQojm4am7AoQQQgghhBBC1IM6hIQQQgghhBCioahDSAghhBBCCCEaijqEhBBCCCGEEKKhqENICCGEEEIIIRqKOoSEEEIIIYQQoqGoQ0gIIYQQQgghGoo6hIQQQgghhBCioahDSAghhBBCCCEaijqEhBBCCCGEEKKhqENICCGEEEIIIRqKOoSEEEIIIYQQoqGoQ0gIIYQQQgghGoo6hIQQQgghhBCioahDSAghhBBCCCEaijqEhBBCCCGEEKKhqENICCGEEEIIIRqKOoSEEEIIIYQQoqGoQ0gIIYQQQgghGoo6hIQQQgghhBCioahDSAghhBBCCCEaijqEhBBCCCGEEKKhqENICCGEEEIIIRpK0zuEiOquASGEEEIIIYSoiUDdFShg6enQty/07w+dOwPHZT7y7Rv8/TeYmkKNGvD5Mzg6gqOjumpJCCGEEEIIIWrAYcmeI+vUCQICAACqVz89ZUord3ehUAgAN24k9u+vGxoKenrw5g2Ym8Phw9C9u5orSwghhBBCCCGFqUR3CBGhZk14+hS0tD5ZW1u9eVO2bNlx48ZFR0evX3+Q457Y2vJ27AA7O3XXkxBCCCGEEELUoUQvGU1NhS5dICwMYmN9EbW0tN69ezdp0qTU1FSBQODre9rLq4NQqO5KEkIIIYQQQoialOgZQiY+PmnLlsoLFoRHRABAqVKlAODgwYNNmzZVd80IIYQQQgghRJ00IMqogYHO2LFvQkPXr19frly5yMjIgQMHUm+QEEIIIYQQQkr0ktFMtLS0PD09OY7z9PSMiYlRd3UIIYQQQgghRP00YIYwE2vr6k2a9NPWbqTuihBCCCGEEEKI+mnKDCFjZOR044ZTid81SQghhBBCCCG5oVkzhBYWAABRUequByGEEEIIIYQUAZrVITQ3B1tbKFNG3fUghBBCCCGEkCJAA9JOfBcZCcOGwcCBkJYGnz+DoyM4Oqq7ToQQQgghhBCiPpqyh/Dw4RQPD/HXr/DqFTx9CjzNmhklhBBCCCGEEAVKfocwPj5+woQJV68mx8dvb9MGtmyh3iAhhBBCCCGEAJT4JaMfP350cnJ6//69rq7uunX/9e9fjePUXSdCCCGEEEIIKRpK+AzhxYsXeTxezZo1Dx48WKVKFXVXhxBCCCGEEEKKkBK+evLo0aNv3761srLatWuXuutCCCGEEEIIIUWLmjuEaWng6QktWoCvb4GUb2FhAQBnz549fPhwgVyAEEIIIYQQQootNS8ZFQjg0CH4+hW2b89HKevWwdOncPs2XLkC2tqZj7AOIQB8/vw5HxcghBBCCCGEkBJIzTOEHAcNGwIA3LqV1yJCQmDBAti0CYKCYP36LAfNzc0BgOO4r1+/SqXS/FSVEEIIIYQQQkoY9e8hdHFJatQoPCTkZh7fX6ECiMWQkgIAsHhxakJC5oOsQygUCqVSaUxMTK4K/LEEQgghhBBCCCmp1N8hrFv32u3b1idO/J3H9/P5MH068Hj3ypRxFQoXr1ghP4KI8fHxAGBiYvLPP/88fvz4/fuUtDSlpX37Bk5OMHAg+PnBixd5rBIhhBBCCCGEFAfqz0MYGxtramoqEoni4uJEIlFeipDJxrZvv/LsWQAwMjJ68uTJvXv3AgICTp069eHDB2NjY/ncoLX1h4gIG0tLGDIEnJzA2Rn09DKVI5VCp05w6hSIxeDkBIcOgaHhL1dm0yZo2hSqVs3LByGEEEIIIYSQQqT+PISpqamGhoZ8Pt/e3r5Xr149egyoV+8X08fzeM08PFaePSsUCmNjY8uWLSvfLmhjY+Ps7GxhYREREREWFvbxoyXHQXg4SCSwbBkMHAhTp8KoUSAQAAAs/Oef0aGhOlpakJIC4eHwq13lIUPg8GHg86F5c8g5qOmZM3DyJJibg0AAkyb92hUIIYQQQgghRIXUPEP45s2bNm3avH79WldXNzExEQBcXIJCQx26doV+/aBRo9yWk5KSUqZMmejoaH19/YSEhDp16ri5uXXq1KlevXrcj53L9HT49Al0dKBzZ7h+HQCgV6+rAwbEvXv3bvTo0WZicVDFimWjouD2bShX7tc+jLs7HDoEANCqFZw7l9NZzs5w7RpcuQLOzr9WPCGEEEIIIYSoljpnCB88gGnTDr5+/bpBgwYTJ07s2bMnj8d79MguJgZWrgSRKLcdwo8fsV+/Ll++fNHR0Zk2bdqwYcMMc17qKRCAjQ0AwNWrcOgQLF2aGhDQff/+Lzwej+O4LykpNUJD31y8aP6rvUHIFI3mh3WoWX379tNTCCGEEEIIIaQwqC2ozKVL0Lw5BARM9PRcfeHChVKlSrm6ular9ltMjC4ADB4Mnz/DgAEQGfmTcq5dgwYNOKnUz9bW9vLly3/99ZeS3mBmHAfu7nD5Mm/ZsrkWFhYCgYD1Cf02bjRnqTB+0VxDw5Hly8+tUeNopUpKTtPXTy5dOl1PT5aHSxBCCCGEEEKICqlnyWh6OtjbQ0gI9O0LW7eCPJRMTIz0+HH+lSuwcSO0bQuBgXD4MHTrlmM5Z85Ap06QlgZt2sDu3Ummpjp5q09sbOywYcMOHTpkbm7+4sULY2PjPBRSp06dhw8fAoCnp+f6bBkR5SwtLSMjIyMiIiwtLfNWW0IIIYQQQghRCfXMEJ45A23bwuDBsHMnZA4samzMHzgQ/P2B48DREQDg9u0cCwkIgGvXoFIl8PKCEycgz71BADAyMtq5c2eDBg2ioqJ69+6dJYX9+/fv//jjjwULFvTt2zc8PDynQr6xxaAAekrXgyYkJPz0HEIIIYQQQggpBOrpEF6+DHv2QJ8+wMv5+o0bp9apc/HLl+0Kj377BhMmgJER3LkDK1ZkhAnND7FYfPDgQXNz88DAQB8fH/bip0+fvLy8qlSp4u/vP3v27L1791avXt3ff3uWWVWJRLJhw4avX78aGRnxeLzHjx+z/IfZnTp1KjExkeO4jx8/KqlMbGxscnJyfj8SIYQQQgghhCilng6hTAZfv8KtW8rOadgw4eHDVnv2jEhPT89+dMECeP4cDh0CXV2V1crW1nbfvn0CgWDevHmbN2+eMWNGlSpVVq1alZaW1rNnz7Nnz7q7u8fGxu7cWd3ZGZ49AwBIS4ONG6FHjxOenp5xcXHGxsYCgeDs2bM1atQICAjIXPj169dbtmzZoUMHjuMQsW7duvPmzUtLS8tSh/fv33t6epYpU6ZNmzadOnUKCwtTWNXERHjxQmUfnBBCCCGEEKKhUB3270cAbN/+J6dVqlQJAO7du5fl9Y8fo01MZByHN2+qvm5Lly4FAIFAAAAcx7m7uz99+lR+9PDhs9bWCIBiMa5ZgxUrIgBynMzN7bdjx44h4uPHjx3ZalcANze3sLCwW7duubm5sVdMTU1nzJgxcuRIHo8HADVr1rx9+zYrOSwsbNSoUSKRiF1dLBYDgImJyZYtW2QymbwCqano54dWVlijBu7cicuW4fz5qv8jEEIIIYQQQjSBejqE798nOzmtq1mzc+auThapqamVK1c2Nzc3MjIaMGDAsWPHJBIJOzR48GArqwbjxr0ooOr16NHD0NCwQoUKQUFB2Y/GxKCHB5qb48qVaG6Odna4bRump///BKlUumLFCrZLUEcnY2ejkZHRrFmz4uPj2TlXrlyxs7MDAB6PN3DgwPHjx2tra7P/27Nnz5CQkLCwsG7fw+k0a9bsxYsXEolk/fr17duvBEAAbNwYP30qoD8AIYQQQgghRCOoLTG9jY1NWFjYixcvqlSpkv1oQkJC9+7dAwMD9fT0Er7n9zM1Ne3cuXOdOnXGjx8vEAiePn1aSWmChzw7ceKEm5tbw4YNb+cc0+brVzA1hefPoXJl4PMVnBAeHj5q1CihUHj69OmRI0d6e3tnCV6anJw8Y8YMNiGZnp7OcVzHjh3nzp1bq1Yt+Tm7d+8eN25cVFSUWCw2MjL69OkTAHTtGjVsmFnHjqr6uIQQQgghhBANpbYOYY8ePQ4fPjx69GhfX1/dHzcCRkdHu7m53bx509LS8uTJkyKR6MCBAwcOHAgODmYn8Pl8Ly8v1pUqCMnJyWZmZikpKeHh4aVKlcrptBMnwNQUvq8PVUwikaSmpurr6+d0wv379+/evfvixYv+/fvXrl07+wkxMTGTJk3at2+fgYGBnp7epEmT+vfvz1MSjYcQQgghhBBCckdtHcITJ06sXbv25MmTYrHY1dW1U6dOXbt2tbCwePfuXdu2bV+8eFG+fPkzZ85UrlxZ/pZnz54dPnx41qxZUqn0yZMnbMllARk5ct/589WmTq01YEDBXeQXREREJCUllStXjq9wOpIQQgj5FSfiTtxLvmcttO5r3Febp63u6hBCCFEbtXUIAWD37t1r1qy5deuWTCYDAKFQ2KBBg5cvX3758qVevXonT57MPjuXmpqqra0tEAiSk5MLtGu0ciWMHQt9+8Lu3QV3EUIIIYQQQghRJ3V2CJkvX76cPHnywIEDZ8+elUgkNWvWNDU1PXLkiKGhYfaTX79+XalSpXLlyoWGhhZord68gYoVwdgYoqIUbxEkhBBCCCGEkOIu3wnd883MzGzgwIEDBw6Mjo4+ceJE+/bt9fX1tbS0FJ784cMHAChTpkxB16pCBVi4EJycgOMK+lKEEJLJpk3QtClUrarwICIuWLAgMjIyy+t///136dKlObphEUIIKe6oHSx06u8QypmYmAz42Y69QusQAoC2NqxfDxcugKvrTyLHEEKICkRGQp06IJGASATbtkGbNtmOR7Zs2TImJiYiIiLLoZs3b3p4ePz++++FVVdC/u/ly5d3797t27evuitCCCnmqB1UkyLUIVQgPh6CgiAyEqOifL58iYyMvHbtGhRWh3DJEnj7Fl69gooVC+FqhBCNJ5XCp08gFkN0NKSkZD/+zz//BAcH161bVygUvn//Xv56ly5djh49GhoaynKoFmKNCQGJRNK7d+8HDx6cP39+5cqV8uy7mYWGhmpra1taWhZ+9QghxQm1g2pStLMXPHkCrVpBv37c2LH+S5du2LAhODhYIBCwnO8FSiaD8HDgOLC2LuhLEULIz92/f3/r1q0ikWjv3r0NGzasksnKlSudnZ0/f/48b948dVeTaByRSDR+/HgdHZ1NmzbVr1//8ePHmY9eu3atV69eVapUWbx4sbpqSAgpGagdLDhFe4bwxAkQi0EmA4nEWihkc8NSqfTz588FfeWoqIS6db9xnJ5YnGMKQUIIUaE0c+7JHT7H41DGr1CZyzLCOW7cOJlMNnbs2CpVqhw4cCDLe1esWFG/fv3ly5cPHTq0SpUqhVZnolEQ8eXLl7a2ttraP6SpGDhwYP369Xv37v3kyZNGjRrNnz/fw8Nj165dq1atevToEQBoaWmlpaWpqdaEkGKD2kF1KdozhBMmQEoKSCQgEDStWbNmzZoODg6IeObMmYK+8vv3z27fLp2W1qKgL0QIId+hjCeVcSjjSRF+iP+8Z8+eK1euWFhYTJkyReE769atO3jwYIlEMmHChEKpKtFEkZGRdnZ2ZcuWzX7I3t7+5s2bAwcOTE5OHjdunLm5+R9//PHo0SMrK6uZM2e+e/duxYoVhV9hQkhxQ+2gehTtGUJDQwgOBnNzMDNbBgAAUqnUwsIiIiLx9euoihXNC+7KLHpNXFzctWvXmjRpwuMV7Z4zIaSYunAB/vsPAOLa6SWYRXCcmMcTInKxsUdSUp49emRw/358WlraqlWrAGDevHlKtkbMnz//0KFDx44dO336dLt27QrvIxCNoTyum56e3rZt21q1ajVy5EihUFinTp0RI0YMHDhQLBYXbjUJIcUKtYNFQNHuEHIcVKuW+QU+n//bb8/Xrzc/eRLGjCnAK9+/f19XV/fVq1fOzs5lSpd+0727wM0NWrQAkagAr0oI0SibNsG5c7B3LwAklKr3qeY9ALCxWREWNu3r1y0AcO+e0+TJ1wHA1tbW3Nzc0NBw//79vXr1yl5SRETEunXrXFxcgoODKXQHKSCsQ2hra6vknG7dug0aNEhbW/v+/fuFVS9CSLFF7WDRoP7E9L9q+3YYNAjat4eTJwvqEomJiVWqVImMjJTJZFpaWr3NzLZ+/AgAYGQET55QnBlCiMocPw7XrgFAjLthgmVEdPRORBHHpRsYtBaJygYFmdy4ES2RSLZu3RobGwsA5ubmL1++NDIyylLM4MGDt23bpqWllZqa+u+//3bt2rWwPwjRACtWwNy5kX/8kTZ3rk1O5zx9+rRGjRp2dnbPnj0rzLoRQoorageLgKI9Q6hIu3bA48HNm5CWBkJhgVxiyZIl4eHhpqamiYmJKSkpwy0t4eNH0NYGkYh6g4QQVerUCTp1AgBjAL208M+fV3OcGDHF2LifkVFna2vo0gUAoGbNmkOHDtXS0oqKipo9e/aSJUsyl3H37t0dO3bw+fzU1NSWLVtSK0gKyPv3EBVVKttjWJZz3sPPZhEJIeT/qB0sAorf1jgLC5g7F0aNggsXCqT8z58/sy/Z/v37P3/+vHfv3hp164K+PiQnQ58+sGkTvHhRIBcmhJAcDB48uEGDBqmpqRzHrVq16kWmuxAissBriMjn85cvX66+apISjiX9Ut7Xy82yUkII+VXUDhao4tchBIBJk8DEBLp1YzPMKjZt2rT4+PiuXbu2bNlSX1+/d+/eehs2wOfPcOwYjBoFQ4dC1aqqvyohROMJv3IOLfTqthQ4tNAzvPHDzZnH461YsYLjOD6fn56efurUKfmhkJCQp0+famlpyWSyESNG1KxZs9ArTjRFy5bQqxe8fKnsHOWBZwghRAlqB9Wl+C0ZZSIjITkZ3N0hKAhsctzL8MueP3++efNmgUAwd+7cHw6IxWw6mxBCCooM4VsCJxZDSgqXLstysHHjxn369NmzZ0/t2rWNjY23bdsmP9SzZ88NGzYYGxv7+PgUbo2JZhkxAj5/hunTISQE1q0DXd2sJ8TGxrK8UNQhJITkBbWDalJcO4Tz5sG9exAc/H7cuDm7dq3S0tLKf5lxcXFjx45NT0//7bff7O3t818gIYT8Ao4DkQh4PBCJgM/PfnzBggVXrlyJiIgYPHhwlkP29vbDhw83MzMrjHoSDWZrCzo6sGMHxMZGzpsXVaNGDfZ6SEjI6tWrN2/enJCQMHr06JYtW6q3noSQYonaQTUpflFG5b5+hdatG96//9/QoUP9/f3zWdqzZ8+6dev24sULHo9naGh45MiRZs2aqaSehBDyCzZtgqZNc1qanpaWNn369PDw8Cyvz5gxw9bWlq+o+SREtZ4+heHD00JCGsXFPZs/f37VqlVXrFhx9uxZROQ4ztXVddq0ac7OzuquJlGT16/hyhU4fBiaNIEJE0BQXCceiDpRO1joinGHEAAePHjg5OSUlJQ0evToBQsW6Ojo5K2cI0dg9erh58/71axZs1SpUufOnROJRH5+ftmHHwghhBANl5SUNGbMmM2bN3NcxlOEjo7OgAEDvLy8aH2NptuxAwYOBIEA0tPh2zfQ01N3hQghP1csg8rI1alTx9/fv1evXqtXr65SpcqGDRukUukvlSCTwbRp0L073LixbNSoqbdu3Tp9+rS3t7dEIhkyZMjYsWNlsqwrmAkhhBBNpqOjs2nTJh8fH5FIZGRktHDhwo8fP65fv556g4QQUhwV7w4hAPTt23f06NH169cPCwvz9PR0cHAIDAzMzRvT0uC//+DbN9i7F/h8mDNHe/Xq2To6Onw+39fXd/369UKhcOXKlb169UpLSyvoT0EIIYQUL1WrVk1NTW3Tps2ECROMjY3VXR1SJCQJhZIKFeIMDCQVKiDHqbs6hJBcKfYdQgBwdna+c+fOzp07y5Yt+/DhwzZt2rRr127r1q3379///PlzlpPDw8N37bri7g5mZuDoCLt3Q/fusHw5/PnnD6d5enqePHlST0/v8+fPkZGRhfdhCCGEkOKAUg6S7A6lpWm9eWMWH6/15k1icd6URIhGKSGbfTmO++2333r27Llu3brp06dfv36dRb4GALFYXKZMGRsbG2Nj4zdv3jx8+FBHxyI9/VNqKlSvDg0awIgRist0dXVt0qTJ2bNnr1y50q9fv8L7MIQQzSSVwtu3sHUrNGsGTk6gaFN0RESEl5fX27dvs7y+bt26atWq6WbPA0BIgaGUg4QQFaN2UE1KSIeQEYlEY8eOjYqKmjt3ro2NjYmJSVhY2NevX0NCQkJCQvT09BISEkQikaurY7du0S1amPx0WPP169cAUKtWrcKoPSFEw0VGQqVKIBbDnDlw9Ch07pzl+KNHjxo0aKCrqxsTE5PlUNu2bYcPH541gSohBen9+/dAHULyo7i4OABgoYbS09PVXR1S3FA7qCYlYcloFmfPngWA1atXP3z48MuXL4mJic+ePatRo0ZCQgIAdO3a9ciRI4MG/bw3KEtM7G9q2sTWtmoOcW8JIaQw/f333xKJxM3NLUvoDl9f35iYmCVLlrx69UpddSMaiHUI9SiMJAEAAIlEsnjx4ilTpgCAtrY2ADg5Od06f17d9SIlCrWDBaREzRACwMePMl3daVWqrGnTpg17RUdHx87OrkqVKk+ePAGAr1+/5rIo3qNHM+7cmVGnDgiFBVVdQgj5DoUc1reXxUfzDEzAUJhluO7gwYOBgYEmJibLli1bt27dmzdv5IeGDBny9OnTHTt2TJo06eDBg4VcbaKB0tLSDh48+Pz5cwDo2rXrhAkTJk2aJBaL1V0vojbnzp0bO3ZscHAwALi6uvbp02fp0qXBwcHV/voLzM1hxQqgCLQkF6gdVBssWVasQAB0d8/6+uZJk3xq1fKvWvVynz65LWv9egTAgQNVW0NCCFFIIgkLCoK7d8VBQRATczTzoZSUlEqVKgHAunXrFL43IiLCwMAAAFh+cEIKyOfPuGJFcOnSpdkjhEAgAAAjsTilYUPctg1lMnVXkBS26Oho+RB8tWrVTp8+zV5PTU09t3YtGhggAIpEePu2eutJigVqB9WlpC0Z/fdfAIBu3bK+PkQonPHo0dAXL5pdupTbsmJjQVsbatZUYfUIISQPFi1a9OrVq+rVqw8bNkzhCZaWlhMnTgSA8ePH074dUhAiImDoULC1hb//rozIq1KlSrNmzdiXzc/CQuvOHRg0CIYPV3c1SWEzMjKKjY01MjLy9fV98OBB27Zt2esikajViBHw5g14eUHNmvDwIfj5wa1b6q0tKb6oHSxQHJagoMCIMHo0HD8Ojx+DoeGPx1atAi8vAAA+HyQS4OWuJ7xxI6SmQv364Oio8toSQgisXAmBgQAQ5WUVW+59UtJ9obCUVBojEpXj842uXbM9dOh9WlrapUuXUlNTL1y40KJFi5xKSklJqVat2tu3b3fs2NG/f/9C/Ayk5DtxAq5fhxUrICUFOnaEv/760KyZDcdxhw8f3urre/TZMy4hAbS04OBBcHNTd2VJYXvx4oWpqamZmVmOZ6SmgpZWIdaIFCvUDhYBJWoPIceBkxNUrgzPnmXrwZUuDVZWwOOBnR2kpCiMY6vAH38UQDUJIQQAADZtgrt3ISAAACQ96sWb3AOAUqVGR0auTEi4BgCfPjkFBFwHAGtr64SEhPPnz1+8eHHWrFnZS7p///6oUaNsbW3T09OrVKlSuB+DFB/x8WBgkOPRTZugaVMwMwNT0yxHkpOBx4MZM6B7d6hYEQAyIot27969e6dOsHYt+PiAkxNERsKLF0CR2DTMz2PvUW+Q5ITawaKhRM0Qyh0+DN27KzrAWjtqqwghRcTTp/DmDQAk1Ram6EWGhg7mODFiipXVVF3dhm/eiD5+lCDipEmTnj17xnGcUCh8/Phx9qbOxcXlypUrPB4PAO7cuePg4KCGz0KKgIQEEAhAQXiXkBDw8oLERLh8GThOwTtv3IBVq+DCBShdGu7fz3JwwADYuRO2boVBg3K4cFQUpKQApaAghPwqageLgBI1QyinuDcIAEOHFmo9CCFEuerVoXp1ANABEKaFy1/W0WlgaNipbl2oWxcAwMTEpFmzZnw+XyKRTJw48ciRI5nL2Ldv35UrV0QikUQi8fT0pFZQA504AY8fg60tBATAtWswdSoMG5axNyIhIeHumjUu06eDRAJaWtCvH8yYoWBg9NYt2LsXBAKIioLwcPgeNoZ5/x4AQFm6JnNz1X4iQoimoHawCCiZM4SEEFLspKdEvD/tkp4eKxAYWTRcrle6Q+ajPXv2PHjwoFAoTEtLO336tDxyQ3Jysr29/du3bwHAwMDgxYsXlpaWhV95UhSkp0PjxhAUBADw22+7hw+3jYmJGTNmTNiHD18tLAyiokAqhWrV4MkTBRvpnz0De3sQiUAiSd+yRTB4cOaD3bo9/fix1J49RpUqZRtHlslyuy2fkJ8aOhREIqhaFdq3p/VcGojaQXUpmTOEhOTKiRPw77/QuDFNHZOiQBCNFbqFgFgMKVFwNB06/3B06dKlJ0+eTE5ONjIySkxMlL8eFRVlZWUVERGRmpo6Y8YMagU1mUAAt27B1q2wY0f07t0Ddu2SaWlppaamisXi37W1DyKCmxusXau4/1at2pfWrc9/+LAlMdHg5Mn9mTqEMpns5Ml6aWlpNjZJCh4b5syBhw+heXMQiaB2bYrBRvLu2jXYsgV4PLC0BAcH6hBqIGoH1YU6hESDGRrCpk1w/jwMGgQC+i2QIq1MmTLjx4+fO3eujo7O6dOnT58+nfloampq1apVR40apa7qkSKCz4ehQ6FvX/GqVfNmz56to6MTFRWVkpISoq8fdfWqeZMmSt47rWLF9YGBAGCckJCeni74fld8+/atRCKxtLRUkHr+2jWYPRtkMhg9GnIO/UfIT6Wnp8v++UeECIgQGQlGRuquESlyqB0sOJr+EBwaCosWgYMDfPsGKSkwaZK6K0QUSkgAmQwOHID0dFWOQDs5QbVq8OwZHDwIffqopkxC8kxLC1q2hE+fwNJS4Y4stqX+7t27GzduzHKod+/egwYNEolEhVJRUtTp6Oh4e3sbGRkNHz7cysrK29t71KhRgp8Ne7Vr1279+vUikSgmJsbFxUUqlX7+/DkqKiohIUFHR+fLly8DBw7s1KlThw4ddHV1ASAmJma/r6+Hjg43ciT1Bkk+rVq1asWjR7tsbZ3CwmD8eMoCraGoHVQTjd5DKJNB8+Zw9SqMHg2rVqm7NoQ5dQpkMujY8YcXhwyBK1fgwAGoV0/Fl9uwIW3+/KNOTu47d+bl7SdOwNWroKMD06YpDtxHyK/6WTDk/fv3x8bGZnmxR48eptlSBRANd/jw4R49enTv3v3QoUM/Pfnr169LlixZuHChvr5+li+YlpZW5cqVnzx5wv6vgYFBx44du3fvvmPHjmPHjo10c1tz+DAIhQXxEYiG+PTpk52dXVxcHACMd3FZGhAAenrqrhRRH2oHC51GdwhXrEgcN07XygoeP86edYmow8yZsGQJJCTA6NGwcGFG6PT9+6B3H9DRgaAgqFZNtRdMT04uW6FC+KdPly5dcnFxyUsR7u5w6BBMnAgLFqi2boQQkh/Hjh3r0qVL586djx49quS0b99g7Vo4f/5FYKAdx3Ht2rXr3LmztbW1mZmZubl5qVKl9PX1ASA4OPjw4cOHDx++/z0phUgkEolEjx49Kl++fGF8HlKCXL0K48cDAFhbxyYk9Pj69evTp095PJ5EIjlw4IC7u7u6K0iIZtGYJaOnToG5OZQqlW5mJtDWBoDHjx9Pm9aiefPjEyc2VklvcPdueP8emjenHfV5hQh37kBCAvB4snMnXz6/WrbqVj7f5L3ZrPJOtfkDR6q8NwgAAm1tzxEjfHx8pk+fvmfPntI/RlrPFU9POHYMFi6Mq1zZcNgwldeQEELyhq0RTU9PV3LO1avQuTPExgKfX7V//3/GjeueU7h2e3t7e3v7qVOnhoaGHj58eMeOHSEhISYmJmUo9yD5FSdOwI4d0KAB3L0LACCR8B8/vgAAhoaGiYmJTZs2pd4gIYVPM2YIExJAX5/958hatba/fm1qaiqTyT5+/Dhy5Mg1a9bk/woPHkCvXmBtDWPG5JwFkSgnk8GiRTBtGvD5IVv14it94fG0tbTKJycHGxv0qFD5YAFd9u3bt7Vq1eLz+bGxsVZWVg7fOTo6mucys9a2bWEbNtR++HDD9u3dv//zJycnP3jwICgoiM/njxw5soAqTwghOTl79mzbtm3btGlz5syZ7EelUti0Cd6/h7Vrwd4e5s6FX1okkZaWVr169ZCQkLVr144YMUJllSaF5cQJMDVV2xB2fDyEhAAA8HhJMTG3ZDLZihUrAgICevTocfBgQTX3hJCcaEaHcMYMWLAA+HyQShuLxbdiYwFAR0fHzMwsODiYbY7Pp2/fwMIC0tIgPBwsLPJfngb777+Ye75v6h/mOAGPpycW26WkvLSzuykWVymgC06ePNnX19fY2BgRsyxJf/funW2WTMx37sDmzVC7NrRvD+XKyV+eO3fu1KlTxWLxqFGjYmJigoKCgoOD2cB8xYoVX716VUCVJ6RYS01N5TiOYgAUkAsXLrRq1app06ZXr17NfnTcONi0Cfbtgzp1IA9rIwDg0KFD7u7u5ubmr169MjAwyG91SWEJDYXUVLh1Cy5ehGXLwMRE3RUCAICwsLAqVaqIRFqBgS/q18/daCwhxV8RaQc1I5lsx46QkgKJiZCSEvn9NZbGRCW9QQDQ14eWLUEqhRMn0lRSoOZq0MDwj50WFl6IstKlZ+jo1JVK4168cI6LO1UQVwsNDV2+fDmPxztz5kxMTExYWNixY8d8fHxcXV2FQmHFihXZHvf/Gz4c/Pxg5EiYPz/zy1OmTBk0aBDHcUuWLNm8efOjR48AoHbt2r///vvff/+tEcMuhPyiQYMG6erqBgYGqrsiJVaZMmV69Ohx8+ZNT0/PT58+ZT7k7w8rVkBqKmhr57E3CAA9evRwdnaOiopaQDuoi4/bt6FxY2jfHh48gO3boWpV8PdHmUym7nqBtbX1rFkHeLyQ8eOpN0g0RdFpBzWjQ1i3Lrx6BTdvwvHjM5YtW7hw4dixY01NTR89enTx4kVVXaR//5d2dv0OHOiiqgI1Fo+nXbr0LKHQMixsUkzMQR6Pn57+OW3TPJgwASQS1V5rwoQJKSkpAwcObNCgAQCULl26U6dOM2bMCAwMrFSpUnp6+sePH394g7wC2cZynJyckpOTbW1tV65ceePGjfj4+AcPHmzatGn48OEcBSAlJBsDAwOpVPr8+XN1V6TEqly5cvPmzTmO27BhQ9WqVefPn5+cnAwAZ86c2bChg6Fh3KZN+c0WsXjxYo7jli5d+v79e9VUmhSk48eDWrSAyEioWhUGDYK2beHLF9i69W3Dhg3v3Lmj7tqBp2cHkcj02jU4ckTdVSGkUBShdhA11dy5c62sbDw8/lVVgV++fBEIBEKhMDo6WlVlaqyPwSOCgiA4uM7z505BQRB8wgTFYgTAevUwMlJVV7l27RrHcTo6Ou/fv89+tHXr1gBw+vTpzC+m160r09aWCgQ4fnyW89u0aQMAmzZtUlX1CCnZVq9eDQB//PGHuitSwj1//rxnz56sxbexsfHx8WHLO+fPX6mS8vv06QMAAwYMUElpJP/S09PXrFkTEBDw9OnTxMRE+etsOYyLy/yhQ1EiyXhx716sWbM1APD5/GXLlmUtKyAA//kHd+zAAwcKp/Jr16JYjNOno7c3zpiBvr7o64tLluChQ4VzfUIKVdFpBzW3QxgTk2RmlgqA//2nsjIbNmwIAK6urlu2bAkOfiaVqqxkzbJ1q9RA/OFk65SUEJksPTxsprRRTQRAsRgbNMD0dJVcRCqV1q9fHwBmz56t8IRJk97UqhW7dWti5hfLli3LnqsmT56c+fWoqCg2HPDlyxeVVI+QEu/jpUtXatX62q6duiuiEc6fP1+3bl0AYAsW+vTpI5PJVFJyaGioWCzmOO4/FbamJK/2799fp06dzOP+FhYWDRs2rF27NvvX9/VdkOUtsbGxPj4+fD5/6NChMTExWUsMDkaRCMVivHatEOqfloZbtuCQIQjww/8aNsRdu3DWLLx58yclyGSyiIiIZcuWXb9+XVVfcrldu3DZsp/XgZBcKjrtoOZ2CBFx4kQEwB49VFPay5cvjYyM5HEpq1atY2iIrVvj1KmYlKSaS2iEV69QTw8BcMuW/794+zZWrIiGhjh1Kj5/rpLrxMbGurq66urqxsbGKjxh+nQEQB+fH160srJi/74+Px7w8/MDgPbt26ukbiT//vvvv3Xr1oWGhqq7IiRnHz8iAJqbq7semkIqlY4bNw4AHB0dk5OTVVjyhAkTAMDFxUWFZZI8ePnyJZv+rV+/vra2to6ODp/PZ22WoaGhlpbWhg0bsr9rzpw5NjY2fD5fKBRmnlH8v9GjEUBmbf0+JKTAPwMiIr59i76+GfOE3t44fjxOn46tWmGZMj9/oFq2bJmRkREb+ChTpoyXl9fVq1dVUqtRo7BfP3z2rNhMV1I7WAwUmXZQozuEERFoY4Nz5qigqPDwSJaZ19bW1tfXt2fPnp07T2XDWsbGuHMnDSnlWkoKentjr15ZX4+NxRs3VHid9PT0qlWrspFyqaLJXD8/BMDBg/HJEzx+HDdvPv/XX3/Jw0A1a9Zs586dDx48SE1NRURXV1cA2Lx5swprSPKjV69eALBjxw51V4QoZWCAAEjz6oVl8ODBADB37lzVFhsTE2NmZgYAx44dU23JJPeSk5PZJHCvXr1Onz6deZLQ2dmZpZdcsmRJ9je2a9eOnda4cWPFRaenp/Tt+0eNGpUrV5avgpHJZC9fvty3b9+kSZMePHjw+fPngvtoiCiTYf36CIDz5ik77fbt2yKRiOO4Ll26ZM6QaW9vv3jx4vxUIDkZDQ0RAF+8yE8xhYraweKhaLSDGt0h/PoVFy/GHTvy21uLi0MHB1nDhn5aWloAsGLFCvZ6eDj++y/6+mKvXiqbhyz51q7FmTNRReN5yj1+/NjY2BgARowYkeVQTAxOnIgzZ2K1ahnrVZo3n8naFWtr68wNrVAotLOz4/F4AoGg6K8XnTULe/ZENzf8POBPbNIEHRzw1i11V6pATJ8+HQCmTJmiktJYt5+oWGIi+vrivn2YkKDuqmiEtLQ01m179uyZygtfsWIFAFSoUCEqKkrlhZPcGDZsGABUqlQpLi4uNTU1JCQkMDBw48aNU6ZM2b59+9GjRwGgYsWKWQZApVKpoaEha84mTJiQU+GJiYlsU0z16tVHjhzZtGlT/e/pnQGgSpUq9erV+/btW4F+wAsXEAAbNYrNqfMZHR1drlw5APjzzz/ZK0FBQV5eXqVKlQKABg0aXLp0Kc9XP3QIAbB+/TwXoAbUDhYDRaYd1OgOYe/eCIBjxuSrkORkdHHJ2ODm5HSuYcOGCT/+o375ggIBCoX49Wu+LqQpFi5EACys5dSXL18Wi8WZdxKGhr4fNw719REAPT3RzQ3t7LBdO5w27Zavr+/evXvPnTt36NChmTNnuru7V6lShS3IqVSpEgDUrFlz//79Kt+0oBLh4bhpU8YIKwB+cWiT8V/DhuHUqahwmVBxdmDv3irlyi0YNSqf5Xz58sXNzc3T07Nq1aq+vr6fPn1SSfU0hLLfwocPWL8+Vq2Kq1apah04UY5FNre3t1d5yTKZbO3atXw+v1y5cvr6+l5eXmFhYSq/ClFi9+7dACAWi+/du6fwBKlUytYxnTx5MvPrDx48AABtbW0AOHLkiJJLhIeHm5qa2tjYyPuBZcqU6dy588SJE9lmmQ4dOqSlpanyU2UzYsRejuONHj06+yGZTNalSxcAaNiwYZauS1pa2ujRowHA09Mzz5ceNGics/O2tWtVFtauEFA7WBQUl3ZQczuEe/ZIAVBPD1+/zlc5z56hhUXGfK+9PX79mpL9nFatEAC3bcvXhTRFdHTGHsIHDwrngkePHhUIBADg7e09YMAAgUBQr94XjsM2bfD69Z+/PSkpKSgoaP78+aVLlwaAWrVGODpiEVw25eGBIhFOmoT79+OxYxhz8T5eu4ZBQdiwIQLg7t3qrqCq3buX8ZtUSiqVxsTESOQR9350//59Nt4sHwsXCoXdunU7fvx4uoqCG5VU4eHhffr0GTx4sKur67Zt25J+3Pfz5to1NDdHAKxSJb+3YJKTtWtx6FCcMSNq9+5z5869ePHCw8MDAKZNm6ba64SGhrq4uLAfiDzslra29ujRo9++favaaxGFJBJJxYoVAcDf31/JaSxdZMeOHTO/ePz4cWNjY4FAwHFcpNIg3lKplDVzI0eOPHv2rHwqeOnSpQDAVkh5eHjk/+Mo8ezZM4FAIBAIDhw4EBQUFBQU9Po7NhtmbGyscMvcqlWrAEBhTzI34uPjtbW1eTzehw8f8vUBChm1g2pVvNpBDe0Qfvz4sWzZeo0avVOwv9rf/5e66bt2oZ8fPnyI//yDipIXICJu3vypadPN/fuPzVttNY103LhQJ6e135d8qFJkJE6ciNmWPaxbt04+RCoSiSZM2Pnw4S+XnZSUtHTpUheXL2zirajFYLe1zQjUdvz4jwdWrUIA7NAhN4UkqHtJwy9ITEQeD0UizHnE+uXLl7Vr1+7WrZuxsbGHh8eDH8cg9u7dq6urCwD16tV7/fr1sWPHunTpwsYOAKB06dIhhRVfoWhSHHwCERFv377NVlaz6XcAMDMzGzdu3KNHjxDRz89PKBQGOztju3aomUl6WCh/Pz9cswZziEb95cuXgwcPXrx4Me8/OrZ2BSDY2Zn9K7DlDDnNIOXN/v372cJ7CwuLI0eOzJ07l91FWUgPoVA4ZMgQhZu0iQpFRETUqFHDwMBg6tSp23Iee46OjtbR0eE47vDhwydPnty+ffuSJUu8vb3d3NzYalLlV7l06RL7UZctWzbzt+j169cWFhbyL9jy5ctV9sGyefLkib6+vnyNa2ampqYcx504cULhG1mvdXy2fFE/9fXr13PnzrHcKk2bNs33Jyhc1A4WsJLUDmpih1Amk7Vv3x4AOnfunPXYtGno6IgNG2Kul1x37owAeOeOsnMiIiJ4PJ62tnZxep5Wn9DQUIFAoKWlFR4erspy16/HsmURAJ2dMdMul/j4+LZt27JdEJMmTcrnSqeEBFy+HEuVQk9PXLQI169XdNKJE5iPnQx58ORJokiEWlqKZqqjomRmZsEuLpFKF4E8ePBg0KBBZcqUqVChgpeXV2BgYDHYTlCuHBoa5jS+c/z4cfZUYWJiIn+kaNy4sb+/f1xcnI+PD3ui7d+/f+ZRvYiIiOXLl9eqVUtPT69ly5Y5Dan+xOPHGB//q2NPRcejR4+aNGnStm1be3t7X1/fLHvGdu7cycZWxGLxjh07Vq5cmTkIPmsgOY6bMWWKqlLIFEuJiWhtjQDYtKnsx69BfHy8r6+voaGhQCDQ0dEpV65clmyoueLvjxUqsA7hkXLldHR0tLW1tbW1K1eurKpPIJPJevTowf5Ze/Towb4GgYGBTk5O8mkEPp9fp06dvXv3quqiGiiXN5nq1auzP3vlypUV9sCfPXvm5+fXqlUr9nyfhbW1tVgsvn//vpJLeHp6sh+vWCyOi4vLfOj27ds6OjrsKI/HO3z48K98xF/QokULAODxePr6+vXq1atXr16F79j9fM+ePQrf6OvrCwATJ07MzVW+fsWZM7FrVyxbFs3NS8k7P5UrV1bSASiiqB0sGCWvHdTEDuHDhw+1tbVNTEwULINu2zZjY1X2vmIORo9GAJw06Sensd3YBwortWtxx9Iot2nT5tChQ9evXw8NDVVBkHQPDwRgvaLb3bs/ffoUESMiIurVq8cGF6/nZoVo7sTHY3IyduqEQuGP6XzT0nDyZOQ4NDbG2bPzeR98/PjxxIkTJ0+e7Ovrq7yVWrhwoa6uhbX1uGbNgrN/63t27658WPe///5jrYU8yCoAGBkZ9ezZc/PmzUV3+D86GpcsQR0d7NkTAwPx+zp+mUzm6+vL4/EAoFevXhcvXmRj20KhkH009jGFQuGqVatyKpvFr3uet39BMzPkOKxYEYth8LcDBw7o6ekBAHv+Yw1enz59zp49m5qa6u3tzV5kcwU9e/Zk73ry5Im3t7epqam5ubmOjo6SSQwNcuwY2tggx3k3aODt7Z2amhofHz979mw24QYAzs7ObIUeAAwaNOjrr25DHzgQa9VCY+MN33toAFCzZk1VVf/evXstWrTQ0dHx8/PLcujq1atubm56enpr1qwBgNatW6vqohrl1atXTZo06dWrl5ub208zB6xcuVI+F3HmzJksRxMTE2vUqAEAWlpafD6/atWq7dq169+///jx4+fNm+fv789GyUuXLv0+h5VOaWlpbBow8+86s7179/J4vKZNm2praxfQDzz4wAEdoZDdnwcPHpzl6MaNGwHA2Nj4w4eP2d87e/ZsAJg6dWpuLuTvjzxexsNg6dLOOjo6dnZ2LDJN7969i2aYgBxRO1gASmQ7qMoOYXAw+vnhokW4bFnIhAkTPDw8Fi1aVATnxC5evKivr9+gQQMFx3r0yLgHtGyZy9JY2KuGDZUNkMTFxZUvX7527dqUDSaXfH19jYyMsgxhmpiYNGjQID4+Po+F3ruHNjYI8Mzams/jGRoabtiwge14qVix4suXL1X6CRARJ01CABQI8NChUEQMDw9fN3Ag8njI4yHHYfPmeRsZ+vr1q5+fn3wYnu3cqF+/vpK5zebNm7OT62cLkRYUFLRr1y4AqF27tsJ27s6dO6w36ObmxlpcjuPkY8w2Njb79u3Lw6coJLt2ZTTsuroN7ey8vb2fPn3q7u7OPoW3t7dMJrtz507btm1Zu8iG7vT19XV1dS9cuKCkYBaoXXkMBsVCQ+UDE8Vr62bmB4h+/frFxMTs37+/Xbt28j8dS4Amz3s2atSozCPHUVFRO3fuZPF4U1IU7LXWRDExwf/8w8bgy5UrJx+kb9my5fXr11+8eMESvrMFWqVKlcrbA8S3b9+ePn26c+dOALC0tFRV3dmmrLp163p5eSkcFYqIiLh79y4A1KlTR1UX1RxXr141NTWVP5fr6OjMnTtXybqM+Ph49gMERaufWLoR1lj07t07+9slEkmrVq0AoHr16gpz8544cULe4cxpAvDhw4ebNm0CAFdX11/5rLkTG4uWlrGWlsPKljU2Nla43bFXr94uLt5t26Zmb8rGjx8PADNnzvzpdRwd0cMDp0/HUqUQAF1cvAHA0dHx8ePHhoaGDRrMnDatYAPnqB61g6pTgttBFXQIAwLw5k3ctSsjzzsANm78nv0hypUrV6pUKRUv/Muf9PT0TZs2sZtaUFBQlqOPJk26XK/e9mrVjvTvn+sCsVmzqXy+6PHjxwpPSElJYYscqlSpUvTTEhQF79+/Z2PkLi4uXbp0cXR0tLGxYY2ioaGhrq7umzdv8lh0eHh0t24WurpsDIz9gB0dHQsuTrqvLzZuvE8kEk2YMIGNLx5iy1b5fJwzJ6ftQzlJTk5u3769/EZjbGzs6em5evVqNlJVunTpO9nWLkdFRS1ZskQgEPB4vG7dumVJxLRt2zZtbW1XV1eRSGRhYWFmZtazZ89t27ZFf1/RfuXKFbaPvFevXhKJ5OTJk61bt2ZPFQDQoUMHHo+npaWV9NNUwWoUGorTpz/t3JnVmf2jGxkZZdlqEhYW5uvrW7FixYCAAEtLSwBQPnwzZ87BZs1WrVz5y1/FlGPHkMdDsRgBitFSmfj4+K5du7J2ztfXN/Mh9qdjd3tDQ8OWLVtqaWlt3LgxSwknT56E7zt12fy8ZpHJMDAQ/fxw/fosaY6uXLlia2vLEkI0btz43Llz7HWJRDJz5kz2c5P/6C5evJi366empuromJUt66yq6Y29e/fKuys5NW3v379nD5equWTJExaGXbrg4sV440Z6ps7egQMH2C+lXbt2ISEhAwYMYKMGlSpVOnXqVE6FjRo1iv1CjY2NMy/p9Pf3BwA2rFC5cuUsqz3lYmNj2Sxi27ZtswcLHTBgAADUqlXL2tpayYIdlpJ306ZNuf0L5N6YMRldCI4L27JF4SmRkTILCwRAtt5FJsO7d3Hu3EUODg4cx9WtW/fQzzLK37mDAGhpienpOGUKjhiBO3a8+u+//9hHvnDhBbtzK43dUyRRO6gKJbsdVM0MIfuJXbqEHh7455+4cOEnX19fPz+/xo0bA0CnTp1UchWVePfunVAoZD+G7MsexowZw34t1apVy32ZLPmPwpEnqVTKVj+WLl2apgdzQyqVsv6zSCRq1apV5vnAV69e1apVCwDGjh37k1Jev8YNG7I/eCFiUlJS79692Q3RxMSkS5cuBb0lYN68+Wwcjn0oIZ8f0aoV5ump7q+//rKxseHz+SxiFat59+7d5c+LYrF4165diJiSknLs2LGePXuyxzU2oVe+fHn5aF9SUtKgQYPYt531MDNPyQoEgmbNmg0bNoy9sV+/fpmfDxISEo4ePTp8+PCnT5+yZMfnz59XwV+qIEml0sDAwL59+xoYGIjF4tu3byscBZBKpVKptGXLlgCg5MELEdevRwCUr1pKTU0NCAjo37//tGnTZsyYoWQgf9q0aRY6Ou6WlsfatPnVEQE1+u233wDA1NRU3l3JIj4+nuM4LS2tmJiY27dvZz/hzZs38hmGnz6WlUC3biEA1qql8CBbYtSxY8fss/QhISFshr9Lly66urpOTk6/dt1MW3RYWu2YmF+uu0Lnzp2D7yumclozlpyczO5OqrlkydOrV8Y4ukhkbWzcrFmzKVOmzJw5kz2ieHh4yG+8Fy5csLe3Z/fn6dOnKywsODiY/Qb37dv3+vVr+bzEvHnzWAP0012C8vAw2dMznD9/3tDQsEuXLkoSS0RGRgoEApFI9MvLm39KJsPBgzOmuRwclCyuOXoUAbBSJRwxgi0JQkdHd9YIzpo166fXGT8eAVDJI4a/PwKgiYnKfkeFidrBfCrZ7WDB7iEMCwtjT5kHDx4s0Av9EvYczOfzeTxelg765MmT2Q3Xysoq98vEjxw5AgAmJibjx4/fu3dv5kDbY8eOZTPIyu/CRG7WrFnyUed27dpl/lfo1q0bfF+vqGyuNSoKS5dGF5ecMj/KZLLatWsDQKtWrQonaPLixYvNzMxYv6tly5YRERF5KEQikYhEIh6Pd+jQocwrsb9+/cpu3Kx8juMcHR3l25AEAkGHDh0WLlzItkpyHOfh4ZGQkNC6dWv5mDF78khNTX39+vXy5ctdXV1Z91IgEAiFwmHDhinZJfjXX38peUApgtg8DABMynnj78iRIwFg2bJlSsq5fJmlSMbAQBw2DNu0ecmKZV3oVq1aKVx2hYgdOnRgZzo7O+fzsxSaN2/e1K9f39TUVPnkPNtP8urVK4VHpVKpfLvFnDlzCqamRRhbQjNunMKD8hXgCkKdIUql0p07d758+ZIN6/zCRS9dwj//xC5dcMIERKxUCQFQVavjHz58KO8QXr16NafT2PqFvC/1L9mGDUMA5PEiLC0hEz6fn31Tt0QiWb58uUgkcnd3zykRXPfu3WvWrCkvxNbWtlmzZl26dGG39C05TKxl9t9//2lpaY0cOTJLx+/Jkycs+oiStCVsH2OXLl1+epU88vTEqlWzj/NmsWEDbtiAtWohANrY4LRpN06ePJmbMARSqbROnY4uLkdu31Z28sKFOH8+Llv204oUXdQO5kGJbwcLPKjM2rVrAcDS0jK6aIRVRcRnz57xeDz29Pz7778jYlhY2P79+z08PNiPhH2VtbW1+/Q50qMHTpqEBw9mrIzNLi0trWPHjvJVfIylpWXnzp3Z2gmxWHypcENKFhuXLuHx43j3bmp4OOuY3blzRygUsrFMCwuLLB0nllWZ9RXnz5+fY7FdumSEEs2hs3f16j0WJ60wwyWzLRx2dnZ57oI+fvwYvq80yDJoJ5FI/vjjDwAoXbq0QCBgX2MW+Ur+N0xLS/P19WV/vQoVKvj4+LAxKrFYnH15T3x8/KFDh9gOlu7du3t7e+dUq2PHjgFAs2bN8vahCl/Tpk3Zj7Rbt245nbNixQr4WQrjL1/wjz+wf/+M8X1dXVmDBs7z5s07ceIES9xcvXr17EnYUlJS5H31n090FxkxMTHsxqh8mIyNMhzPmtjk/9hADAAMKGpZWQpeVNu2yOPh5cvZDyUmJsrzNCjZ48QSiNfKYY5RMRb0DAArVkRER0cEyFV61dwIDw+H72sTsm8qS0tLmz179s2bN9k+7ewbNAgi4uLFWKcO8vl3vidy1NLSEolEOS25TEpKEolEfD4/p+dsRFy8eHGzZs1sbW0zP5a0bt2aPe381OvXrzmO09fXz7525vTp02wMcf369YiYnp7+5MmTHTt2/PXXXy1btrxx4wZbFFawQWVzMVI/fDi2bYubNuHdu7k5/f9YYJUKFSrkcj6giE3w/AJqB/OgxLeDBd4hlEqlzZo1k3e9MktMTFTX1qPu3bvzvpOHcWPMzc2bNWtmZWUFAM2aPWTf8tatceNG7N4ds4TtkMlkQ4cOBQATE5ONGzfOmjWrY8eO5ubmrCgLCws9PT2KLKoAS8Pl7MzuIg9cXPh8funSpdk9gvUJFUZar1u3Lvvbli5dWuFqhO1+fmGOjmhsjO/eKbyyRII1amCTJrvnz1+h4g+lVHh4OBtouHbtWt5K2L17t/zx6+NHBVHUVq1aFRISoq2tzXHczRyGLu/evct2ibBdlBUrVnyYc8rF33//nf21rayscjonNjaWz+cX9W2EmbAF3qB0WfjZs2cBwMXFJacTvnzBiRNx+3Y8fx4bNsTp0zE4+P9HP378yAJMW1lZsefg9PT0q1evenl5sb66mZkZj8crRg0hIrIdsDlFIGTYkvtFixbldMLy5cvZTqTy5csrL6qEYZNpreztFY5Sse8bGza+/GOPce7cud26dduxY0dsbOzVq1cBoEmTJr9w4SVLEAA5DoVCTE/ftAn/+guvXMnnp8kgkUhYjoFNmzZl2RDx8uVLR0dH1giy/clsofv2p9sj05SlPtdQ8fEPz52bNm1aixYtypcvDznPwrFMgPXq1ctNqRKJ5PXr1+fPn9+0adObN29yGQ56zpw5ANA/hzAKbDuiUCg8e/asfIsN06xZM47jdHR01BtKMDUVTUwQAJ88ye1bZDLZq1ev9u/fzx4w/vnnn4KsYJFA7WDelOx2sDDSTjx//pyFSrO3t7ezsytTpoyxsTEbDR02bJhaMhS9ePFi3rx5QqGwUqVKAGBgYODq6urr6xsUFCS/acbHx9+/n7hnD86ahVu24LhxCID6+rh4cbp8aT5bYqqtrZ3lKf/Vq1e7du3asmWLwkBYJMOMGdihA9aqdcrNjX0fzMzMxGLx+fPnlyxZovAdO3bskD85jRs37s6dO2FhYfKVLU+fPmUTaI+PHcvpmgsXZmwwyH8ai181depUAHB0dMw8vCST4eXLuH073rz5k7FM+XpmY2PjnM558eIFANja2iopJyUlZfLkyUuXLh04cGCM0m0Q27Ztk3dBFc6mRkdHv3//ni1G3bBhg7LaFxmLFi0CAI7jhEJh9uxJISEhjo6ObNpTV1f38OHD2c959Cgjwdvvv6OZGVatitmTMMXExLB1vLq6uh07dpSvzwEABwcHNoIIAGvmzVP4r56UlBQVFVWkgpv//vvR2rUvBQYqi4rGcgwMGzbs+vXrCv90UVFRzs7ObMyCx+O1a9fu05EjWMQirRWE6dOnKxlr/+eff+B7erfz58/7+vq6ubm5ubk5OjrKvzkikah+/foA0LZt29xfN+Xo0dhate7Y2l5q3vzzu3cxMTh0KNaurbLEV15eXoaGhmXLll2+fDkbEpLJZH5+fmyZKLt1cBxnZ2cnEokEWgKT+yb8e/yWL1t+SaP4aopduXIFAKysrFNTFfwjsd6al5dXwVWAjRjmlN4dESdOnAgA+vr6LMNE5lxEVlZWIpHov//+K7jq/RTbQ1i79s/P3LVrl5eXV7NmzeTRWQFg5MiRz549K/Baqhu1g3lTstvBQspDuG7dOpbSNDOxWCwWi4VC4aNHjwqnGkxcHI4aNZvV4bfffnv06FFuvnAfP+KAAWwp4poqVaqcPn2a/asLhUIlt86f8/fH4GAMDPy1tzx6VMiZzQuaRCL58OEDW3CSJRJmltPmz58/aNAg+TQsAPB4PEtLy7p167Ld8EoWxshk2KQJAmC2LE2F4du3b2x4icVofv78+cyZ8SzmqLs7zp+Pbdoo26fu5uYmH4jN6ZyDBw8CgJubm0oqzCIEsrnE7MGyPn/+XLt27QoVKlhbW7NVYdbW1pPGjsVDhzCHKHZFwfHjx9kYULNmzbKM15w8eZLteTYwMODxeGyQwtjY2MPD48GDB+ycAwcOtG79FwA2aIChoVitGgLg6tUKLpSWlvbHH3/o6emxx2J7e3sfHx957I3NmzfbWlu/tbbGnj3/PziRmnrl1Kn+/fvr6+u7u7vXq1cv+2KbgvKz7MCengiAK1cqK4Ptpra1tWXrkbL86YKCgtjmCktLy7Zt24rF4orGxigWo5kZjh2LedpYW5R9+/bt6tWry5cv79mzJ+sg7c4hujqbl8j8YJ3l/2pra7Mw5QDg7u6e+zrcv38fvo+gXbx4USLJeIbbuVM1n/Hly5dVq1aVdwYWLlwYHx/fsWNH+L4/uVSpUmzpVExMzJ6zezq+6qh1T6vs47K7ondt+rIpSVo8lhUUsr59j5UtK9m1S8Ehli2w4DL9PHr0CABMTEyUhAORyWT9+vWrWLGi/Ptpbm7epk0bb29vVj1zc/OcNlAVgoEDPRo18l2z5oPy01asWCEP0gMANjY2bm5u06ZNK7xbrlpRO6iYZreDhZeY/uPHj3fu3Hn69Onbt2+jo6PZTqrRo0cDQIMGDQontgciBgVhpUpoafnR1rb8LoV3XKXOnMH69R3ZHYTjOI7j8ptZ8uJFLFsWOQ5z3pSf1d69aGGBWlpYiFvgCgfLdGRjY5N9TEXuzZs3bGt73bp169ata2VlJU//UqpUKT09vc+fP+f03oAA9PHBnPubBY5l7ipVqlSDBg0AwNl5IwDa2uKyZch6hnZ2iv9VX716xfrAffr0UZJB3sfHBwAmT56sqgpXqFCB/W0HDRqU+fVPnz6x0AXsLm9mZsZWWQ9p2hQBUCjEdu1+bfdGYWED8Hp6emvXrs08Qbp8+XK25YZ1gCtXrjx58mQ2WM40bty4c+fOrHX09j7PGq9//0Vj468dOkxWGMldJpO9fPlyx44dCnPSJJ09i/r6CIAtWuD58zh0KJqYnP6eMZJt4CxduvS9e/cK6m/BpKayVdS4cCHmHAl56VIEwJEjcyzm+fPnVapUYVP0kClNAgA8f/589+7drFvi5OTE9rV+/fr1v02bsE4dFmIRly0rRsHHlZDJZB4eHtWrV5ffl+Rq1aqVfeuXr6+vsbEx++6xIKJeXl7btm179OjR+fPnR40alWVTwy9leIuNjZX3zVhAkc2bWRCICCWxIn+JVCo9cOAAWybAnn7kXcTevXtnjzYZkx4TlEj7CZXZsAEBMPvSYKlUyp7UP3z4SW8nz9g6FOXbxhAxKSnp48ePs2bNOn78eOb9CxKJhE37VKtWrfDDRiQkJFy4cEFXV5fjOOVB3cPDw1kG9hkzZpw5c0bJM0NJRe1gVtQOFmaHUKGEhAS2Yj6nJYKq9f59RtYTBwd89UpZKnklWKQvAwMDY2PjRo0a5atC4eEoEiHHZdQpyxJ/hffTe/cykp0DYPZYXkUmck/eyGSy6tWrA0BOffW0tLQmTZoAQPfu3TO/GBYWdufOHdZFWbNmTU7lN2iAbdqgGvNiSiSSihUrsnucgYHBhAmLLl7M+Gf/+BHr1WN7sofJk0PExsZu27bN1dWVLe0Qi8W9e/dWuFvv2bNnnz59YikocpqIyAO2jbBz586ZgwS+f/++cuXK8pudnZ3dx48fZTLZ/fv3n61ejc2aoUCAbduivz9+HxUrIi5fvmxhYcEaM1b/nj17BgYGpqSkODo6svUbAODm5iZ/cA8KCvLy8pI3SzweL0v2oXbt3CDP204ePcIyZdDHBwcPZvtp4zp0mDdv3ps3b+Lj41nOX11d3Szb01NSUo4cOdKnT58VK1YsWbIkvytqgoIQAHV0EADPnmWv3bt3jz3cGxsbly8vLVUKbWzQ0xO3b8c3bxQsOAwICGDDNPb29kOGDJEvDeLz+aVKlerXrx/7vyyYbdY3372Lc+bgjBnFMLeXAn379mXRFFiKTvZlmz9/frVq1QDAxcVFHu0wPT19+PDh7K/0559/3r9/P6dO2pMnT3x8fCpVqlS+fHmO47J8A+WiozEgAP/4A1u0wJo1sVOna+ypjs/n8/n8+vXr+/n5hYd/dndfqqOjo/JMcVevXmUTRGXLljU0NPTz81Nt+ZojIQGNjREAd+3CPXtw5UpcvPjU8OHDWUImGxsblV8xPPzriRMn5syZwzqcec51iYhxcXEsO5SLi4uSaUbVSEzEwEBcuDB9wIDq9vbyIDoNGjRQ/r6lS5cCQI8ePQq2ekUVtYMKUDuo9g4hfs/SqKOjU9BrDLZtw5kzsX9/9PBQwWLdmzdvsjGAnQoX3+R+gvuvvxAgvaxJmH/9qKjv34OQEOzZEytWxPXrFSTT69kTASR2Fm/31IiLy/ji4r172KwZNmmCGzcqzL9XXLA967Vr1/727duIESNmzpzp7+8fEBDAxpamTZvGWkSFaY7YgskKFSoonHCOjESOQx0dLOhGSjn2Edzc3LL36759wxEjdgCASCQaM2ZMjx495MNLurq6rVq1YmFpnJyc5Gs8oqOj/fz8nJycOI77559/2JOownG4vDlx4gRbAMby1/v6+gYHB79//75MmTLyFSDh2XvYsbG4bBmWKoUTJ6qqJrkklUobN27s7e39+vXrLIfS1q1zLFMGAFq3br1x40ZXV1f5HE7FihXZQwyPx5s1a1b2piUxMZGlkMke0uPWrVscx2lra+dx2D4qCjduxF270Mfnhy353xfbsOZkzZo1WXbkAwBrewYMGJCvBy8/v4xJXQD8npPq9u3b8nFNfX0Zi601eDDevo0VKqCNDU6Zgq9evUVEmUzm6+vL/pJ9+vRhkQlTU1NZGkw2N1WmTBmBQLBiRc5hnE6fRgBs3jzvn6JoCAoKAgATE5MhQ4awv55QKGzYsOHRo0c/fPhga2vLhlfS09NTUlJ69erFnsZyH3hs2bJl7E89evTozDFCvnxBHx80MMCpU9HVNSPin7PzCzbwZG9vL/+qi0Qi9lW3sbFR7fO6VCp1d3dnHcLCDOBcIk2ahCNGYJkyGf+UzZrtZ/98lpaWAoFAVXlfd+3Cdu2wVCls0iRU/vXg8/kLFy7MT7Hv3r3LWDAyZIhK6pmjBw8y/kAAjU1NeTyejo6OmZlZmTJllM9PshU6JTjgH7WDv4zawaLQIcTvqR4bN2589erVM2fO7N+/f9OmTStWrJg3b96dO3dUsqP02ze0sUFX15xS0+UF20Oop6f3/5y8UikeO4YNG6KFBeYy3XlsbNycjvdu84OC4MEDi9TUjx/fTZKVt82IYKMoryW+fftlcYugO1xQEDx5Uk0i+Rj2bAwa6CMAWlgomewuFlJSUlhbMmHCBMjEwcHh6tWrLHtkTs2hVCplUYIUpvvcuxcB8FciMhQItiy2eQ6/ealUyiblTExM2H3ZycnJz8+PTdA9evSoXLly7GHu3r17Z86cYTMA7LmTTSEOGzZMtc95//77r4ODg3w0EQAqVarE4sHWr18/xwTEZ85k5CcqXCw3CfvTvejXD3fvxuRkTE1l+b4SqlefMmmSfLzgw4cPvr6+bJFCvXr19PX1s0fPl3v27Bkbbsh+aNSoUatXr1ayzjnPZDIZG0EAAH19/cw/h4ULF+7YsYOFQ2jRokX2+EBJSUkHDx68d++e8qfzzZMn727Q4L9KlRKyZTyPziCLiMDJkzPiB1SujABYrVoQx3HNmjVjwST5fL7Crb/v37+fNWvWtWvXrivPdfD2LQKgpWVu/iZF2ZQpUwBg1KhRd+/eXbZs2Y0bNzJnP3vy5An7Xf/+++9sZZ2RkdGVXwz6efjwYTYW2bVr16SkpJiYmGnTplWr9ooFE/Xxwf/+w8BAfPgQw8JS5beCsLCw1atXt2zZUj6LIhAIRo8ercKADaFz55YyNzcyMgr+8Xkus7i4uKgLF3DGDGzXDvv1Q3//Yj18WdBGjcJevXD0aFyx4tGaNWsOHTo0cOBA1snPZ+SF1FQ8dgxbtcroT9WundSyZcu//vprzJgxbNtYPpeZ3L17VywWe3p6FsRd8f/Wr0cdHbbGas737ItsklPJ/OSrV69YXo3iEhk7D6gdlKN2MPeKRIcwKirKwMAgc5gQOVdX18GDB/9acYrCR7KcwA4OKouuxvTt2xcAatWqFRcXt2nTptGtWmWs/9TSwvbtc7kUOCpqQ1AQ3LsnunfP4MED06Ag+LzMCYcMUbK7NCxsalAQ3L2r9eCB2f37+kFBEDelJf71F+acm6gYmTNnDotWzPD5fG1tbUtLS3ajnzJlipL3rl69WuHwFSKOGzerceOla9aoeej68+fP7KaWUxDw2bMzIh6JxeLsIYmjoqJYHhc9PT0WKVcefILH4zVv3lx5ytT8VHv//v0DBgxgT7Rt27Zt0KBBjr1BRExMRJEIBYLCDzATFBTk4eHhyNISA6CxMc6enbEaRNFTjlQqPXPmzPPnz7MPpmYmkUiEQiGPxyv8x4gtW7a0aNFCT08vy458RHz06BHboW5vb8923qenpwcGBg4YMIC1kTVq1NDT0wsICMip8IYNG7Lvj5KEVIjYrx8CoL9/Rlxcb+9tbL66dOnSBgYGZ7+vsckjmex6gwbrnZ3ji/mid7YuVMkEzpUrV+TbS6ytrfM2mX/p0iV2M6xYsSL7Dyenge3bY26CO0ZFRW3atMnZ2dna2hoA+vbtm5uE3T+3eTMCvC1X7koOn33JkiU1a9bk8Xh7mjXL+GGamBTNbcZFmUwmY08d5cqVyyk3fW5s346lSuG0aXj4cNYx5AULFgCAtrb2jRs3sr4tPByfPs1N+WFhYTweTywWK9xUpkp166JQiLVr/zdp0vLlyy9fvvzs2TO2Uian+UnWwha1FHAqR+0gtYO/qkh0CMPCwsRiMdvk0Lp16549ew4ZMmT06NHDhw9nbeexnLMIKDBwINasib6+su8P08+evXBwiOHxFM+35UdsbCyLuiEftAi2scn4+VWvnutipE+e2D9/3iwsbGpQED84uHZCQrYbcZY3SBMePbIJCen04cP4oCB48cIlKSnXOXeKPJlMdv78+VatWtnb28uzlwJAy5Yte/furTwWQmJiIltIsH379k+fPmUe/65SpQoA3Fb5l+DXsTtXTrGte/fuzT5v/fr1FZ6QnJzMJtXlfxw7OzsfHx/l93FVSU9Pv3bt2qdPn376HPnvoEGty5U7efJkIdQqO1lsLK5di/Xro5UV+vlh//6Y713pdnZ2AKAkc2PBkclkCpNPIuL79+/Zpn9zc/OuXbtm/sk0atSIjVwKBIIjisJfpaWlyfsns2bNUlKB5s1DOU529+7/X4mLi+vSpQsAeHh45O/DISKyqCQ55c8sFp4+fQoApqamSu5R27dv9/DwMDQ0rFGjxrsccqXmxuPHj3V1dVnUYicnpzxs+jpz5gxbauXo6JifrgUi4vPnKBIhAOaQe2b16tVskZ5IJPLu2hXHj8cDBzCH7zNRLikpiYXjdnBwkGf8+/xZdvYs+vri7t0YEPDzOdd27RAA169XfHTkyJEAYGZmdunSpf3790+ePPne8OFoaYkA2Lhxbiq5ePFiAOjZs+cvfLC8efcu+yaQu3fvsri+c+bMkb+YlJR0+/bt9evXs1+NuhqmQkbtILWDuVckOoTs7qPw3sGSpdja2maOaaHM6tWorc26ZCebN3dyclq+fLmLiwvH8aZMOf7zt/+6O3fuiEQigUDAJmoG2dujmRn6+ORycar0y8c3b/oGBXH37um+fTvk/n39kJBOyt+SFvXi5ct2QUHw8KHV69c9793TevdulCo+ShGVlJT0+vXra9eu3b9/Pzfnd+3aVb64XCgU2tjYNGrUqG3btqzfrqrYevnRrVs3ANixY4fCo/M7dbLV0wMAJXPjMpls7dq1GzZs8PLyunPnToHVNF9YdjVvb2811+P7foD869q1KwCoJXWqct++fWvfvr38a88GUF++fImIMpnMx8enoq3tZ1NT9PL6f+Sq5ORTR4+6u7sLhUJTU1MtLS0ln+vbt288Hs/U1CxLbrQDBw4AQKdOP7ll5QbbcM8iYRZTbOZBSdobttqKtRSrVq3KVaHJybh0afYNCGwBlb6+/sGDB/Nc4cePH7Ml6OXLl3+au5mfrOLicNYs/PIFlyzBnH/pLPz68uXLU4pArq0SIDIyko1E16xZs1OnTjY2Ns7Ofmwguk0bXLEC3d0VJIWTi4qSiEQyoTDHW2NaWhqL5CEf6V5cvXpGFEQDA9y48aernxwcHABAycrDgnbixAk+n89xXN++fX/77bfq1avLF0uLxeKpU6cW7FrWIojaQWoHf0b9HcK3b7Fly8dWVvUUNkjp6eksG++YMWNyVdzu3RkTdCKRXaZkoyYmJlGq+z1kMW7cOHavsbGxWbZsWfr3QbufSEpCX1/U139xu/a9e9rPnjUICoK7d4VBQRAXd0rxW2Ji0NtbZqz35F75+/eNnj6tGRQEQUG8u3f5SUmFmsuxyAoJCWFtWLly5TJnQQUACwuLrl27qruCiIhz584VCASKQwWmpKBAgBwnNTX9ktP4bTFx5swZNppz7ty5Ag83VygmTZoEADNmzFB3RRSQSCQhISGrV69WOPP8bevWjO3yAwbgmTM4aBAaGq5u0gQAOI5ji2qqV6+e05wVi1Hu4OCQ5fXHjx8DQOXKlfNf/7lz51auXHnr1q35L6qQxX76dPTo0SlTprAbzoEDB9auXatwQTjLKi4QCDiOy74aXAF//4zstzY2uG2bvMy9e/dyHMfn87OE3cuDiIgItlbKyMho9erVuV8G9u3bt/QFC9DEBAGwXTslPQSZTMbWteZ3HpJkMmbMGJFIJN9o4+o6xtkZvbxw376MCPZDh+b43nXr1llblx0xQtlvLT4+3tbW1tzcnAUPa82mB9n/fpa3/dWrVwBgYGCg3k16q1atYoP18tHhWrVqDRo0aPny5SV492AhoHYwy+slph1Uf4dw2DAEwIEDc9xL8PDhQ7Zk+WpuMvVFRuKyZVi/fvT3TWgCgcDc3Hy1wpSZKnLz5k0AsLa2/rWn3n/+YbfXZN+RqalvU1Pf3runHRTEha+oLm3fAhVOZPXvjwDI5ydum5KW9jkh4U5QEO/uHUHUnAbSPt0VnK9pJJLuLVoAQN++fdkLKSkpb9++vX79+owZMwCgRYsW6q0gExcXt3Xr1izZYDPcv5899nExlZCQMGPGDBZ3S0dHx9XVdfny5cU37e+3b98aN25cuXJlFWb1KFTnzqGhIa5ahS1asDvPx169Fi1a9O7du7CwMLZr19LSMijohxxxSUlJBw4cYFGFhg0blqXI1NRUgUDA5/M1cebn/Hns3RvLlo2tVUs+6iQQCNj+JYUjmPJkfY1zt+4OP39GXV3U0kKAj40a2dvbnzhx4urVq+wZXVWNWkpKSr9+/VgYerFY7Obmtm3bNiVbv1JTU/38/CwtLZ+w3YAuLnjtmpLyQ0ND2VdLJbUlDEv8wyYJQ0JCMm+OuHMnowFZvVrxRhJnZ2clS1TkWIQ2ADA0NGzdsqXszz9x2zZ89Ejxw0kmrLX95egPqsbmbWxsbDZu3BgUFKSJ96gCQO1gCW4H1dwhDAlBoRD5/J8sQGD56y0sLNzd3Vu3bj148M5atbBCBezcOce3fHjxYtq0aRUqVGDp4799+6byysulpaXp6+sLBFoREV9y+56AABw/Hhs3xkwh5r4+XJDerA5r/jF7aNqAABwxAp2cMud2+3LlL2ntKhn7N44cye8nKe4mTUovXXpmmzbZsz/fuXMHct6VV8iOHz9evXp1xQNsR46gUJjxD5pzVKHiIiIiYtKkSbVr184cpNQpWxSvoiA5OTkuLu5BDokTX716xfYnGBsbF+OJjogI9PfHVatw9mz8MeRafHw8SyLH0j1l2ZEPAH369IlQ9IVkD6ZPnpScPcy5EhCAnTuz5wlZqVKtW7X6559/Vq5cyabC2IKRuXPnZn5HaGgox3FsvmLRokW5usr9+2hnxwYBnU1M2D8Ey2s8btw4FX4amUyWOY4XALCe4ZIlS7Zu3bp48eKJEycOGTKkU6dODRs2rF27Njvnj44d8dy5nxZ+5MgRAGjTpo0KK6zhWHPGxgUU5ns8cgSbNdvGcdyePXvYK2lpaY8fP2ZbWFlW2+3btyu5BEugYm5uzlbc5canT9GnTp2aP38+y1Z3+vTpX/1cvyY5Wdm6WESWlXfp0qUFW42ShdpBTW4H1dwhjI/H2bPxzz9/cpqrq6tAIGB3GQBo3nwyW7lQvz5OmYING2L2aFhMSEgIW7Sm8ppnMWzYBwMD2fd7b14lJWHZshmrMtq1y9VbPn1CA4OMt6hiS2sxdvky8vkoEKCiwL7BwcEAULVq1cKvV3bLli3LaQ4BEVEiwYkTcdmyQq1TAYuMjGRBSg0MDGxsbFxdXdVdox98/PixYcOGrq6uAGBvb+/r6/vly/8Hdy5dusSWZlWpUkVJSP3iLjU1ddCgQaw/I987xHFco0aNli1bltNWfpamMj872YqrsDDcvBmfPMFMq0MvX74sFosBgMXu98+UYvjr169LlixhR38h6W5aGq5Zc7tDB/ZvIU8YrTDVan5cv35d3hvU0dFhF2I7wbLQ0tKqVKnSiRMnclnyzJkzAWDChAmqrbAmS5s4Mbx+/em2tqUMDDLfqTJjrYyWllaXLl0aNGjAvngMG7bQ1tZWErtizpxnTZsO+ftvZTG9mf37sUMHLF0aHR0/svIFAoFAIJg9e3beP+FPzZ2LDg6Y8yRkXBy6us4pX75KTjcukh21g6jZ7aA6O4QBAdi7988jZV+7dg0AWL61jh07njlz5saNl/fv4+vXGB6OVlbKgmWxrPeF8PQ5fz4C4IgR+S5o1y4sXRqnTPmFeNzz52OlSpjLIecSbNUqFAgwh3XtHz58AIDSpUsXcqUUmjhxIgDMmzdP3RVRg4SEBLFYzHFcwe3pzdHbt6hoZ9e1a9csLS0BwMzMjE2/sKel/v37X7hwYf369WxWp2PHjtlnnkseX1/fDh06cByXeUd+Tt6/f29ra9ukSZOfpFfSJEePHmVfGKFQePDgQYlE8uTJEz8/vwEDBlSqVMnQ0NDOzu5Xy/z27ZuPjw+bEbK3t89tiLVfxDYTsijqADBx4sRVq1YNHDjwzz//nD9/ft++fYVCIYvFl9MEQnYfPnxgM4qbN28uiDprIqkUra3ZKLBU6a74nj17yjfScxxXqVKlnj17sqgVbBK7a+3aMkVjEzJZxtC08mCHEgkeO4Zt2mSMSNvbpzZv3nzcuHF//vknC+jy01WpP/HiBSYno79/1iVkISFYtiwKBAiAOcSE3LpVvSm+izBqB3NBM9tB9e8h/KlzQ4caammx7Q0fPnzIcnT//owMK2FhCtrI5cuXA8DIkSMLupI3b7IklfkuSCbDhAQFd0AlUlMxNfXX3lLyBATgP//gv//mlGgyOjoaAAwMDAq5XgoNGDAAinlAxfxo2bIlFGYAurt3sVcvXLcObW3R1hZ9fCSZ9jH6+fmxqI8uLi5v375lK0O0tLTka1zZmnMfHx8VpvAu4qRSaWhoKCJ+/fr148ePz3O4sZw/f549btaqVasoBO8tOtatW8cmCatVq8aGMjPL88J1Dw8PABg/frxqaysXFBTEcZyuru7Ro0f/+eefLHFxGjVqxOpfLTftXGzstx07WrRowWYajY2Nq1Wrlqs4OuSnLl5EABSLEQB37lRy4rBhwwCgbdu2V65cybwplMV1721hITUxQTu77BHRL19GACxb9ifj0vv2oYUF/vMPHjyIWXIesflJkUh04cKFX/18/1erFuroYKdOWdeA3buHenoIgDzeM2fnnYr+CG3bIgAqWk6rqagd/EUa2A4W+Q5hYCACfDM03NWkyaQclpYOHRpbs6ZnZ0UbCkeNGgUAywp+9V1aGu7ciatX47JlP08BRAqDTIYvXuDu3ffmzm3WrBmb+ufxeEXhdtaqVSsAOHPmjLoroh5sCdnYsWML42K7dmXkoZk8GStWZEPZo2rXdnJyWrdu3Z9//slaOw8PD4lEEh8fP3/+fJavkg0fGBoaCoVCHx+fwqhqEXPjxg0rKyvWe3dwcPDz88u8E9vPz491ddq3bx8TE6O+ahZRPj4+bC8Kn8+3t7cfMGDA8uXLz5w5w+fztbS08hZ7oGnTNgBwJdO2c5Xr3Lmzwj7nq1ev2Mazny9tiIhAd3fWXWldrpxYLG7fvj3LvGpjY6N4ajE9HTVgzkFl4uNxyxasUwcNDDDnuWKJRMJ22WTf15Senr7T0xO1tTMCFri4ZJkyun8fe/fGmTN/UpGuXRWHO2DGjBkDAKampi9evPheJXz4ELduxYULc5EsMTgYATJiQmZ/hDt+HAWCQ1Wrsn7L5cuX2csREXjyJM6bh+PGYblymMNyWs1D7WBeaVQ7WOQ7hI0bIwByHGprY1iYwlPCw8NZDspNmza9ffv26dOnd+7cCQwMPHz4MNv/mvvdDnkmk+GAATh9usKpeKIOI0ZkhJCqWZPd1/h8ftWqVX9h906BqVatWkE/2BVlly9fBoDatWsX6FXS09MnTJjwr6MjAuAff2BqKspkeOFC4vDhut/Xw/D5fG1t7SzrmmQy2ZUrVwYPHjx37lw2J7Ny5coCrWoR5O/vzxYo2trayvdR6OvrDx069PLly7///jsbM/b29laYX4EgYnJy8sWLF7PEM6tevToA3L59+1dLY+GHGzd+VKB/8AcPHgiFQnd39+Tk5Myvs0EcoVDIcdybN2+UFbF+PRoYII+HrVo937OHrS77+vWri4sLAOjp6R09elR+btq9e/jnn1i6NHp6or8/rl9P46m5whYEZctOmdnx48fZrIXiw9++Yd26CIDa2tm33AQE4F9/obt79pTv/xcbm6atLePzMTxc8Qnp6emdOnUCAGtr6wEDBjg4ODg7/8YWl2pp4ZYtOHBgTs90iIifFixAgQAFAuTxUNHGrUubNsnXvpqZmbVr16569Rby1BjTp9PoPCK1g/mjae1g0e4QJiXhkCEZSyMmTlRy4oYNG+B7wt8sqlatWgiZuz98QAAsVaqgr0NyrX171NJCLS3p97seM2fOHPXWKyEhoW7duiKRiOO4WrVqPZw1C//9F6Oj1VurwpSSkqKtrV2g2wijo6Pbtm0LACbGxnEbN2Y5Ghsbu27dOjZ87uPjoySywtKlSwFg1KhRBVTPIigtLc3b25v9WAQCgZubW3x8/JYtW1hucTk9Pb0DBw6ou7LFD3uGyMOj1dSpCIDDhxdEpX7AwuVt27bt3r178hft7e3Zv3vTpk2VvXnGDOzZE1etyv4En5qaOnDgQPb0OXny5OXLl9epU+dS8+YZz++NGhXEZ9FkbK+gsunc8HCsXh2PHlW436RBAwTAQYNyXDW6efPm0qVtPTz8FR9GRMTLly/r6enJ9zGWLVupShXs1Qt9fXHcOATAevUwpwDwlSpVKq+n51+79ufffsup/PHjx0OmXa8AULVqWosWOH78T3MlagRqB/NMM9vBot0hZHx8sHt3VPrsKJPJzp49W7NmzTJlytjZ2Tk4OLi6unbp0oWlhNq2bVtB1/H8eQRAZ+eCvg7Jtdu3Mx41zMxG9ew5ZcqU6dOng4qSh+YH219kZGTE9m0nVqvG9kLgggXqrVhhYgswWrVqtXv37pyi5OXHnTt3tLS0LCwslEzDDh48mN3Ta9SokdM5LCpVy5YtVV7DounLly/sn4aNuwPAmDFj5Psinj9/7u3tra+vz3Hc+fPn1VvVYsrPzw8Afsv5GTcnrVoVUmpSlqQOAHr37s1eYRkI2Hjr2rVrlb25YUMEwEuXFB6UyWSzZ8+WJ4AGgN4ODujlhbduqfxTaLjExEQ9PT0ACPkxqn5WOU9r3L2bsU1v+XLF8SRbt24NAJnj6Gbn5eXFplCEQmFgYGDmYEhfvmDlygiAw4Z9zh4y9/bt2/A9r8aGDRtyrr60SZMmANCoUaNDhw79ZO5a81A7mDca2w4Whw5hPrCdzUOGDCnoC23ffsPZef2ECU8L+kIkt1JT8cABDA2Vv5Cent6q1W+NG++9dUudk/u1atUCgL1796akpFy5ckU6cyY2b45iMY4erTkrpoKDg1mYZgDg8XgODg7e3t5Xr15V4bqLI0eOKA9i4evryyogEoly2gv+5s0bKDLBaQvB9u3bAYBFktTS0soSGfLz58/9+vVj4/35ihVRsiUkYOfOOYXPfvDgAQBUqlTpl4oMCMAZM3DzZuV511SDZW/L/Pz34sWLgQMH8ng8oVCobFZfKkVdXQRQvt6Bba2sX7/+yZMni3sMhiKL5X7Mcb1o7gQEYPPm+ziOk2csTE9Pf/r06a5du0aNGsXj8fh8/sZs805yUqm0dOnS7LvUpUuX7Ce8fImtW78Ri41Gjx4tfzEqKiowMLBz584siolQKFQyYiiVSq2trQGgEFaBFVPUDuaBxraDJbxD+ODBw8qVa3brNvfnp+YP25Xr6+tb0Bci+fHnnwiAalz4cPHiRQCwsrKSZHmyS0pStl2jJHrx4sWSJUtat27NhoGZzZs3JyrdGKNC7JmJpedSOI6ekpKSnp7OJnI1IdA2IrJGbufOneXKlcu+gigxMZHH47G4kT+ZKdJY/v7o4sJSyePffycnJWU+GB8fP2/ePIFAUL58+YsXL+a+1Lg47NQJ27dXcWUV8vT0ZD9GeXciJSWFbSJqr7QG70JCRjVrttfNTXn5bAZSY0NqFY7o6OgaNWoYGhr+ZIbwZ1avXg0AQqGwa9eujo6OOpn2X7BkhlpaWjnNPsnOn/9at+4iW9uyhoa7d+9WeM61a9fYHbht27adOnViwYfkA4UCgaBJkyZKqnf+/HkAqFixYlGIFVdMUTuYnca2gyW8QyiVoqkpAmCm+LoFws3NDQozkj7JExaYwcREbZ0vd3d3ANDMaF05SUhIOHbs2IgRIwwNDQUCQU6PDir3/Plz+Sjg8ePHsxwNCwtzdHScOnWqpaWlUCjMfeK1Yq1BgwYAcO3atdQcfiG2trbscc3Ly6uQ61Y83L6NfD7yeMjjvWrSpHz58oGBgYgYHx8/e/ZsFvyMMTY2fvz4cS5LTUtDjkM+vzCClk2dOpXV0MrK6urVq15eXiwbtZWVVfny5ZXMNuzfvx8A3JR2CGUyGetIfPr0qQDqTjKkp6d36dKFdZY+f/6cn6J+++03ts2MqVChQvfu3X/77Tf5grp21avLFGZpGzo0Y9eGiUlqQkJO5e/atUssFsuHBfX19Zs2bTpmzJjx48cLBAKO45Rs+WF5NaZOnar8IyxatOjo0aM53dM0HLWD2WlsO1jCO4T4PTLy1q0FeImUlJT69etXqlTp6VNaMlrUDR2KmzdjnqK+51dYWJhQKBQKhR8VxUwjCxYsAABPT8/CuVxaWhoL7ePu7n7t2rXMh1ikafi+iWXgwIGFUyW1YxkylSwDYyEKAKBNmzaFWbFiIzERvb2Rz5caGlbW0wMAjuM6depUqlQp9ndzcnI6f/48W5bZvPnEd+9yW7CxMQIURhh9lrzX0NCQbUJjatSowX4RNjY2bx4+VPjG0aNHA8CUKVOUFB4aGgoAFhYWBVN38n+JiYkNGzYEgKZNm2aJGftL2D9rixYtLly4kDmw/tixYwGgq7l5upkZVqqUNcpDaiqamGR0CPv2VVI+m6EqU6bMvn37Xr58mXmub8OGDXp6+o6OJ8+dU/BGJXk1MouOjhaJRAKBgMYgFKJ2MDuNbQd5UNI1bw62tpCWVoCXWLp0aVBQkLW1tTwUGymyunWD4GBo3x4+fizsSy9cuDA9Pb1u3brynRUks+bNmwPApUuXCudysbGxOjo6urq60dHR4eHh6enp7PUtW7a0aNEiIiJCLBanpqaWKVOGJdTSBFWrVgWAFy9e5HSCnZ0d+49nz54VUp2KFx0d8PWFK1c2tWwZkpDAcRyPxzt+/HhkZGTTpk0vXrx47dq1li1b7tq1a+BAv//+W9CuHXz9mquCW7W64+Jy7OvXiAL+AMDn801MTOLi4hISEsqUKePl5XXv3r3Hjx8/efKkefPmFU1NrVu0gKNH5eenf/mydu1aJyenNWvWlC5d+sqVK8nJyTkV/ujRIwCoU6dOQX8KoqOjc+TIEVtb22vXrg0aNAgRs5wgkUh+WohMJjt8+DAALF68uEWLFmx2l1myZMm2ESMOJyXxv32DV6+ga1f4fgsFAODxYMsWcHQEHR3o00fJJfbs2QMAY8aM6dWrV+XKleWZ0AHgjz/+GD8+5Nat9j17wvPnGS+mp8OTJ8E7d+7s1avX169f7ezsWCqXnBw8eFAikbRq1Uo+KEMyo3YwO81tB9XdIy1wx47hzJm4bx8GK46VlV/v379nUY9Pnz5dIBcgqta/PwKgk1NhRGiQO3DgAMdxLFKfk5PTk0ePCu/axURaWhoLPximJDuVijx48KBcuXLwfewTAGxtbadPnx4aGrpmzRoAEAgEAODs7BwZGVnQlSk6Dh48CEpX/b169ers2bMCgcDY2Dg/0w4lnkQi8fX1Zb93IyOj7K1DbCzWqoUA2Lx5rgp0cnKCQkleOnz4cABo1KjR1atXs2zNSklJifvjj4wdkqtW4Z496OaGIlHrcuUAQEdHh/2amjZtmlPsmRkzZgDA33//XdCfgjAPHz5kN1UXFxcPD4+uXbs6OTlVrVqVde1Onz4dn3Nqe0QMDAwEJTGQEhKwfn0EQLEYV61ScIK/P96/r6ShTUhI0NXV5TguNFP4t8ykUuzeHQFw3Dj09MSGDVFbG6tX/53dtC0tLU1MTJQHTWnRogUAbNmyRck5GovaQYU0th0s+R1CRLx0CXV0sEYN5Xlc86hHjx4A0KtXL9UXTQpGVBSWKYMAOHdurhds5c/du0/YnuyhQ4eWKVOGx3Ff69dHLy+MiyucChQXHTp0AIAC30a4b9/Oli3ZU29QUNCcOXMqVqzImkMej1ehQgX2315eXpoWBfHJkyfs+S8wMNDBwcHPzy9LXvU7d+6wXD4LNClLSp7t2LEDAHIKjBEejjVr4tmzuGMHTpuGyrfnsCj/Bb1NXSqVskViyjYLLV+OIhGeOpWxJlAovDlq1K5duxITEx89elS2bFkAqFChQvCPQ7BBQUFeXl56enqGhoZ5yLpB8uzUqVN6eno6P+bjZfc6AFizZo2S97K0mco2vUdEYPXqePiwwmSGP7Vr1y74WXLLxERcswZ37sxYNc1x2K3bIXd391mzZrG9XtWrV8+8ljWz8PBwPp+vpaWV0wkajdrBHGhsO6gRHcKEBGTJ3v74Q8Uls/EzHR2dtwUdtYao1PXr2KLFQY7jjhw5UtDXCg/HChVkTZtuYulPYmNjT86YgXw+AqCNDb56VdAVKEYKfBuhVIqTJyPHoUjk99dfKZn2kgYFBXl4eOjq6lavXt3ExGTTpk0FVYci7O7duwKBQE9Pjz3WA4ChoaGnp+eLFy8QcdeuXSz2gJOTE23IyY1Tp06B0n0mx4/jzJlYs2bGZqtOnQImTJhw8+ZNmUwWFxd39epVX19fNzc3CwsLAChfvvy0adMKtMKfbtzoa2dXoUKFn5wXGor+/ujtjatW4Y8xS8LDw9ljurGx8fnz5589ezZ16lT5w6W8HzJ8+HBNe8pUF7ZM19TUtHz58pk7hEuWLAGAatWq5RSiMzU11cTEBAB+EhwhH5GOWDS+1atX//TMgACcPx8vXcLMcS7j4uJq1KgBAG3btlX4dWKJx7p165bnGpZM1A4qpbHtoEZ0CBHx8WO0tJQ5Oi7ZuXOnqspMTU1lK4lL2CCBhli8eDFbzfVSYYQ0FUlMRAeHjIVhEkmm9LsPHmDjxujggBs2aE76wZ+6ffu2vr7+8OHDC+oCb9+ioSEKBLhypcLjMTExT58+jSu5M7dJPyZCyOzgwYN63+OgsFZQR0eH/ffFixe9vb3Zix4eHhSvL5cS/v03sVq1TyNHKj8tMBA9PbFUKWzc2J39ke3s7DJvpgIA9mheqlSphJwDNqrAuHEIkKI0MMxPJSYmsqg5QqFQXn8bG5sJEyY8fPhw37592traVUxMvvXpg5oRxV691q5dCwC//fbb2LFjW7Vq1a9fPy8vr9mzZ3/48MHa2trOrt+VK18VvpENZ9jZ2RVQxeLi4kQiEZ/Pz89TdWhoKNscOHToUPmL0dHR586dW7x4MZvu3rt3ryrqW4JQO0jtoCKa0iFERH//7QBgYGCQz8w8TFxcXOfOnUuXLm1kZFRomdOICslksqpVq5qamlpbW588ebKArvLkCVpaYqVKisIDSqVYsoaX8k8qlRbsvMGGDejriyUrmWzuyWSyKlWquLq6btu27Ye7llSK06ZNrl8fAAYMGBAcHDx16lS2JIZN6bD/FolESgKvEQU2b0YAHDw4N+emp+OVK9f79+8vEAjYI0j16tW9vLy2bdvG4ig6OjpCgWa7lcnQ1hYB8j8+JZVK27Zta25urq2tPWDAgGPHjqWn/3847ObNm1EsW6O9Pb55k89rEeUmTnzQqNG8DRv2ZD+0eHEsAHbvrviNcXFxdevW1dfXf/7ra0FzycPDg+O4f//9Nz+F3Lp1iy2Ibd26ddeuXeWzOuyZXktLa8KECSqqb0lB7SC1g4poUIdQIpGw6I5OTk7//fdffoq6ffs2W33Bdtx26tRJyXgDKZrmzJkjX7/E4/EmTpyo2vGe69exbl1cuBCnT8d9+1RYMMmr+HgUiVBXFzU1i3FwcDBLQAwA1xo3Rg8PvHcvI+s5gMzMbHOmyBBSqTQwMHDAgAFisbhs2bJ6enqXLl1SY+WLpRUrEADHjMn9Oy5fvszGpCFbPP2zZ8+ytX8FNXIfHo6VK6O1tUp+ICyX/eLFixUfDg3FGjUQAKdPz/+1iBLlyiEAKoxiFhmJWlrI5ytO1CyVSrt27QoAFStWjMpfMsOczJs3j33b79y5k59yjh8/bmRkxMLnAICenl6TJk1GjRr1119/scBO69atU1Wdiz1qB6kdzIGmdAhlMlnmVKo8Hs/Dw+PLryd1kslky5cvZ7cYBweHAwcOmJqaCgTi/v3fRUcXRMVJgWBbC/h8/o4dO5YvX86WNjk4OLA14vkUHx//55/feLzczw2QwmJpiQCY++xvJU50dPSqVavc27fP2LUGgIsWoUCApqYYGKjwLWfOnAGAmjVrFnJVS4IHD3DlSrx4MffvCAgIAAD2vPIu2xfVxcUFAGbNmqXKSjKpqXj2LPr74/XrKimvUaNGbJFVjmfExeGcObhxI62ZLzgfPyIAGhkp2OgXE4OxsdivH1atijduKH57UlKSo6PjxqZNZU2aFEhQPsQRI0Z0rVQptWbNfG6nj4mJ8fPz27Nnz/Pnz6WZPq2/vz9bvXz27Nl8V7akoHaQ2kFFNKVDGD19eg1zc/bcr6ury3p0xsbGy5cvz7yURbkvX76wPdAcx3l5ebEJpeDg4E6dngFg9er44UNBfgbyKyIiItavX1+3bt2ePXsuX748KChIfmjFihXsH3HDhg3slTt37lSqVAkAtLW1Fy1aJM3HLvlTp06VLVu2WbNRAgF6e2Om3dqkCGjeHAHwzBl116MIePIEvb2xalVcvx6XLMHXr3M6MS4ujuM4sVic+1sl+T9//1/q8Hw5fPhD48ZBZcved3FJ/Jp1c9fVq1dZhIOv2Q7l1+DByHGKkwfkgVR6xdFxiYtLrMrrSX7F48fo4oJdu2Z9/eNHrF0bnZywRw9csQKVLJn6FhmJ5csjALq75yd+TE4kEklaly4Z64cLJhbopEmT2Hahhw8fFkT5xQ+1g3LUDmaiGR3CBQsQINbYuLGFhYGBwb1794KDg1u1asWmjOvXr79v376ctjXLZBgc/H716tU9e/asXbs2W41w9OjRzOd8+IDVqyMADhxYKB+H/ExkZKS9vT38yMbGZsCAAUOGDOE4juO4LGtI4uPjnZ2d2fIYa2vrsWPHXr9+O/dLKr58+bJ79+6+ffuyazVq1Ojx45K24bgEWDZ5srWl5fLly9VdkSIjd19x39atT7i4JNJ2r0KwYQMCIFtgoGgRe5UqVbS1tXv16pX7Je7fvn17/fr1zZs33759q/BpJt3XFwFQVxfv3ctX5eVevEAALFNGNaWRvAoIwKlT0doaPTz+H8Hnv//+a9duJI8n1dJCAGzd+melPH2KRkZoYVFQGz5jY7FGDeTz8dChgiheJpP17t0bAGxtbSMiIgriEsULtYNZUTuIiBrRIbx1CzkOOQ4B0q2tb2ZawXLs2LGyZctyHMeStBoYGPTr96RvX/TxwcuX8cgR7NULLSywadNn8k2lbAtH9igy0dHo6YmbNuGyZbT4Rc1iYmLq1avHJveDgoL8/PwGDBgg3xlsYmLCcVz25Evp6enVqlXL3IFs2vR3GxscNw5v3VJ8IalUGhQU5Ovr6+rqynaTCoVCHo9nZmYmKcyc9yTX2FLhESNGqLsixU3LlgiABRZ7ifzf0qUZS5i0tLIcSUxM7Nevn3zveosWLRTOEyYlJW3cuNHT07NOnTo2Njby3TIA0Lx5c1NTUxblRd6fPHjwoGu5cqmVKmH+Ynv84MABBMCcMzuTQnPiBAoECIBWVrh3b+CbN290dXUBwNZ2JADWqJG7lYNXruDr17863f0L3r3DgwfzlswwN5KTk52cnLp27UohAJHawTwr6e2gBnQIEXHMGOQ45PFw//4sRw4fPswWCrKg3rVrx7K2+O+/sXv3jHa5QYPk/v37e3p6yrd2rFixQsnVCmaQiyhw4QI+e/bDK7GxsfXr1weAKlWqZB4LlMlkjx8/XrRokUAg4PF42R+k9u/YIf/3HTNmzN9//92mzWX2BWjfHrdtQ2NjNDbGRo1SKlSoULVq1bp165qamsqftMRiMetPshLyGTaNFBAWSL1FixbqrkhxM2oUAuDSpequhwa4cAFHj8Y2bXDIkB9ef/06ols3sUCgr6+/ePHiMmXKAEClSpUyR4BMTU318/OztrYGAJafjREIBNra2vb29lWqVJG/qKWl1aNHjwULFrCcWquXLVPlp3j0CCdNwu9r8ol6PX+Orq7o5BQKAM2aNWvRogUbU/DwOFpUEn/ExqK+Prq5YYFFmY6Li8vPZpCShNrBPCrp7aBmdAj9/XHOHMw2KYSILNLMnDlzEPHLly+3bkm2bsV//sHAQHzyBDduRHmOuvT0dNaaDihbNqJdO6QpIPUJCMCZM/G//zLip1lZ4bhxWzZs2HD//n0WyaBy5cphYWEK39uiRQsAOHDgwA+vSiSyypUfVK9e38REnulLJsNbt3DYMOzZE7t1yxgdKF8+NfNjlpWVlYeHx/79++Pj4xMTE83MzABATyg8PGhQwf8ZyC+LiorauXPnI4UR94gS/v5Yvz7Om4clNzNV0ZJlquTUKTQxQYC7PXqwLOFhYWEODg5sycPFixclEsns2bMtLS3ZrcnBwcHf379Hjx6Zlzzs3r0bEa9du+bq6sqCqzEcx3l4eKj+I/j6orm5wmaXFD6ZDHfu/NfCwkI+ajl06NAitJJlyxYEwJYt1V0PjUDtYB6V9HZQMzqEOUhISNDT0+M47o2iNcEBAVlXRlzeuTO2Vi0UixEAt24tpFoSRQ4dwqQk7NsXLS1RIEA9PSv5842VldWHnMP7LFiwoFXZsuf/+eeHV9m+HS0tFIne/JhhZvZsBMDffsPoaPz6Fd+8kbx+/frZs2dDhgwBgPHjx2c+ecWsWcednVMNDVWSy4uQIsTfHxs2RB0dHDgw7to1maaGLFePDh0QADt3zpzJ/du3b506dWIr1Y2NjdndTygUtmnT5ujRoxKJ5PDhw5MnT166dOn27dtPnjwZGRl5/fp1fX191gmUZ41ftWpVgXQMli1jo2gyb28FMzORkTmGtiQFJjo6euTIkfv27Vu0aJG66qDw1pHcqRMC0JQyKepKdDuo0R3CHTt2AEDTpk1z+waJJCNvLwDa2RVExC2SB8+eJa9du9bJyYkFj9XX11fyfCN99AgBsubaatw445/Vygp/TCnJwgWdOpW1nOvXrwNAxYoVf3g1MhLFYrZhFd3d8/3JCCkyUlKwZUv23e7bpEmZMmW8vb3fKsxfRlQrIADHj8fJk7NHPpDJZD4+PqVKlZKvWZCPiwUqCp4eFxdnbGyspaXFzmnSpMn58+cLsOabN6NIdKBZs/bt28fHxyNiQkLCu0OHsEMHFAiwbFlctQobNMArVwqwDqSI8fX1tbe39/X1DQ8PZ69ERkbq6+v3a9pU9uuZwAgpVCW6HdToDmG7du3gVzOWslHPMmVw927qEBYpx48fZ9tBAeDy5cs5nieTobV11ky9SUn4xx9oYZFlgdODB8EuLrdq1UrNvq9BKpWy5TfPs2yCHzoUAVAgwD596BtCSprXr9OnT69cqRLrUSxZskTdFSJ47969Jk2ayGf8OI7T09ObOnXqunXrZs2a5eXl1a9fv9atW9euXbtu3brsHEdHx8JJy/bpyhW2P79atWo9evTQ09MbwsbYhELs1An/+gsBUCzGPXuyv1cmk129evXbt2+FUE9SaJo0acK+hHw+v3Xr1ps3b160aBEAdOrUSd1VIyR3Smg7qLkdwsjISIFAIBQKfy09fUICnjiBGzcWUCwskmcJCQlaWlocx9no6x/39VV26u+/o6Ulnjjxw4v+/nj/fpY47xMmTACA0aNHKyxm4MCBAJB17c3Tp+jlhdOn0zeElFTp6emnTp3q1atXZGSkuutCMsTExOzfv3/AgAF6enoAUKtWLchGW1tbLBYHBAQUZsVCQkIqVKjAFrVyHOfk5JTq54es2U1Lw5EjEeCRi8usWbPk66+Cg4N9fHwqVqwIANu2bSvM2pKClpiYuGfPns6dO8tnqln89jFjxlAIUFKMlLx2kEPE7M2GJpDJZBcvXnz69KmXl5e660JU46Knp/25c6XevYNateDevRzP+/YN9u0DqRRq1wZHx5zOQsTy5cu/e/fuxo0bjRs3zn7CgQMHevXq5eLicunSJVVUnxBC8ishIeHUqVOxsbFBQUEWFhZm35mbm7u6usbExLx69Yr1tQrNokWLJk6c6ODgcODAgfLly2c5+mXDBtsxY5Ilkh49ejRo0GDv3r0PHjxgh2xtbWfOnDl48ODCrC0pHLGxsceOHdu+ffuFCxc4jpPJZNra2q1atRo4cGCXLl3YBhBCSOFRd4+UENVZvDhjMRLH4ff9CXkWHx//22+/aWlpnT59WuEJt27d4vF4hoaG7u7ux44dK0IR2wghJJs+ffoAwJr1hR3508PDAwCUJMIOCAjQ09PT0dFhjyVGRkYDBgwIDAwsYTEbSHYLFiwAgHr16jVu3JjjOPYFMDExGTVqlLqrRohm4ampH0pIAWjXDgCAxwMtLXj0KJ+F6evrGxkZpaamduzYcfbs2TKZTH5IJpMtXbq0efPmMpksISHh4MGDnTt3fta1K4wZAzdvgqbOuhNCirLuk7tXC6p2stXJQr7uo0ePAKB27do5ndCxY8e///47KSmpbNmy//7776dPn7Zv3+7q6irvIZCSas+ePQDg4+Nz48aNd+/eLV++3MnJKTo6+t27d+quGiGaRXOXjJKS6Z9/4NMnGDMGvodPyA9EXLhw4ZQpU6RSacuWLXfv3l2qVKl3794NGTLk4sWLADBgwIAJEyYcPXr0+MGDt96942JjAQCWLIE//8z/1QkhRIU+pX0q/bi0mCf+WuurNk+7cC4qk8kMDQ0TEhK+fPliamqa02leXl6rVq1asGDBxIkTC6diRO2eP39erVo1IyOjT58+ybcUAsDTp0/T0tLq1KmjvqoRonEEPz+FkGJk3jwVFsZxnLe3d6NGjfr27XvhwoX69et7enouXbo0JibGwsJi48aNnTt3BoCaNWtOnToVnj6FAwdgxw5ISQE/P+UbFAkhpJBZCi3r6tS9l3TvasLVNgZtCueir1+/TkhIsLGxUdIbBICHDx+C0llEUvKw6cEePXpk7g0CQPXq1dVUI0I0F80QEvJzYWFhvXv3vn79ulgsTklJcXd3X7dunZmZmYJTEYGWORFCiqSz8WevJl61Fdn2N+5fOJOEBw8e7NmzZ/v27U+eVLZU1cTEJCYmJjw83MrKqhBqRYqCqlWrvnz58ty5c61atVJ3XQjRdNQhJCRX0tLS6tWr9+TJkzFjxqxcuVLd1SGEkGLg1q1bEyZMePv27Y0bN8qUKaPwnPfv35ctW9bc3Pzz58+FXD2iLtHR0W5ubm/fvv3w4QOfz1d3dQjRdBRUhpBcEQqFFSpUAAAayySEkFyqW7fuly9fPn782KRJE3k+iSzu378PtF5Uw5iYmNy4ceP58+fUGySkKKAOISG5JZFIAIDyIxFCSC5paWldv369efPmHz9+bNq06dGjRzMfffr06YwZMzw8PCwsLCIjI1NTU9VVT6IWBgYG6q4CIQSAOoSE5B7rEGbZ/k4IIUQJExOTM2fODBo0KDExsVu3bjNmzAgNDZ07d669vX2NGjVmzpz5+fPnhISEx48ft2rV6suXL+quLyGEaBzaQ0hIbjk7O1+7du3q1atNmzZVd10IIaSYmTt37rRp0xCR4zKePUqVKtW7d+/ffvtNLBa7ubnFREa+btXKYskSqFZN3ZUlhBANQjOEhOQWW85ES0YJISQPXF1djYyMeDweIrq6uh47duzDhw8rVqxo2LBhrVq1bt++HdSzp8WpU9CkCZw7p+7KEkKIBqEOISG5JRQKgTqEhBDy63bvlvbuPT4mJobFGk1KSnJzc2M3VcbKyqrqhg3QowfExsLateqrKSGEaBxaMkoIIYSQgiKTwdSp4OsL1aolurr6zJgxxd7e/tOnTwcOHHB3d1dw9qpVIBQCnw+1a4OjozqqTAghmoU6hIQQQggpKDdugLMz8PmwciUMHw4A4OfnN3z48PLlywcHB4vFYnVXkBBCNB11CAkhhBCieidOgKkpvHkD9+5Bhw7QsmXG61KptF69eo8ePZo/f/6kSZPUWkdCCCHUISSEEEJIwTh8GLp3V/D6+fPnWYyZjx8/6urqFnq9CCGE/B91CAkhhBBS2Hx8fLp27Vq3bl11V4QQQjQddQgJIYQQQgghRENR2glCCCGEEEII0VDUISSEEEIIIYQQDUUdQkIIIYQQQgjRUNQhJIQQQgghhBANRR1CQgghhBBCCNFQ1CEkhBBCCCGEEA1FHUJCCCGEEEII0VDUISSEEEIIIYQQDUUdQkIIIYQQQgjRUNQhJIQQQgghhBANRR1CQgghhBBCCNFQ1CEkhBBCCCGEEA1FHUJCCCGEEEII0VDUISSEEEIIIYQQDUUdQkIIIYQQQgjRUNQhJIQQQgghhBANRR1CQgghhBBCCNFQ1CEkhBBCCCGEEA1FHUJCCCGEEEII0VDUISSEEEIIIYQQDUUdQkIIIYQQQgjRUNQhJIQQQgghhBAN9T+GcJntL8/5hwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -1200,11 +1269,11 @@ "metadata": { "id": "H5wkbrWgl5_n", "colab_type": "code", + "outputId": "243bea73-449c-4d9a-a99a-edbf1fea1492", "colab": { "base_uri": "https://localhost:8080/", - "height": 452 - }, - "outputId": "8fe2d8bc-9201-457a-b9ef-3f2695a408e3" + "height": 0 + } }, "source": [ "nan_rows = smiles_data[smiles_data.isnull().T.any().T]\n", @@ -1245,11 +1314,6 @@ " -7.8266\n", " \n", " \n", - " 90\n", - " -5.49647\n", - " -9.7844\n", - " \n", - " \n", " 162\n", " -12.8456\n", " -11.4627\n", @@ -1260,11 +1324,6 @@ " -6.61225\n", " \n", " \n", - " 176\n", - " -13.4039\n", - " -11.3516\n", - " \n", - " \n", " 187\n", " NaN\n", " -8.23326\n", @@ -1275,6 +1334,11 @@ " NaN\n", " \n", " \n", + " 237\n", + " 30.8369\n", + " 6.16932\n", + " \n", + " \n", " 262\n", " NaN\n", " -12.8788\n", @@ -1304,6 +1368,11 @@ " NaN\n", " -8.78722\n", " \n", + " \n", + " 399\n", + " -1.45559\n", + " -6.47666\n", + " \n", " \n", "\n", "" @@ -1311,18 +1380,18 @@ "text/plain": [ " n1 n2\n", "62 NaN -7.8266\n", - "90 -5.49647 -9.7844\n", "162 -12.8456 -11.4627\n", "175 NaN -6.61225\n", - "176 -13.4039 -11.3516\n", "187 NaN -8.23326\n", "233 -8.21781 NaN\n", + "237 30.8369 6.16932\n", "262 NaN -12.8788\n", "288 NaN -2.34264\n", "300 NaN -8.19936\n", "301 NaN -10.4633\n", "303 -5.61374 8.42267\n", - "311 NaN -8.78722" + "311 NaN -8.78722\n", + "399 -1.45559 -6.47666" ] }, "metadata": { @@ -1362,11 +1431,11 @@ "metadata": { "id": "txAjPzOAl5_2", "colab_type": "code", + "outputId": "a4564f8e-817d-4df7-9ce1-2becb341767c", "colab": { "base_uri": "https://localhost:8080/", - "height": 458 - }, - "outputId": "420c6feb-ee4b-40ea-e567-c837a2ce5980" + "height": 0 + } }, "source": [ "# seaborn jointplot will allow us to compare n1 and n2, and plot each marginal\n", @@ -1378,7 +1447,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": { @@ -1389,7 +1458,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAGoCAYAAAD1m7qEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df3CV5Z338c+dk4QeHtGAkpMhRRQX\nQh/Kjzy6o9YurJEQIY1EEPeP2l2ydHGYzrBRJ1t+WKSg/EptnelMGdxK6bZd14oYdWM3SiLG4TE6\n2iAsY1PtYwoEcyhIACGbn/fzRzzHkJxzck6Sc+77Ouf9mnEG7oScbw54f3Jd9/e6Lsu2bVsAABgg\nzekCAACIFqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADBGutMFAMnq/OVOXezoHnR9\n3Jh0XTM204GKAPMRWkCcXOzoVv0fzwy6Pm/6dYQWMExMDwIAjEFoAQCMQWgBAIxBaAEAjEFoAQCM\nQWgBAIxBaAEAjEFoAQCMQWgBAIzBjhiAC7DlExAdQgtIsO6eXp08d/mKax1dPXrnk3ODPpctn4Ar\nEVpAgrV39arxT59dcS3/+iyHqgHMwjMtAIAxCC0AgDEILQCAMQgtAIAxCC0AgDEILQCAMQgtAIAx\nCC0AgDFYXAyMglDbMHV09ThUDZC8CC1gFFzs6Fb9H89ccY1dLoDRx/QgAMAYhBYAwBiEFgDAGIQW\nAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBgsLgZiEGrnC4ndL4BEIbSAGITa+UKK3+4X3T29Onnu8qDr\n48ak65qxmXF5TcDNCC3Axdq7etX4p88GXZ83/TpCCymJZ1oAAGMQWgAAYxBaAABjEFoAAGMQWgAA\nYxBaAABjEFoAAGOwTgswUKhFx+lpUnfv4M9lITKSCaEFGCjUouP867PUeLxt0OeyEBnJhOlBAIAx\nGGkBIbAxLuBOhBYQQqI3xgUQHaYHAQDGYKSFlBFuyi9U110yTQNyvAmSCaGFlBFpym9g110yTQNy\nvAmSCaEFI8QySmIEEZ1QI7B4vneh/g6T6e8q3L/RZPoe3SClQ8st/8hiuSGHW0CaTAtLQ70fHV09\neueTc4M+N9Qo6Rs3TaDzLwqhRmDh3rtYfjiI1Hk58O8w1tFeooMvltcLN5JnRDu6LNu2baeLGKmV\nK1fq3LnBNzQAMNX48eP1zDPPOF2G6yRFaAEAUgMt7wAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoA\nAGMQWgAAYxBaAABjJEVorVy50ukSAMARqXb/S4rQYgsnAKkq1e5/SRFaAIDUQGgBAIxBaAEAjEFo\nAQCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoAQCMke50AQDgdlWNLaqsadKptnZNyvKqoihP\npfm5TpeVkggtAIigqrFF6/YfVXtXjySppa1d6/YflSSCywFMDwJABJU1TcHACmjv6lFlTZNDFaU2\nQgsAIjjV1h7T9UTr6bV1/nKn02UkjOOh1dPTo9LSUj344IOSpBMnTmj58uUqLCxUeXm5OjtT5y8D\ngPtMyvLGdD3Rem1bFzu6nS4jYRwPrX/7t3/TTTfdFPz9j370I61YsUKvv/66rr76au3bt8/B6gCk\nuoqiPHkzPFdc82Z4VFGU51BFqc3R0GptbdXBgwd13333SZJs21ZDQ4OKiookSffee69qa2udLBFA\niivNz9W2pbOUm+WVJSk3y6ttS2fRhOEQR7sHt27dqoqKCl26dElS3wmcV199tdLT+8rKycmR3+93\nskQAUGl+LiHlEo6NtN544w1NmDBBX//6150qAQCMl2ZZGjcmdVYvOfad/v73v1ddXZ3q6+vV0dGh\nzz//XE888YQuXLig7u5upaenq7W1VT6fz6kSAcD1PGmWrhmb6XQZCePYSOuRRx5RfX296urq9OMf\n/1i33XabnnzySd16662qqamRJL344osqKChwqkQAgMs43j04UEVFhX7xi1+osLBQbW1tWr58udMl\nAQBcwhUTobfeeqtuvfVWSdLkyZNpcwcAhOS6kRYAAOEQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABj\nEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBa\nAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAA\nYxBaAABjEFoAYLBe29b5y51Ol5EwhBYAGKyn19bFjm6ny0iYdKcLAPClqsYWVdY06VRbuyZleVVR\nlKfS/FynywJcg9ACXKKqsUXr9h9Ve1ePJKmlrV3r9h+VJIIL+ALTg4BLVNY0BQMroL2rR5U1TQ5V\nBLgPoQW4xKm29piuA5KUZlkaNyZ1Js0cC61PP/1U3/nOd7R48WIVFxfrl7/8pSSpra1NZWVlWrhw\nocrKynT+/HmnSgQSalKWN6brgCR50ixdMzbT6TISxrHQ8ng8Wrt2rV599VU999xz+vd//3d9/PHH\nevrpp3X77bfrtdde0+23366nn37aqRKBhKooypM3w3PFNW+GRxVFeQ5VBLiPY6GVnZ2tmTNnSpKu\nuuoqTZ06VX6/X7W1tSotLZUklZaW6sCBA06VCCRUaX6uti2dpdwsryxJuVlebVs6iyYMoB9XTISe\nPHlSH374oebMmaOzZ88qOztbkjRx4kSdPXvW4eqAxCnNzyWkgAgcD61Lly5pzZo1Wr9+va666qor\nPmZZlizLcqgyIHass+I9QHw5GlpdXV1as2aNSkpKtHDhQknStddeq9OnTys7O1unT5/WhAkTnCwR\niBrrrHgPnNBr2zp57rIkadyY9KRvynDsmZZt29qwYYOmTp2qsrKy4PWCggJVVVVJkqqqqnTXXXc5\nVSIQE9ZZ8R44oafXVv0fz6j+j2dSYjsnx0Za77//vl566SVNnz5dS5YskSQ9/PDDWrVqlcrLy7Vv\n3z5NmjRJTz31lFMlAjFhnVX477WlrV13bK9jyhAj5lho3XLLLWpqCv3TV2DNFmCSSVletYS4aafS\nOqtw74ElBa8zZYiRYEcMYJSEWmdlSbpzxkRnCnJAuPfAHvB5TBliuAgtYJSU5udq2c256t/vakt6\n4f0WVTW2OFVWQoVaazYwsAJSadoUo8fxlncgmbzxh7+EHVWkylTYwLVmd2yvS/lp03iyJOVfnyVJ\n6u7p1fnLnUndQUhoASMwcE1SqJuzlNqjioqivCva4KXUmzaNJ1tS4/G24O/nTb8uqUOL6UFgmAJr\nklra2mWrr8Eg3FJ4W30jjlSZJuyPaVOMJkZawDCFWpNkK3TjgZS4rjk37kjBtClGCyMtYJjCTfnZ\n6mtACCXeXXOhRn/r9h91fETDGjaMFkILGKZwjQS5WV4dWlsQdqownjdqt+5IwVlhGC2EFjBMQ51/\n5cSN2q0jGs4Kix9L0q03jte86ddp3vTrkv4U4+T+7oA4CjyLCff8KFTXXLxv1CPdlSNez8OGeq8w\nfLakMRkefXX8WKdLSQhCCxiBSOdfOXGjHklQxnuHds4Kw2hgehCIo9L8XFUU5WlSllen2tpVWdMU\n16aIkZx+7NbnYUB/jLSAOHLifKnhjmjc+jwM6I+RFhBHJo1e6PAzkyUpPYXu5Cn0rQKJZ9LohQ4/\nM9mSunudriJxCC0gjkwavYzkeRiQKDzTAuLIibb3kaDDD25HaAFxFE3beyL3CnTjvoRALAgtYISG\nCoJIo5dEdhc60ckIjDaeaQEjMNINahPZXWhSJyOiZ6nv8MeT5y4H/zt/udPpsuKG0AJGIFwQlD93\nOKrzs+LRXVjV2KI7ttfpxrXVV9QQ7mu2tLWn7FlfycCW9H//9Jnq/3gm+N/Fjm6ny4obpgeBEYgU\nLtFMv0XaK3A4z58iTQFGOlmZqUKYgpEWMAJDta4PNf0Wbm3UnTMmDmvaMdzIb9PLx0K+Viy1Am5A\naAEjMFQQSJFHY+HWRr3xh78M6/lTuNdqa++SpOBrDadWNwg39YnUwfQgMAL9W9rDTb0NNRoL1V34\n0HOHQ37uqbb2kNOGgRoGHmnfX2VN05Drw9y46DmA7kdIhBYwYoHQGXhTlWJbSNw/jNIsSz324AjK\nGpsx6MZd8fwHkiV19USKrC9v8gNHcMOp1QmRuh9TObQsSfnXZ11xLZn3IiS0gFEykvOzBgZeqMDy\nZnhk2xp04+7qjRxWAR7LChtYuQYsNDZpH8dEsiU1Hm+74tq86dc5U0wCEFrAKBruNkihRhFSX9D0\n2nYwAMNNGw7Fm+EJG1iWpENrC4b1dRNppKcyIzkQWkCCBKb/Wtra5fli+m/82AzZ9peNEgP12rY+\n2V4c/H2kZ2cDDQy8cH/WlJu+afs4Ij4ILSABwk3/nbscOqwCBgZKqBt3Rpo16JmWN8MTcod2k2/6\nI5l+RfIgtIAECDf9F4mlL3erCNycw924B167c8ZEbXr5mMq/mE4cPzZDj5XM1LKbc/XsOyfUY9vy\nWJaW3WzWru7sQj9YqEaMwLZOA40bk65rxmYmqLL4ILSAOOjfCXiNNyPs9F8kgXHTwNbucDfuwLWq\nxhZVPP/BFQ0a5y536ZHnP1Cavhzl9di2Xni/RbdMmUAQGCxUI0Y486ZfR2gB6NP/mZWlL0NnOIE1\nUCyt3ZU1TSE7Cnt6bQ0c69EyDtMQWsAoGPjMKrom9NgEpgqHep4Tawt4yxcLlgkumCCJl6ABiTOc\nZ1aSZFmxfX40exEOpxswluNUACcRWnAtk/aZi3V0k5vlVfP2Yv3k/rnD/p8w3F6EFUV5fR2FA3jS\nrJDXI30twG1cOz1YX1+vJ554Qr29vVq+fLlWrVrldElIINP2mYt07MdA/dvM3/vzZ+odweuGCsvA\n+7Pp5WPB52mB7kFJwY7CaL4W3C9U92A4ga5Ck7sIXRlaPT092rx5s37xi1/I5/PpvvvuU0FBgf7q\nr/7K6dKQIKbtM1dRlBc2DCQpzZJ67b4Fv//n+mtUWdMU8fOjlWZZunFt9aBnXJFaw01fZIwrxdI9\nGGByF6ErpwePHDmiKVOmaPLkycrMzFRxcbFqa2udLgsJZNo+c6X5ucryZoT8mKW+wJL62swP/emz\nqEdlQ+mx7YjPuEJNsYY7w8uURcZIba4MLb/fr5ycnODvfT6f/H6/gxUh0cL91O/m0cCme2aGPFsr\nHp2EoQx8LhWYYu3fvPHQc4dV/txhfSUjTVnejCvO8HLjCBYYyJWhBZg4Gggc6Dh+bOgR12iJ9hDH\nUFOsgQA9d7lLHd29+snfzdWhtQUEFozhytDy+XxqbW0N/t7v98vn8zlYERIt3Im+TtxcY+liLM3P\n1djM+D4qPrS2IGxw9R+JDjWVSscgTOTKRoxZs2apublZJ06ckM/nU3V1tZ588kmny0KCuWGfueF0\nMcb7udujVUd154yJ+nXD8UEfu3PGxOCvo9k+auDehjBPLN2DAeH2JpTcvz+hK0MrPT1dGzdu1He/\n+1319PRo2bJlmjZtmtNlIQWF62L84SvHwt7kI7W/eyxLt00dr+az7cGdLWJtyvhNw/Gwz/be+MNf\nJPWF7aXO7qi+ntuXEyCy4XQPRuL2zkJXTg9K0vz581VTU6MDBw5o9erVTpeDFFTV2BI2UM5d7go7\nTRjqeVxAj23r3U/O6XKUgRJKoKkilMAor7Km6YqjSobCVCFM4drQApwUmBaM5IevHAt5vf/zuFC6\nem2du9wVMXyGy5Z0x/a6YX1dty4nAPojtIAQotlLMNJoy0mBXeZDyc3yRtXEAbiVK59pAU6LdtRR\n/txh/fCVY7Jt6Xx7V/AAxhfebxnWBrqjxZauOB5FunLJgMknGCO1EVpACLE0SJy7/GWHXktbu37T\ncDxhC4ojsdU3sgp3lAnH1ieH4XQPRhKps3Aoieg8JLSAECqK8gaNRqLlhsCS+gLr0NqCkB9zw3IC\njI7R7h4ciUR0HhJaSAr9j7cfjZFD4M+Oxqa2TmC6D8mKRgwYL9Qee6NxqGFpfm7ELZPcJnBUVt82\nUrbKnzusG9ZWK3/za65sGAGGg9CC8SIdYzJSodZchTtI0Wn/b1uxHrjtep273KX2ri9P6Tp3uUsV\n+z4guJAUmB6E8eJ5jElgmjBwBpXHstTV65anVlf63z/4nS53hT5SsqvHdu1ZZBiZ0W7EGIlYmziG\n07hBaMF44Tr9RmvdUeBGP9zGjEQJF1gBLB5OTm5qxIjVcBo3mB6E8RJxjEk0i43djsXDSAaMtGC8\n/lN48Vp3NNrbLSVahseimxBJgdBCUoj3uiOPZanHduezrKFY+vKZlsRO7jAb04NAFEwNrDR9udh5\ntJYCAE5ipIWUFOti5NxhnHvltLEZaYOaMwJLARhtJQ83dQ/GKn0YwyZCCylnOKcRVxTl6aHnDrtm\ni6ZohOsmpIswuZjePRgrpgeRcoZajFzV2KI7ttfpxrXVumN7naoaW1San2tUYEVCFyFMxkgLKSfS\nYuRIozATpwgHYk9CmI7QQsqJtBg53Chs08vHZLlz96aIsrwZ+l9j0ke8FGC0NyQGhovQQsoJdeyI\nN8OjO2dM1K8bjof8M23tXSGvu4U3I03dvba6eux+1zzadM/MEYfLcJ4BAvFCaCHlhFqMHDht2BSB\ndWO5/UY98RoNRXoGSGg5z+TuwYF7FUazFyGhhZQ0cDHyHdvrjNqm6U/bFgd/HWgcCYTVT/5u7qiG\nSTw3JE5miZpSNbl7cKBo9iIktACZdQP29Hu4loipu3hvSJyMmFKNH1reAZl1A+6/O0ekxpHRkogN\niZNNPM94S3WEFqDQN2YnWZLGRNguILB+LNwIsa29a9S2ayrNz9W2pbOUm+WVpb7W/21LZzFiiIAp\n1fhhehDQ4OaMsZkeXep05hlXmiXdPnWC3v3kXNjPCUw3XePNCNvZOJqNEvHekDjZJHJK1YlGjEyP\npTFx+CFv3JihI4nQQsoK9aD80NoCVTW26OHnDjtWV68tHfrTZ0N+XntXj76SEX40xk/1zqhqbNGl\nju5B1+M1pepEI8a86dfpq+PHJvQ1AwgtpKRID8ora5oU+Qxg92i73KXxYzN07vLg0ZZJz+mSxcB/\nVwHjx2bosZKRr5kDz7SQoiI9KDdphDIpy6vHSmaGbJS4c8bEQXsoIr7CnXA9NjOdwBoljLSQkiI9\nKA/3PCLRLCniJr2B6aZIi6VpuU4sGjDij5EWUlK4qbPAsy03/I/x7duuV+4XdQ7c9tCStOzmL5sj\nSvNzdWhtgT7ZXqxDawv0xh/+Qsu1AyL9u8LoYKSFlBRu/8H+I5d1+4+ofcCZVIHtk+Ltgduu1+Ol\nsyT1tbcPHPnZkt74w18G/blAc0m4kSI/8cdXpH9X8TKc7sGRdv9F0+UXL4QWjDGa2+KEmlLr//XC\ntXjfuLZ6+N9ACGlW300t0F6f5c0YtMlttFNO4ZoA+uMn/vga6t9VPAyne9DJ7r+RIrRghGi2xYk1\n1Iaz9igrTKfecH0lPU1P3Bt5oW60a37CNQEEsItFYrCmLb7cMHUPDCma04bX7T+qlrZ22foy1Eaz\nY66qsUWf/8/g9Tcjcbmrd8g6o91GKdLUH7tYIFkQWjDCUFNko7XXW2DH9FBt4pU1TerqHf3nWUPV\nGe02SuGm/nKzvDq0toDAQlJgehBGGGqKbDitxgOnE4dqE49nE8NQXzuaKScnmgCARHMktHbs2KE3\n3nhDGRkZuv7667Vt2zZdffXVkqTdu3dr3759SktL06OPPqq/+Zu/caJEuMxQN+RY93oL9Yws1KnF\n/Q87DPcauVlenfpiWnK4RqNBwokmADivf/dgtF2BTnb/jZQjld9xxx165JFHlJ6ersrKSu3evVsV\nFRX6+OOPVV1drerqavn9fpWVlammpkYej3t234YzhrohxzrKGKppob/AKCjSa0RqMx/KaI6GaAJI\nPf27B03uCoyWI6H1zW9+M/jruXPn6r/+678kSbW1tSouLlZmZqYmT56sKVOm6MiRI8rPz3eiTLhM\npBtyrKOMWKb6AqOgoV5jYKBleCxlpFm6/MVar0A7eyx1ArhSxND6/PPPtXv3brW2tmrevHkqKSkJ\nfmzTpk3atGnTiAt44YUXtGjRIkmS3+/XnDlzgh/z+Xzy+/0jfg2khlhGGdFu1TRwFBTuNWINTUIK\nGJ6IobVu3TpNmTJFRUVF2rdvn1577TU9+eSTyszM1AcffBDxC69YsUJnzpwZdL28vFwLFiyQJO3a\ntUsej0f33HPPCL4FIHahpvoG8lhWTG3iTM0B8RcxtI4fP66f/vSnkqQFCxZo165d+vu//3vt2rVr\nyC+8d+/eiB/fv3+/Dh48qL1798qy+nZW8/l8am1tDX6O3++Xz+cb8rWAWAXC5YevHAu5WDgjzVLl\n8jmEEOAyEddpdXZ2qrf3y73XVq9erfvvv18PPPCA2tqGf+hYfX29fv7zn2vXrl3yer/smiooKFB1\ndbU6Ozt14sQJNTc3a/bs2cN+HSCS0vxcjc0M/XPbVV9x7iiJSGvFgIEC3YP512cpPQVW3kYcad15\n551qaGjQN77xjeC1pUuX6rrrrtPjjz8+7BfdsmWLOjs7VVZWJkmaM2eONm/erGnTpmnRokVavHix\nPB6PNm7cSOcgRl3/9Vnh2tTbRnGrplhEs10V0N/A7sFkFzG0/uVf/kVS34irpqZGLS0t6u7u28Zm\nJM+hXn/99bAfW716tVavXj3srw1EEs2mspJzG8tG2tmD0AKibHlfvXq1xo0bp5kzZyozM1OSgs+h\nAJNEsz7LyV0kOEQQiCyq0PL7/XrmmWfiXQswItHs8j7UzT/3iz8n9Z1jlei1VLHu7AGkmqge2+Xn\n56upiRNP4V7R7vI+1M3/VFu7Nr18TBX7PojrjvHhRLujOxBAI0YI77//vl588UXl5uYGpwcl6ZVX\nXolbYUAson0WVFGUp4eeOxy2AcOW1NY+uAkjUc+V2D8QsaIRI4R//dd/jXcdwIiEm/ZraWsfNM33\n7duu128ajse8wW2iniuxSBkIL6rQys3lfyC4W7hnQZYUvN7S1h4cZWV5M2RZfa3t0YYXz5UA56XA\nDChSQahnQZY0KJACv29r79L/dPXqJ383V7lRhBHPlQB3ILSQFEKd7jvUCCrwnCpU4GWkWRo/NiPi\nScEAEs/ck8CAAQY+C7pje92QO7mfamun+QFGC3QPZnosow93jFbyf4dIWdHs5N7/rCy3h1Q069CQ\negLdg/OmX6drxmYO+fmmI7SQtPqPoFra2gc94zLpORV7EgJ9CC0ktf4jKJNHKuxJCPQhtGCc4YZP\noqcARzMk2ZMQ6ENowSimTJONdp3sSQj0oeUdRok0TeYmo10nexIinED3YHdPr85f7nS6nLhjpAWj\nmDJNNtp10paPcAbuPZjsHYSEFowy3GmyRDdhhKvTVt/6seG8vglt+UC8MT0IowxnmizaY0viXWdA\nIo86AZINoQWjhNquaagtlpx4Dta/zlDc+BwOMAHTgzBOrNNkbn0O5vTrIzlYkm69cbzGZHjYxglI\nBk60iw9seQ9XFzBStqQxGR59dfxYp0tJCKYHkfScaBcPNSWZyNcHkhUjLSQ9J9rFI0395dKuDgwb\noYWUkOh28XBTkrlZXh1aW5CwOoBkw/QgEAfsYAHEByMtIA7YwQKJkmalxuGPAanznQIJxg4WSARP\nmpX0Wzf1x/QgAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGI6G1p49\ne5SXl6fPPvtMkmTbth5//HEVFhaqpKREx44dc7I8AIDLOBZan376qQ4dOqRJkyYFr9XX16u5uVmv\nvfaatmzZok2bNjlVHgDAhRwLrW3btqmiokKWZQWv1dbWqrS0VJZlae7cubpw4YJOnz7tVIkAAJdx\nJLQOHDig7OxszZgx44rrfr9fOTk5wd/n5OTI7/cnujwAgEvFbZf3FStW6MyZM4Oul5eXa/fu3dqz\nZ0+8XhoAkKTiFlp79+4Neb2pqUknT57UkiVLJEmtra1aunSpnn/+efl8PrW2tgY/t7W1VT6fL14l\nAgAMk/DztPLy8vT2228Hf19QUKB9+/ZpwoQJKigo0K9//WsVFxfrgw8+0Lhx45SdnZ3oEgEALuWq\nQyDnz5+vN998U4WFhfJ6vdq6davTJQEAXMTx0Kqrqwv+2rIsPfbYYw5WAwBwM3bEAAAYg9ACABiD\n0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9AC\nABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABgj3ekCMLqqGltUWdOkU23tmpTlVUVRnkrz\nc50uC0Cc9Nq2zl/u1DVjM50uJSEIrSRS1diidfuPqr2rR5LU0taudfuPShLBBSSpnl5bFzu6Uya0\nmB5MIpU1TcHACmjv6lFlTZNDFQHA6CK0ksiptvaYrgOAaQitJDIpyxvTdQAwDaGVRCqK8uTN8Fxx\nzZvhUUVRnkMVAcDoohEjiQSaLegeBFJHmmVp3JjUuZWnzneaIkrzcwkpIIV40qyU6RyUmB4EABiE\n0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGMOx0PrVr36lu+++W8XFxdq5c2fw+u7d\nu1VYWKiioiK99dZbTpXnOlWNLbpje51uXFutO7bXqaqxxemSACDhHNkRo6GhQbW1tXr55ZeVmZmp\ns2fPSpI+/vhjVVdXq7q6Wn6/X2VlZaqpqZHH4xniKyY3zskCEE6qHQLpyEjr2Wef1apVq5SZ2fcm\nX3vttZKk2tpaFRcXKzMzU5MnT9aUKVN05MgRJ0p0Fc7JAhBO4BDIVOFIaDU3N+u9997T8uXL9cAD\nDwSDye/3KycnJ/h5Pp9Pfr/fiRJdhXOyAKBP3KYHV6xYoTNnzgy6Xl5erp6eHp0/f16//e1vdfTo\nUZWXl6u2tjZepRhvUpZXLSECinOyAKSauIXW3r17w37s2WefVWFhoSzL0uzZs5WWlqZz587J5/Op\ntbU1+Hl+v18+ny9eJRqjomRLzyUAAAvmSURBVCjvimdaEudkAUhNjkwPLliwQO+8844k6ZNPPlFX\nV5fGjx+vgoICVVdXq7OzUydOnFBzc7Nmz57tRImuUpqfq21LZyk3yytLUm6WV9uWzqIJA0DKcaR7\ncNmyZVq/fr2+9a1vKSMjQ9u3b5dlWZo2bZoWLVqkxYsXy+PxaOPGjSnfORjAOVkAQrEkpafQiltH\nQiszM1M/+tGPQn5s9erVWr16dYIrAgAz2ZK6e52uInE4udgwVY0tqqxp0qm2dk3K8qqiKI8RGICU\nQWgZhEXGAFJdCs2Emo9FxgBSHaFlEBYZA0h1hJZBwi0mZpExkLrSLEvjxqTOkx5CyyAVRXnyZly5\nBIBFxkBq86RZKbNZrkQjhlECzRZ0DwJIVYSWYVhkDCCVMT0IADAGoQUAMAahBQAwBqEFADAGoQUA\nMAahBQAwBi3vLsDO7QAQHULLYezcDmAkem1b5y93psyuGEwPOoyd2wGMRE+vrYsd3U6XkTCElsPY\nuR0AokdoOYyd2wEgeoSWw9i5HQCiRyOGw9i5HQCiR2i5ADu3AxguDoEEABgj1Q6BJLQAAMYgtAAA\nxiC0AADGILQAAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0AADGILQAAMZw\nJLQ+/PBD3X///VqyZImWLl2qI0eOSJJs29bjjz+uwsJClZSU6NixY06UBwBwKUdCq7KyUt/73vf0\n0ksv6Z//+Z9VWVkpSaqvr1dzc7Nee+01bdmyRZs2bXKiPACASzkSWpZl6dKlS5KkixcvKjs7W5JU\nW1ur0tJSWZaluXPn6sKFCzp9+rQTJQIAXMiR4y7Xr1+vlStXaseOHert7dV//Md/SJL8fr9ycnKC\nn5eTkyO/3x8MNQBAaotbaK1YsUJnzpwZdL28vFwNDQ1at26dioqK9Oqrr2rDhg3au3dvvEoBACSJ\nuIVWpBD6/ve/rw0bNkiSFi1apEcffVSS5PP51NraGvy81tZW+Xy+eJUIADCMI8+0srOz9e6770qS\nGhoadMMNN0iSCgoKVFVVJdu2dfjwYY0bN46pQQBAkCPPtLZs2aKtW7equ7tbY8aM0ebNmyVJ8+fP\n15tvvqnCwkJ5vV5t3brVifIAAC7lSGjdcsst2r9//6DrlmXpsccec6AiADBTr23r/OVOXTM20+lS\nEoIdMQDAYD29ti52dDtdRsIQWgAAYzgyPei0qsYWVdY06VRbuyZleVVRlKfS/FynywIADCHlQquq\nsUXr9h9Ve1ePJKmlrV3r9h+VJIILAFwu5aYHK2uagoEV0N7Vo8qaJocqAgBEK+VC61Rbe0zXAcDN\n0ixL48akzqRZyoXWpCxvTNcBwM08aVbKtLtLKRhaFUV58mZ4rrjmzfCooijPoYoAANFKnTHlFwLN\nFnQPAoB5Ui60pL7gIqQAwDwpNz0IADAXoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUA\nMAahBQAwRlLsiNHS0qKlS5c6XQYAjJrx48frmWeeierzUoll27btdBEAAESD6UEAgDEILQCAMQgt\nAIAxCC0AgDEILQCAMQgtAIAxCK0offjhh7r//vu1ZMkSLV26VEeOHJEk2batxx9/XIWFhSopKdGx\nY8ccq/FXv/qV7r77bhUXF2vnzp3B67t371ZhYaGKior01ltvOVZfwJ49e5SXl6fPPvtMkrvewx07\ndujuu+9WSUmJvve97+nChQvBj7nlfayvr1dRUZEKCwv19NNPO1ZHf59++qm+853vaPHixSouLtYv\nf/lLSVJbW5vKysq0cOFClZWV6fz5847W2dPTo9LSUj344IOSpBMnTmj58uUqLCxUeXm5Ojs7Ha0P\nUbARlbKyMvvgwYO2bdv2wYMH7QceeCD465UrV9q9vb12Y2Ojfd999zlS39tvv23/wz/8g93R0WHb\ntm2fOXPGtm3b/uijj+ySkhK7o6PDPn78uH3XXXfZ3d3djtRo27Z96tQp+x//8R/tv/3bv7XPnj1r\n27Z73kPbtu233nrL7urqsm3btnfu3Gnv3LnTtm33vI/d3d32XXfdZR8/ftzu6OiwS0pK7I8++ijh\ndQzk9/vt//7v/7Zt27YvXrxoL1y40P7oo4/sHTt22Lt377Zt27Z3794dfD+dsmfPHvvhhx+2V61a\nZdu2ba9Zs8b+z//8T9u2bfsHP/iB/Zvf/MbJ8hAFRlpRsixLly5dkiRdvHhR2dnZkqTa2lqVlpbK\nsizNnTtXFy5c0OnTpxNe37PPPqtVq1YpMzNTknTttdcG6ysuLlZmZqYmT56sKVOmBEeJTti2bZsq\nKipkWVbwmlveQ0n65je/qfT0vo1i5s6dq9bW1mCNbngfjxw5oilTpmjy5MnKzMxUcXGxamtrE17H\nQNnZ2Zo5c6Yk6aqrrtLUqVPl9/uDf7eSVFpaqgMHDjhWY2trqw4ePKj77rtPUt8Iv6GhQUVFRZKk\ne++91xXvJSIjtKK0fv167dy5U/Pnz9eOHTv08MMPS5L8fr9ycnKCn5eTkyO/35/w+pqbm/Xee+9p\n+fLleuCBB4I31IH1+Xw+R+qTpAMHDig7O1szZsy44rpb3sOBXnjhBc2bN0+Se95Ht9QRycmTJ/Xh\nhx9qzpw5Onv2bPAHvIkTJ+rs2bOO1bV161ZVVFQoLa3vtnfu3DldffXVwR9S3PLvDpElxd6Do2XF\nihU6c+bMoOvl5eVqaGjQunXrVFRUpFdffVUbNmzQ3r17XVNfT0+Pzp8/r9/+9rc6evSoysvLHfmp\nMVKNu3fv1p49exJe00CRalywYIEkadeuXfJ4PLrnnnsSXZ7RLl26pDVr1mj9+vW66qqrrviYZVlX\njLAT6Y033tCECRP09a9/Xe+8844jNWB0EFr9RAqh73//+9qwYYMkadGiRXr00Ucl9f2kG5hCkvqm\nIHw+X8Lre/bZZ1VYWCjLsjR79mylpaXp3Llzg+rz+/1xqy9SjU1NTTp58qSWLFkiqe99Wrp0qZ5/\n/vmEvoeRagzYv3+/Dh48qL179wZvsol+H8NxSx2hdHV1ac2aNSopKdHChQsl9U1Tnz59WtnZ2Tp9\n+rQmTJjgSG2///3vVVdXp/r6enV0dOjzzz/XE088oQsXLqi7u1vp6elx/3eH0cH0YJSys7P17rvv\nSpIaGhp0ww03SJIKCgpUVVUl27Z1+PBhjRs3LjgdkkgLFiwI/gT5ySefqKurS+PHj1dBQYGqq6vV\n2dmpEydOqLm5WbNnz054fXl5eXr77bdVV1enuro65eTkaP/+/Zo4caJr3kOprzPv5z//uXbt2iWv\n1xu87pb3cdasWWpubtaJEyfU2dmp6upqFRQUJLyOgWzb1oYNGzR16lSVlZUFrwf+biWpqqpKd911\nlyP1PfLII6qvr1ddXZ1+/OMf67bbbtOTTz6pW2+9VTU1NZKkF1980RXvJSJjpBWlLVu2aOvWreru\n7taYMWO0efNmSdL8+fP15ptvqrCwUF6vV1u3bnWkvmXLlmn9+vX61re+pYyMDG3fvl2WZWnatGla\ntGiRFi9eLI/Ho40bN8rj8ThSYzhueQ+lvr/nzs7O4I13zpw52rx5s2vex/T0dG3cuFHf/e531dPT\no2XLlmnatGkJr2Og999/Xy+99JKmT58eHE0//PDDWrVqlcrLy7Vv3z5NmjRJTz31lMOVXqmiokIP\nPfSQnnrqKX3ta1/T8uXLnS4JQ+BoEgCAMZgeBAAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AJi8Lvf\n/U7FxcWaMWOGjh496nQ5QMohtIAYTJ8+XT/96U/113/9106XAqQkFhcDIZw8eVL/9E//pJtvvlmN\njY3y+Xz62c9+pptuusnp0oCUxkgLCOPPf/6zvv3tb6u6ulrjxo0LbvcDwDmEFhDGV7/6VX3ta1+T\nJM2cOVMtLS0OVwSA0ALCCByoKUkej0c9PT0OVgNAIrQAAAYhtIAYvP7665o3b54aGxv14IMPauXK\nlU6XBKQUdnkHABiDkRYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBj/H6mi1Vp2nJmI\nAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAGoCAYAAAD1m7qEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df3CV5Z338c+dk4QeHtGAkpMhRRQXQh/Kjzy6o9YurJEQIY1EEPeP2l2ydHGYzrBRJ1t+WKSg/EptnelMGdxK6bZd14oYdWM3SiLG4TE62iAsY1PtYwoEcyhIACGbn/fzRzzHkJxzck6Sc+77Ouf9mnEG7oScbw54f3Jd9/e6Lsu2bVsAABggzekCAACIFqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADBGutMFAMnq/OVOXezoHnR93Jh0XTM204GKAPMRWkCcXOzoVv0fzwy6Pm/6dYQWMExMDwIAjEFoAQCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoAQCMQWgBAIzBjhiAC7DlExAdQgtIsO6eXp08d/mKax1dPXrnk3ODPpctn4ArEVpAgrV39arxT59dcS3/+iyHqgHMwjMtAIAxCC0AgDEILQCAMQgtAIAxCC0AgDEILQCAMQgtAIAxCC0AgDFYXAyMglDbMHV09ThUDZC8CC1gFFzs6Fb9H89ccY1dLoDRx/QgAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBgsLgZiEGrnC4ndL4BEIbSAGITa+UKK3+4X3T29Onnu8qDr48ak65qxmXF5TcDNCC3Axdq7etX4p88GXZ83/TpCCymJZ1oAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGOwTgswUKhFx+lpUnfv4M9lITKSCaEFGCjUouP867PUeLxt0OeyEBnJhOlBAIAxGGkBIbAxLuBOhBYQQqI3xgUQHaYHAQDGYKSFlBFuyi9U110yTQNyvAmSCaGFlBFpym9g110yTQNyvAmSCaEFI8QySmIEEZ1QI7B4vneh/g6T6e8q3L/RZPoe3SClQ8st/8hiuSGHW0CaTAtLQ70fHV09eueTc4M+N9Qo6Rs3TaDzLwqhRmDh3rtYfjiI1Hk58O8w1tFeooMvltcLN5JnRDu6LNu2baeLGKmVK1fq3LnBNzQAMNX48eP1zDPPOF2G6yRFaAEAUgMt7wAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjJEVorVy50ukSAMARqXb/S4rQYgsnAKkq1e5/SRFaAIDUQGgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoAQCMke50AQDgdlWNLaqsadKptnZNyvKqoihPpfm5TpeVkggtAIigqrFF6/YfVXtXjySppa1d6/YflSSCywFMDwJABJU1TcHACmjv6lFlTZNDFaU2QgsAIjjV1h7T9UTr6bV1/nKn02UkjOOh1dPTo9LSUj344IOSpBMnTmj58uUqLCxUeXm5OjtT5y8DgPtMyvLGdD3Rem1bFzu6nS4jYRwPrX/7t3/TTTfdFPz9j370I61YsUKvv/66rr76au3bt8/B6gCkuoqiPHkzPFdc82Z4VFGU51BFqc3R0GptbdXBgwd13333SZJs21ZDQ4OKiookSffee69qa2udLBFAiivNz9W2pbOUm+WVJSk3y6ttS2fRhOEQR7sHt27dqoqKCl26dElS3wmcV199tdLT+8rKycmR3+93skQAUGl+LiHlEo6NtN544w1NmDBBX//6150qAQCMl2ZZGjcmdVYvOfad/v73v1ddXZ3q6+vV0dGhzz//XE888YQuXLig7u5upaenq7W1VT6fz6kSAcD1PGmWrhmb6XQZCePYSOuRRx5RfX296urq9OMf/1i33XabnnzySd16662qqamRJL344osqKChwqkQAgMs43j04UEVFhX7xi1+osLBQbW1tWr58udMlAQBcwhUTobfeeqtuvfVWSdLkyZNpcwcAhOS6kRYAAOEQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAYLBe29b5y51Ol5EwhBYAGKyn19bFjm6ny0iYdKcLAPClqsYWVdY06VRbuyZleVVRlKfS/FynywJcg9ACXKKqsUXr9h9Ve1ePJKmlrV3r9h+VJIIL+ALTg4BLVNY0BQMroL2rR5U1TQ5VBLgPoQW4xKm29piuA5KUZlkaNyZ1Js0cC61PP/1U3/nOd7R48WIVFxfrl7/8pSSpra1NZWVlWrhwocrKynT+/HmnSgQSalKWN6brgCR50ixdMzbT6TISxrHQ8ng8Wrt2rV599VU999xz+vd//3d9/PHHevrpp3X77bfrtdde0+23366nn37aqRKBhKooypM3w3PFNW+GRxVFeQ5VBLiPY6GVnZ2tmTNnSpKuuuoqTZ06VX6/X7W1tSotLZUklZaW6sCBA06VCCRUaX6uti2dpdwsryxJuVlebVs6iyYMoB9XTISePHlSH374oebMmaOzZ88qOztbkjRx4kSdPXvW4eqAxCnNzyWkgAgcD61Lly5pzZo1Wr9+va666qorPmZZlizLcqgyIHass+I9QHw5GlpdXV1as2aNSkpKtHDhQknStddeq9OnTys7O1unT5/WhAkTnCwRiBrrrHgPnNBr2zp57rIkadyY9KRvynDsmZZt29qwYYOmTp2qsrKy4PWCggJVVVVJkqqqqnTXXXc5VSIQE9ZZ8R44oafXVv0fz6j+j2dSYjsnx0Za77//vl566SVNnz5dS5YskSQ9/PDDWrVqlcrLy7Vv3z5NmjRJTz31lFMlAjFhnVX477WlrV13bK9jyhAj5lho3XLLLWpqCv3TV2DNFmCSSVletYS4aafSOqtw74ElBa8zZYiRYEcMYJSEWmdlSbpzxkRnCnJAuPfAHvB5TBliuAgtYJSU5udq2c256t/vakt64f0WVTW2OFVWQoVaazYwsAJSadoUo8fxlncgmbzxh7+EHVWkylTYwLVmd2yvS/lp03iyJOVfnyVJ6u7p1fnLnUndQUhoASMwcE1SqJuzlNqjioqivCva4KXUmzaNJ1tS4/G24O/nTb8uqUOL6UFgmAJrklra2mWrr8Eg3FJ4W30jjlSZJuyPaVOMJkZawDCFWpNkK3TjgZS4rjk37kjBtClGCyMtYJjCTfnZ6mtACCXeXXOhRn/r9h91fETDGjaMFkILGKZwjQS5WV4dWlsQdqownjdqt+5IwVlhGC2EFjBMQ51/5cSN2q0jGs4Kix9L0q03jte86ddp3vTrkv4U4+T+7oA4CjyLCff8KFTXXLxv1CPdlSNez8OGeq8wfLakMRkefXX8WKdLSQhCCxiBSOdfOXGjHklQxnuHds4Kw2hgehCIo9L8XFUU5WlSllen2tpVWdMU16aIkZx+7NbnYUB/jLSAOHLifKnhjmjc+jwM6I+RFhBHJo1e6PAzkyUpPYXu5Cn0rQKJZ9LohQ4/M9mSunudriJxCC0gjkwavYzkeRiQKDzTAuLIibb3kaDDD25HaAFxFE3beyL3CnTjvoRALAgtYISGCoJIo5dEdhc60ckIjDaeaQEjMNINahPZXWhSJyOiZ6nv8MeT5y4H/zt/udPpsuKG0AJGIFwQlD93OKrzs+LRXVjV2KI7ttfpxrXVV9QQ7mu2tLWn7FlfycCW9H//9Jnq/3gm+N/Fjm6ny4obpgeBEYgULtFMv0XaK3A4z58iTQFGOlmZqUKYgpEWMAJDta4PNf0Wbm3UnTMmDmvaMdzIb9PLx0K+Viy1Am5AaAEjMFQQSJFHY+HWRr3xh78M6/lTuNdqa++SpOBrDadWNwg39YnUwfQgMAL9W9rDTb0NNRoL1V340HOHQ37uqbb2kNOGgRoGHmnfX2VN05Drw9y46DmA7kdIhBYwYoHQGXhTlWJbSNw/jNIsSz324AjKGpsx6MZd8fwHkiV19USKrC9v8gNHcMOp1QmRuh9TObQsSfnXZ11xLZn3IiS0gFEykvOzBgZeqMDyZnhk2xp04+7qjRxWAR7LChtYuQYsNDZpH8dEsiU1Hm+74tq86dc5U0wCEFrAKBruNkihRhFSX9D02nYwAMNNGw7Fm+EJG1iWpENrC4b1dRNppKcyIzkQWkCCBKb/Wtra5fli+m/82AzZ9peNEgP12rY+2V4c/H2kZ2cDDQy8cH/WlJu+afs4Ij4ILSABwk3/nbscOqwCBgZKqBt3Rpo16JmWN8MTcod2k2/6I5l+RfIgtIAECDf9F4mlL3erCNycw924B167c8ZEbXr5mMq/mE4cPzZDj5XM1LKbc/XsOyfUY9vyWJaW3WzWru7sQj9YqEaMwLZOA40bk65rxmYmqLL4ILSAOOjfCXiNNyPs9F8kgXHTwNbucDfuwLWqxhZVPP/BFQ0a5y536ZHnP1Cavhzl9di2Xni/RbdMmUAQGCxUI0Y486ZfR2gB6NP/mZWlL0NnOIE1UCyt3ZU1TSE7Cnt6bQ0c69EyDtMQWsAoGPjMKrom9NgEpgqHep4Tawt4yxcLlgkumCCJl6ABiTOcZ1aSZFmxfX40exEOpxswluNUACcRWnAtk/aZi3V0k5vlVfP2Yv3k/rnD/p8w3F6EFUV5fR2FA3jSrJDXI30twG1cOz1YX1+vJ554Qr29vVq+fLlWrVrldElIINP2mYt07MdA/dvM3/vzZ+odweuGCsvA+7Pp5WPB52mB7kFJwY7CaL4W3C9U92A4ga5Ck7sIXRlaPT092rx5s37xi1/I5/PpvvvuU0FBgf7qr/7K6dKQIKbtM1dRlBc2DCQpzZJ67b4Fv//n+mtUWdMU8fOjlWZZunFt9aBnXJFaw01fZIwrxdI9GGByF6ErpwePHDmiKVOmaPLkycrMzFRxcbFqa2udLgsJZNo+c6X5ucryZoT8mKW+wJL62swP/emzqEdlQ+mx7YjPuEJNsYY7w8uURcZIba4MLb/fr5ycnODvfT6f/H6/gxUh0cL91O/m0cCme2aGPFsrHp2EoQx8LhWYYu3fvPHQc4dV/txhfSUjTVnejCvO8HLjCBYYyJWhBZg4Gggc6Dh+bOgR12iJ9hDHUFOsgQA9d7lLHd29+snfzdWhtQUEFozhytDy+XxqbW0N/t7v98vn8zlYERIt3Im+TtxcY+liLM3P1djM+D4qPrS2IGxw9R+JDjWVSscgTOTKRoxZs2apublZJ06ckM/nU3V1tZ588kmny0KCuWGfueF0Mcb7udujVUd154yJ+nXD8UEfu3PGxOCvo9k+auDehjBPLN2DAeH2JpTcvz+hK0MrPT1dGzdu1He/+1319PRo2bJlmjZtmtNlIQWF62L84SvHwt7kI7W/eyxLt00dr+az7cGdLWJtyvhNw/Gwz/be+MNfJPWF7aXO7qi+ntuXEyCy4XQPRuL2zkJXTg9K0vz581VTU6MDBw5o9erVTpeDFFTV2BI2UM5d7go7TRjqeVxAj23r3U/O6XKUgRJKoKkilMAor7Km6YqjSobCVCFM4drQApwUmBaM5IevHAt5vf/zuFC6em2du9wVMXyGy5Z0x/a6YX1dty4nAPojtIAQotlLMNJoy0mBXeZDyc3yRtXEAbiVK59pAU6LdtRR/txh/fCVY7Jt6Xx7V/AAxhfebxnWBrqjxZauOB5FunLJgMknGCO1EVpACLE0SJy7/GWHXktbu37TcDxhC4ojsdU3sgp3lAnH1ieH4XQPRhKps3Aoieg8JLSAECqK8gaNRqLlhsCS+gLr0NqCkB9zw3ICjI7R7h4ciUR0HhJaSAr9j7cfjZFD4M+Oxqa2TmC6D8mKRgwYL9Qee6NxqGFpfm7ELZPcJnBUVt82UrbKnzusG9ZWK3/za65sGAGGg9CC8SIdYzJSodZchTtI0Wn/b1uxHrjtep273KX2ri9P6Tp3uUsV+z4guJAUmB6E8eJ5jElgmjBwBpXHstTV65anVlf63z/4nS53hT5SsqvHdu1ZZBiZ0W7EGIlYmziG07hBaMF44Tr9RmvdUeBGP9zGjEQJF1gBLB5OTm5qxIjVcBo3mB6E8RJxjEk0i43djsXDSAaMtGC8/lN48Vp3NNrbLSVahseimxBJgdBCUoj3uiOPZanHduezrKFY+vKZlsRO7jAb04NAFEwNrDR9udh5tJYCAE5ipIWUFOti5NxhnHvltLEZaYOaMwJLARhtJQ83dQ/GKn0YwyZCCylnOKcRVxTl6aHnDrtmi6ZohOsmpIswuZjePRgrpgeRcoZajFzV2KI7ttfpxrXVumN7naoaW1San2tUYEVCFyFMxkgLKSfSYuRIozATpwgHYk9CmI7QQsqJtBg53Chs08vHZLlz96aIsrwZ+l9j0ke8FGC0NyQGhovQQsoJdeyIN8OjO2dM1K8bjof8M23tXSGvu4U3I03dvba6eux+1zzadM/MEYfLcJ4BAvFCaCHlhFqMHDht2BSBdWO5/UY98RoNRXoGSGg5z+TuwYF7FUazFyGhhZQ0cDHyHdvrjNqm6U/bFgd/HWgcCYTVT/5u7qiGSTw3JE5miZpSNbl7cKBo9iIktACZdQP29Hu4loipu3hvSJyMmFKNH1reAZl1A+6/O0ekxpHRkogNiZNNPM94S3WEFqDQN2YnWZLGRNguILB+LNwIsa29a9S2ayrNz9W2pbOUm+WVpb7W/21LZzFiiIAp1fhhehDQ4OaMsZkeXep05hlXmiXdPnWC3v3kXNjPCUw3XePNCNvZOJqNEvHekDjZJHJK1YlGjEyPpTFx+CFv3JihI4nQQsoK9aD80NoCVTW26OHnDjtWV68tHfrTZ0N+XntXj76SEX40xk/1zqhqbNGlju5B1+M1pepEI8a86dfpq+PHJvQ1AwgtpKRID8ora5oU+Qxg92i73KXxYzN07vLg0ZZJz+mSxcB/VwHjx2bosZKRr5kDz7SQoiI9KDdphDIpy6vHSmaGbJS4c8bEQXsoIr7CnXA9NjOdwBoljLSQkiI9KA/3PCLRLCniJr2B6aZIi6VpuU4sGjDij5EWUlK4qbPAsy03/I/x7duuV+4XdQ7c9tCStOzmL5sjSvNzdWhtgT7ZXqxDawv0xh/+Qsu1AyL9u8LoYKSFlBRu/8H+I5d1+4+ofcCZVIHtk+Ltgduu1+OlsyT1tbcPHPnZkt74w18G/blAc0m4kSI/8cdXpH9X8TKc7sGRdv9F0+UXL4QWjDGa2+KEmlLr//XCtXjfuLZ6+N9ACGlW300t0F6f5c0YtMlttFNO4ZoA+uMn/vga6t9VPAyne9DJ7r+RIrRghGi2xYk11Iaz9igrTKfecH0lPU1P3Bt5oW60a37CNQEEsItFYrCmLb7cMHUPDCma04bX7T+qlrZ22foy1EazY66qsUWf/8/g9Tcjcbmrd8g6o91GKdLUH7tYIFkQWjDCUFNko7XXW2DH9FBt4pU1TerqHf3nWUPVGe02SuGm/nKzvDq0toDAQlJgehBGGGqKbDitxgOnE4dqE49nE8NQXzuaKScnmgCARHMktHbs2KE33nhDGRkZuv7667Vt2zZdffXVkqTdu3dr3759SktL06OPPqq/+Zu/caJEuMxQN+RY93oL9Yws1KnF/Q87DPcauVlenfpiWnK4RqNBwokmADivf/dgtF2BTnb/jZQjld9xxx165JFHlJ6ersrKSu3evVsVFRX6+OOPVV1drerqavn9fpWVlammpkYej3t234YzhrohxzrKGKppob/AKCjSa0RqMx/KaI6GaAJIPf27B03uCoyWI6H1zW9+M/jruXPn6r/+678kSbW1tSouLlZmZqYmT56sKVOm6MiRI8rPz3eiTLhMpBtyrKOMWKb6AqOgoV5jYKBleCxlpFm6/MVar0A7eyx1ArhSxND6/PPPtXv3brW2tmrevHkqKSkJfmzTpk3atGnTiAt44YUXtGjRIkmS3+/XnDlzgh/z+Xzy+/0jfg2khlhGGdFu1TRwFBTuNWINTUIKGJ6IobVu3TpNmTJFRUVF2rdvn1577TU9+eSTyszM1AcffBDxC69YsUJnzpwZdL28vFwLFiyQJO3atUsej0f33HPPCL4FIHahpvoG8lhWTG3iTM0B8RcxtI4fP66f/vSnkqQFCxZo165d+vu//3vt2rVryC+8d+/eiB/fv3+/Dh48qL1798qy+nZW8/l8am1tDX6O3++Xz+cb8rWAWAXC5YevHAu5WDgjzVLl8jmEEOAyEddpdXZ2qrf3y73XVq9erfvvv18PPPCA2tqGf+hYfX29fv7zn2vXrl3yer/smiooKFB1dbU6Ozt14sQJNTc3a/bs2cN+HSCS0vxcjc0M/XPbVV9x7iiJSGvFgIEC3YP512cpPQVW3kYcad15551qaGjQN77xjeC1pUuX6rrrrtPjjz8+7BfdsmWLOjs7VVZWJkmaM2eONm/erGnTpmnRokVavHixPB6PNm7cSOcgRl3/9Vnh2tTbRnGrplhEs10V0N/A7sFkFzG0/uVf/kVS34irpqZGLS0t6u7u28ZmJM+hXn/99bAfW716tVavXj3srw1EEs2mspJzG8tG2tmD0AKibHlfvXq1xo0bp5kzZyozM1OSgs+hAJNEsz7LyV0kOEQQiCyq0PL7/XrmmWfiXQswItHs8j7UzT/3iz8n9Z1jlei1VLHu7AGkmqge2+Xn56upiRNP4V7R7vI+1M3/VFu7Nr18TBX7PojrjvHhRLujOxBAI0YI77//vl588UXl5uYGpwcl6ZVXXolbYUAson0WVFGUp4eeOxy2AcOW1NY+uAkjUc+V2D8QsaIRI4R//dd/jXcdwIiEm/ZraWsfNM337duu128ajse8wW2iniuxSBkIL6rQys3lfyC4W7hnQZYUvN7S1h4cZWV5M2RZfa3t0YYXz5UA56XADChSQahnQZY0KJACv29r79L/dPXqJ383V7lRhBHPlQB3ILSQFEKd7jvUCCrwnCpU4GWkWRo/NiPiScEAEs/ck8CAAQY+C7pje92QO7mfamun+QFGC3QPZnosow93jFbyf4dIWdHs5N7/rCy3h1Q069CQegLdg/OmX6drxmYO+fmmI7SQtPqPoFra2gc94zLpORV7EgJ9CC0ktf4jKJNHKuxJCPQhtGCc4YZPoqcARzMk2ZMQ6ENowSimTJONdp3sSQj0oeUdRok0TeYmo10nexIinED3YHdPr85f7nS6nLhjpAWjmDJNNtp10paPcAbuPZjsHYSEFowy3GmyRDdhhKvTVt/6seG8vglt+UC8MT0IowxnmizaY0viXWdAIo86AZINoQWjhNquaagtlpx4Dta/zlDc+BwOMAHTgzBOrNNkbn0O5vTrIzlYkm69cbzGZHjYxglIBk60iw9seQ9XFzBStqQxGR59dfxYp0tJCKYHkfScaBcPNSWZyNcHkhUjLSQ9J9rFI0395dKuDgwboYWUkOh28XBTkrlZXh1aW5CwOoBkw/QgEAfsYAHEByMtIA7YwQKJkmalxuGPAanznQIJxg4WSARPmpX0Wzf1x/QgAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGI6G1p49e5SXl6fPPvtMkmTbth5//HEVFhaqpKREx44dc7I8AIDLOBZan376qQ4dOqRJkyYFr9XX16u5uVmvvfaatmzZok2bNjlVHgDAhRwLrW3btqmiokKWZQWv1dbWqrS0VJZlae7cubpw4YJOnz7tVIkAAJdxJLQOHDig7OxszZgx44rrfr9fOTk5wd/n5OTI7/cnujwAgEvFbZf3FStW6MyZM4Oul5eXa/fu3dqzZ0+8XhoAkKTiFlp79+4Neb2pqUknT57UkiVLJEmtra1aunSpnn/+efl8PrW2tgY/t7W1VT6fL14lAgAMk/DztPLy8vT2228Hf19QUKB9+/ZpwoQJKigo0K9//WsVFxfrgw8+0Lhx45SdnZ3oEgEALuWqQyDnz5+vN998U4WFhfJ6vdq6davTJQEAXMTx0Kqrqwv+2rIsPfbYYw5WAwBwM3bEAAAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABgj3ekCMLqqGltUWdOkU23tmpTlVUVRnkrzc50uC0Cc9Nq2zl/u1DVjM50uJSEIrSRS1diidfuPqr2rR5LU0taudfuPShLBBSSpnl5bFzu6Uya0mB5MIpU1TcHACmjv6lFlTZNDFQHA6CK0ksiptvaYrgOAaQitJDIpyxvTdQAwDaGVRCqK8uTN8FxxzZvhUUVRnkMVAcDoohEjiQSaLegeBFJHmmVp3JjUuZWnzneaIkrzcwkpIIV40qyU6RyUmB4EABiE0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGMOx0PrVr36lu+++W8XFxdq5c2fw+u7du1VYWKiioiK99dZbTpXnOlWNLbpje51uXFutO7bXqaqxxemSACDhHNkRo6GhQbW1tXr55ZeVmZmps2fPSpI+/vhjVVdXq7q6Wn6/X2VlZaqpqZHH4xniKyY3zskCEE6qHQLpyEjr2Wef1apVq5SZ2fcmX3vttZKk2tpaFRcXKzMzU5MnT9aUKVN05MgRJ0p0Fc7JAhBO4BDIVOFIaDU3N+u9997T8uXL9cADDwSDye/3KycnJ/h5Pp9Pfr/fiRJdhXOyAKBP3KYHV6xYoTNnzgy6Xl5erp6eHp0/f16//e1vdfToUZWXl6u2tjZepRhvUpZXLSECinOyAKSauIXW3r17w37s2WefVWFhoSzL0uzZs5WWlqZz587J5/OptbU1+Hl+v18+ny9eJRqjomRLzyUAAAvmSURBVCjvimdaEudkAUhNjkwPLliwQO+8844k6ZNPPlFXV5fGjx+vgoICVVdXq7OzUydOnFBzc7Nmz57tRImuUpqfq21LZyk3yytLUm6WV9uWzqIJA0DKcaR7cNmyZVq/fr2+9a1vKSMjQ9u3b5dlWZo2bZoWLVqkxYsXy+PxaOPGjSnfORjAOVkAQrEkpafQiltHQiszM1M/+tGPQn5s9erVWr16dYIrAgAz2ZK6e52uInE4udgwVY0tqqxp0qm2dk3K8qqiKI8RGICUQWgZhEXGAFJdCs2Emo9FxgBSHaFlEBYZA0h1hJZBwi0mZpExkLrSLEvjxqTOkx5CyyAVRXnyZly5BIBFxkBq86RZKbNZrkQjhlECzRZ0DwJIVYSWYVhkDCCVMT0IADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBi3vLsDO7QAQHULLYezcDmAkem1b5y93psyuGEwPOoyd2wGMRE+vrYsd3U6XkTCElsPYuR0AokdoOYyd2wEgeoSWw9i5HQCiRyOGw9i5HQCiR2i5ADu3AxguDoEEABgj1Q6BJLQAAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0AADGILQAAMZwJLQ+/PBD3X///VqyZImWLl2qI0eOSJJs29bjjz+uwsJClZSU6NixY06UBwBwKUdCq7KyUt/73vf00ksv6Z//+Z9VWVkpSaqvr1dzc7Nee+01bdmyRZs2bXKiPACASzkSWpZl6dKlS5KkixcvKjs7W5JUW1ur0tJSWZaluXPn6sKFCzp9+rQTJQIAXMiR4y7Xr1+vlStXaseOHert7dV//Md/SJL8fr9ycnKCn5eTkyO/3x8MNQBAaotbaK1YsUJnzpwZdL28vFwNDQ1at26dioqK9Oqrr2rDhg3au3dvvEoBACSJuIVWpBD6/ve/rw0bNkiSFi1apEcffVSS5PP51NraGvy81tZW+Xy+eJUIADCMI8+0srOz9e6770qSGhoadMMNN0iSCgoKVFVVJdu2dfjwYY0bN46pQQBAkCPPtLZs2aKtW7equ7tbY8aM0ebNmyVJ8+fP15tvvqnCwkJ5vV5t3brVifIAAC7lSGjdcsst2r9//6DrlmXpsccec6AiADBTr23r/OVOXTM20+lSEoIdMQDAYD29ti52dDtdRsIQWgAAYzgyPei0qsYWVdY06VRbuyZleVVRlKfS/FynywIADCHlQquqsUXr9h9Ve1ePJKmlrV3r9h+VJIILAFwu5aYHK2uagoEV0N7Vo8qaJocqAgBEK+VC61Rbe0zXAcDN0ixL48akzqRZyoXWpCxvTNcBwM08aVbKtLtLKRhaFUV58mZ4rrjmzfCooijPoYoAANFKnTHlFwLNFnQPAoB5Ui60pL7gIqQAwDwpNz0IADAXoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwRlLsiNHS0qKlS5c6XQYAjJrx48frmWeeierzUoll27btdBEAAESD6UEAgDEILQCAMQgtAIAxCC0AgDEILQCAMQgtAIAxCK0offjhh7r//vu1ZMkSLV26VEeOHJEk2batxx9/XIWFhSopKdGxY8ccq/FXv/qV7r77bhUXF2vnzp3B67t371ZhYaGKior01ltvOVZfwJ49e5SXl6fPPvtMkrvewx07dujuu+9WSUmJvve97+nChQvBj7nlfayvr1dRUZEKCwv19NNPO1ZHf59++qm+853vaPHixSouLtYvf/lLSVJbW5vKysq0cOFClZWV6fz5847W2dPTo9LSUj344IOSpBMnTmj58uUqLCxUeXm5Ojs7Ha0PUbARlbKyMvvgwYO2bdv2wYMH7QceeCD465UrV9q9vb12Y2Ojfd999zlS39tvv23/wz/8g93R0WHbtm2fOXPGtm3b/uijj+ySkhK7o6PDPn78uH3XXXfZ3d3djtRo27Z96tQp+x//8R/tv/3bv7XPnj1r27Z73kPbtu233nrL7urqsm3btnfu3Gnv3LnTtm33vI/d3d32XXfdZR8/ftzu6OiwS0pK7I8++ijhdQzk9/vt//7v/7Zt27YvXrxoL1y40P7oo4/sHTt22Lt377Zt27Z3794dfD+dsmfPHvvhhx+2V61aZdu2ba9Zs8b+z//8T9u2bfsHP/iB/Zvf/MbJ8hAFRlpRsixLly5dkiRdvHhR2dnZkqTa2lqVlpbKsizNnTtXFy5c0OnTpxNe37PPPqtVq1YpMzNTknTttdcG6ysuLlZmZqYmT56sKVOmBEeJTti2bZsqKipkWVbwmlveQ0n65je/qfT0vo1i5s6dq9bW1mCNbngfjxw5oilTpmjy5MnKzMxUcXGxamtrE17HQNnZ2Zo5c6Yk6aqrrtLUqVPl9/uDf7eSVFpaqgMHDjhWY2trqw4ePKj77rtPUt8Iv6GhQUVFRZKke++91xXvJSIjtKK0fv167dy5U/Pnz9eOHTv08MMPS5L8fr9ycnKCn5eTkyO/35/w+pqbm/Xee+9p+fLleuCBB4I31IH1+Xw+R+qTpAMHDig7O1szZsy44rpb3sOBXnjhBc2bN0+Se95Ht9QRycmTJ/Xhhx9qzpw5Onv2bPAHvIkTJ+rs2bOO1bV161ZVVFQoLa3vtnfu3DldffXVwR9S3PLvDpElxd6Do2XFihU6c+bMoOvl5eVqaGjQunXrVFRUpFdffVUbNmzQ3r17XVNfT0+Pzp8/r9/+9rc6evSoysvLHfmpMVKNu3fv1p49exJe00CRalywYIEkadeuXfJ4PLrnnnsSXZ7RLl26pDVr1mj9+vW66qqrrviYZVlXjLAT6Y033tCECRP09a9/Xe+8844jNWB0EFr9RAqh73//+9qwYYMkadGiRXr00Ucl9f2kG5hCkvqmIHw+X8Lre/bZZ1VYWCjLsjR79mylpaXp3Llzg+rz+/1xqy9SjU1NTTp58qSWLFkiqe99Wrp0qZ5//vmEvoeRagzYv3+/Dh48qL179wZvsol+H8NxSx2hdHV1ac2aNSopKdHChQsl9U1Tnz59WtnZ2Tp9+rQmTJjgSG2///3vVVdXp/r6enV0dOjzzz/XE088oQsXLqi7u1vp6elx/3eH0cH0YJSys7P17rvvSpIaGhp0ww03SJIKCgpUVVUl27Z1+PBhjRs3LjgdkkgLFiwI/gT5ySefqKurS+PHj1dBQYGqq6vV2dmpEydOqLm5WbNnz054fXl5eXr77bdVV1enuro65eTkaP/+/Zo4caJr3kOprzPv5z//uXbt2iWv1xu87pb3cdasWWpubtaJEyfU2dmp6upqFRQUJLyOgWzb1oYNGzR16lSVlZUFrwf+biWpqqpKd911lyP1PfLII6qvr1ddXZ1+/OMf67bbbtOTTz6pW2+9VTU1NZKkF1980RXvJSJjpBWlLVu2aOvWreru7taYMWO0efNmSdL8+fP15ptvqrCwUF6vV1u3bnWkvmXLlmn9+vX61re+pYyMDG3fvl2WZWnatGlatGiRFi9eLI/Ho40bN8rj8ThSYzhueQ+lvr/nzs7O4I13zpw52rx5s2vex/T0dG3cuFHf/e531dPTo2XLlmnatGkJr2Og999/Xy+99JKmT58eHE0//PDDWrVqlcrLy7Vv3z5NmjRJTz31lMOVXqmiokIPPfSQnnrqKX3ta1/T8uXLnS4JQ+BoEgCAMZgeBAAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AJi8Lvf/U7FxcWaMWOGjh496nQ5QMohtIAYTJ8+XT/96U/113/9106XAqQkFhcDIZw8eVL/9E//pJtvvlmNjY3y+Xz62c9+pptuusnp0oCUxkgLCOPPf/6zvv3tb6u6ulrjxo0LbvcDwDmEFhDGV7/6VX3ta1+TJM2cOVMtLS0OVwSA0ALCCByoKUkej0c9PT0OVgNAIrQAAAYhtIAYvP7665o3b54aGxv14IMPauXKlU6XBKQUdnkHABiDkRYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBj/H6mi1Vp2nJmIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1419,11 +1488,11 @@ "metadata": { "id": "guGcilXIl5_9", "colab_type": "code", + "outputId": "3c8985b4-af4d-475f-bd0a-d5aa77f595f1", "colab": { "base_uri": "https://localhost:8080/", - "height": 296 - }, - "outputId": "d731d6fd-9b7c-44b6-8c6b-400fe11c86f4" + "height": 0 + } }, "source": [ "diff_df = df['n1'] - df['n2']\n", @@ -1449,7 +1518,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de3yT9d3/8VfSNOkxPdL0QKkcCoKt\nwJiKTqkrhiodlEKZ+92bDidzTr2Fqeh969Z763Qe1t0IujkQdfPe4Z4oyC1VO2zBekBFRSsnOZYe\nE6CkbXpKmuT6/VGaUVpKW5ombT7Px4PHo0mu5PqEtH33e7i+X5WiKApCCCHEOdTeLkAIIYRvkoAQ\nQgjRKwkIIYQQvZKAEEII0SsJCCGEEL3SeLuAoXLVVVeRlJTk7TKEEGJEqamp4eOPP+71sVETEElJ\nSWzatMnbZQghxIiyePHi8z4mXUxCCCF6JQEhhBCiVxIQQggheiUBIYQQolcSEEIIIXolASGEEKJX\nEhBCCCF6JQEhhBCiVxIQQgghejVqrqQWorHVjtXm6HF/uE5DRIjWCxUJMbJJQIhRw2pzUHbwVI/7\n50yOlYAQYhCki0kIIUSvJCCEEEL0SgJCCCFEryQghBBC9EoCQgghRK8kIIQQQvRKAkIIIUSvPBoQ\nZWVlZGVlYTQaWb9+fY/H7XY7K1euxGg0snTpUqqrqwH4v//7P3Jyctz/Lr30Uvbv3+/JUoUQQpzD\nYwHhdDopKChgw4YNFBUVsXXrVg4fPtztmI0bN6LX69m2bRvLli2jsLAQgIULF7Jlyxa2bNnCU089\nxdixY5k6daqnShVCCNELjwVEeXk5KSkpJCcno9Vqyc7OpqSkpNsxpaWl5ObmApCVlcXOnTtRFKXb\nMUVFRWRnZ3uqTCGEEOfhsYAwm83Ex8e7bxsMBsxmc49jEhISANBoNISHh2OxWLod8+abb0pACCGE\nF/j0IPWXX35JcHAwkydP9nYpQgjhdzwWEAaDAZPJ5L5tNpsxGAw9jqmrqwPA4XBgtVqJiopyPy7d\nS0II4T0eC4j09HQqKiqoqqrCbrdTVFREZmZmt2MyMzPZvHkzAMXFxcyePRuVSgWAy+XirbfekoAQ\nQggv8dhy3xqNhvz8fJYvX47T6WTJkiWkpqayZs0a0tLSmDt3Lnl5eaxatQqj0UhERASrV692P3/X\nrl0kJCSQnJzsqRLFCCB7PAjhPSrl3GlDI9TixYvZtGmTt8sQQ6za0nrePR7GRoUM+lghRKe+fnf6\n9CC1EEII75GAEEII0SvZclSMaM02BxWnWogKlfEIIYaaBIQYkeqbbfz0L5/zVU0jAFqNmj98/xte\nrkqI0UW6mMSI02p38LN/fMmRk83cb5zMs/82kzFhOh7Z/BXNvcx4EkIMjrQgxIhid7j484cVmJra\neWnZlVybGgvAuOgQ8p7byT92VbLsmvEEqFVerlSIkU9aEGJE+eDIKaosbfxq4WXucAC4fGwk9xlT\nOXKyxd3tJIS4OBIQYsRwuhQ+PlrPpLgw5kwe0+Px+ZcnEKbTcMDU5IXqhBh9JCDEiLG/rommdgdX\nT4jp9XG1SsVkQziHzM04XaPi+k8hvEoCQowYO4/WExkSyJT48PMeMyU+nLYOJ1WnW4exMiFGJwkI\nMSKYm9o5dqqF2eNjUKvOPwCdGheGWgVfm63DWJ0Qo5MEhBgRPjpaj0atYlZKVJ/HBQUGkBITytcm\nCQghLpZMcxUjwtdmK1PiwwnVdX7LOpwuqi3du5FsHU4AphjCeXuviYZWO5Gy4qsQgyYtCOHzrO0d\nNLR2MC76XyuytnW4KDt4qts/u7NzYLprjEK6mYS4OBIQwudVW9oASO7nkt1x4ToiQwI5ZG72ZFlC\njHoSEMLnVZ5uRa2CxMjgfh2vUqkYFx1CXWObhysTYnSTgBA+r8rSSnxEEFpN/79dDfogLK0d7nEJ\nIcTASUAIn+Z0KdRY2vrdvdTFEB4EwAmrzRNlCeEXJCCETzte34LN4SI5eoABodcBYGpq90RZQvgF\njwZEWVkZWVlZGI1G1q9f3+Nxu93OypUrMRqNLF26lOrqavdjBw4c4OabbyY7O5sFCxZgs8lfgv5o\nX23nukoDbUFEhWoJDFBhloAQYtA8dh2E0+mkoKCAl156CYPBQF5eHpmZmUyaNMl9zMaNG9Hr9Wzb\nto2ioiIKCwt5+umncTgcrFq1it/+9rdceumlWCwWNBq5ZMMf7a1rIihQTUzYwK5nUKtUGPRBEhBC\nXASPtSDKy8tJSUkhOTkZrVZLdnY2JSUl3Y4pLS0lNzcXgKysLHbu3ImiKHzwwQdMmTKFSy+9FICo\nqCgCAgI8VarwYftqm0iOCulzeY3zMYQHYW6SlqcQg+WxgDCbzcTHx7tvGwwGzGZzj2MSEhIA0Gg0\nhIeHY7FYOHbsGCqVittvv53c3Fyef/55T5UpfFiLzcGxUy0DHn/oYtDraLY5sLTah7gyIfyDT/bb\nOJ1OPvvsM1599VWCg4NZtmwZaWlpXH311d4uTQyjg2YrLgUSI/p3/cO5DBGdM5mOnWwhPSlyKEsT\nwi94rAVhMBgwmUzu22azGYPB0OOYuro6ABwOB1arlaioKOLj47niiiuIjo4mODiYOXPmsHfvXk+V\nKnxU5Zkluwc6/tDFoO8MiKOnWoasJiH8iccCIj09nYqKCqqqqrDb7RQVFZGZmdntmMzMTDZv3gxA\ncXExs2fPRqVSce2113Lw4EHa2tpwOBzs2rWr2+C28A/H6zsDImqQC+6F6zQEBwZw9KQEhBCD4bEu\nJo1GQ35+PsuXL8fpdLJkyRJSU1NZs2YNaWlpzJ07l7y8PFatWoXRaCQiIoLVq1cDEBERwbJly8jL\ny0OlUjFnzhyuv/56T5UqfNTx+lZiwrQDuoL6bKozM5mOnpQ1mYQYDI+OQWRkZJCRkdHtvhUrVri/\n1ul0rF27ttfn5uTkkJOT48nyhI+rPN1CUj/XXzqf+Agd5dWNKIqCahAzoYTwZ3IltfBZx+tbLzog\n4sKDaLU7qWuU6yGEGCgJCOGT2uxOTlhtFx0QsWGdS250jWcIIfpPAkL4pK4ZTIlRFxcQ0aGdA9xV\nFgkIIQZKAkL4pOP1nTOPkiKDLup1IoIDCVCpqDotASHEQElACJ/U1YK42C6mALWKOL3O/XpCiP6T\ngBA+6Xh9K+E6DRHBgRf9WomRQRIQQgyCBITwScdPtzIuJmRIpqYmRgRLF5MQgyABIXxSZX0LKTGD\nW6TvXImRwZxqttNicwzJ6wnhLyQghM9xOF1UW9oYFx06JK+XeGagW2YyCTEwEhDC59Q1tuNwKUPa\nggColGshhBgQn1zuW/inxlY7VpuDT4+fBiBEG4Ctw3nRrxsX3nmx3J6aRqYl6oHOhfwiBrkIoBD+\nQgJC+AyrzUHZwVN8fKwegGpLG5MN4Rf9uoEBanQaNbsqLMSf2VtizuRYCQghLkC6mITPsbTYCVCp\nhmSKK3Su6hodquV0i+wsJ8RASEAIn9PQ1oE+WDOofajPJypEy2nZelSIAZGAED6nqc2BfohaD12i\nQ7VYWuy4FGVIX1eI0UwCQvicpvaOIete6hIdqsXhUmhul2shhOgvCQjhUxRFoamtA33Q0AcEIOMQ\nQgyABITwKW12Jw6XMvRdTGdmLMk4hBD9JwEhfEpjewfAkHcxRYYEokJaEEIMhEcDoqysjKysLIxG\nI+vXr+/xuN1uZ+XKlRiNRpYuXUp1dTUA1dXVXH755e59qfPz8z1ZpvAhTW2dAaEPGtpLdDQBasKD\nNDS0dgzp6woxmnnsQjmn00lBQQEvvfQSBoOBvLw8MjMzmTRpkvuYjRs3otfr2bZtG0VFRRQWFvL0\n008DMG7cOLZs2eKp8oSPamrrHEQe6i4mgMgQLQ3SxSREv3msBVFeXk5KSgrJyclotVqys7MpKSnp\ndkxpaSm5ubkAZGVlsXPnThSZhujXGts7UAHhQ9yCgM5upoY2aUEI0V8eCwiz2Ux8fLz7tsFgwGw2\n9zgmISEBAI1GQ3h4OBaLBejsZlq0aBE/+MEP+PTTTz1VpvAxTW0dhOo0aNRD/60ZFaKlsbVDroUQ\nop98ci2muLg4tm/fTlRUFHv27OHuu++mqKiIsLAwb5cmPKypvfMqak+IDAnEqShY5VoIIfrFYy0I\ng8GAyWRy3zabzRgMhh7H1NXVAeBwOLBarURFRaHVaomKigIgLS2NcePGcezYMU+VKnxIU5uDiCG+\nBqJLZHDnVFcZhxCifzwWEOnp6VRUVFBVVYXdbqeoqIjMzMxux2RmZrJ582YAiouLmT17NiqVitOn\nT+N0di7zXFVVRUVFBcnJyZ4qVfiQxrYOjwxQQ2cLAsAiM5mE6BePdTFpNBry8/NZvnw5TqeTJUuW\nkJqaypo1a0hLS2Pu3Lnk5eWxatUqjEYjERERrF69GoBdu3axdu1aNBoNarWaX/3qV0RGRnqqVOEj\nbB1O2jqcHguIqBBpQQgxEB4dg8jIyCAjI6PbfStWrHB/rdPpWLt2bY/nZWVlkZWV5cnShA862WwD\n8FgXk1ajJkQbINdCCNFP/epiuueee9ixYwcul8vT9Qg/dtLaGRCeakFA11RXaUEI0R/9Coh/+7d/\n44033mDevHkUFhZy9OhRT9cl/JA7IDxwDUSXyGCtjEEI0U/9+km85ppruOaaa7BarWzdupXbbruN\nhIQEli5dysKFCwkM9NxffMJ/uLuYPNiCiAoJ5NAJq1yQKUQ/9HsWk8ViYdOmTWzcuJGpU6dy6623\nsm/fPn70ox95sj7hR05a7eg0anSBAR47R2SIlg6nQqNcUS3EBfWrBXH33Xdz7NgxcnJy+OMf/0hc\nXBwA8+fPZ/HixR4tUPiPk1bbkO8Dca6oM1NdTU020pI8eiohRrx+BcR3v/vdHrOR7HY7Wq2WTZs2\neaQw4X9OWm0e7V6CzhYEgKmxzaPnEWI06FcXU9cKq2e7+eabh7wY4d9ONds8tsxGl66L5UyN7R49\njxCjQZ8/jSdPnsRsNtPe3s6+ffvcA3vNzc20tclfYGLoOF0K9c12piXoPXqe4MAAtBo1piabR88j\nxGjQZ0C8//77bNq0CZPJxOOPP+6+PzQ0lPvuu8/jxQn/carZhlMZ+q1Gz6VSqYgMDsTcJC0IIS6k\nz4DIzc0lNzeX4uJiubJZeFRXl4+nxyCgc8kN6WIS4sL6DIgtW7aQk5NDTU0NL730Uo/Hb7vtNo8V\nJvxL3Zlf2J6exQSd4xD76po8fh4hRro+A6JrnKG1tXVYihH+q6vLx9OD1NA5k8na7qDZ5iBM55Nb\nogjhE/r86fje974HdK7FJIQnmZra0ahVhA7DL+yumUw1ljamxId7/HxCjFR9/jQ++uijfT755z//\n+ZAWI/yXqbGdmDAtapXK4+eKOjPOUdPQKgEhRB/6DIjLLrtsuOoQfs7U2E5cuG5YzhUZ2nmxXLVF\npmoL0ZcLzmISYjiYm9pJiQkZlnOF6TQEBqiokYAQok99BsRjjz3GI488wp133tnr43/84x89UpTw\nL4qiUNfYzjcviRqW86lVKgz6IKobJCCE6EufAZGTkwMgK7YKj2pqd9DW4SQ2bHi6mAAM+iBpQQhx\nAX2uxZSWlgbAlVdeyYwZM9Dr9URERDBjxgyuvPLKC754WVkZWVlZGI1G1q9f3+Nxu93OypUrMRqN\nLF26lOrq6m6P19bWMnPmTF544YWBvCcxwnRNcR2uMQiAeH0QNdKCEKJP/Vqsb8eOHRiNRh577DF+\n/etfM2/ePN59990+n+N0OikoKGDDhg0UFRWxdetWDh8+3O2YjRs3otfr2bZtG8uWLaOwsLDb4088\n8QTXXXfdAN+SGGm6LpIbM5wBEaHjpNVGe4dz2M4pxEjTr0nnTzzxBC+//DIpKSkAVFZWcscdd/RY\nAvxs5eXlpKSkkJycDEB2djYlJSVMmjTJfUxpaan7GousrCwKCgpQFAWVSsU777xDUlISISHDM3Ap\nvMd8JiBiw3U0tjmG5Zzx+iCgM5zGx4YOyzmFGGn61YIIDQ11hwNAcnIyoaF9/1CZzWbi4+Pdtw0G\nA2azuccxCQkJAGg0GsLDw7FYLLS0tPD888/LBXp+wnSmiyk2TDts5zREdAaEjEMIcX59tiD++c9/\nAp1jET/+8Y+56aabUKlUvP3226Snp3usqGeffZYf/vCHFwwhMTqYmtqJDtWi03huq9FzdbUgahpk\nGRkhzqfPgNi+fbv769jYWHbt2gVAdHQ0Nlvf6+kbDAZMJpP7ttlsxmAw9Dimrq6O+Ph4HA4HVquV\nqKgovvzyS4qLiyksLKSpqQm1Wo1Op+MHP/jBgN+g8H2mxnYMZ35hD5e4cB1qlbQghOhLnwFx9h4Q\nA5Wenk5FRQVVVVUYDAaKior43e9+1+2YzMxMNm/ezMyZMykuLmb27NmoVCr+9re/uY955plnCAkJ\nkXAYxUyN7SREDG9AaALUxOuD5GpqIfrQr0Fqm83Gq6++yqFDh7q1HPoKEI1GQ35+PsuXL8fpdLJk\nyRJSU1NZs2YNaWlpzJ07l7y8PFatWoXRaCQiIoLVq1df/DsSI465qZ3pyZHDft6kqGC5WE6IPvQr\nIFatWsWECRN4//33ufvuu3njjTeYMGHCBZ+XkZHRY6bTihUr3F/rdDrWrl3b52v8+7//e39KFCOU\nzeGkvsXuHhMYTkmRweyqsAz7eYUYKfo1i6myspKVK1cSHBxMbm4u69ato7y83NO1CT9w4sze0MPd\nxQSdLQhTUzsOp2vYzy3ESNCvgNBoOhsaer2egwcPYrVaqa+v92hhwj90TXE1eCMgIkNwuhTM1r4n\nXAjhr/rVxXTzzTfT2NjIihUr+OlPf0pra2u3riIhBqvrKmqvdDFFBQOdM5mSIoOH/fxC+Lp+BcTS\npUuBzjWZSkpKPFqQ8C+1ZwaJEyODaGzrGNZzJ58JiMrTrVw5PnpYzy3ESNCvgLBYLDz77LN8/vnn\nqFQqZs2axV133UVU1PAszyxGrxpLG/ogDeFBgcMeEGOjQlCroLK+ZVjPK8RI0a8xiPvuu4/o6GjW\nrl3LmjVriIqK4mc/+5mnaxN+oKahjaQo76y3pdWoSYwMpqJerqYWojf9akGcPHmSu+++2337rrvu\n4q233vJYUcJ/1Da0MdZLAQFwSUwox09LQAjRm361IL71rW9RVFSEy+XC5XLx5ptvcu2113q6NuEH\nOgeIh3+AuktKTAjHpYtJiF712YKYOXMmKpUKRVH485//zKpVqwBwuVyEhITw0EMPDUuRYnRqbOvA\nanO4ZxN5wyUxoTS0dtDQaicyZPhWkxViJOgzIHbv3j1cdQg/1DWDKSnSe11MKTGd5z5e3yoBIcQ5\n+jUGAVBSUsKnn34KdE53/fa3v+2xooR/6FpJNdGrXUydS8pX1Ld4ZT0oIXxZv8YgCgsLefnll5k4\ncSITJ07k5Zdf7rEyqxAD1bUntDe7mMZF/6sFIYTorl8tiHfffZctW7agVnfmSW5uLosWLeL+++/3\naHFidKttaEOrURMbOnx7UZ8rWBtAvD5IAkKIXvSrBQHQ1NTk/tpqtXqkGOFfqhvaSIwIQq1WebUO\nmckkRO/61YK48847yc3N5aqrrkJRFHbt2sUDDzzg6drEKFdjafNq91KXS2JCKTlwwttlCOFzLhgQ\nLpcLlUrFP/7xD7766isAHnjgAcaMGePx4sToVtvQxvVTvP99lBIbwqlmG802B2G6fs/bEGLUu+BP\ng1qtZsOGDcyfP5+5c+cOR03CD9gcTk5YbST6wCqqKdGdM5mO17dwWWKEl6sRwnf0awzimmuu4YUX\nXqCuro6Ghgb3PyEGq66hc5lvX1hmu+taiEoZqBaim361p998801UKhV/+9vfut0vS3+Lwar1gSmu\nXboCQhbtE6K7frUg3nzzTb7//e9z6aWXMnXqVG655RaKioou+LyysjKysrIwGo2sX7++x+N2u52V\nK1diNBpZunQp1dXVAJSXl5OTk0NOTg4LFy5k27ZtA3xbwtdVu6+i9n5AhAcFEhumlZlMQpyjXwHx\n0EMPceTIEW655RZ+8IMfcPjw4Quuw+R0OikoKGDDhg0UFRWxdetWDh8+3O2YjRs3otfr2bZtG8uW\nLaOwsBCA1NRUXnvtNbZs2cKGDRvIz8/H4XAM8i0KX1RjaUOlgoQI7wcEdM5kOnpSAkKIs/Wri+nQ\noUO8+eab7tuzZ89m/vz5fT6nvLyclJQUkpOTAcjOzqakpIRJkya5jyktLeWee+4BICsri4KCAhRF\nITj4X780bDYbKpV358mLoVfb0EZcuA6tpt+X4nhUqiGMt/aYUBRFvt+EOKNfP53Tpk3jiy++cN/+\n8ssvSUtL6/M5ZrOZ+Ph4922DwYDZbO5xTEJCAgAajYbw8HAsFov7HNnZ2SxcuJBf/epXaDQy/XC0\naGy1c+RkM7FhOqotre5/tg7nsNXgcLq6nXtMuI6G1g6OnmwethqE8HX9+q27d+9evve975GYmAhA\nbW0t48ePZ8GCBQC88cYbQ17Y9OnTKSoq4siRIzz00EPMmTMHnc57SzKIoWO1OTh8opmJY8IoO3jK\nff/MccO3WF5bh4vdR067bze3d4bTVzWNTIwLH7Y6hPBl/QqIDRs2DPiFDQYDJpPJfdtsNmMwGHoc\nU1dXR3x8PA6HA6vV2mOf64kTJxISEsLBgwdJT08fcB3C97TaHTS1O4gN953Aj9N31nLslMxkEqJL\nvwIiKSlpwC+cnp5ORUUFVVVVGAwGioqKeqwAm5mZyebNm5k5cybFxcXMnj0blUpFVVUVCQkJaDQa\nampqOHr06KBqEL6p6nTnDKbYMN8JiHCdhuDAAI6dkoFqIbp4rGNfo9GQn5/P8uXLcTqdLFmyhNTU\nVNasWUNaWhpz584lLy+PVatWYTQaiYiIYPXq1QB89tlnPP/882g0GtRqNb/85S+Jjo72VKlimFWe\n2QN6jA8FhEqlIk6vo0Kmugrh5tGR34yMDDIyMrrdt2LFCvfXOp2OtWvX9njeokWLWLRokSdLE15U\ndboVFRAT5ls7uBnCg9hvapKZTEKc4RtzDIVfqTzdSmRIIIEBvvXtF6fXYW13cNJq83YpQvgE3/oJ\nFX6h8nSrT40/dDHoO7c+PWiWqa5CgASEGGaKolBlafOpGUxd4s7UdNAsG2IJARIQYpiZm2y02Z0+\nNUDdJUynISI4kEMnJCCEAAkIMcy6rlT2xS4mlUrF+NgQ6WIS4gwJCDGsjpy5ziDWx2YwdbkkNpSD\nZiuKoni7FCG8TgJCDKtjJ1sIClSjDw70dim9Gh8birXdgamp3dulCOF1EhBiWB091UxyVAhqH73O\nYPKZdZj21DR5uRIhvE8CQgyroydbGBcd4u0yzmtSXBgqFeypafR2KUJ4nQSEGDY2h5NqS6tPB0Sw\nNoCJY8LYWysBIYQEhBg2R0+24FJgXIzvBgRAWqJeupiEQAJCDKOvznTbTDH47n4LDqeL5OgQTE3t\nlFc3UG1ppbHV7u2yhPAKCQgxbPbUNBKm0zA22jf2oe5NW4eLtjM72732WQ1lB09htcl+6MI/SUCI\nYfNVTSPTEvU+O4OpS2JEZ4DVNrZ5uRIhvEsCQgwLh9PFvtom0pMivF3KBQUFBhATqqW2QQJC+DcJ\nCDEsDp1oxuZwcflY3w8IgMTIYAkI4fckIMSw6BqgThsBLQiApMhgLK0dtNpl/EH4LwkIMSy6BqjH\nx4R6u5R+SYw8Mw7RIEtuCP8lASGGhXuAWu3bA9RdEiM6Nw+qkW4m4cc8GhBlZWVkZWVhNBpZv359\nj8ftdjsrV67EaDSydOlSqqurAfjggw9YvHgxCxYsYPHixezcudOTZQoPG0kD1F1CdBqiQ7VUW1q9\nXYoQXuOxgHA6nRQUFLBhwwaKiorYunUrhw8f7nbMxo0b0ev1bNu2jWXLllFYWAhAVFQUzz33HG+8\n8QZPPPEEDz74oKfKFMOga4B6JAUEwNioYKot0oIQ/stjAVFeXk5KSgrJyclotVqys7MpKSnpdkxp\naSm5ubkAZGVlsXPnThRFYdq0aRgMBgBSU1Ox2WzY7XI160jVNUCdPkJmMHVJjgqhsa2DU1abt0sR\nwis8FhBms5n4+Hj3bYPBgNls7nFMQkICABqNhvDwcCwWS7djiouLmTZtGlqtb24wIy7si6oGwkfQ\nAHWX5KjOgeq9dbIuk/BPGm8X0JdDhw5RWFjIiy++6O1SxEX46Eg9V4yPHjED1F0SIoMJUKnYVysB\nIfyTx1oQBoMBk8nkvm02m93dRmcfU1dXB4DD4cBqtRIVFQWAyWTinnvu4cknn2TcuHGeKlN4mLmp\nnaOnWrh6Qoy3SxmwwAA18RFB7JMWhPBTHguI9PR0KioqqKqqwm63U1RURGZmZrdjMjMz2bx5M9DZ\nlTR79mxUKhVNTU3ccccd3H///cyaNctTJYphsPNIPQBXTxx5AQGQHB3MAZMVp0v2qBb+x2MBodFo\nyM/PZ/ny5cyfP5+bbrqJ1NRU1qxZ4x6szsvLo6GhAaPRyEsvvcQDDzwAwF/+8hcqKyv5/e9/T05O\nDjk5OdTX13uqVOFBHx2tRx+kYWqC3tulDEpyVAhtdieHTzR7uxQhhp1HxyAyMjLIyMjodt+KFSvc\nX+t0OtauXdvjeXfddRd33XWXJ0sTw2Tn0XquHB9DwAgbf+gyNqpzc6MvqixMiffdfSyE8AS5klp4\nTG1DG8frW0ds9xJATJiWMJ2GL6oavF2KEMNOAkJ4jHv8YQQOUHdRq1RMSwhnd6UEhPA/EhDCY3Ye\nrScqJJBLR3jXzLREPQfNVlpkZznhZyQghEcoisLOI/VcNT5mxF3/cK5piXpcyr+uCBfCX0hACI84\nfKKZmoY2rk2N9XYpF61rBtaXMg4h/IwEhPCIkgMnAJg7Nc7LlVy8qBAtydHBMlAt/I5PL7UhRo7G\nVjvWs/ro3/qqjtS4MEICA7xY1dCZkRzFpxWnvV2GEMNKWhBiSFhtDsoOnqLs4Cne3mOivLqRsVEh\n3UJjJJuRHEldYzvmJtlhTvgPCQgx5A6am1FgxM9eOtuM5EgAme4q/IoEhBhyB0xNhOo0JJ1ZLns0\nuCxRj0atknEI4VdkDEIMKUNwkbEAABc4SURBVKdL4aDZymUJEahVKhxOV49tO20dTi9VNzgOp4tT\nzTYmxoXxybF69/sJ12mICJF9SsToJQEhhtTx+hbaO1zudYvaOlzsPtJ9cHfmuEhvlDZoXe8hMjiQ\n3VUN7Pj6JGqVijmTYyUgxKgmXUxiSJXXNBIYoCLVEObtUoZccnQIdoeLE7IFqfATEhBiyDhcLr6q\nbmRqgh6dZnRMbz3buDMru1bVt17gSCFGBwkIMWQOm5tp63AyY+zI6kLqr5gwLaE6DRX1Ld4uRYhh\nIQEhhswX1Q0EBwYwaRR2LwGoVCouiQmRgBB+QwJCDIlWu4P9dU2kj41Aox6931YpMaFYWjtobOvw\ndilCeNzo/UkWw+r9Q6focCpMH6XdS10uiekchzgurQjhByQgxJB48ysTEcGBpJz5BTpaJUQEExig\n4rgMVAs/4NGAKCsrIysrC6PRyPr163s8brfbWblyJUajkaVLl1JdXQ2AxWLhlltuYebMmRQUFHiy\nRDEEvqxq4NPjFmaPj0atGtl7P1xIgFrFuOgQaUEIv+CxgHA6nRQUFLBhwwaKiorYunUrhw8f7nbM\nxo0b0ev1bNu2jWXLllFYWAiATqdjxYoVPPjgg54qTwyh328/TJhOw1UjeGvRgUiJCaWusV12mBOj\nnscCory8nJSUFJKTk9FqtWRnZ1NSUtLtmNLSUnJzcwHIyspi586dKIpCSEgI3/zmN9HpdJ4qTwyR\nA6Ym/rnPzNJvjiVolCztfSGXxISiAHtkhzkxynksIMxmM/Hx8e7bBoMBs9nc45iEhAQANBoN4eHh\nWCwWT5UkPOAP248Qqg1g6ayx3i5l2CRHB6NWQXm1BIQY3WQtJnFe524C1KVrkbpdFafZWl7Lj6+b\ngD440AsVeodOE0BiZDCfHZc/ZsTo5rGAMBgMmEwm922z2YzBYOhxTF1dHfHx8TgcDqxWK1FRUZ4q\nSQxQ1yZA55ozOZbWDic//ctnpMSEcte3J2Ft96/rAiYbwtl+4ASnW+xEh8qCfWJ08lgXU3p6OhUV\nFVRVVWG32ykqKiIzM7PbMZmZmWzevBmA4uJiZs+ejWqUz4IZDWwOJ3f+z2e0d7h4/tZZRPhR66HL\npfHhKMCOr094uxQhPMZjLQiNRkN+fj7Lly/H6XSyZMkSUlNTWbNmDWlpacydO5e8vDxWrVqF0Wgk\nIiKC1atXu5+fmZlJc3MzHR0dvPPOO7z44otMmjTJU+WKfmrvcPLwpj18Wd3I+ltmMSlu9OwaNxCJ\nkcHEhGopOXCCxd/wn/EX4V88OgaRkZFBRkZGt/tWrFjh/lqn07F27dpen1taWurJ0sQgNLTaeXnn\ncU5abTyxOJ15l8Vf+EmjlFql4uqJMbz79Uk6nC4CA+SaUzH6yHe16BdLi50/vnuEhjY7hd+9nO9d\nOc7bJXndtybFYLU52FVx+sIHCzECSUCIC2q2OXjxg2PYnS5+fN0Errgk2tsl+YRZKVFoNWpK98s4\nhBidJCBEn2wOJ3/+sIKm9g5+ePUlJEQEe7sknxGi1XD1hBhKD0hAiNFJAkL06Z/7zNQ2tPH/rhxH\nSkyot8vxOTdMM3D0VAtfVDV4uxQhhpwEhDivAyYrHx2p56oJ0Vwar/d2OT4pd2YS+iAN69494u1S\nhBhyciW16JXTpVBY/DVhOg3zpnWfreRwuqi2dF/u2tbhHM7yfEaYTsMtV6fwhx1HOHaqhfGx0soS\no4e0IESv/vrxcQ6YrMy/PKHHInxtHS7KDp7q9s/uVLxUqfctu2Y8gQFq1pcd9XYpQgwpCQjRQ1N7\nB6u3HWRWShSXJ0V4uxyfNyZcR96ssbz2eTUnrO3eLkeIISMBIXrYUHYUS2sHd10/UZY+6ac7rpuA\nw+niF6/vofJ0C9WW1m7/Glvt3i5RiAGTMQjRzUmrjQ3vH+M7lycwJT4cc5PN2yWNCJfEhvJA1hSe\nevtr7A4XxnPGbeZMjiUiRBb1EyOLBITo5vfbD2NzuLh/3hRvlzLi/DRjIvtqm9haXkdUiJZvygWF\nYoSTLibhdvRkM3/9+Dg3X5Ess3EGQaVS8cC8yUyKC2PT7ho2flpFq122JRUjl7QgRoELbezTH4qi\nkL9lL0GBAay8IXWoS/QbmgA1t85OYfvXJ3n34AkOnWhm7tQ4rp7Y/9ZEb5/nQD5LIYaKBMQo0NfG\nPv39pbK1vI73D5+iIOcy4sKDhrpEv6IJUGOcZuCyRD1bvqhhyxe1fHLsNHddP5GcmUnog86/f0Zj\nWwfvHjzJ23tMOFwKwdoAIoMDWfatSyQgxLCTgBBY2zv49dZ9pCdF8P2rUrxdzqiRGBnMnRkTOWhu\n5pOKen6xZS+Pvbkf47R40pP0TIoLo8OpcKrZxkGTlY+PneaAydrra235opYls8ay7JpLSI4OGeZ3\nIvyVBIQPGGyXQqvdwQGTlU+O1vNZZQPNNgc6jZrYUB0GfRCKcuGL1zqcLu5/5UtONtt4/tZvEqCW\naa391Z8rylUqFVPiw1l+3SVYWjv4+ydVbNtn5o0va7sdFxSoJj0pguXXjWfSmFCa2p3oNGra7E7q\nGts4frqVl3dW8OcPK/juFcnc/e1JJEX2vnDiUHQ5Cs8aKd2IEhBe5HQpHDph5fPjFj48Uk+b3YkC\nKApMigvFoA8iKDCAoMAAAtRgbXdgaeng0Akr++qaOHaqhbMzQKdR0+F04Tpz3+tf1LDkG0ks/WZy\nr391djhd3Pv33fxzn5lfLpjG9OTI4Xnjo0Rbh4vdR7rvBTFzXO//hyqVisvHRnL52EgeX5yOpcXO\nzqOn2FtjJSxIQ5hO4w7n6cmR7K7sXPwvMFiNPjiQH8+ZgEat5vfbD/O/uyr5308quS51DIu/kcRl\niXrGRoW4r3gfii5H4Vm9fUa++PlIQAyz+mYbxXvNlOw380nFaaztvc9y2f71+V9jbFQw0xL0LJye\nyLQEPREhgRyosxIYoMbpUmhotVNR38rx+hae3X6YZ7YfZk7qGBZOTyR9bASG8CDeO3ySv31cyYdH\n6vnFd6ax7FvjPfSORW+iQrVcPjaShtb+z3KKjwji14vS+EnGBP6xq4rXPqtmxf9+4X5cp1GjVqkI\nUKsIDFARotWQEBHEJbGhTBwT5om3IUY5CYiL1J/mvKXFTvFeE69/UcOuYxacikJSZDDXTxnDjORI\nEiOCqLK0E6INQK1SoSgKV46PwuFSsDlc2BwuXC6FMJ2GiGANanX32cm2Dqd7y8sAtYqYMB0xYTr+\nPXMip1vsvFFexxtf1vLuwZPdnhcTquXXOZdxy9WX9Po+/HUBPk+42AUOz33+zVckkzdrLEdOWKk4\n3UatpY1WuwMFaLc7OVbfSovNwd7aJj49bkEFlB08wQ+vGc/cqXGyRaoXtXc4+ehoPSUHzNQ1tNNs\nc6DVqPnnPhPXTIzhmomxTEvQo/aB7l6PBkRZWRmPPfYYLpeLpUuXcscdd3R73G638+CDD7J3714i\nIyNZvXo1Y8d2bgC/bt06Xn31VdRqNT//+c+57rrrPFlqv7hcCtWWNg6arZia2jlhtXGq2UaNpQ0V\n0LkqhQqVCsbHhtDe4WJ3ZQMHTE24FEiKDOa61FjSx0YQrw9yL2NxSWwYlrP+klSpVDhcsLuysUcN\nM8dFsruyf90abR0uDpiaSY0LZ+UNkzlptaEP1tBmd3Ll+BhmpUS5uzV6a/Ke73XFwA2kO6q/z+96\nDVOTnQlntRA6v0c6u6hcioK5qZ2vahrZU9PInX/5jNiwzrWjFs1MZIohXJZTGQaNbR1sP3CCf+4z\nsePrk7TanaiAmDAt+uBAbB1ODpqt7Pi68484g17H/PQEstMTmJEcicZLge6xgHA6nRQUFPDSSy9h\nMBjIy8sjMzOTSZMmuY/ZuHEjer2ebdu2UVRURGFhIU8//TSHDx+mqKiIoqIizGYzt912G8XFxQQE\nBPRxxous16XQ3uHs/OdwYW3voLahjRpLG1+brRyos3LAZKXZdvYvctzdOl0DwooCXcMC4ToNM8ZF\nck9mKvOmGYgI1vDeoXqPvYe+qFUqDPog5kyOZWyUzILxF2qVioSIYBIigvnlwmkcOdHC/+6q4vn3\njvLHd4+QFBlMxpQxTE3QMzkujDh9EFEhgYRoO8dE1CokQPrJ7nDRZnfS2NaB2dpOjaWNPTWNlFc3\n8nmlBYdLYUy4jkUzk5iZHElzuwPdWSslz5kci0at5oPDpyjea+KvH1fy0gcV6IM0XJsaS3pSJBPH\nhDIuJoSoEC0RwYFoA9QebWl4LCDKy8tJSUkhOTkZgOzsbEpKSroFRGlpKffccw8AWVlZFBQUoCgK\nJSUlZGdno9VqSU5OJiUlhfLycmbOnDnkdTa02sl6uqzPNYfCgzRMjdez5BtJXJqgZ0p8OEmRwcSE\najE1tff4y1tRFK6bHEtyVEi3H65zuxiEGE4atZq5Uw3MnWrghLWd0v0neGf/Cd74opa/fVx53uep\nVBCgUqE+ExjqPgKjr4lzCud/sO/nDfQBD5wL+pwV2DW55Fw6jZppiXpuv248WZfFM2NsJGq1impL\na68TCeIjglgyayxLZo3F2t55Tcx7B0/x/uFTvPmVqddzB6hV/CJ7qkfGEVVKf+ZCDsLbb7/Ne++9\nx2OPPQbA66+/Tnl5Ofn5+e5jvvOd77Bhwwbi4zsXNrvhhht45ZVXePbZZ5k+fTo5OTkAPPzww8yZ\nM4cbb7zxvOe76qqrSEpK8sRbEUKIUaumpoaPP/6418dGzSD1+d6gEEKIwfHYyIfBYMBk+leTyGw2\nYzAYehxTV1cHgMPhwGq1EhUV1a/nCiGE8CyPBUR6ejoVFRVUVVVht9spKioiMzOz2zGZmZls3rwZ\ngOLiYmbPno1KpSIzM5OioiLsdjtVVVVUVFRw+eWXe6pUIYQQvfBYF5NGoyE/P5/ly5fjdDpZsmQJ\nqamprFmzhrS0NObOnUteXh6rVq3CaDQSERHB6tWrAUhNTeWmm25i/vz5BAQEkJ+f79EZTEIIIXry\n2CC1EEKIkU0upxRCCNErCQghhBC9koA448UXX2TKlCmcPt25nIGiKDz66KMYjUYWLFjA3r17vVzh\nwD355JPceOONLFiwgLvvvpumpib3Y+vWrcNoNJKVlcV7773nxSoHp6ysjKysLIxGI+vXr/d2OYNW\nV1fHLbfcwvz588nOzubPf/4zAA0NDdx2223MmzeP2267jcbGnsuujBROp5NFixbxk5/8BICqqiqW\nLl2K0Whk5cqV2O12L1c4cE1NTdx7773ceOON3HTTTezevXtUfWZuilBqa2uVH/3oR8r111+v1NfX\nK4qiKDt27FBuv/12xeVyKbt371by8vK8XOXAvffee0pHR4eiKIry1FNPKU899ZSiKIpy6NAhZcGC\nBYrNZlMqKyuVuXPnKg6Hw5ulDojD4VDmzp2rVFZWKjabTVmwYIFy6NAhb5c1KGazWdmzZ4+iKIpi\ntVqVefPmKYcOHVKefPJJZd26dYqiKMq6devcn91I9OKLLyr33XefcscddyiKoij33nuvsnXrVkVR\nFOUXv/iF8te//tWb5Q3Kgw8+qLzyyiuKoiiKzWZTGhsbR9Vn1kVaEMDjjz/OqlWrui2LUVJSwqJF\ni1CpVMyYMYOmpiZOnDjhxSoH7tprr0Wj6ZyoNmPGDPe1JedbymSkOHsZF61W617GZSSKi4vjsssu\nAyAsLIwJEyZgNpvd338AixYt4p133vFmmYNmMpnYsWMHeXl5QGfL/KOPPiIrKwuA3NzcEffZWa1W\ndu3a5X5PWq0WvV4/aj6zs/l9QLzzzjvExcVx6aWXdrvfbDa7lwABiI+Px2w2D3d5Q+a1115jzpw5\nQM/3ZjAYRtR7G+n1n091dTX79+9n+vTp1NfXExcXB8CYMWOor/fOIo8X6ze/+Q2rVq1yL1FvsVjQ\n6/XuP1xG4s9VdXU10dHR/Od//ieLFi3ikUceobW1ddR8ZmcbNUtt9GXZsmWcOtVzYayVK1eybt06\nXnzxRS9UNTT6em833HADAM899xwBAQEsXLhwuMsT/dTS0sK9997Lww8/TFhY9819VCrViFxRdfv2\n7URHR5OWljaqlsJxOBzs27ePX/ziF0yfPp1HH320xzjYSP3MzuUXAfGnP/2p1/u//vprqqur3YsC\nmkwmFi9ezMaNG3ss92EymXxyuY/zvbcumzZtYseOHfzpT39yf8OO9KVMRnr95+ro6ODee+9lwYIF\nzJs3D4CYmBhOnDhBXFwcJ06cIDo62stVDtznn39OaWkpZWVl2Gw2mpubeeyxx2hqasLhcKDRaHz2\n56ov8fHxxMfHM336dABuvPFG1q9fPyo+s3P5dRfTlClT2LlzJ6WlpZSWlhIfH8+mTZsYM2YMmZmZ\nvP766yiKwhdffEF4eLi7+ThSlJWVsWHDBp577jmCg/+1wf1IX8qkP8u4jBSKovDII48wYcIEbrvt\nNvf9Xd9/0LkS8ty5c71V4qDdf//9lJWVUVpayn//938ze/Zsfve733HVVVdRXFwMwObNm0fcZzdm\nzBji4+M5evQoADt37mTixImj4jM7l1xJfZbMzExeffVVoqOjURSFgoIC3nvvPYKDg/nNb35Denq6\nt0scEKPRiN1uJzKyc+ey6dOnU1BQAHR2O7322msEBATw8MMPk5GR4c1SB+zdd9/lN7/5jXsZl5/+\n9KfeLmlQPv30U77//e8zefJkdz/9fffdx+WXX87KlSupq6sjMTGRp59+2v05jkQff/wxL774IuvW\nraOqqoqf/exnNDY2MnXqVAoLC9Fqtd4ucUD279/PI488QkdHB8nJyTz++OO4XK5R9ZmBBIQQQojz\n8OsuJiGEEOcnASGEEKJXEhBCCCF6JQEhhBCiVxIQQggheiUBIUa9Z555hhdeeAGANWvW8OGHHwKd\nU0yzs7PJycmhvb2dJ598kuzsbJ588klvlnteX331FY8++qi3yxB+RKa5ilHvmWeeISQkhNtvv73b\n/fn5+cyaNct9Jf2sWbP45JNP+r29bdfVwEKMVvLdLUal5557jtdff53o6GgSEhLcK6b+x3/8B9df\nfz1Wq5W3336b999/n7KyMlpaWmhtbWXx4sX85Cc/Yfbs2fzXf/0XtbW1ADz88MPMmjWLZ555hsrK\nSqqqqkhMTOTnP//5eY+rra2lurqa2tpafvjDH3LrrbcCnVfZvvDCC6hUKqZMmcJvf/tbTp8+3evr\nnO3si836ev2zzZw5k1tvvZXt27cTFBTEH/7wB2JjYz32/y5GGW+tMy6Ep3z11VfKd77zHaW1tVWx\nWq3KDTfcoGzYsEFRFEV56KGHlLfeeqvH14qiKDNmzHB/fd999ym7du1SFEVRampqlBtvvFFRFEVZ\nu3atkpubq7S1tV3wuJtvvlmx2WxKfX29cuWVVyp2u105ePCgMm/ePPe+IxaLpc/XOdtHH33k3lPh\nfK9/rsmTJyslJSWKoijKk08+qfz+978f+H+o8FvSghCjzqeffsoNN9zgXn9qMGv9fPjhhxw+fNh9\nu7m5mZaWFvfrBQUFXfC4jIwMtFot0dHRREdHU19fz0cffcSNN97oXsitaymG871OaGjoeWvs7fXP\nXgYdIDAwkG9/+9sApKWl8cEHHwz4/0L4LwkIIXrhcrl45ZVX0Ol0PR47e+HDvo47e32hgIAAHA7H\noM53Pv15/cDAQPcqvmq1GqfT2e/XF0JmMYlR54orruCdd96hvb2d5uZmtm/fPuDXuPbaa/mf//kf\n9+39+/df1HFdZs+ezdtvv43FYgE6954ezOsIMRwkIMSoc9lllzF//nxycnL48Y9/PKhVeB955BH2\n7NnDggULmD9/Pn//+98v6rguqamp3Hnnndxyyy0sXLiQJ554YlCvI8RwkGmuQggheiUtCCGEEL2S\ngBBCCNErCQghhBC9koAQQgjRKwkIIYQQvZKAEEII0SsJCCGEEL36/wC67cv75ZaXAAAAAElFTkSu\nQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dfXyT9b3/8VfSNOltegdNSilVoIDSCkynnXNUi6FKB6VQ5n5n6mAydeqEqeg5c+Mce7zD0x0EtzkQcXM35xxRkEnUDluw6tChouX+Rqi9D7RN2/QuaZLr90dpRmkpbWmatP08Hw8ejyb55sonpO271/fuUimKoiCEEEKcR+3rAoQQQvgnCQghhBA9koAQQgjRIwkIIYQQPZKAEEII0SONrwsYLNdddx3x8fG+LkMIIYaViooKPvnkkx4fGzEBER8fz9atW31dhhBCDCuLFi264GPSxSSEEKJHEhBCCCF6JAEhhBCiRxIQQggheiQBIYQQokcSEEIIIXokASGEEKJHEhBCCCF6JAEhhBCiRyNmJbUQDS0ObHZnt/vDdRoiQrQ+qEiI4U0CQowYNruTomM13e6fPWWMBIQQAyBdTEIIIXokASGEEKJHEhBCCCF6JAEhhBCiRxIQQggheiQBIYQQokcSEEIIIXrk1YAoKioiIyMDk8nExo0buz3ucDhYuXIlJpOJJUuWUF5eDsBf//pXsrKyPP+mTZvG4cOHvVmqEEKI83gtIFwuF7m5uWzatAmz2cyOHTs4ceJElzZbtmxBr9ezc+dOli5dSl5eHgALFixg+/btbN++neeee47x48dzxRVXeKtUIYQQPfBaQBQXF5OYmEhCQgJarZbMzEwKCgq6tCksLCQ7OxuAjIwM9uzZg6IoXdqYzWYyMzO9VaYQQogL8FpAWCwWjEaj57bBYMBisXRrExcXB4BGoyE8PByr1dqlzdtvvy0BIYQQPuDXezF9+eWXBAcHM2XKFF+XInxENuATwne8FhAGg4Hq6mrPbYvFgsFg6NamqqoKo9GI0+nEZrMRFRXleVy6l4RswCeE73itiyklJYWSkhLKyspwOByYzWbS09O7tElPT2fbtm0A5Ofnk5qaikqlAsDtdvPOO+9IQAghhI947QxCo9GwevVqli9fjsvlYvHixSQlJbFu3TqSk5OZM2cOOTk5rFq1CpPJREREBGvXrvU8f+/evcTFxZGQkOCtEoUQQvTCq2MQaWlppKWldblvxYoVnq91Oh3r16/v8bnXXXcdr732mjfLE0II0QtZSS2EEKJHEhBCCCF65NfTXIW4kMbWdh5453NOnG7C4XSTZAjj0Vum+rosIUYUCQgx7FibHfzkT59T1dDG7CljCVBD/kELWo2ab00c4+vyhBgxJCDEsFLbZGdj0UkU4I93Xct1E2MAWPPuEV7c/RW6gAC+kRjV+0GEEH0iYxBiWCk8cpo2p4vf/uAbnnAAeNg0hW9MiGT7lxXU2Ow+rFCIkUMCQgwbja3tFJc3cE1iNBPHhnZ5TBOgZvV3r8TpUviivN5HFQoxskhAiGFjz8la3IrCtyf3PM4wJlxHQnQIxyy2Ia5MiJFJAkIMC3ani09O1TJ9nJ7o0AvvwTTVGE65tRVbW/sQVifEyCQBIYaFz7620tbu5oaksb22m2oIB+C4pWkoyhJiRJOAEMPCvtJ6xkcFMyE6pNd2cRFBhAdpOCrdTEJcMgkI4fccTjdVDa1Mjg27aFuVSsVUQzjHT9twuZWLthdCXJisgxB+r6K+FbcCCVH/PHtwutyUW1u6tLO3uwCYYgjn06+tlNa1cPmYrrOdhBB9JwEh/F5nECSc073U2u5m31d1XdrNmhAJwOTYMNQqOFptk4AQ4hJIF5Pwe6V1LUSFBBKm69vfM0GBASREh3CqRgaqhbgUEhDC75XVtXQ5e+iLuIggTtvsKIqMQwgxUBIQwq+dbmyjsc150dlL5zPog7A73TS0ynoIIQZKAkL4tUNVjUDXAeq+iA0PAsDS2DboNQkxWkhACL92sLKRALWKuIigfj3PoNcBYGmUjfuEGCivBkRRUREZGRmYTCY2btzY7XGHw8HKlSsxmUwsWbKE8vJyz2NHjhzhtttuIzMzk/nz52O3yw/6aHSospFxEUFoAvr3rRqi1aAP0sgZhBCXwGsB4XK5yM3NZdOmTZjNZnbs2MGJEye6tNmyZQt6vZ6dO3eydOlS8vLyAHA6naxatYonnngCs9nMq6++ikYjM3JHm3aXmyPVtn4PUHcy6IOw2CQghBgorwVEcXExiYmJJCQkoNVqyczMpKCgoEubwsJCsrOzAcjIyGDPnj0oisJHH33E1KlTmTZtGgBRUVEEBAR4q1Thp06eacbudDM+KnhAz48N13G60S4rqoUYIK8FhMViwWg0em4bDAYsFku3NnFxcQBoNBrCw8OxWq2cOnUKlUrFXXfdRXZ2Ni+99JK3yhR+rKS2GYAxYboBPd+gD8LpVqhqaB3MsoQYNfyy38blcvHZZ5/x+uuvExwczNKlS0lOTuZb3/qWr0sTQ6isrmMFdW/be/fGoO8Y2D55pplUuVa1EP3mtTMIg8FAdXW157bFYsFgMHRrU1VVBXSMO9hsNqKiojAajXzzm98kOjqa4OBgZs+ezcGDB71VqvBTX9e2EKbTEBw4sO7F2LMzmU7WNA9mWUKMGl4LiJSUFEpKSigrK8PhcGA2m0lPT+/SJj09nW3btgGQn59PamoqKpWKG264gWPHjtHa2orT6WTv3r1MnjzZW6UKP1Va18K4yCBUKtWAnq/TBBAVEsipMxIQQgyE17qYNBoNq1evZvny5bhcLhYvXkxSUhLr1q0jOTmZOXPmkJOTw6pVqzCZTERERLB27VoAIiIiWLp0KTk5OahUKmbPns2NN97orVKFnyqra2FCzMBmMHUy6IM4JWcQQgyIV8cg0tLSSEtL63LfihUrPF/rdDrWr1/f43OzsrLIysryZnnCj7ncCmXWFlInxVzScQz6ID48UYPD6UarkXWhQvSH/MQIv1Td2Ea7SyE+cmBTXDvFhutwuRVK61ou3lgI0YUEhPBLX5+d4jousn9bbJyvcwZUmVUCQoj+koAQfqlziuulnkFEhXQERLmcQQjRbxIQwi99XduCRq3yTFUdqLAgDdoAtXQxCTEAEhDCL5XWtRAfFYxGfWnfompVx06wZXWymlqI/pKAEH6ptK6l3xcJupC4yCAZgxBiACQghF8a1ICICPaMaQgh+k4CQvidhtZ26lvaBy0gxkUG0djmpKFFLj8qRH9IQAi/0/nX/qAFRETHTCjpZhKifyQghN/pnHF0qdtsdIo7u5ZCupmE6B+/3O5bjE4NLQ5sdifF5fUAaNQq7O2uSz5ubHjHVNn9FQ2kjI8AIFynISJkYNuICzFayBmE8Bs2u5OiYzV8XlpPcGAAn31dj8N16VeDC1Crzx7PStGxGoqO1WCzOwehYiFGNgkI4Xdsre1EBAcO6jGjQgOxtjgG9ZhCjHQSEMLvNLY50QcPbu9nVIiWumaZxSREf0hACL/T2NpOeNDgnkFEh2qxtjhwK5feZSXEaCEBIfyKy63QZHeiH+SAiArR4nIr2Npk7EGIvpKAEH6lye5EgUHvYurc9tvaLOMQQvSVBITwK42tHeMEEYPdxXR2SmudDFQL0WcSEMKvNJwNCP0gz2KKDAlEhZxBCNEfXg2IoqIiMjIyMJlMbNy4sdvjDoeDlStXYjKZWLJkCeXl5QCUl5dz1VVXea5LvXr1am+WKfxIY1tHQIQHDW4XkyZATViQhnrZj0mIPvPaSmqXy0Vubi6vvPIKBoOBnJwc0tPTmTx5sqfNli1b0Ov17Ny5E7PZTF5eHs8//zwAEyZMYPv27d4qT/ipxlYnASoVobrB/9aMDA7E2ipnEEL0ldfOIIqLi0lMTCQhIQGtVktmZiYFBQVd2hQWFpKdnQ1ARkYGe/bsQZFpiKOara2d8CANapVq0I8dGaKVHV2F6AevBYTFYsFoNHpuGwwGLBZLtzZxcXEAaDQawsPDsVqtQEc308KFC7n99tv59NNPvVWm8DMNbe2DPv7QKSokkPrWdlkLIUQf+eVmfbGxsezatYuoqCgOHDjA/fffj9lsJiwszNelCS9rbHViuMTrUF9IxNm1EE2yD5MQfeK1MwiDwUB1dbXntsViwWAwdGtTVVUFgNPpxGazERUVhVarJSoqCoDk5GQmTJjAqVOnvFWq8CON3jyDOHtcGagWom+8FhApKSmUlJRQVlaGw+HAbDaTnp7epU16ejrbtm0DID8/n9TUVFQqFXV1dbhcHds8l5WVUVJSQkJCgrdKFX6ixe7E4XQP+hqITpFn10LUy1oIIfrEa11MGo2G1atXs3z5clwuF4sXLyYpKYl169aRnJzMnDlzyMnJYdWqVZhMJiIiIli7di0Ae/fuZf369Wg0GtRqNU888QSRkZHeKlX4iTNNdmDwV1F3igyRMwgh+sOrYxBpaWmkpaV1uW/FihWer3U6HevXr+/2vIyMDDIyMrxZmvBDZ2xnA8JLZxBBgQEEBaqpl6muQvRJn7qYHnjgAXbv3o3b7fZ2PWIUO9PU8YvbWwEBEBmslTMIIfqoTwHxL//yL7z11lvMnTuXvLw8Tp486e26xChU03kG4aVBaujoZpKAEKJv+tTFdP3113P99ddjs9nYsWMHy5YtIy4ujiVLlrBgwQICA733Ay1Gj5omO0GBarQa7+0AExkSSElts9eOL8RI0uefRKvVytatW9myZQtXXHEFd955J4cOHeJHP/qRN+sTo8iZJrtXu5ego4uprd0tayGE6IM+nUHcf//9nDp1iqysLH73u98RGxsLwLx581i0aJFXCxSjxxnbEATE2ZlMlsY2phn1Xn0tIYa7PgXE9773vW6zkRwOB1qtlq1bt3qlMDH61NgcJEQHe/U1OtdCVDe0efV1hBgJ+tTF1LnD6rluu+22QS9GjF4ut0Jds2PIziCqGyUghLiYXs8gzpw5g8Vioa2tjUOHDnl2Wm1qaqK1tXVIChSjQ22THZeieHUGE0CYTkOAWoVFziCEuKheA+LDDz9k69atVFdX88wzz3juDw0N5aGHHvJ6cWL06PyL3ttnEGqVisjgQCyNdq++jhAjQa8BkZ2dTXZ2Nvn5+bKyWXhV55iAt7bZOFdESKB0MQnRB73+NG7fvp2srCwqKip45ZVXuj2+bNkyrxUmRheLl7fZOFdUsJaSOlkLIcTF9BoQneMMLS0tQ1KMGL0sDW0EqFSEDfK1qHsSGRJIbakDu9OFThPg9dcTYrjq9afx+9//PtCxF5MQ3lTd2EZ0qNYrlxo9n2cmU0MbiTGhXn89IYarXgPiySef7PXJv/jFLwa1GDF6WRrbGBOuHZLX6lwLUWFtlYAQohe9BsT06dOHqg4xylU3tGGMCBqS14o8O5W2vF6magvRm4vOYhJiKFga20gZHzEkrxURHIgKqJSAEKJXvQbEU089xeOPP869997b4+O/+93vvFKUGF1aHS4a25yMDdMNyetpAtREh2mpsEpACNGbXgMiKysLQHZsFV7VuSZhTPjQBASAUR9EhZxBCNGrXvdiSk5OBuDaa69l5syZ6PV6IiIimDlzJtdee+1FD15UVERGRgYmk4mNGzd2e9zhcLBy5UpMJhNLliyhvLy8y+OVlZXMmjWLl19+uT/vSQwznYvkxoQNzSA1dASEdDEJ0bs+bda3e/duTCYTTz31FP/5n//J3Llzef/993t9jsvlIjc3l02bNmE2m9mxYwcnTpzo0mbLli3o9Xp27tzJ0qVLycvL6/L4s88+y3e+851+viUx3Jy2dQTEUHUxARj0Oirr23C7lSF7TSGGmz6tSnr22Wd59dVXSUxMBKC0tJS777672xbg5youLiYxMZGEhAQAMjMzKSgoYPLkyZ42hYWFnjUWGRkZ5ObmoigKKpWK9957j/j4eEJCQgb85sTw0HkGMTZcR2nd0PxVb4gIwuFyU9NkJ1Y/NLOnhBhu+nQGERoa6gkHgISEBEJDe58/brFYMBqNntsGgwGLxdKtTVxcHAAajYbw8HCsVivNzc289NJLskBvlKhubCNUG0CozvurqDsZz4aCTHUV4sJ6/Yn829/+BnSMRfz4xz/m1ltvRaVS8e6775KSkuK1on7961/zwx/+8KIhJEYGS2MbhiH+K75zzUVlfSvfmBA1pK8txHDRa0Ds2rXL8/WYMWPYu3cvANHR0djtvW+XbDAYqK6u9ty2WCwYDIZubaqqqjAajTidTmw2G1FRUXz55Zfk5+eTl5dHY2MjarUanU7H7bff3u83KPyfpdE+5AHR+Xoy1VWIC+s1IM69BkR/paSkUFJSQllZGQaDAbPZzK9+9asubdLT09m2bRuzZs0iPz+f1NRUVCoVf/nLXzxtXnjhBUJCQiQcRrDqhjauvTx6SF8zTKchPEgjU12F6EWfOn3tdjuvv/46x48f73Lm0FuAaDQaVq9ezfLly3G5XCxevJikpCTWrVtHcnIyc+bMIScnh1WrVmEymYiIiGDt2rWX/o7EsOJ2K5y2DX0XE0B8ZLBMdRWiF30KiFWrVjFx4kQ+/PBD7r//ft566y0mTpx40eelpaV1m+m0YsUKz9c6nY7169f3eoyf/vSnfSlRDFN1LQ7aXQpG/dBNce0UHxlMuXQxCXFBfZrFVFpaysqVKwkODiY7O5sNGzZQXFzs7drEKNA5xdUnZxBRwdLFJEQv+hQQGk3HiYZer+fYsWPYbDZqa2u9WpgYHToXyRmGaCfXc8VHBmNrc9LY1j7kry3EcNCnLqbbbruNhoYGVqxYwU9+8hNaWlq6dBUJMVCV9R0BERcRhGuIVzXHRwWfraEVvdH7lzoVYrjpU0AsWbIE6NiTqaCgwKsFidGlsr4VjVpFbHgQVQ1D290zLrIjIMrrWplm1A/pawsxHPQpIKxWK7/+9a/5/PPPUalUXH311dx3331ERckCI3FpKutbMUYEEaD2/qVGz5cY3bGNS2mdXHNdiJ70aQzioYceIjo6mvXr17Nu3TqioqL42c9+5u3axChQWd/m+Ut+qEWHagnXafi6ttknry+Ev+tTQJw5c4b777+fhIQEEhISuO+++2SQWgyKivpW4n0UECqVisQxIZTUyhmEED3pU0B8+9vfxmw243a7cbvdvP3229xwww3erk2McE6Xm+rGNp8FBEBiTKicQQhxAb2OQcyaNQuVSoWiKPzhD39g1apVALjdbkJCQnjssceGpEgxMp222XG5FZ91MQFcFhNC/oFq2l1uAgP69PeSEKNGrwGxb9++oapDjEKd21yMi/Td9RgSY0JxuhUq61tJjJHdg4U4V5834C8oKODTTz8FOqa73nTTTV4rSowOnauYfdnFdNnZUCipbZGAEOI8fTqnzsvL49VXX2XSpElMmjSJV199tdvOrEL0V4XnDMK3XUyAjEMI0YM+nUG8//77bN++HbW6I0+ys7NZuHAhDz/8sFeLEyNbZX0rkSGBQ3olufONDdcRHBhASY3MZBLifH0elWtsbPR8bbPZvFKMGF0q69sYF+G7swc4O9U1JkTOIIToQZ/+dLv33nvJzs7muuuuQ1EU9u7dyyOPPOLt2sQIV2FtJeHsamZfSowJ4cTpJl+XIYTfuWhAuN1uVCoV//d//8f+/fsBeOSRRxg7dqzXixMjW2V9K6kTh/ZKcj25LCaUXUfO4HIrPtnyQwh/ddGAUKvVbNq0iXnz5jFnzpyhqEmMAo1t7djsTs+Oqr6UGBOKww8W7Qnhb/o0BnH99dfz8ssvU1VVRX19veefEANV6QczmDp5ZjLVyDiEEOfq0xjE22+/jUql4i9/+UuX+2XrbzFQ/hQQiWP+uRbi+sk+LkYIP9KnM4i3336bH/zgB0ybNo0rrriCO+64A7PZfNHnFRUVkZGRgclkYuPGjd0edzgcrFy5EpPJxJIlSygvLweguLiYrKwssrKyWLBgATt37uzn2xL+rsLq+0VyneL0QWg1apnJJMR5+hQQjz32GF999RV33HEHt99+OydOnLjoPkwul4vc3Fw2bdqE2Wxmx44dnDhxokubLVu2oNfr2blzJ0uXLiUvLw+ApKQk3njjDbZv386mTZtYvXo1TqdzgG9R+KOK+jYCA1SMDdP5uhTUahUTokM4JV1MQnTRpy6m48eP8/bbb3tup6amMm/evF6fU1xcTGJiIgkJCQBkZmZSUFDA5Mn/PIcvLCzkgQceACAjI4Pc3FwURSE4+J9/VdrtdlQqmVky0lTWtxIXEYzaT2YNTRobynGLTHUV4lx9OoO48sor+eKLLzy3v/zyS5KTk3t9jsViwWg0em4bDAYsFku3NnFxcQBoNBrCw8OxWq2e18jMzGTBggU88cQTaDS+W20rBldDi4OvzjQxJkxLubXF88/e7hqyGpwud5fXjosIoqS2mdONQ3vZUyH8WZ9+6x48eJDvf//7jBs3DoDKykouv/xy5s+fD8Bbb7016IXNmDEDs9nMV199xWOPPcbs2bPR6XzfHSEunc3u5OSZZlLiIyg6VuO5f9aEyCGrobXdzb6v6jy329rduBU4WNlIrN734yJC+IM+BcSmTZv6fWCDwUB1dbXntsViwWAwdGtTVVWF0WjE6XRis9m6Xed60qRJhISEcOzYMVJSUvpdh/A/9S0OWttdjAn3n8A36Du2HD9V04zsUyxEhz4FRHx8fL8PnJKSQklJCWVlZRgMBsxmc7cdYNPT09m2bRuzZs0iPz+f1NRUVCoVZWVlxMXFodFoqKio4OTJkwOqQfinsrqObpwxYVofV/JPMWFa1Co4KQPVQnh4rWNfo9GwevVqli9fjsvlYvHixSQlJbFu3TqSk5OZM2cOOTk5rFq1CpPJREREBGvXrgXgs88+46WXXkKj0aBWq/mP//gPoqN9vyWDGByldR07p/rDDKZOGrWaMWE6mckkxDm8OvKblpZGWlpal/tWrFjh+Vqn07F+/fpuz1u4cCELFy70ZmnCh8qsLQSoVESG+M8ZBHR0M508IwEhRCe5CK8YcqV1LUSHav1uYzyDXkdVQxstDllzIwRIQAgfKKtr9asB6k6x4R0D1bIeQogOEhBiSLncChXWVr8aoO5kPDuT6ZhFLoglBEhAiCFWYW3F4XL71QB1p+gwLdoAtQSEEGdJQIghdbKmo/smxg8DQn328qPHpItJCEACQgyxzllCY/1wDALg8jGhcgYhxFkSEGJInappJkynIVQb4OtSenT52FCqGtpoaG33dSlC+JwEhBhSJ2uaSIgO9tsdeiePDQPgcFWjjysRwvckIMSQOnWmmQnRIb4u44KmGsMBOFDR4ONKhPA9CQgxZFocTiob2kjw44CIDtVi1AexXwJCCAkIMXROnO6YHXRZjP8GBEByfIQEhBBIQIgh1PlLd4oh3MeVXJjT5SYxJphTZ5o5Vt1IubWFhhaHr8sSwickIMSQOVDRQERwIHERQb4u5YJa2920uxQUYMtnFRQdq8Fml72ZxOgkASGGTHF5AynxEX47g6lTfGTHFeUq6+Xyo2J0k4AQQ8LudHHMYiM5PsLXpVxUeFAg+iANFRIQYpSTgBBD4mi1jXaXQsowCAiAcZHBEhBi1JOAEEOic4B6OAVEjc2O3enydSlC+IwEhBgSnQPUCdHBvi6lT+Ijg1GAqvo2X5cihM9IQIghsb+igeR4vd8PUHfqHKiWbiYxmnk1IIqKisjIyMBkMrFx48ZujzscDlauXInJZGLJkiWUl5cD8NFHH7Fo0SLmz5/PokWL2LNnjzfLFF5md7o4Wj08Bqg76YNloFoIrwWEy+UiNzeXTZs2YTab2bFjBydOnOjSZsuWLej1enbu3MnSpUvJy8sDICoqihdffJG33nqLZ599lkcffdRbZYohcKy6aVgNUHcaHxVCWV2Lr8sQwme8FhDFxcUkJiaSkJCAVqslMzOTgoKCLm0KCwvJzs4GICMjgz179qAoCldeeSUGgwGApKQk7HY7DoesZh2uhtsAdaeE6BBqmx3Uy0pqMUp5LSAsFgtGo9Fz22AwYLFYurWJi4sDQKPREB4ejtVq7dImPz+fK6+8Eq3W/65hLPpmX6mVyJBAv97FtScJUR3jEIer5AJCYnTS+LqA3hw/fpy8vDw2b97s61LEJdhzspbrLo8eNgPUneKjglEBhyrl2hBidPLaGYTBYKC6utpz22KxeLqNzm1TVVUFgNPpxGazERUVBUB1dTUPPPAAa9asYcKECd4qU3hZWV0L5dZWvjUxxtel9JtOE4BBH8RBuXiQGKW8FhApKSmUlJRQVlaGw+HAbDaTnp7epU16ejrbtm0DOrqSUlNTUalUNDY2cvfdd/Pwww9z9dVXe6tEMQT2nKwF4FuTxvi4koEZHxXM4apGFEXxdSlCDDmvBYRGo2H16tUsX76cefPmceutt5KUlMS6des8g9U5OTnU19djMpl45ZVXeOSRRwD405/+RGlpKb/5zW/IysoiKyuL2tpab5UqvOjjr2qJDtUyxRDm61IGJCE6BFubk1M1zb4uRYgh59UxiLS0NNLS0rrct2LFCs/XOp2O9evXd3vefffdx3333efN0sQQUBSFj0/Wkjpx+I0/dEqI6hhY/6Ksnoljh2fICTFQspJaeE1pXQuVDW3DcvyhU6xeR7A2gC/K6n1dihBDTgJCeM2erzrHH4ZvQKhVKqYZwyUgxKgkASG8Zs/JWsaG65g0zLtmrozTc7iqkbZ22dlVjC4SEMIrFEVhz1e1pE6MGbbjD52uHKen3aVwUNZDiFFGAkJ4xcHKRk7b7MxOGp7TW881PU4PIN1MYtSRgBBeUXjkNCoV3Dg11telXLIx4TriIoIkIMSo49dbbYjho6HFgc3u9Nx+50AVVxj1aAOGd/dSp5kJkXxRZr14QyFGEAkIMShsdidFx2o6vm5r53CVDdOVBmx2JxEhw3+jxZkJkbxzoJqaJjtjwnS+LkeIISFdTGLQHbN07H46zRju40oGz8yESAC+KJVuJjF6SECIQXek2kZEcCBGfZCvSxk0KeMjCFCrZBxCjCrSxSQGldPl5vjpJmYmRKJSqXC63JRbu4quicsAABclSURBVF6VzT7M1hM4XW7qmh1MHBPKxydrPe8nXKcZEd1nQlyIBIQYVCdrmnE43Z7updZ2N/u+quvSZtaESF+UNmCd7yEqRMuX5fXsPnoGtUrF7CljJCDEiCZdTGJQ7S9vQKdRD/vV0z1JiA7G7nRTY7P7uhQhhoQEhBg07S43ByobmD4ugsCAkfet1bmza2ldy0VaCjEyjLyfYuEzR6tt2J1uZiRE+LoUrxgbriNEG8DXtRIQYnSQgBCD5svyesJ0GiaOGXndSwAqlYrE6BBKauXiQWJ0kIAQg6LZ7uRotY2U+I7poCNVYkwotc0ObG3tvi5FCK+TgBCDoujYGZxuhRkJw2uGUn9dFtMxDiHdTGI0kIAQg8K8v5qokEASooJ9XYpXjYsKRqNW8bV0M4lRwKsBUVRUREZGBiaTiY0bN3Z73OFwsHLlSkwmE0uWLKG8vBwAq9XKHXfcwaxZs8jNzfVmiWIQfPa1lS/K6vnWCLj2w8Vo1GoSokP4WmYyiVHAawHhcrnIzc1l06ZNmM1mduzYwYkTJ7q02bJlC3q9np07d7J06VLy8vIA0Ol0rFixgkcffdRb5YlB9NtdJ4gIDuTay4fvpUX7IzEmhMr6Vlodw2tFuBD95bWAKC4uJjExkYSEBLRaLZmZmRQUFHRpU1hYSHZ2NgAZGRns2bMHRVEICQnhmmuuQaeTXTP93aHKRgqOnGbJNePRakZHj+VlMaG4FThUJVeYEyOb136iLRYLRqPRc9tgMGCxWLq1iYuLA0Cj0RAeHo7VKnvuDye/3X2CMJ2GRd+I93UpQ2ZCdAgqoLhcNu4TI5vsxSQu6PyLAHXq3KTuH6fqeHt/FfekTUIfFOiDCn0jKDAAY0QQn30tASFGNq8FhMFgoLq62nPbYrFgMBi6tamqqsJoNOJ0OrHZbERFRXmrJNFP514E6Fyzp4yh2eHivj9/xmUxofzkxkk0to6udQFTDOF8eLyGhtZ2IoJHTziK0cVrXUwpKSmUlJRQVlaGw+HAbDaTnp7epU16ejrbtm0DID8/n9TU1BE/C2YksLe7uOePn9HW7mbjndeMqrOHTlcYw3EpCkXHzvi6FCG8xmtnEBqNhtWrV7N8+XJcLheLFy8mKSmJdevWkZyczJw5c8jJyWHVqlWYTCYiIiJYu3at5/np6ek0NTXR3t7Oe++9x+bNm5k8ebK3yhV91Opw8a9b97O/ooGX7ryGybEjc1uNixkfHUJkcCCFR04zf8Y4X5cjhFd4dQwiLS2NtLS0LvetWLHC87VOp2P9+vU9PrewsNCbpYkBqG2y84c9X1Pf4uC5nKswXWm4+JNGKLVKReqkGHYdPY3LrYzo7UXE6DU65iWKS3bGZud3739Fi8PJ2ttm8L1rEnxdks9dPymG+pZ29pXKzDsxMklAiIuqb3Gw+aNToFJxz+xJzJogEwkArr08Go1aRcGR074uRQivkIAQvWqxO9n8UQlt7S6WXX8ZY8Nl8WKnMJ2Gay+PpvCwBIQYmSQgRK/ePlBFXbOdO791GeMiR/ZGfAMx5woDRy02DsuqajECSUCIC/q81MrnpfV8J2ksl48J9XU5fmnxN+IJ0Qawseikr0sRYtBJQIge2Z0u8vKPERUSyE1TY7s85nS5Kbe2dPlnbx+dG9dFhmj5f9dO4K9fVlJulR1excgiASF6tPH9k5TWtbBgRny3Tfha290UHavp8s/hUnxUqe/ddcPlqICXPzzl61KEGFQSEKKbmiY7L77/FbOnjGGqMdzX5fi9cZHBZM2M53//UYa12eHrcoQYNBIQopvf7DpBW7uLe2ZP9HUpw8a9aRNpbXfxxFsHKatr7tYF19AiwSGGH9nNVXRRbm3hzx+XknP1eBJjQvm6ttXXJQ0LSYZwHrhpMr/edYIWh4sbzxu3mT1lDBEhWh9VJ8TASECILta9dxyAFTdPQVFG77jCQDw8dwpHLTb+dshCRHCgLCgUw550MQmPw1WNvPF5ObenJhIvax76TaVS8W+3TuPyMaFs+aycrZ+Xy2VJxbAmZxAjwMUu7NMXiqLwyzcPEBEcyE/TZdfcgdJq1Cy9/jIKj5zmg+NnOGqxcfM0A9dPiu7zMXr6PPvzWQoxWCQgRoDeLuzT118qb3xewadfW1mzOIWoUPlFdCkCA9RkTDeSPC6Cv35ZwbYvKvj4VC333TSZhTPHEd7L9TNaHE4+PlVL/gELKhVEhWgZG64j86o4CQgx5CQgBA0t7Tzz9mG+MSGSJVfLLq2DJT4qmHvTJnHMYuOTU3X88s0DPG0+zC3JRpLjI5gcG4bT5aamyc7R6ib+UVLLocpG3OcN/ahVUFzewL/eOo2E6BDfvBkxKklA+NildA/Z2to5Um3jk5O17Cutp8nuJCgwgDFhOuIigvo0yOxwuvnZa19gbXHwhx9di1qua9BnnSvKz3X+inKVSsVUo57l37mc2uZ2/vcfpfztkIVt+yq6tNNq1CSP0/PDb13GZWNCaGzt+J6wtrRzpLqRnYcs/O1QNT+5cTI/TZ9MYMCFhw8Ho8tReNdw+YwkIHzI6XLzeamVnYdO09DaTmu7i47f6QqTY8Mw6IPQBQYQHBhAgBoaW51YWxwctzRxsLKBktquv5yCAwNwON24zgbDjuJKbk9NJHtWPDFh3XdhbXe5+en/fE7hkdM8uTCZ5PiIIXjXI0dru5t9X9V1uW/WhMge26pUKmYmRDIzIZJnFinUNDn4+GQNhypthAVpCA/SoFGrPcfYV1oPQEyYjsmxYTwydwp//LiU9QXHef/YGdZ+bwYTx/Z8Nb/B6HIU3jVcPiMJiCF22tbGO/urKThyms9K6mg+b5aLClCAXUcvfK3jhOhgpsdFsPgb45keryciOJBDlTYC1CpcboX6FgcnzzRz1GLjSfNh1rx7BNOVBjJTxpEcr2dsuI6iYzX86eOv+fBEDf8+/0puT0307hsXHiqVirHhOmZNiMLW1rdZTrH6INbeNpM5V8Ty+LYD3PL8B9z5rUQeSJ9MpB/9QhEjiwTEJerLjJPaJjvvHKjmzX0VfPa1FQVIjA7BNN3A9Dg9Da1OIoIDCdEGoFKpUBSFay+PwulWsDvd2Ns7zgrCdRoiQzSoVF27F+ztLs8lLwPUKmLCdMSE6Vhx82RK61oxF1fy7kELb++v7vK8yJBAnlgwnR9ef1mP72O0bsDnDX3pjurL82cmRPKHZd/kpQ9O8fKHp/jfvWVcnRhFcrwebUAAFlsbX9c2U1LTgq2tHU2AmqBANVEhWupa7GTNiJdxDB9zON3sPVVH4RELFdZWbHYngQFqdBo1J2uauDU5jhnjI9D00o04VLwaEEVFRTz11FO43W6WLFnC3Xff3eVxh8PBo48+ysGDB4mMjGTt2rWMHz8egA0bNvD666+jVqv5xS9+wXe+8x1vltonLrfC17XNHLPYsDTaOWOzU9Nkp6K+FRUq1CpQqeCyMaFEBmux2Nr4/GsrRy02FAUmRIdw07RYUuIjMOiDgK7dCZ1UKhVON+wrbehWQ0f7vnVrtLa7Kbe2MiMhiunxEVQ3tBEepKHF4SJ1YgzXXR7t+Sbs6ZT3QscV/def7qi+PP/bk8cwaWwYJ2ua+OpMMxveP4nTrRATqiUqVEuoLgCjPgiXotDqcFFubSUv/xh5+cdIiY8ga+Y4MqYbJSyGSLPdye6jZ8g/WM2uI6ex2Z2ogDFhOiJDAnG6FeqaHWz64BSbPjhFTKiWW1OMZKaM45rLonodc/ImrwWEy+UiNzeXV155BYPBQE5ODunp6Uye/M859lu2bEGv17Nz507MZjN5eXk8//zznDhxArPZjNlsxmKxsGzZMvLz8wkICPBWubjcCm3tLtraXbS2u2hsdVLV0Eq5tZWjFhuHKhs5Wm2j9Zy/+gLUKrQBapxuN26lYy2BooBytnsoXKdh5oRIbkk2MvdKI+FBAXxwvNZr76E3GrWa8VEhzJ4yhvFR8kthJDBGBPG9b45nfFQIdqcLFSq0GjXl1pZuYa8oCpePCeVgZSNvFVfypPkwT5oPM2lsKN+e3LEpY1JsOLHhHb+wQrQaAtSdf/TIxIW+cLrctLS7aGxtx9Jop7K+lYOVjeyvqGdviRWH00302V/8VydG0Wx3ERTY9XfaVeP1lNS28O6Bal7/rJw/fVxKuE7D9ZNjuGp8JEmxYUyICSEqREtEcCDaALVXJ5Z4LSCKi4tJTEwkIaFj2mRmZiYFBQVdAqKwsJAHHngAgIyMDHJzc1EUhYKCAjIzM9FqtSQkJJCYmEhxcTGzZs0a9DrrWxxkPF+EpdF+wTb6IA1XxOn5/rUJXBGnZ5oxnHGRwUSFaKlqaO32w/idpBjiI0NQnffDJdcLEN6i0/T+x5NKpWJCTAjXTx7Dj2dP5FRNM4VHTrP76Gm2fFre5Q+f7s+FAJUK9dnAUPcSGBebOKfQe4OLP3+gD3r3tRVF6TY9GSAwQMVUYzi3X5dIxnQD11wWTYBa1WOIQ8f1Rb4bH8l3rxpHs93JB8fP8P6xGj48cYb8g5YeX1ujVvHL717JD6+/rPc3MABeCwiLxYLRaPTcNhgMFBcXd2sTFxfXUYhGQ3h4OFarFYvFwowZM7o812Lp+T+nU0VFBYsWLRpQrfFn//WmvRi+pOPfxbzej9e+UNv+3D8Ybf2hBmk7OG0v5EJtr+jHMcQAHIYv6Ph3MRf6jMae/Xch24/A9n4X1qGiouKCj42YQepPPvnE1yUIIcSI4rWRD4PBQHX1P2fNWCwWDAZDtzZVVVUAOJ1ObDYbUVFRfXquEEII7/JaQKSkpFBSUkJZWRkOhwOz2Ux6enqXNunp6Wzbtg2A/Px8UlNTUalUpKenYzabcTgclJWVUVJSwlVXXeWtUoUQQvTAa11MGo2G1atXs3z5clwuF4sXLyYpKYl169aRnJzMnDlzyMnJYdWqVZhMJiIiIli7di0ASUlJ3HrrrcybN4+AgABWr17t1RlMQgghulMpclUYIYQQPfD9Uj0hhBB+SQJCCCFEjyQgztq8eTNTp06lrq5jOwNFUXjyyScxmUzMnz+fgwcP+rjC/luzZg233HIL8+fP5/7776exsdHz2IYNGzCZTGRkZPDBBx/4sMqBKSoqIiMjA5PJxMaNG31dzoBVVVVxxx13MG/ePDIzM/nDH/4AQH19PcuWLWPu3LksW7aMhobu264MFy6Xi4ULF3LPPfcAUFZWxpIlSzCZTKxcuRKHw+HjCvuvsbGRBx98kFtuuYVbb72Vffv2jajPzEMRSmVlpfKjH/1IufHGG5Xa2lpFURRl9+7dyl133aW43W5l3759Sk5Ojo+r7L8PPvhAaW9vVxRFUZ577jnlueeeUxRFUY4fP67Mnz9fsdvtSmlpqTJnzhzF6XT6stR+cTqdypw5c5TS0lLFbrcr8+fPV44fP+7rsgbEYrEoBw4cUBRFUWw2mzJ37lzl+PHjypo1a5QNGzYoiqIoGzZs8Hx2w9HmzZuVhx56SLn77rsVRVGUBx98UNmxY4eiKIryy1/+Uvnzn//sy/IG5NFHH1Vee+01RVEUxW63Kw0NDSPqM+skZxDAM888w6pVq7psi1FQUMDChQs79vGfOZPGxkZOnz7twyr774YbbkCj6ZioNnPmTM/akgttZTJcnLuNi1ar9WzjMhzFxsYyffp0AMLCwpg4cSIWi8Xz/QewcOFC3nvvPV+WOWDV1dXs3r2bnJwcoOPM/OOPPyYjIwOA7OzsYffZ2Ww29u7d63lPWq0WvV4/Yj6zc436gHjvvfeIjY1l2rRpXe4/f6sQo9F40e0+/Nkbb7zB7NmzgZ63QRlO7224138h5eXlHD58mBkzZlBbW0tsbCwAY8eOpbbWN5s8Xqqnn36aVatWoT57MSSr1Yper/f84TIcf67Ky8uJjo7m3/7t31i4cCGPP/44LS0tI+YzO9eI2WqjN0uXLqWmpvvGWCtXrmTDhg1s3rzZB1UNjt7e28033wzAiy++SEBAAAsWLBjq8kQfNTc38+CDD/Lzn/+csLCuV4pTqVTDckfVXbt2ER0dTXJy8ojaCsfpdHLo0CF++ctfMmPGDJ588slu42DD9TM736gIiN///vc93n/06FHKy8vJysoCOk6HFy1axJYtW7pt91FdXe2X231c6L112rp1K7t37+b3v/+95xt2uG9lMtzrP197ezsPPvgg8+fPZ+7cuQDExMRw+vRpYmNjOX36NNHR0T6usv8+//xzCgsLKSoqwm6309TUxFNPPUVjYyNOpxONRuO3P1e9MRqNGI1Gz4ait9xyCxs3bhwRn9n5RnUX09SpU9mzZw+FhYUUFhZiNBrZunUrY8eOJT09nTfffBNFUfjiiy8IDw/3nD4OF0VFRWzatIkXX3yR4OBgz/3DfSuTvmzjMlwoisLjjz/OxIkTWbZsmef+zu8/gDfffJM5c+b4qsQBe/jhhykqKqKwsJD//u//JjU1lV/96ldcd9115OfnA7Bt27Zh99mNHTsWo9HIyZMnAdizZw+TJk0aEZ/Z+WQl9TnS09N5/fXXiY6ORlEUcnNz+eCDDwgODubpp58mJSXF1yX2i8lkwuFwEBnZceWyGTNmkJubC3R0O73xxhsEBATw85//nLS0NF+W2m/vv/8+Tz/9tGcbl5/85Ce+LmlAPv30U37wgx8wZcoUTz/9Qw89xFVXXcXKlSupqqpi3LhxPP/8857PcTj65JNP2Lx5Mxs2bKCsrIyf/exnNDQ0cMUVV5CXl4dWO7yuq3348GEef/xx2tvbSUhI4JlnnsHtdo+ozwwkIIQQQlzAqO5iEkIIcWESEEIIIXokASGEEKJHEhBCCCF6JAEhhBCiRxIQYsR74YUXePnllwFYt24df//734GOKaaZmZlkZWXR1tbGmjVryMzMZM2aNb4s94L279/Pk08+6esyxCgi01zFiPfCCy8QEhLCXXfd1eX+1atXc/XVV3tW0l999dX84x//6PPlbTtXAwsxUsl3txiRXnzxRd58802io6OJi4vz7Jj6r//6r9x4443YbDbeffddPvzwQ4qKimhubqalpYVFixZxzz33kJqayr//+79TWVkJwM9//nOuvvpqXnjhBUpLSykrK2PcuHH84he/uGC7yspKysvLqays5Ic//CF33nkn0LHK9uWXX0alUjF16lT+67/+i7q6uh6Pc65zF5v1dvxzzZo1izvvvJNdu3YRFBTEb3/7W8aMGeO1/3cxwvhqn3EhvGX//v3Kd7/7XaWlpUWx2WzKzTffrGzatElRFEV57LHHlHfeeafb14qiKDNnzvR8/dBDDyl79+5VFEVRKioqlFtuuUVRFEVZv369kp2drbS2tl603W233abY7XaltrZWufbaaxWHw6EcO3ZMmTt3rue6I1artdfjnOvjjz/2XFPhQsc/35QpU5SCggJFURRlzZo1ym9+85v+/4eKUUvOIMSI8+mnn3LzzTd79p8ayF4/f//73zlx4oTndlNTE83NzZ7jBQUFXbRdWloaWq2W6OhooqOjqa2t5eOPP+aWW27xbOTWuRXDhY4TGhp6wRp7Ov6526ADBAYGctNNNwGQnJzMRx991O//CzF6SUAI0QO3281rr72GTqfr9ti5Gx/21u7c/YUCAgJwOp0Der0L6cvxAwMDPbv4qtVqXC5Xn48vhMxiEiPON7/5Td577z3a2tpoampi165d/T7GDTfcwB//+EfP7cOHD19Su06pqam8++67WK1WoOPa0wM5jhBDQQJCjDjTp09n3rx5ZGVl8eMf/3hAu/A+/vjjHDhwgPnz5zNv3jz+53/+55LadUpKSuLee+/ljjvuYMGCBTz77LMDOo4QQ0GmuQohhOiRnEEIIYTokQSEEEKIHklACCGE6JEEhBBCiB5JQAghhOiRBIQQQogeSUAIIYTo0f8HlP4RyS644fMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1501,11 +1570,11 @@ "metadata": { "id": "PcBDorCcl6AS", "colab_type": "code", + "outputId": "3dad2352-5006-4258-fb6f-de2097813079", "colab": { "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "b862a1b9-a68c-404f-b25d-92cc215299d4" + "height": 0 + } }, "source": [ "ci_95 = std*2\n", @@ -1517,7 +1586,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "17.7912540435791" + "17.629011154174805" ] }, "metadata": { @@ -1558,11 +1627,11 @@ "metadata": { "id": "qR8D_BKel6Ay", "colab_type": "code", + "outputId": "de0902ae-167b-4168-a566-fb3b26d7e2fc", "colab": { "base_uri": "https://localhost:8080/", - "height": 458 - }, - "outputId": "505dd2a5-20ad-4ae0-b146-d91c112c32e3" + "height": 0 + } }, "source": [ "sns.jointplot('n1', 'n2', data=df) " @@ -1573,7 +1642,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": { @@ -1584,7 +1653,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAGoCAYAAAD1m7qEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df3CUVZ7v8c+TTodtVjSgpLNkEH8s\nximGHyndiw6zsEZCxBjJBHHr1rg7sMxgUVPFRq3MCLiIgPwc51o1VUvFUYbZGZdVEaNO3A2agLEc\nozUahOU6WZ1rFmhMMyABJFmSdJ77R+g2JN2dTkjyPKf7/aqyJE863V8ayCfnnO9zjmXbti0AAAyQ\n5nQBAAAkitACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABgj3ekCAEhnWtt17kJnn+tj\nRqXrqtEZDlQEuBOhBbjAuQudqvuvk32uz77pGkIL6IHpQQCAMQgtAIAxCC0AgDEILQCAMQgtAIAx\nCC0AgDEILQCAMbhPCxhh0W4kvtARivrYzlCXjp1u7XOdm46RqggtYIRFu5E479rMqI9t6+hSwx+/\n7HOdm46RqpgeBAAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAY\ng9ACABiD0AIAGIMNc4FhEm03dyn2ju4A+kdoAcMk2m7uUuwd3QH0j9ACDBTtnC3O2EIqILQAA0U7\nZ4sztpAKaMQAABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYgx0xgCEQ\nbXNcNsYFhh6hBQyBaJvjsjEuMPSYHgQAGIPQAgAYg9ACABiDNS0gSUQ7Y0vinC0kF0ILSBLRztiS\npG/fOK5PZ6NEmMFMhBaQ5GKFGYdGwkSEFjAA0e7Hksy8JyvadCKjL7gdoQUMQLT7sSQz78mKNgJj\n9AW3I7SAKJJpRAUkE0ILiCKZRlRAMiG0AETQNg+3I7QARNBpCLcjtAwTa60lVX8SjvZ+pKdJnV19\nHxvrPWKH9v6NdKchf88RS0qHllv+YQykjlhrLbF+Eo723Mn0Dz/W7uoNR1r6PDbWTbYXOkJ6//PT\nfZ4DXxuuTsN4DS+9/0yG6jWHi1u+nyQ7y7Zt2+kiLtfSpUt1+nTfv+AAYKqxY8fqueeec7oM10mK\n0AIApAZ2eQcAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYIylCa+nSpU6XAACO\nSLXvf0kRWmzhBCBVpdr3v6QILQBAaiC0AADGILQAAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0AADG\nILQAAMYgtAAAxkh3ugAASEaVDQFtq27U8ZY2Tcj0qbwwVyV5OU6XZTxCCwCGWGVDQCv3HFJbR0iS\nFGhp08o9hySJ4LpMTA8CwBDbVt0YCaywto6QtlU3OlRR8iC0AGCIHW9pG9D1yxHqsnWmtX3In9et\nHA+tUCikkpISPfjgg5Kko0ePatGiRSooKFBZWZna21PnDwNAcpiQ6RvQ9cvRZds6d6FzyJ/XrRwP\nrX/5l3/RjTfeGPn4pz/9qRYvXqw333xTV155pXbv3u1gdQAwcOWFufJ5PZdc83k9Ki/Mdaii5OFo\naDU3N2v//v267777JEm2bau+vl6FhYWSpO9+97uqqalxskQAGLCSvBxtKp2qnEyfLEk5mT5tKp1K\nE8YQcLR7cOPGjSovL9f58+cldZ/AeeWVVyo9vbus7OxsBYNBJ0sEgEEpycshpIaBYyOtffv2ady4\ncfrWt77lVAkAYLw0y9KYUalz95Jjv9OPPvpItbW1qqur04ULF/TVV1/pySef1NmzZ9XZ2an09HQ1\nNzfL7/c7VSIAuJ4nzdJVozOcLmPEODbSeuSRR1RXV6fa2lr97Gc/02233aannnpKM2fOVHV1tSTp\nlVdeUX5+vlMlAgBcxvHuwd7Ky8v1y1/+UgUFBWppadGiRYucLgkA4BKumAidOXOmZs6cKUmaOHEi\nbe4AgKhcN9ICACAWQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEILAGAM\nQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEIL\nAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBg\nDEILAGAMQgsAYAxCCwBgjHSnXviLL77Qj3/8Y506dUqWZen+++/X97//fbW0tOihhx5SIBBQTk6O\nnn76aV111VVOlQkAcBHHRloej0ePPvqo3njjDb3wwgv613/9V3322Wd65plndPvtt2vv3r26/fbb\n9cwzzzhVIgDAZRwLraysLE2ZMkWSdMUVV+iGG25QMBhUTU2NSkpKJEklJSV66623nCoRAOAyrljT\nOnbsmD755BNNnz5dp06dUlZWliRp/PjxOnXqlMPVAQDcwrE1rbDz589rxYoVWrVqla644opLPmdZ\nlizLcqgyAMOtsiGgbdWNOt7SpgmZPpUX5qokL8fpsuBijo60Ojo6tGLFChUXF2vevHmSpKuvvlon\nTpyQJJ04cULjxo1zskQAw6SyIaCVew4p0NImW1KgpU0r9xxSZUPA6dKM0mXbOna6VWda250uZUQ4\nFlq2bWv16tW64YYbtGTJksj1/Px8VVZWSpIqKyt15513OlUigGG0rbpRbR2hS661dYS0rbrRoYrM\nFOqyVfdfJ3XuQqfTpYwIx0Lrww8/1Kuvvqr6+notWLBACxYs0Ntvv61ly5bp3Xff1bx58/S73/1O\ny5Ytc6pEAMPoeEtb1OuBljZd/2iVZm2uZdSFPhxb07r11lvV2Bj9J6pf/epXI1wNgJE2IdOnQIzg\n6jldKIl1LkS4onsQQOopL8yVz+uJ+ximC9Gb492DAFJTePQU7h60Yzwu1jQiUhOhBcAxJXk5kfCa\ntbk26nThhEzfSJdlFEtS3rWZSk+RebMU+W0CcLtY04Wt7Z00ZMRhS2o40qLOLqcrGRmEFgBXKMnL\n0abSqcr0eS+5frq1g/u3EEFoASmosiGgWZtrXddaXpKXoz8f1XfVgoYMhLGmBaSY8E4U4Rt73dZa\nHqvxgoYMSIy0gJTj9p0oYjVe0JABidACUo7bRzLRGjJ8Xo/KC3MdqsjdLEkzrx+rMVGmVZNRavwu\nAUTE2oki0ZHMcO/M3vv+LXZ/j8+WNMrr0VWjM5wuZUQQWkCKKS/MvWRNS0p8JDNS62E9798CemJ6\nEEgx4dbynEyfLEk5mT5tKp2aUEi4fT0MyY+RFpCCBjuScft6GJIfIy0ACaOzz33SLCtlmjAkQgvA\nANDZ5z6eNCtlmjAkpgcBDACdfXAaoQVgQOjsg5MILQCXGO77sIDLQWgBiHD7voQAjRgAIrgPyzxd\ntq1jp1t17HSrzrS2O13OsGOkBaSYeNN/se63CrS06fpHq5gudKFQl626/zopSZp90zVJ30lIaAGG\nGszaU3/Tf7H2JZS697hjuhBOY3oQMFA4fAItbZeESX+HOcaa/nvkxY9V2RCIeeR978czXQinEFqA\ngQa79hRr+i9k25ERVM99CQf6PMBwY3oQMFC8PQCjTRtK3UFnx3nOcOj13N3CY1kK2X2/im2b4BRC\nCzBEzzBKixEmmaO9fdasyl/6WLKkjlC8yFLk8T2/PtprsG2Tu1iS8q7NlCR1hrp0prU9qZsxCC3A\nAL0bKGKFiW2rz7RhR1f/YRXmsaw+Xx++3mXbdA+6kC2p4UhL5ONk7yAktAADRFvDkvqGyUMvHBj0\na/i8nqivIXXfC/T55qJBPzcwVAgtwCUqGwJa+9phtbR1SJLGjvaqaNpfaN8f/hSzDb13mGyrboz5\n2N7GjvZqdEb6JWtfsb6eNSy4BaEFuEBlQ0DlL318yVTe6dYO/ab+SNyv6x0m5YW5l0wjSpI3zeqz\npuXzevR48ZSo03y9v541LLgJoQW4wLbqxgGtPYW1tneqsiEQCZ9YR4fEujbjib2XjOweL56ihbfk\naNf7RxWybXksSwtvYVd3N+vZiCF1N2McO90a8/FjRqUbveZFaAEjrGcX4FU+ryyre1Q1GKdbO/rs\nUBHr6JCe12KN7B556WOl6etGj5Bt6+UPA7p10jiCy6V6N2L0x/RGDW4uBkZIZUNAeev2quyFA5Gd\nLFraOgYdWGGD2aEi1sgu1GX3uc4OGHATRlrACOjdsj7UYt1UHGt0NNAdLQIXn5/RFpzGSAsYAbFa\n1uMZO9ornzexf6Jej6WHeozg+tuLcDDdgInsbQgMN0ILGAGJtqFLUk6mT02bi9SwZp4W3vKNhL6m\nPWT32aIp3rReeWFud1dhL540K+r1/p4PGCmunR6sq6vTk08+qa6uLi1atEjLli1zuiRg0GLt4ddb\n7/byVz66vJFNrGnA8DRf7/vCHi+eIkkqi3GTMhvluk/v7sH+mL7VkytDKxQKad26dfrlL38pv9+v\n++67T/n5+frLv/xLp0sDBiVeYI32pqm1o0uSlGZ1B8lDLxzQn3nT1Hbx+mClWVbMwxtjdRlKsW9S\n5iZj9xlo96BkdgehK6cHDx48qEmTJmnixInKyMhQUVGRampqnC4LGLScGN/sM31e2T0OATnfHlJL\nW4ds6bIDS+oOy/7WuCobApq1uVbXP1qlWZtrY56rxU3GcANXhlYwGFR2dnbkY7/fr2Aw6GBFwOWJ\ndbjimf/pGLaOwt6irUlFO0zyoRcOqOziSC/T55Wl7tDdVDqV7kE4zpXTg0CyCX+zf+L1w5fcl5XA\nMteA5WT6YjZ+9F6TitbVGC7pdGuHfF6P/s/fziCs4BquHGn5/X41NzdHPg4Gg/L7/Q5WBPQVbVot\nnpK8HI3OGP6fE8sLc2NOR/Zek+qvsYKOQbiNK0daU6dOVVNTk44ePSq/36+qqio99dRTTpcFRPS+\nWTi8ZiQp7qhkJLrvyl/6WP/r+rFRR1t33Dw+8uvKhkDMwyR7CrS0adbmWs7RcqmBdg9K/e9PKLl3\nj0JXhlZ6errWrFmjH/zgBwqFQlq4cKEmT57sdFlARLRptbaOkB558WNJsYNrQpypO6m7e3BUepr+\np6Or38fG0tFlq/7/nY76uX1/+JOkr0M3kTZ8KfFQxsgbTPdgItzaYejK0JKkOXPmaM6cOU6XAUQV\nK0xCth33m3u0o0N66rKlzpCtzNFeHW9pS/j+rmh1RBMe6Q1mh47wVCGhBSe5ck0LcLPKhoCi7xnR\nra0jpCdePxz1cyV5OdpUOlU5mT5Z6r7puLeOLlunW7vb3gcTWHFZ0vWPVsUdwcVaD5O4uRjOI7SA\nAdpW3dhny6TeTrd2JLRP35CHUj9sW3Frz8n06d1H8xNu5ABGmmunBwG3SnS0UfbCAT3x+mHZtnSm\nrUMTMn264+bxevnDwIjdmzUQPW8ejjaNyc3FcANCCxiggTRI9LwnK9DSpufrj/Q7ShtpltRnm6dY\nJyCznuU+g+keTEQiHYbRDHfXIaEFDFB/zRTxuC2wwtOB0cTbmxDuMVzdg4M13F2HhBYwQOFv5LF2\nQjcF030wEY0YwCCU5OXE7bJzqz/P8Mi6+P//6Qip7IUDunHlG3qs8pDTpQEJIbSAQYq2CW6sAxTd\n4Om/naHD6+7St28cp/PtochUZci29Zv6IwQXjMD0IDBI0Q5SjHLblSt4LEtlLxzQwy8eUFeMhbVd\n7x/VhpKpI1sYLttwNWIM1nA3cBBawGW60Pn1uVftIbe1WnQL3w8WK7B6PgZmcVsjxmAl2sDB9CBw\nGQazHZJbRdudA3AbQgu4DMm0rdH/njnR6RKAfhFawGVIlm2NvGnS8/VHEjoXDHASoQVcBtPvcxrt\nTZM3zVJHV/faSPgIEoILbkUjBtBDZUNgQFsXleTlXNI9aJJMn1eWJbV2XFo7R5CYxW3dg4OR4bE0\nZlRicURoARcN9jTitfdO0UMvHHDdFk39iRe0ybRWl+ySoXtwIFs/MT0IXBTrNOJt1Y2RjysbApq1\nuVbXP1oVWf8pycsxLrD6kyxrdUg+jLSAi2KNLsLX443EBnvCsBuxJyHcjJEWcFGs0UX4eqyR2NrX\nDhsdWJk+b+Qk5ZxMnzaVTmU9C67FSAu4KNbBh3fcPF6zNtfGPEPL7U0YlrrXPTJ9Xp1v71RHj107\nfF6P1t47hZCCMQgt4KJoBx+6+aTheMLTlTm9OiAH2h0J90uG7sHwfoWJ7D9IaAE99D74cNbmWuMC\nS5L+uOnuyK/DzSMEVXJKhu7BsES6CAktIA4TW7977iE42DZ+wK1oxADiMLH1u2dTSKzmkUde/Jhd\nL2AkQguII9pBj25gSRqVHvufb/geslgjxZBts10TjMT0IBBH7+aMzNFenWntUFc/Xzec0izp9hvG\n6YPPT8d8THga8CqfN2Z3I9s1JQenGjEyPJZGDfEPdIls5URoAb1E67B799F8SdL3fvGe3v3jl47W\n12UroRraOkL6M2+afF5PzGYSE9fscCmnGjFm33SNvjF29Ii/LtODQA/hxoVAS1vUXc+dDqyBamnt\n0KbSqTEPeDRxzQ6pjdACekhk/0GTTMj0qSQvR0/dP73P2hzbNcFETA8CPfS3/6CbhHe6iKVnKEW7\ncZr7tWAiQgvoYUKmL+p2TeFptFk3jnPNFOH3brtW+/7wJwVa2voEmCVp4S2X3ijd+8ZpwESEFtBD\nrP0HwyOW5394e9RmjJHe5f2B267VhpKpkhR1X0Rb0r4//GnE6oFzBto9OFRdf4ke2jjUCC0Ybaj3\n0ktkGu35H97e5+uuf7Rq0K8Zz6wbx+n/fnFOp1u729Yzfd4+G9yaNKWJoTfQ7kGnuv6GCqEFYyW6\nRdFAg20w02ixphUv1/Xjr4gakom8Np2BSEZ0D8JYiZ40HK+FfajccfP4IX2+sOfrj/Rba7RdO+gM\nRLIitGCsRKbFhqqFPbxT+vWPVkW2SOppuNaPbKnfWkvycrSpdCoHOSIlMD0IYyUyLTaY9Z7e04m9\nz9SKNg05nOtHiTw3nYFIFY6E1pYtW7Rv3z55vV5de+212rRpk6688kpJUkVFhXbv3q20tDQ99thj\n+uu//msnSoQB+uv0kwa+3hNtnew39Uf6PK73vn2xXicn06fjF6cmB4u1KcTTs3swkc5Ap7r+hooj\n04OzZs3Sb3/7W73++uu67rrrVFFRIUn67LPPVFVVpaqqKj377LN64oknFAqZdwAfRkYi02IDXe+J\nNp0YS88RULzXuZzQYW0K/Ql3DzYcadEor0ffGDs67n/9HbLodo5E7ne+853Ir2fMmKH/+I//kCTV\n1NSoqKhIGRkZmjhxoiZNmqSDBw8qLy/PiTJhgP6mxQa6E8RApvl6hlF/r9N7ROj1WPKmWWrt6N4v\nPtzKPpBagVQUN7S++uorVVRUqLm5WbNnz1ZxcXHkc2vXrtXatWsvu4CXX35Z8+fPlyQFg0FNnz49\n8jm/369gMHjZr4HUNpD1noG0rvceAcV6nYEGJyEFxBY3tFauXKlJkyapsLBQu3fv1t69e/XUU08p\nIyNDH3/8cdwnXrx4sU6ePNnnellZmebOnStJ2r59uzwej+69997L+C0AQyfaOlk0Y0d7BxQuNEoA\nQyNuaB05ckQ///nPJUlz587V9u3b9fd///favn17v0+8c+fOuJ/fs2eP9u/fr507d8q6eGyC3+9X\nc3Nz5DHBYFB+v7/f1wKGSjhYnnj9cGQXit58Xo8eL54ykmUBuChuI0Z7e7u6ur4+o3X58uW6//77\n9cADD6ilZfCHjtXV1enZZ5/V9u3b5fN9vS6Qn5+vqqoqtbe36+jRo2pqatK0adMG/TrAYJTk5Wh0\nRvSf5zyWxT1QcJVw92DetZlKT4E7b+OOtO644w7V19fr29/+duRaaWmprrnmGm3YsGHQL7p+/Xq1\nt7dryZIlkqTp06dr3bp1mjx5subPn6+7775bHo9Ha9askccztMc5A7H0vD8rVot6l20TWHCVnnsP\nzr7pGmeLGQFxQ+vHP/6xpO4RV3V1tQKBgDo7OyXpstah3nzzzZifW758uZYvXz7o5wYGo/f9WbFw\nzxTgrIRa3pcvX64xY8ZoypQpysjo7vG3YhzfDZgokfuzuGcKcF5CoRUMBvXcc88Ndy3AsEhkl/f+\n7s8Kr2VJ3edXcR8V4IyEQisvL0+NjY3KzeWnTJgl0eNL+rs/K2TbWvvaYZ1v71RHyI77XMBI6rmN\nU8o3YoR9+OGHeuWVV5STkxOZHpSk119/fdgKA4ZCvF3ee2/31N+aVktb3xb4aM8FjCQaMaL4xS9+\nMdx1AMMi1rRfoKWtzzTfptKpWvva4ajhNJjXADD0EgqtnBx+ioSZYk37WVLkeqClTQ+9cEC2ujfd\nvWf6X2jfH/6U8HZOdBQCIycFZkCRyqLtvm5Jfe7DCn8caGnTyx8GVF6Yq5wEwoiOQmBkEVpIatGO\nL+nvbKvwOlW0wPOmWRo72ssJwYBDzD4NDEhA781qZ22u7Xfq73hL24B3ZwecYEmaef1YjfJ6jD/g\nMRHJ/zsEekmkUzC8TsXu7HA7W4oc/pgKCC2knJ4jqEBLW581LtapAPcitJCSeo6gEtkxA4A7EFpI\nCpcTPEwBAuYgtGC8RLdqAmA+Wt5hvHhbNQHJzpLUGerSmdZ2p0sZEYQWjBdrGyW2V0IqsCX97o9f\n6tyFTqdLGRFMD8J4sbZqSmR7JZowALMw0oLxou1ckUjbengtLNDSJltfr4VVNgSGsVoAl4PQgvGi\nbdWUyPZKrIUB5mF6EElhMG3rrIUhGaRZlmbfdE1KbOEkMdJCCou15sVRIzCJJ83SN8aO1lWjM/p/\ncBIgtJCyBrsWBsA5qTGeBKJgF3fAPIQWUhpbOAFmYXoQAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxC\nCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYAxCCwBgDEdDa8eOHcrNzdWXX34pSbJtWxs2bFBB\nQYGKi4t1+PBhJ8sDALiMY6H1xRdf6N1339WECRMi1+rq6tTU1KS9e/dq/fr1Wrt2rVPlAQBcyLHQ\n2rRpk8rLy2VZVuRaTU2NSkpKZFmWZsyYobNnz+rEiRNOlQgAcBlHQuutt95SVlaWbr755kuuB4NB\nZWdnRz7Ozs5WMBgc6fIAAC41bIdALl68WCdPnuxzvaysTBUVFdqxY8dwvTQAIEkNW2jt3Lkz6vXG\nxkYdO3ZMCxYskCQ1NzertLRUL730kvx+v5qbmyOPbW5ult/vH64SAQCGGbbQiiU3N1fvvfde5OP8\n/Hzt3r1b48aNU35+vn7zm9+oqKhIH3/8scaMGaOsrKyRLhEA4FIjHlrxzJkzR2+//bYKCgrk8/m0\nceNGp0sCALiI46FVW1sb+bVlWXr88ccdrAYA4GbsiAEAMAahBQAwBqEFADAGoQUAMAahBQAwBqEF\nADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAw\nBqEFADAGoQUAMAahBQAwRrrTBWB4VDYEtK26Ucdb2jQh06fywlyV5OU4XRaAIdZl2zrT2q6rRmc4\nXcqIILSSUGVDQCv3HFJbR0iSFGhp08o9hySJ4AKSTKjL1rkLnSkTWkwPJqFt1Y2RwApr6whpW3Wj\nQxUBwNAgtJLQ8Za2AV0HAFMQWkloQqZvQNcBwBSEVhIqL8yVz+u55JrP61F5Ya5DFQHA0KARIwmF\nmy3oHgSSX5placyo1PlWnjq/0xRTkpdDSAEpwJNmpUznoMT0IADAIIQWAMAYhBYAwBiEFgDAGIQW\nAMAYhBYAwBiEFgDAGIQWAMAYjoXWr3/9a911110qKirS1q1bI9crKipUUFCgwsJCvfPOO06V51qV\nDQHN2lyr6x+t0qzNtapsCDhdEgCMGEd2xKivr1dNTY1ee+01ZWRk6NSpU5Kkzz77TFVVVaqqqlIw\nGNSSJUtUXV0tj8fTzzOmBs7JAtBbqh0C6chIa9euXVq2bJkyMrrf5KuvvlqSVFNTo6KiImVkZGji\nxImaNGmSDh486ESJrsQ5WQB6Cx8CmSocCa2mpib9/ve/16JFi/TAAw9EgikYDCo7OzvyOL/fr2Aw\n6ESJrsQ5WQBS3bBNDy5evFgnT57sc72srEyhUEhnzpzRiy++qEOHDqmsrEw1NTXDVUrSmJDpUyBK\nQHFOFoBUMWyhtXPnzpif27VrlwoKCmRZlqZNm6a0tDSdPn1afr9fzc3NkccFg0H5/f7hKtE45YW5\nl6xpSZyTBSC1ODI9OHfuXL3//vuSpM8//1wdHR0aO3as8vPzVVVVpfb2dh09elRNTU2aNm2aEyW6\nUklejjaVTlVOpk+WpJxMnzaVTqUJA0DKcKR7cOHChVq1apXuueceeb1ebd68WZZlafLkyZo/f77u\nvvtueTwerVmzhs7BXjgnC0BPlqT0FLrj1pHQysjI0E9/+tOon1u+fLmWL18+whUBgJlsSZ1dTlcx\ncji52FCVDQFtq27U8ZY2Tcj0qbwwlxEYgKRHaBmIm4wBpKoUmglNHtxkDCBVEVoG4iZjAKmK0DJQ\nrJuJuckYSD1plqUxo1JnpYfQMlB5Ya583ktvBeAmYyA1edKslNksV6IRw0jhZgu6BwGkGkLLUNxk\nDCAVMT0IADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBi3vLsLO7QAQH6HlEuzcDmAwumxbZ1rb\nU2ZXDKYHXYKd2wEMRqjL1rkLnU6XMWIILZdg53YA6B+h5RLs3A4A/SO0XIKd2wGgfzRiuAQ7twNA\n/wgtF2HndgADxSGQAABjpNohkIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYA\nwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYjoTWJ598ovvvv18LFixQaWmpDh48KEmybVsbNmxQ\nQUGBiouLdfjwYSfKAwC4lCOhtW3bNv3oRz/Sq6++qn/8x3/Utm3bJEl1dXVqamrS3r17tX79eq1d\nu9aJ8gAALuVIaFmWpfPnz0dOaGsAAAmkSURBVEuSzp07p6ysLElSTU2NSkpKZFmWZsyYobNnz+rE\niRNOlAgAcCFHjrtctWqVli5dqi1btqirq0v/9m//JkkKBoPKzs6OPC47O1vBYDASagCA1DZsobV4\n8WKdPHmyz/WysjLV19dr5cqVKiws1BtvvKHVq1dr586dw1UKACBJDFtoxQuhn/zkJ1q9erUkaf78\n+XrsscckSX6/X83NzZHHNTc3y+/3D1eJAADDOLKmlZWVpQ8++ECSVF9fr+uuu06SlJ+fr8rKStm2\nrQMHDmjMmDFMDQIAIhxZ01q/fr02btyozs5OjRo1SuvWrZMkzZkzR2+//bYKCgrk8/m0ceNGJ8oD\nALiUI6F16623as+ePX2uW5alxx9/3IGKAMBMXbatM63tump0htOljAh2xAAAg4W6bJ270Ol0GSOG\n0AIAGMOR6UGnVTYEtK26Ucdb2jQh06fywlyV5OU4XRYAoB8pF1qVDQGt3HNIbR0hSVKgpU0r9xyS\nJIILAFwu5aYHt1U3RgIrrK0jpG3VjQ5VBABIVMqF1vGWtgFdBwA3S7MsjRmVOpNmKRdaEzJ9A7oO\nAG7mSbNSpt1dSsHQKi/Mlc/rueSaz+tReWGuQxUBABKVOmPKi8LNFnQPAoB5Ui60pO7gIqQAwDwp\nNz0IADAXoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwRlLsiBEIBFRaWup0\nGQAwZMaOHavnnnsuocelEsu2bdvpIgAASATTgwAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQ\nWgn65JNPdP/992vBggUqLS3VwYMHJUm2bWvDhg0qKChQcXGxDh8+7HCl3X7961/rrrvuUlFRkbZu\n3Rq5XlFRoYKCAhUWFuqdd95xsMKv7dixQ7m5ufryyy8lufM93bJli+666y4VFxfrRz/6kc6ePRv5\nnBvf07q6OhUWFqqgoEDPPPOM0+VEfPHFF/q7v/s73X333SoqKtKvfvUrSVJLS4uWLFmiefPmacmS\nJTpz5ozDlX4tFAqppKREDz74oCTp6NGjWrRokQoKClRWVqb29naHK0wxNhKyZMkSe//+/bZt2/b+\n/fvtBx54IPLrpUuX2l1dXXZDQ4N93333OVmmbdu2/d5779nf//737QsXLti2bdsnT560bdu2P/30\nU7u4uNi+cOGCfeTIEfvOO++0Ozs7nSzVPn78uP0P//AP9t/8zd/Yp06dsm3bne/pO++8Y3d0dNi2\nbdtbt261t27datu2O9/Tzs5O+84777SPHDliX7hwwS4uLrY//fRTR2sKCwaD9n/+53/atm3b586d\ns+fNm2d/+umn9pYtW+yKigrbtm27oqIi8v66wY4dO+yHH37YXrZsmW3btr1ixQr7t7/9rW3btv1P\n//RP9vPPP+9keSmHkVaCLMvS+fPnJUnnzp1TVlaWJKmmpkYlJSWyLEszZszQ2bNndeLECSdL1a5d\nu7Rs2TJlZGRIkq6++mpJ3bUWFRUpIyNDEydO1KRJkyIjRqds2rRJ5eXlsiwrcs2N7+l3vvMdpad3\nbyAzY8YMNTc3S3Lne3rw4EFNmjRJEydOVEZGhoqKilRTU+NoTWFZWVmaMmWKJOmKK67QDTfcoGAw\nGPkzl6SSkhK99dZbTpYZ0dzcrP379+u+++6T1D0LUF9fr8LCQknSd7/7Xde8t6mC0ErQqlWrtHXr\nVs2ZM0dbtmzRww8/LEkKBoPKzs6OPC47O1vBYNCpMiVJTU1N+v3vf69FixbpgQceiHwT7V2r3+93\ntNa33npLWVlZuvnmmy+57sb3tKeXX35Zs2fPluS+91RyZ03RHDt2TJ988ommT5+uU6dORX4QHD9+\nvE6dOuVwdd02btyo8vJypaV1f6s8ffq0rrzyysgPMG77u5kKkmLvwaGyePFinTx5ss/1srIy1dfX\na+XKlSosLNQbb7yh1atXa+fOnSNf5EXxag2FQjpz5oxefPFFHTp0SGVlZY79NBivzoqKCu3YscOB\nqqKLV+vcuXMlSdu3b5fH49G999470uUllfPnz2vFihVatWqVrrjiiks+Z1nWJSNvp+zbt0/jxo3T\nt771Lb3//vtOl4OLCK0e4oXQT37yE61evVqSNH/+fD322GOSun+KDU8VSd3TCX6/f1jrlOLXumvX\nLhUUFMiyLE2bNk1paWk6ffp0n1qDweCw1xqrzsbGRh07dkwLFiyQ1P2+lZaW6qWXXnLleypJe/bs\n0f79+7Vz587IN1Un3tP+uLGmnjo6OrRixQoVFxdr3rx5krqnsE+cOKGsrCydOHFC48aNc7hK6aOP\nPlJtba3q6up04cIFffXVV3ryySd19uxZdXZ2Kj09fcT+buJrTA8mKCsrSx988IEkqb6+Xtddd50k\nKT8/X5WVlbJtWwcOHNCYMWMi0xxOmTt3buQnw88//1wdHR0aO3as8vPzVVVVpfb2dh09elRNTU2a\nNm2aIzXm5ubqvffeU21trWpra5Wdna09e/Zo/PjxrnxP6+rq9Oyzz2r79u3y+XyR6256T8OmTp2q\npqYmHT16VO3t7aqqqlJ+fr6jNYXZtq3Vq1frhhtu0JIlSyLXw3/mklRZWak777zTqRIjHnnkEdXV\n1am2tlY/+9nPdNttt+mpp57SzJkzVV1dLUl65ZVXXPPepgpGWglav369Nm7cqM7OTo0aNUrr1q2T\nJM2ZM0dvv/22CgoK5PP5tHHjRocrlRYuXKhVq1bpnnvukdfr1ebNm2VZliZPnqz58+fr7rvvlsfj\n0Zo1a+TxeJwutw83vqfr169Xe3t75Bvt9OnTtW7dOle+p+np6VqzZo1+8IMfKBQKaeHChZo8ebKj\nNYV9+OGHevXVV3XTTTdFRtkPP/ywli1bprKyMu3evVsTJkzQ008/7XClsZWXl+uhhx7S008/rW9+\n85tatGiR0yWlFI4mAQAYg+lBAIAxCC0AgDEILQCAMQgtAIAxCC0AgDEILWAA/v3f/11FRUW6+eab\ndejQIafLAVIOoQUMwE033aSf//zn+qu/+iunSwFSEjcXA1EcO3ZMP/zhD3XLLbeooaFBfr9f//zP\n/6wbb7zR6dKAlMZIC4jhv//7v/W9731PVVVVGjNmTGTrHgDOIbSAGL7xjW/om9/8piRpypQpCgQC\nDlcEgNACYggfoilJHo9HoVDIwWoASIQWAMAghBYwAG+++aZmz56thoYGPfjgg1q6dKnTJQEphV3e\nAQDGYKQFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADDG/wex2V8IWEcYdwAAAABJRU5E\nrkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAGoCAYAAAD1m7qEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df3CUVZ7v8c+TTodtVjSgpLNkEH8sximGHyndiw6zsEZCxBjJBHHr1rg7sMxgUVPFRq3MCLiIgPwc51o1VUvFUYbZGZdVEaNO3A2agLEcozUahOU6WZ1rFmhMMyABJFmSdJ77R+g2JN2dTkjyPKf7/aqyJE863V8ayCfnnO9zjmXbti0AAAyQ5nQBAAAkitACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABgj3ekCAEhnWtt17kJnn+tjRqXrqtEZDlQEuBOhBbjAuQudqvuvk32uz77pGkIL6IHpQQCAMQgtAIAxCC0AgDEILQCAMQgtAIAxCC0AgDEILQCAMbhPCxhh0W4kvtARivrYzlCXjp1u7XOdm46RqggtYIRFu5E479rMqI9t6+hSwx+/7HOdm46RqpgeBAAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiD0AIAGIPQAgAYg9ACABiDvQeBYRJtY1wp9ua4APpHaAHDJNrGuFLszXEB9I/pQQCAMRhpAQaKds4WZ2whFRBagIGinbPFGVtIBUwPAgCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjMGOGMAQiLajO7u5A0OP0AKGQLQd3dnNHRh6TA8CAIxBaAEAjEFoAQCMwZoWkCSinbElcc4WkguhBSSJaGdsSdK3bxzXp7NRIsxgJkILSHKxwoxDI2EiQgsYgGj3Y0lm3pMVbTqR0RfcjtACBiDa/ViSmfdkRRuBMfqC2xFaQBTJNKICkgmhBUSRTCMqIJkQWgAiaJuH2xFaACLoNITbEVqGibXWkqo/CUd7P9LTpM6uvo+N9R6xQ3v/RrrTkL/niCWlQ8st/zAGUkestZZYPwlHe+5k+ocfa3f1hiMtfR4b6ybbCx0hvf/56T7Pga8NV6dhvIaX3n8mQ/Waw8Ut30+SnWXbtu10EZdr6dKlOn26719wADDV2LFj9dxzzzldhuskRWgBAFIDu7wDAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjJEUobV06VKnSwAAR6Ta97+kCC22cAKQqlLt+19ShBYAIDUQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGOkO10AACSjyoaAtlU36nhLmyZk+lRemKuSvBynyzIeoQUAQ6yyIaCVew6prSMkSQq0tGnlnkOSRHBdJqYHAWCIbatujARWWFtHSNuqGx2qKHkQWgAwxI63tA3o+uUIddk609o+5M/rVo6HVigUUklJiR588EFJ0tGjR7Vo0SIVFBSorKxM7e2p84cBIDlMyPQN6Prl6LJtnbvQOeTP61aOh9a//Mu/6MYbb4x8/NOf/lSLFy/Wm2++qSuvvFK7d+92sDoAGLjywlz5vJ5Lrvm8HpUX5jpUUfJwNLSam5u1f/9+3XfffZIk27ZVX1+vwsJCSdJ3v/td1dTUOFkiAAxYSV6ONpVOVU6mT5aknEyfNpVOpQljCDjaPbhx40aVl5fr/PnzkrpP4LzyyiuVnt5dVnZ2toLBoJMlAsCglOTlEFLDwLGR1r59+zRu3Dh961vfcqoEADBemmVpzKjUuXvJsd/pRx99pNraWtXV1enChQv66quv9OSTT+rs2bPq7OxUenq6mpub5ff7nSoRAFzPk2bpqtEZTpcxYhwbaT3yyCOqq6tTbW2tfvazn+m2227TU089pZkzZ6q6ulqS9Morryg/P9+pEgEALuN492Bv5eXl+uUvf6mCggK1tLRo0aJFTpcEAHAJV0yEzpw5UzNnzpQkTZw4kTZ3AEBUrhtpAQAQC6EFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMAahBQAwBqEFADAGoQUAMEa6Uy/8xRdf6Mc//rFOnToly7J0//336/vf/75aWlr00EMPKRAIKCcnR08//bSuuuoqp8oEALiIYyMtj8ejRx99VG+88YZeeOEF/eu//qs+++wzPfPMM7r99tu1d+9e3X777XrmmWecKhEA4DKOhVZWVpamTJkiSbriiit0ww03KBgMqqamRiUlJZKkkpISvfXWW06VCABwGVesaR07dkyffPKJpk+frlOnTikrK0uSNH78eJ06dcrh6gAAbuHYmlbY+fPntWLFCq1atUpXXHHFJZ+zLEuWZTlUGYDhVtkQ0LbqRh1vadOETJ/KC3NVkpfjdFlwMUdHWh0dHVqxYoWKi4s1b948SdLVV1+tEydOSJJOnDihcePGOVkigGFS2RDQyj2HFGhpky0p0NKmlXsOqbIh4HRpRumybR073aozre1OlzIiHAst27a1evVq3XDDDVqyZEnken5+viorKyVJlZWVuvPOO50qEcAw2lbdqLaO0CXX2jpC2lbd6FBFZgp12ar7r5M6d6HT6VJGhGOh9eGHH+rVV19VfX29FixYoAULFujtt9/WsmXL9O6772revHn63e9+p2XLljlVIoBhdLylLer1QEubrn+0SrM21zLqQh+OrWndeuutamyM/hPVr371qxGuBsBIm5DpUyBGcPWcLpTEOhciXNE9CCD1lBfmyuf1xH0M04XozfHuQQCpKTx6CncP2jEeF2saEamJ0ALgmJK8nEh4zdpcG3W6cEKmb6TLMoolKe/aTKWnyLxZivw2AbhdrOnC1vZOGjLisCU1HGlRZ5fTlYwMQguAK5Tk5WhT6VRl+ryXXD/d2sH9W4ggtIAUVNkQ0KzNta5rLS/Jy9Gfj+q7akFDBsJY0wJSTHgnivCNvW5rLY/VeEFDBiRGWkDKcftOFLEaL2jIgERoASnH7SOZaA0ZPq9H5YW5DlXkbpakmdeP1Zgo06rJKDV+lwAiYu1EkehIZrh3Zu99/xa7v8dnSxrl9eiq0RlOlzIiCC0gxZQX5l6ypiUlPpIZqfWwnvdvAT0xPQikmHBreU6mT5aknEyfNpVOTSgk3L4ehuTHSAtIQYMdybh9PQzJj5EWgITR2ec+aZaVMk0YEqEFYADo7HMfT5qVMk0YEtODAAaAzj44jdACMCB09sFJhBaASwz3fVjA5SC0AES4fV9CgEYMABHch2WeLtvWsdOtOna6VWda250uZ9gx0gJSTLzpv1j3WwVa2nT9o1VMF7pQqMtW3X+dlCTNvumapO8kJLQAQw1m7am/6b9Y+xJK3XvcMV0IpzE9CBgoHD6BlrZLwqS/wxxjTf898uLHqmwIxDzyvvfjmS6EUwgtwECDXXuKNf0Xsu3ICKrnvoQDfR5guDE9CBgo3h6A0aYNpe6gs+M8Zzj0eu5u4bEshey+X8W2TXAKoQUYomcYpcUIk8zR3j5rVuUvfSxZUkcoXmQp8vieXx/tNdi2yV0sSXnXZkqSOkNdOtPantTNGIQWYIDeDRSxwsS21WfasKOr/7AK81hWn68PX++ybboHXciW1HCkJfJxsncQElqAAaKtYUl9w+ShFw4M+jV8Xk/U15C67wX6fHPRoJ8bGCqEFuASlQ0BrX3tsFraOiRJY0d7VTTtL7TvD3+K2YbeO0y2VTfGfGxvY0d7NToj/ZK1r1hfzxoW3ILQAlygsiGg8pc+vmQq73Rrh35TfyTu1/UOk/LC3EumESXJm2b1WdPyeT16vHhK1Gm+3l/PGhbchNACXGBbdeOA1p7CWts7VdkQiIRPrKNDYl2b8cTeS0Z2jxdP0cJbcrTr/aMK2bY8lqWFt7Cru5v1bMSQupsxjp1ujfn4MaPSjV7zIrSAEdazC/Aqn1eW1T2qGozTrR19dqiIdXRIz2uxRnaPvPSx0vR1o0fItvXyhwHdOmkcweVSvRsx+mN6owY3FwMjpLIhoLx1e1X2woHIThYtbR2DDqywwexQEWtkF+qy+1xnBwy4CSMtYAT0blkfarFuKo41OhrojhaBi8/PaAtOY6QFjIBYLevxjB3tlc+b2D9Rr8fSQz1GcP3tRTiYbsBE9jYEhhuhBYyARNvQJSkn06emzUVqWDNPC2/5RkJf0x6y+2zRFG9ar7wwt7ursBdPmhX1en/PB4wU104P1tXV6cknn1RXV5cWLVqkZcuWOV0SMGix9vDrrXd7+SsfXd7IJtY0YHiar/d9YY8XT5EklcW4SZmNct2nd/dgf9INH6q4MrRCoZDWrVunX/7yl/L7/brvvvuUn5+vv/zLv3S6NGBQ4gXWaG+aWju6JElpVneQPPTCAf2ZN01tF68PVpplxTy8MVaXoRT7JmVuMnafwXQPmsyVmXvw4EFNmjRJEydOVEZGhoqKilRTU+N0WcCg5cT4Zp/p88rucQjI+faQWto6ZEuXHVhSd1j2t8ZV2RDQrM21uv7RKs3aXBvzXC1uMoYbuDK0gsGgsrOzIx/7/X4Fg0EHKwIuT6zDFc/8T8ewdRT2Fm1NKtphkg+9cEBlF0d6mT6vLHWH7qbSqXQPwnGunB4Ekk34m/0Trx++5L6sBJa5Biwn0xez8aP3mlS0rsZwSadbO+TzevR//nYGYQXXcOVIy+/3q7m5OfJxMBiU3+93sCKgr2jTavGU5OVodMbw/5xYXpgbczqy95pUf40VdAzCbVw50po6daqampp09OhR+f1+VVVV6amnnnK6LCCi983C4TUjSXFHJSPRfVf+0sf6X9ePjTrauuPm8ZFfVzYEYh4m2VOgpU2zNtdyjpZLDbR7sL+9CSV370/oytBKT0/XmjVr9IMf/EChUEgLFy7U5MmTnS4LiIg2rdbWEdIjL34sKXZwTYgzdSd1dw+OSk/T/3R09fvYWDq6bNX/v9NRP7fvD3+S9HXoJtKGLyUeyhh5A+0eTISb9yd0ZWhJ0pw5czRnzhynywCiihUmIduO+8092tEhPXXZUmfIVuZor463tCV8f1e0OqIJj/QGs0NHeKqQ0IKTXLmmBbhZZUNA0feM6NbWEdITrx+O+rmSvBxtKp2qnEyfLHXfdNxbR5et063dbe+DCay4LOn6R6vijuBirYdJ3FwM5xFawABtq27ss2VSb6dbOxLap2/IQ6kftq24tedk+vTuo/kJN3IAI82104OAWyU62ih74YCeeP2wbFs609ahCZk+3XHzeL38YWDE7s0aiJ43D0ebxuTmYrgBoQUM0EAaJHrekxVoadPz9Uf6HaWNNEvqs81TrBOQWc9yn4F2DyYikQ7DaEai65DQAgaov2aKeNwWWOHpwGji7U0I9xiO7sHBGomuQ0ILGKDwN/JYO6Gbguk+mIhGDGAQSvJy4nbZudWfZ3hkXfz//3SEVPbCAd248g09VnnI6dKAhBBawCBF2wQ31gGKbvD0387Q4XV36ds3jtP59lBkqjJk2/pN/RGCC0ZgehAYpGgHKUa57coVPJalshcO6OEXD6grxsLarvePakPJ1JEtDJdtOBoxBmswDRwDbd4gtIDLdKHz63Ov2kNua7XoFr4fLFZg9XwMzOKmRozBGGjzBtODwGUYzHZIbhVtdw7AbQgt4DIk07ZG/3vmRKdLAPpFaAGXIVm2NfKmSc/XH0noXDDASYQWcBlMv89ptDdN3jRLHV3dayPhI0gILrgVjRhAD5UNgQFtXVSSl3NJ96BJMn1eWZbU2nFp7RxBYhY3dQ8ORmeoS2da2xNuxiC0gIsGexrx2nun6KEXDrhui6b+xAvaZFqrS3amdw9KA+sgZHoQuCjWacTbqhsjH1c2BDRrc62uf7Qqsv5TkpdjXGD1J1nW6pB8GGkBF8UaXYSvxxuJDfaEYTdiT0K4GSMt4KJYo4vw9VgjsbWvHTY6sDJ93shJyjmZPm0qncp6FlyLkRZwUayDD++4ebxmba6NeYaW25swLHWve2T6vDrf3qmOHrt2+Lwerb13CiEFYxBawEXRDj5080nD8YSnK3N6dUAOtDsS7md696D09Z6FiexDSGgBPfQ++HDW5lrjAkuS/rjp7sivw80jBFVySobuwbBEuggJLSAOE1u/e+4hONg2fsCtaMQA4jCx9btnU0is5pFHXvyYXS9gJEILiCPaQY9uYEkalR77n2/4HrJYI8WQbbNdE4zE9CAQR+/mjMzRXp1p7VBXP183nNIs6fYbxumDz0/HfEx4GvAqnzdmdyPbNSUHpxoxMjyWRg3xD3RjRvUfSYQW0Eu0Drt3H82XJH3vF+/p3T9+6Wh9XbYSqqGtI6Q/86bJ5/XEbCYxcc0Ol3KqEWP2TdfoG2NHj/jrMj0I9BBuXAi0tEXd9dzpwBqoltYObSqdGvOARxPX7JDaCC2gh0T2HzTJhEyfSvJy9NT90/uszbFdE0zE9CDQQ3/7D7pJeKeLWHqGUrQbp7lfCyYitIAeJmT6om7XFJ5Gm3XjONdMEX7vtmu17w9/UqClrU+AWZIW3nLpjdK9b5wGTERoAT3E2n8wPGJ5/oe3R23GGOld3h+47VptKJkqSVH3RbQl7fvDn0asHjhnoN2DQ9X1l0in33AgtGC0od5LL5FptOd/eHufr7v+0apBv2Y8s24cp//7xTmdbu1uW8/0eftscGvSlCaG3kC7B53q+hsqhBaMlegWRQMNtsFMo8WaVrxc14+/ImpIJvLadAYiGdE9CGMletJwvBb2oXLHzeOH9PnCnq8/0m+t0XbtoDMQyYrQgrESmRYbqhb28E7p1z9aFdkiqafhWj+ypX5rLcnL0abSqRzkiJTA9CCMlci02GDWe3pPJ/Y+UyvaNORwrh8l8tx0BiJVOBJaW7Zs0b59++T1enXttddq06ZNuvLKKyVJFRUV2r17t9LS0vTYY4/pr//6r50oEQbor9NPGvh6T7R1st/UH+nzuN779sV6nZxMn45fnJocLNamEE/P7sFEOgOd6vobKo5MD86aNUu//e1v9frrr+u6665TRUWFJOmzzz5TVVWVqqqq9Oyzz+qJJ55QKGTeAXwYGYlMiw10vSfadGIsPUdA8V7nckKHtSn0J9w92HCkRaO8Hn1j7Oi4//V3yKLbORK53/nOdyK/njFjhv7jP/5DklRTU6OioiJlZGRo4sSJmjRpkg4ePKi8vDwnyoQB+psWG+hOEAOZ5usZRv29Tu8RoddjyZtmqbWje7/4cCv7QGoFUlHc0Prqq69UUVGh5uZmzZ49W8XFxZHPrV27VmvXrr3sAl5++WXNnz9fkhQMBjV9+vTI5/x+v4LB4GW/BlLbQNZ7BtK63nsEFOt1BhqchBQQW9zQWrlypSZNmqTCwkLt3r1be/fu1VNPPaWMjAx9/PHHcZ948eLFOnnyZJ/rZWVlmjt3riRp+/bt8ng8uvfeey/jtwAMnWjrZNGMHe0dULjQKAEMjbihdeTIEf385z+XJM2dO1fbt2/X3//932v79u39PvHOnTvjfn7Pnj3av3+/du7cKevisQl+v1/Nzc2RxwSDQfn9/n5fCxgq4WB54vXDkV0oevN5PXq8eMpIlgXgoriNGO3t7erq+vqM1uXLl+v+++/XAw88oJaWwR86VldXp2effVbbt2+Xz/f1ukB+fr6qqqrU3t6uo0ePqqmpSdOmTRv06wCDUZKXo9EZ0X+e81gW90DBVcLdg3nXZio9Be68jTvSuuOOO1RfX69vf/vbkWulpaW65pprtGHDhkG/6Pr169Xe3q4lS5ZIkqZPn65169Zp8uTJmj9/vu6++255PB6tWbNGHs/QHucMxNLz/qxYLepdtk1gwVV67j04+6ZrnC1mBMQNrR//+MeSukdc1dXVCgQC6uzslKTLWod68803Y35u+fLlWr58+aCfGxiM3vdnxcI9U4CzEmp5X758ucaMGaMpU6YoI6O7x9+KcXw3YKJE7s/ininAeQmFVjAY1HPPPTfctQDDIpFd3vu7Pyu8liV1n1/FfVSAMxIKrby8PDU2Nio3l58yYZZEjy/p7/6skG1r7WuHdb69Ux0hO+5zASOp5zZOKd+IEfbhhx/qlVdeUU5OTmR6UJJef/31YSsMGArxdnnvvd1Tf2taLW19W+CjPRcwkmjEiOIXv/jFcNcBDItY036BlrY+03ybSqdq7WuHo4bTYF4DwNBLKLRycvgpEmaKNe1nSZHrgZY2PfTCAdnq3nT3nul/oX1/+FPC2znRUQiMnBSYAUUqi7b7uiX1uQ8r/HGgpU0vfxhQeWGuchIIIzoKgZFFaCGpRTu+pL+zrcLrVNECz5tmaexoLycEAw4x+zQwIAG9N6udtbm236m/4y1tA96dHXCCJWnm9WM1yusx/oDHRCT/7xDoJZFOwfA6Fbuzw+1sKXL4YyogtJByeo6gAi1tfda4WKcC3IvQQkrqOYJKZMcMAO5AaCEpXE7wMAUImIPQgvES3aoJgPloeYfx4m3VBCQ7S1JnqEtnWtudLmVEEFowXqxtlNheCanAlvS7P36pcxc6nS5lRDA9COPF2qopke2VaMIAzMJIC8aLtnNFIm3r4bWwQEubbH29FlbZEBjGagFcDkILxou2VVMi2yuxFgaYh+lBJIXBtK2zFoZkkGZZmn3TNSmxhZPESAspLNaaF0eNwCSeNEvfGDtaV43O6P/BSYDQQsoa7FoYAOekxngSiIJd3AHzEFpIaWzhBJiF6UEAgDEILQCAMQgtAIAxCC0AgDEILQCAMQgtAIAxCC0AgDEILQCAMQgtAIAxCC0AgDEILQCAMQgtAIAxHA2tHTt2KDc3V19++aUkybZtbdiwQQUFBSouLtbhw4edLA8A4DKOhdYXX3yhd999VxMmTIhcq6urU1NTk/bu3av169dr7dq1TpUHAHAhx0Jr06ZNKi8vl2VZkWs1NTUqKSmRZVmaMWOGzp49qxMnTjhVIgDAZRwJrbfeektZWVm6+eabL7keDAaVnZ0d+Tg7O1vBYHCkywMAuNSwHQK5ePFinTx5ss/1srIyVVRUaMeOHcP10gCAJDVsobVz586o1xsbG3Xs2DEtWLBAktTc3KzS0lK99NJL8vv9am5ujjy2ublZfr9/uEoEABhm2EIrltzcXL333nuRj/Pz87V7926NGzdO+fn5+s1vfqOioiJ9/PHHGjNmjLKyska6RACAS414aMUzZ84cvf322yooKJDP59PGjRudLgkA4CKOh1ZtbW3k15Zl6fHHH3ewGgCAm7EjBgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAY6U4XgOFR2RDQtupGHW9p04RMn8oLc1WSl+N0WQCGWJdt60xru64aneF0KSOC0EpClQ0BrdxzSG0dIUlSoKVNK/cckiSCC0gyoS5b5y50pkxoMT2YhLZVN0YCK6ytI6Rt1Y0OVQQAQ4PQSkLHW9oGdB0ATEFoJaEJmb4BXQcAUxBaSai8MFc+r+eSaz6vR+WFuQ5VBABDg0aMJBRutqB7EEh+aZalMaNS51t56vxOU0xJXg4hBaQAT5qVMp2DEtODAACDEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGM4Flq//vWvddddd6moqEhbt26NXK+oqFBBQYEKCwv1zjvvOFWea1U2BDRrc62uf7RKszbXqrIh4HRJADBiHNkRo76+XjU1NXrttdeUkZGhU6dOSZI+++wzVVVVqaqqSsFgUEuWLFF1dbU8Hk8/z5gaOCcLQG+pdgikIyOtXbt2admyZcrI6H6Tr776aklSTU2NioqKlJGRoYkTJ2rSpEk6ePCgEyW6EudkAegtfAhkqnAktJqamvT73/9eixYt0gMPPBAJpmAwqOzs7Mjj/H6/gsGgEyW6EudkAUh1wzY9uHjxYp08ebLP9bKyMoVCIZ05c0YvvviiDh06pLKyMtXU1AxXKUljQqZPgSgBxTlZAFLFsIXWzp07Y35u165dKigokGVZmjZtmtLS0nT69Gn5/X41NzdHHhcMBuX3+4erROOUF+ZesqYlcU4WgNTiyPTg3Llz9f7770uSPv/8c3V0dGjs2LHKz89XVVWV2tvbdfToUTU1NWnatGlOlOhKJXk52lQ6VTmZPlmScjJ92lQ6lSYMACnDke7BhQsXatWqVbrnnnvk9Xq1efNmWZalyZMna/78+br77rvl8Xi0Zs0aOgd74ZwsAD1ZktJT6I5bR0IrIyNDP/3pT6N+bvny5Vq+fPkIVwQAZrIldXY5XcXI4eRiQ1U2BLStulHHW9o0IdOn8sJcRmAAkh6hZSBuMgaQqlJoJjR5cJMxgFRFaBmIm4wBpCpCy0CxbibmJmMg9aRZlsaMSp2VHkLLQOWFufJ5L70VgJuMgdTkSbNSZrNciUYMI4WbLegeBJBqCC1DcZMxgFTE9CAAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYtLy7CDu3A0B8hJZLsHM7gMHosm2daW1PmV0xmB50CXZuBzAYoS5b5y50Ol3GiCG0XIKd2wGgf4SWS7BzOwD0j9ByCXZuB4D+0YjhEuzcDgD9I7RchJ3bAQwUh0ACAIyRaodAEloAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGMQWgAAYxBaAABjEFoAAGM4ElqffPKJ7r//fi1YsEClpaU6ePCgJMm2bW3YsEEFBQUqLi7W4cOHnSgPAOBSjoTWtm3b9KMf/Uivvvqq/vEf/1Hbtm2TJNXV1ampqUl79+7V+vXrtXbtWifKAwC4lCOhZSIyGHYAAAmpSURBVFmWzp8/L0k6d+6csrKyJEk1NTUqKSmRZVmaMWOGzp49qxMnTjhRIgDAhRw57nLVqlVaunSptmzZoq6uLv3bv/2bJCkYDCo7OzvyuOzsbAWDwUioAQBS27CF1uLFi3Xy5Mk+18vKylRfX6+VK1eqsLBQb7zxhlavXq2dO3cOVykAgCQxbKEVL4R+8pOfaPXq1ZKk+fPn67HHHpMk+f1+NTc3Rx7X3Nwsv98/XCUCAAzjyJpWVlaWPvjgA0lSfX29rrvuOklSfn6+KisrZdu2Dhw4oDFjxjA1CACIcGRNa/369dq4caM6Ozs1atQorVu3TpI0Z84cvf322yooKJDP59PGjRudKA8A4FKOhNatt96qPXv29LluWZYef/xxByoCADN12bbOtLbrqtEZTpcyItgRAwAMFuqyde5Cp9NljBhCCwBgDEemB51W2RDQtupGHW9p04RMn8oLc1WSl+N0WQCAfqRcaFU2BLRyzyG1dYQkSYGWNq3cc0iSCC4AcLmUmx7cVt0YCaywto6QtlU3OlQRACBRKRdax1vaBnQdANwszbI0ZlTqTJqlXGhNyPQN6DoAuJknzUqZdncpBUOrvDBXPq/nkms+r0flhbkOVQQASFTqjCkvCjdb0D0IAOZJudCSuoOLkAIA86Tc9CAAwFyEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYSbEjRiAQUGlpqdNlAMCQGTt2rJ577rmEHpdKLNu2baeLAAAgEUwPAgCMQWgBAIxBaAEAjEFoAQCMQWgBAIxBaAEAjEFoJeiTTz7R/fffrwULFqi0tFQHDx6UJNm2rQ0bNqigoEDFxcU6fPiww5V2+/Wvf6277rpLRUVF2rp1a+R6RUWFCgoKVFhYqHfeecfBCr+2Y8cO5ebm6ssvv5Tkzvd0y5Ytuuuuu1RcXKwf/ehHOnv2bORzbnxP6+rqVFhYqIKCAj3zzDNOlxPxxRdf6O/+7u909913q6ioSL/61a8kSS0tLVqyZInmzZunJUuW6MyZMw5X+rVQKKSSkhI9+OCDkqSjR49q0aJFKigoUFlZmdrb2x2uMMXYSMiSJUvs/fv327Zt2/v377cfeOCByK+XLl1qd3V12Q0NDfZ9993nZJm2bdv2e++9Z3//+9+3L1y4YNu2bZ88edK2bdv+9NNP7eLiYvvChQv2kSNH7DvvvNPu7Ox0slT7+PHj9j/8wz/Yf/M3f2OfOnXKtm13vqfvvPOO3dHRYdu2bW/dutXeunWrbdvufE87OzvtO++80z5y5Ih94cIFu7i42P70008drSksGAza//mf/2nbtm2fO3fOnjdvnv3pp5/aW7ZssSsqKmzbtu2KiorI++sGO3bssB9++GF72bJltm3b9ooVK+zf/va3tm3b9j/90z/Zzz//vJPlpRxGWgmyLEvnz5+XJJ07d05ZWVmSpJqaGpWUlMiyLM2YMUNnz57ViRMnnCxVu3bt0rJly5SRkSFJuvrqqyV111pUVKSMjAxNnDhRkyZNiowYnbJp0yaVl5fLsqzINTe+p9/5zneUnt69gcyMGTPU3NwsyZ3v6cGDBzVp0iRNnDhRGRkZKioqUk1NjaM1hWVlZWnKlCmSpCuuuEI33HCDgsFg5M9ckkpKSvTWW285WWZEc3Oz9u/fr/vuu09S9yxAfX29CgsLJUnf/e53XfPepgpCK0GrVq3S1q1bNWfOHG3ZskUPP/ywJCkYDCo7OzvyuOzsbAWDQafKlCQ1NTXp97//vRYtWqQHHngg8k20d61+v9/RWt966y1lZWXp5ptvvuS6G9/Tnl5++WXNnj1bkvveU8mdNUVz7NgxffLJJ5o+fbpOnToV+UFw/PjxOnXqlMPVddu4caPKy8uVltb9rfL06dO68sorIz/AuO3vZipIir0Hh8rixYt18uTJPtfLyspUX1+vlStXqrCwUG+88YZWr16tnTt3jnyRF8WrNRQK6cyZM3rxxRd16NAhlZWVOfbTYLw6KyoqtGPHDgeqii5erXPnzpUkbd++XR6PR/fee+9Il5dUzp8/rxUrVmjVqlW64oorLvmcZVmXjLydsm/fPo0bN07f+ta39P777ztdDi4itHqIF0I/+clPtHr1aknS/Pnz9dhjj0nq/ik2PFUkdU8n+P3+Ya1Til/rrl27VFBQIMuyNG3aNKWlpen06dN9ag0Gg8Nea6w6GxsbdezYMS1YsEBS9/tWWlqql156yZXvqSTt2bNH+/fv186dOyPfVJ14T/vjxpp66ujo0IoVK1RcXKx58+ZJ6p7CPnHihLKysnTixAmNGzfO4Sqljz76SLW1taqrq9OFCxf01Vdf6cknn9TZs2fV2dmp9PT0Efu7ia8xPZigrKwsffDBB5Kk+vp6XXfddZKk/Px8VVZWyrZtHThwQGPGjIlMczhl7ty5kZ8MP//8c3V0dGjs2LHKz89XVVWV2tvbdfToUTU1NWnatGmO1Jibm6v33ntPtbW1qq2tVXZ2tvbs2aPx48e78j2tq6vTs88+q+3bt8vn80Wuu+k9DZs6daqampp09OhRtbe3q6qqSvn5+Y7WFGbbtlavXq0bbrhBS5YsiVwP/5lLUmVlpe68806nSox45JFHVFdXp9raWv3sZz/TbbfdpqeeekozZ85UdXW1JOmVV15xzXubKhhpJWj9+vXauHGjOjs7NWrUKK1bt06SNGfOHL399tsqKCiQz+fTxo0bHa5UWrhwoVatWqV77rlHXq9XmzdvlmVZmjx5subPn6+7775bHo9Ha9askcfjcbrcPtz4nq5fv17t7e2Rb7TTp0/XunXrXPmepqena82aNfrBD36gUCikhQsXavLkyY7WFPbhhx/q1Vdf1U033RQZZT/88MNatmyZysrKtHv3bk2YMEFPP/20w5XGVl5eroceekhPP/20vvnNb2rRokVOl5RSOJoEAGAMpgcBAMYgtAAAxiC0AADGILQAAMYgtAAAxiC0gAH493//dxUVFenmm2/WoUOHnC4HSDmEFjAAN910k37+85/rr/7qr5wuBUhJ3FwMRHHs2DH98Ic/1C233KKGhgb5/X798z//s2688UanSwNSGiMtIIb//u//1ve+9z1VVVVpzJgxka17ADiH0AJi+MY3vqFvfvObkqQpU6YoEAg4XBEAQguIIXyIpiR5PB6FQiEHqwEgEVoAAIMQWsAAvPnmm5o9e7YaGhr04IMPaunSpU6XBKQUdnkHABiDkRYAwBiEFgDAGIQWAMAYhBYAwBiEFgDAGIQWAMAYhBYAwBj/H8slXs3h7RpZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1612,11 +1681,11 @@ "metadata": { "id": "7NsMKc6Nl6A3", "colab_type": "code", + "outputId": "cee13ea9-a9a6-4e76-81b6-8eae6dbb0f22", "colab": { "base_uri": "https://localhost:8080/", - "height": 204 - }, - "outputId": "9dbd217a-c6fb-4146-c841-4d51023588b4" + "height": 0 + } }, "source": [ "avg_df = df[['label', 'drug']]\n", @@ -1633,12 +1702,12 @@ "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", - "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " This is separate from the ipykernel package so we can avoid doing imports until\n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", - "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " after removing the cwd from sys.path.\n" ], "name": "stderr" @@ -1660,11 +1729,11 @@ "metadata": { "id": "YN1DgKJNl6BD", "colab_type": "code", + "outputId": "b162d0ab-ab94-46ae-f09e-5cb1bfecdc5a", "colab": { "base_uri": "https://localhost:8080/", - "height": 296 - }, - "outputId": "e87426b6-65d3-465e-c796-9ca357f66468" + "height": 0 + } }, "source": [ "plt.errorbar(np.arange(avg_df.shape[0]), avg_df['n'], yerr=ci_95, fmt='o')\n", @@ -1688,7 +1757,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de1SUdf4H8PcwOIaCAiqDctDCSNPw\n0mpqZu4iOAoiyMVqy1YOlZmbIR1c7eJPsYyyi+npgqulFcfjbiIUaF7wesz7UmippQsJJMMBEVGU\nYYbn9wcxC8PMMDwy8zzDvF9/zTwzMp/zIM97vtdHIQiCACIiog5yk7oAIiJyTgwQIiIShQFCRESi\nMECIiEgUBggREYniLnUB9jRu3DgEBARIXQYRkVMpKyvD8ePH231flw6QgIAAZGVlSV0GEZFTiY2N\ntel97MIiIiJRGCBERCQKA4SIiERhgBARkSgMECIiEoUBQkREojBAiIhIFAYIERGJwgAhIupiHss4\niscyjtr9cxggREQkCgOEiIhEYYAQEZEoDBAiIhKFAUJERKIwQIiISBQGCBERicIAISIiURggREQk\nCgOEiIhEke090UNDQ9GzZ0+4ublBqVQiKysL165dw6JFi1BWVoaAgACsWbMGvXv3lrpUIiKXJOsW\nyObNm5GTk4OsrCwAwPr16zFhwgTs3r0bEyZMwPr16yWukIjIdck6QEzl5+cjJiYGABATE4O9e/dK\nXBERkeuSdYAkJSUhNjYWW7duBQBUVVXBz88PANCvXz9UVVVJWR4RkUuT7RjIli1boFarUVVVhcTE\nRAQFBbV6XaFQQKFQSFQdERHJtgWiVqsBAH369EF4eDgKCwvRp08fVFRUAAAqKirg6+srZYlERC5N\nlgFSV1eHGzduGB8fOXIEwcHBCA0NRXZ2NgAgOzsbU6ZMkbJMIiKXJssurKqqKixYsAAAYDAYMGPG\nDDz66KMICQlBcnIyvv76awwYMABr1qyRuFIiItclywAJDAzEN9980+a4j48PNm/eLEFFRETOIbug\nDAWXr0FnaMTE9H1I1QxBzOgAu3yWLLuwiIio47ILyrA06wx0hkYAQNm1W1iadQbZBWV2+TwGCBFR\nF7F61wXcajC0OnarwYDVuy7Y5fMYIEREXcTv12516PidYoAQEXURA7w9OnT8TjFAiIi6iFTNEHh0\nU7Y65tFNiVTNELt8nixnYRERUcc1z7Za/HUhdIZGBHh72HUWFgOEiKgLiRkdgC0nLgMAts6bYNfP\nYhcWERGJwgAhIiJRGCBERF3IYxlH8fOV6w75LI6BEBF1ESHLd6GuXo8e3R1zaWcLhIiIRGGAEBGR\nKAwQIiIShQFCRESiMECIiEgUBggREYnCACEiIlEYIEREJAoDhIioC3gs4yjq6vUO/UwGCBERiSK7\nrUyuXLmCxYsXo6qqCgqFArNnz8bf/vY3rFu3Dv/617/g6+sLAEhJScHkyZMlrpaIyHXJLkCUSiWW\nLFmC4cOH48aNG4iLi8PEiRMBAHPnzkVSUpLEFRIRyYsjN1BsSXYB4ufnBz8/PwCAp6cngoKCoNVq\nJa6KiEiezG2gOKx/L7vfTAqQ+RhIaWkpzp07h5EjRwIAMjMzERUVhaVLl6Kmpkbi6oiIXJtsA+Tm\nzZtYuHAhXnnlFXh6euKJJ57Anj17kJOTAz8/P6Snp0tdIhGRpKSYedWS7LqwAKChoQELFy5EVFQU\npk6dCgDo27ev8fWEhAQ8//zzUpVHRCQpqcY8TMmuBSIIAl599VUEBQUhMTHReLyiosL4eO/evQgO\nDpaiPCIiSYUs34VTxVelLgOADFsgp0+fRk5ODu677z5ER0cDaJqym5ubi/PnzwMAAgICkJaWJmWZ\nREQO07LFYanLSqc3wCA0PT5edBWj03bj/6KGI2Z0gN3qkl2AjBkzBhcuXGhznGs+iMhV/XzlutVb\n1TYKQL1eaHWsuq4BqV//CAB2CxHZBQgREdnW6mgmWDjeYBCwetcFBggRkaswt7ZDrN+v3eqEisxj\ngBARyURzq6Mzp+YO8PbotJ9ligFCRCQR08DojBaHqVTNkE7/mc0YIEREDmC6dqMzQ0MB8+MgT40f\n6FqzsIiInIXpWIVpKLR8bs9WhpsCcFcqjDOxVEo3vBM/wq7hATBAiIisshYSUm4jYkrlroTe0FTP\n6IHedg8PgAFCRC7C3LTYjrQc5KxRAG7c1hu7sSpr6x3yuQwQInJqloKhvZDoKhqFtuMfRVU3kV1Q\nxi4sIup6bOkW6uhrrsrc4HmjALsuIGzmumediEQzN/1UzIWf7MeeCwibMUCIyOW7gZyVtSC25wLC\nZvxfQOTExF74HTW9lOyn5e675thzAWEz/o8hktBjGUeN93a40/EAci2mu++a4jReIhnrrIFgoo6y\n1vIAmhYSOgL/B1OX0tHBXdPnHAgmOaur17cbHgAQ6GP/8Q+AAUISsbSJHPvxicyzJTia9fXqbr9C\nWuBfG7Wrs6ZsciYPUce1N1huSmG/UtrgX3AXJWZ2Di/0RPLQvLq89nbHu0ndHJggvDI4IdOZO7zw\nE3UddfV6i7eotUbpyKbHH3iFkSFbuoyIqOvpaHdVS1Js/Oh0V6NDhw7hzTffRGNjIxISEvDcc89J\nXZJo9rzBDBE5h5ahYWhnbYc5Cji226olp7pSGQwGpKWl4fPPP4darUZ8fDxCQ0Nx7733Sl1au9iq\nIKJmdxoaQFOXlblWR4/u7tg6b8KdlmgTp7pyFRYWYtCgQQgMDAQAREZGIj8/X5YB4oh7HRORvFga\n/G75XMzAuDnmrilj7vZ1WHgAgGOWK3YSrVYLf39/43O1Wg2tVithRUTkChqFpgt/7e2mhXyGP563\nfFx7W9zgd0cpIM2AuTn8WkxELqk5FFpq77lUmsc55HaHRKcKELVajfLycuNzrVYLtVotYUXmmQ6O\nE5FjmOtCkmso2EourQ1znKoLKyQkBMXFxSgpKYFOp0NeXh5CQ0OlLquV5jUacvqWQOQsmvd6MtjY\nZSRFF5IjdXdXyHr8VL6VmeHu7o5ly5bhmWeegcFgQFxcHIKDg6Uuy4gtD3JlYgaQna014Ajd3RXQ\n/zFFS+WulLga65wqQABg8uTJmDx5stRltMLgoK7GdHzAWcYKnFXLMQ4A0Buc43w6XYAQkWV3cuFn\nCHSulmMXtu5D52wYICJZ2qyQqLO0XGzGC798mJsR1d7O044wrH8vh64BARggRJ2i5Y1+bG0BtNc6\nELtCmTrOtAuJNxKzjU2zsL788kvU1NTYuxanEbJ8l3E3XJK35m/x1mbu2DrLp73XSH6UCsDrLnd4\n3eUOpeJ/z1s+9rrLXbK9pJydTS2QyspKxMfHY9iwYYiLi8OkSZOgULjmGX8s4yi/gdiRmHn81t7L\nb/HOq7u7Aip35R3fpdIVOHL/q5ZsaoEsWrQIu3fvRnx8PLZv346pU6fi/fffx+XLl+1dn6xwtpV5\npt/y7+QbPy/3XUPzN3xL3/itPW9+LPcprNSBhYQKhQL9+vVD3759oVQqUVNTg4ULF+Kdd96xZ32y\n0VXCo/EOFmlZem89v+V3aQp07MLvdZc7J5Q40Ji7fXFmuUaSz7bpt7x582bk5OTAx8cH8fHxWLx4\nMbp164bGxkZMnToVixcvtnedZIGlwVtbnlPXpgDgeZftXT2u3g1EHWdTgNTU1GDdunUICAhoddzN\nzQ0ZGRl2KczV2Tqrh1xHyxXKvPATIM3U3ZZsCpCSkpI24ZGamorVq1dj8ODBdinMlej0hlbdQAwJ\n52Z6oQds/8bf3nudZYUy2Y+j7/lhjU0BcvHixVbPDQYDfvrpJ7sUJFfNN4e6k75dSwvDOFPIce7k\n4m7rhV/lruSFnlyC1athRkYGPv30U9TX1+PBBx8EAAiCAJVKhdmzZzukQGfV3pYSZBulhcVdps/5\nLZ66sh7d3SXvrjLHaoDMmzcP8+bNw3vvvYeXX37ZUTU5PVdfVGZtVa/pc/bjE1kmx9BoyWqAXLp0\nCYMHD8a0adPMdlkNHz7cboU5K53eIHUJNuvIZm+mz3nhJ7IfubY4TFkNkE2bNmHlypVIT09v85pC\nocAXX3xht8KclZRrIsyt3AW4rw+Rs3GG8ADaCZCVK1cCaNoLi9pnr9aHrQO/XLlL5Lx6dHeXbEGg\nWDZNKYqKisKMGTMwffp0DBw40N41OaVGoXNaH+YWf3FWD1HX5Iyh0ZJNAfLpp59ix44dSE5OhkKh\nQEREBKZPn44BAwbYuz7Zazk1t6MsDTYTUdfiLF1SHWVTgAQEBODZZ5/Fs88+i+LiYnz88cd49913\nce7cOXvXJ2umCwCt8TKzpQQDg8i5dNUgEMvmVXFlZWXYsWMHdu7cCTc3N6SmptqzLllr3nKcCwCJ\nuhYGRMfYFCAJCQnQ6/WYNm0aPvzwQwQGBtq7LtnS6Q0d3nLcNe+cQiQtZ5kK68xsCpC3334bQUFB\n9q4Fb7/9Nvbv349u3bph4MCBeOutt9CrVy+UlpYiIiIC99xzDwBg5MiRSEtLs3s95ogZKOfdzog6\nh5z2gaJ2AiQnJwfR0dE4ePAgDh482Ob1xMTETi1m4sSJePnll+Hu7o7Vq1cjIyPD2FU2cOBA5OTk\ndOrndVRHB8tbTr8lckXOPsuIrLMaILdu3QIA3Lx50yHFPPLII8bHo0aNwnfffeeQz7VFRwe8m++o\nxum31BWwK4jMsRogjz/+OABgwoQJ+NOf/tTqtdOnT9uvKgDbtm3D9OnTjc9LS0sRExMDT09PJCcn\nY8yYMXb9/JayC8o61PpgjxXJFYOAOpNNYyBvvPEGtm/f3u4xW8ydOxeVlZVtjicnJyMsLAwA8Mkn\nn0CpVGLmzJkAAD8/P+zfvx8+Pj44e/YsFixYgLy8PHh6enb488VY8a3tW9ez24rsiQPDJCdWA6Sg\noAAFBQW4evUqPv/8c+PxGzduwGAQt23Hpk2brL6elZWFAwcOYNOmTVAomr7Lq1QqqFQqAMADDzyA\ngQMHoqioCCEhIaJq6IjsgjJU1zW0+76W246z24pa4gWfuiqrAdLQ0IC6ujoYDIZW4yCenp5Yu3Zt\npxdz6NAhbNiwAV999RU8PDyMx69evYrevXtDqVSipKQExcXFDptKvHrXhXbfwy4r58fBXqKOsxog\nDz30EB566CHMmjWrzS1t7WHlypXQ6XTG2V3N03VPnjyJtWvXwt3dHW5ublixYgW8vb3tXg8A/H7t\nltXX2WXlOJzCSSQvNo2BvPbaa/jwww/Rq1cvAEBNTQ1SUlKwcePGTi1mz549Zo9rNBpoNNJ8O/Tu\n0c1iF1bz9iTssrKOF36irsmmAKmurjaGBwD07t0bVVVVditKTgQXalzwQk9EHWFTgLi5ueH33383\n7r5bWlpqHODu6mputT+ALiccsCUiR7EpQJKTk/HXv/4VY8eOhSAIOH36tGRbiTjaAG8PlLUzDuII\nnL5JRHJjU4A8+uij2LZtG7Zu3Yphw4YhLCwMd911l71rk4VUzRAszTqDWw2tpy3bo/3FkCAiZ2JT\ngPz73//GF198gfLycgwdOhQ//vgjRo0a5RL3RI8Z3TT7bNHWHyDgf8FxpxskMiiIyNnZFCBffPEF\nvv76a8yePRtffvklLl26hA8++MDetclGzOgAvJ5zFnX1+g7fCIqtCiLqqmwKEJVKhe7duwMAdDod\nBg8ejKKiIrsW5uy4MI2IujqbAsTf3x/Xr19HWFgYEhMT0atXL94PnYjIxdkUIB999BEA4MUXX8S4\nceNQW1uLSZMm2bUwZ9bcbUVE1JXZfE/0Zg899JA96uhSOOZBRK7ATeoCnMFjGUdtHjhneBCRq2CA\ndCKGBxG5kg53YVFbnKpLRK6IAXIHGBpE5MrYhSVSj+7uDA8icmkMECIiEoUBIsKYu325ypyIXB7H\nQNrxWMZR/HzlOgBuT0JE1BJbIEREJAoDxArT1ge3JyEi+h8GCBERiSK7AFm3bh0mTZqE6OhoREdH\n4+DBg8bXMjIyEB4eDo1Gg8OHD0tYJRERyXIQfe7cuUhKSmp17OLFi8jLy0NeXh60Wi0SExOxa9cu\nKJVKh9TERYNERK3JrgViSX5+PiIjI6FSqRAYGIhBgwahsLBQ6rKIiFyWLAMkMzMTUVFRWLp0KWpq\nagAAWq0W/v7+xveo1WpotVqpSiQicnmSdGHNnTsXlZWVbY4nJyfjiSeewAsvvACFQoEPP/wQ6enp\neOuttySokoiIrJEkQDZt2mTT+xISEvD8888DaGpxlJeXG1/TarVQq9X2KA9A6ym8RETUluy6sCoq\nKoyP9+7di+DgYABAaGgo8vLyoNPpUFJSguLiYowYMUKqMomIXJ7sZmGtXr0a58+fBwAEBAQgLS0N\nABAcHIzp06cjIiICSqUSy5Ytc9gMLCIiakuWAWLJ/PnzMX/+fAdWA+j0Buj0Ao4XXcXE9H1I1QxB\nzOgAh9ZARCRHsgsQOdHpDajXC8bnZdduYWnWGQBgiBCRy5PdGIic6FqER7NbDQas3nVBgmqIiOSF\nAWJF2/ho8vu1Ww6tg4hIjhggVigsHB/g7eHQOoiI5IgBYoXKvW2EeHRTIlUzRIJqiIjkhYPoVqjc\nlQCaZmEJAAK8PTgLi4joD2yBWNE8hVcAoFK6MTyIiFpgC8SCytr6VlN4dYZGTuElImqBLRALfrta\n1+YYp/ASEf0PA8SM7IIy6BvNT+LlFF4ioiYMEDOstTI4hZeIqAkDxAxrrQxO4SUiasIAMcNSK8Pb\noxsH0ImI/sAAMSNVMwRuJmsI3RTA8pnDpSmIiEiGGCAWmK5Bv6dPT7Y+iIhaYICYyC4ow9KsMzBY\n2kmRiIgAMEDaWL3rAm41GNocL6nm9F0iopYYICYszcDSGRodXAkRkbwxQExYmoGlUvJUERG1xKui\niVTNEHh0U7Y5HujDBYRERC1xM0UTzTOtFm39AQKaZmOp3BXo69Vd0rqIiORGVgGSnJyMoqIiAEBt\nbS28vLyQk5OD0tJSRERE4J577gEAjBw5EmlpaXarI2Z0AF7POYu6ej16dJfVKSIikg1ZXR3XrFlj\nfJyeng5PT0/j84EDByInJ0eKsoiIyAxZjoEIgoCdO3dixowZUpcCABjWvxe2zpsgdRlERLIiywA5\ndeoU+vTpg7vvvtt4rLS0FDExMXjqqadw6tQp6YojIiIAEnRhzZ07F5WVlW2OJycnIywsDACQm5vb\nqvXh5+eH/fv3w8fHB2fPnsWCBQuQl5fXqouLiIgcy+EBsmnTJquv6/V67NmzB1lZWcZjKpUKKpUK\nAPDAAw9g4MCBKCoqQkhIiD1LJSIiK2TXhfX9998jKCgI/v7+xmNXr16FwdC0vUhJSQmKi4sRGBgo\nVYlERASZzcICgB07diAyMrLVsZMnT2Lt2rVwd3eHm5sbVqxYAW9vb4kqJCIiQIYBkp6e3uaYRqOB\nRqORoBoiIrJEdl1YcsMpvERE5jFAiIhIFAaIFT26u7P1QURkAQOEiIhEYYCYkV1Qhhu39ai9rcfE\n9H3ILiiTuiQiItlhgJhovid68y3Ry67dwtKsMwwRIiITDBAT5u6JfqvBgNW7LkhUERGRPDFATFi6\nJ7ql40RErooBYsLSPdEtHSciclUMEBPm7onu0U2JVM0QiSoiIpIn2W1lIrXme6Iv/roQOkMjArw9\nkKoZYjxORERNGCBmxIwOwJYTlwGACwmJiCxgFxYREYnCACEiIlEYIEREJAoDhIiIRGGAEBGRKAwQ\nIiIShQFCRESiMECIiEgUBggREYkiSYDs3LkTkZGRGDp0KM6cOdPqtYyMDISHh0Oj0eDw4cPG44cO\nHYJGo0F4eDjWr1/v6JKJiMiEJAFy3333Yd26dRg7dmyr4xcvXkReXh7y8vKwYcMGrFixAgaDAQaD\nAWlpadiwYQPy8vKQm5uLixcvSlE6ERH9QZK9sAYPHmz2eH5+PiIjI6FSqRAYGIhBgwahsLAQADBo\n0CAEBgYCACIjI5Gfn497773XYTUTEVFrshoD0Wq18Pf3Nz5Xq9XQarUWjxMRkXTs1gKZO3cuKisr\n2xxPTk5GWFiYvT6WiIgcxG4BsmnTpg7/G7VajfLycuNzrVYLtVoNABaPExGRNGTVhRUaGoq8vDzo\ndDqUlJSguLgYI0aMQEhICIqLi1FSUgKdToe8vDyEhoZKXS4RkUuTZBB9z549WLlyJa5evYp58+bh\n/vvvx8aNGxEcHIzp06cjIiICSqUSy5Ytg1LZdHvZZcuW4ZlnnoHBYEBcXByCg4PtWiNvJEVEZJ1C\nEARB6iLsJTY2FllZWVKXQUTkVGy9dsqqC4uIiJwHA4SIiERhgBARkSgMECIiEoUBQkREojBAiIhI\nFAYIERGJwgAhIiJRJFmJ7ihlZWWIjY2VugwiIqdSVlZm0/u69Ep0IiKyH3ZhERGRKAwQIiIShQFC\nRESiMECIiEgUBggREYnCACEiIlEYIGYcOnQIGo0G4eHhWL9+vdTlIDQ0FFFRUYiOjjaua7l27RoS\nExMxdepUJCYmoqamxmH1LF26FBMmTMCMGTOMxyzVIwgC3njjDYSHhyMqKgo//fSTw2tbt24dJk2a\nhOjoaERHR+PgwYPG1zIyMhAeHg6NRoPDhw/bra4rV65gzpw5iIiIQGRkJDZv3gxAPufNUn1yOHf1\n9fWIj4/HzJkzERkZibVr1wIASkpKkJCQgPDwcCQnJ0On0wEAdDodkpOTER4ejoSEBJSWljq8tiVL\nliA0NNR43s6dOwfA8b9XADAYDIiJicG8efMAdPJ5E6gVvV4vTJkyRbh8+bJQX18vREVFCb/++quk\nNf3lL38RqqqqWh17++23hYyMDEEQBCEjI0N45513HFbPiRMnhLNnzwqRkZHt1nPgwAEhKSlJaGxs\nFAoKCoT4+HiH17Z27Vphw4YNbd7766+/ClFRUUJ9fb1w+fJlYcqUKYJer7dLXVqtVjh79qwgCIJQ\nW1srTJ06Vfj1119lc94s1SeHc9fY2CjcuHFDEARB0Ol0Qnx8vFBQUCAsXLhQyM3NFQRBEF5//XUh\nMzNTEARB+Oqrr4TXX39dEARByM3NFV566SW71GWttn/84x/Czp0727zf0b9XQRCEzz77TEhJSRGe\ne+45QRCETj1vbIGYKCwsxKBBgxAYGAiVSoXIyEjk5+dLXVYb+fn5iImJAQDExMRg7969DvvssWPH\nonfv3jbV03xcoVBg1KhRuH79OioqKhxamyX5+fmIjIyESqVCYGAgBg0ahMLCQrvU5efnh+HDhwMA\nPD09ERQUBK1WK5vzZqk+Sxx57hQKBXr27AkA0Ov10Ov1UCgUOHbsGDQaDQBg1qxZxr/Tffv2Ydas\nWQAAjUaDo0ePQrDTemlLtVni6N9reXk5Dhw4gPj4eABNLaDOPG8MEBNarRb+/v7G52q12uofkqMk\nJSUhNjYWW7duBQBUVVXBz88PANCvXz9UVVVJWZ7FekzPp7+/vyTnMzMzE1FRUVi6dKmxm0iq33Vp\naSnOnTuHkSNHyvK8tawPkMe5MxgMiI6OxsMPP4yHH34YgYGB6NWrF9zdm3Zjanl+tFot+vfvDwBw\nd3eHl5cXqqurHVZb83n74IMPEBUVhVWrVhm7iRz9e121ahVSU1Ph5tZ0qa+uru7U88YAcQJbtmzB\n9u3b8c9//hOZmZk4efJkq9cVCoXVbz2OJrd6nnjiCezZswc5OTnw8/NDenq6ZLXcvHkTCxcuxCuv\nvAJPT89Wr8nhvJnWJ5dzp1QqkZOTg4MHD6KwsBD//e9/JanDHNPafvnlF6SkpOC7777Dtm3bUFNT\nI8lY6v79++Hr64sHHnjAbp/BADGhVqtRXl5ufK7VaqFWqyWsCMbP79OnD8LDw1FYWIg+ffoYm74V\nFRXw9fWVskSL9Ziez/Lycoefz759+0KpVMLNzQ0JCQk4c+aM2drs/btuaGjAwoULERUVhalTpwKQ\n13kzV59czl2zXr16Ydy4cfjhhx9w/fp16PV6AK3Pj1qtxpUrVwA0dSvV1tbCx8fHYbUdPnwYfn5+\nUCgUUKlUiI2NtXje7Pl7/c9//oN9+/YhNDQUKSkpOHbsGN58881OPW8MEBMhISEoLi5GSUkJdDod\n8vLyEBoaKlk9dXV1uHHjhvHxkSNHEBwcjNDQUGRnZwMAsrOzMWXKFMlqBGCxnubjgiDghx9+gJeX\nl7HLxlFa9jHv3bsXwcHBxtry8vKg0+lQUlKC4uJijBgxwi41CIKAV199FUFBQUhMTDQel8t5s1Sf\nHM7d1atXcf36dQDA7du38f3332Pw4MEYN24cdu3aBQDYvn278e80NDQU27dvBwDs2rUL48ePt1vL\nzlxtQUFBxvMmCEKb8+ao3+vLL7+MQ4cOYd++fXj//fcxfvx4vPfee5163rgbrxkHDx7EqlWrYDAY\nEBcXh/nz50tWS0lJCRYsWACgqa91xowZmD9/Pqqrq5GcnIwrV65gwIABWLNmDby9vR1SU0pKCk6c\nOIHq6mr06dMHL774IsLCwszWIwgC0tLScPjwYXh4eGDVqlUICQlxaG0nTpzA+fPnAQABAQFIS0sz\n/tF+8skn2LZtG5RKJV555RVMnjzZLnWdOnUKTz75JO677z5jf3RKSgpGjBghi/Nmqb7c3FzJz935\n8+exZMkSGAwGCIKAadOm4e9//ztKSkqwaNEi1NTU4P7778e7774LlUqF+vp6pKam4ty5c+jduzc+\n+OADBAYGOrS2p59+GtXV1RAEAUOHDsWKFSvQs2dPh/9emx0/fhyfffYZMjIyOvW8MUCIiEgUdmER\nEZEoDBAiIhKFAUJERKIwQIiISBQGCBERicIAIWph3bp12Lhxo9RlWFVaWopvv/22w/9uyZIl+O67\n7+xQEbkqBgiRDZpX7kpNr9ejrKwMubm5UpdCBHepCyCS2ieffILs7Gz4+vqif//+xl1p58yZg6FD\nh+L06dOYMWMGfvnlF/z5z3/GtGnTAACjR49GQUEBGhsbkZaWhmPHjqF///5wd3dHXFyc8X3m7Ny5\nEx999BHc3Nzg5eWFzMxM1NfXY/ny5Th79iyUSiWWLFmC8ePHIysrC7t370ZdXR0aGxuh0+lw6dIl\nREdHY9asWZgzZw7effddnEkrIv8AAAMjSURBVDhxAjqdDk8++SQef/xxCIKAlStX4siRI+jfvz+6\ndevmkPNJroMBQi7t7Nmz2LFjB7Kzs2EwGDBr1ixjgABN+0NlZWUBaOoCMmf37t0oKyvDjh07UFVV\nhYiICMTFxVn93I8//hgbN26EWq02boWRmZkJAPj2229x6dIlJCUlGbec+Pnnn/HNN9/A29u71api\nANi6dSu8vLywbds26HQ6PP7445g4cSLOnTuHoqIi7NixA5WVlYiMjGy3LqKOYICQSzt16hTCwsLg\n4eEBAG32PYuIiGj3Z5w+fRrTpk2Dm5sb+vXrh3HjxrX7b0aPHo0lS5Zg+vTpCA8PN/6cp556CgAw\nePBgDBgwAEVFRQCAiRMnWtyq5siRI7hw4YIxbGpra/Hbb7/h5MmTiIyMhFKphFqtxvjx49uti6gj\nGCBEVjQHC9C0bXdjYyMAoLGxEQ0NDaJ/blpaGn788UccOHAAcXFx2LZtm811mBIEAa+99homTZrU\n6njL288S2QMH0cmljR07Fnv37sXt27dx48YN7N+/3+J7AwICjPew3rdvnzFAHnzwQezevRuNjY2o\nrKzEiRMnjP/mvffew549e9r8rMuXL2PkyJF46aWX4OPjg/LycowZM8Y4u6qoqAhXrlxBUFBQm3/b\ns2dP3Lx50/j8kUcewZYtW4z1FBUVoa6uDmPHjsXOnTthMBhQUVGB48ePizhDRJaxBUIubfjw4YiI\niEB0dDR8fX2t7ow6e/ZsvPDCC5g5cyYmTZqEHj16APjf7T8jIiLQv39/DBs2DF5eXgCAX375xezt\nAN555x389ttvEAQB48ePx9ChQxEUFITly5cjKioKSqUSb731FlQqVZt/O2TIELi5uWHmzJmIjY3F\n008/jbKyMsTGxkIQBPj4+ODjjz9GeHg4jh07hoiICAwYMACjRo3qpLNG1IS78RJ1gps3b6Jnz56o\nrq5GQkICtmzZgn79+iEpKUn260qIxGKAEHWCOXPm4Pr162hoaMAzzzyD2NhYqUsisjsGCBERicJB\ndCIiEoUBQkREojBAiIhIFAYIERGJwgAhIiJR/h/ru2v6mawUYgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEGCAYAAACdJRn3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de1SUdf4H8PcwOIaCghcG5aAbRpqGl1ZTM3MXwVEQQS5WW7ZyqMzcDOngT7t4Essou5ieLrhaWnE87iZCgeYFr8fyuhRaaulCAslwQEQRY5iZ5/cHOxMMM8M8yszzDPN+/RPzncH57MPO857v5fk+CkEQBBAREYngJXUBRETkfhgeREQkGsODiIhEY3gQEZFoDA8iIhLNW+oCnGn8+PEIDg6WugwiIrdSWVmJY8eO2X1Nlw6P4OBg5ObmSl0GEZFbSUhI6PA1HLYiIiLRGB5ERCQaw4OIiERjeBARkWgMDyIiEo3hQUREojE8iIhINIYHERGJxvAgIupiHs7+Dg9nf+fU92B4EBGRaAwPIiISjeFBRESiMTyIiEg0hgcREYnG8CAiItEYHkREJBrDg4iIRGN4EBGRaAwPIiISTbb3MI+IiEDPnj3h5eUFpVKJ3NxcXL16FYsXL0ZlZSWCg4OxZs0a9O7dW+pSiYg8jqx7Hps3b0Z+fj5yc3MBAOvXr8fEiROxe/duTJw4EevXr5e4QiIizyTr8LBUVFSE+Ph4AEB8fDz27t0rcUVERJ5J1uGRmpqKhIQEbN26FQBQW1uLwMBAAED//v1RW1srZXlERB5LtnMeW7ZsgVqtRm1tLVJSUhAaGtrmeYVCAYVCIVF1RESeTbY9D7VaDQDo27cvoqKiUFJSgr59+6K6uhoAUF1djT59+khZIhGRx5JleDQ2NqKhocH885EjRxAWFoaIiAjk5eUBAPLy8jB16lQpyyQi8liyHLaqra3FwoULAQAGgwEzZ87EQw89hPDwcKSlpeHLL7/EwIEDsWbNGokrJSKSl7ziShRfugqdwYhJWfuQoRmK+DHBnf4+sgyPkJAQfPXVV+3aAwICsHnzZgkqIiKSv7ziSizLPQ2dwQgAqLx6E8tyTwNApweILIetiIhIvNW7zuNms6FN281mA1bvOt/p78XwICLqIn67elNU++1geBARdRED/X1Etd8OhgcRUReRoRkKn27KNm0+3ZTI0Azt9PeS5YQ5ERGJZ5oUX/JlCXQGI4L9fTxrtRUREd2a+DHB2HL8EgBg6/yJTnsfDlsREZFoDA8iIhKN4UFERKIxPIiIupCHs7/DT5evOf19OGFORNRFhL+6C41NevTo7vxTO3seREQkGsODiIhEY3gQEZFoDA8iIhKN4UFERKIxPIiISDSGBxERicbwICIi0RgeRERdwMPZ36GxSe+y92N4EBGRaLLbnuTy5ctYsmQJamtroVAoMGfOHPz973/HunXr8K9//Qt9+vQBAKSnp2PKlCkSV0tE5JlkFx5KpRJLly7FiBEj0NDQgMTEREyaNAkAMG/ePKSmpkpcIRGRvLhqM8TWZBcegYGBCAwMBAD4+voiNDQUWq1W4qqIiOTJ2maIwwf0cupdBAGZz3lUVFTg7NmzGDVqFAAgJycHsbGxWLZsGerr6yWujojIc8k2PG7cuIFFixbhxRdfhK+vLx599FHs2bMH+fn5CAwMRFZWltQlEhFJytUrrFqT3bAVADQ3N2PRokWIjY3FtGnTAAD9+vUzP5+cnIxnnnlGqvKIiCQlxRyHJdn1PARBwEsvvYTQ0FCkpKSY26urq80/7927F2FhYVKUR0QkqfBXd+Fk2RWpy5Bfz+PUqVPIz8/H3Xffjbi4OAAty3ILCgpw7tw5AEBwcDAyMzOlLJOIyKVMvQ1bw1SNTXoYhJafj5VewYjl3+D12eGIHxPslHpkFx5jx47F+fPn27Xzmg4i8lQd3V7WFBqt3dAZ8MK/fwAApwSI7MKDiIjazmvc6qS4wShg9a7zDA8iIk/QUU9DjN+u3uyEitqT3YQ5EZEn6+zltwP9fTrt32qNPQ8iIglZToR3Rm/DROmlQIZmaKf9e60xPIiIXMDy2ozODAulouW/rSfOe6qUnrXaiojInVib2DYFQuvHzuhZtNb6Pcb+qY/T97ZieBARdaD1BLa9gPAknvW/log8nq05Bnu9BKn2j3KUUQAaftfDNGpVc73J6e/J8CCiLsNyiasn9BKMAmB5jWBp7Q3kFVc6bb4DYHgQkYzcTq+g9XOexMrF5TAKcNrFgSYMDyK6LY5OGFs+9oRegZScdXGgCf9KRNSOveEfnvTlo+F32z0tZ10caMK/NlEX8XD2d+atum/3m78nDv+4m8YmvdUhKxNnXRxowvAgkgHLEz+He6gj1nbSbc2Z8x0Aw4Potom5BsCVF41R19VRcKiUzt+2kP+vpS6ps1btdIVrAKjraH3DJ3tCApw73wEwPEgGrJ3oO+vETtQVWLuWw55+ft2dVosJP2EkSkeTshy2IepcHU2MWzJtkuhs/NR2cbe65JKTskTSMfU0rttZimuNi3IDAMPDrYkZ7iEi9yC2p2Hiqh6HCcNDhsQODRFR1yB2bqM1V1+f43Znn0OHDuH111+H0WhEcnIynn76aalLui32tnYgIs/g6CoqaxQAvFzc6wDcLDwMBgMyMzPx6aefQq1WIykpCREREbjrrrukLs1h9q4JICLPoNMbzGEhdl7DpLu3AipvZZveRo/u3hg+oJfTbwQFuFl4lJSUYPDgwQgJCQEAxMTEoKioSLbhYW/4iYi6HlsT3a0f32pYtKYAoPJWtmt3VXAAgPMvQ+xEWq0WQUFB5sdqtRparVbCimyzvF8xEbknUy/BILSc+Fv/bPn4VucrxJBqmMqSW/U8iIg6g71ho87uJXQGU2DIadNKtwoPtVqNqqoq82OtVgu1Wi1hRdax10EkHaNgPxAAwKB3RR+hc7h6Ca6j3GrYKjw8HGVlZSgvL4dOp0NhYSEiIiKkLqsNBgfRrTM6MDTU0XPuEwsd6+6tkO2CGnlWZYO3tzeWL1+OJ598EgaDAYmJiQgLC5O6LDNrE+REnsSRCWPLx3IZGpKL7t4K6P83pmZtUlwu3O4MN2XKFEyZMkXqMtpgb4O6oo6GfzoKCHKcZWDoDfI/lm4XHkRknaOTwJaPGQLO0XquwpH94twhMFpjeNwiXhlOzib2m787TQK7s9YrnwD53OvFldd4AAwPok5heaLnN3/30nrYiPd3d4xDq60+//xz1NfXO7sWt8E5DvdhvI1VO2Ke43d+eVKgZfjI7w5v+N3hDaXij8etf5bzxLRcOdTzqKmpQVJSEoYPH47ExERMnjwZCoVMFx87GVdUOZeYb/BcwdO1KQD43sFbBDuiR3dvlw5ZAQ72PBYvXozdu3cjKSkJ27dvx7Rp0/Duu+/i0qVLzq5PVtjjsM2R9fn8Bu9ZTN/sHfnmb+05OWzB4Q5MmyG6msMXCSoUCvTv3x/9+vWDUqlEfX09Fi1ahLfeesuZ9VEnErNHD0/61Frr4R9HA4E9c9dw9US5iUN/3c2bNyM/Px8BAQFISkrCkiVL0K1bNxiNRkybNg1Llixxdp2Sk2uvo/V9ADgJS61ZTgIDHP7paqQKDsDB8Kivr8e6desQHBzcpt3LywvZ2dlOKcyTudumbeR81jbGc+Sk727XDpD7cCg8ysvL2wVHRkYGVq9ejSFDhjilME+i0xvQ1GqNPtfruzdbE72Wj/nNn27F2D/1kay30ZpD4XHhwoU2jw0GA3788UenFCRXP12+Zr4D4K2y1aNgWLiGmCt+b/c5ImeQcpjKkt0zYXZ2Nj7++GM0NTXhvvvuAwAIggCVSoU5c+a4pEB3Zdmb4BCTeJ25VJPf4MmdufL2so6yGx7z58/H/Pnz8c477+CFF15wVU1uzyB4dm+iM4dtiDxVj+7eOP2qRuoybLIbHhcvXsSQIUMwffp0q8NUI0aMcFph7sroRplxK3v08KRP5HxSXbshht3w2LRpE1auXImsrKx2zykUCnz22WdOK8xdSZkdHS3NtHzMEz2RPMltiMoau+GxcuVKAC17W1HHnHUydnTTNne5DwARtSeXVVSOcmjpUGxsLGbOnIkZM2Zg0KBBzq7JLRk6qcthmi/gen2irk/u8xr2OBQeH3/8MXbs2IG0tDQoFApER0djxowZGDhwoLPrk73Wy2/FsjXnQERdg7v1JsRwKDyCg4Px1FNP4amnnkJZWRk+/PBDvP322zh79qyz65M1y+W49vjZWXJKRO7BHeYiXMXhK94qKyuxY8cO7Ny5E15eXsjIyHBmXbJm/N9GgI4ux+XmoETy15V7Cc7gUHgkJydDr9dj+vTpeP/99xESEuLsumRLpzeIXlHFraWJpMFAcB6HwuPNN99EaGios2vBm2++if3796Nbt24YNGgQ3njjDfTq1QsVFRWIjo7GnXfeCQAYNWoUMjMznV6PNY4OU5kwN4hujTtPJnsCu+GRn5+PuLg4HDx4EAcPHmz3fEpKSqcWM2nSJLzwwgvw9vbG6tWrkZ2dbR4eGzRoEPLz8zv1/cQSOzHeeoktkSfiN/+uy2543Lx5EwBw48YNlxTz4IMPmn8ePXo0vvnmG5e8ryPETm6bJsi5xJa6AjnurUTSshsejzzyCABg4sSJ+POf/9zmuVOnTjmvKgDbtm3DjBkzzI8rKioQHx8PX19fpKWlYezYsU59/9byiitF9To4VEVywxM/dTaH5jxee+01bN++vcM2R8ybNw81NTXt2tPS0hAZGQkA+Oijj6BUKjFr1iwAQGBgIPbv34+AgACcOXMGCxcuRGFhIXx9fUW//61Y8bXj28+brt0g6kz85k9yYzc8iouLUVxcjCtXruDTTz81tzc0NMBgMNzSG27atMnu87m5uThw4AA2bdoEhaLlLKxSqaBSqQAA9957LwYNGoTS0lKEh4ffUg1i5BVXoq6xucPXKRW8doP+wBM9dXV2w6O5uRmNjY0wGAxt5j18fX2xdu3aTi/m0KFD2LBhA7744gv4+PiY269cuYLevXtDqVSivLwcZWVlLlsuvHrX+Q5fw46G++HJnej22A2P+++/H/fffz9mz57d7ja0zrBy5UrodDrzKi7TktwTJ05g7dq18Pb2hpeXF1asWAF/f3+n1wMAv129afd5rqhyHi7VJJIvh+Y8Xn75Zbz//vvo1atlf/n6+nqkp6dj48aNnVrMnj17rLZrNBpoNNKcRPx7dLM5bMUVVfbx2z1R1+VQeNTV1ZmDAwB69+6N2tpapxUlJ4IHdCp4kicisRwKDy8vL/z222/mXXQrKirMk9ldXf3NjifL5YBDPETkSg6FR1paGv72t79h3LhxEAQBp06dkmx7EFcb6O+Dyg7mPVyBV+oSkZw4FB4PPfQQtm3bhq1bt2L48OGIjIzEHXfc4ezaZCFDMxTLck/jZnPbpcnO6HdxLT8RuQuHwuPf//43PvvsM1RVVWHYsGH44YcfMHr0aI+4h3n8mJZVZou3fg8Bf4TG7VwIyCEmInJ3DoXHZ599hi+//BJz5szB559/josXL+K9995zdm2yET8mGK/kn0Fjk170hYDsTRBRV+RQeKhUKnTv3h0AoNPpMGTIEJSWljq1MHfHwCCirsyh8AgKCsK1a9cQGRmJlJQU9OrVi/cvJyLyYA6FxwcffAAAeO655zB+/Hhcv34dkydPdmph7qxHd2/2OoioS3P4HuYm999/vzPq6DJMcxxERF2Zl9QFdDWc6yAiT8DwcMDD2d85tMKKwUFEnkL0sBW1x+W4RORpGB63gYFBRJ6Kw1a3iCuqiMiTMTyIiEg0DluJxKEqIiL2PEThUBURUQuGRwcezv4OP12+JnUZRESywvCwo3Vw8MpxIqI/MDyIiEg02YXHunXrMHnyZMTFxSEuLg4HDx40P5ednY2oqChoNBocPnxYwiqJiDybLFdbzZs3D6mpqW3aLly4gMLCQhQWFkKr1SIlJQW7du2CUql0SU1cZUVE9AfZ9TxsKSoqQkxMDFQqFUJCQjB48GCUlJRIXRYRkUeSZXjk5OQgNjYWy5YtQ319PQBAq9UiKCjI/Bq1Wg2tVitViUREHk2SYat58+ahpqamXXtaWhoeffRRPPvss1AoFHj//feRlZWFN954Q4IqiYjIFknCY9OmTQ69Ljk5Gc888wyAlp5GVVWV+TmtVgu1Wu2M8gDw+g4iIntkN2xVXV1t/nnv3r0ICwsDAERERKCwsBA6nQ7l5eUoKyvDyJEjpSqTiMijyW611erVq3Hu3DkAQHBwMDIzMwEAYWFhmDFjBqKjo6FUKrF8+XKXrbQiIqK2ZBketixYsAALFixwYTWATm+ATi/gWOkVTMrahwzNUMSPCXZpDUREciO78JATnd6AJr1gflx59SaW5Z4GAAYIEXk02c15yImuVXCY3Gw2YPWu8xJUQ0QkHwwPO9pHR4vfrt50aR1ERHLD8LBDYaN9oL+PS+sgIpIbhocdKu/28eHTTYkMzVAJqiEikg9OmNuh8lYCaFltJQAI9vfhaisiIrDnYZdpma4AQKX0YnAQEf0Pex421FxvarNMV2cwcpkuEdH/sOdhw69XGtu1cZkuEVELhocVecWV0ButL9TlMl0iIoaHVfZ6F1ymS0TE8LDKXu+Cy3SJiBgeVtnqXfj7dONkORERGB5WZWiGwsvi+kAvBfDqrBHSFEREJDMMDxssry2/s29P9jqIiP6H4WEhr7gSy3JPw2BrV0QiImJ4WFq96zxuNhvatZfXcYkuEZEJw8OCrZVWOoPRxZUQEckXw8OCrZVWKiUPFRGRCc+IFjI0Q+HTTdmuPSSAFwcSEZlwY0QLphVVi7d+DwEtq65U3gr08+suaV1ERHIiq/BIS0tDaWkpAOD69evw8/NDfn4+KioqEB0djTvvvBMAMGrUKGRmZjqtjvgxwXgl/wwam/To0V1Wh4iISBZkdWZcs2aN+eesrCz4+vqaHw8aNAj5+flSlEVERBZkOechCAJ27tyJmTNnSl0KAGD4gF7YOn+i1GUQEcmGLMPj5MmT6Nu3L/70pz+Z2yoqKhAfH4/HH38cJ0+elK44IiJy/bDVvHnzUFNT0649LS0NkZGRAICCgoI2vY7AwEDs378fAQEBOHPmDBYuXIjCwsI2w1pEROQ6Lg+PTZs22X1er9djz549yM3NNbepVCqoVCoAwL333otBgwahtLQU4eHhziyViIhskN2w1bfffovQ0FAEBQWZ265cuQKDoWXLkPLycpSVlSEkJESqEomIPJ6sVlsBwI4dOxATE9Om7cSJE1i7di28vb3h5eWFFStWwN/fX6IKiYhIduGRlZXVrk2j0UCj0UhQDRERWSO7YSu54TJdIqL2GB5ERCQaw8OOHt292esgIrKC4UFERKIxPKzIK65Ew+96XP9dj0lZ+5BXXCl1SUREssLwsGC6h7npFuaVV29iWe5pBggRUSsMDwvW7mF+s9mA1bvOS1QREZH8MDws2LqHua12IiJPxPCwYOse5rbaiYg8EcPDgrV7mPt0UyJDM1SiioiI5Ed225NIzXQP8yVflkBnMCLY3wcZmqHmdiIiYnhYFT8mGFuOXwIAXiRIRGQFh62IiEg0hgcREYnG8CAiItEYHkREJBrDg4iIRGN4EBGRaAwPIiISjeFBRESiMTyIiEg0ScJj586diImJwbBhw3D69Ok2z2VnZyMqKgoajQaHDx82tx86dAgajQZRUVFYv369q0smIqJWJAmPu+++G+vWrcO4cePatF+4cAGFhYUoLCzEhg0bsGLFChgMBhgMBmRmZmLDhg0oLCxEQUEBLly4IEXpREQEifa2GjJkiNX2oqIixMTEQKVSISQkBIMHD0ZJSQkAYPDgwQgJCQEAxMTEoKioCHfddZfLaiYioj/Ias5Dq9UiKCjI/FitVkOr1dpsJyIiaTit5zFv3jzU1NS0a09LS0NkZKSz3paIiFzAaeGxadMm0b+jVqtRVVVlfqzVaqFWqwHAZjsREbmerIatIiIiUFhYCJ1Oh/LycpSVlWHkyJEIDw9HWVkZysvLodPpUFhYiIiICKnLJSLyWJJMmO/ZswcrV67ElStXMH/+fNxzzz3YuHEjwsLCMGPGDERHR0OpVGL58uVQKltuCbt8+XI8+eSTMBgMSExMRFhYmFNr5E2giIhsUwiCIEhdhLMkJCQgNzdX6jKIiNyKI+dOWQ1bERGRe2B4EBGRaAwPIiISjeFBRESiMTyIiEg0hgcREYnG8CAiItEYHkREJJokV5i7SmVlJRISEqQug4jIrVRWVnb4mi59hTkRETkHh62IiEg0hgcREYnG8CAiItEYHkREJBrDg4iIRGN4EBGRaAwPKw4dOgSNRoOoqCisX79e6nIQERGB2NhYxMXFma9buXr1KlJSUjBt2jSkpKSgvr7eJbUsW7YMEydOxMyZM81ttmoRBAGvvfYaoqKiEBsbix9//NHlta1btw6TJ09GXFwc4uLicPDgQfNz2dnZiIqKgkajweHDh51a2+XLlzF37lxER0cjJiYGmzdvBiCPY2erNjkcu6amJiQlJWHWrFmIiYnB2rVrAQDl5eVITk5GVFQU0tLSoNPpAAA6nQ5paWmIiopCcnIyKioqXF7b0qVLERERYT5uZ8+eBeD6zwMAGAwGxMfHY/78+QA6+bgJ1IZerxemTp0qXLp0SWhqahJiY2OFX375RdKa/vrXvwq1tbVt2t58800hOztbEARByM7OFt566y2X1HL8+HHhzJkzQkxMTIe1HDhwQEhNTRWMRqNQXFwsJCUluby2tWvXChs2bGj32l9++UWIjY0VmpqahEuXLglTp04V9Hq902rTarXCmTNnBEEQhOvXrwvTpk0TfvnlF1kcO1u1yeHYGY1GoaGhQRAEQdDpdEJSUpJQXFwsLFq0SCgoKBAEQRBeeeUVIScnRxAEQfjiiy+EV155RRAEQSgoKBCef/55p9Rlr7b/+7//E3bu3Nnu9a7+PAiCIHzyySdCenq68PTTTwuCIHTqcWPPw0JJSQkGDx6MkJAQqFQqxMTEoKioSOqy2ikqKkJ8fDwAID4+Hnv37nXJ+44bNw69e/d2qBZTu0KhwOjRo3Ht2jVUV1e7tDZbioqKEBMTA5VKhZCQEAwePBglJSVOqy0wMBAjRowAAPj6+iI0NBRarVYWx85Wbba48tgpFAr07NkTAKDX66HX66FQKHD06FFoNBoAwOzZs82f0X379mH27NkAAI1Gg++++w6Ck66DtlWbLa7+PFRVVeHAgQNISkoC0NLz6czjxvCwoNVqERQUZH6sVqvtfpBcJTU1FQkJCdi6dSsAoLa2FoGBgQCA/v37o7a2VrLabNVieSyDgoIkOZY5OTmIjY3FsmXLzMNCUv6dKyoqcPbsWYwaNUp2x651bYA8jp3BYEBcXBweeOABPPDAAwgJCUGvXr3g7d2yu1LrY6PVajFgwAAAgLe3N/z8/FBXV+ey2kzH7b333kNsbCxWrVplHhpy9d901apVyMjIgJdXy2m+rq6uU48bw8MNbNmyBdu3b8c///lP5OTk4MSJE22eVygUdr/xuJKcagGARx99FHv27EF+fj4CAwORlZUlaT03btzAokWL8OKLL8LX17fNc1IfO8va5HLslEol8vPzcfDgQZSUlOC///2vJHVYY1nbzz//jPT0dHzzzTfYtm0b6uvrJZk33b9/P/r06YN7773Xae/B8LCgVqtRVVVlfqzVaqFWqyWsCOb379u3L6KiolBSUoK+ffuau7zV1dXo06ePZPXZqsXyWFZVVbn8WPbr1w9KpRJeXl5ITk7G6dOnrdbmir9zc3MzFi1ahNjYWEybNg2AfI6dtdrkdOwAoFevXhg/fjy+//57XLt2DXq9HkDbY6NWq3H58mUALUNJ169fR0BAgMtqO3z4MAIDA6FQKKBSqZCQkGDzuDnzb/qf//wH+/btQ0REBNLT03H06FG8/vrrnXrcGB4WwsPDUVZWhvLycuh0OhQWFiIiIkKyehobG9HQ0GD++ciRIwgLC0NERATy8vIAAHl5eZg6dapkNdqqxdQuCAK+//57+Pn5mYdoXKX1mPLevXsRFhZmrq2wsBA6nQ7l5eUoKyvDyJEjnVaHIAh46aWXEBoaipSUFHO7HI6drdrkcOyuXLmCa9euAQB+//13fPvttxgyZAjGjx+PXbt2AQC2b99u/oxGRERg+/btAIBdu3ZhwoQJTuvNWastNDTUfNwEQWh33Fz1N33hhRdw6NAh7Nu3D++++y4mTJiAd955p1OPG3fVteLgwYNYtWoVDAYDEhMTsWDBAslqKS8vx8KFCwG0jK/OnDkTCxYsQF1dHdLS0nD58mUMHDgQa9asgb+/v9PrSU9Px/Hjx1FXV4e+ffviueeeQ2RkpNVaBEFAZmYmDh8+DB8fH6xatQrh4eEure348eM4d+4cACA4OBiZmZnmD+xHH32Ebdu2QalU4sUXX8SUKVOcVtvJkyfx2GOP4e677zaPQaenp2PkyJGSHztbtRUUFEh+7M6dO4elS5fCYDBAEARMnz4d//jHP1BeXo7Fixejvr4e99xzD95++22oVCo0NTUhIyMDZ8+eRe/evfHee+8hJCTEpbU98cQTqKurgyAIGDZsGFasWIGePXu6/PNgcuzYMXzyySfIzs7u1OPG8CAiItE4bEVERKIxPIiISDSGBxERicbwICIi0RgeREQkGsODqJV169Zh48aNUpdhV0VFBb7++mvRv7d06VJ88803TqiIPBHDg8gBpqtypabX61FZWYmCggKpSyEP5y11AURS++ijj5CXl4c+ffpgwIAB5h1m586di2HDhuHUqVOYOXMmfv75Z/zlL3/B9OnTAQBjxoxBcXExjEYjMjMzcfToUQwYMADe3t5ITEw0v86anTt34oMPPoCXlxf8/PyQk5ODpqYmvPrqqzhz5gyUSiWWLl2KCRMmIDc3F7t370ZjYyOMRiN0Oh0uXryIuLg4zJ49G3PnzsXbb7+N48ePQ6fT4bHHHsMjjzwCQRCwcuVKHDlyBAMGDEC3bt1ccjzJMzA8yKOdOXMGO3bsQF5eHgwGA2bPnvApdhoAAALpSURBVG0OD6Blz6fc3FwALcM+1uzevRuVlZXYsWMHamtrER0djcTERLvv++GHH2Ljxo1Qq9XmLS5ycnIAAF9//TUuXryI1NRU81YSP/30E7766iv4+/u3uWIYALZu3Qo/Pz9s27YNOp0OjzzyCCZNmoSzZ8+itLQUO3bsQE1NDWJiYjqsi8hRDA/yaCdPnkRkZCR8fHwAoN0+ZtHR0R3+G6dOncL06dPh5eWF/v37Y/z48R3+zpgxY7B06VLMmDEDUVFR5n/n8ccfBwAMGTIEAwcORGlpKQBg0qRJNrefOXLkCM6fP28OmuvXr+PXX3/FiRMnEBMTA6VSCbVajQkTJnRYF5GjGB5EdphCBWjZfttoNAIAjEYjmpubb/nfzczMxA8//IADBw4gMTER27Ztc7gOS4Ig4OWXX8bkyZPbtLe+bSxRZ+OEOXm0cePGYe/evfj999/R0NCA/fv323xtcHCw+b7T+/btM4fHfffdh927d8NoNKKmpgbHjx83/84777yDPXv2tPu3Ll26hFGjRuH5559HQEAAqqqqMHbsWPMqqtLSUly+fBmhoaHtfrdnz564ceOG+fGDDz6ILVu2mOspLS1FY2Mjxo0bh507d8JgMKC6uhrHjh27hSNEZB17HuTRRowYgejoaMTFxaFPnz52dzmdM2cOnn32WcyaNQuTJ09Gjx49APxx287o6GgMGDAAw4cPh5+fHwDg559/trql/1tvvYVff/0VgiBgwoQJGDZsGEJDQ/Hqq68iNjYWSqUSb7zxBlQqVbvfHTp0KLy8vDBr1iwkJCTgiSeeQGVlJRISEiAIAgICAvDhhx8iKioKR48eRXR0NAYOHIjRo0d30lEj4q66RJ3ixo0b6NmzJ+rq6pCcnIwtW7agf//+SE1Nlf11I0S3guFB1Anmzp2La9euobm5GU8++SQSEhKkLonIqRgeREQkGifMiYhINIYHERGJxvAgIiLRGB5ERCQaw4OIiET7f9U/Veki6ZHMAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1719,11 +1788,11 @@ "scrolled": false, "id": "MQPUH1ogl6BH", "colab_type": "code", + "outputId": "b3117e20-e8d6-43b1-a9eb-e4281d32d0f5", "colab": { "base_uri": "https://localhost:8080/", - "height": 282 - }, - "outputId": "7146010d-48a1-41df-88a5-b40fe661e9bd" + "height": 0 + } }, "source": [ "actives = avg_df[abs(avg_df['n'])-ci_95 > 25]['n']\n", @@ -1747,7 +1816,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD4CAYAAAAEhuazAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAASJ0lEQVR4nO3dfUyV9f/H8dfh4Nmc5B3FYTEgKaym\nZG45U0vXUTwJEgxvmqstmE4zFyNNJ7qxSStptmb6R8Os4R/O2YqkcWqmeIPTSi03dFPLTSbwlcOE\nNO/y6PH8/jDPL1NM4FxccD7Px1+cz3Hnemvr6eV1PudcjlAoFBIAwCgxdg8AAOh5xB8ADET8AcBA\nxB8ADET8AcBAsXYP8CDGjh2rpKQku8cAgD6lublZP//88z2f6xPxT0pKUlVVld1jAECfkp+f3+Fz\nXPYBAAMRfwAwEPEHAAMRfwAwEPEHAAMRfwAwEPEHAAMRfwAwEPEHgF7q1Yof9WrFj5a8NvEHAAMR\nfwAwEPEHAAMRfwAwEPEHAAMRfwAwEPEHAAMRfwAwEPEHAAMRfwAwkOX38PV4PBowYIBiYmLkdDpV\nVVWl8+fP65133lFzc7OSkpK0du1aDRo0yOpRAAB/65Ez/02bNqm6ujp8E/YNGzZo3Lhx+uGHHzRu\n3Dht2LChJ8YAAPzNlss+tbW1ysvLkyTl5eVp586ddowBAMbqkfjPnTtX+fn52rp1qySpra1NCQkJ\nkqRHHnlEbW1tPTEGAOBvll/z37Jli9xut9ra2lRYWKi0tLQ7nnc4HHI4HFaPAQD4B8vP/N1utyQp\nPj5emZmZqq+vV3x8vFpbWyVJra2tGjp0qNVjAAD+wdL4X7lyRZcuXQr/vH//fqWnp8vj8Wjbtm2S\npG3btmny5MlWjgEA+BdLL/u0tbVp0aJFkqRgMKjp06dr4sSJysjIUHFxsb766is9+uijWrt2rZVj\nAAD+xdL4Jycn69tvv71rfciQIdq0aZOVhwaAPm3bkWYdOXNegeBNTSjfpaXeJ5U3Oilir88nfAGg\nl9l2pFklVUcVCN6UJDWfv6qSqqPadqQ5Yscg/gDQy6zZflJXrwfvWLt6Pag1209G7BjEHwB6mf+d\nv9qp9a4g/gDQyzw6uH+n1ruC+ANAL7PU+6T693Pesda/n1NLvU9G7BiWf8IXANA5t3f1LPuqXoHg\nTSUN7h/x3T7EHwB6obzRSdpy8IwkaeuCcRF/fS77AICBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4\nA4CBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGMiyr3Q+e/asli1bpra2NjkcDs2ePVtv\nvPGG1q9fry+//FJDhw6VJC1evFiTJk2yagwAwD1YFn+n06nly5drxIgRunTpkmbMmKEJEyZIkgoK\nCjR37lyrDg0A+A+WxT8hIUEJCQmSpLi4OKWlpcnv91t1OACIOlbcxOW2Hrnm39TUpOPHj2vUqFGS\npM2bNysnJ0clJSW6cOFCT4wAAPgHy+N/+fJlFRUVacWKFYqLi9OcOXO0Y8cOVVdXKyEhQeXl5VaP\nAAD4F0vjf/36dRUVFSknJ0dTp06VJD388MNyOp2KiYnRrFmzdPToUStHAADcg2XxD4VCWrlypdLS\n0lRYWBheb21tDf+8c+dOpaenWzUCAKADlr3h+8svv6i6ulrDhw9Xbm6upFvbOmtqanTixAlJUlJS\nksrKyqwaAQDQAcvi/9xzz+nkyZN3rbOnHwDsxyd8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8\nAcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBA\nxB8ADET8AcBAtsW/rq5OXq9XmZmZ2rBhg11jAICRbIl/MBhUWVmZNm7cKJ/Pp5qaGp06dcqOUQDA\nSLbEv76+XqmpqUpOTpbL5VJ2drZqa2vtGAUAjGRL/P1+vxITE8OP3W63/H6/HaMAgJF4wxcADGRL\n/N1ut1paWsKP/X6/3G63HaMAgJFsiX9GRoYaGhrU2NioQCAgn88nj8djxygAYKRYWw4aG6vS0lLN\nmzdPwWBQM2bMUHp6uh2jAICRbIm/JE2aNEmTJk2y6/AAYDTe8AUAAxF/ADAQ8QcAAxF/ADAQ8QcA\nAxF/ADAQ8QcAAxF/ADAQ8QcAAxF/ADAQ8QcAAxF/ADAQ8QcAAxF/ADAQ8QcAAxF/ADAQ8QcAAxF/\nADAQ8QcAAxF/ADAQ8QcAA8Va8aIffvihdu/erX79+iklJUWrV6/WwIED1dTUpKysLA0bNkySNGrU\nKJWVlVkxAgDgPiyJ/4QJE7RkyRLFxsZqzZo1qqio0NKlSyVJKSkpqq6utuKwAIAHZMllnxdeeEGx\nsbf+Xnn22WfV0tJixWEAAF1k+TX/r7/+WhMnTgw/bmpqUl5enl5//XUdPnzY6sMDAO6hy5d9CgoK\ndO7cubvWi4uLNWXKFEnSp59+KqfTqVdeeUWSlJCQoN27d2vIkCE6duyYFi1aJJ/Pp7i4uK6OAQDo\ngi7Hv7Ky8r7PV1VVac+ePaqsrJTD4ZAkuVwuuVwuSdLIkSOVkpKi06dPKyMjo6tjAAC6wJLLPnV1\nddq4caM+/fRT9e/fP7ze3t6uYDAoSWpsbFRDQ4OSk5OtGAEAcB+W7PZ57733FAgEVFhYKOn/t3Qe\nOnRI69atU2xsrGJiYrRq1SoNHjzYihEAAPdhSfx37Nhxz3Wv1yuv12vFIQEAncAnfAHAQMQfAAxE\n/AHAQMQfAAxE/AHAQMQfAAxE/AHAQMQfAAxE/AHAQMQfAAxE/AH0Ca9W/KhXK360e4yoQfwBwEDE\nHwAMRPwBwEDEHwAMRPwBwEDEHwAMRPyBPohtj+gu4g8ABiL+6PM4CwY6j/gDgIEsi//69ev14osv\nKjc3V7m5udq7d2/4uYqKCmVmZsrr9Wrfvn1WjQAA6ECslS9eUFCguXPn3rF26tQp+Xw++Xw++f1+\nFRYWavv27XI6nVaOAgD4hx6/7FNbW6vs7Gy5XC4lJycrNTVV9fX1PT0GABjN0vhv3rxZOTk5Kikp\n0YULFyRJfr9fiYmJ4V/jdrvl9/utHAMA8C/duuxTUFCgc+fO3bVeXFysOXPm6K233pLD4dAnn3yi\n8vJyrV69ujuHAwBESLfiX1lZ+UC/btasWXrzzTcl3TrTb2lpCT/n9/vldru7Mwb+5fa2x60Lxtk8\nCYDeyrLLPq2treGfd+7cqfT0dEmSx+ORz+dTIBBQY2OjGhoa9Mwzz1g1BgDgHizb7bNmzRqdOHFC\nkpSUlKSysjJJUnp6uqZNm6asrCw5nU6Vlpay0wcAepil8e/IwoULtXDhQqsODSDKbDvSrCNnzisQ\nvKkJ5bu01Puk8kYn2T1Wn8YnfAH0atuONKuk6qgCwZuSpObzV1VSdVTbjjTbPFnfRvwB9Gprtp/U\n1evBO9auXg9qzfaTNk0UHYg/gF7tf+evdmodD4b4A+jVHh3cv1PreDDEH0CvttT7pPr3u3NHYP9+\nTi31PmnTRNHB0i92A4Duur2rZ9lX9QoEbyppcH92+0QA8Qf6GBO3PeaNTtKWg2ck8cn1SOGyD9CH\nsO0RkUL80afdPgv++XS7JpTvivoIsu0RkUL80WeZeBbMtkdECvFHn2XiWTDbHhEpxB99lolnwWx7\nRKQQf/RZJp4F541O0ur8DLmct/7XTRrcX6vzM6J+tw8ij/ijzzL1LDhvdJJGpwzW2GFDtX+5h/Cj\nS4h/lDFp9wtnwUDXRf2HvEy6pWFHu18kRW0Q+fAP0DWc+UcRE3e/AOga4h9FTNz9AqBriH8UMXH3\nC4CuIf5RxNTdLwA6L+rf8DUJX30L4EFZEv/i4mKdPn1aknTx4kU99NBDqq6uVlNTk7KysjRs2DBJ\n0qhRo1RWVmbFCMZi9wuAB2FJ/NeuXRv+uby8XHFxceHHKSkpqq6utuKwAIAHZOlln1AopO+//16b\nNm2y8jAADMC/ZCPL0jd8Dx8+rPj4eD322GPhtaamJuXl5en111/X4cOHrTw8AKADXT7zLygo0Llz\n5+5aLy4u1pQpUyRJNTU1mj59evi5hIQE7d69W0OGDNGxY8e0aNEi+Xy+Oy4LAQCs1+X4V1ZW3vf5\nGzduaMeOHaqqqgqvuVwuuVwuSdLIkSOVkpKi06dPKyMjo6tjAAC6wLLLPgcOHFBaWpoSExPDa+3t\n7QoGb339QGNjoxoaGpScnGzVCACADlj2hu93332n7OzsO9YOHTqkdevWKTY2VjExMVq1apUGDx5s\n1QgAgA5YFv/y8vK71rxer7xer1WHBAA8ID7hC/RBbHtEd/HdPgBgIM780edxFgx0Hmf+AGCgqI6/\nSfezBYDOiNr4d3Q/W/4CAIAojj/3swWAjkVt/LmfLQB0LGrjz/1sAaBjURt/k+9nu3XBOLY/Ariv\nqN3nz/1sAaBjURt/ifvZAkBHovayDwCgY8QfAAxE/AHAQMQfAAxE/AHAQMQfAAxE/AHAQMQfAAxE\n/AHAQN2K//fff6/s7Gw99dRTOnr06B3PVVRUKDMzU16vV/v27Quv19XVyev1KjMzUxs2bOjO4QEA\nXdSt+A8fPlzr16/XmDFj7lg/deqUfD6ffD6fNm7cqFWrVikYDCoYDKqsrEwbN26Uz+dTTU2NTp06\n1a3fAACg87r13T6PP/74Pddra2uVnZ0tl8ul5ORkpaamqr6+XpKUmpqq5ORkSVJ2drZqa2v1xBNP\ndGcMAEAnWXLN3+/3KzExMfzY7XbL7/d3uA4A6Fn/eeZfUFCgc+fO3bVeXFysKVOmWDIUAMBa/xn/\nysrKTr+o2+1WS0tL+LHf75fb7ZakDtcBAD3Hkss+Ho9HPp9PgUBAjY2Namho0DPPPKOMjAw1NDSo\nsbFRgUBAPp9PHo/HihEAAPfRrTd8d+zYoffee0/t7e1asGCBnn76aX3++edKT0/XtGnTlJWVJafT\nqdLSUjmdt26pWFpaqnnz5ikYDGrGjBlKT0+PyG+kI9zEBQDu5giFQiG7h/gv+fn5qqqqsnsMAOhT\n7tdOPuELAAYi/gBgIOIPAAYi/gBgIOIPAAYi/gBgIOIPAAYi/gBgoG59wrenNDc3Kz8/3+4xAKBP\naW5u7vC5PvEJXwBAZHHZBwAMRPwBwEDEHwAMRPwBwEDEHwAMRPwBwEB9Yp9/V9XV1en999/XzZs3\nNWvWLM2fP9/ukSxVUlKiPXv2KD4+XjU1NXaP0yPOnj2rZcuWqa2tTQ6HQ7Nnz9Ybb7xh91iWunbt\nml577TUFAgEFg0F5vV4VFRXZPZblbt/9z+12q6Kiwu5xeoTH49GAAQMUExMjp9MZ2ZtahaLUjRs3\nQpMnTw6dOXMmdO3atVBOTk7o999/t3ssSx08eDB07NixUHZ2tt2j9Bi/3x86duxYKBQKhS5evBia\nOnVq1P93vnnzZujSpUuhUCgUCgQCoZkzZ4aOHDli81TW++KLL0KLFy8OzZ8/3+5ResxLL70Uamtr\ns+S1o/ayT319vVJTU5WcnCyXy6Xs7GzV1tbaPZalxowZo0GDBtk9Ro9KSEjQiBEjJElxcXFKS0uT\n3++3eSprORwODRgwQJJ048YN3bhxQw6Hw+aprNXS0qI9e/Zo5syZdo8SNaI2/n6/X4mJieHHbrc7\n6qNguqamJh0/flyjRo2yexTLBYNB5ebmavz48Ro/fnzU/54/+OADLV26VDExUZusDs2dO1f5+fna\nunVrRF/XvD9JRKXLly+rqKhIK1asUFxcnN3jWM7pdKq6ulp79+5VfX29fvvtN7tHsszu3bs1dOhQ\njRw50u5RetyWLVv0zTff6LPPPtPmzZt16NChiL121Mbf7XarpaUl/Njv98vtdts4Eaxy/fp1FRUV\nKScnR1OnTrV7nB41cOBAjR07Vvv27bN7FMv8+uuv2rVrlzwejxYvXqyffvpJ7777rt1j9YjbzYqP\nj1dmZqbq6+sj9tpRG/+MjAw1NDSosbFRgUBAPp9PHo/H7rEQYaFQSCtXrlRaWpoKCwvtHqdHtLe3\n688//5Qk/fXXXzpw4IDS0tJsnso6S5YsUV1dnXbt2qWPP/5Yzz//vD766CO7x7LclStXdOnSpfDP\n+/fvV3p6esReP2q3esbGxqq0tFTz5s0LbxGL5B9cb7R48WIdPHhQf/zxhyZOnKi3335bs2bNsnss\nS/3yyy+qrq7W8OHDlZubK+nWn8OkSZNsnsw6ra2tWr58uYLBoEKhkF5++WW99NJLdo+FCGtra9Oi\nRYsk3XqPZ/r06Zo4cWLEXp+vdAYAA0XtZR8AQMeIPwAYiPgDgIGIPwAYiPgDgIGIPwAYiPgDgIH+\nD/qh+tAHdph7AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD4CAYAAAAEhuazAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAASKUlEQVR4nO3dfUyV9f/H8dfh4NmclDcUh8WApNBaornlTC2dR/GkSDDUmqstmE4zFyNNJ7mxiStptmb6R8Os4R/O2YqkcXKmeIPTypvc0K0sN5nAVw4T0rzLo8fz+8M8v0wxgXNxec7n+fiL8znuXG9tPb28zuecyxEKhUICABglzu4BAAC9j/gDgIGIPwAYiPgDgIGIPwAYKN7uAe7H6NGjlZKSYvcYABBVWlpa9NNPP931uaiIf0pKiqqrq+0eAwCiSkFBQafPcdkHAAxE/AHAQMQfAAxE/AHAQMQfAAxE/AHAQMQfAAxE/AHAQMQfAB5Qr1b+oFcrf7DktYk/ABiI+AOAgYg/ABiI+AOAgYg/ABiI+AOAgYg/ABiI+AOAgYg/ABiI+AOAgSy/h6/H41G/fv0UFxcnp9Op6upqnTt3Tu+8845aWlqUkpKiNWvWqH///laPAgD4W6+c+W/cuFE1NTXhm7CvX79eY8aM0ffff68xY8Zo/fr1vTEGAOBvtlz2qaurU35+viQpPz9fO3futGMMADBWr8R/zpw5Kigo0JYtWyRJ7e3tSkpKkiQ9+uijam9v740xAAB/s/ya/+bNm+V2u9Xe3q6ioiJlZGTc9rzD4ZDD4bB6DADAP1h+5u92uyVJiYmJys7OVkNDgxITE9XW1iZJamtr06BBg6weAwDwD5bG//Lly7p48WL45/379yszM1Mej0dbt26VJG3dulWTJk2ycgwAwL9Yetmnvb1dCxculCQFg0FNnz5d48ePV1ZWlkpKSvTVV1/pscce05o1a6wcAwCiztajLTp6+pwCwRsaV7FLS7xDlT8yJWKvb2n8U1NT9e23396xPnDgQG3cuNHKQwNA1Np6tEWl1ccUCN6QJLWcu6LS6mOSFLG/APiELwA8YFZvP6Er14K3rV25FtTq7ScidgziDwAPmP+du9Kl9e4g/gDwgHlsQN8urXcH8QeAB8wS71D17eO8ba1vH6eWeIdG7BiWf8gLANA1t97UXfpVgwLBG0oZ0De6dvsAALonf2SKNh88LUnaMn9MxF+fyz4AYCDiDwAGIv4AYCDiDwAGIv4AYCDiDwAGIv4AYCDiDwAGIv4AYCDiDwAGIv4AYCDiDwAGIv4AYCDiDwAGIv4AYCDLvs//zJkzWrp0qdrb2+VwOPTKK6/ojTfe0Lp16/Tll19q0KBBkqRFixZpwoQJVo0BALgLy+LvdDq1bNkyPfPMM7p48aJmzJihcePGSZIKCws1Z84cqw4NAPgPlsU/KSlJSUlJkqSEhARlZGTI7/dbdTgAiDlW3MHrll655t/c3KxffvlFI0aMkCRt2rRJubm5Ki0t1fnz53tjBADAP1ge/0uXLqm4uFjvvfeeEhISNHv2bO3YsUM1NTVKSkpSRUWF1SMAAP7F0vhfu3ZNxcXFys3N1ZQpUyRJjzzyiJxOp+Li4jRr1iwdO3bMyhEAAHdhWfxDoZCWL1+ujIwMFRUVhdfb2trCP+/cuVOZmZlWjQAA6IRlb/geOXJENTU1GjJkiPLy8iTd3NZZW1urX3/9VZKUkpKi8vJyq0YAAHTCsvg/99xzOnHixB3r7OkHAPvxCV8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMBDxBwADEX8AMJBt8a+vr5fX61V2drbWr19v1xgAYCRb4h8MBlVeXq4NGzbI5/OptrZWJ0+etGMUADCSLfFvaGhQenq6UlNT5XK5lJOTo7q6OjtGAQAj2RJ/v9+v5OTk8GO32y2/32/HKABgJN7wBQAD2RJ/t9ut1tbW8GO/3y+3223HKABgJFvin5WVpcbGRjU1NSkQCMjn88nj8dgxCgAYKd6Wg8bHq6ysTHPnzlUwGNSMGTOUmZlpxygAYCRb4i9JEyZM0IQJE+w6PAAYjTd8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBAxB8ADET8AcBA8Va86Icffqjdu3erT58+SktL06pVq/Twww+rublZ06ZN0+DBgyVJI0aMUHl5uRUjAADuwZL4jxs3TosXL1Z8fLxWr16tyspKLVmyRJKUlpammpoaKw4LALhPllz2eeGFFxQff/PvlWeffVatra1WHAYA0E2WX/P/+uuvNX78+PDj5uZm5efn6/XXX9fhw4etPjwA4C66fdmnsLBQZ8+evWO9pKREkydPliR9+umncjqdevnllyVJSUlJ2r17twYOHKjjx49r4cKF8vl8SkhI6O4YAIBu6Hb8q6qq7vl8dXW19uzZo6qqKjkcDkmSy+WSy+WSJA0bNkxpaWk6deqUsrKyujsGAKAbLLnsU19frw0bNujTTz9V3759w+sdHR0KBoOSpKamJjU2Nio1NdWKEQAA92DJbp+VK1cqEAioqKhI0v9v6Tx06JDWrl2r+Ph4xcXFacWKFRowYIAVIwAA7sGS+O/YseOu616vV16v14pDAgC6gE/4AoCBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4A4CBiD+AqPBq5Q96tfIHu8eIGcQfAAxE/AHAQMQfAAxE/AHAQMQfAAxE/AHAQMQfiEJse0RPEX9EPUIIdB3xBwADWRb/devW6cUXX1ReXp7y8vK0d+/e8HOVlZXKzs6W1+vVvn37rBoBANCJeCtfvLCwUHPmzLlt7eTJk/L5fPL5fPL7/SoqKtL27dvldDqtHAUA8A+9ftmnrq5OOTk5crlcSk1NVXp6uhoaGnp7DAAwmqXx37Rpk3Jzc1VaWqrz589Lkvx+v5KTk8O/xu12y+/3WzkGAOBfenTZp7CwUGfPnr1jvaSkRLNnz9Zbb70lh8OhTz75RBUVFVq1alVPDgcAiJAexb+qquq+ft2sWbP05ptvSrp5pt/a2hp+zu/3y+1292QM/MutbY9b5o+xeRIADyrLLvu0tbWFf965c6cyMzMlSR6PRz6fT4FAQE1NTWpsbNTw4cOtGgMAcBeW7fZZvXq1fv31V0lSSkqKysvLJUmZmZmaOnWqpk2bJqfTqbKyMnb6AEAvszT+nVmwYIEWLFhg1aEBxJitR1t09PQ5BYI3NK5il5Z4hyp/ZIrdY0U1PuEL4IG29WiLSquPKRC8IUlqOXdFpdXHtPVoi82TRTfiD+CBtnr7CV25Frxt7cq1oFZvP2HTRLGB+AN4oP3v3JUureP+EH8AD7THBvTt0jruD/EH8EBb4h2qvn1u3xHYt49TS7xDbZooNlj6xW4A0FO3dvUs/apBgeANpQzoy26fCCD+QJQxcdtj/sgUbT54WhKfXI8ULvsAUYRtj4gU4o+oduss+KdTHRpXsSvmI8i2R0QK8UfUMvEsmG2PiBTij6hl4lkw2x4RKcQfUcvEs2C2PSJSiD+ilolnwfkjU7SqIEsu583/dVMG9NWqgqyY3+2DyCP+iFqmngXnj0zRyLQBGj14kPYv8xB+dAvxjzEm7X7hLBjoPj7kFUM62/0iKWaDyId/gO6J+TP/Vyt/CN/TNtaZuPsFQPfEfPxNYuLuFwDdQ/xjiIm7XwB0D/GPIabufgHQdbzhG0P46lsA98uS+JeUlOjUqVOSpAsXLuihhx5STU2NmpubNW3aNA0ePFiSNGLECJWXl1sxgrHY/QLgflgS/zVr1oR/rqioUEJCQvhxWlqaampqrDgsAOA+WXrZJxQKadu2bdq4caOVhwFgAP4lG1mWvuF7+PBhJSYm6vHHHw+vNTc3Kz8/X6+//roOHz5s5eEBAJ3o9pl/YWGhzp49e8d6SUmJJk+eLEmqra3V9OnTw88lJSVp9+7dGjhwoI4fP66FCxfK5/PddlkIAGC9bse/qqrqns9fv35dO3bsUHV1dXjN5XLJ5XJJkoYNG6a0tDSdOnVKWVlZ3R0DANANll32OXDggDIyMpScnBxe6+joUDB48+sHmpqa1NjYqNTUVKtGAAB0wrI3fL/77jvl5OTctnbo0CGtXbtW8fHxiouL04oVKzRgwACrRgAAdMKy+FdUVNyx5vV65fV6rTokAOA+8QlfIAqx7RE9xXf7AICBOPNH1OMsGOg6zvwBwEAxHX+T7mcLAF0Rs/Hv7H62/AUAADEcf+5nCwCdi9n4cz9bAOhczMaf+9kCQOdiNv4m3892y/wxbH8EcE8xu8+f+9kCQOdiNv4S97MFgM7E7GUfAEDniD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4A4CBiD8AGIj4A4CBehT/bdu2KScnR0899ZSOHTt223OVlZXKzs6W1+vVvn37wuv19fXyer3Kzs7W+vXre3J4AEA39Sj+Q4YM0bp16zRq1Kjb1k+ePCmfzyefz6cNGzZoxYoVCgaDCgaDKi8v14YNG+Tz+VRbW6uTJ0/26DcAAOi6Hn23zxNPPHHX9bq6OuXk5Mjlcik1NVXp6elqaGiQJKWnpys1NVWSlJOTo7q6Oj355JM9GQMA0EWWXPP3+/1KTk4OP3a73fL7/Z2uAwB613+e+RcWFurs2bN3rJeUlGjy5MmWDAUAsNZ/xr+qqqrLL+p2u9Xa2hp+7Pf75Xa7JanTdQBA77Hkso/H45HP51MgEFBTU5MaGxs1fPhwZWVlqbGxUU1NTQoEAvL5fPJ4PFaMAAC4hx694btjxw6tXLlSHR0dmj9/vp5++ml9/vnnyszM1NSpUzVt2jQ5nU6VlZXJ6bx5S8WysjLNnTtXwWBQM2bMUGZmZkR+I53hJi4AcCdHKBQK2T3EfykoKFB1dbXdYwBAVLlXO/mELwAYiPgDgIGIPwAYiPgDgIGIPwAYiPgDgIGIPwAYiPgDgIF69Anf3tLS0qKCggK7xwCAqNLS0tLpc1HxCV8AQGRx2QcADET8AcBAxB8ADET8AcBAxB8ADET8AcBAUbHPv7vq6+v1/vvv68aNG5o1a5bmzZtn90iWKi0t1Z49e5SYmKja2lq7x+kVZ86c0dKlS9Xe3i6Hw6FXXnlFb7zxht1jWerq1at67bXXFAgEFAwG5fV6VVxcbPdYlrt19z+3263Kykq7x+kVHo9H/fr1U1xcnJxOZ2RvahWKUdevXw9NmjQpdPr06dDVq1dDubm5od9//93usSx18ODB0PHjx0M5OTl2j9Jr/H5/6Pjx46FQKBS6cOFCaMqUKTH/3/nGjRuhixcvhkKhUCgQCIRmzpwZOnr0qM1TWe+LL74ILVq0KDRv3jy7R+k1EydODLW3t1vy2jF72aehoUHp6elKTU2Vy+VSTk6O6urq7B7LUqNGjVL//v3tHqNXJSUl6ZlnnpEkJSQkKCMjQ36/3+aprOVwONSvXz9J0vXr13X9+nU5HA6bp7JWa2ur9uzZo5kzZ9o9SsyI2fj7/X4lJyeHH7vd7piPgumam5v1yy+/aMSIEXaPYrlgMKi8vDyNHTtWY8eOjfnf8wcffKAlS5YoLi5mk9WpOXPmqKCgQFu2bIno65r3J4mYdOnSJRUXF+u9995TQkKC3eNYzul0qqamRnv37lVDQ4N+++03u0eyzO7duzVo0CANGzbM7lF63ebNm/XNN9/os88+06ZNm3To0KGIvXbMxt/tdqu1tTX82O/3y+122zgRrHLt2jUVFxcrNzdXU6ZMsXucXvXwww9r9OjR2rdvn92jWObnn3/Wrl275PF4tGjRIv34449699137R6rV9xqVmJiorKzs9XQ0BCx147Z+GdlZamxsVFNTU0KBALy+XzyeDx2j4UIC4VCWr58uTIyMlRUVGT3OL2io6NDf/75pyTpr7/+0oEDB5SRkWHzVNZZvHix6uvrtWvXLn388cd6/vnn9dFHH9k9luUuX76sixcvhn/ev3+/MjMzI/b6MbvVMz4+XmVlZZo7d254i1gk/+AeRIsWLdLBgwf1xx9/aPz48Xr77bc1a9Ysu8ey1JEjR1RTU6MhQ4YoLy9P0s0/hwkTJtg8mXXa2tq0bNkyBYNBhUIhvfTSS5o4caLdYyHC2tvbtXDhQkk33+OZPn26xo8fH7HX5yudAcBAMXvZBwDQOeIPAAYi/gBgIOIPAAYi/gBgIOIPAAYi/gBgoP8DuOP5dhZ3WlQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1763,11 +1832,11 @@ "metadata": { "id": "9rz2KjJ8l6BS", "colab_type": "code", + "outputId": "1d0ab9c5-fe4c-4789-a585-c4e530e3d23b", "colab": { "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "ddf862ff-81e9-42b1-a5b9-ab0943b3b089" + "height": 0 + } }, "source": [ "# summary\n", @@ -1778,7 +1847,7 @@ { "output_type": "stream", "text": [ - "(430, 5) (390, 3) 6\n" + "(430, 5) (391, 3) 6\n" ], "name": "stdout" } @@ -1829,11 +1898,11 @@ "metadata": { "id": "WwcvCbigl6BX", "colab_type": "code", + "outputId": "5154a1d4-2a56-4cbf-bfe7-e89c5a1baeda", "colab": { "base_uri": "https://localhost:8080/", - "height": 119 - }, - "outputId": "76354129-03de-4030-bd52-911f3be07ff7" + "height": 0 + } }, "source": [ "# 1 if condition for active is met, 0 otherwise\n", @@ -1844,12 +1913,12 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", + "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", - "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " \"\"\"Entry point for launching an IPython kernel.\n" + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \n" ], "name": "stderr" } @@ -1893,69 +1962,24 @@ "metadata": { "id": "GBneufPbl6Bq", "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 253 - }, - "outputId": "9ba52033-f1f4-4875-d239-49de0963e9fc" + "colab": {} }, "source": [ "import deepchem as dc" ], - "execution_count": 44, - "outputs": [ - { - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n" - ], - "name": "stdout" - } - ] + "execution_count": 0, + "outputs": [] }, { "cell_type": "code", "metadata": { "id": "NRpnbgyAl6Bv", "colab_type": "code", + "outputId": "5a9a02f8-81eb-4669-dd83-61dd0ad27523", "colab": { "base_uri": "https://localhost:8080/", - "height": 153 - }, - "outputId": "52195c65-ffbc-4f58-a911-25b4f61015e1" + "height": 0 + } }, "source": [ "dataset_file = 'modulators.csv'\n", @@ -1975,8 +1999,8 @@ "About to start loading CSV from modulators.csv\n", "Loading shard 1 of size 8192.\n", "Featurizing sample 0\n", - "TIMING: featurizing shard 0 took 1.464 s\n", - "TIMING: dataset construction took 1.650 s\n", + "TIMING: featurizing shard 0 took 1.601 s\n", + "TIMING: dataset construction took 1.774 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -2002,11 +2026,11 @@ "metadata": { "id": "-Ll5i93il6B1", "colab_type": "code", + "outputId": "fc14f85f-3775-4027-ce04-1e1dd6019f89", "colab": { "base_uri": "https://localhost:8080/", - "height": 51 - }, - "outputId": "ce4923b9-7db0-403f-f647-143ece548814" + "height": 0 + } }, "source": [ "transformer = dc.trans.BalancingTransformer(transform_w=True, dataset=dataset)\n", @@ -2017,7 +2041,7 @@ { "output_type": "stream", "text": [ - "TIMING: dataset construction took 0.211 s\n", + "TIMING: dataset construction took 0.200 s\n", "Loading dataset from disk.\n" ], "name": "stdout" diff --git a/examples/tutorials/10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb b/examples/tutorials/10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb index 0ab8426364..a191b0fd3f 100644 --- a/examples/tutorials/10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb +++ b/examples/tutorials/10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb @@ -1,273 +1,341 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# Tutorial Part 10: Exploring Quantum Chemistry with GDB1k" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + }, + "colab": { + "name": "10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb", + "provenance": [] + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Most of the tutorials we've walked you through so far have focused on applications to the drug discovery realm, but DeepChem's tool suite works for molecular design problems generally. In this tutorial, we're going to walk through an example of how to train a simple molecular machine learning for the task of predicting the atomization energy of a molecule. (Remember that the atomization energy is the energy required to form 1 mol of gaseous atoms from 1 mol of the molecule in its standard state under standard conditions).\n", - "\n", - "## Colab\n", - "\n", - "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb)\n", - "\n", - "## Setup\n", - "\n", - "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh\n", - "!chmod +x Anaconda3-2019.10-Linux-x86_64.sh\n", - "!bash ./Anaconda3-2019.10-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With our setup in place, let's do a few standard imports to get the ball rolling." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import unittest\n", - "import numpy as np\n", - "import deepchem as dc\n", - "import numpy.random\n", - "from deepchem.utils.evaluate import Evaluator\n", - "from sklearn.ensemble import RandomForestRegressor\n", - "from sklearn.kernel_ridge import KernelRidge" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ntext step we want to do is load our dataset. We're using a small dataset we've prepared that's pulled out of the larger GDB benchmarks. The dataset contains the atomization energies for 1K small molecules." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tasks = [\"atomization_energy\"]\n", - "dataset_file = \"../../datasets/gdb1k.sdf\"\n", - "smiles_field = \"smiles\"\n", - "mol_field = \"mol\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need a way to transform molecules that is useful for prediction of atomization energy. This representation draws on foundational work [1] that represents a molecule's 3D electrostatic structure as a 2D matrix $C$ of distances scaled by charges, where the $ij$-th element is represented by the following charge structure.\n", - "\n", - "$C_{ij} = \\frac{q_i q_j}{r_{ij}^2}$\n", - "\n", - "If you're observing carefully, you might ask, wait doesn't this mean that molecules with different numbers of atoms generate matrices of different sizes? In practice the trick to get around this is that the matrices are \"zero-padded.\" That is, if you're making coulomb matrices for a set of molecules, you pick a maximum number of atoms $N$, make the matrices $N\\times N$ and set to zero all the extra entries for this molecule. (There's a couple extra tricks that are done under the hood beyond this. Check out reference [1] or read the source code in DeepChem!)\n", - "\n", - "DeepChem has a built in featurization class `dc.feat.CoulombMatrixEig` that can generate these featurizations for you." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "featurizer = dc.feat.CoulombMatrixEig(23, remove_hydrogens=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that in this case, we set the maximum number of atoms to $N = 23$. Let's now load our dataset file into DeepChem. As in the previous tutorials, we use a `Loader` class, in particular `dc.data.SDFLoader` to load our `.sdf` file into DeepChem. The following snippet shows how we do this:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "loader = dc.data.SDFLoader(\n", - " tasks=[\"atomization_energy\"], smiles_field=\"smiles\",\n", - " featurizer=featurizer,\n", - " mol_field=\"mol\")\n", - "dataset = loader.featurize(dataset_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the purposes of this tutorial, we're going to do a random split of the dataset into training, validation, and test. In general, this split is weak and will considerably overestimate the accuracy of our models, but for now in this simple tutorial isn't a bad place to get started." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "random_splitter = dc.splits.RandomSplitter()\n", - "train_dataset, valid_dataset, test_dataset = random_splitter.train_valid_test_split(dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One issue that Coulomb matrix featurizations have is that the range of entries in the matrix $C$ can be large. The charge $q_1q_2/r^2$ term can range very widely. In general, a wide range of values for inputs can throw off learning for the neural network. For this, a common fix is to normalize the input values so that they fall into a more standard range. Recall that the normalization transform applies to each feature $X_i$ of datapoint $X$\n", - "\n", - "$\\hat{X_i} = \\frac{X_i - \\mu_i}{\\sigma_i}$\n", - "\n", - "where $\\mu_i$ and $\\sigma_i$ are the mean and standard deviation of the $i$-th feature. This transformation enables the learning to proceed smoothly. A second point is that the atomization energies also fall across a wide range. So we apply an analogous transformation normalization transformation to the output to scale the energies better. We use DeepChem's transformation API to make this happen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "transformers = [\n", - " dc.trans.NormalizationTransformer(transform_X=True, dataset=train_dataset),\n", - " dc.trans.NormalizationTransformer(transform_y=True, dataset=train_dataset)]\n", - "\n", - "for dataset in [train_dataset, valid_dataset, test_dataset]:\n", - " for transformer in transformers:\n", - " dataset = transformer.transform(dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "Now that we have the data cleanly transformed, let's do some simple machine learning. We'll start by constructing a random forest on top of the data. We'll use DeepChem's hyperparameter tuning module to do this." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "def rf_model_builder(model_params, model_dir):\n", - " sklearn_model = RandomForestRegressor(**model_params)\n", - " return dc.models.SklearnModel(sklearn_model, model_dir)\n", - "params_dict = {\n", - " \"n_estimators\": [10, 100],\n", - " \"max_features\": [\"auto\", \"sqrt\", \"log2\", None],\n", - "}\n", - "\n", - "metric = dc.metrics.Metric(dc.metrics.mean_absolute_error)\n", - "optimizer = dc.hyper.HyperparamOpt(rf_model_builder)\n", - "best_rf, best_rf_hyperparams, all_rf_results = optimizer.hyperparam_search(\n", - " params_dict, train_dataset, valid_dataset, transformers,\n", - " metric=metric)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's build one more model, a kernel ridge regression, on top of this raw data." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def krr_model_builder(model_params, model_dir):\n", - " sklearn_model = KernelRidge(**model_params)\n", - " return dc.models.SklearnModel(sklearn_model, model_dir)\n", - "\n", - "params_dict = {\n", - " \"kernel\": [\"laplacian\"],\n", - " \"alpha\": [0.0001],\n", - " \"gamma\": [0.0001]\n", - "}\n", - "\n", - "metric = dc.metrics.Metric(dc.metrics.mean_absolute_error)\n", - "optimizer = dc.hyper.HyperparamOpt(krr_model_builder)\n", - "best_krr, best_krr_hyperparams, all_krr_results = optimizer.hyperparam_search(\n", - " params_dict, train_dataset, valid_dataset, transformers,\n", - " metric=metric)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Congratulations! Time to join the Community!\n", - "\n", - "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", - "\n", - "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", - "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", - "\n", - "## Join the DeepChem Gitter\n", - "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!\n", - "\n", - "# Bibliography:\n", - "\n", - "[1] https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.146401" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.10" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "Rqb9ef8F2UJW", + "colab_type": "text" + }, + "source": [ + "# Tutorial Part 10: Exploring Quantum Chemistry with GDB1k" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IcM5fm932UJY", + "colab_type": "text" + }, + "source": [ + "Most of the tutorials we've walked you through so far have focused on applications to the drug discovery realm, but DeepChem's tool suite works for molecular design problems generally. In this tutorial, we're going to walk through an example of how to train a simple molecular machine learning for the task of predicting the atomization energy of a molecule. (Remember that the atomization energy is the energy required to form 1 mol of gaseous atoms from 1 mol of the molecule in its standard state under standard conditions).\n", + "\n", + "## Colab\n", + "\n", + "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/10_Exploring_Quantum_Chemistry_with_GDB1k.ipynb)\n", + "\n", + "## Setup\n", + "\n", + "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hiRnnJpG2UJY", + "colab_type": "code", + "colab": {} + }, + "source": [ + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ub1J6G5w2UJd", + "colab_type": "text" + }, + "source": [ + "With our setup in place, let's do a few standard imports to get the ball rolling." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "19IsqJhx2UJe", + "colab_type": "code", + "colab": {} + }, + "source": [ + "import os\n", + "import unittest\n", + "import numpy as np\n", + "import deepchem as dc\n", + "import numpy.random\n", + "from deepchem.utils.evaluate import Evaluator\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.kernel_ridge import KernelRidge" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AssRCAgB2UJi", + "colab_type": "text" + }, + "source": [ + "The ntext step we want to do is load our dataset. We're using a small dataset we've prepared that's pulled out of the larger GDB benchmarks. The dataset contains the atomization energies for 1K small molecules." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "j5PUW7452UJi", + "colab_type": "code", + "colab": {} + }, + "source": [ + "tasks = [\"atomization_energy\"]\n", + "dataset_file = \"../../datasets/gdb1k.sdf\"\n", + "smiles_field = \"smiles\"\n", + "mol_field = \"mol\"" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hs0RDgHN2UJm", + "colab_type": "text" + }, + "source": [ + "We now need a way to transform molecules that is useful for prediction of atomization energy. This representation draws on foundational work [1] that represents a molecule's 3D electrostatic structure as a 2D matrix $C$ of distances scaled by charges, where the $ij$-th element is represented by the following charge structure.\n", + "\n", + "$C_{ij} = \\frac{q_i q_j}{r_{ij}^2}$\n", + "\n", + "If you're observing carefully, you might ask, wait doesn't this mean that molecules with different numbers of atoms generate matrices of different sizes? In practice the trick to get around this is that the matrices are \"zero-padded.\" That is, if you're making coulomb matrices for a set of molecules, you pick a maximum number of atoms $N$, make the matrices $N\\times N$ and set to zero all the extra entries for this molecule. (There's a couple extra tricks that are done under the hood beyond this. Check out reference [1] or read the source code in DeepChem!)\n", + "\n", + "DeepChem has a built in featurization class `dc.feat.CoulombMatrixEig` that can generate these featurizations for you." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Yadcs27f2UJn", + "colab_type": "code", + "colab": {} + }, + "source": [ + "featurizer = dc.feat.CoulombMatrixEig(23, remove_hydrogens=False)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z9BJKEmd2UJq", + "colab_type": "text" + }, + "source": [ + "Note that in this case, we set the maximum number of atoms to $N = 23$. Let's now load our dataset file into DeepChem. As in the previous tutorials, we use a `Loader` class, in particular `dc.data.SDFLoader` to load our `.sdf` file into DeepChem. The following snippet shows how we do this:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "t-OldF822UJr", + "colab_type": "code", + "colab": {} + }, + "source": [ + "loader = dc.data.SDFLoader(\n", + " tasks=[\"atomization_energy\"], smiles_field=\"smiles\",\n", + " featurizer=featurizer,\n", + " mol_field=\"mol\")\n", + "dataset = loader.featurize(dataset_file)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gQ_zcAz92UJt", + "colab_type": "text" + }, + "source": [ + "For the purposes of this tutorial, we're going to do a random split of the dataset into training, validation, and test. In general, this split is weak and will considerably overestimate the accuracy of our models, but for now in this simple tutorial isn't a bad place to get started." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "GNhuNAZY2UJu", + "colab_type": "code", + "colab": {} + }, + "source": [ + "random_splitter = dc.splits.RandomSplitter()\n", + "train_dataset, valid_dataset, test_dataset = random_splitter.train_valid_test_split(dataset)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7ouN5JxO2UJ0", + "colab_type": "text" + }, + "source": [ + "One issue that Coulomb matrix featurizations have is that the range of entries in the matrix $C$ can be large. The charge $q_1q_2/r^2$ term can range very widely. In general, a wide range of values for inputs can throw off learning for the neural network. For this, a common fix is to normalize the input values so that they fall into a more standard range. Recall that the normalization transform applies to each feature $X_i$ of datapoint $X$\n", + "\n", + "$\\hat{X_i} = \\frac{X_i - \\mu_i}{\\sigma_i}$\n", + "\n", + "where $\\mu_i$ and $\\sigma_i$ are the mean and standard deviation of the $i$-th feature. This transformation enables the learning to proceed smoothly. A second point is that the atomization energies also fall across a wide range. So we apply an analogous transformation normalization transformation to the output to scale the energies better. We use DeepChem's transformation API to make this happen:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "eN7aqR042UJ0", + "colab_type": "code", + "colab": {} + }, + "source": [ + "transformers = [\n", + " dc.trans.NormalizationTransformer(transform_X=True, dataset=train_dataset),\n", + " dc.trans.NormalizationTransformer(transform_y=True, dataset=train_dataset)]\n", + "\n", + "for dataset in [train_dataset, valid_dataset, test_dataset]:\n", + " for transformer in transformers:\n", + " dataset = transformer.transform(dataset)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "IerJqoXo2UJ5", + "colab_type": "text" + }, + "source": [ + "Now that we have the data cleanly transformed, let's do some simple machine learning. We'll start by constructing a random forest on top of the data. We'll use DeepChem's hyperparameter tuning module to do this." + ] + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "id": "UNG8EXtg2UJ6", + "colab_type": "code", + "colab": {} + }, + "source": [ + "def rf_model_builder(model_params, model_dir):\n", + " sklearn_model = RandomForestRegressor(**model_params)\n", + " return dc.models.SklearnModel(sklearn_model, model_dir)\n", + "params_dict = {\n", + " \"n_estimators\": [10, 100],\n", + " \"max_features\": [\"auto\", \"sqrt\", \"log2\", None],\n", + "}\n", + "\n", + "metric = dc.metrics.Metric(dc.metrics.mean_absolute_error)\n", + "optimizer = dc.hyper.HyperparamOpt(rf_model_builder)\n", + "best_rf, best_rf_hyperparams, all_rf_results = optimizer.hyperparam_search(\n", + " params_dict, train_dataset, valid_dataset, transformers,\n", + " metric=metric)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FdhT0zDD2UJ-", + "colab_type": "text" + }, + "source": [ + "Let's build one more model, a kernel ridge regression, on top of this raw data." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "LYTzmcyy2UJ-", + "colab_type": "code", + "colab": {} + }, + "source": [ + "def krr_model_builder(model_params, model_dir):\n", + " sklearn_model = KernelRidge(**model_params)\n", + " return dc.models.SklearnModel(sklearn_model, model_dir)\n", + "\n", + "params_dict = {\n", + " \"kernel\": [\"laplacian\"],\n", + " \"alpha\": [0.0001],\n", + " \"gamma\": [0.0001]\n", + "}\n", + "\n", + "metric = dc.metrics.Metric(dc.metrics.mean_absolute_error)\n", + "optimizer = dc.hyper.HyperparamOpt(krr_model_builder)\n", + "best_krr, best_krr_hyperparams, all_krr_results = optimizer.hyperparam_search(\n", + " params_dict, train_dataset, valid_dataset, transformers,\n", + " metric=metric)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IS9JTDyi2UKD", + "colab_type": "text" + }, + "source": [ + "# Congratulations! Time to join the Community!\n", + "\n", + "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", + "\n", + "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", + "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", + "\n", + "## Join the DeepChem Gitter\n", + "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!\n", + "\n", + "# Bibliography:\n", + "\n", + "[1] https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.146401" + ] + } + ] +} \ No newline at end of file diff --git a/examples/tutorials/11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb b/examples/tutorials/11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb index cb3f4b0c77..9e15381aac 100644 --- a/examples/tutorials/11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb +++ b/examples/tutorials/11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb @@ -1,523 +1,594 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Part 11: Learning Unsupervised Embeddings for Molecules\n", - "\n", - "\n", - "In this example, we will use a `SeqToSeq` model to generate fingerprints for classifying molecules. This is based on the following paper, although some of the implementation details are different: Xu et al., \"Seq2seq Fingerprint: An Unsupervised Deep Molecular Embedding for Drug Discovery\" (https://doi.org/10.1145/3107411.3107424).\n", - "\n", - "Many types of models require their inputs to have a fixed shape. Since molecules can vary widely in the numbers of atoms and bonds they contain, this makes it hard to apply those models to them. We need a way of generating a fixed length \"fingerprint\" for each molecule. Various ways of doing this have been designed, such as Extended-Connectivity Fingerprints (ECFPs). But in this example, instead of designing a fingerprint by hand, we will let a `SeqToSeq` model learn its own method of creating fingerprints.\n", - "\n", - "A `SeqToSeq` model performs sequence to sequence translation. For example, they are often used to translate text from one language to another. It consists of two parts called the \"encoder\" and \"decoder\". The encoder is a stack of recurrent layers. The input sequence is fed into it, one token at a time, and it generates a fixed length vector called the \"embedding vector\". The decoder is another stack of recurrent layers that performs the inverse operation: it takes the embedding vector as input, and generates the output sequence. By training it on appropriately chosen input/output pairs, you can create a model that performs many sorts of transformations.\n", - "\n", - "In this case, we will use SMILES strings describing molecules as the input sequences. We will train the model as an autoencoder, so it tries to make the output sequences identical to the input sequences. For that to work, the encoder must create embedding vectors that contain all information from the original sequence. That's exactly what we want in a fingerprint, so perhaps those embedding vectors will then be useful as a way to represent molecules in other models!\n", - "\n", - "\n", - "## Colab\n", - "\n", - "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb)\n", - "\n", - "## Setup\n", - "\n", - "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment. This notebook will take a few hours to run on a GPU machine, so we encourage you to run it on Google colab unless you have a good GPU machine available." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh\n", - "!chmod +x Anaconda3-2019.10-Linux-x86_64.sh\n", - "!bash ./Anaconda3-2019.10-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')\n", - "import deepchem as dc" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's start by loading the data. We will use the MUV dataset. It includes 74,501 molecules in the training set, and 9313 molecules in the validation set, so it gives us plenty of SMILES strings to work with." - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + }, + "colab": { + "name": "11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb", + "provenance": [] + } }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n", - "RDKit WARNING: [15:40:18] Enabling RDKit 2019.09.3 jupyter extensions\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "hzpae9-r2aoK", + "colab_type": "text" + }, + "source": [ + "# Tutorial Part 11: Learning Unsupervised Embeddings for Molecules\n", + "\n", + "\n", + "In this example, we will use a `SeqToSeq` model to generate fingerprints for classifying molecules. This is based on the following paper, although some of the implementation details are different: Xu et al., \"Seq2seq Fingerprint: An Unsupervised Deep Molecular Embedding for Drug Discovery\" (https://doi.org/10.1145/3107411.3107424).\n", + "\n", + "Many types of models require their inputs to have a fixed shape. Since molecules can vary widely in the numbers of atoms and bonds they contain, this makes it hard to apply those models to them. We need a way of generating a fixed length \"fingerprint\" for each molecule. Various ways of doing this have been designed, such as Extended-Connectivity Fingerprints (ECFPs). But in this example, instead of designing a fingerprint by hand, we will let a `SeqToSeq` model learn its own method of creating fingerprints.\n", + "\n", + "A `SeqToSeq` model performs sequence to sequence translation. For example, they are often used to translate text from one language to another. It consists of two parts called the \"encoder\" and \"decoder\". The encoder is a stack of recurrent layers. The input sequence is fed into it, one token at a time, and it generates a fixed length vector called the \"embedding vector\". The decoder is another stack of recurrent layers that performs the inverse operation: it takes the embedding vector as input, and generates the output sequence. By training it on appropriately chosen input/output pairs, you can create a model that performs many sorts of transformations.\n", + "\n", + "In this case, we will use SMILES strings describing molecules as the input sequences. We will train the model as an autoencoder, so it tries to make the output sequences identical to the input sequences. For that to work, the encoder must create embedding vectors that contain all information from the original sequence. That's exactly what we want in a fingerprint, so perhaps those embedding vectors will then be useful as a way to represent molecules in other models!\n", + "\n", + "\n", + "## Colab\n", + "\n", + "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/11_Learning_Unsupervised_Embeddings_for_Molecules.ipynb)\n", + "\n", + "## Setup\n", + "\n", + "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment. This notebook will take a few hours to run on a GPU machine, so we encourage you to run it on Google colab unless you have a good GPU machine available." + ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading raw samples now.\n", - "shard_size: 8192\n", - "About to start loading CSV from /var/folders/st/ds45jcqj2232lvhr0y9qt5sc0000gn/T/muv.csv.gz\n", - "Loading shard 1 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 0 took 10.486 s\n", - "Loading shard 2 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 1 took 10.458 s\n", - "Loading shard 3 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 2 took 10.235 s\n", - "Loading shard 4 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 3 took 10.636 s\n", - "Loading shard 5 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 4 took 10.483 s\n", - "Loading shard 6 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 5 took 10.145 s\n", - "Loading shard 7 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 6 took 9.811 s\n", - "Loading shard 8 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 7 took 10.585 s\n", - "Loading shard 9 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 8 took 10.481 s\n", - "Loading shard 10 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 9 took 11.081 s\n", - "Loading shard 11 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "Featurizing sample 4000\n", - "Featurizing sample 5000\n", - "Featurizing sample 6000\n", - "Featurizing sample 7000\n", - "Featurizing sample 8000\n", - "TIMING: featurizing shard 10 took 10.569 s\n", - "Loading shard 12 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "TIMING: featurizing shard 11 took 3.824 s\n", - "TIMING: dataset construction took 121.359 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 3.393 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 1.770 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 1.871 s\n", - "Loading dataset from disk.\n" - ] - } - ], - "source": [ - "import deepchem as dc\n", - "tasks, datasets, transformers = dc.molnet.load_muv()\n", - "train_dataset, valid_dataset, test_dataset = datasets\n", - "train_smiles = train_dataset.ids\n", - "valid_smiles = valid_dataset.ids" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to define the \"alphabet\" for our `SeqToSeq` model, the list of all tokens that can appear in sequences. (It's also possible for input and output sequences to have different alphabets, but since we're training it as an autoencoder, they're identical in this case.) Make a list of every character that appears in any training sequence." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "tokens = set()\n", - "for s in train_smiles:\n", - " tokens = tokens.union(set(c for c in s))\n", - "tokens = sorted(list(tokens))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create the model and define the optimization method to use. In this case, learning works much better if we gradually decrease the learning rate. We use an `ExponentialDecay` to multiply the learning rate by 0.9 after each epoch." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "ci69aRSm2aoO", + "colab_type": "code", + "colab": {} + }, + "source": [ + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" + ], + "execution_count": 0, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From /Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Call initializer instance with the dtype argument instead of passing it to the constructor\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" - ] - } - ], - "source": [ - "from deepchem.models.optimizers import Adam, ExponentialDecay\n", - "max_length = max(len(s) for s in train_smiles)\n", - "batch_size = 100\n", - "batches_per_epoch = len(train_smiles)/batch_size\n", - "model = dc.models.SeqToSeq(tokens,\n", - " tokens,\n", - " max_length,\n", - " encoder_layers=2,\n", - " decoder_layers=2,\n", - " embedding_dimension=256,\n", - " model_dir='fingerprint',\n", - " batch_size=batch_size,\n", - " learning_rate=ExponentialDecay(0.004, 0.9, batches_per_epoch))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's train it! The input to `fit_sequences()` is a generator that produces input/output pairs. On a good GPU, this should take a few hours or less." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "6bm1iYbw2aoT", + "colab_type": "text" + }, + "source": [ + "Let's start by loading the data. We will use the MUV dataset. It includes 74,501 molecules in the training set, and 9313 molecules in the validation set, so it gives us plenty of SMILES strings to work with." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ending global_step 999: Average loss 72.0029\n", - "Ending global_step 1999: Average loss 40.7221\n", - "Ending global_step 2999: Average loss 31.5364\n", - "Ending global_step 3999: Average loss 26.4576\n", - "Ending global_step 4999: Average loss 22.814\n", - "Ending global_step 5999: Average loss 19.5248\n", - "Ending global_step 6999: Average loss 16.4594\n", - "Ending global_step 7999: Average loss 18.8898\n", - "Ending global_step 8999: Average loss 13.476\n", - "Ending global_step 9999: Average loss 11.5528\n", - "Ending global_step 10999: Average loss 10.1594\n", - "Ending global_step 11999: Average loss 10.6434\n", - "Ending global_step 12999: Average loss 6.57057\n", - "Ending global_step 13999: Average loss 6.46177\n", - "Ending global_step 14999: Average loss 7.53559\n", - "Ending global_step 15999: Average loss 4.95809\n", - "Ending global_step 16999: Average loss 4.35039\n", - "Ending global_step 17999: Average loss 3.39137\n", - "Ending global_step 18999: Average loss 3.5216\n", - "Ending global_step 19999: Average loss 3.08579\n", - "Ending global_step 20999: Average loss 2.80738\n", - "Ending global_step 21999: Average loss 2.92217\n", - "Ending global_step 22999: Average loss 2.51032\n", - "Ending global_step 23999: Average loss 1.86265\n", - "Ending global_step 24999: Average loss 1.67088\n", - "Ending global_step 25999: Average loss 1.87016\n", - "Ending global_step 26999: Average loss 1.61166\n", - "Ending global_step 27999: Average loss 1.40708\n", - "Ending global_step 28999: Average loss 1.4488\n", - "Ending global_step 29801: Average loss 1.33917\n", - "TIMING: model fitting took 5619.924 s\n" - ] - } - ], - "source": [ - "def generate_sequences(epochs):\n", - " for i in range(epochs):\n", - " for s in train_smiles:\n", - " yield (s, s)\n", - "\n", - "model.fit_sequences(generate_sequences(40))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see how well it works as an autoencoder. We'll run the first 500 molecules from the validation set through it, and see how many of them are exactly reproduced." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "YnAnjl9d2aoU", + "colab_type": "code", + "colab": {}, + "outputId": "672ec5a4-9d90-44f1-d503-98e9d9fbb40d" + }, + "source": [ + "import deepchem as dc\n", + "tasks, datasets, transformers = dc.molnet.load_muv()\n", + "train_dataset, valid_dataset, test_dataset = datasets\n", + "train_smiles = train_dataset.ids\n", + "valid_smiles = valid_dataset.ids" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n", + "RDKit WARNING: [15:40:18] Enabling RDKit 2019.09.3 jupyter extensions\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", + "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", + " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "Loading raw samples now.\n", + "shard_size: 8192\n", + "About to start loading CSV from /var/folders/st/ds45jcqj2232lvhr0y9qt5sc0000gn/T/muv.csv.gz\n", + "Loading shard 1 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 0 took 10.486 s\n", + "Loading shard 2 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 1 took 10.458 s\n", + "Loading shard 3 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 2 took 10.235 s\n", + "Loading shard 4 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 3 took 10.636 s\n", + "Loading shard 5 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 4 took 10.483 s\n", + "Loading shard 6 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 5 took 10.145 s\n", + "Loading shard 7 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 6 took 9.811 s\n", + "Loading shard 8 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 7 took 10.585 s\n", + "Loading shard 9 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 8 took 10.481 s\n", + "Loading shard 10 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 9 took 11.081 s\n", + "Loading shard 11 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "Featurizing sample 4000\n", + "Featurizing sample 5000\n", + "Featurizing sample 6000\n", + "Featurizing sample 7000\n", + "Featurizing sample 8000\n", + "TIMING: featurizing shard 10 took 10.569 s\n", + "Loading shard 12 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "TIMING: featurizing shard 11 took 3.824 s\n", + "TIMING: dataset construction took 121.359 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 3.393 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 1.770 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 1.871 s\n", + "Loading dataset from disk.\n" + ], + "name": "stdout" + } + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "reproduced 363 of 500 validation SMILES strings\n" - ] - } - ], - "source": [ - "predicted = model.predict_from_sequences(valid_smiles[:500])\n", - "count = 0\n", - "for s,p in zip(valid_smiles[:500], predicted):\n", - " if ''.join(p) == s:\n", - " count += 1\n", - "print('reproduced', count, 'of 500 validation SMILES strings')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we'll trying using the encoder as a way to generate molecular fingerprints. We compute the embedding vectors for all molecules in the training and validation datasets, and create new datasets that have those as their feature vectors. The amount of data is small enough that we can just store everything in memory." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "train_embeddings = model.predict_embeddings(train_smiles)\n", - "train_embeddings_dataset = dc.data.NumpyDataset(train_embeddings,\n", - " train_dataset.y,\n", - " train_dataset.w,\n", - " train_dataset.ids)\n", - "\n", - "valid_embeddings = model.predict_embeddings(valid_smiles)\n", - "valid_embeddings_dataset = dc.data.NumpyDataset(valid_embeddings,\n", - " valid_dataset.y,\n", - " valid_dataset.w,\n", - " valid_dataset.ids)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For classification, we'll use a simple fully connected network with one hidden layer." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "EslVHE2m2aoY", + "colab_type": "text" + }, + "source": [ + "We need to define the \"alphabet\" for our `SeqToSeq` model, the list of all tokens that can appear in sequences. (It's also possible for input and output sequences to have different alphabets, but since we're training it as an autoencoder, they're identical in this case.) Make a list of every character that appears in any training sequence." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ending global_step 999: Average loss 829.805\n", - "Ending global_step 1999: Average loss 450.42\n", - "Ending global_step 2999: Average loss 326.079\n", - "Ending global_step 3999: Average loss 265.199\n", - "Ending global_step 4999: Average loss 246.724\n", - "Ending global_step 5999: Average loss 224.64\n", - "Ending global_step 6999: Average loss 202.624\n", - "Ending global_step 7460: Average loss 213.885\n", - "TIMING: model fitting took 19.780 s\n" - ] - } - ], - "source": [ - "classifier = dc.models.MultitaskClassifier(n_tasks=len(tasks),\n", - " n_features=256,\n", - " layer_sizes=[512])\n", - "classifier.fit(train_embeddings_dataset, nb_epoch=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Find out how well it worked. Compute the ROC AUC for the training and validation datasets." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "nsE8e9xn2aoa", + "colab_type": "code", + "colab": {} + }, + "source": [ + "tokens = set()\n", + "for s in train_smiles:\n", + " tokens = tokens.union(set(c for c in s))\n", + "tokens = sorted(list(tokens))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vgzyJ1-42aog", + "colab_type": "text" + }, + "source": [ + "Create the model and define the optimization method to use. In this case, learning works much better if we gradually decrease the learning rate. We use an `ExponentialDecay` to multiply the learning rate by 0.9 after each epoch." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "NHKrymnM2aoh", + "colab_type": "code", + "colab": {}, + "outputId": "fe3a80bd-9432-469c-d1ef-7bf0c39e42eb" + }, + "source": [ + "from deepchem.models.optimizers import Adam, ExponentialDecay\n", + "max_length = max(len(s) for s in train_smiles)\n", + "batch_size = 100\n", + "batches_per_epoch = len(train_smiles)/batch_size\n", + "model = dc.models.SeqToSeq(tokens,\n", + " tokens,\n", + " max_length,\n", + " encoder_layers=2,\n", + " decoder_layers=2,\n", + " embedding_dimension=256,\n", + " model_dir='fingerprint',\n", + " batch_size=batch_size,\n", + " learning_rate=ExponentialDecay(0.004, 0.9, batches_per_epoch))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Call initializer instance with the dtype argument instead of passing it to the constructor\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hSr7FkSW2aok", + "colab_type": "text" + }, + "source": [ + "Let's train it! The input to `fit_sequences()` is a generator that produces input/output pairs. On a good GPU, this should take a few hours or less." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "computed_metrics: [0.97828427249789751, 0.98705973960125326, 0.966007068438685, 0.9874401066031584, 0.97794394675150698, 0.98021719680962449, 0.95318452689781941, 0.97185747562764213, 0.96389538770053473, 0.96798988621997473, 0.9690779239145807, 0.98544402211472004, 0.97762497271338133, 0.96843239633294886, 0.97753648081489997, 0.96504683675485614, 0.93547151958366914]\n", - "computed_metrics: [0.90790686952512678, 0.79891461649782913, 0.61900937081659968, 0.75241212956581671, 0.58678903240426017, 0.72765072765072758, 0.34929006085192693, 0.83986814712005553, 0.82379943502824859, 0.61844636844636847, 0.863620199146515, 0.68106930272108857, 0.98020477815699669, 0.85073580939032944, 0.781015678254942, 0.75399733510992673, nan]\n", - "Training set ROC AUC: {'mean-roc_auc_score': 0.97132433878689139}\n", - "Validation set ROC AUC: {'mean-roc_auc_score': 0.74592061629292239}\n" - ] + "cell_type": "code", + "metadata": { + "id": "NZ5l_g1E2aok", + "colab_type": "code", + "colab": {}, + "outputId": "8db60a71-2724-4342-d513-13d7bcbad3f9" + }, + "source": [ + "def generate_sequences(epochs):\n", + " for i in range(epochs):\n", + " for s in train_smiles:\n", + " yield (s, s)\n", + "\n", + "model.fit_sequences(generate_sequences(40))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Ending global_step 999: Average loss 72.0029\n", + "Ending global_step 1999: Average loss 40.7221\n", + "Ending global_step 2999: Average loss 31.5364\n", + "Ending global_step 3999: Average loss 26.4576\n", + "Ending global_step 4999: Average loss 22.814\n", + "Ending global_step 5999: Average loss 19.5248\n", + "Ending global_step 6999: Average loss 16.4594\n", + "Ending global_step 7999: Average loss 18.8898\n", + "Ending global_step 8999: Average loss 13.476\n", + "Ending global_step 9999: Average loss 11.5528\n", + "Ending global_step 10999: Average loss 10.1594\n", + "Ending global_step 11999: Average loss 10.6434\n", + "Ending global_step 12999: Average loss 6.57057\n", + "Ending global_step 13999: Average loss 6.46177\n", + "Ending global_step 14999: Average loss 7.53559\n", + "Ending global_step 15999: Average loss 4.95809\n", + "Ending global_step 16999: Average loss 4.35039\n", + "Ending global_step 17999: Average loss 3.39137\n", + "Ending global_step 18999: Average loss 3.5216\n", + "Ending global_step 19999: Average loss 3.08579\n", + "Ending global_step 20999: Average loss 2.80738\n", + "Ending global_step 21999: Average loss 2.92217\n", + "Ending global_step 22999: Average loss 2.51032\n", + "Ending global_step 23999: Average loss 1.86265\n", + "Ending global_step 24999: Average loss 1.67088\n", + "Ending global_step 25999: Average loss 1.87016\n", + "Ending global_step 26999: Average loss 1.61166\n", + "Ending global_step 27999: Average loss 1.40708\n", + "Ending global_step 28999: Average loss 1.4488\n", + "Ending global_step 29801: Average loss 1.33917\n", + "TIMING: model fitting took 5619.924 s\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_lxf1lmX2aoo", + "colab_type": "text" + }, + "source": [ + "Let's see how well it works as an autoencoder. We'll run the first 500 molecules from the validation set through it, and see how many of them are exactly reproduced." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "NXDBtIvn2aop", + "colab_type": "code", + "colab": {}, + "outputId": "59d18b07-0945-4bbb-ecf0-9860ed140e62" + }, + "source": [ + "predicted = model.predict_from_sequences(valid_smiles[:500])\n", + "count = 0\n", + "for s,p in zip(valid_smiles[:500], predicted):\n", + " if ''.join(p) == s:\n", + " count += 1\n", + "print('reproduced', count, 'of 500 validation SMILES strings')" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "reproduced 363 of 500 validation SMILES strings\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rt9GLy502aou", + "colab_type": "text" + }, + "source": [ + "Now we'll trying using the encoder as a way to generate molecular fingerprints. We compute the embedding vectors for all molecules in the training and validation datasets, and create new datasets that have those as their feature vectors. The amount of data is small enough that we can just store everything in memory." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "kdUfsbtZ2aov", + "colab_type": "code", + "colab": {} + }, + "source": [ + "train_embeddings = model.predict_embeddings(train_smiles)\n", + "train_embeddings_dataset = dc.data.NumpyDataset(train_embeddings,\n", + " train_dataset.y,\n", + " train_dataset.w,\n", + " train_dataset.ids)\n", + "\n", + "valid_embeddings = model.predict_embeddings(valid_smiles)\n", + "valid_embeddings_dataset = dc.data.NumpyDataset(valid_embeddings,\n", + " valid_dataset.y,\n", + " valid_dataset.w,\n", + " valid_dataset.ids)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lVvfGr562aoz", + "colab_type": "text" + }, + "source": [ + "For classification, we'll use a simple fully connected network with one hidden layer." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "tFmnnVNm2aoz", + "colab_type": "code", + "colab": {}, + "outputId": "e4efa887-24ac-4fab-e17b-fe27fc905a2b" + }, + "source": [ + "classifier = dc.models.MultitaskClassifier(n_tasks=len(tasks),\n", + " n_features=256,\n", + " layer_sizes=[512])\n", + "classifier.fit(train_embeddings_dataset, nb_epoch=10)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Ending global_step 999: Average loss 829.805\n", + "Ending global_step 1999: Average loss 450.42\n", + "Ending global_step 2999: Average loss 326.079\n", + "Ending global_step 3999: Average loss 265.199\n", + "Ending global_step 4999: Average loss 246.724\n", + "Ending global_step 5999: Average loss 224.64\n", + "Ending global_step 6999: Average loss 202.624\n", + "Ending global_step 7460: Average loss 213.885\n", + "TIMING: model fitting took 19.780 s\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "khdB2v7R2ao2", + "colab_type": "text" + }, + "source": [ + "Find out how well it worked. Compute the ROC AUC for the training and validation datasets." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ZlilhPvm2ao2", + "colab_type": "code", + "colab": {}, + "outputId": "7ee4c5d3-2647-401a-ce5f-65ded20daaee" + }, + "source": [ + "import numpy as np\n", + "metric = dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean, mode=\"classification\")\n", + "train_score = classifier.evaluate(train_embeddings_dataset, [metric], transformers)\n", + "valid_score = classifier.evaluate(valid_embeddings_dataset, [metric], transformers)\n", + "print('Training set ROC AUC:', train_score)\n", + "print('Validation set ROC AUC:', valid_score)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "computed_metrics: [0.97828427249789751, 0.98705973960125326, 0.966007068438685, 0.9874401066031584, 0.97794394675150698, 0.98021719680962449, 0.95318452689781941, 0.97185747562764213, 0.96389538770053473, 0.96798988621997473, 0.9690779239145807, 0.98544402211472004, 0.97762497271338133, 0.96843239633294886, 0.97753648081489997, 0.96504683675485614, 0.93547151958366914]\n", + "computed_metrics: [0.90790686952512678, 0.79891461649782913, 0.61900937081659968, 0.75241212956581671, 0.58678903240426017, 0.72765072765072758, 0.34929006085192693, 0.83986814712005553, 0.82379943502824859, 0.61844636844636847, 0.863620199146515, 0.68106930272108857, 0.98020477815699669, 0.85073580939032944, 0.781015678254942, 0.75399733510992673, nan]\n", + "Training set ROC AUC: {'mean-roc_auc_score': 0.97132433878689139}\n", + "Validation set ROC AUC: {'mean-roc_auc_score': 0.74592061629292239}\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ixqbRXnW2ao6", + "colab_type": "text" + }, + "source": [ + "# Congratulations! Time to join the Community!\n", + "\n", + "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", + "\n", + "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", + "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", + "\n", + "## Join the DeepChem Gitter\n", + "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!" + ] } - ], - "source": [ - "import numpy as np\n", - "metric = dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean, mode=\"classification\")\n", - "train_score = classifier.evaluate(train_embeddings_dataset, [metric], transformers)\n", - "valid_score = classifier.evaluate(valid_embeddings_dataset, [metric], transformers)\n", - "print('Training set ROC AUC:', train_score)\n", - "print('Validation set ROC AUC:', valid_score)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Congratulations! Time to join the Community!\n", - "\n", - "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", - "\n", - "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", - "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", - "\n", - "## Join the DeepChem Gitter\n", - "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.10" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + ] +} \ No newline at end of file diff --git a/examples/tutorials/12_Predicting_Ki_of_Ligands_to_a_Protein.ipynb b/examples/tutorials/12_Predicting_Ki_of_Ligands_to_a_Protein.ipynb index c8697e88cb..00eee1f706 100644 --- a/examples/tutorials/12_Predicting_Ki_of_Ligands_to_a_Protein.ipynb +++ b/examples/tutorials/12_Predicting_Ki_of_Ligands_to_a_Protein.ipynb @@ -56,14 +56,10 @@ "colab": {} }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], "execution_count": 0, "outputs": [] @@ -73,11 +69,11 @@ "metadata": { "id": "9uKkg6iXeYtb", "colab_type": "code", + "outputId": "8a41594b-a80f-4008-964b-2c10132278bf", "colab": { "base_uri": "https://localhost:8080/", "height": 304 - }, - "outputId": "8a41594b-a80f-4008-964b-2c10132278bf" + } }, "source": [ "import os\n", @@ -104,7 +100,7 @@ "print(\"Number of examples in dataset: %s\" % str(dataset.shape[0]))\n", "print(\"Number of examples in crystal dataset: %s\" % str(crystal_dataset.shape[0]))" ], - "execution_count": 2, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -207,11 +203,11 @@ "metadata": { "id": "qEaaVKbKeYtz", "colab_type": "code", + "outputId": "e31aadd2-7663-4f00-815e-33f37bd0f828", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 - }, - "outputId": "e31aadd2-7663-4f00-815e-33f37bd0f828" + } }, "source": [ "num_to_display = 12\n", @@ -220,7 +216,7 @@ " molecules.append(Chem.MolFromSmiles(data[\"mol\"]))\n", "display_images(mols_to_pngs(molecules, basename=\"dataset\"))" ], - "execution_count": 4, + "execution_count": 0, "outputs": [ { "output_type": "display_data", @@ -383,11 +379,11 @@ "metadata": { "id": "dBa2xXeNeYt7", "colab_type": "code", + "outputId": "1925e077-7b30-4812-c4fb-4e0619a31cce", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 - }, - "outputId": "1925e077-7b30-4812-c4fb-4e0619a31cce" + } }, "source": [ "num_to_display = 12\n", @@ -396,7 +392,7 @@ " molecules.append(Chem.MolFromSmiles(data[\"mol\"]))\n", "display_images(mols_to_pngs(molecules, basename=\"crystal_dataset\"))" ], - "execution_count": 5, + "execution_count": 0, "outputs": [ { "output_type": "display_data", @@ -559,11 +555,11 @@ "metadata": { "id": "z_N2_csYeYuG", "colab_type": "code", + "outputId": "5b95d5e3-14c9-4e2e-9f68-dbb425a5e08e", "colab": { "base_uri": "https://localhost:8080/", "height": 295 - }, - "outputId": "5b95d5e3-14c9-4e2e-9f68-dbb425a5e08e" + } }, "source": [ "%matplotlib inline\n", @@ -581,7 +577,7 @@ "plt.grid(True)\n", "plt.show()" ], - "execution_count": 6, + "execution_count": 0, "outputs": [ { "output_type": "display_data", @@ -625,11 +621,11 @@ "metadata": { "id": "op-ucdRNeYuT", "colab_type": "code", + "outputId": "e310a830-7de8-4655-9367-dfdaa766c5f3", "colab": { "base_uri": "https://localhost:8080/", "height": 323 - }, - "outputId": "e310a830-7de8-4655-9367-dfdaa766c5f3" + } }, "source": [ "import deepchem as dc\n", @@ -642,7 +638,7 @@ "dataset = loader.featurize(dataset_file)\n", "crystal_dataset = loader.featurize(crystal_dataset_file)" ], - "execution_count": 8, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -697,11 +693,11 @@ "metadata": { "id": "XISgZKsYeYuc", "colab_type": "code", + "outputId": "0ef562a7-6460-4d31-dff8-eeb6c0cbe302", "colab": { "base_uri": "https://localhost:8080/", "height": 119 - }, - "outputId": "0ef562a7-6460-4d31-dff8-eeb6c0cbe302" + } }, "source": [ "splitter = dc.splits.SpecifiedSplitter(dataset_file, \"Model\")\n", @@ -710,7 +706,7 @@ "#NOTE THE RENAMING:\n", "valid_dataset, test_dataset = test_dataset, valid_dataset" ], - "execution_count": 9, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -741,11 +737,11 @@ "metadata": { "id": "-l8uMJpueYuj", "colab_type": "code", + "outputId": "7692477d-3e18-41b1-870e-7e5b8dc3b8a0", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 - }, - "outputId": "7692477d-3e18-41b1-870e-7e5b8dc3b8a0" + } }, "source": [ "print(valid_dataset.ids)\n", @@ -753,7 +749,7 @@ " for compound in islice(valid_dataset.ids, num_to_display)]\n", "display_images(mols_to_pngs(valid_mols, basename=\"valid_set\"))" ], - "execution_count": 10, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -928,11 +924,11 @@ "metadata": { "id": "lT7PxXreeYut", "colab_type": "code", + "outputId": "53ec6ecc-0751-4ebb-ce8c-130e4fdce051", "colab": { "base_uri": "https://localhost:8080/", "height": 153 - }, - "outputId": "53ec6ecc-0751-4ebb-ce8c-130e4fdce051" + } }, "source": [ "print(\"Number of compounds in train set\")\n", @@ -944,7 +940,7 @@ "print(\"Number of compounds in crystal set\")\n", "print(len(crystal_dataset))" ], - "execution_count": 11, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -978,11 +974,11 @@ "metadata": { "id": "lKQfu5pveYuy", "colab_type": "code", + "outputId": "260f065a-1fe1-4339-a9b5-9953bf6b0007", "colab": { "base_uri": "https://localhost:8080/", "height": 357 - }, - "outputId": "260f065a-1fe1-4339-a9b5-9953bf6b0007" + } }, "source": [ "transformers = [\n", @@ -995,7 +991,7 @@ " datasets[i] = transformer.transform(dataset)\n", "train_dataset, valid_dataset, test_dataset, crystal_dataset = datasets" ], - "execution_count": 12, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1052,11 +1048,11 @@ "metadata": { "id": "jU49euh3eYvC", "colab_type": "code", + "outputId": "ea62e7d9-9824-4228-9aad-6c127a7107d5", "colab": { "base_uri": "https://localhost:8080/", "height": 765 - }, - "outputId": "ea62e7d9-9824-4228-9aad-6c127a7107d5" + } }, "source": [ "from sklearn.ensemble import RandomForestClassifier\n", @@ -1075,7 +1071,7 @@ " params_dict, train_dataset, valid_dataset, transformers,\n", " metric=metric)" ], - "execution_count": 13, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1134,11 +1130,11 @@ "metadata": { "id": "jqjBgMxHeYvO", "colab_type": "code", + "outputId": "950f98ca-aaeb-4386-e5b8-f302925fdd74", "colab": { "base_uri": "https://localhost:8080/", "height": 479 - }, - "outputId": "950f98ca-aaeb-4386-e5b8-f302925fdd74" + } }, "source": [ "import numpy.random\n", @@ -1158,7 +1154,7 @@ " params_dict, train_dataset, valid_dataset, transformers,\n", " metric=metric)" ], - "execution_count": 14, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1209,11 +1205,11 @@ "metadata": { "id": "VeINkC9ReYvW", "colab_type": "code", + "outputId": "6e8fe05b-5bca-4790-fc2a-8986c37cc43b", "colab": { "base_uri": "https://localhost:8080/", "height": 207 - }, - "outputId": "6e8fe05b-5bca-4790-fc2a-8986c37cc43b" + } }, "source": [ "from deepchem.utils.evaluate import Evaluator\n", @@ -1246,7 +1242,7 @@ " [metric], rf_crystal_csv_out, rf_crystal_stats_out)\n", "print(\"RF Crystal set R^2 %f\" % (rf_crystal_score[\"roc_auc_score\"]))" ], - "execution_count": 15, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1277,11 +1273,11 @@ "metadata": { "id": "LMDBBUtJeYvb", "colab_type": "code", + "outputId": "c27f8711-bd89-4930-efcc-2556453a533c", "colab": { "base_uri": "https://localhost:8080/", "height": 207 - }, - "outputId": "c27f8711-bd89-4930-efcc-2556453a533c" + } }, "source": [ "dnn_train_csv_out = \"dnn_train_classifier.csv\"\n", @@ -1312,7 +1308,7 @@ " [metric], dnn_crystal_csv_out, dnn_crystal_stats_out)\n", "print(\"DNN Crystal set AUC %f\" % (dnn_crystal_score[\"roc_auc_score\"]))" ], - "execution_count": 16, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1353,11 +1349,11 @@ "metadata": { "id": "NqEbvd2ZeYvg", "colab_type": "code", + "outputId": "0259bdef-9184-4214-a101-64f12490857b", "colab": { "base_uri": "https://localhost:8080/", "height": 323 - }, - "outputId": "0259bdef-9184-4214-a101-64f12490857b" + } }, "source": [ "#Make directories to store the raw and featurized datasets.\n", @@ -1368,7 +1364,7 @@ "dataset = loader.featurize(dataset_file)\n", "crystal_dataset = loader.featurize(crystal_dataset_file)" ], - "execution_count": 17, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1413,11 +1409,11 @@ "metadata": { "id": "dPEHZbTreYvo", "colab_type": "code", + "outputId": "3cbf271f-db6a-4c1e-bc39-524c3d992765", "colab": { "base_uri": "https://localhost:8080/", "height": 119 - }, - "outputId": "3cbf271f-db6a-4c1e-bc39-524c3d992765" + } }, "source": [ "splitter = dc.splits.SpecifiedSplitter(dataset_file, \"Model\")\n", @@ -1426,7 +1422,7 @@ "#NOTE THE RENAMING:\n", "valid_dataset, test_dataset = test_dataset, valid_dataset" ], - "execution_count": 18, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1447,11 +1443,11 @@ "metadata": { "id": "leu2sy1HeYvx", "colab_type": "code", + "outputId": "e42b9fe4-2b19-41a3-f23a-22062f278583", "colab": { "base_uri": "https://localhost:8080/", "height": 153 - }, - "outputId": "e42b9fe4-2b19-41a3-f23a-22062f278583" + } }, "source": [ "print(\"Number of compounds in train set\")\n", @@ -1463,7 +1459,7 @@ "print(\"Number of compounds in crystal set\")\n", "print(len(crystal_dataset))" ], - "execution_count": 19, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1486,11 +1482,11 @@ "metadata": { "id": "NmlQz-9ZeYv2", "colab_type": "code", + "outputId": "67060adc-8c11-4386-a679-c7a871f84db0", "colab": { "base_uri": "https://localhost:8080/", "height": 357 - }, - "outputId": "67060adc-8c11-4386-a679-c7a871f84db0" + } }, "source": [ "transformers = [\n", @@ -1503,7 +1499,7 @@ " datasets[i] = transformer.transform(dataset)\n", "train_dataset, valid_dataset, test_dataset, crystal_dataset = datasets" ], - "execution_count": 20, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1550,11 +1546,11 @@ "metadata": { "id": "BgB88N9leYv7", "colab_type": "code", + "outputId": "d7099322-f193-401e-9e9a-242ee410a47c", "colab": { "base_uri": "https://localhost:8080/", "height": 765 - }, - "outputId": "d7099322-f193-401e-9e9a-242ee410a47c" + } }, "source": [ "from sklearn.ensemble import RandomForestRegressor\n", @@ -1573,7 +1569,7 @@ " params_dict, train_dataset, valid_dataset, transformers,\n", " metric=metric)" ], - "execution_count": 21, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1632,11 +1628,11 @@ "metadata": { "id": "qEhs3pUueYv_", "colab_type": "code", + "outputId": "b5abdeba-a769-4b35-f02d-4e71a9661c47", "colab": { "base_uri": "https://localhost:8080/", "height": 717 - }, - "outputId": "b5abdeba-a769-4b35-f02d-4e71a9661c47" + } }, "source": [ "import numpy.random\n", @@ -1656,7 +1652,7 @@ " params_dict, train_dataset, valid_dataset, transformers,\n", " metric=metric)" ], - "execution_count": 22, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1711,11 +1707,11 @@ "metadata": { "id": "1c-1CX5weYwC", "colab_type": "code", + "outputId": "fe8b926e-ac8c-4e97-df5d-e28ee2d91caf", "colab": { "base_uri": "https://localhost:8080/", "height": 153 - }, - "outputId": "fe8b926e-ac8c-4e97-df5d-e28ee2d91caf" + } }, "source": [ "from deepchem.utils.evaluate import Evaluator\n", @@ -1748,7 +1744,7 @@ " [metric], rf_crystal_csv_out, rf_crystal_stats_out)\n", "print(\"RF Crystal set R^2 %f\" % (rf_crystal_score[\"r2_score\"]))" ], - "execution_count": 23, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1771,11 +1767,11 @@ "metadata": { "id": "D7g92mUweYwF", "colab_type": "code", + "outputId": "890443b8-87b8-4f5d-9187-60cc1c4924c4", "colab": { "base_uri": "https://localhost:8080/", "height": 153 - }, - "outputId": "890443b8-87b8-4f5d-9187-60cc1c4924c4" + } }, "source": [ "dnn_train_csv_out = \"dnn_train_regressor.csv\"\n", @@ -1806,7 +1802,7 @@ " [metric], dnn_crystal_csv_out, dnn_crystal_stats_out)\n", "print(\"DNN Crystal set R^2 %f\" % (dnn_crystal_score[\"r2_score\"]))\n" ], - "execution_count": 24, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1829,11 +1825,11 @@ "metadata": { "id": "fPpZmZbqeYwK", "colab_type": "code", + "outputId": "16590d66-2014-4aff-e522-3cfb446faa92", "colab": { "base_uri": "https://localhost:8080/", "height": 295 - }, - "outputId": "16590d66-2014-4aff-e522-3cfb446faa92" + } }, "source": [ "task = \"pIC50\"\n", @@ -1848,7 +1844,7 @@ "plt.plot([2, 11], [2, 11], color='k')\n", "plt.show()" ], - "execution_count": 25, + "execution_count": 0, "outputs": [ { "output_type": "display_data", @@ -1869,11 +1865,11 @@ "metadata": { "id": "OBCPydPleYwO", "colab_type": "code", + "outputId": "af86365a-230e-4ba5-ba94-a1de0a888007", "colab": { "base_uri": "https://localhost:8080/", "height": 295 - }, - "outputId": "af86365a-230e-4ba5-ba94-a1de0a888007" + } }, "source": [ "task = \"pIC50\"\n", @@ -1888,7 +1884,7 @@ "plt.plot([2, 11], [2, 11], color='k')\n", "plt.show()" ], - "execution_count": 26, + "execution_count": 0, "outputs": [ { "output_type": "display_data", diff --git a/examples/tutorials/13_Modeling_Protein_Ligand_Interactions.ipynb b/examples/tutorials/13_Modeling_Protein_Ligand_Interactions.ipynb index 2b0904fa16..bbae5b600d 100644 --- a/examples/tutorials/13_Modeling_Protein_Ligand_Interactions.ipynb +++ b/examples/tutorials/13_Modeling_Protein_Ligand_Interactions.ipynb @@ -1,785 +1,1290 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Part 13: Modeling Protein-Ligand Interactions\n", - "\n", - "In this tutorial, we'll walk you through the use of machine learning methods to predict the binding energy of a protein-ligand complex. Recall that a ligand is some small molecule which interacts (usually non-covalently) with a protein. As you work through the tutorial, you'll trace an arc from loading a raw dataset to fitting a random forest model to predict binding affinities. We'll take the following steps to get there:\n", - "\n", - "1. Loading a chemical dataset, consisting of a series of protein-ligand complexes.\n", - "2. Featurizing each protein-ligand complexes with various featurization schemes. \n", - "3. Fitting a series of models with these featurized protein-ligand complexes.\n", - "4. Visualizing the results.\n", - "\n", - "To start the tutorial, we'll use a simple pre-processed dataset file that comes in the form of a gzipped file. Each row is a molecular system, and each column represents a different piece of information about that system. For instance, in this example, every row reflects a protein-ligand complex, and the following columns are present: a unique complex identifier; the SMILES string of the ligand; the binding affinity (Ki) of the ligand to the protein in the complex; a Python `list` of all lines in a PDB file for the protein alone; and a Python `list` of all lines in a ligand file for the ligand alone.\n", - "\n", - "## Colab\n", - "\n", - "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/13_Modeling_Protein_Ligand_Interactions.ipynb)\n", - "\n", - "## Setup\n", - "\n", - "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh\n", - "!chmod +x Anaconda3-2019.10-Linux-x86_64.sh\n", - "!bash ./Anaconda3-2019.10-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "import deepchem as dc\n", - "from deepchem.utils import download_url\n", - "\n", - "import os\n", - "\n", - "data_dir = dc.utils.get_data_dir()\n", - "dataset_file = os.path.join(data_dir, \"pdbbind_core_df.csv.gz\")\n", - "\n", - "if not os.path.exists(dataset_file):\n", - " print('File does not exist. Downloading file...')\n", - " download_url(\"https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/pdbbind_core_df.csv.gz\")\n", - " print('File downloaded...')\n", - "\n", - "raw_dataset = dc.utils.save.load_from_disk(dataset_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see what `dataset` looks like:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Type of dataset is: \n", - " pdb_id smiles \\\n", - "0 2d3u CC1CCCCC1S(O)(O)NC1CC(C2CCC(CN)CC2)SC1C(O)O \n", - "1 3cyx CC(C)(C)NC(O)C1CC2CCCCC2C[NH+]1CC(O)C(CC1CCCCC... \n", - "2 3uo4 OC(O)C1CCC(NC2NCCC(NC3CCCCC3C3CCCCC3)N2)CC1 \n", - "3 1p1q CC1ONC(O)C1CC([NH3+])C(O)O \n", - "4 3ag9 NC(O)C(CCC[NH2+]C([NH3+])[NH3+])NC(O)C(CCC[NH2... \n", - "\n", - " complex_id \\\n", - "0 2d3uCC1CCCCC1S(O)(O)NC1CC(C2CCC(CN)CC2)SC1C(O)O \n", - "1 3cyxCC(C)(C)NC(O)C1CC2CCCCC2C[NH+]1CC(O)C(CC1C... \n", - "2 3uo4OC(O)C1CCC(NC2NCCC(NC3CCCCC3C3CCCCC3)N2)CC1 \n", - "3 1p1qCC1ONC(O)C1CC([NH3+])C(O)O \n", - "4 3ag9NC(O)C(CCC[NH2+]C([NH3+])[NH3+])NC(O)C(CCC... \n", - "\n", - " protein_pdb \\\n", - "0 ['HEADER 2D3U PROTEIN\\n', 'COMPND 2D3U P... \n", - "1 ['HEADER 3CYX PROTEIN\\n', 'COMPND 3CYX P... \n", - "2 ['HEADER 3UO4 PROTEIN\\n', 'COMPND 3UO4 P... \n", - "3 ['HEADER 1P1Q PROTEIN\\n', 'COMPND 1P1Q P... \n", - "4 ['HEADER 3AG9 PROTEIN\\n', 'COMPND 3AG9 P... \n", - "\n", - " ligand_pdb \\\n", - "0 ['COMPND 2d3u ligand \\n', 'AUTHOR GENERA... \n", - "1 ['COMPND 3cyx ligand \\n', 'AUTHOR GENERA... \n", - "2 ['COMPND 3uo4 ligand \\n', 'AUTHOR GENERA... \n", - "3 ['COMPND 1p1q ligand \\n', 'AUTHOR GENERA... \n", - "4 ['COMPND 3ag9 ligand \\n', 'AUTHOR GENERA... \n", - "\n", - " ligand_mol2 label \n", - "0 ['### \\n', '### Created by X-TOOL on Thu Aug 2... 6.92 \n", - "1 ['### \\n', '### Created by X-TOOL on Thu Aug 2... 8.00 \n", - "2 ['### \\n', '### Created by X-TOOL on Fri Aug 2... 6.52 \n", - "3 ['### \\n', '### Created by X-TOOL on Thu Aug 2... 4.89 \n", - "4 ['### \\n', '### Created by X-TOOL on Thu Aug 2... 8.05 \n", - "Shape of dataset is: (193, 7)\n" - ] - } - ], - "source": [ - "print(\"Type of dataset is: %s\" % str(type(raw_dataset)))\n", - "print(raw_dataset[:5])\n", - "print(\"Shape of dataset is: %s\" % str(raw_dataset.shape))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Visualizing what these proteins and ligands look like will help us build intuition and understanding about these systems. Let's write a bit of code to help us view our molecules. We'll use the `nglview` library to help us do this. You can install this library by calling `pip install nglview`." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "af7deefebf5f4f9b885c5e18fcf7a81f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "_ColormakerRegistry()" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import nglview\n", - "import tempfile\n", - "import os\n", - "import mdtraj as md\n", - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll use the `mdtraj` library to help us manipulate both ligand and protein objects. We'll use the following convenience function to parse in the ligand and protein representations above into mdtraj." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def convert_lines_to_mdtraj(molecule_lines):\n", - " molecule_lines = molecule_lines.strip('[').strip(']').replace(\"'\",\"\").replace(\"\\\\n\", \"\").split(\", \")\n", - " tempdir = tempfile.mkdtemp()\n", - " molecule_file = os.path.join(tempdir, \"molecule.pdb\")\n", - " with open(molecule_file, \"w\") as f:\n", - " for line in molecule_lines:\n", - " f.write(\"%s\\n\" % line)\n", - " molecule_mdtraj = md.load(molecule_file)\n", - " return molecule_mdtraj" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's take a look at the first protein ligand pair in our dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "first_protein, first_ligand = raw_dataset.iloc[0][\"protein_pdb\"], raw_dataset.iloc[0][\"ligand_pdb\"]\n", - "protein_mdtraj = convert_lines_to_mdtraj(first_protein)\n", - "ligand_mdtraj = convert_lines_to_mdtraj(first_ligand)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll use the convenience function `nglview.show_mdtraj` in order to view our proteins and ligands." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "813bd1db316e4fe6a687e0c3607bb1e3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "NGLWidget()" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "v = nglview.show_mdtraj(ligand_mdtraj)\n", - "v" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have an idea of what the ligand looks like, let's take a look at our protein:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "82bdffe1b5cb4fa7a674f49338aecc29", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "NGLWidget()" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "view = nglview.show_mdtraj(protein_mdtraj)\n", - "view" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Can we view the complex with both protein and ligand? Yes, but we'll need the following helper function to join the two mdtraj files for the protein and ligand." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def combine_mdtraj(protein, ligand):\n", - " chain = protein.topology.add_chain()\n", - " residue = protein.topology.add_residue(\"LIG\", chain, resSeq=1)\n", - " for atom in ligand.topology.atoms:\n", - " protein.topology.add_atom(atom.name, atom.element, residue)\n", - " protein.xyz = np.hstack([protein.xyz, ligand.xyz])\n", - " protein.topology.create_standard_bonds()\n", - " return protein\n", - "complex_mdtraj = combine_mdtraj(protein_mdtraj, ligand_mdtraj)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now visualize our complex" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9f2875889cfa4756b93ecd768fbba575", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "NGLWidget()" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "v = nglview.show_mdtraj(complex_mdtraj)\n", - "v" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the ligand slots into a groove on the outer edge of the protein. Ok, now that we've got our basic visualization tools up and running, let's see if we can use some machine learning to understand our dataset of protein-ligand systems better.\n", - "\n", - "In order to do this, we'll need a way to transform our protein-ligand complexes into representations which can be used by learning algorithms. Ideally, we'd have neural protein-ligand complex fingerprints, but DeepChem doesn't yet have a good learned fingerprint of this sort. We do however have well tuned manual featurizers that can help us with our challenge here.\n", - "\n", - "We'll make of two types of fingerprints in the rest of the tutorial, the circular fingerprints and the grid descriptors. The grid descriptors convert a 3D volume containing an arragment of atoms into a fingerprint. This is really useful for understanding protein-ligand complexes since it will allow us to transfer protein-ligand complexes into vectors that can be passed into a simple machine learning algorithms. Let's see how we can create such a fingerprint in DeepChem. We'll make use of the `dc.feat.RdkitGridFeaturizer` class." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "grid_featurizer = dc.feat.RdkitGridFeaturizer(\n", - " voxel_width=16.0, feature_types=[\"ecfp\", \"splif\", \"hbond\", \"pi_stack\", \"cation_pi\", \"salt_bridge\"], \n", - " ecfp_power=5, splif_power=5, parallel=True, flatten=True, sanitize=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we'll create circular fingerprints. These convert small molecules into a vector of fragments. You can create these fingerprints with the `dc.feat.CircularFingerprint` class." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "compound_featurizer = dc.feat.CircularFingerprint(size=128)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The convenience loader `dc.molnet.load_pdbbind_grid` will take care of performing featurizing the pdbbind dataset under the hood for us. We'll use this helper method to perform our featurization for us. We'll featurize the \"refined\" subset of the PDBBIND dataset (which consists of only a couple thousand protein-ligand complexes) to keep this task manageable." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading raw samples now.\n", - "shard_size: 8192\n", - "About to start loading CSV from /var/folders/st/ds45jcqj2232lvhr0y9qt5sc0000gn/T/refined_smiles_labels.csv\n", - "Loading shard 1 of size 8192.\n", - "Featurizing sample 0\n", - "Featurizing sample 1000\n", - "Featurizing sample 2000\n", - "Featurizing sample 3000\n", - "TIMING: featurizing shard 0 took 3.487 s\n", - "TIMING: dataset construction took 3.594 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.116 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.061 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.068 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.089 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.016 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.014 s\n", - "Loading dataset from disk.\n" - ] - } - ], - "source": [ - "pdbbind_tasks, (train_dataset, valid_dataset, test_dataset), transformers = dc.molnet.load_pdbbind_grid(\n", - " featurizer=\"ECFP\", subset=\"refined\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we're ready to do some learning! \n", - "\n", - "To fit a deepchem model, first we instantiate one of the provided (or user-written) model classes. In this case, we have a created a convenience class to wrap around any ML model available in Sci-Kit Learn that can in turn be used to interoperate with deepchem. To instantiate an ```SklearnModel```, you will need (a) task_types, (b) model_params, another ```dict``` as illustrated below, and (c) a ```model_instance``` defining the type of model you would like to fit, in this case a ```RandomForestRegressor```." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestRegressor\n", - "\n", - "seed=23 # Set a random seed to get stable results\n", - "sklearn_model = RandomForestRegressor(n_estimators=10, max_features='sqrt')\n", - "sklearn_model.random_state = seed\n", - "model = dc.models.SklearnModel(sklearn_model)\n", - "model.fit(train_dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "computed_metrics: [0.8426371735461211]\n", - "RF Train set R^2 0.842637\n", - "computed_metrics: [0.4889401215203093]\n", - "RF Valid set R^2 0.488940\n" - ] - } - ], - "source": [ - "from deepchem.utils.evaluate import Evaluator\n", - "import pandas as pd\n", - "\n", - "metric = dc.metrics.Metric(dc.metrics.r2_score)\n", - "\n", - "evaluator = Evaluator(model, train_dataset, transformers)\n", - "train_r2score = evaluator.compute_model_performance([metric])\n", - "print(\"RF Train set R^2 %f\" % (train_r2score[\"r2_score\"]))\n", - "\n", - "evaluator = Evaluator(model, valid_dataset, transformers)\n", - "valid_r2score = evaluator.compute_model_performance([metric])\n", - "print(\"RF Valid set R^2 %f\" % (valid_r2score[\"r2_score\"]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is decent performance on a validation set! It's interesting to note that a trivial prediction from just the ligand can do reasonably on the task of predicting the binding energy." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-0.698915 -0.2038876 -0.83584868 -0.19569178 -0.52297811 -1.12700989\n", - " -0.24781718 -0.95717433 -1.04587129 0.01657991]\n" - ] - } - ], - "source": [ - "predictions = model.predict(test_dataset)\n", - "print(predictions[:10])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The protein-ligand complex view." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the previous section, we featurized only the ligand. The signal we observed in R^2 reflects the ability of grid fingerprints and random forests to learn general features that make ligands \"drug-like.\" This time, let's see if we can do something sensible with our protein-ligand fingerprints that make use of our structural information. To start with, we need to re-featurize the dataset but using the \"grid\" fingerprints this time." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.167 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.056 s\n", - "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.067 s\n", - "Loading dataset from disk.\n" - ] - } - ], - "source": [ - "pdbbind_tasks, (train_dataset, valid_dataset, test_dataset), transformers = dc.molnet.load_pdbbind_grid(\n", - " featurizer=\"grid\", subset=\"refined\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now train a simple random forest model on this dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "seed=23 # Set a random seed to get stable results\n", - "sklearn_model = RandomForestRegressor(n_estimators=10, max_features='sqrt')\n", - "sklearn_model.random_state = seed\n", - "model = dc.models.SklearnModel(sklearn_model)\n", - "model.fit(train_dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see what our accuracies looks like!" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "computed_metrics: [0.8981027537791372]\n", - "RF Train set R^2 0.898103\n", - "computed_metrics: [0.457958594329243]\n", - "RF Valid set R^2 0.457959\n" - ] - } - ], - "source": [ - "metric = dc.metrics.Metric(dc.metrics.r2_score)\n", - "\n", - "evaluator = Evaluator(model, train_dataset, transformers)\n", - "train_r2score = evaluator.compute_model_performance([metric])\n", - "print(\"RF Train set R^2 %f\" % (train_r2score[\"r2_score\"]))\n", - "\n", - "evaluator = Evaluator(model, valid_dataset, transformers)\n", - "valid_r2score = evaluator.compute_model_performance([metric])\n", - "print(\"RF Valid set R^2 %f\" % (valid_r2score[\"r2_score\"]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ok, there's some predictive performance here, but it looks like we have lower accuracy than the ligand-only dataset. What gives? There might be a few things going on. It's possible that for this particular dataset the pure ligand only features are quite predictive. But nonetheless, it's probably still useful to have a protein-ligand model since it's likely to learn different features than the the pure ligand-only model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Doing Some Hyperparameter Optimization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ok, now that we've built a few models, let's do some hyperparameter optimization to see if we can get our numbers to be a little better. We'll use the `dc.hyper` module to do this for us." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fitting model 1/12\n", - "hyperparameters: {'n_estimators': 10, 'max_features': 'auto'}\n", - "computed_metrics: [0.4764324138132032]\n", - "Model 1/12, Metric r2_score, Validation set 0: 0.476432\n", - "\tbest_validation_score so far: 0.476432\n", - "Fitting model 2/12\n", - "hyperparameters: {'n_estimators': 10, 'max_features': 'sqrt'}\n", - "computed_metrics: [0.457958594329243]\n", - "Model 2/12, Metric r2_score, Validation set 1: 0.457959\n", - "\tbest_validation_score so far: 0.476432\n", - "Fitting model 3/12\n", - "hyperparameters: {'n_estimators': 10, 'max_features': 'log2'}\n", - "computed_metrics: [0.4490199575272553]\n", - "Model 3/12, Metric r2_score, Validation set 2: 0.449020\n", - "\tbest_validation_score so far: 0.476432\n", - "Fitting model 4/12\n", - "hyperparameters: {'n_estimators': 10, 'max_features': None}\n", - "computed_metrics: [0.4764324138132032]\n", - "Model 4/12, Metric r2_score, Validation set 3: 0.476432\n", - "\tbest_validation_score so far: 0.476432\n", - "Fitting model 5/12\n", - "hyperparameters: {'n_estimators': 50, 'max_features': 'auto'}\n", - "computed_metrics: [0.5233787062200923]\n", - "Model 5/12, Metric r2_score, Validation set 4: 0.523379\n", - "\tbest_validation_score so far: 0.523379\n", - "Fitting model 6/12\n", - "hyperparameters: {'n_estimators': 50, 'max_features': 'sqrt'}\n", - "computed_metrics: [0.5199897039641606]\n", - "Model 6/12, Metric r2_score, Validation set 5: 0.519990\n", - "\tbest_validation_score so far: 0.523379\n", - "Fitting model 7/12\n", - "hyperparameters: {'n_estimators': 50, 'max_features': 'log2'}\n", - "computed_metrics: [0.49432826062655066]\n", - "Model 7/12, Metric r2_score, Validation set 6: 0.494328\n", - "\tbest_validation_score so far: 0.523379\n", - "Fitting model 8/12\n", - "hyperparameters: {'n_estimators': 50, 'max_features': None}\n", - "computed_metrics: [0.5233787062200923]\n", - "Model 8/12, Metric r2_score, Validation set 7: 0.523379\n", - "\tbest_validation_score so far: 0.523379\n", - "Fitting model 9/12\n", - "hyperparameters: {'n_estimators': 100, 'max_features': 'auto'}\n", - "computed_metrics: [0.5329568053100839]\n", - "Model 9/12, Metric r2_score, Validation set 8: 0.532957\n", - "\tbest_validation_score so far: 0.532957\n", - "Fitting model 10/12\n", - "hyperparameters: {'n_estimators': 100, 'max_features': 'sqrt'}\n", - "computed_metrics: [0.513292992168339]\n", - "Model 10/12, Metric r2_score, Validation set 9: 0.513293\n", - "\tbest_validation_score so far: 0.532957\n", - "Fitting model 11/12\n", - "hyperparameters: {'n_estimators': 100, 'max_features': 'log2'}\n", - "computed_metrics: [0.48901397189410456]\n", - "Model 11/12, Metric r2_score, Validation set 10: 0.489014\n", - "\tbest_validation_score so far: 0.532957\n", - "Fitting model 12/12\n", - "hyperparameters: {'n_estimators': 100, 'max_features': None}\n", - "computed_metrics: [0.5329568053100839]\n", - "Model 12/12, Metric r2_score, Validation set 11: 0.532957\n", - "\tbest_validation_score so far: 0.532957\n", - "computed_metrics: [0.9336377471642344]\n", - "Best hyperparameters: (100, None)\n", - "train_score: 0.933638\n", - "validation_score: 0.532957\n" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + }, + "colab": { + "name": "13_Modeling_Protein_Ligand_Interactions.ipynb", + "provenance": [] + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "e9692ed27df045c7a86ccbab377a762d": { + "model_module": "nglview-js-widgets", + "model_name": "ColormakerRegistryModel", + "state": { + "_view_name": "ColormakerRegistryView", + "_dom_classes": [], + "_model_name": "ColormakerRegistryModel", + "_msg_q": [], + "_view_module": "nglview-js-widgets", + "_model_module_version": "2.7.5", + "_msg_ar": [], + "_ready": false, + "_view_module_version": "2.7.5", + "_view_count": null, + "_model_module": "nglview-js-widgets", + "layout": "IPY_MODEL_05e334ede90f49a590f39113b1ccafa2" + } + }, + "d0f7e107871a4342a434a93292125e9e": { + "model_module": "nglview-js-widgets", + "model_name": "NGLModel", + "state": { + "_view_name": "NGLView", + "_scene_rotation": {}, + "_ngl_view_id": [], + "_synced_model_ids": [], + "_camera_orientation": [], + "frame": 0, + "_view_module": "nglview-js-widgets", + "_ibtn_fullscreen": "IPY_MODEL_9c040073b6754853bbf2c79a903621a8", + "_camera_str": "orthographic", + "_ngl_serialize": false, + "picked": {}, + "_model_module": "nglview-js-widgets", + "_igui": null, + "_iplayer": "IPY_MODEL_4071ec98955045af834b7eabe35bb29e", + "layout": "IPY_MODEL_9aa3c0b34221431f93dd58c09cdf2cfd", + "_view_width": "", + "_ngl_coordinate_resource": {}, + "_view_module_version": "2.7.5", + "_player_dict": {}, + "_synced_repr_model_ids": [], + "_ngl_version": "", + "max_frame": 0, + "_dom_classes": [], + "_model_name": "NGLModel", + "_scene_position": {}, + "_model_module_version": "2.7.5", + "gui_style": null, + "background": "white", + "_view_count": null, + "_view_height": "", + "_ngl_repr_dict": {}, + "_ngl_original_stage_parameters": {}, + "_ngl_full_stage_parameters": {}, + "n_components": 0, + "_ngl_color_dict": {}, + "_gui_theme": null, + "_ngl_msg_archive": [ + { + "reconstruc_color_scheme": false, + "methodName": "loadFile", + "target": "Stage", + "args": [ + { + "data": "MODEL 0\nATOM 1 C1 CCT A 1 12.930 30.871 73.555 1.00 0.00 C \nATOM 2 C2 CCT A 1 12.904 29.594 72.915 1.00 0.00 C \nATOM 3 C3 CCT A 1 11.675 28.876 72.876 1.00 0.00 C \nATOM 4 C4 CCT A 1 10.504 29.416 73.455 1.00 0.00 C \nATOM 5 C5 CCT A 1 10.520 30.692 74.092 1.00 0.00 C \nATOM 6 C6 CCT A 1 11.753 31.411 74.134 1.00 0.00 C \nATOM 7 C7 CCT A 1 6.884 31.797 75.111 1.00 0.00 C \nATOM 8 C8 CCT A 1 7.733 32.392 76.033 1.00 0.00 C \nATOM 9 C9 CCT A 1 9.108 32.061 75.768 1.00 0.00 C \nATOM 10 C10 CCT A 1 9.277 31.234 74.669 1.00 0.00 C \nATOM 11 S11 CCT A 1 7.757 30.874 73.982 1.00 0.00 S \nATOM 12 C12 CCT A 1 14.083 29.040 72.318 1.00 0.00 C \nATOM 13 N13 CCT A 1 15.043 28.581 71.811 1.00 0.00 N \nATOM 14 C14 CCT A 1 5.402 31.944 75.107 1.00 0.00 C \nATOM 15 O15 CCT A 1 4.768 31.230 74.313 1.00 0.00 O \nATOM 16 O16 CCT A 1 4.868 32.787 75.871 1.00 0.00 O \nATOM 17 N17 CCT A 1 7.301 33.237 77.137 1.00 0.00 N \nATOM 18 S18 CCT A 1 8.282 34.502 77.689 1.00 0.00 S \nATOM 19 C19 CCT A 1 7.775 36.467 75.711 1.00 0.00 C \nATOM 20 C20 CCT A 1 8.733 35.682 76.427 1.00 0.00 C \nATOM 21 C21 CCT A 1 10.125 35.830 76.146 1.00 0.00 C \nATOM 22 C22 CCT A 1 10.578 36.740 75.166 1.00 0.00 C \nATOM 23 C23 CCT A 1 9.635 37.525 74.450 1.00 0.00 C \nATOM 24 C24 CCT A 1 8.246 37.387 74.720 1.00 0.00 C \nATOM 25 C25 CCT A 1 6.286 36.367 75.952 1.00 0.00 C \nATOM 26 O26 CCT A 1 9.481 33.897 78.252 1.00 0.00 O \nATOM 27 O27 CCT A 1 7.483 35.183 78.686 1.00 0.00 O \nATOM 28 H CCT A 1 5.399 33.298 76.450 1.00 0.00 H \nATOM 29 H CCT A 1 6.431 33.071 77.566 1.00 0.00 H \nTER 30 CCT A 1\nENDMDL\nCONECT 1 2 6\nCONECT 2 1 3 12\nCONECT 3 2 4\nCONECT 4 3 5\nCONECT 5 4 6 10\nCONECT 6 1 5\nCONECT 7 8 11 14\nCONECT 8 7 9 17\nCONECT 9 8 10\nCONECT 10 5 9 11\nCONECT 11 7 10\nCONECT 12 2 13\nCONECT 13 12\nCONECT 14 7 15 16\nCONECT 15 14\nCONECT 16 14 28\nCONECT 17 8 18 29\nCONECT 18 17 20 26 27\nCONECT 19 20 24 25\nCONECT 20 18 19 21\nCONECT 21 20 22\nCONECT 22 21 23\nCONECT 23 22 24\nCONECT 24 19 23\nCONECT 25 19\nCONECT 26 18\nCONECT 27 18\nCONECT 28 16\nCONECT 29 17\nEND\n", + "type": "blob", + "binary": false + } + ], + "kwargs": { + "ext": "pdb", + "defaultRepresentation": true + }, + "type": "call_method" + } + ] + } + }, + "655b10a5e1d8422ea4555272e0411fee": { + "model_module": "nglview-js-widgets", + "model_name": "NGLModel", + "state": { + "_view_name": "NGLView", + "_scene_rotation": {}, + "_ngl_view_id": [], + "_synced_model_ids": [], + "_camera_orientation": [], + "frame": 0, + "_view_module": "nglview-js-widgets", + "_ibtn_fullscreen": "IPY_MODEL_99cb361beb24462daabde6237a04a892", + "_camera_str": "orthographic", + "_ngl_serialize": false, + "picked": {}, + "_model_module": "nglview-js-widgets", + "_igui": null, + "_iplayer": "IPY_MODEL_c7a6c7e665574f12af61e3cd5b6a189d", + "layout": "IPY_MODEL_7e7f661fbc2b4651a60c3f74c9e7da47", + "_view_width": "", + "_ngl_coordinate_resource": {}, + "_view_module_version": "2.7.5", + "_player_dict": {}, + "_synced_repr_model_ids": [], + "_ngl_version": "", + "max_frame": 0, + "_dom_classes": [], + "_model_name": "NGLModel", + "_scene_position": {}, + "_model_module_version": "2.7.5", + "gui_style": null, + "background": "white", + "_view_count": null, + "_view_height": "", + "_ngl_repr_dict": {}, + "_ngl_original_stage_parameters": {}, + "_ngl_full_stage_parameters": {}, + "n_components": 0, + "_ngl_color_dict": {}, + "_gui_theme": null, + "_ngl_msg_archive": [ + { + "reconstruc_color_scheme": false, + "methodName": "loadFile", + "target": "Stage", + "args": [ + { + "data": "MODEL 0\nATOM 1 N SER A 1 15.324 37.268 22.693 1.00 0.00 N \nATOM 2 CA SER A 1 15.651 38.380 23.628 1.00 0.00 C \nATOM 3 C SER A 1 16.340 37.889 24.890 1.00 0.00 C \nATOM 4 O SER A 1 15.662 37.449 25.835 1.00 0.00 O \nATOM 5 CB SER A 1 14.375 39.133 24.030 1.00 0.00 C \nATOM 6 OG SER A 1 14.718 40.337 24.714 1.00 0.00 O \nATOM 7 N MET A 2 17.676 37.947 24.893 1.00 0.00 N \nATOM 8 CA MET A 2 18.467 37.535 26.056 1.00 0.00 C \nATOM 9 C MET A 2 18.329 38.628 27.108 1.00 0.00 C \nATOM 10 O MET A 2 18.402 39.819 26.772 1.00 0.00 O \nATOM 11 CB MET A 2 19.951 37.383 25.685 1.00 0.00 C \nATOM 12 CG MET A 2 20.246 36.266 24.686 1.00 0.00 C \nATOM 13 SD MET A 2 19.701 34.709 25.344 1.00 0.00 S \nATOM 14 CE MET A 2 20.967 34.406 26.652 1.00 0.00 C \nATOM 15 N SER A 3 18.132 38.228 28.363 1.00 0.00 N \nATOM 16 CA SER A 3 17.986 39.184 29.453 1.00 0.00 C \nATOM 17 C SER A 3 19.224 40.075 29.525 1.00 0.00 C \nATOM 18 O SER A 3 19.119 41.279 29.800 1.00 0.00 O \nATOM 19 CB SER A 3 17.758 38.436 30.779 1.00 0.00 C \nATOM 20 OG SER A 3 18.692 37.371 30.959 1.00 0.00 O \nATOM 21 N TYR A 4 20.387 39.483 29.246 1.00 0.00 N \nATOM 22 CA TYR A 4 21.667 40.201 29.244 1.00 0.00 C \nATOM 23 C TYR A 4 22.617 39.643 28.188 1.00 0.00 C \nATOM 24 O TYR A 4 22.530 38.475 27.821 1.00 0.00 O \nATOM 25 CB TYR A 4 22.400 40.032 30.583 1.00 0.00 C \nATOM 26 CG TYR A 4 21.694 40.566 31.800 1.00 0.00 C \nATOM 27 CD1 TYR A 4 21.799 41.911 32.153 1.00 0.00 C \nATOM 28 CD2 TYR A 4 20.910 39.728 32.597 1.00 0.00 C \nATOM 29 CE1 TYR A 4 21.139 42.410 33.274 1.00 0.00 C \nATOM 30 CE2 TYR A 4 20.243 40.227 33.726 1.00 0.00 C \nATOM 31 CZ TYR A 4 20.366 41.566 34.049 1.00 0.00 C \nATOM 32 OH TYR A 4 19.710 42.075 35.136 1.00 0.00 O \nATOM 33 N THR A 5 23.526 40.486 27.719 1.00 0.00 N \nATOM 34 CA THR A 5 24.591 40.084 26.800 1.00 0.00 C \nATOM 35 C THR A 5 25.816 40.634 27.541 1.00 0.00 C \nATOM 36 O THR A 5 25.823 41.802 27.951 1.00 0.00 O \nATOM 37 CB THR A 5 24.494 40.753 25.418 1.00 0.00 C \nATOM 38 OG1 THR A 5 24.368 42.164 25.584 1.00 0.00 O \nATOM 39 CG2 THR A 5 23.312 40.227 24.654 1.00 0.00 C \nATOM 40 N TRP A 6 26.834 39.802 27.736 1.00 0.00 N \nATOM 41 CA TRP A 6 28.022 40.216 28.478 1.00 0.00 C \nATOM 42 C TRP A 6 29.258 40.373 27.601 1.00 0.00 C \nATOM 43 O TRP A 6 29.378 39.696 26.594 1.00 0.00 O \nATOM 44 CB TRP A 6 28.299 39.201 29.583 1.00 0.00 C \nATOM 45 CG TRP A 6 27.121 38.979 30.493 1.00 0.00 C \nATOM 46 CD1 TRP A 6 26.265 37.906 30.498 1.00 0.00 C \nATOM 47 CD2 TRP A 6 26.661 39.861 31.523 1.00 0.00 C \nATOM 48 NE1 TRP A 6 25.303 38.067 31.476 1.00 0.00 N \nATOM 49 CE2 TRP A 6 25.525 39.261 32.119 1.00 0.00 C \nATOM 50 CE3 TRP A 6 27.101 41.103 32.006 1.00 0.00 C \nATOM 51 CZ2 TRP A 6 24.827 39.858 33.165 1.00 0.00 C \nATOM 52 CZ3 TRP A 6 26.405 41.696 33.051 1.00 0.00 C \nATOM 53 CH2 TRP A 6 25.281 41.073 33.618 1.00 0.00 C \nATOM 54 N THR A 7 30.167 41.273 27.974 1.00 0.00 N \nATOM 55 CA THR A 7 31.389 41.462 27.188 1.00 0.00 C \nATOM 56 C THR A 7 32.529 40.626 27.765 1.00 0.00 C \nATOM 57 O THR A 7 33.474 40.291 27.063 1.00 0.00 O \nATOM 58 CB THR A 7 31.867 42.927 27.175 1.00 0.00 C \nATOM 59 OG1 THR A 7 32.096 43.360 28.516 1.00 0.00 O \nATOM 60 CG2 THR A 7 30.837 43.833 26.520 1.00 0.00 C \nATOM 61 N GLY A 8 32.437 40.286 29.043 1.00 0.00 N \nATOM 62 CA GLY A 8 33.501 39.518 29.660 1.00 0.00 C \nATOM 63 C GLY A 8 34.160 40.354 30.740 1.00 0.00 C \nATOM 64 O GLY A 8 34.856 39.832 31.600 1.00 0.00 O \nATOM 65 N ALA A 9 33.952 41.666 30.689 1.00 0.00 N \nATOM 66 CA ALA A 9 34.506 42.549 31.705 1.00 0.00 C \nATOM 67 C ALA A 9 33.832 42.157 33.020 1.00 0.00 C \nATOM 68 O ALA A 9 32.645 41.824 33.047 1.00 0.00 O \nATOM 69 CB ALA A 9 34.201 43.992 31.373 1.00 0.00 C \nATOM 70 N LEU A 10 34.590 42.203 34.106 1.00 0.00 N \nATOM 71 CA LEU A 10 34.068 41.822 35.412 1.00 0.00 C \nATOM 72 C LEU A 10 33.234 42.901 36.104 1.00 0.00 C \nATOM 73 O LEU A 10 33.382 44.089 35.839 1.00 0.00 O \nATOM 74 CB LEU A 10 35.226 41.428 36.341 1.00 0.00 C \nATOM 75 CG LEU A 10 36.135 40.284 35.885 1.00 0.00 C \nATOM 76 CD1 LEU A 10 37.324 40.165 36.832 1.00 0.00 C \nATOM 77 CD2 LEU A 10 35.340 38.984 35.834 1.00 0.00 C \nATOM 78 N ILE A 11 32.352 42.454 36.994 1.00 0.00 N \nATOM 79 CA ILE A 11 31.521 43.343 37.785 1.00 0.00 C \nATOM 80 C ILE A 11 32.437 43.578 38.975 1.00 0.00 C \nATOM 81 O ILE A 11 32.647 42.698 39.808 1.00 0.00 O \nATOM 82 CB ILE A 11 30.227 42.644 38.225 1.00 0.00 C \nATOM 83 CG1 ILE A 11 29.373 42.330 36.990 1.00 0.00 C \nATOM 84 CG2 ILE A 11 29.486 43.511 39.216 1.00 0.00 C \nATOM 85 CD1 ILE A 11 28.181 41.424 37.266 1.00 0.00 C \nATOM 86 N THR A 12 33.000 44.770 39.030 1.00 0.00 N \nATOM 87 CA THR A 12 33.962 45.116 40.058 1.00 0.00 C \nATOM 88 C THR A 12 33.421 45.785 41.304 1.00 0.00 C \nATOM 89 O THR A 12 32.416 46.496 41.262 1.00 0.00 O \nATOM 90 CB THR A 12 35.007 46.030 39.467 1.00 0.00 C \nATOM 91 OG1 THR A 12 34.350 47.186 38.933 1.00 0.00 O \nATOM 92 CG2 THR A 12 35.763 45.313 38.352 1.00 0.00 C \nATOM 93 N PRO A 13 34.098 45.562 42.441 1.00 0.00 N \nATOM 94 CA PRO A 13 33.675 46.162 43.707 1.00 0.00 C \nATOM 95 C PRO A 13 34.058 47.636 43.694 1.00 0.00 C \nATOM 96 O PRO A 13 34.976 48.032 42.976 1.00 0.00 O \nATOM 97 CB PRO A 13 34.466 45.364 44.744 1.00 0.00 C \nATOM 98 CG PRO A 13 35.744 45.042 44.008 1.00 0.00 C \nATOM 99 CD PRO A 13 35.238 44.644 42.639 1.00 0.00 C \nATOM 100 N CYS A 14 33.363 48.458 44.469 1.00 0.00 N \nATOM 101 CA CYS A 14 33.711 49.872 44.492 1.00 0.00 C \nATOM 102 C CYS A 14 34.445 50.217 45.774 1.00 0.00 C \nATOM 103 O CYS A 14 34.518 51.385 46.164 1.00 0.00 O \nATOM 104 CB CYS A 14 32.470 50.748 44.365 1.00 0.00 C \nATOM 105 SG CYS A 14 32.885 52.457 43.973 1.00 0.00 S \nATOM 106 N ALA A 15 34.990 49.187 46.414 1.00 0.00 N \nATOM 107 CA ALA A 15 35.731 49.319 47.665 1.00 0.00 C \nATOM 108 C ALA A 15 35.921 47.928 48.260 1.00 0.00 C \nATOM 109 O ALA A 15 35.303 46.960 47.809 1.00 0.00 O \nATOM 110 CB ALA A 15 34.966 50.208 48.649 1.00 0.00 C \nATOM 111 N ALA A 16 36.770 47.829 49.277 1.00 0.00 N \nATOM 112 CA ALA A 16 37.039 46.548 49.921 1.00 0.00 C \nATOM 113 C ALA A 16 35.745 45.884 50.379 1.00 0.00 C \nATOM 114 O ALA A 16 34.830 46.548 50.872 1.00 0.00 O \nATOM 115 CB ALA A 16 37.979 46.744 51.108 1.00 0.00 C \nATOM 116 N GLU A 17 35.677 44.568 50.207 1.00 0.00 N \nATOM 117 CA GLU A 17 34.497 43.804 50.595 1.00 0.00 C \nATOM 118 C GLU A 17 34.858 42.718 51.599 1.00 0.00 C \nATOM 119 O GLU A 17 35.829 42.003 51.411 1.00 0.00 O \nATOM 120 CB GLU A 17 33.867 43.128 49.370 1.00 0.00 C \nATOM 121 CG GLU A 17 33.337 44.058 48.298 1.00 0.00 C \nATOM 122 CD GLU A 17 32.922 43.292 47.043 1.00 0.00 C \nATOM 123 OE1 GLU A 17 33.800 42.688 46.389 1.00 0.00 O \nATOM 124 OE2 GLU A 17 31.720 43.286 46.716 1.00 0.00 O \nATOM 125 N GLU A 18 34.081 42.599 52.666 1.00 0.00 N \nATOM 126 CA GLU A 18 34.309 41.552 53.652 1.00 0.00 C \nATOM 127 C GLU A 18 33.254 40.467 53.405 1.00 0.00 C \nATOM 128 O GLU A 18 32.092 40.786 53.188 1.00 0.00 O \nATOM 129 CB GLU A 18 34.123 42.089 55.071 1.00 0.00 C \nATOM 130 CG GLU A 18 35.138 43.120 55.528 1.00 0.00 C \nATOM 131 CD GLU A 18 34.861 43.593 56.945 1.00 0.00 C \nATOM 132 OE1 GLU A 18 33.861 44.316 57.158 1.00 0.00 O \nATOM 133 OE2 GLU A 18 35.637 43.228 57.849 1.00 0.00 O \nATOM 134 N SER A 19 33.649 39.198 53.428 1.00 0.00 N \nATOM 135 CA SER A 19 32.681 38.120 53.237 1.00 0.00 C \nATOM 136 C SER A 19 32.448 37.374 54.548 1.00 0.00 C \nATOM 137 O SER A 19 31.349 36.871 54.800 1.00 0.00 O \nATOM 138 CB SER A 19 33.160 37.125 52.180 1.00 0.00 C \nATOM 139 OG SER A 19 34.303 36.419 52.624 1.00 0.00 O \nATOM 140 N LYS A 20 33.480 37.291 55.385 1.00 0.00 N \nATOM 141 CA LYS A 20 33.339 36.587 56.652 1.00 0.00 C \nATOM 142 C LYS A 20 32.833 37.538 57.718 1.00 0.00 C \nATOM 143 O LYS A 20 33.151 38.721 57.702 1.00 0.00 O \nATOM 144 CB LYS A 20 34.675 35.977 57.098 1.00 0.00 C \nATOM 145 CG LYS A 20 35.166 34.829 56.220 1.00 0.00 C \nATOM 146 CD LYS A 20 35.703 35.336 54.877 1.00 0.00 C \nATOM 147 CE LYS A 20 36.005 34.194 53.890 1.00 0.00 C \nATOM 148 NZ LYS A 20 34.768 33.491 53.409 1.00 0.00 N \nATOM 149 N LEU A 21 32.041 37.015 58.643 1.00 0.00 N \nATOM 150 CA LEU A 21 31.493 37.824 59.723 1.00 0.00 C \nATOM 151 C LEU A 21 32.568 38.443 60.616 1.00 0.00 C \nATOM 152 O LEU A 21 33.398 37.735 61.196 1.00 0.00 O \nATOM 153 CB LEU A 21 30.571 36.975 60.601 1.00 0.00 C \nATOM 154 CG LEU A 21 29.990 37.699 61.820 1.00 0.00 C \nATOM 155 CD1 LEU A 21 28.959 38.727 61.348 1.00 0.00 C \nATOM 156 CD2 LEU A 21 29.353 36.703 62.778 1.00 0.00 C \nATOM 157 N PRO A 22 32.573 39.779 60.735 1.00 0.00 N \nATOM 158 CA PRO A 22 33.573 40.422 61.590 1.00 0.00 C \nATOM 159 C PRO A 22 33.191 40.135 63.044 1.00 0.00 C \nATOM 160 O PRO A 22 32.012 40.135 63.393 1.00 0.00 O \nATOM 161 CB PRO A 22 33.426 41.906 61.244 1.00 0.00 C \nATOM 162 CG PRO A 22 32.859 41.894 59.853 1.00 0.00 C \nATOM 163 CD PRO A 22 31.842 40.784 59.946 1.00 0.00 C \nATOM 164 N ILE A 23 34.183 39.889 63.885 1.00 0.00 N \nATOM 165 CA ILE A 23 33.942 39.586 65.283 1.00 0.00 C \nATOM 166 C ILE A 23 34.525 40.667 66.192 1.00 0.00 C \nATOM 167 O ILE A 23 35.661 41.097 65.990 1.00 0.00 O \nATOM 168 CB ILE A 23 34.619 38.237 65.663 1.00 0.00 C \nATOM 169 CG1 ILE A 23 34.179 37.138 64.695 1.00 0.00 C \nATOM 170 CG2 ILE A 23 34.272 37.846 67.097 1.00 0.00 C \nATOM 171 CD1 ILE A 23 32.677 36.944 64.628 1.00 0.00 C \nATOM 172 N ASN A 24 33.749 41.129 67.169 1.00 0.00 N \nATOM 173 CA ASN A 24 34.266 42.102 68.126 1.00 0.00 C \nATOM 174 C ASN A 24 33.946 41.566 69.526 1.00 0.00 C \nATOM 175 O ASN A 24 33.588 40.394 69.669 1.00 0.00 O \nATOM 176 CB ASN A 24 33.704 43.524 67.869 1.00 0.00 C \nATOM 177 CG ASN A 24 32.217 43.679 68.204 1.00 0.00 C \nATOM 178 OD1 ASN A 24 31.516 42.720 68.542 1.00 0.00 O \nATOM 179 ND2 ASN A 24 31.730 44.913 68.094 1.00 0.00 N \nATOM 180 N ALA A 25 34.094 42.382 70.559 1.00 0.00 N \nATOM 181 CA ALA A 25 33.835 41.904 71.910 1.00 0.00 C \nATOM 182 C ALA A 25 32.367 41.594 72.194 1.00 0.00 C \nATOM 183 O ALA A 25 32.053 40.940 73.183 1.00 0.00 O \nATOM 184 CB ALA A 25 34.346 42.913 72.920 1.00 0.00 C \nATOM 185 N LEU A 26 31.470 42.048 71.327 1.00 0.00 N \nATOM 186 CA LEU A 26 30.039 41.829 71.534 1.00 0.00 C \nATOM 187 C LEU A 26 29.457 40.652 70.764 1.00 0.00 C \nATOM 188 O LEU A 26 28.394 40.133 71.107 1.00 0.00 O \nATOM 189 CB LEU A 26 29.269 43.088 71.133 1.00 0.00 C \nATOM 190 CG LEU A 26 29.663 44.381 71.842 1.00 0.00 C \nATOM 191 CD1 LEU A 26 28.939 45.564 71.206 1.00 0.00 C \nATOM 192 CD2 LEU A 26 29.306 44.255 73.322 1.00 0.00 C \nATOM 193 N SER A 27 30.152 40.228 69.724 1.00 0.00 N \nATOM 194 CA SER A 27 29.649 39.157 68.882 1.00 0.00 C \nATOM 195 C SER A 27 29.162 37.913 69.597 1.00 0.00 C \nATOM 196 O SER A 27 28.041 37.456 69.352 1.00 0.00 O \nATOM 197 CB SER A 27 30.711 38.768 67.860 1.00 0.00 C \nATOM 198 OG SER A 27 31.119 39.906 67.139 1.00 0.00 O \nATOM 199 N ASN A 28 29.995 37.365 70.476 1.00 0.00 N \nATOM 200 CA ASN A 28 29.634 36.138 71.165 1.00 0.00 C \nATOM 201 C ASN A 28 28.393 36.261 72.020 1.00 0.00 C \nATOM 202 O ASN A 28 27.688 35.280 72.199 1.00 0.00 O \nATOM 203 CB ASN A 28 30.814 35.598 71.990 1.00 0.00 C \nATOM 204 CG ASN A 28 31.883 34.947 71.114 1.00 0.00 C \nATOM 205 OD1 ASN A 28 31.585 34.067 70.302 1.00 0.00 O \nATOM 206 ND2 ASN A 28 33.134 35.383 71.271 1.00 0.00 N \nATOM 207 N SER A 29 28.092 37.453 72.529 1.00 0.00 N \nATOM 208 CA SER A 29 26.884 37.584 73.339 1.00 0.00 C \nATOM 209 C SER A 29 25.633 37.299 72.496 1.00 0.00 C \nATOM 210 O SER A 29 24.622 36.838 73.026 1.00 0.00 O \nATOM 211 CB SER A 29 26.793 38.973 73.979 1.00 0.00 C \nATOM 212 OG SER A 29 26.852 39.988 73.004 1.00 0.00 O \nATOM 213 N LEU A 30 25.703 37.558 71.191 1.00 0.00 N \nATOM 214 CA LEU A 30 24.569 37.289 70.301 1.00 0.00 C \nATOM 215 C LEU A 30 24.556 35.845 69.756 1.00 0.00 C \nATOM 216 O LEU A 30 23.569 35.131 69.916 1.00 0.00 O \nATOM 217 CB LEU A 30 24.543 38.270 69.118 1.00 0.00 C \nATOM 218 CG LEU A 30 23.432 38.019 68.083 1.00 0.00 C \nATOM 219 CD1 LEU A 30 22.055 38.035 68.776 1.00 0.00 C \nATOM 220 CD2 LEU A 30 23.514 39.069 66.976 1.00 0.00 C \nATOM 221 N LEU A 31 25.638 35.416 69.110 1.00 0.00 N \nATOM 222 CA LEU A 31 25.689 34.056 68.569 1.00 0.00 C \nATOM 223 C LEU A 31 27.121 33.531 68.572 1.00 0.00 C \nATOM 224 O LEU A 31 28.077 34.315 68.532 1.00 0.00 O \nATOM 225 CB LEU A 31 25.119 34.018 67.140 1.00 0.00 C \nATOM 226 CG LEU A 31 25.858 34.679 65.962 1.00 0.00 C \nATOM 227 CD1 LEU A 31 27.064 33.858 65.547 1.00 0.00 C \nATOM 228 CD2 LEU A 31 24.904 34.773 64.770 1.00 0.00 C \nATOM 229 N ARG A 32 27.265 32.206 68.607 1.00 0.00 N \nATOM 230 CA ARG A 32 28.582 31.580 68.636 1.00 0.00 C \nATOM 231 C ARG A 32 29.076 30.943 67.337 1.00 0.00 C \nATOM 232 O ARG A 32 30.280 30.884 67.109 1.00 0.00 O \nATOM 233 CB ARG A 32 28.634 30.552 69.769 1.00 0.00 C \nATOM 234 CG ARG A 32 28.662 31.176 71.154 1.00 0.00 C \nATOM 235 CD ARG A 32 28.596 30.101 72.220 1.00 0.00 C \nATOM 236 NE ARG A 32 28.578 30.700 73.557 1.00 0.00 N \nATOM 237 CZ ARG A 32 29.622 31.291 74.146 1.00 0.00 C \nATOM 238 NH1 ARG A 32 30.802 31.362 73.522 1.00 0.00 N \nATOM 239 NH2 ARG A 32 29.467 31.838 75.359 1.00 0.00 N \nATOM 240 N HIS A 33 28.164 30.487 66.481 1.00 0.00 N \nATOM 241 CA HIS A 33 28.550 29.853 65.222 1.00 0.00 C \nATOM 242 C HIS A 33 28.765 30.904 64.134 1.00 0.00 C \nATOM 243 O HIS A 33 27.991 31.021 63.176 1.00 0.00 O \nATOM 244 CB HIS A 33 27.479 28.846 64.795 1.00 0.00 C \nATOM 245 CG HIS A 33 27.174 27.808 65.832 1.00 0.00 C \nATOM 246 ND1 HIS A 33 26.039 27.026 65.794 1.00 0.00 N \nATOM 247 CD2 HIS A 33 27.854 27.429 66.941 1.00 0.00 C \nATOM 248 CE1 HIS A 33 26.031 26.212 66.832 1.00 0.00 C \nATOM 249 NE2 HIS A 33 27.121 26.434 67.545 1.00 0.00 N \nATOM 250 N HIS A 34 29.846 31.654 64.295 1.00 0.00 N \nATOM 251 CA HIS A 34 30.233 32.734 63.392 1.00 0.00 C \nATOM 252 C HIS A 34 30.383 32.332 61.923 1.00 0.00 C \nATOM 253 O HIS A 34 30.072 33.121 61.027 1.00 0.00 O \nATOM 254 CB HIS A 34 31.545 33.341 63.890 1.00 0.00 C \nATOM 255 CG HIS A 34 31.510 33.732 65.334 1.00 0.00 C \nATOM 256 ND1 HIS A 34 32.647 33.831 66.105 1.00 0.00 N \nATOM 257 CD2 HIS A 34 30.474 34.035 66.153 1.00 0.00 C \nATOM 258 CE1 HIS A 34 32.313 34.174 67.338 1.00 0.00 C \nATOM 259 NE2 HIS A 34 31.001 34.304 67.392 1.00 0.00 N \nATOM 260 N ASN A 35 30.863 31.115 61.676 1.00 0.00 N \nATOM 261 CA ASN A 35 31.070 30.644 60.306 1.00 0.00 C \nATOM 262 C ASN A 35 29.790 30.360 59.536 1.00 0.00 C \nATOM 263 O ASN A 35 29.827 29.988 58.369 1.00 0.00 O \nATOM 264 CB ASN A 35 31.968 29.409 60.308 1.00 0.00 C \nATOM 265 CG ASN A 35 33.346 29.701 60.879 1.00 0.00 C \nATOM 266 OD1 ASN A 35 33.978 30.704 60.529 1.00 0.00 O \nATOM 267 ND2 ASN A 35 33.821 28.828 61.757 1.00 0.00 N \nATOM 268 N MET A 36 28.656 30.548 60.194 1.00 0.00 N \nATOM 269 CA MET A 36 27.366 30.331 59.562 1.00 0.00 C \nATOM 270 C MET A 36 26.974 31.604 58.809 1.00 0.00 C \nATOM 271 O MET A 36 26.179 31.573 57.870 1.00 0.00 O \nATOM 272 CB MET A 36 26.297 30.056 60.623 1.00 0.00 C \nATOM 273 CG MET A 36 26.490 28.802 61.448 1.00 0.00 C \nATOM 274 SD MET A 36 26.183 27.344 60.478 1.00 0.00 S \nATOM 275 CE MET A 36 24.396 27.451 60.266 1.00 0.00 C \nATOM 276 N VAL A 37 27.542 32.726 59.232 1.00 0.00 N \nATOM 277 CA VAL A 37 27.201 34.008 58.631 1.00 0.00 C \nATOM 278 C VAL A 37 28.212 34.509 57.612 1.00 0.00 C \nATOM 279 O VAL A 37 29.406 34.375 57.805 1.00 0.00 O \nATOM 280 CB VAL A 37 27.009 35.058 59.732 1.00 0.00 C \nATOM 281 CG1 VAL A 37 26.601 36.397 59.127 1.00 0.00 C \nATOM 282 CG2 VAL A 37 25.946 34.563 60.714 1.00 0.00 C \nATOM 283 N TYR A 38 27.714 35.088 56.523 1.00 0.00 N \nATOM 284 CA TYR A 38 28.576 35.611 55.470 1.00 0.00 C \nATOM 285 C TYR A 38 27.879 36.742 54.728 1.00 0.00 C \nATOM 286 O TYR A 38 26.653 36.897 54.802 1.00 0.00 O \nATOM 287 CB TYR A 38 28.921 34.509 54.462 1.00 0.00 C \nATOM 288 CG TYR A 38 27.723 34.058 53.650 1.00 0.00 C \nATOM 289 CD1 TYR A 38 26.708 33.286 54.226 1.00 0.00 C \nATOM 290 CD2 TYR A 38 27.579 34.448 52.316 1.00 0.00 C \nATOM 291 CE1 TYR A 38 25.582 32.918 53.491 1.00 0.00 C \nATOM 292 CE2 TYR A 38 26.456 34.090 51.573 1.00 0.00 C \nATOM 293 CZ TYR A 38 25.469 33.328 52.163 1.00 0.00 C \nATOM 294 OH TYR A 38 24.374 32.965 51.421 1.00 0.00 O \nATOM 295 N ALA A 39 28.678 37.544 54.030 1.00 0.00 N \nATOM 296 CA ALA A 39 28.151 38.629 53.217 1.00 0.00 C \nATOM 297 C ALA A 39 28.515 38.261 51.784 1.00 0.00 C \nATOM 298 O ALA A 39 29.570 37.671 51.548 1.00 0.00 O \nATOM 299 CB ALA A 39 28.795 39.939 53.590 1.00 0.00 C \nATOM 300 N THR A 40 27.641 38.573 50.831 1.00 0.00 N \nATOM 301 CA THR A 40 27.951 38.285 49.439 1.00 0.00 C \nATOM 302 C THR A 40 28.877 39.400 48.959 1.00 0.00 C \nATOM 303 O THR A 40 28.820 40.518 49.477 1.00 0.00 O \nATOM 304 CB THR A 40 26.682 38.269 48.541 1.00 0.00 C \nATOM 305 OG1 THR A 40 25.978 39.514 48.659 1.00 0.00 O \nATOM 306 CG2 THR A 40 25.755 37.119 48.942 1.00 0.00 C \nATOM 307 N THR A 41 29.745 39.090 47.998 1.00 0.00 N \nATOM 308 CA THR A 41 30.650 40.092 47.425 1.00 0.00 C \nATOM 309 C THR A 41 30.731 39.881 45.916 1.00 0.00 C \nATOM 310 O THR A 41 30.230 38.881 45.394 1.00 0.00 O \nATOM 311 CB THR A 41 32.087 39.983 47.970 1.00 0.00 C \nATOM 312 OG1 THR A 41 32.680 38.762 47.511 1.00 0.00 O \nATOM 313 CG2 THR A 41 32.089 40.004 49.474 1.00 0.00 C \nATOM 314 N SER A 42 31.384 40.813 45.227 1.00 0.00 N \nATOM 315 CA SER A 42 31.527 40.721 43.778 1.00 0.00 C \nATOM 316 C SER A 42 32.219 39.440 43.321 1.00 0.00 C \nATOM 317 O SER A 42 32.096 39.049 42.160 1.00 0.00 O \nATOM 318 CB SER A 42 32.278 41.938 43.229 1.00 0.00 C \nATOM 319 OG SER A 42 33.540 42.102 43.854 1.00 0.00 O \nATOM 320 N ARG A 43 32.939 38.788 44.227 1.00 0.00 N \nATOM 321 CA ARG A 43 33.617 37.534 43.873 1.00 0.00 C \nATOM 322 C ARG A 43 32.650 36.495 43.316 1.00 0.00 C \nATOM 323 O ARG A 43 33.059 35.622 42.558 1.00 0.00 O \nATOM 324 CB ARG A 43 34.269 36.873 45.082 1.00 0.00 C \nATOM 325 CG ARG A 43 35.536 37.562 45.564 1.00 0.00 C \nATOM 326 CD ARG A 43 36.527 36.574 46.189 1.00 0.00 C \nATOM 327 NE ARG A 43 36.209 36.199 47.568 1.00 0.00 N \nATOM 328 CZ ARG A 43 36.850 35.246 48.242 1.00 0.00 C \nATOM 329 NH1 ARG A 43 36.510 34.961 49.495 1.00 0.00 N \nATOM 330 NH2 ARG A 43 37.829 34.567 47.653 1.00 0.00 N \nATOM 331 N SER A 44 31.378 36.577 43.704 1.00 0.00 N \nATOM 332 CA SER A 44 30.375 35.618 43.233 1.00 0.00 C \nATOM 333 C SER A 44 29.480 36.194 42.140 1.00 0.00 C \nATOM 334 O SER A 44 28.525 35.538 41.709 1.00 0.00 O \nATOM 335 CB SER A 44 29.513 35.145 44.405 1.00 0.00 C \nATOM 336 OG SER A 44 28.819 36.220 44.998 1.00 0.00 O \nATOM 337 N ALA A 45 29.798 37.404 41.679 1.00 0.00 N \nATOM 338 CA ALA A 45 29.009 38.057 40.628 1.00 0.00 C \nATOM 339 C ALA A 45 28.884 37.223 39.353 1.00 0.00 C \nATOM 340 O ALA A 45 27.852 37.252 38.686 1.00 0.00 O \nATOM 341 CB ALA A 45 29.606 39.423 40.289 1.00 0.00 C \nATOM 342 N GLY A 46 29.945 36.496 39.014 1.00 0.00 N \nATOM 343 CA GLY A 46 29.928 35.665 37.830 1.00 0.00 C \nATOM 344 C GLY A 46 28.845 34.608 37.907 1.00 0.00 C \nATOM 345 O GLY A 46 28.137 34.344 36.927 1.00 0.00 O \nATOM 346 N LEU A 47 28.717 33.998 39.081 1.00 0.00 N \nATOM 347 CA LEU A 47 27.717 32.961 39.303 1.00 0.00 C \nATOM 348 C LEU A 47 26.308 33.524 39.130 1.00 0.00 C \nATOM 349 O LEU A 47 25.410 32.844 38.615 1.00 0.00 O \nATOM 350 CB LEU A 47 27.874 32.378 40.708 1.00 0.00 C \nATOM 351 CG LEU A 47 29.172 31.598 40.957 1.00 0.00 C \nATOM 352 CD1 LEU A 47 29.246 31.151 42.420 1.00 0.00 C \nATOM 353 CD2 LEU A 47 29.214 30.381 40.033 1.00 0.00 C \nATOM 354 N ARG A 48 26.116 34.766 39.569 1.00 0.00 N \nATOM 355 CA ARG A 48 24.811 35.408 39.455 1.00 0.00 C \nATOM 356 C ARG A 48 24.516 35.685 37.990 1.00 0.00 C \nATOM 357 O ARG A 48 23.416 35.411 37.514 1.00 0.00 O \nATOM 358 CB ARG A 48 24.787 36.716 40.251 1.00 0.00 C \nATOM 359 CG ARG A 48 23.522 37.555 40.062 1.00 0.00 C \nATOM 360 CD ARG A 48 22.277 36.800 40.482 1.00 0.00 C \nATOM 361 NE ARG A 48 22.310 36.411 41.885 1.00 0.00 N \nATOM 362 CZ ARG A 48 21.360 35.687 42.474 1.00 0.00 C \nATOM 363 NH1 ARG A 48 20.305 35.279 41.771 1.00 0.00 N \nATOM 364 NH2 ARG A 48 21.467 35.364 43.761 1.00 0.00 N \nATOM 365 N GLN A 49 25.504 36.219 37.276 1.00 0.00 N \nATOM 366 CA GLN A 49 25.338 36.526 35.857 1.00 0.00 C \nATOM 367 C GLN A 49 24.852 35.296 35.115 1.00 0.00 C \nATOM 368 O GLN A 49 23.965 35.376 34.268 1.00 0.00 O \nATOM 369 CB GLN A 49 26.655 37.011 35.250 1.00 0.00 C \nATOM 370 CG GLN A 49 27.165 38.296 35.879 1.00 0.00 C \nATOM 371 CD GLN A 49 28.546 38.677 35.382 1.00 0.00 C \nATOM 372 OE1 GLN A 49 28.699 39.247 34.301 1.00 0.00 O \nATOM 373 NE2 GLN A 49 29.563 38.347 36.165 1.00 0.00 N \nATOM 374 N LYS A 50 25.434 34.152 35.445 1.00 0.00 N \nATOM 375 CA LYS A 50 25.042 32.907 34.809 1.00 0.00 C \nATOM 376 C LYS A 50 23.590 32.567 35.106 1.00 0.00 C \nATOM 377 O LYS A 50 22.861 32.135 34.221 1.00 0.00 O \nATOM 378 CB LYS A 50 25.958 31.770 35.269 1.00 0.00 C \nATOM 379 CG LYS A 50 27.304 31.793 34.564 1.00 0.00 C \nATOM 380 CD LYS A 50 28.246 30.721 35.077 1.00 0.00 C \nATOM 381 CE LYS A 50 29.504 30.654 34.221 1.00 0.00 C \nATOM 382 NZ LYS A 50 30.148 31.993 34.063 1.00 0.00 N \nATOM 383 N LYS A 51 23.162 32.768 36.345 1.00 0.00 N \nATOM 384 CA LYS A 51 21.778 32.464 36.704 1.00 0.00 C \nATOM 385 C LYS A 51 20.774 33.403 36.035 1.00 0.00 C \nATOM 386 O LYS A 51 19.739 32.945 35.562 1.00 0.00 O \nATOM 387 CB LYS A 51 21.565 32.545 38.221 1.00 0.00 C \nATOM 388 CG LYS A 51 22.409 31.586 39.046 1.00 0.00 C \nATOM 389 CD LYS A 51 22.182 31.804 40.542 1.00 0.00 C \nATOM 390 CE LYS A 51 23.269 31.127 41.389 1.00 0.00 C \nATOM 391 NZ LYS A 51 23.156 29.642 41.486 1.00 0.00 N \nATOM 392 N VAL A 52 21.081 34.705 35.997 1.00 0.00 N \nATOM 393 CA VAL A 52 20.159 35.702 35.435 1.00 0.00 C \nATOM 394 C VAL A 52 20.151 35.881 33.922 1.00 0.00 C \nATOM 395 O VAL A 52 19.344 36.645 33.400 1.00 0.00 O \nATOM 396 CB VAL A 52 20.393 37.108 36.064 1.00 0.00 C \nATOM 397 CG1 VAL A 52 20.196 37.038 37.586 1.00 0.00 C \nATOM 398 CG2 VAL A 52 21.796 37.618 35.714 1.00 0.00 C \nATOM 399 N THR A 53 21.034 35.170 33.227 1.00 0.00 N \nATOM 400 CA THR A 53 21.134 35.283 31.776 1.00 0.00 C \nATOM 401 C THR A 53 20.429 34.147 31.032 1.00 0.00 C \nATOM 402 O THR A 53 20.871 33.003 31.078 1.00 0.00 O \nATOM 403 CB THR A 53 22.616 35.315 31.345 1.00 0.00 C \nATOM 404 OG1 THR A 53 23.305 36.321 32.097 1.00 0.00 O \nATOM 405 CG2 THR A 53 22.736 35.632 29.870 1.00 0.00 C \nATOM 406 N PHE A 54 19.328 34.475 30.359 1.00 0.00 N \nATOM 407 CA PHE A 54 18.555 33.505 29.579 1.00 0.00 C \nATOM 408 C PHE A 54 17.618 34.183 28.580 1.00 0.00 C \nATOM 409 O PHE A 54 17.361 35.393 28.658 1.00 0.00 O \nATOM 410 CB PHE A 54 17.756 32.565 30.498 1.00 0.00 C \nATOM 411 CG PHE A 54 16.970 33.268 31.574 1.00 0.00 C \nATOM 412 CD1 PHE A 54 15.760 33.892 31.281 1.00 0.00 C \nATOM 413 CD2 PHE A 54 17.448 33.306 32.883 1.00 0.00 C \nATOM 414 CE1 PHE A 54 15.030 34.543 32.276 1.00 0.00 C \nATOM 415 CE2 PHE A 54 16.726 33.961 33.897 1.00 0.00 C \nATOM 416 CZ PHE A 54 15.510 34.581 33.590 1.00 0.00 C \nATOM 417 N ASP A 55 17.120 33.402 27.629 1.00 0.00 N \nATOM 418 CA ASP A 55 16.209 33.931 26.630 1.00 0.00 C \nATOM 419 C ASP A 55 14.769 33.964 27.171 1.00 0.00 C \nATOM 420 O ASP A 55 14.358 33.094 27.936 1.00 0.00 O \nATOM 421 CB ASP A 55 16.288 33.068 25.371 1.00 0.00 C \nATOM 422 CG ASP A 55 16.009 33.854 24.102 1.00 0.00 C \nATOM 423 OD1 ASP A 55 16.205 33.285 23.012 1.00 0.00 O \nATOM 424 OD2 ASP A 55 15.594 35.035 24.190 1.00 0.00 O \nATOM 425 N ARG A 56 14.014 34.987 26.796 1.00 0.00 N \nATOM 426 CA ARG A 56 12.631 35.077 27.239 1.00 0.00 C \nATOM 427 C ARG A 56 11.712 34.927 26.037 1.00 0.00 C \nATOM 428 O ARG A 56 11.988 35.436 24.949 1.00 0.00 O \nATOM 429 CB ARG A 56 12.340 36.417 27.934 1.00 0.00 C \nATOM 430 CG ARG A 56 12.997 36.609 29.343 1.00 0.00 C \nATOM 431 CD ARG A 56 14.487 36.866 29.235 1.00 0.00 C \nATOM 432 NE ARG A 56 14.737 37.994 28.347 1.00 0.00 N \nATOM 433 CZ ARG A 56 14.470 39.269 28.637 1.00 0.00 C \nATOM 434 NH1 ARG A 56 13.950 39.620 29.820 1.00 0.00 N \nATOM 435 NH2 ARG A 56 14.675 40.194 27.713 1.00 0.00 N \nATOM 436 N LEU A 57 10.623 34.204 26.234 1.00 0.00 N \nATOM 437 CA LEU A 57 9.638 34.016 25.182 1.00 0.00 C \nATOM 438 C LEU A 57 8.300 34.342 25.833 1.00 0.00 C \nATOM 439 O LEU A 57 8.130 34.132 27.040 1.00 0.00 O \nATOM 440 CB LEU A 57 9.674 32.565 24.697 1.00 0.00 C \nATOM 441 CG LEU A 57 9.865 32.317 23.199 1.00 0.00 C \nATOM 442 CD1 LEU A 57 10.906 33.261 22.608 1.00 0.00 C \nATOM 443 CD2 LEU A 57 10.278 30.860 22.994 1.00 0.00 C \nATOM 444 N GLN A 58 7.375 34.893 25.056 1.00 0.00 N \nATOM 445 CA GLN A 58 6.053 35.223 25.567 1.00 0.00 C \nATOM 446 C GLN A 58 4.938 34.923 24.578 1.00 0.00 C \nATOM 447 O GLN A 58 5.000 35.288 23.407 1.00 0.00 O \nATOM 448 CB GLN A 58 5.960 36.700 25.968 1.00 0.00 C \nATOM 449 CG GLN A 58 6.566 37.036 27.309 1.00 0.00 C \nATOM 450 CD GLN A 58 6.329 38.487 27.680 1.00 0.00 C \nATOM 451 OE1 GLN A 58 6.722 39.382 26.946 1.00 0.00 O \nATOM 452 NE2 GLN A 58 5.684 38.724 28.825 1.00 0.00 N \nATOM 453 N VAL A 59 3.913 34.261 25.088 1.00 0.00 N \nATOM 454 CA VAL A 59 2.732 33.928 24.321 1.00 0.00 C \nATOM 455 C VAL A 59 1.597 34.588 25.107 1.00 0.00 C \nATOM 456 O VAL A 59 1.221 34.126 26.196 1.00 0.00 O \nATOM 457 CB VAL A 59 2.541 32.404 24.250 1.00 0.00 C \nATOM 458 CG1 VAL A 59 1.217 32.095 23.626 1.00 0.00 C \nATOM 459 CG2 VAL A 59 3.667 31.775 23.428 1.00 0.00 C \nATOM 460 N LEU A 60 1.071 35.681 24.553 1.00 0.00 N \nATOM 461 CA LEU A 60 0.019 36.458 25.207 1.00 0.00 C \nATOM 462 C LEU A 60 -1.381 36.186 24.658 1.00 0.00 C \nATOM 463 O LEU A 60 -1.676 36.469 23.494 1.00 0.00 O \nATOM 464 CB LEU A 60 0.354 37.948 25.101 1.00 0.00 C \nATOM 465 CG LEU A 60 1.745 38.367 25.606 1.00 0.00 C \nATOM 466 CD1 LEU A 60 1.918 39.876 25.429 1.00 0.00 C \nATOM 467 CD2 LEU A 60 1.919 37.976 27.070 1.00 0.00 C \nATOM 468 N ASP A 61 -2.235 35.657 25.535 1.00 0.00 N \nATOM 469 CA ASP A 61 -3.609 35.283 25.205 1.00 0.00 C \nATOM 470 C ASP A 61 -4.642 36.348 25.571 1.00 0.00 C \nATOM 471 O ASP A 61 -4.301 37.441 26.037 1.00 0.00 O \nATOM 472 CB ASP A 61 -3.947 33.961 25.895 1.00 0.00 C \nATOM 473 CG ASP A 61 -4.051 34.100 27.402 1.00 0.00 C \nATOM 474 OD1 ASP A 61 -3.549 35.103 27.956 1.00 0.00 O \nATOM 475 OD2 ASP A 61 -4.640 33.208 28.036 1.00 0.00 O \nATOM 476 N ASP A 62 -5.915 36.032 25.364 1.00 0.00 N \nATOM 477 CA ASP A 62 -6.956 37.013 25.643 1.00 0.00 C \nATOM 478 C ASP A 62 -7.148 37.348 27.130 1.00 0.00 C \nATOM 479 O ASP A 62 -7.532 38.474 27.466 1.00 0.00 O \nATOM 480 CB ASP A 62 -8.271 36.570 24.980 1.00 0.00 C \nATOM 481 CG ASP A 62 -8.165 36.555 23.449 1.00 0.00 C \nATOM 482 OD1 ASP A 62 -7.920 37.624 22.853 1.00 0.00 O \nATOM 483 OD2 ASP A 62 -8.301 35.476 22.837 1.00 0.00 O \nATOM 484 N HIS A 63 -6.881 36.394 28.019 1.00 0.00 N \nATOM 485 CA HIS A 63 -7.007 36.682 29.454 1.00 0.00 C \nATOM 486 C HIS A 63 -5.986 37.764 29.815 1.00 0.00 C \nATOM 487 O HIS A 63 -6.264 38.671 30.615 1.00 0.00 O \nATOM 488 CB HIS A 63 -6.744 35.435 30.304 1.00 0.00 C \nATOM 489 CG HIS A 63 -7.843 34.416 30.250 1.00 0.00 C \nATOM 490 ND1 HIS A 63 -9.171 34.741 30.441 1.00 0.00 N \nATOM 491 CD2 HIS A 63 -7.807 33.074 30.075 1.00 0.00 C \nATOM 492 CE1 HIS A 63 -9.904 33.642 30.387 1.00 0.00 C \nATOM 493 NE2 HIS A 63 -9.099 32.616 30.167 1.00 0.00 N \nATOM 494 N TYR A 64 -4.807 37.672 29.205 1.00 0.00 N \nATOM 495 CA TYR A 64 -3.757 38.660 29.447 1.00 0.00 C \nATOM 496 C TYR A 64 -4.253 40.046 29.011 1.00 0.00 C \nATOM 497 O TYR A 64 -4.162 41.005 29.769 1.00 0.00 O \nATOM 498 CB TYR A 64 -2.490 38.302 28.668 1.00 0.00 C \nATOM 499 CG TYR A 64 -1.363 39.321 28.803 1.00 0.00 C \nATOM 500 CD1 TYR A 64 -0.439 39.249 29.856 1.00 0.00 C \nATOM 501 CD2 TYR A 64 -1.227 40.357 27.877 1.00 0.00 C \nATOM 502 CE1 TYR A 64 0.592 40.184 29.967 1.00 0.00 C \nATOM 503 CE2 TYR A 64 -0.207 41.295 27.980 1.00 0.00 C \nATOM 504 CZ TYR A 64 0.697 41.201 29.022 1.00 0.00 C \nATOM 505 OH TYR A 64 1.717 42.117 29.092 1.00 0.00 O \nATOM 506 N ARG A 65 -4.786 40.152 27.796 1.00 0.00 N \nATOM 507 CA ARG A 65 -5.272 41.449 27.319 1.00 0.00 C \nATOM 508 C ARG A 65 -6.530 41.949 28.041 1.00 0.00 C \nATOM 509 O ARG A 65 -6.692 43.158 28.224 1.00 0.00 O \nATOM 510 CB ARG A 65 -5.474 41.427 25.793 1.00 0.00 C \nATOM 511 CG ARG A 65 -4.148 41.427 25.000 1.00 0.00 C \nATOM 512 CD ARG A 65 -4.374 41.373 23.485 1.00 0.00 C \nATOM 513 NE ARG A 65 -4.963 40.098 23.089 1.00 0.00 N \nATOM 514 CZ ARG A 65 -4.277 38.965 22.967 1.00 0.00 C \nATOM 515 NH1 ARG A 65 -2.973 38.946 23.182 1.00 0.00 N \nATOM 516 NH2 ARG A 65 -4.912 37.832 22.713 1.00 0.00 N \nATOM 517 N ASP A 66 -7.407 41.036 28.465 1.00 0.00 N \nATOM 518 CA ASP A 66 -8.613 41.420 29.198 1.00 0.00 C \nATOM 519 C ASP A 66 -8.212 42.085 30.526 1.00 0.00 C \nATOM 520 O ASP A 66 -8.741 43.137 30.905 1.00 0.00 O \nATOM 521 CB ASP A 66 -9.501 40.200 29.526 1.00 0.00 C \nATOM 522 CG ASP A 66 -10.254 39.648 28.313 1.00 0.00 C \nATOM 523 OD1 ASP A 66 -10.344 40.329 27.271 1.00 0.00 O \nATOM 524 OD2 ASP A 66 -10.778 38.517 28.416 1.00 0.00 O \nATOM 525 N VAL A 67 -7.281 41.462 31.240 1.00 0.00 N \nATOM 526 CA VAL A 67 -6.846 42.007 32.521 1.00 0.00 C \nATOM 527 C VAL A 67 -6.146 43.342 32.286 1.00 0.00 C \nATOM 528 O VAL A 67 -6.376 44.317 33.012 1.00 0.00 O \nATOM 529 CB VAL A 67 -5.893 41.016 33.267 1.00 0.00 C \nATOM 530 CG1 VAL A 67 -5.251 41.715 34.464 1.00 0.00 C \nATOM 531 CG2 VAL A 67 -6.684 39.753 33.746 1.00 0.00 C \nATOM 532 N LEU A 68 -5.316 43.403 31.252 1.00 0.00 N \nATOM 533 CA LEU A 68 -4.610 44.649 30.975 1.00 0.00 C \nATOM 534 C LEU A 68 -5.606 45.779 30.728 1.00 0.00 C \nATOM 535 O LEU A 68 -5.451 46.894 31.249 1.00 0.00 O \nATOM 536 CB LEU A 68 -3.695 44.478 29.758 1.00 0.00 C \nATOM 537 CG LEU A 68 -2.917 45.710 29.292 1.00 0.00 C \nATOM 538 CD1 LEU A 68 -2.181 46.326 30.479 1.00 0.00 C \nATOM 539 CD2 LEU A 68 -1.933 45.306 28.166 1.00 0.00 C \nATOM 540 N LYS A 69 -6.639 45.496 29.942 1.00 0.00 N \nATOM 541 CA LYS A 69 -7.639 46.520 29.647 1.00 0.00 C \nATOM 542 C LYS A 69 -8.281 47.029 30.945 1.00 0.00 C \nATOM 543 O LYS A 69 -8.503 48.224 31.100 1.00 0.00 O \nATOM 544 CB LYS A 69 -8.709 45.976 28.688 1.00 0.00 C \nATOM 545 CG LYS A 69 -9.781 46.992 28.302 1.00 0.00 C \nATOM 546 CD LYS A 69 -10.542 46.551 27.046 1.00 0.00 C \nATOM 547 CE LYS A 69 -11.387 47.685 26.491 1.00 0.00 C \nATOM 548 NZ LYS A 69 -12.202 47.275 25.310 1.00 0.00 N \nATOM 549 N GLU A 70 -8.565 46.120 31.874 1.00 0.00 N \nATOM 550 CA GLU A 70 -9.164 46.489 33.169 1.00 0.00 C \nATOM 551 C GLU A 70 -8.218 47.374 33.963 1.00 0.00 C \nATOM 552 O GLU A 70 -8.634 48.366 34.559 1.00 0.00 O \nATOM 553 CB GLU A 70 -9.484 45.239 33.995 1.00 0.00 C \nATOM 554 CG GLU A 70 -10.682 44.439 33.485 1.00 0.00 C \nATOM 555 CD GLU A 70 -10.774 43.044 34.100 1.00 0.00 C \nATOM 556 OE1 GLU A 70 -10.562 42.898 35.324 1.00 0.00 O \nATOM 557 OE2 GLU A 70 -11.068 42.089 33.353 1.00 0.00 O \nATOM 558 N MET A 71 -6.943 47.004 33.980 1.00 0.00 N \nATOM 559 CA MET A 71 -5.944 47.786 34.697 1.00 0.00 C \nATOM 560 C MET A 71 -5.846 49.206 34.135 1.00 0.00 C \nATOM 561 O MET A 71 -5.763 50.173 34.897 1.00 0.00 O \nATOM 562 CB MET A 71 -4.588 47.089 34.619 1.00 0.00 C \nATOM 563 CG MET A 71 -4.522 45.867 35.521 1.00 0.00 C \nATOM 564 SD MET A 71 -3.080 44.867 35.252 1.00 0.00 S \nATOM 565 CE MET A 71 -1.805 45.804 36.133 1.00 0.00 C \nATOM 566 N LYS A 72 -5.854 49.325 32.805 1.00 0.00 N \nATOM 567 CA LYS A 72 -5.785 50.629 32.151 1.00 0.00 C \nATOM 568 C LYS A 72 -7.019 51.488 32.460 1.00 0.00 C \nATOM 569 O LYS A 72 -6.913 52.707 32.626 1.00 0.00 O \nATOM 570 CB LYS A 72 -5.656 50.451 30.639 1.00 0.00 C \nATOM 571 CG LYS A 72 -4.289 49.981 30.164 1.00 0.00 C \nATOM 572 CD LYS A 72 -4.344 49.815 28.655 1.00 0.00 C \nATOM 573 CE LYS A 72 -2.982 49.809 28.016 1.00 0.00 C \nATOM 574 NZ LYS A 72 -3.126 49.727 26.532 1.00 0.00 N \nATOM 575 N ALA A 73 -8.192 50.866 32.514 1.00 0.00 N \nATOM 576 CA ALA A 73 -9.400 51.630 32.838 1.00 0.00 C \nATOM 577 C ALA A 73 -9.231 52.233 34.239 1.00 0.00 C \nATOM 578 O ALA A 73 -9.566 53.391 34.473 1.00 0.00 O \nATOM 579 CB ALA A 73 -10.632 50.730 32.794 1.00 0.00 C \nATOM 580 N LYS A 74 -8.697 51.455 35.173 1.00 0.00 N \nATOM 581 CA LYS A 74 -8.497 51.991 36.511 1.00 0.00 C \nATOM 582 C LYS A 74 -7.410 53.059 36.485 1.00 0.00 C \nATOM 583 O LYS A 74 -7.551 54.108 37.119 1.00 0.00 O \nATOM 584 CB LYS A 74 -8.139 50.878 37.498 1.00 0.00 C \nATOM 585 CG LYS A 74 -9.308 49.926 37.782 1.00 0.00 C \nATOM 586 CD LYS A 74 -8.850 48.700 38.558 1.00 0.00 C \nATOM 587 CE LYS A 74 -10.019 47.807 38.969 1.00 0.00 C \nATOM 588 NZ LYS A 74 -10.653 47.108 37.803 1.00 0.00 N \nATOM 589 N ALA A 75 -6.342 52.814 35.730 1.00 0.00 N \nATOM 590 CA ALA A 75 -5.241 53.776 35.631 1.00 0.00 C \nATOM 591 C ALA A 75 -5.707 55.122 35.072 1.00 0.00 C \nATOM 592 O ALA A 75 -5.155 56.164 35.416 1.00 0.00 O \nATOM 593 CB ALA A 75 -4.108 53.213 34.742 1.00 0.00 C \nATOM 594 N SER A 76 -6.707 55.096 34.198 1.00 0.00 N \nATOM 595 CA SER A 76 -7.211 56.324 33.604 1.00 0.00 C \nATOM 596 C SER A 76 -7.885 57.249 34.606 1.00 0.00 C \nATOM 597 O SER A 76 -8.124 58.411 34.290 1.00 0.00 O \nATOM 598 CB SER A 76 -8.211 56.010 32.488 1.00 0.00 C \nATOM 599 OG SER A 76 -7.597 55.211 31.495 1.00 0.00 O \nATOM 600 N THR A 77 -8.215 56.741 35.792 1.00 0.00 N \nATOM 601 CA THR A 77 -8.861 57.580 36.805 1.00 0.00 C \nATOM 602 C THR A 77 -7.818 58.331 37.628 1.00 0.00 C \nATOM 603 O THR A 77 -8.140 59.264 38.369 1.00 0.00 O \nATOM 604 CB THR A 77 -9.734 56.742 37.758 1.00 0.00 C \nATOM 605 OG1 THR A 77 -8.900 55.945 38.614 1.00 0.00 O \nATOM 606 CG2 THR A 77 -10.640 55.838 36.954 1.00 0.00 C \nATOM 607 N VAL A 78 -6.560 57.930 37.469 1.00 0.00 N \nATOM 608 CA VAL A 78 -5.452 58.538 38.199 1.00 0.00 C \nATOM 609 C VAL A 78 -4.932 59.849 37.615 1.00 0.00 C \nATOM 610 O VAL A 78 -4.766 59.983 36.400 1.00 0.00 O \nATOM 611 CB VAL A 78 -4.250 57.559 38.284 1.00 0.00 C \nATOM 612 CG1 VAL A 78 -3.033 58.266 38.880 1.00 0.00 C \nATOM 613 CG2 VAL A 78 -4.624 56.351 39.130 1.00 0.00 C \nATOM 614 N LYS A 79 -4.687 60.820 38.489 1.00 0.00 N \nATOM 615 CA LYS A 79 -4.118 62.100 38.078 1.00 0.00 C \nATOM 616 C LYS A 79 -2.846 62.233 38.904 1.00 0.00 C \nATOM 617 O LYS A 79 -2.886 62.174 40.134 1.00 0.00 O \nATOM 618 CB LYS A 79 -5.068 63.265 38.371 1.00 0.00 C \nATOM 619 CG LYS A 79 -4.471 64.614 37.994 1.00 0.00 C \nATOM 620 CD LYS A 79 -5.492 65.743 38.042 1.00 0.00 C \nATOM 621 CE LYS A 79 -4.816 67.079 37.746 1.00 0.00 C \nATOM 622 NZ LYS A 79 -5.773 68.212 37.748 1.00 0.00 N \nATOM 623 N ALA A 80 -1.719 62.381 38.220 1.00 0.00 N \nATOM 624 CA ALA A 80 -0.419 62.482 38.875 1.00 0.00 C \nATOM 625 C ALA A 80 0.243 63.810 38.586 1.00 0.00 C \nATOM 626 O ALA A 80 0.106 64.358 37.498 1.00 0.00 O \nATOM 627 CB ALA A 80 0.496 61.338 38.407 1.00 0.00 C \nATOM 628 N LYS A 81 0.979 64.317 39.562 1.00 0.00 N \nATOM 629 CA LYS A 81 1.651 65.580 39.382 1.00 0.00 C \nATOM 630 C LYS A 81 3.146 65.427 39.182 1.00 0.00 C \nATOM 631 O LYS A 81 3.785 64.499 39.689 1.00 0.00 O \nATOM 632 CB LYS A 81 1.389 66.509 40.575 1.00 0.00 C \nATOM 633 CG LYS A 81 1.991 66.061 41.907 1.00 0.00 C \nATOM 634 CD LYS A 81 2.147 67.269 42.851 1.00 0.00 C \nATOM 635 CE LYS A 81 2.608 66.887 44.258 1.00 0.00 C \nATOM 636 NZ LYS A 81 1.526 66.265 45.090 1.00 0.00 N \nATOM 637 N LEU A 82 3.688 66.372 38.434 1.00 0.00 N \nATOM 638 CA LEU A 82 5.100 66.436 38.139 1.00 0.00 C \nATOM 639 C LEU A 82 5.752 67.077 39.360 1.00 0.00 C \nATOM 640 O LEU A 82 5.335 68.143 39.799 1.00 0.00 O \nATOM 641 CB LEU A 82 5.289 67.315 36.908 1.00 0.00 C \nATOM 642 CG LEU A 82 6.583 67.376 36.112 1.00 0.00 C \nATOM 643 CD1 LEU A 82 6.966 65.993 35.615 1.00 0.00 C \nATOM 644 CD2 LEU A 82 6.373 68.332 34.940 1.00 0.00 C \nATOM 645 N LEU A 83 6.754 66.421 39.927 1.00 0.00 N \nATOM 646 CA LEU A 83 7.439 66.967 41.088 1.00 0.00 C \nATOM 647 C LEU A 83 8.415 68.053 40.638 1.00 0.00 C \nATOM 648 O LEU A 83 8.919 68.022 39.513 1.00 0.00 O \nATOM 649 CB LEU A 83 8.211 65.860 41.816 1.00 0.00 C \nATOM 650 CG LEU A 83 7.838 65.479 43.251 1.00 0.00 C \nATOM 651 CD1 LEU A 83 6.437 64.863 43.302 1.00 0.00 C \nATOM 652 CD2 LEU A 83 8.871 64.492 43.780 1.00 0.00 C \nATOM 653 N SER A 84 8.676 69.020 41.514 1.00 0.00 N \nATOM 654 CA SER A 84 9.619 70.089 41.189 1.00 0.00 C \nATOM 655 C SER A 84 11.017 69.557 41.466 1.00 0.00 C \nATOM 656 O SER A 84 11.176 68.570 42.182 1.00 0.00 O \nATOM 657 CB SER A 84 9.370 71.319 42.071 1.00 0.00 C \nATOM 658 OG SER A 84 9.661 71.034 43.433 1.00 0.00 O \nATOM 659 N VAL A 85 12.030 70.205 40.907 1.00 0.00 N \nATOM 660 CA VAL A 85 13.400 69.773 41.143 1.00 0.00 C \nATOM 661 C VAL A 85 13.680 69.689 42.639 1.00 0.00 C \nATOM 662 O VAL A 85 14.179 68.675 43.133 1.00 0.00 O \nATOM 663 CB VAL A 85 14.412 70.741 40.505 1.00 0.00 C \nATOM 664 CG1 VAL A 85 15.833 70.347 40.896 1.00 0.00 C \nATOM 665 CG2 VAL A 85 14.254 70.722 38.987 1.00 0.00 C \nATOM 666 N GLU A 86 13.344 70.751 43.365 1.00 0.00 N \nATOM 667 CA GLU A 86 13.588 70.787 44.801 1.00 0.00 C \nATOM 668 C GLU A 86 12.900 69.643 45.533 1.00 0.00 C \nATOM 669 O GLU A 86 13.509 68.996 46.388 1.00 0.00 O \nATOM 670 CB GLU A 86 13.144 72.132 45.384 1.00 0.00 C \nATOM 671 CG GLU A 86 11.805 72.621 44.871 1.00 0.00 C \nATOM 672 CD GLU A 86 11.945 73.708 43.818 1.00 0.00 C \nATOM 673 OE1 GLU A 86 12.721 73.521 42.849 1.00 0.00 O \nATOM 674 OE2 GLU A 86 11.268 74.753 43.965 1.00 0.00 O \nATOM 675 N GLU A 87 11.635 69.391 45.200 1.00 0.00 N \nATOM 676 CA GLU A 87 10.895 68.307 45.838 1.00 0.00 C \nATOM 677 C GLU A 87 11.608 66.986 45.583 1.00 0.00 C \nATOM 678 O GLU A 87 11.815 66.188 46.500 1.00 0.00 O \nATOM 679 CB GLU A 87 9.467 68.231 45.287 1.00 0.00 C \nATOM 680 CG GLU A 87 8.586 69.408 45.670 1.00 0.00 C \nATOM 681 CD GLU A 87 7.224 69.360 45.001 1.00 0.00 C \nATOM 682 OE1 GLU A 87 7.160 69.433 43.756 1.00 0.00 O \nATOM 683 OE2 GLU A 87 6.216 69.247 45.724 1.00 0.00 O \nATOM 684 N ALA A 88 11.984 66.768 44.327 1.00 0.00 N \nATOM 685 CA ALA A 88 12.671 65.546 43.942 1.00 0.00 C \nATOM 686 C ALA A 88 13.969 65.443 44.718 1.00 0.00 C \nATOM 687 O ALA A 88 14.313 64.373 45.221 1.00 0.00 O \nATOM 688 CB ALA A 88 12.947 65.543 42.445 1.00 0.00 C \nATOM 689 N CYS A 89 14.685 66.560 44.826 1.00 0.00 N \nATOM 690 CA CYS A 89 15.946 66.572 45.554 1.00 0.00 C \nATOM 691 C CYS A 89 15.781 66.134 47.007 1.00 0.00 C \nATOM 692 O CYS A 89 16.594 65.376 47.517 1.00 0.00 O \nATOM 693 CB CYS A 89 16.580 67.964 45.516 1.00 0.00 C \nATOM 694 SG CYS A 89 17.293 68.419 43.931 1.00 0.00 S \nATOM 695 N LYS A 90 14.731 66.610 47.670 1.00 0.00 N \nATOM 696 CA LYS A 90 14.480 66.258 49.071 1.00 0.00 C \nATOM 697 C LYS A 90 14.223 64.754 49.297 1.00 0.00 C \nATOM 698 O LYS A 90 14.393 64.246 50.411 1.00 0.00 O \nATOM 699 CB LYS A 90 13.285 67.053 49.607 1.00 0.00 C \nATOM 700 CG LYS A 90 13.450 68.570 49.609 1.00 0.00 C \nATOM 701 CD LYS A 90 12.109 69.237 49.943 1.00 0.00 C \nATOM 702 CE LYS A 90 12.142 70.760 49.778 1.00 0.00 C \nATOM 703 NZ LYS A 90 10.763 71.347 49.866 1.00 0.00 N \nATOM 704 N LEU A 91 13.811 64.043 48.251 1.00 0.00 N \nATOM 705 CA LEU A 91 13.544 62.608 48.377 1.00 0.00 C \nATOM 706 C LEU A 91 14.802 61.753 48.246 1.00 0.00 C \nATOM 707 O LEU A 91 14.752 60.533 48.407 1.00 0.00 O \nATOM 708 CB LEU A 91 12.525 62.163 47.330 1.00 0.00 C \nATOM 709 CG LEU A 91 11.081 62.617 47.551 1.00 0.00 C \nATOM 710 CD1 LEU A 91 10.261 62.285 46.321 1.00 0.00 C \nATOM 711 CD2 LEU A 91 10.503 61.935 48.792 1.00 0.00 C \nATOM 712 N THR A 92 15.929 62.401 47.966 1.00 0.00 N \nATOM 713 CA THR A 92 17.204 61.710 47.800 1.00 0.00 C \nATOM 714 C THR A 92 17.913 61.348 49.111 1.00 0.00 C \nATOM 715 O THR A 92 18.076 62.193 49.993 1.00 0.00 O \nATOM 716 CB THR A 92 18.164 62.563 46.961 1.00 0.00 C \nATOM 717 OG1 THR A 92 17.583 62.803 45.674 1.00 0.00 O \nATOM 718 CG2 THR A 92 19.496 61.860 46.795 1.00 0.00 C \nATOM 719 N PRO A 93 18.338 60.078 49.252 1.00 0.00 N \nATOM 720 CA PRO A 93 19.036 59.604 50.454 1.00 0.00 C \nATOM 721 C PRO A 93 20.332 60.362 50.686 1.00 0.00 C \nATOM 722 O PRO A 93 21.134 60.532 49.768 1.00 0.00 O \nATOM 723 CB PRO A 93 19.280 58.134 50.147 1.00 0.00 C \nATOM 724 CG PRO A 93 18.044 57.769 49.379 1.00 0.00 C \nATOM 725 CD PRO A 93 17.928 58.937 48.414 1.00 0.00 C \nATOM 726 N PRO A 94 20.556 60.828 51.924 1.00 0.00 N \nATOM 727 CA PRO A 94 21.771 61.576 52.262 1.00 0.00 C \nATOM 728 C PRO A 94 23.055 60.889 51.811 1.00 0.00 C \nATOM 729 O PRO A 94 24.063 61.551 51.569 1.00 0.00 O \nATOM 730 CB PRO A 94 21.671 61.715 53.777 1.00 0.00 C \nATOM 731 CG PRO A 94 20.189 61.865 53.971 1.00 0.00 C \nATOM 732 CD PRO A 94 19.640 60.773 53.077 1.00 0.00 C \nATOM 733 N HIS A 95 23.018 59.568 51.684 1.00 0.00 N \nATOM 734 CA HIS A 95 24.203 58.835 51.254 1.00 0.00 C \nATOM 735 C HIS A 95 24.024 58.116 49.921 1.00 0.00 C \nATOM 736 O HIS A 95 24.719 57.148 49.631 1.00 0.00 O \nATOM 737 CB HIS A 95 24.634 57.844 52.341 1.00 0.00 C \nATOM 738 CG HIS A 95 25.070 58.506 53.611 1.00 0.00 C \nATOM 739 ND1 HIS A 95 24.190 59.163 54.450 1.00 0.00 N \nATOM 740 CD2 HIS A 95 26.295 58.657 54.167 1.00 0.00 C \nATOM 741 CE1 HIS A 95 24.855 59.687 55.462 1.00 0.00 C \nATOM 742 NE2 HIS A 95 26.137 59.395 55.314 1.00 0.00 N \nATOM 743 N SER A 96 23.095 58.600 49.108 1.00 0.00 N \nATOM 744 CA SER A 96 22.856 58.000 47.805 1.00 0.00 C \nATOM 745 C SER A 96 24.140 58.163 46.988 1.00 0.00 C \nATOM 746 O SER A 96 24.882 59.126 47.187 1.00 0.00 O \nATOM 747 CB SER A 96 21.693 58.705 47.111 1.00 0.00 C \nATOM 748 OG SER A 96 21.333 58.037 45.920 1.00 0.00 O \nATOM 749 N ALA A 97 24.404 57.219 46.087 1.00 0.00 N \nATOM 750 CA ALA A 97 25.606 57.260 45.253 1.00 0.00 C \nATOM 751 C ALA A 97 25.783 58.618 44.585 1.00 0.00 C \nATOM 752 O ALA A 97 24.832 59.189 44.039 1.00 0.00 O \nATOM 753 CB ALA A 97 25.549 56.164 44.189 1.00 0.00 C \nATOM 754 N LYS A 98 27.008 59.129 44.625 1.00 0.00 N \nATOM 755 CA LYS A 98 27.310 60.423 44.027 1.00 0.00 C \nATOM 756 C LYS A 98 27.234 60.359 42.499 1.00 0.00 C \nATOM 757 O LYS A 98 27.459 59.306 41.888 1.00 0.00 O \nATOM 758 CB LYS A 98 28.712 60.876 44.445 1.00 0.00 C \nATOM 759 CG LYS A 98 29.829 59.941 43.962 1.00 0.00 C \nATOM 760 CD LYS A 98 31.219 60.517 44.226 1.00 0.00 C \nATOM 761 CE LYS A 98 32.291 59.695 43.516 1.00 0.00 C \nATOM 762 NZ LYS A 98 33.645 60.338 43.545 1.00 0.00 N \nATOM 763 N SER A 99 26.914 61.495 41.890 1.00 0.00 N \nATOM 764 CA SER A 99 26.830 61.596 40.444 1.00 0.00 C \nATOM 765 C SER A 99 28.228 61.517 39.839 1.00 0.00 C \nATOM 766 O SER A 99 29.215 61.802 40.515 1.00 0.00 O \nATOM 767 CB SER A 99 26.207 62.930 40.055 1.00 0.00 C \nATOM 768 OG SER A 99 26.318 63.150 38.662 1.00 0.00 O \nATOM 769 N LYS A 100 28.306 61.133 38.568 1.00 0.00 N \nATOM 770 CA LYS A 100 29.585 61.060 37.872 1.00 0.00 C \nATOM 771 C LYS A 100 29.897 62.446 37.319 1.00 0.00 C \nATOM 772 O LYS A 100 30.972 62.677 36.758 1.00 0.00 O \nATOM 773 CB LYS A 100 29.517 60.062 36.709 1.00 0.00 C \nATOM 774 CG LYS A 100 29.410 58.598 37.132 1.00 0.00 C \nATOM 775 CD LYS A 100 29.344 57.654 35.915 1.00 0.00 C \nATOM 776 CE LYS A 100 29.276 56.188 36.344 1.00 0.00 C \nATOM 777 NZ LYS A 100 29.152 55.238 35.193 1.00 0.00 N \nATOM 778 N PHE A 101 28.965 63.377 37.499 1.00 0.00 N \nATOM 779 CA PHE A 101 29.143 64.716 36.962 1.00 0.00 C \nATOM 780 C PHE A 101 29.531 65.827 37.938 1.00 0.00 C \nATOM 781 O PHE A 101 29.184 66.992 37.739 1.00 0.00 O \nATOM 782 CB PHE A 101 27.889 65.081 36.161 1.00 0.00 C \nATOM 783 CG PHE A 101 27.614 64.123 35.033 1.00 0.00 C \nATOM 784 CD1 PHE A 101 28.395 64.149 33.875 1.00 0.00 C \nATOM 785 CD2 PHE A 101 26.639 63.133 35.158 1.00 0.00 C \nATOM 786 CE1 PHE A 101 28.210 63.199 32.861 1.00 0.00 C \nATOM 787 CE2 PHE A 101 26.447 62.181 34.154 1.00 0.00 C \nATOM 788 CZ PHE A 101 27.235 62.211 33.004 1.00 0.00 C \nATOM 789 N GLY A 102 30.250 65.464 38.996 1.00 0.00 N \nATOM 790 CA GLY A 102 30.720 66.465 39.943 1.00 0.00 C \nATOM 791 C GLY A 102 29.936 66.855 41.188 1.00 0.00 C \nATOM 792 O GLY A 102 30.180 67.930 41.742 1.00 0.00 O \nATOM 793 N TYR A 103 29.003 66.024 41.641 1.00 0.00 N \nATOM 794 CA TYR A 103 28.257 66.360 42.850 1.00 0.00 C \nATOM 795 C TYR A 103 27.675 65.120 43.505 1.00 0.00 C \nATOM 796 O TYR A 103 27.585 64.060 42.881 1.00 0.00 O \nATOM 797 CB TYR A 103 27.152 67.375 42.539 1.00 0.00 C \nATOM 798 CG TYR A 103 26.114 66.882 41.563 1.00 0.00 C \nATOM 799 CD1 TYR A 103 24.955 66.238 42.008 1.00 0.00 C \nATOM 800 CD2 TYR A 103 26.291 67.049 40.191 1.00 0.00 C \nATOM 801 CE1 TYR A 103 24.002 65.779 41.104 1.00 0.00 C \nATOM 802 CE2 TYR A 103 25.344 66.587 39.283 1.00 0.00 C \nATOM 803 CZ TYR A 103 24.206 65.955 39.747 1.00 0.00 C \nATOM 804 OH TYR A 103 23.281 65.487 38.851 1.00 0.00 O \nATOM 805 N GLY A 104 27.282 65.258 44.766 1.00 0.00 N \nATOM 806 CA GLY A 104 26.739 64.127 45.491 1.00 0.00 C \nATOM 807 C GLY A 104 25.333 64.323 46.011 1.00 0.00 C \nATOM 808 O GLY A 104 24.679 65.323 45.717 1.00 0.00 O \nATOM 809 N ALA A 105 24.872 63.344 46.782 1.00 0.00 N \nATOM 810 CA ALA A 105 23.540 63.378 47.360 1.00 0.00 C \nATOM 811 C ALA A 105 23.376 64.594 48.259 1.00 0.00 C \nATOM 812 O ALA A 105 22.302 65.190 48.330 1.00 0.00 O \nATOM 813 CB ALA A 105 23.288 62.107 48.151 1.00 0.00 C \nATOM 814 N LYS A 106 24.451 64.968 48.942 1.00 0.00 N \nATOM 815 CA LYS A 106 24.397 66.112 49.838 1.00 0.00 C \nATOM 816 C LYS A 106 24.158 67.395 49.058 1.00 0.00 C \nATOM 817 O LYS A 106 23.351 68.228 49.464 1.00 0.00 O \nATOM 818 CB LYS A 106 25.696 66.227 50.633 1.00 0.00 C \nATOM 819 CG LYS A 106 25.483 66.612 52.087 1.00 0.00 C \nATOM 820 CD LYS A 106 25.603 65.398 53.011 1.00 0.00 C \nATOM 821 CE LYS A 106 24.697 64.259 52.575 1.00 0.00 C \nATOM 822 NZ LYS A 106 23.281 64.702 52.501 1.00 0.00 N \nATOM 823 N ASP A 107 24.864 67.551 47.942 1.00 0.00 N \nATOM 824 CA ASP A 107 24.720 68.735 47.102 1.00 0.00 C \nATOM 825 C ASP A 107 23.299 68.838 46.568 1.00 0.00 C \nATOM 826 O ASP A 107 22.774 69.932 46.371 1.00 0.00 O \nATOM 827 CB ASP A 107 25.699 68.679 45.926 1.00 0.00 C \nATOM 828 CG ASP A 107 27.143 68.682 46.374 1.00 0.00 C \nATOM 829 OD1 ASP A 107 27.518 69.577 47.162 1.00 0.00 O \nATOM 830 OD2 ASP A 107 27.902 67.797 45.936 1.00 0.00 O \nATOM 831 N VAL A 108 22.688 67.683 46.331 1.00 0.00 N \nATOM 832 CA VAL A 108 21.329 67.610 45.815 1.00 0.00 C \nATOM 833 C VAL A 108 20.329 68.027 46.892 1.00 0.00 C \nATOM 834 O VAL A 108 19.439 68.847 46.652 1.00 0.00 O \nATOM 835 CB VAL A 108 21.020 66.170 45.326 1.00 0.00 C \nATOM 836 CG1 VAL A 108 19.533 66.005 45.031 1.00 0.00 C \nATOM 837 CG2 VAL A 108 21.832 65.881 44.067 1.00 0.00 C \nATOM 838 N ARG A 109 20.488 67.465 48.083 1.00 0.00 N \nATOM 839 CA ARG A 109 19.596 67.781 49.184 1.00 0.00 C \nATOM 840 C ARG A 109 19.695 69.255 49.548 1.00 0.00 C \nATOM 841 O ARG A 109 18.732 69.835 50.041 1.00 0.00 O \nATOM 842 CB ARG A 109 19.923 66.912 50.399 1.00 0.00 C \nATOM 843 CG ARG A 109 19.654 65.438 50.179 1.00 0.00 C \nATOM 844 CD ARG A 109 19.957 64.636 51.421 1.00 0.00 C \nATOM 845 NE ARG A 109 19.191 65.107 52.571 1.00 0.00 N \nATOM 846 CZ ARG A 109 17.873 64.997 52.698 1.00 0.00 C \nATOM 847 NH1 ARG A 109 17.150 64.422 51.744 1.00 0.00 N \nATOM 848 NH2 ARG A 109 17.274 65.475 53.780 1.00 0.00 N \nATOM 849 N ASN A 110 20.853 69.859 49.290 1.00 0.00 N \nATOM 850 CA ASN A 110 21.072 71.273 49.590 1.00 0.00 C \nATOM 851 C ASN A 110 20.656 72.178 48.436 1.00 0.00 C \nATOM 852 O ASN A 110 20.773 73.405 48.519 1.00 0.00 O \nATOM 853 CB ASN A 110 22.549 71.539 49.903 1.00 0.00 C \nATOM 854 CG ASN A 110 23.014 70.850 51.168 1.00 0.00 C \nATOM 855 OD1 ASN A 110 22.251 70.705 52.127 1.00 0.00 O \nATOM 856 ND2 ASN A 110 24.281 70.436 51.188 1.00 0.00 N \nATOM 857 N LEU A 111 20.175 71.572 47.360 1.00 0.00 N \nATOM 858 CA LEU A 111 19.767 72.327 46.188 1.00 0.00 C \nATOM 859 C LEU A 111 20.949 73.136 45.673 1.00 0.00 C \nATOM 860 O LEU A 111 20.777 74.261 45.205 1.00 0.00 O \nATOM 861 CB LEU A 111 18.604 73.266 46.528 1.00 0.00 C \nATOM 862 CG LEU A 111 17.363 72.659 47.193 1.00 0.00 C \nATOM 863 CD1 LEU A 111 16.304 73.735 47.344 1.00 0.00 C \nATOM 864 CD2 LEU A 111 16.817 71.506 46.360 1.00 0.00 C \nATOM 865 N SER A 112 22.151 72.567 45.761 1.00 0.00 N \nATOM 866 CA SER A 112 23.346 73.262 45.290 1.00 0.00 C \nATOM 867 C SER A 112 23.146 73.613 43.822 1.00 0.00 C \nATOM 868 O SER A 112 22.587 72.825 43.060 1.00 0.00 O \nATOM 869 CB SER A 112 24.588 72.380 45.447 1.00 0.00 C \nATOM 870 OG SER A 112 24.777 71.542 44.319 1.00 0.00 O \nATOM 871 N SER A 113 23.611 74.793 43.424 1.00 0.00 N \nATOM 872 CA SER A 113 23.450 75.247 42.047 1.00 0.00 C \nATOM 873 C SER A 113 24.017 74.262 41.036 1.00 0.00 C \nATOM 874 O SER A 113 23.429 74.041 39.985 1.00 0.00 O \nATOM 875 CB SER A 113 24.108 76.620 41.850 1.00 0.00 C \nATOM 876 OG SER A 113 25.519 76.511 41.793 1.00 0.00 O \nATOM 877 N LYS A 114 25.158 73.669 41.358 1.00 0.00 N \nATOM 878 CA LYS A 114 25.784 72.712 40.457 1.00 0.00 C \nATOM 879 C LYS A 114 24.855 71.517 40.236 1.00 0.00 C \nATOM 880 O LYS A 114 24.596 71.129 39.101 1.00 0.00 O \nATOM 881 CB LYS A 114 27.114 72.236 41.036 1.00 0.00 C \nATOM 882 CG LYS A 114 27.945 71.387 40.080 1.00 0.00 C \nATOM 883 CD LYS A 114 29.228 70.899 40.756 1.00 0.00 C \nATOM 884 CE LYS A 114 30.096 70.104 39.795 1.00 0.00 C \nATOM 885 NZ LYS A 114 30.396 70.906 38.580 1.00 0.00 N \nATOM 886 N ALA A 115 24.356 70.942 41.325 1.00 0.00 N \nATOM 887 CA ALA A 115 23.453 69.796 41.241 1.00 0.00 C \nATOM 888 C ALA A 115 22.179 70.158 40.482 1.00 0.00 C \nATOM 889 O ALA A 115 21.812 69.491 39.516 1.00 0.00 O \nATOM 890 CB ALA A 115 23.107 69.294 42.647 1.00 0.00 C \nATOM 891 N VAL A 116 21.510 71.220 40.923 1.00 0.00 N \nATOM 892 CA VAL A 116 20.278 71.678 40.294 1.00 0.00 C \nATOM 893 C VAL A 116 20.458 71.979 38.812 1.00 0.00 C \nATOM 894 O VAL A 116 19.571 71.698 38.000 1.00 0.00 O \nATOM 895 CB VAL A 116 19.741 72.941 40.991 1.00 0.00 C \nATOM 896 CG1 VAL A 116 18.520 73.471 40.253 1.00 0.00 C \nATOM 897 CG2 VAL A 116 19.396 72.622 42.432 1.00 0.00 C \nATOM 898 N ASN A 117 21.594 72.572 38.460 1.00 0.00 N \nATOM 899 CA ASN A 117 21.875 72.892 37.068 1.00 0.00 C \nATOM 900 C ASN A 117 22.017 71.621 36.231 1.00 0.00 C \nATOM 901 O ASN A 117 21.465 71.530 35.138 1.00 0.00 O \nATOM 902 CB ASN A 117 23.146 73.737 36.961 1.00 0.00 C \nATOM 903 CG ASN A 117 22.895 75.199 37.289 1.00 0.00 C \nATOM 904 OD1 ASN A 117 22.010 75.823 36.707 1.00 0.00 O \nATOM 905 ND2 ASN A 117 23.671 75.752 38.219 1.00 0.00 N \nATOM 906 N HIS A 118 22.753 70.638 36.742 1.00 0.00 N \nATOM 907 CA HIS A 118 22.922 69.393 36.001 1.00 0.00 C \nATOM 908 C HIS A 118 21.594 68.654 35.844 1.00 0.00 C \nATOM 909 O HIS A 118 21.272 68.150 34.767 1.00 0.00 O \nATOM 910 CB HIS A 118 23.930 68.486 36.694 1.00 0.00 C \nATOM 911 CG HIS A 118 24.155 67.191 35.977 1.00 0.00 C \nATOM 912 ND1 HIS A 118 23.668 65.988 36.440 1.00 0.00 N \nATOM 913 CD2 HIS A 118 24.781 66.920 34.805 1.00 0.00 C \nATOM 914 CE1 HIS A 118 23.985 65.029 35.586 1.00 0.00 C \nATOM 915 NE2 HIS A 118 24.658 65.567 34.587 1.00 0.00 N \nATOM 916 N ILE A 119 20.827 68.591 36.925 1.00 0.00 N \nATOM 917 CA ILE A 119 19.529 67.926 36.900 1.00 0.00 C \nATOM 918 C ILE A 119 18.646 68.543 35.812 1.00 0.00 C \nATOM 919 O ILE A 119 17.949 67.832 35.073 1.00 0.00 O \nATOM 920 CB ILE A 119 18.846 68.038 38.287 1.00 0.00 C \nATOM 921 CG1 ILE A 119 19.628 67.196 39.302 1.00 0.00 C \nATOM 922 CG2 ILE A 119 17.395 67.588 38.209 1.00 0.00 C \nATOM 923 CD1 ILE A 119 19.240 67.424 40.741 1.00 0.00 C \nATOM 924 N HIS A 120 18.688 69.870 35.705 1.00 0.00 N \nATOM 925 CA HIS A 120 17.894 70.574 34.703 1.00 0.00 C \nATOM 926 C HIS A 120 18.327 70.238 33.286 1.00 0.00 C \nATOM 927 O HIS A 120 17.493 70.194 32.375 1.00 0.00 O \nATOM 928 CB HIS A 120 17.973 72.091 34.926 1.00 0.00 C \nATOM 929 CG HIS A 120 16.943 72.616 35.879 1.00 0.00 C \nATOM 930 ND1 HIS A 120 17.187 73.669 36.736 1.00 0.00 N \nATOM 931 CD2 HIS A 120 15.653 72.257 36.086 1.00 0.00 C \nATOM 932 CE1 HIS A 120 16.094 73.935 37.429 1.00 0.00 C \nATOM 933 NE2 HIS A 120 15.148 73.092 37.053 1.00 0.00 N \nATOM 934 N SER A 121 19.623 70.005 33.087 1.00 0.00 N \nATOM 935 CA SER A 121 20.113 69.670 31.754 1.00 0.00 C \nATOM 936 C SER A 121 19.740 68.221 31.427 1.00 0.00 C \nATOM 937 O SER A 121 19.426 67.890 30.285 1.00 0.00 O \nATOM 938 CB SER A 121 21.630 69.869 31.664 1.00 0.00 C \nATOM 939 OG SER A 121 22.302 69.012 32.565 1.00 0.00 O \nATOM 940 N VAL A 122 19.761 67.358 32.434 1.00 0.00 N \nATOM 941 CA VAL A 122 19.382 65.965 32.211 1.00 0.00 C \nATOM 942 C VAL A 122 17.902 65.925 31.791 1.00 0.00 C \nATOM 943 O VAL A 122 17.535 65.239 30.834 1.00 0.00 O \nATOM 944 CB VAL A 122 19.574 65.135 33.486 1.00 0.00 C \nATOM 945 CG1 VAL A 122 19.056 63.719 33.274 1.00 0.00 C \nATOM 946 CG2 VAL A 122 21.038 65.111 33.859 1.00 0.00 C \nATOM 947 N TRP A 123 17.064 66.676 32.504 1.00 0.00 N \nATOM 948 CA TRP A 123 15.629 66.740 32.210 1.00 0.00 C \nATOM 949 C TRP A 123 15.389 67.226 30.779 1.00 0.00 C \nATOM 950 O TRP A 123 14.597 66.644 30.023 1.00 0.00 O \nATOM 951 CB TRP A 123 14.920 67.668 33.215 1.00 0.00 C \nATOM 952 CG TRP A 123 13.423 67.719 33.036 1.00 0.00 C \nATOM 953 CD1 TRP A 123 12.711 68.657 32.346 1.00 0.00 C \nATOM 954 CD2 TRP A 123 12.466 66.756 33.508 1.00 0.00 C \nATOM 955 NE1 TRP A 123 11.375 68.338 32.355 1.00 0.00 N \nATOM 956 CE2 TRP A 123 11.196 67.180 33.061 1.00 0.00 C \nATOM 957 CE3 TRP A 123 12.562 65.578 34.264 1.00 0.00 C \nATOM 958 CZ2 TRP A 123 10.022 66.463 33.342 1.00 0.00 C \nATOM 959 CZ3 TRP A 123 11.399 64.866 34.543 1.00 0.00 C \nATOM 960 CH2 TRP A 123 10.143 65.314 34.083 1.00 0.00 C \nATOM 961 N LYS A 124 16.084 68.293 30.403 1.00 0.00 N \nATOM 962 CA LYS A 124 15.947 68.837 29.061 1.00 0.00 C \nATOM 963 C LYS A 124 16.341 67.771 28.033 1.00 0.00 C \nATOM 964 O LYS A 124 15.660 67.596 27.024 1.00 0.00 O \nATOM 965 CB LYS A 124 16.826 70.079 28.915 1.00 0.00 C \nATOM 966 CG LYS A 124 16.670 70.791 27.593 1.00 0.00 C \nATOM 967 CD LYS A 124 17.566 72.015 27.534 1.00 0.00 C \nATOM 968 CE LYS A 124 17.425 72.737 26.205 1.00 0.00 C \nATOM 969 NZ LYS A 124 18.214 74.000 26.160 1.00 0.00 N \nATOM 970 N ASP A 125 17.435 67.052 28.285 1.00 0.00 N \nATOM 971 CA ASP A 125 17.856 66.000 27.359 1.00 0.00 C \nATOM 972 C ASP A 125 16.785 64.912 27.259 1.00 0.00 C \nATOM 973 O ASP A 125 16.574 64.342 26.194 1.00 0.00 O \nATOM 974 CB ASP A 125 19.167 65.359 27.801 1.00 0.00 C \nATOM 975 CG ASP A 125 19.679 64.341 26.795 1.00 0.00 C \nATOM 976 OD1 ASP A 125 20.084 64.753 25.693 1.00 0.00 O \nATOM 977 OD2 ASP A 125 19.666 63.126 27.095 1.00 0.00 O \nATOM 978 N LEU A 126 16.127 64.602 28.374 1.00 0.00 N \nATOM 979 CA LEU A 126 15.080 63.590 28.340 1.00 0.00 C \nATOM 980 C LEU A 126 13.952 64.025 27.417 1.00 0.00 C \nATOM 981 O LEU A 126 13.436 63.229 26.631 1.00 0.00 O \nATOM 982 CB LEU A 126 14.524 63.341 29.741 1.00 0.00 C \nATOM 983 CG LEU A 126 15.387 62.456 30.633 1.00 0.00 C \nATOM 984 CD1 LEU A 126 14.875 62.507 32.062 1.00 0.00 C \nATOM 985 CD2 LEU A 126 15.378 61.031 30.069 1.00 0.00 C \nATOM 986 N LEU A 127 13.574 65.297 27.490 1.00 0.00 N \nATOM 987 CA LEU A 127 12.483 65.777 26.649 1.00 0.00 C \nATOM 988 C LEU A 127 12.867 65.864 25.172 1.00 0.00 C \nATOM 989 O LEU A 127 12.034 65.641 24.300 1.00 0.00 O \nATOM 990 CB LEU A 127 11.988 67.147 27.137 1.00 0.00 C \nATOM 991 CG LEU A 127 11.459 67.257 28.577 1.00 0.00 C \nATOM 992 CD1 LEU A 127 11.206 68.727 28.920 1.00 0.00 C \nATOM 993 CD2 LEU A 127 10.180 66.429 28.738 1.00 0.00 C \nATOM 994 N GLU A 128 14.131 66.152 24.889 1.00 0.00 N \nATOM 995 CA GLU A 128 14.591 66.302 23.508 1.00 0.00 C \nATOM 996 C GLU A 128 15.065 65.025 22.821 1.00 0.00 C \nATOM 997 O GLU A 128 15.045 64.932 21.597 1.00 0.00 O \nATOM 998 CB GLU A 128 15.713 67.344 23.465 1.00 0.00 C \nATOM 999 CG GLU A 128 15.300 68.703 24.037 1.00 0.00 C \nATOM 1000 CD GLU A 128 16.471 69.660 24.224 1.00 0.00 C \nATOM 1001 OE1 GLU A 128 16.217 70.811 24.641 1.00 0.00 O \nATOM 1002 OE2 GLU A 128 17.635 69.264 23.961 1.00 0.00 O \nATOM 1003 N ASP A 129 15.477 64.040 23.612 1.00 0.00 N \nATOM 1004 CA ASP A 129 15.991 62.777 23.082 1.00 0.00 C \nATOM 1005 C ASP A 129 15.193 61.607 23.679 1.00 0.00 C \nATOM 1006 O ASP A 129 15.195 61.408 24.883 1.00 0.00 O \nATOM 1007 CB ASP A 129 17.480 62.673 23.452 1.00 0.00 C \nATOM 1008 CG ASP A 129 18.132 61.386 22.965 1.00 0.00 C \nATOM 1009 OD1 ASP A 129 17.474 60.329 22.994 1.00 0.00 O \nATOM 1010 OD2 ASP A 129 19.320 61.433 22.575 1.00 0.00 O \nATOM 1011 N THR A 130 14.514 60.835 22.837 1.00 0.00 N \nATOM 1012 CA THR A 130 13.730 59.708 23.336 1.00 0.00 C \nATOM 1013 C THR A 130 14.242 58.366 22.819 1.00 0.00 C \nATOM 1014 O THR A 130 13.514 57.378 22.850 1.00 0.00 O \nATOM 1015 CB THR A 130 12.227 59.853 22.954 1.00 0.00 C \nATOM 1016 OG1 THR A 130 12.100 59.923 21.533 1.00 0.00 O \nATOM 1017 CG2 THR A 130 11.637 61.127 23.558 1.00 0.00 C \nATOM 1018 N VAL A 131 15.496 58.321 22.367 1.00 0.00 N \nATOM 1019 CA VAL A 131 16.061 57.077 21.823 1.00 0.00 C \nATOM 1020 C VAL A 131 17.425 56.642 22.353 1.00 0.00 C \nATOM 1021 O VAL A 131 17.716 55.450 22.398 1.00 0.00 O \nATOM 1022 CB VAL A 131 16.203 57.132 20.266 1.00 0.00 C \nATOM 1023 CG1 VAL A 131 14.837 57.303 19.610 1.00 0.00 C \nATOM 1024 CG2 VAL A 131 17.145 58.263 19.864 1.00 0.00 C \nATOM 1025 N THR A 132 18.266 57.590 22.742 1.00 0.00 N \nATOM 1026 CA THR A 132 19.600 57.242 23.208 1.00 0.00 C \nATOM 1027 C THR A 132 19.655 56.496 24.528 1.00 0.00 C \nATOM 1028 O THR A 132 19.257 57.016 25.562 1.00 0.00 O \nATOM 1029 CB THR A 132 20.468 58.495 23.306 1.00 0.00 C \nATOM 1030 OG1 THR A 132 20.387 59.207 22.067 1.00 0.00 O \nATOM 1031 CG2 THR A 132 21.937 58.117 23.563 1.00 0.00 C \nATOM 1032 N PRO A 133 20.157 55.252 24.508 1.00 0.00 N \nATOM 1033 CA PRO A 133 20.233 54.501 25.759 1.00 0.00 C \nATOM 1034 C PRO A 133 20.987 55.296 26.814 1.00 0.00 C \nATOM 1035 O PRO A 133 21.981 55.974 26.519 1.00 0.00 O \nATOM 1036 CB PRO A 133 20.978 53.229 25.356 1.00 0.00 C \nATOM 1037 CG PRO A 133 20.506 53.017 23.946 1.00 0.00 C \nATOM 1038 CD PRO A 133 20.609 54.424 23.374 1.00 0.00 C \nATOM 1039 N ILE A 134 20.493 55.217 28.043 1.00 0.00 N \nATOM 1040 CA ILE A 134 21.105 55.900 29.164 1.00 0.00 C \nATOM 1041 C ILE A 134 22.032 54.939 29.884 1.00 0.00 C \nATOM 1042 O ILE A 134 21.699 53.769 30.085 1.00 0.00 O \nATOM 1043 CB ILE A 134 20.013 56.441 30.110 1.00 0.00 C \nATOM 1044 CG1 ILE A 134 19.388 57.692 29.469 1.00 0.00 C \nATOM 1045 CG2 ILE A 134 20.585 56.705 31.502 1.00 0.00 C \nATOM 1046 CD1 ILE A 134 18.234 58.292 30.248 1.00 0.00 C \nATOM 1047 N ASP A 135 23.211 55.424 30.256 1.00 0.00 N \nATOM 1048 CA ASP A 135 24.165 54.566 30.929 1.00 0.00 C \nATOM 1049 C ASP A 135 23.725 54.135 32.326 1.00 0.00 C \nATOM 1050 O ASP A 135 22.947 54.828 33.012 1.00 0.00 O \nATOM 1051 CB ASP A 135 25.534 55.249 31.006 1.00 0.00 C \nATOM 1052 CG ASP A 135 26.604 54.328 31.552 1.00 0.00 C \nATOM 1053 OD1 ASP A 135 26.815 53.239 30.966 1.00 0.00 O \nATOM 1054 OD2 ASP A 135 27.224 54.690 32.574 1.00 0.00 O \nATOM 1055 N THR A 136 24.204 52.962 32.733 1.00 0.00 N \nATOM 1056 CA THR A 136 23.894 52.454 34.057 1.00 0.00 C \nATOM 1057 C THR A 136 25.134 51.809 34.632 1.00 0.00 C \nATOM 1058 O THR A 136 26.022 51.362 33.903 1.00 0.00 O \nATOM 1059 CB THR A 136 22.794 51.376 34.046 1.00 0.00 C \nATOM 1060 OG1 THR A 136 23.236 50.257 33.265 1.00 0.00 O \nATOM 1061 CG2 THR A 136 21.492 51.936 33.481 1.00 0.00 C \nATOM 1062 N THR A 137 25.182 51.769 35.953 1.00 0.00 N \nATOM 1063 CA THR A 137 26.282 51.144 36.644 1.00 0.00 C \nATOM 1064 C THR A 137 25.750 49.810 37.156 1.00 0.00 C \nATOM 1065 O THR A 137 24.611 49.726 37.616 1.00 0.00 O \nATOM 1066 CB THR A 137 26.720 51.975 37.848 1.00 0.00 C \nATOM 1067 OG1 THR A 137 27.100 53.288 37.406 1.00 0.00 O \nATOM 1068 CG2 THR A 137 27.889 51.285 38.570 1.00 0.00 C \nATOM 1069 N ILE A 138 26.555 48.761 37.036 1.00 0.00 N \nATOM 1070 CA ILE A 138 26.162 47.470 37.549 1.00 0.00 C \nATOM 1071 C ILE A 138 27.131 47.149 38.692 1.00 0.00 C \nATOM 1072 O ILE A 138 28.337 47.278 38.540 1.00 0.00 O \nATOM 1073 CB ILE A 138 26.214 46.366 36.461 1.00 0.00 C \nATOM 1074 CG1 ILE A 138 25.774 45.028 37.079 1.00 0.00 C \nATOM 1075 CG2 ILE A 138 27.631 46.275 35.852 1.00 0.00 C \nATOM 1076 CD1 ILE A 138 25.410 43.952 36.074 1.00 0.00 C \nATOM 1077 N MET A 139 26.586 46.771 39.845 1.00 0.00 N \nATOM 1078 CA MET A 139 27.389 46.426 41.016 1.00 0.00 C \nATOM 1079 C MET A 139 26.816 45.159 41.634 1.00 0.00 C \nATOM 1080 O MET A 139 25.640 44.828 41.433 1.00 0.00 O \nATOM 1081 CB MET A 139 27.302 47.522 42.076 1.00 0.00 C \nATOM 1082 CG MET A 139 27.791 48.892 41.661 1.00 0.00 C \nATOM 1083 SD MET A 139 29.573 49.053 41.777 1.00 0.00 S \nATOM 1084 CE MET A 139 29.810 49.242 43.552 1.00 0.00 C \nATOM 1085 N ALA A 140 27.650 44.461 42.396 1.00 0.00 N \nATOM 1086 CA ALA A 140 27.235 43.261 43.098 1.00 0.00 C \nATOM 1087 C ALA A 140 26.877 43.755 44.497 1.00 0.00 C \nATOM 1088 O ALA A 140 27.677 44.446 45.124 1.00 0.00 O \nATOM 1089 CB ALA A 140 28.387 42.273 43.170 1.00 0.00 C \nATOM 1090 N LYS A 141 25.683 43.423 44.983 1.00 0.00 N \nATOM 1091 CA LYS A 141 25.259 43.850 46.323 1.00 0.00 C \nATOM 1092 C LYS A 141 25.989 43.100 47.428 1.00 0.00 C \nATOM 1093 O LYS A 141 26.299 41.920 47.289 1.00 0.00 O \nATOM 1094 CB LYS A 141 23.755 43.629 46.526 1.00 0.00 C \nATOM 1095 CG LYS A 141 22.849 44.435 45.612 1.00 0.00 C \nATOM 1096 CD LYS A 141 21.404 44.381 46.096 1.00 0.00 C \nATOM 1097 CE LYS A 141 20.512 45.280 45.255 1.00 0.00 C \nATOM 1098 NZ LYS A 141 19.141 45.411 45.827 1.00 0.00 N \nATOM 1099 N ASN A 142 26.266 43.788 48.526 1.00 0.00 N \nATOM 1100 CA ASN A 142 26.928 43.154 49.662 1.00 0.00 C \nATOM 1101 C ASN A 142 25.801 42.940 50.658 1.00 0.00 C \nATOM 1102 O ASN A 142 25.366 43.884 51.302 1.00 0.00 O \nATOM 1103 CB ASN A 142 27.979 44.079 50.281 1.00 0.00 C \nATOM 1104 CG ASN A 142 29.037 44.516 49.287 1.00 0.00 C \nATOM 1105 OD1 ASN A 142 29.281 45.716 49.119 1.00 0.00 O \nATOM 1106 ND2 ASN A 142 29.674 43.552 48.625 1.00 0.00 N \nATOM 1107 N GLU A 143 25.319 41.705 50.766 1.00 0.00 N \nATOM 1108 CA GLU A 143 24.223 41.395 51.675 1.00 0.00 C \nATOM 1109 C GLU A 143 24.574 40.224 52.564 1.00 0.00 C \nATOM 1110 O GLU A 143 25.272 39.297 52.140 1.00 0.00 O \nATOM 1111 CB GLU A 143 22.956 41.082 50.869 1.00 0.00 C \nATOM 1112 CG GLU A 143 22.493 42.256 50.031 1.00 0.00 C \nATOM 1113 CD GLU A 143 21.208 41.976 49.283 1.00 0.00 C \nATOM 1114 OE1 GLU A 143 21.217 41.113 48.376 1.00 0.00 O \nATOM 1115 OE2 GLU A 143 20.189 42.625 49.608 1.00 0.00 O \nATOM 1116 N VAL A 144 24.062 40.259 53.790 1.00 0.00 N \nATOM 1117 CA VAL A 144 24.339 39.220 54.782 1.00 0.00 C \nATOM 1118 C VAL A 144 23.262 38.120 54.894 1.00 0.00 C \nATOM 1119 O VAL A 144 22.057 38.400 54.935 1.00 0.00 O \nATOM 1120 CB VAL A 144 24.577 39.893 56.168 1.00 0.00 C \nATOM 1121 CG1 VAL A 144 24.795 38.844 57.263 1.00 0.00 C \nATOM 1122 CG2 VAL A 144 25.793 40.808 56.075 1.00 0.00 C \nATOM 1123 N PHE A 145 23.719 36.868 54.947 1.00 0.00 N \nATOM 1124 CA PHE A 145 22.837 35.710 55.066 1.00 0.00 C \nATOM 1125 C PHE A 145 23.466 34.655 55.969 1.00 0.00 C \nATOM 1126 O PHE A 145 24.610 34.787 56.401 1.00 0.00 O \nATOM 1127 CB PHE A 145 22.602 35.070 53.693 1.00 0.00 C \nATOM 1128 CG PHE A 145 21.961 35.989 52.693 1.00 0.00 C \nATOM 1129 CD1 PHE A 145 20.588 36.211 52.716 1.00 0.00 C \nATOM 1130 CD2 PHE A 145 22.738 36.638 51.731 1.00 0.00 C \nATOM 1131 CE1 PHE A 145 19.980 37.073 51.789 1.00 0.00 C \nATOM 1132 CE2 PHE A 145 22.152 37.501 50.796 1.00 0.00 C \nATOM 1133 CZ PHE A 145 20.765 37.720 50.825 1.00 0.00 C \nATOM 1134 N CYS A 146 22.703 33.605 56.249 1.00 0.00 N \nATOM 1135 CA CYS A 146 23.201 32.488 57.034 1.00 0.00 C \nATOM 1136 C CYS A 146 23.319 31.375 55.993 1.00 0.00 C \nATOM 1137 O CYS A 146 22.471 31.272 55.107 1.00 0.00 O \nATOM 1138 CB CYS A 146 22.210 32.087 58.129 1.00 0.00 C \nATOM 1139 SG CYS A 146 22.676 30.525 58.933 1.00 0.00 S \nATOM 1140 N VAL A 147 24.357 30.550 56.087 1.00 0.00 N \nATOM 1141 CA VAL A 147 24.567 29.493 55.100 1.00 0.00 C \nATOM 1142 C VAL A 147 23.385 28.567 54.874 1.00 0.00 C \nATOM 1143 O VAL A 147 22.555 28.364 55.765 1.00 0.00 O \nATOM 1144 CB VAL A 147 25.809 28.626 55.437 1.00 0.00 C \nATOM 1145 CG1 VAL A 147 27.073 29.488 55.395 1.00 0.00 C \nATOM 1146 CG2 VAL A 147 25.641 27.980 56.803 1.00 0.00 C \nATOM 1147 N GLN A 148 23.337 28.027 53.656 1.00 0.00 N \nATOM 1148 CA GLN A 148 22.310 27.100 53.179 1.00 0.00 C \nATOM 1149 C GLN A 148 21.378 26.547 54.248 1.00 0.00 C \nATOM 1150 O GLN A 148 20.148 26.699 54.090 1.00 0.00 O \nATOM 1151 CB GLN A 148 22.979 25.932 52.449 1.00 0.00 C \nATOM 1152 CG GLN A 148 22.044 24.776 52.162 1.00 0.00 C \nATOM 1153 CD GLN A 148 22.741 23.620 51.474 1.00 0.00 C \nATOM 1154 OE1 GLN A 148 23.712 23.062 51.995 1.00 0.00 O \nATOM 1155 NE2 GLN A 148 22.246 23.251 50.296 1.00 0.00 N \nATOM 1156 N ARG A 154 25.589 28.807 50.280 1.00 0.00 N \nATOM 1157 CA ARG A 154 25.887 30.246 50.010 1.00 0.00 C \nATOM 1158 C ARG A 154 25.306 30.714 48.685 1.00 0.00 C \nATOM 1159 O ARG A 154 25.536 30.099 47.644 1.00 0.00 O \nATOM 1160 CB ARG A 154 27.398 30.490 50.000 1.00 0.00 C \nATOM 1161 CG ARG A 154 28.050 30.337 51.359 1.00 0.00 C \nATOM 1162 CD ARG A 154 29.499 30.801 51.343 1.00 0.00 C \nATOM 1163 NE ARG A 154 29.633 32.167 50.831 1.00 0.00 N \nATOM 1164 CZ ARG A 154 30.696 32.942 51.034 1.00 0.00 C \nATOM 1165 NH1 ARG A 154 31.721 32.486 51.743 1.00 0.00 N \nATOM 1166 NH2 ARG A 154 30.736 34.175 50.531 1.00 0.00 N \nATOM 1167 N LYS A 155 24.550 31.805 48.716 1.00 0.00 N \nATOM 1168 CA LYS A 155 23.979 32.326 47.490 1.00 0.00 C \nATOM 1169 C LYS A 155 24.888 33.415 46.927 1.00 0.00 C \nATOM 1170 O LYS A 155 25.577 34.111 47.676 1.00 0.00 O \nATOM 1171 CB LYS A 155 22.574 32.876 47.750 1.00 0.00 C \nATOM 1172 CG LYS A 155 22.482 33.952 48.814 1.00 0.00 C \nATOM 1173 CD LYS A 155 21.027 34.238 49.179 1.00 0.00 C \nATOM 1174 CE LYS A 155 20.345 32.998 49.728 1.00 0.00 C \nATOM 1175 NZ LYS A 155 18.899 33.233 50.007 1.00 0.00 N \nATOM 1176 N PRO A 156 24.926 33.557 45.595 1.00 0.00 N \nATOM 1177 CA PRO A 156 25.770 34.580 44.974 1.00 0.00 C \nATOM 1178 C PRO A 156 25.151 35.959 45.177 1.00 0.00 C \nATOM 1179 O PRO A 156 23.963 36.066 45.427 1.00 0.00 O \nATOM 1180 CB PRO A 156 25.777 34.171 43.508 1.00 0.00 C \nATOM 1181 CG PRO A 156 24.402 33.632 43.323 1.00 0.00 C \nATOM 1182 CD PRO A 156 24.224 32.767 44.569 1.00 0.00 C \nATOM 1183 N ALA A 157 25.959 37.006 45.061 1.00 0.00 N \nATOM 1184 CA ALA A 157 25.461 38.362 45.234 1.00 0.00 C \nATOM 1185 C ALA A 157 24.401 38.718 44.201 1.00 0.00 C \nATOM 1186 O ALA A 157 24.465 38.276 43.059 1.00 0.00 O \nATOM 1187 CB ALA A 157 26.605 39.340 45.112 1.00 0.00 C \nATOM 1188 N ARG A 158 23.426 39.527 44.600 1.00 0.00 N \nATOM 1189 CA ARG A 158 22.427 39.980 43.645 1.00 0.00 C \nATOM 1190 C ARG A 158 23.086 41.142 42.913 1.00 0.00 C \nATOM 1191 O ARG A 158 24.070 41.710 43.399 1.00 0.00 O \nATOM 1192 CB ARG A 158 21.157 40.460 44.352 1.00 0.00 C \nATOM 1193 CG ARG A 158 20.307 39.332 44.940 1.00 0.00 C \nATOM 1194 CD ARG A 158 18.952 39.856 45.388 1.00 0.00 C \nATOM 1195 NE ARG A 158 19.090 41.001 46.286 1.00 0.00 N \nATOM 1196 CZ ARG A 158 18.066 41.666 46.809 1.00 0.00 C \nATOM 1197 NH1 ARG A 158 16.822 41.299 46.525 1.00 0.00 N \nATOM 1198 NH2 ARG A 158 18.285 42.700 47.613 1.00 0.00 N \nATOM 1199 N LEU A 159 22.551 41.479 41.748 1.00 0.00 N \nATOM 1200 CA LEU A 159 23.066 42.559 40.919 1.00 0.00 C \nATOM 1201 C LEU A 159 22.151 43.789 40.953 1.00 0.00 C \nATOM 1202 O LEU A 159 20.946 43.682 40.706 1.00 0.00 O \nATOM 1203 CB LEU A 159 23.179 42.079 39.475 1.00 0.00 C \nATOM 1204 CG LEU A 159 24.408 41.316 38.984 1.00 0.00 C \nATOM 1205 CD1 LEU A 159 25.048 40.491 40.079 1.00 0.00 C \nATOM 1206 CD2 LEU A 159 23.972 40.460 37.809 1.00 0.00 C \nATOM 1207 N ILE A 160 22.723 44.951 41.251 1.00 0.00 N \nATOM 1208 CA ILE A 160 21.954 46.187 41.289 1.00 0.00 C \nATOM 1209 C ILE A 160 22.387 46.971 40.060 1.00 0.00 C \nATOM 1210 O ILE A 160 23.580 47.074 39.792 1.00 0.00 O \nATOM 1211 CB ILE A 160 22.249 47.002 42.583 1.00 0.00 C \nATOM 1212 CG1 ILE A 160 21.459 48.310 42.587 1.00 0.00 C \nATOM 1213 CG2 ILE A 160 23.712 47.295 42.700 1.00 0.00 C \nATOM 1214 CD1 ILE A 160 19.975 48.135 42.931 1.00 0.00 C \nATOM 1215 N VAL A 161 21.421 47.500 39.312 1.00 0.00 N \nATOM 1216 CA VAL A 161 21.694 48.263 38.086 1.00 0.00 C \nATOM 1217 C VAL A 161 21.002 49.615 38.251 1.00 0.00 C \nATOM 1218 O VAL A 161 19.788 49.679 38.477 1.00 0.00 O \nATOM 1219 CB VAL A 161 21.143 47.503 36.846 1.00 0.00 C \nATOM 1220 CG1 VAL A 161 21.311 48.352 35.574 1.00 0.00 C \nATOM 1221 CG2 VAL A 161 21.881 46.152 36.695 1.00 0.00 C \nATOM 1222 N PHE A 162 21.767 50.699 38.152 1.00 0.00 N \nATOM 1223 CA PHE A 162 21.196 52.020 38.371 1.00 0.00 C \nATOM 1224 C PHE A 162 21.804 53.128 37.521 1.00 0.00 C \nATOM 1225 O PHE A 162 22.976 53.073 37.165 1.00 0.00 O \nATOM 1226 CB PHE A 162 21.342 52.396 39.856 1.00 0.00 C \nATOM 1227 CG PHE A 162 22.787 52.491 40.333 1.00 0.00 C \nATOM 1228 CD1 PHE A 162 23.488 51.351 40.742 1.00 0.00 C \nATOM 1229 CD2 PHE A 162 23.438 53.723 40.383 1.00 0.00 C \nATOM 1230 CE1 PHE A 162 24.827 51.447 41.199 1.00 0.00 C \nATOM 1231 CE2 PHE A 162 24.765 53.829 40.833 1.00 0.00 C \nATOM 1232 CZ PHE A 162 25.459 52.689 41.243 1.00 0.00 C \nATOM 1233 N PRO A 163 20.999 54.150 37.184 1.00 0.00 N \nATOM 1234 CA PRO A 163 21.456 55.281 36.378 1.00 0.00 C \nATOM 1235 C PRO A 163 22.086 56.319 37.295 1.00 0.00 C \nATOM 1236 O PRO A 163 22.016 56.203 38.521 1.00 0.00 O \nATOM 1237 CB PRO A 163 20.167 55.787 35.735 1.00 0.00 C \nATOM 1238 CG PRO A 163 19.172 55.581 36.832 1.00 0.00 C \nATOM 1239 CD PRO A 163 19.541 54.217 37.397 1.00 0.00 C \nATOM 1240 N ASP A 164 22.682 57.341 36.698 1.00 0.00 N \nATOM 1241 CA ASP A 164 23.334 58.400 37.461 1.00 0.00 C \nATOM 1242 C ASP A 164 22.355 59.169 38.337 1.00 0.00 C \nATOM 1243 O ASP A 164 21.180 59.276 38.004 1.00 0.00 O \nATOM 1244 CB ASP A 164 24.016 59.389 36.518 1.00 0.00 C \nATOM 1245 CG ASP A 164 24.865 60.388 37.262 1.00 0.00 C \nATOM 1246 OD1 ASP A 164 25.943 59.982 37.751 1.00 0.00 O \nATOM 1247 OD2 ASP A 164 24.441 61.560 37.381 1.00 0.00 O \nATOM 1248 N LEU A 165 22.857 59.701 39.452 1.00 0.00 N \nATOM 1249 CA LEU A 165 22.063 60.486 40.406 1.00 0.00 C \nATOM 1250 C LEU A 165 21.172 61.537 39.739 1.00 0.00 C \nATOM 1251 O LEU A 165 20.034 61.731 40.148 1.00 0.00 O \nATOM 1252 CB LEU A 165 23.001 61.171 41.410 1.00 0.00 C \nATOM 1253 CG LEU A 165 22.474 62.220 42.398 1.00 0.00 C \nATOM 1254 CD1 LEU A 165 21.342 61.661 43.266 1.00 0.00 C \nATOM 1255 CD2 LEU A 165 23.647 62.662 43.272 1.00 0.00 C \nATOM 1256 N GLY A 166 21.695 62.218 38.719 1.00 0.00 N \nATOM 1257 CA GLY A 166 20.910 63.225 38.022 1.00 0.00 C \nATOM 1258 C GLY A 166 19.693 62.605 37.355 1.00 0.00 C \nATOM 1259 O GLY A 166 18.597 63.178 37.356 1.00 0.00 O \nATOM 1260 N VAL A 167 19.877 61.430 36.766 1.00 0.00 N \nATOM 1261 CA VAL A 167 18.750 60.751 36.122 1.00 0.00 C \nATOM 1262 C VAL A 167 17.749 60.319 37.199 1.00 0.00 C \nATOM 1263 O VAL A 167 16.540 60.399 36.995 1.00 0.00 O \nATOM 1264 CB VAL A 167 19.206 59.499 35.335 1.00 0.00 C \nATOM 1265 CG1 VAL A 167 17.996 58.726 34.842 1.00 0.00 C \nATOM 1266 CG2 VAL A 167 20.062 59.916 34.145 1.00 0.00 C \nATOM 1267 N ARG A 168 18.254 59.856 38.342 1.00 0.00 N \nATOM 1268 CA ARG A 168 17.372 59.429 39.431 1.00 0.00 C \nATOM 1269 C ARG A 168 16.493 60.599 39.918 1.00 0.00 C \nATOM 1270 O ARG A 168 15.305 60.435 40.173 1.00 0.00 O \nATOM 1271 CB ARG A 168 18.195 58.850 40.585 1.00 0.00 C \nATOM 1272 CG ARG A 168 19.022 57.625 40.187 1.00 0.00 C \nATOM 1273 CD ARG A 168 19.376 56.722 41.382 1.00 0.00 C \nATOM 1274 NE ARG A 168 20.215 57.359 42.402 1.00 0.00 N \nATOM 1275 CZ ARG A 168 21.527 57.550 42.303 1.00 0.00 C \nATOM 1276 NH1 ARG A 168 22.187 57.161 41.219 1.00 0.00 N \nATOM 1277 NH2 ARG A 168 22.186 58.113 43.309 1.00 0.00 N \nATOM 1278 N VAL A 169 17.067 61.785 40.047 1.00 0.00 N \nATOM 1279 CA VAL A 169 16.262 62.920 40.480 1.00 0.00 C \nATOM 1280 C VAL A 169 15.172 63.152 39.422 1.00 0.00 C \nATOM 1281 O VAL A 169 14.001 63.378 39.745 1.00 0.00 O \nATOM 1282 CB VAL A 169 17.155 64.174 40.679 1.00 0.00 C \nATOM 1283 CG1 VAL A 169 16.297 65.403 40.966 1.00 0.00 C \nATOM 1284 CG2 VAL A 169 18.115 63.925 41.850 1.00 0.00 C \nATOM 1285 N CYS A 170 15.550 63.059 38.153 1.00 0.00 N \nATOM 1286 CA CYS A 170 14.597 63.227 37.065 1.00 0.00 C \nATOM 1287 C CYS A 170 13.472 62.177 37.111 1.00 0.00 C \nATOM 1288 O CYS A 170 12.318 62.502 36.843 1.00 0.00 O \nATOM 1289 CB CYS A 170 15.329 63.174 35.725 1.00 0.00 C \nATOM 1290 SG CYS A 170 16.162 64.734 35.352 1.00 0.00 S \nATOM 1291 N GLU A 171 13.804 60.928 37.454 1.00 0.00 N \nATOM 1292 CA GLU A 171 12.795 59.877 37.560 1.00 0.00 C \nATOM 1293 C GLU A 171 11.724 60.258 38.598 1.00 0.00 C \nATOM 1294 O GLU A 171 10.534 60.030 38.385 1.00 0.00 O \nATOM 1295 CB GLU A 171 13.418 58.548 38.011 1.00 0.00 C \nATOM 1296 CG GLU A 171 14.314 57.843 37.018 1.00 0.00 C \nATOM 1297 CD GLU A 171 14.729 56.471 37.538 1.00 0.00 C \nATOM 1298 OE1 GLU A 171 13.882 55.547 37.521 1.00 0.00 O \nATOM 1299 OE2 GLU A 171 15.889 56.323 37.986 1.00 0.00 O \nATOM 1300 N LYS A 172 12.157 60.798 39.734 1.00 0.00 N \nATOM 1301 CA LYS A 172 11.230 61.206 40.798 1.00 0.00 C \nATOM 1302 C LYS A 172 10.304 62.308 40.301 1.00 0.00 C \nATOM 1303 O LYS A 172 9.086 62.251 40.508 1.00 0.00 O \nATOM 1304 CB LYS A 172 11.990 61.728 42.020 1.00 0.00 C \nATOM 1305 CG LYS A 172 12.903 60.713 42.694 1.00 0.00 C \nATOM 1306 CD LYS A 172 13.737 61.385 43.772 1.00 0.00 C \nATOM 1307 CE LYS A 172 14.358 60.377 44.738 1.00 0.00 C \nATOM 1308 NZ LYS A 172 15.351 59.460 44.101 1.00 0.00 N \nATOM 1309 N MET A 173 10.873 63.311 39.639 1.00 0.00 N \nATOM 1310 CA MET A 173 10.058 64.408 39.145 1.00 0.00 C \nATOM 1311 C MET A 173 8.944 63.911 38.234 1.00 0.00 C \nATOM 1312 O MET A 173 7.783 64.286 38.387 1.00 0.00 O \nATOM 1313 CB MET A 173 10.920 65.435 38.407 1.00 0.00 C \nATOM 1314 CG MET A 173 11.911 66.162 39.309 1.00 0.00 C \nATOM 1315 SD MET A 173 12.639 67.620 38.525 1.00 0.00 S \nATOM 1316 CE MET A 173 13.823 66.865 37.501 1.00 0.00 C \nATOM 1317 N ALA A 174 9.300 63.046 37.300 1.00 0.00 N \nATOM 1318 CA ALA A 174 8.329 62.520 36.360 1.00 0.00 C \nATOM 1319 C ALA A 174 7.464 61.384 36.881 1.00 0.00 C \nATOM 1320 O ALA A 174 6.323 61.222 36.446 1.00 0.00 O \nATOM 1321 CB ALA A 174 9.041 62.052 35.104 1.00 0.00 C \nATOM 1322 N LEU A 175 7.977 60.612 37.826 1.00 0.00 N \nATOM 1323 CA LEU A 175 7.214 59.446 38.259 1.00 0.00 C \nATOM 1324 C LEU A 175 6.988 59.171 39.734 1.00 0.00 C \nATOM 1325 O LEU A 175 6.352 58.167 40.067 1.00 0.00 O \nATOM 1326 CB LEU A 175 7.848 58.192 37.620 1.00 0.00 C \nATOM 1327 CG LEU A 175 7.675 58.050 36.103 1.00 0.00 C \nATOM 1328 CD1 LEU A 175 8.796 57.222 35.499 1.00 0.00 C \nATOM 1329 CD2 LEU A 175 6.324 57.400 35.816 1.00 0.00 C \nATOM 1330 N TYR A 176 7.508 60.009 40.625 1.00 0.00 N \nATOM 1331 CA TYR A 176 7.320 59.732 42.046 1.00 0.00 C \nATOM 1332 C TYR A 176 5.845 59.678 42.429 1.00 0.00 C \nATOM 1333 O TYR A 176 5.406 58.786 43.160 1.00 0.00 O \nATOM 1334 CB TYR A 176 8.014 60.784 42.915 1.00 0.00 C \nATOM 1335 CG TYR A 176 7.867 60.490 44.388 1.00 0.00 C \nATOM 1336 CD1 TYR A 176 8.565 59.433 44.978 1.00 0.00 C \nATOM 1337 CD2 TYR A 176 6.997 61.234 45.183 1.00 0.00 C \nATOM 1338 CE1 TYR A 176 8.399 59.123 46.324 1.00 0.00 C \nATOM 1339 CE2 TYR A 176 6.822 60.931 46.524 1.00 0.00 C \nATOM 1340 CZ TYR A 176 7.523 59.875 47.089 1.00 0.00 C \nATOM 1341 OH TYR A 176 7.336 59.567 48.418 1.00 0.00 O \nATOM 1342 N ASP A 177 5.081 60.637 41.927 1.00 0.00 N \nATOM 1343 CA ASP A 177 3.669 60.708 42.254 1.00 0.00 C \nATOM 1344 C ASP A 177 2.932 59.519 41.649 1.00 0.00 C \nATOM 1345 O ASP A 177 2.053 58.926 42.283 1.00 0.00 O \nATOM 1346 CB ASP A 177 3.088 62.034 41.760 1.00 0.00 C \nATOM 1347 CG ASP A 177 1.786 62.386 42.444 1.00 0.00 C \nATOM 1348 OD1 ASP A 177 1.584 61.957 43.599 1.00 0.00 O \nATOM 1349 OD2 ASP A 177 0.966 63.101 41.834 1.00 0.00 O \nATOM 1350 N VAL A 178 3.331 59.145 40.438 1.00 0.00 N \nATOM 1351 CA VAL A 178 2.723 58.016 39.754 1.00 0.00 C \nATOM 1352 C VAL A 178 2.939 56.693 40.494 1.00 0.00 C \nATOM 1353 O VAL A 178 1.977 55.984 40.791 1.00 0.00 O \nATOM 1354 CB VAL A 178 3.275 57.883 38.302 1.00 0.00 C \nATOM 1355 CG1 VAL A 178 2.895 56.526 37.706 1.00 0.00 C \nATOM 1356 CG2 VAL A 178 2.709 58.986 37.443 1.00 0.00 C \nATOM 1357 N VAL A 179 4.190 56.356 40.801 1.00 0.00 N \nATOM 1358 CA VAL A 179 4.454 55.095 41.476 1.00 0.00 C \nATOM 1359 C VAL A 179 3.946 55.099 42.909 1.00 0.00 C \nATOM 1360 O VAL A 179 3.758 54.046 43.515 1.00 0.00 O \nATOM 1361 CB VAL A 179 5.976 54.729 41.466 1.00 0.00 C \nATOM 1362 CG1 VAL A 179 6.472 54.641 40.029 1.00 0.00 C \nATOM 1363 CG2 VAL A 179 6.779 55.741 42.259 1.00 0.00 C \nATOM 1364 N SER A 180 3.715 56.286 43.453 1.00 0.00 N \nATOM 1365 CA SER A 180 3.227 56.397 44.824 1.00 0.00 C \nATOM 1366 C SER A 180 1.714 56.270 44.890 1.00 0.00 C \nATOM 1367 O SER A 180 1.167 55.933 45.933 1.00 0.00 O \nATOM 1368 CB SER A 180 3.630 57.741 45.434 1.00 0.00 C \nATOM 1369 OG SER A 180 5.034 57.839 45.577 1.00 0.00 O \nATOM 1370 N THR A 181 1.026 56.533 43.785 1.00 0.00 N \nATOM 1371 CA THR A 181 -0.420 56.469 43.816 1.00 0.00 C \nATOM 1372 C THR A 181 -1.104 55.463 42.893 1.00 0.00 C \nATOM 1373 O THR A 181 -2.115 54.879 43.269 1.00 0.00 O \nATOM 1374 CB THR A 181 -1.015 57.874 43.580 1.00 0.00 C \nATOM 1375 OG1 THR A 181 -1.050 58.163 42.175 1.00 0.00 O \nATOM 1376 CG2 THR A 181 -0.165 58.929 44.273 1.00 0.00 C \nATOM 1377 N LEU A 182 -0.556 55.270 41.697 1.00 0.00 N \nATOM 1378 CA LEU A 182 -1.152 54.368 40.698 1.00 0.00 C \nATOM 1379 C LEU A 182 -1.441 52.921 41.120 1.00 0.00 C \nATOM 1380 O LEU A 182 -2.535 52.407 40.882 1.00 0.00 O \nATOM 1381 CB LEU A 182 -0.287 54.360 39.416 1.00 0.00 C \nATOM 1382 CG LEU A 182 -0.713 53.521 38.191 1.00 0.00 C \nATOM 1383 CD1 LEU A 182 0.169 53.868 37.001 1.00 0.00 C \nATOM 1384 CD2 LEU A 182 -0.582 52.049 38.491 1.00 0.00 C \nATOM 1385 N PRO A 183 -0.463 52.245 41.744 1.00 0.00 N \nATOM 1386 CA PRO A 183 -0.615 50.851 42.183 1.00 0.00 C \nATOM 1387 C PRO A 183 -1.872 50.533 42.988 1.00 0.00 C \nATOM 1388 O PRO A 183 -2.572 49.561 42.700 1.00 0.00 O \nATOM 1389 CB PRO A 183 0.656 50.599 42.996 1.00 0.00 C \nATOM 1390 CG PRO A 183 1.646 51.532 42.373 1.00 0.00 C \nATOM 1391 CD PRO A 183 0.830 52.792 42.195 1.00 0.00 C \nATOM 1392 N GLN A 184 -2.153 51.342 44.008 1.00 0.00 N \nATOM 1393 CA GLN A 184 -3.332 51.097 44.831 1.00 0.00 C \nATOM 1394 C GLN A 184 -4.622 51.248 44.032 1.00 0.00 C \nATOM 1395 O GLN A 184 -5.575 50.484 44.212 1.00 0.00 O \nATOM 1396 CB GLN A 184 -3.357 52.032 46.036 1.00 0.00 C \nATOM 1397 CG GLN A 184 -4.446 51.674 47.058 1.00 0.00 C \nATOM 1398 CD GLN A 184 -5.803 52.280 46.723 1.00 0.00 C \nATOM 1399 OE1 GLN A 184 -5.893 53.453 46.353 1.00 0.00 O \nATOM 1400 NE2 GLN A 184 -6.866 51.490 46.869 1.00 0.00 N \nATOM 1401 N VAL A 185 -4.658 52.228 43.142 1.00 0.00 N \nATOM 1402 CA VAL A 185 -5.850 52.426 42.341 1.00 0.00 C \nATOM 1403 C VAL A 185 -6.075 51.275 41.366 1.00 0.00 C \nATOM 1404 O VAL A 185 -7.199 50.793 41.206 1.00 0.00 O \nATOM 1405 CB VAL A 185 -5.776 53.747 41.563 1.00 0.00 C \nATOM 1406 CG1 VAL A 185 -6.926 53.842 40.556 1.00 0.00 C \nATOM 1407 CG2 VAL A 185 -5.849 54.901 42.534 1.00 0.00 C \nATOM 1408 N VAL A 186 -5.009 50.816 40.722 1.00 0.00 N \nATOM 1409 CA VAL A 186 -5.153 49.735 39.756 1.00 0.00 C \nATOM 1410 C VAL A 186 -5.440 48.371 40.389 1.00 0.00 C \nATOM 1411 O VAL A 186 -6.249 47.592 39.871 1.00 0.00 O \nATOM 1412 CB VAL A 186 -3.886 49.643 38.863 1.00 0.00 C \nATOM 1413 CG1 VAL A 186 -3.925 48.386 37.990 1.00 0.00 C \nATOM 1414 CG2 VAL A 186 -3.785 50.893 38.003 1.00 0.00 C \nATOM 1415 N MET A 187 -4.806 48.096 41.523 1.00 0.00 N \nATOM 1416 CA MET A 187 -4.946 46.793 42.167 1.00 0.00 C \nATOM 1417 C MET A 187 -5.790 46.739 43.440 1.00 0.00 C \nATOM 1418 O MET A 187 -6.017 45.667 43.987 1.00 0.00 O \nATOM 1419 CB MET A 187 -3.542 46.227 42.418 1.00 0.00 C \nATOM 1420 CG MET A 187 -2.767 45.984 41.108 1.00 0.00 C \nATOM 1421 SD MET A 187 -0.943 45.829 41.254 1.00 0.00 S \nATOM 1422 CE MET A 187 -0.886 44.778 42.738 1.00 0.00 C \nATOM 1423 N GLY A 188 -6.268 47.890 43.898 1.00 0.00 N \nATOM 1424 CA GLY A 188 -7.076 47.912 45.106 1.00 0.00 C \nATOM 1425 C GLY A 188 -6.438 47.191 46.282 1.00 0.00 C \nATOM 1426 O GLY A 188 -5.225 47.268 46.498 1.00 0.00 O \nATOM 1427 N SER A 189 -7.263 46.470 47.034 1.00 0.00 N \nATOM 1428 CA SER A 189 -6.809 45.751 48.216 1.00 0.00 C \nATOM 1429 C SER A 189 -5.669 44.776 47.957 1.00 0.00 C \nATOM 1430 O SER A 189 -4.980 44.370 48.903 1.00 0.00 O \nATOM 1431 CB SER A 189 -7.988 45.008 48.853 1.00 0.00 C \nATOM 1432 OG SER A 189 -8.540 44.070 47.941 1.00 0.00 O \nATOM 1433 N SER A 190 -5.456 44.407 46.693 1.00 0.00 N \nATOM 1434 CA SER A 190 -4.386 43.466 46.344 1.00 0.00 C \nATOM 1435 C SER A 190 -2.977 44.061 46.384 1.00 0.00 C \nATOM 1436 O SER A 190 -1.984 43.326 46.417 1.00 0.00 O \nATOM 1437 CB SER A 190 -4.641 42.849 44.966 1.00 0.00 C \nATOM 1438 OG SER A 190 -5.781 42.003 44.994 1.00 0.00 O \nATOM 1439 N TYR A 191 -2.876 45.382 46.390 1.00 0.00 N \nATOM 1440 CA TYR A 191 -1.559 46.010 46.438 1.00 0.00 C \nATOM 1441 C TYR A 191 -0.993 45.893 47.854 1.00 0.00 C \nATOM 1442 O TYR A 191 -1.499 46.525 48.776 1.00 0.00 O \nATOM 1443 CB TYR A 191 -1.664 47.481 46.031 1.00 0.00 C \nATOM 1444 CG TYR A 191 -0.330 48.187 46.017 1.00 0.00 C \nATOM 1445 CD1 TYR A 191 0.758 47.643 45.336 1.00 0.00 C \nATOM 1446 CD2 TYR A 191 -0.166 49.414 46.659 1.00 0.00 C \nATOM 1447 CE1 TYR A 191 1.984 48.312 45.288 1.00 0.00 C \nATOM 1448 CE2 TYR A 191 1.049 50.094 46.618 1.00 0.00 C \nATOM 1449 CZ TYR A 191 2.118 49.542 45.931 1.00 0.00 C \nATOM 1450 OH TYR A 191 3.310 50.228 45.878 1.00 0.00 O \nATOM 1451 N GLY A 192 0.064 45.106 48.030 1.00 0.00 N \nATOM 1452 CA GLY A 192 0.603 44.919 49.368 1.00 0.00 C \nATOM 1453 C GLY A 192 1.292 46.063 50.107 1.00 0.00 C \nATOM 1454 O GLY A 192 1.207 46.146 51.333 1.00 0.00 O \nATOM 1455 N PHE A 193 1.969 46.948 49.390 1.00 0.00 N \nATOM 1456 CA PHE A 193 2.703 48.022 50.049 1.00 0.00 C \nATOM 1457 C PHE A 193 1.874 49.103 50.735 1.00 0.00 C \nATOM 1458 O PHE A 193 2.437 50.053 51.299 1.00 0.00 O \nATOM 1459 CB PHE A 193 3.677 48.665 49.061 1.00 0.00 C \nATOM 1460 CG PHE A 193 4.782 47.745 48.619 1.00 0.00 C \nATOM 1461 CD1 PHE A 193 5.614 47.129 49.561 1.00 0.00 C \nATOM 1462 CD2 PHE A 193 4.981 47.477 47.264 1.00 0.00 C \nATOM 1463 CE1 PHE A 193 6.636 46.245 49.154 1.00 0.00 C \nATOM 1464 CE2 PHE A 193 5.996 46.603 46.843 1.00 0.00 C \nATOM 1465 CZ PHE A 193 6.826 45.982 47.791 1.00 0.00 C \nATOM 1466 N GLN A 194 0.550 48.970 50.694 1.00 0.00 N \nATOM 1467 CA GLN A 194 -0.324 49.953 51.334 1.00 0.00 C \nATOM 1468 C GLN A 194 -0.562 49.542 52.780 1.00 0.00 C \nATOM 1469 O GLN A 194 -1.060 50.330 53.585 1.00 0.00 O \nATOM 1470 CB GLN A 194 -1.679 50.038 50.612 1.00 0.00 C \nATOM 1471 CG GLN A 194 -2.554 48.791 50.807 1.00 0.00 C \nATOM 1472 CD GLN A 194 -3.815 48.805 49.950 1.00 0.00 C \nATOM 1473 OE1 GLN A 194 -4.710 49.630 50.147 1.00 0.00 O \nATOM 1474 NE2 GLN A 194 -3.884 47.893 48.991 1.00 0.00 N \nATOM 1475 N TYR A 195 -0.195 48.306 53.105 1.00 0.00 N \nATOM 1476 CA TYR A 195 -0.405 47.782 54.448 1.00 0.00 C \nATOM 1477 C TYR A 195 0.793 47.798 55.387 1.00 0.00 C \nATOM 1478 O TYR A 195 1.942 47.659 54.969 1.00 0.00 O \nATOM 1479 CB TYR A 195 -0.903 46.323 54.381 1.00 0.00 C \nATOM 1480 CG TYR A 195 -2.124 46.091 53.512 1.00 0.00 C \nATOM 1481 CD1 TYR A 195 -3.330 46.738 53.782 1.00 0.00 C \nATOM 1482 CD2 TYR A 195 -2.077 45.211 52.433 1.00 0.00 C \nATOM 1483 CE1 TYR A 195 -4.462 46.514 53.001 1.00 0.00 C \nATOM 1484 CE2 TYR A 195 -3.212 44.971 51.640 1.00 0.00 C \nATOM 1485 CZ TYR A 195 -4.401 45.626 51.931 1.00 0.00 C \nATOM 1486 OH TYR A 195 -5.526 45.391 51.161 1.00 0.00 O \nATOM 1487 N SER A 196 0.497 47.974 56.671 1.00 0.00 N \nATOM 1488 CA SER A 196 1.501 47.892 57.714 1.00 0.00 C \nATOM 1489 C SER A 196 1.462 46.381 57.988 1.00 0.00 C \nATOM 1490 O SER A 196 0.553 45.698 57.512 1.00 0.00 O \nATOM 1491 CB SER A 196 1.036 48.657 58.956 1.00 0.00 C \nATOM 1492 OG SER A 196 -0.208 48.161 59.411 1.00 0.00 O \nATOM 1493 N PRO A 197 2.433 45.834 58.743 1.00 0.00 N \nATOM 1494 CA PRO A 197 2.397 44.389 59.007 1.00 0.00 C \nATOM 1495 C PRO A 197 1.046 43.930 59.554 1.00 0.00 C \nATOM 1496 O PRO A 197 0.533 42.881 59.162 1.00 0.00 O \nATOM 1497 CB PRO A 197 3.509 44.190 60.036 1.00 0.00 C \nATOM 1498 CG PRO A 197 4.491 45.261 59.672 1.00 0.00 C \nATOM 1499 CD PRO A 197 3.598 46.460 59.393 1.00 0.00 C \nATOM 1500 N GLY A 198 0.477 44.710 60.468 1.00 0.00 N \nATOM 1501 CA GLY A 198 -0.802 44.344 61.055 1.00 0.00 C \nATOM 1502 C GLY A 198 -1.931 44.320 60.043 1.00 0.00 C \nATOM 1503 O GLY A 198 -2.760 43.403 60.035 1.00 0.00 O \nATOM 1504 N GLN A 199 -1.974 45.324 59.180 1.00 0.00 N \nATOM 1505 CA GLN A 199 -3.022 45.368 58.170 1.00 0.00 C \nATOM 1506 C GLN A 199 -2.855 44.239 57.160 1.00 0.00 C \nATOM 1507 O GLN A 199 -3.837 43.755 56.591 1.00 0.00 O \nATOM 1508 CB GLN A 199 -3.007 46.713 57.464 1.00 0.00 C \nATOM 1509 CG GLN A 199 -3.193 47.854 58.428 1.00 0.00 C \nATOM 1510 CD GLN A 199 -2.951 49.193 57.784 1.00 0.00 C \nATOM 1511 OE1 GLN A 199 -1.967 49.379 57.063 1.00 0.00 O \nATOM 1512 NE2 GLN A 199 -3.841 50.143 58.047 1.00 0.00 N \nATOM 1513 N ARG A 200 -1.612 43.817 56.936 1.00 0.00 N \nATOM 1514 CA ARG A 200 -1.353 42.734 55.991 1.00 0.00 C \nATOM 1515 C ARG A 200 -1.987 41.470 56.564 1.00 0.00 C \nATOM 1516 O ARG A 200 -2.731 40.753 55.884 1.00 0.00 O \nATOM 1517 CB ARG A 200 0.155 42.525 55.807 1.00 0.00 C \nATOM 1518 CG ARG A 200 0.500 41.570 54.680 1.00 0.00 C \nATOM 1519 CD ARG A 200 2.013 41.385 54.566 1.00 0.00 C \nATOM 1520 NE ARG A 200 2.340 40.253 53.702 1.00 0.00 N \nATOM 1521 CZ ARG A 200 2.384 40.304 52.373 1.00 0.00 C \nATOM 1522 NH1 ARG A 200 2.130 41.443 51.744 1.00 0.00 N \nATOM 1523 NH2 ARG A 200 2.668 39.207 51.675 1.00 0.00 N \nATOM 1524 N VAL A 201 -1.689 41.204 57.829 1.00 0.00 N \nATOM 1525 CA VAL A 201 -2.230 40.035 58.514 1.00 0.00 C \nATOM 1526 C VAL A 201 -3.754 40.076 58.434 1.00 0.00 C \nATOM 1527 O VAL A 201 -4.413 39.077 58.107 1.00 0.00 O \nATOM 1528 CB VAL A 201 -1.806 40.030 59.998 1.00 0.00 C \nATOM 1529 CG1 VAL A 201 -2.555 38.940 60.741 1.00 0.00 C \nATOM 1530 CG2 VAL A 201 -0.296 39.827 60.097 1.00 0.00 C \nATOM 1531 N GLU A 202 -4.293 41.252 58.727 1.00 0.00 N \nATOM 1532 CA GLU A 202 -5.727 41.488 58.696 1.00 0.00 C \nATOM 1533 C GLU A 202 -6.312 41.160 57.322 1.00 0.00 C \nATOM 1534 O GLU A 202 -7.333 40.466 57.223 1.00 0.00 O \nATOM 1535 CB GLU A 202 -6.020 42.946 59.050 1.00 0.00 C \nATOM 1536 CG GLU A 202 -7.498 43.292 59.037 1.00 0.00 C \nATOM 1537 CD GLU A 202 -7.771 44.669 59.593 1.00 0.00 C \nATOM 1538 OE1 GLU A 202 -7.329 45.669 58.982 1.00 0.00 O \nATOM 1539 OE2 GLU A 202 -8.425 44.750 60.654 1.00 0.00 O \nATOM 1540 N PHE A 203 -5.669 41.651 56.263 1.00 0.00 N \nATOM 1541 CA PHE A 203 -6.159 41.376 54.920 1.00 0.00 C \nATOM 1542 C PHE A 203 -6.095 39.890 54.631 1.00 0.00 C \nATOM 1543 O PHE A 203 -7.030 39.316 54.078 1.00 0.00 O \nATOM 1544 CB PHE A 203 -5.341 42.114 53.861 1.00 0.00 C \nATOM 1545 CG PHE A 203 -5.815 41.855 52.455 1.00 0.00 C \nATOM 1546 CD1 PHE A 203 -7.063 42.309 52.036 1.00 0.00 C \nATOM 1547 CD2 PHE A 203 -5.026 41.144 51.558 1.00 0.00 C \nATOM 1548 CE1 PHE A 203 -7.519 42.052 50.752 1.00 0.00 C \nATOM 1549 CE2 PHE A 203 -5.475 40.882 50.270 1.00 0.00 C \nATOM 1550 CZ PHE A 203 -6.722 41.340 49.866 1.00 0.00 C \nATOM 1551 N LEU A 204 -4.985 39.265 55.007 1.00 0.00 N \nATOM 1552 CA LEU A 204 -4.813 37.839 54.763 1.00 0.00 C \nATOM 1553 C LEU A 204 -5.843 36.997 55.506 1.00 0.00 C \nATOM 1554 O LEU A 204 -6.424 36.067 54.937 1.00 0.00 O \nATOM 1555 CB LEU A 204 -3.392 37.403 55.151 1.00 0.00 C \nATOM 1556 CG LEU A 204 -2.286 37.814 54.165 1.00 0.00 C \nATOM 1557 CD1 LEU A 204 -0.925 37.640 54.818 1.00 0.00 C \nATOM 1558 CD2 LEU A 204 -2.384 36.976 52.886 1.00 0.00 C \nATOM 1559 N VAL A 205 -6.064 37.323 56.776 1.00 0.00 N \nATOM 1560 CA VAL A 205 -7.021 36.577 57.588 1.00 0.00 C \nATOM 1561 C VAL A 205 -8.447 36.753 57.073 1.00 0.00 C \nATOM 1562 O VAL A 205 -9.177 35.780 56.938 1.00 0.00 O \nATOM 1563 CB VAL A 205 -6.964 37.008 59.077 1.00 0.00 C \nATOM 1564 CG1 VAL A 205 -8.028 36.249 59.884 1.00 0.00 C \nATOM 1565 CG2 VAL A 205 -5.586 36.726 59.637 1.00 0.00 C \nATOM 1566 N ASN A 206 -8.838 37.988 56.782 1.00 0.00 N \nATOM 1567 CA ASN A 206 -10.176 38.234 56.269 1.00 0.00 C \nATOM 1568 C ASN A 206 -10.378 37.558 54.923 1.00 0.00 C \nATOM 1569 O ASN A 206 -11.444 37.001 54.652 1.00 0.00 O \nATOM 1570 CB ASN A 206 -10.445 39.736 56.138 1.00 0.00 C \nATOM 1571 CG ASN A 206 -10.642 40.399 57.479 1.00 0.00 C \nATOM 1572 OD1 ASN A 206 -11.040 39.745 58.433 1.00 0.00 O \nATOM 1573 ND2 ASN A 206 -10.382 41.703 57.558 1.00 0.00 N \nATOM 1574 N THR A 207 -9.358 37.604 54.073 1.00 0.00 N \nATOM 1575 CA THR A 207 -9.465 36.978 52.763 1.00 0.00 C \nATOM 1576 C THR A 207 -9.595 35.478 52.950 1.00 0.00 C \nATOM 1577 O THR A 207 -10.419 34.822 52.313 1.00 0.00 O \nATOM 1578 CB THR A 207 -8.224 37.256 51.895 1.00 0.00 C \nATOM 1579 OG1 THR A 207 -8.146 38.659 51.609 1.00 0.00 O \nATOM 1580 CG2 THR A 207 -8.296 36.468 50.592 1.00 0.00 C \nATOM 1581 N TRP A 208 -8.770 34.935 53.829 1.00 0.00 N \nATOM 1582 CA TRP A 208 -8.800 33.514 54.093 1.00 0.00 C \nATOM 1583 C TRP A 208 -10.172 33.086 54.614 1.00 0.00 C \nATOM 1584 O TRP A 208 -10.676 32.026 54.240 1.00 0.00 O \nATOM 1585 CB TRP A 208 -7.704 33.171 55.097 1.00 0.00 C \nATOM 1586 CG TRP A 208 -7.522 31.721 55.318 1.00 0.00 C \nATOM 1587 CD1 TRP A 208 -8.064 30.973 56.316 1.00 0.00 C \nATOM 1588 CD2 TRP A 208 -6.732 30.832 54.525 1.00 0.00 C \nATOM 1589 NE1 TRP A 208 -7.657 29.669 56.202 1.00 0.00 N \nATOM 1590 CE2 TRP A 208 -6.840 29.552 55.113 1.00 0.00 C \nATOM 1591 CE3 TRP A 208 -5.946 30.992 53.376 1.00 0.00 C \nATOM 1592 CZ2 TRP A 208 -6.184 28.431 54.587 1.00 0.00 C \nATOM 1593 CZ3 TRP A 208 -5.291 29.870 52.851 1.00 0.00 C \nATOM 1594 CH2 TRP A 208 -5.417 28.608 53.461 1.00 0.00 C \nATOM 1595 N LYS A 209 -10.768 33.926 55.458 1.00 0.00 N \nATOM 1596 CA LYS A 209 -12.085 33.656 56.041 1.00 0.00 C \nATOM 1597 C LYS A 209 -13.240 33.881 55.061 1.00 0.00 C \nATOM 1598 O LYS A 209 -14.354 33.418 55.288 1.00 0.00 O \nATOM 1599 CB LYS A 209 -12.330 34.548 57.261 1.00 0.00 C \nATOM 1600 CG LYS A 209 -11.497 34.239 58.494 1.00 0.00 C \nATOM 1601 CD LYS A 209 -11.903 35.200 59.595 1.00 0.00 C \nATOM 1602 CE LYS A 209 -11.113 34.996 60.866 1.00 0.00 C \nATOM 1603 NZ LYS A 209 -11.504 36.028 61.872 1.00 0.00 N \nATOM 1604 N SER A 210 -12.977 34.595 53.976 1.00 0.00 N \nATOM 1605 CA SER A 210 -14.024 34.873 53.003 1.00 0.00 C \nATOM 1606 C SER A 210 -14.289 33.712 52.055 1.00 0.00 C \nATOM 1607 O SER A 210 -15.218 33.776 51.250 1.00 0.00 O \nATOM 1608 CB SER A 210 -13.667 36.114 52.188 1.00 0.00 C \nATOM 1609 OG SER A 210 -12.593 35.828 51.308 1.00 0.00 O \nATOM 1610 N LYS A 211 -13.480 32.658 52.134 1.00 0.00 N \nATOM 1611 CA LYS A 211 -13.669 31.501 51.260 1.00 0.00 C \nATOM 1612 C LYS A 211 -14.363 30.392 52.047 1.00 0.00 C \nATOM 1613 O LYS A 211 -14.181 30.286 53.259 1.00 0.00 O \nATOM 1614 CB LYS A 211 -12.324 30.968 50.739 1.00 0.00 C \nATOM 1615 CG LYS A 211 -11.316 32.027 50.293 1.00 0.00 C \nATOM 1616 CD LYS A 211 -11.853 32.930 49.198 1.00 0.00 C \nATOM 1617 CE LYS A 211 -10.811 33.980 48.807 1.00 0.00 C \nATOM 1618 NZ LYS A 211 -11.339 34.971 47.821 1.00 0.00 N \nATOM 1619 N LYS A 212 -15.147 29.565 51.358 1.00 0.00 N \nATOM 1620 CA LYS A 212 -15.846 28.465 52.016 1.00 0.00 C \nATOM 1621 C LYS A 212 -14.817 27.411 52.407 1.00 0.00 C \nATOM 1622 O LYS A 212 -14.832 26.896 53.524 1.00 0.00 O \nATOM 1623 CB LYS A 212 -16.899 27.865 51.077 1.00 0.00 C \nATOM 1624 CG LYS A 212 -17.945 28.870 50.610 1.00 0.00 C \nATOM 1625 CD LYS A 212 -19.083 28.193 49.856 1.00 0.00 C \nATOM 1626 CE LYS A 212 -20.092 29.206 49.337 1.00 0.00 C \nATOM 1627 NZ LYS A 212 -19.538 30.027 48.222 1.00 0.00 N \nATOM 1628 N ASN A 213 -13.931 27.090 51.472 1.00 0.00 N \nATOM 1629 CA ASN A 213 -12.859 26.135 51.707 1.00 0.00 C \nATOM 1630 C ASN A 213 -11.588 26.790 51.164 1.00 0.00 C \nATOM 1631 O ASN A 213 -11.194 26.567 50.016 1.00 0.00 O \nATOM 1632 CB ASN A 213 -13.125 24.810 50.984 1.00 0.00 C \nATOM 1633 CG ASN A 213 -14.464 24.201 51.357 1.00 0.00 C \nATOM 1634 OD1 ASN A 213 -14.843 24.181 52.529 1.00 0.00 O \nATOM 1635 ND2 ASN A 213 -15.185 23.690 50.359 1.00 0.00 N \nATOM 1636 N PRO A 214 -10.927 27.607 51.995 1.00 0.00 N \nATOM 1637 CA PRO A 214 -9.704 28.301 51.588 1.00 0.00 C \nATOM 1638 C PRO A 214 -8.520 27.431 51.216 1.00 0.00 C \nATOM 1639 O PRO A 214 -8.278 26.372 51.797 1.00 0.00 O \nATOM 1640 CB PRO A 214 -9.403 29.205 52.785 1.00 0.00 C \nATOM 1641 CG PRO A 214 -9.896 28.394 53.938 1.00 0.00 C \nATOM 1642 CD PRO A 214 -11.230 27.874 53.414 1.00 0.00 C \nATOM 1643 N MET A 215 -7.792 27.904 50.213 1.00 0.00 N \nATOM 1644 CA MET A 215 -6.585 27.266 49.718 1.00 0.00 C \nATOM 1645 C MET A 215 -5.774 28.460 49.256 1.00 0.00 C \nATOM 1646 O MET A 215 -6.328 29.429 48.736 1.00 0.00 O \nATOM 1647 CB MET A 215 -6.879 26.336 48.536 1.00 0.00 C \nATOM 1648 CG MET A 215 -5.648 25.626 47.951 1.00 0.00 C \nATOM 1649 SD MET A 215 -4.547 26.679 46.902 1.00 0.00 S \nATOM 1650 CE MET A 215 -5.199 26.317 45.251 1.00 0.00 C \nATOM 1651 N GLY A 216 -4.470 28.402 49.472 1.00 0.00 N \nATOM 1652 CA GLY A 216 -3.623 29.499 49.070 1.00 0.00 C \nATOM 1653 C GLY A 216 -2.234 29.012 48.782 1.00 0.00 C \nATOM 1654 O GLY A 216 -1.849 27.910 49.186 1.00 0.00 O \nATOM 1655 N PHE A 217 -1.483 29.835 48.060 1.00 0.00 N \nATOM 1656 CA PHE A 217 -0.119 29.506 47.732 1.00 0.00 C \nATOM 1657 C PHE A 217 0.651 30.777 47.429 1.00 0.00 C \nATOM 1658 O PHE A 217 0.074 31.826 47.115 1.00 0.00 O \nATOM 1659 CB PHE A 217 -0.055 28.568 46.519 1.00 0.00 C \nATOM 1660 CG PHE A 217 -0.691 29.126 45.279 1.00 0.00 C \nATOM 1661 CD1 PHE A 217 -2.062 28.979 45.057 1.00 0.00 C \nATOM 1662 CD2 PHE A 217 0.075 29.808 44.334 1.00 0.00 C \nATOM 1663 CE1 PHE A 217 -2.668 29.506 43.910 1.00 0.00 C \nATOM 1664 CE2 PHE A 217 -0.514 30.342 43.179 1.00 0.00 C \nATOM 1665 CZ PHE A 217 -1.890 30.192 42.966 1.00 0.00 C \nATOM 1666 N SER A 218 1.961 30.689 47.564 1.00 0.00 N \nATOM 1667 CA SER A 218 2.818 31.810 47.237 1.00 0.00 C \nATOM 1668 C SER A 218 3.412 31.329 45.927 1.00 0.00 C \nATOM 1669 O SER A 218 3.569 30.124 45.737 1.00 0.00 O \nATOM 1670 CB SER A 218 3.919 31.982 48.291 1.00 0.00 C \nATOM 1671 OG SER A 218 4.680 30.797 48.430 1.00 0.00 O \nATOM 1672 N TYR A 219 3.690 32.243 45.009 1.00 0.00 N \nATOM 1673 CA TYR A 219 4.285 31.860 43.729 1.00 0.00 C \nATOM 1674 C TYR A 219 5.623 32.575 43.572 1.00 0.00 C \nATOM 1675 O TYR A 219 5.673 33.791 43.441 1.00 0.00 O \nATOM 1676 CB TYR A 219 3.370 32.240 42.562 1.00 0.00 C \nATOM 1677 CG TYR A 219 3.891 31.771 41.222 1.00 0.00 C \nATOM 1678 CD1 TYR A 219 3.570 30.501 40.733 1.00 0.00 C \nATOM 1679 CD2 TYR A 219 4.741 32.575 40.460 1.00 0.00 C \nATOM 1680 CE1 TYR A 219 4.079 30.040 39.516 1.00 0.00 C \nATOM 1681 CE2 TYR A 219 5.271 32.119 39.237 1.00 0.00 C \nATOM 1682 CZ TYR A 219 4.935 30.851 38.771 1.00 0.00 C \nATOM 1683 OH TYR A 219 5.462 30.386 37.574 1.00 0.00 O \nATOM 1684 N ASP A 220 6.704 31.812 43.604 1.00 0.00 N \nATOM 1685 CA ASP A 220 8.028 32.385 43.460 1.00 0.00 C \nATOM 1686 C ASP A 220 8.486 32.338 42.009 1.00 0.00 C \nATOM 1687 O ASP A 220 8.741 31.266 41.462 1.00 0.00 O \nATOM 1688 CB ASP A 220 9.019 31.629 44.347 1.00 0.00 C \nATOM 1689 CG ASP A 220 10.456 32.018 44.075 1.00 0.00 C \nATOM 1690 OD1 ASP A 220 10.752 33.236 44.041 1.00 0.00 O \nATOM 1691 OD2 ASP A 220 11.286 31.101 43.900 1.00 0.00 O \nATOM 1692 N THR A 221 8.572 33.502 41.378 1.00 0.00 N \nATOM 1693 CA THR A 221 9.026 33.556 39.994 1.00 0.00 C \nATOM 1694 C THR A 221 10.536 33.465 40.095 1.00 0.00 C \nATOM 1695 O THR A 221 11.131 34.048 40.996 1.00 0.00 O \nATOM 1696 CB THR A 221 8.659 34.897 39.300 1.00 0.00 C \nATOM 1697 OG1 THR A 221 7.235 35.040 39.212 1.00 0.00 O \nATOM 1698 CG2 THR A 221 9.254 34.946 37.908 1.00 0.00 C \nATOM 1699 N ARG A 222 11.157 32.722 39.191 1.00 0.00 N \nATOM 1700 CA ARG A 222 12.610 32.592 39.221 1.00 0.00 C \nATOM 1701 C ARG A 222 13.265 33.840 38.610 1.00 0.00 C \nATOM 1702 O ARG A 222 12.978 34.197 37.465 1.00 0.00 O \nATOM 1703 CB ARG A 222 13.026 31.332 38.463 1.00 0.00 C \nATOM 1704 CG ARG A 222 14.509 31.136 38.368 1.00 0.00 C \nATOM 1705 CD ARG A 222 14.897 31.022 36.916 1.00 0.00 C \nATOM 1706 NE ARG A 222 14.294 29.853 36.284 1.00 0.00 N \nATOM 1707 CZ ARG A 222 14.078 29.738 34.976 1.00 0.00 C \nATOM 1708 NH1 ARG A 222 14.410 30.728 34.153 1.00 0.00 N \nATOM 1709 NH2 ARG A 222 13.540 28.628 34.486 1.00 0.00 N \nATOM 1710 N CYS A 223 14.128 34.505 39.383 1.00 0.00 N \nATOM 1711 CA CYS A 223 14.813 35.719 38.914 1.00 0.00 C \nATOM 1712 C CYS A 223 13.808 36.605 38.171 1.00 0.00 C \nATOM 1713 O CYS A 223 13.943 36.851 36.973 1.00 0.00 O \nATOM 1714 CB CYS A 223 15.966 35.333 37.979 1.00 0.00 C \nATOM 1715 SG CYS A 223 17.228 34.308 38.800 1.00 0.00 S \nATOM 1716 N PHE A 224 12.800 37.082 38.887 1.00 0.00 N \nATOM 1717 CA PHE A 224 11.754 37.897 38.281 1.00 0.00 C \nATOM 1718 C PHE A 224 12.254 39.037 37.396 1.00 0.00 C \nATOM 1719 O PHE A 224 11.780 39.193 36.272 1.00 0.00 O \nATOM 1720 CB PHE A 224 10.812 38.447 39.362 1.00 0.00 C \nATOM 1721 CG PHE A 224 9.549 39.088 38.810 1.00 0.00 C \nATOM 1722 CD1 PHE A 224 9.563 40.401 38.339 1.00 0.00 C \nATOM 1723 CD2 PHE A 224 8.340 38.379 38.783 1.00 0.00 C \nATOM 1724 CE1 PHE A 224 8.395 41.005 37.855 1.00 0.00 C \nATOM 1725 CE2 PHE A 224 7.165 38.970 38.302 1.00 0.00 C \nATOM 1726 CZ PHE A 224 7.192 40.290 37.836 1.00 0.00 C \nATOM 1727 N ASP A 225 13.205 39.830 37.887 1.00 0.00 N \nATOM 1728 CA ASP A 225 13.700 40.947 37.088 1.00 0.00 C \nATOM 1729 C ASP A 225 14.152 40.523 35.702 1.00 0.00 C \nATOM 1730 O ASP A 225 13.911 41.226 34.723 1.00 0.00 O \nATOM 1731 CB ASP A 225 14.858 41.650 37.793 1.00 0.00 C \nATOM 1732 CG ASP A 225 14.404 42.470 38.982 1.00 0.00 C \nATOM 1733 OD1 ASP A 225 13.178 42.589 39.222 1.00 0.00 O \nATOM 1734 OD2 ASP A 225 15.288 43.007 39.672 1.00 0.00 O \nATOM 1735 N SER A 226 14.813 39.371 35.626 1.00 0.00 N \nATOM 1736 CA SER A 226 15.308 38.843 34.356 1.00 0.00 C \nATOM 1737 C SER A 226 14.207 38.332 33.444 1.00 0.00 C \nATOM 1738 O SER A 226 14.410 38.231 32.232 1.00 0.00 O \nATOM 1739 CB SER A 226 16.310 37.711 34.600 1.00 0.00 C \nATOM 1740 OG SER A 226 17.533 38.225 35.095 1.00 0.00 O \nATOM 1741 N THR A 227 13.049 38.014 34.013 1.00 0.00 N \nATOM 1742 CA THR A 227 11.933 37.509 33.209 1.00 0.00 C \nATOM 1743 C THR A 227 11.132 38.640 32.576 1.00 0.00 C \nATOM 1744 O THR A 227 10.353 38.415 31.643 1.00 0.00 O \nATOM 1745 CB THR A 227 10.962 36.630 34.053 1.00 0.00 C \nATOM 1746 OG1 THR A 227 10.222 37.455 34.969 1.00 0.00 O \nATOM 1747 CG2 THR A 227 11.742 35.556 34.841 1.00 0.00 C \nATOM 1748 N VAL A 228 11.328 39.862 33.072 1.00 0.00 N \nATOM 1749 CA VAL A 228 10.605 41.023 32.536 1.00 0.00 C \nATOM 1750 C VAL A 228 11.164 41.350 31.161 1.00 0.00 C \nATOM 1751 O VAL A 228 12.346 41.660 31.016 1.00 0.00 O \nATOM 1752 CB VAL A 228 10.739 42.249 33.481 1.00 0.00 C \nATOM 1753 CG1 VAL A 228 10.017 43.490 32.894 1.00 0.00 C \nATOM 1754 CG2 VAL A 228 10.150 41.893 34.850 1.00 0.00 C \nATOM 1755 N THR A 229 10.286 41.298 30.162 1.00 0.00 N \nATOM 1756 CA THR A 229 10.629 41.526 28.758 1.00 0.00 C \nATOM 1757 C THR A 229 10.390 42.962 28.284 1.00 0.00 C \nATOM 1758 O THR A 229 9.770 43.755 28.985 1.00 0.00 O \nATOM 1759 CB THR A 229 9.769 40.643 27.867 1.00 0.00 C \nATOM 1760 OG1 THR A 229 8.403 41.076 27.983 1.00 0.00 O \nATOM 1761 CG2 THR A 229 9.881 39.145 28.292 1.00 0.00 C \nATOM 1762 N GLU A 230 10.848 43.275 27.068 1.00 0.00 N \nATOM 1763 CA GLU A 230 10.628 44.613 26.508 1.00 0.00 C \nATOM 1764 C GLU A 230 9.116 44.857 26.431 1.00 0.00 C \nATOM 1765 O GLU A 230 8.645 45.948 26.708 1.00 0.00 O \nATOM 1766 CB GLU A 230 11.224 44.748 25.094 1.00 0.00 C \nATOM 1767 CG GLU A 230 11.022 46.158 24.500 1.00 0.00 C \nATOM 1768 CD GLU A 230 11.557 46.307 23.083 1.00 0.00 C \nATOM 1769 OE1 GLU A 230 12.623 45.725 22.788 1.00 0.00 O \nATOM 1770 OE2 GLU A 230 10.923 47.025 22.269 1.00 0.00 O \nATOM 1771 N ASN A 231 8.360 43.836 26.036 1.00 0.00 N \nATOM 1772 CA ASN A 231 6.907 43.953 25.957 1.00 0.00 C \nATOM 1773 C ASN A 231 6.342 44.371 27.309 1.00 0.00 C \nATOM 1774 O ASN A 231 5.530 45.300 27.404 1.00 0.00 O \nATOM 1775 CB ASN A 231 6.261 42.614 25.584 1.00 0.00 C \nATOM 1776 CG ASN A 231 4.759 42.609 25.859 1.00 0.00 C \nATOM 1777 OD1 ASN A 231 3.964 43.061 25.026 1.00 0.00 O \nATOM 1778 ND2 ASN A 231 4.364 42.133 27.059 1.00 0.00 N \nATOM 1779 N ASP A 232 6.762 43.660 28.352 1.00 0.00 N \nATOM 1780 CA ASP A 232 6.308 43.952 29.704 1.00 0.00 C \nATOM 1781 C ASP A 232 6.556 45.427 30.065 1.00 0.00 C \nATOM 1782 O ASP A 232 5.688 46.105 30.627 1.00 0.00 O \nATOM 1783 CB ASP A 232 7.042 43.068 30.722 1.00 0.00 C \nATOM 1784 CG ASP A 232 6.685 41.600 30.600 1.00 0.00 C \nATOM 1785 OD1 ASP A 232 5.658 41.285 29.958 1.00 0.00 O \nATOM 1786 OD2 ASP A 232 7.431 40.762 31.165 1.00 0.00 O \nATOM 1787 N ILE A 233 7.748 45.910 29.743 1.00 0.00 N \nATOM 1788 CA ILE A 233 8.110 47.278 30.083 1.00 0.00 C \nATOM 1789 C ILE A 233 7.348 48.321 29.267 1.00 0.00 C \nATOM 1790 O ILE A 233 7.082 49.411 29.761 1.00 0.00 O \nATOM 1791 CB ILE A 233 9.643 47.448 30.002 1.00 0.00 C \nATOM 1792 CG1 ILE A 233 10.296 46.525 31.053 1.00 0.00 C \nATOM 1793 CG2 ILE A 233 10.050 48.887 30.281 1.00 0.00 C \nATOM 1794 CD1 ILE A 233 11.793 46.234 30.798 1.00 0.00 C \nATOM 1795 N ARG A 234 6.972 47.985 28.035 1.00 0.00 N \nATOM 1796 CA ARG A 234 6.184 48.914 27.228 1.00 0.00 C \nATOM 1797 C ARG A 234 4.733 48.849 27.702 1.00 0.00 C \nATOM 1798 O ARG A 234 4.020 49.844 27.671 1.00 0.00 O \nATOM 1799 CB ARG A 234 6.272 48.574 25.734 1.00 0.00 C \nATOM 1800 CG ARG A 234 7.656 48.817 25.145 1.00 0.00 C \nATOM 1801 CD ARG A 234 7.679 48.537 23.645 1.00 0.00 C \nATOM 1802 NE ARG A 234 8.999 48.768 23.069 1.00 0.00 N \nATOM 1803 CZ ARG A 234 9.517 49.965 22.830 1.00 0.00 C \nATOM 1804 NH1 ARG A 234 8.824 51.061 23.116 1.00 0.00 N \nATOM 1805 NH2 ARG A 234 10.733 50.062 22.301 1.00 0.00 N \nATOM 1806 N VAL A 235 4.285 47.687 28.149 1.00 0.00 N \nATOM 1807 CA VAL A 235 2.914 47.598 28.649 1.00 0.00 C \nATOM 1808 C VAL A 235 2.824 48.414 29.952 1.00 0.00 C \nATOM 1809 O VAL A 235 1.822 49.066 30.214 1.00 0.00 O \nATOM 1810 CB VAL A 235 2.498 46.134 28.902 1.00 0.00 C \nATOM 1811 CG1 VAL A 235 1.252 46.088 29.774 1.00 0.00 C \nATOM 1812 CG2 VAL A 235 2.239 45.439 27.577 1.00 0.00 C \nATOM 1813 N GLU A 236 3.872 48.369 30.769 1.00 0.00 N \nATOM 1814 CA GLU A 236 3.891 49.161 31.987 1.00 0.00 C \nATOM 1815 C GLU A 236 3.765 50.652 31.602 1.00 0.00 C \nATOM 1816 O GLU A 236 3.001 51.397 32.207 1.00 0.00 O \nATOM 1817 CB GLU A 236 5.202 48.944 32.737 1.00 0.00 C \nATOM 1818 CG GLU A 236 5.283 47.645 33.519 1.00 0.00 C \nATOM 1819 CD GLU A 236 6.714 47.218 33.798 1.00 0.00 C \nATOM 1820 OE1 GLU A 236 7.621 48.080 33.772 1.00 0.00 O \nATOM 1821 OE2 GLU A 236 6.927 46.009 34.052 1.00 0.00 O \nATOM 1822 N GLU A 237 4.513 51.089 30.595 1.00 0.00 N \nATOM 1823 CA GLU A 237 4.421 52.486 30.188 1.00 0.00 C \nATOM 1824 C GLU A 237 3.012 52.819 29.680 1.00 0.00 C \nATOM 1825 O GLU A 237 2.487 53.908 29.941 1.00 0.00 O \nATOM 1826 CB GLU A 237 5.427 52.803 29.081 1.00 0.00 C \nATOM 1827 CG GLU A 237 5.697 54.312 28.956 1.00 0.00 C \nATOM 1828 CD GLU A 237 5.727 54.795 27.526 1.00 0.00 C \nATOM 1829 OE1 GLU A 237 6.257 54.058 26.671 1.00 0.00 O \nATOM 1830 OE2 GLU A 237 5.241 55.916 27.253 1.00 0.00 O \nATOM 1831 N SER A 238 2.395 51.888 28.954 1.00 0.00 N \nATOM 1832 CA SER A 238 1.059 52.155 28.437 1.00 0.00 C \nATOM 1833 C SER A 238 0.112 52.379 29.619 1.00 0.00 C \nATOM 1834 O SER A 238 -0.862 53.136 29.512 1.00 0.00 O \nATOM 1835 CB SER A 238 0.557 51.008 27.532 1.00 0.00 C \nATOM 1836 OG SER A 238 0.308 49.818 28.263 1.00 0.00 O \nATOM 1837 N ILE A 239 0.401 51.734 30.748 1.00 0.00 N \nATOM 1838 CA ILE A 239 -0.430 51.914 31.937 1.00 0.00 C \nATOM 1839 C ILE A 239 -0.155 53.305 32.516 1.00 0.00 C \nATOM 1840 O ILE A 239 -1.090 54.080 32.736 1.00 0.00 O \nATOM 1841 CB ILE A 239 -0.151 50.828 33.002 1.00 0.00 C \nATOM 1842 CG1 ILE A 239 -0.538 49.457 32.439 1.00 0.00 C \nATOM 1843 CG2 ILE A 239 -0.963 51.111 34.276 1.00 0.00 C \nATOM 1844 CD1 ILE A 239 -0.162 48.301 33.325 1.00 0.00 C \nATOM 1845 N TYR A 240 1.117 53.632 32.749 1.00 0.00 N \nATOM 1846 CA TYR A 240 1.451 54.959 33.285 1.00 0.00 C \nATOM 1847 C TYR A 240 0.820 56.064 32.434 1.00 0.00 C \nATOM 1848 O TYR A 240 0.257 57.019 32.968 1.00 0.00 O \nATOM 1849 CB TYR A 240 2.960 55.214 33.315 1.00 0.00 C \nATOM 1850 CG TYR A 240 3.801 54.179 34.024 1.00 0.00 C \nATOM 1851 CD1 TYR A 240 3.360 53.548 35.190 1.00 0.00 C \nATOM 1852 CD2 TYR A 240 5.068 53.861 33.542 1.00 0.00 C \nATOM 1853 CE1 TYR A 240 4.177 52.618 35.851 1.00 0.00 C \nATOM 1854 CE2 TYR A 240 5.884 52.947 34.188 1.00 0.00 C \nATOM 1855 CZ TYR A 240 5.437 52.325 35.335 1.00 0.00 C \nATOM 1856 OH TYR A 240 6.244 51.375 35.921 1.00 0.00 O \nATOM 1857 N GLN A 241 0.920 55.935 31.114 1.00 0.00 N \nATOM 1858 CA GLN A 241 0.368 56.943 30.210 1.00 0.00 C \nATOM 1859 C GLN A 241 -1.156 57.072 30.279 1.00 0.00 C \nATOM 1860 O GLN A 241 -1.715 58.026 29.743 1.00 0.00 O \nATOM 1861 CB GLN A 241 0.817 56.671 28.761 1.00 0.00 C \nATOM 1862 CG GLN A 241 2.339 56.763 28.537 1.00 0.00 C \nATOM 1863 CD GLN A 241 2.882 58.199 28.576 1.00 0.00 C \nATOM 1864 OE1 GLN A 241 2.140 59.165 28.807 1.00 0.00 O \nATOM 1865 NE2 GLN A 241 4.183 58.339 28.353 1.00 0.00 N \nATOM 1866 N CYS A 242 -1.837 56.129 30.935 1.00 0.00 N \nATOM 1867 CA CYS A 242 -3.289 56.241 31.059 1.00 0.00 C \nATOM 1868 C CYS A 242 -3.640 57.349 32.036 1.00 0.00 C \nATOM 1869 O CYS A 242 -4.723 57.926 31.958 1.00 0.00 O \nATOM 1870 CB CYS A 242 -3.914 54.933 31.548 1.00 0.00 C \nATOM 1871 SG CYS A 242 -4.017 53.676 30.266 1.00 0.00 S \nATOM 1872 N CYS A 243 -2.728 57.641 32.960 1.00 0.00 N \nATOM 1873 CA CYS A 243 -2.969 58.678 33.959 1.00 0.00 C \nATOM 1874 C CYS A 243 -3.146 60.065 33.339 1.00 0.00 C \nATOM 1875 O CYS A 243 -2.740 60.307 32.200 1.00 0.00 O \nATOM 1876 CB CYS A 243 -1.806 58.745 34.966 1.00 0.00 C \nATOM 1877 SG CYS A 243 -1.464 57.199 35.864 1.00 0.00 S \nATOM 1878 N ASP A 244 -3.769 60.961 34.097 1.00 0.00 N \nATOM 1879 CA ASP A 244 -3.956 62.354 33.684 1.00 0.00 C \nATOM 1880 C ASP A 244 -2.576 62.908 34.047 1.00 0.00 C \nATOM 1881 O ASP A 244 -2.191 62.910 35.218 1.00 0.00 O \nATOM 1882 CB ASP A 244 -5.041 62.999 34.556 1.00 0.00 C \nATOM 1883 CG ASP A 244 -5.233 64.490 34.285 1.00 0.00 C \nATOM 1884 OD1 ASP A 244 -4.268 65.194 33.921 1.00 0.00 O \nATOM 1885 OD2 ASP A 244 -6.372 64.969 34.473 1.00 0.00 O \nATOM 1886 N LEU A 245 -1.823 63.363 33.060 1.00 0.00 N \nATOM 1887 CA LEU A 245 -0.471 63.845 33.323 1.00 0.00 C \nATOM 1888 C LEU A 245 -0.126 65.113 32.562 1.00 0.00 C \nATOM 1889 O LEU A 245 -0.685 65.386 31.510 1.00 0.00 O \nATOM 1890 CB LEU A 245 0.539 62.779 32.898 1.00 0.00 C \nATOM 1891 CG LEU A 245 0.450 61.352 33.448 1.00 0.00 C \nATOM 1892 CD1 LEU A 245 1.206 60.403 32.531 1.00 0.00 C \nATOM 1893 CD2 LEU A 245 1.023 61.303 34.831 1.00 0.00 C \nATOM 1894 N ALA A 246 0.836 65.859 33.090 1.00 0.00 N \nATOM 1895 CA ALA A 246 1.318 67.076 32.446 1.00 0.00 C \nATOM 1896 C ALA A 246 2.030 66.624 31.174 1.00 0.00 C \nATOM 1897 O ALA A 246 2.636 65.551 31.144 1.00 0.00 O \nATOM 1898 CB ALA A 246 2.301 67.793 33.362 1.00 0.00 C \nATOM 1899 N PRO A 247 1.961 67.426 30.103 1.00 0.00 N \nATOM 1900 CA PRO A 247 2.624 67.049 28.850 1.00 0.00 C \nATOM 1901 C PRO A 247 4.111 66.711 29.011 1.00 0.00 C \nATOM 1902 O PRO A 247 4.623 65.803 28.371 1.00 0.00 O \nATOM 1903 CB PRO A 247 2.405 68.274 27.966 1.00 0.00 C \nATOM 1904 CG PRO A 247 1.066 68.763 28.412 1.00 0.00 C \nATOM 1905 CD PRO A 247 1.155 68.649 29.927 1.00 0.00 C \nATOM 1906 N GLU A 248 4.794 67.445 29.875 1.00 0.00 N \nATOM 1907 CA GLU A 248 6.217 67.241 30.099 1.00 0.00 C \nATOM 1908 C GLU A 248 6.447 65.905 30.806 1.00 0.00 C \nATOM 1909 O GLU A 248 7.462 65.241 30.596 1.00 0.00 O \nATOM 1910 CB GLU A 248 6.761 68.407 30.929 1.00 0.00 C \nATOM 1911 CG GLU A 248 8.227 68.729 30.719 1.00 0.00 C \nATOM 1912 CD GLU A 248 8.615 70.109 31.248 1.00 0.00 C \nATOM 1913 OE1 GLU A 248 9.810 70.329 31.531 1.00 0.00 O \nATOM 1914 OE2 GLU A 248 7.731 70.982 31.369 1.00 0.00 O \nATOM 1915 N ALA A 249 5.490 65.509 31.639 1.00 0.00 N \nATOM 1916 CA ALA A 249 5.596 64.249 32.360 1.00 0.00 C \nATOM 1917 C ALA A 249 5.471 63.076 31.393 1.00 0.00 C \nATOM 1918 O ALA A 249 6.205 62.093 31.509 1.00 0.00 O \nATOM 1919 CB ALA A 249 4.519 64.163 33.440 1.00 0.00 C \nATOM 1920 N ARG A 250 4.547 63.183 30.440 1.00 0.00 N \nATOM 1921 CA ARG A 250 4.345 62.126 29.449 1.00 0.00 C \nATOM 1922 C ARG A 250 5.600 61.905 28.625 1.00 0.00 C \nATOM 1923 O ARG A 250 6.019 60.765 28.394 1.00 0.00 O \nATOM 1924 CB ARG A 250 3.198 62.473 28.493 1.00 0.00 C \nATOM 1925 CG ARG A 250 1.831 62.529 29.149 1.00 0.00 C \nATOM 1926 CD ARG A 250 0.732 62.803 28.130 1.00 0.00 C \nATOM 1927 NE ARG A 250 -0.580 62.815 28.774 1.00 0.00 N \nATOM 1928 CZ ARG A 250 -1.168 61.743 29.302 1.00 0.00 C \nATOM 1929 NH1 ARG A 250 -0.564 60.559 29.261 1.00 0.00 N \nATOM 1930 NH2 ARG A 250 -2.357 61.858 29.881 1.00 0.00 N \nATOM 1931 N GLN A 251 6.189 63.005 28.169 1.00 0.00 N \nATOM 1932 CA GLN A 251 7.392 62.937 27.360 1.00 0.00 C \nATOM 1933 C GLN A 251 8.522 62.336 28.178 1.00 0.00 C \nATOM 1934 O GLN A 251 9.238 61.453 27.702 1.00 0.00 O \nATOM 1935 CB GLN A 251 7.792 64.336 26.872 1.00 0.00 C \nATOM 1936 CG GLN A 251 9.028 64.353 25.993 1.00 0.00 C \nATOM 1937 CD GLN A 251 8.765 63.767 24.622 1.00 0.00 C \nATOM 1938 OE1 GLN A 251 7.702 63.205 24.370 1.00 0.00 O \nATOM 1939 NE2 GLN A 251 9.731 63.895 23.728 1.00 0.00 N \nATOM 1940 N ALA A 252 8.688 62.810 29.409 1.00 0.00 N \nATOM 1941 CA ALA A 252 9.753 62.287 30.265 1.00 0.00 C \nATOM 1942 C ALA A 252 9.598 60.782 30.498 1.00 0.00 C \nATOM 1943 O ALA A 252 10.578 60.039 30.464 1.00 0.00 O \nATOM 1944 CB ALA A 252 9.766 63.011 31.596 1.00 0.00 C \nATOM 1945 N ILE A 253 8.364 60.337 30.722 1.00 0.00 N \nATOM 1946 CA ILE A 253 8.093 58.923 30.964 1.00 0.00 C \nATOM 1947 C ILE A 253 8.324 58.076 29.719 1.00 0.00 C \nATOM 1948 O ILE A 253 8.814 56.950 29.796 1.00 0.00 O \nATOM 1949 CB ILE A 253 6.658 58.740 31.475 1.00 0.00 C \nATOM 1950 CG1 ILE A 253 6.566 59.274 32.908 1.00 0.00 C \nATOM 1951 CG2 ILE A 253 6.257 57.273 31.419 1.00 0.00 C \nATOM 1952 CD1 ILE A 253 5.151 59.488 33.373 1.00 0.00 C \nATOM 1953 N LYS A 254 7.960 58.612 28.567 1.00 0.00 N \nATOM 1954 CA LYS A 254 8.187 57.910 27.319 1.00 0.00 C \nATOM 1955 C LYS A 254 9.695 57.772 27.108 1.00 0.00 C \nATOM 1956 O LYS A 254 10.200 56.702 26.749 1.00 0.00 O \nATOM 1957 CB LYS A 254 7.587 58.712 26.162 1.00 0.00 C \nATOM 1958 CG LYS A 254 8.011 58.240 24.775 1.00 0.00 C \nATOM 1959 CD LYS A 254 7.259 59.018 23.705 1.00 0.00 C \nATOM 1960 CE LYS A 254 7.584 58.523 22.302 1.00 0.00 C \nATOM 1961 NZ LYS A 254 8.993 58.806 21.893 1.00 0.00 N \nATOM 1962 N SER A 255 10.409 58.870 27.335 1.00 0.00 N \nATOM 1963 CA SER A 255 11.855 58.895 27.145 1.00 0.00 C \nATOM 1964 C SER A 255 12.581 57.963 28.118 1.00 0.00 C \nATOM 1965 O SER A 255 13.455 57.201 27.706 1.00 0.00 O \nATOM 1966 CB SER A 255 12.374 60.334 27.285 1.00 0.00 C \nATOM 1967 OG SER A 255 13.747 60.420 26.952 1.00 0.00 O \nATOM 1968 N LEU A 256 12.208 58.006 29.396 1.00 0.00 N \nATOM 1969 CA LEU A 256 12.838 57.141 30.381 1.00 0.00 C \nATOM 1970 C LEU A 256 12.557 55.682 30.030 1.00 0.00 C \nATOM 1971 O LEU A 256 13.401 54.818 30.227 1.00 0.00 O \nATOM 1972 CB LEU A 256 12.325 57.459 31.790 1.00 0.00 C \nATOM 1973 CG LEU A 256 12.887 58.743 32.420 1.00 0.00 C \nATOM 1974 CD1 LEU A 256 12.031 59.182 33.589 1.00 0.00 C \nATOM 1975 CD2 LEU A 256 14.326 58.500 32.858 1.00 0.00 C \nATOM 1976 N THR A 257 11.373 55.403 29.501 1.00 0.00 N \nATOM 1977 CA THR A 257 11.056 54.023 29.134 1.00 0.00 C \nATOM 1978 C THR A 257 11.935 53.513 27.979 1.00 0.00 C \nATOM 1979 O THR A 257 12.536 52.447 28.081 1.00 0.00 O \nATOM 1980 CB THR A 257 9.568 53.864 28.737 1.00 0.00 C \nATOM 1981 OG1 THR A 257 8.744 54.127 29.880 1.00 0.00 O \nATOM 1982 CG2 THR A 257 9.288 52.424 28.246 1.00 0.00 C \nATOM 1983 N GLU A 258 12.012 54.273 26.890 1.00 0.00 N \nATOM 1984 CA GLU A 258 12.811 53.858 25.733 1.00 0.00 C \nATOM 1985 C GLU A 258 14.302 53.818 26.016 1.00 0.00 C \nATOM 1986 O GLU A 258 15.007 52.913 25.571 1.00 0.00 O \nATOM 1987 CB GLU A 258 12.624 54.817 24.549 1.00 0.00 C \nATOM 1988 CG GLU A 258 11.243 54.884 23.916 1.00 0.00 C \nATOM 1989 CD GLU A 258 10.809 53.576 23.263 1.00 0.00 C \nATOM 1990 OE1 GLU A 258 11.657 52.820 22.735 1.00 0.00 O \nATOM 1991 OE2 GLU A 258 9.592 53.319 23.267 1.00 0.00 O \nATOM 1992 N ARG A 259 14.775 54.812 26.753 1.00 0.00 N \nATOM 1993 CA ARG A 259 16.194 54.973 27.038 1.00 0.00 C \nATOM 1994 C ARG A 259 16.749 54.259 28.256 1.00 0.00 C \nATOM 1995 O ARG A 259 17.928 53.924 28.295 1.00 0.00 O \nATOM 1996 CB ARG A 259 16.507 56.472 27.159 1.00 0.00 C \nATOM 1997 CG ARG A 259 16.092 57.270 25.923 1.00 0.00 C \nATOM 1998 CD ARG A 259 16.373 58.741 26.097 1.00 0.00 C \nATOM 1999 NE ARG A 259 17.801 59.003 26.250 1.00 0.00 N \nATOM 2000 CZ ARG A 259 18.307 60.211 26.481 1.00 0.00 C \nATOM 2001 NH1 ARG A 259 17.499 61.259 26.583 1.00 0.00 N \nATOM 2002 NH2 ARG A 259 19.616 60.373 26.612 1.00 0.00 N \nATOM 2003 N LEU A 260 15.914 54.032 29.258 1.00 0.00 N \nATOM 2004 CA LEU A 260 16.407 53.395 30.470 1.00 0.00 C \nATOM 2005 C LEU A 260 15.678 52.128 30.926 1.00 0.00 C \nATOM 2006 O LEU A 260 16.298 51.090 31.133 1.00 0.00 O \nATOM 2007 CB LEU A 260 16.384 54.413 31.605 1.00 0.00 C \nATOM 2008 CG LEU A 260 16.689 53.907 33.016 1.00 0.00 C \nATOM 2009 CD1 LEU A 260 18.139 53.479 33.093 1.00 0.00 C \nATOM 2010 CD2 LEU A 260 16.401 55.004 34.038 1.00 0.00 C \nATOM 2011 N TYR A 261 14.366 52.223 31.099 1.00 0.00 N \nATOM 2012 CA TYR A 261 13.601 51.083 31.586 1.00 0.00 C \nATOM 2013 C TYR A 261 13.642 49.815 30.737 1.00 0.00 C \nATOM 2014 O TYR A 261 13.775 48.723 31.275 1.00 0.00 O \nATOM 2015 CB TYR A 261 12.159 51.515 31.858 1.00 0.00 C \nATOM 2016 CG TYR A 261 12.086 52.672 32.855 1.00 0.00 C \nATOM 2017 CD1 TYR A 261 13.089 52.839 33.828 1.00 0.00 C \nATOM 2018 CD2 TYR A 261 11.006 53.560 32.863 1.00 0.00 C \nATOM 2019 CE1 TYR A 261 13.024 53.850 34.778 1.00 0.00 C \nATOM 2020 CE2 TYR A 261 10.926 54.584 33.820 1.00 0.00 C \nATOM 2021 CZ TYR A 261 11.941 54.719 34.771 1.00 0.00 C \nATOM 2022 OH TYR A 261 11.889 55.724 35.704 1.00 0.00 O \nATOM 2023 N ILE A 262 13.554 49.957 29.421 1.00 0.00 N \nATOM 2024 CA ILE A 262 13.573 48.808 28.527 1.00 0.00 C \nATOM 2025 C ILE A 262 14.936 48.115 28.465 1.00 0.00 C \nATOM 2026 O ILE A 262 15.030 46.906 28.246 1.00 0.00 O \nATOM 2027 CB ILE A 262 13.142 49.244 27.104 1.00 0.00 C \nATOM 2028 CG1 ILE A 262 11.657 49.632 27.113 1.00 0.00 C \nATOM 2029 CG2 ILE A 262 13.420 48.138 26.097 1.00 0.00 C \nATOM 2030 CD1 ILE A 262 11.122 49.965 25.733 1.00 0.00 C \nATOM 2031 N GLY A 263 16.001 48.874 28.659 1.00 0.00 N \nATOM 2032 CA GLY A 263 17.310 48.262 28.602 1.00 0.00 C \nATOM 2033 C GLY A 263 18.393 49.298 28.452 1.00 0.00 C \nATOM 2034 O GLY A 263 18.108 50.490 28.348 1.00 0.00 O \nATOM 2035 N GLY A 264 19.643 48.856 28.455 1.00 0.00 N \nATOM 2036 CA GLY A 264 20.721 49.807 28.306 1.00 0.00 C \nATOM 2037 C GLY A 264 22.078 49.212 28.590 1.00 0.00 C \nATOM 2038 O GLY A 264 22.170 48.100 29.108 1.00 0.00 O \nATOM 2039 N PRO A 265 23.154 49.934 28.251 1.00 0.00 N \nATOM 2040 CA PRO A 265 24.513 49.443 28.487 1.00 0.00 C \nATOM 2041 C PRO A 265 24.799 49.396 29.993 1.00 0.00 C \nATOM 2042 O PRO A 265 24.237 50.172 30.773 1.00 0.00 O \nATOM 2043 CB PRO A 265 25.379 50.444 27.712 1.00 0.00 C \nATOM 2044 CG PRO A 265 24.594 51.737 27.833 1.00 0.00 C \nATOM 2045 CD PRO A 265 23.160 51.283 27.645 1.00 0.00 C \nATOM 2046 N LEU A 266 25.653 48.459 30.385 1.00 0.00 N \nATOM 2047 CA LEU A 266 26.031 48.242 31.776 1.00 0.00 C \nATOM 2048 C LEU A 266 27.509 48.526 31.953 1.00 0.00 C \nATOM 2049 O LEU A 266 28.347 47.897 31.301 1.00 0.00 O \nATOM 2050 CB LEU A 266 25.789 46.780 32.154 1.00 0.00 C \nATOM 2051 CG LEU A 266 24.367 46.231 32.021 1.00 0.00 C \nATOM 2052 CD1 LEU A 266 24.390 44.714 32.005 1.00 0.00 C \nATOM 2053 CD2 LEU A 266 23.525 46.757 33.174 1.00 0.00 C \nATOM 2054 N THR A 267 27.825 49.443 32.862 1.00 0.00 N \nATOM 2055 CA THR A 267 29.205 49.815 33.141 1.00 0.00 C \nATOM 2056 C THR A 267 29.581 49.420 34.565 1.00 0.00 C \nATOM 2057 O THR A 267 28.780 49.597 35.491 1.00 0.00 O \nATOM 2058 CB THR A 267 29.373 51.327 32.986 1.00 0.00 C \nATOM 2059 OG1 THR A 267 28.826 51.716 31.725 1.00 0.00 O \nATOM 2060 CG2 THR A 267 30.848 51.727 33.036 1.00 0.00 C \nATOM 2061 N ASN A 268 30.784 48.871 34.747 1.00 0.00 N \nATOM 2062 CA ASN A 268 31.215 48.483 36.088 1.00 0.00 C \nATOM 2063 C ASN A 268 31.847 49.679 36.797 1.00 0.00 C \nATOM 2064 O ASN A 268 32.030 50.746 36.192 1.00 0.00 O \nATOM 2065 CB ASN A 268 32.193 47.287 36.047 1.00 0.00 C \nATOM 2066 CG ASN A 268 33.534 47.622 35.396 1.00 0.00 C \nATOM 2067 OD1 ASN A 268 33.913 48.790 35.254 1.00 0.00 O \nATOM 2068 ND2 ASN A 268 34.268 46.583 35.014 1.00 0.00 N \nATOM 2069 N SER A 269 32.192 49.503 38.070 1.00 0.00 N \nATOM 2070 CA SER A 269 32.765 50.581 38.862 1.00 0.00 C \nATOM 2071 C SER A 269 34.082 51.134 38.315 1.00 0.00 C \nATOM 2072 O SER A 269 34.514 52.213 38.711 1.00 0.00 O \nATOM 2073 CB SER A 269 32.981 50.110 40.302 1.00 0.00 C \nATOM 2074 OG SER A 269 34.017 49.147 40.353 1.00 0.00 O \nATOM 2075 N LYS A 270 34.726 50.393 37.420 1.00 0.00 N \nATOM 2076 CA LYS A 270 35.987 50.844 36.850 1.00 0.00 C \nATOM 2077 C LYS A 270 35.792 51.619 35.554 1.00 0.00 C \nATOM 2078 O LYS A 270 36.737 52.202 35.037 1.00 0.00 O \nATOM 2079 CB LYS A 270 36.917 49.656 36.599 1.00 0.00 C \nATOM 2080 CG LYS A 270 37.322 48.903 37.869 1.00 0.00 C \nATOM 2081 CD LYS A 270 38.590 48.075 37.672 1.00 0.00 C \nATOM 2082 CE LYS A 270 38.496 47.173 36.452 1.00 0.00 C \nATOM 2083 NZ LYS A 270 39.725 46.342 36.322 1.00 0.00 N \nATOM 2084 N GLY A 271 34.570 51.628 35.031 1.00 0.00 N \nATOM 2085 CA GLY A 271 34.317 52.350 33.798 1.00 0.00 C \nATOM 2086 C GLY A 271 34.340 51.490 32.545 1.00 0.00 C \nATOM 2087 O GLY A 271 34.297 52.011 31.438 1.00 0.00 O \nATOM 2088 N GLN A 272 34.418 50.171 32.706 1.00 0.00 N \nATOM 2089 CA GLN A 272 34.428 49.270 31.552 1.00 0.00 C \nATOM 2090 C GLN A 272 33.003 48.868 31.175 1.00 0.00 C \nATOM 2091 O GLN A 272 32.116 48.795 32.034 1.00 0.00 O \nATOM 2092 CB GLN A 272 35.220 47.995 31.868 1.00 0.00 C \nATOM 2093 CG GLN A 272 36.674 48.213 32.218 1.00 0.00 C \nATOM 2094 CD GLN A 272 37.351 46.934 32.662 1.00 0.00 C \nATOM 2095 OE1 GLN A 272 36.943 46.310 33.647 1.00 0.00 O \nATOM 2096 NE2 GLN A 272 38.395 46.535 31.940 1.00 0.00 N \nATOM 2097 N ASN A 273 32.786 48.603 29.890 1.00 0.00 N \nATOM 2098 CA ASN A 273 31.474 48.171 29.432 1.00 0.00 C \nATOM 2099 C ASN A 273 31.372 46.690 29.758 1.00 0.00 C \nATOM 2100 O ASN A 273 32.155 45.890 29.249 1.00 0.00 O \nATOM 2101 CB ASN A 273 31.325 48.346 27.922 1.00 0.00 C \nATOM 2102 CG ASN A 273 30.018 47.764 27.411 1.00 0.00 C \nATOM 2103 OD1 ASN A 273 29.972 47.126 26.361 1.00 0.00 O \nATOM 2104 ND2 ASN A 273 28.953 47.975 28.162 1.00 0.00 N \nATOM 2105 N CYS A 274 30.410 46.332 30.608 1.00 0.00 N \nATOM 2106 CA CYS A 274 30.205 44.947 31.016 1.00 0.00 C \nATOM 2107 C CYS A 274 29.265 44.202 30.102 1.00 0.00 C \nATOM 2108 O CYS A 274 29.295 42.976 30.040 1.00 0.00 O \nATOM 2109 CB CYS A 274 29.623 44.892 32.426 1.00 0.00 C \nATOM 2110 SG CYS A 274 30.833 45.132 33.685 1.00 0.00 S \nATOM 2111 N GLY A 275 28.407 44.947 29.415 1.00 0.00 N \nATOM 2112 CA GLY A 275 27.444 44.325 28.534 1.00 0.00 C \nATOM 2113 C GLY A 275 26.177 45.140 28.349 1.00 0.00 C \nATOM 2114 O GLY A 275 26.193 46.370 28.468 1.00 0.00 O \nATOM 2115 N TYR A 276 25.073 44.441 28.101 1.00 0.00 N \nATOM 2116 CA TYR A 276 23.796 45.080 27.833 1.00 0.00 C \nATOM 2117 C TYR A 276 22.635 44.388 28.525 1.00 0.00 C \nATOM 2118 O TYR A 276 22.579 43.153 28.586 1.00 0.00 O \nATOM 2119 CB TYR A 276 23.524 45.073 26.318 1.00 0.00 C \nATOM 2120 CG TYR A 276 22.616 46.196 25.871 1.00 0.00 C \nATOM 2121 CD1 TYR A 276 23.129 47.475 25.639 1.00 0.00 C \nATOM 2122 CD2 TYR A 276 21.242 45.999 25.718 1.00 0.00 C \nATOM 2123 CE1 TYR A 276 22.298 48.532 25.266 1.00 0.00 C \nATOM 2124 CE2 TYR A 276 20.395 47.061 25.341 1.00 0.00 C \nATOM 2125 CZ TYR A 276 20.942 48.321 25.120 1.00 0.00 C \nATOM 2126 OH TYR A 276 20.138 49.374 24.766 1.00 0.00 O \nATOM 2127 N ARG A 277 21.701 45.192 29.029 1.00 0.00 N \nATOM 2128 CA ARG A 277 20.505 44.694 29.723 1.00 0.00 C \nATOM 2129 C ARG A 277 19.265 44.867 28.855 1.00 0.00 C \nATOM 2130 O ARG A 277 19.100 45.904 28.205 1.00 0.00 O \nATOM 2131 CB ARG A 277 20.305 45.469 31.040 1.00 0.00 C \nATOM 2132 CG ARG A 277 18.942 45.300 31.734 1.00 0.00 C \nATOM 2133 CD ARG A 277 18.820 46.210 32.976 1.00 0.00 C \nATOM 2134 NE ARG A 277 19.036 47.629 32.652 1.00 0.00 N \nATOM 2135 CZ ARG A 277 18.101 48.451 32.183 1.00 0.00 C \nATOM 2136 NH1 ARG A 277 16.857 48.027 31.989 1.00 0.00 N \nATOM 2137 NH2 ARG A 277 18.422 49.693 31.858 1.00 0.00 N \nATOM 2138 N ARG A 278 18.407 43.846 28.824 1.00 0.00 N \nATOM 2139 CA ARG A 278 17.154 43.929 28.075 1.00 0.00 C \nATOM 2140 C ARG A 278 16.025 43.448 28.982 1.00 0.00 C \nATOM 2141 O ARG A 278 15.003 42.941 28.501 1.00 0.00 O \nATOM 2142 CB ARG A 278 17.189 43.060 26.808 1.00 0.00 C \nATOM 2143 CG ARG A 278 18.302 43.433 25.836 1.00 0.00 C \nATOM 2144 CD ARG A 278 18.177 42.670 24.535 1.00 0.00 C \nATOM 2145 NE ARG A 278 19.444 42.678 23.810 1.00 0.00 N \nATOM 2146 CZ ARG A 278 20.551 42.053 24.210 1.00 0.00 C \nATOM 2147 NH1 ARG A 278 21.651 42.141 23.473 1.00 0.00 N \nATOM 2148 NH2 ARG A 278 20.563 41.329 25.328 1.00 0.00 N \nATOM 2149 N CYS A 279 16.214 43.601 30.289 1.00 0.00 N \nATOM 2150 CA CYS A 279 15.206 43.180 31.264 1.00 0.00 C \nATOM 2151 C CYS A 279 15.062 44.279 32.298 1.00 0.00 C \nATOM 2152 O CYS A 279 15.603 45.366 32.105 1.00 0.00 O \nATOM 2153 CB CYS A 279 15.623 41.852 31.934 1.00 0.00 C \nATOM 2154 SG CYS A 279 17.173 41.896 32.874 1.00 0.00 S \nATOM 2155 N ARG A 280 14.325 44.025 33.383 1.00 0.00 N \nATOM 2156 CA ARG A 280 14.145 45.032 34.444 1.00 0.00 C \nATOM 2157 C ARG A 280 15.455 45.463 35.120 1.00 0.00 C \nATOM 2158 O ARG A 280 16.286 44.619 35.472 1.00 0.00 O \nATOM 2159 CB ARG A 280 13.207 44.501 35.551 1.00 0.00 C \nATOM 2160 CG ARG A 280 13.090 45.423 36.791 1.00 0.00 C \nATOM 2161 CD ARG A 280 12.097 46.564 36.561 1.00 0.00 C \nATOM 2162 NE ARG A 280 10.755 45.988 36.520 1.00 0.00 N \nATOM 2163 CZ ARG A 280 9.771 46.381 35.725 1.00 0.00 C \nATOM 2164 NH1 ARG A 280 9.933 47.396 34.873 1.00 0.00 N \nATOM 2165 NH2 ARG A 280 8.637 45.702 35.741 1.00 0.00 N \nATOM 2166 N ALA A 281 15.641 46.777 35.285 1.00 0.00 N \nATOM 2167 CA ALA A 281 16.803 47.305 35.997 1.00 0.00 C \nATOM 2168 C ALA A 281 16.369 47.260 37.462 1.00 0.00 C \nATOM 2169 O ALA A 281 15.276 47.721 37.813 1.00 0.00 O \nATOM 2170 CB ALA A 281 17.097 48.756 35.586 1.00 0.00 C \nATOM 2171 N SER A 282 17.210 46.711 38.320 1.00 0.00 N \nATOM 2172 CA SER A 282 16.854 46.591 39.728 1.00 0.00 C \nATOM 2173 C SER A 282 16.936 47.877 40.526 1.00 0.00 C \nATOM 2174 O SER A 282 16.354 47.976 41.602 1.00 0.00 O \nATOM 2175 CB SER A 282 17.731 45.539 40.402 1.00 0.00 C \nATOM 2176 OG SER A 282 19.098 45.914 40.357 1.00 0.00 O \nATOM 2177 N GLY A 283 17.643 48.863 39.994 1.00 0.00 N \nATOM 2178 CA GLY A 283 17.807 50.103 40.723 1.00 0.00 C \nATOM 2179 C GLY A 283 17.234 51.364 40.120 1.00 0.00 C \nATOM 2180 O GLY A 283 17.930 52.378 40.059 1.00 0.00 O \nATOM 2181 N VAL A 284 15.990 51.306 39.656 1.00 0.00 N \nATOM 2182 CA VAL A 284 15.332 52.489 39.109 1.00 0.00 C \nATOM 2183 C VAL A 284 14.081 52.767 39.951 1.00 0.00 C \nATOM 2184 O VAL A 284 13.653 51.923 40.741 1.00 0.00 O \nATOM 2185 CB VAL A 284 14.967 52.335 37.587 1.00 0.00 C \nATOM 2186 CG1 VAL A 284 16.248 52.399 36.759 1.00 0.00 C \nATOM 2187 CG2 VAL A 284 14.196 51.013 37.320 1.00 0.00 C \nATOM 2188 N LEU A 285 13.494 53.943 39.791 1.00 0.00 N \nATOM 2189 CA LEU A 285 12.330 54.308 40.594 1.00 0.00 C \nATOM 2190 C LEU A 285 11.112 53.403 40.400 1.00 0.00 C \nATOM 2191 O LEU A 285 10.378 53.124 41.351 1.00 0.00 O \nATOM 2192 CB LEU A 285 11.927 55.757 40.319 1.00 0.00 C \nATOM 2193 CG LEU A 285 10.714 56.232 41.131 1.00 0.00 C \nATOM 2194 CD1 LEU A 285 10.928 56.005 42.620 1.00 0.00 C \nATOM 2195 CD2 LEU A 285 10.490 57.706 40.844 1.00 0.00 C \nATOM 2196 N THR A 286 10.909 52.961 39.163 1.00 0.00 N \nATOM 2197 CA THR A 286 9.784 52.103 38.797 1.00 0.00 C \nATOM 2198 C THR A 286 10.013 50.605 39.010 1.00 0.00 C \nATOM 2199 O THR A 286 9.185 49.800 38.584 1.00 0.00 O \nATOM 2200 CB THR A 286 9.435 52.283 37.312 1.00 0.00 C \nATOM 2201 OG1 THR A 286 10.640 52.140 36.548 1.00 0.00 O \nATOM 2202 CG2 THR A 286 8.791 53.655 37.047 1.00 0.00 C \nATOM 2203 N THR A 287 11.119 50.208 39.634 1.00 0.00 N \nATOM 2204 CA THR A 287 11.330 48.769 39.832 1.00 0.00 C \nATOM 2205 C THR A 287 10.209 48.103 40.647 1.00 0.00 C \nATOM 2206 O THR A 287 9.683 47.070 40.258 1.00 0.00 O \nATOM 2207 CB THR A 287 12.667 48.477 40.525 1.00 0.00 C \nATOM 2208 OG1 THR A 287 13.734 49.028 39.751 1.00 0.00 O \nATOM 2209 CG2 THR A 287 12.885 46.948 40.641 1.00 0.00 C \nATOM 2210 N SER A 288 9.845 48.687 41.781 1.00 0.00 N \nATOM 2211 CA SER A 288 8.794 48.113 42.610 1.00 0.00 C \nATOM 2212 C SER A 288 7.401 48.205 41.964 1.00 0.00 C \nATOM 2213 O SER A 288 6.672 47.205 41.875 1.00 0.00 O \nATOM 2214 CB SER A 288 8.796 48.796 43.976 1.00 0.00 C \nATOM 2215 OG SER A 288 7.762 48.258 44.764 1.00 0.00 O \nATOM 2216 N CYS A 289 7.033 49.398 41.505 1.00 0.00 N \nATOM 2217 CA CYS A 289 5.744 49.589 40.860 1.00 0.00 C \nATOM 2218 C CYS A 289 5.645 48.738 39.594 1.00 0.00 C \nATOM 2219 O CYS A 289 4.652 48.046 39.386 1.00 0.00 O \nATOM 2220 CB CYS A 289 5.540 51.070 40.514 1.00 0.00 C \nATOM 2221 SG CYS A 289 3.929 51.407 39.761 1.00 0.00 S \nATOM 2222 N GLY A 290 6.668 48.782 38.743 1.00 0.00 N \nATOM 2223 CA GLY A 290 6.636 47.982 37.531 1.00 0.00 C \nATOM 2224 C GLY A 290 6.514 46.484 37.834 1.00 0.00 C \nATOM 2225 O GLY A 290 5.695 45.795 37.237 1.00 0.00 O \nATOM 2226 N ASN A 291 7.327 45.970 38.749 1.00 0.00 N \nATOM 2227 CA ASN A 291 7.234 44.555 39.092 1.00 0.00 C \nATOM 2228 C ASN A 291 5.862 44.178 39.670 1.00 0.00 C \nATOM 2229 O ASN A 291 5.303 43.121 39.349 1.00 0.00 O \nATOM 2230 CB ASN A 291 8.331 44.176 40.082 1.00 0.00 C \nATOM 2231 CG ASN A 291 9.671 44.013 39.419 1.00 0.00 C \nATOM 2232 OD1 ASN A 291 9.771 44.008 38.187 1.00 0.00 O \nATOM 2233 ND2 ASN A 291 10.722 43.867 40.230 1.00 0.00 N \nATOM 2234 N THR A 292 5.318 45.035 40.524 1.00 0.00 N \nATOM 2235 CA THR A 292 4.018 44.764 41.120 1.00 0.00 C \nATOM 2236 C THR A 292 2.941 44.723 40.029 1.00 0.00 C \nATOM 2237 O THR A 292 2.139 43.783 39.976 1.00 0.00 O \nATOM 2238 CB THR A 292 3.633 45.835 42.173 1.00 0.00 C \nATOM 2239 OG1 THR A 292 4.635 45.900 43.203 1.00 0.00 O \nATOM 2240 CG2 THR A 292 2.300 45.483 42.814 1.00 0.00 C \nATOM 2241 N LEU A 293 2.903 45.731 39.166 1.00 0.00 N \nATOM 2242 CA LEU A 293 1.901 45.746 38.093 1.00 0.00 C \nATOM 2243 C LEU A 293 2.020 44.510 37.193 1.00 0.00 C \nATOM 2244 O LEU A 293 1.030 43.837 36.892 1.00 0.00 O \nATOM 2245 CB LEU A 293 2.049 47.013 37.237 1.00 0.00 C \nATOM 2246 CG LEU A 293 1.630 48.338 37.886 1.00 0.00 C \nATOM 2247 CD1 LEU A 293 2.019 49.527 36.976 1.00 0.00 C \nATOM 2248 CD2 LEU A 293 0.121 48.313 38.131 1.00 0.00 C \nATOM 2249 N THR A 294 3.242 44.218 36.769 1.00 0.00 N \nATOM 2250 CA THR A 294 3.502 43.086 35.896 1.00 0.00 C \nATOM 2251 C THR A 294 3.191 41.743 36.567 1.00 0.00 C \nATOM 2252 O THR A 294 2.595 40.858 35.960 1.00 0.00 O \nATOM 2253 CB THR A 294 4.962 43.133 35.420 1.00 0.00 C \nATOM 2254 OG1 THR A 294 5.153 44.333 34.651 1.00 0.00 O \nATOM 2255 CG2 THR A 294 5.316 41.889 34.564 1.00 0.00 C \nATOM 2256 N CYS A 295 3.570 41.594 37.825 1.00 0.00 N \nATOM 2257 CA CYS A 295 3.305 40.349 38.529 1.00 0.00 C \nATOM 2258 C CYS A 295 1.799 40.167 38.687 1.00 0.00 C \nATOM 2259 O CYS A 295 1.266 39.062 38.512 1.00 0.00 O \nATOM 2260 CB CYS A 295 3.972 40.367 39.904 1.00 0.00 C \nATOM 2261 SG CYS A 295 3.818 38.802 40.800 1.00 0.00 S \nATOM 2262 N TYR A 296 1.123 41.262 39.015 1.00 0.00 N \nATOM 2263 CA TYR A 296 -0.324 41.259 39.197 1.00 0.00 C \nATOM 2264 C TYR A 296 -1.043 40.971 37.874 1.00 0.00 C \nATOM 2265 O TYR A 296 -2.015 40.208 37.835 1.00 0.00 O \nATOM 2266 CB TYR A 296 -0.777 42.612 39.749 1.00 0.00 C \nATOM 2267 CG TYR A 296 -2.276 42.772 39.831 1.00 0.00 C \nATOM 2268 CD1 TYR A 296 -3.016 43.224 38.737 1.00 0.00 C \nATOM 2269 CD2 TYR A 296 -2.953 42.477 41.006 1.00 0.00 C \nATOM 2270 CE1 TYR A 296 -4.398 43.382 38.821 1.00 0.00 C \nATOM 2271 CE2 TYR A 296 -4.334 42.629 41.102 1.00 0.00 C \nATOM 2272 CZ TYR A 296 -5.053 43.081 40.012 1.00 0.00 C \nATOM 2273 OH TYR A 296 -6.418 43.229 40.132 1.00 0.00 O \nATOM 2274 N LEU A 297 -0.568 41.586 36.795 1.00 0.00 N \nATOM 2275 CA LEU A 297 -1.168 41.371 35.489 1.00 0.00 C \nATOM 2276 C LEU A 297 -1.057 39.892 35.087 1.00 0.00 C \nATOM 2277 O LEU A 297 -2.057 39.248 34.752 1.00 0.00 O \nATOM 2278 CB LEU A 297 -0.481 42.255 34.443 1.00 0.00 C \nATOM 2279 CG LEU A 297 -0.724 41.945 32.954 1.00 0.00 C \nATOM 2280 CD1 LEU A 297 -2.217 41.944 32.641 1.00 0.00 C \nATOM 2281 CD2 LEU A 297 -0.012 42.976 32.099 1.00 0.00 C \nATOM 2282 N LYS A 298 0.155 39.353 35.119 1.00 0.00 N \nATOM 2283 CA LYS A 298 0.359 37.950 34.739 1.00 0.00 C \nATOM 2284 C LYS A 298 -0.398 36.966 35.628 1.00 0.00 C \nATOM 2285 O LYS A 298 -1.029 36.033 35.134 1.00 0.00 O \nATOM 2286 CB LYS A 298 1.855 37.607 34.737 1.00 0.00 C \nATOM 2287 CG LYS A 298 2.613 38.360 33.652 1.00 0.00 C \nATOM 2288 CD LYS A 298 4.126 38.119 33.683 1.00 0.00 C \nATOM 2289 CE LYS A 298 4.813 38.926 32.561 1.00 0.00 C \nATOM 2290 NZ LYS A 298 6.279 38.693 32.496 1.00 0.00 N \nATOM 2291 N ALA A 299 -0.333 37.177 36.939 1.00 0.00 N \nATOM 2292 CA ALA A 299 -1.021 36.298 37.883 1.00 0.00 C \nATOM 2293 C ALA A 299 -2.534 36.367 37.713 1.00 0.00 C \nATOM 2294 O ALA A 299 -3.202 35.334 37.724 1.00 0.00 O \nATOM 2295 CB ALA A 299 -0.633 36.651 39.318 1.00 0.00 C \nATOM 2296 N SER A 300 -3.081 37.575 37.555 1.00 0.00 N \nATOM 2297 CA SER A 300 -4.525 37.725 37.369 1.00 0.00 C \nATOM 2298 C SER A 300 -4.970 36.957 36.130 1.00 0.00 C \nATOM 2299 O SER A 300 -5.954 36.216 36.169 1.00 0.00 O \nATOM 2300 CB SER A 300 -4.917 39.200 37.216 1.00 0.00 C \nATOM 2301 OG SER A 300 -4.704 39.911 38.421 1.00 0.00 O \nATOM 2302 N ALA A 301 -4.253 37.142 35.027 1.00 0.00 N \nATOM 2303 CA ALA A 301 -4.574 36.436 33.794 1.00 0.00 C \nATOM 2304 C ALA A 301 -4.377 34.923 33.986 1.00 0.00 C \nATOM 2305 O ALA A 301 -5.193 34.120 33.521 1.00 0.00 O \nATOM 2306 CB ALA A 301 -3.689 36.947 32.654 1.00 0.00 C \nATOM 2307 N ALA A 302 -3.305 34.529 34.672 1.00 0.00 N \nATOM 2308 CA ALA A 302 -3.054 33.104 34.899 1.00 0.00 C \nATOM 2309 C ALA A 302 -4.171 32.447 35.730 1.00 0.00 C \nATOM 2310 O ALA A 302 -4.499 31.270 35.527 1.00 0.00 O \nATOM 2311 CB ALA A 302 -1.705 32.912 35.597 1.00 0.00 C \nATOM 2312 N CYS A 303 -4.736 33.199 36.676 1.00 0.00 N \nATOM 2313 CA CYS A 303 -5.811 32.678 37.522 1.00 0.00 C \nATOM 2314 C CYS A 303 -7.019 32.317 36.655 1.00 0.00 C \nATOM 2315 O CYS A 303 -7.678 31.299 36.884 1.00 0.00 O \nATOM 2316 CB CYS A 303 -6.220 33.712 38.577 1.00 0.00 C \nATOM 2317 SG CYS A 303 -7.962 33.578 39.122 1.00 0.00 S \nATOM 2318 N ARG A 304 -7.302 33.162 35.665 1.00 0.00 N \nATOM 2319 CA ARG A 304 -8.411 32.932 34.741 1.00 0.00 C \nATOM 2320 C ARG A 304 -8.088 31.733 33.862 1.00 0.00 C \nATOM 2321 O ARG A 304 -8.917 30.848 33.671 1.00 0.00 O \nATOM 2322 CB ARG A 304 -8.637 34.166 33.867 1.00 0.00 C \nATOM 2323 CG ARG A 304 -8.862 35.421 34.679 1.00 0.00 C \nATOM 2324 CD ARG A 304 -9.287 36.579 33.818 1.00 0.00 C \nATOM 2325 NE ARG A 304 -9.653 37.735 34.640 1.00 0.00 N \nATOM 2326 CZ ARG A 304 -10.221 38.838 34.161 1.00 0.00 C \nATOM 2327 NH1 ARG A 304 -10.490 38.939 32.870 1.00 0.00 N \nATOM 2328 NH2 ARG A 304 -10.522 39.841 34.971 1.00 0.00 N \nATOM 2329 N ALA A 305 -6.876 31.706 33.321 1.00 0.00 N \nATOM 2330 CA ALA A 305 -6.464 30.588 32.488 1.00 0.00 C \nATOM 2331 C ALA A 305 -6.591 29.259 33.251 1.00 0.00 C \nATOM 2332 O ALA A 305 -7.065 28.265 32.696 1.00 0.00 O \nATOM 2333 CB ALA A 305 -5.024 30.786 32.025 1.00 0.00 C \nATOM 2334 N ALA A 306 -6.177 29.240 34.520 1.00 0.00 N \nATOM 2335 CA ALA A 306 -6.229 28.016 35.327 1.00 0.00 C \nATOM 2336 C ALA A 306 -7.596 27.717 35.938 1.00 0.00 C \nATOM 2337 O ALA A 306 -7.778 26.701 36.611 1.00 0.00 O \nATOM 2338 CB ALA A 306 -5.163 28.064 36.434 1.00 0.00 C \nATOM 2339 N LYS A 307 -8.552 28.607 35.720 1.00 0.00 N \nATOM 2340 CA LYS A 307 -9.897 28.411 36.236 1.00 0.00 C \nATOM 2341 C LYS A 307 -9.954 28.350 37.759 1.00 0.00 C \nATOM 2342 O LYS A 307 -10.750 27.601 38.336 1.00 0.00 O \nATOM 2343 CB LYS A 307 -10.494 27.134 35.647 1.00 0.00 C \nATOM 2344 CG LYS A 307 -10.636 27.168 34.140 1.00 0.00 C \nATOM 2345 CD LYS A 307 -10.672 25.758 33.576 1.00 0.00 C \nATOM 2346 CE LYS A 307 -9.334 25.040 33.804 1.00 0.00 C \nATOM 2347 NZ LYS A 307 -9.405 23.585 33.476 1.00 0.00 N \nATOM 2348 N LEU A 308 -9.103 29.135 38.409 1.00 0.00 N \nATOM 2349 CA LEU A 308 -9.098 29.186 39.859 1.00 0.00 C \nATOM 2350 C LEU A 308 -10.385 29.860 40.305 1.00 0.00 C \nATOM 2351 O LEU A 308 -10.784 30.883 39.749 1.00 0.00 O \nATOM 2352 CB LEU A 308 -7.887 29.983 40.362 1.00 0.00 C \nATOM 2353 CG LEU A 308 -6.626 29.199 40.739 1.00 0.00 C \nATOM 2354 CD1 LEU A 308 -6.308 28.143 39.694 1.00 0.00 C \nATOM 2355 CD2 LEU A 308 -5.467 30.176 40.906 1.00 0.00 C \nATOM 2356 N GLN A 309 -11.032 29.285 41.310 1.00 0.00 N \nATOM 2357 CA GLN A 309 -12.274 29.835 41.840 1.00 0.00 C \nATOM 2358 C GLN A 309 -12.016 30.999 42.803 1.00 0.00 C \nATOM 2359 O GLN A 309 -11.299 30.856 43.791 1.00 0.00 O \nATOM 2360 CB GLN A 309 -13.049 28.727 42.560 1.00 0.00 C \nATOM 2361 CG GLN A 309 -14.235 28.155 41.794 1.00 0.00 C \nATOM 2362 CD GLN A 309 -15.542 28.855 42.142 1.00 0.00 C \nATOM 2363 OE1 GLN A 309 -16.161 29.511 41.297 1.00 0.00 O \nATOM 2364 NE2 GLN A 309 -15.968 28.718 43.397 1.00 0.00 N \nATOM 2365 N ASP A 310 -12.608 32.147 42.501 1.00 0.00 N \nATOM 2366 CA ASP A 310 -12.478 33.348 43.319 1.00 0.00 C \nATOM 2367 C ASP A 310 -11.062 33.612 43.851 1.00 0.00 C \nATOM 2368 O ASP A 310 -10.855 33.777 45.056 1.00 0.00 O \nATOM 2369 CB ASP A 310 -13.478 33.297 44.482 1.00 0.00 C \nATOM 2370 CG ASP A 310 -13.470 34.571 45.314 1.00 0.00 C \nATOM 2371 OD1 ASP A 310 -13.340 35.666 44.724 1.00 0.00 O \nATOM 2372 OD2 ASP A 310 -13.605 34.484 46.556 1.00 0.00 O \nATOM 2373 N CYS A 311 -10.091 33.668 42.943 1.00 0.00 N \nATOM 2374 CA CYS A 311 -8.714 33.923 43.330 1.00 0.00 C \nATOM 2375 C CYS A 311 -8.536 35.356 43.819 1.00 0.00 C \nATOM 2376 O CYS A 311 -8.888 36.314 43.122 1.00 0.00 O \nATOM 2377 CB CYS A 311 -7.776 33.689 42.143 1.00 0.00 C \nATOM 2378 SG CYS A 311 -8.092 34.806 40.734 1.00 0.00 S \nATOM 2379 N THR A 312 -8.024 35.511 45.033 1.00 0.00 N \nATOM 2380 CA THR A 312 -7.756 36.843 45.563 1.00 0.00 C \nATOM 2381 C THR A 312 -6.241 36.897 45.649 1.00 0.00 C \nATOM 2382 O THR A 312 -5.600 35.925 46.054 1.00 0.00 O \nATOM 2383 CB THR A 312 -8.325 37.055 46.969 1.00 0.00 C \nATOM 2384 OG1 THR A 312 -9.753 36.978 46.927 1.00 0.00 O \nATOM 2385 CG2 THR A 312 -7.906 38.430 47.508 1.00 0.00 C \nATOM 2386 N MET A 313 -5.653 38.019 45.267 1.00 0.00 N \nATOM 2387 CA MET A 313 -4.207 38.094 45.319 1.00 0.00 C \nATOM 2388 C MET A 313 -3.626 39.184 46.181 1.00 0.00 C \nATOM 2389 O MET A 313 -4.273 40.197 46.458 1.00 0.00 O \nATOM 2390 CB MET A 313 -3.655 38.197 43.904 1.00 0.00 C \nATOM 2391 CG MET A 313 -3.955 36.940 43.124 1.00 0.00 C \nATOM 2392 SD MET A 313 -3.504 37.039 41.439 1.00 0.00 S \nATOM 2393 CE MET A 313 -4.300 38.628 41.015 1.00 0.00 C \nATOM 2394 N LEU A 314 -2.399 38.940 46.629 1.00 0.00 N \nATOM 2395 CA LEU A 314 -1.661 39.902 47.439 1.00 0.00 C \nATOM 2396 C LEU A 314 -0.304 39.958 46.756 1.00 0.00 C \nATOM 2397 O LEU A 314 0.424 38.969 46.713 1.00 0.00 O \nATOM 2398 CB LEU A 314 -1.542 39.437 48.895 1.00 0.00 C \nATOM 2399 CG LEU A 314 -0.852 40.454 49.816 1.00 0.00 C \nATOM 2400 CD1 LEU A 314 -1.546 41.820 49.711 1.00 0.00 C \nATOM 2401 CD2 LEU A 314 -0.885 39.944 51.256 1.00 0.00 C \nATOM 2402 N VAL A 315 0.006 41.125 46.206 1.00 0.00 N \nATOM 2403 CA VAL A 315 1.224 41.330 45.448 1.00 0.00 C \nATOM 2404 C VAL A 315 2.079 42.479 45.979 1.00 0.00 C \nATOM 2405 O VAL A 315 1.578 43.571 46.238 1.00 0.00 O \nATOM 2406 CB VAL A 315 0.872 41.630 43.958 1.00 0.00 C \nATOM 2407 CG1 VAL A 315 2.131 41.624 43.100 1.00 0.00 C \nATOM 2408 CG2 VAL A 315 -0.135 40.606 43.433 1.00 0.00 C \nATOM 2409 N ASN A 316 3.368 42.206 46.134 1.00 0.00 N \nATOM 2410 CA ASN A 316 4.360 43.180 46.607 1.00 0.00 C \nATOM 2411 C ASN A 316 5.552 42.999 45.663 1.00 0.00 C \nATOM 2412 O ASN A 316 6.350 42.078 45.836 1.00 0.00 O \nATOM 2413 CB ASN A 316 4.808 42.857 48.045 1.00 0.00 C \nATOM 2414 CG ASN A 316 3.717 43.097 49.079 1.00 0.00 C \nATOM 2415 OD1 ASN A 316 2.702 42.401 49.110 1.00 0.00 O \nATOM 2416 ND2 ASN A 316 3.931 44.091 49.938 1.00 0.00 N \nATOM 2417 N GLY A 317 5.680 43.857 44.662 1.00 0.00 N \nATOM 2418 CA GLY A 317 6.777 43.677 43.726 1.00 0.00 C \nATOM 2419 C GLY A 317 6.679 42.293 43.086 1.00 0.00 C \nATOM 2420 O GLY A 317 5.627 41.905 42.583 1.00 0.00 O \nATOM 2421 N ASP A 318 7.758 41.527 43.114 1.00 0.00 N \nATOM 2422 CA ASP A 318 7.725 40.194 42.514 1.00 0.00 C \nATOM 2423 C ASP A 318 7.158 39.157 43.483 1.00 0.00 C \nATOM 2424 O ASP A 318 7.018 37.985 43.131 1.00 0.00 O \nATOM 2425 CB ASP A 318 9.135 39.778 42.073 1.00 0.00 C \nATOM 2426 CG ASP A 318 10.057 39.471 43.247 1.00 0.00 C \nATOM 2427 OD1 ASP A 318 9.969 40.154 44.289 1.00 0.00 O \nATOM 2428 OD2 ASP A 318 10.887 38.550 43.121 1.00 0.00 O \nATOM 2429 N ASP A 319 6.828 39.586 44.697 1.00 0.00 N \nATOM 2430 CA ASP A 319 6.305 38.654 45.686 1.00 0.00 C \nATOM 2431 C ASP A 319 4.810 38.479 45.461 1.00 0.00 C \nATOM 2432 O ASP A 319 4.055 39.454 45.433 1.00 0.00 O \nATOM 2433 CB ASP A 319 6.606 39.165 47.096 1.00 0.00 C \nATOM 2434 CG ASP A 319 6.631 38.052 48.118 1.00 0.00 C \nATOM 2435 OD1 ASP A 319 5.548 37.603 48.560 1.00 0.00 O \nATOM 2436 OD2 ASP A 319 7.743 37.612 48.467 1.00 0.00 O \nATOM 2437 N LEU A 320 4.389 37.229 45.303 1.00 0.00 N \nATOM 2438 CA LEU A 320 2.995 36.931 45.018 1.00 0.00 C \nATOM 2439 C LEU A 320 2.403 35.821 45.866 1.00 0.00 C \nATOM 2440 O LEU A 320 3.023 34.777 46.073 1.00 0.00 O \nATOM 2441 CB LEU A 320 2.855 36.541 43.542 1.00 0.00 C \nATOM 2442 CG LEU A 320 1.549 35.869 43.107 1.00 0.00 C \nATOM 2443 CD1 LEU A 320 0.393 36.846 43.260 1.00 0.00 C \nATOM 2444 CD2 LEU A 320 1.676 35.392 41.657 1.00 0.00 C \nATOM 2445 N VAL A 321 1.194 36.054 46.350 1.00 0.00 N \nATOM 2446 CA VAL A 321 0.500 35.057 47.134 1.00 0.00 C \nATOM 2447 C VAL A 321 -0.953 35.069 46.670 1.00 0.00 C \nATOM 2448 O VAL A 321 -1.555 36.130 46.453 1.00 0.00 O \nATOM 2449 CB VAL A 321 0.623 35.337 48.655 1.00 0.00 C \nATOM 2450 CG1 VAL A 321 -0.084 36.610 49.008 1.00 0.00 C \nATOM 2451 CG2 VAL A 321 0.072 34.176 49.451 1.00 0.00 C \nATOM 2452 N VAL A 322 -1.494 33.872 46.474 1.00 0.00 N \nATOM 2453 CA VAL A 322 -2.861 33.716 46.016 1.00 0.00 C \nATOM 2454 C VAL A 322 -3.696 32.888 46.990 1.00 0.00 C \nATOM 2455 O VAL A 322 -3.258 31.834 47.460 1.00 0.00 O \nATOM 2456 CB VAL A 322 -2.902 33.036 44.628 1.00 0.00 C \nATOM 2457 CG1 VAL A 322 -4.357 32.797 44.205 1.00 0.00 C \nATOM 2458 CG2 VAL A 322 -2.182 33.909 43.595 1.00 0.00 C \nATOM 2459 N ILE A 323 -4.888 33.391 47.298 1.00 0.00 N \nATOM 2460 CA ILE A 323 -5.823 32.696 48.171 1.00 0.00 C \nATOM 2461 C ILE A 323 -7.137 32.515 47.384 1.00 0.00 C \nATOM 2462 O ILE A 323 -7.744 33.490 46.926 1.00 0.00 O \nATOM 2463 CB ILE A 323 -6.081 33.499 49.467 1.00 0.00 C \nATOM 2464 CG1 ILE A 323 -4.762 33.680 50.230 1.00 0.00 C \nATOM 2465 CG2 ILE A 323 -7.088 32.753 50.365 1.00 0.00 C \nATOM 2466 CD1 ILE A 323 -4.901 34.476 51.505 1.00 0.00 C \nATOM 2467 N CYS A 324 -7.571 31.272 47.214 1.00 0.00 N \nATOM 2468 CA CYS A 324 -8.795 31.024 46.454 1.00 0.00 C \nATOM 2469 C CYS A 324 -9.748 30.019 47.098 1.00 0.00 C \nATOM 2470 O CYS A 324 -9.568 29.620 48.252 1.00 0.00 O \nATOM 2471 CB CYS A 324 -8.438 30.552 45.038 1.00 0.00 C \nATOM 2472 SG CYS A 324 -7.420 29.040 44.959 1.00 0.00 S \nATOM 2473 N GLU A 325 -10.761 29.617 46.333 1.00 0.00 N \nATOM 2474 CA GLU A 325 -11.757 28.649 46.789 1.00 0.00 C \nATOM 2475 C GLU A 325 -11.232 27.276 46.366 1.00 0.00 C \nATOM 2476 O GLU A 325 -10.953 27.052 45.191 1.00 0.00 O \nATOM 2477 CB GLU A 325 -13.107 28.954 46.122 1.00 0.00 C \nATOM 2478 CG GLU A 325 -14.303 28.319 46.781 1.00 0.00 C \nATOM 2479 CD GLU A 325 -14.487 28.753 48.225 1.00 0.00 C \nATOM 2480 OE1 GLU A 325 -14.976 29.878 48.489 1.00 0.00 O \nATOM 2481 OE2 GLU A 325 -14.127 27.955 49.104 1.00 0.00 O \nATOM 2482 N SER A 326 -11.075 26.364 47.320 1.00 0.00 N \nATOM 2483 CA SER A 326 -10.550 25.036 47.000 1.00 0.00 C \nATOM 2484 C SER A 326 -11.553 24.168 46.247 1.00 0.00 C \nATOM 2485 O SER A 326 -12.759 24.396 46.316 1.00 0.00 O \nATOM 2486 CB SER A 326 -10.126 24.302 48.271 1.00 0.00 C \nATOM 2487 OG SER A 326 -9.801 22.952 47.973 1.00 0.00 O \nATOM 2488 N ALA A 327 -11.041 23.170 45.535 1.00 0.00 N \nATOM 2489 CA ALA A 327 -11.887 22.254 44.778 1.00 0.00 C \nATOM 2490 C ALA A 327 -11.428 20.833 45.053 1.00 0.00 C \nATOM 2491 O ALA A 327 -11.683 19.921 44.272 1.00 0.00 O \nATOM 2492 CB ALA A 327 -11.786 22.554 43.293 1.00 0.00 C \nATOM 2493 N GLY A 328 -10.751 20.653 46.179 1.00 0.00 N \nATOM 2494 CA GLY A 328 -10.240 19.346 46.525 1.00 0.00 C \nATOM 2495 C GLY A 328 -8.746 19.401 46.308 1.00 0.00 C \nATOM 2496 O GLY A 328 -8.273 20.130 45.448 1.00 0.00 O \nATOM 2497 N THR A 329 -7.994 18.640 47.087 1.00 0.00 N \nATOM 2498 CA THR A 329 -6.539 18.643 46.971 1.00 0.00 C \nATOM 2499 C THR A 329 -6.059 18.269 45.556 1.00 0.00 C \nATOM 2500 O THR A 329 -5.091 18.847 45.037 1.00 0.00 O \nATOM 2501 CB THR A 329 -5.930 17.676 48.014 1.00 0.00 C \nATOM 2502 OG1 THR A 329 -4.496 17.702 47.932 1.00 0.00 O \nATOM 2503 CG2 THR A 329 -6.424 16.263 47.755 1.00 0.00 C \nATOM 2504 N GLN A 330 -6.737 17.307 44.934 1.00 0.00 N \nATOM 2505 CA GLN A 330 -6.376 16.865 43.590 1.00 0.00 C \nATOM 2506 C GLN A 330 -6.600 17.940 42.540 1.00 0.00 C \nATOM 2507 O GLN A 330 -5.731 18.206 41.710 1.00 0.00 O \nATOM 2508 CB GLN A 330 -7.178 15.616 43.211 1.00 0.00 C \nATOM 2509 CG GLN A 330 -6.614 14.318 43.748 1.00 0.00 C \nATOM 2510 CD GLN A 330 -5.242 14.013 43.178 1.00 0.00 C \nATOM 2511 OE1 GLN A 330 -4.293 14.779 43.368 1.00 0.00 O \nATOM 2512 NE2 GLN A 330 -5.130 12.890 42.472 1.00 0.00 N \nATOM 2513 N GLU A 331 -7.782 18.543 42.576 1.00 0.00 N \nATOM 2514 CA GLU A 331 -8.132 19.590 41.633 1.00 0.00 C \nATOM 2515 C GLU A 331 -7.224 20.800 41.842 1.00 0.00 C \nATOM 2516 O GLU A 331 -6.895 21.531 40.902 1.00 0.00 O \nATOM 2517 CB GLU A 331 -9.595 19.992 41.827 1.00 0.00 C \nATOM 2518 CG GLU A 331 -10.081 21.039 40.846 1.00 0.00 C \nATOM 2519 CD GLU A 331 -9.867 20.615 39.408 1.00 0.00 C \nATOM 2520 OE1 GLU A 331 -10.411 19.558 39.018 1.00 0.00 O \nATOM 2521 OE2 GLU A 331 -9.156 21.337 38.674 1.00 0.00 O \nATOM 2522 N ASP A 332 -6.816 21.000 43.088 1.00 0.00 N \nATOM 2523 CA ASP A 332 -5.949 22.111 43.428 1.00 0.00 C \nATOM 2524 C ASP A 332 -4.583 21.940 42.792 1.00 0.00 C \nATOM 2525 O ASP A 332 -4.046 22.884 42.213 1.00 0.00 O \nATOM 2526 CB ASP A 332 -5.827 22.242 44.949 1.00 0.00 C \nATOM 2527 CG ASP A 332 -7.103 22.756 45.587 1.00 0.00 C \nATOM 2528 OD1 ASP A 332 -7.898 23.420 44.884 1.00 0.00 O \nATOM 2529 OD2 ASP A 332 -7.308 22.513 46.794 1.00 0.00 O \nATOM 2530 N ALA A 333 -4.032 20.731 42.883 1.00 0.00 N \nATOM 2531 CA ALA A 333 -2.721 20.445 42.313 1.00 0.00 C \nATOM 2532 C ALA A 333 -2.737 20.654 40.807 1.00 0.00 C \nATOM 2533 O ALA A 333 -1.776 21.167 40.225 1.00 0.00 O \nATOM 2534 CB ALA A 333 -2.303 19.014 42.636 1.00 0.00 C \nATOM 2535 N ALA A 334 -3.837 20.256 40.181 1.00 0.00 N \nATOM 2536 CA ALA A 334 -3.986 20.396 38.740 1.00 0.00 C \nATOM 2537 C ALA A 334 -4.046 21.864 38.328 1.00 0.00 C \nATOM 2538 O ALA A 334 -3.340 22.286 37.421 1.00 0.00 O \nATOM 2539 CB ALA A 334 -5.248 19.675 38.274 1.00 0.00 C \nATOM 2540 N SER A 335 -4.898 22.632 38.993 1.00 0.00 N \nATOM 2541 CA SER A 335 -5.056 24.051 38.682 1.00 0.00 C \nATOM 2542 C SER A 335 -3.730 24.793 38.793 1.00 0.00 C \nATOM 2543 O SER A 335 -3.279 25.449 37.848 1.00 0.00 O \nATOM 2544 CB SER A 335 -6.069 24.673 39.637 1.00 0.00 C \nATOM 2545 OG SER A 335 -7.266 23.917 39.645 1.00 0.00 O \nATOM 2546 N LEU A 336 -3.107 24.665 39.959 1.00 0.00 N \nATOM 2547 CA LEU A 336 -1.838 25.311 40.233 1.00 0.00 C \nATOM 2548 C LEU A 336 -0.818 24.966 39.158 1.00 0.00 C \nATOM 2549 O LEU A 336 0.022 25.783 38.797 1.00 0.00 O \nATOM 2550 CB LEU A 336 -1.354 24.893 41.624 1.00 0.00 C \nATOM 2551 CG LEU A 336 0.050 25.251 42.090 1.00 0.00 C \nATOM 2552 CD1 LEU A 336 0.105 25.230 43.614 1.00 0.00 C \nATOM 2553 CD2 LEU A 336 1.045 24.258 41.499 1.00 0.00 C \nATOM 2554 N ARG A 337 -0.907 23.746 38.642 1.00 0.00 N \nATOM 2555 CA ARG A 337 -0.007 23.297 37.591 1.00 0.00 C \nATOM 2556 C ARG A 337 -0.308 24.054 36.303 1.00 0.00 C \nATOM 2557 O ARG A 337 0.591 24.414 35.564 1.00 0.00 O \nATOM 2558 CB ARG A 337 -0.174 21.792 37.378 1.00 0.00 C \nATOM 2559 CG ARG A 337 0.815 21.172 36.406 1.00 0.00 C \nATOM 2560 CD ARG A 337 0.716 19.651 36.458 1.00 0.00 C \nATOM 2561 NE ARG A 337 1.514 19.003 35.419 1.00 0.00 N \nATOM 2562 CZ ARG A 337 1.260 19.092 34.115 1.00 0.00 C \nATOM 2563 NH1 ARG A 337 0.225 19.805 33.689 1.00 0.00 N \nATOM 2564 NH2 ARG A 337 2.036 18.465 33.239 1.00 0.00 N \nATOM 2565 N VAL A 338 -1.582 24.288 36.036 1.00 0.00 N \nATOM 2566 CA VAL A 338 -1.980 25.018 34.846 1.00 0.00 C \nATOM 2567 C VAL A 338 -1.640 26.504 35.060 1.00 0.00 C \nATOM 2568 O VAL A 338 -1.196 27.195 34.142 1.00 0.00 O \nATOM 2569 CB VAL A 338 -3.506 24.836 34.585 1.00 0.00 C \nATOM 2570 CG1 VAL A 338 -3.937 25.680 33.397 1.00 0.00 C \nATOM 2571 CG2 VAL A 338 -3.826 23.350 34.295 1.00 0.00 C \nATOM 2572 N PHE A 339 -1.860 26.976 36.283 1.00 0.00 N \nATOM 2573 CA PHE A 339 -1.566 28.356 36.652 1.00 0.00 C \nATOM 2574 C PHE A 339 -0.088 28.620 36.370 1.00 0.00 C \nATOM 2575 O PHE A 339 0.276 29.654 35.830 1.00 0.00 O \nATOM 2576 CB PHE A 339 -1.836 28.578 38.148 1.00 0.00 C \nATOM 2577 CG PHE A 339 -1.503 29.964 38.622 1.00 0.00 C \nATOM 2578 CD1 PHE A 339 -2.448 30.974 38.569 1.00 0.00 C \nATOM 2579 CD2 PHE A 339 -0.239 30.254 39.123 1.00 0.00 C \nATOM 2580 CE1 PHE A 339 -2.148 32.263 39.007 1.00 0.00 C \nATOM 2581 CE2 PHE A 339 0.078 31.545 39.564 1.00 0.00 C \nATOM 2582 CZ PHE A 339 -0.878 32.546 39.509 1.00 0.00 C \nATOM 2583 N THR A 340 0.752 27.665 36.756 1.00 0.00 N \nATOM 2584 CA THR A 340 2.192 27.758 36.558 1.00 0.00 C \nATOM 2585 C THR A 340 2.552 27.722 35.076 1.00 0.00 C \nATOM 2586 O THR A 340 3.450 28.444 34.623 1.00 0.00 O \nATOM 2587 CB THR A 340 2.898 26.608 37.297 1.00 0.00 C \nATOM 2588 OG1 THR A 340 2.637 26.732 38.698 1.00 0.00 O \nATOM 2589 CG2 THR A 340 4.396 26.632 37.064 1.00 0.00 C \nATOM 2590 N GLU A 341 1.848 26.885 34.316 1.00 0.00 N \nATOM 2591 CA GLU A 341 2.101 26.778 32.881 1.00 0.00 C \nATOM 2592 C GLU A 341 1.784 28.117 32.208 1.00 0.00 C \nATOM 2593 O GLU A 341 2.496 28.538 31.304 1.00 0.00 O \nATOM 2594 CB GLU A 341 1.244 25.653 32.254 1.00 0.00 C \nATOM 2595 CG GLU A 341 1.516 24.272 32.861 1.00 0.00 C \nATOM 2596 CD GLU A 341 0.711 23.143 32.218 1.00 0.00 C \nATOM 2597 OE1 GLU A 341 -0.467 23.360 31.855 1.00 0.00 O \nATOM 2598 OE2 GLU A 341 1.257 22.024 32.093 1.00 0.00 O \nATOM 2599 N ALA A 342 0.715 28.768 32.658 1.00 0.00 N \nATOM 2600 CA ALA A 342 0.297 30.063 32.118 1.00 0.00 C \nATOM 2601 C ALA A 342 1.339 31.142 32.448 1.00 0.00 C \nATOM 2602 O ALA A 342 1.780 31.890 31.562 1.00 0.00 O \nATOM 2603 CB ALA A 342 -1.063 30.452 32.700 1.00 0.00 C \nATOM 2604 N MET A 343 1.735 31.217 33.722 1.00 0.00 N \nATOM 2605 CA MET A 343 2.742 32.191 34.143 1.00 0.00 C \nATOM 2606 C MET A 343 4.004 31.992 33.315 1.00 0.00 C \nATOM 2607 O MET A 343 4.685 32.958 32.958 1.00 0.00 O \nATOM 2608 CB MET A 343 3.104 32.004 35.625 1.00 0.00 C \nATOM 2609 CG MET A 343 2.030 32.397 36.597 1.00 0.00 C \nATOM 2610 SD MET A 343 1.671 34.184 36.518 1.00 0.00 S \nATOM 2611 CE MET A 343 2.912 34.833 37.714 1.00 0.00 C \nATOM 2612 N THR A 344 4.334 30.729 33.028 1.00 0.00 N \nATOM 2613 CA THR A 344 5.529 30.425 32.253 1.00 0.00 C \nATOM 2614 C THR A 344 5.373 30.970 30.834 1.00 0.00 C \nATOM 2615 O THR A 344 6.297 31.582 30.296 1.00 0.00 O \nATOM 2616 CB THR A 344 5.817 28.897 32.233 1.00 0.00 C \nATOM 2617 OG1 THR A 344 6.127 28.457 33.565 1.00 0.00 O \nATOM 2618 CG2 THR A 344 7.002 28.579 31.322 1.00 0.00 C \nATOM 2619 N ARG A 345 4.196 30.779 30.242 1.00 0.00 N \nATOM 2620 CA ARG A 345 3.952 31.296 28.902 1.00 0.00 C \nATOM 2621 C ARG A 345 4.039 32.824 28.908 1.00 0.00 C \nATOM 2622 O ARG A 345 4.362 33.436 27.895 1.00 0.00 O \nATOM 2623 CB ARG A 345 2.576 30.857 28.384 1.00 0.00 C \nATOM 2624 CG ARG A 345 2.491 29.375 28.031 1.00 0.00 C \nATOM 2625 CD ARG A 345 1.239 29.058 27.228 1.00 0.00 C \nATOM 2626 NE ARG A 345 0.010 29.300 27.977 1.00 0.00 N \nATOM 2627 CZ ARG A 345 -0.589 28.407 28.764 1.00 0.00 C \nATOM 2628 NH1 ARG A 345 -0.073 27.193 28.918 1.00 0.00 N \nATOM 2629 NH2 ARG A 345 -1.720 28.724 29.391 1.00 0.00 N \nATOM 2630 N TYR A 346 3.761 33.430 30.056 1.00 0.00 N \nATOM 2631 CA TYR A 346 3.811 34.887 30.182 1.00 0.00 C \nATOM 2632 C TYR A 346 5.217 35.355 30.533 1.00 0.00 C \nATOM 2633 O TYR A 346 5.447 36.546 30.758 1.00 0.00 O \nATOM 2634 CB TYR A 346 2.865 35.369 31.282 1.00 0.00 C \nATOM 2635 CG TYR A 346 1.400 35.103 31.038 1.00 0.00 C \nATOM 2636 CD1 TYR A 346 0.870 35.082 29.736 1.00 0.00 C \nATOM 2637 CD2 TYR A 346 0.522 34.965 32.106 1.00 0.00 C \nATOM 2638 CE1 TYR A 346 -0.501 34.936 29.524 1.00 0.00 C \nATOM 2639 CE2 TYR A 346 -0.828 34.824 31.908 1.00 0.00 C \nATOM 2640 CZ TYR A 346 -1.342 34.814 30.619 1.00 0.00 C \nATOM 2641 OH TYR A 346 -2.714 34.726 30.442 1.00 0.00 O \nATOM 2642 N SER A 347 6.150 34.413 30.569 1.00 0.00 N \nATOM 2643 CA SER A 347 7.527 34.704 30.935 1.00 0.00 C \nATOM 2644 C SER A 347 7.642 35.030 32.416 1.00 0.00 C \nATOM 2645 O SER A 347 8.206 36.065 32.791 1.00 0.00 O \nATOM 2646 CB SER A 347 8.094 35.876 30.145 1.00 0.00 C \nATOM 2647 OG SER A 347 9.431 36.106 30.543 1.00 0.00 O \nATOM 2648 N ALA A 348 7.065 34.167 33.244 1.00 0.00 N \nATOM 2649 CA ALA A 348 7.154 34.297 34.696 1.00 0.00 C \nATOM 2650 C ALA A 348 7.276 32.877 35.251 1.00 0.00 C \nATOM 2651 O ALA A 348 6.489 32.453 36.101 1.00 0.00 O \nATOM 2652 CB ALA A 348 5.929 34.990 35.267 1.00 0.00 C \nATOM 2653 N PRO A 349 8.264 32.113 34.751 1.00 0.00 N \nATOM 2654 CA PRO A 349 8.504 30.737 35.187 1.00 0.00 C \nATOM 2655 C PRO A 349 8.834 30.689 36.683 1.00 0.00 C \nATOM 2656 O PRO A 349 9.436 31.613 37.227 1.00 0.00 O \nATOM 2657 CB PRO A 349 9.682 30.311 34.325 1.00 0.00 C \nATOM 2658 CG PRO A 349 10.446 31.561 34.211 1.00 0.00 C \nATOM 2659 CD PRO A 349 9.368 32.570 33.892 1.00 0.00 C \nATOM 2660 N PRO A 350 8.450 29.602 37.359 1.00 0.00 N \nATOM 2661 CA PRO A 350 8.698 29.432 38.793 1.00 0.00 C \nATOM 2662 C PRO A 350 10.101 28.987 39.168 1.00 0.00 C \nATOM 2663 O PRO A 350 10.795 28.340 38.380 1.00 0.00 O \nATOM 2664 CB PRO A 350 7.672 28.382 39.185 1.00 0.00 C \nATOM 2665 CG PRO A 350 7.697 27.482 37.984 1.00 0.00 C \nATOM 2666 CD PRO A 350 7.659 28.474 36.832 1.00 0.00 C \nATOM 2667 N GLY A 351 10.511 29.351 40.382 1.00 0.00 N \nATOM 2668 CA GLY A 351 11.798 28.926 40.887 1.00 0.00 C \nATOM 2669 C GLY A 351 11.410 27.630 41.572 1.00 0.00 C \nATOM 2670 O GLY A 351 11.607 26.544 41.034 1.00 0.00 O \nATOM 2671 N ASP A 352 10.828 27.758 42.759 1.00 0.00 N \nATOM 2672 CA ASP A 352 10.340 26.610 43.508 1.00 0.00 C \nATOM 2673 C ASP A 352 8.909 26.397 43.027 1.00 0.00 C \nATOM 2674 O ASP A 352 8.111 27.329 43.031 1.00 0.00 O \nATOM 2675 CB ASP A 352 10.317 26.913 45.007 1.00 0.00 C \nATOM 2676 CG ASP A 352 11.699 27.114 45.576 1.00 0.00 C \nATOM 2677 OD1 ASP A 352 12.482 26.140 45.559 1.00 0.00 O \nATOM 2678 OD2 ASP A 352 12.003 28.240 46.034 1.00 0.00 O \nATOM 2679 N PRO A 353 8.570 25.175 42.591 1.00 0.00 N \nATOM 2680 CA PRO A 353 7.203 24.926 42.124 1.00 0.00 C \nATOM 2681 C PRO A 353 6.215 25.303 43.235 1.00 0.00 C \nATOM 2682 O PRO A 353 6.471 25.062 44.413 1.00 0.00 O \nATOM 2683 CB PRO A 353 7.204 23.423 41.836 1.00 0.00 C \nATOM 2684 CG PRO A 353 8.637 23.142 41.484 1.00 0.00 C \nATOM 2685 CD PRO A 353 9.392 23.955 42.505 1.00 0.00 C \nATOM 2686 N PRO A 354 5.083 25.917 42.875 1.00 0.00 N \nATOM 2687 CA PRO A 354 4.096 26.305 43.887 1.00 0.00 C \nATOM 2688 C PRO A 354 3.342 25.110 44.463 1.00 0.00 C \nATOM 2689 O PRO A 354 3.077 24.139 43.752 1.00 0.00 O \nATOM 2690 CB PRO A 354 3.178 27.245 43.120 1.00 0.00 C \nATOM 2691 CG PRO A 354 3.206 26.658 41.719 1.00 0.00 C \nATOM 2692 CD PRO A 354 4.667 26.344 41.525 1.00 0.00 C \nATOM 2693 N GLN A 355 3.011 25.171 45.748 1.00 0.00 N \nATOM 2694 CA GLN A 355 2.265 24.082 46.371 1.00 0.00 C \nATOM 2695 C GLN A 355 1.036 24.623 47.069 1.00 0.00 C \nATOM 2696 O GLN A 355 1.060 25.695 47.672 1.00 0.00 O \nATOM 2697 CB GLN A 355 3.124 23.297 47.376 1.00 0.00 C \nATOM 2698 CG GLN A 355 3.430 24.016 48.694 1.00 0.00 C \nATOM 2699 CD GLN A 355 3.968 23.069 49.786 1.00 0.00 C \nATOM 2700 OE1 GLN A 355 3.256 22.171 50.259 1.00 0.00 O \nATOM 2701 NE2 GLN A 355 5.225 23.273 50.185 1.00 0.00 N \nATOM 2702 N PRO A 356 -0.074 23.890 46.983 1.00 0.00 N \nATOM 2703 CA PRO A 356 -1.268 24.396 47.653 1.00 0.00 C \nATOM 2704 C PRO A 356 -1.152 24.215 49.169 1.00 0.00 C \nATOM 2705 O PRO A 356 -0.599 23.222 49.641 1.00 0.00 O \nATOM 2706 CB PRO A 356 -2.391 23.570 47.015 1.00 0.00 C \nATOM 2707 CG PRO A 356 -1.741 22.274 46.728 1.00 0.00 C \nATOM 2708 CD PRO A 356 -0.352 22.653 46.233 1.00 0.00 C \nATOM 2709 N GLU A 357 -1.638 25.198 49.917 1.00 0.00 N \nATOM 2710 CA GLU A 357 -1.619 25.150 51.377 1.00 0.00 C \nATOM 2711 C GLU A 357 -3.039 25.299 51.906 1.00 0.00 C \nATOM 2712 O GLU A 357 -3.843 26.034 51.347 1.00 0.00 O \nATOM 2713 CB GLU A 357 -0.736 26.264 51.949 1.00 0.00 C \nATOM 2714 CG GLU A 357 0.742 26.067 51.707 1.00 0.00 C \nATOM 2715 CD GLU A 357 1.293 24.834 52.405 1.00 0.00 C \nATOM 2716 OE1 GLU A 357 0.813 24.497 53.514 1.00 0.00 O \nATOM 2717 OE2 GLU A 357 2.223 24.212 51.851 1.00 0.00 O \nATOM 2718 N TYR A 358 -3.341 24.592 52.988 1.00 0.00 N \nATOM 2719 CA TYR A 358 -4.668 24.628 53.577 1.00 0.00 C \nATOM 2720 C TYR A 358 -4.634 25.230 54.980 1.00 0.00 C \nATOM 2721 O TYR A 358 -5.659 25.317 55.663 1.00 0.00 O \nATOM 2722 CB TYR A 358 -5.235 23.202 53.583 1.00 0.00 C \nATOM 2723 CG TYR A 358 -5.372 22.651 52.178 1.00 0.00 C \nATOM 2724 CD1 TYR A 358 -6.435 23.035 51.365 1.00 0.00 C \nATOM 2725 CD2 TYR A 358 -4.379 21.857 51.619 1.00 0.00 C \nATOM 2726 CE1 TYR A 358 -6.498 22.652 50.023 1.00 0.00 C \nATOM 2727 CE2 TYR A 358 -4.433 21.469 50.277 1.00 0.00 C \nATOM 2728 CZ TYR A 358 -5.492 21.876 49.488 1.00 0.00 C \nATOM 2729 OH TYR A 358 -5.533 21.538 48.155 1.00 0.00 O \nATOM 2730 N ASP A 359 -3.442 25.662 55.382 1.00 0.00 N \nATOM 2731 CA ASP A 359 -3.196 26.276 56.687 1.00 0.00 C \nATOM 2732 C ASP A 359 -2.577 27.650 56.403 1.00 0.00 C \nATOM 2733 O ASP A 359 -1.451 27.729 55.933 1.00 0.00 O \nATOM 2734 CB ASP A 359 -2.197 25.416 57.470 1.00 0.00 C \nATOM 2735 CG ASP A 359 -2.017 25.876 58.908 1.00 0.00 C \nATOM 2736 OD1 ASP A 359 -2.270 27.070 59.202 1.00 0.00 O \nATOM 2737 OD2 ASP A 359 -1.603 25.038 59.742 1.00 0.00 O \nATOM 2738 N LEU A 360 -3.309 28.725 56.673 1.00 0.00 N \nATOM 2739 CA LEU A 360 -2.794 30.069 56.415 1.00 0.00 C \nATOM 2740 C LEU A 360 -1.407 30.288 57.029 1.00 0.00 C \nATOM 2741 O LEU A 360 -0.561 30.955 56.438 1.00 0.00 O \nATOM 2742 CB LEU A 360 -3.774 31.124 56.946 1.00 0.00 C \nATOM 2743 CG LEU A 360 -3.350 32.605 56.883 1.00 0.00 C \nATOM 2744 CD1 LEU A 360 -3.134 33.037 55.435 1.00 0.00 C \nATOM 2745 CD2 LEU A 360 -4.415 33.472 57.531 1.00 0.00 C \nATOM 2746 N GLU A 361 -1.174 29.705 58.202 1.00 0.00 N \nATOM 2747 CA GLU A 361 0.096 29.851 58.909 1.00 0.00 C \nATOM 2748 C GLU A 361 1.273 29.247 58.153 1.00 0.00 C \nATOM 2749 O GLU A 361 2.435 29.586 58.409 1.00 0.00 O \nATOM 2750 CB GLU A 361 -0.014 29.220 60.306 1.00 0.00 C \nATOM 2751 CG GLU A 361 -0.941 29.987 61.270 1.00 0.00 C \nATOM 2752 CD GLU A 361 -1.029 29.360 62.668 1.00 0.00 C \nATOM 2753 OE1 GLU A 361 0.029 29.049 63.261 1.00 0.00 O \nATOM 2754 OE2 GLU A 361 -2.161 29.191 63.177 1.00 0.00 O \nATOM 2755 N LEU A 362 0.973 28.359 57.211 1.00 0.00 N \nATOM 2756 CA LEU A 362 2.020 27.706 56.439 1.00 0.00 C \nATOM 2757 C LEU A 362 2.340 28.410 55.134 1.00 0.00 C \nATOM 2758 O LEU A 362 3.141 27.920 54.342 1.00 0.00 O \nATOM 2759 CB LEU A 362 1.635 26.254 56.151 1.00 0.00 C \nATOM 2760 CG LEU A 362 1.399 25.375 57.386 1.00 0.00 C \nATOM 2761 CD1 LEU A 362 1.304 23.906 56.950 1.00 0.00 C \nATOM 2762 CD2 LEU A 362 2.535 25.569 58.387 1.00 0.00 C \nATOM 2763 N ILE A 363 1.718 29.557 54.902 1.00 0.00 N \nATOM 2764 CA ILE A 363 1.975 30.282 53.669 1.00 0.00 C \nATOM 2765 C ILE A 363 2.939 31.428 53.908 1.00 0.00 C \nATOM 2766 O ILE A 363 2.668 32.320 54.722 1.00 0.00 O \nATOM 2767 CB ILE A 363 0.690 30.856 53.068 1.00 0.00 C \nATOM 2768 CG1 ILE A 363 -0.274 29.710 52.705 1.00 0.00 C \nATOM 2769 CG2 ILE A 363 1.044 31.708 51.864 1.00 0.00 C \nATOM 2770 CD1 ILE A 363 -1.584 30.169 52.118 1.00 0.00 C \nATOM 2771 N THR A 364 4.056 31.389 53.186 1.00 0.00 N \nATOM 2772 CA THR A 364 5.089 32.402 53.289 1.00 0.00 C \nATOM 2773 C THR A 364 5.058 33.335 52.078 1.00 0.00 C \nATOM 2774 O THR A 364 5.206 32.890 50.939 1.00 0.00 O \nATOM 2775 CB THR A 364 6.483 31.752 53.384 1.00 0.00 C \nATOM 2776 OG1 THR A 364 6.601 31.025 54.619 1.00 0.00 O \nATOM 2777 CG2 THR A 364 7.569 32.825 53.315 1.00 0.00 C \nATOM 2778 N SER A 365 4.850 34.624 52.339 1.00 0.00 N \nATOM 2779 CA SER A 365 4.810 35.659 51.306 1.00 0.00 C \nATOM 2780 C SER A 365 5.554 36.868 51.903 1.00 0.00 C \nATOM 2781 O SER A 365 5.359 37.208 53.072 1.00 0.00 O \nATOM 2782 CB SER A 365 3.364 36.020 50.972 1.00 0.00 C \nATOM 2783 OG SER A 365 2.681 36.510 52.116 1.00 0.00 O \nATOM 2784 N CYS A 366 6.397 37.509 51.098 1.00 0.00 N \nATOM 2785 CA CYS A 366 7.233 38.610 51.577 1.00 0.00 C \nATOM 2786 C CYS A 366 8.081 38.063 52.716 1.00 0.00 C \nATOM 2787 O CYS A 366 8.258 38.711 53.745 1.00 0.00 O \nATOM 2788 CB CYS A 366 6.399 39.790 52.072 1.00 0.00 C \nATOM 2789 SG CYS A 366 5.988 40.955 50.770 1.00 0.00 S \nATOM 2790 N SER A 367 8.571 36.839 52.527 1.00 0.00 N \nATOM 2791 CA SER A 367 9.411 36.171 53.512 1.00 0.00 C \nATOM 2792 C SER A 367 8.759 36.109 54.890 1.00 0.00 C \nATOM 2793 O SER A 367 9.443 35.871 55.885 1.00 0.00 O \nATOM 2794 CB SER A 367 10.756 36.900 53.636 1.00 0.00 C \nATOM 2795 OG SER A 367 11.435 36.932 52.393 1.00 0.00 O \nATOM 2796 N SER A 368 7.444 36.301 54.949 1.00 0.00 N \nATOM 2797 CA SER A 368 6.744 36.305 56.230 1.00 0.00 C \nATOM 2798 C SER A 368 5.520 35.412 56.224 1.00 0.00 C \nATOM 2799 O SER A 368 5.091 34.932 55.177 1.00 0.00 O \nATOM 2800 CB SER A 368 6.292 37.726 56.568 1.00 0.00 C \nATOM 2801 OG SER A 368 7.335 38.666 56.374 1.00 0.00 O \nATOM 2802 N ASN A 369 4.944 35.214 57.403 1.00 0.00 N \nATOM 2803 CA ASN A 369 3.741 34.400 57.522 1.00 0.00 C \nATOM 2804 C ASN A 369 2.946 34.827 58.743 1.00 0.00 C \nATOM 2805 O ASN A 369 3.489 35.407 59.694 1.00 0.00 O \nATOM 2806 CB ASN A 369 4.086 32.908 57.650 1.00 0.00 C \nATOM 2807 CG ASN A 369 4.762 32.571 58.977 1.00 0.00 C \nATOM 2808 OD1 ASN A 369 5.972 32.740 59.132 1.00 0.00 O \nATOM 2809 ND2 ASN A 369 3.975 32.092 59.942 1.00 0.00 N \nATOM 2810 N VAL A 370 1.653 34.526 58.709 1.00 0.00 N \nATOM 2811 CA VAL A 370 0.759 34.850 59.804 1.00 0.00 C \nATOM 2812 C VAL A 370 0.884 33.779 60.874 1.00 0.00 C \nATOM 2813 O VAL A 370 1.017 32.593 60.576 1.00 0.00 O \nATOM 2814 CB VAL A 370 -0.726 34.886 59.347 1.00 0.00 C \nATOM 2815 CG1 VAL A 370 -1.624 35.194 60.541 1.00 0.00 C \nATOM 2816 CG2 VAL A 370 -0.934 35.934 58.264 1.00 0.00 C \nATOM 2817 N SER A 371 0.872 34.203 62.128 1.00 0.00 N \nATOM 2818 CA SER A 371 0.918 33.259 63.224 1.00 0.00 C \nATOM 2819 C SER A 371 -0.013 33.814 64.283 1.00 0.00 C \nATOM 2820 O SER A 371 -0.529 34.925 64.144 1.00 0.00 O \nATOM 2821 CB SER A 371 2.328 33.115 63.789 1.00 0.00 C \nATOM 2822 OG SER A 371 2.428 31.899 64.519 1.00 0.00 O \nATOM 2823 N VAL A 372 -0.229 33.046 65.343 1.00 0.00 N \nATOM 2824 CA VAL A 372 -1.124 33.484 66.398 1.00 0.00 C \nATOM 2825 C VAL A 372 -0.499 33.353 67.778 1.00 0.00 C \nATOM 2826 O VAL A 372 0.301 32.453 68.034 1.00 0.00 O \nATOM 2827 CB VAL A 372 -2.457 32.681 66.358 1.00 0.00 C \nATOM 2828 CG1 VAL A 372 -2.178 31.193 66.498 1.00 0.00 C \nATOM 2829 CG2 VAL A 372 -3.387 33.153 67.465 1.00 0.00 C \nATOM 2830 N ALA A 373 -0.862 34.290 68.645 1.00 0.00 N \nATOM 2831 CA ALA A 373 -0.400 34.323 70.030 1.00 0.00 C \nATOM 2832 C ALA A 373 -1.586 34.799 70.867 1.00 0.00 C \nATOM 2833 O ALA A 373 -2.710 34.882 70.368 1.00 0.00 O \nATOM 2834 CB ALA A 373 0.776 35.291 70.178 1.00 0.00 C \nATOM 2835 N HIS A 374 -1.343 35.114 72.130 1.00 0.00 N \nATOM 2836 CA HIS A 374 -2.414 35.576 73.007 1.00 0.00 C \nATOM 2837 C HIS A 374 -2.014 36.862 73.699 1.00 0.00 C \nATOM 2838 O HIS A 374 -0.864 37.006 74.115 1.00 0.00 O \nATOM 2839 CB HIS A 374 -2.713 34.519 74.057 1.00 0.00 C \nATOM 2840 CG HIS A 374 -3.179 33.223 73.486 1.00 0.00 C \nATOM 2841 ND1 HIS A 374 -4.476 33.020 73.065 1.00 0.00 N \nATOM 2842 CD2 HIS A 374 -2.516 32.072 73.223 1.00 0.00 C \nATOM 2843 CE1 HIS A 374 -4.590 31.803 72.569 1.00 0.00 C \nATOM 2844 NE2 HIS A 374 -3.415 31.206 72.652 1.00 0.00 N \nATOM 2845 N ASP A 375 -2.956 37.799 73.820 1.00 0.00 N \nATOM 2846 CA ASP A 375 -2.665 39.061 74.489 1.00 0.00 C \nATOM 2847 C ASP A 375 -2.833 38.911 75.998 1.00 0.00 C \nATOM 2848 O ASP A 375 -3.026 37.805 76.510 1.00 0.00 O \nATOM 2849 CB ASP A 375 -3.564 40.195 73.979 1.00 0.00 C \nATOM 2850 CG ASP A 375 -5.053 39.883 74.107 1.00 0.00 C \nATOM 2851 OD1 ASP A 375 -5.457 39.139 75.025 1.00 0.00 O \nATOM 2852 OD2 ASP A 375 -5.830 40.401 73.282 1.00 0.00 O \nATOM 2853 N ALA A 376 -2.758 40.028 76.706 1.00 0.00 N \nATOM 2854 CA ALA A 376 -2.877 40.014 78.156 1.00 0.00 C \nATOM 2855 C ALA A 376 -4.232 39.515 78.660 1.00 0.00 C \nATOM 2856 O ALA A 376 -4.383 39.246 79.847 1.00 0.00 O \nATOM 2857 CB ALA A 376 -2.593 41.402 78.702 1.00 0.00 C \nATOM 2858 N SER A 377 -5.206 39.387 77.762 1.00 0.00 N \nATOM 2859 CA SER A 377 -6.542 38.923 78.129 1.00 0.00 C \nATOM 2860 C SER A 377 -6.725 37.443 77.847 1.00 0.00 C \nATOM 2861 O SER A 377 -7.706 36.837 78.282 1.00 0.00 O \nATOM 2862 CB SER A 377 -7.603 39.703 77.356 1.00 0.00 C \nATOM 2863 OG SER A 377 -7.451 41.098 77.556 1.00 0.00 O \nATOM 2864 N GLY A 378 -5.788 36.861 77.110 1.00 0.00 N \nATOM 2865 CA GLY A 378 -5.887 35.449 76.792 1.00 0.00 C \nATOM 2866 C GLY A 378 -6.501 35.261 75.419 1.00 0.00 C \nATOM 2867 O GLY A 378 -6.635 34.139 74.933 1.00 0.00 O \nATOM 2868 N LYS A 379 -6.874 36.376 74.798 1.00 0.00 N \nATOM 2869 CA LYS A 379 -7.477 36.371 73.466 1.00 0.00 C \nATOM 2870 C LYS A 379 -6.468 36.036 72.368 1.00 0.00 C \nATOM 2871 O LYS A 379 -5.316 36.461 72.413 1.00 0.00 O \nATOM 2872 CB LYS A 379 -8.097 37.745 73.167 1.00 0.00 C \nATOM 2873 CG LYS A 379 -8.594 37.905 71.731 1.00 0.00 C \nATOM 2874 CD LYS A 379 -9.312 39.234 71.502 1.00 0.00 C \nATOM 2875 CE LYS A 379 -8.380 40.417 71.708 1.00 0.00 C \nATOM 2876 NZ LYS A 379 -9.032 41.728 71.413 1.00 0.00 N \nATOM 2877 N ARG A 380 -6.909 35.273 71.378 1.00 0.00 N \nATOM 2878 CA ARG A 380 -6.046 34.929 70.262 1.00 0.00 C \nATOM 2879 C ARG A 380 -5.836 36.188 69.430 1.00 0.00 C \nATOM 2880 O ARG A 380 -6.787 36.921 69.156 1.00 0.00 O \nATOM 2881 CB ARG A 380 -6.692 33.848 69.401 1.00 0.00 C \nATOM 2882 CG ARG A 380 -6.717 32.474 70.041 1.00 0.00 C \nATOM 2883 CD ARG A 380 -7.741 31.592 69.363 1.00 0.00 C \nATOM 2884 NE ARG A 380 -7.440 31.358 67.956 1.00 0.00 N \nATOM 2885 CZ ARG A 380 -6.449 30.588 67.518 1.00 0.00 C \nATOM 2886 NH1 ARG A 380 -5.645 29.971 68.379 1.00 0.00 N \nATOM 2887 NH2 ARG A 380 -6.277 30.414 66.215 1.00 0.00 N \nATOM 2888 N VAL A 381 -4.584 36.446 69.058 1.00 0.00 N \nATOM 2889 CA VAL A 381 -4.230 37.600 68.240 1.00 0.00 C \nATOM 2890 C VAL A 381 -3.292 37.149 67.118 1.00 0.00 C \nATOM 2891 O VAL A 381 -2.335 36.404 67.354 1.00 0.00 O \nATOM 2892 CB VAL A 381 -3.531 38.703 69.085 1.00 0.00 C \nATOM 2893 CG1 VAL A 381 -2.569 38.062 70.065 1.00 0.00 C \nATOM 2894 CG2 VAL A 381 -2.772 39.675 68.177 1.00 0.00 C \nATOM 2895 N TYR A 382 -3.583 37.592 65.899 1.00 0.00 N \nATOM 2896 CA TYR A 382 -2.765 37.251 64.738 1.00 0.00 C \nATOM 2897 C TYR A 382 -1.732 38.338 64.538 1.00 0.00 C \nATOM 2898 O TYR A 382 -2.004 39.516 64.794 1.00 0.00 O \nATOM 2899 CB TYR A 382 -3.633 37.152 63.482 1.00 0.00 C \nATOM 2900 CG TYR A 382 -4.575 35.981 63.498 1.00 0.00 C \nATOM 2901 CD1 TYR A 382 -4.103 34.685 63.323 1.00 0.00 C \nATOM 2902 CD2 TYR A 382 -5.934 36.165 63.727 1.00 0.00 C \nATOM 2903 CE1 TYR A 382 -4.966 33.592 63.377 1.00 0.00 C \nATOM 2904 CE2 TYR A 382 -6.808 35.085 63.787 1.00 0.00 C \nATOM 2905 CZ TYR A 382 -6.317 33.799 63.612 1.00 0.00 C \nATOM 2906 OH TYR A 382 -7.174 32.722 63.683 1.00 0.00 O \nATOM 2907 N TYR A 383 -0.555 37.949 64.056 1.00 0.00 N \nATOM 2908 CA TYR A 383 0.517 38.913 63.834 1.00 0.00 C \nATOM 2909 C TYR A 383 1.488 38.371 62.794 1.00 0.00 C \nATOM 2910 O TYR A 383 1.517 37.175 62.523 1.00 0.00 O \nATOM 2911 CB TYR A 383 1.265 39.181 65.146 1.00 0.00 C \nATOM 2912 CG TYR A 383 2.045 37.983 65.625 1.00 0.00 C \nATOM 2913 CD1 TYR A 383 1.395 36.868 66.175 1.00 0.00 C \nATOM 2914 CD2 TYR A 383 3.430 37.923 65.457 1.00 0.00 C \nATOM 2915 CE1 TYR A 383 2.115 35.726 66.536 1.00 0.00 C \nATOM 2916 CE2 TYR A 383 4.151 36.786 65.813 1.00 0.00 C \nATOM 2917 CZ TYR A 383 3.496 35.698 66.346 1.00 0.00 C \nATOM 2918 OH TYR A 383 4.222 34.578 66.674 1.00 0.00 O \nATOM 2919 N LEU A 384 2.294 39.253 62.221 1.00 0.00 N \nATOM 2920 CA LEU A 384 3.243 38.833 61.206 1.00 0.00 C \nATOM 2921 C LEU A 384 4.594 38.466 61.822 1.00 0.00 C \nATOM 2922 O LEU A 384 5.116 39.185 62.675 1.00 0.00 O \nATOM 2923 CB LEU A 384 3.434 39.946 60.180 1.00 0.00 C \nATOM 2924 CG LEU A 384 4.017 39.510 58.837 1.00 0.00 C \nATOM 2925 CD1 LEU A 384 2.956 38.722 58.091 1.00 0.00 C \nATOM 2926 CD2 LEU A 384 4.424 40.722 58.012 1.00 0.00 C \nATOM 2927 N THR A 385 5.146 37.339 61.387 1.00 0.00 N \nATOM 2928 CA THR A 385 6.438 36.883 61.868 1.00 0.00 C \nATOM 2929 C THR A 385 7.188 36.314 60.671 1.00 0.00 C \nATOM 2930 O THR A 385 6.697 36.356 59.534 1.00 0.00 O \nATOM 2931 CB THR A 385 6.305 35.777 62.930 1.00 0.00 C \nATOM 2932 OG1 THR A 385 7.612 35.385 63.388 1.00 0.00 O \nATOM 2933 CG2 THR A 385 5.607 34.561 62.337 1.00 0.00 C \nATOM 2934 N ARG A 386 8.382 35.799 60.926 1.00 0.00 N \nATOM 2935 CA ARG A 386 9.181 35.207 59.875 1.00 0.00 C \nATOM 2936 C ARG A 386 10.297 34.387 60.481 1.00 0.00 C \nATOM 2937 O ARG A 386 10.559 34.466 61.691 1.00 0.00 O \nATOM 2938 CB ARG A 386 9.788 36.287 58.977 1.00 0.00 C \nATOM 2939 CG ARG A 386 10.731 37.271 59.687 1.00 0.00 C \nATOM 2940 CD ARG A 386 11.627 37.948 58.663 1.00 0.00 C \nATOM 2941 NE ARG A 386 12.553 36.983 58.070 1.00 0.00 N \nATOM 2942 CZ ARG A 386 13.163 37.139 56.898 1.00 0.00 C \nATOM 2943 NH1 ARG A 386 12.953 38.231 56.168 1.00 0.00 N \nATOM 2944 NH2 ARG A 386 13.996 36.206 56.456 1.00 0.00 N \nATOM 2945 N ASP A 387 10.936 33.577 59.645 1.00 0.00 N \nATOM 2946 CA ASP A 387 12.064 32.788 60.111 1.00 0.00 C \nATOM 2947 C ASP A 387 13.053 33.883 60.537 1.00 0.00 C \nATOM 2948 O ASP A 387 13.295 34.827 59.784 1.00 0.00 O \nATOM 2949 CB ASP A 387 12.642 31.968 58.966 1.00 0.00 C \nATOM 2950 CG ASP A 387 13.804 31.121 59.405 1.00 0.00 C \nATOM 2951 OD1 ASP A 387 14.837 31.694 59.795 1.00 0.00 O \nATOM 2952 OD2 ASP A 387 13.679 29.880 59.371 1.00 0.00 O \nATOM 2953 N PRO A 388 13.636 33.777 61.742 1.00 0.00 N \nATOM 2954 CA PRO A 388 14.577 34.813 62.198 1.00 0.00 C \nATOM 2955 C PRO A 388 16.022 34.669 61.758 1.00 0.00 C \nATOM 2956 O PRO A 388 16.865 35.501 62.120 1.00 0.00 O \nATOM 2957 CB PRO A 388 14.439 34.748 63.710 1.00 0.00 C \nATOM 2958 CG PRO A 388 14.250 33.256 63.955 1.00 0.00 C \nATOM 2959 CD PRO A 388 13.395 32.762 62.787 1.00 0.00 C \nATOM 2960 N THR A 389 16.305 33.643 60.961 1.00 0.00 N \nATOM 2961 CA THR A 389 17.672 33.381 60.537 1.00 0.00 C \nATOM 2962 C THR A 389 18.392 34.563 59.910 1.00 0.00 C \nATOM 2963 O THR A 389 19.460 34.945 60.380 1.00 0.00 O \nATOM 2964 CB THR A 389 17.753 32.195 59.558 1.00 0.00 C \nATOM 2965 OG1 THR A 389 17.241 31.010 60.184 1.00 0.00 O \nATOM 2966 CG2 THR A 389 19.176 31.951 59.164 1.00 0.00 C \nATOM 2967 N THR A 390 17.813 35.137 58.859 1.00 0.00 N \nATOM 2968 CA THR A 390 18.449 36.250 58.190 1.00 0.00 C \nATOM 2969 C THR A 390 18.489 37.477 59.085 1.00 0.00 C \nATOM 2970 O THR A 390 19.497 38.165 59.129 1.00 0.00 O \nATOM 2971 CB THR A 390 17.768 36.566 56.849 1.00 0.00 C \nATOM 2972 OG1 THR A 390 17.881 35.425 55.991 1.00 0.00 O \nATOM 2973 CG2 THR A 390 18.449 37.748 56.170 1.00 0.00 C \nATOM 2974 N PRO A 391 17.384 37.781 59.790 1.00 0.00 N \nATOM 2975 CA PRO A 391 17.399 38.948 60.677 1.00 0.00 C \nATOM 2976 C PRO A 391 18.515 38.807 61.736 1.00 0.00 C \nATOM 2977 O PRO A 391 19.190 39.787 62.079 1.00 0.00 O \nATOM 2978 CB PRO A 391 16.001 38.917 61.303 1.00 0.00 C \nATOM 2979 CG PRO A 391 15.152 38.441 60.167 1.00 0.00 C \nATOM 2980 CD PRO A 391 15.999 37.333 59.534 1.00 0.00 C \nATOM 2981 N LEU A 392 18.727 37.591 62.244 1.00 0.00 N \nATOM 2982 CA LEU A 392 19.762 37.391 63.262 1.00 0.00 C \nATOM 2983 C LEU A 392 21.173 37.416 62.669 1.00 0.00 C \nATOM 2984 O LEU A 392 22.108 37.906 63.297 1.00 0.00 O \nATOM 2985 CB LEU A 392 19.515 36.091 64.047 1.00 0.00 C \nATOM 2986 CG LEU A 392 18.241 36.139 64.904 1.00 0.00 C \nATOM 2987 CD1 LEU A 392 18.057 34.833 65.604 1.00 0.00 C \nATOM 2988 CD2 LEU A 392 18.308 37.292 65.908 1.00 0.00 C \nATOM 2989 N ALA A 393 21.325 36.891 61.461 1.00 0.00 N \nATOM 2990 CA ALA A 393 22.619 36.911 60.793 1.00 0.00 C \nATOM 2991 C ALA A 393 23.012 38.371 60.562 1.00 0.00 C \nATOM 2992 O ALA A 393 24.167 38.767 60.751 1.00 0.00 O \nATOM 2993 CB ALA A 393 22.523 36.197 59.457 1.00 0.00 C \nATOM 2994 N ARG A 394 22.044 39.175 60.134 1.00 0.00 N \nATOM 2995 CA ARG A 394 22.322 40.582 59.872 1.00 0.00 C \nATOM 2996 C ARG A 394 22.599 41.346 61.155 1.00 0.00 C \nATOM 2997 O ARG A 394 23.455 42.237 61.188 1.00 0.00 O \nATOM 2998 CB ARG A 394 21.164 41.187 59.081 1.00 0.00 C \nATOM 2999 CG ARG A 394 21.101 40.520 57.725 1.00 0.00 C \nATOM 3000 CD ARG A 394 20.060 41.047 56.773 1.00 0.00 C \nATOM 3001 NE ARG A 394 20.303 40.441 55.466 1.00 0.00 N \nATOM 3002 CZ ARG A 394 19.600 40.687 54.367 1.00 0.00 C \nATOM 3003 NH1 ARG A 394 18.582 41.538 54.396 1.00 0.00 N \nATOM 3004 NH2 ARG A 394 19.930 40.088 53.235 1.00 0.00 N \nATOM 3005 N ALA A 395 21.902 40.986 62.227 1.00 0.00 N \nATOM 3006 CA ALA A 395 22.138 41.665 63.497 1.00 0.00 C \nATOM 3007 C ALA A 395 23.558 41.326 63.970 1.00 0.00 C \nATOM 3008 O ALA A 395 24.240 42.165 64.571 1.00 0.00 O \nATOM 3009 CB ALA A 395 21.113 41.227 64.535 1.00 0.00 C \nATOM 3010 N ALA A 396 24.003 40.097 63.707 1.00 0.00 N \nATOM 3011 CA ALA A 396 25.355 39.713 64.113 1.00 0.00 C \nATOM 3012 C ALA A 396 26.339 40.642 63.416 1.00 0.00 C \nATOM 3013 O ALA A 396 27.254 41.172 64.039 1.00 0.00 O \nATOM 3014 CB ALA A 396 25.641 38.252 63.739 1.00 0.00 C \nATOM 3015 N TRP A 397 26.140 40.849 62.115 1.00 0.00 N \nATOM 3016 CA TRP A 397 27.014 41.724 61.336 1.00 0.00 C \nATOM 3017 C TRP A 397 26.966 43.153 61.873 1.00 0.00 C \nATOM 3018 O TRP A 397 27.993 43.820 62.015 1.00 0.00 O \nATOM 3019 CB TRP A 397 26.588 41.709 59.859 1.00 0.00 C \nATOM 3020 CG TRP A 397 27.631 42.261 58.942 1.00 0.00 C \nATOM 3021 CD1 TRP A 397 27.951 43.583 58.750 1.00 0.00 C \nATOM 3022 CD2 TRP A 397 28.537 41.504 58.132 1.00 0.00 C \nATOM 3023 NE1 TRP A 397 29.005 43.685 57.871 1.00 0.00 N \nATOM 3024 CE2 TRP A 397 29.384 42.427 57.478 1.00 0.00 C \nATOM 3025 CE3 TRP A 397 28.717 40.135 57.896 1.00 0.00 C \nATOM 3026 CZ2 TRP A 397 30.402 42.021 56.601 1.00 0.00 C \nATOM 3027 CZ3 TRP A 397 29.728 39.732 57.025 1.00 0.00 C \nATOM 3028 CH2 TRP A 397 30.557 40.677 56.389 1.00 0.00 C \nATOM 3029 N GLU A 398 25.763 43.626 62.168 1.00 0.00 N \nATOM 3030 CA GLU A 398 25.592 44.976 62.686 1.00 0.00 C \nATOM 3031 C GLU A 398 26.118 45.135 64.113 1.00 0.00 C \nATOM 3032 O GLU A 398 26.254 46.251 64.612 1.00 0.00 O \nATOM 3033 CB GLU A 398 24.116 45.382 62.578 1.00 0.00 C \nATOM 3034 CG GLU A 398 23.722 45.704 61.116 1.00 0.00 C \nATOM 3035 CD GLU A 398 22.222 45.640 60.824 1.00 0.00 C \nATOM 3036 OE1 GLU A 398 21.413 45.507 61.760 1.00 0.00 O \nATOM 3037 OE2 GLU A 398 21.848 45.725 59.635 1.00 0.00 O \nATOM 3038 N THR A 399 26.437 44.019 64.760 1.00 0.00 N \nATOM 3039 CA THR A 399 26.972 44.060 66.118 1.00 0.00 C \nATOM 3040 C THR A 399 28.447 44.484 66.087 1.00 0.00 C \nATOM 3041 O THR A 399 28.948 45.097 67.027 1.00 0.00 O \nATOM 3042 CB THR A 399 26.850 42.672 66.798 1.00 0.00 C \nATOM 3043 OG1 THR A 399 25.461 42.347 66.967 1.00 0.00 O \nATOM 3044 CG2 THR A 399 27.552 42.660 68.164 1.00 0.00 C \nATOM 3045 N ALA A 400 29.137 44.162 64.996 1.00 0.00 N \nATOM 3046 CA ALA A 400 30.556 44.497 64.857 1.00 0.00 C \nATOM 3047 C ALA A 400 30.821 45.602 63.837 1.00 0.00 C \nATOM 3048 O ALA A 400 31.914 46.167 63.807 1.00 0.00 O \nATOM 3049 CB ALA A 400 31.354 43.245 64.452 1.00 0.00 C \nATOM 3050 N ARG A 401 29.827 45.901 63.001 1.00 0.00 N \nATOM 3051 CA ARG A 401 29.981 46.902 61.954 1.00 0.00 C \nATOM 3052 C ARG A 401 28.787 47.826 61.784 1.00 0.00 C \nATOM 3053 O ARG A 401 27.640 47.385 61.794 1.00 0.00 O \nATOM 3054 CB ARG A 401 30.232 46.199 60.622 1.00 0.00 C \nATOM 3055 CG ARG A 401 31.552 45.507 60.515 1.00 0.00 C \nATOM 3056 CD ARG A 401 32.585 46.404 59.849 1.00 0.00 C \nATOM 3057 NE ARG A 401 33.789 45.648 59.526 1.00 0.00 N \nATOM 3058 CZ ARG A 401 34.691 45.277 60.422 1.00 0.00 C \nATOM 3059 NH1 ARG A 401 34.528 45.602 61.699 1.00 0.00 N \nATOM 3060 NH2 ARG A 401 35.744 44.569 60.043 1.00 0.00 N \nATOM 3061 N HIS A 402 29.061 49.113 61.620 1.00 0.00 N \nATOM 3062 CA HIS A 402 28.001 50.079 61.390 1.00 0.00 C \nATOM 3063 C HIS A 402 27.759 50.037 59.889 1.00 0.00 C \nATOM 3064 O HIS A 402 28.700 50.094 59.104 1.00 0.00 O \nATOM 3065 CB HIS A 402 28.439 51.480 61.825 1.00 0.00 C \nATOM 3066 CG HIS A 402 28.630 51.610 63.304 1.00 0.00 C \nATOM 3067 ND1 HIS A 402 29.822 52.002 63.873 1.00 0.00 N \nATOM 3068 CD2 HIS A 402 27.783 51.362 64.333 1.00 0.00 C \nATOM 3069 CE1 HIS A 402 29.704 51.988 65.189 1.00 0.00 C \nATOM 3070 NE2 HIS A 402 28.478 51.603 65.494 1.00 0.00 N \nATOM 3071 N THR A 403 26.500 49.913 59.491 1.00 0.00 N \nATOM 3072 CA THR A 403 26.156 49.836 58.080 1.00 0.00 C \nATOM 3073 C THR A 403 25.167 50.940 57.727 1.00 0.00 C \nATOM 3074 O THR A 403 24.585 51.552 58.611 1.00 0.00 O \nATOM 3075 CB THR A 403 25.534 48.455 57.747 1.00 0.00 C \nATOM 3076 OG1 THR A 403 24.293 48.302 58.443 1.00 0.00 O \nATOM 3077 CG2 THR A 403 26.469 47.339 58.182 1.00 0.00 C \nATOM 3078 N PRO A 404 24.972 51.211 56.426 1.00 0.00 N \nATOM 3079 CA PRO A 404 24.048 52.248 55.950 1.00 0.00 C \nATOM 3080 C PRO A 404 22.612 52.004 56.408 1.00 0.00 C \nATOM 3081 O PRO A 404 21.915 52.925 56.833 1.00 0.00 O \nATOM 3082 CB PRO A 404 24.174 52.150 54.431 1.00 0.00 C \nATOM 3083 CG PRO A 404 25.564 51.639 54.230 1.00 0.00 C \nATOM 3084 CD PRO A 404 25.652 50.568 55.288 1.00 0.00 C \nATOM 3085 N VAL A 405 22.184 50.752 56.316 1.00 0.00 N \nATOM 3086 CA VAL A 405 20.837 50.346 56.693 1.00 0.00 C \nATOM 3087 C VAL A 405 20.929 49.462 57.927 1.00 0.00 C \nATOM 3088 O VAL A 405 21.551 48.401 57.898 1.00 0.00 O \nATOM 3089 CB VAL A 405 20.170 49.534 55.558 1.00 0.00 C \nATOM 3090 CG1 VAL A 405 18.749 49.154 55.936 1.00 0.00 C \nATOM 3091 CG2 VAL A 405 20.194 50.336 54.266 1.00 0.00 C \nATOM 3092 N ASN A 406 20.307 49.906 59.008 1.00 0.00 N \nATOM 3093 CA ASN A 406 20.315 49.166 60.251 1.00 0.00 C \nATOM 3094 C ASN A 406 19.153 48.179 60.228 1.00 0.00 C \nATOM 3095 O ASN A 406 18.056 48.500 60.670 1.00 0.00 O \nATOM 3096 CB ASN A 406 20.174 50.152 61.400 1.00 0.00 C \nATOM 3097 CG ASN A 406 21.428 50.987 61.597 1.00 0.00 C \nATOM 3098 OD1 ASN A 406 22.416 50.509 62.162 1.00 0.00 O \nATOM 3099 ND2 ASN A 406 21.405 52.231 61.112 1.00 0.00 N \nATOM 3100 N SER A 407 19.393 46.977 59.716 1.00 0.00 N \nATOM 3101 CA SER A 407 18.313 45.996 59.637 1.00 0.00 C \nATOM 3102 C SER A 407 17.734 45.640 61.004 1.00 0.00 C \nATOM 3103 O SER A 407 16.540 45.372 61.118 1.00 0.00 O \nATOM 3104 CB SER A 407 18.790 44.714 58.937 1.00 0.00 C \nATOM 3105 OG SER A 407 19.664 43.996 59.786 1.00 0.00 O \nATOM 3106 N TRP A 408 18.550 45.641 62.054 1.00 0.00 N \nATOM 3107 CA TRP A 408 17.998 45.288 63.358 1.00 0.00 C \nATOM 3108 C TRP A 408 16.840 46.204 63.762 1.00 0.00 C \nATOM 3109 O TRP A 408 15.855 45.747 64.340 1.00 0.00 O \nATOM 3110 CB TRP A 408 19.075 45.315 64.463 1.00 0.00 C \nATOM 3111 CG TRP A 408 19.666 46.683 64.783 1.00 0.00 C \nATOM 3112 CD1 TRP A 408 20.795 47.246 64.242 1.00 0.00 C \nATOM 3113 CD2 TRP A 408 19.151 47.643 65.721 1.00 0.00 C \nATOM 3114 NE1 TRP A 408 21.013 48.496 64.793 1.00 0.00 N \nATOM 3115 CE2 TRP A 408 20.021 48.758 65.698 1.00 0.00 C \nATOM 3116 CE3 TRP A 408 18.046 47.664 66.580 1.00 0.00 C \nATOM 3117 CZ2 TRP A 408 19.808 49.884 66.500 1.00 0.00 C \nATOM 3118 CZ3 TRP A 408 17.841 48.786 67.376 1.00 0.00 C \nATOM 3119 CH2 TRP A 408 18.721 49.877 67.328 1.00 0.00 C \nATOM 3120 N LEU A 409 16.971 47.496 63.461 1.00 0.00 N \nATOM 3121 CA LEU A 409 15.953 48.478 63.829 1.00 0.00 C \nATOM 3122 C LEU A 409 14.706 48.315 62.981 1.00 0.00 C \nATOM 3123 O LEU A 409 13.584 48.392 63.489 1.00 0.00 O \nATOM 3124 CB LEU A 409 16.499 49.898 63.670 1.00 0.00 C \nATOM 3125 CG LEU A 409 15.520 51.029 63.982 1.00 0.00 C \nATOM 3126 CD1 LEU A 409 14.854 50.800 65.332 1.00 0.00 C \nATOM 3127 CD2 LEU A 409 16.268 52.340 63.960 1.00 0.00 C \nATOM 3128 N GLY A 410 14.916 48.097 61.685 1.00 0.00 N \nATOM 3129 CA GLY A 410 13.802 47.889 60.787 1.00 0.00 C \nATOM 3130 C GLY A 410 13.063 46.626 61.189 1.00 0.00 C \nATOM 3131 O GLY A 410 11.832 46.607 61.164 1.00 0.00 O \nATOM 3132 N ASN A 411 13.793 45.566 61.556 1.00 0.00 N \nATOM 3133 CA ASN A 411 13.142 44.317 61.961 1.00 0.00 C \nATOM 3134 C ASN A 411 12.384 44.434 63.272 1.00 0.00 C \nATOM 3135 O ASN A 411 11.350 43.776 63.470 1.00 0.00 O \nATOM 3136 CB ASN A 411 14.151 43.160 62.026 1.00 0.00 C \nATOM 3137 CG ASN A 411 14.465 42.619 60.656 1.00 0.00 C \nATOM 3138 OD1 ASN A 411 13.556 42.444 59.854 1.00 0.00 O \nATOM 3139 ND2 ASN A 411 15.736 42.361 60.371 1.00 0.00 N \nATOM 3140 N ILE A 412 12.880 45.272 64.174 1.00 0.00 N \nATOM 3141 CA ILE A 412 12.174 45.470 65.436 1.00 0.00 C \nATOM 3142 C ILE A 412 10.850 46.180 65.133 1.00 0.00 C \nATOM 3143 O ILE A 412 9.799 45.847 65.685 1.00 0.00 O \nATOM 3144 CB ILE A 412 13.010 46.317 66.421 1.00 0.00 C \nATOM 3145 CG1 ILE A 412 14.084 45.420 67.059 1.00 0.00 C \nATOM 3146 CG2 ILE A 412 12.095 46.965 67.463 1.00 0.00 C \nATOM 3147 CD1 ILE A 412 14.962 46.103 68.072 1.00 0.00 C \nATOM 3148 N ILE A 413 10.907 47.154 64.235 1.00 0.00 N \nATOM 3149 CA ILE A 413 9.721 47.898 63.873 1.00 0.00 C \nATOM 3150 C ILE A 413 8.685 47.017 63.192 1.00 0.00 C \nATOM 3151 O ILE A 413 7.522 47.020 63.568 1.00 0.00 O \nATOM 3152 CB ILE A 413 10.080 49.071 62.940 1.00 0.00 C \nATOM 3153 CG1 ILE A 413 10.815 50.145 63.742 1.00 0.00 C \nATOM 3154 CG2 ILE A 413 8.825 49.659 62.316 1.00 0.00 C \nATOM 3155 CD1 ILE A 413 11.418 51.242 62.914 1.00 0.00 C \nATOM 3156 N MET A 414 9.118 46.247 62.202 1.00 0.00 N \nATOM 3157 CA MET A 414 8.203 45.411 61.445 1.00 0.00 C \nATOM 3158 C MET A 414 7.781 44.121 62.133 1.00 0.00 C \nATOM 3159 O MET A 414 6.678 43.625 61.905 1.00 0.00 O \nATOM 3160 CB MET A 414 8.818 45.112 60.074 1.00 0.00 C \nATOM 3161 CG MET A 414 9.108 46.373 59.242 1.00 0.00 C \nATOM 3162 SD MET A 414 7.595 47.269 58.668 1.00 0.00 S \nATOM 3163 CE MET A 414 7.138 46.220 57.285 1.00 0.00 C \nATOM 3164 N TYR A 415 8.637 43.586 62.990 1.00 0.00 N \nATOM 3165 CA TYR A 415 8.321 42.341 63.689 1.00 0.00 C \nATOM 3166 C TYR A 415 8.266 42.497 65.199 1.00 0.00 C \nATOM 3167 O TYR A 415 8.572 41.567 65.939 1.00 0.00 O \nATOM 3168 CB TYR A 415 9.347 41.276 63.288 1.00 0.00 C \nATOM 3169 CG TYR A 415 9.263 40.944 61.806 1.00 0.00 C \nATOM 3170 CD1 TYR A 415 8.204 40.185 61.307 1.00 0.00 C \nATOM 3171 CD2 TYR A 415 10.211 41.436 60.901 1.00 0.00 C \nATOM 3172 CE1 TYR A 415 8.081 39.923 59.945 1.00 0.00 C \nATOM 3173 CE2 TYR A 415 10.104 41.173 59.524 1.00 0.00 C \nATOM 3174 CZ TYR A 415 9.030 40.415 59.058 1.00 0.00 C \nATOM 3175 OH TYR A 415 8.899 40.151 57.708 1.00 0.00 O \nATOM 3176 N ALA A 416 7.853 43.677 65.651 1.00 0.00 N \nATOM 3177 CA ALA A 416 7.763 43.980 67.081 1.00 0.00 C \nATOM 3178 C ALA A 416 7.042 42.965 67.965 1.00 0.00 C \nATOM 3179 O ALA A 416 7.486 42.708 69.072 1.00 0.00 O \nATOM 3180 CB ALA A 416 7.134 45.358 67.274 1.00 0.00 C \nATOM 3181 N PRO A 417 5.916 42.387 67.505 1.00 0.00 N \nATOM 3182 CA PRO A 417 5.166 41.407 68.303 1.00 0.00 C \nATOM 3183 C PRO A 417 5.810 40.013 68.426 1.00 0.00 C \nATOM 3184 O PRO A 417 5.413 39.213 69.275 1.00 0.00 O \nATOM 3185 CB PRO A 417 3.815 41.308 67.570 1.00 0.00 C \nATOM 3186 CG PRO A 417 3.745 42.530 66.733 1.00 0.00 C \nATOM 3187 CD PRO A 417 5.174 42.716 66.277 1.00 0.00 C \nATOM 3188 N THR A 418 6.801 39.727 67.589 1.00 0.00 N \nATOM 3189 CA THR A 418 7.418 38.399 67.587 1.00 0.00 C \nATOM 3190 C THR A 418 8.257 38.005 68.781 1.00 0.00 C \nATOM 3191 O THR A 418 8.879 38.848 69.439 1.00 0.00 O \nATOM 3192 CB THR A 418 8.277 38.188 66.319 1.00 0.00 C \nATOM 3193 OG1 THR A 418 9.495 38.943 66.428 1.00 0.00 O \nATOM 3194 CG2 THR A 418 7.497 38.663 65.078 1.00 0.00 C \nATOM 3195 N LEU A 419 8.282 36.703 69.048 1.00 0.00 N \nATOM 3196 CA LEU A 419 9.062 36.177 70.161 1.00 0.00 C \nATOM 3197 C LEU A 419 10.541 36.535 69.993 1.00 0.00 C \nATOM 3198 O LEU A 419 11.182 37.027 70.929 1.00 0.00 O \nATOM 3199 CB LEU A 419 8.887 34.652 70.239 1.00 0.00 C \nATOM 3200 CG LEU A 419 9.813 33.836 71.140 1.00 0.00 C \nATOM 3201 CD1 LEU A 419 9.612 34.213 72.603 1.00 0.00 C \nATOM 3202 CD2 LEU A 419 9.522 32.340 70.912 1.00 0.00 C \nATOM 3203 N TRP A 420 11.073 36.306 68.789 1.00 0.00 N \nATOM 3204 CA TRP A 420 12.482 36.569 68.508 1.00 0.00 C \nATOM 3205 C TRP A 420 12.891 38.044 68.474 1.00 0.00 C \nATOM 3206 O TRP A 420 13.981 38.396 68.934 1.00 0.00 O \nATOM 3207 CB TRP A 420 12.910 35.876 67.201 1.00 0.00 C \nATOM 3208 CG TRP A 420 12.051 36.192 66.025 1.00 0.00 C \nATOM 3209 CD1 TRP A 420 10.864 35.594 65.684 1.00 0.00 C \nATOM 3210 CD2 TRP A 420 12.282 37.221 65.050 1.00 0.00 C \nATOM 3211 NE1 TRP A 420 10.336 36.203 64.560 1.00 0.00 N \nATOM 3212 CE2 TRP A 420 11.175 37.203 64.162 1.00 0.00 C \nATOM 3213 CE3 TRP A 420 13.302 38.170 64.862 1.00 0.00 C \nATOM 3214 CZ2 TRP A 420 11.083 38.089 63.067 1.00 0.00 C \nATOM 3215 CZ3 TRP A 420 13.209 39.048 63.778 1.00 0.00 C \nATOM 3216 CH2 TRP A 420 12.094 39.005 62.896 1.00 0.00 C \nATOM 3217 N ALA A 421 12.046 38.914 67.927 1.00 0.00 N \nATOM 3218 CA ALA A 421 12.421 40.327 67.891 1.00 0.00 C \nATOM 3219 C ALA A 421 12.472 40.899 69.312 1.00 0.00 C \nATOM 3220 O ALA A 421 13.362 41.683 69.652 1.00 0.00 O \nATOM 3221 CB ALA A 421 11.424 41.140 67.023 1.00 0.00 C \nATOM 3222 N ARG A 422 11.518 40.497 70.144 1.00 0.00 N \nATOM 3223 CA ARG A 422 11.452 40.999 71.520 1.00 0.00 C \nATOM 3224 C ARG A 422 12.514 40.413 72.441 1.00 0.00 C \nATOM 3225 O ARG A 422 13.200 41.140 73.158 1.00 0.00 O \nATOM 3226 CB ARG A 422 10.075 40.710 72.107 1.00 0.00 C \nATOM 3227 CG ARG A 422 8.936 41.273 71.292 1.00 0.00 C \nATOM 3228 CD ARG A 422 7.597 40.690 71.756 1.00 0.00 C \nATOM 3229 NE ARG A 422 7.207 41.167 73.083 1.00 0.00 N \nATOM 3230 CZ ARG A 422 6.253 40.611 73.825 1.00 0.00 C \nATOM 3231 NH1 ARG A 422 5.593 39.545 73.379 1.00 0.00 N \nATOM 3232 NH2 ARG A 422 5.928 41.146 75.000 1.00 0.00 N \nATOM 3233 N MET A 423 12.643 39.091 72.428 1.00 0.00 N \nATOM 3234 CA MET A 423 13.623 38.440 73.283 1.00 0.00 C \nATOM 3235 C MET A 423 15.054 38.804 72.942 1.00 0.00 C \nATOM 3236 O MET A 423 15.853 39.068 73.833 1.00 0.00 O \nATOM 3237 CB MET A 423 13.490 36.908 73.194 1.00 0.00 C \nATOM 3238 CG MET A 423 14.502 36.126 74.030 1.00 0.00 C \nATOM 3239 SD MET A 423 14.122 34.328 74.025 1.00 0.00 S \nATOM 3240 CE MET A 423 14.592 33.920 72.360 1.00 0.00 C \nATOM 3241 N ILE A 424 15.363 38.830 71.650 1.00 0.00 N \nATOM 3242 CA ILE A 424 16.729 39.048 71.200 1.00 0.00 C \nATOM 3243 C ILE A 424 17.153 40.406 70.660 1.00 0.00 C \nATOM 3244 O ILE A 424 18.060 41.032 71.216 1.00 0.00 O \nATOM 3245 CB ILE A 424 17.096 37.960 70.147 1.00 0.00 C \nATOM 3246 CG1 ILE A 424 16.845 36.571 70.745 1.00 0.00 C \nATOM 3247 CG2 ILE A 424 18.557 38.094 69.722 1.00 0.00 C \nATOM 3248 CD1 ILE A 424 16.915 35.436 69.746 1.00 0.00 C \nATOM 3249 N LEU A 425 16.528 40.861 69.578 1.00 0.00 N \nATOM 3250 CA LEU A 425 16.937 42.133 68.989 1.00 0.00 C \nATOM 3251 C LEU A 425 16.788 43.315 69.924 1.00 0.00 C \nATOM 3252 O LEU A 425 17.686 44.149 70.021 1.00 0.00 O \nATOM 3253 CB LEU A 425 16.161 42.398 67.701 1.00 0.00 C \nATOM 3254 CG LEU A 425 16.376 41.380 66.576 1.00 0.00 C \nATOM 3255 CD1 LEU A 425 15.516 41.778 65.361 1.00 0.00 C \nATOM 3256 CD2 LEU A 425 17.856 41.333 66.207 1.00 0.00 C \nATOM 3257 N MET A 426 15.642 43.408 70.589 1.00 0.00 N \nATOM 3258 CA MET A 426 15.403 44.507 71.511 1.00 0.00 C \nATOM 3259 C MET A 426 16.419 44.472 72.657 1.00 0.00 C \nATOM 3260 O MET A 426 17.079 45.466 72.940 1.00 0.00 O \nATOM 3261 CB MET A 426 13.981 44.434 72.068 1.00 0.00 C \nATOM 3262 CG MET A 426 12.912 44.992 71.115 1.00 0.00 C \nATOM 3263 SD MET A 426 11.285 44.915 71.905 1.00 0.00 S \nATOM 3264 CE MET A 426 10.201 45.166 70.449 1.00 0.00 C \nATOM 3265 N THR A 427 16.565 43.316 73.290 1.00 0.00 N \nATOM 3266 CA THR A 427 17.488 43.184 74.407 1.00 0.00 C \nATOM 3267 C THR A 427 18.925 43.490 73.998 1.00 0.00 C \nATOM 3268 O THR A 427 19.603 44.319 74.611 1.00 0.00 O \nATOM 3269 CB THR A 427 17.421 41.779 74.979 1.00 0.00 C \nATOM 3270 OG1 THR A 427 16.050 41.445 75.201 1.00 0.00 O \nATOM 3271 CG2 THR A 427 18.198 41.684 76.305 1.00 0.00 C \nATOM 3272 N HIS A 428 19.366 42.836 72.934 1.00 0.00 N \nATOM 3273 CA HIS A 428 20.722 42.992 72.441 1.00 0.00 C \nATOM 3274 C HIS A 428 21.100 44.421 72.042 1.00 0.00 C \nATOM 3275 O HIS A 428 22.109 44.966 72.494 1.00 0.00 O \nATOM 3276 CB HIS A 428 20.923 42.057 71.261 1.00 0.00 C \nATOM 3277 CG HIS A 428 22.317 42.043 70.731 1.00 0.00 C \nATOM 3278 ND1 HIS A 428 23.378 41.521 71.442 1.00 0.00 N \nATOM 3279 CD2 HIS A 428 22.823 42.449 69.542 1.00 0.00 C \nATOM 3280 CE1 HIS A 428 24.474 41.601 70.708 1.00 0.00 C \nATOM 3281 NE2 HIS A 428 24.164 42.160 69.550 1.00 0.00 N \nATOM 3282 N PHE A 429 20.297 45.040 71.200 1.00 0.00 N \nATOM 3283 CA PHE A 429 20.639 46.379 70.762 1.00 0.00 C \nATOM 3284 C PHE A 429 20.407 47.487 71.786 1.00 0.00 C \nATOM 3285 O PHE A 429 21.173 48.460 71.836 1.00 0.00 O \nATOM 3286 CB PHE A 429 19.957 46.652 69.416 1.00 0.00 C \nATOM 3287 CG PHE A 429 20.636 45.947 68.274 1.00 0.00 C \nATOM 3288 CD1 PHE A 429 21.850 46.415 67.780 1.00 0.00 C \nATOM 3289 CD2 PHE A 429 20.149 44.728 67.801 1.00 0.00 C \nATOM 3290 CE1 PHE A 429 22.576 45.677 66.830 1.00 0.00 C \nATOM 3291 CE2 PHE A 429 20.870 43.982 66.858 1.00 0.00 C \nATOM 3292 CZ PHE A 429 22.081 44.454 66.378 1.00 0.00 C \nATOM 3293 N PHE A 430 19.378 47.361 72.620 1.00 0.00 N \nATOM 3294 CA PHE A 430 19.190 48.395 73.621 1.00 0.00 C \nATOM 3295 C PHE A 430 20.332 48.319 74.624 1.00 0.00 C \nATOM 3296 O PHE A 430 20.784 49.338 75.130 1.00 0.00 O \nATOM 3297 CB PHE A 430 17.835 48.281 74.314 1.00 0.00 C \nATOM 3298 CG PHE A 430 16.774 49.104 73.647 1.00 0.00 C \nATOM 3299 CD1 PHE A 430 16.074 48.609 72.557 1.00 0.00 C \nATOM 3300 CD2 PHE A 430 16.539 50.415 74.054 1.00 0.00 C \nATOM 3301 CE1 PHE A 430 15.159 49.408 71.873 1.00 0.00 C \nATOM 3302 CE2 PHE A 430 15.628 51.221 73.381 1.00 0.00 C \nATOM 3303 CZ PHE A 430 14.934 50.713 72.287 1.00 0.00 C \nATOM 3304 N SER A 431 20.813 47.105 74.878 1.00 0.00 N \nATOM 3305 CA SER A 431 21.921 46.918 75.792 1.00 0.00 C \nATOM 3306 C SER A 431 23.129 47.663 75.229 1.00 0.00 C \nATOM 3307 O SER A 431 23.803 48.403 75.941 1.00 0.00 O \nATOM 3308 CB SER A 431 22.227 45.433 75.930 1.00 0.00 C \nATOM 3309 OG SER A 431 23.401 45.232 76.680 1.00 0.00 O \nATOM 3310 N ILE A 432 23.389 47.492 73.936 1.00 0.00 N \nATOM 3311 CA ILE A 432 24.509 48.179 73.308 1.00 0.00 C \nATOM 3312 C ILE A 432 24.287 49.704 73.316 1.00 0.00 C \nATOM 3313 O ILE A 432 25.188 50.457 73.672 1.00 0.00 O \nATOM 3314 CB ILE A 432 24.715 47.704 71.854 1.00 0.00 C \nATOM 3315 CG1 ILE A 432 25.133 46.231 71.840 1.00 0.00 C \nATOM 3316 CG2 ILE A 432 25.796 48.545 71.175 1.00 0.00 C \nATOM 3317 CD1 ILE A 432 25.090 45.614 70.441 1.00 0.00 C \nATOM 3318 N LEU A 433 23.099 50.158 72.921 1.00 0.00 N \nATOM 3319 CA LEU A 433 22.814 51.593 72.915 1.00 0.00 C \nATOM 3320 C LEU A 433 23.056 52.225 74.287 1.00 0.00 C \nATOM 3321 O LEU A 433 23.614 53.316 74.379 1.00 0.00 O \nATOM 3322 CB LEU A 433 21.374 51.861 72.480 1.00 0.00 C \nATOM 3323 CG LEU A 433 21.008 51.545 71.033 1.00 0.00 C \nATOM 3324 CD1 LEU A 433 19.536 51.903 70.815 1.00 0.00 C \nATOM 3325 CD2 LEU A 433 21.908 52.309 70.075 1.00 0.00 C \nATOM 3326 N LEU A 434 22.629 51.541 75.343 1.00 0.00 N \nATOM 3327 CA LEU A 434 22.830 52.032 76.700 1.00 0.00 C \nATOM 3328 C LEU A 434 24.324 52.189 76.979 1.00 0.00 C \nATOM 3329 O LEU A 434 24.793 53.268 77.345 1.00 0.00 O \nATOM 3330 CB LEU A 434 22.239 51.049 77.726 1.00 0.00 C \nATOM 3331 CG LEU A 434 20.767 51.180 78.140 1.00 0.00 C \nATOM 3332 CD1 LEU A 434 20.315 49.910 78.850 1.00 0.00 C \nATOM 3333 CD2 LEU A 434 20.586 52.384 79.047 1.00 0.00 C \nATOM 3334 N ALA A 435 25.062 51.099 76.793 1.00 0.00 N \nATOM 3335 CA ALA A 435 26.498 51.081 77.037 1.00 0.00 C \nATOM 3336 C ALA A 435 27.257 52.171 76.284 1.00 0.00 C \nATOM 3337 O ALA A 435 28.231 52.727 76.791 1.00 0.00 O \nATOM 3338 CB ALA A 435 27.062 49.703 76.682 1.00 0.00 C \nATOM 3339 N GLN A 436 26.816 52.472 75.068 1.00 0.00 N \nATOM 3340 CA GLN A 436 27.468 53.491 74.256 1.00 0.00 C \nATOM 3341 C GLN A 436 26.827 54.869 74.431 1.00 0.00 C \nATOM 3342 O GLN A 436 27.272 55.848 73.834 1.00 0.00 O \nATOM 3343 CB GLN A 436 27.402 53.089 72.779 1.00 0.00 C \nATOM 3344 CG GLN A 436 28.086 51.772 72.439 1.00 0.00 C \nATOM 3345 CD GLN A 436 29.563 51.778 72.786 1.00 0.00 C \nATOM 3346 OE1 GLN A 436 30.291 52.699 72.424 1.00 0.00 O \nATOM 3347 NE2 GLN A 436 30.011 50.746 73.489 1.00 0.00 N \nATOM 3348 N GLU A 437 25.790 54.949 75.255 1.00 0.00 N \nATOM 3349 CA GLU A 437 25.082 56.207 75.454 1.00 0.00 C \nATOM 3350 C GLU A 437 24.706 56.808 74.103 1.00 0.00 C \nATOM 3351 O GLU A 437 25.069 57.943 73.788 1.00 0.00 O \nATOM 3352 CB GLU A 437 25.939 57.201 76.250 1.00 0.00 C \nATOM 3353 CG GLU A 437 25.873 56.995 77.761 1.00 0.00 C \nATOM 3354 CD GLU A 437 26.740 57.979 78.534 1.00 0.00 C \nATOM 3355 OE1 GLU A 437 26.551 59.206 78.382 1.00 0.00 O \nATOM 3356 OE2 GLU A 437 27.613 57.519 79.299 1.00 0.00 O \nATOM 3357 N GLN A 438 23.986 56.027 73.303 1.00 0.00 N \nATOM 3358 CA GLN A 438 23.542 56.470 71.988 1.00 0.00 C \nATOM 3359 C GLN A 438 22.056 56.206 71.792 1.00 0.00 C \nATOM 3360 O GLN A 438 21.599 56.002 70.670 1.00 0.00 O \nATOM 3361 CB GLN A 438 24.331 55.766 70.891 1.00 0.00 C \nATOM 3362 CG GLN A 438 25.820 55.963 71.019 1.00 0.00 C \nATOM 3363 CD GLN A 438 26.557 55.588 69.761 1.00 0.00 C \nATOM 3364 OE1 GLN A 438 26.241 54.583 69.121 1.00 0.00 O \nATOM 3365 NE2 GLN A 438 27.555 56.389 69.399 1.00 0.00 N \nATOM 3366 N LEU A 439 21.310 56.210 72.890 1.00 0.00 N \nATOM 3367 CA LEU A 439 19.871 55.988 72.841 1.00 0.00 C \nATOM 3368 C LEU A 439 19.135 56.973 71.937 1.00 0.00 C \nATOM 3369 O LEU A 439 18.250 56.583 71.178 1.00 0.00 O \nATOM 3370 CB LEU A 439 19.278 56.074 74.252 1.00 0.00 C \nATOM 3371 CG LEU A 439 19.030 54.787 75.047 1.00 0.00 C \nATOM 3372 CD1 LEU A 439 19.862 53.668 74.498 1.00 0.00 C \nATOM 3373 CD2 LEU A 439 19.338 55.023 76.524 1.00 0.00 C \nATOM 3374 N GLU A 440 19.503 58.248 72.005 1.00 0.00 N \nATOM 3375 CA GLU A 440 18.821 59.262 71.211 1.00 0.00 C \nATOM 3376 C GLU A 440 19.400 59.580 69.840 1.00 0.00 C \nATOM 3377 O GLU A 440 18.973 60.531 69.191 1.00 0.00 O \nATOM 3378 CB GLU A 440 18.690 60.546 72.032 1.00 0.00 C \nATOM 3379 CG GLU A 440 19.931 60.936 72.798 1.00 0.00 C \nATOM 3380 CD GLU A 440 19.629 61.929 73.904 1.00 0.00 C \nATOM 3381 OE1 GLU A 440 20.572 62.324 74.624 1.00 0.00 O \nATOM 3382 OE2 GLU A 440 18.449 62.316 74.056 1.00 0.00 O \nATOM 3383 N LYS A 441 20.357 58.777 69.391 1.00 0.00 N \nATOM 3384 CA LYS A 441 20.962 58.987 68.085 1.00 0.00 C \nATOM 3385 C LYS A 441 20.068 58.359 67.012 1.00 0.00 C \nATOM 3386 O LYS A 441 19.798 57.160 67.051 1.00 0.00 O \nATOM 3387 CB LYS A 441 22.352 58.349 68.054 1.00 0.00 C \nATOM 3388 CG LYS A 441 23.087 58.492 66.727 1.00 0.00 C \nATOM 3389 CD LYS A 441 24.353 57.645 66.719 1.00 0.00 C \nATOM 3390 CE LYS A 441 25.060 57.690 65.371 1.00 0.00 C \nATOM 3391 NZ LYS A 441 26.261 56.800 65.368 1.00 0.00 N \nATOM 3392 N ALA A 442 19.613 59.173 66.062 1.00 0.00 N \nATOM 3393 CA ALA A 442 18.750 58.695 64.981 1.00 0.00 C \nATOM 3394 C ALA A 442 19.529 57.796 64.039 1.00 0.00 C \nATOM 3395 O ALA A 442 20.642 58.128 63.635 1.00 0.00 O \nATOM 3396 CB ALA A 442 18.171 59.871 64.207 1.00 0.00 C \nATOM 3397 N LEU A 443 18.933 56.663 63.683 1.00 0.00 N \nATOM 3398 CA LEU A 443 19.573 55.698 62.795 1.00 0.00 C \nATOM 3399 C LEU A 443 18.732 55.450 61.541 1.00 0.00 C \nATOM 3400 O LEU A 443 17.500 55.467 61.596 1.00 0.00 O \nATOM 3401 CB LEU A 443 19.780 54.374 63.539 1.00 0.00 C \nATOM 3402 CG LEU A 443 20.674 54.397 64.784 1.00 0.00 C \nATOM 3403 CD1 LEU A 443 20.455 53.128 65.590 1.00 0.00 C \nATOM 3404 CD2 LEU A 443 22.137 54.516 64.374 1.00 0.00 C \nATOM 3405 N ASP A 444 19.394 55.213 60.415 1.00 0.00 N \nATOM 3406 CA ASP A 444 18.677 54.950 59.175 1.00 0.00 C \nATOM 3407 C ASP A 444 18.335 53.474 59.017 1.00 0.00 C \nATOM 3408 O ASP A 444 19.125 52.602 59.390 1.00 0.00 O \nATOM 3409 CB ASP A 444 19.510 55.385 57.961 1.00 0.00 C \nATOM 3410 CG ASP A 444 19.822 56.869 57.965 1.00 0.00 C \nATOM 3411 OD1 ASP A 444 18.990 57.657 58.468 1.00 0.00 O \nATOM 3412 OD2 ASP A 444 20.892 57.250 57.449 1.00 0.00 O \nATOM 3413 N CYS A 445 17.152 53.208 58.468 1.00 0.00 N \nATOM 3414 CA CYS A 445 16.697 51.848 58.195 1.00 0.00 C \nATOM 3415 C CYS A 445 15.732 51.942 57.023 1.00 0.00 C \nATOM 3416 O CYS A 445 15.335 53.043 56.641 1.00 0.00 O \nATOM 3417 CB CYS A 445 15.993 51.239 59.417 1.00 0.00 C \nATOM 3418 SG CYS A 445 14.508 52.111 59.970 1.00 0.00 S \nATOM 3419 N GLN A 446 15.356 50.803 56.446 1.00 0.00 N \nATOM 3420 CA GLN A 446 14.433 50.821 55.317 1.00 0.00 C \nATOM 3421 C GLN A 446 13.144 50.070 55.594 1.00 0.00 C \nATOM 3422 O GLN A 446 13.142 49.026 56.248 1.00 0.00 O \nATOM 3423 CB GLN A 446 15.094 50.238 54.061 1.00 0.00 C \nATOM 3424 CG GLN A 446 16.343 50.968 53.600 1.00 0.00 C \nATOM 3425 CD GLN A 446 16.913 50.385 52.313 1.00 0.00 C \nATOM 3426 OE1 GLN A 446 17.018 49.164 52.161 1.00 0.00 O \nATOM 3427 NE2 GLN A 446 17.290 51.258 51.382 1.00 0.00 N \nATOM 3428 N ILE A 447 12.046 50.617 55.087 1.00 0.00 N \nATOM 3429 CA ILE A 447 10.725 50.016 55.242 1.00 0.00 C \nATOM 3430 C ILE A 447 10.134 50.007 53.844 1.00 0.00 C \nATOM 3431 O ILE A 447 9.850 51.065 53.279 1.00 0.00 O \nATOM 3432 CB ILE A 447 9.813 50.856 56.186 1.00 0.00 C \nATOM 3433 CG1 ILE A 447 10.383 50.841 57.610 1.00 0.00 C \nATOM 3434 CG2 ILE A 447 8.382 50.307 56.179 1.00 0.00 C \nATOM 3435 CD1 ILE A 447 9.554 51.632 58.606 1.00 0.00 C \nATOM 3436 N TYR A 448 9.964 48.812 53.288 1.00 0.00 N \nATOM 3437 CA TYR A 448 9.435 48.647 51.938 1.00 0.00 C \nATOM 3438 C TYR A 448 10.336 49.371 50.947 1.00 0.00 C \nATOM 3439 O TYR A 448 9.862 49.954 49.968 1.00 0.00 O \nATOM 3440 CB TYR A 448 7.998 49.182 51.825 1.00 0.00 C \nATOM 3441 CG TYR A 448 6.945 48.355 52.533 1.00 0.00 C \nATOM 3442 CD1 TYR A 448 7.219 47.057 52.974 1.00 0.00 C \nATOM 3443 CD2 TYR A 448 5.660 48.870 52.748 1.00 0.00 C \nATOM 3444 CE1 TYR A 448 6.239 46.291 53.616 1.00 0.00 C \nATOM 3445 CE2 TYR A 448 4.673 48.117 53.382 1.00 0.00 C \nATOM 3446 CZ TYR A 448 4.966 46.829 53.816 1.00 0.00 C \nATOM 3447 OH TYR A 448 3.989 46.089 54.451 1.00 0.00 O \nATOM 3448 N GLY A 449 11.638 49.350 51.226 1.00 0.00 N \nATOM 3449 CA GLY A 449 12.597 49.970 50.332 1.00 0.00 C \nATOM 3450 C GLY A 449 12.914 51.431 50.577 1.00 0.00 C \nATOM 3451 O GLY A 449 13.971 51.900 50.166 1.00 0.00 O \nATOM 3452 N ALA A 450 12.006 52.154 51.225 1.00 0.00 N \nATOM 3453 CA ALA A 450 12.236 53.570 51.510 1.00 0.00 C \nATOM 3454 C ALA A 450 13.081 53.724 52.776 1.00 0.00 C \nATOM 3455 O ALA A 450 12.895 52.988 53.753 1.00 0.00 O \nATOM 3456 CB ALA A 450 10.909 54.296 51.684 1.00 0.00 C \nATOM 3457 N CYS A 451 13.999 54.686 52.751 1.00 0.00 N \nATOM 3458 CA CYS A 451 14.879 54.938 53.883 1.00 0.00 C \nATOM 3459 C CYS A 451 14.267 55.956 54.832 1.00 0.00 C \nATOM 3460 O CYS A 451 13.743 56.990 54.408 1.00 0.00 O \nATOM 3461 CB CYS A 451 16.251 55.434 53.398 1.00 0.00 C \nATOM 3462 SG CYS A 451 17.501 55.617 54.720 1.00 0.00 S \nATOM 3463 N TYR A 452 14.345 55.644 56.122 1.00 0.00 N \nATOM 3464 CA TYR A 452 13.816 56.486 57.185 1.00 0.00 C \nATOM 3465 C TYR A 452 14.889 56.725 58.252 1.00 0.00 C \nATOM 3466 O TYR A 452 15.758 55.883 58.480 1.00 0.00 O \nATOM 3467 CB TYR A 452 12.615 55.795 57.840 1.00 0.00 C \nATOM 3468 CG TYR A 452 11.401 55.657 56.945 1.00 0.00 C \nATOM 3469 CD1 TYR A 452 10.378 56.607 56.974 1.00 0.00 C \nATOM 3470 CD2 TYR A 452 11.281 54.585 56.063 1.00 0.00 C \nATOM 3471 CE1 TYR A 452 9.261 56.490 56.143 1.00 0.00 C \nATOM 3472 CE2 TYR A 452 10.173 54.455 55.229 1.00 0.00 C \nATOM 3473 CZ TYR A 452 9.167 55.409 55.272 1.00 0.00 C \nATOM 3474 OH TYR A 452 8.076 55.290 54.438 1.00 0.00 O \nATOM 3475 N SER A 453 14.827 57.884 58.895 1.00 0.00 N \nATOM 3476 CA SER A 453 15.756 58.214 59.969 1.00 0.00 C \nATOM 3477 C SER A 453 14.905 58.025 61.214 1.00 0.00 C \nATOM 3478 O SER A 453 13.869 58.684 61.364 1.00 0.00 O \nATOM 3479 CB SER A 453 16.220 59.665 59.867 1.00 0.00 C \nATOM 3480 OG SER A 453 17.084 59.982 60.944 1.00 0.00 O \nATOM 3481 N ILE A 454 15.324 57.123 62.098 1.00 0.00 N \nATOM 3482 CA ILE A 454 14.541 56.838 63.293 1.00 0.00 C \nATOM 3483 C ILE A 454 15.337 56.798 64.592 1.00 0.00 C \nATOM 3484 O ILE A 454 16.422 56.214 64.654 1.00 0.00 O \nATOM 3485 CB ILE A 454 13.799 55.492 63.125 1.00 0.00 C \nATOM 3486 CG1 ILE A 454 12.801 55.607 61.966 1.00 0.00 C \nATOM 3487 CG2 ILE A 454 13.106 55.095 64.432 1.00 0.00 C \nATOM 3488 CD1 ILE A 454 12.118 54.322 61.638 1.00 0.00 C \nATOM 3489 N GLU A 455 14.773 57.413 65.627 1.00 0.00 N \nATOM 3490 CA GLU A 455 15.396 57.456 66.944 1.00 0.00 C \nATOM 3491 C GLU A 455 14.852 56.290 67.760 1.00 0.00 C \nATOM 3492 O GLU A 455 13.644 56.184 67.988 1.00 0.00 O \nATOM 3493 CB GLU A 455 15.079 58.785 67.644 1.00 0.00 C \nATOM 3494 CG GLU A 455 15.539 60.015 66.865 1.00 0.00 C \nATOM 3495 CD GLU A 455 15.322 61.307 67.620 1.00 0.00 C \nATOM 3496 OE1 GLU A 455 14.193 61.535 68.103 1.00 0.00 O \nATOM 3497 OE2 GLU A 455 16.281 62.104 67.722 1.00 0.00 O \nATOM 3498 N PRO A 456 15.743 55.387 68.196 1.00 0.00 N \nATOM 3499 CA PRO A 456 15.395 54.204 68.990 1.00 0.00 C \nATOM 3500 C PRO A 456 14.430 54.464 70.149 1.00 0.00 C \nATOM 3501 O PRO A 456 13.567 53.636 70.446 1.00 0.00 O \nATOM 3502 CB PRO A 456 16.756 53.715 69.464 1.00 0.00 C \nATOM 3503 CG PRO A 456 17.613 54.009 68.278 1.00 0.00 C \nATOM 3504 CD PRO A 456 17.189 55.413 67.911 1.00 0.00 C \nATOM 3505 N LEU A 457 14.580 55.617 70.793 1.00 0.00 N \nATOM 3506 CA LEU A 457 13.736 55.986 71.921 1.00 0.00 C \nATOM 3507 C LEU A 457 12.272 56.144 71.541 1.00 0.00 C \nATOM 3508 O LEU A 457 11.402 56.124 72.409 1.00 0.00 O \nATOM 3509 CB LEU A 457 14.255 57.273 72.571 1.00 0.00 C \nATOM 3510 CG LEU A 457 15.507 57.130 73.444 1.00 0.00 C \nATOM 3511 CD1 LEU A 457 15.893 58.491 73.997 1.00 0.00 C \nATOM 3512 CD2 LEU A 457 15.243 56.153 74.582 1.00 0.00 C \nATOM 3513 N ASP A 458 11.997 56.295 70.248 1.00 0.00 N \nATOM 3514 CA ASP A 458 10.617 56.430 69.787 1.00 0.00 C \nATOM 3515 C ASP A 458 9.990 55.086 69.457 1.00 0.00 C \nATOM 3516 O ASP A 458 8.837 55.033 69.029 1.00 0.00 O \nATOM 3517 CB ASP A 458 10.536 57.310 68.538 1.00 0.00 C \nATOM 3518 CG ASP A 458 10.840 58.758 68.829 1.00 0.00 C \nATOM 3519 OD1 ASP A 458 10.460 59.227 69.926 1.00 0.00 O \nATOM 3520 OD2 ASP A 458 11.443 59.426 67.960 1.00 0.00 O \nATOM 3521 N LEU A 459 10.736 54.002 69.657 1.00 0.00 N \nATOM 3522 CA LEU A 459 10.222 52.677 69.338 1.00 0.00 C \nATOM 3523 C LEU A 459 8.903 52.296 69.991 1.00 0.00 C \nATOM 3524 O LEU A 459 8.016 51.777 69.323 1.00 0.00 O \nATOM 3525 CB LEU A 459 11.288 51.609 69.621 1.00 0.00 C \nATOM 3526 CG LEU A 459 12.303 51.469 68.480 1.00 0.00 C \nATOM 3527 CD1 LEU A 459 13.441 50.511 68.852 1.00 0.00 C \nATOM 3528 CD2 LEU A 459 11.554 50.978 67.236 1.00 0.00 C \nATOM 3529 N PRO A 460 8.745 52.550 71.299 1.00 0.00 N \nATOM 3530 CA PRO A 460 7.491 52.205 71.974 1.00 0.00 C \nATOM 3531 C PRO A 460 6.280 52.835 71.281 1.00 0.00 C \nATOM 3532 O PRO A 460 5.261 52.179 71.073 1.00 0.00 O \nATOM 3533 CB PRO A 460 7.688 52.767 73.378 1.00 0.00 C \nATOM 3534 CG PRO A 460 9.172 52.689 73.569 1.00 0.00 C \nATOM 3535 CD PRO A 460 9.697 53.161 72.243 1.00 0.00 C \nATOM 3536 N GLN A 461 6.408 54.115 70.945 1.00 0.00 N \nATOM 3537 CA GLN A 461 5.355 54.878 70.276 1.00 0.00 C \nATOM 3538 C GLN A 461 5.074 54.305 68.895 1.00 0.00 C \nATOM 3539 O GLN A 461 3.924 54.076 68.528 1.00 0.00 O \nATOM 3540 CB GLN A 461 5.783 56.341 70.122 1.00 0.00 C \nATOM 3541 CG GLN A 461 6.101 57.034 71.428 1.00 0.00 C \nATOM 3542 CD GLN A 461 6.897 58.310 71.223 1.00 0.00 C \nATOM 3543 OE1 GLN A 461 6.475 59.209 70.490 1.00 0.00 O \nATOM 3544 NE2 GLN A 461 8.059 58.397 71.868 1.00 0.00 N \nATOM 3545 N ILE A 462 6.139 54.092 68.131 1.00 0.00 N \nATOM 3546 CA ILE A 462 6.028 53.540 66.791 1.00 0.00 C \nATOM 3547 C ILE A 462 5.346 52.170 66.830 1.00 0.00 C \nATOM 3548 O ILE A 462 4.417 51.893 66.060 1.00 0.00 O \nATOM 3549 CB ILE A 462 7.427 53.410 66.156 1.00 0.00 C \nATOM 3550 CG1 ILE A 462 8.059 54.795 66.043 1.00 0.00 C \nATOM 3551 CG2 ILE A 462 7.331 52.744 64.789 1.00 0.00 C \nATOM 3552 CD1 ILE A 462 9.480 54.790 65.478 1.00 0.00 C \nATOM 3553 N ILE A 463 5.798 51.320 67.746 1.00 0.00 N \nATOM 3554 CA ILE A 463 5.228 49.987 67.868 1.00 0.00 C \nATOM 3555 C ILE A 463 3.749 50.036 68.245 1.00 0.00 C \nATOM 3556 O ILE A 463 2.946 49.299 67.676 1.00 0.00 O \nATOM 3557 CB ILE A 463 6.002 49.127 68.907 1.00 0.00 C \nATOM 3558 CG1 ILE A 463 7.402 48.809 68.381 1.00 0.00 C \nATOM 3559 CG2 ILE A 463 5.255 47.824 69.175 1.00 0.00 C \nATOM 3560 CD1 ILE A 463 8.308 48.110 69.410 1.00 0.00 C \nATOM 3561 N GLU A 464 3.386 50.893 69.201 1.00 0.00 N \nATOM 3562 CA GLU A 464 1.984 50.998 69.613 1.00 0.00 C \nATOM 3563 C GLU A 464 1.151 51.417 68.410 1.00 0.00 C \nATOM 3564 O GLU A 464 0.137 50.797 68.093 1.00 0.00 O \nATOM 3565 CB GLU A 464 1.804 52.038 70.728 1.00 0.00 C \nATOM 3566 CG GLU A 464 0.382 52.074 71.309 1.00 0.00 C \nATOM 3567 CD GLU A 464 0.150 53.245 72.260 1.00 0.00 C \nATOM 3568 OE1 GLU A 464 0.900 53.369 73.249 1.00 0.00 O \nATOM 3569 OE2 GLU A 464 -0.785 54.043 72.022 1.00 0.00 O \nATOM 3570 N ARG A 465 1.597 52.471 67.742 1.00 0.00 N \nATOM 3571 CA ARG A 465 0.910 52.986 66.569 1.00 0.00 C \nATOM 3572 C ARG A 465 0.699 51.930 65.482 1.00 0.00 C \nATOM 3573 O ARG A 465 -0.414 51.751 64.992 1.00 0.00 O \nATOM 3574 CB ARG A 465 1.698 54.160 65.988 1.00 0.00 C \nATOM 3575 CG ARG A 465 1.641 55.423 66.839 1.00 0.00 C \nATOM 3576 CD ARG A 465 0.279 56.081 66.749 1.00 0.00 C \nATOM 3577 NE ARG A 465 -0.022 56.480 65.377 1.00 0.00 N \nATOM 3578 CZ ARG A 465 0.627 57.431 64.712 1.00 0.00 C \nATOM 3579 NH1 ARG A 465 1.621 58.096 65.290 1.00 0.00 N \nATOM 3580 NH2 ARG A 465 0.289 57.715 63.462 1.00 0.00 N \nATOM 3581 N LEU A 466 1.769 51.232 65.115 1.00 0.00 N \nATOM 3582 CA LEU A 466 1.708 50.217 64.071 1.00 0.00 C \nATOM 3583 C LEU A 466 1.104 48.877 64.477 1.00 0.00 C \nATOM 3584 O LEU A 466 0.393 48.255 63.695 1.00 0.00 O \nATOM 3585 CB LEU A 466 3.110 49.938 63.519 1.00 0.00 C \nATOM 3586 CG LEU A 466 4.002 51.029 62.943 1.00 0.00 C \nATOM 3587 CD1 LEU A 466 5.214 50.345 62.316 1.00 0.00 C \nATOM 3588 CD2 LEU A 466 3.269 51.846 61.901 1.00 0.00 C \nATOM 3589 N HIS A 467 1.384 48.427 65.693 1.00 0.00 N \nATOM 3590 CA HIS A 467 0.903 47.120 66.119 1.00 0.00 C \nATOM 3591 C HIS A 467 -0.128 47.094 67.230 1.00 0.00 C \nATOM 3592 O HIS A 467 -0.757 46.060 67.471 1.00 0.00 O \nATOM 3593 CB HIS A 467 2.098 46.265 66.540 1.00 0.00 C \nATOM 3594 CG HIS A 467 3.112 46.077 65.459 1.00 0.00 C \nATOM 3595 ND1 HIS A 467 3.000 45.096 64.500 1.00 0.00 N \nATOM 3596 CD2 HIS A 467 4.267 46.729 65.197 1.00 0.00 C \nATOM 3597 CE1 HIS A 467 4.048 45.146 63.695 1.00 0.00 C \nATOM 3598 NE2 HIS A 467 4.833 46.127 64.096 1.00 0.00 N \nATOM 3599 N GLY A 468 -0.304 48.216 67.911 1.00 0.00 N \nATOM 3600 CA GLY A 468 -1.251 48.245 69.008 1.00 0.00 C \nATOM 3601 C GLY A 468 -0.560 47.771 70.278 1.00 0.00 C \nATOM 3602 O GLY A 468 0.502 47.143 70.220 1.00 0.00 O \nATOM 3603 N LEU A 469 -1.163 48.070 71.425 1.00 0.00 N \nATOM 3604 CA LEU A 469 -0.615 47.697 72.718 1.00 0.00 C \nATOM 3605 C LEU A 469 -0.299 46.225 72.904 1.00 0.00 C \nATOM 3606 O LEU A 469 0.588 45.875 73.683 1.00 0.00 O \nATOM 3607 CB LEU A 469 -1.570 48.118 73.829 1.00 0.00 C \nATOM 3608 CG LEU A 469 -1.395 49.513 74.412 1.00 0.00 C \nATOM 3609 CD1 LEU A 469 -2.409 49.693 75.544 1.00 0.00 C \nATOM 3610 CD2 LEU A 469 0.015 49.691 74.938 1.00 0.00 C \nATOM 3611 N SER A 470 -1.021 45.360 72.205 1.00 0.00 N \nATOM 3612 CA SER A 470 -0.817 43.925 72.352 1.00 0.00 C \nATOM 3613 C SER A 470 0.584 43.456 71.987 1.00 0.00 C \nATOM 3614 O SER A 470 0.996 42.362 72.383 1.00 0.00 O \nATOM 3615 CB SER A 470 -1.850 43.159 71.525 1.00 0.00 C \nATOM 3616 OG SER A 470 -1.788 43.551 70.173 1.00 0.00 O \nATOM 3617 N ALA A 471 1.310 44.276 71.230 1.00 0.00 N \nATOM 3618 CA ALA A 471 2.667 43.930 70.819 1.00 0.00 C \nATOM 3619 C ALA A 471 3.563 43.762 72.033 1.00 0.00 C \nATOM 3620 O ALA A 471 4.570 43.042 71.986 1.00 0.00 O \nATOM 3621 CB ALA A 471 3.247 45.013 69.899 1.00 0.00 C \nATOM 3622 N PHE A 472 3.184 44.416 73.125 1.00 0.00 N \nATOM 3623 CA PHE A 472 3.973 44.362 74.347 1.00 0.00 C \nATOM 3624 C PHE A 472 3.507 43.314 75.327 1.00 0.00 C \nATOM 3625 O PHE A 472 4.083 43.183 76.401 1.00 0.00 O \nATOM 3626 CB PHE A 472 3.951 45.718 75.042 1.00 0.00 C \nATOM 3627 CG PHE A 472 4.293 46.855 74.142 1.00 0.00 C \nATOM 3628 CD1 PHE A 472 5.523 46.905 73.508 1.00 0.00 C \nATOM 3629 CD2 PHE A 472 3.383 47.890 73.935 1.00 0.00 C \nATOM 3630 CE1 PHE A 472 5.851 47.970 72.677 1.00 0.00 C \nATOM 3631 CE2 PHE A 472 3.703 48.957 73.109 1.00 0.00 C \nATOM 3632 CZ PHE A 472 4.946 48.997 72.479 1.00 0.00 C \nATOM 3633 N SER A 473 2.468 42.566 74.982 1.00 0.00 N \nATOM 3634 CA SER A 473 1.989 41.552 75.907 1.00 0.00 C \nATOM 3635 C SER A 473 1.694 40.205 75.267 1.00 0.00 C \nATOM 3636 O SER A 473 1.047 39.356 75.883 1.00 0.00 O \nATOM 3637 CB SER A 473 0.739 42.049 76.636 1.00 0.00 C \nATOM 3638 OG SER A 473 -0.359 42.088 75.750 1.00 0.00 O \nATOM 3639 N LEU A 474 2.159 39.988 74.043 1.00 0.00 N \nATOM 3640 CA LEU A 474 1.906 38.699 73.404 1.00 0.00 C \nATOM 3641 C LEU A 474 2.648 37.595 74.135 1.00 0.00 C \nATOM 3642 O LEU A 474 3.762 37.799 74.624 1.00 0.00 O \nATOM 3643 CB LEU A 474 2.336 38.711 71.930 1.00 0.00 C \nATOM 3644 CG LEU A 474 1.519 39.584 70.974 1.00 0.00 C \nATOM 3645 CD1 LEU A 474 1.866 39.192 69.541 1.00 0.00 C \nATOM 3646 CD2 LEU A 474 0.019 39.394 71.224 1.00 0.00 C \nATOM 3647 N HIS A 475 2.025 36.423 74.216 1.00 0.00 N \nATOM 3648 CA HIS A 475 2.634 35.276 74.880 1.00 0.00 C \nATOM 3649 C HIS A 475 1.907 34.033 74.389 1.00 0.00 C \nATOM 3650 O HIS A 475 0.937 34.136 73.634 1.00 0.00 O \nATOM 3651 CB HIS A 475 2.509 35.415 76.408 1.00 0.00 C \nATOM 3652 CG HIS A 475 1.094 35.488 76.885 1.00 0.00 C \nATOM 3653 ND1 HIS A 475 0.369 34.369 77.232 1.00 0.00 N \nATOM 3654 CD2 HIS A 475 0.242 36.537 76.985 1.00 0.00 C \nATOM 3655 CE1 HIS A 475 -0.870 34.725 77.523 1.00 0.00 C \nATOM 3656 NE2 HIS A 475 -0.972 36.035 77.382 1.00 0.00 N \nATOM 3657 N SER A 476 2.366 32.864 74.819 1.00 0.00 N \nATOM 3658 CA SER A 476 1.772 31.608 74.378 1.00 0.00 C \nATOM 3659 C SER A 476 1.773 31.570 72.853 1.00 0.00 C \nATOM 3660 O SER A 476 0.725 31.395 72.215 1.00 0.00 O \nATOM 3661 CB SER A 476 0.335 31.450 74.900 1.00 0.00 C \nATOM 3662 OG SER A 476 0.322 31.217 76.297 1.00 0.00 O \nATOM 3663 N TYR A 477 2.957 31.751 72.277 1.00 0.00 N \nATOM 3664 CA TYR A 477 3.122 31.698 70.835 1.00 0.00 C \nATOM 3665 C TYR A 477 2.811 30.277 70.377 1.00 0.00 C \nATOM 3666 O TYR A 477 2.704 29.368 71.196 1.00 0.00 O \nATOM 3667 CB TYR A 477 4.558 32.073 70.456 1.00 0.00 C \nATOM 3668 CG TYR A 477 4.885 33.532 70.694 1.00 0.00 C \nATOM 3669 CD1 TYR A 477 5.449 33.964 71.898 1.00 0.00 C \nATOM 3670 CD2 TYR A 477 4.614 34.484 69.714 1.00 0.00 C \nATOM 3671 CE1 TYR A 477 5.738 35.331 72.112 1.00 0.00 C \nATOM 3672 CE2 TYR A 477 4.891 35.840 69.915 1.00 0.00 C \nATOM 3673 CZ TYR A 477 5.453 36.254 71.112 1.00 0.00 C \nATOM 3674 OH TYR A 477 5.719 37.591 71.297 1.00 0.00 O \nATOM 3675 N SER A 478 2.687 30.071 69.073 1.00 0.00 N \nATOM 3676 CA SER A 478 2.357 28.746 68.557 1.00 0.00 C \nATOM 3677 C SER A 478 3.504 27.745 68.615 1.00 0.00 C \nATOM 3678 O SER A 478 4.684 28.111 68.669 1.00 0.00 O \nATOM 3679 CB SER A 478 1.876 28.852 67.109 1.00 0.00 C \nATOM 3680 OG SER A 478 2.962 29.172 66.251 1.00 0.00 O \nATOM 3681 N PRO A 479 3.162 26.450 68.613 1.00 0.00 N \nATOM 3682 CA PRO A 479 4.140 25.363 68.654 1.00 0.00 C \nATOM 3683 C PRO A 479 5.070 25.459 67.457 1.00 0.00 C \nATOM 3684 O PRO A 479 6.283 25.282 67.590 1.00 0.00 O \nATOM 3685 CB PRO A 479 3.269 24.112 68.582 1.00 0.00 C \nATOM 3686 CG PRO A 479 2.050 24.534 69.314 1.00 0.00 C \nATOM 3687 CD PRO A 479 1.793 25.929 68.791 1.00 0.00 C \nATOM 3688 N GLY A 480 4.488 25.736 66.288 1.00 0.00 N \nATOM 3689 CA GLY A 480 5.276 25.847 65.073 1.00 0.00 C \nATOM 3690 C GLY A 480 6.236 27.025 65.110 1.00 0.00 C \nATOM 3691 O GLY A 480 7.371 26.929 64.647 1.00 0.00 O \nATOM 3692 N GLU A 481 5.772 28.144 65.652 1.00 0.00 N \nATOM 3693 CA GLU A 481 6.594 29.347 65.755 1.00 0.00 C \nATOM 3694 C GLU A 481 7.711 29.103 66.775 1.00 0.00 C \nATOM 3695 O GLU A 481 8.885 29.358 66.500 1.00 0.00 O \nATOM 3696 CB GLU A 481 5.717 30.536 66.173 1.00 0.00 C \nATOM 3697 CG GLU A 481 6.463 31.864 66.321 1.00 0.00 C \nATOM 3698 CD GLU A 481 7.168 32.306 65.049 1.00 0.00 C \nATOM 3699 OE1 GLU A 481 6.970 31.662 63.991 1.00 0.00 O \nATOM 3700 OE2 GLU A 481 7.924 33.307 65.115 1.00 0.00 O \nATOM 3701 N ILE A 482 7.348 28.606 67.950 1.00 0.00 N \nATOM 3702 CA ILE A 482 8.335 28.310 68.982 1.00 0.00 C \nATOM 3703 C ILE A 482 9.392 27.330 68.444 1.00 0.00 C \nATOM 3704 O ILE A 482 10.587 27.518 68.661 1.00 0.00 O \nATOM 3705 CB ILE A 482 7.651 27.707 70.240 1.00 0.00 C \nATOM 3706 CG1 ILE A 482 6.826 28.791 70.945 1.00 0.00 C \nATOM 3707 CG2 ILE A 482 8.696 27.132 71.197 1.00 0.00 C \nATOM 3708 CD1 ILE A 482 6.060 28.310 72.174 1.00 0.00 C \nATOM 3709 N ASN A 483 8.956 26.298 67.728 1.00 0.00 N \nATOM 3710 CA ASN A 483 9.890 25.319 67.174 1.00 0.00 C \nATOM 3711 C ASN A 483 10.880 25.939 66.199 1.00 0.00 C \nATOM 3712 O ASN A 483 12.065 25.609 66.218 1.00 0.00 O \nATOM 3713 CB ASN A 483 9.142 24.184 66.457 1.00 0.00 C \nATOM 3714 CG ASN A 483 8.598 23.144 67.417 1.00 0.00 C \nATOM 3715 OD1 ASN A 483 8.925 23.151 68.609 1.00 0.00 O \nATOM 3716 ND2 ASN A 483 7.771 22.234 66.900 1.00 0.00 N \nATOM 3717 N ARG A 484 10.388 26.825 65.337 1.00 0.00 N \nATOM 3718 CA ARG A 484 11.244 27.469 64.356 1.00 0.00 C \nATOM 3719 C ARG A 484 12.274 28.356 65.040 1.00 0.00 C \nATOM 3720 O ARG A 484 13.443 28.364 64.662 1.00 0.00 O \nATOM 3721 CB ARG A 484 10.421 28.309 63.371 1.00 0.00 C \nATOM 3722 CG ARG A 484 11.274 28.910 62.249 1.00 0.00 C \nATOM 3723 CD ARG A 484 10.424 29.449 61.123 1.00 0.00 C \nATOM 3724 NE ARG A 484 9.532 30.511 61.576 1.00 0.00 N \nATOM 3725 CZ ARG A 484 8.605 31.079 60.809 1.00 0.00 C \nATOM 3726 NH1 ARG A 484 8.442 30.689 59.547 1.00 0.00 N \nATOM 3727 NH2 ARG A 484 7.839 32.042 61.301 1.00 0.00 N \nATOM 3728 N VAL A 485 11.836 29.115 66.038 1.00 0.00 N \nATOM 3729 CA VAL A 485 12.751 29.976 66.766 1.00 0.00 C \nATOM 3730 C VAL A 485 13.816 29.098 67.435 1.00 0.00 C \nATOM 3731 O VAL A 485 15.008 29.367 67.328 1.00 0.00 O \nATOM 3732 CB VAL A 485 12.002 30.794 67.832 1.00 0.00 C \nATOM 3733 CG1 VAL A 485 12.995 31.507 68.738 1.00 0.00 C \nATOM 3734 CG2 VAL A 485 11.073 31.803 67.147 1.00 0.00 C \nATOM 3735 N ALA A 486 13.375 28.033 68.101 1.00 0.00 N \nATOM 3736 CA ALA A 486 14.292 27.115 68.777 1.00 0.00 C \nATOM 3737 C ALA A 486 15.314 26.532 67.815 1.00 0.00 C \nATOM 3738 O ALA A 486 16.509 26.511 68.116 1.00 0.00 O \nATOM 3739 CB ALA A 486 13.503 25.984 69.456 1.00 0.00 C \nATOM 3740 N SER A 487 14.850 26.069 66.656 1.00 0.00 N \nATOM 3741 CA SER A 487 15.740 25.489 65.646 1.00 0.00 C \nATOM 3742 C SER A 487 16.750 26.519 65.174 1.00 0.00 C \nATOM 3743 O SER A 487 17.941 26.220 65.031 1.00 0.00 O \nATOM 3744 CB SER A 487 14.952 24.997 64.428 1.00 0.00 C \nATOM 3745 OG SER A 487 14.007 24.016 64.803 1.00 0.00 O \nATOM 3746 N CYS A 488 16.272 27.733 64.917 1.00 0.00 N \nATOM 3747 CA CYS A 488 17.169 28.791 64.457 1.00 0.00 C \nATOM 3748 C CYS A 488 18.240 29.106 65.509 1.00 0.00 C \nATOM 3749 O CYS A 488 19.418 29.238 65.178 1.00 0.00 O \nATOM 3750 CB CYS A 488 16.370 30.057 64.118 1.00 0.00 C \nATOM 3751 SG CYS A 488 17.416 31.489 63.793 1.00 0.00 S \nATOM 3752 N LEU A 489 17.844 29.201 66.776 1.00 0.00 N \nATOM 3753 CA LEU A 489 18.806 29.518 67.825 1.00 0.00 C \nATOM 3754 C LEU A 489 19.899 28.460 67.961 1.00 0.00 C \nATOM 3755 O LEU A 489 21.060 28.793 68.199 1.00 0.00 O \nATOM 3756 CB LEU A 489 18.099 29.735 69.167 1.00 0.00 C \nATOM 3757 CG LEU A 489 17.005 30.816 69.216 1.00 0.00 C \nATOM 3758 CD1 LEU A 489 16.853 31.294 70.648 1.00 0.00 C \nATOM 3759 CD2 LEU A 489 17.352 31.994 68.312 1.00 0.00 C \nATOM 3760 N ARG A 490 19.537 27.191 67.807 1.00 0.00 N \nATOM 3761 CA ARG A 490 20.527 26.122 67.899 1.00 0.00 C \nATOM 3762 C ARG A 490 21.501 26.208 66.729 1.00 0.00 C \nATOM 3763 O ARG A 490 22.713 26.083 66.907 1.00 0.00 O \nATOM 3764 CB ARG A 490 19.854 24.746 67.880 1.00 0.00 C \nATOM 3765 CG ARG A 490 19.077 24.393 69.123 1.00 0.00 C \nATOM 3766 CD ARG A 490 18.702 22.916 69.088 1.00 0.00 C \nATOM 3767 NE ARG A 490 17.853 22.514 70.207 1.00 0.00 N \nATOM 3768 CZ ARG A 490 18.221 22.549 71.485 1.00 0.00 C \nATOM 3769 NH1 ARG A 490 19.434 22.974 71.822 1.00 0.00 N \nATOM 3770 NH2 ARG A 490 17.375 22.154 72.429 1.00 0.00 N \nATOM 3771 N LYS A 491 20.954 26.423 65.536 1.00 0.00 N \nATOM 3772 CA LYS A 491 21.729 26.515 64.310 1.00 0.00 C \nATOM 3773 C LYS A 491 22.814 27.585 64.375 1.00 0.00 C \nATOM 3774 O LYS A 491 23.982 27.319 64.068 1.00 0.00 O \nATOM 3775 CB LYS A 491 20.777 26.790 63.138 1.00 0.00 C \nATOM 3776 CG LYS A 491 21.445 27.158 61.821 1.00 0.00 C \nATOM 3777 CD LYS A 491 20.422 27.255 60.684 1.00 0.00 C \nATOM 3778 CE LYS A 491 19.474 28.447 60.851 1.00 0.00 C \nATOM 3779 NZ LYS A 491 18.467 28.553 59.740 1.00 0.00 N \nATOM 3780 N LEU A 492 22.418 28.791 64.776 1.00 0.00 N \nATOM 3781 CA LEU A 492 23.324 29.926 64.884 1.00 0.00 C \nATOM 3782 C LEU A 492 24.095 29.964 66.212 1.00 0.00 C \nATOM 3783 O LEU A 492 25.072 30.703 66.338 1.00 0.00 O \nATOM 3784 CB LEU A 492 22.544 31.235 64.732 1.00 0.00 C \nATOM 3785 CG LEU A 492 21.868 31.588 63.406 1.00 0.00 C \nATOM 3786 CD1 LEU A 492 21.179 32.941 63.527 1.00 0.00 C \nATOM 3787 CD2 LEU A 492 22.907 31.634 62.295 1.00 0.00 C \nATOM 3788 N GLY A 493 23.646 29.181 67.196 1.00 0.00 N \nATOM 3789 CA GLY A 493 24.308 29.155 68.493 1.00 0.00 C \nATOM 3790 C GLY A 493 24.019 30.379 69.347 1.00 0.00 C \nATOM 3791 O GLY A 493 24.925 30.985 69.913 1.00 0.00 O \nATOM 3792 N VAL A 494 22.743 30.731 69.446 1.00 0.00 N \nATOM 3793 CA VAL A 494 22.298 31.894 70.210 1.00 0.00 C \nATOM 3794 C VAL A 494 21.951 31.468 71.628 1.00 0.00 C \nATOM 3795 O VAL A 494 21.323 30.430 71.829 1.00 0.00 O \nATOM 3796 CB VAL A 494 21.018 32.512 69.566 1.00 0.00 C \nATOM 3797 CG1 VAL A 494 20.493 33.650 70.420 1.00 0.00 C \nATOM 3798 CG2 VAL A 494 21.315 32.985 68.138 1.00 0.00 C \nATOM 3799 N PRO A 495 22.341 32.271 72.630 1.00 0.00 N \nATOM 3800 CA PRO A 495 22.056 31.952 74.033 1.00 0.00 C \nATOM 3801 C PRO A 495 20.572 31.668 74.279 1.00 0.00 C \nATOM 3802 O PRO A 495 19.704 32.190 73.584 1.00 0.00 O \nATOM 3803 CB PRO A 495 22.522 33.198 74.770 1.00 0.00 C \nATOM 3804 CG PRO A 495 23.638 33.686 73.919 1.00 0.00 C \nATOM 3805 CD PRO A 495 23.085 33.535 72.526 1.00 0.00 C \nATOM 3806 N PRO A 496 20.267 30.843 75.291 1.00 0.00 N \nATOM 3807 CA PRO A 496 18.877 30.500 75.609 1.00 0.00 C \nATOM 3808 C PRO A 496 18.079 31.609 76.311 1.00 0.00 C \nATOM 3809 O PRO A 496 18.612 32.653 76.696 1.00 0.00 O \nATOM 3810 CB PRO A 496 19.028 29.232 76.451 1.00 0.00 C \nATOM 3811 CG PRO A 496 20.299 29.524 77.220 1.00 0.00 C \nATOM 3812 CD PRO A 496 21.207 30.077 76.136 1.00 0.00 C \nATOM 3813 N LEU A 497 16.785 31.364 76.456 1.00 0.00 N \nATOM 3814 CA LEU A 497 15.864 32.312 77.072 1.00 0.00 C \nATOM 3815 C LEU A 497 16.333 32.858 78.421 1.00 0.00 C \nATOM 3816 O LEU A 497 16.233 34.064 78.678 1.00 0.00 O \nATOM 3817 CB LEU A 497 14.504 31.643 77.225 1.00 0.00 C \nATOM 3818 CG LEU A 497 13.228 32.432 77.520 1.00 0.00 C \nATOM 3819 CD1 LEU A 497 12.586 31.814 78.740 1.00 0.00 C \nATOM 3820 CD2 LEU A 497 13.489 33.912 77.713 1.00 0.00 C \nATOM 3821 N ARG A 498 16.853 31.986 79.284 1.00 0.00 N \nATOM 3822 CA ARG A 498 17.304 32.435 80.598 1.00 0.00 C \nATOM 3823 C ARG A 498 18.317 33.562 80.500 1.00 0.00 C \nATOM 3824 O ARG A 498 18.295 34.492 81.307 1.00 0.00 O \nATOM 3825 CB ARG A 498 17.883 31.273 81.424 1.00 0.00 C \nATOM 3826 CG ARG A 498 18.889 30.394 80.706 1.00 0.00 C \nATOM 3827 CD ARG A 498 19.434 29.314 81.649 1.00 0.00 C \nATOM 3828 NE ARG A 498 20.229 28.299 80.952 1.00 0.00 N \nATOM 3829 CZ ARG A 498 19.735 27.420 80.083 1.00 0.00 C \nATOM 3830 NH1 ARG A 498 20.538 26.536 79.499 1.00 0.00 N \nATOM 3831 NH2 ARG A 498 18.438 27.418 79.796 1.00 0.00 N \nATOM 3832 N VAL A 499 19.194 33.503 79.504 1.00 0.00 N \nATOM 3833 CA VAL A 499 20.188 34.561 79.348 1.00 0.00 C \nATOM 3834 C VAL A 499 19.543 35.870 78.886 1.00 0.00 C \nATOM 3835 O VAL A 499 19.800 36.918 79.460 1.00 0.00 O \nATOM 3836 CB VAL A 499 21.314 34.142 78.363 1.00 0.00 C \nATOM 3837 CG1 VAL A 499 22.314 35.290 78.170 1.00 0.00 C \nATOM 3838 CG2 VAL A 499 22.039 32.916 78.913 1.00 0.00 C \nATOM 3839 N TRP A 500 18.676 35.814 77.881 1.00 0.00 N \nATOM 3840 CA TRP A 500 18.028 37.031 77.391 1.00 0.00 C \nATOM 3841 C TRP A 500 17.120 37.690 78.426 1.00 0.00 C \nATOM 3842 O TRP A 500 17.025 38.921 78.499 1.00 0.00 O \nATOM 3843 CB TRP A 500 17.237 36.730 76.106 1.00 0.00 C \nATOM 3844 CG TRP A 500 18.143 36.370 74.957 1.00 0.00 C \nATOM 3845 CD1 TRP A 500 18.317 35.133 74.398 1.00 0.00 C \nATOM 3846 CD2 TRP A 500 19.113 37.229 74.342 1.00 0.00 C \nATOM 3847 NE1 TRP A 500 19.347 35.167 73.484 1.00 0.00 N \nATOM 3848 CE2 TRP A 500 19.855 36.441 73.433 1.00 0.00 C \nATOM 3849 CE3 TRP A 500 19.436 38.589 74.483 1.00 0.00 C \nATOM 3850 CZ2 TRP A 500 20.906 36.967 72.661 1.00 0.00 C \nATOM 3851 CZ3 TRP A 500 20.478 39.115 73.721 1.00 0.00 C \nATOM 3852 CH2 TRP A 500 21.205 38.299 72.818 1.00 0.00 C \nATOM 3853 N ARG A 501 16.445 36.875 79.229 1.00 0.00 N \nATOM 3854 CA ARG A 501 15.558 37.421 80.255 1.00 0.00 C \nATOM 3855 C ARG A 501 16.408 38.178 81.276 1.00 0.00 C \nATOM 3856 O ARG A 501 16.072 39.291 81.683 1.00 0.00 O \nATOM 3857 CB ARG A 501 14.770 36.289 80.930 1.00 0.00 C \nATOM 3858 CG ARG A 501 13.790 36.736 82.014 1.00 0.00 C \nATOM 3859 CD ARG A 501 12.895 35.562 82.427 1.00 0.00 C \nATOM 3860 NE ARG A 501 13.702 34.374 82.703 1.00 0.00 N \nATOM 3861 CZ ARG A 501 13.351 33.131 82.379 1.00 0.00 C \nATOM 3862 NH1 ARG A 501 12.198 32.900 81.763 1.00 0.00 N \nATOM 3863 NH2 ARG A 501 14.161 32.118 82.663 1.00 0.00 N \nATOM 3864 N HIS A 502 17.524 37.579 81.671 1.00 0.00 N \nATOM 3865 CA HIS A 502 18.413 38.218 82.631 1.00 0.00 C \nATOM 3866 C HIS A 502 18.908 39.543 82.064 1.00 0.00 C \nATOM 3867 O HIS A 502 18.864 40.579 82.730 1.00 0.00 O \nATOM 3868 CB HIS A 502 19.603 37.315 82.915 1.00 0.00 C \nATOM 3869 CG HIS A 502 20.333 37.663 84.172 1.00 0.00 C \nATOM 3870 ND1 HIS A 502 20.254 36.895 85.311 1.00 0.00 N \nATOM 3871 CD2 HIS A 502 21.139 38.709 84.473 1.00 0.00 C \nATOM 3872 CE1 HIS A 502 20.981 37.452 86.264 1.00 0.00 C \nATOM 3873 NE2 HIS A 502 21.528 38.552 85.783 1.00 0.00 N \nATOM 3874 N ARG A 503 19.376 39.511 80.821 1.00 0.00 N \nATOM 3875 CA ARG A 503 19.868 40.714 80.169 1.00 0.00 C \nATOM 3876 C ARG A 503 18.773 41.780 80.021 1.00 0.00 C \nATOM 3877 O ARG A 503 19.035 42.984 80.162 1.00 0.00 O \nATOM 3878 CB ARG A 503 20.418 40.353 78.793 1.00 0.00 C \nATOM 3879 CG ARG A 503 21.550 39.357 78.846 1.00 0.00 C \nATOM 3880 CD ARG A 503 22.114 39.117 77.473 1.00 0.00 C \nATOM 3881 NE ARG A 503 23.310 38.286 77.535 1.00 0.00 N \nATOM 3882 CZ ARG A 503 23.895 37.758 76.471 1.00 0.00 C \nATOM 3883 NH1 ARG A 503 24.981 37.006 76.616 1.00 0.00 N \nATOM 3884 NH2 ARG A 503 23.383 37.975 75.261 1.00 0.00 N \nATOM 3885 N ALA A 504 17.549 41.336 79.737 1.00 0.00 N \nATOM 3886 CA ALA A 504 16.433 42.257 79.561 1.00 0.00 C \nATOM 3887 C ALA A 504 16.101 42.953 80.880 1.00 0.00 C \nATOM 3888 O ALA A 504 15.848 44.161 80.908 1.00 0.00 O \nATOM 3889 CB ALA A 504 15.208 41.497 79.023 1.00 0.00 C \nATOM 3890 N ARG A 505 16.110 42.197 81.973 1.00 0.00 N \nATOM 3891 CA ARG A 505 15.824 42.776 83.285 1.00 0.00 C \nATOM 3892 C ARG A 505 16.832 43.878 83.556 1.00 0.00 C \nATOM 3893 O ARG A 505 16.472 44.979 83.977 1.00 0.00 O \nATOM 3894 CB ARG A 505 15.894 41.697 84.368 1.00 0.00 C \nATOM 3895 CG ARG A 505 14.760 40.704 84.255 1.00 0.00 C \nATOM 3896 CD ARG A 505 14.766 39.663 85.366 1.00 0.00 C \nATOM 3897 NE ARG A 505 13.618 38.772 85.223 1.00 0.00 N \nATOM 3898 CZ ARG A 505 13.264 37.838 86.101 1.00 0.00 C \nATOM 3899 NH1 ARG A 505 13.973 37.658 87.211 1.00 0.00 N \nATOM 3900 NH2 ARG A 505 12.190 37.088 85.871 1.00 0.00 N \nATOM 3901 N SER A 506 18.100 43.581 83.286 1.00 0.00 N \nATOM 3902 CA SER A 506 19.173 44.551 83.473 1.00 0.00 C \nATOM 3903 C SER A 506 18.931 45.770 82.602 1.00 0.00 C \nATOM 3904 O SER A 506 18.951 46.903 83.079 1.00 0.00 O \nATOM 3905 CB SER A 506 20.513 43.938 83.088 1.00 0.00 C \nATOM 3906 OG SER A 506 21.504 44.940 83.019 1.00 0.00 O \nATOM 3907 N VAL A 507 18.731 45.528 81.312 1.00 0.00 N \nATOM 3908 CA VAL A 507 18.474 46.600 80.354 1.00 0.00 C \nATOM 3909 C VAL A 507 17.281 47.459 80.781 1.00 0.00 C \nATOM 3910 O VAL A 507 17.335 48.695 80.753 1.00 0.00 O \nATOM 3911 CB VAL A 507 18.185 46.013 78.950 1.00 0.00 C \nATOM 3912 CG1 VAL A 507 17.660 47.097 78.024 1.00 0.00 C \nATOM 3913 CG2 VAL A 507 19.452 45.382 78.387 1.00 0.00 C \nATOM 3914 N ARG A 508 16.203 46.793 81.171 1.00 0.00 N \nATOM 3915 CA ARG A 508 14.987 47.469 81.610 1.00 0.00 C \nATOM 3916 C ARG A 508 15.291 48.382 82.797 1.00 0.00 C \nATOM 3917 O ARG A 508 14.958 49.568 82.781 1.00 0.00 O \nATOM 3918 CB ARG A 508 13.932 46.425 82.003 1.00 0.00 C \nATOM 3919 CG ARG A 508 12.642 46.986 82.614 1.00 0.00 C \nATOM 3920 CD ARG A 508 11.603 45.881 82.820 1.00 0.00 C \nATOM 3921 NE ARG A 508 10.386 46.359 83.489 1.00 0.00 N \nATOM 3922 CZ ARG A 508 10.313 46.671 84.783 1.00 0.00 C \nATOM 3923 NH1 ARG A 508 11.386 46.553 85.556 1.00 0.00 N \nATOM 3924 NH2 ARG A 508 9.175 47.104 85.311 1.00 0.00 N \nATOM 3925 N ALA A 509 15.924 47.822 83.825 1.00 0.00 N \nATOM 3926 CA ALA A 509 16.264 48.587 85.022 1.00 0.00 C \nATOM 3927 C ALA A 509 17.057 49.837 84.659 1.00 0.00 C \nATOM 3928 O ALA A 509 16.786 50.927 85.165 1.00 0.00 O \nATOM 3929 CB ALA A 509 17.059 47.716 85.988 1.00 0.00 C \nATOM 3930 N ARG A 510 18.033 49.686 83.773 1.00 0.00 N \nATOM 3931 CA ARG A 510 18.829 50.831 83.364 1.00 0.00 C \nATOM 3932 C ARG A 510 17.989 51.891 82.651 1.00 0.00 C \nATOM 3933 O ARG A 510 18.161 53.092 82.881 1.00 0.00 O \nATOM 3934 CB ARG A 510 19.975 50.386 82.445 1.00 0.00 C \nATOM 3935 CG ARG A 510 21.262 50.069 83.181 1.00 0.00 C \nATOM 3936 CD ARG A 510 21.595 48.585 83.186 1.00 0.00 C \nATOM 3937 NE ARG A 510 22.102 48.079 81.910 1.00 0.00 N \nATOM 3938 CZ ARG A 510 23.090 48.635 81.210 1.00 0.00 C \nATOM 3939 NH1 ARG A 510 23.689 49.732 81.642 1.00 0.00 N \nATOM 3940 NH2 ARG A 510 23.510 48.070 80.089 1.00 0.00 N \nATOM 3941 N LEU A 511 17.081 51.448 81.784 1.00 0.00 N \nATOM 3942 CA LEU A 511 16.245 52.377 81.033 1.00 0.00 C \nATOM 3943 C LEU A 511 15.276 53.142 81.932 1.00 0.00 C \nATOM 3944 O LEU A 511 15.081 54.344 81.765 1.00 0.00 O \nATOM 3945 CB LEU A 511 15.472 51.626 79.940 1.00 0.00 C \nATOM 3946 CG LEU A 511 16.312 51.019 78.812 1.00 0.00 C \nATOM 3947 CD1 LEU A 511 15.450 50.064 77.969 1.00 0.00 C \nATOM 3948 CD2 LEU A 511 16.890 52.140 77.955 1.00 0.00 C \nATOM 3949 N LEU A 512 14.673 52.439 82.879 1.00 0.00 N \nATOM 3950 CA LEU A 512 13.740 53.058 83.803 1.00 0.00 C \nATOM 3951 C LEU A 512 14.441 54.183 84.559 1.00 0.00 C \nATOM 3952 O LEU A 512 13.875 55.254 84.770 1.00 0.00 O \nATOM 3953 CB LEU A 512 13.213 52.021 84.794 1.00 0.00 C \nATOM 3954 CG LEU A 512 12.174 51.022 84.284 1.00 0.00 C \nATOM 3955 CD1 LEU A 512 11.949 49.929 85.330 1.00 0.00 C \nATOM 3956 CD2 LEU A 512 10.873 51.752 83.983 1.00 0.00 C \nATOM 3957 N SER A 513 15.685 53.939 84.955 1.00 0.00 N \nATOM 3958 CA SER A 513 16.456 54.931 85.694 1.00 0.00 C \nATOM 3959 C SER A 513 16.737 56.173 84.868 1.00 0.00 C \nATOM 3960 O SER A 513 16.858 57.270 85.413 1.00 0.00 O \nATOM 3961 CB SER A 513 17.772 54.316 86.173 1.00 0.00 C \nATOM 3962 OG SER A 513 17.554 53.321 87.162 1.00 0.00 O \nATOM 3963 N GLN A 514 16.828 56.006 83.552 1.00 0.00 N \nATOM 3964 CA GLN A 514 17.116 57.117 82.655 1.00 0.00 C \nATOM 3965 C GLN A 514 15.959 58.119 82.578 1.00 0.00 C \nATOM 3966 O GLN A 514 16.160 59.285 82.251 1.00 0.00 O \nATOM 3967 CB GLN A 514 17.509 56.578 81.265 1.00 0.00 C \nATOM 3968 CG GLN A 514 18.537 57.412 80.532 1.00 0.00 C \nATOM 3969 CD GLN A 514 19.799 56.633 80.268 1.00 0.00 C \nATOM 3970 OE1 GLN A 514 20.575 56.959 79.364 1.00 0.00 O \nATOM 3971 NE2 GLN A 514 20.016 55.588 81.060 1.00 0.00 N \nATOM 3972 N GLY A 515 14.756 57.645 82.880 1.00 0.00 N \nATOM 3973 CA GLY A 515 13.598 58.518 82.848 1.00 0.00 C \nATOM 3974 C GLY A 515 13.146 58.870 81.444 1.00 0.00 C \nATOM 3975 O GLY A 515 13.776 58.462 80.462 1.00 0.00 O \nATOM 3976 N GLY A 516 12.056 59.626 81.342 1.00 0.00 N \nATOM 3977 CA GLY A 516 11.553 60.023 80.038 1.00 0.00 C \nATOM 3978 C GLY A 516 11.294 58.858 79.100 1.00 0.00 C \nATOM 3979 O GLY A 516 10.875 57.784 79.528 1.00 0.00 O \nATOM 3980 N ARG A 517 11.537 59.072 77.812 1.00 0.00 N \nATOM 3981 CA ARG A 517 11.320 58.037 76.806 1.00 0.00 C \nATOM 3982 C ARG A 517 12.069 56.733 77.092 1.00 0.00 C \nATOM 3983 O ARG A 517 11.551 55.642 76.834 1.00 0.00 O \nATOM 3984 CB ARG A 517 11.726 58.546 75.417 1.00 0.00 C \nATOM 3985 CG ARG A 517 10.726 59.484 74.759 1.00 0.00 C \nATOM 3986 CD ARG A 517 11.258 60.894 74.694 1.00 0.00 C \nATOM 3987 NE ARG A 517 12.494 61.014 73.915 1.00 0.00 N \nATOM 3988 CZ ARG A 517 12.600 60.726 72.622 1.00 0.00 C \nATOM 3989 NH1 ARG A 517 11.541 60.287 71.954 1.00 0.00 N \nATOM 3990 NH2 ARG A 517 13.753 60.909 71.987 1.00 0.00 N \nATOM 3991 N ALA A 518 13.292 56.840 77.605 1.00 0.00 N \nATOM 3992 CA ALA A 518 14.073 55.644 77.903 1.00 0.00 C \nATOM 3993 C ALA A 518 13.303 54.803 78.909 1.00 0.00 C \nATOM 3994 O ALA A 518 13.282 53.567 78.827 1.00 0.00 O \nATOM 3995 CB ALA A 518 15.438 56.026 78.459 1.00 0.00 C \nATOM 3996 N ALA A 519 12.654 55.488 79.850 1.00 0.00 N \nATOM 3997 CA ALA A 519 11.870 54.819 80.885 1.00 0.00 C \nATOM 3998 C ALA A 519 10.712 54.081 80.233 1.00 0.00 C \nATOM 3999 O ALA A 519 10.376 52.955 80.610 1.00 0.00 O \nATOM 4000 CB ALA A 519 11.346 55.846 81.886 1.00 0.00 C \nATOM 4001 N THR A 520 10.101 54.731 79.250 1.00 0.00 N \nATOM 4002 CA THR A 520 8.991 54.130 78.527 1.00 0.00 C \nATOM 4003 C THR A 520 9.494 52.892 77.784 1.00 0.00 C \nATOM 4004 O THR A 520 8.845 51.850 77.781 1.00 0.00 O \nATOM 4005 CB THR A 520 8.381 55.129 77.533 1.00 0.00 C \nATOM 4006 OG1 THR A 520 7.915 56.274 78.259 1.00 0.00 O \nATOM 4007 CG2 THR A 520 7.199 54.497 76.779 1.00 0.00 C \nATOM 4008 N CYS A 521 10.658 53.008 77.165 1.00 0.00 N \nATOM 4009 CA CYS A 521 11.228 51.877 76.455 1.00 0.00 C \nATOM 4010 C CYS A 521 11.350 50.697 77.413 1.00 0.00 C \nATOM 4011 O CYS A 521 10.930 49.584 77.098 1.00 0.00 O \nATOM 4012 CB CYS A 521 12.603 52.246 75.886 1.00 0.00 C \nATOM 4013 SG CYS A 521 12.538 53.242 74.363 1.00 0.00 S \nATOM 4014 N GLY A 522 11.896 50.953 78.600 1.00 0.00 N \nATOM 4015 CA GLY A 522 12.075 49.889 79.572 1.00 0.00 C \nATOM 4016 C GLY A 522 10.768 49.238 79.956 1.00 0.00 C \nATOM 4017 O GLY A 522 10.633 48.006 80.000 1.00 0.00 O \nATOM 4018 N LYS A 523 9.794 50.098 80.223 1.00 0.00 N \nATOM 4019 CA LYS A 523 8.458 49.710 80.636 1.00 0.00 C \nATOM 4020 C LYS A 523 7.704 48.818 79.632 1.00 0.00 C \nATOM 4021 O LYS A 523 7.245 47.722 79.977 1.00 0.00 O \nATOM 4022 CB LYS A 523 7.676 51.003 80.926 1.00 0.00 C \nATOM 4023 CG LYS A 523 6.367 50.863 81.683 1.00 0.00 C \nATOM 4024 CD LYS A 523 5.981 52.229 82.273 1.00 0.00 C \nATOM 4025 CE LYS A 523 4.586 52.242 82.895 1.00 0.00 C \nATOM 4026 NZ LYS A 523 3.489 52.316 81.881 1.00 0.00 N \nATOM 4027 N TYR A 524 7.588 49.274 78.391 1.00 0.00 N \nATOM 4028 CA TYR A 524 6.848 48.522 77.378 1.00 0.00 C \nATOM 4029 C TYR A 524 7.623 47.429 76.658 1.00 0.00 C \nATOM 4030 O TYR A 524 7.131 46.314 76.496 1.00 0.00 O \nATOM 4031 CB TYR A 524 6.277 49.480 76.320 1.00 0.00 C \nATOM 4032 CG TYR A 524 5.269 50.475 76.869 1.00 0.00 C \nATOM 4033 CD1 TYR A 524 5.667 51.503 77.716 1.00 0.00 C \nATOM 4034 CD2 TYR A 524 3.913 50.350 76.578 1.00 0.00 C \nATOM 4035 CE1 TYR A 524 4.741 52.382 78.268 1.00 0.00 C \nATOM 4036 CE2 TYR A 524 2.976 51.222 77.126 1.00 0.00 C \nATOM 4037 CZ TYR A 524 3.398 52.234 77.972 1.00 0.00 C \nATOM 4038 OH TYR A 524 2.480 53.081 78.541 1.00 0.00 O \nATOM 4039 N LEU A 525 8.837 47.751 76.224 1.00 0.00 N \nATOM 4040 CA LEU A 525 9.633 46.797 75.469 1.00 0.00 C \nATOM 4041 C LEU A 525 10.042 45.554 76.216 1.00 0.00 C \nATOM 4042 O LEU A 525 10.173 44.487 75.617 1.00 0.00 O \nATOM 4043 CB LEU A 525 10.889 47.467 74.909 1.00 0.00 C \nATOM 4044 CG LEU A 525 10.687 48.672 73.995 1.00 0.00 C \nATOM 4045 CD1 LEU A 525 12.042 49.173 73.508 1.00 0.00 C \nATOM 4046 CD2 LEU A 525 9.796 48.287 72.815 1.00 0.00 C \nATOM 4047 N PHE A 526 10.222 45.676 77.525 1.00 0.00 N \nATOM 4048 CA PHE A 526 10.689 44.547 78.309 1.00 0.00 C \nATOM 4049 C PHE A 526 9.775 44.053 79.437 1.00 0.00 C \nATOM 4050 O PHE A 526 10.225 43.358 80.353 1.00 0.00 O \nATOM 4051 CB PHE A 526 12.076 44.903 78.840 1.00 0.00 C \nATOM 4052 CG PHE A 526 13.056 45.266 77.754 1.00 0.00 C \nATOM 4053 CD1 PHE A 526 13.605 44.280 76.940 1.00 0.00 C \nATOM 4054 CD2 PHE A 526 13.430 46.594 77.544 1.00 0.00 C \nATOM 4055 CE1 PHE A 526 14.524 44.604 75.928 1.00 0.00 C \nATOM 4056 CE2 PHE A 526 14.343 46.939 76.540 1.00 0.00 C \nATOM 4057 CZ PHE A 526 14.893 45.938 75.727 1.00 0.00 C \nATOM 4058 N ASN A 527 8.489 44.390 79.352 1.00 0.00 N \nATOM 4059 CA ASN A 527 7.523 43.964 80.364 1.00 0.00 C \nATOM 4060 C ASN A 527 7.477 42.433 80.395 1.00 0.00 C \nATOM 4061 O ASN A 527 7.148 41.841 81.418 1.00 0.00 O \nATOM 4062 CB ASN A 527 6.133 44.506 80.033 1.00 0.00 C \nATOM 4063 CG ASN A 527 5.181 44.456 81.216 1.00 0.00 C \nATOM 4064 OD1 ASN A 527 3.966 44.482 81.032 1.00 0.00 O \nATOM 4065 ND2 ASN A 527 5.722 44.409 82.431 1.00 0.00 N \nATOM 4066 N TRP A 528 7.806 41.800 79.270 1.00 0.00 N \nATOM 4067 CA TRP A 528 7.812 40.347 79.189 1.00 0.00 C \nATOM 4068 C TRP A 528 8.868 39.697 80.073 1.00 0.00 C \nATOM 4069 O TRP A 528 8.756 38.518 80.405 1.00 0.00 O \nATOM 4070 CB TRP A 528 8.069 39.884 77.752 1.00 0.00 C \nATOM 4071 CG TRP A 528 9.371 40.385 77.159 1.00 0.00 C \nATOM 4072 CD1 TRP A 528 9.546 41.501 76.387 1.00 0.00 C \nATOM 4073 CD2 TRP A 528 10.673 39.792 77.303 1.00 0.00 C \nATOM 4074 NE1 TRP A 528 10.872 41.636 76.038 1.00 0.00 N \nATOM 4075 CE2 TRP A 528 11.586 40.598 76.582 1.00 0.00 C \nATOM 4076 CE3 TRP A 528 11.158 38.652 77.960 1.00 0.00 C \nATOM 4077 CZ2 TRP A 528 12.957 40.309 76.508 1.00 0.00 C \nATOM 4078 CZ3 TRP A 528 12.526 38.361 77.885 1.00 0.00 C \nATOM 4079 CH2 TRP A 528 13.405 39.188 77.159 1.00 0.00 C \nATOM 4080 N ALA A 529 9.903 40.451 80.435 1.00 0.00 N \nATOM 4081 CA ALA A 529 10.993 39.912 81.252 1.00 0.00 C \nATOM 4082 C ALA A 529 10.746 39.827 82.760 1.00 0.00 C \nATOM 4083 O ALA A 529 11.387 39.031 83.445 1.00 0.00 O \nATOM 4084 CB ALA A 529 12.274 40.717 80.992 1.00 0.00 C \nATOM 4085 N VAL A 530 9.842 40.647 83.287 1.00 0.00 N \nATOM 4086 CA VAL A 530 9.557 40.630 84.722 1.00 0.00 C \nATOM 4087 C VAL A 530 8.410 39.680 85.065 1.00 0.00 C \nATOM 4088 O VAL A 530 7.540 39.425 84.234 1.00 0.00 O \nATOM 4089 CB VAL A 530 9.200 42.031 85.226 1.00 0.00 C \nATOM 4090 CG1 VAL A 530 10.344 42.980 84.954 1.00 0.00 C \nATOM 4091 CG2 VAL A 530 7.933 42.511 84.561 1.00 0.00 C \nATOM 4092 N LYS A 531 8.396 39.148 86.285 1.00 0.00 N \nATOM 4093 CA LYS A 531 7.313 38.234 86.639 1.00 0.00 C \nATOM 4094 C LYS A 531 6.035 38.964 87.000 1.00 0.00 C \nATOM 4095 O LYS A 531 4.945 38.489 86.691 1.00 0.00 O \nATOM 4096 CB LYS A 531 7.723 37.275 87.758 1.00 0.00 C \nATOM 4097 CG LYS A 531 8.279 37.890 89.012 1.00 0.00 C \nATOM 4098 CD LYS A 531 8.683 36.758 89.942 1.00 0.00 C \nATOM 4099 CE LYS A 531 9.308 37.250 91.229 1.00 0.00 C \nATOM 4100 NZ LYS A 531 9.705 36.090 92.078 1.00 0.00 N \nATOM 4101 N THR A 532 6.162 40.120 87.638 1.00 0.00 N \nATOM 4102 CA THR A 532 4.986 40.911 87.985 1.00 0.00 C \nATOM 4103 C THR A 532 4.850 41.994 86.919 1.00 0.00 C \nATOM 4104 O THR A 532 5.431 43.071 87.043 1.00 0.00 O \nATOM 4105 CB THR A 532 5.131 41.582 89.372 1.00 0.00 C \nATOM 4106 OG1 THR A 532 5.345 40.578 90.374 1.00 0.00 O \nATOM 4107 CG2 THR A 532 3.873 42.384 89.707 1.00 0.00 C \nATOM 4108 N LYS A 533 4.090 41.699 85.869 1.00 0.00 N \nATOM 4109 CA LYS A 533 3.898 42.636 84.760 1.00 0.00 C \nATOM 4110 C LYS A 533 3.295 43.988 85.124 1.00 0.00 C \nATOM 4111 O LYS A 533 2.487 44.093 86.046 1.00 0.00 O \nATOM 4112 CB LYS A 533 3.023 41.999 83.678 1.00 0.00 C \nATOM 4113 CG LYS A 533 3.765 41.141 82.677 1.00 0.00 C \nATOM 4114 CD LYS A 533 4.367 39.904 83.310 1.00 0.00 C \nATOM 4115 CE LYS A 533 5.043 39.048 82.253 1.00 0.00 C \nATOM 4116 NZ LYS A 533 5.665 37.841 82.841 1.00 0.00 N \nATOM 4117 N LEU A 534 3.683 45.019 84.377 1.00 0.00 N \nATOM 4118 CA LEU A 534 3.158 46.362 84.589 1.00 0.00 C \nATOM 4119 C LEU A 534 1.853 46.549 83.820 1.00 0.00 C \nATOM 4120 O LEU A 534 1.523 45.762 82.931 1.00 0.00 O \nATOM 4121 CB LEU A 534 4.167 47.424 84.142 1.00 0.00 C \nATOM 4122 CG LEU A 534 4.958 48.107 85.259 1.00 0.00 C \nATOM 4123 CD1 LEU A 534 5.737 47.062 86.042 1.00 0.00 C \nATOM 4124 CD2 LEU A 534 5.889 49.155 84.666 1.00 0.00 C \nATOM 4125 N LYS A 535 1.127 47.605 84.181 1.00 0.00 N \nATOM 4126 CA LYS A 535 -0.156 47.958 83.578 1.00 0.00 C \nATOM 4127 C LYS A 535 -0.096 48.076 82.059 1.00 0.00 C \nATOM 4128 O LYS A 535 -0.810 47.370 81.345 1.00 0.00 O \nATOM 4129 CB LYS A 535 -0.651 49.282 84.175 1.00 0.00 C \nATOM 4130 CG LYS A 535 0.373 50.419 84.075 1.00 0.00 C \nATOM 4131 CD LYS A 535 0.011 51.622 84.946 1.00 0.00 C \nATOM 4132 CE LYS A 535 -1.251 52.326 84.466 1.00 0.00 C \nATOM 4133 NZ LYS A 535 -1.537 53.554 85.266 1.00 0.00 N \nATOM 4134 N LEU A 536 0.765 48.964 81.572 1.00 0.00 N \nATOM 4135 CA LEU A 536 0.904 49.194 80.140 1.00 0.00 C \nATOM 4136 C LEU A 536 -0.374 49.813 79.592 1.00 0.00 C \nATOM 4137 O LEU A 536 -1.418 49.166 79.518 1.00 0.00 O \nATOM 4138 CB LEU A 536 1.220 47.887 79.404 1.00 0.00 C \nATOM 4139 CG LEU A 536 2.707 47.530 79.315 1.00 0.00 C \nATOM 4140 CD1 LEU A 536 3.306 47.420 80.707 1.00 0.00 C \nATOM 4141 CD2 LEU A 536 2.865 46.227 78.558 1.00 0.00 C \nATOM 4142 N THR A 537 -0.271 51.078 79.209 1.00 0.00 N \nATOM 4143 CA THR A 537 -1.399 51.824 78.680 1.00 0.00 C \nATOM 4144 C THR A 537 -0.904 52.694 77.534 1.00 0.00 C \nATOM 4145 O THR A 537 0.297 52.810 77.311 1.00 0.00 O \nATOM 4146 CB THR A 537 -2.012 52.727 79.775 1.00 0.00 C \nATOM 4147 OG1 THR A 537 -1.011 53.626 80.277 1.00 0.00 O \nATOM 4148 CG2 THR A 537 -2.542 51.880 80.926 1.00 0.00 C \nATOM 4149 N PRO A 538 -1.823 53.315 76.785 1.00 0.00 N \nATOM 4150 CA PRO A 538 -1.428 54.173 75.664 1.00 0.00 C \nATOM 4151 C PRO A 538 -0.295 55.149 75.992 1.00 0.00 C \nATOM 4152 O PRO A 538 0.134 55.252 77.139 1.00 0.00 O \nATOM 4153 CB PRO A 538 -2.732 54.871 75.306 1.00 0.00 C \nATOM 4154 CG PRO A 538 -3.726 53.764 75.515 1.00 0.00 C \nATOM 4155 CD PRO A 538 -3.288 53.163 76.838 1.00 0.00 C \nATOM 4156 N ILE A 539 0.181 55.865 74.977 1.00 0.00 N \nATOM 4157 CA ILE A 539 1.274 56.817 75.155 1.00 0.00 C \nATOM 4158 C ILE A 539 1.027 58.131 74.403 1.00 0.00 C \nATOM 4159 O ILE A 539 0.782 58.130 73.196 1.00 0.00 O \nATOM 4160 CB ILE A 539 2.607 56.207 74.670 1.00 0.00 C \nATOM 4161 CG1 ILE A 539 2.863 54.883 75.395 1.00 0.00 C \nATOM 4162 CG2 ILE A 539 3.747 57.187 74.907 1.00 0.00 C \nATOM 4163 CD1 ILE A 539 4.077 54.132 74.891 1.00 0.00 C \nATOM 4164 N PRO A 540 1.102 59.270 75.117 1.00 0.00 N \nATOM 4165 CA PRO A 540 0.894 60.623 74.585 1.00 0.00 C \nATOM 4166 C PRO A 540 1.644 60.983 73.299 1.00 0.00 C \nATOM 4167 O PRO A 540 1.023 61.207 72.258 1.00 0.00 O \nATOM 4168 CB PRO A 540 1.302 61.514 75.756 1.00 0.00 C \nATOM 4169 CG PRO A 540 0.867 60.707 76.937 1.00 0.00 C \nATOM 4170 CD PRO A 540 1.362 59.324 76.569 1.00 0.00 C \nATOM 4171 N ALA A 541 2.971 61.048 73.377 1.00 0.00 N \nATOM 4172 CA ALA A 541 3.802 61.404 72.225 1.00 0.00 C \nATOM 4173 C ALA A 541 3.510 60.597 70.960 1.00 0.00 C \nATOM 4174 O ALA A 541 3.810 61.047 69.852 1.00 0.00 O \nATOM 4175 CB ALA A 541 5.277 61.272 72.590 1.00 0.00 C \nATOM 4176 N ALA A 542 2.927 59.413 71.126 1.00 0.00 N \nATOM 4177 CA ALA A 542 2.606 58.540 69.999 1.00 0.00 C \nATOM 4178 C ALA A 542 1.934 59.267 68.840 1.00 0.00 C \nATOM 4179 O ALA A 542 2.449 59.275 67.721 1.00 0.00 O \nATOM 4180 CB ALA A 542 1.720 57.389 70.469 1.00 0.00 C \nATOM 4181 N SER A 543 0.784 59.874 69.117 1.00 0.00 N \nATOM 4182 CA SER A 543 0.023 60.595 68.101 1.00 0.00 C \nATOM 4183 C SER A 543 0.831 61.683 67.394 1.00 0.00 C \nATOM 4184 O SER A 543 0.475 62.108 66.294 1.00 0.00 O \nATOM 4185 CB SER A 543 -1.228 61.215 68.728 1.00 0.00 C \nATOM 4186 OG SER A 543 -0.881 62.146 69.738 1.00 0.00 O \nATOM 4187 N GLN A 544 1.913 62.134 68.025 1.00 0.00 N \nATOM 4188 CA GLN A 544 2.761 63.171 67.441 1.00 0.00 C \nATOM 4189 C GLN A 544 3.493 62.688 66.197 1.00 0.00 C \nATOM 4190 O GLN A 544 3.636 63.433 65.227 1.00 0.00 O \nATOM 4191 CB GLN A 544 3.785 63.673 68.463 1.00 0.00 C \nATOM 4192 CG GLN A 544 3.230 64.653 69.484 1.00 0.00 C \nATOM 4193 CD GLN A 544 4.324 65.313 70.310 1.00 0.00 C \nATOM 4194 OE1 GLN A 544 4.056 66.202 71.122 1.00 0.00 O \nATOM 4195 NE2 GLN A 544 5.565 64.879 70.107 1.00 0.00 N \nATOM 4196 N LEU A 545 3.963 61.445 66.228 1.00 0.00 N \nATOM 4197 CA LEU A 545 4.677 60.868 65.093 1.00 0.00 C \nATOM 4198 C LEU A 545 3.817 60.880 63.827 1.00 0.00 C \nATOM 4199 O LEU A 545 2.698 60.359 63.811 1.00 0.00 O \nATOM 4200 CB LEU A 545 5.104 59.433 65.418 1.00 0.00 C \nATOM 4201 CG LEU A 545 6.196 59.247 66.475 1.00 0.00 C \nATOM 4202 CD1 LEU A 545 6.225 57.801 66.927 1.00 0.00 C \nATOM 4203 CD2 LEU A 545 7.547 59.664 65.902 1.00 0.00 C \nATOM 4204 N ASP A 546 4.348 61.484 62.769 1.00 0.00 N \nATOM 4205 CA ASP A 546 3.646 61.565 61.493 1.00 0.00 C \nATOM 4206 C ASP A 546 4.009 60.344 60.657 1.00 0.00 C \nATOM 4207 O ASP A 546 4.957 60.375 59.870 1.00 0.00 O \nATOM 4208 CB ASP A 546 4.045 62.847 60.753 1.00 0.00 C \nATOM 4209 CG ASP A 546 3.354 62.987 59.411 1.00 0.00 C \nATOM 4210 OD1 ASP A 546 3.543 62.105 58.548 1.00 0.00 O \nATOM 4211 OD2 ASP A 546 2.623 63.981 59.215 1.00 0.00 O \nATOM 4212 N LEU A 547 3.249 59.269 60.836 1.00 0.00 N \nATOM 4213 CA LEU A 547 3.497 58.026 60.117 1.00 0.00 C \nATOM 4214 C LEU A 547 2.845 57.958 58.741 1.00 0.00 C \nATOM 4215 O LEU A 547 2.680 56.871 58.183 1.00 0.00 O \nATOM 4216 CB LEU A 547 3.045 56.836 60.968 1.00 0.00 C \nATOM 4217 CG LEU A 547 4.044 56.287 61.997 1.00 0.00 C \nATOM 4218 CD1 LEU A 547 4.790 57.414 62.697 1.00 0.00 C \nATOM 4219 CD2 LEU A 547 3.291 55.432 63.000 1.00 0.00 C \nATOM 4220 N SER A 548 2.478 59.112 58.191 1.00 0.00 N \nATOM 4221 CA SER A 548 1.868 59.143 56.866 1.00 0.00 C \nATOM 4222 C SER A 548 2.987 58.985 55.834 1.00 0.00 C \nATOM 4223 O SER A 548 3.969 59.729 55.851 1.00 0.00 O \nATOM 4224 CB SER A 548 1.112 60.461 56.641 1.00 0.00 C \nATOM 4225 OG SER A 548 1.993 61.567 56.547 1.00 0.00 O \nATOM 4226 N GLY A 549 2.841 58.001 54.952 1.00 0.00 N \nATOM 4227 CA GLY A 549 3.854 57.749 53.941 1.00 0.00 C \nATOM 4228 C GLY A 549 4.643 56.482 54.224 1.00 0.00 C \nATOM 4229 O GLY A 549 5.341 55.963 53.354 1.00 0.00 O \nATOM 4230 N TRP A 550 4.531 55.978 55.447 1.00 0.00 N \nATOM 4231 CA TRP A 550 5.239 54.767 55.847 1.00 0.00 C \nATOM 4232 C TRP A 550 4.823 53.518 55.070 1.00 0.00 C \nATOM 4233 O TRP A 550 5.671 52.765 54.574 1.00 0.00 O \nATOM 4234 CB TRP A 550 5.031 54.524 57.341 1.00 0.00 C \nATOM 4235 CG TRP A 550 6.023 55.227 58.192 1.00 0.00 C \nATOM 4236 CD1 TRP A 550 6.432 56.524 58.076 1.00 0.00 C \nATOM 4237 CD2 TRP A 550 6.732 54.676 59.305 1.00 0.00 C \nATOM 4238 NE1 TRP A 550 7.359 56.815 59.048 1.00 0.00 N \nATOM 4239 CE2 TRP A 550 7.565 55.697 59.816 1.00 0.00 C \nATOM 4240 CE3 TRP A 550 6.752 53.415 59.917 1.00 0.00 C \nATOM 4241 CZ2 TRP A 550 8.403 55.500 60.921 1.00 0.00 C \nATOM 4242 CZ3 TRP A 550 7.585 53.219 61.016 1.00 0.00 C \nATOM 4243 CH2 TRP A 550 8.403 54.259 61.502 1.00 0.00 C \nATOM 4244 N PHE A 551 3.517 53.298 54.979 1.00 0.00 N \nATOM 4245 CA PHE A 551 2.997 52.137 54.281 1.00 0.00 C \nATOM 4246 C PHE A 551 2.034 52.551 53.176 1.00 0.00 C \nATOM 4247 O PHE A 551 0.836 52.247 53.216 1.00 0.00 O \nATOM 4248 CB PHE A 551 2.310 51.216 55.283 1.00 0.00 C \nATOM 4249 CG PHE A 551 3.206 50.779 56.405 1.00 0.00 C \nATOM 4250 CD1 PHE A 551 4.210 49.844 56.185 1.00 0.00 C \nATOM 4251 CD2 PHE A 551 3.069 51.329 57.678 1.00 0.00 C \nATOM 4252 CE1 PHE A 551 5.062 49.454 57.213 1.00 0.00 C \nATOM 4253 CE2 PHE A 551 3.915 50.947 58.714 1.00 0.00 C \nATOM 4254 CZ PHE A 551 4.916 50.008 58.478 1.00 0.00 C \nATOM 4255 N VAL A 552 2.576 53.246 52.184 1.00 0.00 N \nATOM 4256 CA VAL A 552 1.791 53.716 51.055 1.00 0.00 C \nATOM 4257 C VAL A 552 2.201 52.981 49.785 1.00 0.00 C \nATOM 4258 O VAL A 552 1.360 52.485 49.042 1.00 0.00 O \nATOM 4259 CB VAL A 552 2.001 55.240 50.827 1.00 0.00 C \nATOM 4260 CG1 VAL A 552 1.371 55.662 49.514 1.00 0.00 C \nATOM 4261 CG2 VAL A 552 1.416 56.029 51.991 1.00 0.00 C \nATOM 4262 N ALA A 553 3.506 52.914 49.545 1.00 0.00 N \nATOM 4263 CA ALA A 553 4.018 52.268 48.349 1.00 0.00 C \nATOM 4264 C ALA A 553 5.382 51.620 48.568 1.00 0.00 C \nATOM 4265 O ALA A 553 6.072 51.909 49.548 1.00 0.00 O \nATOM 4266 CB ALA A 553 4.110 53.296 47.224 1.00 0.00 C \nATOM 4267 N GLY A 554 5.757 50.731 47.650 1.00 0.00 N \nATOM 4268 CA GLY A 554 7.054 50.083 47.723 1.00 0.00 C \nATOM 4269 C GLY A 554 8.049 50.901 46.909 1.00 0.00 C \nATOM 4270 O GLY A 554 7.679 51.505 45.901 1.00 0.00 O \nATOM 4271 N TYR A 555 9.305 50.938 47.337 1.00 0.00 N \nATOM 4272 CA TYR A 555 10.314 51.717 46.624 1.00 0.00 C \nATOM 4273 C TYR A 555 11.672 51.013 46.557 1.00 0.00 C \nATOM 4274 O TYR A 555 12.704 51.670 46.363 1.00 0.00 O \nATOM 4275 CB TYR A 555 10.499 53.065 47.310 1.00 0.00 C \nATOM 4276 CG TYR A 555 9.242 53.886 47.412 1.00 0.00 C \nATOM 4277 CD1 TYR A 555 8.772 54.614 46.324 1.00 0.00 C \nATOM 4278 CD2 TYR A 555 8.532 53.955 48.615 1.00 0.00 C \nATOM 4279 CE1 TYR A 555 7.627 55.401 46.433 1.00 0.00 C \nATOM 4280 CE2 TYR A 555 7.396 54.729 48.735 1.00 0.00 C \nATOM 4281 CZ TYR A 555 6.948 55.453 47.642 1.00 0.00 C \nATOM 4282 OH TYR A 555 5.832 56.243 47.772 1.00 0.00 O \nATOM 4283 N SER A 556 11.679 49.691 46.719 1.00 0.00 N \nATOM 4284 CA SER A 556 12.929 48.940 46.680 1.00 0.00 C \nATOM 4285 C SER A 556 13.758 49.333 45.460 1.00 0.00 C \nATOM 4286 O SER A 556 13.260 49.330 44.331 1.00 0.00 O \nATOM 4287 CB SER A 556 12.645 47.440 46.646 1.00 0.00 C \nATOM 4288 OG SER A 556 13.857 46.717 46.746 1.00 0.00 O \nATOM 4289 N GLY A 557 15.022 49.668 45.692 1.00 0.00 N \nATOM 4290 CA GLY A 557 15.894 50.075 44.606 1.00 0.00 C \nATOM 4291 C GLY A 557 15.539 51.449 44.049 1.00 0.00 C \nATOM 4292 O GLY A 557 16.215 51.940 43.136 1.00 0.00 O \nATOM 4293 N GLY A 558 14.513 52.083 44.623 1.00 0.00 N \nATOM 4294 CA GLY A 558 14.046 53.377 44.142 1.00 0.00 C \nATOM 4295 C GLY A 558 14.755 54.627 44.634 1.00 0.00 C \nATOM 4296 O GLY A 558 14.358 55.746 44.296 1.00 0.00 O \nATOM 4297 N ASP A 559 15.789 54.450 45.447 1.00 0.00 N \nATOM 4298 CA ASP A 559 16.543 55.587 45.953 1.00 0.00 C \nATOM 4299 C ASP A 559 15.634 56.625 46.615 1.00 0.00 C \nATOM 4300 O ASP A 559 15.762 57.823 46.353 1.00 0.00 O \nATOM 4301 CB ASP A 559 17.330 56.225 44.796 1.00 0.00 C \nATOM 4302 CG ASP A 559 18.351 57.247 45.269 1.00 0.00 C \nATOM 4303 OD1 ASP A 559 19.076 56.967 46.265 1.00 0.00 O \nATOM 4304 OD2 ASP A 559 18.435 58.324 44.632 1.00 0.00 O \nATOM 4305 N ILE A 560 14.728 56.163 47.479 1.00 0.00 N \nATOM 4306 CA ILE A 560 13.791 57.046 48.176 1.00 0.00 C \nATOM 4307 C ILE A 560 14.113 57.202 49.668 1.00 0.00 C \nATOM 4308 O ILE A 560 14.351 56.216 50.373 1.00 0.00 O \nATOM 4309 CB ILE A 560 12.334 56.529 48.043 1.00 0.00 C \nATOM 4310 CG1 ILE A 560 11.942 56.431 46.564 1.00 0.00 C \nATOM 4311 CG2 ILE A 560 11.382 57.436 48.820 1.00 0.00 C \nATOM 4312 CD1 ILE A 560 12.036 57.741 45.794 1.00 0.00 C \nATOM 4313 N TYR A 561 14.085 58.447 50.136 1.00 0.00 N \nATOM 4314 CA TYR A 561 14.377 58.788 51.528 1.00 0.00 C \nATOM 4315 C TYR A 561 13.297 59.691 52.136 1.00 0.00 C \nATOM 4316 O TYR A 561 12.778 60.580 51.469 1.00 0.00 O \nATOM 4317 CB TYR A 561 15.723 59.518 51.600 1.00 0.00 C \nATOM 4318 CG TYR A 561 16.094 60.033 52.978 1.00 0.00 C \nATOM 4319 CD1 TYR A 561 16.775 59.222 53.891 1.00 0.00 C \nATOM 4320 CD2 TYR A 561 15.766 61.332 53.369 1.00 0.00 C \nATOM 4321 CE1 TYR A 561 17.126 59.697 55.162 1.00 0.00 C \nATOM 4322 CE2 TYR A 561 16.106 61.818 54.639 1.00 0.00 C \nATOM 4323 CZ TYR A 561 16.787 60.996 55.527 1.00 0.00 C \nATOM 4324 OH TYR A 561 17.138 61.468 56.774 1.00 0.00 O \nATOM 4325 N HIS A 562 12.971 59.458 53.404 1.00 0.00 N \nATOM 4326 CA HIS A 562 11.988 60.268 54.122 1.00 0.00 C \nATOM 4327 C HIS A 562 12.562 60.661 55.485 1.00 0.00 C \nATOM 4328 O HIS A 562 13.171 59.833 56.163 1.00 0.00 O \nATOM 4329 CB HIS A 562 10.687 59.494 54.348 1.00 0.00 C \nATOM 4330 CG HIS A 562 9.902 59.230 53.100 1.00 0.00 C \nATOM 4331 ND1 HIS A 562 9.952 58.027 52.428 1.00 0.00 N \nATOM 4332 CD2 HIS A 562 9.029 60.008 52.417 1.00 0.00 C \nATOM 4333 CE1 HIS A 562 9.140 58.074 51.386 1.00 0.00 C \nATOM 4334 NE2 HIS A 562 8.568 59.264 51.356 1.00 0.00 N \nATOM 4335 N SER A 563 12.351 61.918 55.877 1.00 0.00 N \nATOM 4336 CA SER A 563 12.819 62.476 57.157 1.00 0.00 C \nATOM 4337 C SER A 563 13.796 61.603 57.946 1.00 0.00 C \nATOM 4338 O SER A 563 14.962 62.031 58.088 1.00 0.00 O \nATOM 4339 CB SER A 563 11.624 62.811 58.062 1.00 0.00 C \nATOM 4340 OG SER A 563 11.038 61.636 58.605 1.00 0.00 O \nATOM 4341 H SER A 1 14.865 37.645 21.864 1.00 0.00 H \nATOM 4342 H SER A 1 14.701 36.607 23.156 1.00 0.00 H \nATOM 4343 H SER A 1 16.183 36.791 22.419 1.00 0.00 H \nATOM 4344 H SER A 1 13.908 40.808 24.965 1.00 0.00 H \nATOM 4345 H MET A 2 18.142 38.276 24.091 1.00 0.00 H \nATOM 4346 H SER A 3 18.084 37.264 28.559 1.00 0.00 H \nATOM 4347 H SER A 3 18.516 36.926 31.803 1.00 0.00 H \nATOM 4348 H TYR A 4 20.386 38.522 29.032 1.00 0.00 H \nATOM 4349 H TYR A 4 19.795 42.983 35.352 1.00 0.00 H \nATOM 4350 H THR A 5 23.482 41.428 28.003 1.00 0.00 H \nATOM 4351 H THR A 5 24.307 42.588 24.714 1.00 0.00 H \nATOM 4352 H TRP A 6 26.786 38.888 27.373 1.00 0.00 H \nATOM 4353 H TRP A 6 24.579 37.432 31.679 1.00 0.00 H \nATOM 4354 H THR A 7 30.017 41.814 28.783 1.00 0.00 H \nATOM 4355 H THR A 7 32.397 44.282 28.511 1.00 0.00 H \nATOM 4356 H GLY A 8 31.650 40.554 29.571 1.00 0.00 H \nATOM 4357 H ALA A 9 33.417 42.045 29.955 1.00 0.00 H \nATOM 4358 H LEU A 10 35.525 42.501 34.029 1.00 0.00 H \nATOM 4359 H ILE A 11 32.259 41.482 37.121 1.00 0.00 H \nATOM 4360 H THR A 12 32.760 45.444 38.354 1.00 0.00 H \nATOM 4361 H THR A 12 35.010 47.784 38.549 1.00 0.00 H \nATOM 4362 H CYS A 14 32.622 48.117 45.021 1.00 0.00 H \nATOM 4363 H CYS A 14 31.743 53.189 43.872 1.00 0.00 H \nATOM 4364 H ALA A 15 34.889 48.289 46.024 1.00 0.00 H \nATOM 4365 H ALA A 16 37.227 48.638 49.603 1.00 0.00 H \nATOM 4366 H GLU A 17 36.443 44.097 49.807 1.00 0.00 H \nATOM 4367 H GLU A 18 33.336 43.230 52.794 1.00 0.00 H \nATOM 4368 H SER A 19 34.599 38.983 53.574 1.00 0.00 H \nATOM 4369 H SER A 19 34.586 35.796 51.936 1.00 0.00 H \nATOM 4370 H LYS A 20 34.340 37.706 55.147 1.00 0.00 H \nATOM 4371 H LYS A 20 35.029 32.748 52.761 1.00 0.00 H \nATOM 4372 H LYS A 20 34.161 34.159 52.934 1.00 0.00 H \nATOM 4373 H LYS A 20 34.274 33.089 54.206 1.00 0.00 H \nATOM 4374 H LEU A 21 31.818 36.057 58.599 1.00 0.00 H \nATOM 4375 H ILE A 23 35.109 39.912 63.553 1.00 0.00 H \nATOM 4376 H ASN A 24 32.820 40.812 67.247 1.00 0.00 H \nATOM 4377 H ASN A 24 32.320 45.653 67.822 1.00 0.00 H \nATOM 4378 H ASN A 24 30.780 45.086 68.285 1.00 0.00 H \nATOM 4379 H ALA A 25 34.379 43.313 70.413 1.00 0.00 H \nATOM 4380 H LEU A 26 31.774 42.541 70.531 1.00 0.00 H \nATOM 4381 H SER A 27 31.021 40.643 69.517 1.00 0.00 H \nATOM 4382 H SER A 27 31.794 39.653 66.490 1.00 0.00 H \nATOM 4383 H ASN A 28 30.862 37.793 70.661 1.00 0.00 H \nATOM 4384 H ASN A 28 33.861 34.997 70.731 1.00 0.00 H \nATOM 4385 H ASN A 28 33.330 36.091 71.927 1.00 0.00 H \nATOM 4386 H SER A 29 28.672 38.231 72.363 1.00 0.00 H \nATOM 4387 H SER A 29 26.792 40.855 73.436 1.00 0.00 H \nATOM 4388 H LEU A 30 26.531 37.937 70.817 1.00 0.00 H \nATOM 4389 H LEU A 31 26.409 36.017 68.995 1.00 0.00 H \nATOM 4390 H ARG A 32 26.462 31.636 68.613 1.00 0.00 H \nATOM 4391 H ARG A 32 27.732 30.664 74.060 1.00 0.00 H \nATOM 4392 H ARG A 32 30.913 30.959 72.631 1.00 0.00 H \nATOM 4393 H ARG A 32 31.561 31.817 73.954 1.00 0.00 H \nATOM 4394 H ARG A 32 30.229 32.276 75.802 1.00 0.00 H \nATOM 4395 H ARG A 32 28.591 31.802 75.807 1.00 0.00 H \nATOM 4396 H HIS A 33 27.209 30.579 66.701 1.00 0.00 H \nATOM 4397 H HIS A 34 30.423 31.472 65.071 1.00 0.00 H \nATOM 4398 H ASN A 35 31.083 30.521 62.429 1.00 0.00 H \nATOM 4399 H ASN A 35 33.285 28.042 62.009 1.00 0.00 H \nATOM 4400 H ASN A 35 34.710 28.966 62.157 1.00 0.00 H \nATOM 4401 H MET A 36 28.688 30.842 61.133 1.00 0.00 H \nATOM 4402 H VAL A 37 28.202 32.691 59.961 1.00 0.00 H \nATOM 4403 H TYR A 38 26.737 35.165 56.425 1.00 0.00 H \nATOM 4404 H TYR A 38 24.300 33.242 50.529 1.00 0.00 H \nATOM 4405 H ALA A 39 29.651 37.400 54.064 1.00 0.00 H \nATOM 4406 H THR A 40 26.785 38.998 51.067 1.00 0.00 H \nATOM 4407 H THR A 40 25.189 39.494 48.095 1.00 0.00 H \nATOM 4408 H THR A 41 29.780 38.165 47.664 1.00 0.00 H \nATOM 4409 H THR A 41 32.679 38.747 46.541 1.00 0.00 H \nATOM 4410 H SER A 42 31.778 41.579 45.704 1.00 0.00 H \nATOM 4411 H SER A 42 33.986 42.879 43.483 1.00 0.00 H \nATOM 4412 H ARG A 43 33.019 39.147 45.140 1.00 0.00 H \nATOM 4413 H ARG A 43 35.480 36.679 48.023 1.00 0.00 H \nATOM 4414 H ARG A 43 35.785 35.462 49.934 1.00 0.00 H \nATOM 4415 H ARG A 43 36.983 34.249 49.984 1.00 0.00 H \nATOM 4416 H ARG A 43 38.084 34.775 46.725 1.00 0.00 H \nATOM 4417 H ARG A 43 38.300 33.856 48.145 1.00 0.00 H \nATOM 4418 H SER A 44 31.107 37.296 44.319 1.00 0.00 H \nATOM 4419 H SER A 44 28.282 35.891 45.736 1.00 0.00 H \nATOM 4420 H ALA A 45 30.581 37.870 42.052 1.00 0.00 H \nATOM 4421 H GLY A 46 30.753 36.524 39.576 1.00 0.00 H \nATOM 4422 H LEU A 47 29.314 34.254 39.821 1.00 0.00 H \nATOM 4423 H ARG A 48 26.865 35.258 39.976 1.00 0.00 H \nATOM 4424 H ARG A 48 23.078 36.700 42.429 1.00 0.00 H \nATOM 4425 H ARG A 48 20.226 35.518 40.819 1.00 0.00 H \nATOM 4426 H ARG A 48 19.605 34.739 42.203 1.00 0.00 H \nATOM 4427 H ARG A 48 20.763 34.829 44.194 1.00 0.00 H \nATOM 4428 H ARG A 48 22.250 35.660 44.279 1.00 0.00 H \nATOM 4429 H GLN A 49 26.365 36.411 37.713 1.00 0.00 H \nATOM 4430 H GLN A 49 30.484 38.568 35.895 1.00 0.00 H \nATOM 4431 H GLN A 49 29.398 37.881 37.016 1.00 0.00 H \nATOM 4432 H LYS A 50 26.141 34.146 36.130 1.00 0.00 H \nATOM 4433 H LYS A 50 30.984 31.902 33.485 1.00 0.00 H \nATOM 4434 H LYS A 50 30.407 32.356 34.980 1.00 0.00 H \nATOM 4435 H LYS A 50 29.493 32.635 33.616 1.00 0.00 H \nATOM 4436 H LYS A 51 23.779 33.123 37.025 1.00 0.00 H \nATOM 4437 H LYS A 51 23.915 29.280 42.064 1.00 0.00 H \nATOM 4438 H LYS A 51 23.216 29.235 40.553 1.00 0.00 H \nATOM 4439 H LYS A 51 22.260 29.396 41.908 1.00 0.00 H \nATOM 4440 H VAL A 52 21.948 35.003 36.355 1.00 0.00 H \nATOM 4441 H THR A 53 21.635 34.552 33.703 1.00 0.00 H \nATOM 4442 H THR A 53 24.237 36.344 31.829 1.00 0.00 H \nATOM 4443 H PHE A 54 19.020 35.410 30.387 1.00 0.00 H \nATOM 4444 H ASP A 55 17.372 32.451 27.601 1.00 0.00 H \nATOM 4445 H ARG A 56 14.390 35.688 26.216 1.00 0.00 H \nATOM 4446 H ARG A 56 15.133 37.801 27.466 1.00 0.00 H \nATOM 4447 H ARG A 56 13.761 40.567 30.013 1.00 0.00 H \nATOM 4448 H ARG A 56 13.757 38.931 30.497 1.00 0.00 H \nATOM 4449 H ARG A 56 15.057 39.943 26.841 1.00 0.00 H \nATOM 4450 H ARG A 56 14.445 41.133 27.897 1.00 0.00 H \nATOM 4451 H LEU A 57 10.476 33.784 27.112 1.00 0.00 H \nATOM 4452 H GLN A 58 7.588 35.082 24.114 1.00 0.00 H \nATOM 4453 H GLN A 58 5.507 39.650 29.108 1.00 0.00 H \nATOM 4454 H GLN A 58 5.385 37.972 29.386 1.00 0.00 H \nATOM 4455 H VAL A 59 3.955 33.982 26.031 1.00 0.00 H \nATOM 4456 H LEU A 60 1.402 35.975 23.674 1.00 0.00 H \nATOM 4457 H ASP A 61 -1.922 35.510 26.457 1.00 0.00 H \nATOM 4458 H ASP A 62 -6.154 35.140 25.024 1.00 0.00 H \nATOM 4459 H HIS A 63 -6.601 35.500 27.716 1.00 0.00 H \nATOM 4460 H TYR A 64 -4.639 36.928 28.582 1.00 0.00 H \nATOM 4461 H TYR A 64 1.780 42.798 28.452 1.00 0.00 H \nATOM 4462 H ARG A 65 -4.854 39.358 27.218 1.00 0.00 H \nATOM 4463 H ARG A 65 -5.929 40.075 22.900 1.00 0.00 H \nATOM 4464 H ARG A 65 -2.471 38.104 23.090 1.00 0.00 H \nATOM 4465 H ARG A 65 -2.504 39.774 23.434 1.00 0.00 H \nATOM 4466 H ARG A 65 -5.883 37.837 22.552 1.00 0.00 H \nATOM 4467 H ARG A 65 -4.413 36.984 22.685 1.00 0.00 H \nATOM 4468 H ASP A 66 -7.238 40.084 28.280 1.00 0.00 H \nATOM 4469 H VAL A 67 -6.882 40.628 30.902 1.00 0.00 H \nATOM 4470 H LEU A 68 -5.178 42.615 30.678 1.00 0.00 H \nATOM 4471 H LYS A 69 -6.731 44.594 29.557 1.00 0.00 H \nATOM 4472 H LYS A 69 -12.747 48.072 24.980 1.00 0.00 H \nATOM 4473 H LYS A 69 -12.832 46.519 25.578 1.00 0.00 H \nATOM 4474 H LYS A 69 -11.584 46.954 24.565 1.00 0.00 H \nATOM 4475 H GLU A 70 -8.369 45.173 31.691 1.00 0.00 H \nATOM 4476 H MET A 71 -6.668 46.189 33.501 1.00 0.00 H \nATOM 4477 H LYS A 72 -5.908 48.513 32.251 1.00 0.00 H \nATOM 4478 H LYS A 72 -2.202 49.723 26.100 1.00 0.00 H \nATOM 4479 H LYS A 72 -3.654 50.532 26.197 1.00 0.00 H \nATOM 4480 H LYS A 72 -3.620 48.870 26.285 1.00 0.00 H \nATOM 4481 H ALA A 73 -8.249 49.899 32.338 1.00 0.00 H \nATOM 4482 H LYS A 74 -8.440 50.528 34.963 1.00 0.00 H \nATOM 4483 H LYS A 74 -11.424 46.528 38.133 1.00 0.00 H \nATOM 4484 H LYS A 74 -9.959 46.520 37.341 1.00 0.00 H \nATOM 4485 H LYS A 74 -11.007 47.800 37.143 1.00 0.00 H \nATOM 4486 H ALA A 75 -6.290 51.969 35.228 1.00 0.00 H \nATOM 4487 H SER A 76 -7.112 54.234 33.949 1.00 0.00 H \nATOM 4488 H SER A 76 -8.238 55.018 30.793 1.00 0.00 H \nATOM 4489 H THR A 77 -8.024 55.796 35.989 1.00 0.00 H \nATOM 4490 H THR A 77 -8.318 56.525 39.130 1.00 0.00 H \nATOM 4491 H VAL A 78 -6.370 57.199 36.838 1.00 0.00 H \nATOM 4492 H LYS A 79 -4.895 60.672 39.440 1.00 0.00 H \nATOM 4493 H LYS A 79 -5.274 69.079 37.546 1.00 0.00 H \nATOM 4494 H LYS A 79 -6.217 68.281 38.664 1.00 0.00 H \nATOM 4495 H LYS A 79 -6.486 68.056 37.035 1.00 0.00 H \nATOM 4496 H ALA A 80 -1.761 62.424 37.237 1.00 0.00 H \nATOM 4497 H LYS A 81 1.068 63.831 40.413 1.00 0.00 H \nATOM 4498 H LYS A 81 1.896 66.035 46.012 1.00 0.00 H \nATOM 4499 H LYS A 81 1.193 65.415 44.635 1.00 0.00 H \nATOM 4500 H LYS A 81 0.753 66.923 45.189 1.00 0.00 H \nATOM 4501 H LEU A 82 3.100 67.067 38.059 1.00 0.00 H \nATOM 4502 H LEU A 83 7.038 65.554 39.558 1.00 0.00 H \nATOM 4503 H SER A 84 8.229 69.016 42.391 1.00 0.00 H \nATOM 4504 H SER A 84 9.497 71.824 43.971 1.00 0.00 H \nATOM 4505 H VAL A 85 11.855 70.983 40.329 1.00 0.00 H \nATOM 4506 H GLU A 86 12.924 71.525 42.925 1.00 0.00 H \nATOM 4507 H GLU A 87 11.194 69.943 44.515 1.00 0.00 H \nATOM 4508 H ALA A 88 11.793 67.449 43.642 1.00 0.00 H \nATOM 4509 H CYS A 89 14.358 67.389 44.408 1.00 0.00 H \nATOM 4510 H CYS A 89 17.824 69.668 44.015 1.00 0.00 H \nATOM 4511 H LYS A 90 14.106 67.214 47.208 1.00 0.00 H \nATOM 4512 H LYS A 90 10.817 72.359 49.753 1.00 0.00 H \nATOM 4513 H LYS A 90 10.357 71.128 50.776 1.00 0.00 H \nATOM 4514 H LYS A 90 10.178 70.953 49.129 1.00 0.00 H \nATOM 4515 H LEU A 91 13.684 64.487 47.381 1.00 0.00 H \nATOM 4516 H THR A 92 15.902 63.380 47.867 1.00 0.00 H \nATOM 4517 H THR A 92 18.188 63.342 45.141 1.00 0.00 H \nATOM 4518 H HIS A 95 22.186 59.080 51.881 1.00 0.00 H \nATOM 4519 H SER A 96 22.560 59.376 49.390 1.00 0.00 H \nATOM 4520 H SER A 96 20.594 58.503 45.499 1.00 0.00 H \nATOM 4521 H ALA A 97 23.772 56.472 45.979 1.00 0.00 H \nATOM 4522 H LYS A 98 27.727 58.623 45.068 1.00 0.00 H \nATOM 4523 H LYS A 98 34.314 59.743 43.057 1.00 0.00 H \nATOM 4524 H LYS A 98 33.942 60.461 44.513 1.00 0.00 H \nATOM 4525 H LYS A 98 33.600 61.247 43.085 1.00 0.00 H \nATOM 4526 H SER A 99 26.728 62.293 42.436 1.00 0.00 H \nATOM 4527 H SER A 99 25.916 64.003 38.436 1.00 0.00 H \nATOM 4528 H LYS A 100 27.482 60.893 38.086 1.00 0.00 H \nATOM 4529 H LYS A 100 29.112 54.281 35.545 1.00 0.00 H \nATOM 4530 H LYS A 100 29.960 55.341 34.579 1.00 0.00 H \nATOM 4531 H LYS A 100 28.300 55.445 34.672 1.00 0.00 H \nATOM 4532 H PHE A 101 28.147 63.157 38.001 1.00 0.00 H \nATOM 4533 H GLY A 102 30.465 64.514 39.140 1.00 0.00 H \nATOM 4534 H TYR A 103 28.815 65.184 41.163 1.00 0.00 H \nATOM 4535 H TYR A 103 23.418 65.605 37.932 1.00 0.00 H \nATOM 4536 H GLY A 104 27.360 66.133 45.210 1.00 0.00 H \nATOM 4537 H ALA A 105 25.452 62.570 46.967 1.00 0.00 H \nATOM 4538 H LYS A 106 25.292 64.467 48.841 1.00 0.00 H \nATOM 4539 H LYS A 106 22.695 63.921 52.207 1.00 0.00 H \nATOM 4540 H LYS A 106 23.197 65.462 51.826 1.00 0.00 H \nATOM 4541 H LYS A 106 22.978 65.027 53.419 1.00 0.00 H \nATOM 4542 H ASP A 107 25.501 66.849 47.676 1.00 0.00 H \nATOM 4543 H VAL A 108 23.172 66.845 46.511 1.00 0.00 H \nATOM 4544 H ARG A 109 21.222 66.824 48.222 1.00 0.00 H \nATOM 4545 H ARG A 109 19.687 65.537 53.305 1.00 0.00 H \nATOM 4546 H ARG A 109 17.591 64.066 50.939 1.00 0.00 H \nATOM 4547 H ARG A 109 16.173 64.352 51.842 1.00 0.00 H \nATOM 4548 H ARG A 109 16.298 65.395 53.878 1.00 0.00 H \nATOM 4549 H ARG A 109 17.806 65.909 54.486 1.00 0.00 H \nATOM 4550 H ASN A 110 21.584 69.338 48.885 1.00 0.00 H \nATOM 4551 H ASN A 110 24.856 70.572 50.400 1.00 0.00 H \nATOM 4552 H ASN A 110 24.642 69.994 51.990 1.00 0.00 H \nATOM 4553 H LEU A 111 20.093 70.591 47.355 1.00 0.00 H \nATOM 4554 H SER A 112 22.234 71.666 46.149 1.00 0.00 H \nATOM 4555 H SER A 112 25.569 70.998 44.450 1.00 0.00 H \nATOM 4556 H SER A 113 24.074 75.372 44.072 1.00 0.00 H \nATOM 4557 H SER A 113 25.907 77.391 41.668 1.00 0.00 H \nATOM 4558 H LYS A 114 25.588 73.879 42.218 1.00 0.00 H \nATOM 4559 H LYS A 114 30.979 70.359 37.947 1.00 0.00 H \nATOM 4560 H LYS A 114 30.891 71.757 38.848 1.00 0.00 H \nATOM 4561 H LYS A 114 29.524 71.153 38.112 1.00 0.00 H \nATOM 4562 H ALA A 115 24.601 71.297 42.210 1.00 0.00 H \nATOM 4563 H VAL A 116 21.859 71.713 41.700 1.00 0.00 H \nATOM 4564 H ASN A 117 22.256 72.799 39.152 1.00 0.00 H \nATOM 4565 H ASN A 117 23.546 76.697 38.466 1.00 0.00 H \nATOM 4566 H ASN A 117 24.369 75.216 38.660 1.00 0.00 H \nATOM 4567 H HIS A 118 23.184 70.751 37.620 1.00 0.00 H \nATOM 4568 H ILE A 119 21.141 69.002 37.763 1.00 0.00 H \nATOM 4569 H HIS A 120 19.265 70.386 36.313 1.00 0.00 H \nATOM 4570 H SER A 121 20.253 70.059 33.842 1.00 0.00 H \nATOM 4571 H SER A 121 23.259 69.153 32.493 1.00 0.00 H \nATOM 4572 H VAL A 122 20.032 67.656 33.332 1.00 0.00 H \nATOM 4573 H TRP A 123 17.420 67.206 33.253 1.00 0.00 H \nATOM 4574 H TRP A 123 10.661 68.859 31.923 1.00 0.00 H \nATOM 4575 H LYS A 124 16.700 68.721 31.041 1.00 0.00 H \nATOM 4576 H LYS A 124 18.088 74.447 25.252 1.00 0.00 H \nATOM 4577 H LYS A 124 19.202 73.789 26.301 1.00 0.00 H \nATOM 4578 H LYS A 124 17.892 74.628 26.896 1.00 0.00 H \nATOM 4579 H ASP A 125 17.962 67.230 29.097 1.00 0.00 H \nATOM 4580 H LEU A 126 16.348 65.056 29.219 1.00 0.00 H \nATOM 4581 H LEU A 127 14.028 65.913 28.109 1.00 0.00 H \nATOM 4582 H GLU A 128 14.774 66.267 25.625 1.00 0.00 H \nATOM 4583 H ASP A 129 15.435 64.164 24.588 1.00 0.00 H \nATOM 4584 H THR A 130 14.540 61.024 21.871 1.00 0.00 H \nATOM 4585 H THR A 130 12.471 59.120 21.135 1.00 0.00 H \nATOM 4586 H VAL A 131 16.052 59.133 22.398 1.00 0.00 H \nATOM 4587 H THR A 132 17.987 58.534 22.716 1.00 0.00 H \nATOM 4588 H THR A 132 19.464 59.451 21.894 1.00 0.00 H \nATOM 4589 H ILE A 134 19.685 54.677 28.198 1.00 0.00 H \nATOM 4590 H ASP A 135 23.436 56.365 30.075 1.00 0.00 H \nATOM 4591 H THR A 136 24.775 52.433 32.130 1.00 0.00 H \nATOM 4592 H THR A 136 22.545 49.576 33.256 1.00 0.00 H \nATOM 4593 H THR A 137 24.452 52.174 36.475 1.00 0.00 H \nATOM 4594 H THR A 137 26.351 53.706 36.954 1.00 0.00 H \nATOM 4595 H ILE A 138 27.428 48.865 36.593 1.00 0.00 H \nATOM 4596 H MET A 139 25.605 46.722 39.912 1.00 0.00 H \nATOM 4597 H ALA A 140 28.581 44.768 42.488 1.00 0.00 H \nATOM 4598 H LYS A 141 25.072 42.881 44.434 1.00 0.00 H \nATOM 4599 H LYS A 141 18.581 46.021 45.231 1.00 0.00 H \nATOM 4600 H LYS A 141 19.200 45.811 46.763 1.00 0.00 H \nATOM 4601 H LYS A 141 18.704 44.491 45.878 1.00 0.00 H \nATOM 4602 H ASN A 142 26.022 44.740 48.576 1.00 0.00 H \nATOM 4603 H ASN A 142 30.370 43.783 47.968 1.00 0.00 H \nATOM 4604 H ASN A 142 29.449 42.608 48.792 1.00 0.00 H \nATOM 4605 H GLU A 143 25.711 40.985 50.220 1.00 0.00 H \nATOM 4606 H VAL A 144 23.476 41.010 54.039 1.00 0.00 H \nATOM 4607 H PHE A 145 24.691 36.718 54.904 1.00 0.00 H \nATOM 4608 H CYS A 146 21.777 33.583 55.916 1.00 0.00 H \nATOM 4609 H CYS A 146 21.763 30.220 59.894 1.00 0.00 H \nATOM 4610 H VAL A 147 24.993 30.652 56.832 1.00 0.00 H \nATOM 4611 H GLN A 148 24.052 28.272 53.025 1.00 0.00 H \nATOM 4612 H GLN A 148 22.657 22.506 49.801 1.00 0.00 H \nATOM 4613 H GLN A 148 21.469 23.723 49.919 1.00 0.00 H \nATOM 4614 H ARG A 154 24.579 28.664 50.283 1.00 0.00 H \nATOM 4615 H ARG A 154 25.972 28.545 51.188 1.00 0.00 H \nATOM 4616 H ARG A 154 26.012 28.230 49.553 1.00 0.00 H \nATOM 4617 H ARG A 154 28.889 32.536 50.303 1.00 0.00 H \nATOM 4618 H ARG A 154 32.508 33.058 51.894 1.00 0.00 H \nATOM 4619 H ARG A 154 31.694 31.576 52.118 1.00 0.00 H \nATOM 4620 H ARG A 154 29.978 34.517 50.005 1.00 0.00 H \nATOM 4621 H ARG A 154 31.524 34.744 50.686 1.00 0.00 H \nATOM 4622 H LYS A 155 24.377 32.260 49.572 1.00 0.00 H \nATOM 4623 H LYS A 155 18.480 32.378 50.373 1.00 0.00 H \nATOM 4624 H LYS A 155 18.426 33.501 49.144 1.00 0.00 H \nATOM 4625 H LYS A 155 18.802 33.980 50.694 1.00 0.00 H \nATOM 4626 H ALA A 157 26.911 36.862 44.855 1.00 0.00 H \nATOM 4627 H ARG A 158 23.380 39.819 45.539 1.00 0.00 H \nATOM 4628 H ARG A 158 19.999 41.298 46.518 1.00 0.00 H \nATOM 4629 H ARG A 158 16.659 40.533 45.929 1.00 0.00 H \nATOM 4630 H ARG A 158 16.063 41.793 46.910 1.00 0.00 H \nATOM 4631 H ARG A 158 19.207 42.973 47.824 1.00 0.00 H \nATOM 4632 H ARG A 158 17.525 43.194 47.998 1.00 0.00 H \nATOM 4633 H LEU A 159 21.768 40.975 41.428 1.00 0.00 H \nATOM 4634 H ILE A 160 23.687 44.977 41.450 1.00 0.00 H \nATOM 4635 H VAL A 161 20.485 47.375 39.592 1.00 0.00 H \nATOM 4636 H PHE A 162 22.722 50.607 37.930 1.00 0.00 H \nATOM 4637 H ASP A 164 22.685 57.387 35.715 1.00 0.00 H \nATOM 4638 H LEU A 165 23.812 59.560 39.646 1.00 0.00 H \nATOM 4639 H GLY A 166 22.620 62.038 38.435 1.00 0.00 H \nATOM 4640 H VAL A 167 20.770 61.015 36.762 1.00 0.00 H \nATOM 4641 H ARG A 168 19.230 59.800 38.456 1.00 0.00 H \nATOM 4642 H ARG A 168 19.772 57.670 43.225 1.00 0.00 H \nATOM 4643 H ARG A 168 21.702 56.743 40.471 1.00 0.00 H \nATOM 4644 H ARG A 168 23.161 57.290 41.163 1.00 0.00 H \nATOM 4645 H ARG A 168 23.158 58.257 43.242 1.00 0.00 H \nATOM 4646 H ARG A 168 21.703 58.386 44.122 1.00 0.00 H \nATOM 4647 H VAL A 169 18.025 61.899 39.853 1.00 0.00 H \nATOM 4648 H CYS A 170 16.494 62.873 37.943 1.00 0.00 H \nATOM 4649 H CYS A 170 16.796 64.634 34.153 1.00 0.00 H \nATOM 4650 H GLU A 171 14.747 60.713 37.639 1.00 0.00 H \nATOM 4651 H LYS A 172 13.124 60.928 39.865 1.00 0.00 H \nATOM 4652 H LYS A 172 15.721 58.819 44.803 1.00 0.00 H \nATOM 4653 H LYS A 172 16.115 60.008 43.705 1.00 0.00 H \nATOM 4654 H LYS A 172 14.895 58.927 43.360 1.00 0.00 H \nATOM 4655 H MET A 173 11.845 63.310 39.484 1.00 0.00 H \nATOM 4656 H ALA A 174 10.239 62.754 37.242 1.00 0.00 H \nATOM 4657 H LEU A 175 8.852 60.819 38.227 1.00 0.00 H \nATOM 4658 H TYR A 176 8.011 60.803 40.332 1.00 0.00 H \nATOM 4659 H TYR A 176 7.807 58.855 48.805 1.00 0.00 H \nATOM 4660 H ASP A 177 5.476 61.309 41.325 1.00 0.00 H \nATOM 4661 H VAL A 178 4.055 59.644 39.994 1.00 0.00 H \nATOM 4662 H VAL A 179 4.934 56.959 40.572 1.00 0.00 H \nATOM 4663 H SER A 180 3.875 57.102 42.926 1.00 0.00 H \nATOM 4664 H SER A 180 5.260 58.699 45.965 1.00 0.00 H \nATOM 4665 H THR A 181 1.495 56.769 42.952 1.00 0.00 H \nATOM 4666 H THR A 181 -1.590 57.497 41.721 1.00 0.00 H \nATOM 4667 H LEU A 182 0.276 55.746 41.472 1.00 0.00 H \nATOM 4668 H GLN A 184 -1.565 52.106 44.207 1.00 0.00 H \nATOM 4669 H GLN A 184 -7.766 51.833 46.666 1.00 0.00 H \nATOM 4670 H GLN A 184 -6.751 50.563 47.180 1.00 0.00 H \nATOM 4671 H VAL A 185 -3.879 52.819 43.025 1.00 0.00 H \nATOM 4672 H VAL A 186 -4.122 51.206 40.897 1.00 0.00 H \nATOM 4673 H MET A 187 -4.233 48.781 41.936 1.00 0.00 H \nATOM 4674 H GLY A 188 -6.075 48.728 43.419 1.00 0.00 H \nATOM 4675 H SER A 189 -8.214 46.420 46.783 1.00 0.00 H \nATOM 4676 H SER A 189 -9.284 43.610 48.361 1.00 0.00 H \nATOM 4677 H SER A 190 -6.028 44.773 45.980 1.00 0.00 H \nATOM 4678 H SER A 190 -5.924 41.624 44.113 1.00 0.00 H \nATOM 4679 H TYR A 191 -3.687 45.939 46.362 1.00 0.00 H \nATOM 4680 H TYR A 191 4.040 49.864 45.416 1.00 0.00 H \nATOM 4681 H GLY A 192 0.479 44.653 47.260 1.00 0.00 H \nATOM 4682 H PHE A 193 1.977 46.880 48.408 1.00 0.00 H \nATOM 4683 H GLN A 194 0.154 48.200 50.227 1.00 0.00 H \nATOM 4684 H GLN A 194 -4.674 47.853 48.405 1.00 0.00 H \nATOM 4685 H GLN A 194 -3.145 47.255 48.864 1.00 0.00 H \nATOM 4686 H TYR A 195 0.227 47.733 52.424 1.00 0.00 H \nATOM 4687 H TYR A 195 -5.484 44.793 50.441 1.00 0.00 H \nATOM 4688 H SER A 196 -0.435 48.166 56.922 1.00 0.00 H \nATOM 4689 H SER A 196 -0.486 48.657 60.197 1.00 0.00 H \nATOM 4690 H GLY A 198 0.924 45.541 60.749 1.00 0.00 H \nATOM 4691 H GLN A 199 -1.299 46.039 59.221 1.00 0.00 H \nATOM 4692 H GLN A 199 -3.735 51.039 57.654 1.00 0.00 H \nATOM 4693 H GLN A 199 -4.607 49.951 58.635 1.00 0.00 H \nATOM 4694 H ARG A 200 -0.861 44.239 57.412 1.00 0.00 H \nATOM 4695 H ARG A 200 2.542 39.392 54.134 1.00 0.00 H \nATOM 4696 H ARG A 200 2.163 41.480 50.761 1.00 0.00 H \nATOM 4697 H ARG A 200 1.909 42.252 52.260 1.00 0.00 H \nATOM 4698 H ARG A 200 2.701 39.244 50.692 1.00 0.00 H \nATOM 4699 H ARG A 200 2.845 38.359 52.142 1.00 0.00 H \nATOM 4700 H VAL A 201 -1.087 41.811 58.318 1.00 0.00 H \nATOM 4701 H GLU A 202 -3.697 41.995 58.976 1.00 0.00 H \nATOM 4702 H PHE A 203 -4.862 42.200 56.389 1.00 0.00 H \nATOM 4703 H LEU A 204 -4.270 39.771 55.456 1.00 0.00 H \nATOM 4704 H VAL A 205 -5.575 38.079 57.175 1.00 0.00 H \nATOM 4705 H ASN A 206 -8.218 38.742 56.914 1.00 0.00 H \nATOM 4706 H ASN A 206 -10.063 42.190 56.764 1.00 0.00 H \nATOM 4707 H ASN A 206 -10.509 42.179 58.410 1.00 0.00 H \nATOM 4708 H THR A 207 -8.526 38.063 54.330 1.00 0.00 H \nATOM 4709 H THR A 207 -7.364 38.835 51.062 1.00 0.00 H \nATOM 4710 H TRP A 208 -8.127 35.505 54.310 1.00 0.00 H \nATOM 4711 H TRP A 208 -7.912 28.935 56.807 1.00 0.00 H \nATOM 4712 H LYS A 209 -10.306 34.761 55.700 1.00 0.00 H \nATOM 4713 H LYS A 209 -10.969 35.887 62.729 1.00 0.00 H \nATOM 4714 H LYS A 209 -12.500 35.944 62.076 1.00 0.00 H \nATOM 4715 H LYS A 209 -11.310 36.957 61.499 1.00 0.00 H \nATOM 4716 H SER A 210 -12.067 34.940 53.827 1.00 0.00 H \nATOM 4717 H SER A 210 -12.375 36.622 50.796 1.00 0.00 H \nATOM 4718 H LYS A 211 -12.745 32.657 52.789 1.00 0.00 H \nATOM 4719 H LYS A 211 -10.609 35.646 47.594 1.00 0.00 H \nATOM 4720 H LYS A 211 -12.140 35.458 48.224 1.00 0.00 H \nATOM 4721 H LYS A 211 -11.629 34.485 46.972 1.00 0.00 H \nATOM 4722 H LYS A 212 -15.257 29.698 50.389 1.00 0.00 H \nATOM 4723 H LYS A 212 -20.245 30.691 47.905 1.00 0.00 H \nATOM 4724 H LYS A 212 -19.274 29.416 47.449 1.00 0.00 H \nATOM 4725 H LYS A 212 -18.717 30.535 48.550 1.00 0.00 H \nATOM 4726 H ASN A 213 -14.002 27.514 50.586 1.00 0.00 H \nATOM 4727 H ASN A 213 -14.844 23.727 49.436 1.00 0.00 H \nATOM 4728 H ASN A 213 -16.058 23.275 50.545 1.00 0.00 H \nATOM 4729 H MET A 215 -8.087 28.737 49.779 1.00 0.00 H \nATOM 4730 H GLY A 216 -4.078 27.611 49.907 1.00 0.00 H \nATOM 4731 H PHE A 217 -1.865 30.685 47.743 1.00 0.00 H \nATOM 4732 H SER A 218 2.361 29.851 47.891 1.00 0.00 H \nATOM 4733 H SER A 218 5.368 30.931 49.101 1.00 0.00 H \nATOM 4734 H TYR A 219 3.494 33.191 45.190 1.00 0.00 H \nATOM 4735 H TYR A 219 6.037 30.930 37.073 1.00 0.00 H \nATOM 4736 H ASP A 220 6.608 30.840 43.728 1.00 0.00 H \nATOM 4737 H THR A 221 8.328 34.333 41.847 1.00 0.00 H \nATOM 4738 H THR A 221 7.021 35.880 38.777 1.00 0.00 H \nATOM 4739 H ARG A 222 10.637 32.256 38.497 1.00 0.00 H \nATOM 4740 H ARG A 222 14.030 29.101 36.862 1.00 0.00 H \nATOM 4741 H ARG A 222 14.249 30.639 33.186 1.00 0.00 H \nATOM 4742 H ARG A 222 14.817 31.550 34.511 1.00 0.00 H \nATOM 4743 H ARG A 222 13.381 28.544 33.518 1.00 0.00 H \nATOM 4744 H ARG A 222 13.300 27.889 35.090 1.00 0.00 H \nATOM 4745 H CYS A 223 14.311 34.173 40.292 1.00 0.00 H \nATOM 4746 H CYS A 223 18.214 34.006 37.913 1.00 0.00 H \nATOM 4747 H PHE A 224 12.757 36.881 39.850 1.00 0.00 H \nATOM 4748 H ASP A 225 13.573 39.663 38.785 1.00 0.00 H \nATOM 4749 H SER A 226 14.974 38.858 36.451 1.00 0.00 H \nATOM 4750 H SER A 226 18.154 37.495 35.243 1.00 0.00 H \nATOM 4751 H THR A 227 12.940 38.119 34.986 1.00 0.00 H \nATOM 4752 H THR A 227 9.732 38.130 34.473 1.00 0.00 H \nATOM 4753 H VAL A 228 11.968 39.988 33.810 1.00 0.00 H \nATOM 4754 H THR A 229 9.348 41.094 30.381 1.00 0.00 H \nATOM 4755 H THR A 229 7.839 40.522 27.420 1.00 0.00 H \nATOM 4756 H GLU A 230 11.338 42.601 26.543 1.00 0.00 H \nATOM 4757 H ASN A 231 8.789 42.984 25.792 1.00 0.00 H \nATOM 4758 H ASN A 231 3.407 42.107 27.288 1.00 0.00 H \nATOM 4759 H ASN A 231 5.033 41.811 27.706 1.00 0.00 H \nATOM 4760 H ASP A 232 7.394 42.920 28.206 1.00 0.00 H \nATOM 4761 H ILE A 233 8.394 45.338 29.269 1.00 0.00 H \nATOM 4762 H ARG A 234 7.226 47.108 27.666 1.00 0.00 H \nATOM 4763 H ARG A 234 9.544 47.980 22.842 1.00 0.00 H \nATOM 4764 H ARG A 234 9.211 51.949 22.938 1.00 0.00 H \nATOM 4765 H ARG A 234 7.923 50.986 23.506 1.00 0.00 H \nATOM 4766 H ARG A 234 11.244 49.248 22.090 1.00 0.00 H \nATOM 4767 H ARG A 234 11.122 50.948 22.120 1.00 0.00 H \nATOM 4768 H VAL A 235 4.867 46.893 28.145 1.00 0.00 H \nATOM 4769 H GLU A 236 4.640 47.795 30.547 1.00 0.00 H \nATOM 4770 H GLU A 237 5.124 50.475 30.128 1.00 0.00 H \nATOM 4771 H SER A 238 2.837 51.028 28.769 1.00 0.00 H \nATOM 4772 H SER A 238 -0.004 49.127 27.659 1.00 0.00 H \nATOM 4773 H ILE A 239 1.179 51.132 30.782 1.00 0.00 H \nATOM 4774 H TYR A 240 1.833 52.983 32.562 1.00 0.00 H \nATOM 4775 H TYR A 240 7.089 51.191 35.560 1.00 0.00 H \nATOM 4776 H GLN A 241 1.374 55.146 30.739 1.00 0.00 H \nATOM 4777 H GLN A 241 4.740 57.547 28.173 1.00 0.00 H \nATOM 4778 H GLN A 241 4.591 59.235 28.368 1.00 0.00 H \nATOM 4779 H CYS A 242 -1.364 55.363 31.333 1.00 0.00 H \nATOM 4780 H CYS A 242 -4.581 52.550 30.779 1.00 0.00 H \nATOM 4781 H CYS A 243 -1.875 57.149 32.970 1.00 0.00 H \nATOM 4782 H CYS A 243 -0.421 57.391 36.716 1.00 0.00 H \nATOM 4783 H ASP A 244 -4.119 60.677 34.972 1.00 0.00 H \nATOM 4784 H LEU A 245 -2.177 63.377 32.141 1.00 0.00 H \nATOM 4785 H ALA A 246 1.238 65.582 33.945 1.00 0.00 H \nATOM 4786 H GLU A 248 4.326 68.149 30.380 1.00 0.00 H \nATOM 4787 H ALA A 249 4.697 66.077 31.770 1.00 0.00 H \nATOM 4788 H ARG A 250 3.987 63.992 30.402 1.00 0.00 H \nATOM 4789 H ARG A 250 -1.061 63.673 28.821 1.00 0.00 H \nATOM 4790 H ARG A 250 0.318 60.471 28.832 1.00 0.00 H \nATOM 4791 H ARG A 250 -0.999 59.771 29.659 1.00 0.00 H \nATOM 4792 H ARG A 250 -2.806 62.733 29.913 1.00 0.00 H \nATOM 4793 H ARG A 250 -2.789 61.068 30.279 1.00 0.00 H \nATOM 4794 H GLN A 251 5.802 63.884 28.384 1.00 0.00 H \nATOM 4795 H GLN A 251 9.613 63.532 22.820 1.00 0.00 H \nATOM 4796 H GLN A 251 10.568 64.353 23.970 1.00 0.00 H \nATOM 4797 H ALA A 252 8.091 63.517 29.746 1.00 0.00 H \nATOM 4798 H ILE A 253 7.616 60.977 30.725 1.00 0.00 H \nATOM 4799 H LYS A 254 7.530 59.498 28.556 1.00 0.00 H \nATOM 4800 H LYS A 254 9.150 58.453 20.949 1.00 0.00 H \nATOM 4801 H LYS A 254 9.634 58.346 22.539 1.00 0.00 H \nATOM 4802 H LYS A 254 9.157 59.813 21.911 1.00 0.00 H \nATOM 4803 H SER A 255 9.951 59.687 27.639 1.00 0.00 H \nATOM 4804 H SER A 255 14.046 61.337 27.049 1.00 0.00 H \nATOM 4805 H LEU A 256 11.499 58.629 29.676 1.00 0.00 H \nATOM 4806 H THR A 257 10.713 56.119 29.357 1.00 0.00 H \nATOM 4807 H THR A 257 7.811 54.028 29.635 1.00 0.00 H \nATOM 4808 H GLU A 258 11.525 55.128 26.861 1.00 0.00 H \nATOM 4809 H ARG A 259 14.142 55.468 27.123 1.00 0.00 H \nATOM 4810 H ARG A 259 18.424 58.244 26.178 1.00 0.00 H \nATOM 4811 H ARG A 259 16.526 61.142 26.486 1.00 0.00 H \nATOM 4812 H ARG A 259 17.872 62.153 26.755 1.00 0.00 H \nATOM 4813 H ARG A 259 20.218 59.598 26.537 1.00 0.00 H \nATOM 4814 H ARG A 259 19.986 61.269 26.784 1.00 0.00 H \nATOM 4815 H LEU A 260 14.967 54.292 29.184 1.00 0.00 H \nATOM 4816 H TYR A 261 13.906 53.070 30.897 1.00 0.00 H \nATOM 4817 H TYR A 261 11.165 56.319 35.712 1.00 0.00 H \nATOM 4818 H ILE A 262 13.474 50.861 29.040 1.00 0.00 H \nATOM 4819 H GLY A 263 15.905 49.837 28.839 1.00 0.00 H \nATOM 4820 H GLY A 264 19.834 47.896 28.557 1.00 0.00 H \nATOM 4821 H LEU A 266 26.053 47.878 29.698 1.00 0.00 H \nATOM 4822 H THR A 267 27.102 49.885 33.363 1.00 0.00 H \nATOM 4823 H THR A 267 28.925 52.674 31.611 1.00 0.00 H \nATOM 4824 H ASN A 268 31.381 48.727 33.977 1.00 0.00 H \nATOM 4825 H ASN A 268 35.143 46.729 34.588 1.00 0.00 H \nATOM 4826 H ASN A 268 33.937 45.667 35.157 1.00 0.00 H \nATOM 4827 H SER A 269 32.056 48.621 38.487 1.00 0.00 H \nATOM 4828 H SER A 269 34.144 48.857 41.270 1.00 0.00 H \nATOM 4829 H LYS A 270 34.346 49.529 37.139 1.00 0.00 H \nATOM 4830 H LYS A 270 39.645 45.744 35.500 1.00 0.00 H \nATOM 4831 H LYS A 270 39.834 45.763 37.155 1.00 0.00 H \nATOM 4832 H LYS A 270 40.538 46.950 36.223 1.00 0.00 H \nATOM 4833 H GLY A 271 33.838 51.146 35.479 1.00 0.00 H \nATOM 4834 H GLN A 272 34.470 49.796 33.615 1.00 0.00 H \nATOM 4835 H GLN A 272 38.686 47.063 31.162 1.00 0.00 H \nATOM 4836 H GLN A 272 38.876 45.711 32.184 1.00 0.00 H \nATOM 4837 H ASN A 273 33.521 48.700 29.242 1.00 0.00 H \nATOM 4838 H ASN A 273 28.077 47.623 27.884 1.00 0.00 H \nATOM 4839 H ASN A 273 29.035 48.485 29.000 1.00 0.00 H \nATOM 4840 H CYS A 274 29.817 47.027 30.974 1.00 0.00 H \nATOM 4841 H CYS A 274 30.236 45.069 34.905 1.00 0.00 H \nATOM 4842 H GLY A 275 28.427 45.927 29.506 1.00 0.00 H \nATOM 4843 H TYR A 276 25.123 43.458 28.099 1.00 0.00 H \nATOM 4844 H TYR A 276 20.512 50.220 24.618 1.00 0.00 H \nATOM 4845 H ARG A 277 21.817 46.165 28.932 1.00 0.00 H \nATOM 4846 H ARG A 277 19.938 47.997 32.793 1.00 0.00 H \nATOM 4847 H ARG A 277 16.175 48.646 31.641 1.00 0.00 H \nATOM 4848 H ARG A 277 16.617 47.094 32.193 1.00 0.00 H \nATOM 4849 H ARG A 277 17.733 50.305 31.511 1.00 0.00 H \nATOM 4850 H ARG A 277 19.350 50.005 31.964 1.00 0.00 H \nATOM 4851 H ARG A 278 18.622 43.020 29.315 1.00 0.00 H \nATOM 4852 H ARG A 278 19.484 43.181 22.965 1.00 0.00 H \nATOM 4853 H ARG A 278 21.648 42.675 22.646 1.00 0.00 H \nATOM 4854 H ARG A 278 22.470 41.673 23.753 1.00 0.00 H \nATOM 4855 H ARG A 278 21.389 40.873 25.610 1.00 0.00 H \nATOM 4856 H ARG A 278 19.746 41.250 25.872 1.00 0.00 H \nATOM 4857 H CYS A 279 17.052 44.007 30.609 1.00 0.00 H \nATOM 4858 H CYS A 279 17.416 40.668 33.406 1.00 0.00 H \nATOM 4859 H ARG A 280 13.892 43.145 33.476 1.00 0.00 H \nATOM 4860 H ARG A 280 10.566 45.244 37.136 1.00 0.00 H \nATOM 4861 H ARG A 280 9.189 47.673 34.290 1.00 0.00 H \nATOM 4862 H ARG A 280 10.796 47.867 34.827 1.00 0.00 H \nATOM 4863 H ARG A 280 7.891 45.975 35.159 1.00 0.00 H \nATOM 4864 H ARG A 280 8.538 44.923 36.335 1.00 0.00 H \nATOM 4865 H ALA A 281 14.978 47.405 34.917 1.00 0.00 H \nATOM 4866 H SER A 282 18.083 46.381 38.006 1.00 0.00 H \nATOM 4867 H SER A 282 19.635 45.232 40.790 1.00 0.00 H \nATOM 4868 H GLY A 283 18.055 48.753 39.107 1.00 0.00 H \nATOM 4869 H VAL A 284 15.504 50.450 39.682 1.00 0.00 H \nATOM 4870 H LEU A 285 13.845 54.577 39.125 1.00 0.00 H \nATOM 4871 H THR A 286 11.546 53.224 38.460 1.00 0.00 H \nATOM 4872 H THR A 286 10.440 52.251 35.605 1.00 0.00 H \nATOM 4873 H THR A 287 11.780 50.863 39.955 1.00 0.00 H \nATOM 4874 H THR A 287 13.612 49.987 39.669 1.00 0.00 H \nATOM 4875 H SER A 288 10.290 49.518 42.065 1.00 0.00 H \nATOM 4876 H SER A 288 7.760 48.689 45.633 1.00 0.00 H \nATOM 4877 H CYS A 289 7.643 50.164 41.604 1.00 0.00 H \nATOM 4878 H CYS A 289 3.826 52.735 39.485 1.00 0.00 H \nATOM 4879 H GLY A 290 7.445 49.356 38.935 1.00 0.00 H \nATOM 4880 H ASN A 291 7.992 46.543 39.195 1.00 0.00 H \nATOM 4881 H ASN A 291 11.624 43.756 39.852 1.00 0.00 H \nATOM 4882 H ASN A 291 10.595 43.870 41.206 1.00 0.00 H \nATOM 4883 H THR A 292 5.798 45.862 40.757 1.00 0.00 H \nATOM 4884 H THR A 292 5.492 46.124 42.807 1.00 0.00 H \nATOM 4885 H LEU A 293 3.548 46.470 39.246 1.00 0.00 H \nATOM 4886 H THR A 294 3.995 44.785 37.054 1.00 0.00 H \nATOM 4887 H THR A 294 6.072 44.377 34.343 1.00 0.00 H \nATOM 4888 H CYS A 295 4.034 42.329 38.287 1.00 0.00 H \nATOM 4889 H CYS A 295 4.437 38.908 42.006 1.00 0.00 H \nATOM 4890 H TYR A 296 1.616 42.105 39.140 1.00 0.00 H \nATOM 4891 H TYR A 296 -6.922 43.534 39.403 1.00 0.00 H \nATOM 4892 H LEU A 297 0.200 42.195 36.882 1.00 0.00 H \nATOM 4893 H LYS A 298 0.924 39.899 35.400 1.00 0.00 H \nATOM 4894 H LYS A 298 6.678 39.249 31.740 1.00 0.00 H \nATOM 4895 H LYS A 298 6.459 37.704 32.322 1.00 0.00 H \nATOM 4896 H LYS A 298 6.706 38.966 33.381 1.00 0.00 H \nATOM 4897 H ALA A 299 0.188 37.939 37.280 1.00 0.00 H \nATOM 4898 H SER A 300 -2.506 38.374 37.564 1.00 0.00 H \nATOM 4899 H SER A 300 -4.959 40.839 38.298 1.00 0.00 H \nATOM 4900 H ALA A 301 -3.492 37.767 35.043 1.00 0.00 H \nATOM 4901 H ALA A 302 -2.678 35.199 35.028 1.00 0.00 H \nATOM 4902 H CYS A 303 -4.424 34.123 36.808 1.00 0.00 H \nATOM 4903 H ARG A 304 -6.747 33.967 35.552 1.00 0.00 H \nATOM 4904 H ARG A 304 -9.467 37.693 35.606 1.00 0.00 H \nATOM 4905 H ARG A 304 -10.269 38.197 32.262 1.00 0.00 H \nATOM 4906 H ARG A 304 -10.911 39.756 32.517 1.00 0.00 H \nATOM 4907 H ARG A 304 -10.942 40.655 34.611 1.00 0.00 H \nATOM 4908 H ARG A 304 -10.325 39.773 35.933 1.00 0.00 H \nATOM 4909 H ALA A 305 -6.251 32.449 33.485 1.00 0.00 H \nATOM 4910 H ALA A 306 -5.828 30.067 34.924 1.00 0.00 H \nATOM 4911 H LYS A 307 -8.348 29.417 35.199 1.00 0.00 H \nATOM 4912 H LYS A 307 -8.496 23.154 33.643 1.00 0.00 H \nATOM 4913 H LYS A 307 -9.661 23.470 32.495 1.00 0.00 H \nATOM 4914 H LYS A 307 -10.107 23.137 34.066 1.00 0.00 H \nATOM 4915 H LEU A 308 -8.468 29.689 37.901 1.00 0.00 H \nATOM 4916 H GLN A 309 -10.663 28.464 41.709 1.00 0.00 H \nATOM 4917 H GLN A 309 -16.807 29.148 43.682 1.00 0.00 H \nATOM 4918 H GLN A 309 -15.444 28.187 44.040 1.00 0.00 H \nATOM 4919 H ASP A 310 -13.161 32.191 41.687 1.00 0.00 H \nATOM 4920 H CYS A 311 -10.309 33.534 41.992 1.00 0.00 H \nATOM 4921 H THR A 312 -7.823 34.719 45.582 1.00 0.00 H \nATOM 4922 H THR A 312 -10.020 36.110 46.587 1.00 0.00 H \nATOM 4923 H MET A 313 -6.186 38.786 44.955 1.00 0.00 H \nATOM 4924 H LEU A 314 -1.974 38.080 46.406 1.00 0.00 H \nATOM 4925 H VAL A 315 -0.615 41.881 46.317 1.00 0.00 H \nATOM 4926 H ASN A 316 3.678 41.297 45.919 1.00 0.00 H \nATOM 4927 H ASN A 316 4.757 44.624 49.879 1.00 0.00 H \nATOM 4928 H ASN A 316 3.264 44.293 50.633 1.00 0.00 H \nATOM 4929 H GLY A 317 5.045 44.601 44.554 1.00 0.00 H \nATOM 4930 H ASP A 318 8.583 41.855 43.539 1.00 0.00 H \nATOM 4931 H ASP A 319 6.938 40.537 44.928 1.00 0.00 H \nATOM 4932 H LEU A 320 5.034 36.489 45.380 1.00 0.00 H \nATOM 4933 H VAL A 321 0.760 36.920 46.174 1.00 0.00 H \nATOM 4934 H VAL A 322 -0.952 33.068 46.644 1.00 0.00 H \nATOM 4935 H ILE A 323 -5.147 34.263 46.923 1.00 0.00 H \nATOM 4936 H CYS A 324 -7.069 30.518 47.599 1.00 0.00 H \nATOM 4937 H CYS A 324 -7.173 28.727 43.659 1.00 0.00 H \nATOM 4938 H GLU A 325 -10.842 29.986 45.424 1.00 0.00 H \nATOM 4939 H SER A 326 -11.314 26.584 48.249 1.00 0.00 H \nATOM 4940 H SER A 326 -9.534 22.497 48.787 1.00 0.00 H \nATOM 4941 H ALA A 327 -10.065 23.045 45.518 1.00 0.00 H \nATOM 4942 H GLY A 328 -10.595 21.415 46.783 1.00 0.00 H \nATOM 4943 H THR A 329 -8.424 18.061 47.757 1.00 0.00 H \nATOM 4944 H THR A 329 -4.179 18.604 48.097 1.00 0.00 H \nATOM 4945 H GLN A 330 -7.500 16.884 45.391 1.00 0.00 H \nATOM 4946 H GLN A 330 -4.263 12.641 42.078 1.00 0.00 H \nATOM 4947 H GLN A 330 -5.914 12.309 42.344 1.00 0.00 H \nATOM 4948 H GLU A 331 -8.438 18.274 43.259 1.00 0.00 H \nATOM 4949 H ASP A 332 -7.108 20.382 43.796 1.00 0.00 H \nATOM 4950 H ALA A 333 -4.522 20.013 43.346 1.00 0.00 H \nATOM 4951 H ALA A 334 -4.570 19.857 40.703 1.00 0.00 H \nATOM 4952 H SER A 335 -5.438 22.236 39.715 1.00 0.00 H \nATOM 4953 H SER A 335 -7.901 24.323 40.256 1.00 0.00 H \nATOM 4954 H LEU A 336 -3.521 24.113 40.661 1.00 0.00 H \nATOM 4955 H ARG A 337 -1.598 23.131 38.978 1.00 0.00 H \nATOM 4956 H ARG A 337 2.289 18.466 35.702 1.00 0.00 H \nATOM 4957 H ARG A 337 0.036 19.871 32.725 1.00 0.00 H \nATOM 4958 H ARG A 337 -0.354 20.268 34.337 1.00 0.00 H \nATOM 4959 H ARG A 337 1.845 18.533 32.276 1.00 0.00 H \nATOM 4960 H ARG A 337 2.802 17.932 33.553 1.00 0.00 H \nATOM 4961 H VAL A 338 -2.273 23.961 36.656 1.00 0.00 H \nATOM 4962 H PHE A 339 -2.235 26.372 36.964 1.00 0.00 H \nATOM 4963 H THR A 340 0.386 26.862 37.193 1.00 0.00 H \nATOM 4964 H THR A 340 1.679 26.717 38.851 1.00 0.00 H \nATOM 4965 H GLU A 341 1.147 26.330 34.727 1.00 0.00 H \nATOM 4966 H ALA A 342 0.184 28.364 33.382 1.00 0.00 H \nATOM 4967 H MET A 343 1.343 30.607 34.388 1.00 0.00 H \nATOM 4968 H THR A 344 3.761 29.994 33.345 1.00 0.00 H \nATOM 4969 H THR A 344 6.307 27.504 33.557 1.00 0.00 H \nATOM 4970 H ARG A 345 3.486 30.285 30.713 1.00 0.00 H \nATOM 4971 H ARG A 345 -0.407 30.188 27.895 1.00 0.00 H \nATOM 4972 H ARG A 345 0.763 26.951 28.458 1.00 0.00 H \nATOM 4973 H ARG A 345 -0.526 26.535 29.493 1.00 0.00 H \nATOM 4974 H ARG A 345 -2.108 29.622 29.282 1.00 0.00 H \nATOM 4975 H ARG A 345 -2.168 28.060 29.964 1.00 0.00 H \nATOM 4976 H TYR A 346 3.516 32.887 30.840 1.00 0.00 H \nATOM 4977 H TYR A 346 -3.075 34.718 29.577 1.00 0.00 H \nATOM 4978 H SER A 347 5.903 33.488 30.341 1.00 0.00 H \nATOM 4979 H SER A 347 9.794 36.852 30.041 1.00 0.00 H \nATOM 4980 H ALA A 348 6.559 33.412 32.865 1.00 0.00 H \nATOM 4981 H GLY A 351 9.931 29.916 40.942 1.00 0.00 H \nATOM 4982 H ASP A 352 10.724 28.658 43.144 1.00 0.00 H \nATOM 4983 H GLN A 355 3.270 25.955 46.283 1.00 0.00 H \nATOM 4984 H GLN A 355 5.757 23.998 49.784 1.00 0.00 H \nATOM 4985 H GLN A 355 5.620 22.699 50.880 1.00 0.00 H \nATOM 4986 H GLU A 357 -2.025 25.987 49.472 1.00 0.00 H \nATOM 4987 H TYR A 358 -2.648 24.029 53.402 1.00 0.00 H \nATOM 4988 H TYR A 358 -6.253 21.816 47.623 1.00 0.00 H \nATOM 4989 H ASP A 359 -2.681 25.563 54.765 1.00 0.00 H \nATOM 4990 H LEU A 360 -4.211 28.615 57.052 1.00 0.00 H \nATOM 4991 H GLU A 361 -1.883 29.156 58.608 1.00 0.00 H \nATOM 4992 H LEU A 362 0.030 28.140 57.033 1.00 0.00 H \nATOM 4993 H ILE A 363 1.084 29.917 55.563 1.00 0.00 H \nATOM 4994 H THR A 364 4.186 30.643 52.557 1.00 0.00 H \nATOM 4995 H THR A 364 5.911 30.345 54.661 1.00 0.00 H \nATOM 4996 H SER A 365 4.716 34.895 53.276 1.00 0.00 H \nATOM 4997 H SER A 365 1.767 36.731 51.877 1.00 0.00 H \nATOM 4998 H CYS A 366 6.460 37.235 50.154 1.00 0.00 H \nATOM 4999 H CYS A 366 5.248 41.972 51.288 1.00 0.00 H \nATOM 5000 H SER A 367 8.357 36.368 51.690 1.00 0.00 H \nATOM 5001 H SER A 367 12.280 37.397 52.498 1.00 0.00 H \nATOM 5002 H SER A 368 6.936 36.442 54.118 1.00 0.00 H \nATOM 5003 H SER A 368 7.015 39.554 56.597 1.00 0.00 H \nATOM 5004 H ASN A 369 5.335 35.623 58.209 1.00 0.00 H \nATOM 5005 H ASN A 369 3.012 31.972 59.777 1.00 0.00 H \nATOM 5006 H ASN A 369 4.357 31.859 60.819 1.00 0.00 H \nATOM 5007 H VAL A 370 1.290 34.069 57.916 1.00 0.00 H \nATOM 5008 H SER A 371 0.831 35.168 62.317 1.00 0.00 H \nATOM 5009 H SER A 371 3.325 31.810 64.877 1.00 0.00 H \nATOM 5010 H VAL A 372 0.221 32.173 65.414 1.00 0.00 H \nATOM 5011 H ALA A 373 -1.473 34.998 68.339 1.00 0.00 H \nATOM 5012 H HIS A 374 -0.427 35.035 72.482 1.00 0.00 H \nATOM 5013 H ASP A 375 -3.856 37.637 73.454 1.00 0.00 H \nATOM 5014 H ALA A 376 -2.619 40.885 76.242 1.00 0.00 H \nATOM 5015 H SER A 377 -5.021 39.612 76.822 1.00 0.00 H \nATOM 5016 H SER A 377 -8.134 41.573 77.057 1.00 0.00 H \nATOM 5017 H GLY A 378 -5.025 37.388 76.779 1.00 0.00 H \nATOM 5018 H LYS A 379 -6.739 37.239 75.253 1.00 0.00 H \nATOM 5019 H LYS A 379 -8.363 42.483 71.567 1.00 0.00 H \nATOM 5020 H LYS A 379 -9.835 41.854 72.029 1.00 0.00 H \nATOM 5021 H LYS A 379 -9.342 41.742 70.442 1.00 0.00 H \nATOM 5022 H ARG A 380 -7.833 34.935 71.400 1.00 0.00 H \nATOM 5023 H ARG A 380 -8.009 31.800 67.285 1.00 0.00 H \nATOM 5024 H ARG A 380 -4.913 29.402 68.048 1.00 0.00 H \nATOM 5025 H ARG A 380 -5.782 30.083 69.347 1.00 0.00 H \nATOM 5026 H ARG A 380 -6.871 30.869 65.575 1.00 0.00 H \nATOM 5027 H ARG A 380 -5.556 29.829 65.887 1.00 0.00 H \nATOM 5028 H VAL A 381 -3.869 35.834 69.347 1.00 0.00 H \nATOM 5029 H TYR A 382 -4.373 38.167 65.775 1.00 0.00 H \nATOM 5030 H TYR A 382 -6.845 31.853 63.565 1.00 0.00 H \nATOM 5031 H TYR A 383 -0.405 36.999 63.846 1.00 0.00 H \nATOM 5032 H TYR A 383 5.150 34.566 66.544 1.00 0.00 H \nATOM 5033 H LEU A 384 2.249 40.200 62.486 1.00 0.00 H \nATOM 5034 H THR A 385 4.666 36.798 60.720 1.00 0.00 H \nATOM 5035 H THR A 385 8.065 36.154 63.768 1.00 0.00 H \nATOM 5036 H ARG A 386 8.731 35.820 61.846 1.00 0.00 H \nATOM 5037 H ARG A 386 12.738 36.158 58.575 1.00 0.00 H \nATOM 5038 H ARG A 386 13.408 38.339 55.302 1.00 0.00 H \nATOM 5039 H ARG A 386 12.342 38.931 56.494 1.00 0.00 H \nATOM 5040 H ARG A 386 14.448 36.320 55.589 1.00 0.00 H \nATOM 5041 H ARG A 386 14.162 35.399 56.995 1.00 0.00 H \nATOM 5042 H ASP A 387 10.645 33.511 58.707 1.00 0.00 H \nATOM 5043 H THR A 389 15.580 33.053 60.654 1.00 0.00 H \nATOM 5044 H THR A 389 17.295 30.267 59.563 1.00 0.00 H \nATOM 5045 H THR A 390 16.946 34.802 58.535 1.00 0.00 H \nATOM 5046 H THR A 390 17.453 35.616 55.141 1.00 0.00 H \nATOM 5047 H LEU A 392 18.188 36.828 61.935 1.00 0.00 H \nATOM 5048 H ALA A 393 20.552 36.482 61.009 1.00 0.00 H \nATOM 5049 H ARG A 394 21.137 38.819 59.994 1.00 0.00 H \nATOM 5050 H ARG A 394 21.047 39.800 55.395 1.00 0.00 H \nATOM 5051 H ARG A 394 18.065 41.715 53.577 1.00 0.00 H \nATOM 5052 H ARG A 394 18.344 41.992 55.236 1.00 0.00 H \nATOM 5053 H ARG A 394 19.414 40.265 52.416 1.00 0.00 H \nATOM 5054 H ARG A 394 20.692 39.465 53.212 1.00 0.00 H \nATOM 5055 H ALA A 395 21.232 40.267 62.165 1.00 0.00 H \nATOM 5056 H ALA A 396 23.424 39.451 63.242 1.00 0.00 H \nATOM 5057 H TRP A 397 25.386 40.402 61.667 1.00 0.00 H \nATOM 5058 H TRP A 397 29.420 44.526 57.572 1.00 0.00 H \nATOM 5059 H GLU A 398 24.972 43.055 62.035 1.00 0.00 H \nATOM 5060 H THR A 399 26.310 43.149 64.316 1.00 0.00 H \nATOM 5061 H THR A 399 25.020 42.355 66.103 1.00 0.00 H \nATOM 5062 H ALA A 400 28.682 43.687 64.264 1.00 0.00 H \nATOM 5063 H ARG A 401 28.966 45.433 63.094 1.00 0.00 H \nATOM 5064 H ARG A 401 33.941 45.398 58.586 1.00 0.00 H \nATOM 5065 H ARG A 401 33.744 46.128 61.977 1.00 0.00 H \nATOM 5066 H ARG A 401 35.191 45.317 62.368 1.00 0.00 H \nATOM 5067 H ARG A 401 35.861 44.330 59.095 1.00 0.00 H \nATOM 5068 H ARG A 401 36.410 44.282 60.709 1.00 0.00 H \nATOM 5069 H HIS A 402 29.996 49.418 61.655 1.00 0.00 H \nATOM 5070 H THR A 403 25.783 49.872 60.165 1.00 0.00 H \nATOM 5071 H THR A 403 23.684 49.008 58.176 1.00 0.00 H \nATOM 5072 H VAL A 405 22.804 50.067 55.978 1.00 0.00 H \nATOM 5073 H ASN A 406 19.826 50.764 58.965 1.00 0.00 H \nATOM 5074 H ASN A 406 20.595 52.571 60.668 1.00 0.00 H \nATOM 5075 H ASN A 406 22.198 52.808 61.198 1.00 0.00 H \nATOM 5076 H SER A 407 20.294 46.748 59.391 1.00 0.00 H \nATOM 5077 H SER A 407 19.960 43.189 59.337 1.00 0.00 H \nATOM 5078 H TRP A 408 19.501 45.874 61.954 1.00 0.00 H \nATOM 5079 H TRP A 408 21.759 49.098 64.570 1.00 0.00 H \nATOM 5080 H LEU A 409 17.775 47.797 62.978 1.00 0.00 H \nATOM 5081 H GLY A 410 15.836 48.077 61.335 1.00 0.00 H \nATOM 5082 H ASN A 411 14.776 45.626 61.554 1.00 0.00 H \nATOM 5083 H ASN A 411 15.980 42.006 59.486 1.00 0.00 H \nATOM 5084 H ASN A 411 16.435 42.524 61.045 1.00 0.00 H \nATOM 5085 H ILE A 412 13.718 45.756 63.993 1.00 0.00 H \nATOM 5086 H ILE A 413 11.767 47.373 63.810 1.00 0.00 H \nATOM 5087 H MET A 414 10.076 46.242 61.977 1.00 0.00 H \nATOM 5088 H TYR A 415 9.498 44.033 63.159 1.00 0.00 H \nATOM 5089 H TYR A 415 9.535 40.479 57.103 1.00 0.00 H \nATOM 5090 H ALA A 416 7.599 44.372 65.001 1.00 0.00 H \nATOM 5091 H THR A 418 7.124 40.415 66.963 1.00 0.00 H \nATOM 5092 H THR A 418 10.031 38.808 65.631 1.00 0.00 H \nATOM 5093 H LEU A 419 7.765 36.083 68.484 1.00 0.00 H \nATOM 5094 H TRP A 420 10.500 35.950 68.072 1.00 0.00 H \nATOM 5095 H TRP A 420 9.492 35.955 64.119 1.00 0.00 H \nATOM 5096 H ALA A 421 11.186 38.613 67.554 1.00 0.00 H \nATOM 5097 H ARG A 422 10.844 39.851 69.832 1.00 0.00 H \nATOM 5098 H ARG A 422 7.680 41.948 73.450 1.00 0.00 H \nATOM 5099 H ARG A 422 5.831 39.147 72.511 1.00 0.00 H \nATOM 5100 H ARG A 422 4.867 39.155 73.917 1.00 0.00 H \nATOM 5101 H ARG A 422 6.414 41.935 75.333 1.00 0.00 H \nATOM 5102 H ARG A 422 5.202 40.753 75.536 1.00 0.00 H \nATOM 5103 H MET A 423 12.072 38.549 71.837 1.00 0.00 H \nATOM 5104 H ILE A 424 14.652 38.699 70.982 1.00 0.00 H \nATOM 5105 H LEU A 425 15.793 40.343 69.176 1.00 0.00 H \nATOM 5106 H MET A 426 14.946 42.725 70.456 1.00 0.00 H \nATOM 5107 H THR A 427 16.041 42.535 73.000 1.00 0.00 H \nATOM 5108 H THR A 427 15.563 41.506 74.364 1.00 0.00 H \nATOM 5109 H HIS A 428 18.755 42.225 72.463 1.00 0.00 H \nATOM 5110 H PHE A 429 19.479 44.600 70.874 1.00 0.00 H \nATOM 5111 H PHE A 430 18.765 46.593 72.560 1.00 0.00 H \nATOM 5112 H SER A 431 20.410 46.322 74.438 1.00 0.00 H \nATOM 5113 H SER A 431 23.577 44.281 76.756 1.00 0.00 H \nATOM 5114 H ILE A 432 22.819 46.896 73.399 1.00 0.00 H \nATOM 5115 H LEU A 433 22.406 49.522 72.630 1.00 0.00 H \nATOM 5116 H LEU A 434 22.166 50.683 75.205 1.00 0.00 H \nATOM 5117 H ALA A 435 24.623 50.276 76.480 1.00 0.00 H \nATOM 5118 H GLN A 436 26.033 51.997 74.708 1.00 0.00 H \nATOM 5119 H GLN A 436 30.961 50.698 73.742 1.00 0.00 H \nATOM 5120 H GLN A 436 29.393 50.028 73.758 1.00 0.00 H \nATOM 5121 H GLU A 437 25.494 54.145 75.740 1.00 0.00 H \nATOM 5122 H GLN A 438 23.746 55.122 73.608 1.00 0.00 H \nATOM 5123 H GLN A 438 28.073 56.193 68.585 1.00 0.00 H \nATOM 5124 H GLN A 438 27.776 57.178 69.945 1.00 0.00 H \nATOM 5125 H LEU A 439 21.741 56.367 73.761 1.00 0.00 H \nATOM 5126 H GLU A 440 20.244 58.510 72.598 1.00 0.00 H \nATOM 5127 H LYS A 441 20.662 58.027 69.951 1.00 0.00 H \nATOM 5128 H LYS A 441 26.717 56.847 64.457 1.00 0.00 H \nATOM 5129 H LYS A 441 25.973 55.840 65.555 1.00 0.00 H \nATOM 5130 H LYS A 441 26.913 57.106 66.090 1.00 0.00 H \nATOM 5131 H ALA A 442 19.864 60.125 66.087 1.00 0.00 H \nATOM 5132 H LEU A 443 18.032 56.469 64.029 1.00 0.00 H \nATOM 5133 H ASP A 444 20.378 55.215 60.418 1.00 0.00 H \nATOM 5134 H CYS A 445 16.559 53.959 58.237 1.00 0.00 H \nATOM 5135 H CYS A 445 13.985 51.474 61.052 1.00 0.00 H \nATOM 5136 H GLN A 446 15.702 49.945 56.783 1.00 0.00 H \nATOM 5137 H GLN A 446 17.665 50.938 50.530 1.00 0.00 H \nATOM 5138 H GLN A 446 17.193 52.224 51.545 1.00 0.00 H \nATOM 5139 H ILE A 447 12.126 51.461 54.587 1.00 0.00 H \nATOM 5140 H TYR A 448 10.204 48.009 53.805 1.00 0.00 H \nATOM 5141 H TYR A 448 3.136 46.454 54.583 1.00 0.00 H \nATOM 5142 H GLY A 449 11.953 48.909 52.048 1.00 0.00 H \nATOM 5143 H ALA A 450 11.167 51.730 51.517 1.00 0.00 H \nATOM 5144 H CYS A 451 14.086 55.243 51.944 1.00 0.00 H \nATOM 5145 H CYS A 451 18.669 56.058 54.181 1.00 0.00 H \nATOM 5146 H TYR A 452 14.784 54.799 56.372 1.00 0.00 H \nATOM 5147 H TYR A 452 8.012 54.562 53.851 1.00 0.00 H \nATOM 5148 H SER A 453 14.136 58.538 58.640 1.00 0.00 H \nATOM 5149 H SER A 453 17.371 60.905 60.867 1.00 0.00 H \nATOM 5150 H ILE A 454 16.170 56.644 61.943 1.00 0.00 H \nATOM 5151 H GLU A 455 13.903 57.855 65.499 1.00 0.00 H \nATOM 5152 H LEU A 457 15.283 56.240 70.499 1.00 0.00 H \nATOM 5153 H ASP A 458 12.732 56.316 69.594 1.00 0.00 H \nATOM 5154 H LEU A 459 11.644 54.097 70.024 1.00 0.00 H \nATOM 5155 H GLN A 461 7.254 54.572 71.157 1.00 0.00 H \nATOM 5156 H GLN A 461 8.617 59.203 71.771 1.00 0.00 H \nATOM 5157 H GLN A 461 8.360 57.656 72.441 1.00 0.00 H \nATOM 5158 H ILE A 462 7.031 54.315 68.483 1.00 0.00 H \nATOM 5159 H ILE A 463 6.526 51.595 68.348 1.00 0.00 H \nATOM 5160 H GLU A 464 4.066 51.459 69.633 1.00 0.00 H \nATOM 5161 H ARG A 465 2.418 52.919 68.049 1.00 0.00 H \nATOM 5162 H ARG A 465 -0.755 56.014 64.913 1.00 0.00 H \nATOM 5163 H ARG A 465 2.098 58.799 64.792 1.00 0.00 H \nATOM 5164 H ARG A 465 1.881 57.886 66.216 1.00 0.00 H \nATOM 5165 H ARG A 465 0.770 58.419 62.970 1.00 0.00 H \nATOM 5166 H ARG A 465 -0.443 57.222 63.026 1.00 0.00 H \nATOM 5167 H LEU A 466 2.629 51.406 65.562 1.00 0.00 H \nATOM 5168 H HIS A 467 1.918 48.978 66.309 1.00 0.00 H \nATOM 5169 H GLY A 468 0.205 49.025 67.674 1.00 0.00 H \nATOM 5170 H LEU A 469 -2.014 48.564 71.397 1.00 0.00 H \nATOM 5171 H SER A 470 -1.704 45.692 71.578 1.00 0.00 H \nATOM 5172 H SER A 470 -2.448 43.057 69.662 1.00 0.00 H \nATOM 5173 H ALA A 471 0.923 45.134 70.941 1.00 0.00 H \nATOM 5174 H PHE A 472 2.355 44.947 73.108 1.00 0.00 H \nATOM 5175 H SER A 473 2.027 42.696 74.111 1.00 0.00 H \nATOM 5176 H SER A 473 -1.145 42.404 76.223 1.00 0.00 H \nATOM 5177 H LEU A 474 2.668 40.687 73.572 1.00 0.00 H \nATOM 5178 H HIS A 475 1.130 36.327 73.818 1.00 0.00 H \nATOM 5179 H SER A 476 3.123 32.845 75.448 1.00 0.00 H \nATOM 5180 H SER A 476 -0.594 31.121 76.600 1.00 0.00 H \nATOM 5181 H TYR A 477 3.743 31.926 72.843 1.00 0.00 H \nATOM 5182 H TYR A 477 5.524 38.206 70.618 1.00 0.00 H \nATOM 5183 H SER A 478 2.819 30.819 68.447 1.00 0.00 H \nATOM 5184 H SER A 478 2.644 29.236 65.337 1.00 0.00 H \nATOM 5185 H GLY A 480 3.513 25.867 66.249 1.00 0.00 H \nATOM 5186 H GLU A 481 4.849 28.164 65.994 1.00 0.00 H \nATOM 5187 H ILE A 482 6.395 28.434 68.129 1.00 0.00 H \nATOM 5188 H ASN A 483 7.990 26.192 67.569 1.00 0.00 H \nATOM 5189 H ASN A 483 7.538 22.267 65.944 1.00 0.00 H \nATOM 5190 H ASN A 483 7.394 21.529 67.474 1.00 0.00 H \nATOM 5191 H ARG A 484 9.429 27.047 65.364 1.00 0.00 H \nATOM 5192 H ARG A 484 9.621 30.826 62.504 1.00 0.00 H \nATOM 5193 H ARG A 484 7.754 31.114 58.985 1.00 0.00 H \nATOM 5194 H ARG A 484 9.009 29.976 59.175 1.00 0.00 H \nATOM 5195 H ARG A 484 7.153 32.463 60.734 1.00 0.00 H \nATOM 5196 H ARG A 484 7.956 32.336 62.233 1.00 0.00 H \nATOM 5197 H VAL A 485 10.884 29.094 66.286 1.00 0.00 H \nATOM 5198 H ALA A 486 12.407 27.859 68.140 1.00 0.00 H \nATOM 5199 H SER A 487 13.884 26.117 66.473 1.00 0.00 H \nATOM 5200 H SER A 487 13.520 23.719 64.018 1.00 0.00 H \nATOM 5201 H CYS A 488 15.313 27.919 65.037 1.00 0.00 H \nATOM 5202 H CYS A 488 16.635 32.564 63.502 1.00 0.00 H \nATOM 5203 H LEU A 489 16.898 29.057 67.006 1.00 0.00 H \nATOM 5204 H ARG A 490 18.594 26.970 67.630 1.00 0.00 H \nATOM 5205 H ARG A 490 16.945 22.195 70.001 1.00 0.00 H \nATOM 5206 H ARG A 490 20.064 23.268 71.125 1.00 0.00 H \nATOM 5207 H ARG A 490 19.703 22.995 72.769 1.00 0.00 H \nATOM 5208 H ARG A 490 16.475 21.838 72.183 1.00 0.00 H \nATOM 5209 H ARG A 490 17.647 22.177 73.375 1.00 0.00 H \nATOM 5210 H LYS A 491 19.976 26.525 65.481 1.00 0.00 H \nATOM 5211 H LYS A 491 17.865 29.360 59.902 1.00 0.00 H \nATOM 5212 H LYS A 491 17.899 27.706 59.714 1.00 0.00 H \nATOM 5213 H LYS A 491 18.953 28.665 58.850 1.00 0.00 H \nATOM 5214 H LEU A 492 21.471 28.921 65.010 1.00 0.00 H \nATOM 5215 H GLY A 493 22.856 28.613 67.043 1.00 0.00 H \nATOM 5216 H VAL A 494 22.067 30.184 68.984 1.00 0.00 H \nATOM 5217 H LEU A 497 16.430 30.504 76.134 1.00 0.00 H \nATOM 5218 H ARG A 498 16.933 31.037 79.035 1.00 0.00 H \nATOM 5219 H ARG A 498 21.195 28.265 81.139 1.00 0.00 H \nATOM 5220 H ARG A 498 20.171 25.887 78.857 1.00 0.00 H \nATOM 5221 H ARG A 498 21.500 26.531 79.709 1.00 0.00 H \nATOM 5222 H ARG A 498 18.077 26.766 79.153 1.00 0.00 H \nATOM 5223 H ARG A 498 17.838 28.069 80.227 1.00 0.00 H \nATOM 5224 H VAL A 499 19.174 32.748 78.873 1.00 0.00 H \nATOM 5225 H TRP A 500 18.468 34.947 77.463 1.00 0.00 H \nATOM 5226 H TRP A 500 19.667 34.402 72.954 1.00 0.00 H \nATOM 5227 H ARG A 501 16.542 35.900 79.133 1.00 0.00 H \nATOM 5228 H ARG A 501 14.565 34.502 83.160 1.00 0.00 H \nATOM 5229 H ARG A 501 11.943 31.979 81.525 1.00 0.00 H \nATOM 5230 H ARG A 501 11.598 33.649 81.544 1.00 0.00 H \nATOM 5231 H ARG A 501 13.902 31.199 82.424 1.00 0.00 H \nATOM 5232 H ARG A 501 15.020 32.286 83.113 1.00 0.00 H \nATOM 5233 H HIS A 502 17.754 36.692 81.311 1.00 0.00 H \nATOM 5234 H ARG A 503 19.390 38.657 80.332 1.00 0.00 H \nATOM 5235 H ARG A 503 23.705 38.107 78.419 1.00 0.00 H \nATOM 5236 H ARG A 503 25.417 36.613 75.825 1.00 0.00 H \nATOM 5237 H ARG A 503 25.350 36.842 77.514 1.00 0.00 H \nATOM 5238 H ARG A 503 23.814 37.585 74.467 1.00 0.00 H \nATOM 5239 H ARG A 503 22.573 38.526 75.161 1.00 0.00 H \nATOM 5240 H ALA A 504 17.396 40.368 79.644 1.00 0.00 H \nATOM 5241 H ARG A 505 16.312 41.236 81.899 1.00 0.00 H \nATOM 5242 H ARG A 505 13.064 38.870 84.415 1.00 0.00 H \nATOM 5243 H ARG A 505 14.768 38.212 87.383 1.00 0.00 H \nATOM 5244 H ARG A 505 13.703 36.970 87.862 1.00 0.00 H \nATOM 5245 H ARG A 505 11.664 37.220 85.049 1.00 0.00 H \nATOM 5246 H ARG A 505 11.921 36.401 86.522 1.00 0.00 H \nATOM 5247 H SER A 506 18.320 42.682 82.951 1.00 0.00 H \nATOM 5248 H SER A 506 22.352 44.539 82.773 1.00 0.00 H \nATOM 5249 H VAL A 507 18.757 44.598 80.991 1.00 0.00 H \nATOM 5250 H ARG A 508 16.224 45.809 81.164 1.00 0.00 H \nATOM 5251 H ARG A 508 9.570 46.455 82.946 1.00 0.00 H \nATOM 5252 H ARG A 508 12.235 46.233 85.174 1.00 0.00 H \nATOM 5253 H ARG A 508 11.333 46.786 86.511 1.00 0.00 H \nATOM 5254 H ARG A 508 8.374 47.195 84.746 1.00 0.00 H \nATOM 5255 H ARG A 508 9.132 47.334 86.267 1.00 0.00 H \nATOM 5256 H ALA A 509 16.169 46.870 83.778 1.00 0.00 H \nATOM 5257 H ARG A 510 18.218 48.797 83.392 1.00 0.00 H \nATOM 5258 H ARG A 510 21.682 47.268 81.542 1.00 0.00 H \nATOM 5259 H ARG A 510 24.418 50.134 81.117 1.00 0.00 H \nATOM 5260 H ARG A 510 23.406 50.146 82.489 1.00 0.00 H \nATOM 5261 H ARG A 510 24.240 48.483 79.573 1.00 0.00 H \nATOM 5262 H ARG A 510 23.092 47.237 79.771 1.00 0.00 H \nATOM 5263 H LEU A 511 16.972 50.479 81.648 1.00 0.00 H \nATOM 5264 H LEU A 512 14.862 51.476 82.958 1.00 0.00 H \nATOM 5265 H SER A 513 16.095 53.069 84.745 1.00 0.00 H \nATOM 5266 H SER A 513 18.406 52.952 87.443 1.00 0.00 H \nATOM 5267 H GLN A 514 16.697 55.107 83.173 1.00 0.00 H \nATOM 5268 H GLN A 514 20.823 55.038 80.939 1.00 0.00 H \nATOM 5269 H GLN A 514 19.369 55.364 81.768 1.00 0.00 H \nATOM 5270 H GLY A 515 14.650 56.698 83.126 1.00 0.00 H \nATOM 5271 H GLY A 516 11.587 59.919 82.156 1.00 0.00 H \nATOM 5272 H ARG A 517 11.873 59.953 77.528 1.00 0.00 H \nATOM 5273 H ARG A 517 13.301 61.330 74.382 1.00 0.00 H \nATOM 5274 H ARG A 517 11.617 60.073 70.996 1.00 0.00 H \nATOM 5275 H ARG A 517 10.679 60.175 72.416 1.00 0.00 H \nATOM 5276 H ARG A 517 13.827 60.694 71.029 1.00 0.00 H \nATOM 5277 H ARG A 517 14.533 61.259 72.475 1.00 0.00 H \nATOM 5278 H ALA A 518 13.672 57.730 77.784 1.00 0.00 H \nATOM 5279 H ALA A 519 12.704 56.471 79.847 1.00 0.00 H \nATOM 5280 H THR A 520 10.404 55.635 79.006 1.00 0.00 H \nATOM 5281 H THR A 520 7.527 56.913 77.641 1.00 0.00 H \nATOM 5282 H CYS A 521 11.140 53.866 77.186 1.00 0.00 H \nATOM 5283 H CYS A 521 13.803 53.513 73.944 1.00 0.00 H \nATOM 5284 H GLY A 522 12.180 51.870 78.820 1.00 0.00 H \nATOM 5285 H LYS A 523 9.990 51.059 80.136 1.00 0.00 H \nATOM 5286 H LYS A 523 2.587 52.321 82.356 1.00 0.00 H \nATOM 5287 H LYS A 523 3.543 51.507 81.262 1.00 0.00 H \nATOM 5288 H LYS A 523 3.590 53.170 81.333 1.00 0.00 H \nATOM 5289 H TYR A 524 8.006 50.132 78.149 1.00 0.00 H \nATOM 5290 H TYR A 524 1.569 52.985 78.344 1.00 0.00 H \nATOM 5291 H LEU A 525 9.201 48.645 76.416 1.00 0.00 H \nATOM 5292 H PHE A 526 10.038 46.536 77.967 1.00 0.00 H \nATOM 5293 H ASN A 527 8.183 44.937 78.593 1.00 0.00 H \nATOM 5294 H ASN A 527 6.701 44.389 82.534 1.00 0.00 H \nATOM 5295 H ASN A 527 5.143 44.394 83.227 1.00 0.00 H \nATOM 5296 H TRP A 528 8.051 42.327 78.475 1.00 0.00 H \nATOM 5297 H TRP A 528 11.247 42.361 75.487 1.00 0.00 H \nATOM 5298 H ALA A 529 9.937 41.392 80.147 1.00 0.00 H \nATOM 5299 H VAL A 530 9.357 41.275 82.703 1.00 0.00 H \nATOM 5300 H LYS A 531 9.102 39.366 86.936 1.00 0.00 H \nATOM 5301 H LYS A 531 10.125 36.430 92.943 1.00 0.00 H \nATOM 5302 H LYS A 531 10.381 35.516 91.574 1.00 0.00 H \nATOM 5303 H LYS A 531 8.880 35.531 92.297 1.00 0.00 H \nATOM 5304 H THR A 532 7.058 40.447 87.880 1.00 0.00 H \nATOM 5305 H THR A 532 6.144 40.071 90.159 1.00 0.00 H \nATOM 5306 H LYS A 533 3.642 40.823 85.836 1.00 0.00 H \nATOM 5307 H LYS A 533 6.108 37.293 82.103 1.00 0.00 H \nATOM 5308 H LYS A 533 4.948 37.278 83.299 1.00 0.00 H \nATOM 5309 H LYS A 533 6.368 38.120 83.526 1.00 0.00 H \nATOM 5310 H LEU A 534 4.343 44.870 83.662 1.00 0.00 H \nATOM 5311 H LYS A 535 1.476 48.183 84.898 1.00 0.00 H \nATOM 5312 H LYS A 535 -2.387 53.997 84.917 1.00 0.00 H \nATOM 5313 H LYS A 535 -0.755 54.204 85.182 1.00 0.00 H \nATOM 5314 H LYS A 535 -1.664 53.300 86.246 1.00 0.00 H \nATOM 5315 H LEU A 536 1.324 49.481 82.196 1.00 0.00 H \nATOM 5316 H THR A 537 0.601 51.528 79.286 1.00 0.00 H \nATOM 5317 H THR A 537 -0.669 54.168 79.549 1.00 0.00 H \nATOM 5318 H ILE A 539 -0.214 55.750 74.082 1.00 0.00 H \nATOM 5319 H ALA A 541 3.408 60.850 74.237 1.00 0.00 H \nATOM 5320 H ALA A 542 2.705 59.115 72.038 1.00 0.00 H \nATOM 5321 H SER A 543 0.435 59.836 70.037 1.00 0.00 H \nATOM 5322 H SER A 543 -1.688 62.525 70.120 1.00 0.00 H \nATOM 5323 H GLN A 544 2.147 61.760 68.905 1.00 0.00 H \nATOM 5324 H GLN A 544 5.736 64.167 69.449 1.00 0.00 H \nATOM 5325 H GLN A 544 6.312 65.270 70.615 1.00 0.00 H \nATOM 5326 H LEU A 545 3.826 60.900 67.036 1.00 0.00 H \nATOM 5327 H ASP A 546 5.242 61.889 62.849 1.00 0.00 H \nATOM 5328 H LEU A 547 2.498 59.313 61.471 1.00 0.00 H \nATOM 5329 H SER A 548 2.619 59.953 58.683 1.00 0.00 H \nATOM 5330 H SER A 548 1.480 62.378 56.406 1.00 0.00 H \nATOM 5331 H GLY A 549 2.036 57.435 54.984 1.00 0.00 H \nATOM 5332 H TRP A 550 3.954 56.434 56.102 1.00 0.00 H \nATOM 5333 H TRP A 550 7.803 57.685 59.173 1.00 0.00 H \nATOM 5334 H PHE A 551 2.890 53.934 55.393 1.00 0.00 H \nATOM 5335 H VAL A 552 3.539 53.449 52.214 1.00 0.00 H \nATOM 5336 H ALA A 553 4.137 53.309 50.189 1.00 0.00 H \nATOM 5337 H GLY A 554 5.145 50.510 46.911 1.00 0.00 H \nATOM 5338 H TYR A 555 9.559 50.435 48.144 1.00 0.00 H \nATOM 5339 H TYR A 555 5.520 56.737 47.040 1.00 0.00 H \nATOM 5340 H SER A 556 10.830 49.215 46.867 1.00 0.00 H \nATOM 5341 H SER A 556 13.669 45.766 46.724 1.00 0.00 H \nATOM 5342 H GLY A 557 15.372 49.640 46.612 1.00 0.00 H \nATOM 5343 H GLY A 558 14.060 51.665 45.391 1.00 0.00 H \nATOM 5344 H ASP A 559 16.049 53.538 45.711 1.00 0.00 H \nATOM 5345 H ILE A 560 14.688 55.195 47.654 1.00 0.00 H \nATOM 5346 H TYR A 561 13.856 59.175 49.514 1.00 0.00 H \nATOM 5347 H TYR A 561 16.912 62.342 57.025 1.00 0.00 H \nATOM 5348 H HIS A 562 13.408 58.713 53.877 1.00 0.00 H \nATOM 5349 H SER A 563 11.850 62.511 55.272 1.00 0.00 H \nATOM 5350 H SER A 563 10.288 61.880 59.170 1.00 0.00 H \nTER 5351 SER A 563\nENDMDL\nCONECT 2317 2378\nCONECT 2378 2317\nEND\n", + "type": "blob", + "binary": false + } + ], + "kwargs": { + "ext": "pdb", + "defaultRepresentation": true + }, + "type": "call_method" + } + ] + } + }, + "a5a64350a6974d84b4346b77f6bd86d0": { + "model_module": "nglview-js-widgets", + "model_name": "NGLModel", + "state": { + "_view_name": "NGLView", + "_scene_rotation": {}, + "_ngl_view_id": [], + "_synced_model_ids": [], + "_camera_orientation": [], + "frame": 0, + "_view_module": "nglview-js-widgets", + "_ibtn_fullscreen": "IPY_MODEL_209b7293a2e446e78e00571d8774e12b", + "_camera_str": "orthographic", + "_ngl_serialize": false, + "picked": {}, + "_model_module": "nglview-js-widgets", + "_igui": null, + "_iplayer": "IPY_MODEL_5ff8f647c58e42cd81008eb6fd9a71bc", + "layout": "IPY_MODEL_d374d1fde21c45c4b835a664ba643810", + "_view_width": "", + "_ngl_coordinate_resource": {}, + "_view_module_version": "2.7.5", + "_player_dict": {}, + "_synced_repr_model_ids": [], + "_ngl_version": "", + "max_frame": 0, + "_dom_classes": [], + "_model_name": "NGLModel", + "_scene_position": {}, + "_model_module_version": "2.7.5", + "gui_style": null, + "background": "white", + "_view_count": null, + "_view_height": "", + "_ngl_repr_dict": {}, + "_ngl_original_stage_parameters": {}, + "_ngl_full_stage_parameters": {}, + "n_components": 0, + "_ngl_color_dict": {}, + "_gui_theme": null, + "_ngl_msg_archive": [ + { + "reconstruc_color_scheme": false, + "methodName": "loadFile", + "target": "Stage", + "args": [ + { + "data": "MODEL 0\nATOM 1 N SER A 1 15.324 37.268 22.693 1.00 0.00 N \nATOM 2 CA SER A 1 15.651 38.380 23.628 1.00 0.00 C \nATOM 3 C SER A 1 16.340 37.889 24.890 1.00 0.00 C \nATOM 4 O SER A 1 15.662 37.449 25.835 1.00 0.00 O \nATOM 5 CB SER A 1 14.375 39.133 24.030 1.00 0.00 C \nATOM 6 OG SER A 1 14.718 40.337 24.714 1.00 0.00 O \nATOM 7 N MET A 2 17.676 37.947 24.893 1.00 0.00 N \nATOM 8 CA MET A 2 18.467 37.535 26.056 1.00 0.00 C \nATOM 9 C MET A 2 18.329 38.628 27.108 1.00 0.00 C \nATOM 10 O MET A 2 18.402 39.819 26.772 1.00 0.00 O \nATOM 11 CB MET A 2 19.951 37.383 25.685 1.00 0.00 C \nATOM 12 CG MET A 2 20.246 36.266 24.686 1.00 0.00 C \nATOM 13 SD MET A 2 19.701 34.709 25.344 1.00 0.00 S \nATOM 14 CE MET A 2 20.967 34.406 26.652 1.00 0.00 C \nATOM 15 N SER A 3 18.132 38.228 28.363 1.00 0.00 N \nATOM 16 CA SER A 3 17.986 39.184 29.453 1.00 0.00 C \nATOM 17 C SER A 3 19.224 40.075 29.525 1.00 0.00 C \nATOM 18 O SER A 3 19.119 41.279 29.800 1.00 0.00 O \nATOM 19 CB SER A 3 17.758 38.436 30.779 1.00 0.00 C \nATOM 20 OG SER A 3 18.692 37.371 30.959 1.00 0.00 O \nATOM 21 N TYR A 4 20.387 39.483 29.246 1.00 0.00 N \nATOM 22 CA TYR A 4 21.667 40.201 29.244 1.00 0.00 C \nATOM 23 C TYR A 4 22.617 39.643 28.188 1.00 0.00 C \nATOM 24 O TYR A 4 22.530 38.475 27.821 1.00 0.00 O \nATOM 25 CB TYR A 4 22.400 40.032 30.583 1.00 0.00 C \nATOM 26 CG TYR A 4 21.694 40.566 31.800 1.00 0.00 C \nATOM 27 CD1 TYR A 4 21.799 41.911 32.153 1.00 0.00 C \nATOM 28 CD2 TYR A 4 20.910 39.728 32.597 1.00 0.00 C \nATOM 29 CE1 TYR A 4 21.139 42.410 33.274 1.00 0.00 C \nATOM 30 CE2 TYR A 4 20.243 40.227 33.726 1.00 0.00 C \nATOM 31 CZ TYR A 4 20.366 41.566 34.049 1.00 0.00 C \nATOM 32 OH TYR A 4 19.710 42.075 35.136 1.00 0.00 O \nATOM 33 N THR A 5 23.526 40.486 27.719 1.00 0.00 N \nATOM 34 CA THR A 5 24.591 40.084 26.800 1.00 0.00 C \nATOM 35 C THR A 5 25.816 40.634 27.541 1.00 0.00 C \nATOM 36 O THR A 5 25.823 41.802 27.951 1.00 0.00 O \nATOM 37 CB THR A 5 24.494 40.753 25.418 1.00 0.00 C \nATOM 38 OG1 THR A 5 24.368 42.164 25.584 1.00 0.00 O \nATOM 39 CG2 THR A 5 23.312 40.227 24.654 1.00 0.00 C \nATOM 40 N TRP A 6 26.834 39.802 27.736 1.00 0.00 N \nATOM 41 CA TRP A 6 28.022 40.216 28.478 1.00 0.00 C \nATOM 42 C TRP A 6 29.258 40.373 27.601 1.00 0.00 C \nATOM 43 O TRP A 6 29.378 39.696 26.594 1.00 0.00 O \nATOM 44 CB TRP A 6 28.299 39.201 29.583 1.00 0.00 C \nATOM 45 CG TRP A 6 27.121 38.979 30.493 1.00 0.00 C \nATOM 46 CD1 TRP A 6 26.265 37.906 30.498 1.00 0.00 C \nATOM 47 CD2 TRP A 6 26.661 39.861 31.523 1.00 0.00 C \nATOM 48 NE1 TRP A 6 25.303 38.067 31.476 1.00 0.00 N \nATOM 49 CE2 TRP A 6 25.525 39.261 32.119 1.00 0.00 C \nATOM 50 CE3 TRP A 6 27.101 41.103 32.006 1.00 0.00 C \nATOM 51 CZ2 TRP A 6 24.827 39.858 33.165 1.00 0.00 C \nATOM 52 CZ3 TRP A 6 26.405 41.696 33.051 1.00 0.00 C \nATOM 53 CH2 TRP A 6 25.281 41.073 33.618 1.00 0.00 C \nATOM 54 N THR A 7 30.167 41.273 27.974 1.00 0.00 N \nATOM 55 CA THR A 7 31.389 41.462 27.188 1.00 0.00 C \nATOM 56 C THR A 7 32.529 40.626 27.765 1.00 0.00 C \nATOM 57 O THR A 7 33.474 40.291 27.063 1.00 0.00 O \nATOM 58 CB THR A 7 31.867 42.927 27.175 1.00 0.00 C \nATOM 59 OG1 THR A 7 32.096 43.360 28.516 1.00 0.00 O \nATOM 60 CG2 THR A 7 30.837 43.833 26.520 1.00 0.00 C \nATOM 61 N GLY A 8 32.437 40.286 29.043 1.00 0.00 N \nATOM 62 CA GLY A 8 33.501 39.518 29.660 1.00 0.00 C \nATOM 63 C GLY A 8 34.160 40.354 30.740 1.00 0.00 C \nATOM 64 O GLY A 8 34.856 39.832 31.600 1.00 0.00 O \nATOM 65 N ALA A 9 33.952 41.666 30.689 1.00 0.00 N \nATOM 66 CA ALA A 9 34.506 42.549 31.705 1.00 0.00 C \nATOM 67 C ALA A 9 33.832 42.157 33.020 1.00 0.00 C \nATOM 68 O ALA A 9 32.645 41.824 33.047 1.00 0.00 O \nATOM 69 CB ALA A 9 34.201 43.992 31.373 1.00 0.00 C \nATOM 70 N LEU A 10 34.590 42.203 34.106 1.00 0.00 N \nATOM 71 CA LEU A 10 34.068 41.822 35.412 1.00 0.00 C \nATOM 72 C LEU A 10 33.234 42.901 36.104 1.00 0.00 C \nATOM 73 O LEU A 10 33.382 44.089 35.839 1.00 0.00 O \nATOM 74 CB LEU A 10 35.226 41.428 36.341 1.00 0.00 C \nATOM 75 CG LEU A 10 36.135 40.284 35.885 1.00 0.00 C \nATOM 76 CD1 LEU A 10 37.324 40.165 36.832 1.00 0.00 C \nATOM 77 CD2 LEU A 10 35.340 38.984 35.834 1.00 0.00 C \nATOM 78 N ILE A 11 32.352 42.454 36.994 1.00 0.00 N \nATOM 79 CA ILE A 11 31.521 43.343 37.785 1.00 0.00 C \nATOM 80 C ILE A 11 32.437 43.578 38.975 1.00 0.00 C \nATOM 81 O ILE A 11 32.647 42.698 39.808 1.00 0.00 O \nATOM 82 CB ILE A 11 30.227 42.644 38.225 1.00 0.00 C \nATOM 83 CG1 ILE A 11 29.373 42.330 36.990 1.00 0.00 C \nATOM 84 CG2 ILE A 11 29.486 43.511 39.216 1.00 0.00 C \nATOM 85 CD1 ILE A 11 28.181 41.424 37.266 1.00 0.00 C \nATOM 86 N THR A 12 33.000 44.770 39.030 1.00 0.00 N \nATOM 87 CA THR A 12 33.962 45.116 40.058 1.00 0.00 C \nATOM 88 C THR A 12 33.421 45.785 41.304 1.00 0.00 C \nATOM 89 O THR A 12 32.416 46.496 41.262 1.00 0.00 O \nATOM 90 CB THR A 12 35.007 46.030 39.467 1.00 0.00 C \nATOM 91 OG1 THR A 12 34.350 47.186 38.933 1.00 0.00 O \nATOM 92 CG2 THR A 12 35.763 45.313 38.352 1.00 0.00 C \nATOM 93 N PRO A 13 34.098 45.562 42.441 1.00 0.00 N \nATOM 94 CA PRO A 13 33.675 46.162 43.707 1.00 0.00 C \nATOM 95 C PRO A 13 34.058 47.636 43.694 1.00 0.00 C \nATOM 96 O PRO A 13 34.976 48.032 42.976 1.00 0.00 O \nATOM 97 CB PRO A 13 34.466 45.364 44.744 1.00 0.00 C \nATOM 98 CG PRO A 13 35.744 45.042 44.008 1.00 0.00 C \nATOM 99 CD PRO A 13 35.238 44.644 42.639 1.00 0.00 C \nATOM 100 N CYS A 14 33.363 48.458 44.469 1.00 0.00 N \nATOM 101 CA CYS A 14 33.711 49.872 44.492 1.00 0.00 C \nATOM 102 C CYS A 14 34.445 50.217 45.774 1.00 0.00 C \nATOM 103 O CYS A 14 34.518 51.385 46.164 1.00 0.00 O \nATOM 104 CB CYS A 14 32.470 50.748 44.365 1.00 0.00 C \nATOM 105 SG CYS A 14 32.885 52.457 43.973 1.00 0.00 S \nATOM 106 N ALA A 15 34.990 49.187 46.414 1.00 0.00 N \nATOM 107 CA ALA A 15 35.731 49.319 47.665 1.00 0.00 C \nATOM 108 C ALA A 15 35.921 47.928 48.260 1.00 0.00 C \nATOM 109 O ALA A 15 35.303 46.960 47.809 1.00 0.00 O \nATOM 110 CB ALA A 15 34.966 50.208 48.649 1.00 0.00 C \nATOM 111 N ALA A 16 36.770 47.829 49.277 1.00 0.00 N \nATOM 112 CA ALA A 16 37.039 46.548 49.921 1.00 0.00 C \nATOM 113 C ALA A 16 35.745 45.884 50.379 1.00 0.00 C \nATOM 114 O ALA A 16 34.830 46.548 50.872 1.00 0.00 O \nATOM 115 CB ALA A 16 37.979 46.744 51.108 1.00 0.00 C \nATOM 116 N GLU A 17 35.677 44.568 50.207 1.00 0.00 N \nATOM 117 CA GLU A 17 34.497 43.804 50.595 1.00 0.00 C \nATOM 118 C GLU A 17 34.858 42.718 51.599 1.00 0.00 C \nATOM 119 O GLU A 17 35.829 42.003 51.411 1.00 0.00 O \nATOM 120 CB GLU A 17 33.867 43.128 49.370 1.00 0.00 C \nATOM 121 CG GLU A 17 33.337 44.058 48.298 1.00 0.00 C \nATOM 122 CD GLU A 17 32.922 43.292 47.043 1.00 0.00 C \nATOM 123 OE1 GLU A 17 33.800 42.688 46.389 1.00 0.00 O \nATOM 124 OE2 GLU A 17 31.720 43.286 46.716 1.00 0.00 O \nATOM 125 N GLU A 18 34.081 42.599 52.666 1.00 0.00 N \nATOM 126 CA GLU A 18 34.309 41.552 53.652 1.00 0.00 C \nATOM 127 C GLU A 18 33.254 40.467 53.405 1.00 0.00 C \nATOM 128 O GLU A 18 32.092 40.786 53.188 1.00 0.00 O \nATOM 129 CB GLU A 18 34.123 42.089 55.071 1.00 0.00 C \nATOM 130 CG GLU A 18 35.138 43.120 55.528 1.00 0.00 C \nATOM 131 CD GLU A 18 34.861 43.593 56.945 1.00 0.00 C \nATOM 132 OE1 GLU A 18 33.861 44.316 57.158 1.00 0.00 O \nATOM 133 OE2 GLU A 18 35.637 43.228 57.849 1.00 0.00 O \nATOM 134 N SER A 19 33.649 39.198 53.428 1.00 0.00 N \nATOM 135 CA SER A 19 32.681 38.120 53.237 1.00 0.00 C \nATOM 136 C SER A 19 32.448 37.374 54.548 1.00 0.00 C \nATOM 137 O SER A 19 31.349 36.871 54.800 1.00 0.00 O \nATOM 138 CB SER A 19 33.160 37.125 52.180 1.00 0.00 C \nATOM 139 OG SER A 19 34.303 36.419 52.624 1.00 0.00 O \nATOM 140 N LYS A 20 33.480 37.291 55.385 1.00 0.00 N \nATOM 141 CA LYS A 20 33.339 36.587 56.652 1.00 0.00 C \nATOM 142 C LYS A 20 32.833 37.538 57.718 1.00 0.00 C \nATOM 143 O LYS A 20 33.151 38.721 57.702 1.00 0.00 O \nATOM 144 CB LYS A 20 34.675 35.977 57.098 1.00 0.00 C \nATOM 145 CG LYS A 20 35.166 34.829 56.220 1.00 0.00 C \nATOM 146 CD LYS A 20 35.703 35.336 54.877 1.00 0.00 C \nATOM 147 CE LYS A 20 36.005 34.194 53.890 1.00 0.00 C \nATOM 148 NZ LYS A 20 34.768 33.491 53.409 1.00 0.00 N \nATOM 149 N LEU A 21 32.041 37.015 58.643 1.00 0.00 N \nATOM 150 CA LEU A 21 31.493 37.824 59.723 1.00 0.00 C \nATOM 151 C LEU A 21 32.568 38.443 60.616 1.00 0.00 C \nATOM 152 O LEU A 21 33.398 37.735 61.196 1.00 0.00 O \nATOM 153 CB LEU A 21 30.571 36.975 60.601 1.00 0.00 C \nATOM 154 CG LEU A 21 29.990 37.699 61.820 1.00 0.00 C \nATOM 155 CD1 LEU A 21 28.959 38.727 61.348 1.00 0.00 C \nATOM 156 CD2 LEU A 21 29.353 36.703 62.778 1.00 0.00 C \nATOM 157 N PRO A 22 32.573 39.779 60.735 1.00 0.00 N \nATOM 158 CA PRO A 22 33.573 40.422 61.590 1.00 0.00 C \nATOM 159 C PRO A 22 33.191 40.135 63.044 1.00 0.00 C \nATOM 160 O PRO A 22 32.012 40.135 63.393 1.00 0.00 O \nATOM 161 CB PRO A 22 33.426 41.906 61.244 1.00 0.00 C \nATOM 162 CG PRO A 22 32.859 41.894 59.853 1.00 0.00 C \nATOM 163 CD PRO A 22 31.842 40.784 59.946 1.00 0.00 C \nATOM 164 N ILE A 23 34.183 39.889 63.885 1.00 0.00 N \nATOM 165 CA ILE A 23 33.942 39.586 65.283 1.00 0.00 C \nATOM 166 C ILE A 23 34.525 40.667 66.192 1.00 0.00 C \nATOM 167 O ILE A 23 35.661 41.097 65.990 1.00 0.00 O \nATOM 168 CB ILE A 23 34.619 38.237 65.663 1.00 0.00 C \nATOM 169 CG1 ILE A 23 34.179 37.138 64.695 1.00 0.00 C \nATOM 170 CG2 ILE A 23 34.272 37.846 67.097 1.00 0.00 C \nATOM 171 CD1 ILE A 23 32.677 36.944 64.628 1.00 0.00 C \nATOM 172 N ASN A 24 33.749 41.129 67.169 1.00 0.00 N \nATOM 173 CA ASN A 24 34.266 42.102 68.126 1.00 0.00 C \nATOM 174 C ASN A 24 33.946 41.566 69.526 1.00 0.00 C \nATOM 175 O ASN A 24 33.588 40.394 69.669 1.00 0.00 O \nATOM 176 CB ASN A 24 33.704 43.524 67.869 1.00 0.00 C \nATOM 177 CG ASN A 24 32.217 43.679 68.204 1.00 0.00 C \nATOM 178 OD1 ASN A 24 31.516 42.720 68.542 1.00 0.00 O \nATOM 179 ND2 ASN A 24 31.730 44.913 68.094 1.00 0.00 N \nATOM 180 N ALA A 25 34.094 42.382 70.559 1.00 0.00 N \nATOM 181 CA ALA A 25 33.835 41.904 71.910 1.00 0.00 C \nATOM 182 C ALA A 25 32.367 41.594 72.194 1.00 0.00 C \nATOM 183 O ALA A 25 32.053 40.940 73.183 1.00 0.00 O \nATOM 184 CB ALA A 25 34.346 42.913 72.920 1.00 0.00 C \nATOM 185 N LEU A 26 31.470 42.048 71.327 1.00 0.00 N \nATOM 186 CA LEU A 26 30.039 41.829 71.534 1.00 0.00 C \nATOM 187 C LEU A 26 29.457 40.652 70.764 1.00 0.00 C \nATOM 188 O LEU A 26 28.394 40.133 71.107 1.00 0.00 O \nATOM 189 CB LEU A 26 29.269 43.088 71.133 1.00 0.00 C \nATOM 190 CG LEU A 26 29.663 44.381 71.842 1.00 0.00 C \nATOM 191 CD1 LEU A 26 28.939 45.564 71.206 1.00 0.00 C \nATOM 192 CD2 LEU A 26 29.306 44.255 73.322 1.00 0.00 C \nATOM 193 N SER A 27 30.152 40.228 69.724 1.00 0.00 N \nATOM 194 CA SER A 27 29.649 39.157 68.882 1.00 0.00 C \nATOM 195 C SER A 27 29.162 37.913 69.597 1.00 0.00 C \nATOM 196 O SER A 27 28.041 37.456 69.352 1.00 0.00 O \nATOM 197 CB SER A 27 30.711 38.768 67.860 1.00 0.00 C \nATOM 198 OG SER A 27 31.119 39.906 67.139 1.00 0.00 O \nATOM 199 N ASN A 28 29.995 37.365 70.476 1.00 0.00 N \nATOM 200 CA ASN A 28 29.634 36.138 71.165 1.00 0.00 C \nATOM 201 C ASN A 28 28.393 36.261 72.020 1.00 0.00 C \nATOM 202 O ASN A 28 27.688 35.280 72.199 1.00 0.00 O \nATOM 203 CB ASN A 28 30.814 35.598 71.990 1.00 0.00 C \nATOM 204 CG ASN A 28 31.883 34.947 71.114 1.00 0.00 C \nATOM 205 OD1 ASN A 28 31.585 34.067 70.302 1.00 0.00 O \nATOM 206 ND2 ASN A 28 33.134 35.383 71.271 1.00 0.00 N \nATOM 207 N SER A 29 28.092 37.453 72.529 1.00 0.00 N \nATOM 208 CA SER A 29 26.884 37.584 73.339 1.00 0.00 C \nATOM 209 C SER A 29 25.633 37.299 72.496 1.00 0.00 C \nATOM 210 O SER A 29 24.622 36.838 73.026 1.00 0.00 O \nATOM 211 CB SER A 29 26.793 38.973 73.979 1.00 0.00 C \nATOM 212 OG SER A 29 26.852 39.988 73.004 1.00 0.00 O \nATOM 213 N LEU A 30 25.703 37.558 71.191 1.00 0.00 N \nATOM 214 CA LEU A 30 24.569 37.289 70.301 1.00 0.00 C \nATOM 215 C LEU A 30 24.556 35.845 69.756 1.00 0.00 C \nATOM 216 O LEU A 30 23.569 35.131 69.916 1.00 0.00 O \nATOM 217 CB LEU A 30 24.543 38.270 69.118 1.00 0.00 C \nATOM 218 CG LEU A 30 23.432 38.019 68.083 1.00 0.00 C \nATOM 219 CD1 LEU A 30 22.055 38.035 68.776 1.00 0.00 C \nATOM 220 CD2 LEU A 30 23.514 39.069 66.976 1.00 0.00 C \nATOM 221 N LEU A 31 25.638 35.416 69.110 1.00 0.00 N \nATOM 222 CA LEU A 31 25.689 34.056 68.569 1.00 0.00 C \nATOM 223 C LEU A 31 27.121 33.531 68.572 1.00 0.00 C \nATOM 224 O LEU A 31 28.077 34.315 68.532 1.00 0.00 O \nATOM 225 CB LEU A 31 25.119 34.018 67.140 1.00 0.00 C \nATOM 226 CG LEU A 31 25.858 34.679 65.962 1.00 0.00 C \nATOM 227 CD1 LEU A 31 27.064 33.858 65.547 1.00 0.00 C \nATOM 228 CD2 LEU A 31 24.904 34.773 64.770 1.00 0.00 C \nATOM 229 N ARG A 32 27.265 32.206 68.607 1.00 0.00 N \nATOM 230 CA ARG A 32 28.582 31.580 68.636 1.00 0.00 C \nATOM 231 C ARG A 32 29.076 30.943 67.337 1.00 0.00 C \nATOM 232 O ARG A 32 30.280 30.884 67.109 1.00 0.00 O \nATOM 233 CB ARG A 32 28.634 30.552 69.769 1.00 0.00 C \nATOM 234 CG ARG A 32 28.662 31.176 71.154 1.00 0.00 C \nATOM 235 CD ARG A 32 28.596 30.101 72.220 1.00 0.00 C \nATOM 236 NE ARG A 32 28.578 30.700 73.557 1.00 0.00 N \nATOM 237 CZ ARG A 32 29.622 31.291 74.146 1.00 0.00 C \nATOM 238 NH1 ARG A 32 30.802 31.362 73.522 1.00 0.00 N \nATOM 239 NH2 ARG A 32 29.467 31.838 75.359 1.00 0.00 N \nATOM 240 N HIS A 33 28.164 30.487 66.481 1.00 0.00 N \nATOM 241 CA HIS A 33 28.550 29.853 65.222 1.00 0.00 C \nATOM 242 C HIS A 33 28.765 30.904 64.134 1.00 0.00 C \nATOM 243 O HIS A 33 27.991 31.021 63.176 1.00 0.00 O \nATOM 244 CB HIS A 33 27.479 28.846 64.795 1.00 0.00 C \nATOM 245 CG HIS A 33 27.174 27.808 65.832 1.00 0.00 C \nATOM 246 ND1 HIS A 33 26.039 27.026 65.794 1.00 0.00 N \nATOM 247 CD2 HIS A 33 27.854 27.429 66.941 1.00 0.00 C \nATOM 248 CE1 HIS A 33 26.031 26.212 66.832 1.00 0.00 C \nATOM 249 NE2 HIS A 33 27.121 26.434 67.545 1.00 0.00 N \nATOM 250 N HIS A 34 29.846 31.654 64.295 1.00 0.00 N \nATOM 251 CA HIS A 34 30.233 32.734 63.392 1.00 0.00 C \nATOM 252 C HIS A 34 30.383 32.332 61.923 1.00 0.00 C \nATOM 253 O HIS A 34 30.072 33.121 61.027 1.00 0.00 O \nATOM 254 CB HIS A 34 31.545 33.341 63.890 1.00 0.00 C \nATOM 255 CG HIS A 34 31.510 33.732 65.334 1.00 0.00 C \nATOM 256 ND1 HIS A 34 32.647 33.831 66.105 1.00 0.00 N \nATOM 257 CD2 HIS A 34 30.474 34.035 66.153 1.00 0.00 C \nATOM 258 CE1 HIS A 34 32.313 34.174 67.338 1.00 0.00 C \nATOM 259 NE2 HIS A 34 31.001 34.304 67.392 1.00 0.00 N \nATOM 260 N ASN A 35 30.863 31.115 61.676 1.00 0.00 N \nATOM 261 CA ASN A 35 31.070 30.644 60.306 1.00 0.00 C \nATOM 262 C ASN A 35 29.790 30.360 59.536 1.00 0.00 C \nATOM 263 O ASN A 35 29.827 29.988 58.369 1.00 0.00 O \nATOM 264 CB ASN A 35 31.968 29.409 60.308 1.00 0.00 C \nATOM 265 CG ASN A 35 33.346 29.701 60.879 1.00 0.00 C \nATOM 266 OD1 ASN A 35 33.978 30.704 60.529 1.00 0.00 O \nATOM 267 ND2 ASN A 35 33.821 28.828 61.757 1.00 0.00 N \nATOM 268 N MET A 36 28.656 30.548 60.194 1.00 0.00 N \nATOM 269 CA MET A 36 27.366 30.331 59.562 1.00 0.00 C \nATOM 270 C MET A 36 26.974 31.604 58.809 1.00 0.00 C \nATOM 271 O MET A 36 26.179 31.573 57.870 1.00 0.00 O \nATOM 272 CB MET A 36 26.297 30.056 60.623 1.00 0.00 C \nATOM 273 CG MET A 36 26.490 28.802 61.448 1.00 0.00 C \nATOM 274 SD MET A 36 26.183 27.344 60.478 1.00 0.00 S \nATOM 275 CE MET A 36 24.396 27.451 60.266 1.00 0.00 C \nATOM 276 N VAL A 37 27.542 32.726 59.232 1.00 0.00 N \nATOM 277 CA VAL A 37 27.201 34.008 58.631 1.00 0.00 C \nATOM 278 C VAL A 37 28.212 34.509 57.612 1.00 0.00 C \nATOM 279 O VAL A 37 29.406 34.375 57.805 1.00 0.00 O \nATOM 280 CB VAL A 37 27.009 35.058 59.732 1.00 0.00 C \nATOM 281 CG1 VAL A 37 26.601 36.397 59.127 1.00 0.00 C \nATOM 282 CG2 VAL A 37 25.946 34.563 60.714 1.00 0.00 C \nATOM 283 N TYR A 38 27.714 35.088 56.523 1.00 0.00 N \nATOM 284 CA TYR A 38 28.576 35.611 55.470 1.00 0.00 C \nATOM 285 C TYR A 38 27.879 36.742 54.728 1.00 0.00 C \nATOM 286 O TYR A 38 26.653 36.897 54.802 1.00 0.00 O \nATOM 287 CB TYR A 38 28.921 34.509 54.462 1.00 0.00 C \nATOM 288 CG TYR A 38 27.723 34.058 53.650 1.00 0.00 C \nATOM 289 CD1 TYR A 38 26.708 33.286 54.226 1.00 0.00 C \nATOM 290 CD2 TYR A 38 27.579 34.448 52.316 1.00 0.00 C \nATOM 291 CE1 TYR A 38 25.582 32.918 53.491 1.00 0.00 C \nATOM 292 CE2 TYR A 38 26.456 34.090 51.573 1.00 0.00 C \nATOM 293 CZ TYR A 38 25.469 33.328 52.163 1.00 0.00 C \nATOM 294 OH TYR A 38 24.374 32.965 51.421 1.00 0.00 O \nATOM 295 N ALA A 39 28.678 37.544 54.030 1.00 0.00 N \nATOM 296 CA ALA A 39 28.151 38.629 53.217 1.00 0.00 C \nATOM 297 C ALA A 39 28.515 38.261 51.784 1.00 0.00 C \nATOM 298 O ALA A 39 29.570 37.671 51.548 1.00 0.00 O \nATOM 299 CB ALA A 39 28.795 39.939 53.590 1.00 0.00 C \nATOM 300 N THR A 40 27.641 38.573 50.831 1.00 0.00 N \nATOM 301 CA THR A 40 27.951 38.285 49.439 1.00 0.00 C \nATOM 302 C THR A 40 28.877 39.400 48.959 1.00 0.00 C \nATOM 303 O THR A 40 28.820 40.518 49.477 1.00 0.00 O \nATOM 304 CB THR A 40 26.682 38.269 48.541 1.00 0.00 C \nATOM 305 OG1 THR A 40 25.978 39.514 48.659 1.00 0.00 O \nATOM 306 CG2 THR A 40 25.755 37.119 48.942 1.00 0.00 C \nATOM 307 N THR A 41 29.745 39.090 47.998 1.00 0.00 N \nATOM 308 CA THR A 41 30.650 40.092 47.425 1.00 0.00 C \nATOM 309 C THR A 41 30.731 39.881 45.916 1.00 0.00 C \nATOM 310 O THR A 41 30.230 38.881 45.394 1.00 0.00 O \nATOM 311 CB THR A 41 32.087 39.983 47.970 1.00 0.00 C \nATOM 312 OG1 THR A 41 32.680 38.762 47.511 1.00 0.00 O \nATOM 313 CG2 THR A 41 32.089 40.004 49.474 1.00 0.00 C \nATOM 314 N SER A 42 31.384 40.813 45.227 1.00 0.00 N \nATOM 315 CA SER A 42 31.527 40.721 43.778 1.00 0.00 C \nATOM 316 C SER A 42 32.219 39.440 43.321 1.00 0.00 C \nATOM 317 O SER A 42 32.096 39.049 42.160 1.00 0.00 O \nATOM 318 CB SER A 42 32.278 41.938 43.229 1.00 0.00 C \nATOM 319 OG SER A 42 33.540 42.102 43.854 1.00 0.00 O \nATOM 320 N ARG A 43 32.939 38.788 44.227 1.00 0.00 N \nATOM 321 CA ARG A 43 33.617 37.534 43.873 1.00 0.00 C \nATOM 322 C ARG A 43 32.650 36.495 43.316 1.00 0.00 C \nATOM 323 O ARG A 43 33.059 35.622 42.558 1.00 0.00 O \nATOM 324 CB ARG A 43 34.269 36.873 45.082 1.00 0.00 C \nATOM 325 CG ARG A 43 35.536 37.562 45.564 1.00 0.00 C \nATOM 326 CD ARG A 43 36.527 36.574 46.189 1.00 0.00 C \nATOM 327 NE ARG A 43 36.209 36.199 47.568 1.00 0.00 N \nATOM 328 CZ ARG A 43 36.850 35.246 48.242 1.00 0.00 C \nATOM 329 NH1 ARG A 43 36.510 34.961 49.495 1.00 0.00 N \nATOM 330 NH2 ARG A 43 37.829 34.567 47.653 1.00 0.00 N \nATOM 331 N SER A 44 31.378 36.577 43.704 1.00 0.00 N \nATOM 332 CA SER A 44 30.375 35.618 43.233 1.00 0.00 C \nATOM 333 C SER A 44 29.480 36.194 42.140 1.00 0.00 C \nATOM 334 O SER A 44 28.525 35.538 41.709 1.00 0.00 O \nATOM 335 CB SER A 44 29.513 35.145 44.405 1.00 0.00 C \nATOM 336 OG SER A 44 28.819 36.220 44.998 1.00 0.00 O \nATOM 337 N ALA A 45 29.798 37.404 41.679 1.00 0.00 N \nATOM 338 CA ALA A 45 29.009 38.057 40.628 1.00 0.00 C \nATOM 339 C ALA A 45 28.884 37.223 39.353 1.00 0.00 C \nATOM 340 O ALA A 45 27.852 37.252 38.686 1.00 0.00 O \nATOM 341 CB ALA A 45 29.606 39.423 40.289 1.00 0.00 C \nATOM 342 N GLY A 46 29.945 36.496 39.014 1.00 0.00 N \nATOM 343 CA GLY A 46 29.928 35.665 37.830 1.00 0.00 C \nATOM 344 C GLY A 46 28.845 34.608 37.907 1.00 0.00 C \nATOM 345 O GLY A 46 28.137 34.344 36.927 1.00 0.00 O \nATOM 346 N LEU A 47 28.717 33.998 39.081 1.00 0.00 N \nATOM 347 CA LEU A 47 27.717 32.961 39.303 1.00 0.00 C \nATOM 348 C LEU A 47 26.308 33.524 39.130 1.00 0.00 C \nATOM 349 O LEU A 47 25.410 32.844 38.615 1.00 0.00 O \nATOM 350 CB LEU A 47 27.874 32.378 40.708 1.00 0.00 C \nATOM 351 CG LEU A 47 29.172 31.598 40.957 1.00 0.00 C \nATOM 352 CD1 LEU A 47 29.246 31.151 42.420 1.00 0.00 C \nATOM 353 CD2 LEU A 47 29.214 30.381 40.033 1.00 0.00 C \nATOM 354 N ARG A 48 26.116 34.766 39.569 1.00 0.00 N \nATOM 355 CA ARG A 48 24.811 35.408 39.455 1.00 0.00 C \nATOM 356 C ARG A 48 24.516 35.685 37.990 1.00 0.00 C \nATOM 357 O ARG A 48 23.416 35.411 37.514 1.00 0.00 O \nATOM 358 CB ARG A 48 24.787 36.716 40.251 1.00 0.00 C \nATOM 359 CG ARG A 48 23.522 37.555 40.062 1.00 0.00 C \nATOM 360 CD ARG A 48 22.277 36.800 40.482 1.00 0.00 C \nATOM 361 NE ARG A 48 22.310 36.411 41.885 1.00 0.00 N \nATOM 362 CZ ARG A 48 21.360 35.687 42.474 1.00 0.00 C \nATOM 363 NH1 ARG A 48 20.305 35.279 41.771 1.00 0.00 N \nATOM 364 NH2 ARG A 48 21.467 35.364 43.761 1.00 0.00 N \nATOM 365 N GLN A 49 25.504 36.219 37.276 1.00 0.00 N \nATOM 366 CA GLN A 49 25.338 36.526 35.857 1.00 0.00 C \nATOM 367 C GLN A 49 24.852 35.296 35.115 1.00 0.00 C \nATOM 368 O GLN A 49 23.965 35.376 34.268 1.00 0.00 O \nATOM 369 CB GLN A 49 26.655 37.011 35.250 1.00 0.00 C \nATOM 370 CG GLN A 49 27.165 38.296 35.879 1.00 0.00 C \nATOM 371 CD GLN A 49 28.546 38.677 35.382 1.00 0.00 C \nATOM 372 OE1 GLN A 49 28.699 39.247 34.301 1.00 0.00 O \nATOM 373 NE2 GLN A 49 29.563 38.347 36.165 1.00 0.00 N \nATOM 374 N LYS A 50 25.434 34.152 35.445 1.00 0.00 N \nATOM 375 CA LYS A 50 25.042 32.907 34.809 1.00 0.00 C \nATOM 376 C LYS A 50 23.590 32.567 35.106 1.00 0.00 C \nATOM 377 O LYS A 50 22.861 32.135 34.221 1.00 0.00 O \nATOM 378 CB LYS A 50 25.958 31.770 35.269 1.00 0.00 C \nATOM 379 CG LYS A 50 27.304 31.793 34.564 1.00 0.00 C \nATOM 380 CD LYS A 50 28.246 30.721 35.077 1.00 0.00 C \nATOM 381 CE LYS A 50 29.504 30.654 34.221 1.00 0.00 C \nATOM 382 NZ LYS A 50 30.148 31.993 34.063 1.00 0.00 N \nATOM 383 N LYS A 51 23.162 32.768 36.345 1.00 0.00 N \nATOM 384 CA LYS A 51 21.778 32.464 36.704 1.00 0.00 C \nATOM 385 C LYS A 51 20.774 33.403 36.035 1.00 0.00 C \nATOM 386 O LYS A 51 19.739 32.945 35.562 1.00 0.00 O \nATOM 387 CB LYS A 51 21.565 32.545 38.221 1.00 0.00 C \nATOM 388 CG LYS A 51 22.409 31.586 39.046 1.00 0.00 C \nATOM 389 CD LYS A 51 22.182 31.804 40.542 1.00 0.00 C \nATOM 390 CE LYS A 51 23.269 31.127 41.389 1.00 0.00 C \nATOM 391 NZ LYS A 51 23.156 29.642 41.486 1.00 0.00 N \nATOM 392 N VAL A 52 21.081 34.705 35.997 1.00 0.00 N \nATOM 393 CA VAL A 52 20.159 35.702 35.435 1.00 0.00 C \nATOM 394 C VAL A 52 20.151 35.881 33.922 1.00 0.00 C \nATOM 395 O VAL A 52 19.344 36.645 33.400 1.00 0.00 O \nATOM 396 CB VAL A 52 20.393 37.108 36.064 1.00 0.00 C \nATOM 397 CG1 VAL A 52 20.196 37.038 37.586 1.00 0.00 C \nATOM 398 CG2 VAL A 52 21.796 37.618 35.714 1.00 0.00 C \nATOM 399 N THR A 53 21.034 35.170 33.227 1.00 0.00 N \nATOM 400 CA THR A 53 21.134 35.283 31.776 1.00 0.00 C \nATOM 401 C THR A 53 20.429 34.147 31.032 1.00 0.00 C \nATOM 402 O THR A 53 20.871 33.003 31.078 1.00 0.00 O \nATOM 403 CB THR A 53 22.616 35.315 31.345 1.00 0.00 C \nATOM 404 OG1 THR A 53 23.305 36.321 32.097 1.00 0.00 O \nATOM 405 CG2 THR A 53 22.736 35.632 29.870 1.00 0.00 C \nATOM 406 N PHE A 54 19.328 34.475 30.359 1.00 0.00 N \nATOM 407 CA PHE A 54 18.555 33.505 29.579 1.00 0.00 C \nATOM 408 C PHE A 54 17.618 34.183 28.580 1.00 0.00 C \nATOM 409 O PHE A 54 17.361 35.393 28.658 1.00 0.00 O \nATOM 410 CB PHE A 54 17.756 32.565 30.498 1.00 0.00 C \nATOM 411 CG PHE A 54 16.970 33.268 31.574 1.00 0.00 C \nATOM 412 CD1 PHE A 54 15.760 33.892 31.281 1.00 0.00 C \nATOM 413 CD2 PHE A 54 17.448 33.306 32.883 1.00 0.00 C \nATOM 414 CE1 PHE A 54 15.030 34.543 32.276 1.00 0.00 C \nATOM 415 CE2 PHE A 54 16.726 33.961 33.897 1.00 0.00 C \nATOM 416 CZ PHE A 54 15.510 34.581 33.590 1.00 0.00 C \nATOM 417 N ASP A 55 17.120 33.402 27.629 1.00 0.00 N \nATOM 418 CA ASP A 55 16.209 33.931 26.630 1.00 0.00 C \nATOM 419 C ASP A 55 14.769 33.964 27.171 1.00 0.00 C \nATOM 420 O ASP A 55 14.358 33.094 27.936 1.00 0.00 O \nATOM 421 CB ASP A 55 16.288 33.068 25.371 1.00 0.00 C \nATOM 422 CG ASP A 55 16.009 33.854 24.102 1.00 0.00 C \nATOM 423 OD1 ASP A 55 16.205 33.285 23.012 1.00 0.00 O \nATOM 424 OD2 ASP A 55 15.594 35.035 24.190 1.00 0.00 O \nATOM 425 N ARG A 56 14.014 34.987 26.796 1.00 0.00 N \nATOM 426 CA ARG A 56 12.631 35.077 27.239 1.00 0.00 C \nATOM 427 C ARG A 56 11.712 34.927 26.037 1.00 0.00 C \nATOM 428 O ARG A 56 11.988 35.436 24.949 1.00 0.00 O \nATOM 429 CB ARG A 56 12.340 36.417 27.934 1.00 0.00 C \nATOM 430 CG ARG A 56 12.997 36.609 29.343 1.00 0.00 C \nATOM 431 CD ARG A 56 14.487 36.866 29.235 1.00 0.00 C \nATOM 432 NE ARG A 56 14.737 37.994 28.347 1.00 0.00 N \nATOM 433 CZ ARG A 56 14.470 39.269 28.637 1.00 0.00 C \nATOM 434 NH1 ARG A 56 13.950 39.620 29.820 1.00 0.00 N \nATOM 435 NH2 ARG A 56 14.675 40.194 27.713 1.00 0.00 N \nATOM 436 N LEU A 57 10.623 34.204 26.234 1.00 0.00 N \nATOM 437 CA LEU A 57 9.638 34.016 25.182 1.00 0.00 C \nATOM 438 C LEU A 57 8.300 34.342 25.833 1.00 0.00 C \nATOM 439 O LEU A 57 8.130 34.132 27.040 1.00 0.00 O \nATOM 440 CB LEU A 57 9.674 32.565 24.697 1.00 0.00 C \nATOM 441 CG LEU A 57 9.865 32.317 23.199 1.00 0.00 C \nATOM 442 CD1 LEU A 57 10.906 33.261 22.608 1.00 0.00 C \nATOM 443 CD2 LEU A 57 10.278 30.860 22.994 1.00 0.00 C \nATOM 444 N GLN A 58 7.375 34.893 25.056 1.00 0.00 N \nATOM 445 CA GLN A 58 6.053 35.223 25.567 1.00 0.00 C \nATOM 446 C GLN A 58 4.938 34.923 24.578 1.00 0.00 C \nATOM 447 O GLN A 58 5.000 35.288 23.407 1.00 0.00 O \nATOM 448 CB GLN A 58 5.960 36.700 25.968 1.00 0.00 C \nATOM 449 CG GLN A 58 6.566 37.036 27.309 1.00 0.00 C \nATOM 450 CD GLN A 58 6.329 38.487 27.680 1.00 0.00 C \nATOM 451 OE1 GLN A 58 6.722 39.382 26.946 1.00 0.00 O \nATOM 452 NE2 GLN A 58 5.684 38.724 28.825 1.00 0.00 N \nATOM 453 N VAL A 59 3.913 34.261 25.088 1.00 0.00 N \nATOM 454 CA VAL A 59 2.732 33.928 24.321 1.00 0.00 C \nATOM 455 C VAL A 59 1.597 34.588 25.107 1.00 0.00 C \nATOM 456 O VAL A 59 1.221 34.126 26.196 1.00 0.00 O \nATOM 457 CB VAL A 59 2.541 32.404 24.250 1.00 0.00 C \nATOM 458 CG1 VAL A 59 1.217 32.095 23.626 1.00 0.00 C \nATOM 459 CG2 VAL A 59 3.667 31.775 23.428 1.00 0.00 C \nATOM 460 N LEU A 60 1.071 35.681 24.553 1.00 0.00 N \nATOM 461 CA LEU A 60 0.019 36.458 25.207 1.00 0.00 C \nATOM 462 C LEU A 60 -1.381 36.186 24.658 1.00 0.00 C \nATOM 463 O LEU A 60 -1.676 36.469 23.494 1.00 0.00 O \nATOM 464 CB LEU A 60 0.354 37.948 25.101 1.00 0.00 C \nATOM 465 CG LEU A 60 1.745 38.367 25.606 1.00 0.00 C \nATOM 466 CD1 LEU A 60 1.918 39.876 25.429 1.00 0.00 C \nATOM 467 CD2 LEU A 60 1.919 37.976 27.070 1.00 0.00 C \nATOM 468 N ASP A 61 -2.235 35.657 25.535 1.00 0.00 N \nATOM 469 CA ASP A 61 -3.609 35.283 25.205 1.00 0.00 C \nATOM 470 C ASP A 61 -4.642 36.348 25.571 1.00 0.00 C \nATOM 471 O ASP A 61 -4.301 37.441 26.037 1.00 0.00 O \nATOM 472 CB ASP A 61 -3.947 33.961 25.895 1.00 0.00 C \nATOM 473 CG ASP A 61 -4.051 34.100 27.402 1.00 0.00 C \nATOM 474 OD1 ASP A 61 -3.549 35.103 27.956 1.00 0.00 O \nATOM 475 OD2 ASP A 61 -4.640 33.208 28.036 1.00 0.00 O \nATOM 476 N ASP A 62 -5.915 36.032 25.364 1.00 0.00 N \nATOM 477 CA ASP A 62 -6.956 37.013 25.643 1.00 0.00 C \nATOM 478 C ASP A 62 -7.148 37.348 27.130 1.00 0.00 C \nATOM 479 O ASP A 62 -7.532 38.474 27.466 1.00 0.00 O \nATOM 480 CB ASP A 62 -8.271 36.570 24.980 1.00 0.00 C \nATOM 481 CG ASP A 62 -8.165 36.555 23.449 1.00 0.00 C \nATOM 482 OD1 ASP A 62 -7.920 37.624 22.853 1.00 0.00 O \nATOM 483 OD2 ASP A 62 -8.301 35.476 22.837 1.00 0.00 O \nATOM 484 N HIS A 63 -6.881 36.394 28.019 1.00 0.00 N \nATOM 485 CA HIS A 63 -7.007 36.682 29.454 1.00 0.00 C \nATOM 486 C HIS A 63 -5.986 37.764 29.815 1.00 0.00 C \nATOM 487 O HIS A 63 -6.264 38.671 30.615 1.00 0.00 O \nATOM 488 CB HIS A 63 -6.744 35.435 30.304 1.00 0.00 C \nATOM 489 CG HIS A 63 -7.843 34.416 30.250 1.00 0.00 C \nATOM 490 ND1 HIS A 63 -9.171 34.741 30.441 1.00 0.00 N \nATOM 491 CD2 HIS A 63 -7.807 33.074 30.075 1.00 0.00 C \nATOM 492 CE1 HIS A 63 -9.904 33.642 30.387 1.00 0.00 C \nATOM 493 NE2 HIS A 63 -9.099 32.616 30.167 1.00 0.00 N \nATOM 494 N TYR A 64 -4.807 37.672 29.205 1.00 0.00 N \nATOM 495 CA TYR A 64 -3.757 38.660 29.447 1.00 0.00 C \nATOM 496 C TYR A 64 -4.253 40.046 29.011 1.00 0.00 C \nATOM 497 O TYR A 64 -4.162 41.005 29.769 1.00 0.00 O \nATOM 498 CB TYR A 64 -2.490 38.302 28.668 1.00 0.00 C \nATOM 499 CG TYR A 64 -1.363 39.321 28.803 1.00 0.00 C \nATOM 500 CD1 TYR A 64 -0.439 39.249 29.856 1.00 0.00 C \nATOM 501 CD2 TYR A 64 -1.227 40.357 27.877 1.00 0.00 C \nATOM 502 CE1 TYR A 64 0.592 40.184 29.967 1.00 0.00 C \nATOM 503 CE2 TYR A 64 -0.207 41.295 27.980 1.00 0.00 C \nATOM 504 CZ TYR A 64 0.697 41.201 29.022 1.00 0.00 C \nATOM 505 OH TYR A 64 1.717 42.117 29.092 1.00 0.00 O \nATOM 506 N ARG A 65 -4.786 40.152 27.796 1.00 0.00 N \nATOM 507 CA ARG A 65 -5.272 41.449 27.319 1.00 0.00 C \nATOM 508 C ARG A 65 -6.530 41.949 28.041 1.00 0.00 C \nATOM 509 O ARG A 65 -6.692 43.158 28.224 1.00 0.00 O \nATOM 510 CB ARG A 65 -5.474 41.427 25.793 1.00 0.00 C \nATOM 511 CG ARG A 65 -4.148 41.427 25.000 1.00 0.00 C \nATOM 512 CD ARG A 65 -4.374 41.373 23.485 1.00 0.00 C \nATOM 513 NE ARG A 65 -4.963 40.098 23.089 1.00 0.00 N \nATOM 514 CZ ARG A 65 -4.277 38.965 22.967 1.00 0.00 C \nATOM 515 NH1 ARG A 65 -2.973 38.946 23.182 1.00 0.00 N \nATOM 516 NH2 ARG A 65 -4.912 37.832 22.713 1.00 0.00 N \nATOM 517 N ASP A 66 -7.407 41.036 28.465 1.00 0.00 N \nATOM 518 CA ASP A 66 -8.613 41.420 29.198 1.00 0.00 C \nATOM 519 C ASP A 66 -8.212 42.085 30.526 1.00 0.00 C \nATOM 520 O ASP A 66 -8.741 43.137 30.905 1.00 0.00 O \nATOM 521 CB ASP A 66 -9.501 40.200 29.526 1.00 0.00 C \nATOM 522 CG ASP A 66 -10.254 39.648 28.313 1.00 0.00 C \nATOM 523 OD1 ASP A 66 -10.344 40.329 27.271 1.00 0.00 O \nATOM 524 OD2 ASP A 66 -10.778 38.517 28.416 1.00 0.00 O \nATOM 525 N VAL A 67 -7.281 41.462 31.240 1.00 0.00 N \nATOM 526 CA VAL A 67 -6.846 42.007 32.521 1.00 0.00 C \nATOM 527 C VAL A 67 -6.146 43.342 32.286 1.00 0.00 C \nATOM 528 O VAL A 67 -6.376 44.317 33.012 1.00 0.00 O \nATOM 529 CB VAL A 67 -5.893 41.016 33.267 1.00 0.00 C \nATOM 530 CG1 VAL A 67 -5.251 41.715 34.464 1.00 0.00 C \nATOM 531 CG2 VAL A 67 -6.684 39.753 33.746 1.00 0.00 C \nATOM 532 N LEU A 68 -5.316 43.403 31.252 1.00 0.00 N \nATOM 533 CA LEU A 68 -4.610 44.649 30.975 1.00 0.00 C \nATOM 534 C LEU A 68 -5.606 45.779 30.728 1.00 0.00 C \nATOM 535 O LEU A 68 -5.451 46.894 31.249 1.00 0.00 O \nATOM 536 CB LEU A 68 -3.695 44.478 29.758 1.00 0.00 C \nATOM 537 CG LEU A 68 -2.917 45.710 29.292 1.00 0.00 C \nATOM 538 CD1 LEU A 68 -2.181 46.326 30.479 1.00 0.00 C \nATOM 539 CD2 LEU A 68 -1.933 45.306 28.166 1.00 0.00 C \nATOM 540 N LYS A 69 -6.639 45.496 29.942 1.00 0.00 N \nATOM 541 CA LYS A 69 -7.639 46.520 29.647 1.00 0.00 C \nATOM 542 C LYS A 69 -8.281 47.029 30.945 1.00 0.00 C \nATOM 543 O LYS A 69 -8.503 48.224 31.100 1.00 0.00 O \nATOM 544 CB LYS A 69 -8.709 45.976 28.688 1.00 0.00 C \nATOM 545 CG LYS A 69 -9.781 46.992 28.302 1.00 0.00 C \nATOM 546 CD LYS A 69 -10.542 46.551 27.046 1.00 0.00 C \nATOM 547 CE LYS A 69 -11.387 47.685 26.491 1.00 0.00 C \nATOM 548 NZ LYS A 69 -12.202 47.275 25.310 1.00 0.00 N \nATOM 549 N GLU A 70 -8.565 46.120 31.874 1.00 0.00 N \nATOM 550 CA GLU A 70 -9.164 46.489 33.169 1.00 0.00 C \nATOM 551 C GLU A 70 -8.218 47.374 33.963 1.00 0.00 C \nATOM 552 O GLU A 70 -8.634 48.366 34.559 1.00 0.00 O \nATOM 553 CB GLU A 70 -9.484 45.239 33.995 1.00 0.00 C \nATOM 554 CG GLU A 70 -10.682 44.439 33.485 1.00 0.00 C \nATOM 555 CD GLU A 70 -10.774 43.044 34.100 1.00 0.00 C \nATOM 556 OE1 GLU A 70 -10.562 42.898 35.324 1.00 0.00 O \nATOM 557 OE2 GLU A 70 -11.068 42.089 33.353 1.00 0.00 O \nATOM 558 N MET A 71 -6.943 47.004 33.980 1.00 0.00 N \nATOM 559 CA MET A 71 -5.944 47.786 34.697 1.00 0.00 C \nATOM 560 C MET A 71 -5.846 49.206 34.135 1.00 0.00 C \nATOM 561 O MET A 71 -5.763 50.173 34.897 1.00 0.00 O \nATOM 562 CB MET A 71 -4.588 47.089 34.619 1.00 0.00 C \nATOM 563 CG MET A 71 -4.522 45.867 35.521 1.00 0.00 C \nATOM 564 SD MET A 71 -3.080 44.867 35.252 1.00 0.00 S \nATOM 565 CE MET A 71 -1.805 45.804 36.133 1.00 0.00 C \nATOM 566 N LYS A 72 -5.854 49.325 32.805 1.00 0.00 N \nATOM 567 CA LYS A 72 -5.785 50.629 32.151 1.00 0.00 C \nATOM 568 C LYS A 72 -7.019 51.488 32.460 1.00 0.00 C \nATOM 569 O LYS A 72 -6.913 52.707 32.626 1.00 0.00 O \nATOM 570 CB LYS A 72 -5.656 50.451 30.639 1.00 0.00 C \nATOM 571 CG LYS A 72 -4.289 49.981 30.164 1.00 0.00 C \nATOM 572 CD LYS A 72 -4.344 49.815 28.655 1.00 0.00 C \nATOM 573 CE LYS A 72 -2.982 49.809 28.016 1.00 0.00 C \nATOM 574 NZ LYS A 72 -3.126 49.727 26.532 1.00 0.00 N \nATOM 575 N ALA A 73 -8.192 50.866 32.514 1.00 0.00 N \nATOM 576 CA ALA A 73 -9.400 51.630 32.838 1.00 0.00 C \nATOM 577 C ALA A 73 -9.231 52.233 34.239 1.00 0.00 C \nATOM 578 O ALA A 73 -9.566 53.391 34.473 1.00 0.00 O \nATOM 579 CB ALA A 73 -10.632 50.730 32.794 1.00 0.00 C \nATOM 580 N LYS A 74 -8.697 51.455 35.173 1.00 0.00 N \nATOM 581 CA LYS A 74 -8.497 51.991 36.511 1.00 0.00 C \nATOM 582 C LYS A 74 -7.410 53.059 36.485 1.00 0.00 C \nATOM 583 O LYS A 74 -7.551 54.108 37.119 1.00 0.00 O \nATOM 584 CB LYS A 74 -8.139 50.878 37.498 1.00 0.00 C \nATOM 585 CG LYS A 74 -9.308 49.926 37.782 1.00 0.00 C \nATOM 586 CD LYS A 74 -8.850 48.700 38.558 1.00 0.00 C \nATOM 587 CE LYS A 74 -10.019 47.807 38.969 1.00 0.00 C \nATOM 588 NZ LYS A 74 -10.653 47.108 37.803 1.00 0.00 N \nATOM 589 N ALA A 75 -6.342 52.814 35.730 1.00 0.00 N \nATOM 590 CA ALA A 75 -5.241 53.776 35.631 1.00 0.00 C \nATOM 591 C ALA A 75 -5.707 55.122 35.072 1.00 0.00 C \nATOM 592 O ALA A 75 -5.155 56.164 35.416 1.00 0.00 O \nATOM 593 CB ALA A 75 -4.108 53.213 34.742 1.00 0.00 C \nATOM 594 N SER A 76 -6.707 55.096 34.198 1.00 0.00 N \nATOM 595 CA SER A 76 -7.211 56.324 33.604 1.00 0.00 C \nATOM 596 C SER A 76 -7.885 57.249 34.606 1.00 0.00 C \nATOM 597 O SER A 76 -8.124 58.411 34.290 1.00 0.00 O \nATOM 598 CB SER A 76 -8.211 56.010 32.488 1.00 0.00 C \nATOM 599 OG SER A 76 -7.597 55.211 31.495 1.00 0.00 O \nATOM 600 N THR A 77 -8.215 56.741 35.792 1.00 0.00 N \nATOM 601 CA THR A 77 -8.861 57.580 36.805 1.00 0.00 C \nATOM 602 C THR A 77 -7.818 58.331 37.628 1.00 0.00 C \nATOM 603 O THR A 77 -8.140 59.264 38.369 1.00 0.00 O \nATOM 604 CB THR A 77 -9.734 56.742 37.758 1.00 0.00 C \nATOM 605 OG1 THR A 77 -8.900 55.945 38.614 1.00 0.00 O \nATOM 606 CG2 THR A 77 -10.640 55.838 36.954 1.00 0.00 C \nATOM 607 N VAL A 78 -6.560 57.930 37.469 1.00 0.00 N \nATOM 608 CA VAL A 78 -5.452 58.538 38.199 1.00 0.00 C \nATOM 609 C VAL A 78 -4.932 59.849 37.615 1.00 0.00 C \nATOM 610 O VAL A 78 -4.766 59.983 36.400 1.00 0.00 O \nATOM 611 CB VAL A 78 -4.250 57.559 38.284 1.00 0.00 C \nATOM 612 CG1 VAL A 78 -3.033 58.266 38.880 1.00 0.00 C \nATOM 613 CG2 VAL A 78 -4.624 56.351 39.130 1.00 0.00 C \nATOM 614 N LYS A 79 -4.687 60.820 38.489 1.00 0.00 N \nATOM 615 CA LYS A 79 -4.118 62.100 38.078 1.00 0.00 C \nATOM 616 C LYS A 79 -2.846 62.233 38.904 1.00 0.00 C \nATOM 617 O LYS A 79 -2.886 62.174 40.134 1.00 0.00 O \nATOM 618 CB LYS A 79 -5.068 63.265 38.371 1.00 0.00 C \nATOM 619 CG LYS A 79 -4.471 64.614 37.994 1.00 0.00 C \nATOM 620 CD LYS A 79 -5.492 65.743 38.042 1.00 0.00 C \nATOM 621 CE LYS A 79 -4.816 67.079 37.746 1.00 0.00 C \nATOM 622 NZ LYS A 79 -5.773 68.212 37.748 1.00 0.00 N \nATOM 623 N ALA A 80 -1.719 62.381 38.220 1.00 0.00 N \nATOM 624 CA ALA A 80 -0.419 62.482 38.875 1.00 0.00 C \nATOM 625 C ALA A 80 0.243 63.810 38.586 1.00 0.00 C \nATOM 626 O ALA A 80 0.106 64.358 37.498 1.00 0.00 O \nATOM 627 CB ALA A 80 0.496 61.338 38.407 1.00 0.00 C \nATOM 628 N LYS A 81 0.979 64.317 39.562 1.00 0.00 N \nATOM 629 CA LYS A 81 1.651 65.580 39.382 1.00 0.00 C \nATOM 630 C LYS A 81 3.146 65.427 39.182 1.00 0.00 C \nATOM 631 O LYS A 81 3.785 64.499 39.689 1.00 0.00 O \nATOM 632 CB LYS A 81 1.389 66.509 40.575 1.00 0.00 C \nATOM 633 CG LYS A 81 1.991 66.061 41.907 1.00 0.00 C \nATOM 634 CD LYS A 81 2.147 67.269 42.851 1.00 0.00 C \nATOM 635 CE LYS A 81 2.608 66.887 44.258 1.00 0.00 C \nATOM 636 NZ LYS A 81 1.526 66.265 45.090 1.00 0.00 N \nATOM 637 N LEU A 82 3.688 66.372 38.434 1.00 0.00 N \nATOM 638 CA LEU A 82 5.100 66.436 38.139 1.00 0.00 C \nATOM 639 C LEU A 82 5.752 67.077 39.360 1.00 0.00 C \nATOM 640 O LEU A 82 5.335 68.143 39.799 1.00 0.00 O \nATOM 641 CB LEU A 82 5.289 67.315 36.908 1.00 0.00 C \nATOM 642 CG LEU A 82 6.583 67.376 36.112 1.00 0.00 C \nATOM 643 CD1 LEU A 82 6.966 65.993 35.615 1.00 0.00 C \nATOM 644 CD2 LEU A 82 6.373 68.332 34.940 1.00 0.00 C \nATOM 645 N LEU A 83 6.754 66.421 39.927 1.00 0.00 N \nATOM 646 CA LEU A 83 7.439 66.967 41.088 1.00 0.00 C \nATOM 647 C LEU A 83 8.415 68.053 40.638 1.00 0.00 C \nATOM 648 O LEU A 83 8.919 68.022 39.513 1.00 0.00 O \nATOM 649 CB LEU A 83 8.211 65.860 41.816 1.00 0.00 C \nATOM 650 CG LEU A 83 7.838 65.479 43.251 1.00 0.00 C \nATOM 651 CD1 LEU A 83 6.437 64.863 43.302 1.00 0.00 C \nATOM 652 CD2 LEU A 83 8.871 64.492 43.780 1.00 0.00 C \nATOM 653 N SER A 84 8.676 69.020 41.514 1.00 0.00 N \nATOM 654 CA SER A 84 9.619 70.089 41.189 1.00 0.00 C \nATOM 655 C SER A 84 11.017 69.557 41.466 1.00 0.00 C \nATOM 656 O SER A 84 11.176 68.570 42.182 1.00 0.00 O \nATOM 657 CB SER A 84 9.370 71.319 42.071 1.00 0.00 C \nATOM 658 OG SER A 84 9.661 71.034 43.433 1.00 0.00 O \nATOM 659 N VAL A 85 12.030 70.205 40.907 1.00 0.00 N \nATOM 660 CA VAL A 85 13.400 69.773 41.143 1.00 0.00 C \nATOM 661 C VAL A 85 13.680 69.689 42.639 1.00 0.00 C \nATOM 662 O VAL A 85 14.179 68.675 43.133 1.00 0.00 O \nATOM 663 CB VAL A 85 14.412 70.741 40.505 1.00 0.00 C \nATOM 664 CG1 VAL A 85 15.833 70.347 40.896 1.00 0.00 C \nATOM 665 CG2 VAL A 85 14.254 70.722 38.987 1.00 0.00 C \nATOM 666 N GLU A 86 13.344 70.751 43.365 1.00 0.00 N \nATOM 667 CA GLU A 86 13.588 70.787 44.801 1.00 0.00 C \nATOM 668 C GLU A 86 12.900 69.643 45.533 1.00 0.00 C \nATOM 669 O GLU A 86 13.509 68.996 46.388 1.00 0.00 O \nATOM 670 CB GLU A 86 13.144 72.132 45.384 1.00 0.00 C \nATOM 671 CG GLU A 86 11.805 72.621 44.871 1.00 0.00 C \nATOM 672 CD GLU A 86 11.945 73.708 43.818 1.00 0.00 C \nATOM 673 OE1 GLU A 86 12.721 73.521 42.849 1.00 0.00 O \nATOM 674 OE2 GLU A 86 11.268 74.753 43.965 1.00 0.00 O \nATOM 675 N GLU A 87 11.635 69.391 45.200 1.00 0.00 N \nATOM 676 CA GLU A 87 10.895 68.307 45.838 1.00 0.00 C \nATOM 677 C GLU A 87 11.608 66.986 45.583 1.00 0.00 C \nATOM 678 O GLU A 87 11.815 66.188 46.500 1.00 0.00 O \nATOM 679 CB GLU A 87 9.467 68.231 45.287 1.00 0.00 C \nATOM 680 CG GLU A 87 8.586 69.408 45.670 1.00 0.00 C \nATOM 681 CD GLU A 87 7.224 69.360 45.001 1.00 0.00 C \nATOM 682 OE1 GLU A 87 7.160 69.433 43.756 1.00 0.00 O \nATOM 683 OE2 GLU A 87 6.216 69.247 45.724 1.00 0.00 O \nATOM 684 N ALA A 88 11.984 66.768 44.327 1.00 0.00 N \nATOM 685 CA ALA A 88 12.671 65.546 43.942 1.00 0.00 C \nATOM 686 C ALA A 88 13.969 65.443 44.718 1.00 0.00 C \nATOM 687 O ALA A 88 14.313 64.373 45.221 1.00 0.00 O \nATOM 688 CB ALA A 88 12.947 65.543 42.445 1.00 0.00 C \nATOM 689 N CYS A 89 14.685 66.560 44.826 1.00 0.00 N \nATOM 690 CA CYS A 89 15.946 66.572 45.554 1.00 0.00 C \nATOM 691 C CYS A 89 15.781 66.134 47.007 1.00 0.00 C \nATOM 692 O CYS A 89 16.594 65.376 47.517 1.00 0.00 O \nATOM 693 CB CYS A 89 16.580 67.964 45.516 1.00 0.00 C \nATOM 694 SG CYS A 89 17.293 68.419 43.931 1.00 0.00 S \nATOM 695 N LYS A 90 14.731 66.610 47.670 1.00 0.00 N \nATOM 696 CA LYS A 90 14.480 66.258 49.071 1.00 0.00 C \nATOM 697 C LYS A 90 14.223 64.754 49.297 1.00 0.00 C \nATOM 698 O LYS A 90 14.393 64.246 50.411 1.00 0.00 O \nATOM 699 CB LYS A 90 13.285 67.053 49.607 1.00 0.00 C \nATOM 700 CG LYS A 90 13.450 68.570 49.609 1.00 0.00 C \nATOM 701 CD LYS A 90 12.109 69.237 49.943 1.00 0.00 C \nATOM 702 CE LYS A 90 12.142 70.760 49.778 1.00 0.00 C \nATOM 703 NZ LYS A 90 10.763 71.347 49.866 1.00 0.00 N \nATOM 704 N LEU A 91 13.811 64.043 48.251 1.00 0.00 N \nATOM 705 CA LEU A 91 13.544 62.608 48.377 1.00 0.00 C \nATOM 706 C LEU A 91 14.802 61.753 48.246 1.00 0.00 C \nATOM 707 O LEU A 91 14.752 60.533 48.407 1.00 0.00 O \nATOM 708 CB LEU A 91 12.525 62.163 47.330 1.00 0.00 C \nATOM 709 CG LEU A 91 11.081 62.617 47.551 1.00 0.00 C \nATOM 710 CD1 LEU A 91 10.261 62.285 46.321 1.00 0.00 C \nATOM 711 CD2 LEU A 91 10.503 61.935 48.792 1.00 0.00 C \nATOM 712 N THR A 92 15.929 62.401 47.966 1.00 0.00 N \nATOM 713 CA THR A 92 17.204 61.710 47.800 1.00 0.00 C \nATOM 714 C THR A 92 17.913 61.348 49.111 1.00 0.00 C \nATOM 715 O THR A 92 18.076 62.193 49.993 1.00 0.00 O \nATOM 716 CB THR A 92 18.164 62.563 46.961 1.00 0.00 C \nATOM 717 OG1 THR A 92 17.583 62.803 45.674 1.00 0.00 O \nATOM 718 CG2 THR A 92 19.496 61.860 46.795 1.00 0.00 C \nATOM 719 N PRO A 93 18.338 60.078 49.252 1.00 0.00 N \nATOM 720 CA PRO A 93 19.036 59.604 50.454 1.00 0.00 C \nATOM 721 C PRO A 93 20.332 60.362 50.686 1.00 0.00 C \nATOM 722 O PRO A 93 21.134 60.532 49.768 1.00 0.00 O \nATOM 723 CB PRO A 93 19.280 58.134 50.147 1.00 0.00 C \nATOM 724 CG PRO A 93 18.044 57.769 49.379 1.00 0.00 C \nATOM 725 CD PRO A 93 17.928 58.937 48.414 1.00 0.00 C \nATOM 726 N PRO A 94 20.556 60.828 51.924 1.00 0.00 N \nATOM 727 CA PRO A 94 21.771 61.576 52.262 1.00 0.00 C \nATOM 728 C PRO A 94 23.055 60.889 51.811 1.00 0.00 C \nATOM 729 O PRO A 94 24.063 61.551 51.569 1.00 0.00 O \nATOM 730 CB PRO A 94 21.671 61.715 53.777 1.00 0.00 C \nATOM 731 CG PRO A 94 20.189 61.865 53.971 1.00 0.00 C \nATOM 732 CD PRO A 94 19.640 60.773 53.077 1.00 0.00 C \nATOM 733 N HIS A 95 23.018 59.568 51.684 1.00 0.00 N \nATOM 734 CA HIS A 95 24.203 58.835 51.254 1.00 0.00 C \nATOM 735 C HIS A 95 24.024 58.116 49.921 1.00 0.00 C \nATOM 736 O HIS A 95 24.719 57.148 49.631 1.00 0.00 O \nATOM 737 CB HIS A 95 24.634 57.844 52.341 1.00 0.00 C \nATOM 738 CG HIS A 95 25.070 58.506 53.611 1.00 0.00 C \nATOM 739 ND1 HIS A 95 24.190 59.163 54.450 1.00 0.00 N \nATOM 740 CD2 HIS A 95 26.295 58.657 54.167 1.00 0.00 C \nATOM 741 CE1 HIS A 95 24.855 59.687 55.462 1.00 0.00 C \nATOM 742 NE2 HIS A 95 26.137 59.395 55.314 1.00 0.00 N \nATOM 743 N SER A 96 23.095 58.600 49.108 1.00 0.00 N \nATOM 744 CA SER A 96 22.856 58.000 47.805 1.00 0.00 C \nATOM 745 C SER A 96 24.140 58.163 46.988 1.00 0.00 C \nATOM 746 O SER A 96 24.882 59.126 47.187 1.00 0.00 O \nATOM 747 CB SER A 96 21.693 58.705 47.111 1.00 0.00 C \nATOM 748 OG SER A 96 21.333 58.037 45.920 1.00 0.00 O \nATOM 749 N ALA A 97 24.404 57.219 46.087 1.00 0.00 N \nATOM 750 CA ALA A 97 25.606 57.260 45.253 1.00 0.00 C \nATOM 751 C ALA A 97 25.783 58.618 44.585 1.00 0.00 C \nATOM 752 O ALA A 97 24.832 59.189 44.039 1.00 0.00 O \nATOM 753 CB ALA A 97 25.549 56.164 44.189 1.00 0.00 C \nATOM 754 N LYS A 98 27.008 59.129 44.625 1.00 0.00 N \nATOM 755 CA LYS A 98 27.310 60.423 44.027 1.00 0.00 C \nATOM 756 C LYS A 98 27.234 60.359 42.499 1.00 0.00 C \nATOM 757 O LYS A 98 27.459 59.306 41.888 1.00 0.00 O \nATOM 758 CB LYS A 98 28.712 60.876 44.445 1.00 0.00 C \nATOM 759 CG LYS A 98 29.829 59.941 43.962 1.00 0.00 C \nATOM 760 CD LYS A 98 31.219 60.517 44.226 1.00 0.00 C \nATOM 761 CE LYS A 98 32.291 59.695 43.516 1.00 0.00 C \nATOM 762 NZ LYS A 98 33.645 60.338 43.545 1.00 0.00 N \nATOM 763 N SER A 99 26.914 61.495 41.890 1.00 0.00 N \nATOM 764 CA SER A 99 26.830 61.596 40.444 1.00 0.00 C \nATOM 765 C SER A 99 28.228 61.517 39.839 1.00 0.00 C \nATOM 766 O SER A 99 29.215 61.802 40.515 1.00 0.00 O \nATOM 767 CB SER A 99 26.207 62.930 40.055 1.00 0.00 C \nATOM 768 OG SER A 99 26.318 63.150 38.662 1.00 0.00 O \nATOM 769 N LYS A 100 28.306 61.133 38.568 1.00 0.00 N \nATOM 770 CA LYS A 100 29.585 61.060 37.872 1.00 0.00 C \nATOM 771 C LYS A 100 29.897 62.446 37.319 1.00 0.00 C \nATOM 772 O LYS A 100 30.972 62.677 36.758 1.00 0.00 O \nATOM 773 CB LYS A 100 29.517 60.062 36.709 1.00 0.00 C \nATOM 774 CG LYS A 100 29.410 58.598 37.132 1.00 0.00 C \nATOM 775 CD LYS A 100 29.344 57.654 35.915 1.00 0.00 C \nATOM 776 CE LYS A 100 29.276 56.188 36.344 1.00 0.00 C \nATOM 777 NZ LYS A 100 29.152 55.238 35.193 1.00 0.00 N \nATOM 778 N PHE A 101 28.965 63.377 37.499 1.00 0.00 N \nATOM 779 CA PHE A 101 29.143 64.716 36.962 1.00 0.00 C \nATOM 780 C PHE A 101 29.531 65.827 37.938 1.00 0.00 C \nATOM 781 O PHE A 101 29.184 66.992 37.739 1.00 0.00 O \nATOM 782 CB PHE A 101 27.889 65.081 36.161 1.00 0.00 C \nATOM 783 CG PHE A 101 27.614 64.123 35.033 1.00 0.00 C \nATOM 784 CD1 PHE A 101 28.395 64.149 33.875 1.00 0.00 C \nATOM 785 CD2 PHE A 101 26.639 63.133 35.158 1.00 0.00 C \nATOM 786 CE1 PHE A 101 28.210 63.199 32.861 1.00 0.00 C \nATOM 787 CE2 PHE A 101 26.447 62.181 34.154 1.00 0.00 C \nATOM 788 CZ PHE A 101 27.235 62.211 33.004 1.00 0.00 C \nATOM 789 N GLY A 102 30.250 65.464 38.996 1.00 0.00 N \nATOM 790 CA GLY A 102 30.720 66.465 39.943 1.00 0.00 C \nATOM 791 C GLY A 102 29.936 66.855 41.188 1.00 0.00 C \nATOM 792 O GLY A 102 30.180 67.930 41.742 1.00 0.00 O \nATOM 793 N TYR A 103 29.003 66.024 41.641 1.00 0.00 N \nATOM 794 CA TYR A 103 28.257 66.360 42.850 1.00 0.00 C \nATOM 795 C TYR A 103 27.675 65.120 43.505 1.00 0.00 C \nATOM 796 O TYR A 103 27.585 64.060 42.881 1.00 0.00 O \nATOM 797 CB TYR A 103 27.152 67.375 42.539 1.00 0.00 C \nATOM 798 CG TYR A 103 26.114 66.882 41.563 1.00 0.00 C \nATOM 799 CD1 TYR A 103 24.955 66.238 42.008 1.00 0.00 C \nATOM 800 CD2 TYR A 103 26.291 67.049 40.191 1.00 0.00 C \nATOM 801 CE1 TYR A 103 24.002 65.779 41.104 1.00 0.00 C \nATOM 802 CE2 TYR A 103 25.344 66.587 39.283 1.00 0.00 C \nATOM 803 CZ TYR A 103 24.206 65.955 39.747 1.00 0.00 C \nATOM 804 OH TYR A 103 23.281 65.487 38.851 1.00 0.00 O \nATOM 805 N GLY A 104 27.282 65.258 44.766 1.00 0.00 N \nATOM 806 CA GLY A 104 26.739 64.127 45.491 1.00 0.00 C \nATOM 807 C GLY A 104 25.333 64.323 46.011 1.00 0.00 C \nATOM 808 O GLY A 104 24.679 65.323 45.717 1.00 0.00 O \nATOM 809 N ALA A 105 24.872 63.344 46.782 1.00 0.00 N \nATOM 810 CA ALA A 105 23.540 63.378 47.360 1.00 0.00 C \nATOM 811 C ALA A 105 23.376 64.594 48.259 1.00 0.00 C \nATOM 812 O ALA A 105 22.302 65.190 48.330 1.00 0.00 O \nATOM 813 CB ALA A 105 23.288 62.107 48.151 1.00 0.00 C \nATOM 814 N LYS A 106 24.451 64.968 48.942 1.00 0.00 N \nATOM 815 CA LYS A 106 24.397 66.112 49.838 1.00 0.00 C \nATOM 816 C LYS A 106 24.158 67.395 49.058 1.00 0.00 C \nATOM 817 O LYS A 106 23.351 68.228 49.464 1.00 0.00 O \nATOM 818 CB LYS A 106 25.696 66.227 50.633 1.00 0.00 C \nATOM 819 CG LYS A 106 25.483 66.612 52.087 1.00 0.00 C \nATOM 820 CD LYS A 106 25.603 65.398 53.011 1.00 0.00 C \nATOM 821 CE LYS A 106 24.697 64.259 52.575 1.00 0.00 C \nATOM 822 NZ LYS A 106 23.281 64.702 52.501 1.00 0.00 N \nATOM 823 N ASP A 107 24.864 67.551 47.942 1.00 0.00 N \nATOM 824 CA ASP A 107 24.720 68.735 47.102 1.00 0.00 C \nATOM 825 C ASP A 107 23.299 68.838 46.568 1.00 0.00 C \nATOM 826 O ASP A 107 22.774 69.932 46.371 1.00 0.00 O \nATOM 827 CB ASP A 107 25.699 68.679 45.926 1.00 0.00 C \nATOM 828 CG ASP A 107 27.143 68.682 46.374 1.00 0.00 C \nATOM 829 OD1 ASP A 107 27.518 69.577 47.162 1.00 0.00 O \nATOM 830 OD2 ASP A 107 27.902 67.797 45.936 1.00 0.00 O \nATOM 831 N VAL A 108 22.688 67.683 46.331 1.00 0.00 N \nATOM 832 CA VAL A 108 21.329 67.610 45.815 1.00 0.00 C \nATOM 833 C VAL A 108 20.329 68.027 46.892 1.00 0.00 C \nATOM 834 O VAL A 108 19.439 68.847 46.652 1.00 0.00 O \nATOM 835 CB VAL A 108 21.020 66.170 45.326 1.00 0.00 C \nATOM 836 CG1 VAL A 108 19.533 66.005 45.031 1.00 0.00 C \nATOM 837 CG2 VAL A 108 21.832 65.881 44.067 1.00 0.00 C \nATOM 838 N ARG A 109 20.488 67.465 48.083 1.00 0.00 N \nATOM 839 CA ARG A 109 19.596 67.781 49.184 1.00 0.00 C \nATOM 840 C ARG A 109 19.695 69.255 49.548 1.00 0.00 C \nATOM 841 O ARG A 109 18.732 69.835 50.041 1.00 0.00 O \nATOM 842 CB ARG A 109 19.923 66.912 50.399 1.00 0.00 C \nATOM 843 CG ARG A 109 19.654 65.438 50.179 1.00 0.00 C \nATOM 844 CD ARG A 109 19.957 64.636 51.421 1.00 0.00 C \nATOM 845 NE ARG A 109 19.191 65.107 52.571 1.00 0.00 N \nATOM 846 CZ ARG A 109 17.873 64.997 52.698 1.00 0.00 C \nATOM 847 NH1 ARG A 109 17.150 64.422 51.744 1.00 0.00 N \nATOM 848 NH2 ARG A 109 17.274 65.475 53.780 1.00 0.00 N \nATOM 849 N ASN A 110 20.853 69.859 49.290 1.00 0.00 N \nATOM 850 CA ASN A 110 21.072 71.273 49.590 1.00 0.00 C \nATOM 851 C ASN A 110 20.656 72.178 48.436 1.00 0.00 C \nATOM 852 O ASN A 110 20.773 73.405 48.519 1.00 0.00 O \nATOM 853 CB ASN A 110 22.549 71.539 49.903 1.00 0.00 C \nATOM 854 CG ASN A 110 23.014 70.850 51.168 1.00 0.00 C \nATOM 855 OD1 ASN A 110 22.251 70.705 52.127 1.00 0.00 O \nATOM 856 ND2 ASN A 110 24.281 70.436 51.188 1.00 0.00 N \nATOM 857 N LEU A 111 20.175 71.572 47.360 1.00 0.00 N \nATOM 858 CA LEU A 111 19.767 72.327 46.188 1.00 0.00 C \nATOM 859 C LEU A 111 20.949 73.136 45.673 1.00 0.00 C \nATOM 860 O LEU A 111 20.777 74.261 45.205 1.00 0.00 O \nATOM 861 CB LEU A 111 18.604 73.266 46.528 1.00 0.00 C \nATOM 862 CG LEU A 111 17.363 72.659 47.193 1.00 0.00 C \nATOM 863 CD1 LEU A 111 16.304 73.735 47.344 1.00 0.00 C \nATOM 864 CD2 LEU A 111 16.817 71.506 46.360 1.00 0.00 C \nATOM 865 N SER A 112 22.151 72.567 45.761 1.00 0.00 N \nATOM 866 CA SER A 112 23.346 73.262 45.290 1.00 0.00 C \nATOM 867 C SER A 112 23.146 73.613 43.822 1.00 0.00 C \nATOM 868 O SER A 112 22.587 72.825 43.060 1.00 0.00 O \nATOM 869 CB SER A 112 24.588 72.380 45.447 1.00 0.00 C \nATOM 870 OG SER A 112 24.777 71.542 44.319 1.00 0.00 O \nATOM 871 N SER A 113 23.611 74.793 43.424 1.00 0.00 N \nATOM 872 CA SER A 113 23.450 75.247 42.047 1.00 0.00 C \nATOM 873 C SER A 113 24.017 74.262 41.036 1.00 0.00 C \nATOM 874 O SER A 113 23.429 74.041 39.985 1.00 0.00 O \nATOM 875 CB SER A 113 24.108 76.620 41.850 1.00 0.00 C \nATOM 876 OG SER A 113 25.519 76.511 41.793 1.00 0.00 O \nATOM 877 N LYS A 114 25.158 73.669 41.358 1.00 0.00 N \nATOM 878 CA LYS A 114 25.784 72.712 40.457 1.00 0.00 C \nATOM 879 C LYS A 114 24.855 71.517 40.236 1.00 0.00 C \nATOM 880 O LYS A 114 24.596 71.129 39.101 1.00 0.00 O \nATOM 881 CB LYS A 114 27.114 72.236 41.036 1.00 0.00 C \nATOM 882 CG LYS A 114 27.945 71.387 40.080 1.00 0.00 C \nATOM 883 CD LYS A 114 29.228 70.899 40.756 1.00 0.00 C \nATOM 884 CE LYS A 114 30.096 70.104 39.795 1.00 0.00 C \nATOM 885 NZ LYS A 114 30.396 70.906 38.580 1.00 0.00 N \nATOM 886 N ALA A 115 24.356 70.942 41.325 1.00 0.00 N \nATOM 887 CA ALA A 115 23.453 69.796 41.241 1.00 0.00 C \nATOM 888 C ALA A 115 22.179 70.158 40.482 1.00 0.00 C \nATOM 889 O ALA A 115 21.812 69.491 39.516 1.00 0.00 O \nATOM 890 CB ALA A 115 23.107 69.294 42.647 1.00 0.00 C \nATOM 891 N VAL A 116 21.510 71.220 40.923 1.00 0.00 N \nATOM 892 CA VAL A 116 20.278 71.678 40.294 1.00 0.00 C \nATOM 893 C VAL A 116 20.458 71.979 38.812 1.00 0.00 C \nATOM 894 O VAL A 116 19.571 71.698 38.000 1.00 0.00 O \nATOM 895 CB VAL A 116 19.741 72.941 40.991 1.00 0.00 C \nATOM 896 CG1 VAL A 116 18.520 73.471 40.253 1.00 0.00 C \nATOM 897 CG2 VAL A 116 19.396 72.622 42.432 1.00 0.00 C \nATOM 898 N ASN A 117 21.594 72.572 38.460 1.00 0.00 N \nATOM 899 CA ASN A 117 21.875 72.892 37.068 1.00 0.00 C \nATOM 900 C ASN A 117 22.017 71.621 36.231 1.00 0.00 C \nATOM 901 O ASN A 117 21.465 71.530 35.138 1.00 0.00 O \nATOM 902 CB ASN A 117 23.146 73.737 36.961 1.00 0.00 C \nATOM 903 CG ASN A 117 22.895 75.199 37.289 1.00 0.00 C \nATOM 904 OD1 ASN A 117 22.010 75.823 36.707 1.00 0.00 O \nATOM 905 ND2 ASN A 117 23.671 75.752 38.219 1.00 0.00 N \nATOM 906 N HIS A 118 22.753 70.638 36.742 1.00 0.00 N \nATOM 907 CA HIS A 118 22.922 69.393 36.001 1.00 0.00 C \nATOM 908 C HIS A 118 21.594 68.654 35.844 1.00 0.00 C \nATOM 909 O HIS A 118 21.272 68.150 34.767 1.00 0.00 O \nATOM 910 CB HIS A 118 23.930 68.486 36.694 1.00 0.00 C \nATOM 911 CG HIS A 118 24.155 67.191 35.977 1.00 0.00 C \nATOM 912 ND1 HIS A 118 23.668 65.988 36.440 1.00 0.00 N \nATOM 913 CD2 HIS A 118 24.781 66.920 34.805 1.00 0.00 C \nATOM 914 CE1 HIS A 118 23.985 65.029 35.586 1.00 0.00 C \nATOM 915 NE2 HIS A 118 24.658 65.567 34.587 1.00 0.00 N \nATOM 916 N ILE A 119 20.827 68.591 36.925 1.00 0.00 N \nATOM 917 CA ILE A 119 19.529 67.926 36.900 1.00 0.00 C \nATOM 918 C ILE A 119 18.646 68.543 35.812 1.00 0.00 C \nATOM 919 O ILE A 119 17.949 67.832 35.073 1.00 0.00 O \nATOM 920 CB ILE A 119 18.846 68.038 38.287 1.00 0.00 C \nATOM 921 CG1 ILE A 119 19.628 67.196 39.302 1.00 0.00 C \nATOM 922 CG2 ILE A 119 17.395 67.588 38.209 1.00 0.00 C \nATOM 923 CD1 ILE A 119 19.240 67.424 40.741 1.00 0.00 C \nATOM 924 N HIS A 120 18.688 69.870 35.705 1.00 0.00 N \nATOM 925 CA HIS A 120 17.894 70.574 34.703 1.00 0.00 C \nATOM 926 C HIS A 120 18.327 70.238 33.286 1.00 0.00 C \nATOM 927 O HIS A 120 17.493 70.194 32.375 1.00 0.00 O \nATOM 928 CB HIS A 120 17.973 72.091 34.926 1.00 0.00 C \nATOM 929 CG HIS A 120 16.943 72.616 35.879 1.00 0.00 C \nATOM 930 ND1 HIS A 120 17.187 73.669 36.736 1.00 0.00 N \nATOM 931 CD2 HIS A 120 15.653 72.257 36.086 1.00 0.00 C \nATOM 932 CE1 HIS A 120 16.094 73.935 37.429 1.00 0.00 C \nATOM 933 NE2 HIS A 120 15.148 73.092 37.053 1.00 0.00 N \nATOM 934 N SER A 121 19.623 70.005 33.087 1.00 0.00 N \nATOM 935 CA SER A 121 20.113 69.670 31.754 1.00 0.00 C \nATOM 936 C SER A 121 19.740 68.221 31.427 1.00 0.00 C \nATOM 937 O SER A 121 19.426 67.890 30.285 1.00 0.00 O \nATOM 938 CB SER A 121 21.630 69.869 31.664 1.00 0.00 C \nATOM 939 OG SER A 121 22.302 69.012 32.565 1.00 0.00 O \nATOM 940 N VAL A 122 19.761 67.358 32.434 1.00 0.00 N \nATOM 941 CA VAL A 122 19.382 65.965 32.211 1.00 0.00 C \nATOM 942 C VAL A 122 17.902 65.925 31.791 1.00 0.00 C \nATOM 943 O VAL A 122 17.535 65.239 30.834 1.00 0.00 O \nATOM 944 CB VAL A 122 19.574 65.135 33.486 1.00 0.00 C \nATOM 945 CG1 VAL A 122 19.056 63.719 33.274 1.00 0.00 C \nATOM 946 CG2 VAL A 122 21.038 65.111 33.859 1.00 0.00 C \nATOM 947 N TRP A 123 17.064 66.676 32.504 1.00 0.00 N \nATOM 948 CA TRP A 123 15.629 66.740 32.210 1.00 0.00 C \nATOM 949 C TRP A 123 15.389 67.226 30.779 1.00 0.00 C \nATOM 950 O TRP A 123 14.597 66.644 30.023 1.00 0.00 O \nATOM 951 CB TRP A 123 14.920 67.668 33.215 1.00 0.00 C \nATOM 952 CG TRP A 123 13.423 67.719 33.036 1.00 0.00 C \nATOM 953 CD1 TRP A 123 12.711 68.657 32.346 1.00 0.00 C \nATOM 954 CD2 TRP A 123 12.466 66.756 33.508 1.00 0.00 C \nATOM 955 NE1 TRP A 123 11.375 68.338 32.355 1.00 0.00 N \nATOM 956 CE2 TRP A 123 11.196 67.180 33.061 1.00 0.00 C \nATOM 957 CE3 TRP A 123 12.562 65.578 34.264 1.00 0.00 C \nATOM 958 CZ2 TRP A 123 10.022 66.463 33.342 1.00 0.00 C \nATOM 959 CZ3 TRP A 123 11.399 64.866 34.543 1.00 0.00 C \nATOM 960 CH2 TRP A 123 10.143 65.314 34.083 1.00 0.00 C \nATOM 961 N LYS A 124 16.084 68.293 30.403 1.00 0.00 N \nATOM 962 CA LYS A 124 15.947 68.837 29.061 1.00 0.00 C \nATOM 963 C LYS A 124 16.341 67.771 28.033 1.00 0.00 C \nATOM 964 O LYS A 124 15.660 67.596 27.024 1.00 0.00 O \nATOM 965 CB LYS A 124 16.826 70.079 28.915 1.00 0.00 C \nATOM 966 CG LYS A 124 16.670 70.791 27.593 1.00 0.00 C \nATOM 967 CD LYS A 124 17.566 72.015 27.534 1.00 0.00 C \nATOM 968 CE LYS A 124 17.425 72.737 26.205 1.00 0.00 C \nATOM 969 NZ LYS A 124 18.214 74.000 26.160 1.00 0.00 N \nATOM 970 N ASP A 125 17.435 67.052 28.285 1.00 0.00 N \nATOM 971 CA ASP A 125 17.856 66.000 27.359 1.00 0.00 C \nATOM 972 C ASP A 125 16.785 64.912 27.259 1.00 0.00 C \nATOM 973 O ASP A 125 16.574 64.342 26.194 1.00 0.00 O \nATOM 974 CB ASP A 125 19.167 65.359 27.801 1.00 0.00 C \nATOM 975 CG ASP A 125 19.679 64.341 26.795 1.00 0.00 C \nATOM 976 OD1 ASP A 125 20.084 64.753 25.693 1.00 0.00 O \nATOM 977 OD2 ASP A 125 19.666 63.126 27.095 1.00 0.00 O \nATOM 978 N LEU A 126 16.127 64.602 28.374 1.00 0.00 N \nATOM 979 CA LEU A 126 15.080 63.590 28.340 1.00 0.00 C \nATOM 980 C LEU A 126 13.952 64.025 27.417 1.00 0.00 C \nATOM 981 O LEU A 126 13.436 63.229 26.631 1.00 0.00 O \nATOM 982 CB LEU A 126 14.524 63.341 29.741 1.00 0.00 C \nATOM 983 CG LEU A 126 15.387 62.456 30.633 1.00 0.00 C \nATOM 984 CD1 LEU A 126 14.875 62.507 32.062 1.00 0.00 C \nATOM 985 CD2 LEU A 126 15.378 61.031 30.069 1.00 0.00 C \nATOM 986 N LEU A 127 13.574 65.297 27.490 1.00 0.00 N \nATOM 987 CA LEU A 127 12.483 65.777 26.649 1.00 0.00 C \nATOM 988 C LEU A 127 12.867 65.864 25.172 1.00 0.00 C \nATOM 989 O LEU A 127 12.034 65.641 24.300 1.00 0.00 O \nATOM 990 CB LEU A 127 11.988 67.147 27.137 1.00 0.00 C \nATOM 991 CG LEU A 127 11.459 67.257 28.577 1.00 0.00 C \nATOM 992 CD1 LEU A 127 11.206 68.727 28.920 1.00 0.00 C \nATOM 993 CD2 LEU A 127 10.180 66.429 28.738 1.00 0.00 C \nATOM 994 N GLU A 128 14.131 66.152 24.889 1.00 0.00 N \nATOM 995 CA GLU A 128 14.591 66.302 23.508 1.00 0.00 C \nATOM 996 C GLU A 128 15.065 65.025 22.821 1.00 0.00 C \nATOM 997 O GLU A 128 15.045 64.932 21.597 1.00 0.00 O \nATOM 998 CB GLU A 128 15.713 67.344 23.465 1.00 0.00 C \nATOM 999 CG GLU A 128 15.300 68.703 24.037 1.00 0.00 C \nATOM 1000 CD GLU A 128 16.471 69.660 24.224 1.00 0.00 C \nATOM 1001 OE1 GLU A 128 16.217 70.811 24.641 1.00 0.00 O \nATOM 1002 OE2 GLU A 128 17.635 69.264 23.961 1.00 0.00 O \nATOM 1003 N ASP A 129 15.477 64.040 23.612 1.00 0.00 N \nATOM 1004 CA ASP A 129 15.991 62.777 23.082 1.00 0.00 C \nATOM 1005 C ASP A 129 15.193 61.607 23.679 1.00 0.00 C \nATOM 1006 O ASP A 129 15.195 61.408 24.883 1.00 0.00 O \nATOM 1007 CB ASP A 129 17.480 62.673 23.452 1.00 0.00 C \nATOM 1008 CG ASP A 129 18.132 61.386 22.965 1.00 0.00 C \nATOM 1009 OD1 ASP A 129 17.474 60.329 22.994 1.00 0.00 O \nATOM 1010 OD2 ASP A 129 19.320 61.433 22.575 1.00 0.00 O \nATOM 1011 N THR A 130 14.514 60.835 22.837 1.00 0.00 N \nATOM 1012 CA THR A 130 13.730 59.708 23.336 1.00 0.00 C \nATOM 1013 C THR A 130 14.242 58.366 22.819 1.00 0.00 C \nATOM 1014 O THR A 130 13.514 57.378 22.850 1.00 0.00 O \nATOM 1015 CB THR A 130 12.227 59.853 22.954 1.00 0.00 C \nATOM 1016 OG1 THR A 130 12.100 59.923 21.533 1.00 0.00 O \nATOM 1017 CG2 THR A 130 11.637 61.127 23.558 1.00 0.00 C \nATOM 1018 N VAL A 131 15.496 58.321 22.367 1.00 0.00 N \nATOM 1019 CA VAL A 131 16.061 57.077 21.823 1.00 0.00 C \nATOM 1020 C VAL A 131 17.425 56.642 22.353 1.00 0.00 C \nATOM 1021 O VAL A 131 17.716 55.450 22.398 1.00 0.00 O \nATOM 1022 CB VAL A 131 16.203 57.132 20.266 1.00 0.00 C \nATOM 1023 CG1 VAL A 131 14.837 57.303 19.610 1.00 0.00 C \nATOM 1024 CG2 VAL A 131 17.145 58.263 19.864 1.00 0.00 C \nATOM 1025 N THR A 132 18.266 57.590 22.742 1.00 0.00 N \nATOM 1026 CA THR A 132 19.600 57.242 23.208 1.00 0.00 C \nATOM 1027 C THR A 132 19.655 56.496 24.528 1.00 0.00 C \nATOM 1028 O THR A 132 19.257 57.016 25.562 1.00 0.00 O \nATOM 1029 CB THR A 132 20.468 58.495 23.306 1.00 0.00 C \nATOM 1030 OG1 THR A 132 20.387 59.207 22.067 1.00 0.00 O \nATOM 1031 CG2 THR A 132 21.937 58.117 23.563 1.00 0.00 C \nATOM 1032 N PRO A 133 20.157 55.252 24.508 1.00 0.00 N \nATOM 1033 CA PRO A 133 20.233 54.501 25.759 1.00 0.00 C \nATOM 1034 C PRO A 133 20.987 55.296 26.814 1.00 0.00 C \nATOM 1035 O PRO A 133 21.981 55.974 26.519 1.00 0.00 O \nATOM 1036 CB PRO A 133 20.978 53.229 25.356 1.00 0.00 C \nATOM 1037 CG PRO A 133 20.506 53.017 23.946 1.00 0.00 C \nATOM 1038 CD PRO A 133 20.609 54.424 23.374 1.00 0.00 C \nATOM 1039 N ILE A 134 20.493 55.217 28.043 1.00 0.00 N \nATOM 1040 CA ILE A 134 21.105 55.900 29.164 1.00 0.00 C \nATOM 1041 C ILE A 134 22.032 54.939 29.884 1.00 0.00 C \nATOM 1042 O ILE A 134 21.699 53.769 30.085 1.00 0.00 O \nATOM 1043 CB ILE A 134 20.013 56.441 30.110 1.00 0.00 C \nATOM 1044 CG1 ILE A 134 19.388 57.692 29.469 1.00 0.00 C \nATOM 1045 CG2 ILE A 134 20.585 56.705 31.502 1.00 0.00 C \nATOM 1046 CD1 ILE A 134 18.234 58.292 30.248 1.00 0.00 C \nATOM 1047 N ASP A 135 23.211 55.424 30.256 1.00 0.00 N \nATOM 1048 CA ASP A 135 24.165 54.566 30.929 1.00 0.00 C \nATOM 1049 C ASP A 135 23.725 54.135 32.326 1.00 0.00 C \nATOM 1050 O ASP A 135 22.947 54.828 33.012 1.00 0.00 O \nATOM 1051 CB ASP A 135 25.534 55.249 31.006 1.00 0.00 C \nATOM 1052 CG ASP A 135 26.604 54.328 31.552 1.00 0.00 C \nATOM 1053 OD1 ASP A 135 26.815 53.239 30.966 1.00 0.00 O \nATOM 1054 OD2 ASP A 135 27.224 54.690 32.574 1.00 0.00 O \nATOM 1055 N THR A 136 24.204 52.962 32.733 1.00 0.00 N \nATOM 1056 CA THR A 136 23.894 52.454 34.057 1.00 0.00 C \nATOM 1057 C THR A 136 25.134 51.809 34.632 1.00 0.00 C \nATOM 1058 O THR A 136 26.022 51.362 33.903 1.00 0.00 O \nATOM 1059 CB THR A 136 22.794 51.376 34.046 1.00 0.00 C \nATOM 1060 OG1 THR A 136 23.236 50.257 33.265 1.00 0.00 O \nATOM 1061 CG2 THR A 136 21.492 51.936 33.481 1.00 0.00 C \nATOM 1062 N THR A 137 25.182 51.769 35.953 1.00 0.00 N \nATOM 1063 CA THR A 137 26.282 51.144 36.644 1.00 0.00 C \nATOM 1064 C THR A 137 25.750 49.810 37.156 1.00 0.00 C \nATOM 1065 O THR A 137 24.611 49.726 37.616 1.00 0.00 O \nATOM 1066 CB THR A 137 26.720 51.975 37.848 1.00 0.00 C \nATOM 1067 OG1 THR A 137 27.100 53.288 37.406 1.00 0.00 O \nATOM 1068 CG2 THR A 137 27.889 51.285 38.570 1.00 0.00 C \nATOM 1069 N ILE A 138 26.555 48.761 37.036 1.00 0.00 N \nATOM 1070 CA ILE A 138 26.162 47.470 37.549 1.00 0.00 C \nATOM 1071 C ILE A 138 27.131 47.149 38.692 1.00 0.00 C \nATOM 1072 O ILE A 138 28.337 47.278 38.540 1.00 0.00 O \nATOM 1073 CB ILE A 138 26.214 46.366 36.461 1.00 0.00 C \nATOM 1074 CG1 ILE A 138 25.774 45.028 37.079 1.00 0.00 C \nATOM 1075 CG2 ILE A 138 27.631 46.275 35.852 1.00 0.00 C \nATOM 1076 CD1 ILE A 138 25.410 43.952 36.074 1.00 0.00 C \nATOM 1077 N MET A 139 26.586 46.771 39.845 1.00 0.00 N \nATOM 1078 CA MET A 139 27.389 46.426 41.016 1.00 0.00 C \nATOM 1079 C MET A 139 26.816 45.159 41.634 1.00 0.00 C \nATOM 1080 O MET A 139 25.640 44.828 41.433 1.00 0.00 O \nATOM 1081 CB MET A 139 27.302 47.522 42.076 1.00 0.00 C \nATOM 1082 CG MET A 139 27.791 48.892 41.661 1.00 0.00 C \nATOM 1083 SD MET A 139 29.573 49.053 41.777 1.00 0.00 S \nATOM 1084 CE MET A 139 29.810 49.242 43.552 1.00 0.00 C \nATOM 1085 N ALA A 140 27.650 44.461 42.396 1.00 0.00 N \nATOM 1086 CA ALA A 140 27.235 43.261 43.098 1.00 0.00 C \nATOM 1087 C ALA A 140 26.877 43.755 44.497 1.00 0.00 C \nATOM 1088 O ALA A 140 27.677 44.446 45.124 1.00 0.00 O \nATOM 1089 CB ALA A 140 28.387 42.273 43.170 1.00 0.00 C \nATOM 1090 N LYS A 141 25.683 43.423 44.983 1.00 0.00 N \nATOM 1091 CA LYS A 141 25.259 43.850 46.323 1.00 0.00 C \nATOM 1092 C LYS A 141 25.989 43.100 47.428 1.00 0.00 C \nATOM 1093 O LYS A 141 26.299 41.920 47.289 1.00 0.00 O \nATOM 1094 CB LYS A 141 23.755 43.629 46.526 1.00 0.00 C \nATOM 1095 CG LYS A 141 22.849 44.435 45.612 1.00 0.00 C \nATOM 1096 CD LYS A 141 21.404 44.381 46.096 1.00 0.00 C \nATOM 1097 CE LYS A 141 20.512 45.280 45.255 1.00 0.00 C \nATOM 1098 NZ LYS A 141 19.141 45.411 45.827 1.00 0.00 N \nATOM 1099 N ASN A 142 26.266 43.788 48.526 1.00 0.00 N \nATOM 1100 CA ASN A 142 26.928 43.154 49.662 1.00 0.00 C \nATOM 1101 C ASN A 142 25.801 42.940 50.658 1.00 0.00 C \nATOM 1102 O ASN A 142 25.366 43.884 51.302 1.00 0.00 O \nATOM 1103 CB ASN A 142 27.979 44.079 50.281 1.00 0.00 C \nATOM 1104 CG ASN A 142 29.037 44.516 49.287 1.00 0.00 C \nATOM 1105 OD1 ASN A 142 29.281 45.716 49.119 1.00 0.00 O \nATOM 1106 ND2 ASN A 142 29.674 43.552 48.625 1.00 0.00 N \nATOM 1107 N GLU A 143 25.319 41.705 50.766 1.00 0.00 N \nATOM 1108 CA GLU A 143 24.223 41.395 51.675 1.00 0.00 C \nATOM 1109 C GLU A 143 24.574 40.224 52.564 1.00 0.00 C \nATOM 1110 O GLU A 143 25.272 39.297 52.140 1.00 0.00 O \nATOM 1111 CB GLU A 143 22.956 41.082 50.869 1.00 0.00 C \nATOM 1112 CG GLU A 143 22.493 42.256 50.031 1.00 0.00 C \nATOM 1113 CD GLU A 143 21.208 41.976 49.283 1.00 0.00 C \nATOM 1114 OE1 GLU A 143 21.217 41.113 48.376 1.00 0.00 O \nATOM 1115 OE2 GLU A 143 20.189 42.625 49.608 1.00 0.00 O \nATOM 1116 N VAL A 144 24.062 40.259 53.790 1.00 0.00 N \nATOM 1117 CA VAL A 144 24.339 39.220 54.782 1.00 0.00 C \nATOM 1118 C VAL A 144 23.262 38.120 54.894 1.00 0.00 C \nATOM 1119 O VAL A 144 22.057 38.400 54.935 1.00 0.00 O \nATOM 1120 CB VAL A 144 24.577 39.893 56.168 1.00 0.00 C \nATOM 1121 CG1 VAL A 144 24.795 38.844 57.263 1.00 0.00 C \nATOM 1122 CG2 VAL A 144 25.793 40.808 56.075 1.00 0.00 C \nATOM 1123 N PHE A 145 23.719 36.868 54.947 1.00 0.00 N \nATOM 1124 CA PHE A 145 22.837 35.710 55.066 1.00 0.00 C \nATOM 1125 C PHE A 145 23.466 34.655 55.969 1.00 0.00 C \nATOM 1126 O PHE A 145 24.610 34.787 56.401 1.00 0.00 O \nATOM 1127 CB PHE A 145 22.602 35.070 53.693 1.00 0.00 C \nATOM 1128 CG PHE A 145 21.961 35.989 52.693 1.00 0.00 C \nATOM 1129 CD1 PHE A 145 20.588 36.211 52.716 1.00 0.00 C \nATOM 1130 CD2 PHE A 145 22.738 36.638 51.731 1.00 0.00 C \nATOM 1131 CE1 PHE A 145 19.980 37.073 51.789 1.00 0.00 C \nATOM 1132 CE2 PHE A 145 22.152 37.501 50.796 1.00 0.00 C \nATOM 1133 CZ PHE A 145 20.765 37.720 50.825 1.00 0.00 C \nATOM 1134 N CYS A 146 22.703 33.605 56.249 1.00 0.00 N \nATOM 1135 CA CYS A 146 23.201 32.488 57.034 1.00 0.00 C \nATOM 1136 C CYS A 146 23.319 31.375 55.993 1.00 0.00 C \nATOM 1137 O CYS A 146 22.471 31.272 55.107 1.00 0.00 O \nATOM 1138 CB CYS A 146 22.210 32.087 58.129 1.00 0.00 C \nATOM 1139 SG CYS A 146 22.676 30.525 58.933 1.00 0.00 S \nATOM 1140 N VAL A 147 24.357 30.550 56.087 1.00 0.00 N \nATOM 1141 CA VAL A 147 24.567 29.493 55.100 1.00 0.00 C \nATOM 1142 C VAL A 147 23.385 28.567 54.874 1.00 0.00 C \nATOM 1143 O VAL A 147 22.555 28.364 55.765 1.00 0.00 O \nATOM 1144 CB VAL A 147 25.809 28.626 55.437 1.00 0.00 C \nATOM 1145 CG1 VAL A 147 27.073 29.488 55.395 1.00 0.00 C \nATOM 1146 CG2 VAL A 147 25.641 27.980 56.803 1.00 0.00 C \nATOM 1147 N GLN A 148 23.337 28.027 53.656 1.00 0.00 N \nATOM 1148 CA GLN A 148 22.310 27.100 53.179 1.00 0.00 C \nATOM 1149 C GLN A 148 21.378 26.547 54.248 1.00 0.00 C \nATOM 1150 O GLN A 148 20.148 26.699 54.090 1.00 0.00 O \nATOM 1151 CB GLN A 148 22.979 25.932 52.449 1.00 0.00 C \nATOM 1152 CG GLN A 148 22.044 24.776 52.162 1.00 0.00 C \nATOM 1153 CD GLN A 148 22.741 23.620 51.474 1.00 0.00 C \nATOM 1154 OE1 GLN A 148 23.712 23.062 51.995 1.00 0.00 O \nATOM 1155 NE2 GLN A 148 22.246 23.251 50.296 1.00 0.00 N \nATOM 1156 N ARG A 154 25.589 28.807 50.280 1.00 0.00 N \nATOM 1157 CA ARG A 154 25.887 30.246 50.010 1.00 0.00 C \nATOM 1158 C ARG A 154 25.306 30.714 48.685 1.00 0.00 C \nATOM 1159 O ARG A 154 25.536 30.099 47.644 1.00 0.00 O \nATOM 1160 CB ARG A 154 27.398 30.490 50.000 1.00 0.00 C \nATOM 1161 CG ARG A 154 28.050 30.337 51.359 1.00 0.00 C \nATOM 1162 CD ARG A 154 29.499 30.801 51.343 1.00 0.00 C \nATOM 1163 NE ARG A 154 29.633 32.167 50.831 1.00 0.00 N \nATOM 1164 CZ ARG A 154 30.696 32.942 51.034 1.00 0.00 C \nATOM 1165 NH1 ARG A 154 31.721 32.486 51.743 1.00 0.00 N \nATOM 1166 NH2 ARG A 154 30.736 34.175 50.531 1.00 0.00 N \nATOM 1167 N LYS A 155 24.550 31.805 48.716 1.00 0.00 N \nATOM 1168 CA LYS A 155 23.979 32.326 47.490 1.00 0.00 C \nATOM 1169 C LYS A 155 24.888 33.415 46.927 1.00 0.00 C \nATOM 1170 O LYS A 155 25.577 34.111 47.676 1.00 0.00 O \nATOM 1171 CB LYS A 155 22.574 32.876 47.750 1.00 0.00 C \nATOM 1172 CG LYS A 155 22.482 33.952 48.814 1.00 0.00 C \nATOM 1173 CD LYS A 155 21.027 34.238 49.179 1.00 0.00 C \nATOM 1174 CE LYS A 155 20.345 32.998 49.728 1.00 0.00 C \nATOM 1175 NZ LYS A 155 18.899 33.233 50.007 1.00 0.00 N \nATOM 1176 N PRO A 156 24.926 33.557 45.595 1.00 0.00 N \nATOM 1177 CA PRO A 156 25.770 34.580 44.974 1.00 0.00 C \nATOM 1178 C PRO A 156 25.151 35.959 45.177 1.00 0.00 C \nATOM 1179 O PRO A 156 23.963 36.066 45.427 1.00 0.00 O \nATOM 1180 CB PRO A 156 25.777 34.171 43.508 1.00 0.00 C \nATOM 1181 CG PRO A 156 24.402 33.632 43.323 1.00 0.00 C \nATOM 1182 CD PRO A 156 24.224 32.767 44.569 1.00 0.00 C \nATOM 1183 N ALA A 157 25.959 37.006 45.061 1.00 0.00 N \nATOM 1184 CA ALA A 157 25.461 38.362 45.234 1.00 0.00 C \nATOM 1185 C ALA A 157 24.401 38.718 44.201 1.00 0.00 C \nATOM 1186 O ALA A 157 24.465 38.276 43.059 1.00 0.00 O \nATOM 1187 CB ALA A 157 26.605 39.340 45.112 1.00 0.00 C \nATOM 1188 N ARG A 158 23.426 39.527 44.600 1.00 0.00 N \nATOM 1189 CA ARG A 158 22.427 39.980 43.645 1.00 0.00 C \nATOM 1190 C ARG A 158 23.086 41.142 42.913 1.00 0.00 C \nATOM 1191 O ARG A 158 24.070 41.710 43.399 1.00 0.00 O \nATOM 1192 CB ARG A 158 21.157 40.460 44.352 1.00 0.00 C \nATOM 1193 CG ARG A 158 20.307 39.332 44.940 1.00 0.00 C \nATOM 1194 CD ARG A 158 18.952 39.856 45.388 1.00 0.00 C \nATOM 1195 NE ARG A 158 19.090 41.001 46.286 1.00 0.00 N \nATOM 1196 CZ ARG A 158 18.066 41.666 46.809 1.00 0.00 C \nATOM 1197 NH1 ARG A 158 16.822 41.299 46.525 1.00 0.00 N \nATOM 1198 NH2 ARG A 158 18.285 42.700 47.613 1.00 0.00 N \nATOM 1199 N LEU A 159 22.551 41.479 41.748 1.00 0.00 N \nATOM 1200 CA LEU A 159 23.066 42.559 40.919 1.00 0.00 C \nATOM 1201 C LEU A 159 22.151 43.789 40.953 1.00 0.00 C \nATOM 1202 O LEU A 159 20.946 43.682 40.706 1.00 0.00 O \nATOM 1203 CB LEU A 159 23.179 42.079 39.475 1.00 0.00 C \nATOM 1204 CG LEU A 159 24.408 41.316 38.984 1.00 0.00 C \nATOM 1205 CD1 LEU A 159 25.048 40.491 40.079 1.00 0.00 C \nATOM 1206 CD2 LEU A 159 23.972 40.460 37.809 1.00 0.00 C \nATOM 1207 N ILE A 160 22.723 44.951 41.251 1.00 0.00 N \nATOM 1208 CA ILE A 160 21.954 46.187 41.289 1.00 0.00 C \nATOM 1209 C ILE A 160 22.387 46.971 40.060 1.00 0.00 C \nATOM 1210 O ILE A 160 23.580 47.074 39.792 1.00 0.00 O \nATOM 1211 CB ILE A 160 22.249 47.002 42.583 1.00 0.00 C \nATOM 1212 CG1 ILE A 160 21.459 48.310 42.587 1.00 0.00 C \nATOM 1213 CG2 ILE A 160 23.712 47.295 42.700 1.00 0.00 C \nATOM 1214 CD1 ILE A 160 19.975 48.135 42.931 1.00 0.00 C \nATOM 1215 N VAL A 161 21.421 47.500 39.312 1.00 0.00 N \nATOM 1216 CA VAL A 161 21.694 48.263 38.086 1.00 0.00 C \nATOM 1217 C VAL A 161 21.002 49.615 38.251 1.00 0.00 C \nATOM 1218 O VAL A 161 19.788 49.679 38.477 1.00 0.00 O \nATOM 1219 CB VAL A 161 21.143 47.503 36.846 1.00 0.00 C \nATOM 1220 CG1 VAL A 161 21.311 48.352 35.574 1.00 0.00 C \nATOM 1221 CG2 VAL A 161 21.881 46.152 36.695 1.00 0.00 C \nATOM 1222 N PHE A 162 21.767 50.699 38.152 1.00 0.00 N \nATOM 1223 CA PHE A 162 21.196 52.020 38.371 1.00 0.00 C \nATOM 1224 C PHE A 162 21.804 53.128 37.521 1.00 0.00 C \nATOM 1225 O PHE A 162 22.976 53.073 37.165 1.00 0.00 O \nATOM 1226 CB PHE A 162 21.342 52.396 39.856 1.00 0.00 C \nATOM 1227 CG PHE A 162 22.787 52.491 40.333 1.00 0.00 C \nATOM 1228 CD1 PHE A 162 23.488 51.351 40.742 1.00 0.00 C \nATOM 1229 CD2 PHE A 162 23.438 53.723 40.383 1.00 0.00 C \nATOM 1230 CE1 PHE A 162 24.827 51.447 41.199 1.00 0.00 C \nATOM 1231 CE2 PHE A 162 24.765 53.829 40.833 1.00 0.00 C \nATOM 1232 CZ PHE A 162 25.459 52.689 41.243 1.00 0.00 C \nATOM 1233 N PRO A 163 20.999 54.150 37.184 1.00 0.00 N \nATOM 1234 CA PRO A 163 21.456 55.281 36.378 1.00 0.00 C \nATOM 1235 C PRO A 163 22.086 56.319 37.295 1.00 0.00 C \nATOM 1236 O PRO A 163 22.016 56.203 38.521 1.00 0.00 O \nATOM 1237 CB PRO A 163 20.167 55.787 35.735 1.00 0.00 C \nATOM 1238 CG PRO A 163 19.172 55.581 36.832 1.00 0.00 C \nATOM 1239 CD PRO A 163 19.541 54.217 37.397 1.00 0.00 C \nATOM 1240 N ASP A 164 22.682 57.341 36.698 1.00 0.00 N \nATOM 1241 CA ASP A 164 23.334 58.400 37.461 1.00 0.00 C \nATOM 1242 C ASP A 164 22.355 59.169 38.337 1.00 0.00 C \nATOM 1243 O ASP A 164 21.180 59.276 38.004 1.00 0.00 O \nATOM 1244 CB ASP A 164 24.016 59.389 36.518 1.00 0.00 C \nATOM 1245 CG ASP A 164 24.865 60.388 37.262 1.00 0.00 C \nATOM 1246 OD1 ASP A 164 25.943 59.982 37.751 1.00 0.00 O \nATOM 1247 OD2 ASP A 164 24.441 61.560 37.381 1.00 0.00 O \nATOM 1248 N LEU A 165 22.857 59.701 39.452 1.00 0.00 N \nATOM 1249 CA LEU A 165 22.063 60.486 40.406 1.00 0.00 C \nATOM 1250 C LEU A 165 21.172 61.537 39.739 1.00 0.00 C \nATOM 1251 O LEU A 165 20.034 61.731 40.148 1.00 0.00 O \nATOM 1252 CB LEU A 165 23.001 61.171 41.410 1.00 0.00 C \nATOM 1253 CG LEU A 165 22.474 62.220 42.398 1.00 0.00 C \nATOM 1254 CD1 LEU A 165 21.342 61.661 43.266 1.00 0.00 C \nATOM 1255 CD2 LEU A 165 23.647 62.662 43.272 1.00 0.00 C \nATOM 1256 N GLY A 166 21.695 62.218 38.719 1.00 0.00 N \nATOM 1257 CA GLY A 166 20.910 63.225 38.022 1.00 0.00 C \nATOM 1258 C GLY A 166 19.693 62.605 37.355 1.00 0.00 C \nATOM 1259 O GLY A 166 18.597 63.178 37.356 1.00 0.00 O \nATOM 1260 N VAL A 167 19.877 61.430 36.766 1.00 0.00 N \nATOM 1261 CA VAL A 167 18.750 60.751 36.122 1.00 0.00 C \nATOM 1262 C VAL A 167 17.749 60.319 37.199 1.00 0.00 C \nATOM 1263 O VAL A 167 16.540 60.399 36.995 1.00 0.00 O \nATOM 1264 CB VAL A 167 19.206 59.499 35.335 1.00 0.00 C \nATOM 1265 CG1 VAL A 167 17.996 58.726 34.842 1.00 0.00 C \nATOM 1266 CG2 VAL A 167 20.062 59.916 34.145 1.00 0.00 C \nATOM 1267 N ARG A 168 18.254 59.856 38.342 1.00 0.00 N \nATOM 1268 CA ARG A 168 17.372 59.429 39.431 1.00 0.00 C \nATOM 1269 C ARG A 168 16.493 60.599 39.918 1.00 0.00 C \nATOM 1270 O ARG A 168 15.305 60.435 40.173 1.00 0.00 O \nATOM 1271 CB ARG A 168 18.195 58.850 40.585 1.00 0.00 C \nATOM 1272 CG ARG A 168 19.022 57.625 40.187 1.00 0.00 C \nATOM 1273 CD ARG A 168 19.376 56.722 41.382 1.00 0.00 C \nATOM 1274 NE ARG A 168 20.215 57.359 42.402 1.00 0.00 N \nATOM 1275 CZ ARG A 168 21.527 57.550 42.303 1.00 0.00 C \nATOM 1276 NH1 ARG A 168 22.187 57.161 41.219 1.00 0.00 N \nATOM 1277 NH2 ARG A 168 22.186 58.113 43.309 1.00 0.00 N \nATOM 1278 N VAL A 169 17.067 61.785 40.047 1.00 0.00 N \nATOM 1279 CA VAL A 169 16.262 62.920 40.480 1.00 0.00 C \nATOM 1280 C VAL A 169 15.172 63.152 39.422 1.00 0.00 C \nATOM 1281 O VAL A 169 14.001 63.378 39.745 1.00 0.00 O \nATOM 1282 CB VAL A 169 17.155 64.174 40.679 1.00 0.00 C \nATOM 1283 CG1 VAL A 169 16.297 65.403 40.966 1.00 0.00 C \nATOM 1284 CG2 VAL A 169 18.115 63.925 41.850 1.00 0.00 C \nATOM 1285 N CYS A 170 15.550 63.059 38.153 1.00 0.00 N \nATOM 1286 CA CYS A 170 14.597 63.227 37.065 1.00 0.00 C \nATOM 1287 C CYS A 170 13.472 62.177 37.111 1.00 0.00 C \nATOM 1288 O CYS A 170 12.318 62.502 36.843 1.00 0.00 O \nATOM 1289 CB CYS A 170 15.329 63.174 35.725 1.00 0.00 C \nATOM 1290 SG CYS A 170 16.162 64.734 35.352 1.00 0.00 S \nATOM 1291 N GLU A 171 13.804 60.928 37.454 1.00 0.00 N \nATOM 1292 CA GLU A 171 12.795 59.877 37.560 1.00 0.00 C \nATOM 1293 C GLU A 171 11.724 60.258 38.598 1.00 0.00 C \nATOM 1294 O GLU A 171 10.534 60.030 38.385 1.00 0.00 O \nATOM 1295 CB GLU A 171 13.418 58.548 38.011 1.00 0.00 C \nATOM 1296 CG GLU A 171 14.314 57.843 37.018 1.00 0.00 C \nATOM 1297 CD GLU A 171 14.729 56.471 37.538 1.00 0.00 C \nATOM 1298 OE1 GLU A 171 13.882 55.547 37.521 1.00 0.00 O \nATOM 1299 OE2 GLU A 171 15.889 56.323 37.986 1.00 0.00 O \nATOM 1300 N LYS A 172 12.157 60.798 39.734 1.00 0.00 N \nATOM 1301 CA LYS A 172 11.230 61.206 40.798 1.00 0.00 C \nATOM 1302 C LYS A 172 10.304 62.308 40.301 1.00 0.00 C \nATOM 1303 O LYS A 172 9.086 62.251 40.508 1.00 0.00 O \nATOM 1304 CB LYS A 172 11.990 61.728 42.020 1.00 0.00 C \nATOM 1305 CG LYS A 172 12.903 60.713 42.694 1.00 0.00 C \nATOM 1306 CD LYS A 172 13.737 61.385 43.772 1.00 0.00 C \nATOM 1307 CE LYS A 172 14.358 60.377 44.738 1.00 0.00 C \nATOM 1308 NZ LYS A 172 15.351 59.460 44.101 1.00 0.00 N \nATOM 1309 N MET A 173 10.873 63.311 39.639 1.00 0.00 N \nATOM 1310 CA MET A 173 10.058 64.408 39.145 1.00 0.00 C \nATOM 1311 C MET A 173 8.944 63.911 38.234 1.00 0.00 C \nATOM 1312 O MET A 173 7.783 64.286 38.387 1.00 0.00 O \nATOM 1313 CB MET A 173 10.920 65.435 38.407 1.00 0.00 C \nATOM 1314 CG MET A 173 11.911 66.162 39.309 1.00 0.00 C \nATOM 1315 SD MET A 173 12.639 67.620 38.525 1.00 0.00 S \nATOM 1316 CE MET A 173 13.823 66.865 37.501 1.00 0.00 C \nATOM 1317 N ALA A 174 9.300 63.046 37.300 1.00 0.00 N \nATOM 1318 CA ALA A 174 8.329 62.520 36.360 1.00 0.00 C \nATOM 1319 C ALA A 174 7.464 61.384 36.881 1.00 0.00 C \nATOM 1320 O ALA A 174 6.323 61.222 36.446 1.00 0.00 O \nATOM 1321 CB ALA A 174 9.041 62.052 35.104 1.00 0.00 C \nATOM 1322 N LEU A 175 7.977 60.612 37.826 1.00 0.00 N \nATOM 1323 CA LEU A 175 7.214 59.446 38.259 1.00 0.00 C \nATOM 1324 C LEU A 175 6.988 59.171 39.734 1.00 0.00 C \nATOM 1325 O LEU A 175 6.352 58.167 40.067 1.00 0.00 O \nATOM 1326 CB LEU A 175 7.848 58.192 37.620 1.00 0.00 C \nATOM 1327 CG LEU A 175 7.675 58.050 36.103 1.00 0.00 C \nATOM 1328 CD1 LEU A 175 8.796 57.222 35.499 1.00 0.00 C \nATOM 1329 CD2 LEU A 175 6.324 57.400 35.816 1.00 0.00 C \nATOM 1330 N TYR A 176 7.508 60.009 40.625 1.00 0.00 N \nATOM 1331 CA TYR A 176 7.320 59.732 42.046 1.00 0.00 C \nATOM 1332 C TYR A 176 5.845 59.678 42.429 1.00 0.00 C \nATOM 1333 O TYR A 176 5.406 58.786 43.160 1.00 0.00 O \nATOM 1334 CB TYR A 176 8.014 60.784 42.915 1.00 0.00 C \nATOM 1335 CG TYR A 176 7.867 60.490 44.388 1.00 0.00 C \nATOM 1336 CD1 TYR A 176 8.565 59.433 44.978 1.00 0.00 C \nATOM 1337 CD2 TYR A 176 6.997 61.234 45.183 1.00 0.00 C \nATOM 1338 CE1 TYR A 176 8.399 59.123 46.324 1.00 0.00 C \nATOM 1339 CE2 TYR A 176 6.822 60.931 46.524 1.00 0.00 C \nATOM 1340 CZ TYR A 176 7.523 59.875 47.089 1.00 0.00 C \nATOM 1341 OH TYR A 176 7.336 59.567 48.418 1.00 0.00 O \nATOM 1342 N ASP A 177 5.081 60.637 41.927 1.00 0.00 N \nATOM 1343 CA ASP A 177 3.669 60.708 42.254 1.00 0.00 C \nATOM 1344 C ASP A 177 2.932 59.519 41.649 1.00 0.00 C \nATOM 1345 O ASP A 177 2.053 58.926 42.283 1.00 0.00 O \nATOM 1346 CB ASP A 177 3.088 62.034 41.760 1.00 0.00 C \nATOM 1347 CG ASP A 177 1.786 62.386 42.444 1.00 0.00 C \nATOM 1348 OD1 ASP A 177 1.584 61.957 43.599 1.00 0.00 O \nATOM 1349 OD2 ASP A 177 0.966 63.101 41.834 1.00 0.00 O \nATOM 1350 N VAL A 178 3.331 59.145 40.438 1.00 0.00 N \nATOM 1351 CA VAL A 178 2.723 58.016 39.754 1.00 0.00 C \nATOM 1352 C VAL A 178 2.939 56.693 40.494 1.00 0.00 C \nATOM 1353 O VAL A 178 1.977 55.984 40.791 1.00 0.00 O \nATOM 1354 CB VAL A 178 3.275 57.883 38.302 1.00 0.00 C \nATOM 1355 CG1 VAL A 178 2.895 56.526 37.706 1.00 0.00 C \nATOM 1356 CG2 VAL A 178 2.709 58.986 37.443 1.00 0.00 C \nATOM 1357 N VAL A 179 4.190 56.356 40.801 1.00 0.00 N \nATOM 1358 CA VAL A 179 4.454 55.095 41.476 1.00 0.00 C \nATOM 1359 C VAL A 179 3.946 55.099 42.909 1.00 0.00 C \nATOM 1360 O VAL A 179 3.758 54.046 43.515 1.00 0.00 O \nATOM 1361 CB VAL A 179 5.976 54.729 41.466 1.00 0.00 C \nATOM 1362 CG1 VAL A 179 6.472 54.641 40.029 1.00 0.00 C \nATOM 1363 CG2 VAL A 179 6.779 55.741 42.259 1.00 0.00 C \nATOM 1364 N SER A 180 3.715 56.286 43.453 1.00 0.00 N \nATOM 1365 CA SER A 180 3.227 56.397 44.824 1.00 0.00 C \nATOM 1366 C SER A 180 1.714 56.270 44.890 1.00 0.00 C \nATOM 1367 O SER A 180 1.167 55.933 45.933 1.00 0.00 O \nATOM 1368 CB SER A 180 3.630 57.741 45.434 1.00 0.00 C \nATOM 1369 OG SER A 180 5.034 57.839 45.577 1.00 0.00 O \nATOM 1370 N THR A 181 1.026 56.533 43.785 1.00 0.00 N \nATOM 1371 CA THR A 181 -0.420 56.469 43.816 1.00 0.00 C \nATOM 1372 C THR A 181 -1.104 55.463 42.893 1.00 0.00 C \nATOM 1373 O THR A 181 -2.115 54.879 43.269 1.00 0.00 O \nATOM 1374 CB THR A 181 -1.015 57.874 43.580 1.00 0.00 C \nATOM 1375 OG1 THR A 181 -1.050 58.163 42.175 1.00 0.00 O \nATOM 1376 CG2 THR A 181 -0.165 58.929 44.273 1.00 0.00 C \nATOM 1377 N LEU A 182 -0.556 55.270 41.697 1.00 0.00 N \nATOM 1378 CA LEU A 182 -1.152 54.368 40.698 1.00 0.00 C \nATOM 1379 C LEU A 182 -1.441 52.921 41.120 1.00 0.00 C \nATOM 1380 O LEU A 182 -2.535 52.407 40.882 1.00 0.00 O \nATOM 1381 CB LEU A 182 -0.287 54.360 39.416 1.00 0.00 C \nATOM 1382 CG LEU A 182 -0.713 53.521 38.191 1.00 0.00 C \nATOM 1383 CD1 LEU A 182 0.169 53.868 37.001 1.00 0.00 C \nATOM 1384 CD2 LEU A 182 -0.582 52.049 38.491 1.00 0.00 C \nATOM 1385 N PRO A 183 -0.463 52.245 41.744 1.00 0.00 N \nATOM 1386 CA PRO A 183 -0.615 50.851 42.183 1.00 0.00 C \nATOM 1387 C PRO A 183 -1.872 50.533 42.988 1.00 0.00 C \nATOM 1388 O PRO A 183 -2.572 49.561 42.700 1.00 0.00 O \nATOM 1389 CB PRO A 183 0.656 50.599 42.996 1.00 0.00 C \nATOM 1390 CG PRO A 183 1.646 51.532 42.373 1.00 0.00 C \nATOM 1391 CD PRO A 183 0.830 52.792 42.195 1.00 0.00 C \nATOM 1392 N GLN A 184 -2.153 51.342 44.008 1.00 0.00 N \nATOM 1393 CA GLN A 184 -3.332 51.097 44.831 1.00 0.00 C \nATOM 1394 C GLN A 184 -4.622 51.248 44.032 1.00 0.00 C \nATOM 1395 O GLN A 184 -5.575 50.484 44.212 1.00 0.00 O \nATOM 1396 CB GLN A 184 -3.357 52.032 46.036 1.00 0.00 C \nATOM 1397 CG GLN A 184 -4.446 51.674 47.058 1.00 0.00 C \nATOM 1398 CD GLN A 184 -5.803 52.280 46.723 1.00 0.00 C \nATOM 1399 OE1 GLN A 184 -5.893 53.453 46.353 1.00 0.00 O \nATOM 1400 NE2 GLN A 184 -6.866 51.490 46.869 1.00 0.00 N \nATOM 1401 N VAL A 185 -4.658 52.228 43.142 1.00 0.00 N \nATOM 1402 CA VAL A 185 -5.850 52.426 42.341 1.00 0.00 C \nATOM 1403 C VAL A 185 -6.075 51.275 41.366 1.00 0.00 C \nATOM 1404 O VAL A 185 -7.199 50.793 41.206 1.00 0.00 O \nATOM 1405 CB VAL A 185 -5.776 53.747 41.563 1.00 0.00 C \nATOM 1406 CG1 VAL A 185 -6.926 53.842 40.556 1.00 0.00 C \nATOM 1407 CG2 VAL A 185 -5.849 54.901 42.534 1.00 0.00 C \nATOM 1408 N VAL A 186 -5.009 50.816 40.722 1.00 0.00 N \nATOM 1409 CA VAL A 186 -5.153 49.735 39.756 1.00 0.00 C \nATOM 1410 C VAL A 186 -5.440 48.371 40.389 1.00 0.00 C \nATOM 1411 O VAL A 186 -6.249 47.592 39.871 1.00 0.00 O \nATOM 1412 CB VAL A 186 -3.886 49.643 38.863 1.00 0.00 C \nATOM 1413 CG1 VAL A 186 -3.925 48.386 37.990 1.00 0.00 C \nATOM 1414 CG2 VAL A 186 -3.785 50.893 38.003 1.00 0.00 C \nATOM 1415 N MET A 187 -4.806 48.096 41.523 1.00 0.00 N \nATOM 1416 CA MET A 187 -4.946 46.793 42.167 1.00 0.00 C \nATOM 1417 C MET A 187 -5.790 46.739 43.440 1.00 0.00 C \nATOM 1418 O MET A 187 -6.017 45.667 43.987 1.00 0.00 O \nATOM 1419 CB MET A 187 -3.542 46.227 42.418 1.00 0.00 C \nATOM 1420 CG MET A 187 -2.767 45.984 41.108 1.00 0.00 C \nATOM 1421 SD MET A 187 -0.943 45.829 41.254 1.00 0.00 S \nATOM 1422 CE MET A 187 -0.886 44.778 42.738 1.00 0.00 C \nATOM 1423 N GLY A 188 -6.268 47.890 43.898 1.00 0.00 N \nATOM 1424 CA GLY A 188 -7.076 47.912 45.106 1.00 0.00 C \nATOM 1425 C GLY A 188 -6.438 47.191 46.282 1.00 0.00 C \nATOM 1426 O GLY A 188 -5.225 47.268 46.498 1.00 0.00 O \nATOM 1427 N SER A 189 -7.263 46.470 47.034 1.00 0.00 N \nATOM 1428 CA SER A 189 -6.809 45.751 48.216 1.00 0.00 C \nATOM 1429 C SER A 189 -5.669 44.776 47.957 1.00 0.00 C \nATOM 1430 O SER A 189 -4.980 44.370 48.903 1.00 0.00 O \nATOM 1431 CB SER A 189 -7.988 45.008 48.853 1.00 0.00 C \nATOM 1432 OG SER A 189 -8.540 44.070 47.941 1.00 0.00 O \nATOM 1433 N SER A 190 -5.456 44.407 46.693 1.00 0.00 N \nATOM 1434 CA SER A 190 -4.386 43.466 46.344 1.00 0.00 C \nATOM 1435 C SER A 190 -2.977 44.061 46.384 1.00 0.00 C \nATOM 1436 O SER A 190 -1.984 43.326 46.417 1.00 0.00 O \nATOM 1437 CB SER A 190 -4.641 42.849 44.966 1.00 0.00 C \nATOM 1438 OG SER A 190 -5.781 42.003 44.994 1.00 0.00 O \nATOM 1439 N TYR A 191 -2.876 45.382 46.390 1.00 0.00 N \nATOM 1440 CA TYR A 191 -1.559 46.010 46.438 1.00 0.00 C \nATOM 1441 C TYR A 191 -0.993 45.893 47.854 1.00 0.00 C \nATOM 1442 O TYR A 191 -1.499 46.525 48.776 1.00 0.00 O \nATOM 1443 CB TYR A 191 -1.664 47.481 46.031 1.00 0.00 C \nATOM 1444 CG TYR A 191 -0.330 48.187 46.017 1.00 0.00 C \nATOM 1445 CD1 TYR A 191 0.758 47.643 45.336 1.00 0.00 C \nATOM 1446 CD2 TYR A 191 -0.166 49.414 46.659 1.00 0.00 C \nATOM 1447 CE1 TYR A 191 1.984 48.312 45.288 1.00 0.00 C \nATOM 1448 CE2 TYR A 191 1.049 50.094 46.618 1.00 0.00 C \nATOM 1449 CZ TYR A 191 2.118 49.542 45.931 1.00 0.00 C \nATOM 1450 OH TYR A 191 3.310 50.228 45.878 1.00 0.00 O \nATOM 1451 N GLY A 192 0.064 45.106 48.030 1.00 0.00 N \nATOM 1452 CA GLY A 192 0.603 44.919 49.368 1.00 0.00 C \nATOM 1453 C GLY A 192 1.292 46.063 50.107 1.00 0.00 C \nATOM 1454 O GLY A 192 1.207 46.146 51.333 1.00 0.00 O \nATOM 1455 N PHE A 193 1.969 46.948 49.390 1.00 0.00 N \nATOM 1456 CA PHE A 193 2.703 48.022 50.049 1.00 0.00 C \nATOM 1457 C PHE A 193 1.874 49.103 50.735 1.00 0.00 C \nATOM 1458 O PHE A 193 2.437 50.053 51.299 1.00 0.00 O \nATOM 1459 CB PHE A 193 3.677 48.665 49.061 1.00 0.00 C \nATOM 1460 CG PHE A 193 4.782 47.745 48.619 1.00 0.00 C \nATOM 1461 CD1 PHE A 193 5.614 47.129 49.561 1.00 0.00 C \nATOM 1462 CD2 PHE A 193 4.981 47.477 47.264 1.00 0.00 C \nATOM 1463 CE1 PHE A 193 6.636 46.245 49.154 1.00 0.00 C \nATOM 1464 CE2 PHE A 193 5.996 46.603 46.843 1.00 0.00 C \nATOM 1465 CZ PHE A 193 6.826 45.982 47.791 1.00 0.00 C \nATOM 1466 N GLN A 194 0.550 48.970 50.694 1.00 0.00 N \nATOM 1467 CA GLN A 194 -0.324 49.953 51.334 1.00 0.00 C \nATOM 1468 C GLN A 194 -0.562 49.542 52.780 1.00 0.00 C \nATOM 1469 O GLN A 194 -1.060 50.330 53.585 1.00 0.00 O \nATOM 1470 CB GLN A 194 -1.679 50.038 50.612 1.00 0.00 C \nATOM 1471 CG GLN A 194 -2.554 48.791 50.807 1.00 0.00 C \nATOM 1472 CD GLN A 194 -3.815 48.805 49.950 1.00 0.00 C \nATOM 1473 OE1 GLN A 194 -4.710 49.630 50.147 1.00 0.00 O \nATOM 1474 NE2 GLN A 194 -3.884 47.893 48.991 1.00 0.00 N \nATOM 1475 N TYR A 195 -0.195 48.306 53.105 1.00 0.00 N \nATOM 1476 CA TYR A 195 -0.405 47.782 54.448 1.00 0.00 C \nATOM 1477 C TYR A 195 0.793 47.798 55.387 1.00 0.00 C \nATOM 1478 O TYR A 195 1.942 47.659 54.969 1.00 0.00 O \nATOM 1479 CB TYR A 195 -0.903 46.323 54.381 1.00 0.00 C \nATOM 1480 CG TYR A 195 -2.124 46.091 53.512 1.00 0.00 C \nATOM 1481 CD1 TYR A 195 -3.330 46.738 53.782 1.00 0.00 C \nATOM 1482 CD2 TYR A 195 -2.077 45.211 52.433 1.00 0.00 C \nATOM 1483 CE1 TYR A 195 -4.462 46.514 53.001 1.00 0.00 C \nATOM 1484 CE2 TYR A 195 -3.212 44.971 51.640 1.00 0.00 C \nATOM 1485 CZ TYR A 195 -4.401 45.626 51.931 1.00 0.00 C \nATOM 1486 OH TYR A 195 -5.526 45.391 51.161 1.00 0.00 O \nATOM 1487 N SER A 196 0.497 47.974 56.671 1.00 0.00 N \nATOM 1488 CA SER A 196 1.501 47.892 57.714 1.00 0.00 C \nATOM 1489 C SER A 196 1.462 46.381 57.988 1.00 0.00 C \nATOM 1490 O SER A 196 0.553 45.698 57.512 1.00 0.00 O \nATOM 1491 CB SER A 196 1.036 48.657 58.956 1.00 0.00 C \nATOM 1492 OG SER A 196 -0.208 48.161 59.411 1.00 0.00 O \nATOM 1493 N PRO A 197 2.433 45.834 58.743 1.00 0.00 N \nATOM 1494 CA PRO A 197 2.397 44.389 59.007 1.00 0.00 C \nATOM 1495 C PRO A 197 1.046 43.930 59.554 1.00 0.00 C \nATOM 1496 O PRO A 197 0.533 42.881 59.162 1.00 0.00 O \nATOM 1497 CB PRO A 197 3.509 44.190 60.036 1.00 0.00 C \nATOM 1498 CG PRO A 197 4.491 45.261 59.672 1.00 0.00 C \nATOM 1499 CD PRO A 197 3.598 46.460 59.393 1.00 0.00 C \nATOM 1500 N GLY A 198 0.477 44.710 60.468 1.00 0.00 N \nATOM 1501 CA GLY A 198 -0.802 44.344 61.055 1.00 0.00 C \nATOM 1502 C GLY A 198 -1.931 44.320 60.043 1.00 0.00 C \nATOM 1503 O GLY A 198 -2.760 43.403 60.035 1.00 0.00 O \nATOM 1504 N GLN A 199 -1.974 45.324 59.180 1.00 0.00 N \nATOM 1505 CA GLN A 199 -3.022 45.368 58.170 1.00 0.00 C \nATOM 1506 C GLN A 199 -2.855 44.239 57.160 1.00 0.00 C \nATOM 1507 O GLN A 199 -3.837 43.755 56.591 1.00 0.00 O \nATOM 1508 CB GLN A 199 -3.007 46.713 57.464 1.00 0.00 C \nATOM 1509 CG GLN A 199 -3.193 47.854 58.428 1.00 0.00 C \nATOM 1510 CD GLN A 199 -2.951 49.193 57.784 1.00 0.00 C \nATOM 1511 OE1 GLN A 199 -1.967 49.379 57.063 1.00 0.00 O \nATOM 1512 NE2 GLN A 199 -3.841 50.143 58.047 1.00 0.00 N \nATOM 1513 N ARG A 200 -1.612 43.817 56.936 1.00 0.00 N \nATOM 1514 CA ARG A 200 -1.353 42.734 55.991 1.00 0.00 C \nATOM 1515 C ARG A 200 -1.987 41.470 56.564 1.00 0.00 C \nATOM 1516 O ARG A 200 -2.731 40.753 55.884 1.00 0.00 O \nATOM 1517 CB ARG A 200 0.155 42.525 55.807 1.00 0.00 C \nATOM 1518 CG ARG A 200 0.500 41.570 54.680 1.00 0.00 C \nATOM 1519 CD ARG A 200 2.013 41.385 54.566 1.00 0.00 C \nATOM 1520 NE ARG A 200 2.340 40.253 53.702 1.00 0.00 N \nATOM 1521 CZ ARG A 200 2.384 40.304 52.373 1.00 0.00 C \nATOM 1522 NH1 ARG A 200 2.130 41.443 51.744 1.00 0.00 N \nATOM 1523 NH2 ARG A 200 2.668 39.207 51.675 1.00 0.00 N \nATOM 1524 N VAL A 201 -1.689 41.204 57.829 1.00 0.00 N \nATOM 1525 CA VAL A 201 -2.230 40.035 58.514 1.00 0.00 C \nATOM 1526 C VAL A 201 -3.754 40.076 58.434 1.00 0.00 C \nATOM 1527 O VAL A 201 -4.413 39.077 58.107 1.00 0.00 O \nATOM 1528 CB VAL A 201 -1.806 40.030 59.998 1.00 0.00 C \nATOM 1529 CG1 VAL A 201 -2.555 38.940 60.741 1.00 0.00 C \nATOM 1530 CG2 VAL A 201 -0.296 39.827 60.097 1.00 0.00 C \nATOM 1531 N GLU A 202 -4.293 41.252 58.727 1.00 0.00 N \nATOM 1532 CA GLU A 202 -5.727 41.488 58.696 1.00 0.00 C \nATOM 1533 C GLU A 202 -6.312 41.160 57.322 1.00 0.00 C \nATOM 1534 O GLU A 202 -7.333 40.466 57.223 1.00 0.00 O \nATOM 1535 CB GLU A 202 -6.020 42.946 59.050 1.00 0.00 C \nATOM 1536 CG GLU A 202 -7.498 43.292 59.037 1.00 0.00 C \nATOM 1537 CD GLU A 202 -7.771 44.669 59.593 1.00 0.00 C \nATOM 1538 OE1 GLU A 202 -7.329 45.669 58.982 1.00 0.00 O \nATOM 1539 OE2 GLU A 202 -8.425 44.750 60.654 1.00 0.00 O \nATOM 1540 N PHE A 203 -5.669 41.651 56.263 1.00 0.00 N \nATOM 1541 CA PHE A 203 -6.159 41.376 54.920 1.00 0.00 C \nATOM 1542 C PHE A 203 -6.095 39.890 54.631 1.00 0.00 C \nATOM 1543 O PHE A 203 -7.030 39.316 54.078 1.00 0.00 O \nATOM 1544 CB PHE A 203 -5.341 42.114 53.861 1.00 0.00 C \nATOM 1545 CG PHE A 203 -5.815 41.855 52.455 1.00 0.00 C \nATOM 1546 CD1 PHE A 203 -7.063 42.309 52.036 1.00 0.00 C \nATOM 1547 CD2 PHE A 203 -5.026 41.144 51.558 1.00 0.00 C \nATOM 1548 CE1 PHE A 203 -7.519 42.052 50.752 1.00 0.00 C \nATOM 1549 CE2 PHE A 203 -5.475 40.882 50.270 1.00 0.00 C \nATOM 1550 CZ PHE A 203 -6.722 41.340 49.866 1.00 0.00 C \nATOM 1551 N LEU A 204 -4.985 39.265 55.007 1.00 0.00 N \nATOM 1552 CA LEU A 204 -4.813 37.839 54.763 1.00 0.00 C \nATOM 1553 C LEU A 204 -5.843 36.997 55.506 1.00 0.00 C \nATOM 1554 O LEU A 204 -6.424 36.067 54.937 1.00 0.00 O \nATOM 1555 CB LEU A 204 -3.392 37.403 55.151 1.00 0.00 C \nATOM 1556 CG LEU A 204 -2.286 37.814 54.165 1.00 0.00 C \nATOM 1557 CD1 LEU A 204 -0.925 37.640 54.818 1.00 0.00 C \nATOM 1558 CD2 LEU A 204 -2.384 36.976 52.886 1.00 0.00 C \nATOM 1559 N VAL A 205 -6.064 37.323 56.776 1.00 0.00 N \nATOM 1560 CA VAL A 205 -7.021 36.577 57.588 1.00 0.00 C \nATOM 1561 C VAL A 205 -8.447 36.753 57.073 1.00 0.00 C \nATOM 1562 O VAL A 205 -9.177 35.780 56.938 1.00 0.00 O \nATOM 1563 CB VAL A 205 -6.964 37.008 59.077 1.00 0.00 C \nATOM 1564 CG1 VAL A 205 -8.028 36.249 59.884 1.00 0.00 C \nATOM 1565 CG2 VAL A 205 -5.586 36.726 59.637 1.00 0.00 C \nATOM 1566 N ASN A 206 -8.838 37.988 56.782 1.00 0.00 N \nATOM 1567 CA ASN A 206 -10.176 38.234 56.269 1.00 0.00 C \nATOM 1568 C ASN A 206 -10.378 37.558 54.923 1.00 0.00 C \nATOM 1569 O ASN A 206 -11.444 37.001 54.652 1.00 0.00 O \nATOM 1570 CB ASN A 206 -10.445 39.736 56.138 1.00 0.00 C \nATOM 1571 CG ASN A 206 -10.642 40.399 57.479 1.00 0.00 C \nATOM 1572 OD1 ASN A 206 -11.040 39.745 58.433 1.00 0.00 O \nATOM 1573 ND2 ASN A 206 -10.382 41.703 57.558 1.00 0.00 N \nATOM 1574 N THR A 207 -9.358 37.604 54.073 1.00 0.00 N \nATOM 1575 CA THR A 207 -9.465 36.978 52.763 1.00 0.00 C \nATOM 1576 C THR A 207 -9.595 35.478 52.950 1.00 0.00 C \nATOM 1577 O THR A 207 -10.419 34.822 52.313 1.00 0.00 O \nATOM 1578 CB THR A 207 -8.224 37.256 51.895 1.00 0.00 C \nATOM 1579 OG1 THR A 207 -8.146 38.659 51.609 1.00 0.00 O \nATOM 1580 CG2 THR A 207 -8.296 36.468 50.592 1.00 0.00 C \nATOM 1581 N TRP A 208 -8.770 34.935 53.829 1.00 0.00 N \nATOM 1582 CA TRP A 208 -8.800 33.514 54.093 1.00 0.00 C \nATOM 1583 C TRP A 208 -10.172 33.086 54.614 1.00 0.00 C \nATOM 1584 O TRP A 208 -10.676 32.026 54.240 1.00 0.00 O \nATOM 1585 CB TRP A 208 -7.704 33.171 55.097 1.00 0.00 C \nATOM 1586 CG TRP A 208 -7.522 31.721 55.318 1.00 0.00 C \nATOM 1587 CD1 TRP A 208 -8.064 30.973 56.316 1.00 0.00 C \nATOM 1588 CD2 TRP A 208 -6.732 30.832 54.525 1.00 0.00 C \nATOM 1589 NE1 TRP A 208 -7.657 29.669 56.202 1.00 0.00 N \nATOM 1590 CE2 TRP A 208 -6.840 29.552 55.113 1.00 0.00 C \nATOM 1591 CE3 TRP A 208 -5.946 30.992 53.376 1.00 0.00 C \nATOM 1592 CZ2 TRP A 208 -6.184 28.431 54.587 1.00 0.00 C \nATOM 1593 CZ3 TRP A 208 -5.291 29.870 52.851 1.00 0.00 C \nATOM 1594 CH2 TRP A 208 -5.417 28.608 53.461 1.00 0.00 C \nATOM 1595 N LYS A 209 -10.768 33.926 55.458 1.00 0.00 N \nATOM 1596 CA LYS A 209 -12.085 33.656 56.041 1.00 0.00 C \nATOM 1597 C LYS A 209 -13.240 33.881 55.061 1.00 0.00 C \nATOM 1598 O LYS A 209 -14.354 33.418 55.288 1.00 0.00 O \nATOM 1599 CB LYS A 209 -12.330 34.548 57.261 1.00 0.00 C \nATOM 1600 CG LYS A 209 -11.497 34.239 58.494 1.00 0.00 C \nATOM 1601 CD LYS A 209 -11.903 35.200 59.595 1.00 0.00 C \nATOM 1602 CE LYS A 209 -11.113 34.996 60.866 1.00 0.00 C \nATOM 1603 NZ LYS A 209 -11.504 36.028 61.872 1.00 0.00 N \nATOM 1604 N SER A 210 -12.977 34.595 53.976 1.00 0.00 N \nATOM 1605 CA SER A 210 -14.024 34.873 53.003 1.00 0.00 C \nATOM 1606 C SER A 210 -14.289 33.712 52.055 1.00 0.00 C \nATOM 1607 O SER A 210 -15.218 33.776 51.250 1.00 0.00 O \nATOM 1608 CB SER A 210 -13.667 36.114 52.188 1.00 0.00 C \nATOM 1609 OG SER A 210 -12.593 35.828 51.308 1.00 0.00 O \nATOM 1610 N LYS A 211 -13.480 32.658 52.134 1.00 0.00 N \nATOM 1611 CA LYS A 211 -13.669 31.501 51.260 1.00 0.00 C \nATOM 1612 C LYS A 211 -14.363 30.392 52.047 1.00 0.00 C \nATOM 1613 O LYS A 211 -14.181 30.286 53.259 1.00 0.00 O \nATOM 1614 CB LYS A 211 -12.324 30.968 50.739 1.00 0.00 C \nATOM 1615 CG LYS A 211 -11.316 32.027 50.293 1.00 0.00 C \nATOM 1616 CD LYS A 211 -11.853 32.930 49.198 1.00 0.00 C \nATOM 1617 CE LYS A 211 -10.811 33.980 48.807 1.00 0.00 C \nATOM 1618 NZ LYS A 211 -11.339 34.971 47.821 1.00 0.00 N \nATOM 1619 N LYS A 212 -15.147 29.565 51.358 1.00 0.00 N \nATOM 1620 CA LYS A 212 -15.846 28.465 52.016 1.00 0.00 C \nATOM 1621 C LYS A 212 -14.817 27.411 52.407 1.00 0.00 C \nATOM 1622 O LYS A 212 -14.832 26.896 53.524 1.00 0.00 O \nATOM 1623 CB LYS A 212 -16.899 27.865 51.077 1.00 0.00 C \nATOM 1624 CG LYS A 212 -17.945 28.870 50.610 1.00 0.00 C \nATOM 1625 CD LYS A 212 -19.083 28.193 49.856 1.00 0.00 C \nATOM 1626 CE LYS A 212 -20.092 29.206 49.337 1.00 0.00 C \nATOM 1627 NZ LYS A 212 -19.538 30.027 48.222 1.00 0.00 N \nATOM 1628 N ASN A 213 -13.931 27.090 51.472 1.00 0.00 N \nATOM 1629 CA ASN A 213 -12.859 26.135 51.707 1.00 0.00 C \nATOM 1630 C ASN A 213 -11.588 26.790 51.164 1.00 0.00 C \nATOM 1631 O ASN A 213 -11.194 26.567 50.016 1.00 0.00 O \nATOM 1632 CB ASN A 213 -13.125 24.810 50.984 1.00 0.00 C \nATOM 1633 CG ASN A 213 -14.464 24.201 51.357 1.00 0.00 C \nATOM 1634 OD1 ASN A 213 -14.843 24.181 52.529 1.00 0.00 O \nATOM 1635 ND2 ASN A 213 -15.185 23.690 50.359 1.00 0.00 N \nATOM 1636 N PRO A 214 -10.927 27.607 51.995 1.00 0.00 N \nATOM 1637 CA PRO A 214 -9.704 28.301 51.588 1.00 0.00 C \nATOM 1638 C PRO A 214 -8.520 27.431 51.216 1.00 0.00 C \nATOM 1639 O PRO A 214 -8.278 26.372 51.797 1.00 0.00 O \nATOM 1640 CB PRO A 214 -9.403 29.205 52.785 1.00 0.00 C \nATOM 1641 CG PRO A 214 -9.896 28.394 53.938 1.00 0.00 C \nATOM 1642 CD PRO A 214 -11.230 27.874 53.414 1.00 0.00 C \nATOM 1643 N MET A 215 -7.792 27.904 50.213 1.00 0.00 N \nATOM 1644 CA MET A 215 -6.585 27.266 49.718 1.00 0.00 C \nATOM 1645 C MET A 215 -5.774 28.460 49.256 1.00 0.00 C \nATOM 1646 O MET A 215 -6.328 29.429 48.736 1.00 0.00 O \nATOM 1647 CB MET A 215 -6.879 26.336 48.536 1.00 0.00 C \nATOM 1648 CG MET A 215 -5.648 25.626 47.951 1.00 0.00 C \nATOM 1649 SD MET A 215 -4.547 26.679 46.902 1.00 0.00 S \nATOM 1650 CE MET A 215 -5.199 26.317 45.251 1.00 0.00 C \nATOM 1651 N GLY A 216 -4.470 28.402 49.472 1.00 0.00 N \nATOM 1652 CA GLY A 216 -3.623 29.499 49.070 1.00 0.00 C \nATOM 1653 C GLY A 216 -2.234 29.012 48.782 1.00 0.00 C \nATOM 1654 O GLY A 216 -1.849 27.910 49.186 1.00 0.00 O \nATOM 1655 N PHE A 217 -1.483 29.835 48.060 1.00 0.00 N \nATOM 1656 CA PHE A 217 -0.119 29.506 47.732 1.00 0.00 C \nATOM 1657 C PHE A 217 0.651 30.777 47.429 1.00 0.00 C \nATOM 1658 O PHE A 217 0.074 31.826 47.115 1.00 0.00 O \nATOM 1659 CB PHE A 217 -0.055 28.568 46.519 1.00 0.00 C \nATOM 1660 CG PHE A 217 -0.691 29.126 45.279 1.00 0.00 C \nATOM 1661 CD1 PHE A 217 -2.062 28.979 45.057 1.00 0.00 C \nATOM 1662 CD2 PHE A 217 0.075 29.808 44.334 1.00 0.00 C \nATOM 1663 CE1 PHE A 217 -2.668 29.506 43.910 1.00 0.00 C \nATOM 1664 CE2 PHE A 217 -0.514 30.342 43.179 1.00 0.00 C \nATOM 1665 CZ PHE A 217 -1.890 30.192 42.966 1.00 0.00 C \nATOM 1666 N SER A 218 1.961 30.689 47.564 1.00 0.00 N \nATOM 1667 CA SER A 218 2.818 31.810 47.237 1.00 0.00 C \nATOM 1668 C SER A 218 3.412 31.329 45.927 1.00 0.00 C \nATOM 1669 O SER A 218 3.569 30.124 45.737 1.00 0.00 O \nATOM 1670 CB SER A 218 3.919 31.982 48.291 1.00 0.00 C \nATOM 1671 OG SER A 218 4.680 30.797 48.430 1.00 0.00 O \nATOM 1672 N TYR A 219 3.690 32.243 45.009 1.00 0.00 N \nATOM 1673 CA TYR A 219 4.285 31.860 43.729 1.00 0.00 C \nATOM 1674 C TYR A 219 5.623 32.575 43.572 1.00 0.00 C \nATOM 1675 O TYR A 219 5.673 33.791 43.441 1.00 0.00 O \nATOM 1676 CB TYR A 219 3.370 32.240 42.562 1.00 0.00 C \nATOM 1677 CG TYR A 219 3.891 31.771 41.222 1.00 0.00 C \nATOM 1678 CD1 TYR A 219 3.570 30.501 40.733 1.00 0.00 C \nATOM 1679 CD2 TYR A 219 4.741 32.575 40.460 1.00 0.00 C \nATOM 1680 CE1 TYR A 219 4.079 30.040 39.516 1.00 0.00 C \nATOM 1681 CE2 TYR A 219 5.271 32.119 39.237 1.00 0.00 C \nATOM 1682 CZ TYR A 219 4.935 30.851 38.771 1.00 0.00 C \nATOM 1683 OH TYR A 219 5.462 30.386 37.574 1.00 0.00 O \nATOM 1684 N ASP A 220 6.704 31.812 43.604 1.00 0.00 N \nATOM 1685 CA ASP A 220 8.028 32.385 43.460 1.00 0.00 C \nATOM 1686 C ASP A 220 8.486 32.338 42.009 1.00 0.00 C \nATOM 1687 O ASP A 220 8.741 31.266 41.462 1.00 0.00 O \nATOM 1688 CB ASP A 220 9.019 31.629 44.347 1.00 0.00 C \nATOM 1689 CG ASP A 220 10.456 32.018 44.075 1.00 0.00 C \nATOM 1690 OD1 ASP A 220 10.752 33.236 44.041 1.00 0.00 O \nATOM 1691 OD2 ASP A 220 11.286 31.101 43.900 1.00 0.00 O \nATOM 1692 N THR A 221 8.572 33.502 41.378 1.00 0.00 N \nATOM 1693 CA THR A 221 9.026 33.556 39.994 1.00 0.00 C \nATOM 1694 C THR A 221 10.536 33.465 40.095 1.00 0.00 C \nATOM 1695 O THR A 221 11.131 34.048 40.996 1.00 0.00 O \nATOM 1696 CB THR A 221 8.659 34.897 39.300 1.00 0.00 C \nATOM 1697 OG1 THR A 221 7.235 35.040 39.212 1.00 0.00 O \nATOM 1698 CG2 THR A 221 9.254 34.946 37.908 1.00 0.00 C \nATOM 1699 N ARG A 222 11.157 32.722 39.191 1.00 0.00 N \nATOM 1700 CA ARG A 222 12.610 32.592 39.221 1.00 0.00 C \nATOM 1701 C ARG A 222 13.265 33.840 38.610 1.00 0.00 C \nATOM 1702 O ARG A 222 12.978 34.197 37.465 1.00 0.00 O \nATOM 1703 CB ARG A 222 13.026 31.332 38.463 1.00 0.00 C \nATOM 1704 CG ARG A 222 14.509 31.136 38.368 1.00 0.00 C \nATOM 1705 CD ARG A 222 14.897 31.022 36.916 1.00 0.00 C \nATOM 1706 NE ARG A 222 14.294 29.853 36.284 1.00 0.00 N \nATOM 1707 CZ ARG A 222 14.078 29.738 34.976 1.00 0.00 C \nATOM 1708 NH1 ARG A 222 14.410 30.728 34.153 1.00 0.00 N \nATOM 1709 NH2 ARG A 222 13.540 28.628 34.486 1.00 0.00 N \nATOM 1710 N CYS A 223 14.128 34.505 39.383 1.00 0.00 N \nATOM 1711 CA CYS A 223 14.813 35.719 38.914 1.00 0.00 C \nATOM 1712 C CYS A 223 13.808 36.605 38.171 1.00 0.00 C \nATOM 1713 O CYS A 223 13.943 36.851 36.973 1.00 0.00 O \nATOM 1714 CB CYS A 223 15.966 35.333 37.979 1.00 0.00 C \nATOM 1715 SG CYS A 223 17.228 34.308 38.800 1.00 0.00 S \nATOM 1716 N PHE A 224 12.800 37.082 38.887 1.00 0.00 N \nATOM 1717 CA PHE A 224 11.754 37.897 38.281 1.00 0.00 C \nATOM 1718 C PHE A 224 12.254 39.037 37.396 1.00 0.00 C \nATOM 1719 O PHE A 224 11.780 39.193 36.272 1.00 0.00 O \nATOM 1720 CB PHE A 224 10.812 38.447 39.362 1.00 0.00 C \nATOM 1721 CG PHE A 224 9.549 39.088 38.810 1.00 0.00 C \nATOM 1722 CD1 PHE A 224 9.563 40.401 38.339 1.00 0.00 C \nATOM 1723 CD2 PHE A 224 8.340 38.379 38.783 1.00 0.00 C \nATOM 1724 CE1 PHE A 224 8.395 41.005 37.855 1.00 0.00 C \nATOM 1725 CE2 PHE A 224 7.165 38.970 38.302 1.00 0.00 C \nATOM 1726 CZ PHE A 224 7.192 40.290 37.836 1.00 0.00 C \nATOM 1727 N ASP A 225 13.205 39.830 37.887 1.00 0.00 N \nATOM 1728 CA ASP A 225 13.700 40.947 37.088 1.00 0.00 C \nATOM 1729 C ASP A 225 14.152 40.523 35.702 1.00 0.00 C \nATOM 1730 O ASP A 225 13.911 41.226 34.723 1.00 0.00 O \nATOM 1731 CB ASP A 225 14.858 41.650 37.793 1.00 0.00 C \nATOM 1732 CG ASP A 225 14.404 42.470 38.982 1.00 0.00 C \nATOM 1733 OD1 ASP A 225 13.178 42.589 39.222 1.00 0.00 O \nATOM 1734 OD2 ASP A 225 15.288 43.007 39.672 1.00 0.00 O \nATOM 1735 N SER A 226 14.813 39.371 35.626 1.00 0.00 N \nATOM 1736 CA SER A 226 15.308 38.843 34.356 1.00 0.00 C \nATOM 1737 C SER A 226 14.207 38.332 33.444 1.00 0.00 C \nATOM 1738 O SER A 226 14.410 38.231 32.232 1.00 0.00 O \nATOM 1739 CB SER A 226 16.310 37.711 34.600 1.00 0.00 C \nATOM 1740 OG SER A 226 17.533 38.225 35.095 1.00 0.00 O \nATOM 1741 N THR A 227 13.049 38.014 34.013 1.00 0.00 N \nATOM 1742 CA THR A 227 11.933 37.509 33.209 1.00 0.00 C \nATOM 1743 C THR A 227 11.132 38.640 32.576 1.00 0.00 C \nATOM 1744 O THR A 227 10.353 38.415 31.643 1.00 0.00 O \nATOM 1745 CB THR A 227 10.962 36.630 34.053 1.00 0.00 C \nATOM 1746 OG1 THR A 227 10.222 37.455 34.969 1.00 0.00 O \nATOM 1747 CG2 THR A 227 11.742 35.556 34.841 1.00 0.00 C \nATOM 1748 N VAL A 228 11.328 39.862 33.072 1.00 0.00 N \nATOM 1749 CA VAL A 228 10.605 41.023 32.536 1.00 0.00 C \nATOM 1750 C VAL A 228 11.164 41.350 31.161 1.00 0.00 C \nATOM 1751 O VAL A 228 12.346 41.660 31.016 1.00 0.00 O \nATOM 1752 CB VAL A 228 10.739 42.249 33.481 1.00 0.00 C \nATOM 1753 CG1 VAL A 228 10.017 43.490 32.894 1.00 0.00 C \nATOM 1754 CG2 VAL A 228 10.150 41.893 34.850 1.00 0.00 C \nATOM 1755 N THR A 229 10.286 41.298 30.162 1.00 0.00 N \nATOM 1756 CA THR A 229 10.629 41.526 28.758 1.00 0.00 C \nATOM 1757 C THR A 229 10.390 42.962 28.284 1.00 0.00 C \nATOM 1758 O THR A 229 9.770 43.755 28.985 1.00 0.00 O \nATOM 1759 CB THR A 229 9.769 40.643 27.867 1.00 0.00 C \nATOM 1760 OG1 THR A 229 8.403 41.076 27.983 1.00 0.00 O \nATOM 1761 CG2 THR A 229 9.881 39.145 28.292 1.00 0.00 C \nATOM 1762 N GLU A 230 10.848 43.275 27.068 1.00 0.00 N \nATOM 1763 CA GLU A 230 10.628 44.613 26.508 1.00 0.00 C \nATOM 1764 C GLU A 230 9.116 44.857 26.431 1.00 0.00 C \nATOM 1765 O GLU A 230 8.645 45.948 26.708 1.00 0.00 O \nATOM 1766 CB GLU A 230 11.224 44.748 25.094 1.00 0.00 C \nATOM 1767 CG GLU A 230 11.022 46.158 24.500 1.00 0.00 C \nATOM 1768 CD GLU A 230 11.557 46.307 23.083 1.00 0.00 C \nATOM 1769 OE1 GLU A 230 12.623 45.725 22.788 1.00 0.00 O \nATOM 1770 OE2 GLU A 230 10.923 47.025 22.269 1.00 0.00 O \nATOM 1771 N ASN A 231 8.360 43.836 26.036 1.00 0.00 N \nATOM 1772 CA ASN A 231 6.907 43.953 25.957 1.00 0.00 C \nATOM 1773 C ASN A 231 6.342 44.371 27.309 1.00 0.00 C \nATOM 1774 O ASN A 231 5.530 45.300 27.404 1.00 0.00 O \nATOM 1775 CB ASN A 231 6.261 42.614 25.584 1.00 0.00 C \nATOM 1776 CG ASN A 231 4.759 42.609 25.859 1.00 0.00 C \nATOM 1777 OD1 ASN A 231 3.964 43.061 25.026 1.00 0.00 O \nATOM 1778 ND2 ASN A 231 4.364 42.133 27.059 1.00 0.00 N \nATOM 1779 N ASP A 232 6.762 43.660 28.352 1.00 0.00 N \nATOM 1780 CA ASP A 232 6.308 43.952 29.704 1.00 0.00 C \nATOM 1781 C ASP A 232 6.556 45.427 30.065 1.00 0.00 C \nATOM 1782 O ASP A 232 5.688 46.105 30.627 1.00 0.00 O \nATOM 1783 CB ASP A 232 7.042 43.068 30.722 1.00 0.00 C \nATOM 1784 CG ASP A 232 6.685 41.600 30.600 1.00 0.00 C \nATOM 1785 OD1 ASP A 232 5.658 41.285 29.958 1.00 0.00 O \nATOM 1786 OD2 ASP A 232 7.431 40.762 31.165 1.00 0.00 O \nATOM 1787 N ILE A 233 7.748 45.910 29.743 1.00 0.00 N \nATOM 1788 CA ILE A 233 8.110 47.278 30.083 1.00 0.00 C \nATOM 1789 C ILE A 233 7.348 48.321 29.267 1.00 0.00 C \nATOM 1790 O ILE A 233 7.082 49.411 29.761 1.00 0.00 O \nATOM 1791 CB ILE A 233 9.643 47.448 30.002 1.00 0.00 C \nATOM 1792 CG1 ILE A 233 10.296 46.525 31.053 1.00 0.00 C \nATOM 1793 CG2 ILE A 233 10.050 48.887 30.281 1.00 0.00 C \nATOM 1794 CD1 ILE A 233 11.793 46.234 30.798 1.00 0.00 C \nATOM 1795 N ARG A 234 6.972 47.985 28.035 1.00 0.00 N \nATOM 1796 CA ARG A 234 6.184 48.914 27.228 1.00 0.00 C \nATOM 1797 C ARG A 234 4.733 48.849 27.702 1.00 0.00 C \nATOM 1798 O ARG A 234 4.020 49.844 27.671 1.00 0.00 O \nATOM 1799 CB ARG A 234 6.272 48.574 25.734 1.00 0.00 C \nATOM 1800 CG ARG A 234 7.656 48.817 25.145 1.00 0.00 C \nATOM 1801 CD ARG A 234 7.679 48.537 23.645 1.00 0.00 C \nATOM 1802 NE ARG A 234 8.999 48.768 23.069 1.00 0.00 N \nATOM 1803 CZ ARG A 234 9.517 49.965 22.830 1.00 0.00 C \nATOM 1804 NH1 ARG A 234 8.824 51.061 23.116 1.00 0.00 N \nATOM 1805 NH2 ARG A 234 10.733 50.062 22.301 1.00 0.00 N \nATOM 1806 N VAL A 235 4.285 47.687 28.149 1.00 0.00 N \nATOM 1807 CA VAL A 235 2.914 47.598 28.649 1.00 0.00 C \nATOM 1808 C VAL A 235 2.824 48.414 29.952 1.00 0.00 C \nATOM 1809 O VAL A 235 1.822 49.066 30.214 1.00 0.00 O \nATOM 1810 CB VAL A 235 2.498 46.134 28.902 1.00 0.00 C \nATOM 1811 CG1 VAL A 235 1.252 46.088 29.774 1.00 0.00 C \nATOM 1812 CG2 VAL A 235 2.239 45.439 27.577 1.00 0.00 C \nATOM 1813 N GLU A 236 3.872 48.369 30.769 1.00 0.00 N \nATOM 1814 CA GLU A 236 3.891 49.161 31.987 1.00 0.00 C \nATOM 1815 C GLU A 236 3.765 50.652 31.602 1.00 0.00 C \nATOM 1816 O GLU A 236 3.001 51.397 32.207 1.00 0.00 O \nATOM 1817 CB GLU A 236 5.202 48.944 32.737 1.00 0.00 C \nATOM 1818 CG GLU A 236 5.283 47.645 33.519 1.00 0.00 C \nATOM 1819 CD GLU A 236 6.714 47.218 33.798 1.00 0.00 C \nATOM 1820 OE1 GLU A 236 7.621 48.080 33.772 1.00 0.00 O \nATOM 1821 OE2 GLU A 236 6.927 46.009 34.052 1.00 0.00 O \nATOM 1822 N GLU A 237 4.513 51.089 30.595 1.00 0.00 N \nATOM 1823 CA GLU A 237 4.421 52.486 30.188 1.00 0.00 C \nATOM 1824 C GLU A 237 3.012 52.819 29.680 1.00 0.00 C \nATOM 1825 O GLU A 237 2.487 53.908 29.941 1.00 0.00 O \nATOM 1826 CB GLU A 237 5.427 52.803 29.081 1.00 0.00 C \nATOM 1827 CG GLU A 237 5.697 54.312 28.956 1.00 0.00 C \nATOM 1828 CD GLU A 237 5.727 54.795 27.526 1.00 0.00 C \nATOM 1829 OE1 GLU A 237 6.257 54.058 26.671 1.00 0.00 O \nATOM 1830 OE2 GLU A 237 5.241 55.916 27.253 1.00 0.00 O \nATOM 1831 N SER A 238 2.395 51.888 28.954 1.00 0.00 N \nATOM 1832 CA SER A 238 1.059 52.155 28.437 1.00 0.00 C \nATOM 1833 C SER A 238 0.112 52.379 29.619 1.00 0.00 C \nATOM 1834 O SER A 238 -0.862 53.136 29.512 1.00 0.00 O \nATOM 1835 CB SER A 238 0.557 51.008 27.532 1.00 0.00 C \nATOM 1836 OG SER A 238 0.308 49.818 28.263 1.00 0.00 O \nATOM 1837 N ILE A 239 0.401 51.734 30.748 1.00 0.00 N \nATOM 1838 CA ILE A 239 -0.430 51.914 31.937 1.00 0.00 C \nATOM 1839 C ILE A 239 -0.155 53.305 32.516 1.00 0.00 C \nATOM 1840 O ILE A 239 -1.090 54.080 32.736 1.00 0.00 O \nATOM 1841 CB ILE A 239 -0.151 50.828 33.002 1.00 0.00 C \nATOM 1842 CG1 ILE A 239 -0.538 49.457 32.439 1.00 0.00 C \nATOM 1843 CG2 ILE A 239 -0.963 51.111 34.276 1.00 0.00 C \nATOM 1844 CD1 ILE A 239 -0.162 48.301 33.325 1.00 0.00 C \nATOM 1845 N TYR A 240 1.117 53.632 32.749 1.00 0.00 N \nATOM 1846 CA TYR A 240 1.451 54.959 33.285 1.00 0.00 C \nATOM 1847 C TYR A 240 0.820 56.064 32.434 1.00 0.00 C \nATOM 1848 O TYR A 240 0.257 57.019 32.968 1.00 0.00 O \nATOM 1849 CB TYR A 240 2.960 55.214 33.315 1.00 0.00 C \nATOM 1850 CG TYR A 240 3.801 54.179 34.024 1.00 0.00 C \nATOM 1851 CD1 TYR A 240 3.360 53.548 35.190 1.00 0.00 C \nATOM 1852 CD2 TYR A 240 5.068 53.861 33.542 1.00 0.00 C \nATOM 1853 CE1 TYR A 240 4.177 52.618 35.851 1.00 0.00 C \nATOM 1854 CE2 TYR A 240 5.884 52.947 34.188 1.00 0.00 C \nATOM 1855 CZ TYR A 240 5.437 52.325 35.335 1.00 0.00 C \nATOM 1856 OH TYR A 240 6.244 51.375 35.921 1.00 0.00 O \nATOM 1857 N GLN A 241 0.920 55.935 31.114 1.00 0.00 N \nATOM 1858 CA GLN A 241 0.368 56.943 30.210 1.00 0.00 C \nATOM 1859 C GLN A 241 -1.156 57.072 30.279 1.00 0.00 C \nATOM 1860 O GLN A 241 -1.715 58.026 29.743 1.00 0.00 O \nATOM 1861 CB GLN A 241 0.817 56.671 28.761 1.00 0.00 C \nATOM 1862 CG GLN A 241 2.339 56.763 28.537 1.00 0.00 C \nATOM 1863 CD GLN A 241 2.882 58.199 28.576 1.00 0.00 C \nATOM 1864 OE1 GLN A 241 2.140 59.165 28.807 1.00 0.00 O \nATOM 1865 NE2 GLN A 241 4.183 58.339 28.353 1.00 0.00 N \nATOM 1866 N CYS A 242 -1.837 56.129 30.935 1.00 0.00 N \nATOM 1867 CA CYS A 242 -3.289 56.241 31.059 1.00 0.00 C \nATOM 1868 C CYS A 242 -3.640 57.349 32.036 1.00 0.00 C \nATOM 1869 O CYS A 242 -4.723 57.926 31.958 1.00 0.00 O \nATOM 1870 CB CYS A 242 -3.914 54.933 31.548 1.00 0.00 C \nATOM 1871 SG CYS A 242 -4.017 53.676 30.266 1.00 0.00 S \nATOM 1872 N CYS A 243 -2.728 57.641 32.960 1.00 0.00 N \nATOM 1873 CA CYS A 243 -2.969 58.678 33.959 1.00 0.00 C \nATOM 1874 C CYS A 243 -3.146 60.065 33.339 1.00 0.00 C \nATOM 1875 O CYS A 243 -2.740 60.307 32.200 1.00 0.00 O \nATOM 1876 CB CYS A 243 -1.806 58.745 34.966 1.00 0.00 C \nATOM 1877 SG CYS A 243 -1.464 57.199 35.864 1.00 0.00 S \nATOM 1878 N ASP A 244 -3.769 60.961 34.097 1.00 0.00 N \nATOM 1879 CA ASP A 244 -3.956 62.354 33.684 1.00 0.00 C \nATOM 1880 C ASP A 244 -2.576 62.908 34.047 1.00 0.00 C \nATOM 1881 O ASP A 244 -2.191 62.910 35.218 1.00 0.00 O \nATOM 1882 CB ASP A 244 -5.041 62.999 34.556 1.00 0.00 C \nATOM 1883 CG ASP A 244 -5.233 64.490 34.285 1.00 0.00 C \nATOM 1884 OD1 ASP A 244 -4.268 65.194 33.921 1.00 0.00 O \nATOM 1885 OD2 ASP A 244 -6.372 64.969 34.473 1.00 0.00 O \nATOM 1886 N LEU A 245 -1.823 63.363 33.060 1.00 0.00 N \nATOM 1887 CA LEU A 245 -0.471 63.845 33.323 1.00 0.00 C \nATOM 1888 C LEU A 245 -0.126 65.113 32.562 1.00 0.00 C \nATOM 1889 O LEU A 245 -0.685 65.386 31.510 1.00 0.00 O \nATOM 1890 CB LEU A 245 0.539 62.779 32.898 1.00 0.00 C \nATOM 1891 CG LEU A 245 0.450 61.352 33.448 1.00 0.00 C \nATOM 1892 CD1 LEU A 245 1.206 60.403 32.531 1.00 0.00 C \nATOM 1893 CD2 LEU A 245 1.023 61.303 34.831 1.00 0.00 C \nATOM 1894 N ALA A 246 0.836 65.859 33.090 1.00 0.00 N \nATOM 1895 CA ALA A 246 1.318 67.076 32.446 1.00 0.00 C \nATOM 1896 C ALA A 246 2.030 66.624 31.174 1.00 0.00 C \nATOM 1897 O ALA A 246 2.636 65.551 31.144 1.00 0.00 O \nATOM 1898 CB ALA A 246 2.301 67.793 33.362 1.00 0.00 C \nATOM 1899 N PRO A 247 1.961 67.426 30.103 1.00 0.00 N \nATOM 1900 CA PRO A 247 2.624 67.049 28.850 1.00 0.00 C \nATOM 1901 C PRO A 247 4.111 66.711 29.011 1.00 0.00 C \nATOM 1902 O PRO A 247 4.623 65.803 28.371 1.00 0.00 O \nATOM 1903 CB PRO A 247 2.405 68.274 27.966 1.00 0.00 C \nATOM 1904 CG PRO A 247 1.066 68.763 28.412 1.00 0.00 C \nATOM 1905 CD PRO A 247 1.155 68.649 29.927 1.00 0.00 C \nATOM 1906 N GLU A 248 4.794 67.445 29.875 1.00 0.00 N \nATOM 1907 CA GLU A 248 6.217 67.241 30.099 1.00 0.00 C \nATOM 1908 C GLU A 248 6.447 65.905 30.806 1.00 0.00 C \nATOM 1909 O GLU A 248 7.462 65.241 30.596 1.00 0.00 O \nATOM 1910 CB GLU A 248 6.761 68.407 30.929 1.00 0.00 C \nATOM 1911 CG GLU A 248 8.227 68.729 30.719 1.00 0.00 C \nATOM 1912 CD GLU A 248 8.615 70.109 31.248 1.00 0.00 C \nATOM 1913 OE1 GLU A 248 9.810 70.329 31.531 1.00 0.00 O \nATOM 1914 OE2 GLU A 248 7.731 70.982 31.369 1.00 0.00 O \nATOM 1915 N ALA A 249 5.490 65.509 31.639 1.00 0.00 N \nATOM 1916 CA ALA A 249 5.596 64.249 32.360 1.00 0.00 C \nATOM 1917 C ALA A 249 5.471 63.076 31.393 1.00 0.00 C \nATOM 1918 O ALA A 249 6.205 62.093 31.509 1.00 0.00 O \nATOM 1919 CB ALA A 249 4.519 64.163 33.440 1.00 0.00 C \nATOM 1920 N ARG A 250 4.547 63.183 30.440 1.00 0.00 N \nATOM 1921 CA ARG A 250 4.345 62.126 29.449 1.00 0.00 C \nATOM 1922 C ARG A 250 5.600 61.905 28.625 1.00 0.00 C \nATOM 1923 O ARG A 250 6.019 60.765 28.394 1.00 0.00 O \nATOM 1924 CB ARG A 250 3.198 62.473 28.493 1.00 0.00 C \nATOM 1925 CG ARG A 250 1.831 62.529 29.149 1.00 0.00 C \nATOM 1926 CD ARG A 250 0.732 62.803 28.130 1.00 0.00 C \nATOM 1927 NE ARG A 250 -0.580 62.815 28.774 1.00 0.00 N \nATOM 1928 CZ ARG A 250 -1.168 61.743 29.302 1.00 0.00 C \nATOM 1929 NH1 ARG A 250 -0.564 60.559 29.261 1.00 0.00 N \nATOM 1930 NH2 ARG A 250 -2.357 61.858 29.881 1.00 0.00 N \nATOM 1931 N GLN A 251 6.189 63.005 28.169 1.00 0.00 N \nATOM 1932 CA GLN A 251 7.392 62.937 27.360 1.00 0.00 C \nATOM 1933 C GLN A 251 8.522 62.336 28.178 1.00 0.00 C \nATOM 1934 O GLN A 251 9.238 61.453 27.702 1.00 0.00 O \nATOM 1935 CB GLN A 251 7.792 64.336 26.872 1.00 0.00 C \nATOM 1936 CG GLN A 251 9.028 64.353 25.993 1.00 0.00 C \nATOM 1937 CD GLN A 251 8.765 63.767 24.622 1.00 0.00 C \nATOM 1938 OE1 GLN A 251 7.702 63.205 24.370 1.00 0.00 O \nATOM 1939 NE2 GLN A 251 9.731 63.895 23.728 1.00 0.00 N \nATOM 1940 N ALA A 252 8.688 62.810 29.409 1.00 0.00 N \nATOM 1941 CA ALA A 252 9.753 62.287 30.265 1.00 0.00 C \nATOM 1942 C ALA A 252 9.598 60.782 30.498 1.00 0.00 C \nATOM 1943 O ALA A 252 10.578 60.039 30.464 1.00 0.00 O \nATOM 1944 CB ALA A 252 9.766 63.011 31.596 1.00 0.00 C \nATOM 1945 N ILE A 253 8.364 60.337 30.722 1.00 0.00 N \nATOM 1946 CA ILE A 253 8.093 58.923 30.964 1.00 0.00 C \nATOM 1947 C ILE A 253 8.324 58.076 29.719 1.00 0.00 C \nATOM 1948 O ILE A 253 8.814 56.950 29.796 1.00 0.00 O \nATOM 1949 CB ILE A 253 6.658 58.740 31.475 1.00 0.00 C \nATOM 1950 CG1 ILE A 253 6.566 59.274 32.908 1.00 0.00 C \nATOM 1951 CG2 ILE A 253 6.257 57.273 31.419 1.00 0.00 C \nATOM 1952 CD1 ILE A 253 5.151 59.488 33.373 1.00 0.00 C \nATOM 1953 N LYS A 254 7.960 58.612 28.567 1.00 0.00 N \nATOM 1954 CA LYS A 254 8.187 57.910 27.319 1.00 0.00 C \nATOM 1955 C LYS A 254 9.695 57.772 27.108 1.00 0.00 C \nATOM 1956 O LYS A 254 10.200 56.702 26.749 1.00 0.00 O \nATOM 1957 CB LYS A 254 7.587 58.712 26.162 1.00 0.00 C \nATOM 1958 CG LYS A 254 8.011 58.240 24.775 1.00 0.00 C \nATOM 1959 CD LYS A 254 7.259 59.018 23.705 1.00 0.00 C \nATOM 1960 CE LYS A 254 7.584 58.523 22.302 1.00 0.00 C \nATOM 1961 NZ LYS A 254 8.993 58.806 21.893 1.00 0.00 N \nATOM 1962 N SER A 255 10.409 58.870 27.335 1.00 0.00 N \nATOM 1963 CA SER A 255 11.855 58.895 27.145 1.00 0.00 C \nATOM 1964 C SER A 255 12.581 57.963 28.118 1.00 0.00 C \nATOM 1965 O SER A 255 13.455 57.201 27.706 1.00 0.00 O \nATOM 1966 CB SER A 255 12.374 60.334 27.285 1.00 0.00 C \nATOM 1967 OG SER A 255 13.747 60.420 26.952 1.00 0.00 O \nATOM 1968 N LEU A 256 12.208 58.006 29.396 1.00 0.00 N \nATOM 1969 CA LEU A 256 12.838 57.141 30.381 1.00 0.00 C \nATOM 1970 C LEU A 256 12.557 55.682 30.030 1.00 0.00 C \nATOM 1971 O LEU A 256 13.401 54.818 30.227 1.00 0.00 O \nATOM 1972 CB LEU A 256 12.325 57.459 31.790 1.00 0.00 C \nATOM 1973 CG LEU A 256 12.887 58.743 32.420 1.00 0.00 C \nATOM 1974 CD1 LEU A 256 12.031 59.182 33.589 1.00 0.00 C \nATOM 1975 CD2 LEU A 256 14.326 58.500 32.858 1.00 0.00 C \nATOM 1976 N THR A 257 11.373 55.403 29.501 1.00 0.00 N \nATOM 1977 CA THR A 257 11.056 54.023 29.134 1.00 0.00 C \nATOM 1978 C THR A 257 11.935 53.513 27.979 1.00 0.00 C \nATOM 1979 O THR A 257 12.536 52.447 28.081 1.00 0.00 O \nATOM 1980 CB THR A 257 9.568 53.864 28.737 1.00 0.00 C \nATOM 1981 OG1 THR A 257 8.744 54.127 29.880 1.00 0.00 O \nATOM 1982 CG2 THR A 257 9.288 52.424 28.246 1.00 0.00 C \nATOM 1983 N GLU A 258 12.012 54.273 26.890 1.00 0.00 N \nATOM 1984 CA GLU A 258 12.811 53.858 25.733 1.00 0.00 C \nATOM 1985 C GLU A 258 14.302 53.818 26.016 1.00 0.00 C \nATOM 1986 O GLU A 258 15.007 52.913 25.571 1.00 0.00 O \nATOM 1987 CB GLU A 258 12.624 54.817 24.549 1.00 0.00 C \nATOM 1988 CG GLU A 258 11.243 54.884 23.916 1.00 0.00 C \nATOM 1989 CD GLU A 258 10.809 53.576 23.263 1.00 0.00 C \nATOM 1990 OE1 GLU A 258 11.657 52.820 22.735 1.00 0.00 O \nATOM 1991 OE2 GLU A 258 9.592 53.319 23.267 1.00 0.00 O \nATOM 1992 N ARG A 259 14.775 54.812 26.753 1.00 0.00 N \nATOM 1993 CA ARG A 259 16.194 54.973 27.038 1.00 0.00 C \nATOM 1994 C ARG A 259 16.749 54.259 28.256 1.00 0.00 C \nATOM 1995 O ARG A 259 17.928 53.924 28.295 1.00 0.00 O \nATOM 1996 CB ARG A 259 16.507 56.472 27.159 1.00 0.00 C \nATOM 1997 CG ARG A 259 16.092 57.270 25.923 1.00 0.00 C \nATOM 1998 CD ARG A 259 16.373 58.741 26.097 1.00 0.00 C \nATOM 1999 NE ARG A 259 17.801 59.003 26.250 1.00 0.00 N \nATOM 2000 CZ ARG A 259 18.307 60.211 26.481 1.00 0.00 C \nATOM 2001 NH1 ARG A 259 17.499 61.259 26.583 1.00 0.00 N \nATOM 2002 NH2 ARG A 259 19.616 60.373 26.612 1.00 0.00 N \nATOM 2003 N LEU A 260 15.914 54.032 29.258 1.00 0.00 N \nATOM 2004 CA LEU A 260 16.407 53.395 30.470 1.00 0.00 C \nATOM 2005 C LEU A 260 15.678 52.128 30.926 1.00 0.00 C \nATOM 2006 O LEU A 260 16.298 51.090 31.133 1.00 0.00 O \nATOM 2007 CB LEU A 260 16.384 54.413 31.605 1.00 0.00 C \nATOM 2008 CG LEU A 260 16.689 53.907 33.016 1.00 0.00 C \nATOM 2009 CD1 LEU A 260 18.139 53.479 33.093 1.00 0.00 C \nATOM 2010 CD2 LEU A 260 16.401 55.004 34.038 1.00 0.00 C \nATOM 2011 N TYR A 261 14.366 52.223 31.099 1.00 0.00 N \nATOM 2012 CA TYR A 261 13.601 51.083 31.586 1.00 0.00 C \nATOM 2013 C TYR A 261 13.642 49.815 30.737 1.00 0.00 C \nATOM 2014 O TYR A 261 13.775 48.723 31.275 1.00 0.00 O \nATOM 2015 CB TYR A 261 12.159 51.515 31.858 1.00 0.00 C \nATOM 2016 CG TYR A 261 12.086 52.672 32.855 1.00 0.00 C \nATOM 2017 CD1 TYR A 261 13.089 52.839 33.828 1.00 0.00 C \nATOM 2018 CD2 TYR A 261 11.006 53.560 32.863 1.00 0.00 C \nATOM 2019 CE1 TYR A 261 13.024 53.850 34.778 1.00 0.00 C \nATOM 2020 CE2 TYR A 261 10.926 54.584 33.820 1.00 0.00 C \nATOM 2021 CZ TYR A 261 11.941 54.719 34.771 1.00 0.00 C \nATOM 2022 OH TYR A 261 11.889 55.724 35.704 1.00 0.00 O \nATOM 2023 N ILE A 262 13.554 49.957 29.421 1.00 0.00 N \nATOM 2024 CA ILE A 262 13.573 48.808 28.527 1.00 0.00 C \nATOM 2025 C ILE A 262 14.936 48.115 28.465 1.00 0.00 C \nATOM 2026 O ILE A 262 15.030 46.906 28.246 1.00 0.00 O \nATOM 2027 CB ILE A 262 13.142 49.244 27.104 1.00 0.00 C \nATOM 2028 CG1 ILE A 262 11.657 49.632 27.113 1.00 0.00 C \nATOM 2029 CG2 ILE A 262 13.420 48.138 26.097 1.00 0.00 C \nATOM 2030 CD1 ILE A 262 11.122 49.965 25.733 1.00 0.00 C \nATOM 2031 N GLY A 263 16.001 48.874 28.659 1.00 0.00 N \nATOM 2032 CA GLY A 263 17.310 48.262 28.602 1.00 0.00 C \nATOM 2033 C GLY A 263 18.393 49.298 28.452 1.00 0.00 C \nATOM 2034 O GLY A 263 18.108 50.490 28.348 1.00 0.00 O \nATOM 2035 N GLY A 264 19.643 48.856 28.455 1.00 0.00 N \nATOM 2036 CA GLY A 264 20.721 49.807 28.306 1.00 0.00 C \nATOM 2037 C GLY A 264 22.078 49.212 28.590 1.00 0.00 C \nATOM 2038 O GLY A 264 22.170 48.100 29.108 1.00 0.00 O \nATOM 2039 N PRO A 265 23.154 49.934 28.251 1.00 0.00 N \nATOM 2040 CA PRO A 265 24.513 49.443 28.487 1.00 0.00 C \nATOM 2041 C PRO A 265 24.799 49.396 29.993 1.00 0.00 C \nATOM 2042 O PRO A 265 24.237 50.172 30.773 1.00 0.00 O \nATOM 2043 CB PRO A 265 25.379 50.444 27.712 1.00 0.00 C \nATOM 2044 CG PRO A 265 24.594 51.737 27.833 1.00 0.00 C \nATOM 2045 CD PRO A 265 23.160 51.283 27.645 1.00 0.00 C \nATOM 2046 N LEU A 266 25.653 48.459 30.385 1.00 0.00 N \nATOM 2047 CA LEU A 266 26.031 48.242 31.776 1.00 0.00 C \nATOM 2048 C LEU A 266 27.509 48.526 31.953 1.00 0.00 C \nATOM 2049 O LEU A 266 28.347 47.897 31.301 1.00 0.00 O \nATOM 2050 CB LEU A 266 25.789 46.780 32.154 1.00 0.00 C \nATOM 2051 CG LEU A 266 24.367 46.231 32.021 1.00 0.00 C \nATOM 2052 CD1 LEU A 266 24.390 44.714 32.005 1.00 0.00 C \nATOM 2053 CD2 LEU A 266 23.525 46.757 33.174 1.00 0.00 C \nATOM 2054 N THR A 267 27.825 49.443 32.862 1.00 0.00 N \nATOM 2055 CA THR A 267 29.205 49.815 33.141 1.00 0.00 C \nATOM 2056 C THR A 267 29.581 49.420 34.565 1.00 0.00 C \nATOM 2057 O THR A 267 28.780 49.597 35.491 1.00 0.00 O \nATOM 2058 CB THR A 267 29.373 51.327 32.986 1.00 0.00 C \nATOM 2059 OG1 THR A 267 28.826 51.716 31.725 1.00 0.00 O \nATOM 2060 CG2 THR A 267 30.848 51.727 33.036 1.00 0.00 C \nATOM 2061 N ASN A 268 30.784 48.871 34.747 1.00 0.00 N \nATOM 2062 CA ASN A 268 31.215 48.483 36.088 1.00 0.00 C \nATOM 2063 C ASN A 268 31.847 49.679 36.797 1.00 0.00 C \nATOM 2064 O ASN A 268 32.030 50.746 36.192 1.00 0.00 O \nATOM 2065 CB ASN A 268 32.193 47.287 36.047 1.00 0.00 C \nATOM 2066 CG ASN A 268 33.534 47.622 35.396 1.00 0.00 C \nATOM 2067 OD1 ASN A 268 33.913 48.790 35.254 1.00 0.00 O \nATOM 2068 ND2 ASN A 268 34.268 46.583 35.014 1.00 0.00 N \nATOM 2069 N SER A 269 32.192 49.503 38.070 1.00 0.00 N \nATOM 2070 CA SER A 269 32.765 50.581 38.862 1.00 0.00 C \nATOM 2071 C SER A 269 34.082 51.134 38.315 1.00 0.00 C \nATOM 2072 O SER A 269 34.514 52.213 38.711 1.00 0.00 O \nATOM 2073 CB SER A 269 32.981 50.110 40.302 1.00 0.00 C \nATOM 2074 OG SER A 269 34.017 49.147 40.353 1.00 0.00 O \nATOM 2075 N LYS A 270 34.726 50.393 37.420 1.00 0.00 N \nATOM 2076 CA LYS A 270 35.987 50.844 36.850 1.00 0.00 C \nATOM 2077 C LYS A 270 35.792 51.619 35.554 1.00 0.00 C \nATOM 2078 O LYS A 270 36.737 52.202 35.037 1.00 0.00 O \nATOM 2079 CB LYS A 270 36.917 49.656 36.599 1.00 0.00 C \nATOM 2080 CG LYS A 270 37.322 48.903 37.869 1.00 0.00 C \nATOM 2081 CD LYS A 270 38.590 48.075 37.672 1.00 0.00 C \nATOM 2082 CE LYS A 270 38.496 47.173 36.452 1.00 0.00 C \nATOM 2083 NZ LYS A 270 39.725 46.342 36.322 1.00 0.00 N \nATOM 2084 N GLY A 271 34.570 51.628 35.031 1.00 0.00 N \nATOM 2085 CA GLY A 271 34.317 52.350 33.798 1.00 0.00 C \nATOM 2086 C GLY A 271 34.340 51.490 32.545 1.00 0.00 C \nATOM 2087 O GLY A 271 34.297 52.011 31.438 1.00 0.00 O \nATOM 2088 N GLN A 272 34.418 50.171 32.706 1.00 0.00 N \nATOM 2089 CA GLN A 272 34.428 49.270 31.552 1.00 0.00 C \nATOM 2090 C GLN A 272 33.003 48.868 31.175 1.00 0.00 C \nATOM 2091 O GLN A 272 32.116 48.795 32.034 1.00 0.00 O \nATOM 2092 CB GLN A 272 35.220 47.995 31.868 1.00 0.00 C \nATOM 2093 CG GLN A 272 36.674 48.213 32.218 1.00 0.00 C \nATOM 2094 CD GLN A 272 37.351 46.934 32.662 1.00 0.00 C \nATOM 2095 OE1 GLN A 272 36.943 46.310 33.647 1.00 0.00 O \nATOM 2096 NE2 GLN A 272 38.395 46.535 31.940 1.00 0.00 N \nATOM 2097 N ASN A 273 32.786 48.603 29.890 1.00 0.00 N \nATOM 2098 CA ASN A 273 31.474 48.171 29.432 1.00 0.00 C \nATOM 2099 C ASN A 273 31.372 46.690 29.758 1.00 0.00 C \nATOM 2100 O ASN A 273 32.155 45.890 29.249 1.00 0.00 O \nATOM 2101 CB ASN A 273 31.325 48.346 27.922 1.00 0.00 C \nATOM 2102 CG ASN A 273 30.018 47.764 27.411 1.00 0.00 C \nATOM 2103 OD1 ASN A 273 29.972 47.126 26.361 1.00 0.00 O \nATOM 2104 ND2 ASN A 273 28.953 47.975 28.162 1.00 0.00 N \nATOM 2105 N CYS A 274 30.410 46.332 30.608 1.00 0.00 N \nATOM 2106 CA CYS A 274 30.205 44.947 31.016 1.00 0.00 C \nATOM 2107 C CYS A 274 29.265 44.202 30.102 1.00 0.00 C \nATOM 2108 O CYS A 274 29.295 42.976 30.040 1.00 0.00 O \nATOM 2109 CB CYS A 274 29.623 44.892 32.426 1.00 0.00 C \nATOM 2110 SG CYS A 274 30.833 45.132 33.685 1.00 0.00 S \nATOM 2111 N GLY A 275 28.407 44.947 29.415 1.00 0.00 N \nATOM 2112 CA GLY A 275 27.444 44.325 28.534 1.00 0.00 C \nATOM 2113 C GLY A 275 26.177 45.140 28.349 1.00 0.00 C \nATOM 2114 O GLY A 275 26.193 46.370 28.468 1.00 0.00 O \nATOM 2115 N TYR A 276 25.073 44.441 28.101 1.00 0.00 N \nATOM 2116 CA TYR A 276 23.796 45.080 27.833 1.00 0.00 C \nATOM 2117 C TYR A 276 22.635 44.388 28.525 1.00 0.00 C \nATOM 2118 O TYR A 276 22.579 43.153 28.586 1.00 0.00 O \nATOM 2119 CB TYR A 276 23.524 45.073 26.318 1.00 0.00 C \nATOM 2120 CG TYR A 276 22.616 46.196 25.871 1.00 0.00 C \nATOM 2121 CD1 TYR A 276 23.129 47.475 25.639 1.00 0.00 C \nATOM 2122 CD2 TYR A 276 21.242 45.999 25.718 1.00 0.00 C \nATOM 2123 CE1 TYR A 276 22.298 48.532 25.266 1.00 0.00 C \nATOM 2124 CE2 TYR A 276 20.395 47.061 25.341 1.00 0.00 C \nATOM 2125 CZ TYR A 276 20.942 48.321 25.120 1.00 0.00 C \nATOM 2126 OH TYR A 276 20.138 49.374 24.766 1.00 0.00 O \nATOM 2127 N ARG A 277 21.701 45.192 29.029 1.00 0.00 N \nATOM 2128 CA ARG A 277 20.505 44.694 29.723 1.00 0.00 C \nATOM 2129 C ARG A 277 19.265 44.867 28.855 1.00 0.00 C \nATOM 2130 O ARG A 277 19.100 45.904 28.205 1.00 0.00 O \nATOM 2131 CB ARG A 277 20.305 45.469 31.040 1.00 0.00 C \nATOM 2132 CG ARG A 277 18.942 45.300 31.734 1.00 0.00 C \nATOM 2133 CD ARG A 277 18.820 46.210 32.976 1.00 0.00 C \nATOM 2134 NE ARG A 277 19.036 47.629 32.652 1.00 0.00 N \nATOM 2135 CZ ARG A 277 18.101 48.451 32.183 1.00 0.00 C \nATOM 2136 NH1 ARG A 277 16.857 48.027 31.989 1.00 0.00 N \nATOM 2137 NH2 ARG A 277 18.422 49.693 31.858 1.00 0.00 N \nATOM 2138 N ARG A 278 18.407 43.846 28.824 1.00 0.00 N \nATOM 2139 CA ARG A 278 17.154 43.929 28.075 1.00 0.00 C \nATOM 2140 C ARG A 278 16.025 43.448 28.982 1.00 0.00 C \nATOM 2141 O ARG A 278 15.003 42.941 28.501 1.00 0.00 O \nATOM 2142 CB ARG A 278 17.189 43.060 26.808 1.00 0.00 C \nATOM 2143 CG ARG A 278 18.302 43.433 25.836 1.00 0.00 C \nATOM 2144 CD ARG A 278 18.177 42.670 24.535 1.00 0.00 C \nATOM 2145 NE ARG A 278 19.444 42.678 23.810 1.00 0.00 N \nATOM 2146 CZ ARG A 278 20.551 42.053 24.210 1.00 0.00 C \nATOM 2147 NH1 ARG A 278 21.651 42.141 23.473 1.00 0.00 N \nATOM 2148 NH2 ARG A 278 20.563 41.329 25.328 1.00 0.00 N \nATOM 2149 N CYS A 279 16.214 43.601 30.289 1.00 0.00 N \nATOM 2150 CA CYS A 279 15.206 43.180 31.264 1.00 0.00 C \nATOM 2151 C CYS A 279 15.062 44.279 32.298 1.00 0.00 C \nATOM 2152 O CYS A 279 15.603 45.366 32.105 1.00 0.00 O \nATOM 2153 CB CYS A 279 15.623 41.852 31.934 1.00 0.00 C \nATOM 2154 SG CYS A 279 17.173 41.896 32.874 1.00 0.00 S \nATOM 2155 N ARG A 280 14.325 44.025 33.383 1.00 0.00 N \nATOM 2156 CA ARG A 280 14.145 45.032 34.444 1.00 0.00 C \nATOM 2157 C ARG A 280 15.455 45.463 35.120 1.00 0.00 C \nATOM 2158 O ARG A 280 16.286 44.619 35.472 1.00 0.00 O \nATOM 2159 CB ARG A 280 13.207 44.501 35.551 1.00 0.00 C \nATOM 2160 CG ARG A 280 13.090 45.423 36.791 1.00 0.00 C \nATOM 2161 CD ARG A 280 12.097 46.564 36.561 1.00 0.00 C \nATOM 2162 NE ARG A 280 10.755 45.988 36.520 1.00 0.00 N \nATOM 2163 CZ ARG A 280 9.771 46.381 35.725 1.00 0.00 C \nATOM 2164 NH1 ARG A 280 9.933 47.396 34.873 1.00 0.00 N \nATOM 2165 NH2 ARG A 280 8.637 45.702 35.741 1.00 0.00 N \nATOM 2166 N ALA A 281 15.641 46.777 35.285 1.00 0.00 N \nATOM 2167 CA ALA A 281 16.803 47.305 35.997 1.00 0.00 C \nATOM 2168 C ALA A 281 16.369 47.260 37.462 1.00 0.00 C \nATOM 2169 O ALA A 281 15.276 47.721 37.813 1.00 0.00 O \nATOM 2170 CB ALA A 281 17.097 48.756 35.586 1.00 0.00 C \nATOM 2171 N SER A 282 17.210 46.711 38.320 1.00 0.00 N \nATOM 2172 CA SER A 282 16.854 46.591 39.728 1.00 0.00 C \nATOM 2173 C SER A 282 16.936 47.877 40.526 1.00 0.00 C \nATOM 2174 O SER A 282 16.354 47.976 41.602 1.00 0.00 O \nATOM 2175 CB SER A 282 17.731 45.539 40.402 1.00 0.00 C \nATOM 2176 OG SER A 282 19.098 45.914 40.357 1.00 0.00 O \nATOM 2177 N GLY A 283 17.643 48.863 39.994 1.00 0.00 N \nATOM 2178 CA GLY A 283 17.807 50.103 40.723 1.00 0.00 C \nATOM 2179 C GLY A 283 17.234 51.364 40.120 1.00 0.00 C \nATOM 2180 O GLY A 283 17.930 52.378 40.059 1.00 0.00 O \nATOM 2181 N VAL A 284 15.990 51.306 39.656 1.00 0.00 N \nATOM 2182 CA VAL A 284 15.332 52.489 39.109 1.00 0.00 C \nATOM 2183 C VAL A 284 14.081 52.767 39.951 1.00 0.00 C \nATOM 2184 O VAL A 284 13.653 51.923 40.741 1.00 0.00 O \nATOM 2185 CB VAL A 284 14.967 52.335 37.587 1.00 0.00 C \nATOM 2186 CG1 VAL A 284 16.248 52.399 36.759 1.00 0.00 C \nATOM 2187 CG2 VAL A 284 14.196 51.013 37.320 1.00 0.00 C \nATOM 2188 N LEU A 285 13.494 53.943 39.791 1.00 0.00 N \nATOM 2189 CA LEU A 285 12.330 54.308 40.594 1.00 0.00 C \nATOM 2190 C LEU A 285 11.112 53.403 40.400 1.00 0.00 C \nATOM 2191 O LEU A 285 10.378 53.124 41.351 1.00 0.00 O \nATOM 2192 CB LEU A 285 11.927 55.757 40.319 1.00 0.00 C \nATOM 2193 CG LEU A 285 10.714 56.232 41.131 1.00 0.00 C \nATOM 2194 CD1 LEU A 285 10.928 56.005 42.620 1.00 0.00 C \nATOM 2195 CD2 LEU A 285 10.490 57.706 40.844 1.00 0.00 C \nATOM 2196 N THR A 286 10.909 52.961 39.163 1.00 0.00 N \nATOM 2197 CA THR A 286 9.784 52.103 38.797 1.00 0.00 C \nATOM 2198 C THR A 286 10.013 50.605 39.010 1.00 0.00 C \nATOM 2199 O THR A 286 9.185 49.800 38.584 1.00 0.00 O \nATOM 2200 CB THR A 286 9.435 52.283 37.312 1.00 0.00 C \nATOM 2201 OG1 THR A 286 10.640 52.140 36.548 1.00 0.00 O \nATOM 2202 CG2 THR A 286 8.791 53.655 37.047 1.00 0.00 C \nATOM 2203 N THR A 287 11.119 50.208 39.634 1.00 0.00 N \nATOM 2204 CA THR A 287 11.330 48.769 39.832 1.00 0.00 C \nATOM 2205 C THR A 287 10.209 48.103 40.647 1.00 0.00 C \nATOM 2206 O THR A 287 9.683 47.070 40.258 1.00 0.00 O \nATOM 2207 CB THR A 287 12.667 48.477 40.525 1.00 0.00 C \nATOM 2208 OG1 THR A 287 13.734 49.028 39.751 1.00 0.00 O \nATOM 2209 CG2 THR A 287 12.885 46.948 40.641 1.00 0.00 C \nATOM 2210 N SER A 288 9.845 48.687 41.781 1.00 0.00 N \nATOM 2211 CA SER A 288 8.794 48.113 42.610 1.00 0.00 C \nATOM 2212 C SER A 288 7.401 48.205 41.964 1.00 0.00 C \nATOM 2213 O SER A 288 6.672 47.205 41.875 1.00 0.00 O \nATOM 2214 CB SER A 288 8.796 48.796 43.976 1.00 0.00 C \nATOM 2215 OG SER A 288 7.762 48.258 44.764 1.00 0.00 O \nATOM 2216 N CYS A 289 7.033 49.398 41.505 1.00 0.00 N \nATOM 2217 CA CYS A 289 5.744 49.589 40.860 1.00 0.00 C \nATOM 2218 C CYS A 289 5.645 48.738 39.594 1.00 0.00 C \nATOM 2219 O CYS A 289 4.652 48.046 39.386 1.00 0.00 O \nATOM 2220 CB CYS A 289 5.540 51.070 40.514 1.00 0.00 C \nATOM 2221 SG CYS A 289 3.929 51.407 39.761 1.00 0.00 S \nATOM 2222 N GLY A 290 6.668 48.782 38.743 1.00 0.00 N \nATOM 2223 CA GLY A 290 6.636 47.982 37.531 1.00 0.00 C \nATOM 2224 C GLY A 290 6.514 46.484 37.834 1.00 0.00 C \nATOM 2225 O GLY A 290 5.695 45.795 37.237 1.00 0.00 O \nATOM 2226 N ASN A 291 7.327 45.970 38.749 1.00 0.00 N \nATOM 2227 CA ASN A 291 7.234 44.555 39.092 1.00 0.00 C \nATOM 2228 C ASN A 291 5.862 44.178 39.670 1.00 0.00 C \nATOM 2229 O ASN A 291 5.303 43.121 39.349 1.00 0.00 O \nATOM 2230 CB ASN A 291 8.331 44.176 40.082 1.00 0.00 C \nATOM 2231 CG ASN A 291 9.671 44.013 39.419 1.00 0.00 C \nATOM 2232 OD1 ASN A 291 9.771 44.008 38.187 1.00 0.00 O \nATOM 2233 ND2 ASN A 291 10.722 43.867 40.230 1.00 0.00 N \nATOM 2234 N THR A 292 5.318 45.035 40.524 1.00 0.00 N \nATOM 2235 CA THR A 292 4.018 44.764 41.120 1.00 0.00 C \nATOM 2236 C THR A 292 2.941 44.723 40.029 1.00 0.00 C \nATOM 2237 O THR A 292 2.139 43.783 39.976 1.00 0.00 O \nATOM 2238 CB THR A 292 3.633 45.835 42.173 1.00 0.00 C \nATOM 2239 OG1 THR A 292 4.635 45.900 43.203 1.00 0.00 O \nATOM 2240 CG2 THR A 292 2.300 45.483 42.814 1.00 0.00 C \nATOM 2241 N LEU A 293 2.903 45.731 39.166 1.00 0.00 N \nATOM 2242 CA LEU A 293 1.901 45.746 38.093 1.00 0.00 C \nATOM 2243 C LEU A 293 2.020 44.510 37.193 1.00 0.00 C \nATOM 2244 O LEU A 293 1.030 43.837 36.892 1.00 0.00 O \nATOM 2245 CB LEU A 293 2.049 47.013 37.237 1.00 0.00 C \nATOM 2246 CG LEU A 293 1.630 48.338 37.886 1.00 0.00 C \nATOM 2247 CD1 LEU A 293 2.019 49.527 36.976 1.00 0.00 C \nATOM 2248 CD2 LEU A 293 0.121 48.313 38.131 1.00 0.00 C \nATOM 2249 N THR A 294 3.242 44.218 36.769 1.00 0.00 N \nATOM 2250 CA THR A 294 3.502 43.086 35.896 1.00 0.00 C \nATOM 2251 C THR A 294 3.191 41.743 36.567 1.00 0.00 C \nATOM 2252 O THR A 294 2.595 40.858 35.960 1.00 0.00 O \nATOM 2253 CB THR A 294 4.962 43.133 35.420 1.00 0.00 C \nATOM 2254 OG1 THR A 294 5.153 44.333 34.651 1.00 0.00 O \nATOM 2255 CG2 THR A 294 5.316 41.889 34.564 1.00 0.00 C \nATOM 2256 N CYS A 295 3.570 41.594 37.825 1.00 0.00 N \nATOM 2257 CA CYS A 295 3.305 40.349 38.529 1.00 0.00 C \nATOM 2258 C CYS A 295 1.799 40.167 38.687 1.00 0.00 C \nATOM 2259 O CYS A 295 1.266 39.062 38.512 1.00 0.00 O \nATOM 2260 CB CYS A 295 3.972 40.367 39.904 1.00 0.00 C \nATOM 2261 SG CYS A 295 3.818 38.802 40.800 1.00 0.00 S \nATOM 2262 N TYR A 296 1.123 41.262 39.015 1.00 0.00 N \nATOM 2263 CA TYR A 296 -0.324 41.259 39.197 1.00 0.00 C \nATOM 2264 C TYR A 296 -1.043 40.971 37.874 1.00 0.00 C \nATOM 2265 O TYR A 296 -2.015 40.208 37.835 1.00 0.00 O \nATOM 2266 CB TYR A 296 -0.777 42.612 39.749 1.00 0.00 C \nATOM 2267 CG TYR A 296 -2.276 42.772 39.831 1.00 0.00 C \nATOM 2268 CD1 TYR A 296 -3.016 43.224 38.737 1.00 0.00 C \nATOM 2269 CD2 TYR A 296 -2.953 42.477 41.006 1.00 0.00 C \nATOM 2270 CE1 TYR A 296 -4.398 43.382 38.821 1.00 0.00 C \nATOM 2271 CE2 TYR A 296 -4.334 42.629 41.102 1.00 0.00 C \nATOM 2272 CZ TYR A 296 -5.053 43.081 40.012 1.00 0.00 C \nATOM 2273 OH TYR A 296 -6.418 43.229 40.132 1.00 0.00 O \nATOM 2274 N LEU A 297 -0.568 41.586 36.795 1.00 0.00 N \nATOM 2275 CA LEU A 297 -1.168 41.371 35.489 1.00 0.00 C \nATOM 2276 C LEU A 297 -1.057 39.892 35.087 1.00 0.00 C \nATOM 2277 O LEU A 297 -2.057 39.248 34.752 1.00 0.00 O \nATOM 2278 CB LEU A 297 -0.481 42.255 34.443 1.00 0.00 C \nATOM 2279 CG LEU A 297 -0.724 41.945 32.954 1.00 0.00 C \nATOM 2280 CD1 LEU A 297 -2.217 41.944 32.641 1.00 0.00 C \nATOM 2281 CD2 LEU A 297 -0.012 42.976 32.099 1.00 0.00 C \nATOM 2282 N LYS A 298 0.155 39.353 35.119 1.00 0.00 N \nATOM 2283 CA LYS A 298 0.359 37.950 34.739 1.00 0.00 C \nATOM 2284 C LYS A 298 -0.398 36.966 35.628 1.00 0.00 C \nATOM 2285 O LYS A 298 -1.029 36.033 35.134 1.00 0.00 O \nATOM 2286 CB LYS A 298 1.855 37.607 34.737 1.00 0.00 C \nATOM 2287 CG LYS A 298 2.613 38.360 33.652 1.00 0.00 C \nATOM 2288 CD LYS A 298 4.126 38.119 33.683 1.00 0.00 C \nATOM 2289 CE LYS A 298 4.813 38.926 32.561 1.00 0.00 C \nATOM 2290 NZ LYS A 298 6.279 38.693 32.496 1.00 0.00 N \nATOM 2291 N ALA A 299 -0.333 37.177 36.939 1.00 0.00 N \nATOM 2292 CA ALA A 299 -1.021 36.298 37.883 1.00 0.00 C \nATOM 2293 C ALA A 299 -2.534 36.367 37.713 1.00 0.00 C \nATOM 2294 O ALA A 299 -3.202 35.334 37.724 1.00 0.00 O \nATOM 2295 CB ALA A 299 -0.633 36.651 39.318 1.00 0.00 C \nATOM 2296 N SER A 300 -3.081 37.575 37.555 1.00 0.00 N \nATOM 2297 CA SER A 300 -4.525 37.725 37.369 1.00 0.00 C \nATOM 2298 C SER A 300 -4.970 36.957 36.130 1.00 0.00 C \nATOM 2299 O SER A 300 -5.954 36.216 36.169 1.00 0.00 O \nATOM 2300 CB SER A 300 -4.917 39.200 37.216 1.00 0.00 C \nATOM 2301 OG SER A 300 -4.704 39.911 38.421 1.00 0.00 O \nATOM 2302 N ALA A 301 -4.253 37.142 35.027 1.00 0.00 N \nATOM 2303 CA ALA A 301 -4.574 36.436 33.794 1.00 0.00 C \nATOM 2304 C ALA A 301 -4.377 34.923 33.986 1.00 0.00 C \nATOM 2305 O ALA A 301 -5.193 34.120 33.521 1.00 0.00 O \nATOM 2306 CB ALA A 301 -3.689 36.947 32.654 1.00 0.00 C \nATOM 2307 N ALA A 302 -3.305 34.529 34.672 1.00 0.00 N \nATOM 2308 CA ALA A 302 -3.054 33.104 34.899 1.00 0.00 C \nATOM 2309 C ALA A 302 -4.171 32.447 35.730 1.00 0.00 C \nATOM 2310 O ALA A 302 -4.499 31.270 35.527 1.00 0.00 O \nATOM 2311 CB ALA A 302 -1.705 32.912 35.597 1.00 0.00 C \nATOM 2312 N CYS A 303 -4.736 33.199 36.676 1.00 0.00 N \nATOM 2313 CA CYS A 303 -5.811 32.678 37.522 1.00 0.00 C \nATOM 2314 C CYS A 303 -7.019 32.317 36.655 1.00 0.00 C \nATOM 2315 O CYS A 303 -7.678 31.299 36.884 1.00 0.00 O \nATOM 2316 CB CYS A 303 -6.220 33.712 38.577 1.00 0.00 C \nATOM 2317 SG CYS A 303 -7.962 33.578 39.122 1.00 0.00 S \nATOM 2318 N ARG A 304 -7.302 33.162 35.665 1.00 0.00 N \nATOM 2319 CA ARG A 304 -8.411 32.932 34.741 1.00 0.00 C \nATOM 2320 C ARG A 304 -8.088 31.733 33.862 1.00 0.00 C \nATOM 2321 O ARG A 304 -8.917 30.848 33.671 1.00 0.00 O \nATOM 2322 CB ARG A 304 -8.637 34.166 33.867 1.00 0.00 C \nATOM 2323 CG ARG A 304 -8.862 35.421 34.679 1.00 0.00 C \nATOM 2324 CD ARG A 304 -9.287 36.579 33.818 1.00 0.00 C \nATOM 2325 NE ARG A 304 -9.653 37.735 34.640 1.00 0.00 N \nATOM 2326 CZ ARG A 304 -10.221 38.838 34.161 1.00 0.00 C \nATOM 2327 NH1 ARG A 304 -10.490 38.939 32.870 1.00 0.00 N \nATOM 2328 NH2 ARG A 304 -10.522 39.841 34.971 1.00 0.00 N \nATOM 2329 N ALA A 305 -6.876 31.706 33.321 1.00 0.00 N \nATOM 2330 CA ALA A 305 -6.464 30.588 32.488 1.00 0.00 C \nATOM 2331 C ALA A 305 -6.591 29.259 33.251 1.00 0.00 C \nATOM 2332 O ALA A 305 -7.065 28.265 32.696 1.00 0.00 O \nATOM 2333 CB ALA A 305 -5.024 30.786 32.025 1.00 0.00 C \nATOM 2334 N ALA A 306 -6.177 29.240 34.520 1.00 0.00 N \nATOM 2335 CA ALA A 306 -6.229 28.016 35.327 1.00 0.00 C \nATOM 2336 C ALA A 306 -7.596 27.717 35.938 1.00 0.00 C \nATOM 2337 O ALA A 306 -7.778 26.701 36.611 1.00 0.00 O \nATOM 2338 CB ALA A 306 -5.163 28.064 36.434 1.00 0.00 C \nATOM 2339 N LYS A 307 -8.552 28.607 35.720 1.00 0.00 N \nATOM 2340 CA LYS A 307 -9.897 28.411 36.236 1.00 0.00 C \nATOM 2341 C LYS A 307 -9.954 28.350 37.759 1.00 0.00 C \nATOM 2342 O LYS A 307 -10.750 27.601 38.336 1.00 0.00 O \nATOM 2343 CB LYS A 307 -10.494 27.134 35.647 1.00 0.00 C \nATOM 2344 CG LYS A 307 -10.636 27.168 34.140 1.00 0.00 C \nATOM 2345 CD LYS A 307 -10.672 25.758 33.576 1.00 0.00 C \nATOM 2346 CE LYS A 307 -9.334 25.040 33.804 1.00 0.00 C \nATOM 2347 NZ LYS A 307 -9.405 23.585 33.476 1.00 0.00 N \nATOM 2348 N LEU A 308 -9.103 29.135 38.409 1.00 0.00 N \nATOM 2349 CA LEU A 308 -9.098 29.186 39.859 1.00 0.00 C \nATOM 2350 C LEU A 308 -10.385 29.860 40.305 1.00 0.00 C \nATOM 2351 O LEU A 308 -10.784 30.883 39.749 1.00 0.00 O \nATOM 2352 CB LEU A 308 -7.887 29.983 40.362 1.00 0.00 C \nATOM 2353 CG LEU A 308 -6.626 29.199 40.739 1.00 0.00 C \nATOM 2354 CD1 LEU A 308 -6.308 28.143 39.694 1.00 0.00 C \nATOM 2355 CD2 LEU A 308 -5.467 30.176 40.906 1.00 0.00 C \nATOM 2356 N GLN A 309 -11.032 29.285 41.310 1.00 0.00 N \nATOM 2357 CA GLN A 309 -12.274 29.835 41.840 1.00 0.00 C \nATOM 2358 C GLN A 309 -12.016 30.999 42.803 1.00 0.00 C \nATOM 2359 O GLN A 309 -11.299 30.856 43.791 1.00 0.00 O \nATOM 2360 CB GLN A 309 -13.049 28.727 42.560 1.00 0.00 C \nATOM 2361 CG GLN A 309 -14.235 28.155 41.794 1.00 0.00 C \nATOM 2362 CD GLN A 309 -15.542 28.855 42.142 1.00 0.00 C \nATOM 2363 OE1 GLN A 309 -16.161 29.511 41.297 1.00 0.00 O \nATOM 2364 NE2 GLN A 309 -15.968 28.718 43.397 1.00 0.00 N \nATOM 2365 N ASP A 310 -12.608 32.147 42.501 1.00 0.00 N \nATOM 2366 CA ASP A 310 -12.478 33.348 43.319 1.00 0.00 C \nATOM 2367 C ASP A 310 -11.062 33.612 43.851 1.00 0.00 C \nATOM 2368 O ASP A 310 -10.855 33.777 45.056 1.00 0.00 O \nATOM 2369 CB ASP A 310 -13.478 33.297 44.482 1.00 0.00 C \nATOM 2370 CG ASP A 310 -13.470 34.571 45.314 1.00 0.00 C \nATOM 2371 OD1 ASP A 310 -13.340 35.666 44.724 1.00 0.00 O \nATOM 2372 OD2 ASP A 310 -13.605 34.484 46.556 1.00 0.00 O \nATOM 2373 N CYS A 311 -10.091 33.668 42.943 1.00 0.00 N \nATOM 2374 CA CYS A 311 -8.714 33.923 43.330 1.00 0.00 C \nATOM 2375 C CYS A 311 -8.536 35.356 43.819 1.00 0.00 C \nATOM 2376 O CYS A 311 -8.888 36.314 43.122 1.00 0.00 O \nATOM 2377 CB CYS A 311 -7.776 33.689 42.143 1.00 0.00 C \nATOM 2378 SG CYS A 311 -8.092 34.806 40.734 1.00 0.00 S \nATOM 2379 N THR A 312 -8.024 35.511 45.033 1.00 0.00 N \nATOM 2380 CA THR A 312 -7.756 36.843 45.563 1.00 0.00 C \nATOM 2381 C THR A 312 -6.241 36.897 45.649 1.00 0.00 C \nATOM 2382 O THR A 312 -5.600 35.925 46.054 1.00 0.00 O \nATOM 2383 CB THR A 312 -8.325 37.055 46.969 1.00 0.00 C \nATOM 2384 OG1 THR A 312 -9.753 36.978 46.927 1.00 0.00 O \nATOM 2385 CG2 THR A 312 -7.906 38.430 47.508 1.00 0.00 C \nATOM 2386 N MET A 313 -5.653 38.019 45.267 1.00 0.00 N \nATOM 2387 CA MET A 313 -4.207 38.094 45.319 1.00 0.00 C \nATOM 2388 C MET A 313 -3.626 39.184 46.181 1.00 0.00 C \nATOM 2389 O MET A 313 -4.273 40.197 46.458 1.00 0.00 O \nATOM 2390 CB MET A 313 -3.655 38.197 43.904 1.00 0.00 C \nATOM 2391 CG MET A 313 -3.955 36.940 43.124 1.00 0.00 C \nATOM 2392 SD MET A 313 -3.504 37.039 41.439 1.00 0.00 S \nATOM 2393 CE MET A 313 -4.300 38.628 41.015 1.00 0.00 C \nATOM 2394 N LEU A 314 -2.399 38.940 46.629 1.00 0.00 N \nATOM 2395 CA LEU A 314 -1.661 39.902 47.439 1.00 0.00 C \nATOM 2396 C LEU A 314 -0.304 39.958 46.756 1.00 0.00 C \nATOM 2397 O LEU A 314 0.424 38.969 46.713 1.00 0.00 O \nATOM 2398 CB LEU A 314 -1.542 39.437 48.895 1.00 0.00 C \nATOM 2399 CG LEU A 314 -0.852 40.454 49.816 1.00 0.00 C \nATOM 2400 CD1 LEU A 314 -1.546 41.820 49.711 1.00 0.00 C \nATOM 2401 CD2 LEU A 314 -0.885 39.944 51.256 1.00 0.00 C \nATOM 2402 N VAL A 315 0.006 41.125 46.206 1.00 0.00 N \nATOM 2403 CA VAL A 315 1.224 41.330 45.448 1.00 0.00 C \nATOM 2404 C VAL A 315 2.079 42.479 45.979 1.00 0.00 C \nATOM 2405 O VAL A 315 1.578 43.571 46.238 1.00 0.00 O \nATOM 2406 CB VAL A 315 0.872 41.630 43.958 1.00 0.00 C \nATOM 2407 CG1 VAL A 315 2.131 41.624 43.100 1.00 0.00 C \nATOM 2408 CG2 VAL A 315 -0.135 40.606 43.433 1.00 0.00 C \nATOM 2409 N ASN A 316 3.368 42.206 46.134 1.00 0.00 N \nATOM 2410 CA ASN A 316 4.360 43.180 46.607 1.00 0.00 C \nATOM 2411 C ASN A 316 5.552 42.999 45.663 1.00 0.00 C \nATOM 2412 O ASN A 316 6.350 42.078 45.836 1.00 0.00 O \nATOM 2413 CB ASN A 316 4.808 42.857 48.045 1.00 0.00 C \nATOM 2414 CG ASN A 316 3.717 43.097 49.079 1.00 0.00 C \nATOM 2415 OD1 ASN A 316 2.702 42.401 49.110 1.00 0.00 O \nATOM 2416 ND2 ASN A 316 3.931 44.091 49.938 1.00 0.00 N \nATOM 2417 N GLY A 317 5.680 43.857 44.662 1.00 0.00 N \nATOM 2418 CA GLY A 317 6.777 43.677 43.726 1.00 0.00 C \nATOM 2419 C GLY A 317 6.679 42.293 43.086 1.00 0.00 C \nATOM 2420 O GLY A 317 5.627 41.905 42.583 1.00 0.00 O \nATOM 2421 N ASP A 318 7.758 41.527 43.114 1.00 0.00 N \nATOM 2422 CA ASP A 318 7.725 40.194 42.514 1.00 0.00 C \nATOM 2423 C ASP A 318 7.158 39.157 43.483 1.00 0.00 C \nATOM 2424 O ASP A 318 7.018 37.985 43.131 1.00 0.00 O \nATOM 2425 CB ASP A 318 9.135 39.778 42.073 1.00 0.00 C \nATOM 2426 CG ASP A 318 10.057 39.471 43.247 1.00 0.00 C \nATOM 2427 OD1 ASP A 318 9.969 40.154 44.289 1.00 0.00 O \nATOM 2428 OD2 ASP A 318 10.887 38.550 43.121 1.00 0.00 O \nATOM 2429 N ASP A 319 6.828 39.586 44.697 1.00 0.00 N \nATOM 2430 CA ASP A 319 6.305 38.654 45.686 1.00 0.00 C \nATOM 2431 C ASP A 319 4.810 38.479 45.461 1.00 0.00 C \nATOM 2432 O ASP A 319 4.055 39.454 45.433 1.00 0.00 O \nATOM 2433 CB ASP A 319 6.606 39.165 47.096 1.00 0.00 C \nATOM 2434 CG ASP A 319 6.631 38.052 48.118 1.00 0.00 C \nATOM 2435 OD1 ASP A 319 5.548 37.603 48.560 1.00 0.00 O \nATOM 2436 OD2 ASP A 319 7.743 37.612 48.467 1.00 0.00 O \nATOM 2437 N LEU A 320 4.389 37.229 45.303 1.00 0.00 N \nATOM 2438 CA LEU A 320 2.995 36.931 45.018 1.00 0.00 C \nATOM 2439 C LEU A 320 2.403 35.821 45.866 1.00 0.00 C \nATOM 2440 O LEU A 320 3.023 34.777 46.073 1.00 0.00 O \nATOM 2441 CB LEU A 320 2.855 36.541 43.542 1.00 0.00 C \nATOM 2442 CG LEU A 320 1.549 35.869 43.107 1.00 0.00 C \nATOM 2443 CD1 LEU A 320 0.393 36.846 43.260 1.00 0.00 C \nATOM 2444 CD2 LEU A 320 1.676 35.392 41.657 1.00 0.00 C \nATOM 2445 N VAL A 321 1.194 36.054 46.350 1.00 0.00 N \nATOM 2446 CA VAL A 321 0.500 35.057 47.134 1.00 0.00 C \nATOM 2447 C VAL A 321 -0.953 35.069 46.670 1.00 0.00 C \nATOM 2448 O VAL A 321 -1.555 36.130 46.453 1.00 0.00 O \nATOM 2449 CB VAL A 321 0.623 35.337 48.655 1.00 0.00 C \nATOM 2450 CG1 VAL A 321 -0.084 36.610 49.008 1.00 0.00 C \nATOM 2451 CG2 VAL A 321 0.072 34.176 49.451 1.00 0.00 C \nATOM 2452 N VAL A 322 -1.494 33.872 46.474 1.00 0.00 N \nATOM 2453 CA VAL A 322 -2.861 33.716 46.016 1.00 0.00 C \nATOM 2454 C VAL A 322 -3.696 32.888 46.990 1.00 0.00 C \nATOM 2455 O VAL A 322 -3.258 31.834 47.460 1.00 0.00 O \nATOM 2456 CB VAL A 322 -2.902 33.036 44.628 1.00 0.00 C \nATOM 2457 CG1 VAL A 322 -4.357 32.797 44.205 1.00 0.00 C \nATOM 2458 CG2 VAL A 322 -2.182 33.909 43.595 1.00 0.00 C \nATOM 2459 N ILE A 323 -4.888 33.391 47.298 1.00 0.00 N \nATOM 2460 CA ILE A 323 -5.823 32.696 48.171 1.00 0.00 C \nATOM 2461 C ILE A 323 -7.137 32.515 47.384 1.00 0.00 C \nATOM 2462 O ILE A 323 -7.744 33.490 46.926 1.00 0.00 O \nATOM 2463 CB ILE A 323 -6.081 33.499 49.467 1.00 0.00 C \nATOM 2464 CG1 ILE A 323 -4.762 33.680 50.230 1.00 0.00 C \nATOM 2465 CG2 ILE A 323 -7.088 32.753 50.365 1.00 0.00 C \nATOM 2466 CD1 ILE A 323 -4.901 34.476 51.505 1.00 0.00 C \nATOM 2467 N CYS A 324 -7.571 31.272 47.214 1.00 0.00 N \nATOM 2468 CA CYS A 324 -8.795 31.024 46.454 1.00 0.00 C \nATOM 2469 C CYS A 324 -9.748 30.019 47.098 1.00 0.00 C \nATOM 2470 O CYS A 324 -9.568 29.620 48.252 1.00 0.00 O \nATOM 2471 CB CYS A 324 -8.438 30.552 45.038 1.00 0.00 C \nATOM 2472 SG CYS A 324 -7.420 29.040 44.959 1.00 0.00 S \nATOM 2473 N GLU A 325 -10.761 29.617 46.333 1.00 0.00 N \nATOM 2474 CA GLU A 325 -11.757 28.649 46.789 1.00 0.00 C \nATOM 2475 C GLU A 325 -11.232 27.276 46.366 1.00 0.00 C \nATOM 2476 O GLU A 325 -10.953 27.052 45.191 1.00 0.00 O \nATOM 2477 CB GLU A 325 -13.107 28.954 46.122 1.00 0.00 C \nATOM 2478 CG GLU A 325 -14.303 28.319 46.781 1.00 0.00 C \nATOM 2479 CD GLU A 325 -14.487 28.753 48.225 1.00 0.00 C \nATOM 2480 OE1 GLU A 325 -14.976 29.878 48.489 1.00 0.00 O \nATOM 2481 OE2 GLU A 325 -14.127 27.955 49.104 1.00 0.00 O \nATOM 2482 N SER A 326 -11.075 26.364 47.320 1.00 0.00 N \nATOM 2483 CA SER A 326 -10.550 25.036 47.000 1.00 0.00 C \nATOM 2484 C SER A 326 -11.553 24.168 46.247 1.00 0.00 C \nATOM 2485 O SER A 326 -12.759 24.396 46.316 1.00 0.00 O \nATOM 2486 CB SER A 326 -10.126 24.302 48.271 1.00 0.00 C \nATOM 2487 OG SER A 326 -9.801 22.952 47.973 1.00 0.00 O \nATOM 2488 N ALA A 327 -11.041 23.170 45.535 1.00 0.00 N \nATOM 2489 CA ALA A 327 -11.887 22.254 44.778 1.00 0.00 C \nATOM 2490 C ALA A 327 -11.428 20.833 45.053 1.00 0.00 C \nATOM 2491 O ALA A 327 -11.683 19.921 44.272 1.00 0.00 O \nATOM 2492 CB ALA A 327 -11.786 22.554 43.293 1.00 0.00 C \nATOM 2493 N GLY A 328 -10.751 20.653 46.179 1.00 0.00 N \nATOM 2494 CA GLY A 328 -10.240 19.346 46.525 1.00 0.00 C \nATOM 2495 C GLY A 328 -8.746 19.401 46.308 1.00 0.00 C \nATOM 2496 O GLY A 328 -8.273 20.130 45.448 1.00 0.00 O \nATOM 2497 N THR A 329 -7.994 18.640 47.087 1.00 0.00 N \nATOM 2498 CA THR A 329 -6.539 18.643 46.971 1.00 0.00 C \nATOM 2499 C THR A 329 -6.059 18.269 45.556 1.00 0.00 C \nATOM 2500 O THR A 329 -5.091 18.847 45.037 1.00 0.00 O \nATOM 2501 CB THR A 329 -5.930 17.676 48.014 1.00 0.00 C \nATOM 2502 OG1 THR A 329 -4.496 17.702 47.932 1.00 0.00 O \nATOM 2503 CG2 THR A 329 -6.424 16.263 47.755 1.00 0.00 C \nATOM 2504 N GLN A 330 -6.737 17.307 44.934 1.00 0.00 N \nATOM 2505 CA GLN A 330 -6.376 16.865 43.590 1.00 0.00 C \nATOM 2506 C GLN A 330 -6.600 17.940 42.540 1.00 0.00 C \nATOM 2507 O GLN A 330 -5.731 18.206 41.710 1.00 0.00 O \nATOM 2508 CB GLN A 330 -7.178 15.616 43.211 1.00 0.00 C \nATOM 2509 CG GLN A 330 -6.614 14.318 43.748 1.00 0.00 C \nATOM 2510 CD GLN A 330 -5.242 14.013 43.178 1.00 0.00 C \nATOM 2511 OE1 GLN A 330 -4.293 14.779 43.368 1.00 0.00 O \nATOM 2512 NE2 GLN A 330 -5.130 12.890 42.472 1.00 0.00 N \nATOM 2513 N GLU A 331 -7.782 18.543 42.576 1.00 0.00 N \nATOM 2514 CA GLU A 331 -8.132 19.590 41.633 1.00 0.00 C \nATOM 2515 C GLU A 331 -7.224 20.800 41.842 1.00 0.00 C \nATOM 2516 O GLU A 331 -6.895 21.531 40.902 1.00 0.00 O \nATOM 2517 CB GLU A 331 -9.595 19.992 41.827 1.00 0.00 C \nATOM 2518 CG GLU A 331 -10.081 21.039 40.846 1.00 0.00 C \nATOM 2519 CD GLU A 331 -9.867 20.615 39.408 1.00 0.00 C \nATOM 2520 OE1 GLU A 331 -10.411 19.558 39.018 1.00 0.00 O \nATOM 2521 OE2 GLU A 331 -9.156 21.337 38.674 1.00 0.00 O \nATOM 2522 N ASP A 332 -6.816 21.000 43.088 1.00 0.00 N \nATOM 2523 CA ASP A 332 -5.949 22.111 43.428 1.00 0.00 C \nATOM 2524 C ASP A 332 -4.583 21.940 42.792 1.00 0.00 C \nATOM 2525 O ASP A 332 -4.046 22.884 42.213 1.00 0.00 O \nATOM 2526 CB ASP A 332 -5.827 22.242 44.949 1.00 0.00 C \nATOM 2527 CG ASP A 332 -7.103 22.756 45.587 1.00 0.00 C \nATOM 2528 OD1 ASP A 332 -7.898 23.420 44.884 1.00 0.00 O \nATOM 2529 OD2 ASP A 332 -7.308 22.513 46.794 1.00 0.00 O \nATOM 2530 N ALA A 333 -4.032 20.731 42.883 1.00 0.00 N \nATOM 2531 CA ALA A 333 -2.721 20.445 42.313 1.00 0.00 C \nATOM 2532 C ALA A 333 -2.737 20.654 40.807 1.00 0.00 C \nATOM 2533 O ALA A 333 -1.776 21.167 40.225 1.00 0.00 O \nATOM 2534 CB ALA A 333 -2.303 19.014 42.636 1.00 0.00 C \nATOM 2535 N ALA A 334 -3.837 20.256 40.181 1.00 0.00 N \nATOM 2536 CA ALA A 334 -3.986 20.396 38.740 1.00 0.00 C \nATOM 2537 C ALA A 334 -4.046 21.864 38.328 1.00 0.00 C \nATOM 2538 O ALA A 334 -3.340 22.286 37.421 1.00 0.00 O \nATOM 2539 CB ALA A 334 -5.248 19.675 38.274 1.00 0.00 C \nATOM 2540 N SER A 335 -4.898 22.632 38.993 1.00 0.00 N \nATOM 2541 CA SER A 335 -5.056 24.051 38.682 1.00 0.00 C \nATOM 2542 C SER A 335 -3.730 24.793 38.793 1.00 0.00 C \nATOM 2543 O SER A 335 -3.279 25.449 37.848 1.00 0.00 O \nATOM 2544 CB SER A 335 -6.069 24.673 39.637 1.00 0.00 C \nATOM 2545 OG SER A 335 -7.266 23.917 39.645 1.00 0.00 O \nATOM 2546 N LEU A 336 -3.107 24.665 39.959 1.00 0.00 N \nATOM 2547 CA LEU A 336 -1.838 25.311 40.233 1.00 0.00 C \nATOM 2548 C LEU A 336 -0.818 24.966 39.158 1.00 0.00 C \nATOM 2549 O LEU A 336 0.022 25.783 38.797 1.00 0.00 O \nATOM 2550 CB LEU A 336 -1.354 24.893 41.624 1.00 0.00 C \nATOM 2551 CG LEU A 336 0.050 25.251 42.090 1.00 0.00 C \nATOM 2552 CD1 LEU A 336 0.105 25.230 43.614 1.00 0.00 C \nATOM 2553 CD2 LEU A 336 1.045 24.258 41.499 1.00 0.00 C \nATOM 2554 N ARG A 337 -0.907 23.746 38.642 1.00 0.00 N \nATOM 2555 CA ARG A 337 -0.007 23.297 37.591 1.00 0.00 C \nATOM 2556 C ARG A 337 -0.308 24.054 36.303 1.00 0.00 C \nATOM 2557 O ARG A 337 0.591 24.414 35.564 1.00 0.00 O \nATOM 2558 CB ARG A 337 -0.174 21.792 37.378 1.00 0.00 C \nATOM 2559 CG ARG A 337 0.815 21.172 36.406 1.00 0.00 C \nATOM 2560 CD ARG A 337 0.716 19.651 36.458 1.00 0.00 C \nATOM 2561 NE ARG A 337 1.514 19.003 35.419 1.00 0.00 N \nATOM 2562 CZ ARG A 337 1.260 19.092 34.115 1.00 0.00 C \nATOM 2563 NH1 ARG A 337 0.225 19.805 33.689 1.00 0.00 N \nATOM 2564 NH2 ARG A 337 2.036 18.465 33.239 1.00 0.00 N \nATOM 2565 N VAL A 338 -1.582 24.288 36.036 1.00 0.00 N \nATOM 2566 CA VAL A 338 -1.980 25.018 34.846 1.00 0.00 C \nATOM 2567 C VAL A 338 -1.640 26.504 35.060 1.00 0.00 C \nATOM 2568 O VAL A 338 -1.196 27.195 34.142 1.00 0.00 O \nATOM 2569 CB VAL A 338 -3.506 24.836 34.585 1.00 0.00 C \nATOM 2570 CG1 VAL A 338 -3.937 25.680 33.397 1.00 0.00 C \nATOM 2571 CG2 VAL A 338 -3.826 23.350 34.295 1.00 0.00 C \nATOM 2572 N PHE A 339 -1.860 26.976 36.283 1.00 0.00 N \nATOM 2573 CA PHE A 339 -1.566 28.356 36.652 1.00 0.00 C \nATOM 2574 C PHE A 339 -0.088 28.620 36.370 1.00 0.00 C \nATOM 2575 O PHE A 339 0.276 29.654 35.830 1.00 0.00 O \nATOM 2576 CB PHE A 339 -1.836 28.578 38.148 1.00 0.00 C \nATOM 2577 CG PHE A 339 -1.503 29.964 38.622 1.00 0.00 C \nATOM 2578 CD1 PHE A 339 -2.448 30.974 38.569 1.00 0.00 C \nATOM 2579 CD2 PHE A 339 -0.239 30.254 39.123 1.00 0.00 C \nATOM 2580 CE1 PHE A 339 -2.148 32.263 39.007 1.00 0.00 C \nATOM 2581 CE2 PHE A 339 0.078 31.545 39.564 1.00 0.00 C \nATOM 2582 CZ PHE A 339 -0.878 32.546 39.509 1.00 0.00 C \nATOM 2583 N THR A 340 0.752 27.665 36.756 1.00 0.00 N \nATOM 2584 CA THR A 340 2.192 27.758 36.558 1.00 0.00 C \nATOM 2585 C THR A 340 2.552 27.722 35.076 1.00 0.00 C \nATOM 2586 O THR A 340 3.450 28.444 34.623 1.00 0.00 O \nATOM 2587 CB THR A 340 2.898 26.608 37.297 1.00 0.00 C \nATOM 2588 OG1 THR A 340 2.637 26.732 38.698 1.00 0.00 O \nATOM 2589 CG2 THR A 340 4.396 26.632 37.064 1.00 0.00 C \nATOM 2590 N GLU A 341 1.848 26.885 34.316 1.00 0.00 N \nATOM 2591 CA GLU A 341 2.101 26.778 32.881 1.00 0.00 C \nATOM 2592 C GLU A 341 1.784 28.117 32.208 1.00 0.00 C \nATOM 2593 O GLU A 341 2.496 28.538 31.304 1.00 0.00 O \nATOM 2594 CB GLU A 341 1.244 25.653 32.254 1.00 0.00 C \nATOM 2595 CG GLU A 341 1.516 24.272 32.861 1.00 0.00 C \nATOM 2596 CD GLU A 341 0.711 23.143 32.218 1.00 0.00 C \nATOM 2597 OE1 GLU A 341 -0.467 23.360 31.855 1.00 0.00 O \nATOM 2598 OE2 GLU A 341 1.257 22.024 32.093 1.00 0.00 O \nATOM 2599 N ALA A 342 0.715 28.768 32.658 1.00 0.00 N \nATOM 2600 CA ALA A 342 0.297 30.063 32.118 1.00 0.00 C \nATOM 2601 C ALA A 342 1.339 31.142 32.448 1.00 0.00 C \nATOM 2602 O ALA A 342 1.780 31.890 31.562 1.00 0.00 O \nATOM 2603 CB ALA A 342 -1.063 30.452 32.700 1.00 0.00 C \nATOM 2604 N MET A 343 1.735 31.217 33.722 1.00 0.00 N \nATOM 2605 CA MET A 343 2.742 32.191 34.143 1.00 0.00 C \nATOM 2606 C MET A 343 4.004 31.992 33.315 1.00 0.00 C \nATOM 2607 O MET A 343 4.685 32.958 32.958 1.00 0.00 O \nATOM 2608 CB MET A 343 3.104 32.004 35.625 1.00 0.00 C \nATOM 2609 CG MET A 343 2.030 32.397 36.597 1.00 0.00 C \nATOM 2610 SD MET A 343 1.671 34.184 36.518 1.00 0.00 S \nATOM 2611 CE MET A 343 2.912 34.833 37.714 1.00 0.00 C \nATOM 2612 N THR A 344 4.334 30.729 33.028 1.00 0.00 N \nATOM 2613 CA THR A 344 5.529 30.425 32.253 1.00 0.00 C \nATOM 2614 C THR A 344 5.373 30.970 30.834 1.00 0.00 C \nATOM 2615 O THR A 344 6.297 31.582 30.296 1.00 0.00 O \nATOM 2616 CB THR A 344 5.817 28.897 32.233 1.00 0.00 C \nATOM 2617 OG1 THR A 344 6.127 28.457 33.565 1.00 0.00 O \nATOM 2618 CG2 THR A 344 7.002 28.579 31.322 1.00 0.00 C \nATOM 2619 N ARG A 345 4.196 30.779 30.242 1.00 0.00 N \nATOM 2620 CA ARG A 345 3.952 31.296 28.902 1.00 0.00 C \nATOM 2621 C ARG A 345 4.039 32.824 28.908 1.00 0.00 C \nATOM 2622 O ARG A 345 4.362 33.436 27.895 1.00 0.00 O \nATOM 2623 CB ARG A 345 2.576 30.857 28.384 1.00 0.00 C \nATOM 2624 CG ARG A 345 2.491 29.375 28.031 1.00 0.00 C \nATOM 2625 CD ARG A 345 1.239 29.058 27.228 1.00 0.00 C \nATOM 2626 NE ARG A 345 0.010 29.300 27.977 1.00 0.00 N \nATOM 2627 CZ ARG A 345 -0.589 28.407 28.764 1.00 0.00 C \nATOM 2628 NH1 ARG A 345 -0.073 27.193 28.918 1.00 0.00 N \nATOM 2629 NH2 ARG A 345 -1.720 28.724 29.391 1.00 0.00 N \nATOM 2630 N TYR A 346 3.761 33.430 30.056 1.00 0.00 N \nATOM 2631 CA TYR A 346 3.811 34.887 30.182 1.00 0.00 C \nATOM 2632 C TYR A 346 5.217 35.355 30.533 1.00 0.00 C \nATOM 2633 O TYR A 346 5.447 36.546 30.758 1.00 0.00 O \nATOM 2634 CB TYR A 346 2.865 35.369 31.282 1.00 0.00 C \nATOM 2635 CG TYR A 346 1.400 35.103 31.038 1.00 0.00 C \nATOM 2636 CD1 TYR A 346 0.870 35.082 29.736 1.00 0.00 C \nATOM 2637 CD2 TYR A 346 0.522 34.965 32.106 1.00 0.00 C \nATOM 2638 CE1 TYR A 346 -0.501 34.936 29.524 1.00 0.00 C \nATOM 2639 CE2 TYR A 346 -0.828 34.824 31.908 1.00 0.00 C \nATOM 2640 CZ TYR A 346 -1.342 34.814 30.619 1.00 0.00 C \nATOM 2641 OH TYR A 346 -2.714 34.726 30.442 1.00 0.00 O \nATOM 2642 N SER A 347 6.150 34.413 30.569 1.00 0.00 N \nATOM 2643 CA SER A 347 7.527 34.704 30.935 1.00 0.00 C \nATOM 2644 C SER A 347 7.642 35.030 32.416 1.00 0.00 C \nATOM 2645 O SER A 347 8.206 36.065 32.791 1.00 0.00 O \nATOM 2646 CB SER A 347 8.094 35.876 30.145 1.00 0.00 C \nATOM 2647 OG SER A 347 9.431 36.106 30.543 1.00 0.00 O \nATOM 2648 N ALA A 348 7.065 34.167 33.244 1.00 0.00 N \nATOM 2649 CA ALA A 348 7.154 34.297 34.696 1.00 0.00 C \nATOM 2650 C ALA A 348 7.276 32.877 35.251 1.00 0.00 C \nATOM 2651 O ALA A 348 6.489 32.453 36.101 1.00 0.00 O \nATOM 2652 CB ALA A 348 5.929 34.990 35.267 1.00 0.00 C \nATOM 2653 N PRO A 349 8.264 32.113 34.751 1.00 0.00 N \nATOM 2654 CA PRO A 349 8.504 30.737 35.187 1.00 0.00 C \nATOM 2655 C PRO A 349 8.834 30.689 36.683 1.00 0.00 C \nATOM 2656 O PRO A 349 9.436 31.613 37.227 1.00 0.00 O \nATOM 2657 CB PRO A 349 9.682 30.311 34.325 1.00 0.00 C \nATOM 2658 CG PRO A 349 10.446 31.561 34.211 1.00 0.00 C \nATOM 2659 CD PRO A 349 9.368 32.570 33.892 1.00 0.00 C \nATOM 2660 N PRO A 350 8.450 29.602 37.359 1.00 0.00 N \nATOM 2661 CA PRO A 350 8.698 29.432 38.793 1.00 0.00 C \nATOM 2662 C PRO A 350 10.101 28.987 39.168 1.00 0.00 C \nATOM 2663 O PRO A 350 10.795 28.340 38.380 1.00 0.00 O \nATOM 2664 CB PRO A 350 7.672 28.382 39.185 1.00 0.00 C \nATOM 2665 CG PRO A 350 7.697 27.482 37.984 1.00 0.00 C \nATOM 2666 CD PRO A 350 7.659 28.474 36.832 1.00 0.00 C \nATOM 2667 N GLY A 351 10.511 29.351 40.382 1.00 0.00 N \nATOM 2668 CA GLY A 351 11.798 28.926 40.887 1.00 0.00 C \nATOM 2669 C GLY A 351 11.410 27.630 41.572 1.00 0.00 C \nATOM 2670 O GLY A 351 11.607 26.544 41.034 1.00 0.00 O \nATOM 2671 N ASP A 352 10.828 27.758 42.759 1.00 0.00 N \nATOM 2672 CA ASP A 352 10.340 26.610 43.508 1.00 0.00 C \nATOM 2673 C ASP A 352 8.909 26.397 43.027 1.00 0.00 C \nATOM 2674 O ASP A 352 8.111 27.329 43.031 1.00 0.00 O \nATOM 2675 CB ASP A 352 10.317 26.913 45.007 1.00 0.00 C \nATOM 2676 CG ASP A 352 11.699 27.114 45.576 1.00 0.00 C \nATOM 2677 OD1 ASP A 352 12.482 26.140 45.559 1.00 0.00 O \nATOM 2678 OD2 ASP A 352 12.003 28.240 46.034 1.00 0.00 O \nATOM 2679 N PRO A 353 8.570 25.175 42.591 1.00 0.00 N \nATOM 2680 CA PRO A 353 7.203 24.926 42.124 1.00 0.00 C \nATOM 2681 C PRO A 353 6.215 25.303 43.235 1.00 0.00 C \nATOM 2682 O PRO A 353 6.471 25.062 44.413 1.00 0.00 O \nATOM 2683 CB PRO A 353 7.204 23.423 41.836 1.00 0.00 C \nATOM 2684 CG PRO A 353 8.637 23.142 41.484 1.00 0.00 C \nATOM 2685 CD PRO A 353 9.392 23.955 42.505 1.00 0.00 C \nATOM 2686 N PRO A 354 5.083 25.917 42.875 1.00 0.00 N \nATOM 2687 CA PRO A 354 4.096 26.305 43.887 1.00 0.00 C \nATOM 2688 C PRO A 354 3.342 25.110 44.463 1.00 0.00 C \nATOM 2689 O PRO A 354 3.077 24.139 43.752 1.00 0.00 O \nATOM 2690 CB PRO A 354 3.178 27.245 43.120 1.00 0.00 C \nATOM 2691 CG PRO A 354 3.206 26.658 41.719 1.00 0.00 C \nATOM 2692 CD PRO A 354 4.667 26.344 41.525 1.00 0.00 C \nATOM 2693 N GLN A 355 3.011 25.171 45.748 1.00 0.00 N \nATOM 2694 CA GLN A 355 2.265 24.082 46.371 1.00 0.00 C \nATOM 2695 C GLN A 355 1.036 24.623 47.069 1.00 0.00 C \nATOM 2696 O GLN A 355 1.060 25.695 47.672 1.00 0.00 O \nATOM 2697 CB GLN A 355 3.124 23.297 47.376 1.00 0.00 C \nATOM 2698 CG GLN A 355 3.430 24.016 48.694 1.00 0.00 C \nATOM 2699 CD GLN A 355 3.968 23.069 49.786 1.00 0.00 C \nATOM 2700 OE1 GLN A 355 3.256 22.171 50.259 1.00 0.00 O \nATOM 2701 NE2 GLN A 355 5.225 23.273 50.185 1.00 0.00 N \nATOM 2702 N PRO A 356 -0.074 23.890 46.983 1.00 0.00 N \nATOM 2703 CA PRO A 356 -1.268 24.396 47.653 1.00 0.00 C \nATOM 2704 C PRO A 356 -1.152 24.215 49.169 1.00 0.00 C \nATOM 2705 O PRO A 356 -0.599 23.222 49.641 1.00 0.00 O \nATOM 2706 CB PRO A 356 -2.391 23.570 47.015 1.00 0.00 C \nATOM 2707 CG PRO A 356 -1.741 22.274 46.728 1.00 0.00 C \nATOM 2708 CD PRO A 356 -0.352 22.653 46.233 1.00 0.00 C \nATOM 2709 N GLU A 357 -1.638 25.198 49.917 1.00 0.00 N \nATOM 2710 CA GLU A 357 -1.619 25.150 51.377 1.00 0.00 C \nATOM 2711 C GLU A 357 -3.039 25.299 51.906 1.00 0.00 C \nATOM 2712 O GLU A 357 -3.843 26.034 51.347 1.00 0.00 O \nATOM 2713 CB GLU A 357 -0.736 26.264 51.949 1.00 0.00 C \nATOM 2714 CG GLU A 357 0.742 26.067 51.707 1.00 0.00 C \nATOM 2715 CD GLU A 357 1.293 24.834 52.405 1.00 0.00 C \nATOM 2716 OE1 GLU A 357 0.813 24.497 53.514 1.00 0.00 O \nATOM 2717 OE2 GLU A 357 2.223 24.212 51.851 1.00 0.00 O \nATOM 2718 N TYR A 358 -3.341 24.592 52.988 1.00 0.00 N \nATOM 2719 CA TYR A 358 -4.668 24.628 53.577 1.00 0.00 C \nATOM 2720 C TYR A 358 -4.634 25.230 54.980 1.00 0.00 C \nATOM 2721 O TYR A 358 -5.659 25.317 55.663 1.00 0.00 O \nATOM 2722 CB TYR A 358 -5.235 23.202 53.583 1.00 0.00 C \nATOM 2723 CG TYR A 358 -5.372 22.651 52.178 1.00 0.00 C \nATOM 2724 CD1 TYR A 358 -6.435 23.035 51.365 1.00 0.00 C \nATOM 2725 CD2 TYR A 358 -4.379 21.857 51.619 1.00 0.00 C \nATOM 2726 CE1 TYR A 358 -6.498 22.652 50.023 1.00 0.00 C \nATOM 2727 CE2 TYR A 358 -4.433 21.469 50.277 1.00 0.00 C \nATOM 2728 CZ TYR A 358 -5.492 21.876 49.488 1.00 0.00 C \nATOM 2729 OH TYR A 358 -5.533 21.538 48.155 1.00 0.00 O \nATOM 2730 N ASP A 359 -3.442 25.662 55.382 1.00 0.00 N \nATOM 2731 CA ASP A 359 -3.196 26.276 56.687 1.00 0.00 C \nATOM 2732 C ASP A 359 -2.577 27.650 56.403 1.00 0.00 C \nATOM 2733 O ASP A 359 -1.451 27.729 55.933 1.00 0.00 O \nATOM 2734 CB ASP A 359 -2.197 25.416 57.470 1.00 0.00 C \nATOM 2735 CG ASP A 359 -2.017 25.876 58.908 1.00 0.00 C \nATOM 2736 OD1 ASP A 359 -2.270 27.070 59.202 1.00 0.00 O \nATOM 2737 OD2 ASP A 359 -1.603 25.038 59.742 1.00 0.00 O \nATOM 2738 N LEU A 360 -3.309 28.725 56.673 1.00 0.00 N \nATOM 2739 CA LEU A 360 -2.794 30.069 56.415 1.00 0.00 C \nATOM 2740 C LEU A 360 -1.407 30.288 57.029 1.00 0.00 C \nATOM 2741 O LEU A 360 -0.561 30.955 56.438 1.00 0.00 O \nATOM 2742 CB LEU A 360 -3.774 31.124 56.946 1.00 0.00 C \nATOM 2743 CG LEU A 360 -3.350 32.605 56.883 1.00 0.00 C \nATOM 2744 CD1 LEU A 360 -3.134 33.037 55.435 1.00 0.00 C \nATOM 2745 CD2 LEU A 360 -4.415 33.472 57.531 1.00 0.00 C \nATOM 2746 N GLU A 361 -1.174 29.705 58.202 1.00 0.00 N \nATOM 2747 CA GLU A 361 0.096 29.851 58.909 1.00 0.00 C \nATOM 2748 C GLU A 361 1.273 29.247 58.153 1.00 0.00 C \nATOM 2749 O GLU A 361 2.435 29.586 58.409 1.00 0.00 O \nATOM 2750 CB GLU A 361 -0.014 29.220 60.306 1.00 0.00 C \nATOM 2751 CG GLU A 361 -0.941 29.987 61.270 1.00 0.00 C \nATOM 2752 CD GLU A 361 -1.029 29.360 62.668 1.00 0.00 C \nATOM 2753 OE1 GLU A 361 0.029 29.049 63.261 1.00 0.00 O \nATOM 2754 OE2 GLU A 361 -2.161 29.191 63.177 1.00 0.00 O \nATOM 2755 N LEU A 362 0.973 28.359 57.211 1.00 0.00 N \nATOM 2756 CA LEU A 362 2.020 27.706 56.439 1.00 0.00 C \nATOM 2757 C LEU A 362 2.340 28.410 55.134 1.00 0.00 C \nATOM 2758 O LEU A 362 3.141 27.920 54.342 1.00 0.00 O \nATOM 2759 CB LEU A 362 1.635 26.254 56.151 1.00 0.00 C \nATOM 2760 CG LEU A 362 1.399 25.375 57.386 1.00 0.00 C \nATOM 2761 CD1 LEU A 362 1.304 23.906 56.950 1.00 0.00 C \nATOM 2762 CD2 LEU A 362 2.535 25.569 58.387 1.00 0.00 C \nATOM 2763 N ILE A 363 1.718 29.557 54.902 1.00 0.00 N \nATOM 2764 CA ILE A 363 1.975 30.282 53.669 1.00 0.00 C \nATOM 2765 C ILE A 363 2.939 31.428 53.908 1.00 0.00 C \nATOM 2766 O ILE A 363 2.668 32.320 54.722 1.00 0.00 O \nATOM 2767 CB ILE A 363 0.690 30.856 53.068 1.00 0.00 C \nATOM 2768 CG1 ILE A 363 -0.274 29.710 52.705 1.00 0.00 C \nATOM 2769 CG2 ILE A 363 1.044 31.708 51.864 1.00 0.00 C \nATOM 2770 CD1 ILE A 363 -1.584 30.169 52.118 1.00 0.00 C \nATOM 2771 N THR A 364 4.056 31.389 53.186 1.00 0.00 N \nATOM 2772 CA THR A 364 5.089 32.402 53.289 1.00 0.00 C \nATOM 2773 C THR A 364 5.058 33.335 52.078 1.00 0.00 C \nATOM 2774 O THR A 364 5.206 32.890 50.939 1.00 0.00 O \nATOM 2775 CB THR A 364 6.483 31.752 53.384 1.00 0.00 C \nATOM 2776 OG1 THR A 364 6.601 31.025 54.619 1.00 0.00 O \nATOM 2777 CG2 THR A 364 7.569 32.825 53.315 1.00 0.00 C \nATOM 2778 N SER A 365 4.850 34.624 52.339 1.00 0.00 N \nATOM 2779 CA SER A 365 4.810 35.659 51.306 1.00 0.00 C \nATOM 2780 C SER A 365 5.554 36.868 51.903 1.00 0.00 C \nATOM 2781 O SER A 365 5.359 37.208 53.072 1.00 0.00 O \nATOM 2782 CB SER A 365 3.364 36.020 50.972 1.00 0.00 C \nATOM 2783 OG SER A 365 2.681 36.510 52.116 1.00 0.00 O \nATOM 2784 N CYS A 366 6.397 37.509 51.098 1.00 0.00 N \nATOM 2785 CA CYS A 366 7.233 38.610 51.577 1.00 0.00 C \nATOM 2786 C CYS A 366 8.081 38.063 52.716 1.00 0.00 C \nATOM 2787 O CYS A 366 8.258 38.711 53.745 1.00 0.00 O \nATOM 2788 CB CYS A 366 6.399 39.790 52.072 1.00 0.00 C \nATOM 2789 SG CYS A 366 5.988 40.955 50.770 1.00 0.00 S \nATOM 2790 N SER A 367 8.571 36.839 52.527 1.00 0.00 N \nATOM 2791 CA SER A 367 9.411 36.171 53.512 1.00 0.00 C \nATOM 2792 C SER A 367 8.759 36.109 54.890 1.00 0.00 C \nATOM 2793 O SER A 367 9.443 35.871 55.885 1.00 0.00 O \nATOM 2794 CB SER A 367 10.756 36.900 53.636 1.00 0.00 C \nATOM 2795 OG SER A 367 11.435 36.932 52.393 1.00 0.00 O \nATOM 2796 N SER A 368 7.444 36.301 54.949 1.00 0.00 N \nATOM 2797 CA SER A 368 6.744 36.305 56.230 1.00 0.00 C \nATOM 2798 C SER A 368 5.520 35.412 56.224 1.00 0.00 C \nATOM 2799 O SER A 368 5.091 34.932 55.177 1.00 0.00 O \nATOM 2800 CB SER A 368 6.292 37.726 56.568 1.00 0.00 C \nATOM 2801 OG SER A 368 7.335 38.666 56.374 1.00 0.00 O \nATOM 2802 N ASN A 369 4.944 35.214 57.403 1.00 0.00 N \nATOM 2803 CA ASN A 369 3.741 34.400 57.522 1.00 0.00 C \nATOM 2804 C ASN A 369 2.946 34.827 58.743 1.00 0.00 C \nATOM 2805 O ASN A 369 3.489 35.407 59.694 1.00 0.00 O \nATOM 2806 CB ASN A 369 4.086 32.908 57.650 1.00 0.00 C \nATOM 2807 CG ASN A 369 4.762 32.571 58.977 1.00 0.00 C \nATOM 2808 OD1 ASN A 369 5.972 32.740 59.132 1.00 0.00 O \nATOM 2809 ND2 ASN A 369 3.975 32.092 59.942 1.00 0.00 N \nATOM 2810 N VAL A 370 1.653 34.526 58.709 1.00 0.00 N \nATOM 2811 CA VAL A 370 0.759 34.850 59.804 1.00 0.00 C \nATOM 2812 C VAL A 370 0.884 33.779 60.874 1.00 0.00 C \nATOM 2813 O VAL A 370 1.017 32.593 60.576 1.00 0.00 O \nATOM 2814 CB VAL A 370 -0.726 34.886 59.347 1.00 0.00 C \nATOM 2815 CG1 VAL A 370 -1.624 35.194 60.541 1.00 0.00 C \nATOM 2816 CG2 VAL A 370 -0.934 35.934 58.264 1.00 0.00 C \nATOM 2817 N SER A 371 0.872 34.203 62.128 1.00 0.00 N \nATOM 2818 CA SER A 371 0.918 33.259 63.224 1.00 0.00 C \nATOM 2819 C SER A 371 -0.013 33.814 64.283 1.00 0.00 C \nATOM 2820 O SER A 371 -0.529 34.925 64.144 1.00 0.00 O \nATOM 2821 CB SER A 371 2.328 33.115 63.789 1.00 0.00 C \nATOM 2822 OG SER A 371 2.428 31.899 64.519 1.00 0.00 O \nATOM 2823 N VAL A 372 -0.229 33.046 65.343 1.00 0.00 N \nATOM 2824 CA VAL A 372 -1.124 33.484 66.398 1.00 0.00 C \nATOM 2825 C VAL A 372 -0.499 33.353 67.778 1.00 0.00 C \nATOM 2826 O VAL A 372 0.301 32.453 68.034 1.00 0.00 O \nATOM 2827 CB VAL A 372 -2.457 32.681 66.358 1.00 0.00 C \nATOM 2828 CG1 VAL A 372 -2.178 31.193 66.498 1.00 0.00 C \nATOM 2829 CG2 VAL A 372 -3.387 33.153 67.465 1.00 0.00 C \nATOM 2830 N ALA A 373 -0.862 34.290 68.645 1.00 0.00 N \nATOM 2831 CA ALA A 373 -0.400 34.323 70.030 1.00 0.00 C \nATOM 2832 C ALA A 373 -1.586 34.799 70.867 1.00 0.00 C \nATOM 2833 O ALA A 373 -2.710 34.882 70.368 1.00 0.00 O \nATOM 2834 CB ALA A 373 0.776 35.291 70.178 1.00 0.00 C \nATOM 2835 N HIS A 374 -1.343 35.114 72.130 1.00 0.00 N \nATOM 2836 CA HIS A 374 -2.414 35.576 73.007 1.00 0.00 C \nATOM 2837 C HIS A 374 -2.014 36.862 73.699 1.00 0.00 C \nATOM 2838 O HIS A 374 -0.864 37.006 74.115 1.00 0.00 O \nATOM 2839 CB HIS A 374 -2.713 34.519 74.057 1.00 0.00 C \nATOM 2840 CG HIS A 374 -3.179 33.223 73.486 1.00 0.00 C \nATOM 2841 ND1 HIS A 374 -4.476 33.020 73.065 1.00 0.00 N \nATOM 2842 CD2 HIS A 374 -2.516 32.072 73.223 1.00 0.00 C \nATOM 2843 CE1 HIS A 374 -4.590 31.803 72.569 1.00 0.00 C \nATOM 2844 NE2 HIS A 374 -3.415 31.206 72.652 1.00 0.00 N \nATOM 2845 N ASP A 375 -2.956 37.799 73.820 1.00 0.00 N \nATOM 2846 CA ASP A 375 -2.665 39.061 74.489 1.00 0.00 C \nATOM 2847 C ASP A 375 -2.833 38.911 75.998 1.00 0.00 C \nATOM 2848 O ASP A 375 -3.026 37.805 76.510 1.00 0.00 O \nATOM 2849 CB ASP A 375 -3.564 40.195 73.979 1.00 0.00 C \nATOM 2850 CG ASP A 375 -5.053 39.883 74.107 1.00 0.00 C \nATOM 2851 OD1 ASP A 375 -5.457 39.139 75.025 1.00 0.00 O \nATOM 2852 OD2 ASP A 375 -5.830 40.401 73.282 1.00 0.00 O \nATOM 2853 N ALA A 376 -2.758 40.028 76.706 1.00 0.00 N \nATOM 2854 CA ALA A 376 -2.877 40.014 78.156 1.00 0.00 C \nATOM 2855 C ALA A 376 -4.232 39.515 78.660 1.00 0.00 C \nATOM 2856 O ALA A 376 -4.383 39.246 79.847 1.00 0.00 O \nATOM 2857 CB ALA A 376 -2.593 41.402 78.702 1.00 0.00 C \nATOM 2858 N SER A 377 -5.206 39.387 77.762 1.00 0.00 N \nATOM 2859 CA SER A 377 -6.542 38.923 78.129 1.00 0.00 C \nATOM 2860 C SER A 377 -6.725 37.443 77.847 1.00 0.00 C \nATOM 2861 O SER A 377 -7.706 36.837 78.282 1.00 0.00 O \nATOM 2862 CB SER A 377 -7.603 39.703 77.356 1.00 0.00 C \nATOM 2863 OG SER A 377 -7.451 41.098 77.556 1.00 0.00 O \nATOM 2864 N GLY A 378 -5.788 36.861 77.110 1.00 0.00 N \nATOM 2865 CA GLY A 378 -5.887 35.449 76.792 1.00 0.00 C \nATOM 2866 C GLY A 378 -6.501 35.261 75.419 1.00 0.00 C \nATOM 2867 O GLY A 378 -6.635 34.139 74.933 1.00 0.00 O \nATOM 2868 N LYS A 379 -6.874 36.376 74.798 1.00 0.00 N \nATOM 2869 CA LYS A 379 -7.477 36.371 73.466 1.00 0.00 C \nATOM 2870 C LYS A 379 -6.468 36.036 72.368 1.00 0.00 C \nATOM 2871 O LYS A 379 -5.316 36.461 72.413 1.00 0.00 O \nATOM 2872 CB LYS A 379 -8.097 37.745 73.167 1.00 0.00 C \nATOM 2873 CG LYS A 379 -8.594 37.905 71.731 1.00 0.00 C \nATOM 2874 CD LYS A 379 -9.312 39.234 71.502 1.00 0.00 C \nATOM 2875 CE LYS A 379 -8.380 40.417 71.708 1.00 0.00 C \nATOM 2876 NZ LYS A 379 -9.032 41.728 71.413 1.00 0.00 N \nATOM 2877 N ARG A 380 -6.909 35.273 71.378 1.00 0.00 N \nATOM 2878 CA ARG A 380 -6.046 34.929 70.262 1.00 0.00 C \nATOM 2879 C ARG A 380 -5.836 36.188 69.430 1.00 0.00 C \nATOM 2880 O ARG A 380 -6.787 36.921 69.156 1.00 0.00 O \nATOM 2881 CB ARG A 380 -6.692 33.848 69.401 1.00 0.00 C \nATOM 2882 CG ARG A 380 -6.717 32.474 70.041 1.00 0.00 C \nATOM 2883 CD ARG A 380 -7.741 31.592 69.363 1.00 0.00 C \nATOM 2884 NE ARG A 380 -7.440 31.358 67.956 1.00 0.00 N \nATOM 2885 CZ ARG A 380 -6.449 30.588 67.518 1.00 0.00 C \nATOM 2886 NH1 ARG A 380 -5.645 29.971 68.379 1.00 0.00 N \nATOM 2887 NH2 ARG A 380 -6.277 30.414 66.215 1.00 0.00 N \nATOM 2888 N VAL A 381 -4.584 36.446 69.058 1.00 0.00 N \nATOM 2889 CA VAL A 381 -4.230 37.600 68.240 1.00 0.00 C \nATOM 2890 C VAL A 381 -3.292 37.149 67.118 1.00 0.00 C \nATOM 2891 O VAL A 381 -2.335 36.404 67.354 1.00 0.00 O \nATOM 2892 CB VAL A 381 -3.531 38.703 69.085 1.00 0.00 C \nATOM 2893 CG1 VAL A 381 -2.569 38.062 70.065 1.00 0.00 C \nATOM 2894 CG2 VAL A 381 -2.772 39.675 68.177 1.00 0.00 C \nATOM 2895 N TYR A 382 -3.583 37.592 65.899 1.00 0.00 N \nATOM 2896 CA TYR A 382 -2.765 37.251 64.738 1.00 0.00 C \nATOM 2897 C TYR A 382 -1.732 38.338 64.538 1.00 0.00 C \nATOM 2898 O TYR A 382 -2.004 39.516 64.794 1.00 0.00 O \nATOM 2899 CB TYR A 382 -3.633 37.152 63.482 1.00 0.00 C \nATOM 2900 CG TYR A 382 -4.575 35.981 63.498 1.00 0.00 C \nATOM 2901 CD1 TYR A 382 -4.103 34.685 63.323 1.00 0.00 C \nATOM 2902 CD2 TYR A 382 -5.934 36.165 63.727 1.00 0.00 C \nATOM 2903 CE1 TYR A 382 -4.966 33.592 63.377 1.00 0.00 C \nATOM 2904 CE2 TYR A 382 -6.808 35.085 63.787 1.00 0.00 C \nATOM 2905 CZ TYR A 382 -6.317 33.799 63.612 1.00 0.00 C \nATOM 2906 OH TYR A 382 -7.174 32.722 63.683 1.00 0.00 O \nATOM 2907 N TYR A 383 -0.555 37.949 64.056 1.00 0.00 N \nATOM 2908 CA TYR A 383 0.517 38.913 63.834 1.00 0.00 C \nATOM 2909 C TYR A 383 1.488 38.371 62.794 1.00 0.00 C \nATOM 2910 O TYR A 383 1.517 37.175 62.523 1.00 0.00 O \nATOM 2911 CB TYR A 383 1.265 39.181 65.146 1.00 0.00 C \nATOM 2912 CG TYR A 383 2.045 37.983 65.625 1.00 0.00 C \nATOM 2913 CD1 TYR A 383 1.395 36.868 66.175 1.00 0.00 C \nATOM 2914 CD2 TYR A 383 3.430 37.923 65.457 1.00 0.00 C \nATOM 2915 CE1 TYR A 383 2.115 35.726 66.536 1.00 0.00 C \nATOM 2916 CE2 TYR A 383 4.151 36.786 65.813 1.00 0.00 C \nATOM 2917 CZ TYR A 383 3.496 35.698 66.346 1.00 0.00 C \nATOM 2918 OH TYR A 383 4.222 34.578 66.674 1.00 0.00 O \nATOM 2919 N LEU A 384 2.294 39.253 62.221 1.00 0.00 N \nATOM 2920 CA LEU A 384 3.243 38.833 61.206 1.00 0.00 C \nATOM 2921 C LEU A 384 4.594 38.466 61.822 1.00 0.00 C \nATOM 2922 O LEU A 384 5.116 39.185 62.675 1.00 0.00 O \nATOM 2923 CB LEU A 384 3.434 39.946 60.180 1.00 0.00 C \nATOM 2924 CG LEU A 384 4.017 39.510 58.837 1.00 0.00 C \nATOM 2925 CD1 LEU A 384 2.956 38.722 58.091 1.00 0.00 C \nATOM 2926 CD2 LEU A 384 4.424 40.722 58.012 1.00 0.00 C \nATOM 2927 N THR A 385 5.146 37.339 61.387 1.00 0.00 N \nATOM 2928 CA THR A 385 6.438 36.883 61.868 1.00 0.00 C \nATOM 2929 C THR A 385 7.188 36.314 60.671 1.00 0.00 C \nATOM 2930 O THR A 385 6.697 36.356 59.534 1.00 0.00 O \nATOM 2931 CB THR A 385 6.305 35.777 62.930 1.00 0.00 C \nATOM 2932 OG1 THR A 385 7.612 35.385 63.388 1.00 0.00 O \nATOM 2933 CG2 THR A 385 5.607 34.561 62.337 1.00 0.00 C \nATOM 2934 N ARG A 386 8.382 35.799 60.926 1.00 0.00 N \nATOM 2935 CA ARG A 386 9.181 35.207 59.875 1.00 0.00 C \nATOM 2936 C ARG A 386 10.297 34.387 60.481 1.00 0.00 C \nATOM 2937 O ARG A 386 10.559 34.466 61.691 1.00 0.00 O \nATOM 2938 CB ARG A 386 9.788 36.287 58.977 1.00 0.00 C \nATOM 2939 CG ARG A 386 10.731 37.271 59.687 1.00 0.00 C \nATOM 2940 CD ARG A 386 11.627 37.948 58.663 1.00 0.00 C \nATOM 2941 NE ARG A 386 12.553 36.983 58.070 1.00 0.00 N \nATOM 2942 CZ ARG A 386 13.163 37.139 56.898 1.00 0.00 C \nATOM 2943 NH1 ARG A 386 12.953 38.231 56.168 1.00 0.00 N \nATOM 2944 NH2 ARG A 386 13.996 36.206 56.456 1.00 0.00 N \nATOM 2945 N ASP A 387 10.936 33.577 59.645 1.00 0.00 N \nATOM 2946 CA ASP A 387 12.064 32.788 60.111 1.00 0.00 C \nATOM 2947 C ASP A 387 13.053 33.883 60.537 1.00 0.00 C \nATOM 2948 O ASP A 387 13.295 34.827 59.784 1.00 0.00 O \nATOM 2949 CB ASP A 387 12.642 31.968 58.966 1.00 0.00 C \nATOM 2950 CG ASP A 387 13.804 31.121 59.405 1.00 0.00 C \nATOM 2951 OD1 ASP A 387 14.837 31.694 59.795 1.00 0.00 O \nATOM 2952 OD2 ASP A 387 13.679 29.880 59.371 1.00 0.00 O \nATOM 2953 N PRO A 388 13.636 33.777 61.742 1.00 0.00 N \nATOM 2954 CA PRO A 388 14.577 34.813 62.198 1.00 0.00 C \nATOM 2955 C PRO A 388 16.022 34.669 61.758 1.00 0.00 C \nATOM 2956 O PRO A 388 16.865 35.501 62.120 1.00 0.00 O \nATOM 2957 CB PRO A 388 14.439 34.748 63.710 1.00 0.00 C \nATOM 2958 CG PRO A 388 14.250 33.256 63.955 1.00 0.00 C \nATOM 2959 CD PRO A 388 13.395 32.762 62.787 1.00 0.00 C \nATOM 2960 N THR A 389 16.305 33.643 60.961 1.00 0.00 N \nATOM 2961 CA THR A 389 17.672 33.381 60.537 1.00 0.00 C \nATOM 2962 C THR A 389 18.392 34.563 59.910 1.00 0.00 C \nATOM 2963 O THR A 389 19.460 34.945 60.380 1.00 0.00 O \nATOM 2964 CB THR A 389 17.753 32.195 59.558 1.00 0.00 C \nATOM 2965 OG1 THR A 389 17.241 31.010 60.184 1.00 0.00 O \nATOM 2966 CG2 THR A 389 19.176 31.951 59.164 1.00 0.00 C \nATOM 2967 N THR A 390 17.813 35.137 58.859 1.00 0.00 N \nATOM 2968 CA THR A 390 18.449 36.250 58.190 1.00 0.00 C \nATOM 2969 C THR A 390 18.489 37.477 59.085 1.00 0.00 C \nATOM 2970 O THR A 390 19.497 38.165 59.129 1.00 0.00 O \nATOM 2971 CB THR A 390 17.768 36.566 56.849 1.00 0.00 C \nATOM 2972 OG1 THR A 390 17.881 35.425 55.991 1.00 0.00 O \nATOM 2973 CG2 THR A 390 18.449 37.748 56.170 1.00 0.00 C \nATOM 2974 N PRO A 391 17.384 37.781 59.790 1.00 0.00 N \nATOM 2975 CA PRO A 391 17.399 38.948 60.677 1.00 0.00 C \nATOM 2976 C PRO A 391 18.515 38.807 61.736 1.00 0.00 C \nATOM 2977 O PRO A 391 19.190 39.787 62.079 1.00 0.00 O \nATOM 2978 CB PRO A 391 16.001 38.917 61.303 1.00 0.00 C \nATOM 2979 CG PRO A 391 15.152 38.441 60.167 1.00 0.00 C \nATOM 2980 CD PRO A 391 15.999 37.333 59.534 1.00 0.00 C \nATOM 2981 N LEU A 392 18.727 37.591 62.244 1.00 0.00 N \nATOM 2982 CA LEU A 392 19.762 37.391 63.262 1.00 0.00 C \nATOM 2983 C LEU A 392 21.173 37.416 62.669 1.00 0.00 C \nATOM 2984 O LEU A 392 22.108 37.906 63.297 1.00 0.00 O \nATOM 2985 CB LEU A 392 19.515 36.091 64.047 1.00 0.00 C \nATOM 2986 CG LEU A 392 18.241 36.139 64.904 1.00 0.00 C \nATOM 2987 CD1 LEU A 392 18.057 34.833 65.604 1.00 0.00 C \nATOM 2988 CD2 LEU A 392 18.308 37.292 65.908 1.00 0.00 C \nATOM 2989 N ALA A 393 21.325 36.891 61.461 1.00 0.00 N \nATOM 2990 CA ALA A 393 22.619 36.911 60.793 1.00 0.00 C \nATOM 2991 C ALA A 393 23.012 38.371 60.562 1.00 0.00 C \nATOM 2992 O ALA A 393 24.167 38.767 60.751 1.00 0.00 O \nATOM 2993 CB ALA A 393 22.523 36.197 59.457 1.00 0.00 C \nATOM 2994 N ARG A 394 22.044 39.175 60.134 1.00 0.00 N \nATOM 2995 CA ARG A 394 22.322 40.582 59.872 1.00 0.00 C \nATOM 2996 C ARG A 394 22.599 41.346 61.155 1.00 0.00 C \nATOM 2997 O ARG A 394 23.455 42.237 61.188 1.00 0.00 O \nATOM 2998 CB ARG A 394 21.164 41.187 59.081 1.00 0.00 C \nATOM 2999 CG ARG A 394 21.101 40.520 57.725 1.00 0.00 C \nATOM 3000 CD ARG A 394 20.060 41.047 56.773 1.00 0.00 C \nATOM 3001 NE ARG A 394 20.303 40.441 55.466 1.00 0.00 N \nATOM 3002 CZ ARG A 394 19.600 40.687 54.367 1.00 0.00 C \nATOM 3003 NH1 ARG A 394 18.582 41.538 54.396 1.00 0.00 N \nATOM 3004 NH2 ARG A 394 19.930 40.088 53.235 1.00 0.00 N \nATOM 3005 N ALA A 395 21.902 40.986 62.227 1.00 0.00 N \nATOM 3006 CA ALA A 395 22.138 41.665 63.497 1.00 0.00 C \nATOM 3007 C ALA A 395 23.558 41.326 63.970 1.00 0.00 C \nATOM 3008 O ALA A 395 24.240 42.165 64.571 1.00 0.00 O \nATOM 3009 CB ALA A 395 21.113 41.227 64.535 1.00 0.00 C \nATOM 3010 N ALA A 396 24.003 40.097 63.707 1.00 0.00 N \nATOM 3011 CA ALA A 396 25.355 39.713 64.113 1.00 0.00 C \nATOM 3012 C ALA A 396 26.339 40.642 63.416 1.00 0.00 C \nATOM 3013 O ALA A 396 27.254 41.172 64.039 1.00 0.00 O \nATOM 3014 CB ALA A 396 25.641 38.252 63.739 1.00 0.00 C \nATOM 3015 N TRP A 397 26.140 40.849 62.115 1.00 0.00 N \nATOM 3016 CA TRP A 397 27.014 41.724 61.336 1.00 0.00 C \nATOM 3017 C TRP A 397 26.966 43.153 61.873 1.00 0.00 C \nATOM 3018 O TRP A 397 27.993 43.820 62.015 1.00 0.00 O \nATOM 3019 CB TRP A 397 26.588 41.709 59.859 1.00 0.00 C \nATOM 3020 CG TRP A 397 27.631 42.261 58.942 1.00 0.00 C \nATOM 3021 CD1 TRP A 397 27.951 43.583 58.750 1.00 0.00 C \nATOM 3022 CD2 TRP A 397 28.537 41.504 58.132 1.00 0.00 C \nATOM 3023 NE1 TRP A 397 29.005 43.685 57.871 1.00 0.00 N \nATOM 3024 CE2 TRP A 397 29.384 42.427 57.478 1.00 0.00 C \nATOM 3025 CE3 TRP A 397 28.717 40.135 57.896 1.00 0.00 C \nATOM 3026 CZ2 TRP A 397 30.402 42.021 56.601 1.00 0.00 C \nATOM 3027 CZ3 TRP A 397 29.728 39.732 57.025 1.00 0.00 C \nATOM 3028 CH2 TRP A 397 30.557 40.677 56.389 1.00 0.00 C \nATOM 3029 N GLU A 398 25.763 43.626 62.168 1.00 0.00 N \nATOM 3030 CA GLU A 398 25.592 44.976 62.686 1.00 0.00 C \nATOM 3031 C GLU A 398 26.118 45.135 64.113 1.00 0.00 C \nATOM 3032 O GLU A 398 26.254 46.251 64.612 1.00 0.00 O \nATOM 3033 CB GLU A 398 24.116 45.382 62.578 1.00 0.00 C \nATOM 3034 CG GLU A 398 23.722 45.704 61.116 1.00 0.00 C \nATOM 3035 CD GLU A 398 22.222 45.640 60.824 1.00 0.00 C \nATOM 3036 OE1 GLU A 398 21.413 45.507 61.760 1.00 0.00 O \nATOM 3037 OE2 GLU A 398 21.848 45.725 59.635 1.00 0.00 O \nATOM 3038 N THR A 399 26.437 44.019 64.760 1.00 0.00 N \nATOM 3039 CA THR A 399 26.972 44.060 66.118 1.00 0.00 C \nATOM 3040 C THR A 399 28.447 44.484 66.087 1.00 0.00 C \nATOM 3041 O THR A 399 28.948 45.097 67.027 1.00 0.00 O \nATOM 3042 CB THR A 399 26.850 42.672 66.798 1.00 0.00 C \nATOM 3043 OG1 THR A 399 25.461 42.347 66.967 1.00 0.00 O \nATOM 3044 CG2 THR A 399 27.552 42.660 68.164 1.00 0.00 C \nATOM 3045 N ALA A 400 29.137 44.162 64.996 1.00 0.00 N \nATOM 3046 CA ALA A 400 30.556 44.497 64.857 1.00 0.00 C \nATOM 3047 C ALA A 400 30.821 45.602 63.837 1.00 0.00 C \nATOM 3048 O ALA A 400 31.914 46.167 63.807 1.00 0.00 O \nATOM 3049 CB ALA A 400 31.354 43.245 64.452 1.00 0.00 C \nATOM 3050 N ARG A 401 29.827 45.901 63.001 1.00 0.00 N \nATOM 3051 CA ARG A 401 29.981 46.902 61.954 1.00 0.00 C \nATOM 3052 C ARG A 401 28.787 47.826 61.784 1.00 0.00 C \nATOM 3053 O ARG A 401 27.640 47.385 61.794 1.00 0.00 O \nATOM 3054 CB ARG A 401 30.232 46.199 60.622 1.00 0.00 C \nATOM 3055 CG ARG A 401 31.552 45.507 60.515 1.00 0.00 C \nATOM 3056 CD ARG A 401 32.585 46.404 59.849 1.00 0.00 C \nATOM 3057 NE ARG A 401 33.789 45.648 59.526 1.00 0.00 N \nATOM 3058 CZ ARG A 401 34.691 45.277 60.422 1.00 0.00 C \nATOM 3059 NH1 ARG A 401 34.528 45.602 61.699 1.00 0.00 N \nATOM 3060 NH2 ARG A 401 35.744 44.569 60.043 1.00 0.00 N \nATOM 3061 N HIS A 402 29.061 49.113 61.620 1.00 0.00 N \nATOM 3062 CA HIS A 402 28.001 50.079 61.390 1.00 0.00 C \nATOM 3063 C HIS A 402 27.759 50.037 59.889 1.00 0.00 C \nATOM 3064 O HIS A 402 28.700 50.094 59.104 1.00 0.00 O \nATOM 3065 CB HIS A 402 28.439 51.480 61.825 1.00 0.00 C \nATOM 3066 CG HIS A 402 28.630 51.610 63.304 1.00 0.00 C \nATOM 3067 ND1 HIS A 402 29.822 52.002 63.873 1.00 0.00 N \nATOM 3068 CD2 HIS A 402 27.783 51.362 64.333 1.00 0.00 C \nATOM 3069 CE1 HIS A 402 29.704 51.988 65.189 1.00 0.00 C \nATOM 3070 NE2 HIS A 402 28.478 51.603 65.494 1.00 0.00 N \nATOM 3071 N THR A 403 26.500 49.913 59.491 1.00 0.00 N \nATOM 3072 CA THR A 403 26.156 49.836 58.080 1.00 0.00 C \nATOM 3073 C THR A 403 25.167 50.940 57.727 1.00 0.00 C \nATOM 3074 O THR A 403 24.585 51.552 58.611 1.00 0.00 O \nATOM 3075 CB THR A 403 25.534 48.455 57.747 1.00 0.00 C \nATOM 3076 OG1 THR A 403 24.293 48.302 58.443 1.00 0.00 O \nATOM 3077 CG2 THR A 403 26.469 47.339 58.182 1.00 0.00 C \nATOM 3078 N PRO A 404 24.972 51.211 56.426 1.00 0.00 N \nATOM 3079 CA PRO A 404 24.048 52.248 55.950 1.00 0.00 C \nATOM 3080 C PRO A 404 22.612 52.004 56.408 1.00 0.00 C \nATOM 3081 O PRO A 404 21.915 52.925 56.833 1.00 0.00 O \nATOM 3082 CB PRO A 404 24.174 52.150 54.431 1.00 0.00 C \nATOM 3083 CG PRO A 404 25.564 51.639 54.230 1.00 0.00 C \nATOM 3084 CD PRO A 404 25.652 50.568 55.288 1.00 0.00 C \nATOM 3085 N VAL A 405 22.184 50.752 56.316 1.00 0.00 N \nATOM 3086 CA VAL A 405 20.837 50.346 56.693 1.00 0.00 C \nATOM 3087 C VAL A 405 20.929 49.462 57.927 1.00 0.00 C \nATOM 3088 O VAL A 405 21.551 48.401 57.898 1.00 0.00 O \nATOM 3089 CB VAL A 405 20.170 49.534 55.558 1.00 0.00 C \nATOM 3090 CG1 VAL A 405 18.749 49.154 55.936 1.00 0.00 C \nATOM 3091 CG2 VAL A 405 20.194 50.336 54.266 1.00 0.00 C \nATOM 3092 N ASN A 406 20.307 49.906 59.008 1.00 0.00 N \nATOM 3093 CA ASN A 406 20.315 49.166 60.251 1.00 0.00 C \nATOM 3094 C ASN A 406 19.153 48.179 60.228 1.00 0.00 C \nATOM 3095 O ASN A 406 18.056 48.500 60.670 1.00 0.00 O \nATOM 3096 CB ASN A 406 20.174 50.152 61.400 1.00 0.00 C \nATOM 3097 CG ASN A 406 21.428 50.987 61.597 1.00 0.00 C \nATOM 3098 OD1 ASN A 406 22.416 50.509 62.162 1.00 0.00 O \nATOM 3099 ND2 ASN A 406 21.405 52.231 61.112 1.00 0.00 N \nATOM 3100 N SER A 407 19.393 46.977 59.716 1.00 0.00 N \nATOM 3101 CA SER A 407 18.313 45.996 59.637 1.00 0.00 C \nATOM 3102 C SER A 407 17.734 45.640 61.004 1.00 0.00 C \nATOM 3103 O SER A 407 16.540 45.372 61.118 1.00 0.00 O \nATOM 3104 CB SER A 407 18.790 44.714 58.937 1.00 0.00 C \nATOM 3105 OG SER A 407 19.664 43.996 59.786 1.00 0.00 O \nATOM 3106 N TRP A 408 18.550 45.641 62.054 1.00 0.00 N \nATOM 3107 CA TRP A 408 17.998 45.288 63.358 1.00 0.00 C \nATOM 3108 C TRP A 408 16.840 46.204 63.762 1.00 0.00 C \nATOM 3109 O TRP A 408 15.855 45.747 64.340 1.00 0.00 O \nATOM 3110 CB TRP A 408 19.075 45.315 64.463 1.00 0.00 C \nATOM 3111 CG TRP A 408 19.666 46.683 64.783 1.00 0.00 C \nATOM 3112 CD1 TRP A 408 20.795 47.246 64.242 1.00 0.00 C \nATOM 3113 CD2 TRP A 408 19.151 47.643 65.721 1.00 0.00 C \nATOM 3114 NE1 TRP A 408 21.013 48.496 64.793 1.00 0.00 N \nATOM 3115 CE2 TRP A 408 20.021 48.758 65.698 1.00 0.00 C \nATOM 3116 CE3 TRP A 408 18.046 47.664 66.580 1.00 0.00 C \nATOM 3117 CZ2 TRP A 408 19.808 49.884 66.500 1.00 0.00 C \nATOM 3118 CZ3 TRP A 408 17.841 48.786 67.376 1.00 0.00 C \nATOM 3119 CH2 TRP A 408 18.721 49.877 67.328 1.00 0.00 C \nATOM 3120 N LEU A 409 16.971 47.496 63.461 1.00 0.00 N \nATOM 3121 CA LEU A 409 15.953 48.478 63.829 1.00 0.00 C \nATOM 3122 C LEU A 409 14.706 48.315 62.981 1.00 0.00 C \nATOM 3123 O LEU A 409 13.584 48.392 63.489 1.00 0.00 O \nATOM 3124 CB LEU A 409 16.499 49.898 63.670 1.00 0.00 C \nATOM 3125 CG LEU A 409 15.520 51.029 63.982 1.00 0.00 C \nATOM 3126 CD1 LEU A 409 14.854 50.800 65.332 1.00 0.00 C \nATOM 3127 CD2 LEU A 409 16.268 52.340 63.960 1.00 0.00 C \nATOM 3128 N GLY A 410 14.916 48.097 61.685 1.00 0.00 N \nATOM 3129 CA GLY A 410 13.802 47.889 60.787 1.00 0.00 C \nATOM 3130 C GLY A 410 13.063 46.626 61.189 1.00 0.00 C \nATOM 3131 O GLY A 410 11.832 46.607 61.164 1.00 0.00 O \nATOM 3132 N ASN A 411 13.793 45.566 61.556 1.00 0.00 N \nATOM 3133 CA ASN A 411 13.142 44.317 61.961 1.00 0.00 C \nATOM 3134 C ASN A 411 12.384 44.434 63.272 1.00 0.00 C \nATOM 3135 O ASN A 411 11.350 43.776 63.470 1.00 0.00 O \nATOM 3136 CB ASN A 411 14.151 43.160 62.026 1.00 0.00 C \nATOM 3137 CG ASN A 411 14.465 42.619 60.656 1.00 0.00 C \nATOM 3138 OD1 ASN A 411 13.556 42.444 59.854 1.00 0.00 O \nATOM 3139 ND2 ASN A 411 15.736 42.361 60.371 1.00 0.00 N \nATOM 3140 N ILE A 412 12.880 45.272 64.174 1.00 0.00 N \nATOM 3141 CA ILE A 412 12.174 45.470 65.436 1.00 0.00 C \nATOM 3142 C ILE A 412 10.850 46.180 65.133 1.00 0.00 C \nATOM 3143 O ILE A 412 9.799 45.847 65.685 1.00 0.00 O \nATOM 3144 CB ILE A 412 13.010 46.317 66.421 1.00 0.00 C \nATOM 3145 CG1 ILE A 412 14.084 45.420 67.059 1.00 0.00 C \nATOM 3146 CG2 ILE A 412 12.095 46.965 67.463 1.00 0.00 C \nATOM 3147 CD1 ILE A 412 14.962 46.103 68.072 1.00 0.00 C \nATOM 3148 N ILE A 413 10.907 47.154 64.235 1.00 0.00 N \nATOM 3149 CA ILE A 413 9.721 47.898 63.873 1.00 0.00 C \nATOM 3150 C ILE A 413 8.685 47.017 63.192 1.00 0.00 C \nATOM 3151 O ILE A 413 7.522 47.020 63.568 1.00 0.00 O \nATOM 3152 CB ILE A 413 10.080 49.071 62.940 1.00 0.00 C \nATOM 3153 CG1 ILE A 413 10.815 50.145 63.742 1.00 0.00 C \nATOM 3154 CG2 ILE A 413 8.825 49.659 62.316 1.00 0.00 C \nATOM 3155 CD1 ILE A 413 11.418 51.242 62.914 1.00 0.00 C \nATOM 3156 N MET A 414 9.118 46.247 62.202 1.00 0.00 N \nATOM 3157 CA MET A 414 8.203 45.411 61.445 1.00 0.00 C \nATOM 3158 C MET A 414 7.781 44.121 62.133 1.00 0.00 C \nATOM 3159 O MET A 414 6.678 43.625 61.905 1.00 0.00 O \nATOM 3160 CB MET A 414 8.818 45.112 60.074 1.00 0.00 C \nATOM 3161 CG MET A 414 9.108 46.373 59.242 1.00 0.00 C \nATOM 3162 SD MET A 414 7.595 47.269 58.668 1.00 0.00 S \nATOM 3163 CE MET A 414 7.138 46.220 57.285 1.00 0.00 C \nATOM 3164 N TYR A 415 8.637 43.586 62.990 1.00 0.00 N \nATOM 3165 CA TYR A 415 8.321 42.341 63.689 1.00 0.00 C \nATOM 3166 C TYR A 415 8.266 42.497 65.199 1.00 0.00 C \nATOM 3167 O TYR A 415 8.572 41.567 65.939 1.00 0.00 O \nATOM 3168 CB TYR A 415 9.347 41.276 63.288 1.00 0.00 C \nATOM 3169 CG TYR A 415 9.263 40.944 61.806 1.00 0.00 C \nATOM 3170 CD1 TYR A 415 8.204 40.185 61.307 1.00 0.00 C \nATOM 3171 CD2 TYR A 415 10.211 41.436 60.901 1.00 0.00 C \nATOM 3172 CE1 TYR A 415 8.081 39.923 59.945 1.00 0.00 C \nATOM 3173 CE2 TYR A 415 10.104 41.173 59.524 1.00 0.00 C \nATOM 3174 CZ TYR A 415 9.030 40.415 59.058 1.00 0.00 C \nATOM 3175 OH TYR A 415 8.899 40.151 57.708 1.00 0.00 O \nATOM 3176 N ALA A 416 7.853 43.677 65.651 1.00 0.00 N \nATOM 3177 CA ALA A 416 7.763 43.980 67.081 1.00 0.00 C \nATOM 3178 C ALA A 416 7.042 42.965 67.965 1.00 0.00 C \nATOM 3179 O ALA A 416 7.486 42.708 69.072 1.00 0.00 O \nATOM 3180 CB ALA A 416 7.134 45.358 67.274 1.00 0.00 C \nATOM 3181 N PRO A 417 5.916 42.387 67.505 1.00 0.00 N \nATOM 3182 CA PRO A 417 5.166 41.407 68.303 1.00 0.00 C \nATOM 3183 C PRO A 417 5.810 40.013 68.426 1.00 0.00 C \nATOM 3184 O PRO A 417 5.413 39.213 69.275 1.00 0.00 O \nATOM 3185 CB PRO A 417 3.815 41.308 67.570 1.00 0.00 C \nATOM 3186 CG PRO A 417 3.745 42.530 66.733 1.00 0.00 C \nATOM 3187 CD PRO A 417 5.174 42.716 66.277 1.00 0.00 C \nATOM 3188 N THR A 418 6.801 39.727 67.589 1.00 0.00 N \nATOM 3189 CA THR A 418 7.418 38.399 67.587 1.00 0.00 C \nATOM 3190 C THR A 418 8.257 38.005 68.781 1.00 0.00 C \nATOM 3191 O THR A 418 8.879 38.848 69.439 1.00 0.00 O \nATOM 3192 CB THR A 418 8.277 38.188 66.319 1.00 0.00 C \nATOM 3193 OG1 THR A 418 9.495 38.943 66.428 1.00 0.00 O \nATOM 3194 CG2 THR A 418 7.497 38.663 65.078 1.00 0.00 C \nATOM 3195 N LEU A 419 8.282 36.703 69.048 1.00 0.00 N \nATOM 3196 CA LEU A 419 9.062 36.177 70.161 1.00 0.00 C \nATOM 3197 C LEU A 419 10.541 36.535 69.993 1.00 0.00 C \nATOM 3198 O LEU A 419 11.182 37.027 70.929 1.00 0.00 O \nATOM 3199 CB LEU A 419 8.887 34.652 70.239 1.00 0.00 C \nATOM 3200 CG LEU A 419 9.813 33.836 71.140 1.00 0.00 C \nATOM 3201 CD1 LEU A 419 9.612 34.213 72.603 1.00 0.00 C \nATOM 3202 CD2 LEU A 419 9.522 32.340 70.912 1.00 0.00 C \nATOM 3203 N TRP A 420 11.073 36.306 68.789 1.00 0.00 N \nATOM 3204 CA TRP A 420 12.482 36.569 68.508 1.00 0.00 C \nATOM 3205 C TRP A 420 12.891 38.044 68.474 1.00 0.00 C \nATOM 3206 O TRP A 420 13.981 38.396 68.934 1.00 0.00 O \nATOM 3207 CB TRP A 420 12.910 35.876 67.201 1.00 0.00 C \nATOM 3208 CG TRP A 420 12.051 36.192 66.025 1.00 0.00 C \nATOM 3209 CD1 TRP A 420 10.864 35.594 65.684 1.00 0.00 C \nATOM 3210 CD2 TRP A 420 12.282 37.221 65.050 1.00 0.00 C \nATOM 3211 NE1 TRP A 420 10.336 36.203 64.560 1.00 0.00 N \nATOM 3212 CE2 TRP A 420 11.175 37.203 64.162 1.00 0.00 C \nATOM 3213 CE3 TRP A 420 13.302 38.170 64.862 1.00 0.00 C \nATOM 3214 CZ2 TRP A 420 11.083 38.089 63.067 1.00 0.00 C \nATOM 3215 CZ3 TRP A 420 13.209 39.048 63.778 1.00 0.00 C \nATOM 3216 CH2 TRP A 420 12.094 39.005 62.896 1.00 0.00 C \nATOM 3217 N ALA A 421 12.046 38.914 67.927 1.00 0.00 N \nATOM 3218 CA ALA A 421 12.421 40.327 67.891 1.00 0.00 C \nATOM 3219 C ALA A 421 12.472 40.899 69.312 1.00 0.00 C \nATOM 3220 O ALA A 421 13.362 41.683 69.652 1.00 0.00 O \nATOM 3221 CB ALA A 421 11.424 41.140 67.023 1.00 0.00 C \nATOM 3222 N ARG A 422 11.518 40.497 70.144 1.00 0.00 N \nATOM 3223 CA ARG A 422 11.452 40.999 71.520 1.00 0.00 C \nATOM 3224 C ARG A 422 12.514 40.413 72.441 1.00 0.00 C \nATOM 3225 O ARG A 422 13.200 41.140 73.158 1.00 0.00 O \nATOM 3226 CB ARG A 422 10.075 40.710 72.107 1.00 0.00 C \nATOM 3227 CG ARG A 422 8.936 41.273 71.292 1.00 0.00 C \nATOM 3228 CD ARG A 422 7.597 40.690 71.756 1.00 0.00 C \nATOM 3229 NE ARG A 422 7.207 41.167 73.083 1.00 0.00 N \nATOM 3230 CZ ARG A 422 6.253 40.611 73.825 1.00 0.00 C \nATOM 3231 NH1 ARG A 422 5.593 39.545 73.379 1.00 0.00 N \nATOM 3232 NH2 ARG A 422 5.928 41.146 75.000 1.00 0.00 N \nATOM 3233 N MET A 423 12.643 39.091 72.428 1.00 0.00 N \nATOM 3234 CA MET A 423 13.623 38.440 73.283 1.00 0.00 C \nATOM 3235 C MET A 423 15.054 38.804 72.942 1.00 0.00 C \nATOM 3236 O MET A 423 15.853 39.068 73.833 1.00 0.00 O \nATOM 3237 CB MET A 423 13.490 36.908 73.194 1.00 0.00 C \nATOM 3238 CG MET A 423 14.502 36.126 74.030 1.00 0.00 C \nATOM 3239 SD MET A 423 14.122 34.328 74.025 1.00 0.00 S \nATOM 3240 CE MET A 423 14.592 33.920 72.360 1.00 0.00 C \nATOM 3241 N ILE A 424 15.363 38.830 71.650 1.00 0.00 N \nATOM 3242 CA ILE A 424 16.729 39.048 71.200 1.00 0.00 C \nATOM 3243 C ILE A 424 17.153 40.406 70.660 1.00 0.00 C \nATOM 3244 O ILE A 424 18.060 41.032 71.216 1.00 0.00 O \nATOM 3245 CB ILE A 424 17.096 37.960 70.147 1.00 0.00 C \nATOM 3246 CG1 ILE A 424 16.845 36.571 70.745 1.00 0.00 C \nATOM 3247 CG2 ILE A 424 18.557 38.094 69.722 1.00 0.00 C \nATOM 3248 CD1 ILE A 424 16.915 35.436 69.746 1.00 0.00 C \nATOM 3249 N LEU A 425 16.528 40.861 69.578 1.00 0.00 N \nATOM 3250 CA LEU A 425 16.937 42.133 68.989 1.00 0.00 C \nATOM 3251 C LEU A 425 16.788 43.315 69.924 1.00 0.00 C \nATOM 3252 O LEU A 425 17.686 44.149 70.021 1.00 0.00 O \nATOM 3253 CB LEU A 425 16.161 42.398 67.701 1.00 0.00 C \nATOM 3254 CG LEU A 425 16.376 41.380 66.576 1.00 0.00 C \nATOM 3255 CD1 LEU A 425 15.516 41.778 65.361 1.00 0.00 C \nATOM 3256 CD2 LEU A 425 17.856 41.333 66.207 1.00 0.00 C \nATOM 3257 N MET A 426 15.642 43.408 70.589 1.00 0.00 N \nATOM 3258 CA MET A 426 15.403 44.507 71.511 1.00 0.00 C \nATOM 3259 C MET A 426 16.419 44.472 72.657 1.00 0.00 C \nATOM 3260 O MET A 426 17.079 45.466 72.940 1.00 0.00 O \nATOM 3261 CB MET A 426 13.981 44.434 72.068 1.00 0.00 C \nATOM 3262 CG MET A 426 12.912 44.992 71.115 1.00 0.00 C \nATOM 3263 SD MET A 426 11.285 44.915 71.905 1.00 0.00 S \nATOM 3264 CE MET A 426 10.201 45.166 70.449 1.00 0.00 C \nATOM 3265 N THR A 427 16.565 43.316 73.290 1.00 0.00 N \nATOM 3266 CA THR A 427 17.488 43.184 74.407 1.00 0.00 C \nATOM 3267 C THR A 427 18.925 43.490 73.998 1.00 0.00 C \nATOM 3268 O THR A 427 19.603 44.319 74.611 1.00 0.00 O \nATOM 3269 CB THR A 427 17.421 41.779 74.979 1.00 0.00 C \nATOM 3270 OG1 THR A 427 16.050 41.445 75.201 1.00 0.00 O \nATOM 3271 CG2 THR A 427 18.198 41.684 76.305 1.00 0.00 C \nATOM 3272 N HIS A 428 19.366 42.836 72.934 1.00 0.00 N \nATOM 3273 CA HIS A 428 20.722 42.992 72.441 1.00 0.00 C \nATOM 3274 C HIS A 428 21.100 44.421 72.042 1.00 0.00 C \nATOM 3275 O HIS A 428 22.109 44.966 72.494 1.00 0.00 O \nATOM 3276 CB HIS A 428 20.923 42.057 71.261 1.00 0.00 C \nATOM 3277 CG HIS A 428 22.317 42.043 70.731 1.00 0.00 C \nATOM 3278 ND1 HIS A 428 23.378 41.521 71.442 1.00 0.00 N \nATOM 3279 CD2 HIS A 428 22.823 42.449 69.542 1.00 0.00 C \nATOM 3280 CE1 HIS A 428 24.474 41.601 70.708 1.00 0.00 C \nATOM 3281 NE2 HIS A 428 24.164 42.160 69.550 1.00 0.00 N \nATOM 3282 N PHE A 429 20.297 45.040 71.200 1.00 0.00 N \nATOM 3283 CA PHE A 429 20.639 46.379 70.762 1.00 0.00 C \nATOM 3284 C PHE A 429 20.407 47.487 71.786 1.00 0.00 C \nATOM 3285 O PHE A 429 21.173 48.460 71.836 1.00 0.00 O \nATOM 3286 CB PHE A 429 19.957 46.652 69.416 1.00 0.00 C \nATOM 3287 CG PHE A 429 20.636 45.947 68.274 1.00 0.00 C \nATOM 3288 CD1 PHE A 429 21.850 46.415 67.780 1.00 0.00 C \nATOM 3289 CD2 PHE A 429 20.149 44.728 67.801 1.00 0.00 C \nATOM 3290 CE1 PHE A 429 22.576 45.677 66.830 1.00 0.00 C \nATOM 3291 CE2 PHE A 429 20.870 43.982 66.858 1.00 0.00 C \nATOM 3292 CZ PHE A 429 22.081 44.454 66.378 1.00 0.00 C \nATOM 3293 N PHE A 430 19.378 47.361 72.620 1.00 0.00 N \nATOM 3294 CA PHE A 430 19.190 48.395 73.621 1.00 0.00 C \nATOM 3295 C PHE A 430 20.332 48.319 74.624 1.00 0.00 C \nATOM 3296 O PHE A 430 20.784 49.338 75.130 1.00 0.00 O \nATOM 3297 CB PHE A 430 17.835 48.281 74.314 1.00 0.00 C \nATOM 3298 CG PHE A 430 16.774 49.104 73.647 1.00 0.00 C \nATOM 3299 CD1 PHE A 430 16.074 48.609 72.557 1.00 0.00 C \nATOM 3300 CD2 PHE A 430 16.539 50.415 74.054 1.00 0.00 C \nATOM 3301 CE1 PHE A 430 15.159 49.408 71.873 1.00 0.00 C \nATOM 3302 CE2 PHE A 430 15.628 51.221 73.381 1.00 0.00 C \nATOM 3303 CZ PHE A 430 14.934 50.713 72.287 1.00 0.00 C \nATOM 3304 N SER A 431 20.813 47.105 74.878 1.00 0.00 N \nATOM 3305 CA SER A 431 21.921 46.918 75.792 1.00 0.00 C \nATOM 3306 C SER A 431 23.129 47.663 75.229 1.00 0.00 C \nATOM 3307 O SER A 431 23.803 48.403 75.941 1.00 0.00 O \nATOM 3308 CB SER A 431 22.227 45.433 75.930 1.00 0.00 C \nATOM 3309 OG SER A 431 23.401 45.232 76.680 1.00 0.00 O \nATOM 3310 N ILE A 432 23.389 47.492 73.936 1.00 0.00 N \nATOM 3311 CA ILE A 432 24.509 48.179 73.308 1.00 0.00 C \nATOM 3312 C ILE A 432 24.287 49.704 73.316 1.00 0.00 C \nATOM 3313 O ILE A 432 25.188 50.457 73.672 1.00 0.00 O \nATOM 3314 CB ILE A 432 24.715 47.704 71.854 1.00 0.00 C \nATOM 3315 CG1 ILE A 432 25.133 46.231 71.840 1.00 0.00 C \nATOM 3316 CG2 ILE A 432 25.796 48.545 71.175 1.00 0.00 C \nATOM 3317 CD1 ILE A 432 25.090 45.614 70.441 1.00 0.00 C \nATOM 3318 N LEU A 433 23.099 50.158 72.921 1.00 0.00 N \nATOM 3319 CA LEU A 433 22.814 51.593 72.915 1.00 0.00 C \nATOM 3320 C LEU A 433 23.056 52.225 74.287 1.00 0.00 C \nATOM 3321 O LEU A 433 23.614 53.316 74.379 1.00 0.00 O \nATOM 3322 CB LEU A 433 21.374 51.861 72.480 1.00 0.00 C \nATOM 3323 CG LEU A 433 21.008 51.545 71.033 1.00 0.00 C \nATOM 3324 CD1 LEU A 433 19.536 51.903 70.815 1.00 0.00 C \nATOM 3325 CD2 LEU A 433 21.908 52.309 70.075 1.00 0.00 C \nATOM 3326 N LEU A 434 22.629 51.541 75.343 1.00 0.00 N \nATOM 3327 CA LEU A 434 22.830 52.032 76.700 1.00 0.00 C \nATOM 3328 C LEU A 434 24.324 52.189 76.979 1.00 0.00 C \nATOM 3329 O LEU A 434 24.793 53.268 77.345 1.00 0.00 O \nATOM 3330 CB LEU A 434 22.239 51.049 77.726 1.00 0.00 C \nATOM 3331 CG LEU A 434 20.767 51.180 78.140 1.00 0.00 C \nATOM 3332 CD1 LEU A 434 20.315 49.910 78.850 1.00 0.00 C \nATOM 3333 CD2 LEU A 434 20.586 52.384 79.047 1.00 0.00 C \nATOM 3334 N ALA A 435 25.062 51.099 76.793 1.00 0.00 N \nATOM 3335 CA ALA A 435 26.498 51.081 77.037 1.00 0.00 C \nATOM 3336 C ALA A 435 27.257 52.171 76.284 1.00 0.00 C \nATOM 3337 O ALA A 435 28.231 52.727 76.791 1.00 0.00 O \nATOM 3338 CB ALA A 435 27.062 49.703 76.682 1.00 0.00 C \nATOM 3339 N GLN A 436 26.816 52.472 75.068 1.00 0.00 N \nATOM 3340 CA GLN A 436 27.468 53.491 74.256 1.00 0.00 C \nATOM 3341 C GLN A 436 26.827 54.869 74.431 1.00 0.00 C \nATOM 3342 O GLN A 436 27.272 55.848 73.834 1.00 0.00 O \nATOM 3343 CB GLN A 436 27.402 53.089 72.779 1.00 0.00 C \nATOM 3344 CG GLN A 436 28.086 51.772 72.439 1.00 0.00 C \nATOM 3345 CD GLN A 436 29.563 51.778 72.786 1.00 0.00 C \nATOM 3346 OE1 GLN A 436 30.291 52.699 72.424 1.00 0.00 O \nATOM 3347 NE2 GLN A 436 30.011 50.746 73.489 1.00 0.00 N \nATOM 3348 N GLU A 437 25.790 54.949 75.255 1.00 0.00 N \nATOM 3349 CA GLU A 437 25.082 56.207 75.454 1.00 0.00 C \nATOM 3350 C GLU A 437 24.706 56.808 74.103 1.00 0.00 C \nATOM 3351 O GLU A 437 25.069 57.943 73.788 1.00 0.00 O \nATOM 3352 CB GLU A 437 25.939 57.201 76.250 1.00 0.00 C \nATOM 3353 CG GLU A 437 25.873 56.995 77.761 1.00 0.00 C \nATOM 3354 CD GLU A 437 26.740 57.979 78.534 1.00 0.00 C \nATOM 3355 OE1 GLU A 437 26.551 59.206 78.382 1.00 0.00 O \nATOM 3356 OE2 GLU A 437 27.613 57.519 79.299 1.00 0.00 O \nATOM 3357 N GLN A 438 23.986 56.027 73.303 1.00 0.00 N \nATOM 3358 CA GLN A 438 23.542 56.470 71.988 1.00 0.00 C \nATOM 3359 C GLN A 438 22.056 56.206 71.792 1.00 0.00 C \nATOM 3360 O GLN A 438 21.599 56.002 70.670 1.00 0.00 O \nATOM 3361 CB GLN A 438 24.331 55.766 70.891 1.00 0.00 C \nATOM 3362 CG GLN A 438 25.820 55.963 71.019 1.00 0.00 C \nATOM 3363 CD GLN A 438 26.557 55.588 69.761 1.00 0.00 C \nATOM 3364 OE1 GLN A 438 26.241 54.583 69.121 1.00 0.00 O \nATOM 3365 NE2 GLN A 438 27.555 56.389 69.399 1.00 0.00 N \nATOM 3366 N LEU A 439 21.310 56.210 72.890 1.00 0.00 N \nATOM 3367 CA LEU A 439 19.871 55.988 72.841 1.00 0.00 C \nATOM 3368 C LEU A 439 19.135 56.973 71.937 1.00 0.00 C \nATOM 3369 O LEU A 439 18.250 56.583 71.178 1.00 0.00 O \nATOM 3370 CB LEU A 439 19.278 56.074 74.252 1.00 0.00 C \nATOM 3371 CG LEU A 439 19.030 54.787 75.047 1.00 0.00 C \nATOM 3372 CD1 LEU A 439 19.862 53.668 74.498 1.00 0.00 C \nATOM 3373 CD2 LEU A 439 19.338 55.023 76.524 1.00 0.00 C \nATOM 3374 N GLU A 440 19.503 58.248 72.005 1.00 0.00 N \nATOM 3375 CA GLU A 440 18.821 59.262 71.211 1.00 0.00 C \nATOM 3376 C GLU A 440 19.400 59.580 69.840 1.00 0.00 C \nATOM 3377 O GLU A 440 18.973 60.531 69.191 1.00 0.00 O \nATOM 3378 CB GLU A 440 18.690 60.546 72.032 1.00 0.00 C \nATOM 3379 CG GLU A 440 19.931 60.936 72.798 1.00 0.00 C \nATOM 3380 CD GLU A 440 19.629 61.929 73.904 1.00 0.00 C \nATOM 3381 OE1 GLU A 440 20.572 62.324 74.624 1.00 0.00 O \nATOM 3382 OE2 GLU A 440 18.449 62.316 74.056 1.00 0.00 O \nATOM 3383 N LYS A 441 20.357 58.777 69.391 1.00 0.00 N \nATOM 3384 CA LYS A 441 20.962 58.987 68.085 1.00 0.00 C \nATOM 3385 C LYS A 441 20.068 58.359 67.012 1.00 0.00 C \nATOM 3386 O LYS A 441 19.798 57.160 67.051 1.00 0.00 O \nATOM 3387 CB LYS A 441 22.352 58.349 68.054 1.00 0.00 C \nATOM 3388 CG LYS A 441 23.087 58.492 66.727 1.00 0.00 C \nATOM 3389 CD LYS A 441 24.353 57.645 66.719 1.00 0.00 C \nATOM 3390 CE LYS A 441 25.060 57.690 65.371 1.00 0.00 C \nATOM 3391 NZ LYS A 441 26.261 56.800 65.368 1.00 0.00 N \nATOM 3392 N ALA A 442 19.613 59.173 66.062 1.00 0.00 N \nATOM 3393 CA ALA A 442 18.750 58.695 64.981 1.00 0.00 C \nATOM 3394 C ALA A 442 19.529 57.796 64.039 1.00 0.00 C \nATOM 3395 O ALA A 442 20.642 58.128 63.635 1.00 0.00 O \nATOM 3396 CB ALA A 442 18.171 59.871 64.207 1.00 0.00 C \nATOM 3397 N LEU A 443 18.933 56.663 63.683 1.00 0.00 N \nATOM 3398 CA LEU A 443 19.573 55.698 62.795 1.00 0.00 C \nATOM 3399 C LEU A 443 18.732 55.450 61.541 1.00 0.00 C \nATOM 3400 O LEU A 443 17.500 55.467 61.596 1.00 0.00 O \nATOM 3401 CB LEU A 443 19.780 54.374 63.539 1.00 0.00 C \nATOM 3402 CG LEU A 443 20.674 54.397 64.784 1.00 0.00 C \nATOM 3403 CD1 LEU A 443 20.455 53.128 65.590 1.00 0.00 C \nATOM 3404 CD2 LEU A 443 22.137 54.516 64.374 1.00 0.00 C \nATOM 3405 N ASP A 444 19.394 55.213 60.415 1.00 0.00 N \nATOM 3406 CA ASP A 444 18.677 54.950 59.175 1.00 0.00 C \nATOM 3407 C ASP A 444 18.335 53.474 59.017 1.00 0.00 C \nATOM 3408 O ASP A 444 19.125 52.602 59.390 1.00 0.00 O \nATOM 3409 CB ASP A 444 19.510 55.385 57.961 1.00 0.00 C \nATOM 3410 CG ASP A 444 19.822 56.869 57.965 1.00 0.00 C \nATOM 3411 OD1 ASP A 444 18.990 57.657 58.468 1.00 0.00 O \nATOM 3412 OD2 ASP A 444 20.892 57.250 57.449 1.00 0.00 O \nATOM 3413 N CYS A 445 17.152 53.208 58.468 1.00 0.00 N \nATOM 3414 CA CYS A 445 16.697 51.848 58.195 1.00 0.00 C \nATOM 3415 C CYS A 445 15.732 51.942 57.023 1.00 0.00 C \nATOM 3416 O CYS A 445 15.335 53.043 56.641 1.00 0.00 O \nATOM 3417 CB CYS A 445 15.993 51.239 59.417 1.00 0.00 C \nATOM 3418 SG CYS A 445 14.508 52.111 59.970 1.00 0.00 S \nATOM 3419 N GLN A 446 15.356 50.803 56.446 1.00 0.00 N \nATOM 3420 CA GLN A 446 14.433 50.821 55.317 1.00 0.00 C \nATOM 3421 C GLN A 446 13.144 50.070 55.594 1.00 0.00 C \nATOM 3422 O GLN A 446 13.142 49.026 56.248 1.00 0.00 O \nATOM 3423 CB GLN A 446 15.094 50.238 54.061 1.00 0.00 C \nATOM 3424 CG GLN A 446 16.343 50.968 53.600 1.00 0.00 C \nATOM 3425 CD GLN A 446 16.913 50.385 52.313 1.00 0.00 C \nATOM 3426 OE1 GLN A 446 17.018 49.164 52.161 1.00 0.00 O \nATOM 3427 NE2 GLN A 446 17.290 51.258 51.382 1.00 0.00 N \nATOM 3428 N ILE A 447 12.046 50.617 55.087 1.00 0.00 N \nATOM 3429 CA ILE A 447 10.725 50.016 55.242 1.00 0.00 C \nATOM 3430 C ILE A 447 10.134 50.007 53.844 1.00 0.00 C \nATOM 3431 O ILE A 447 9.850 51.065 53.279 1.00 0.00 O \nATOM 3432 CB ILE A 447 9.813 50.856 56.186 1.00 0.00 C \nATOM 3433 CG1 ILE A 447 10.383 50.841 57.610 1.00 0.00 C \nATOM 3434 CG2 ILE A 447 8.382 50.307 56.179 1.00 0.00 C \nATOM 3435 CD1 ILE A 447 9.554 51.632 58.606 1.00 0.00 C \nATOM 3436 N TYR A 448 9.964 48.812 53.288 1.00 0.00 N \nATOM 3437 CA TYR A 448 9.435 48.647 51.938 1.00 0.00 C \nATOM 3438 C TYR A 448 10.336 49.371 50.947 1.00 0.00 C \nATOM 3439 O TYR A 448 9.862 49.954 49.968 1.00 0.00 O \nATOM 3440 CB TYR A 448 7.998 49.182 51.825 1.00 0.00 C \nATOM 3441 CG TYR A 448 6.945 48.355 52.533 1.00 0.00 C \nATOM 3442 CD1 TYR A 448 7.219 47.057 52.974 1.00 0.00 C \nATOM 3443 CD2 TYR A 448 5.660 48.870 52.748 1.00 0.00 C \nATOM 3444 CE1 TYR A 448 6.239 46.291 53.616 1.00 0.00 C \nATOM 3445 CE2 TYR A 448 4.673 48.117 53.382 1.00 0.00 C \nATOM 3446 CZ TYR A 448 4.966 46.829 53.816 1.00 0.00 C \nATOM 3447 OH TYR A 448 3.989 46.089 54.451 1.00 0.00 O \nATOM 3448 N GLY A 449 11.638 49.350 51.226 1.00 0.00 N \nATOM 3449 CA GLY A 449 12.597 49.970 50.332 1.00 0.00 C \nATOM 3450 C GLY A 449 12.914 51.431 50.577 1.00 0.00 C \nATOM 3451 O GLY A 449 13.971 51.900 50.166 1.00 0.00 O \nATOM 3452 N ALA A 450 12.006 52.154 51.225 1.00 0.00 N \nATOM 3453 CA ALA A 450 12.236 53.570 51.510 1.00 0.00 C \nATOM 3454 C ALA A 450 13.081 53.724 52.776 1.00 0.00 C \nATOM 3455 O ALA A 450 12.895 52.988 53.753 1.00 0.00 O \nATOM 3456 CB ALA A 450 10.909 54.296 51.684 1.00 0.00 C \nATOM 3457 N CYS A 451 13.999 54.686 52.751 1.00 0.00 N \nATOM 3458 CA CYS A 451 14.879 54.938 53.883 1.00 0.00 C \nATOM 3459 C CYS A 451 14.267 55.956 54.832 1.00 0.00 C \nATOM 3460 O CYS A 451 13.743 56.990 54.408 1.00 0.00 O \nATOM 3461 CB CYS A 451 16.251 55.434 53.398 1.00 0.00 C \nATOM 3462 SG CYS A 451 17.501 55.617 54.720 1.00 0.00 S \nATOM 3463 N TYR A 452 14.345 55.644 56.122 1.00 0.00 N \nATOM 3464 CA TYR A 452 13.816 56.486 57.185 1.00 0.00 C \nATOM 3465 C TYR A 452 14.889 56.725 58.252 1.00 0.00 C \nATOM 3466 O TYR A 452 15.758 55.883 58.480 1.00 0.00 O \nATOM 3467 CB TYR A 452 12.615 55.795 57.840 1.00 0.00 C \nATOM 3468 CG TYR A 452 11.401 55.657 56.945 1.00 0.00 C \nATOM 3469 CD1 TYR A 452 10.378 56.607 56.974 1.00 0.00 C \nATOM 3470 CD2 TYR A 452 11.281 54.585 56.063 1.00 0.00 C \nATOM 3471 CE1 TYR A 452 9.261 56.490 56.143 1.00 0.00 C \nATOM 3472 CE2 TYR A 452 10.173 54.455 55.229 1.00 0.00 C \nATOM 3473 CZ TYR A 452 9.167 55.409 55.272 1.00 0.00 C \nATOM 3474 OH TYR A 452 8.076 55.290 54.438 1.00 0.00 O \nATOM 3475 N SER A 453 14.827 57.884 58.895 1.00 0.00 N \nATOM 3476 CA SER A 453 15.756 58.214 59.969 1.00 0.00 C \nATOM 3477 C SER A 453 14.905 58.025 61.214 1.00 0.00 C \nATOM 3478 O SER A 453 13.869 58.684 61.364 1.00 0.00 O \nATOM 3479 CB SER A 453 16.220 59.665 59.867 1.00 0.00 C \nATOM 3480 OG SER A 453 17.084 59.982 60.944 1.00 0.00 O \nATOM 3481 N ILE A 454 15.324 57.123 62.098 1.00 0.00 N \nATOM 3482 CA ILE A 454 14.541 56.838 63.293 1.00 0.00 C \nATOM 3483 C ILE A 454 15.337 56.798 64.592 1.00 0.00 C \nATOM 3484 O ILE A 454 16.422 56.214 64.654 1.00 0.00 O \nATOM 3485 CB ILE A 454 13.799 55.492 63.125 1.00 0.00 C \nATOM 3486 CG1 ILE A 454 12.801 55.607 61.966 1.00 0.00 C \nATOM 3487 CG2 ILE A 454 13.106 55.095 64.432 1.00 0.00 C \nATOM 3488 CD1 ILE A 454 12.118 54.322 61.638 1.00 0.00 C \nATOM 3489 N GLU A 455 14.773 57.413 65.627 1.00 0.00 N \nATOM 3490 CA GLU A 455 15.396 57.456 66.944 1.00 0.00 C \nATOM 3491 C GLU A 455 14.852 56.290 67.760 1.00 0.00 C \nATOM 3492 O GLU A 455 13.644 56.184 67.988 1.00 0.00 O \nATOM 3493 CB GLU A 455 15.079 58.785 67.644 1.00 0.00 C \nATOM 3494 CG GLU A 455 15.539 60.015 66.865 1.00 0.00 C \nATOM 3495 CD GLU A 455 15.322 61.307 67.620 1.00 0.00 C \nATOM 3496 OE1 GLU A 455 14.193 61.535 68.103 1.00 0.00 O \nATOM 3497 OE2 GLU A 455 16.281 62.104 67.722 1.00 0.00 O \nATOM 3498 N PRO A 456 15.743 55.387 68.196 1.00 0.00 N \nATOM 3499 CA PRO A 456 15.395 54.204 68.990 1.00 0.00 C \nATOM 3500 C PRO A 456 14.430 54.464 70.149 1.00 0.00 C \nATOM 3501 O PRO A 456 13.567 53.636 70.446 1.00 0.00 O \nATOM 3502 CB PRO A 456 16.756 53.715 69.464 1.00 0.00 C \nATOM 3503 CG PRO A 456 17.613 54.009 68.278 1.00 0.00 C \nATOM 3504 CD PRO A 456 17.189 55.413 67.911 1.00 0.00 C \nATOM 3505 N LEU A 457 14.580 55.617 70.793 1.00 0.00 N \nATOM 3506 CA LEU A 457 13.736 55.986 71.921 1.00 0.00 C \nATOM 3507 C LEU A 457 12.272 56.144 71.541 1.00 0.00 C \nATOM 3508 O LEU A 457 11.402 56.124 72.409 1.00 0.00 O \nATOM 3509 CB LEU A 457 14.255 57.273 72.571 1.00 0.00 C \nATOM 3510 CG LEU A 457 15.507 57.130 73.444 1.00 0.00 C \nATOM 3511 CD1 LEU A 457 15.893 58.491 73.997 1.00 0.00 C \nATOM 3512 CD2 LEU A 457 15.243 56.153 74.582 1.00 0.00 C \nATOM 3513 N ASP A 458 11.997 56.295 70.248 1.00 0.00 N \nATOM 3514 CA ASP A 458 10.617 56.430 69.787 1.00 0.00 C \nATOM 3515 C ASP A 458 9.990 55.086 69.457 1.00 0.00 C \nATOM 3516 O ASP A 458 8.837 55.033 69.029 1.00 0.00 O \nATOM 3517 CB ASP A 458 10.536 57.310 68.538 1.00 0.00 C \nATOM 3518 CG ASP A 458 10.840 58.758 68.829 1.00 0.00 C \nATOM 3519 OD1 ASP A 458 10.460 59.227 69.926 1.00 0.00 O \nATOM 3520 OD2 ASP A 458 11.443 59.426 67.960 1.00 0.00 O \nATOM 3521 N LEU A 459 10.736 54.002 69.657 1.00 0.00 N \nATOM 3522 CA LEU A 459 10.222 52.677 69.338 1.00 0.00 C \nATOM 3523 C LEU A 459 8.903 52.296 69.991 1.00 0.00 C \nATOM 3524 O LEU A 459 8.016 51.777 69.323 1.00 0.00 O \nATOM 3525 CB LEU A 459 11.288 51.609 69.621 1.00 0.00 C \nATOM 3526 CG LEU A 459 12.303 51.469 68.480 1.00 0.00 C \nATOM 3527 CD1 LEU A 459 13.441 50.511 68.852 1.00 0.00 C \nATOM 3528 CD2 LEU A 459 11.554 50.978 67.236 1.00 0.00 C \nATOM 3529 N PRO A 460 8.745 52.550 71.299 1.00 0.00 N \nATOM 3530 CA PRO A 460 7.491 52.205 71.974 1.00 0.00 C \nATOM 3531 C PRO A 460 6.280 52.835 71.281 1.00 0.00 C \nATOM 3532 O PRO A 460 5.261 52.179 71.073 1.00 0.00 O \nATOM 3533 CB PRO A 460 7.688 52.767 73.378 1.00 0.00 C \nATOM 3534 CG PRO A 460 9.172 52.689 73.569 1.00 0.00 C \nATOM 3535 CD PRO A 460 9.697 53.161 72.243 1.00 0.00 C \nATOM 3536 N GLN A 461 6.408 54.115 70.945 1.00 0.00 N \nATOM 3537 CA GLN A 461 5.355 54.878 70.276 1.00 0.00 C \nATOM 3538 C GLN A 461 5.074 54.305 68.895 1.00 0.00 C \nATOM 3539 O GLN A 461 3.924 54.076 68.528 1.00 0.00 O \nATOM 3540 CB GLN A 461 5.783 56.341 70.122 1.00 0.00 C \nATOM 3541 CG GLN A 461 6.101 57.034 71.428 1.00 0.00 C \nATOM 3542 CD GLN A 461 6.897 58.310 71.223 1.00 0.00 C \nATOM 3543 OE1 GLN A 461 6.475 59.209 70.490 1.00 0.00 O \nATOM 3544 NE2 GLN A 461 8.059 58.397 71.868 1.00 0.00 N \nATOM 3545 N ILE A 462 6.139 54.092 68.131 1.00 0.00 N \nATOM 3546 CA ILE A 462 6.028 53.540 66.791 1.00 0.00 C \nATOM 3547 C ILE A 462 5.346 52.170 66.830 1.00 0.00 C \nATOM 3548 O ILE A 462 4.417 51.893 66.060 1.00 0.00 O \nATOM 3549 CB ILE A 462 7.427 53.410 66.156 1.00 0.00 C \nATOM 3550 CG1 ILE A 462 8.059 54.795 66.043 1.00 0.00 C \nATOM 3551 CG2 ILE A 462 7.331 52.744 64.789 1.00 0.00 C \nATOM 3552 CD1 ILE A 462 9.480 54.790 65.478 1.00 0.00 C \nATOM 3553 N ILE A 463 5.798 51.320 67.746 1.00 0.00 N \nATOM 3554 CA ILE A 463 5.228 49.987 67.868 1.00 0.00 C \nATOM 3555 C ILE A 463 3.749 50.036 68.245 1.00 0.00 C \nATOM 3556 O ILE A 463 2.946 49.299 67.676 1.00 0.00 O \nATOM 3557 CB ILE A 463 6.002 49.127 68.907 1.00 0.00 C \nATOM 3558 CG1 ILE A 463 7.402 48.809 68.381 1.00 0.00 C \nATOM 3559 CG2 ILE A 463 5.255 47.824 69.175 1.00 0.00 C \nATOM 3560 CD1 ILE A 463 8.308 48.110 69.410 1.00 0.00 C \nATOM 3561 N GLU A 464 3.386 50.893 69.201 1.00 0.00 N \nATOM 3562 CA GLU A 464 1.984 50.998 69.613 1.00 0.00 C \nATOM 3563 C GLU A 464 1.151 51.417 68.410 1.00 0.00 C \nATOM 3564 O GLU A 464 0.137 50.797 68.093 1.00 0.00 O \nATOM 3565 CB GLU A 464 1.804 52.038 70.728 1.00 0.00 C \nATOM 3566 CG GLU A 464 0.382 52.074 71.309 1.00 0.00 C \nATOM 3567 CD GLU A 464 0.150 53.245 72.260 1.00 0.00 C \nATOM 3568 OE1 GLU A 464 0.900 53.369 73.249 1.00 0.00 O \nATOM 3569 OE2 GLU A 464 -0.785 54.043 72.022 1.00 0.00 O \nATOM 3570 N ARG A 465 1.597 52.471 67.742 1.00 0.00 N \nATOM 3571 CA ARG A 465 0.910 52.986 66.569 1.00 0.00 C \nATOM 3572 C ARG A 465 0.699 51.930 65.482 1.00 0.00 C \nATOM 3573 O ARG A 465 -0.414 51.751 64.992 1.00 0.00 O \nATOM 3574 CB ARG A 465 1.698 54.160 65.988 1.00 0.00 C \nATOM 3575 CG ARG A 465 1.641 55.423 66.839 1.00 0.00 C \nATOM 3576 CD ARG A 465 0.279 56.081 66.749 1.00 0.00 C \nATOM 3577 NE ARG A 465 -0.022 56.480 65.377 1.00 0.00 N \nATOM 3578 CZ ARG A 465 0.627 57.431 64.712 1.00 0.00 C \nATOM 3579 NH1 ARG A 465 1.621 58.096 65.290 1.00 0.00 N \nATOM 3580 NH2 ARG A 465 0.289 57.715 63.462 1.00 0.00 N \nATOM 3581 N LEU A 466 1.769 51.232 65.115 1.00 0.00 N \nATOM 3582 CA LEU A 466 1.708 50.217 64.071 1.00 0.00 C \nATOM 3583 C LEU A 466 1.104 48.877 64.477 1.00 0.00 C \nATOM 3584 O LEU A 466 0.393 48.255 63.695 1.00 0.00 O \nATOM 3585 CB LEU A 466 3.110 49.938 63.519 1.00 0.00 C \nATOM 3586 CG LEU A 466 4.002 51.029 62.943 1.00 0.00 C \nATOM 3587 CD1 LEU A 466 5.214 50.345 62.316 1.00 0.00 C \nATOM 3588 CD2 LEU A 466 3.269 51.846 61.901 1.00 0.00 C \nATOM 3589 N HIS A 467 1.384 48.427 65.693 1.00 0.00 N \nATOM 3590 CA HIS A 467 0.903 47.120 66.119 1.00 0.00 C \nATOM 3591 C HIS A 467 -0.128 47.094 67.230 1.00 0.00 C \nATOM 3592 O HIS A 467 -0.757 46.060 67.471 1.00 0.00 O \nATOM 3593 CB HIS A 467 2.098 46.265 66.540 1.00 0.00 C \nATOM 3594 CG HIS A 467 3.112 46.077 65.459 1.00 0.00 C \nATOM 3595 ND1 HIS A 467 3.000 45.096 64.500 1.00 0.00 N \nATOM 3596 CD2 HIS A 467 4.267 46.729 65.197 1.00 0.00 C \nATOM 3597 CE1 HIS A 467 4.048 45.146 63.695 1.00 0.00 C \nATOM 3598 NE2 HIS A 467 4.833 46.127 64.096 1.00 0.00 N \nATOM 3599 N GLY A 468 -0.304 48.216 67.911 1.00 0.00 N \nATOM 3600 CA GLY A 468 -1.251 48.245 69.008 1.00 0.00 C \nATOM 3601 C GLY A 468 -0.560 47.771 70.278 1.00 0.00 C \nATOM 3602 O GLY A 468 0.502 47.143 70.220 1.00 0.00 O \nATOM 3603 N LEU A 469 -1.163 48.070 71.425 1.00 0.00 N \nATOM 3604 CA LEU A 469 -0.615 47.697 72.718 1.00 0.00 C \nATOM 3605 C LEU A 469 -0.299 46.225 72.904 1.00 0.00 C \nATOM 3606 O LEU A 469 0.588 45.875 73.683 1.00 0.00 O \nATOM 3607 CB LEU A 469 -1.570 48.118 73.829 1.00 0.00 C \nATOM 3608 CG LEU A 469 -1.395 49.513 74.412 1.00 0.00 C \nATOM 3609 CD1 LEU A 469 -2.409 49.693 75.544 1.00 0.00 C \nATOM 3610 CD2 LEU A 469 0.015 49.691 74.938 1.00 0.00 C \nATOM 3611 N SER A 470 -1.021 45.360 72.205 1.00 0.00 N \nATOM 3612 CA SER A 470 -0.817 43.925 72.352 1.00 0.00 C \nATOM 3613 C SER A 470 0.584 43.456 71.987 1.00 0.00 C \nATOM 3614 O SER A 470 0.996 42.362 72.383 1.00 0.00 O \nATOM 3615 CB SER A 470 -1.850 43.159 71.525 1.00 0.00 C \nATOM 3616 OG SER A 470 -1.788 43.551 70.173 1.00 0.00 O \nATOM 3617 N ALA A 471 1.310 44.276 71.230 1.00 0.00 N \nATOM 3618 CA ALA A 471 2.667 43.930 70.819 1.00 0.00 C \nATOM 3619 C ALA A 471 3.563 43.762 72.033 1.00 0.00 C \nATOM 3620 O ALA A 471 4.570 43.042 71.986 1.00 0.00 O \nATOM 3621 CB ALA A 471 3.247 45.013 69.899 1.00 0.00 C \nATOM 3622 N PHE A 472 3.184 44.416 73.125 1.00 0.00 N \nATOM 3623 CA PHE A 472 3.973 44.362 74.347 1.00 0.00 C \nATOM 3624 C PHE A 472 3.507 43.314 75.327 1.00 0.00 C \nATOM 3625 O PHE A 472 4.083 43.183 76.401 1.00 0.00 O \nATOM 3626 CB PHE A 472 3.951 45.718 75.042 1.00 0.00 C \nATOM 3627 CG PHE A 472 4.293 46.855 74.142 1.00 0.00 C \nATOM 3628 CD1 PHE A 472 5.523 46.905 73.508 1.00 0.00 C \nATOM 3629 CD2 PHE A 472 3.383 47.890 73.935 1.00 0.00 C \nATOM 3630 CE1 PHE A 472 5.851 47.970 72.677 1.00 0.00 C \nATOM 3631 CE2 PHE A 472 3.703 48.957 73.109 1.00 0.00 C \nATOM 3632 CZ PHE A 472 4.946 48.997 72.479 1.00 0.00 C \nATOM 3633 N SER A 473 2.468 42.566 74.982 1.00 0.00 N \nATOM 3634 CA SER A 473 1.989 41.552 75.907 1.00 0.00 C \nATOM 3635 C SER A 473 1.694 40.205 75.267 1.00 0.00 C \nATOM 3636 O SER A 473 1.047 39.356 75.883 1.00 0.00 O \nATOM 3637 CB SER A 473 0.739 42.049 76.636 1.00 0.00 C \nATOM 3638 OG SER A 473 -0.359 42.088 75.750 1.00 0.00 O \nATOM 3639 N LEU A 474 2.159 39.988 74.043 1.00 0.00 N \nATOM 3640 CA LEU A 474 1.906 38.699 73.404 1.00 0.00 C \nATOM 3641 C LEU A 474 2.648 37.595 74.135 1.00 0.00 C \nATOM 3642 O LEU A 474 3.762 37.799 74.624 1.00 0.00 O \nATOM 3643 CB LEU A 474 2.336 38.711 71.930 1.00 0.00 C \nATOM 3644 CG LEU A 474 1.519 39.584 70.974 1.00 0.00 C \nATOM 3645 CD1 LEU A 474 1.866 39.192 69.541 1.00 0.00 C \nATOM 3646 CD2 LEU A 474 0.019 39.394 71.224 1.00 0.00 C \nATOM 3647 N HIS A 475 2.025 36.423 74.216 1.00 0.00 N \nATOM 3648 CA HIS A 475 2.634 35.276 74.880 1.00 0.00 C \nATOM 3649 C HIS A 475 1.907 34.033 74.389 1.00 0.00 C \nATOM 3650 O HIS A 475 0.937 34.136 73.634 1.00 0.00 O \nATOM 3651 CB HIS A 475 2.509 35.415 76.408 1.00 0.00 C \nATOM 3652 CG HIS A 475 1.094 35.488 76.885 1.00 0.00 C \nATOM 3653 ND1 HIS A 475 0.369 34.369 77.232 1.00 0.00 N \nATOM 3654 CD2 HIS A 475 0.242 36.537 76.985 1.00 0.00 C \nATOM 3655 CE1 HIS A 475 -0.870 34.725 77.523 1.00 0.00 C \nATOM 3656 NE2 HIS A 475 -0.972 36.035 77.382 1.00 0.00 N \nATOM 3657 N SER A 476 2.366 32.864 74.819 1.00 0.00 N \nATOM 3658 CA SER A 476 1.772 31.608 74.378 1.00 0.00 C \nATOM 3659 C SER A 476 1.773 31.570 72.853 1.00 0.00 C \nATOM 3660 O SER A 476 0.725 31.395 72.215 1.00 0.00 O \nATOM 3661 CB SER A 476 0.335 31.450 74.900 1.00 0.00 C \nATOM 3662 OG SER A 476 0.322 31.217 76.297 1.00 0.00 O \nATOM 3663 N TYR A 477 2.957 31.751 72.277 1.00 0.00 N \nATOM 3664 CA TYR A 477 3.122 31.698 70.835 1.00 0.00 C \nATOM 3665 C TYR A 477 2.811 30.277 70.377 1.00 0.00 C \nATOM 3666 O TYR A 477 2.704 29.368 71.196 1.00 0.00 O \nATOM 3667 CB TYR A 477 4.558 32.073 70.456 1.00 0.00 C \nATOM 3668 CG TYR A 477 4.885 33.532 70.694 1.00 0.00 C \nATOM 3669 CD1 TYR A 477 5.449 33.964 71.898 1.00 0.00 C \nATOM 3670 CD2 TYR A 477 4.614 34.484 69.714 1.00 0.00 C \nATOM 3671 CE1 TYR A 477 5.738 35.331 72.112 1.00 0.00 C \nATOM 3672 CE2 TYR A 477 4.891 35.840 69.915 1.00 0.00 C \nATOM 3673 CZ TYR A 477 5.453 36.254 71.112 1.00 0.00 C \nATOM 3674 OH TYR A 477 5.719 37.591 71.297 1.00 0.00 O \nATOM 3675 N SER A 478 2.687 30.071 69.073 1.00 0.00 N \nATOM 3676 CA SER A 478 2.357 28.746 68.557 1.00 0.00 C \nATOM 3677 C SER A 478 3.504 27.745 68.615 1.00 0.00 C \nATOM 3678 O SER A 478 4.684 28.111 68.669 1.00 0.00 O \nATOM 3679 CB SER A 478 1.876 28.852 67.109 1.00 0.00 C \nATOM 3680 OG SER A 478 2.962 29.172 66.251 1.00 0.00 O \nATOM 3681 N PRO A 479 3.162 26.450 68.613 1.00 0.00 N \nATOM 3682 CA PRO A 479 4.140 25.363 68.654 1.00 0.00 C \nATOM 3683 C PRO A 479 5.070 25.459 67.457 1.00 0.00 C \nATOM 3684 O PRO A 479 6.283 25.282 67.590 1.00 0.00 O \nATOM 3685 CB PRO A 479 3.269 24.112 68.582 1.00 0.00 C \nATOM 3686 CG PRO A 479 2.050 24.534 69.314 1.00 0.00 C \nATOM 3687 CD PRO A 479 1.793 25.929 68.791 1.00 0.00 C \nATOM 3688 N GLY A 480 4.488 25.736 66.288 1.00 0.00 N \nATOM 3689 CA GLY A 480 5.276 25.847 65.073 1.00 0.00 C \nATOM 3690 C GLY A 480 6.236 27.025 65.110 1.00 0.00 C \nATOM 3691 O GLY A 480 7.371 26.929 64.647 1.00 0.00 O \nATOM 3692 N GLU A 481 5.772 28.144 65.652 1.00 0.00 N \nATOM 3693 CA GLU A 481 6.594 29.347 65.755 1.00 0.00 C \nATOM 3694 C GLU A 481 7.711 29.103 66.775 1.00 0.00 C \nATOM 3695 O GLU A 481 8.885 29.358 66.500 1.00 0.00 O \nATOM 3696 CB GLU A 481 5.717 30.536 66.173 1.00 0.00 C \nATOM 3697 CG GLU A 481 6.463 31.864 66.321 1.00 0.00 C \nATOM 3698 CD GLU A 481 7.168 32.306 65.049 1.00 0.00 C \nATOM 3699 OE1 GLU A 481 6.970 31.662 63.991 1.00 0.00 O \nATOM 3700 OE2 GLU A 481 7.924 33.307 65.115 1.00 0.00 O \nATOM 3701 N ILE A 482 7.348 28.606 67.950 1.00 0.00 N \nATOM 3702 CA ILE A 482 8.335 28.310 68.982 1.00 0.00 C \nATOM 3703 C ILE A 482 9.392 27.330 68.444 1.00 0.00 C \nATOM 3704 O ILE A 482 10.587 27.518 68.661 1.00 0.00 O \nATOM 3705 CB ILE A 482 7.651 27.707 70.240 1.00 0.00 C \nATOM 3706 CG1 ILE A 482 6.826 28.791 70.945 1.00 0.00 C \nATOM 3707 CG2 ILE A 482 8.696 27.132 71.197 1.00 0.00 C \nATOM 3708 CD1 ILE A 482 6.060 28.310 72.174 1.00 0.00 C \nATOM 3709 N ASN A 483 8.956 26.298 67.728 1.00 0.00 N \nATOM 3710 CA ASN A 483 9.890 25.319 67.174 1.00 0.00 C \nATOM 3711 C ASN A 483 10.880 25.939 66.199 1.00 0.00 C \nATOM 3712 O ASN A 483 12.065 25.609 66.218 1.00 0.00 O \nATOM 3713 CB ASN A 483 9.142 24.184 66.457 1.00 0.00 C \nATOM 3714 CG ASN A 483 8.598 23.144 67.417 1.00 0.00 C \nATOM 3715 OD1 ASN A 483 8.925 23.151 68.609 1.00 0.00 O \nATOM 3716 ND2 ASN A 483 7.771 22.234 66.900 1.00 0.00 N \nATOM 3717 N ARG A 484 10.388 26.825 65.337 1.00 0.00 N \nATOM 3718 CA ARG A 484 11.244 27.469 64.356 1.00 0.00 C \nATOM 3719 C ARG A 484 12.274 28.356 65.040 1.00 0.00 C \nATOM 3720 O ARG A 484 13.443 28.364 64.662 1.00 0.00 O \nATOM 3721 CB ARG A 484 10.421 28.309 63.371 1.00 0.00 C \nATOM 3722 CG ARG A 484 11.274 28.910 62.249 1.00 0.00 C \nATOM 3723 CD ARG A 484 10.424 29.449 61.123 1.00 0.00 C \nATOM 3724 NE ARG A 484 9.532 30.511 61.576 1.00 0.00 N \nATOM 3725 CZ ARG A 484 8.605 31.079 60.809 1.00 0.00 C \nATOM 3726 NH1 ARG A 484 8.442 30.689 59.547 1.00 0.00 N \nATOM 3727 NH2 ARG A 484 7.839 32.042 61.301 1.00 0.00 N \nATOM 3728 N VAL A 485 11.836 29.115 66.038 1.00 0.00 N \nATOM 3729 CA VAL A 485 12.751 29.976 66.766 1.00 0.00 C \nATOM 3730 C VAL A 485 13.816 29.098 67.435 1.00 0.00 C \nATOM 3731 O VAL A 485 15.008 29.367 67.328 1.00 0.00 O \nATOM 3732 CB VAL A 485 12.002 30.794 67.832 1.00 0.00 C \nATOM 3733 CG1 VAL A 485 12.995 31.507 68.738 1.00 0.00 C \nATOM 3734 CG2 VAL A 485 11.073 31.803 67.147 1.00 0.00 C \nATOM 3735 N ALA A 486 13.375 28.033 68.101 1.00 0.00 N \nATOM 3736 CA ALA A 486 14.292 27.115 68.777 1.00 0.00 C \nATOM 3737 C ALA A 486 15.314 26.532 67.815 1.00 0.00 C \nATOM 3738 O ALA A 486 16.509 26.511 68.116 1.00 0.00 O \nATOM 3739 CB ALA A 486 13.503 25.984 69.456 1.00 0.00 C \nATOM 3740 N SER A 487 14.850 26.069 66.656 1.00 0.00 N \nATOM 3741 CA SER A 487 15.740 25.489 65.646 1.00 0.00 C \nATOM 3742 C SER A 487 16.750 26.519 65.174 1.00 0.00 C \nATOM 3743 O SER A 487 17.941 26.220 65.031 1.00 0.00 O \nATOM 3744 CB SER A 487 14.952 24.997 64.428 1.00 0.00 C \nATOM 3745 OG SER A 487 14.007 24.016 64.803 1.00 0.00 O \nATOM 3746 N CYS A 488 16.272 27.733 64.917 1.00 0.00 N \nATOM 3747 CA CYS A 488 17.169 28.791 64.457 1.00 0.00 C \nATOM 3748 C CYS A 488 18.240 29.106 65.509 1.00 0.00 C \nATOM 3749 O CYS A 488 19.418 29.238 65.178 1.00 0.00 O \nATOM 3750 CB CYS A 488 16.370 30.057 64.118 1.00 0.00 C \nATOM 3751 SG CYS A 488 17.416 31.489 63.793 1.00 0.00 S \nATOM 3752 N LEU A 489 17.844 29.201 66.776 1.00 0.00 N \nATOM 3753 CA LEU A 489 18.806 29.518 67.825 1.00 0.00 C \nATOM 3754 C LEU A 489 19.899 28.460 67.961 1.00 0.00 C \nATOM 3755 O LEU A 489 21.060 28.793 68.199 1.00 0.00 O \nATOM 3756 CB LEU A 489 18.099 29.735 69.167 1.00 0.00 C \nATOM 3757 CG LEU A 489 17.005 30.816 69.216 1.00 0.00 C \nATOM 3758 CD1 LEU A 489 16.853 31.294 70.648 1.00 0.00 C \nATOM 3759 CD2 LEU A 489 17.352 31.994 68.312 1.00 0.00 C \nATOM 3760 N ARG A 490 19.537 27.191 67.807 1.00 0.00 N \nATOM 3761 CA ARG A 490 20.527 26.122 67.899 1.00 0.00 C \nATOM 3762 C ARG A 490 21.501 26.208 66.729 1.00 0.00 C \nATOM 3763 O ARG A 490 22.713 26.083 66.907 1.00 0.00 O \nATOM 3764 CB ARG A 490 19.854 24.746 67.880 1.00 0.00 C \nATOM 3765 CG ARG A 490 19.077 24.393 69.123 1.00 0.00 C \nATOM 3766 CD ARG A 490 18.702 22.916 69.088 1.00 0.00 C \nATOM 3767 NE ARG A 490 17.853 22.514 70.207 1.00 0.00 N \nATOM 3768 CZ ARG A 490 18.221 22.549 71.485 1.00 0.00 C \nATOM 3769 NH1 ARG A 490 19.434 22.974 71.822 1.00 0.00 N \nATOM 3770 NH2 ARG A 490 17.375 22.154 72.429 1.00 0.00 N \nATOM 3771 N LYS A 491 20.954 26.423 65.536 1.00 0.00 N \nATOM 3772 CA LYS A 491 21.729 26.515 64.310 1.00 0.00 C \nATOM 3773 C LYS A 491 22.814 27.585 64.375 1.00 0.00 C \nATOM 3774 O LYS A 491 23.982 27.319 64.068 1.00 0.00 O \nATOM 3775 CB LYS A 491 20.777 26.790 63.138 1.00 0.00 C \nATOM 3776 CG LYS A 491 21.445 27.158 61.821 1.00 0.00 C \nATOM 3777 CD LYS A 491 20.422 27.255 60.684 1.00 0.00 C \nATOM 3778 CE LYS A 491 19.474 28.447 60.851 1.00 0.00 C \nATOM 3779 NZ LYS A 491 18.467 28.553 59.740 1.00 0.00 N \nATOM 3780 N LEU A 492 22.418 28.791 64.776 1.00 0.00 N \nATOM 3781 CA LEU A 492 23.324 29.926 64.884 1.00 0.00 C \nATOM 3782 C LEU A 492 24.095 29.964 66.212 1.00 0.00 C \nATOM 3783 O LEU A 492 25.072 30.703 66.338 1.00 0.00 O \nATOM 3784 CB LEU A 492 22.544 31.235 64.732 1.00 0.00 C \nATOM 3785 CG LEU A 492 21.868 31.588 63.406 1.00 0.00 C \nATOM 3786 CD1 LEU A 492 21.179 32.941 63.527 1.00 0.00 C \nATOM 3787 CD2 LEU A 492 22.907 31.634 62.295 1.00 0.00 C \nATOM 3788 N GLY A 493 23.646 29.181 67.196 1.00 0.00 N \nATOM 3789 CA GLY A 493 24.308 29.155 68.493 1.00 0.00 C \nATOM 3790 C GLY A 493 24.019 30.379 69.347 1.00 0.00 C \nATOM 3791 O GLY A 493 24.925 30.985 69.913 1.00 0.00 O \nATOM 3792 N VAL A 494 22.743 30.731 69.446 1.00 0.00 N \nATOM 3793 CA VAL A 494 22.298 31.894 70.210 1.00 0.00 C \nATOM 3794 C VAL A 494 21.951 31.468 71.628 1.00 0.00 C \nATOM 3795 O VAL A 494 21.323 30.430 71.829 1.00 0.00 O \nATOM 3796 CB VAL A 494 21.018 32.512 69.566 1.00 0.00 C \nATOM 3797 CG1 VAL A 494 20.493 33.650 70.420 1.00 0.00 C \nATOM 3798 CG2 VAL A 494 21.315 32.985 68.138 1.00 0.00 C \nATOM 3799 N PRO A 495 22.341 32.271 72.630 1.00 0.00 N \nATOM 3800 CA PRO A 495 22.056 31.952 74.033 1.00 0.00 C \nATOM 3801 C PRO A 495 20.572 31.668 74.279 1.00 0.00 C \nATOM 3802 O PRO A 495 19.704 32.190 73.584 1.00 0.00 O \nATOM 3803 CB PRO A 495 22.522 33.198 74.770 1.00 0.00 C \nATOM 3804 CG PRO A 495 23.638 33.686 73.919 1.00 0.00 C \nATOM 3805 CD PRO A 495 23.085 33.535 72.526 1.00 0.00 C \nATOM 3806 N PRO A 496 20.267 30.843 75.291 1.00 0.00 N \nATOM 3807 CA PRO A 496 18.877 30.500 75.609 1.00 0.00 C \nATOM 3808 C PRO A 496 18.079 31.609 76.311 1.00 0.00 C \nATOM 3809 O PRO A 496 18.612 32.653 76.696 1.00 0.00 O \nATOM 3810 CB PRO A 496 19.028 29.232 76.451 1.00 0.00 C \nATOM 3811 CG PRO A 496 20.299 29.524 77.220 1.00 0.00 C \nATOM 3812 CD PRO A 496 21.207 30.077 76.136 1.00 0.00 C \nATOM 3813 N LEU A 497 16.785 31.364 76.456 1.00 0.00 N \nATOM 3814 CA LEU A 497 15.864 32.312 77.072 1.00 0.00 C \nATOM 3815 C LEU A 497 16.333 32.858 78.421 1.00 0.00 C \nATOM 3816 O LEU A 497 16.233 34.064 78.678 1.00 0.00 O \nATOM 3817 CB LEU A 497 14.504 31.643 77.225 1.00 0.00 C \nATOM 3818 CG LEU A 497 13.228 32.432 77.520 1.00 0.00 C \nATOM 3819 CD1 LEU A 497 12.586 31.814 78.740 1.00 0.00 C \nATOM 3820 CD2 LEU A 497 13.489 33.912 77.713 1.00 0.00 C \nATOM 3821 N ARG A 498 16.853 31.986 79.284 1.00 0.00 N \nATOM 3822 CA ARG A 498 17.304 32.435 80.598 1.00 0.00 C \nATOM 3823 C ARG A 498 18.317 33.562 80.500 1.00 0.00 C \nATOM 3824 O ARG A 498 18.295 34.492 81.307 1.00 0.00 O \nATOM 3825 CB ARG A 498 17.883 31.273 81.424 1.00 0.00 C \nATOM 3826 CG ARG A 498 18.889 30.394 80.706 1.00 0.00 C \nATOM 3827 CD ARG A 498 19.434 29.314 81.649 1.00 0.00 C \nATOM 3828 NE ARG A 498 20.229 28.299 80.952 1.00 0.00 N \nATOM 3829 CZ ARG A 498 19.735 27.420 80.083 1.00 0.00 C \nATOM 3830 NH1 ARG A 498 20.538 26.536 79.499 1.00 0.00 N \nATOM 3831 NH2 ARG A 498 18.438 27.418 79.796 1.00 0.00 N \nATOM 3832 N VAL A 499 19.194 33.503 79.504 1.00 0.00 N \nATOM 3833 CA VAL A 499 20.188 34.561 79.348 1.00 0.00 C \nATOM 3834 C VAL A 499 19.543 35.870 78.886 1.00 0.00 C \nATOM 3835 O VAL A 499 19.800 36.918 79.460 1.00 0.00 O \nATOM 3836 CB VAL A 499 21.314 34.142 78.363 1.00 0.00 C \nATOM 3837 CG1 VAL A 499 22.314 35.290 78.170 1.00 0.00 C \nATOM 3838 CG2 VAL A 499 22.039 32.916 78.913 1.00 0.00 C \nATOM 3839 N TRP A 500 18.676 35.814 77.881 1.00 0.00 N \nATOM 3840 CA TRP A 500 18.028 37.031 77.391 1.00 0.00 C \nATOM 3841 C TRP A 500 17.120 37.690 78.426 1.00 0.00 C \nATOM 3842 O TRP A 500 17.025 38.921 78.499 1.00 0.00 O \nATOM 3843 CB TRP A 500 17.237 36.730 76.106 1.00 0.00 C \nATOM 3844 CG TRP A 500 18.143 36.370 74.957 1.00 0.00 C \nATOM 3845 CD1 TRP A 500 18.317 35.133 74.398 1.00 0.00 C \nATOM 3846 CD2 TRP A 500 19.113 37.229 74.342 1.00 0.00 C \nATOM 3847 NE1 TRP A 500 19.347 35.167 73.484 1.00 0.00 N \nATOM 3848 CE2 TRP A 500 19.855 36.441 73.433 1.00 0.00 C \nATOM 3849 CE3 TRP A 500 19.436 38.589 74.483 1.00 0.00 C \nATOM 3850 CZ2 TRP A 500 20.906 36.967 72.661 1.00 0.00 C \nATOM 3851 CZ3 TRP A 500 20.478 39.115 73.721 1.00 0.00 C \nATOM 3852 CH2 TRP A 500 21.205 38.299 72.818 1.00 0.00 C \nATOM 3853 N ARG A 501 16.445 36.875 79.229 1.00 0.00 N \nATOM 3854 CA ARG A 501 15.558 37.421 80.255 1.00 0.00 C \nATOM 3855 C ARG A 501 16.408 38.178 81.276 1.00 0.00 C \nATOM 3856 O ARG A 501 16.072 39.291 81.683 1.00 0.00 O \nATOM 3857 CB ARG A 501 14.770 36.289 80.930 1.00 0.00 C \nATOM 3858 CG ARG A 501 13.790 36.736 82.014 1.00 0.00 C \nATOM 3859 CD ARG A 501 12.895 35.562 82.427 1.00 0.00 C \nATOM 3860 NE ARG A 501 13.702 34.374 82.703 1.00 0.00 N \nATOM 3861 CZ ARG A 501 13.351 33.131 82.379 1.00 0.00 C \nATOM 3862 NH1 ARG A 501 12.198 32.900 81.763 1.00 0.00 N \nATOM 3863 NH2 ARG A 501 14.161 32.118 82.663 1.00 0.00 N \nATOM 3864 N HIS A 502 17.524 37.579 81.671 1.00 0.00 N \nATOM 3865 CA HIS A 502 18.413 38.218 82.631 1.00 0.00 C \nATOM 3866 C HIS A 502 18.908 39.543 82.064 1.00 0.00 C \nATOM 3867 O HIS A 502 18.864 40.579 82.730 1.00 0.00 O \nATOM 3868 CB HIS A 502 19.603 37.315 82.915 1.00 0.00 C \nATOM 3869 CG HIS A 502 20.333 37.663 84.172 1.00 0.00 C \nATOM 3870 ND1 HIS A 502 20.254 36.895 85.311 1.00 0.00 N \nATOM 3871 CD2 HIS A 502 21.139 38.709 84.473 1.00 0.00 C \nATOM 3872 CE1 HIS A 502 20.981 37.452 86.264 1.00 0.00 C \nATOM 3873 NE2 HIS A 502 21.528 38.552 85.783 1.00 0.00 N \nATOM 3874 N ARG A 503 19.376 39.511 80.821 1.00 0.00 N \nATOM 3875 CA ARG A 503 19.868 40.714 80.169 1.00 0.00 C \nATOM 3876 C ARG A 503 18.773 41.780 80.021 1.00 0.00 C \nATOM 3877 O ARG A 503 19.035 42.984 80.162 1.00 0.00 O \nATOM 3878 CB ARG A 503 20.418 40.353 78.793 1.00 0.00 C \nATOM 3879 CG ARG A 503 21.550 39.357 78.846 1.00 0.00 C \nATOM 3880 CD ARG A 503 22.114 39.117 77.473 1.00 0.00 C \nATOM 3881 NE ARG A 503 23.310 38.286 77.535 1.00 0.00 N \nATOM 3882 CZ ARG A 503 23.895 37.758 76.471 1.00 0.00 C \nATOM 3883 NH1 ARG A 503 24.981 37.006 76.616 1.00 0.00 N \nATOM 3884 NH2 ARG A 503 23.383 37.975 75.261 1.00 0.00 N \nATOM 3885 N ALA A 504 17.549 41.336 79.737 1.00 0.00 N \nATOM 3886 CA ALA A 504 16.433 42.257 79.561 1.00 0.00 C \nATOM 3887 C ALA A 504 16.101 42.953 80.880 1.00 0.00 C \nATOM 3888 O ALA A 504 15.848 44.161 80.908 1.00 0.00 O \nATOM 3889 CB ALA A 504 15.208 41.497 79.023 1.00 0.00 C \nATOM 3890 N ARG A 505 16.110 42.197 81.973 1.00 0.00 N \nATOM 3891 CA ARG A 505 15.824 42.776 83.285 1.00 0.00 C \nATOM 3892 C ARG A 505 16.832 43.878 83.556 1.00 0.00 C \nATOM 3893 O ARG A 505 16.472 44.979 83.977 1.00 0.00 O \nATOM 3894 CB ARG A 505 15.894 41.697 84.368 1.00 0.00 C \nATOM 3895 CG ARG A 505 14.760 40.704 84.255 1.00 0.00 C \nATOM 3896 CD ARG A 505 14.766 39.663 85.366 1.00 0.00 C \nATOM 3897 NE ARG A 505 13.618 38.772 85.223 1.00 0.00 N \nATOM 3898 CZ ARG A 505 13.264 37.838 86.101 1.00 0.00 C \nATOM 3899 NH1 ARG A 505 13.973 37.658 87.211 1.00 0.00 N \nATOM 3900 NH2 ARG A 505 12.190 37.088 85.871 1.00 0.00 N \nATOM 3901 N SER A 506 18.100 43.581 83.286 1.00 0.00 N \nATOM 3902 CA SER A 506 19.173 44.551 83.473 1.00 0.00 C \nATOM 3903 C SER A 506 18.931 45.770 82.602 1.00 0.00 C \nATOM 3904 O SER A 506 18.951 46.903 83.079 1.00 0.00 O \nATOM 3905 CB SER A 506 20.513 43.938 83.088 1.00 0.00 C \nATOM 3906 OG SER A 506 21.504 44.940 83.019 1.00 0.00 O \nATOM 3907 N VAL A 507 18.731 45.528 81.312 1.00 0.00 N \nATOM 3908 CA VAL A 507 18.474 46.600 80.354 1.00 0.00 C \nATOM 3909 C VAL A 507 17.281 47.459 80.781 1.00 0.00 C \nATOM 3910 O VAL A 507 17.335 48.695 80.753 1.00 0.00 O \nATOM 3911 CB VAL A 507 18.185 46.013 78.950 1.00 0.00 C \nATOM 3912 CG1 VAL A 507 17.660 47.097 78.024 1.00 0.00 C \nATOM 3913 CG2 VAL A 507 19.452 45.382 78.387 1.00 0.00 C \nATOM 3914 N ARG A 508 16.203 46.793 81.171 1.00 0.00 N \nATOM 3915 CA ARG A 508 14.987 47.469 81.610 1.00 0.00 C \nATOM 3916 C ARG A 508 15.291 48.382 82.797 1.00 0.00 C \nATOM 3917 O ARG A 508 14.958 49.568 82.781 1.00 0.00 O \nATOM 3918 CB ARG A 508 13.932 46.425 82.003 1.00 0.00 C \nATOM 3919 CG ARG A 508 12.642 46.986 82.614 1.00 0.00 C \nATOM 3920 CD ARG A 508 11.603 45.881 82.820 1.00 0.00 C \nATOM 3921 NE ARG A 508 10.386 46.359 83.489 1.00 0.00 N \nATOM 3922 CZ ARG A 508 10.313 46.671 84.783 1.00 0.00 C \nATOM 3923 NH1 ARG A 508 11.386 46.553 85.556 1.00 0.00 N \nATOM 3924 NH2 ARG A 508 9.175 47.104 85.311 1.00 0.00 N \nATOM 3925 N ALA A 509 15.924 47.822 83.825 1.00 0.00 N \nATOM 3926 CA ALA A 509 16.264 48.587 85.022 1.00 0.00 C \nATOM 3927 C ALA A 509 17.057 49.837 84.659 1.00 0.00 C \nATOM 3928 O ALA A 509 16.786 50.927 85.165 1.00 0.00 O \nATOM 3929 CB ALA A 509 17.059 47.716 85.988 1.00 0.00 C \nATOM 3930 N ARG A 510 18.033 49.686 83.773 1.00 0.00 N \nATOM 3931 CA ARG A 510 18.829 50.831 83.364 1.00 0.00 C \nATOM 3932 C ARG A 510 17.989 51.891 82.651 1.00 0.00 C \nATOM 3933 O ARG A 510 18.161 53.092 82.881 1.00 0.00 O \nATOM 3934 CB ARG A 510 19.975 50.386 82.445 1.00 0.00 C \nATOM 3935 CG ARG A 510 21.262 50.069 83.181 1.00 0.00 C \nATOM 3936 CD ARG A 510 21.595 48.585 83.186 1.00 0.00 C \nATOM 3937 NE ARG A 510 22.102 48.079 81.910 1.00 0.00 N \nATOM 3938 CZ ARG A 510 23.090 48.635 81.210 1.00 0.00 C \nATOM 3939 NH1 ARG A 510 23.689 49.732 81.642 1.00 0.00 N \nATOM 3940 NH2 ARG A 510 23.510 48.070 80.089 1.00 0.00 N \nATOM 3941 N LEU A 511 17.081 51.448 81.784 1.00 0.00 N \nATOM 3942 CA LEU A 511 16.245 52.377 81.033 1.00 0.00 C \nATOM 3943 C LEU A 511 15.276 53.142 81.932 1.00 0.00 C \nATOM 3944 O LEU A 511 15.081 54.344 81.765 1.00 0.00 O \nATOM 3945 CB LEU A 511 15.472 51.626 79.940 1.00 0.00 C \nATOM 3946 CG LEU A 511 16.312 51.019 78.812 1.00 0.00 C \nATOM 3947 CD1 LEU A 511 15.450 50.064 77.969 1.00 0.00 C \nATOM 3948 CD2 LEU A 511 16.890 52.140 77.955 1.00 0.00 C \nATOM 3949 N LEU A 512 14.673 52.439 82.879 1.00 0.00 N \nATOM 3950 CA LEU A 512 13.740 53.058 83.803 1.00 0.00 C \nATOM 3951 C LEU A 512 14.441 54.183 84.559 1.00 0.00 C \nATOM 3952 O LEU A 512 13.875 55.254 84.770 1.00 0.00 O \nATOM 3953 CB LEU A 512 13.213 52.021 84.794 1.00 0.00 C \nATOM 3954 CG LEU A 512 12.174 51.022 84.284 1.00 0.00 C \nATOM 3955 CD1 LEU A 512 11.949 49.929 85.330 1.00 0.00 C \nATOM 3956 CD2 LEU A 512 10.873 51.752 83.983 1.00 0.00 C \nATOM 3957 N SER A 513 15.685 53.939 84.955 1.00 0.00 N \nATOM 3958 CA SER A 513 16.456 54.931 85.694 1.00 0.00 C \nATOM 3959 C SER A 513 16.737 56.173 84.868 1.00 0.00 C \nATOM 3960 O SER A 513 16.858 57.270 85.413 1.00 0.00 O \nATOM 3961 CB SER A 513 17.772 54.316 86.173 1.00 0.00 C \nATOM 3962 OG SER A 513 17.554 53.321 87.162 1.00 0.00 O \nATOM 3963 N GLN A 514 16.828 56.006 83.552 1.00 0.00 N \nATOM 3964 CA GLN A 514 17.116 57.117 82.655 1.00 0.00 C \nATOM 3965 C GLN A 514 15.959 58.119 82.578 1.00 0.00 C \nATOM 3966 O GLN A 514 16.160 59.285 82.251 1.00 0.00 O \nATOM 3967 CB GLN A 514 17.509 56.578 81.265 1.00 0.00 C \nATOM 3968 CG GLN A 514 18.537 57.412 80.532 1.00 0.00 C \nATOM 3969 CD GLN A 514 19.799 56.633 80.268 1.00 0.00 C \nATOM 3970 OE1 GLN A 514 20.575 56.959 79.364 1.00 0.00 O \nATOM 3971 NE2 GLN A 514 20.016 55.588 81.060 1.00 0.00 N \nATOM 3972 N GLY A 515 14.756 57.645 82.880 1.00 0.00 N \nATOM 3973 CA GLY A 515 13.598 58.518 82.848 1.00 0.00 C \nATOM 3974 C GLY A 515 13.146 58.870 81.444 1.00 0.00 C \nATOM 3975 O GLY A 515 13.776 58.462 80.462 1.00 0.00 O \nATOM 3976 N GLY A 516 12.056 59.626 81.342 1.00 0.00 N \nATOM 3977 CA GLY A 516 11.553 60.023 80.038 1.00 0.00 C \nATOM 3978 C GLY A 516 11.294 58.858 79.100 1.00 0.00 C \nATOM 3979 O GLY A 516 10.875 57.784 79.528 1.00 0.00 O \nATOM 3980 N ARG A 517 11.537 59.072 77.812 1.00 0.00 N \nATOM 3981 CA ARG A 517 11.320 58.037 76.806 1.00 0.00 C \nATOM 3982 C ARG A 517 12.069 56.733 77.092 1.00 0.00 C \nATOM 3983 O ARG A 517 11.551 55.642 76.834 1.00 0.00 O \nATOM 3984 CB ARG A 517 11.726 58.546 75.417 1.00 0.00 C \nATOM 3985 CG ARG A 517 10.726 59.484 74.759 1.00 0.00 C \nATOM 3986 CD ARG A 517 11.258 60.894 74.694 1.00 0.00 C \nATOM 3987 NE ARG A 517 12.494 61.014 73.915 1.00 0.00 N \nATOM 3988 CZ ARG A 517 12.600 60.726 72.622 1.00 0.00 C \nATOM 3989 NH1 ARG A 517 11.541 60.287 71.954 1.00 0.00 N \nATOM 3990 NH2 ARG A 517 13.753 60.909 71.987 1.00 0.00 N \nATOM 3991 N ALA A 518 13.292 56.840 77.605 1.00 0.00 N \nATOM 3992 CA ALA A 518 14.073 55.644 77.903 1.00 0.00 C \nATOM 3993 C ALA A 518 13.303 54.803 78.909 1.00 0.00 C \nATOM 3994 O ALA A 518 13.282 53.567 78.827 1.00 0.00 O \nATOM 3995 CB ALA A 518 15.438 56.026 78.459 1.00 0.00 C \nATOM 3996 N ALA A 519 12.654 55.488 79.850 1.00 0.00 N \nATOM 3997 CA ALA A 519 11.870 54.819 80.885 1.00 0.00 C \nATOM 3998 C ALA A 519 10.712 54.081 80.233 1.00 0.00 C \nATOM 3999 O ALA A 519 10.376 52.955 80.610 1.00 0.00 O \nATOM 4000 CB ALA A 519 11.346 55.846 81.886 1.00 0.00 C \nATOM 4001 N THR A 520 10.101 54.731 79.250 1.00 0.00 N \nATOM 4002 CA THR A 520 8.991 54.130 78.527 1.00 0.00 C \nATOM 4003 C THR A 520 9.494 52.892 77.784 1.00 0.00 C \nATOM 4004 O THR A 520 8.845 51.850 77.781 1.00 0.00 O \nATOM 4005 CB THR A 520 8.381 55.129 77.533 1.00 0.00 C \nATOM 4006 OG1 THR A 520 7.915 56.274 78.259 1.00 0.00 O \nATOM 4007 CG2 THR A 520 7.199 54.497 76.779 1.00 0.00 C \nATOM 4008 N CYS A 521 10.658 53.008 77.165 1.00 0.00 N \nATOM 4009 CA CYS A 521 11.228 51.877 76.455 1.00 0.00 C \nATOM 4010 C CYS A 521 11.350 50.697 77.413 1.00 0.00 C \nATOM 4011 O CYS A 521 10.930 49.584 77.098 1.00 0.00 O \nATOM 4012 CB CYS A 521 12.603 52.246 75.886 1.00 0.00 C \nATOM 4013 SG CYS A 521 12.538 53.242 74.363 1.00 0.00 S \nATOM 4014 N GLY A 522 11.896 50.953 78.600 1.00 0.00 N \nATOM 4015 CA GLY A 522 12.075 49.889 79.572 1.00 0.00 C \nATOM 4016 C GLY A 522 10.768 49.238 79.956 1.00 0.00 C \nATOM 4017 O GLY A 522 10.633 48.006 80.000 1.00 0.00 O \nATOM 4018 N LYS A 523 9.794 50.098 80.223 1.00 0.00 N \nATOM 4019 CA LYS A 523 8.458 49.710 80.636 1.00 0.00 C \nATOM 4020 C LYS A 523 7.704 48.818 79.632 1.00 0.00 C \nATOM 4021 O LYS A 523 7.245 47.722 79.977 1.00 0.00 O \nATOM 4022 CB LYS A 523 7.676 51.003 80.926 1.00 0.00 C \nATOM 4023 CG LYS A 523 6.367 50.863 81.683 1.00 0.00 C \nATOM 4024 CD LYS A 523 5.981 52.229 82.273 1.00 0.00 C \nATOM 4025 CE LYS A 523 4.586 52.242 82.895 1.00 0.00 C \nATOM 4026 NZ LYS A 523 3.489 52.316 81.881 1.00 0.00 N \nATOM 4027 N TYR A 524 7.588 49.274 78.391 1.00 0.00 N \nATOM 4028 CA TYR A 524 6.848 48.522 77.378 1.00 0.00 C \nATOM 4029 C TYR A 524 7.623 47.429 76.658 1.00 0.00 C \nATOM 4030 O TYR A 524 7.131 46.314 76.496 1.00 0.00 O \nATOM 4031 CB TYR A 524 6.277 49.480 76.320 1.00 0.00 C \nATOM 4032 CG TYR A 524 5.269 50.475 76.869 1.00 0.00 C \nATOM 4033 CD1 TYR A 524 5.667 51.503 77.716 1.00 0.00 C \nATOM 4034 CD2 TYR A 524 3.913 50.350 76.578 1.00 0.00 C \nATOM 4035 CE1 TYR A 524 4.741 52.382 78.268 1.00 0.00 C \nATOM 4036 CE2 TYR A 524 2.976 51.222 77.126 1.00 0.00 C \nATOM 4037 CZ TYR A 524 3.398 52.234 77.972 1.00 0.00 C \nATOM 4038 OH TYR A 524 2.480 53.081 78.541 1.00 0.00 O \nATOM 4039 N LEU A 525 8.837 47.751 76.224 1.00 0.00 N \nATOM 4040 CA LEU A 525 9.633 46.797 75.469 1.00 0.00 C \nATOM 4041 C LEU A 525 10.042 45.554 76.216 1.00 0.00 C \nATOM 4042 O LEU A 525 10.173 44.487 75.617 1.00 0.00 O \nATOM 4043 CB LEU A 525 10.889 47.467 74.909 1.00 0.00 C \nATOM 4044 CG LEU A 525 10.687 48.672 73.995 1.00 0.00 C \nATOM 4045 CD1 LEU A 525 12.042 49.173 73.508 1.00 0.00 C \nATOM 4046 CD2 LEU A 525 9.796 48.287 72.815 1.00 0.00 C \nATOM 4047 N PHE A 526 10.222 45.676 77.525 1.00 0.00 N \nATOM 4048 CA PHE A 526 10.689 44.547 78.309 1.00 0.00 C \nATOM 4049 C PHE A 526 9.775 44.053 79.437 1.00 0.00 C \nATOM 4050 O PHE A 526 10.225 43.358 80.353 1.00 0.00 O \nATOM 4051 CB PHE A 526 12.076 44.903 78.840 1.00 0.00 C \nATOM 4052 CG PHE A 526 13.056 45.266 77.754 1.00 0.00 C \nATOM 4053 CD1 PHE A 526 13.605 44.280 76.940 1.00 0.00 C \nATOM 4054 CD2 PHE A 526 13.430 46.594 77.544 1.00 0.00 C \nATOM 4055 CE1 PHE A 526 14.524 44.604 75.928 1.00 0.00 C \nATOM 4056 CE2 PHE A 526 14.343 46.939 76.540 1.00 0.00 C \nATOM 4057 CZ PHE A 526 14.893 45.938 75.727 1.00 0.00 C \nATOM 4058 N ASN A 527 8.489 44.390 79.352 1.00 0.00 N \nATOM 4059 CA ASN A 527 7.523 43.964 80.364 1.00 0.00 C \nATOM 4060 C ASN A 527 7.477 42.433 80.395 1.00 0.00 C \nATOM 4061 O ASN A 527 7.148 41.841 81.418 1.00 0.00 O \nATOM 4062 CB ASN A 527 6.133 44.506 80.033 1.00 0.00 C \nATOM 4063 CG ASN A 527 5.181 44.456 81.216 1.00 0.00 C \nATOM 4064 OD1 ASN A 527 3.966 44.482 81.032 1.00 0.00 O \nATOM 4065 ND2 ASN A 527 5.722 44.409 82.431 1.00 0.00 N \nATOM 4066 N TRP A 528 7.806 41.800 79.270 1.00 0.00 N \nATOM 4067 CA TRP A 528 7.812 40.347 79.189 1.00 0.00 C \nATOM 4068 C TRP A 528 8.868 39.697 80.073 1.00 0.00 C \nATOM 4069 O TRP A 528 8.756 38.518 80.405 1.00 0.00 O \nATOM 4070 CB TRP A 528 8.069 39.884 77.752 1.00 0.00 C \nATOM 4071 CG TRP A 528 9.371 40.385 77.159 1.00 0.00 C \nATOM 4072 CD1 TRP A 528 9.546 41.501 76.387 1.00 0.00 C \nATOM 4073 CD2 TRP A 528 10.673 39.792 77.303 1.00 0.00 C \nATOM 4074 NE1 TRP A 528 10.872 41.636 76.038 1.00 0.00 N \nATOM 4075 CE2 TRP A 528 11.586 40.598 76.582 1.00 0.00 C \nATOM 4076 CE3 TRP A 528 11.158 38.652 77.960 1.00 0.00 C \nATOM 4077 CZ2 TRP A 528 12.957 40.309 76.508 1.00 0.00 C \nATOM 4078 CZ3 TRP A 528 12.526 38.361 77.885 1.00 0.00 C \nATOM 4079 CH2 TRP A 528 13.405 39.188 77.159 1.00 0.00 C \nATOM 4080 N ALA A 529 9.903 40.451 80.435 1.00 0.00 N \nATOM 4081 CA ALA A 529 10.993 39.912 81.252 1.00 0.00 C \nATOM 4082 C ALA A 529 10.746 39.827 82.760 1.00 0.00 C \nATOM 4083 O ALA A 529 11.387 39.031 83.445 1.00 0.00 O \nATOM 4084 CB ALA A 529 12.274 40.717 80.992 1.00 0.00 C \nATOM 4085 N VAL A 530 9.842 40.647 83.287 1.00 0.00 N \nATOM 4086 CA VAL A 530 9.557 40.630 84.722 1.00 0.00 C \nATOM 4087 C VAL A 530 8.410 39.680 85.065 1.00 0.00 C \nATOM 4088 O VAL A 530 7.540 39.425 84.234 1.00 0.00 O \nATOM 4089 CB VAL A 530 9.200 42.031 85.226 1.00 0.00 C \nATOM 4090 CG1 VAL A 530 10.344 42.980 84.954 1.00 0.00 C \nATOM 4091 CG2 VAL A 530 7.933 42.511 84.561 1.00 0.00 C \nATOM 4092 N LYS A 531 8.396 39.148 86.285 1.00 0.00 N \nATOM 4093 CA LYS A 531 7.313 38.234 86.639 1.00 0.00 C \nATOM 4094 C LYS A 531 6.035 38.964 87.000 1.00 0.00 C \nATOM 4095 O LYS A 531 4.945 38.489 86.691 1.00 0.00 O \nATOM 4096 CB LYS A 531 7.723 37.275 87.758 1.00 0.00 C \nATOM 4097 CG LYS A 531 8.279 37.890 89.012 1.00 0.00 C \nATOM 4098 CD LYS A 531 8.683 36.758 89.942 1.00 0.00 C \nATOM 4099 CE LYS A 531 9.308 37.250 91.229 1.00 0.00 C \nATOM 4100 NZ LYS A 531 9.705 36.090 92.078 1.00 0.00 N \nATOM 4101 N THR A 532 6.162 40.120 87.638 1.00 0.00 N \nATOM 4102 CA THR A 532 4.986 40.911 87.985 1.00 0.00 C \nATOM 4103 C THR A 532 4.850 41.994 86.919 1.00 0.00 C \nATOM 4104 O THR A 532 5.431 43.071 87.043 1.00 0.00 O \nATOM 4105 CB THR A 532 5.131 41.582 89.372 1.00 0.00 C \nATOM 4106 OG1 THR A 532 5.345 40.578 90.374 1.00 0.00 O \nATOM 4107 CG2 THR A 532 3.873 42.384 89.707 1.00 0.00 C \nATOM 4108 N LYS A 533 4.090 41.699 85.869 1.00 0.00 N \nATOM 4109 CA LYS A 533 3.898 42.636 84.760 1.00 0.00 C \nATOM 4110 C LYS A 533 3.295 43.988 85.124 1.00 0.00 C \nATOM 4111 O LYS A 533 2.487 44.093 86.046 1.00 0.00 O \nATOM 4112 CB LYS A 533 3.023 41.999 83.678 1.00 0.00 C \nATOM 4113 CG LYS A 533 3.765 41.141 82.677 1.00 0.00 C \nATOM 4114 CD LYS A 533 4.367 39.904 83.310 1.00 0.00 C \nATOM 4115 CE LYS A 533 5.043 39.048 82.253 1.00 0.00 C \nATOM 4116 NZ LYS A 533 5.665 37.841 82.841 1.00 0.00 N \nATOM 4117 N LEU A 534 3.683 45.019 84.377 1.00 0.00 N \nATOM 4118 CA LEU A 534 3.158 46.362 84.589 1.00 0.00 C \nATOM 4119 C LEU A 534 1.853 46.549 83.820 1.00 0.00 C \nATOM 4120 O LEU A 534 1.523 45.762 82.931 1.00 0.00 O \nATOM 4121 CB LEU A 534 4.167 47.424 84.142 1.00 0.00 C \nATOM 4122 CG LEU A 534 4.958 48.107 85.259 1.00 0.00 C \nATOM 4123 CD1 LEU A 534 5.737 47.062 86.042 1.00 0.00 C \nATOM 4124 CD2 LEU A 534 5.889 49.155 84.666 1.00 0.00 C \nATOM 4125 N LYS A 535 1.127 47.605 84.181 1.00 0.00 N \nATOM 4126 CA LYS A 535 -0.156 47.958 83.578 1.00 0.00 C \nATOM 4127 C LYS A 535 -0.096 48.076 82.059 1.00 0.00 C \nATOM 4128 O LYS A 535 -0.810 47.370 81.345 1.00 0.00 O \nATOM 4129 CB LYS A 535 -0.651 49.282 84.175 1.00 0.00 C \nATOM 4130 CG LYS A 535 0.373 50.419 84.075 1.00 0.00 C \nATOM 4131 CD LYS A 535 0.011 51.622 84.946 1.00 0.00 C \nATOM 4132 CE LYS A 535 -1.251 52.326 84.466 1.00 0.00 C \nATOM 4133 NZ LYS A 535 -1.537 53.554 85.266 1.00 0.00 N \nATOM 4134 N LEU A 536 0.765 48.964 81.572 1.00 0.00 N \nATOM 4135 CA LEU A 536 0.904 49.194 80.140 1.00 0.00 C \nATOM 4136 C LEU A 536 -0.374 49.813 79.592 1.00 0.00 C \nATOM 4137 O LEU A 536 -1.418 49.166 79.518 1.00 0.00 O \nATOM 4138 CB LEU A 536 1.220 47.887 79.404 1.00 0.00 C \nATOM 4139 CG LEU A 536 2.707 47.530 79.315 1.00 0.00 C \nATOM 4140 CD1 LEU A 536 3.306 47.420 80.707 1.00 0.00 C \nATOM 4141 CD2 LEU A 536 2.865 46.227 78.558 1.00 0.00 C \nATOM 4142 N THR A 537 -0.271 51.078 79.209 1.00 0.00 N \nATOM 4143 CA THR A 537 -1.399 51.824 78.680 1.00 0.00 C \nATOM 4144 C THR A 537 -0.904 52.694 77.534 1.00 0.00 C \nATOM 4145 O THR A 537 0.297 52.810 77.311 1.00 0.00 O \nATOM 4146 CB THR A 537 -2.012 52.727 79.775 1.00 0.00 C \nATOM 4147 OG1 THR A 537 -1.011 53.626 80.277 1.00 0.00 O \nATOM 4148 CG2 THR A 537 -2.542 51.880 80.926 1.00 0.00 C \nATOM 4149 N PRO A 538 -1.823 53.315 76.785 1.00 0.00 N \nATOM 4150 CA PRO A 538 -1.428 54.173 75.664 1.00 0.00 C \nATOM 4151 C PRO A 538 -0.295 55.149 75.992 1.00 0.00 C \nATOM 4152 O PRO A 538 0.134 55.252 77.139 1.00 0.00 O \nATOM 4153 CB PRO A 538 -2.732 54.871 75.306 1.00 0.00 C \nATOM 4154 CG PRO A 538 -3.726 53.764 75.515 1.00 0.00 C \nATOM 4155 CD PRO A 538 -3.288 53.163 76.838 1.00 0.00 C \nATOM 4156 N ILE A 539 0.181 55.865 74.977 1.00 0.00 N \nATOM 4157 CA ILE A 539 1.274 56.817 75.155 1.00 0.00 C \nATOM 4158 C ILE A 539 1.027 58.131 74.403 1.00 0.00 C \nATOM 4159 O ILE A 539 0.782 58.130 73.196 1.00 0.00 O \nATOM 4160 CB ILE A 539 2.607 56.207 74.670 1.00 0.00 C \nATOM 4161 CG1 ILE A 539 2.863 54.883 75.395 1.00 0.00 C \nATOM 4162 CG2 ILE A 539 3.747 57.187 74.907 1.00 0.00 C \nATOM 4163 CD1 ILE A 539 4.077 54.132 74.891 1.00 0.00 C \nATOM 4164 N PRO A 540 1.102 59.270 75.117 1.00 0.00 N \nATOM 4165 CA PRO A 540 0.894 60.623 74.585 1.00 0.00 C \nATOM 4166 C PRO A 540 1.644 60.983 73.299 1.00 0.00 C \nATOM 4167 O PRO A 540 1.023 61.207 72.258 1.00 0.00 O \nATOM 4168 CB PRO A 540 1.302 61.514 75.756 1.00 0.00 C \nATOM 4169 CG PRO A 540 0.867 60.707 76.937 1.00 0.00 C \nATOM 4170 CD PRO A 540 1.362 59.324 76.569 1.00 0.00 C \nATOM 4171 N ALA A 541 2.971 61.048 73.377 1.00 0.00 N \nATOM 4172 CA ALA A 541 3.802 61.404 72.225 1.00 0.00 C \nATOM 4173 C ALA A 541 3.510 60.597 70.960 1.00 0.00 C \nATOM 4174 O ALA A 541 3.810 61.047 69.852 1.00 0.00 O \nATOM 4175 CB ALA A 541 5.277 61.272 72.590 1.00 0.00 C \nATOM 4176 N ALA A 542 2.927 59.413 71.126 1.00 0.00 N \nATOM 4177 CA ALA A 542 2.606 58.540 69.999 1.00 0.00 C \nATOM 4178 C ALA A 542 1.934 59.267 68.840 1.00 0.00 C \nATOM 4179 O ALA A 542 2.449 59.275 67.721 1.00 0.00 O \nATOM 4180 CB ALA A 542 1.720 57.389 70.469 1.00 0.00 C \nATOM 4181 N SER A 543 0.784 59.874 69.117 1.00 0.00 N \nATOM 4182 CA SER A 543 0.023 60.595 68.101 1.00 0.00 C \nATOM 4183 C SER A 543 0.831 61.683 67.394 1.00 0.00 C \nATOM 4184 O SER A 543 0.475 62.108 66.294 1.00 0.00 O \nATOM 4185 CB SER A 543 -1.228 61.215 68.728 1.00 0.00 C \nATOM 4186 OG SER A 543 -0.881 62.146 69.738 1.00 0.00 O \nATOM 4187 N GLN A 544 1.913 62.134 68.025 1.00 0.00 N \nATOM 4188 CA GLN A 544 2.761 63.171 67.441 1.00 0.00 C \nATOM 4189 C GLN A 544 3.493 62.688 66.197 1.00 0.00 C \nATOM 4190 O GLN A 544 3.636 63.433 65.227 1.00 0.00 O \nATOM 4191 CB GLN A 544 3.785 63.673 68.463 1.00 0.00 C \nATOM 4192 CG GLN A 544 3.230 64.653 69.484 1.00 0.00 C \nATOM 4193 CD GLN A 544 4.324 65.313 70.310 1.00 0.00 C \nATOM 4194 OE1 GLN A 544 4.056 66.202 71.122 1.00 0.00 O \nATOM 4195 NE2 GLN A 544 5.565 64.879 70.107 1.00 0.00 N \nATOM 4196 N LEU A 545 3.963 61.445 66.228 1.00 0.00 N \nATOM 4197 CA LEU A 545 4.677 60.868 65.093 1.00 0.00 C \nATOM 4198 C LEU A 545 3.817 60.880 63.827 1.00 0.00 C \nATOM 4199 O LEU A 545 2.698 60.359 63.811 1.00 0.00 O \nATOM 4200 CB LEU A 545 5.104 59.433 65.418 1.00 0.00 C \nATOM 4201 CG LEU A 545 6.196 59.247 66.475 1.00 0.00 C \nATOM 4202 CD1 LEU A 545 6.225 57.801 66.927 1.00 0.00 C \nATOM 4203 CD2 LEU A 545 7.547 59.664 65.902 1.00 0.00 C \nATOM 4204 N ASP A 546 4.348 61.484 62.769 1.00 0.00 N \nATOM 4205 CA ASP A 546 3.646 61.565 61.493 1.00 0.00 C \nATOM 4206 C ASP A 546 4.009 60.344 60.657 1.00 0.00 C \nATOM 4207 O ASP A 546 4.957 60.375 59.870 1.00 0.00 O \nATOM 4208 CB ASP A 546 4.045 62.847 60.753 1.00 0.00 C \nATOM 4209 CG ASP A 546 3.354 62.987 59.411 1.00 0.00 C \nATOM 4210 OD1 ASP A 546 3.543 62.105 58.548 1.00 0.00 O \nATOM 4211 OD2 ASP A 546 2.623 63.981 59.215 1.00 0.00 O \nATOM 4212 N LEU A 547 3.249 59.269 60.836 1.00 0.00 N \nATOM 4213 CA LEU A 547 3.497 58.026 60.117 1.00 0.00 C \nATOM 4214 C LEU A 547 2.845 57.958 58.741 1.00 0.00 C \nATOM 4215 O LEU A 547 2.680 56.871 58.183 1.00 0.00 O \nATOM 4216 CB LEU A 547 3.045 56.836 60.968 1.00 0.00 C \nATOM 4217 CG LEU A 547 4.044 56.287 61.997 1.00 0.00 C \nATOM 4218 CD1 LEU A 547 4.790 57.414 62.697 1.00 0.00 C \nATOM 4219 CD2 LEU A 547 3.291 55.432 63.000 1.00 0.00 C \nATOM 4220 N SER A 548 2.478 59.112 58.191 1.00 0.00 N \nATOM 4221 CA SER A 548 1.868 59.143 56.866 1.00 0.00 C \nATOM 4222 C SER A 548 2.987 58.985 55.834 1.00 0.00 C \nATOM 4223 O SER A 548 3.969 59.729 55.851 1.00 0.00 O \nATOM 4224 CB SER A 548 1.112 60.461 56.641 1.00 0.00 C \nATOM 4225 OG SER A 548 1.993 61.567 56.547 1.00 0.00 O \nATOM 4226 N GLY A 549 2.841 58.001 54.952 1.00 0.00 N \nATOM 4227 CA GLY A 549 3.854 57.749 53.941 1.00 0.00 C \nATOM 4228 C GLY A 549 4.643 56.482 54.224 1.00 0.00 C \nATOM 4229 O GLY A 549 5.341 55.963 53.354 1.00 0.00 O \nATOM 4230 N TRP A 550 4.531 55.978 55.447 1.00 0.00 N \nATOM 4231 CA TRP A 550 5.239 54.767 55.847 1.00 0.00 C \nATOM 4232 C TRP A 550 4.823 53.518 55.070 1.00 0.00 C \nATOM 4233 O TRP A 550 5.671 52.765 54.574 1.00 0.00 O \nATOM 4234 CB TRP A 550 5.031 54.524 57.341 1.00 0.00 C \nATOM 4235 CG TRP A 550 6.023 55.227 58.192 1.00 0.00 C \nATOM 4236 CD1 TRP A 550 6.432 56.524 58.076 1.00 0.00 C \nATOM 4237 CD2 TRP A 550 6.732 54.676 59.305 1.00 0.00 C \nATOM 4238 NE1 TRP A 550 7.359 56.815 59.048 1.00 0.00 N \nATOM 4239 CE2 TRP A 550 7.565 55.697 59.816 1.00 0.00 C \nATOM 4240 CE3 TRP A 550 6.752 53.415 59.917 1.00 0.00 C \nATOM 4241 CZ2 TRP A 550 8.403 55.500 60.921 1.00 0.00 C \nATOM 4242 CZ3 TRP A 550 7.585 53.219 61.016 1.00 0.00 C \nATOM 4243 CH2 TRP A 550 8.403 54.259 61.502 1.00 0.00 C \nATOM 4244 N PHE A 551 3.517 53.298 54.979 1.00 0.00 N \nATOM 4245 CA PHE A 551 2.997 52.137 54.281 1.00 0.00 C \nATOM 4246 C PHE A 551 2.034 52.551 53.176 1.00 0.00 C \nATOM 4247 O PHE A 551 0.836 52.247 53.216 1.00 0.00 O \nATOM 4248 CB PHE A 551 2.310 51.216 55.283 1.00 0.00 C \nATOM 4249 CG PHE A 551 3.206 50.779 56.405 1.00 0.00 C \nATOM 4250 CD1 PHE A 551 4.210 49.844 56.185 1.00 0.00 C \nATOM 4251 CD2 PHE A 551 3.069 51.329 57.678 1.00 0.00 C \nATOM 4252 CE1 PHE A 551 5.062 49.454 57.213 1.00 0.00 C \nATOM 4253 CE2 PHE A 551 3.915 50.947 58.714 1.00 0.00 C \nATOM 4254 CZ PHE A 551 4.916 50.008 58.478 1.00 0.00 C \nATOM 4255 N VAL A 552 2.576 53.246 52.184 1.00 0.00 N \nATOM 4256 CA VAL A 552 1.791 53.716 51.055 1.00 0.00 C \nATOM 4257 C VAL A 552 2.201 52.981 49.785 1.00 0.00 C \nATOM 4258 O VAL A 552 1.360 52.485 49.042 1.00 0.00 O \nATOM 4259 CB VAL A 552 2.001 55.240 50.827 1.00 0.00 C \nATOM 4260 CG1 VAL A 552 1.371 55.662 49.514 1.00 0.00 C \nATOM 4261 CG2 VAL A 552 1.416 56.029 51.991 1.00 0.00 C \nATOM 4262 N ALA A 553 3.506 52.914 49.545 1.00 0.00 N \nATOM 4263 CA ALA A 553 4.018 52.268 48.349 1.00 0.00 C \nATOM 4264 C ALA A 553 5.382 51.620 48.568 1.00 0.00 C \nATOM 4265 O ALA A 553 6.072 51.909 49.548 1.00 0.00 O \nATOM 4266 CB ALA A 553 4.110 53.296 47.224 1.00 0.00 C \nATOM 4267 N GLY A 554 5.757 50.731 47.650 1.00 0.00 N \nATOM 4268 CA GLY A 554 7.054 50.083 47.723 1.00 0.00 C \nATOM 4269 C GLY A 554 8.049 50.901 46.909 1.00 0.00 C \nATOM 4270 O GLY A 554 7.679 51.505 45.901 1.00 0.00 O \nATOM 4271 N TYR A 555 9.305 50.938 47.337 1.00 0.00 N \nATOM 4272 CA TYR A 555 10.314 51.717 46.624 1.00 0.00 C \nATOM 4273 C TYR A 555 11.672 51.013 46.557 1.00 0.00 C \nATOM 4274 O TYR A 555 12.704 51.670 46.363 1.00 0.00 O \nATOM 4275 CB TYR A 555 10.499 53.065 47.310 1.00 0.00 C \nATOM 4276 CG TYR A 555 9.242 53.886 47.412 1.00 0.00 C \nATOM 4277 CD1 TYR A 555 8.772 54.614 46.324 1.00 0.00 C \nATOM 4278 CD2 TYR A 555 8.532 53.955 48.615 1.00 0.00 C \nATOM 4279 CE1 TYR A 555 7.627 55.401 46.433 1.00 0.00 C \nATOM 4280 CE2 TYR A 555 7.396 54.729 48.735 1.00 0.00 C \nATOM 4281 CZ TYR A 555 6.948 55.453 47.642 1.00 0.00 C \nATOM 4282 OH TYR A 555 5.832 56.243 47.772 1.00 0.00 O \nATOM 4283 N SER A 556 11.679 49.691 46.719 1.00 0.00 N \nATOM 4284 CA SER A 556 12.929 48.940 46.680 1.00 0.00 C \nATOM 4285 C SER A 556 13.758 49.333 45.460 1.00 0.00 C \nATOM 4286 O SER A 556 13.260 49.330 44.331 1.00 0.00 O \nATOM 4287 CB SER A 556 12.645 47.440 46.646 1.00 0.00 C \nATOM 4288 OG SER A 556 13.857 46.717 46.746 1.00 0.00 O \nATOM 4289 N GLY A 557 15.022 49.668 45.692 1.00 0.00 N \nATOM 4290 CA GLY A 557 15.894 50.075 44.606 1.00 0.00 C \nATOM 4291 C GLY A 557 15.539 51.449 44.049 1.00 0.00 C \nATOM 4292 O GLY A 557 16.215 51.940 43.136 1.00 0.00 O \nATOM 4293 N GLY A 558 14.513 52.083 44.623 1.00 0.00 N \nATOM 4294 CA GLY A 558 14.046 53.377 44.142 1.00 0.00 C \nATOM 4295 C GLY A 558 14.755 54.627 44.634 1.00 0.00 C \nATOM 4296 O GLY A 558 14.358 55.746 44.296 1.00 0.00 O \nATOM 4297 N ASP A 559 15.789 54.450 45.447 1.00 0.00 N \nATOM 4298 CA ASP A 559 16.543 55.587 45.953 1.00 0.00 C \nATOM 4299 C ASP A 559 15.634 56.625 46.615 1.00 0.00 C \nATOM 4300 O ASP A 559 15.762 57.823 46.353 1.00 0.00 O \nATOM 4301 CB ASP A 559 17.330 56.225 44.796 1.00 0.00 C \nATOM 4302 CG ASP A 559 18.351 57.247 45.269 1.00 0.00 C \nATOM 4303 OD1 ASP A 559 19.076 56.967 46.265 1.00 0.00 O \nATOM 4304 OD2 ASP A 559 18.435 58.324 44.632 1.00 0.00 O \nATOM 4305 N ILE A 560 14.728 56.163 47.479 1.00 0.00 N \nATOM 4306 CA ILE A 560 13.791 57.046 48.176 1.00 0.00 C \nATOM 4307 C ILE A 560 14.113 57.202 49.668 1.00 0.00 C \nATOM 4308 O ILE A 560 14.351 56.216 50.373 1.00 0.00 O \nATOM 4309 CB ILE A 560 12.334 56.529 48.043 1.00 0.00 C \nATOM 4310 CG1 ILE A 560 11.942 56.431 46.564 1.00 0.00 C \nATOM 4311 CG2 ILE A 560 11.382 57.436 48.820 1.00 0.00 C \nATOM 4312 CD1 ILE A 560 12.036 57.741 45.794 1.00 0.00 C \nATOM 4313 N TYR A 561 14.085 58.447 50.136 1.00 0.00 N \nATOM 4314 CA TYR A 561 14.377 58.788 51.528 1.00 0.00 C \nATOM 4315 C TYR A 561 13.297 59.691 52.136 1.00 0.00 C \nATOM 4316 O TYR A 561 12.778 60.580 51.469 1.00 0.00 O \nATOM 4317 CB TYR A 561 15.723 59.518 51.600 1.00 0.00 C \nATOM 4318 CG TYR A 561 16.094 60.033 52.978 1.00 0.00 C \nATOM 4319 CD1 TYR A 561 16.775 59.222 53.891 1.00 0.00 C \nATOM 4320 CD2 TYR A 561 15.766 61.332 53.369 1.00 0.00 C \nATOM 4321 CE1 TYR A 561 17.126 59.697 55.162 1.00 0.00 C \nATOM 4322 CE2 TYR A 561 16.106 61.818 54.639 1.00 0.00 C \nATOM 4323 CZ TYR A 561 16.787 60.996 55.527 1.00 0.00 C \nATOM 4324 OH TYR A 561 17.138 61.468 56.774 1.00 0.00 O \nATOM 4325 N HIS A 562 12.971 59.458 53.404 1.00 0.00 N \nATOM 4326 CA HIS A 562 11.988 60.268 54.122 1.00 0.00 C \nATOM 4327 C HIS A 562 12.562 60.661 55.485 1.00 0.00 C \nATOM 4328 O HIS A 562 13.171 59.833 56.163 1.00 0.00 O \nATOM 4329 CB HIS A 562 10.687 59.494 54.348 1.00 0.00 C \nATOM 4330 CG HIS A 562 9.902 59.230 53.100 1.00 0.00 C \nATOM 4331 ND1 HIS A 562 9.952 58.027 52.428 1.00 0.00 N \nATOM 4332 CD2 HIS A 562 9.029 60.008 52.417 1.00 0.00 C \nATOM 4333 CE1 HIS A 562 9.140 58.074 51.386 1.00 0.00 C \nATOM 4334 NE2 HIS A 562 8.568 59.264 51.356 1.00 0.00 N \nATOM 4335 N SER A 563 12.351 61.918 55.877 1.00 0.00 N \nATOM 4336 CA SER A 563 12.819 62.476 57.157 1.00 0.00 C \nATOM 4337 C SER A 563 13.796 61.603 57.946 1.00 0.00 C \nATOM 4338 O SER A 563 14.962 62.031 58.088 1.00 0.00 O \nATOM 4339 CB SER A 563 11.624 62.811 58.062 1.00 0.00 C \nATOM 4340 OG SER A 563 11.038 61.636 58.605 1.00 0.00 O \nATOM 4341 H SER A 1 14.865 37.645 21.864 1.00 0.00 H \nATOM 4342 H SER A 1 14.701 36.607 23.156 1.00 0.00 H \nATOM 4343 H SER A 1 16.183 36.791 22.419 1.00 0.00 H \nATOM 4344 H SER A 1 13.908 40.808 24.965 1.00 0.00 H \nATOM 4345 H MET A 2 18.142 38.276 24.091 1.00 0.00 H \nATOM 4346 H SER A 3 18.084 37.264 28.559 1.00 0.00 H \nATOM 4347 H SER A 3 18.516 36.926 31.803 1.00 0.00 H \nATOM 4348 H TYR A 4 20.386 38.522 29.032 1.00 0.00 H \nATOM 4349 H TYR A 4 19.795 42.983 35.352 1.00 0.00 H \nATOM 4350 H THR A 5 23.482 41.428 28.003 1.00 0.00 H \nATOM 4351 H THR A 5 24.307 42.588 24.714 1.00 0.00 H \nATOM 4352 H TRP A 6 26.786 38.888 27.373 1.00 0.00 H \nATOM 4353 H TRP A 6 24.579 37.432 31.679 1.00 0.00 H \nATOM 4354 H THR A 7 30.017 41.814 28.783 1.00 0.00 H \nATOM 4355 H THR A 7 32.397 44.282 28.511 1.00 0.00 H \nATOM 4356 H GLY A 8 31.650 40.554 29.571 1.00 0.00 H \nATOM 4357 H ALA A 9 33.417 42.045 29.955 1.00 0.00 H \nATOM 4358 H LEU A 10 35.525 42.501 34.029 1.00 0.00 H \nATOM 4359 H ILE A 11 32.259 41.482 37.121 1.00 0.00 H \nATOM 4360 H THR A 12 32.760 45.444 38.354 1.00 0.00 H \nATOM 4361 H THR A 12 35.010 47.784 38.549 1.00 0.00 H \nATOM 4362 H CYS A 14 32.622 48.117 45.021 1.00 0.00 H \nATOM 4363 H CYS A 14 31.743 53.189 43.872 1.00 0.00 H \nATOM 4364 H ALA A 15 34.889 48.289 46.024 1.00 0.00 H \nATOM 4365 H ALA A 16 37.227 48.638 49.603 1.00 0.00 H \nATOM 4366 H GLU A 17 36.443 44.097 49.807 1.00 0.00 H \nATOM 4367 H GLU A 18 33.336 43.230 52.794 1.00 0.00 H \nATOM 4368 H SER A 19 34.599 38.983 53.574 1.00 0.00 H \nATOM 4369 H SER A 19 34.586 35.796 51.936 1.00 0.00 H \nATOM 4370 H LYS A 20 34.340 37.706 55.147 1.00 0.00 H \nATOM 4371 H LYS A 20 35.029 32.748 52.761 1.00 0.00 H \nATOM 4372 H LYS A 20 34.161 34.159 52.934 1.00 0.00 H \nATOM 4373 H LYS A 20 34.274 33.089 54.206 1.00 0.00 H \nATOM 4374 H LEU A 21 31.818 36.057 58.599 1.00 0.00 H \nATOM 4375 H ILE A 23 35.109 39.912 63.553 1.00 0.00 H \nATOM 4376 H ASN A 24 32.820 40.812 67.247 1.00 0.00 H \nATOM 4377 H ASN A 24 32.320 45.653 67.822 1.00 0.00 H \nATOM 4378 H ASN A 24 30.780 45.086 68.285 1.00 0.00 H \nATOM 4379 H ALA A 25 34.379 43.313 70.413 1.00 0.00 H \nATOM 4380 H LEU A 26 31.774 42.541 70.531 1.00 0.00 H \nATOM 4381 H SER A 27 31.021 40.643 69.517 1.00 0.00 H \nATOM 4382 H SER A 27 31.794 39.653 66.490 1.00 0.00 H \nATOM 4383 H ASN A 28 30.862 37.793 70.661 1.00 0.00 H \nATOM 4384 H ASN A 28 33.861 34.997 70.731 1.00 0.00 H \nATOM 4385 H ASN A 28 33.330 36.091 71.927 1.00 0.00 H \nATOM 4386 H SER A 29 28.672 38.231 72.363 1.00 0.00 H \nATOM 4387 H SER A 29 26.792 40.855 73.436 1.00 0.00 H \nATOM 4388 H LEU A 30 26.531 37.937 70.817 1.00 0.00 H \nATOM 4389 H LEU A 31 26.409 36.017 68.995 1.00 0.00 H \nATOM 4390 H ARG A 32 26.462 31.636 68.613 1.00 0.00 H \nATOM 4391 H ARG A 32 27.732 30.664 74.060 1.00 0.00 H \nATOM 4392 H ARG A 32 30.913 30.959 72.631 1.00 0.00 H \nATOM 4393 H ARG A 32 31.561 31.817 73.954 1.00 0.00 H \nATOM 4394 H ARG A 32 30.229 32.276 75.802 1.00 0.00 H \nATOM 4395 H ARG A 32 28.591 31.802 75.807 1.00 0.00 H \nATOM 4396 H HIS A 33 27.209 30.579 66.701 1.00 0.00 H \nATOM 4397 H HIS A 34 30.423 31.472 65.071 1.00 0.00 H \nATOM 4398 H ASN A 35 31.083 30.521 62.429 1.00 0.00 H \nATOM 4399 H ASN A 35 33.285 28.042 62.009 1.00 0.00 H \nATOM 4400 H ASN A 35 34.710 28.966 62.157 1.00 0.00 H \nATOM 4401 H MET A 36 28.688 30.842 61.133 1.00 0.00 H \nATOM 4402 H VAL A 37 28.202 32.691 59.961 1.00 0.00 H \nATOM 4403 H TYR A 38 26.737 35.165 56.425 1.00 0.00 H \nATOM 4404 H TYR A 38 24.300 33.242 50.529 1.00 0.00 H \nATOM 4405 H ALA A 39 29.651 37.400 54.064 1.00 0.00 H \nATOM 4406 H THR A 40 26.785 38.998 51.067 1.00 0.00 H \nATOM 4407 H THR A 40 25.189 39.494 48.095 1.00 0.00 H \nATOM 4408 H THR A 41 29.780 38.165 47.664 1.00 0.00 H \nATOM 4409 H THR A 41 32.679 38.747 46.541 1.00 0.00 H \nATOM 4410 H SER A 42 31.778 41.579 45.704 1.00 0.00 H \nATOM 4411 H SER A 42 33.986 42.879 43.483 1.00 0.00 H \nATOM 4412 H ARG A 43 33.019 39.147 45.140 1.00 0.00 H \nATOM 4413 H ARG A 43 35.480 36.679 48.023 1.00 0.00 H \nATOM 4414 H ARG A 43 35.785 35.462 49.934 1.00 0.00 H \nATOM 4415 H ARG A 43 36.983 34.249 49.984 1.00 0.00 H \nATOM 4416 H ARG A 43 38.084 34.775 46.725 1.00 0.00 H \nATOM 4417 H ARG A 43 38.300 33.856 48.145 1.00 0.00 H \nATOM 4418 H SER A 44 31.107 37.296 44.319 1.00 0.00 H \nATOM 4419 H SER A 44 28.282 35.891 45.736 1.00 0.00 H \nATOM 4420 H ALA A 45 30.581 37.870 42.052 1.00 0.00 H \nATOM 4421 H GLY A 46 30.753 36.524 39.576 1.00 0.00 H \nATOM 4422 H LEU A 47 29.314 34.254 39.821 1.00 0.00 H \nATOM 4423 H ARG A 48 26.865 35.258 39.976 1.00 0.00 H \nATOM 4424 H ARG A 48 23.078 36.700 42.429 1.00 0.00 H \nATOM 4425 H ARG A 48 20.226 35.518 40.819 1.00 0.00 H \nATOM 4426 H ARG A 48 19.605 34.739 42.203 1.00 0.00 H \nATOM 4427 H ARG A 48 20.763 34.829 44.194 1.00 0.00 H \nATOM 4428 H ARG A 48 22.250 35.660 44.279 1.00 0.00 H \nATOM 4429 H GLN A 49 26.365 36.411 37.713 1.00 0.00 H \nATOM 4430 H GLN A 49 30.484 38.568 35.895 1.00 0.00 H \nATOM 4431 H GLN A 49 29.398 37.881 37.016 1.00 0.00 H \nATOM 4432 H LYS A 50 26.141 34.146 36.130 1.00 0.00 H \nATOM 4433 H LYS A 50 30.984 31.902 33.485 1.00 0.00 H \nATOM 4434 H LYS A 50 30.407 32.356 34.980 1.00 0.00 H \nATOM 4435 H LYS A 50 29.493 32.635 33.616 1.00 0.00 H \nATOM 4436 H LYS A 51 23.779 33.123 37.025 1.00 0.00 H \nATOM 4437 H LYS A 51 23.915 29.280 42.064 1.00 0.00 H \nATOM 4438 H LYS A 51 23.216 29.235 40.553 1.00 0.00 H \nATOM 4439 H LYS A 51 22.260 29.396 41.908 1.00 0.00 H \nATOM 4440 H VAL A 52 21.948 35.003 36.355 1.00 0.00 H \nATOM 4441 H THR A 53 21.635 34.552 33.703 1.00 0.00 H \nATOM 4442 H THR A 53 24.237 36.344 31.829 1.00 0.00 H \nATOM 4443 H PHE A 54 19.020 35.410 30.387 1.00 0.00 H \nATOM 4444 H ASP A 55 17.372 32.451 27.601 1.00 0.00 H \nATOM 4445 H ARG A 56 14.390 35.688 26.216 1.00 0.00 H \nATOM 4446 H ARG A 56 15.133 37.801 27.466 1.00 0.00 H \nATOM 4447 H ARG A 56 13.761 40.567 30.013 1.00 0.00 H \nATOM 4448 H ARG A 56 13.757 38.931 30.497 1.00 0.00 H \nATOM 4449 H ARG A 56 15.057 39.943 26.841 1.00 0.00 H \nATOM 4450 H ARG A 56 14.445 41.133 27.897 1.00 0.00 H \nATOM 4451 H LEU A 57 10.476 33.784 27.112 1.00 0.00 H \nATOM 4452 H GLN A 58 7.588 35.082 24.114 1.00 0.00 H \nATOM 4453 H GLN A 58 5.507 39.650 29.108 1.00 0.00 H \nATOM 4454 H GLN A 58 5.385 37.972 29.386 1.00 0.00 H \nATOM 4455 H VAL A 59 3.955 33.982 26.031 1.00 0.00 H \nATOM 4456 H LEU A 60 1.402 35.975 23.674 1.00 0.00 H \nATOM 4457 H ASP A 61 -1.922 35.510 26.457 1.00 0.00 H \nATOM 4458 H ASP A 62 -6.154 35.140 25.024 1.00 0.00 H \nATOM 4459 H HIS A 63 -6.601 35.500 27.716 1.00 0.00 H \nATOM 4460 H TYR A 64 -4.639 36.928 28.582 1.00 0.00 H \nATOM 4461 H TYR A 64 1.780 42.798 28.452 1.00 0.00 H \nATOM 4462 H ARG A 65 -4.854 39.358 27.218 1.00 0.00 H \nATOM 4463 H ARG A 65 -5.929 40.075 22.900 1.00 0.00 H \nATOM 4464 H ARG A 65 -2.471 38.104 23.090 1.00 0.00 H \nATOM 4465 H ARG A 65 -2.504 39.774 23.434 1.00 0.00 H \nATOM 4466 H ARG A 65 -5.883 37.837 22.552 1.00 0.00 H \nATOM 4467 H ARG A 65 -4.413 36.984 22.685 1.00 0.00 H \nATOM 4468 H ASP A 66 -7.238 40.084 28.280 1.00 0.00 H \nATOM 4469 H VAL A 67 -6.882 40.628 30.902 1.00 0.00 H \nATOM 4470 H LEU A 68 -5.178 42.615 30.678 1.00 0.00 H \nATOM 4471 H LYS A 69 -6.731 44.594 29.557 1.00 0.00 H \nATOM 4472 H LYS A 69 -12.747 48.072 24.980 1.00 0.00 H \nATOM 4473 H LYS A 69 -12.832 46.519 25.578 1.00 0.00 H \nATOM 4474 H LYS A 69 -11.584 46.954 24.565 1.00 0.00 H \nATOM 4475 H GLU A 70 -8.369 45.173 31.691 1.00 0.00 H \nATOM 4476 H MET A 71 -6.668 46.189 33.501 1.00 0.00 H \nATOM 4477 H LYS A 72 -5.908 48.513 32.251 1.00 0.00 H \nATOM 4478 H LYS A 72 -2.202 49.723 26.100 1.00 0.00 H \nATOM 4479 H LYS A 72 -3.654 50.532 26.197 1.00 0.00 H \nATOM 4480 H LYS A 72 -3.620 48.870 26.285 1.00 0.00 H \nATOM 4481 H ALA A 73 -8.249 49.899 32.338 1.00 0.00 H \nATOM 4482 H LYS A 74 -8.440 50.528 34.963 1.00 0.00 H \nATOM 4483 H LYS A 74 -11.424 46.528 38.133 1.00 0.00 H \nATOM 4484 H LYS A 74 -9.959 46.520 37.341 1.00 0.00 H \nATOM 4485 H LYS A 74 -11.007 47.800 37.143 1.00 0.00 H \nATOM 4486 H ALA A 75 -6.290 51.969 35.228 1.00 0.00 H \nATOM 4487 H SER A 76 -7.112 54.234 33.949 1.00 0.00 H \nATOM 4488 H SER A 76 -8.238 55.018 30.793 1.00 0.00 H \nATOM 4489 H THR A 77 -8.024 55.796 35.989 1.00 0.00 H \nATOM 4490 H THR A 77 -8.318 56.525 39.130 1.00 0.00 H \nATOM 4491 H VAL A 78 -6.370 57.199 36.838 1.00 0.00 H \nATOM 4492 H LYS A 79 -4.895 60.672 39.440 1.00 0.00 H \nATOM 4493 H LYS A 79 -5.274 69.079 37.546 1.00 0.00 H \nATOM 4494 H LYS A 79 -6.217 68.281 38.664 1.00 0.00 H \nATOM 4495 H LYS A 79 -6.486 68.056 37.035 1.00 0.00 H \nATOM 4496 H ALA A 80 -1.761 62.424 37.237 1.00 0.00 H \nATOM 4497 H LYS A 81 1.068 63.831 40.413 1.00 0.00 H \nATOM 4498 H LYS A 81 1.896 66.035 46.012 1.00 0.00 H \nATOM 4499 H LYS A 81 1.193 65.415 44.635 1.00 0.00 H \nATOM 4500 H LYS A 81 0.753 66.923 45.189 1.00 0.00 H \nATOM 4501 H LEU A 82 3.100 67.067 38.059 1.00 0.00 H \nATOM 4502 H LEU A 83 7.038 65.554 39.558 1.00 0.00 H \nATOM 4503 H SER A 84 8.229 69.016 42.391 1.00 0.00 H \nATOM 4504 H SER A 84 9.497 71.824 43.971 1.00 0.00 H \nATOM 4505 H VAL A 85 11.855 70.983 40.329 1.00 0.00 H \nATOM 4506 H GLU A 86 12.924 71.525 42.925 1.00 0.00 H \nATOM 4507 H GLU A 87 11.194 69.943 44.515 1.00 0.00 H \nATOM 4508 H ALA A 88 11.793 67.449 43.642 1.00 0.00 H \nATOM 4509 H CYS A 89 14.358 67.389 44.408 1.00 0.00 H \nATOM 4510 H CYS A 89 17.824 69.668 44.015 1.00 0.00 H \nATOM 4511 H LYS A 90 14.106 67.214 47.208 1.00 0.00 H \nATOM 4512 H LYS A 90 10.817 72.359 49.753 1.00 0.00 H \nATOM 4513 H LYS A 90 10.357 71.128 50.776 1.00 0.00 H \nATOM 4514 H LYS A 90 10.178 70.953 49.129 1.00 0.00 H \nATOM 4515 H LEU A 91 13.684 64.487 47.381 1.00 0.00 H \nATOM 4516 H THR A 92 15.902 63.380 47.867 1.00 0.00 H \nATOM 4517 H THR A 92 18.188 63.342 45.141 1.00 0.00 H \nATOM 4518 H HIS A 95 22.186 59.080 51.881 1.00 0.00 H \nATOM 4519 H SER A 96 22.560 59.376 49.390 1.00 0.00 H \nATOM 4520 H SER A 96 20.594 58.503 45.499 1.00 0.00 H \nATOM 4521 H ALA A 97 23.772 56.472 45.979 1.00 0.00 H \nATOM 4522 H LYS A 98 27.727 58.623 45.068 1.00 0.00 H \nATOM 4523 H LYS A 98 34.314 59.743 43.057 1.00 0.00 H \nATOM 4524 H LYS A 98 33.942 60.461 44.513 1.00 0.00 H \nATOM 4525 H LYS A 98 33.600 61.247 43.085 1.00 0.00 H \nATOM 4526 H SER A 99 26.728 62.293 42.436 1.00 0.00 H \nATOM 4527 H SER A 99 25.916 64.003 38.436 1.00 0.00 H \nATOM 4528 H LYS A 100 27.482 60.893 38.086 1.00 0.00 H \nATOM 4529 H LYS A 100 29.112 54.281 35.545 1.00 0.00 H \nATOM 4530 H LYS A 100 29.960 55.341 34.579 1.00 0.00 H \nATOM 4531 H LYS A 100 28.300 55.445 34.672 1.00 0.00 H \nATOM 4532 H PHE A 101 28.147 63.157 38.001 1.00 0.00 H \nATOM 4533 H GLY A 102 30.465 64.514 39.140 1.00 0.00 H \nATOM 4534 H TYR A 103 28.815 65.184 41.163 1.00 0.00 H \nATOM 4535 H TYR A 103 23.418 65.605 37.932 1.00 0.00 H \nATOM 4536 H GLY A 104 27.360 66.133 45.210 1.00 0.00 H \nATOM 4537 H ALA A 105 25.452 62.570 46.967 1.00 0.00 H \nATOM 4538 H LYS A 106 25.292 64.467 48.841 1.00 0.00 H \nATOM 4539 H LYS A 106 22.695 63.921 52.207 1.00 0.00 H \nATOM 4540 H LYS A 106 23.197 65.462 51.826 1.00 0.00 H \nATOM 4541 H LYS A 106 22.978 65.027 53.419 1.00 0.00 H \nATOM 4542 H ASP A 107 25.501 66.849 47.676 1.00 0.00 H \nATOM 4543 H VAL A 108 23.172 66.845 46.511 1.00 0.00 H \nATOM 4544 H ARG A 109 21.222 66.824 48.222 1.00 0.00 H \nATOM 4545 H ARG A 109 19.687 65.537 53.305 1.00 0.00 H \nATOM 4546 H ARG A 109 17.591 64.066 50.939 1.00 0.00 H \nATOM 4547 H ARG A 109 16.173 64.352 51.842 1.00 0.00 H \nATOM 4548 H ARG A 109 16.298 65.395 53.878 1.00 0.00 H \nATOM 4549 H ARG A 109 17.806 65.909 54.486 1.00 0.00 H \nATOM 4550 H ASN A 110 21.584 69.338 48.885 1.00 0.00 H \nATOM 4551 H ASN A 110 24.856 70.572 50.400 1.00 0.00 H \nATOM 4552 H ASN A 110 24.642 69.994 51.990 1.00 0.00 H \nATOM 4553 H LEU A 111 20.093 70.591 47.355 1.00 0.00 H \nATOM 4554 H SER A 112 22.234 71.666 46.149 1.00 0.00 H \nATOM 4555 H SER A 112 25.569 70.998 44.450 1.00 0.00 H \nATOM 4556 H SER A 113 24.074 75.372 44.072 1.00 0.00 H \nATOM 4557 H SER A 113 25.907 77.391 41.668 1.00 0.00 H \nATOM 4558 H LYS A 114 25.588 73.879 42.218 1.00 0.00 H \nATOM 4559 H LYS A 114 30.979 70.359 37.947 1.00 0.00 H \nATOM 4560 H LYS A 114 30.891 71.757 38.848 1.00 0.00 H \nATOM 4561 H LYS A 114 29.524 71.153 38.112 1.00 0.00 H \nATOM 4562 H ALA A 115 24.601 71.297 42.210 1.00 0.00 H \nATOM 4563 H VAL A 116 21.859 71.713 41.700 1.00 0.00 H \nATOM 4564 H ASN A 117 22.256 72.799 39.152 1.00 0.00 H \nATOM 4565 H ASN A 117 23.546 76.697 38.466 1.00 0.00 H \nATOM 4566 H ASN A 117 24.369 75.216 38.660 1.00 0.00 H \nATOM 4567 H HIS A 118 23.184 70.751 37.620 1.00 0.00 H \nATOM 4568 H ILE A 119 21.141 69.002 37.763 1.00 0.00 H \nATOM 4569 H HIS A 120 19.265 70.386 36.313 1.00 0.00 H \nATOM 4570 H SER A 121 20.253 70.059 33.842 1.00 0.00 H \nATOM 4571 H SER A 121 23.259 69.153 32.493 1.00 0.00 H \nATOM 4572 H VAL A 122 20.032 67.656 33.332 1.00 0.00 H \nATOM 4573 H TRP A 123 17.420 67.206 33.253 1.00 0.00 H \nATOM 4574 H TRP A 123 10.661 68.859 31.923 1.00 0.00 H \nATOM 4575 H LYS A 124 16.700 68.721 31.041 1.00 0.00 H \nATOM 4576 H LYS A 124 18.088 74.447 25.252 1.00 0.00 H \nATOM 4577 H LYS A 124 19.202 73.789 26.301 1.00 0.00 H \nATOM 4578 H LYS A 124 17.892 74.628 26.896 1.00 0.00 H \nATOM 4579 H ASP A 125 17.962 67.230 29.097 1.00 0.00 H \nATOM 4580 H LEU A 126 16.348 65.056 29.219 1.00 0.00 H \nATOM 4581 H LEU A 127 14.028 65.913 28.109 1.00 0.00 H \nATOM 4582 H GLU A 128 14.774 66.267 25.625 1.00 0.00 H \nATOM 4583 H ASP A 129 15.435 64.164 24.588 1.00 0.00 H \nATOM 4584 H THR A 130 14.540 61.024 21.871 1.00 0.00 H \nATOM 4585 H THR A 130 12.471 59.120 21.135 1.00 0.00 H \nATOM 4586 H VAL A 131 16.052 59.133 22.398 1.00 0.00 H \nATOM 4587 H THR A 132 17.987 58.534 22.716 1.00 0.00 H \nATOM 4588 H THR A 132 19.464 59.451 21.894 1.00 0.00 H \nATOM 4589 H ILE A 134 19.685 54.677 28.198 1.00 0.00 H \nATOM 4590 H ASP A 135 23.436 56.365 30.075 1.00 0.00 H \nATOM 4591 H THR A 136 24.775 52.433 32.130 1.00 0.00 H \nATOM 4592 H THR A 136 22.545 49.576 33.256 1.00 0.00 H \nATOM 4593 H THR A 137 24.452 52.174 36.475 1.00 0.00 H \nATOM 4594 H THR A 137 26.351 53.706 36.954 1.00 0.00 H \nATOM 4595 H ILE A 138 27.428 48.865 36.593 1.00 0.00 H \nATOM 4596 H MET A 139 25.605 46.722 39.912 1.00 0.00 H \nATOM 4597 H ALA A 140 28.581 44.768 42.488 1.00 0.00 H \nATOM 4598 H LYS A 141 25.072 42.881 44.434 1.00 0.00 H \nATOM 4599 H LYS A 141 18.581 46.021 45.231 1.00 0.00 H \nATOM 4600 H LYS A 141 19.200 45.811 46.763 1.00 0.00 H \nATOM 4601 H LYS A 141 18.704 44.491 45.878 1.00 0.00 H \nATOM 4602 H ASN A 142 26.022 44.740 48.576 1.00 0.00 H \nATOM 4603 H ASN A 142 30.370 43.783 47.968 1.00 0.00 H \nATOM 4604 H ASN A 142 29.449 42.608 48.792 1.00 0.00 H \nATOM 4605 H GLU A 143 25.711 40.985 50.220 1.00 0.00 H \nATOM 4606 H VAL A 144 23.476 41.010 54.039 1.00 0.00 H \nATOM 4607 H PHE A 145 24.691 36.718 54.904 1.00 0.00 H \nATOM 4608 H CYS A 146 21.777 33.583 55.916 1.00 0.00 H \nATOM 4609 H CYS A 146 21.763 30.220 59.894 1.00 0.00 H \nATOM 4610 H VAL A 147 24.993 30.652 56.832 1.00 0.00 H \nATOM 4611 H GLN A 148 24.052 28.272 53.025 1.00 0.00 H \nATOM 4612 H GLN A 148 22.657 22.506 49.801 1.00 0.00 H \nATOM 4613 H GLN A 148 21.469 23.723 49.919 1.00 0.00 H \nATOM 4614 H ARG A 154 24.579 28.664 50.283 1.00 0.00 H \nATOM 4615 H ARG A 154 25.972 28.545 51.188 1.00 0.00 H \nATOM 4616 H ARG A 154 26.012 28.230 49.553 1.00 0.00 H \nATOM 4617 H ARG A 154 28.889 32.536 50.303 1.00 0.00 H \nATOM 4618 H ARG A 154 32.508 33.058 51.894 1.00 0.00 H \nATOM 4619 H ARG A 154 31.694 31.576 52.118 1.00 0.00 H \nATOM 4620 H ARG A 154 29.978 34.517 50.005 1.00 0.00 H \nATOM 4621 H ARG A 154 31.524 34.744 50.686 1.00 0.00 H \nATOM 4622 H LYS A 155 24.377 32.260 49.572 1.00 0.00 H \nATOM 4623 H LYS A 155 18.480 32.378 50.373 1.00 0.00 H \nATOM 4624 H LYS A 155 18.426 33.501 49.144 1.00 0.00 H \nATOM 4625 H LYS A 155 18.802 33.980 50.694 1.00 0.00 H \nATOM 4626 H ALA A 157 26.911 36.862 44.855 1.00 0.00 H \nATOM 4627 H ARG A 158 23.380 39.819 45.539 1.00 0.00 H \nATOM 4628 H ARG A 158 19.999 41.298 46.518 1.00 0.00 H \nATOM 4629 H ARG A 158 16.659 40.533 45.929 1.00 0.00 H \nATOM 4630 H ARG A 158 16.063 41.793 46.910 1.00 0.00 H \nATOM 4631 H ARG A 158 19.207 42.973 47.824 1.00 0.00 H \nATOM 4632 H ARG A 158 17.525 43.194 47.998 1.00 0.00 H \nATOM 4633 H LEU A 159 21.768 40.975 41.428 1.00 0.00 H \nATOM 4634 H ILE A 160 23.687 44.977 41.450 1.00 0.00 H \nATOM 4635 H VAL A 161 20.485 47.375 39.592 1.00 0.00 H \nATOM 4636 H PHE A 162 22.722 50.607 37.930 1.00 0.00 H \nATOM 4637 H ASP A 164 22.685 57.387 35.715 1.00 0.00 H \nATOM 4638 H LEU A 165 23.812 59.560 39.646 1.00 0.00 H \nATOM 4639 H GLY A 166 22.620 62.038 38.435 1.00 0.00 H \nATOM 4640 H VAL A 167 20.770 61.015 36.762 1.00 0.00 H \nATOM 4641 H ARG A 168 19.230 59.800 38.456 1.00 0.00 H \nATOM 4642 H ARG A 168 19.772 57.670 43.225 1.00 0.00 H \nATOM 4643 H ARG A 168 21.702 56.743 40.471 1.00 0.00 H \nATOM 4644 H ARG A 168 23.161 57.290 41.163 1.00 0.00 H \nATOM 4645 H ARG A 168 23.158 58.257 43.242 1.00 0.00 H \nATOM 4646 H ARG A 168 21.703 58.386 44.122 1.00 0.00 H \nATOM 4647 H VAL A 169 18.025 61.899 39.853 1.00 0.00 H \nATOM 4648 H CYS A 170 16.494 62.873 37.943 1.00 0.00 H \nATOM 4649 H CYS A 170 16.796 64.634 34.153 1.00 0.00 H \nATOM 4650 H GLU A 171 14.747 60.713 37.639 1.00 0.00 H \nATOM 4651 H LYS A 172 13.124 60.928 39.865 1.00 0.00 H \nATOM 4652 H LYS A 172 15.721 58.819 44.803 1.00 0.00 H \nATOM 4653 H LYS A 172 16.115 60.008 43.705 1.00 0.00 H \nATOM 4654 H LYS A 172 14.895 58.927 43.360 1.00 0.00 H \nATOM 4655 H MET A 173 11.845 63.310 39.484 1.00 0.00 H \nATOM 4656 H ALA A 174 10.239 62.754 37.242 1.00 0.00 H \nATOM 4657 H LEU A 175 8.852 60.819 38.227 1.00 0.00 H \nATOM 4658 H TYR A 176 8.011 60.803 40.332 1.00 0.00 H \nATOM 4659 H TYR A 176 7.807 58.855 48.805 1.00 0.00 H \nATOM 4660 H ASP A 177 5.476 61.309 41.325 1.00 0.00 H \nATOM 4661 H VAL A 178 4.055 59.644 39.994 1.00 0.00 H \nATOM 4662 H VAL A 179 4.934 56.959 40.572 1.00 0.00 H \nATOM 4663 H SER A 180 3.875 57.102 42.926 1.00 0.00 H \nATOM 4664 H SER A 180 5.260 58.699 45.965 1.00 0.00 H \nATOM 4665 H THR A 181 1.495 56.769 42.952 1.00 0.00 H \nATOM 4666 H THR A 181 -1.590 57.497 41.721 1.00 0.00 H \nATOM 4667 H LEU A 182 0.276 55.746 41.472 1.00 0.00 H \nATOM 4668 H GLN A 184 -1.565 52.106 44.207 1.00 0.00 H \nATOM 4669 H GLN A 184 -7.766 51.833 46.666 1.00 0.00 H \nATOM 4670 H GLN A 184 -6.751 50.563 47.180 1.00 0.00 H \nATOM 4671 H VAL A 185 -3.879 52.819 43.025 1.00 0.00 H \nATOM 4672 H VAL A 186 -4.122 51.206 40.897 1.00 0.00 H \nATOM 4673 H MET A 187 -4.233 48.781 41.936 1.00 0.00 H \nATOM 4674 H GLY A 188 -6.075 48.728 43.419 1.00 0.00 H \nATOM 4675 H SER A 189 -8.214 46.420 46.783 1.00 0.00 H \nATOM 4676 H SER A 189 -9.284 43.610 48.361 1.00 0.00 H \nATOM 4677 H SER A 190 -6.028 44.773 45.980 1.00 0.00 H \nATOM 4678 H SER A 190 -5.924 41.624 44.113 1.00 0.00 H \nATOM 4679 H TYR A 191 -3.687 45.939 46.362 1.00 0.00 H \nATOM 4680 H TYR A 191 4.040 49.864 45.416 1.00 0.00 H \nATOM 4681 H GLY A 192 0.479 44.653 47.260 1.00 0.00 H \nATOM 4682 H PHE A 193 1.977 46.880 48.408 1.00 0.00 H \nATOM 4683 H GLN A 194 0.154 48.200 50.227 1.00 0.00 H \nATOM 4684 H GLN A 194 -4.674 47.853 48.405 1.00 0.00 H \nATOM 4685 H GLN A 194 -3.145 47.255 48.864 1.00 0.00 H \nATOM 4686 H TYR A 195 0.227 47.733 52.424 1.00 0.00 H \nATOM 4687 H TYR A 195 -5.484 44.793 50.441 1.00 0.00 H \nATOM 4688 H SER A 196 -0.435 48.166 56.922 1.00 0.00 H \nATOM 4689 H SER A 196 -0.486 48.657 60.197 1.00 0.00 H \nATOM 4690 H GLY A 198 0.924 45.541 60.749 1.00 0.00 H \nATOM 4691 H GLN A 199 -1.299 46.039 59.221 1.00 0.00 H \nATOM 4692 H GLN A 199 -3.735 51.039 57.654 1.00 0.00 H \nATOM 4693 H GLN A 199 -4.607 49.951 58.635 1.00 0.00 H \nATOM 4694 H ARG A 200 -0.861 44.239 57.412 1.00 0.00 H \nATOM 4695 H ARG A 200 2.542 39.392 54.134 1.00 0.00 H \nATOM 4696 H ARG A 200 2.163 41.480 50.761 1.00 0.00 H \nATOM 4697 H ARG A 200 1.909 42.252 52.260 1.00 0.00 H \nATOM 4698 H ARG A 200 2.701 39.244 50.692 1.00 0.00 H \nATOM 4699 H ARG A 200 2.845 38.359 52.142 1.00 0.00 H \nATOM 4700 H VAL A 201 -1.087 41.811 58.318 1.00 0.00 H \nATOM 4701 H GLU A 202 -3.697 41.995 58.976 1.00 0.00 H \nATOM 4702 H PHE A 203 -4.862 42.200 56.389 1.00 0.00 H \nATOM 4703 H LEU A 204 -4.270 39.771 55.456 1.00 0.00 H \nATOM 4704 H VAL A 205 -5.575 38.079 57.175 1.00 0.00 H \nATOM 4705 H ASN A 206 -8.218 38.742 56.914 1.00 0.00 H \nATOM 4706 H ASN A 206 -10.063 42.190 56.764 1.00 0.00 H \nATOM 4707 H ASN A 206 -10.509 42.179 58.410 1.00 0.00 H \nATOM 4708 H THR A 207 -8.526 38.063 54.330 1.00 0.00 H \nATOM 4709 H THR A 207 -7.364 38.835 51.062 1.00 0.00 H \nATOM 4710 H TRP A 208 -8.127 35.505 54.310 1.00 0.00 H \nATOM 4711 H TRP A 208 -7.912 28.935 56.807 1.00 0.00 H \nATOM 4712 H LYS A 209 -10.306 34.761 55.700 1.00 0.00 H \nATOM 4713 H LYS A 209 -10.969 35.887 62.729 1.00 0.00 H \nATOM 4714 H LYS A 209 -12.500 35.944 62.076 1.00 0.00 H \nATOM 4715 H LYS A 209 -11.310 36.957 61.499 1.00 0.00 H \nATOM 4716 H SER A 210 -12.067 34.940 53.827 1.00 0.00 H \nATOM 4717 H SER A 210 -12.375 36.622 50.796 1.00 0.00 H \nATOM 4718 H LYS A 211 -12.745 32.657 52.789 1.00 0.00 H \nATOM 4719 H LYS A 211 -10.609 35.646 47.594 1.00 0.00 H \nATOM 4720 H LYS A 211 -12.140 35.458 48.224 1.00 0.00 H \nATOM 4721 H LYS A 211 -11.629 34.485 46.972 1.00 0.00 H \nATOM 4722 H LYS A 212 -15.257 29.698 50.389 1.00 0.00 H \nATOM 4723 H LYS A 212 -20.245 30.691 47.905 1.00 0.00 H \nATOM 4724 H LYS A 212 -19.274 29.416 47.449 1.00 0.00 H \nATOM 4725 H LYS A 212 -18.717 30.535 48.550 1.00 0.00 H \nATOM 4726 H ASN A 213 -14.002 27.514 50.586 1.00 0.00 H \nATOM 4727 H ASN A 213 -14.844 23.727 49.436 1.00 0.00 H \nATOM 4728 H ASN A 213 -16.058 23.275 50.545 1.00 0.00 H \nATOM 4729 H MET A 215 -8.087 28.737 49.779 1.00 0.00 H \nATOM 4730 H GLY A 216 -4.078 27.611 49.907 1.00 0.00 H \nATOM 4731 H PHE A 217 -1.865 30.685 47.743 1.00 0.00 H \nATOM 4732 H SER A 218 2.361 29.851 47.891 1.00 0.00 H \nATOM 4733 H SER A 218 5.368 30.931 49.101 1.00 0.00 H \nATOM 4734 H TYR A 219 3.494 33.191 45.190 1.00 0.00 H \nATOM 4735 H TYR A 219 6.037 30.930 37.073 1.00 0.00 H \nATOM 4736 H ASP A 220 6.608 30.840 43.728 1.00 0.00 H \nATOM 4737 H THR A 221 8.328 34.333 41.847 1.00 0.00 H \nATOM 4738 H THR A 221 7.021 35.880 38.777 1.00 0.00 H \nATOM 4739 H ARG A 222 10.637 32.256 38.497 1.00 0.00 H \nATOM 4740 H ARG A 222 14.030 29.101 36.862 1.00 0.00 H \nATOM 4741 H ARG A 222 14.249 30.639 33.186 1.00 0.00 H \nATOM 4742 H ARG A 222 14.817 31.550 34.511 1.00 0.00 H \nATOM 4743 H ARG A 222 13.381 28.544 33.518 1.00 0.00 H \nATOM 4744 H ARG A 222 13.300 27.889 35.090 1.00 0.00 H \nATOM 4745 H CYS A 223 14.311 34.173 40.292 1.00 0.00 H \nATOM 4746 H CYS A 223 18.214 34.006 37.913 1.00 0.00 H \nATOM 4747 H PHE A 224 12.757 36.881 39.850 1.00 0.00 H \nATOM 4748 H ASP A 225 13.573 39.663 38.785 1.00 0.00 H \nATOM 4749 H SER A 226 14.974 38.858 36.451 1.00 0.00 H \nATOM 4750 H SER A 226 18.154 37.495 35.243 1.00 0.00 H \nATOM 4751 H THR A 227 12.940 38.119 34.986 1.00 0.00 H \nATOM 4752 H THR A 227 9.732 38.130 34.473 1.00 0.00 H \nATOM 4753 H VAL A 228 11.968 39.988 33.810 1.00 0.00 H \nATOM 4754 H THR A 229 9.348 41.094 30.381 1.00 0.00 H \nATOM 4755 H THR A 229 7.839 40.522 27.420 1.00 0.00 H \nATOM 4756 H GLU A 230 11.338 42.601 26.543 1.00 0.00 H \nATOM 4757 H ASN A 231 8.789 42.984 25.792 1.00 0.00 H \nATOM 4758 H ASN A 231 3.407 42.107 27.288 1.00 0.00 H \nATOM 4759 H ASN A 231 5.033 41.811 27.706 1.00 0.00 H \nATOM 4760 H ASP A 232 7.394 42.920 28.206 1.00 0.00 H \nATOM 4761 H ILE A 233 8.394 45.338 29.269 1.00 0.00 H \nATOM 4762 H ARG A 234 7.226 47.108 27.666 1.00 0.00 H \nATOM 4763 H ARG A 234 9.544 47.980 22.842 1.00 0.00 H \nATOM 4764 H ARG A 234 9.211 51.949 22.938 1.00 0.00 H \nATOM 4765 H ARG A 234 7.923 50.986 23.506 1.00 0.00 H \nATOM 4766 H ARG A 234 11.244 49.248 22.090 1.00 0.00 H \nATOM 4767 H ARG A 234 11.122 50.948 22.120 1.00 0.00 H \nATOM 4768 H VAL A 235 4.867 46.893 28.145 1.00 0.00 H \nATOM 4769 H GLU A 236 4.640 47.795 30.547 1.00 0.00 H \nATOM 4770 H GLU A 237 5.124 50.475 30.128 1.00 0.00 H \nATOM 4771 H SER A 238 2.837 51.028 28.769 1.00 0.00 H \nATOM 4772 H SER A 238 -0.004 49.127 27.659 1.00 0.00 H \nATOM 4773 H ILE A 239 1.179 51.132 30.782 1.00 0.00 H \nATOM 4774 H TYR A 240 1.833 52.983 32.562 1.00 0.00 H \nATOM 4775 H TYR A 240 7.089 51.191 35.560 1.00 0.00 H \nATOM 4776 H GLN A 241 1.374 55.146 30.739 1.00 0.00 H \nATOM 4777 H GLN A 241 4.740 57.547 28.173 1.00 0.00 H \nATOM 4778 H GLN A 241 4.591 59.235 28.368 1.00 0.00 H \nATOM 4779 H CYS A 242 -1.364 55.363 31.333 1.00 0.00 H \nATOM 4780 H CYS A 242 -4.581 52.550 30.779 1.00 0.00 H \nATOM 4781 H CYS A 243 -1.875 57.149 32.970 1.00 0.00 H \nATOM 4782 H CYS A 243 -0.421 57.391 36.716 1.00 0.00 H \nATOM 4783 H ASP A 244 -4.119 60.677 34.972 1.00 0.00 H \nATOM 4784 H LEU A 245 -2.177 63.377 32.141 1.00 0.00 H \nATOM 4785 H ALA A 246 1.238 65.582 33.945 1.00 0.00 H \nATOM 4786 H GLU A 248 4.326 68.149 30.380 1.00 0.00 H \nATOM 4787 H ALA A 249 4.697 66.077 31.770 1.00 0.00 H \nATOM 4788 H ARG A 250 3.987 63.992 30.402 1.00 0.00 H \nATOM 4789 H ARG A 250 -1.061 63.673 28.821 1.00 0.00 H \nATOM 4790 H ARG A 250 0.318 60.471 28.832 1.00 0.00 H \nATOM 4791 H ARG A 250 -0.999 59.771 29.659 1.00 0.00 H \nATOM 4792 H ARG A 250 -2.806 62.733 29.913 1.00 0.00 H \nATOM 4793 H ARG A 250 -2.789 61.068 30.279 1.00 0.00 H \nATOM 4794 H GLN A 251 5.802 63.884 28.384 1.00 0.00 H \nATOM 4795 H GLN A 251 9.613 63.532 22.820 1.00 0.00 H \nATOM 4796 H GLN A 251 10.568 64.353 23.970 1.00 0.00 H \nATOM 4797 H ALA A 252 8.091 63.517 29.746 1.00 0.00 H \nATOM 4798 H ILE A 253 7.616 60.977 30.725 1.00 0.00 H \nATOM 4799 H LYS A 254 7.530 59.498 28.556 1.00 0.00 H \nATOM 4800 H LYS A 254 9.150 58.453 20.949 1.00 0.00 H \nATOM 4801 H LYS A 254 9.634 58.346 22.539 1.00 0.00 H \nATOM 4802 H LYS A 254 9.157 59.813 21.911 1.00 0.00 H \nATOM 4803 H SER A 255 9.951 59.687 27.639 1.00 0.00 H \nATOM 4804 H SER A 255 14.046 61.337 27.049 1.00 0.00 H \nATOM 4805 H LEU A 256 11.499 58.629 29.676 1.00 0.00 H \nATOM 4806 H THR A 257 10.713 56.119 29.357 1.00 0.00 H \nATOM 4807 H THR A 257 7.811 54.028 29.635 1.00 0.00 H \nATOM 4808 H GLU A 258 11.525 55.128 26.861 1.00 0.00 H \nATOM 4809 H ARG A 259 14.142 55.468 27.123 1.00 0.00 H \nATOM 4810 H ARG A 259 18.424 58.244 26.178 1.00 0.00 H \nATOM 4811 H ARG A 259 16.526 61.142 26.486 1.00 0.00 H \nATOM 4812 H ARG A 259 17.872 62.153 26.755 1.00 0.00 H \nATOM 4813 H ARG A 259 20.218 59.598 26.537 1.00 0.00 H \nATOM 4814 H ARG A 259 19.986 61.269 26.784 1.00 0.00 H \nATOM 4815 H LEU A 260 14.967 54.292 29.184 1.00 0.00 H \nATOM 4816 H TYR A 261 13.906 53.070 30.897 1.00 0.00 H \nATOM 4817 H TYR A 261 11.165 56.319 35.712 1.00 0.00 H \nATOM 4818 H ILE A 262 13.474 50.861 29.040 1.00 0.00 H \nATOM 4819 H GLY A 263 15.905 49.837 28.839 1.00 0.00 H \nATOM 4820 H GLY A 264 19.834 47.896 28.557 1.00 0.00 H \nATOM 4821 H LEU A 266 26.053 47.878 29.698 1.00 0.00 H \nATOM 4822 H THR A 267 27.102 49.885 33.363 1.00 0.00 H \nATOM 4823 H THR A 267 28.925 52.674 31.611 1.00 0.00 H \nATOM 4824 H ASN A 268 31.381 48.727 33.977 1.00 0.00 H \nATOM 4825 H ASN A 268 35.143 46.729 34.588 1.00 0.00 H \nATOM 4826 H ASN A 268 33.937 45.667 35.157 1.00 0.00 H \nATOM 4827 H SER A 269 32.056 48.621 38.487 1.00 0.00 H \nATOM 4828 H SER A 269 34.144 48.857 41.270 1.00 0.00 H \nATOM 4829 H LYS A 270 34.346 49.529 37.139 1.00 0.00 H \nATOM 4830 H LYS A 270 39.645 45.744 35.500 1.00 0.00 H \nATOM 4831 H LYS A 270 39.834 45.763 37.155 1.00 0.00 H \nATOM 4832 H LYS A 270 40.538 46.950 36.223 1.00 0.00 H \nATOM 4833 H GLY A 271 33.838 51.146 35.479 1.00 0.00 H \nATOM 4834 H GLN A 272 34.470 49.796 33.615 1.00 0.00 H \nATOM 4835 H GLN A 272 38.686 47.063 31.162 1.00 0.00 H \nATOM 4836 H GLN A 272 38.876 45.711 32.184 1.00 0.00 H \nATOM 4837 H ASN A 273 33.521 48.700 29.242 1.00 0.00 H \nATOM 4838 H ASN A 273 28.077 47.623 27.884 1.00 0.00 H \nATOM 4839 H ASN A 273 29.035 48.485 29.000 1.00 0.00 H \nATOM 4840 H CYS A 274 29.817 47.027 30.974 1.00 0.00 H \nATOM 4841 H CYS A 274 30.236 45.069 34.905 1.00 0.00 H \nATOM 4842 H GLY A 275 28.427 45.927 29.506 1.00 0.00 H \nATOM 4843 H TYR A 276 25.123 43.458 28.099 1.00 0.00 H \nATOM 4844 H TYR A 276 20.512 50.220 24.618 1.00 0.00 H \nATOM 4845 H ARG A 277 21.817 46.165 28.932 1.00 0.00 H \nATOM 4846 H ARG A 277 19.938 47.997 32.793 1.00 0.00 H \nATOM 4847 H ARG A 277 16.175 48.646 31.641 1.00 0.00 H \nATOM 4848 H ARG A 277 16.617 47.094 32.193 1.00 0.00 H \nATOM 4849 H ARG A 277 17.733 50.305 31.511 1.00 0.00 H \nATOM 4850 H ARG A 277 19.350 50.005 31.964 1.00 0.00 H \nATOM 4851 H ARG A 278 18.622 43.020 29.315 1.00 0.00 H \nATOM 4852 H ARG A 278 19.484 43.181 22.965 1.00 0.00 H \nATOM 4853 H ARG A 278 21.648 42.675 22.646 1.00 0.00 H \nATOM 4854 H ARG A 278 22.470 41.673 23.753 1.00 0.00 H \nATOM 4855 H ARG A 278 21.389 40.873 25.610 1.00 0.00 H \nATOM 4856 H ARG A 278 19.746 41.250 25.872 1.00 0.00 H \nATOM 4857 H CYS A 279 17.052 44.007 30.609 1.00 0.00 H \nATOM 4858 H CYS A 279 17.416 40.668 33.406 1.00 0.00 H \nATOM 4859 H ARG A 280 13.892 43.145 33.476 1.00 0.00 H \nATOM 4860 H ARG A 280 10.566 45.244 37.136 1.00 0.00 H \nATOM 4861 H ARG A 280 9.189 47.673 34.290 1.00 0.00 H \nATOM 4862 H ARG A 280 10.796 47.867 34.827 1.00 0.00 H \nATOM 4863 H ARG A 280 7.891 45.975 35.159 1.00 0.00 H \nATOM 4864 H ARG A 280 8.538 44.923 36.335 1.00 0.00 H \nATOM 4865 H ALA A 281 14.978 47.405 34.917 1.00 0.00 H \nATOM 4866 H SER A 282 18.083 46.381 38.006 1.00 0.00 H \nATOM 4867 H SER A 282 19.635 45.232 40.790 1.00 0.00 H \nATOM 4868 H GLY A 283 18.055 48.753 39.107 1.00 0.00 H \nATOM 4869 H VAL A 284 15.504 50.450 39.682 1.00 0.00 H \nATOM 4870 H LEU A 285 13.845 54.577 39.125 1.00 0.00 H \nATOM 4871 H THR A 286 11.546 53.224 38.460 1.00 0.00 H \nATOM 4872 H THR A 286 10.440 52.251 35.605 1.00 0.00 H \nATOM 4873 H THR A 287 11.780 50.863 39.955 1.00 0.00 H \nATOM 4874 H THR A 287 13.612 49.987 39.669 1.00 0.00 H \nATOM 4875 H SER A 288 10.290 49.518 42.065 1.00 0.00 H \nATOM 4876 H SER A 288 7.760 48.689 45.633 1.00 0.00 H \nATOM 4877 H CYS A 289 7.643 50.164 41.604 1.00 0.00 H \nATOM 4878 H CYS A 289 3.826 52.735 39.485 1.00 0.00 H \nATOM 4879 H GLY A 290 7.445 49.356 38.935 1.00 0.00 H \nATOM 4880 H ASN A 291 7.992 46.543 39.195 1.00 0.00 H \nATOM 4881 H ASN A 291 11.624 43.756 39.852 1.00 0.00 H \nATOM 4882 H ASN A 291 10.595 43.870 41.206 1.00 0.00 H \nATOM 4883 H THR A 292 5.798 45.862 40.757 1.00 0.00 H \nATOM 4884 H THR A 292 5.492 46.124 42.807 1.00 0.00 H \nATOM 4885 H LEU A 293 3.548 46.470 39.246 1.00 0.00 H \nATOM 4886 H THR A 294 3.995 44.785 37.054 1.00 0.00 H \nATOM 4887 H THR A 294 6.072 44.377 34.343 1.00 0.00 H \nATOM 4888 H CYS A 295 4.034 42.329 38.287 1.00 0.00 H \nATOM 4889 H CYS A 295 4.437 38.908 42.006 1.00 0.00 H \nATOM 4890 H TYR A 296 1.616 42.105 39.140 1.00 0.00 H \nATOM 4891 H TYR A 296 -6.922 43.534 39.403 1.00 0.00 H \nATOM 4892 H LEU A 297 0.200 42.195 36.882 1.00 0.00 H \nATOM 4893 H LYS A 298 0.924 39.899 35.400 1.00 0.00 H \nATOM 4894 H LYS A 298 6.678 39.249 31.740 1.00 0.00 H \nATOM 4895 H LYS A 298 6.459 37.704 32.322 1.00 0.00 H \nATOM 4896 H LYS A 298 6.706 38.966 33.381 1.00 0.00 H \nATOM 4897 H ALA A 299 0.188 37.939 37.280 1.00 0.00 H \nATOM 4898 H SER A 300 -2.506 38.374 37.564 1.00 0.00 H \nATOM 4899 H SER A 300 -4.959 40.839 38.298 1.00 0.00 H \nATOM 4900 H ALA A 301 -3.492 37.767 35.043 1.00 0.00 H \nATOM 4901 H ALA A 302 -2.678 35.199 35.028 1.00 0.00 H \nATOM 4902 H CYS A 303 -4.424 34.123 36.808 1.00 0.00 H \nATOM 4903 H ARG A 304 -6.747 33.967 35.552 1.00 0.00 H \nATOM 4904 H ARG A 304 -9.467 37.693 35.606 1.00 0.00 H \nATOM 4905 H ARG A 304 -10.269 38.197 32.262 1.00 0.00 H \nATOM 4906 H ARG A 304 -10.911 39.756 32.517 1.00 0.00 H \nATOM 4907 H ARG A 304 -10.942 40.655 34.611 1.00 0.00 H \nATOM 4908 H ARG A 304 -10.325 39.773 35.933 1.00 0.00 H \nATOM 4909 H ALA A 305 -6.251 32.449 33.485 1.00 0.00 H \nATOM 4910 H ALA A 306 -5.828 30.067 34.924 1.00 0.00 H \nATOM 4911 H LYS A 307 -8.348 29.417 35.199 1.00 0.00 H \nATOM 4912 H LYS A 307 -8.496 23.154 33.643 1.00 0.00 H \nATOM 4913 H LYS A 307 -9.661 23.470 32.495 1.00 0.00 H \nATOM 4914 H LYS A 307 -10.107 23.137 34.066 1.00 0.00 H \nATOM 4915 H LEU A 308 -8.468 29.689 37.901 1.00 0.00 H \nATOM 4916 H GLN A 309 -10.663 28.464 41.709 1.00 0.00 H \nATOM 4917 H GLN A 309 -16.807 29.148 43.682 1.00 0.00 H \nATOM 4918 H GLN A 309 -15.444 28.187 44.040 1.00 0.00 H \nATOM 4919 H ASP A 310 -13.161 32.191 41.687 1.00 0.00 H \nATOM 4920 H CYS A 311 -10.309 33.534 41.992 1.00 0.00 H \nATOM 4921 H THR A 312 -7.823 34.719 45.582 1.00 0.00 H \nATOM 4922 H THR A 312 -10.020 36.110 46.587 1.00 0.00 H \nATOM 4923 H MET A 313 -6.186 38.786 44.955 1.00 0.00 H \nATOM 4924 H LEU A 314 -1.974 38.080 46.406 1.00 0.00 H \nATOM 4925 H VAL A 315 -0.615 41.881 46.317 1.00 0.00 H \nATOM 4926 H ASN A 316 3.678 41.297 45.919 1.00 0.00 H \nATOM 4927 H ASN A 316 4.757 44.624 49.879 1.00 0.00 H \nATOM 4928 H ASN A 316 3.264 44.293 50.633 1.00 0.00 H \nATOM 4929 H GLY A 317 5.045 44.601 44.554 1.00 0.00 H \nATOM 4930 H ASP A 318 8.583 41.855 43.539 1.00 0.00 H \nATOM 4931 H ASP A 319 6.938 40.537 44.928 1.00 0.00 H \nATOM 4932 H LEU A 320 5.034 36.489 45.380 1.00 0.00 H \nATOM 4933 H VAL A 321 0.760 36.920 46.174 1.00 0.00 H \nATOM 4934 H VAL A 322 -0.952 33.068 46.644 1.00 0.00 H \nATOM 4935 H ILE A 323 -5.147 34.263 46.923 1.00 0.00 H \nATOM 4936 H CYS A 324 -7.069 30.518 47.599 1.00 0.00 H \nATOM 4937 H CYS A 324 -7.173 28.727 43.659 1.00 0.00 H \nATOM 4938 H GLU A 325 -10.842 29.986 45.424 1.00 0.00 H \nATOM 4939 H SER A 326 -11.314 26.584 48.249 1.00 0.00 H \nATOM 4940 H SER A 326 -9.534 22.497 48.787 1.00 0.00 H \nATOM 4941 H ALA A 327 -10.065 23.045 45.518 1.00 0.00 H \nATOM 4942 H GLY A 328 -10.595 21.415 46.783 1.00 0.00 H \nATOM 4943 H THR A 329 -8.424 18.061 47.757 1.00 0.00 H \nATOM 4944 H THR A 329 -4.179 18.604 48.097 1.00 0.00 H \nATOM 4945 H GLN A 330 -7.500 16.884 45.391 1.00 0.00 H \nATOM 4946 H GLN A 330 -4.263 12.641 42.078 1.00 0.00 H \nATOM 4947 H GLN A 330 -5.914 12.309 42.344 1.00 0.00 H \nATOM 4948 H GLU A 331 -8.438 18.274 43.259 1.00 0.00 H \nATOM 4949 H ASP A 332 -7.108 20.382 43.796 1.00 0.00 H \nATOM 4950 H ALA A 333 -4.522 20.013 43.346 1.00 0.00 H \nATOM 4951 H ALA A 334 -4.570 19.857 40.703 1.00 0.00 H \nATOM 4952 H SER A 335 -5.438 22.236 39.715 1.00 0.00 H \nATOM 4953 H SER A 335 -7.901 24.323 40.256 1.00 0.00 H \nATOM 4954 H LEU A 336 -3.521 24.113 40.661 1.00 0.00 H \nATOM 4955 H ARG A 337 -1.598 23.131 38.978 1.00 0.00 H \nATOM 4956 H ARG A 337 2.289 18.466 35.702 1.00 0.00 H \nATOM 4957 H ARG A 337 0.036 19.871 32.725 1.00 0.00 H \nATOM 4958 H ARG A 337 -0.354 20.268 34.337 1.00 0.00 H \nATOM 4959 H ARG A 337 1.845 18.533 32.276 1.00 0.00 H \nATOM 4960 H ARG A 337 2.802 17.932 33.553 1.00 0.00 H \nATOM 4961 H VAL A 338 -2.273 23.961 36.656 1.00 0.00 H \nATOM 4962 H PHE A 339 -2.235 26.372 36.964 1.00 0.00 H \nATOM 4963 H THR A 340 0.386 26.862 37.193 1.00 0.00 H \nATOM 4964 H THR A 340 1.679 26.717 38.851 1.00 0.00 H \nATOM 4965 H GLU A 341 1.147 26.330 34.727 1.00 0.00 H \nATOM 4966 H ALA A 342 0.184 28.364 33.382 1.00 0.00 H \nATOM 4967 H MET A 343 1.343 30.607 34.388 1.00 0.00 H \nATOM 4968 H THR A 344 3.761 29.994 33.345 1.00 0.00 H \nATOM 4969 H THR A 344 6.307 27.504 33.557 1.00 0.00 H \nATOM 4970 H ARG A 345 3.486 30.285 30.713 1.00 0.00 H \nATOM 4971 H ARG A 345 -0.407 30.188 27.895 1.00 0.00 H \nATOM 4972 H ARG A 345 0.763 26.951 28.458 1.00 0.00 H \nATOM 4973 H ARG A 345 -0.526 26.535 29.493 1.00 0.00 H \nATOM 4974 H ARG A 345 -2.108 29.622 29.282 1.00 0.00 H \nATOM 4975 H ARG A 345 -2.168 28.060 29.964 1.00 0.00 H \nATOM 4976 H TYR A 346 3.516 32.887 30.840 1.00 0.00 H \nATOM 4977 H TYR A 346 -3.075 34.718 29.577 1.00 0.00 H \nATOM 4978 H SER A 347 5.903 33.488 30.341 1.00 0.00 H \nATOM 4979 H SER A 347 9.794 36.852 30.041 1.00 0.00 H \nATOM 4980 H ALA A 348 6.559 33.412 32.865 1.00 0.00 H \nATOM 4981 H GLY A 351 9.931 29.916 40.942 1.00 0.00 H \nATOM 4982 H ASP A 352 10.724 28.658 43.144 1.00 0.00 H \nATOM 4983 H GLN A 355 3.270 25.955 46.283 1.00 0.00 H \nATOM 4984 H GLN A 355 5.757 23.998 49.784 1.00 0.00 H \nATOM 4985 H GLN A 355 5.620 22.699 50.880 1.00 0.00 H \nATOM 4986 H GLU A 357 -2.025 25.987 49.472 1.00 0.00 H \nATOM 4987 H TYR A 358 -2.648 24.029 53.402 1.00 0.00 H \nATOM 4988 H TYR A 358 -6.253 21.816 47.623 1.00 0.00 H \nATOM 4989 H ASP A 359 -2.681 25.563 54.765 1.00 0.00 H \nATOM 4990 H LEU A 360 -4.211 28.615 57.052 1.00 0.00 H \nATOM 4991 H GLU A 361 -1.883 29.156 58.608 1.00 0.00 H \nATOM 4992 H LEU A 362 0.030 28.140 57.033 1.00 0.00 H \nATOM 4993 H ILE A 363 1.084 29.917 55.563 1.00 0.00 H \nATOM 4994 H THR A 364 4.186 30.643 52.557 1.00 0.00 H \nATOM 4995 H THR A 364 5.911 30.345 54.661 1.00 0.00 H \nATOM 4996 H SER A 365 4.716 34.895 53.276 1.00 0.00 H \nATOM 4997 H SER A 365 1.767 36.731 51.877 1.00 0.00 H \nATOM 4998 H CYS A 366 6.460 37.235 50.154 1.00 0.00 H \nATOM 4999 H CYS A 366 5.248 41.972 51.288 1.00 0.00 H \nATOM 5000 H SER A 367 8.357 36.368 51.690 1.00 0.00 H \nATOM 5001 H SER A 367 12.280 37.397 52.498 1.00 0.00 H \nATOM 5002 H SER A 368 6.936 36.442 54.118 1.00 0.00 H \nATOM 5003 H SER A 368 7.015 39.554 56.597 1.00 0.00 H \nATOM 5004 H ASN A 369 5.335 35.623 58.209 1.00 0.00 H \nATOM 5005 H ASN A 369 3.012 31.972 59.777 1.00 0.00 H \nATOM 5006 H ASN A 369 4.357 31.859 60.819 1.00 0.00 H \nATOM 5007 H VAL A 370 1.290 34.069 57.916 1.00 0.00 H \nATOM 5008 H SER A 371 0.831 35.168 62.317 1.00 0.00 H \nATOM 5009 H SER A 371 3.325 31.810 64.877 1.00 0.00 H \nATOM 5010 H VAL A 372 0.221 32.173 65.414 1.00 0.00 H \nATOM 5011 H ALA A 373 -1.473 34.998 68.339 1.00 0.00 H \nATOM 5012 H HIS A 374 -0.427 35.035 72.482 1.00 0.00 H \nATOM 5013 H ASP A 375 -3.856 37.637 73.454 1.00 0.00 H \nATOM 5014 H ALA A 376 -2.619 40.885 76.242 1.00 0.00 H \nATOM 5015 H SER A 377 -5.021 39.612 76.822 1.00 0.00 H \nATOM 5016 H SER A 377 -8.134 41.573 77.057 1.00 0.00 H \nATOM 5017 H GLY A 378 -5.025 37.388 76.779 1.00 0.00 H \nATOM 5018 H LYS A 379 -6.739 37.239 75.253 1.00 0.00 H \nATOM 5019 H LYS A 379 -8.363 42.483 71.567 1.00 0.00 H \nATOM 5020 H LYS A 379 -9.835 41.854 72.029 1.00 0.00 H \nATOM 5021 H LYS A 379 -9.342 41.742 70.442 1.00 0.00 H \nATOM 5022 H ARG A 380 -7.833 34.935 71.400 1.00 0.00 H \nATOM 5023 H ARG A 380 -8.009 31.800 67.285 1.00 0.00 H \nATOM 5024 H ARG A 380 -4.913 29.402 68.048 1.00 0.00 H \nATOM 5025 H ARG A 380 -5.782 30.083 69.347 1.00 0.00 H \nATOM 5026 H ARG A 380 -6.871 30.869 65.575 1.00 0.00 H \nATOM 5027 H ARG A 380 -5.556 29.829 65.887 1.00 0.00 H \nATOM 5028 H VAL A 381 -3.869 35.834 69.347 1.00 0.00 H \nATOM 5029 H TYR A 382 -4.373 38.167 65.775 1.00 0.00 H \nATOM 5030 H TYR A 382 -6.845 31.853 63.565 1.00 0.00 H \nATOM 5031 H TYR A 383 -0.405 36.999 63.846 1.00 0.00 H \nATOM 5032 H TYR A 383 5.150 34.566 66.544 1.00 0.00 H \nATOM 5033 H LEU A 384 2.249 40.200 62.486 1.00 0.00 H \nATOM 5034 H THR A 385 4.666 36.798 60.720 1.00 0.00 H \nATOM 5035 H THR A 385 8.065 36.154 63.768 1.00 0.00 H \nATOM 5036 H ARG A 386 8.731 35.820 61.846 1.00 0.00 H \nATOM 5037 H ARG A 386 12.738 36.158 58.575 1.00 0.00 H \nATOM 5038 H ARG A 386 13.408 38.339 55.302 1.00 0.00 H \nATOM 5039 H ARG A 386 12.342 38.931 56.494 1.00 0.00 H \nATOM 5040 H ARG A 386 14.448 36.320 55.589 1.00 0.00 H \nATOM 5041 H ARG A 386 14.162 35.399 56.995 1.00 0.00 H \nATOM 5042 H ASP A 387 10.645 33.511 58.707 1.00 0.00 H \nATOM 5043 H THR A 389 15.580 33.053 60.654 1.00 0.00 H \nATOM 5044 H THR A 389 17.295 30.267 59.563 1.00 0.00 H \nATOM 5045 H THR A 390 16.946 34.802 58.535 1.00 0.00 H \nATOM 5046 H THR A 390 17.453 35.616 55.141 1.00 0.00 H \nATOM 5047 H LEU A 392 18.188 36.828 61.935 1.00 0.00 H \nATOM 5048 H ALA A 393 20.552 36.482 61.009 1.00 0.00 H \nATOM 5049 H ARG A 394 21.137 38.819 59.994 1.00 0.00 H \nATOM 5050 H ARG A 394 21.047 39.800 55.395 1.00 0.00 H \nATOM 5051 H ARG A 394 18.065 41.715 53.577 1.00 0.00 H \nATOM 5052 H ARG A 394 18.344 41.992 55.236 1.00 0.00 H \nATOM 5053 H ARG A 394 19.414 40.265 52.416 1.00 0.00 H \nATOM 5054 H ARG A 394 20.692 39.465 53.212 1.00 0.00 H \nATOM 5055 H ALA A 395 21.232 40.267 62.165 1.00 0.00 H \nATOM 5056 H ALA A 396 23.424 39.451 63.242 1.00 0.00 H \nATOM 5057 H TRP A 397 25.386 40.402 61.667 1.00 0.00 H \nATOM 5058 H TRP A 397 29.420 44.526 57.572 1.00 0.00 H \nATOM 5059 H GLU A 398 24.972 43.055 62.035 1.00 0.00 H \nATOM 5060 H THR A 399 26.310 43.149 64.316 1.00 0.00 H \nATOM 5061 H THR A 399 25.020 42.355 66.103 1.00 0.00 H \nATOM 5062 H ALA A 400 28.682 43.687 64.264 1.00 0.00 H \nATOM 5063 H ARG A 401 28.966 45.433 63.094 1.00 0.00 H \nATOM 5064 H ARG A 401 33.941 45.398 58.586 1.00 0.00 H \nATOM 5065 H ARG A 401 33.744 46.128 61.977 1.00 0.00 H \nATOM 5066 H ARG A 401 35.191 45.317 62.368 1.00 0.00 H \nATOM 5067 H ARG A 401 35.861 44.330 59.095 1.00 0.00 H \nATOM 5068 H ARG A 401 36.410 44.282 60.709 1.00 0.00 H \nATOM 5069 H HIS A 402 29.996 49.418 61.655 1.00 0.00 H \nATOM 5070 H THR A 403 25.783 49.872 60.165 1.00 0.00 H \nATOM 5071 H THR A 403 23.684 49.008 58.176 1.00 0.00 H \nATOM 5072 H VAL A 405 22.804 50.067 55.978 1.00 0.00 H \nATOM 5073 H ASN A 406 19.826 50.764 58.965 1.00 0.00 H \nATOM 5074 H ASN A 406 20.595 52.571 60.668 1.00 0.00 H \nATOM 5075 H ASN A 406 22.198 52.808 61.198 1.00 0.00 H \nATOM 5076 H SER A 407 20.294 46.748 59.391 1.00 0.00 H \nATOM 5077 H SER A 407 19.960 43.189 59.337 1.00 0.00 H \nATOM 5078 H TRP A 408 19.501 45.874 61.954 1.00 0.00 H \nATOM 5079 H TRP A 408 21.759 49.098 64.570 1.00 0.00 H \nATOM 5080 H LEU A 409 17.775 47.797 62.978 1.00 0.00 H \nATOM 5081 H GLY A 410 15.836 48.077 61.335 1.00 0.00 H \nATOM 5082 H ASN A 411 14.776 45.626 61.554 1.00 0.00 H \nATOM 5083 H ASN A 411 15.980 42.006 59.486 1.00 0.00 H \nATOM 5084 H ASN A 411 16.435 42.524 61.045 1.00 0.00 H \nATOM 5085 H ILE A 412 13.718 45.756 63.993 1.00 0.00 H \nATOM 5086 H ILE A 413 11.767 47.373 63.810 1.00 0.00 H \nATOM 5087 H MET A 414 10.076 46.242 61.977 1.00 0.00 H \nATOM 5088 H TYR A 415 9.498 44.033 63.159 1.00 0.00 H \nATOM 5089 H TYR A 415 9.535 40.479 57.103 1.00 0.00 H \nATOM 5090 H ALA A 416 7.599 44.372 65.001 1.00 0.00 H \nATOM 5091 H THR A 418 7.124 40.415 66.963 1.00 0.00 H \nATOM 5092 H THR A 418 10.031 38.808 65.631 1.00 0.00 H \nATOM 5093 H LEU A 419 7.765 36.083 68.484 1.00 0.00 H \nATOM 5094 H TRP A 420 10.500 35.950 68.072 1.00 0.00 H \nATOM 5095 H TRP A 420 9.492 35.955 64.119 1.00 0.00 H \nATOM 5096 H ALA A 421 11.186 38.613 67.554 1.00 0.00 H \nATOM 5097 H ARG A 422 10.844 39.851 69.832 1.00 0.00 H \nATOM 5098 H ARG A 422 7.680 41.948 73.450 1.00 0.00 H \nATOM 5099 H ARG A 422 5.831 39.147 72.511 1.00 0.00 H \nATOM 5100 H ARG A 422 4.867 39.155 73.917 1.00 0.00 H \nATOM 5101 H ARG A 422 6.414 41.935 75.333 1.00 0.00 H \nATOM 5102 H ARG A 422 5.202 40.753 75.536 1.00 0.00 H \nATOM 5103 H MET A 423 12.072 38.549 71.837 1.00 0.00 H \nATOM 5104 H ILE A 424 14.652 38.699 70.982 1.00 0.00 H \nATOM 5105 H LEU A 425 15.793 40.343 69.176 1.00 0.00 H \nATOM 5106 H MET A 426 14.946 42.725 70.456 1.00 0.00 H \nATOM 5107 H THR A 427 16.041 42.535 73.000 1.00 0.00 H \nATOM 5108 H THR A 427 15.563 41.506 74.364 1.00 0.00 H \nATOM 5109 H HIS A 428 18.755 42.225 72.463 1.00 0.00 H \nATOM 5110 H PHE A 429 19.479 44.600 70.874 1.00 0.00 H \nATOM 5111 H PHE A 430 18.765 46.593 72.560 1.00 0.00 H \nATOM 5112 H SER A 431 20.410 46.322 74.438 1.00 0.00 H \nATOM 5113 H SER A 431 23.577 44.281 76.756 1.00 0.00 H \nATOM 5114 H ILE A 432 22.819 46.896 73.399 1.00 0.00 H \nATOM 5115 H LEU A 433 22.406 49.522 72.630 1.00 0.00 H \nATOM 5116 H LEU A 434 22.166 50.683 75.205 1.00 0.00 H \nATOM 5117 H ALA A 435 24.623 50.276 76.480 1.00 0.00 H \nATOM 5118 H GLN A 436 26.033 51.997 74.708 1.00 0.00 H \nATOM 5119 H GLN A 436 30.961 50.698 73.742 1.00 0.00 H \nATOM 5120 H GLN A 436 29.393 50.028 73.758 1.00 0.00 H \nATOM 5121 H GLU A 437 25.494 54.145 75.740 1.00 0.00 H \nATOM 5122 H GLN A 438 23.746 55.122 73.608 1.00 0.00 H \nATOM 5123 H GLN A 438 28.073 56.193 68.585 1.00 0.00 H \nATOM 5124 H GLN A 438 27.776 57.178 69.945 1.00 0.00 H \nATOM 5125 H LEU A 439 21.741 56.367 73.761 1.00 0.00 H \nATOM 5126 H GLU A 440 20.244 58.510 72.598 1.00 0.00 H \nATOM 5127 H LYS A 441 20.662 58.027 69.951 1.00 0.00 H \nATOM 5128 H LYS A 441 26.717 56.847 64.457 1.00 0.00 H \nATOM 5129 H LYS A 441 25.973 55.840 65.555 1.00 0.00 H \nATOM 5130 H LYS A 441 26.913 57.106 66.090 1.00 0.00 H \nATOM 5131 H ALA A 442 19.864 60.125 66.087 1.00 0.00 H \nATOM 5132 H LEU A 443 18.032 56.469 64.029 1.00 0.00 H \nATOM 5133 H ASP A 444 20.378 55.215 60.418 1.00 0.00 H \nATOM 5134 H CYS A 445 16.559 53.959 58.237 1.00 0.00 H \nATOM 5135 H CYS A 445 13.985 51.474 61.052 1.00 0.00 H \nATOM 5136 H GLN A 446 15.702 49.945 56.783 1.00 0.00 H \nATOM 5137 H GLN A 446 17.665 50.938 50.530 1.00 0.00 H \nATOM 5138 H GLN A 446 17.193 52.224 51.545 1.00 0.00 H \nATOM 5139 H ILE A 447 12.126 51.461 54.587 1.00 0.00 H \nATOM 5140 H TYR A 448 10.204 48.009 53.805 1.00 0.00 H \nATOM 5141 H TYR A 448 3.136 46.454 54.583 1.00 0.00 H \nATOM 5142 H GLY A 449 11.953 48.909 52.048 1.00 0.00 H \nATOM 5143 H ALA A 450 11.167 51.730 51.517 1.00 0.00 H \nATOM 5144 H CYS A 451 14.086 55.243 51.944 1.00 0.00 H \nATOM 5145 H CYS A 451 18.669 56.058 54.181 1.00 0.00 H \nATOM 5146 H TYR A 452 14.784 54.799 56.372 1.00 0.00 H \nATOM 5147 H TYR A 452 8.012 54.562 53.851 1.00 0.00 H \nATOM 5148 H SER A 453 14.136 58.538 58.640 1.00 0.00 H \nATOM 5149 H SER A 453 17.371 60.905 60.867 1.00 0.00 H \nATOM 5150 H ILE A 454 16.170 56.644 61.943 1.00 0.00 H \nATOM 5151 H GLU A 455 13.903 57.855 65.499 1.00 0.00 H \nATOM 5152 H LEU A 457 15.283 56.240 70.499 1.00 0.00 H \nATOM 5153 H ASP A 458 12.732 56.316 69.594 1.00 0.00 H \nATOM 5154 H LEU A 459 11.644 54.097 70.024 1.00 0.00 H \nATOM 5155 H GLN A 461 7.254 54.572 71.157 1.00 0.00 H \nATOM 5156 H GLN A 461 8.617 59.203 71.771 1.00 0.00 H \nATOM 5157 H GLN A 461 8.360 57.656 72.441 1.00 0.00 H \nATOM 5158 H ILE A 462 7.031 54.315 68.483 1.00 0.00 H \nATOM 5159 H ILE A 463 6.526 51.595 68.348 1.00 0.00 H \nATOM 5160 H GLU A 464 4.066 51.459 69.633 1.00 0.00 H \nATOM 5161 H ARG A 465 2.418 52.919 68.049 1.00 0.00 H \nATOM 5162 H ARG A 465 -0.755 56.014 64.913 1.00 0.00 H \nATOM 5163 H ARG A 465 2.098 58.799 64.792 1.00 0.00 H \nATOM 5164 H ARG A 465 1.881 57.886 66.216 1.00 0.00 H \nATOM 5165 H ARG A 465 0.770 58.419 62.970 1.00 0.00 H \nATOM 5166 H ARG A 465 -0.443 57.222 63.026 1.00 0.00 H \nATOM 5167 H LEU A 466 2.629 51.406 65.562 1.00 0.00 H \nATOM 5168 H HIS A 467 1.918 48.978 66.309 1.00 0.00 H \nATOM 5169 H GLY A 468 0.205 49.025 67.674 1.00 0.00 H \nATOM 5170 H LEU A 469 -2.014 48.564 71.397 1.00 0.00 H \nATOM 5171 H SER A 470 -1.704 45.692 71.578 1.00 0.00 H \nATOM 5172 H SER A 470 -2.448 43.057 69.662 1.00 0.00 H \nATOM 5173 H ALA A 471 0.923 45.134 70.941 1.00 0.00 H \nATOM 5174 H PHE A 472 2.355 44.947 73.108 1.00 0.00 H \nATOM 5175 H SER A 473 2.027 42.696 74.111 1.00 0.00 H \nATOM 5176 H SER A 473 -1.145 42.404 76.223 1.00 0.00 H \nATOM 5177 H LEU A 474 2.668 40.687 73.572 1.00 0.00 H \nATOM 5178 H HIS A 475 1.130 36.327 73.818 1.00 0.00 H \nATOM 5179 H SER A 476 3.123 32.845 75.448 1.00 0.00 H \nATOM 5180 H SER A 476 -0.594 31.121 76.600 1.00 0.00 H \nATOM 5181 H TYR A 477 3.743 31.926 72.843 1.00 0.00 H \nATOM 5182 H TYR A 477 5.524 38.206 70.618 1.00 0.00 H \nATOM 5183 H SER A 478 2.819 30.819 68.447 1.00 0.00 H \nATOM 5184 H SER A 478 2.644 29.236 65.337 1.00 0.00 H \nATOM 5185 H GLY A 480 3.513 25.867 66.249 1.00 0.00 H \nATOM 5186 H GLU A 481 4.849 28.164 65.994 1.00 0.00 H \nATOM 5187 H ILE A 482 6.395 28.434 68.129 1.00 0.00 H \nATOM 5188 H ASN A 483 7.990 26.192 67.569 1.00 0.00 H \nATOM 5189 H ASN A 483 7.538 22.267 65.944 1.00 0.00 H \nATOM 5190 H ASN A 483 7.394 21.529 67.474 1.00 0.00 H \nATOM 5191 H ARG A 484 9.429 27.047 65.364 1.00 0.00 H \nATOM 5192 H ARG A 484 9.621 30.826 62.504 1.00 0.00 H \nATOM 5193 H ARG A 484 7.754 31.114 58.985 1.00 0.00 H \nATOM 5194 H ARG A 484 9.009 29.976 59.175 1.00 0.00 H \nATOM 5195 H ARG A 484 7.153 32.463 60.734 1.00 0.00 H \nATOM 5196 H ARG A 484 7.956 32.336 62.233 1.00 0.00 H \nATOM 5197 H VAL A 485 10.884 29.094 66.286 1.00 0.00 H \nATOM 5198 H ALA A 486 12.407 27.859 68.140 1.00 0.00 H \nATOM 5199 H SER A 487 13.884 26.117 66.473 1.00 0.00 H \nATOM 5200 H SER A 487 13.520 23.719 64.018 1.00 0.00 H \nATOM 5201 H CYS A 488 15.313 27.919 65.037 1.00 0.00 H \nATOM 5202 H CYS A 488 16.635 32.564 63.502 1.00 0.00 H \nATOM 5203 H LEU A 489 16.898 29.057 67.006 1.00 0.00 H \nATOM 5204 H ARG A 490 18.594 26.970 67.630 1.00 0.00 H \nATOM 5205 H ARG A 490 16.945 22.195 70.001 1.00 0.00 H \nATOM 5206 H ARG A 490 20.064 23.268 71.125 1.00 0.00 H \nATOM 5207 H ARG A 490 19.703 22.995 72.769 1.00 0.00 H \nATOM 5208 H ARG A 490 16.475 21.838 72.183 1.00 0.00 H \nATOM 5209 H ARG A 490 17.647 22.177 73.375 1.00 0.00 H \nATOM 5210 H LYS A 491 19.976 26.525 65.481 1.00 0.00 H \nATOM 5211 H LYS A 491 17.865 29.360 59.902 1.00 0.00 H \nATOM 5212 H LYS A 491 17.899 27.706 59.714 1.00 0.00 H \nATOM 5213 H LYS A 491 18.953 28.665 58.850 1.00 0.00 H \nATOM 5214 H LEU A 492 21.471 28.921 65.010 1.00 0.00 H \nATOM 5215 H GLY A 493 22.856 28.613 67.043 1.00 0.00 H \nATOM 5216 H VAL A 494 22.067 30.184 68.984 1.00 0.00 H \nATOM 5217 H LEU A 497 16.430 30.504 76.134 1.00 0.00 H \nATOM 5218 H ARG A 498 16.933 31.037 79.035 1.00 0.00 H \nATOM 5219 H ARG A 498 21.195 28.265 81.139 1.00 0.00 H \nATOM 5220 H ARG A 498 20.171 25.887 78.857 1.00 0.00 H \nATOM 5221 H ARG A 498 21.500 26.531 79.709 1.00 0.00 H \nATOM 5222 H ARG A 498 18.077 26.766 79.153 1.00 0.00 H \nATOM 5223 H ARG A 498 17.838 28.069 80.227 1.00 0.00 H \nATOM 5224 H VAL A 499 19.174 32.748 78.873 1.00 0.00 H \nATOM 5225 H TRP A 500 18.468 34.947 77.463 1.00 0.00 H \nATOM 5226 H TRP A 500 19.667 34.402 72.954 1.00 0.00 H \nATOM 5227 H ARG A 501 16.542 35.900 79.133 1.00 0.00 H \nATOM 5228 H ARG A 501 14.565 34.502 83.160 1.00 0.00 H \nATOM 5229 H ARG A 501 11.943 31.979 81.525 1.00 0.00 H \nATOM 5230 H ARG A 501 11.598 33.649 81.544 1.00 0.00 H \nATOM 5231 H ARG A 501 13.902 31.199 82.424 1.00 0.00 H \nATOM 5232 H ARG A 501 15.020 32.286 83.113 1.00 0.00 H \nATOM 5233 H HIS A 502 17.754 36.692 81.311 1.00 0.00 H \nATOM 5234 H ARG A 503 19.390 38.657 80.332 1.00 0.00 H \nATOM 5235 H ARG A 503 23.705 38.107 78.419 1.00 0.00 H \nATOM 5236 H ARG A 503 25.417 36.613 75.825 1.00 0.00 H \nATOM 5237 H ARG A 503 25.350 36.842 77.514 1.00 0.00 H \nATOM 5238 H ARG A 503 23.814 37.585 74.467 1.00 0.00 H \nATOM 5239 H ARG A 503 22.573 38.526 75.161 1.00 0.00 H \nATOM 5240 H ALA A 504 17.396 40.368 79.644 1.00 0.00 H \nATOM 5241 H ARG A 505 16.312 41.236 81.899 1.00 0.00 H \nATOM 5242 H ARG A 505 13.064 38.870 84.415 1.00 0.00 H \nATOM 5243 H ARG A 505 14.768 38.212 87.383 1.00 0.00 H \nATOM 5244 H ARG A 505 13.703 36.970 87.862 1.00 0.00 H \nATOM 5245 H ARG A 505 11.664 37.220 85.049 1.00 0.00 H \nATOM 5246 H ARG A 505 11.921 36.401 86.522 1.00 0.00 H \nATOM 5247 H SER A 506 18.320 42.682 82.951 1.00 0.00 H \nATOM 5248 H SER A 506 22.352 44.539 82.773 1.00 0.00 H \nATOM 5249 H VAL A 507 18.757 44.598 80.991 1.00 0.00 H \nATOM 5250 H ARG A 508 16.224 45.809 81.164 1.00 0.00 H \nATOM 5251 H ARG A 508 9.570 46.455 82.946 1.00 0.00 H \nATOM 5252 H ARG A 508 12.235 46.233 85.174 1.00 0.00 H \nATOM 5253 H ARG A 508 11.333 46.786 86.511 1.00 0.00 H \nATOM 5254 H ARG A 508 8.374 47.195 84.746 1.00 0.00 H \nATOM 5255 H ARG A 508 9.132 47.334 86.267 1.00 0.00 H \nATOM 5256 H ALA A 509 16.169 46.870 83.778 1.00 0.00 H \nATOM 5257 H ARG A 510 18.218 48.797 83.392 1.00 0.00 H \nATOM 5258 H ARG A 510 21.682 47.268 81.542 1.00 0.00 H \nATOM 5259 H ARG A 510 24.418 50.134 81.117 1.00 0.00 H \nATOM 5260 H ARG A 510 23.406 50.146 82.489 1.00 0.00 H \nATOM 5261 H ARG A 510 24.240 48.483 79.573 1.00 0.00 H \nATOM 5262 H ARG A 510 23.092 47.237 79.771 1.00 0.00 H \nATOM 5263 H LEU A 511 16.972 50.479 81.648 1.00 0.00 H \nATOM 5264 H LEU A 512 14.862 51.476 82.958 1.00 0.00 H \nATOM 5265 H SER A 513 16.095 53.069 84.745 1.00 0.00 H \nATOM 5266 H SER A 513 18.406 52.952 87.443 1.00 0.00 H \nATOM 5267 H GLN A 514 16.697 55.107 83.173 1.00 0.00 H \nATOM 5268 H GLN A 514 20.823 55.038 80.939 1.00 0.00 H \nATOM 5269 H GLN A 514 19.369 55.364 81.768 1.00 0.00 H \nATOM 5270 H GLY A 515 14.650 56.698 83.126 1.00 0.00 H \nATOM 5271 H GLY A 516 11.587 59.919 82.156 1.00 0.00 H \nATOM 5272 H ARG A 517 11.873 59.953 77.528 1.00 0.00 H \nATOM 5273 H ARG A 517 13.301 61.330 74.382 1.00 0.00 H \nATOM 5274 H ARG A 517 11.617 60.073 70.996 1.00 0.00 H \nATOM 5275 H ARG A 517 10.679 60.175 72.416 1.00 0.00 H \nATOM 5276 H ARG A 517 13.827 60.694 71.029 1.00 0.00 H \nATOM 5277 H ARG A 517 14.533 61.259 72.475 1.00 0.00 H \nATOM 5278 H ALA A 518 13.672 57.730 77.784 1.00 0.00 H \nATOM 5279 H ALA A 519 12.704 56.471 79.847 1.00 0.00 H \nATOM 5280 H THR A 520 10.404 55.635 79.006 1.00 0.00 H \nATOM 5281 H THR A 520 7.527 56.913 77.641 1.00 0.00 H \nATOM 5282 H CYS A 521 11.140 53.866 77.186 1.00 0.00 H \nATOM 5283 H CYS A 521 13.803 53.513 73.944 1.00 0.00 H \nATOM 5284 H GLY A 522 12.180 51.870 78.820 1.00 0.00 H \nATOM 5285 H LYS A 523 9.990 51.059 80.136 1.00 0.00 H \nATOM 5286 H LYS A 523 2.587 52.321 82.356 1.00 0.00 H \nATOM 5287 H LYS A 523 3.543 51.507 81.262 1.00 0.00 H \nATOM 5288 H LYS A 523 3.590 53.170 81.333 1.00 0.00 H \nATOM 5289 H TYR A 524 8.006 50.132 78.149 1.00 0.00 H \nATOM 5290 H TYR A 524 1.569 52.985 78.344 1.00 0.00 H \nATOM 5291 H LEU A 525 9.201 48.645 76.416 1.00 0.00 H \nATOM 5292 H PHE A 526 10.038 46.536 77.967 1.00 0.00 H \nATOM 5293 H ASN A 527 8.183 44.937 78.593 1.00 0.00 H \nATOM 5294 H ASN A 527 6.701 44.389 82.534 1.00 0.00 H \nATOM 5295 H ASN A 527 5.143 44.394 83.227 1.00 0.00 H \nATOM 5296 H TRP A 528 8.051 42.327 78.475 1.00 0.00 H \nATOM 5297 H TRP A 528 11.247 42.361 75.487 1.00 0.00 H \nATOM 5298 H ALA A 529 9.937 41.392 80.147 1.00 0.00 H \nATOM 5299 H VAL A 530 9.357 41.275 82.703 1.00 0.00 H \nATOM 5300 H LYS A 531 9.102 39.366 86.936 1.00 0.00 H \nATOM 5301 H LYS A 531 10.125 36.430 92.943 1.00 0.00 H \nATOM 5302 H LYS A 531 10.381 35.516 91.574 1.00 0.00 H \nATOM 5303 H LYS A 531 8.880 35.531 92.297 1.00 0.00 H \nATOM 5304 H THR A 532 7.058 40.447 87.880 1.00 0.00 H \nATOM 5305 H THR A 532 6.144 40.071 90.159 1.00 0.00 H \nATOM 5306 H LYS A 533 3.642 40.823 85.836 1.00 0.00 H \nATOM 5307 H LYS A 533 6.108 37.293 82.103 1.00 0.00 H \nATOM 5308 H LYS A 533 4.948 37.278 83.299 1.00 0.00 H \nATOM 5309 H LYS A 533 6.368 38.120 83.526 1.00 0.00 H \nATOM 5310 H LEU A 534 4.343 44.870 83.662 1.00 0.00 H \nATOM 5311 H LYS A 535 1.476 48.183 84.898 1.00 0.00 H \nATOM 5312 H LYS A 535 -2.387 53.997 84.917 1.00 0.00 H \nATOM 5313 H LYS A 535 -0.755 54.204 85.182 1.00 0.00 H \nATOM 5314 H LYS A 535 -1.664 53.300 86.246 1.00 0.00 H \nATOM 5315 H LEU A 536 1.324 49.481 82.196 1.00 0.00 H \nATOM 5316 H THR A 537 0.601 51.528 79.286 1.00 0.00 H \nATOM 5317 H THR A 537 -0.669 54.168 79.549 1.00 0.00 H \nATOM 5318 H ILE A 539 -0.214 55.750 74.082 1.00 0.00 H \nATOM 5319 H ALA A 541 3.408 60.850 74.237 1.00 0.00 H \nATOM 5320 H ALA A 542 2.705 59.115 72.038 1.00 0.00 H \nATOM 5321 H SER A 543 0.435 59.836 70.037 1.00 0.00 H \nATOM 5322 H SER A 543 -1.688 62.525 70.120 1.00 0.00 H \nATOM 5323 H GLN A 544 2.147 61.760 68.905 1.00 0.00 H \nATOM 5324 H GLN A 544 5.736 64.167 69.449 1.00 0.00 H \nATOM 5325 H GLN A 544 6.312 65.270 70.615 1.00 0.00 H \nATOM 5326 H LEU A 545 3.826 60.900 67.036 1.00 0.00 H \nATOM 5327 H ASP A 546 5.242 61.889 62.849 1.00 0.00 H \nATOM 5328 H LEU A 547 2.498 59.313 61.471 1.00 0.00 H \nATOM 5329 H SER A 548 2.619 59.953 58.683 1.00 0.00 H \nATOM 5330 H SER A 548 1.480 62.378 56.406 1.00 0.00 H \nATOM 5331 H GLY A 549 2.036 57.435 54.984 1.00 0.00 H \nATOM 5332 H TRP A 550 3.954 56.434 56.102 1.00 0.00 H \nATOM 5333 H TRP A 550 7.803 57.685 59.173 1.00 0.00 H \nATOM 5334 H PHE A 551 2.890 53.934 55.393 1.00 0.00 H \nATOM 5335 H VAL A 552 3.539 53.449 52.214 1.00 0.00 H \nATOM 5336 H ALA A 553 4.137 53.309 50.189 1.00 0.00 H \nATOM 5337 H GLY A 554 5.145 50.510 46.911 1.00 0.00 H \nATOM 5338 H TYR A 555 9.559 50.435 48.144 1.00 0.00 H \nATOM 5339 H TYR A 555 5.520 56.737 47.040 1.00 0.00 H \nATOM 5340 H SER A 556 10.830 49.215 46.867 1.00 0.00 H \nATOM 5341 H SER A 556 13.669 45.766 46.724 1.00 0.00 H \nATOM 5342 H GLY A 557 15.372 49.640 46.612 1.00 0.00 H \nATOM 5343 H GLY A 558 14.060 51.665 45.391 1.00 0.00 H \nATOM 5344 H ASP A 559 16.049 53.538 45.711 1.00 0.00 H \nATOM 5345 H ILE A 560 14.688 55.195 47.654 1.00 0.00 H \nATOM 5346 H TYR A 561 13.856 59.175 49.514 1.00 0.00 H \nATOM 5347 H TYR A 561 16.912 62.342 57.025 1.00 0.00 H \nATOM 5348 H HIS A 562 13.408 58.713 53.877 1.00 0.00 H \nATOM 5349 H SER A 563 11.850 62.511 55.272 1.00 0.00 H \nATOM 5350 H SER A 563 10.288 61.880 59.170 1.00 0.00 H \nTER 5351 SER A 563\nATOM 5352 C1 LIG B 1 12.930 30.871 73.555 1.00 0.00 C \nATOM 5353 C2 LIG B 1 12.904 29.594 72.915 1.00 0.00 C \nATOM 5354 C3 LIG B 1 11.675 28.876 72.876 1.00 0.00 C \nATOM 5355 C4 LIG B 1 10.504 29.416 73.455 1.00 0.00 C \nATOM 5356 C5 LIG B 1 10.520 30.692 74.092 1.00 0.00 C \nATOM 5357 C6 LIG B 1 11.753 31.411 74.134 1.00 0.00 C \nATOM 5358 C7 LIG B 1 6.884 31.797 75.111 1.00 0.00 C \nATOM 5359 C8 LIG B 1 7.733 32.392 76.033 1.00 0.00 C \nATOM 5360 C9 LIG B 1 9.108 32.061 75.768 1.00 0.00 C \nATOM 5361 C10 LIG B 1 9.277 31.234 74.669 1.00 0.00 C \nATOM 5362 S11 LIG B 1 7.757 30.874 73.982 1.00 0.00 S \nATOM 5363 C12 LIG B 1 14.083 29.040 72.318 1.00 0.00 C \nATOM 5364 N13 LIG B 1 15.043 28.581 71.811 1.00 0.00 N \nATOM 5365 C14 LIG B 1 5.402 31.944 75.107 1.00 0.00 C \nATOM 5366 O15 LIG B 1 4.768 31.230 74.313 1.00 0.00 O \nATOM 5367 O16 LIG B 1 4.868 32.787 75.871 1.00 0.00 O \nATOM 5368 N17 LIG B 1 7.301 33.237 77.137 1.00 0.00 N \nATOM 5369 S18 LIG B 1 8.282 34.502 77.689 1.00 0.00 S \nATOM 5370 C19 LIG B 1 7.775 36.467 75.711 1.00 0.00 C \nATOM 5371 C20 LIG B 1 8.733 35.682 76.427 1.00 0.00 C \nATOM 5372 C21 LIG B 1 10.125 35.830 76.146 1.00 0.00 C \nATOM 5373 C22 LIG B 1 10.578 36.740 75.166 1.00 0.00 C \nATOM 5374 C23 LIG B 1 9.635 37.525 74.450 1.00 0.00 C \nATOM 5375 C24 LIG B 1 8.246 37.387 74.720 1.00 0.00 C \nATOM 5376 C25 LIG B 1 6.286 36.367 75.952 1.00 0.00 C \nATOM 5377 O26 LIG B 1 9.481 33.897 78.252 1.00 0.00 O \nATOM 5378 O27 LIG B 1 7.483 35.183 78.686 1.00 0.00 O \nATOM 5379 H LIG B 1 5.399 33.298 76.450 1.00 0.00 H \nATOM 5380 H LIG B 1 6.431 33.071 77.566 1.00 0.00 H \nTER 5381 LIG B 1\nENDMDL\nCONECT 2317 2378\nCONECT 2378 2317\nEND\n", + "type": "blob", + "binary": false + } + ], + "kwargs": { + "ext": "pdb", + "defaultRepresentation": true + }, + "type": "call_method" + } + ] + } + } + } } - ], - "source": [ - "def rf_model_builder(model_params, model_dir):\n", - " sklearn_model = RandomForestRegressor(**model_params)\n", - " sklearn_model.random_state = seed\n", - " return dc.models.SklearnModel(sklearn_model, model_dir)\n", - "\n", - "params_dict = {\n", - " \"n_estimators\": [10, 50, 100],\n", - " \"max_features\": [\"auto\", \"sqrt\", \"log2\", None],\n", - "}\n", - "\n", - "metric = dc.metrics.Metric(dc.metrics.r2_score)\n", - "optimizer = dc.hyper.HyperparamOpt(rf_model_builder)\n", - "best_rf, best_rf_hyperparams, all_rf_results = optimizer.hyperparam_search(\n", - " params_dict, train_dataset, valid_dataset, transformers,\n", - " metric=metric)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ok, our best validation score is now `0.53` R^2. Let's make some predictions on the test set and see what they look like." - ] }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXd4VFXawH9vwgAJLYCxEEFddUGKkAUBZdXFhq4NBRfb5yrNAiqgUVhxARcFQQS7UqywfCAoKpaIlE8FQekdOyWARiARSEImyfn+mLlxMrn3zp0+Sc7vefKQzC3nvTfhvOe8VZRSaDQajUYDkBRvATQajUaTOGiloNFoNJpytFLQaDQaTTlaKWg0Go2mHK0UNBqNRlOOVgoajUajKUcrBU1MEJFlItLf+/0tIvJpDMY8VUSUiNSK9lgaTXVBK4UqjIj8LCKFInJERPaLyOsiUt/n+OsiUuw9bnz1iafMAEqpWUqpywKdJyKjRWRmtOTwvr9LfH4+SURmiMg+ETksIttFZIyI1PM5v9DnXX7qd7+h3t9Dvoi8KiJ1oiW737gt/H7HSkSO+vx8fizksJHvDBFRfp91FZFPvO/qoIisEpHbfM/3e6Z/+Vxb1/u3/bv3d3V/rJ+pOqOVQtXnaqVUfaADkAmM8Ds+QSlV3+drTrgDVseVt4g0Ab4CUoBzlVINgEuBNOB0n1Ov9nmXl/lc3wMYDlwMnAr8CRgTC9mVUrt8f8fej9v7fPaF/zUikhwL2cwQkb8CnwGL8bynpsBg4O++5/n93T7hc+g/eN5xCzy/o3/5KndNeGilUE1QSu0HsvEoh6DxrszuE5EfReQ3EZkoIkneY7eLyHIRmSwiB4HR3s/7isg2ETkkItkicorP/S71rrTzReR5QHyO3S4iX/r83EZEFnlXjL+IyL9E5HLgX0Af70pxg/fcRj6r+RwRGWtMcCKSLCJPeeX/EbgyiFcwDDgM3KqU+hlAKbVbKXW/Umqjg+v/CcxQSm1RSh3CM3Hdbnaid4U82O+zDSJyvXiYLCK/et/dRhFpG8RzmCIiM0XkBe/YR4HzReRLEbnd55z+IrLM5+fWIvKZ9/eyXUR62dz/SxF5XERWe+V+V0QaW5z+FJ53NVEpdUB5+EYpdaPDx7kNeEwplaeU2gy8isW71gSPVgrVBBE5GbgC+D6M21wHdAL+AlwL9PU51gX4ETgeeFxEeuKZtK8H0oEvgNleWY4D5gMjgeOAH4BuFnI3wLNq/ARoBpwBLFZKfQI8AczxrhTbey95AyjxnpcJXAb09x4bAFzl/bwT0DuIZ78EeEcpVRbgvFkikisin4pIe5/P2wAbfH7eAJwgIk1N7vFf4CbjBxFpDZwCfOh9nguAP+PZpfQBDgTxHHbcjGf30gDPrsgS7+9lEfAmnt/5LcBUEWlpc9lt3q9meBYBky3u2xmYF0hYEdkjIru9prim3s/SvfL4v+s2ge6ncYZWClWfBSJyGNgN/AqM8jv+oIjkeb9+C3CvJ5VSB5VSu4Ap+ExcwF6l1HNKqRKlVCFwJzBOKbVNKVWCZwLv4N0t/B3YqpSap5Rye++132LMq4D9SqlJSqkipdRhpdQqsxNF5AQ8im+IUuqoUupXPBOPscL8BzDFu8I/CIwL8Ly+NAX2BTjnFjxmi1OApUC2iKR5j9UH8n3ONb5vYHKfd/njXRn3fUcpdQxwe69pBYj3/QaSyynvKqW+UkqVecey4xrgW6XUm97f+RpgAfaK9g2l1Fal1FHg38CNIiJ+5zTBozDsnulXPEr9FDwKpDEe5QSe9wyV37XZe9aEgFYKVZ+eXvv33/BMJMf5HX9KKZXm/fI/5s9un+934lnxmR0Dz3/YZwyFAxzE8589w3td+fnKU3XR/3qD5nh2Ek44BXAB+3zGfQXPyhH/cb3P4JQDwEl2JyilliulCpVSBUqpcUAeYDhxjwANfU43vj9scp/DeHYFhjK7EZjlPbYEeB54AfhFRKaKSEP/e4SI1e/AjFOAbj4Lijw8uxa7d+T/7uvgUQK+HASU3X2UUr8rpdYopUq9CvFe4ArxOPyPeE/zf9eV3rMmNLRSqCYopf4PeB2PvTZUmvt83wLY6zuE37m7gTt9FE6aUipFKbUCzyqw/F7e1WJzzNlNRUeuL2ZjHgOO8xmzoVLKMB1UGNf7DE75DLjO8KM4RPGHr2QL4GtOag/8opSyMv3MBm4SkXPxOLeXlt9UqWeVUh3xmET+DGQFIVMgeX05CqT6/Hyiz/e78ZjxfH+/9ZVSg7HG/90fw6ME/hDAoxC/Biz9EzZyi1IqF8il8rveEsT9NDZopVC9mAJcKiIhOZuBLBFpLCLNgfsBu0ill4ERItIGyh3AN3iPfQi08TpOawH3UXHC8WUhcKKIDBGROiLSQES6eI/9ApxqTNTeVeOnwCQRaSgiSSJyuohc6D1/LnCfiJzsdXIOD+LZn8az4nzDMOuISIaIPC0iZ4sn7LObiNQWT0hkFp5d2XLv9W8C/bzO2cZ4/Cmv24z3EZ7V+GN4/CZl3jHPEZEuIuLCM2kXAaVBPEcwrAd6iUiKiPyZij6k9/H8Dm8WEZf3q3Mgn4KItPKu6McAc5V5bf4soL+IDBNP1Bcikiki//V+31VE/uz9/aYDz+BRUMYu4U3gURFJ8/pj+mL/rjVBoJVCNcK7inoTeDTEW7wHrMEzWXwIzLAZ613gSeB/ReR3YDMeez9Kqd+AG4DxeMwyZ/LH5Ol/n8N4wgqvxuN3+A7o7j38tvffAyKy1vv9bUBtYCtwCI/D0jBFTMMTgbUBWAu84/TBvT6I8/DY9Fd5/TSL8dirv8djs37JO2YOcDlwhbET8DrGJ+BZ8e/0fvn7d3zHO+aV7xI8jmeDht7nOOS9xwG8uz/xRGV97PSZHPAUnlX4r3gieMpzQpRS+UAP4FY8O7D9eHw0drkXb3nvsQ9IBoaYneQNkb3Ee/+fxRPR9hIeRQmeIIJP8ZiENuAxGd3ic4tH8exkdgNL8Pi2PnP4zJoAiG6yowFPSCpwplIqnOglTQ1FPCHG05VSr8dbFk146J2CRqPRaMqJmlLwxhb/KiKbfT67QUS2iEiZiHSK1tgajUajCY2omY9E5AI8tsA3lVJtvZ+dBZThCSN8UCm1OiqDazQajSYkolbDRin1uYic6vfZNoDK+SwajUajSQQStrCZiAwEBgLUq1evY6tWreIsUc1g+/7DuEsrV3pwJSfR6kSdNKqpXlTHv/fi4mJ+/vlnDh8+DPCbUio9mOsTVikopaYCUwE6deqkVq/WlqZYsGBdDiPe2USh+4/Q+BRXMuOub0fPzIw4SqbRBM+CdTlMzN7B3rxCmqWlkNWjZYW/4+r0915aWsoLL7zAv/71L0SE559/nsGDBweT1Q8ksFLQxAfjP4LdfySNpirgP+Hn5BUy4p1NwB9/59H4ew+kiKLBtm3b6N+/PytWrODyyy/n5Zdf5pRTTmHwYLsEdHO0UtBUomdmhlYCmirPxOwdFXYAAIXuUiZm76jw9x3Jv3cniiiSuN1uJkyYwGOPPUb9+vV58803ufXWW8Py20ZNKYjIbDxF2o4TkT14sjsPAs/hKbX8oYisV0r1iJYMGo3GOfFY4UaTvXmFQX0eCZwqokiwdu1a+vbty4YNG7jhhht47rnnOOGEE8K+bzSjj26yOPRutMbUaDShEesVbixolpZCjokCaJaWErUxY6GICgsLGTNmDE899RTp6em88847XHfddRG7v85o1mg0tivcqkpWj5akuCp2HU1xJZPVw66mX3hYKZxIKaLPP/+c9u3b8+STT3L77bezdevWiCoE0EpBo9EQH1NLtOmZmcG469uRkZbiafSRlhL1qKJoKaLff/+dQYMGceGFF+J2u1m0aBHTp0+ncWOrjqehox3NGo0mLqaWUAnG9xHroIloRDN9/PHH3HnnnezZs4chQ4YwduxY6tWrFymRK6GVgkajIatHS9N4/WiaWkKhKvg+IqWIDhw4wNChQ3nrrbc466yzWL58Oeeee24EJLRHm480Gk1cTC2hUB19H/4opZg7dy5nnXUWs2fP5tFHH2XdunUxUQigdwoajcZLVchPqY6+D1/27t3LPffcw3vvvUfHjh1ZtGgR7du3D3xhBNE7BY1GU2WIdnRPvFBKMWPGDFq3bk12djYTJkxg5cqVMVcIoJWCRqOpQsQjzDTa/Pjjj1xyySX079+f9u3bs3HjRrKysqhVKz6GHK0UNBpNlaGq+D6cUFpaypQpU2jXrh3ffPMNL730EkuXLuXMM8+Mq1zap6DRaKoUVcH3EYgtW7bQr18/Vq1axd///ndefvllmjdvHm+xAL1T0Gg0mphRXFzMf/7zHzIzM/n++++ZOXMmCxcuTBiFAHqnoNFoNDHhm2++oV+/fmzatIkbb7yRZ555huOPPz7eYlVC7xQ0Go0mihQUFJCVlUXXrl05cOAA7733HrNnz05IhQB6p6DRRJXqVo5aExzLli1jwIABfP/99wwYMICJEyfSqFGjeItli94paDRRwijJkJNXiOKPkgwL1uXEWzRNlMnPz+euu+6ie/fulJWVsXjxYqZOnZrwCgGiqBRE5FUR+VVENvt81kREFonId95/I1/iT6NJEGpCSQZNZT788EPatGnDtGnTGDZsGJs2beKiiy6Kt1iOieZO4XXgcr/PhgOLlVJnAou9P2s01ZLqXpJBU5Hc3FxuueUWrrrqKtLS0lixYgWTJk0iNTU13qIFRdSUglLqczztN325FnjD+/0bQM9oja/RxJMF63JIsuiTW9VLMmgqopRi9uzZtG7dmrfffpvRo0ezdu1aunTpEm/RQiLWjuYTlFL7AJRS+0QkMd3vGk0YGL6EUqUqHavqJRk0FdmzZw933303CxcupHPnzsyYMYO2bdvGW6ywSFhHs4gMFJHVIrI6Nzc33uJoNI4x8yUAJItU2ZIMmoqUlZUxdepU2rRpw+LFi5k0aRIrVqyo8goBYr9T+EVETvLuEk4CfrU6USk1FZgK0KlTp8pLLo0mQbHyGZQplXAKQYfMBo8RXrps2TK6d+/OtGnTOP300+MtVsSI9U7hfeCf3u//CbwX4/E1mqhTVco765DZ4CgtLWXSpEmcffbZrF27lqlTp7J48eJqpRAguiGps4GvgJYiskdE+gHjgUtF5DvgUu/PGk21oqqUd9Yhs87ZvHkz5557Lg8++CCXXHIJW7duZcCAAYhFMEFVJmrmI6XUTRaHLo7WmBpNIhCp5u3RNu3okNnAHDt2jHHjxvHEE0/QqFEjZs+eTZ8+faqlMjDQZS40migQbnnnWDSob5aWQo6JAkgS4bThH9Z4H8OqVavo168fW7Zs4ZZbbmHKlCkcd9xx8RYr6iRs9JFGU5OJhWnHzMwFUKpU1H0MC9bl0G38Ek4b/iHdxi9JKD/G0aNHGTZsGOeeey75+fksXLiQmTNn1giFAHqnoNEkJHamnUiZlfzNXEkilXIrDEUUyd1CLHZBobJkyRIGDBjAjz/+yF133cWTTz5Jw4YN4ypTrNFKQaNJQKxMO2mpLrLmbcBd6pm8c/IKyZq3Aag4oTpVHL5mrtOGf2gqS6R9DHa7oHgphby8PLKyspg+fTpnnHEGy5Yt48ILL4yLLPFGm480mgSke6t0/F2ZKa5kjrlLyxWCgbtUMeaDLeU/hxpqGqtQ2kRzcL///vu0adOGV199laysLDZs2FBjFQJopaDRJBwL1uUwf00OvlO/AL06ZlDgLjO95lCBu/z7UP0RsQqlTZQ8jl9//ZUbb7yRa6+9lqZNm7Jq1SomTJhQ5QrYRRqtFDSaBMNsUlfA0u3Oyr2EuhLvmZnBuOvbkZGWggAZaSmMu74dQESdwmbKR/DsaGLhdFZKMXPmTM466yzeffdd/vOf/7B69Wo6deoU1XGrCtqnoNHEmED2frtJPS3FRV6hu9KxtBRX+fdW/ggnK3H/UNpoOIV9Hdw5eYUIlO+Kou103r17N3fddRcfffQRXbt2ZcaMGbRu3Tri41Rl9E5Bo4khTuz9duaV0de0wZVU0dtg/Gis5Lu3So+YGShaobE9MzNYPvwiMtJS8C9sFsz9nYa2lpWV8dJLL9GmTRuWLVvGlClT+PLLL7VCMEErBY0mBhiT15A56wNOslbmle6t0umZmUGfzs1J9mbUGom1eYXuciUzf00OvTpmRMQMFG2ncDj3d+pQ/+677+jevTv33HMPnTt3ZtOmTdx///0kJ1fO0dBo85FGE3X8TTBmVJ4EVaWf5q/xTHbz1+SU5xMo5X+mR8ks3Z7L8uF/tIBcsC7HUSirP+GYogJhNCIy6zvh5P6BQltLSkp4+umnGTVqFHXq1GHGjBnccccd1bpERSTQOwWNxoJIZd1a9VfwxZgE/1AglaOMCt2lzF61O+C9oLKSGfPBloChrGZEKyIpEo2I7HYZGzZsoGvXrjz88MNcfvnlbN26lb59+2qF4AC9U9BoTIikgzWQKcR3EgykQMwmUTP8V9q+IatOPjeIVHE/fyLRiMhsF6NK3JSunU+nSf9LkyZNmDt3Lr1799bKIAi0UtBoTLAyTYz5YEvQE6SVCQY89n7fewRSIMkW5hZfDCXjG+UUDuEW9zMjEo2Isnq0rKC4j+Vs4+Anz1L8225uu+02nn76aZo2bVp+vm4o5AytFDTVlnAmAatJ61CBu3x17XT34D95gWfiNlsR2ykQAbr+qTFrd+VXuJcrSahftxZ5Be7y5wQC+jGgYihrLAnHV+H7e22U4sJVdoyfs1/l8NoPOO6Ek3jzo4+44oorKl2TqPWWEg2tFDTVknAnAbvJ2RcnNXuCMcFk9WhZwSHsiwLW7sqnV8cMlm7Ptb1Xt/FLAioEV5Iw+po2AZ8xEvgr6O6t0pm/JqeSogzkS/D/ve7b+jWHsp/Hnf8LgwYNYty4cTRo0KDSdYlYbylRiYtSEJH7gQF4Fj/TlFJT4iGHpvoS7iRgtrq3wol5xqkJpmdmBqPf32KaoAbmkUWhyNQ41cWoq9vEZEI0U9BG2Gwg5eaP8XstLTrCoSUzOLppEbWaZNB24GSef36I5XWJVm8pkYm5UhCRtngUQmegGPhERD5USn0Xa1k01ZdwJwGz1f3RYyWmk3Wka/bkWygEAyfPEGinU2RRQykaWCloJ8rNn715hRR8u4KDn75EaUE+Dbv2Jq3bzRypVdv2umiG1lY34hGSehawUilVoJQqAf4PuC4OcmiqMZEoumZk3f40/kqWD7+I0de0iWvBOKfHwbqBjkEsezFHapW+f/9+Dn84gdx3nyCpXmNOvO1pGl94O1KrtuU7McKKjXIaviRi3+xEIB5KYTNwgYg0FZFU4O9Ac/+TRGSgiKwWkdW5uc4KgWk0BtGIr7cqGBdpE4zdhO70GXxltSJWppNwFbRSijfffJPWrVuTv2Mlx/3tn5x029PUOfEMwPqd+GY8g8cnYyiGaP3uqgOiHMY9R3RQkX7AIOAIsBUoVEoNtTq/U6dOavXq1bEST1NNSMQQxJELNjF71W5KlSJZhJu6NGdsz3aVzjNkz8krLA9D9Q9fdYqxUvYnIy0laPNNKJhldFtFX/mzc+dO7rzzTrKzsznvvPOYMWMG2wsbOPq9xvu5EwERWaOUCqr8a1yUQgUBRJ4A9iilXrQ6RysFTSIRqrIZuWATM1fuqvT5rV1bmCoG3/HGfLClPBQ2LcXF6GucO4nDmZQjhe87S0t1oZTHd2L1/owCdsOHD0cpxbhx4xg0aBBJSc6NG6cN/7BSCRDw7BZ+Gn9lWM+QKIuMQISiFOJS5kJEjvf+2wK4HpgdDzk0mmAJtasZwOxVu4P63Bgva96GCpnHeYVust7e4LjsRqzMXoFkWD78Iib36UCRu6xCAT//97djxw4uvPBCBg8ezHnnncfmzZu59957g1IIENlmPuH83qsa8TIffQE0BdzAMKXUYrvz9U5BkyiEY5I41aIHMsDP4680XYkaJiQzGqe6SK1dKyImJn/M8gqCDR81w+79LXvgfCZNmsTo0aNJTU1l8uTJ3HbbbZYlKgKt3M12SK5koV7tWra7lGDlTmRTVCg7hbjkKSilzo/HuBpNuIQTSWNVoiJZxDLZzi5Pwje72rhvJDJ1zWTxNXtFow7UTzs206XLg6xbt45evXrx/PPPc+KJJwYlo79M/mHFaakujhT9EVYczHPUpDwHndGs0fhhtwINJ979pi7NTX0KN3VpbhnL76TWkT/BZur6P29BcUnApL1Qs4H9358qKSZv+Wx+/3o+ZenpzJs3j169egW8j9PkRN+kwW7jl1QqAOj0OWpSnoMuna3R+BDIdmzXAMf3HmYlt8f2bMetXVuUN8hJFil3MlutOEuVwpUcfIVPpytYs+cNVDk12DF88X1/RXu2sve1+/h95dtcdGVvtm7d6kgh2I1tJ1M4q/1olRBPRPROQVPj8Y/u8cd3NdkzM4PVOw8ya+Wu8sgWowFOp1OaAJiaNVbvPGhrk7daiRo+Av/oI8CyFIZxPyc46fUQ7hi+9MzMoPDoEYY9NJxfvnqPOmnH88gLsxh9z81Bjx3syj3c3tUQ+RLiiYhWCpoajX9HMit8V5NLt+fa9hU2M2v4KhEzW7ZVJVVj4vGffOy6uQWzgg3VJu4/hlPHdHZ2NsMHDuSX3bu57757efzxx6lfv37Q49u9r0he40s0SognIlopaGo0E7N3BFQIUHE1GYoZwkqJ+DtFfXcEdWpZW3d9V67hRB/Z1Ujyvadd9JETx/RDs1bw7Ki3WfrB27Rq1YovvviCbt26OZIx0PM7XbnXpNV+OGiloKnROFkp+68m01JdpqYmQ3E4KbltNbZvobq8QrdtdEwkVq521WANf8bRYyXMWrmLZmkpTO7TodKYgUxQR7d/ye5FL/Nd0e888sgjjBw5krp164YlN4T2/DVltR8O2tGsqdEEsif7J3otWJfDkaKSSue5koWsHi0rOJyDHdsuoiZaBKqR5C5VtolmYK1YS44cJPfdJ/jtvfHUatCUk26bwtixYyOiEDTRQysFTY0mq0dL0+geV5IwpU8Hlg+/qMLKcmL2Dtxllc1N9WrXomempz+AGU4qdMYrFt7INnYS42SmpPyVm1KKIxsXsW/63RT88A1pF97Oibc9zWktY9PQRxMeWiloajQ9MzOY2Ls9jVP/aEuZluJi4g3tTc0MVhO00QPB6riCgGUmrHYtSd7ktmjjNJrI/xl9wzVL8n/h17n/5sDHz+BKP5VmdzxHo669Sa1Tu1qGb1ZHtE9BU+MJxs4cKKzRLrQ0UDkEK/t+qVIx6SfstNucv/LomZlBaWkpWWMmsDd7BiJCj4H/4vdTurPv92PaoVvF0EpBowmCQGGN4YQ9GpPmA3M3VMpijkU/YbvxDcyeZdu2bUy6rx8/ffUVl19+Oa+88gotWrSImpya6KKVgiZiVMXSwsESKKzR6jh4yizszSukUYoLEcgrqFyUrWdmBkPnrDcdOxZ1duzGByqYvdxuNxMmTOCxxx6jfv36vPnmm9x6662WBew0VQOtFDQRwUmBsupCIHOT/3H/d+ObiWz2niJdZ8dOWZsdszOBGdetWbOGvn37snHjRv7xj3/w7LPPcsIJJ4Qknyax0I5mTUSIRzhlImBV58iXQHH8/u8pknV27Go5WR3r3irdcvzCwkKGDx9Oly5d+PXXX3n33XeZM2eOVgjVCL1T0ESEmlRa2MDp7sjJO/A9J5KZt4GUtdmxpdtzGXd9u0qd0u5+aiZ52c9RdCCHfv36MXHiRBo3bhy0TJrEJi5KQUSGAv3xROptAu5QShXFQxZNZKhJpYUNApVvNkwzTgpfm0X0BFICTnw4VgrJLut6b15h+fgL1uXw0OyV7PvsNY6s+5BajU6g+S1PcNWg20JWCDXB91SViblSEJEM4D6gtVKqUETmAjcCr8daFk3kCLfYmBmJPnnYTbh2XdbMOHqshAXrckwL35m9A6e7FCtlLVSux+R7jcG/nnmTH9+ZTOnh32jQ6VrSzv8fkmrXDTkSqib5nqoq8TIf1QJSRMQNpAJ74ySHJkJEutiY1eThW4LaLoonFtgVk7MjLcWFu7SMo8V/KFCzOkd2E6jTJjNmytpOIRiK/LfffmPo0KFsmzkTV9MWpN86kToZrcrPC9Us6FRuTfyIuVJQSuWIyFPALqAQ+FQp9an/eSIyEBgI6JjnKkIki41ZTR6+JagDRfFEG6fJXv6sH3UZ3cYv4WhxxYnVf3K0m0Cd+nDMlLWdInviurYUf7ec1j0Gc+jQIU6+6FaSMnshtVwVzgvVLFgTfU9VjZhHH4lIY+Ba4DSgGVBPRG71P08pNVUp1Ukp1Sk93XmRMU31wK5chBWxjnbyLSYXbGS+k8nR7hyrSVlBpSgoo7bRT+OvZPnwiyyL36UnHeWNxwbTp08fWrRowZo1a3juqfGkplQsYBdOJFSSRQ5DdfY9VTXiEZJ6CfCTUipXKeUG3gHOi4McmgQmLdUV+CQTYr3i9J1wrSZbX1JdSXQbv8SRPd9qojRMZf5howY5eYUMnbOekQs2mR73v1YpxbHNn7H1uQFkZ2czceJEVq5cydlnn11J8VnVbQqEYQozy5Surm0tqyrx8CnsArqKSCoe89HFwOo4yKFJUKzKUzshnivOQOakJPGUorYy3/hPjoG6scEfTXb8UcCslbvodEqTShO477U7f/6JI5+9QP4P67jwwguZPn06Z5xxRqXzwzXJWeVqJIuEpGQ00SPmOwWl1CpgHrAWTzhqEjA11nJoYoOT5C5/rMpTp7iSLFfHnuPRW3E6eQ7/VXVaiovGqa7yFXbDui7T5wLzFXjPzAx6dcwg2cfkYpjIjEglu5LXCizNaVeffSK962zg0Fv3Ufbr97z88sssWbKkkkKIFFY7uDKltEJIMERZFL5KJDp16qRWr9abiWgSjfBPsz7CKa7kgCvD04Z/aGpeEWBynw7lcsYq+ijY57B6l3bP9dP4Kx2N63uNUY67oLjEtBOcgX+Lzi1bttCvXz9WrVrFlVdeycsvv8zJJ58c6DWERbfxS0KuHqsJHRFZo5TqFMw1OqNZE7XY8VDDD+0S4aya2E/M3sF+JpvdAAAgAElEQVTQOeuZmL0j4srB6XMsWJfD6Pe3WEZFBZvgZ1cew1AuOXmFuJLs3dyGDG53Mds+eYuxY8fSsGFDZs2axU033RSTAnbRyGPRRAdd+0gTtbpFoYYfBlP7x662T6Rw8hyGHL4KwcB4l8HWNHLqNHeXKVJcSbYRUHm7tnH7tRczatQoevfuzbZt27j55psRbwOfYE18wRIph7Um+uidgiZqseOhlr4IJhEulN1IsKaytFSXqXnG9zkCFb0zSkc4fS7j/k6T44rcZeWmNd9rytxF5H/5X37/ZgHJ9Rrz/vvvc/XVV5cfj2WGcSTzWDTRQysFTdTqFoXbcMbJBBKsQgt2ErSKhHIlS4XnCKRAjXdpZ/7yVxTBJMf5mtYM+33Rro0c+OQ5Sg7to377y2nd8+4KCgF0hrGmMlopaKJm74106QszImGnt5sErSKh3KWKIXPW88DcDdzUpbntqt7uXTpRUsbqP1mEUqUqlanwv/89553E4KEPkrf2I2qlncQJNz5B4zMyGXFtu0rj2ynVYPswaCVSPdBKQRPVyTvQij/cySVYhRbsziLQDqBUKWau3EW305tw8GhxJYXTONXFqKvbVKia6vusgZRUMDsLgIULF/LwXXfx+759NDv/Bmqd04eT0xtbvlcrZZaW6rJUVoAualeN0SGpmrgRasiq2X2cKpZgQyOtzrfCWM37h4GaPatdYTqrMFUrcnNzuf/++5k9ezZt27ZlxowZdO7cOeB1Vr+DOrWSTJ3mRta203eodxTxJZSQVB19pIkbkYh6sistbRZRE2wEUPdW6UHVNTLMOzl5heVJZlbParccM6thZHqeUsyePZvWrVszb948Ro8ezZo1axwpBLCOCso3UQjg2Tk53VXFIjJME3lszUci0gC4DMjA83e6F09V08MxkE1TzQk36smuvPacb3bjLlXln2fN2wCYm8q6t0ovz3PwVyzz1+Q4apLji28OgWFWsXsmqx1DILPMnj17uPvuu1m4cCGdO3dmxowZtG3bNkhpzU18VuUzmtnsFAxFZrw/7cSumljuFETkFmADcDnQBGgKXAFs8B7TaMLCruCbE6wmnf+u2lWuEAzcpYoxH2wBKhaxy+rRkvlrckxXs4HCTJ1gTIKpta3LcxiZyXbX+1JWVsbUqVNp06YNixcv5umnn2bFihUhKQQr7HZUgYrxGe9Pl8mumtjtFP4NdFJKHfT9UESaAl8Bs6IpmKbq4tSOHG7Uk3U9HfPzzXINQulZECyBfBKGLd6qDEZOXmH5Crxtg0IGDBjAsmXL6N69O9OmTeP000+PiJy+OAk+sNpNGO+vJrZorQ7YKQUBzAyLbu8xjaYSweQBhBr1FEzvY398zRsQuGdBKJ3VgsVQgnbj7Tl4hIFZo8j/ciZ169Rh2rRp9OvXL6olKuwix4xjVopsb14hk/t00KUtqiB2SuFJYJ2IfAzs9n7WAo85aVy0BdNUTYK1Iweb5WpXJA7wmjUUhe4y0+P+SspqIlZ4+ia7kqWSKSqSpKW4yp/fKlmtOPdnDnz8DMX7vqPxWeeyadHbZGQkhk0+UJ0qiG6eiibyWCoFpdQMEVmAx4+QgWd3sBIYrZT6LUbyaaoYoWQYBzNp2Nn5jTBQgKy3N1iWqfZVUnZZw3mFblxJQr3ayRX6KdvhShJKlMJJpLcAo69pU/6zf7KaKnGT/9Vc8lfOJalufY675iHqtTo/YRQCBDYB6tIWVQ/b6COl1AFgZoxk0VQDgrEjh1J3x0q5CFSKkbeyefveJ1CzGneZ4vjU2jx+XUsemLvBtHNYsghlSpUrtaFz1puO6S/vLV1bmJrUemZmcPY9L7D97Qm4f9tFvTbdaXxRf5JTG5GRlpJQsf96N1D9sFQKIvJPpdQb3u9PAl4HOgFbgH5Kqe9CGVBEWgJzfD76E/BvpdSUUO6nSSyCcR6HErLoVOn41wGyO9+JfdyQx0mynZ0ygsr9DXw5evQojz76KJtfnkJy/aak9x5F6unnAJTnPwyds9407NXJRBwNhaJ3A9ULu+S1+32+nwy8B5wAPAe8FOqASqkdSqkOSqkOQEegAHg31PtpEotgSiSHErIYbPJZoPN9k9wCNZV3+mxZPVpaRmI09vaeHjpnfaXktCVLlnD22WczefJk7rrrLt748AvO7HgBUDGXwV9xOU3408lkGic4rX3USil1o/f7t0XkXxEa/2LgB6XUzgjdT5MAOF05hhKyGKy5wu58f/OVk6byTp6tZ2YGq3ceZNbKXRUmcFeycKTojy5pxqR89HA+r08Zy2fvzqZW45NoM+BpLhvwD3pmZnDz+a0cldpwEj6rk8k0TrBTCieLyNN4FinHiYhLKeV2cF0w3AjMNjsgIgOBgQAtWrSI0HCaRCLUPIVgzRVW59s1k/f1EYQyYY7t2Y5OpzSpoIyOHiupVE/owNbl3P7MLZQcyaNhl1406nYzR1x1KpiEnEz4TmL/dTKZxgl2k/sIn+83Aw2AgyJyIvBxuAOLSG3gGr9xylFKTQWmgqcgXrjjaRKPaDkpndrN7ZrJB1OMzgp/ZXTa8A/Lvy89msfBz16hYPsXuNJP5cTrHqXOSWeWH/ddwQfKl3Aa+6+TyTROsA1Jtfh8P/BQBMa+AlirlPolAvfSVFEi7aR0GtG0YF0OSd6Kpv5Ea5JslpbCnkMFHN26jEOfTaXMXUij82+lUZfeSHLl/4rGBG62ozJ8DHZOa3+6t0pn5spdpp9rNAZ20UfjgJ+VUq/4fT4UOE4p9UiYY9+EhelIowkVJ3ZzQ3E48SE4wenO5I72DRhy33COfv8NtZu1pOkV91P7OGvTaLLX8R2pHdXS7blBfa6pmdiZj64FzCpsPYunUF7ISkFEUoFLgTtDvYdGY4YTu7mdL8FpLwdDEeTkFVaIDDLbmZSVlfHKK6/w8MMPU+IuofHFA2jwl6uQJOsieeBxfPuW5Qh3R6V9Chon2IWklimlKtUKUEqVEmbtI6VUgVKqqVIqP5z7aKo3Vj0R7Ejzhnz642sSsvMlOFUIWfM2lJt37EJEv/32W/72t79xzz330KVLF7Zt3cIpF/QOqBAMIhk2Gm5VWk3NwE4pFIlIpfKL3s+KoieSpiZhNfGHElO/YF0OR4pKKn3uSha6t0p3nI8QiDEfbAlYDynn4BEmTJhA+/bt2bRpE6+++iqffvopG/Jqm8poR7CNh6wINsfDIBTlrKm62JmPRgEfich/gDXezzrhMRs9GG3BNNUfO6ewlW/ggbkVm+X4MjF7h2m9I1eSMH9NTlD5CHaYleD2pfjXH/k9+zke3vsd1113HS+88AInnXSSrYwpriSa1KtjGWXkWz47VDNSKL6JUEqRaKo2dtFHH4rIHjyRRlnejzcDNyqlAhd30WgCEEovg1KlLCclq2sKLCqmGiSL0KtjRgVHtP/EachrZ39XJW7yV/wv+avmUa9BI/58879Ze/I59H5jG1k9ymxzDgrdZWT1aGlbIiOcCdn/mSb36eDoHjrhreYRqCDeBkB3WdNEhVB7GfhOSr6TnVWIaSBKlWL+mhw6ndIEoNLK+IG3N1Bq1bnHy7GcbRz4+FncB3Zz2rlXUHLO/3AspWH5PYzJ3O65RryziV4dMyrsauye3SBQ9FM4q33tnK552IWkvotNb3Gl1PVRkUhT7bCatOySqexKWoNnUnJapqLIXRqwIU+hu5Qhc9aTbKJY7BRCWXEheZ+/xeE1H5Dc8DiOv2EM6k8dKznrCt2ljPlgi21J7UJ3KUu35zLu+naOKryCswk/nNW+TniredjtFJ6PmRSaaovdpGVX5sKYrKzKVTdLS3FcpmKIg1LWBsHsNAp/WseB7Ocpzf+FBn+5krQL/klSnVRLBRTIFwF/VGR1WuHVyYQfzmo/3JapmqqHnU9hcSwF0VRP7CYto/+BlenDrly1Xd8C/zIVgUpZB0tp0REOLZnO0U2fUatJBifcPJ66zc1SeoLHd8J3MiE7mfDDWe3rfgk1j0gVttNoTAk0aQVKyrKblKwme//JLtjdgh0F367g4KcvUVqQT8OuN5DW7SakVu2I3FuoWHLCyYTsZMIPd7Wv+yXULLRS0ESVSNikrSYlu8nO34+R6koKGIXki2GCSkt1caSohKLfD3Lws5cp2LGc2sf/iUuHPM2OknSc3FGAuq4ky77RBgrKHd6+uyW7CdnJhK9X+5pgcKwURKSOUupYNIXRVD+iaZM2JrUxH2wpt9fXqZXE6p0HK0Tw5OQV4koSXMkSMOkMPMluE3u3p2dmBkophox9lhenPEpJcREtevRj0mMj6d35VEeRT8kiTPpHe6CyGcy3PIZBsOGeTid8vdrXOEVUAMeaiHQGZgCNlFItRKQ90F8pdW8sBARP6ezVq1fHajhNhIlmT2F/RzaYT7YAaSkuRAI7fNNSXKwfdRk7d+7kzjvvJDs7m/POO48ZM2bQqlUrx3IYZJjkOtiFpgpEpHS3RiMia5RSnYK6xoFSWAn0ARYopTK9n21WSkXGs+YArRQSl3g3kXfSlczAmGx9i9mZosp4sPlOhg8fTmmZ4qRL+lF21qVkNK5X4fn8n/3Upims+OGgqUIy6+VsJXtGWkq5Ez4Q8X7/msQmFKXgxHyUpJTaKRXrxZgHj2tqFIlQAiGYJCrfXstWIZ/uA3s4vOh57t25mcxzL+T3jndQUu84oOLzQeUkt73eOk1mmJmFwjWtJcL711Q/7AriGez2mpCUiCSLyBDg2yjLpakC2IWbxgorh7V/yTuzyda3QJwqLSH/q7nse+1e1KHdvP7669S9+tFyhWBgPJ/ZswfyVvgrsJ6ZGYy7vh0ZaSkInh2CWeluq4J0ifD+NdUPJzuFu/H0UGgB/AJ85v1MU8MJJikqXDOH1fVWq+1eHTNYuj03oPMVYNRrC9k+dyLFv/zAuZdcyTtvTefEE09klE/7TF9CzXkwU2CBHMB2uwFdgkITDQIqBaXUr8CNkRxURNKA6Xia+Cigr1Lqq0iOoYk+TsNNRy7YxKyVu2wb0dhhNTGu3nmQpdtzKXSXlpenCKY9ZVFREV+//QJbXpzAcccdx4vz53P99deXj2nlsA4FIwchWOVotxvQJSg00SCgUhCRaZj831BKDQxj3GeAT5RSvUWkNpAaxr00ccKJTXzBupwKCsEgmNBLq4nRt99wqVKVSmTY8eWXX9K/f3927NjBHXfcwaRJk2jcuHGFMYNVCK5kobRUmeYuKGDO17uZ883u8rBYJ8rRbjcwuU8H0/dv9I7QzmdNKDjxKXwGLPZ+LQeOB0LOVxCRhsAFeMJcUUoVK6XyQr2fJn44sYnbTa6BzByGLd2pucaJPf3w4cMMHjyY888/n2PHjpGdnc2rr75aQSE4kc0X49nr1a5lm8zmLlOV8iQCyWzXLc3s/RtVVoNpTqTR+OLEfDTH92cReQtYFMaYfwJygde8OQ9rgPuVUkf9xhkIDARo0cK6ubkmvgSyidtNrnZmDru4fzuM6qlmJprs7GwGDhzI7t27ue+++3j88cepX7++pWxOlJFv+OhpFj4IJzJbEWg35v/+u41fovsfaMLCyU7Bn9OAU8IYsxbwF+Alb97DUWC4/0lKqalKqU5KqU7p6en+hzUxJJx2jHbRQcbEZnZ/qwqogUhLdVVq4/nQrBV0v/oGLr/8clJTU/nyyy955plnLBUCmLeu9MffVBaqLd/uOqcRSgba+awJFyc+hUP84VNIAg5iMokHwR5gj1JqlffneWHeTxNFwo2FN1vpCnBL1xblTXLM7h+KQgDIK3BXMFcd3f4luxe9zPdFh3nkkUcYOXIkdevWdXSvOrWSyuVonOriyrNPso1oCtQDwpUkIFQwITnJSwimRIV2PmvCxVYpiCdjrT1gLA3LVKAU6AAopfaLyG4RaamU2gFcDGwN556a6BFuO8ZAtXms7p8kYNbbJi3FxbGSMsuJ17ik5MhBDi16mYJvV1D7hNNp+o/HWFq/DZ22HQgot5npqshdRqdTmjC2ZzvHz5qW6kIpyC90m7b1jIYTWPc/0IRLoHacSkTeVUp1jPC49wKzvJFHPwJ3RPj+mggRCXOE3UrXym5fpqhUwC7Flczoa9oAFYvg+aKU4uimzzi0ZDplJcWkXXg7DTtfhyQlO97lhKMInazqo2nb1xVRNeHiJHntaxH5i1JqbaQGVUqtB4Kqx6GJD9E0RwTKBahXuxb16tSy3GH4KwV33n4OfvI8RTvXU+fkNjS94j5cTSpOhk4m91jb5SNdv0hXRNWEg12P5lpKqRLgr8AAEfkBj1NY8Gwi/hIjGTVxpHur9Ar5AL6fh0ugXID8QjfrR11mesx3glZlpRxe+yF5n78BkkSTy+6hUeYVlFUqdlH5WjOioQitJn5dv0iTaNjtFL7GEyXUM0ayaBKQpdtzg/o8GJxMznbHcvIKcf+2mwMfP8Oxvdup+6eONO0xiAZNT2Lc9e0cd2bzJ9J2ebuM7nB9NhpNpLFTCgKglPohRrJoEpBomlLscgECTcJDL/oTdz88it+++C9JrhSaXvUA9Vr/jSb1ajPq6jYB+zv7YraKN5RKuCadQBndOoRUk2jYKYV0ERlmdVAp9XQU5NHEGf8JMi3VZerQDbTaNptooaIDtHur9AplHwwap7oqTOz+97q++THenDCc3zZuJK3NBdTvPpDkemmkpVS8zonT1cp8M+76do57GtgRKKNbh5BqEg07pZAM1KdyFWJNNcVsgjRrYxloFW92n6y3N1SI0c/JK2TO17srtbB0JUn5xL5gXQ6j399CXqFHKZW5j7F5wWus+PpdGjdNZ/ik6Sw4lFE+Tl6hu5I9PpDTNdrmm0AZ3TqEVJNo2CmFfUqpx2ImiSbumE2Q7jJFWorLMgoomPv4Y/WZUQvId7Is2r2ZAx8/S8mhvdQ/+zLO7DmIz4vrU+iuOOkWukt5YO4GwJmjNtrmG6udgJHRrUNINYlGQJ+CpuZgNRHm2UQBBXMfp+TkFTJkznoAyo4VcOj/XufIuo+o1egEju8zlpRTO/DrMeCY+TilSjmO4HFqvgk1bDRQRrcho1YCmkTBrvbRxTGTQpMQ2NUpikS9o2Ap/OEb9s4YxJF1H9Og07Wc1PcFUk7tUD6G3ThOO5CZ1TgyK//tX0/JaeVRs9pFk/t0sM2M1mjiiYRZtSImdOrUSa1evTreYlR7FqzLYeic9aaO0WCbyYdTv6i0IJ9DS6ZzdMtSXE1b0PSK+6iT0ar8eIormXHXeyZVu3EE+Gn8lY7ktdsFWJXvDuadaDTxQETWKKWCShR2ktGsqSH0zMwoN9v4E2xZC7AuRWGFUoqC7V9y8LOXKSs6QqPzbqLRuf9AarnKz/GPTAIYNne9eZ2kVFflDy0oKC4p3wWMfn9LhefQYaOamoRWCpoKZEQoRLJnZoZpKQorSg4f4OCilyj8biW1TzyTpn3GUvv40yrIZWXHt9rsOtkEL1iXQ9a8DRWiq/IK3Z5oKe9zWPkdkkRYsC7H0h8Q6fIVGk0s0EpBU4FIhkg6WUkrpTiy8VMOLX0VSt007t6XBp2uRZI8dn5XsjCxd3vTydQwU1nN/XmF7oBtKSdm76iUJwF/REH1zMywLIlt59DW5Ss0VRWtFDQVCBQiGczqN1D3Mk8Bu2cp2rmROs3begrYNW5W8SSb1b6TRjzG+Dl5hWTNqxyqaqe4jGPG+Q/M3VApr8IqpyHa+Q96F6KJFtrRrHGMmQPZcPrareT9J0dRpeSv/oC8z9+CpCQad+9H/faXIWIeDGc4dP0nQqe9m32pVzuZtNTa5fcoKC6xNHH5O5JPG/6hqY4yHNq+8ln9r3Lq/LYj2N+DpuaiHc2aqGBMdmaTsN3qt2dmBqt3HqxQ+6c4dycHP3mWY3t3kHL6OZx81b0U121iO77Rd9nfHGNVdjtZpNKK3uBocSlHi//YPbiShOQkodTPU50kVDKZ2eU0OI24ikS4ri6ip4kmofRoDhsR+VlENonIehHRW4AExjdG3wo7E8zS7bkoQJW6yVs+m32v34/70D7O7PMIR79bRfqJgSexZmkpphOhonKGZYormUn/aB/wngbuMkWd5Mp5mslS+bOsHi1x+Z3rShayerR0ZMpyJQtHj5WE1OvaFx0NpYkmcVEKXrorpToEu7XRxBYnk53d6ndvXiHH9n3LvteHkP/lLFJbdaNZ/5dwn3ouIhJwIjOc3FbnKTBtap+WEkQ4qrus0me+5TYqDWjys5MJ2V2qyCt0B50A54/V+9ZF9DSRIJ5KQVMFcDppm1FQUEDxijfY/9aDlBUdIb3Xo6RfnUVyaqPyCcxuIvOd5K3OM0JVm6WlsDevkInZOzyF9K5pgyspvEotOXmFFVb0E7N3VKrXZCgPu2xwK6yyrhesy6Hb+CWWOwonWdgaTajESyko4FMRWSMiA81OEJGBIrJaRFbn5obf0EUTGk4nbX+WLVvG2Wefzd4v3iYt83Ka9X+R1DO6ABUnMLMJzpUspKW4Kkzy3Vulm5qKurdKNy1BATDxhvYVdhG3dm1hOpna7Sp8V/R2Zhuz57BrNep7rS9OSmqYlc7QTmZNpIhL9JGINFNK7RWR44FFwL1Kqc+tztfRR7HBqgdCMJEu+fn5PPTQQ0ydOpXTTz+dadOmkZ/254A9DYzjaakujhSVVFiRu5IFVMWqqkZRuaXbc4MqQeH0Gc3uB9iOFUp0lL+cuqSGJpKEEn0U95BUERkNHFFKPWV1jlYK0ccuzBGc5S3U3bee3E+e59BvvzJs2DDGjBlDampqUHJYTYpmZHhNRlZ/wcZxJ3H8dhFWBlP6dAhKQQZ6FrP3G81QVk3No0qEpIpIPSBJKXXY+/1lgO7bEGfswhyXD7/INg/hSP5BDn42lYJt/0ed9FMZ9/p7PPQ/V4UkRzARNHYrcqFi4lqgbGKjfPXpIz4yDWdNFgm694FV2WzDOe50lwLaiayJHfHIUzgBeFc8IX+1gP8qpT6JgxwaH6xWtHaT9IRPtvPbhiUc/OwVyo4V0Oivt9Coa2/ey0nloRDlCCYpzapzmZkt3zeO3y4b2Cq/oVQpuo1fQlaPlo7NOE6USLfxSwIqBO1E1sSSmCsFpdSPgPNAcg0Q3bIGC9blWDpFrVaoe/bsYf2MERT+8A21T2pJ0yvuo3b6KYBHwdgVirPDqs6QP8ZEaTbx2ik4syS4IXPWM/r9LYy+po1lQUDj3GDrFwVqoGOndAV0CQtNzIm7T8EJNd2nEO2yBla2bwEm9+lQYYyysjKmTZtGVlYWR4uKaXT+/9Cg49XlBewiId+CdTm2ZbfNymc7eR47Z7Ehc6+OGcxfkxPQ6Rwpp692LGuiSSg+BZ2nUAWws/dHArvEMCMkdMG6HP7y4FvUO60Dd911F6e2OpsX5i/hhPN6VVII4coXSJEcOVZie9wujt9uZV7oLmXp9tzycE8rjJ1QJNA5B5pEQyuFKkAsmstbkZNXyINz1tL/wX+z/pn+HNv/A00uv5fiyx7hxJNPKY+eiaR8C9bl2PZhcJcqxnywpdI1RsLXxOwd9OqYYRrHH8hhuzevkJ6ZGSwffpGtYgg1G9kfnXOgSTR0QbwqgNPm8qFiZ8cvzv2ZfR8/Q/G+70g5owtNLrubWg2Oo6ikrDwyySqU05AvWH+Ikx2Gr9Iw8xPMX5NjOrkG8ln4vlO7c50UoHP63IH8DhpNLNFKoQoQycY3/hgTV6G7tEJ1UVXiJv+rueSvnEtS3focd83DpLb6K+JTKM7YCdjJF0qzGac7DKOBTpJJVdRCdykPzK3cP8GuVaiRIe3bmKdXxwxmrtwVtJy6yY6mqqKVQhUg2Ph4p/hPXKVKIUBRznYOfPws7gO7qNemO40vHkBySsNK1xurajv5zEIuA62ynYalGufYhZEaE7G/fKOublPps+6t0is4mY0dR+NUl6k5y26npstba6oqOvqoBuMf+VJWXETeF29xePX7JDdoStMeg0g5/RxPYTmhQttKp9FFgRrTmOG0N4FTGqe6KHKXBczWNttxAKSluDhWYn69VUc6K6WmM5M1saRKZDRrEgdf80fhz+s5+MlzlOT/Qv3Mv9P4wttJqpNaHv4Joe1UQvGH2Jl4nBSZ88dslV/oLmXMB1sqKAurHUd+oZvJfTrYlvpw2gBIZyZrEh2tFGoAVg7PZmkp7N6fy6Glr3Jk46fUatyME24eT93mbcuvTa1dq3zyi1QymhN/SM/MDCZm76g0oUdyX2sX4eRLs7QUW2ewXQMgX3l1qKmmKqCVQjXHzuF5QZ2feWpGFiVH82jYpTeNut1EkqtOhevDDXu18zcEis4JtgdziisJkEoKqE6tJPIKnSmAyvcMPJEHagAUjSx0jSZaaKVQzTFbxR7JO0D/22/lwMZlnPrn1jS87HHy6zU3vT4S5g5/xTAxewerdx6s5NQdOmc9q3ceZGxPj63frteyGeOuP7vCOIHKf1spi2QRypRyPJFbmch0VrKmKqKVQjVmwbqcCpOVUoqjW5dx6LOplLkLGTt2LA899BAul8uylEakwl79dyuzVu4y7Ww5a+UuOp3ShJ6ZGUEpBCCgmSvcXhFWRDNkWKOJNVopVFOMidig5PdfOZD9AkU/rqFOs1ac1echHnnkjvLj0Qp7Ne5pZnM3wyit0TMzw7Y4nT922cdgnyAW7jObvbvurdKZmL2DoXPWa9ORpkqhQ1KrKUa4qVJlHFn/CYeWvQaqjLQL/snxXa6h9zmermXRqroabAcyf6xyA8wwW91Hs6psIKJdwFCjcYoOSdWUszevEPfBHA58/CzH9myh7ikdaHL5YFxpJ9L7nBaV7PmRyrY1MxWFgplCSBIoU568ARHIK3CTlupCKRg6Zz0Ts3fQvVU6Czfsq+AriHU2sU5c01Rl4lYQT0SSRWSdiCyMlwzVlZKSEtSG99j32r24c3+m6RX3c3yf/+BKO5GMtBSWbs81nYjmW4YAABZ8SURBVLT8i8yFgtmEaIYA3U5vEtS9G6W4yEhLIb/QTWrtWtzStQVF7jLyCt3lTe5nrtxl6jz2rdrqWzyv2/glEat4ahDtAoYaTTSJZ5XU+4FtcRy/WrJhwwa6dOnCzk+mUe/0TpzU/yXqn30pIhKwfPShAnfYE6TTiU8BswacG9S9DxW4PSYx/lAAwWQ9+zbZ8b2PWcXTcBSHVcSWTlzTVAXiohRE5GTgSmB6PMavjhQVFTFy5Eg6depETk4O8+bN463Zcznl5IxKJZnTUl2W9wm3R4PTic9wDAdyEEeSZmkpjnpTOFUcVugeCZqqTLx8ClOAh4AGVieIyEBgIECLFi1iJFbVZMWKFfTr14/t27fzz3/+k6effpomTTymGTMbtl1sQbgmDiftNH0nSKftN8PFGHPonPWmx32fO1yfQDQjuTSaaBNzpSAiVwG/KqXWiMjfrM5TSk0FpoIn+ihG4lUpjhw5wiOPPMJzzz1H8+bN+eSTT+jRo0fA6/JtsnvDNXFYhWf6Rjr5h2v26phR6fisVbtslVcw+LbvDNT7ASLjE9A9EjRVlXjsFLoB14jI34G6QEMRmamUujUOslRZFi1axMCBA/n5558ZPHgwTzzxBA0aWG68KmAVJioQEROH3YTotCHOLIseBnYki3BTl+a2obZOEs2i3dRIo0lkYq4UlFIjgBEA3p3Cg1ohOOfQoUM88MADvPbaa7Rs2ZIvvviCv/71r0Hdw2xiFOCWri2ivrp1apoJNr/BaR6Ak1pMZlVOtU9AU1PQeQpViHfeeYdBgwaRm5vLiBEj+Pe//03dunWDvk8oNu9AyWBOk8WcmmYC+RpcSUL9urXIK3AHbbM328n472B8q5xmBHn/eCbOaTThEleloJRaBiyLpwxVgf379zN48GDmz59Phw4d+Oijj8jMzAzrnsHYvAO1lgym9aRT04yv4jI7312mSK1di3X/vszRMwTCqhRHsEXtdBtOTVUnnnkKmgAopXjjjTdo3bo1Cxcu5IknnuDrr78OWyEES6AwTidhngbBhGv2zMxg+fCLkEpHPEQyGSxSCWfBvAuNJhHR5qMEZefOndx5551kZ2fTrVs3pk+fTqtWreIiS6AJM5gJNRTTVaQdv2bmnUiNobOZNVUdrRQSjLKyMl588UWGDx+OiPD8889z9913k5QUv01doAkz2Ak12HDNSJamtjLv9OqYUaEeVKhj6MglTVVHm48SiB07dnDBBRdw77338te//pXNmzczaNCgoBVCpGv7BDL5RDuDt2dmBuOub0dGWkql7OxgsTLvLN2eG5ExdDazpqqjdwoJgNvt5qmnnmLMmDGkpqbyxhtv0KDtRdw8+1v25m0OKoIlGo7OQCafWGTwRioZzM68E4kxdDazpqqj+ynEmXXr1tG3b1/Wr19P7969ef755/lqb0nI9fiNPgr+xKM1pK/tPrV2MgXFpSj+SDIz2m7GkkR6PxpNtAmln4I2H8WJoqIiRowYwTnnnMP+/fuZP38+b7/9NieccEJYESyJ4uj0Lyp31KsQAEqVYubKXYxcsMnuFlFBm3c0Gnu0+SgOfPnll/Tr149vv/2WO+64g0mTJtG4cePy4+FM7PFydPpH9BQUlwQscjdz5S6Wbs+NqXlFm3c0Gnu0Uoghhw8fZsSIEbzwwguceuqpfPrpp1x66aWVzgtnYo9HE/lwuq3Z+TyilRns1HegM5M1NRFtPooR2dnZtG3blhdffJH777+fTZs2mSoECM/EEclIHac47bZmhZlpLNyeBk6xitSK1fgaTaKhdwpR5sCBAwwbNow333yTs846i+XLl3PuufYdx8I1ccSybPOCdTkh92H2xd80Fos+x3aRWrrPsqamopVClFBKMX/+fAYNGsTBgwcZOXIkI0eOpE6dOo6urwr1+I1J1Yq0FBf16tSqFH1khr9pLBYOc7uJP9jxtalJU13QSiEK7Nu3j0GDBvHuu+/SsWNHPv30U9q3bx9vsSKOndkoxZXM6GvaBKxGapzrbxqLhcPcbuIPZnxdBE9TndA+hQiilOK1116jdevWfPzxxzz55JOsXLmyWioEsF+1W/kxnPo8zPwqrmTh6LGSiGVqWykYY6Xv1K+ji+BpqhN6pxAhfvrpJwYOHMhnn33GBRdcwLRp0/jzn//s+PqqaH6wWk1npKXYyu7ENObvV0lLdXGkqIQ8byvRSKzG7SK1gvHrJEpuiEYTCeLRo7ku8DlQxzv+PKXUqFjLESlKS0t54YUXGDFiBMnJybz00ksMHDgwqHpFiWh+cKKkoh3+6qs8uo1fwqGCir2lw3X8Oinf4eTeugiepjoRj53CMeAipdQREXEBX4rIx0qplXGQJSy2bt1K//79+eqrr7jiiit45ZVXaN68edD3iUeki92k71RJGd+P+WBL+YRdp1Z0LJLRWo1HwqEfj9wQjSZaxNynoDwc8f7o8n4lfgEmH9xuN2PHjiUzM5Nvv/2WmTNn8uGHH4akECD25odAMfjB2siL3GXl3+cVuqMSz29n/4838cgN0WiiRVx8CiKSDKwBzgBeUEqtioccobBmzRr69u3Lxo0b6dOnD88++yzHH398WPeMtfkh0M7EKu/ATEkFu8sZuWATs1ftplSpoArjBVqNx9snUxVCiDUaJ8Ql+kgpVaqU6gCcDHQWkbb+54jIQBFZLSKrc3NzYy+kH4WFhTz88MN07tyZ3NxcFixYwP/+7/+GrRAg9kXa7HYmC9blWLa/NFNSwexyRi7YxMyVuyj1VuYNpjCe3Wo8GtnHke5JodFUFeJeOltERgFHlVJPWZ0T79LZn3/+Of379+e7775jwIABTJgwgbS0tIiO4b/S7d4qnaXbcyOy8jUrVufvtAXPRAvmtYsEmNynQyUZgilFffqIj8oVgi/JIvww7u/BPFLIMjjBKpdCm4Q0VY0qUTpbRNJFJM37fQpwCbA91nI44ffff+eee+7hwgsvpLS0lMWLFzN16tSIKwT4o0n9T+OvJKtHS+avyYnIytdsFX2kqARXcsX9gLEzsVr5K8wjoYLZ5ZgpBLvPnRJpn4zOO9DUZOJhPjoJWCoiG4FvgEVKqYVxkMOWjz76iDZt2vDKK68wbNgwNm7cyEUXxaYJSyQnJbN7ucsU9WrXMjXFWPkxMiw+D8bJmizmhimrz50SaSe0zjvQ1GRi7mhWSm0EMmM9rlN+++03hgwZwqxZs2jdujXz5s2jS5cuMZXBavLJ8dr8gzFhWN0rv9DN+lGXVfo8lPBKp07Wm7o0Z+bKXaafh0OkQ0J13oGmJqPLXHhRSjFnzhxat27NnDlzGDVqFGvXro25QgD7ySdYM1Kwq+hohleO7dmOW7u2KN8ZJItwa9cWYbflNJO5V8cMJmbvCMlRrLuzaWoycXc0OyHajua9e/dy99138/7773POOecwY8YM2rWLff9gAzNHpy/BOFBrotM0Es8c7xBXjSYShOJortG1j5RSzJgxgwcffJDi4mKeeuophgwZQnJycuCLo4gx+QyZs970uBPbtu+k1ijFRV1XEnkF7rhMcLGeYCORIa7zDjQ1lRqrFH788UcGDBjAkiVL+Nvf/sa0adM444wz4i1WOT0zPeaPUGzb/ivlvEI3Ka5k05DSaBNqXadwFIl2FGs0oVPjfAqlpaVMnjyZtm3bsnr1al555RUWL16cUArBIFTbdqxDKu0SvUKRJdxktEQuiaHRJDo1Sils3ryZ8847j2HDhnHxxRezZcuWoCuaxpJQnb6xXCkHmsBDkSVcpaYdxRpN6NQI81FxcTHjxo3j8ccfp1GjRvz3v//lxhtvRMKMj48Fodi2YxlSGch+H4os4Sq1cHtcazQ1mWqvFL755hv69u3L5s2bufnmm5kyZQrp6enxFiuqxLKUc6AJPBRZIqHUtKNYowmNxLSbRICCggIefPBBunbtyqFDh/jggw+YNWtWtVcIENtSzoHs96HIEqr5Rxex02jCp1ruFJYtW0b//v354YcfuPPOO3nyySdp1KhRvMWKKbFaKTvZCYQiS51aSeX3bJzqYtTVbQJGKyVa9zqNpipSrXYK+fn53HnnnXTv3h2ApUuX8vLLL9c4hRBLIr0rMSZ3oxczVGziY4UuYqfRRIZqs1P44IMPuOuuu9i/fz8PPvggY8aMITU1Nd5iVVuilZAWauKZzk3QaCJDld8p5ObmcvPNN3PNNdfQtGlTVq5cycSJE7VCiCLRaGpjEOrkrnMTNJrIUGWVglKK//73v5x11lnMmzePxx57jNWrV3POOefEW7RqTzRNNaFO7mbOacGjsLTTWaNxTpVUCnv27OGaa67hlltu4YwzzmDdunU8+uij1K5dO96i1QiiaaoJNfLI17cBHoVglHqM5E5Go6nuVCmlUFZWxiuvvELr1q1ZsmQJkydPZvny5bRp0ybeotUoommqCcdxbXSvy0hLwb/2r3Y6azTOiLmjWUSaA28CJwJlwFSl1DOBrvv+++8ZMGAAy5Yt4+KLL2bq1Kn86U9/ira4GhOinRwXbjitdjprNKETj+ijEuABpdRaEWkArBGRRUqprVYX/PLLL7Rr1446deowffp0+vbtWyVKVFRXEr2MhO6cptGETtyb7IjIe8DzSqlFNueoa6+9lhdffJFmzZrFUDpNVaQmNhbSaMwIpclOXJWCiJwKfA60VUr97ndsIDDQ+2NbYHNMhQvMccBv8RbCj0SUCeIgV1JKwybJ9ZtkSHKt2qq0pLj0yMGcssLfD8ZTJgdomZyRiDJBYsrVUinVIJgL4qYURKQ+8H/A40qpdwKcuzpYbRdttEzOSUS5tEzO0DI5JxHlCkWmuEQfiYgLmA/MCqQQNBqNRhM7Yq4UxOMhngFsU0o9HevxNRqNRmNNPHYK3YD/AS4SkfXer78HuGZqDOQKFi2TcxJRLi2TM7RMzklEuYKWKe7RRxqNRqNJHKpURrNGo9FoootWChqNRqMpJ6GVgog0F5GlIrJNRLaIyP0JIFNdEflaRDZ4ZRoTb5kMRCRZRNaJyMJ4ywIgIj+LyCav32h1vOUBEJE0EZknItu9f1fnJoBMLX38a+tF5HcRGZIAcg31/o1vFpHZIlI3AWS63yvPlni9IxF5VUR+FZHNPp81EZFFIvKd99/GCSDTDd73VCYijsNSE1op8EdJjLOArsAgEWkdZ5mOARcppdoDHYDLRaRrnGUyuB/YFm8h/OiulOqQQPHbzwCfKKVaAe1JgPellNrhfUcdgI5AAfBuPGUSkQzgPqCTUqotkAzcGGeZ2gIDgM54fndXiciZcRDldeByv8+GA4uVUmcCi70/x1umzcD1eBKEHZPQSkEptU8ptdb7/WE8/4HjWqdAeTji/dHl/Yq7t15ETgau5P/bO/9Yreo6jr/ewmqANc0fjMRCsMLGUvjDnCxiYldpdYs1W2xuF60tf6xSlzbNZqu1LG1r6bQSl2wWgRCLokSszB8Dp17BaCL0CyFNKMyKbCq9++P7eR6fPdzL5V7tfg/1eW13z3nO+Z5z3s/ZfZ7P9/s55/v+wOLaWpqKpNcDcyiPRGP7Bdt/ratqP+YBv7W9vbYQijfaOEljgfHAU5X1nARssP1P2y9RJr8uGG0Rtu8F9nSt/gCwJJaXAB+srcn247aHbQ3c6KDQSVhizAQerKuknabZCOwC1tmurgn4OnAFxXm2KRi4S9IjYVtSm6nAbuA7kWZbLGlCbVFdfARYWluE7T8C1wNPAk8Dz9m+q64qNgNzJB0laTzwXuD4yppaTLT9NJTOLHBsZT0j5pAICmGJsRK4pNsjqQa298VQfzJwagxrqyHpfcAu24/U1DEAs23PAuZTUn9zKusZC8wCbrY9E9jL6A/zB0XSa4Be4I4GaDmS0vs9AXgjMEHSuTU12X4c+AqwDrgT2ERJMSevIo0PCk22xIjUwz3sn8sbbWYDvZL+AHyfMjHw9rqSwPZT8bqLkiM/ta4idgI7O0Z2KyhBoinMB/ptP1NbCHAm8Hvbu22/CPwAOL2yJmzfanuW7TmUdMm22pqCZyRNAojXXZX1jJhGB4UmWmJIOkbSEbE8jvLl2VJTk+0rbU+2PYWSfvi57aq9OkkTol4GkaLpobLTre0/ATsktaoBzQMGreNRgYU0IHUUPAmcJml8fA/n0YCb8pKOjdc3UW6iNuV6rQb6YrkP+GFFLa+IGkV2hkPLEuNXkcMHuMr2TypqmgQskTSGElSX227EI6ANYyKwKoohjQW+Z/vOupIA+ATw3UjV/A44r7IeACJH/h7g47W1ANh+UNIKoJ+SonmUZtg4rJR0FPAicLHtZ0dbgKSlwFzgaEk7gWuAa4Hlkj5KCajnNEDTHuAG4BhgjaSNts8a8lhpc5EkSZK0aHT6KEmSJBldMigkSZIkbTIoJEmSJG0yKCRJkiRtMigkSZIkbTIoJI1F0r5wDd0s6Y54bHOkx5rbco+V1Ctp0JnM4aR60QjO8XlJnx6Jpng/X9LD4d66RdL1sX6RpN0dLqof69inL5w5t0nqG+g8STIcMigkTeb5cA+dAbwAXNC5UYVh/w/bXm372gM0OQIYdlB4JYRVyo3AueEKPIMyj6LFspaTqu3Fsc8bKM+jv5MyW/ya0bZsTv73yKCQHCrcB5woaUr0pG+iTKw6XlKPpPWS+mNEcTiApLOjx30/ZfYrsX6RpBtjeaKkVSr1MTZJOp0yEWla9Mqvi3aXS3pI0mPqqKEh6bOSnpB0N/A2BkDSbZK+Kek+SVvDq6qbK4Av2d4CYPsl2zcNcU3Oohgy7olJXOsoVu5j4pybVepZXHoQ1zdJgObPaE4Swrp5PsUEDcqP73m2L5J0NHA1cKbtvZI+A1wm6avALcAZwG+AZYMc/hvAL20viFnqh1NM8maE6SGSeoC3UHrjAlaHud9eiq3ITMp3qR8YzJRwCvBuYBrwC0kndm2fAXztAJfhQ3HOrcCltndQbOR3dLTZGetOAY6LERYtW5YkORhypJA0mXFhb/IwxTrg1li/3faGWD4NeDvwQLTtA94MTKcYum1zmbY/mEHgGcDN0Ha/fW6ANj3x9yjlh386JUi8C1gV/v5/o/jfDMZy2/+2vY2SFpo+9Mdv8yNgiu13AHfzsm+/BmjrOP5USTdIOhuo7iycHDrkSCFpMs+3eustwktpb+cqSgplYVe7U3j1ih8J+LLtb3Wd45JhnKO7Xff7X1Oqrm3ab0f7Lx1vb6HYR0MZGczt2DYZuMf2s5JOpqSXLgY+DJx/kDqT/3NypJAc6mwAZrfSMeHq+VaKc+0JkqZFu4WD7P8z4MLYd4xKdba/A6/raLMWOL/jXsVx4dZ5L7BA0rhwhH3/AXSeI+mw0DMV6K6IdR1wVWgn2l4Wy5M62vXyslvpWqBH0pFxg7kHWBsptcNsrwQ+R7PswZOGkyOF5JDG9m5Ji4Clkl4bq6+2vVWl2tsaSX8G7qfk7bv5FPDtcLfcB1xoe72kB1SKoP/U9uWSTgLWx0jlH5SnhPolLQM2AtspN8MH4wlK+ciJwAW2/xXHan2Ox2LksTQevTWwJjZ/UlIvxa10D7Ao9tkj6YvAQ9HuC7HuZEp1uVan78ohLmOStEmX1CT5LyPpNuDHtlfU1pIkQ5HpoyRJkqRNjhSSJEmSNjlSSJIkSdpkUEiSJEnaZFBIkiRJ2mRQSJIkSdpkUEiSJEna/AcB7GRPAnb+eAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "xzxzDJgjqTrx", + "colab_type": "text" + }, + "source": [ + "# Tutorial Part 13: Modeling Protein-Ligand Interactions\n", + "\n", + "In this tutorial, we'll walk you through the use of machine learning methods to predict the binding energy of a protein-ligand complex. Recall that a ligand is some small molecule which interacts (usually non-covalently) with a protein. As you work through the tutorial, you'll trace an arc from loading a raw dataset to fitting a random forest model to predict binding affinities. We'll take the following steps to get there:\n", + "\n", + "1. Loading a chemical dataset, consisting of a series of protein-ligand complexes.\n", + "2. Featurizing each protein-ligand complexes with various featurization schemes. \n", + "3. Fitting a series of models with these featurized protein-ligand complexes.\n", + "4. Visualizing the results.\n", + "\n", + "To start the tutorial, we'll use a simple pre-processed dataset file that comes in the form of a gzipped file. Each row is a molecular system, and each column represents a different piece of information about that system. For instance, in this example, every row reflects a protein-ligand complex, and the following columns are present: a unique complex identifier; the SMILES string of the ligand; the binding affinity (Ki) of the ligand to the protein in the complex; a Python `list` of all lines in a PDB file for the protein alone; and a Python `list` of all lines in a ligand file for the ligand alone.\n", + "\n", + "## Colab\n", + "\n", + "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/13_Modeling_Protein_Ligand_Interactions.ipynb)\n", + "\n", + "## Setup\n", + "\n", + "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "QsmBgrqsqTr0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "540e5b9a-acb9-4689-a66d-9879736aec60" + }, + "source": [ + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 59872 0 --:--:-- --:--:-- --:--:-- 59872\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.79 s, sys: 641 ms, total: 3.43 s\n", + "Wall time: 3min 57s\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "F5yjhSAeqTr_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "6bad6024-79a0-4ba8-ac65-3995402ef0f6" + }, + "source": [ + "import deepchem as dc\n", + "from deepchem.utils import download_url\n", + "\n", + "import os\n", + "\n", + "data_dir = dc.utils.get_data_dir()\n", + "dataset_file = os.path.join(data_dir, \"pdbbind_core_df.csv.gz\")\n", + "\n", + "if not os.path.exists(dataset_file):\n", + " print('File does not exist. Downloading file...')\n", + " download_url(\"https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/pdbbind_core_df.csv.gz\")\n", + " print('File downloaded...')\n", + "\n", + "raw_dataset = dc.utils.save.load_from_disk(dataset_file)" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "text": [ + "File does not exist. Downloading file...\n", + "File downloaded...\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-6LAaTG3qTsC", + "colab_type": "text" + }, + "source": [ + "Let's see what `dataset` looks like:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hQW5CvXHqTsD", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 187 + }, + "outputId": "e4aeeea8-cac5-47ef-b75a-d92b1a19e493" + }, + "source": [ + "print(\"Type of dataset is: %s\" % str(type(raw_dataset)))\n", + "print(raw_dataset[:5])\n", + "print(\"Shape of dataset is: %s\" % str(raw_dataset.shape))" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Type of dataset is: \n", + " pdb_id ... label\n", + "0 2d3u ... 6.92\n", + "1 3cyx ... 8.00\n", + "2 3uo4 ... 6.52\n", + "3 1p1q ... 4.89\n", + "4 3ag9 ... 8.05\n", + "\n", + "[5 rows x 7 columns]\n", + "Shape of dataset is: (193, 7)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lOVvw1V4qTsI", + "colab_type": "text" + }, + "source": [ + "Visualizing what these proteins and ligands look like will help us build intuition and understanding about these systems. Let's write a bit of code to help us view our molecules. We'll use the `nglview` library to help us do this. You can install this library by calling `pip install nglview`." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WCWAc-FSroM0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "b62cc915-8dae-4e6d-9163-71c427e83fc6" + }, + "source": [ + "!pip install -q nglview" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\u001b[K |████████████████████████████████| 5.2MB 8.8MB/s \n", + "\u001b[?25h Building wheel for nglview (setup.py) ... \u001b[?25l\u001b[?25hdone\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "aBRWy9I5qTsI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "e9692ed27df045c7a86ccbab377a762d" + ] + }, + "outputId": "ff0bdcc0-857a-4902-efed-821f0991c9e3" + }, + "source": [ + "import nglview\n", + "import tempfile\n", + "import os\n", + "import mdtraj as md\n", + "import numpy as np" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e9692ed27df045c7a86ccbab377a762d", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "_ColormakerRegistry()" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KOTeCo4WqTsM", + "colab_type": "text" + }, + "source": [ + "We'll use the `mdtraj` library to help us manipulate both ligand and protein objects. We'll use the following convenience function to parse in the ligand and protein representations above into mdtraj." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "OSODY3X7qTsM", + "colab_type": "code", + "colab": {} + }, + "source": [ + "def convert_lines_to_mdtraj(molecule_lines):\n", + " molecule_lines = molecule_lines.strip('[').strip(']').replace(\"'\",\"\").replace(\"\\\\n\", \"\").split(\", \")\n", + " tempdir = tempfile.mkdtemp()\n", + " molecule_file = os.path.join(tempdir, \"molecule.pdb\")\n", + " with open(molecule_file, \"w\") as f:\n", + " for line in molecule_lines:\n", + " f.write(\"%s\\n\" % line)\n", + " molecule_mdtraj = md.load(molecule_file)\n", + " return molecule_mdtraj" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ECATxUI_qTsQ", + "colab_type": "text" + }, + "source": [ + "Let's take a look at the first protein ligand pair in our dataset:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "KIOhkfvSqTsR", + "colab_type": "code", + "colab": {} + }, + "source": [ + "first_protein, first_ligand = raw_dataset.iloc[0][\"protein_pdb\"], raw_dataset.iloc[0][\"ligand_pdb\"]\n", + "protein_mdtraj = convert_lines_to_mdtraj(first_protein)\n", + "ligand_mdtraj = convert_lines_to_mdtraj(first_ligand)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-t4jv9b_qTsZ", + "colab_type": "text" + }, + "source": [ + "We'll use the convenience function `nglview.show_mdtraj` in order to view our proteins and ligands." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "5NyQYfzUqTsa", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "d0f7e107871a4342a434a93292125e9e" + ] + }, + "outputId": "014470d8-760d-4eff-f76e-b49692c5cc51" + }, + "source": [ + "v = nglview.show_mdtraj(ligand_mdtraj)\n", + "v" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d0f7e107871a4342a434a93292125e9e", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "NGLWidget()" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vc9TYC-qqTsg", + "colab_type": "text" + }, + "source": [ + "Now that we have an idea of what the ligand looks like, let's take a look at our protein:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zKGqEq0wqTsi", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "655b10a5e1d8422ea4555272e0411fee" + ] + }, + "outputId": "abb638fb-1d43-48c7-9305-581dd856b882" + }, + "source": [ + "view = nglview.show_mdtraj(protein_mdtraj)\n", + "view" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "655b10a5e1d8422ea4555272e0411fee", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "NGLWidget()" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W-9e2Rl6qTso", + "colab_type": "text" + }, + "source": [ + "Can we view the complex with both protein and ligand? Yes, but we'll need the following helper function to join the two mdtraj files for the protein and ligand." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "5YBB6ZTpqTsp", + "colab_type": "code", + "colab": {} + }, + "source": [ + "def combine_mdtraj(protein, ligand):\n", + " chain = protein.topology.add_chain()\n", + " residue = protein.topology.add_residue(\"LIG\", chain, resSeq=1)\n", + " for atom in ligand.topology.atoms:\n", + " protein.topology.add_atom(atom.name, atom.element, residue)\n", + " protein.xyz = np.hstack([protein.xyz, ligand.xyz])\n", + " protein.topology.create_standard_bonds()\n", + " return protein\n", + "complex_mdtraj = combine_mdtraj(protein_mdtraj, ligand_mdtraj)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6zgCBe0mqTsw", + "colab_type": "text" + }, + "source": [ + "Let's now visualize our complex" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "YxM-ESaEqTsw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "a5a64350a6974d84b4346b77f6bd86d0" + ] + }, + "outputId": "d2c234ee-f505-41ab-fe84-314e33bb5bf6" + }, + "source": [ + "v = nglview.show_mdtraj(complex_mdtraj)\n", + "v" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a5a64350a6974d84b4346b77f6bd86d0", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "NGLWidget()" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cysXf_3bqTs0", + "colab_type": "text" + }, + "source": [ + "We can see that the ligand slots into a groove on the outer edge of the protein. Ok, now that we've got our basic visualization tools up and running, let's see if we can use some machine learning to understand our dataset of protein-ligand systems better.\n", + "\n", + "In order to do this, we'll need a way to transform our protein-ligand complexes into representations which can be used by learning algorithms. Ideally, we'd have neural protein-ligand complex fingerprints, but DeepChem doesn't yet have a good learned fingerprint of this sort. We do however have well tuned manual featurizers that can help us with our challenge here.\n", + "\n", + "We'll make of two types of fingerprints in the rest of the tutorial, the circular fingerprints and the grid descriptors. The grid descriptors convert a 3D volume containing an arragment of atoms into a fingerprint. This is really useful for understanding protein-ligand complexes since it will allow us to transfer protein-ligand complexes into vectors that can be passed into a simple machine learning algorithms. Let's see how we can create such a fingerprint in DeepChem. We'll make use of the `dc.feat.RdkitGridFeaturizer` class." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "UpU1chIBqTs1", + "colab_type": "code", + "colab": {} + }, + "source": [ + "grid_featurizer = dc.feat.RdkitGridFeaturizer(\n", + " voxel_width=16.0, feature_types=[\"ecfp\", \"splif\", \"hbond\", \"pi_stack\", \"cation_pi\", \"salt_bridge\"], \n", + " ecfp_power=5, splif_power=5, parallel=True, flatten=True, sanitize=True)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wHaZzrBGqTtB", + "colab_type": "text" + }, + "source": [ + "Next we'll create circular fingerprints. These convert small molecules into a vector of fragments. You can create these fingerprints with the `dc.feat.CircularFingerprint` class." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "_RldLM7VqTtE", + "colab_type": "code", + "colab": {} + }, + "source": [ + "compound_featurizer = dc.feat.CircularFingerprint(size=128)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9471T63SqTtK", + "colab_type": "text" + }, + "source": [ + "The convenience loader `dc.molnet.load_pdbbind_grid` will take care of performing featurizing the pdbbind dataset under the hood for us. We'll use this helper method to perform our featurization for us. We'll featurize the \"refined\" subset of the PDBBIND dataset (which consists of only a couple thousand protein-ligand complexes) to keep this task manageable." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "1HNhZ9jHqTtL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 408 + }, + "outputId": "270325f7-6559-42a7-cec5-812c22d5e879" + }, + "source": [ + "pdbbind_tasks, (train_dataset, valid_dataset, test_dataset), transformers = dc.molnet.load_pdbbind_grid(\n", + " featurizer=\"ECFP\", subset=\"refined\")" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Loading raw samples now.\n", + "shard_size: 8192\n", + "About to start loading CSV from /tmp/refined_smiles_labels.csv\n", + "Loading shard 1 of size 8192.\n", + "Featurizing sample 0\n", + "Featurizing sample 1000\n", + "Featurizing sample 2000\n", + "Featurizing sample 3000\n", + "TIMING: featurizing shard 0 took 10.019 s\n", + "TIMING: dataset construction took 10.161 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.160 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.082 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.080 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.138 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.021 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.020 s\n", + "Loading dataset from disk.\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uTIdwkdSqTtP", + "colab_type": "text" + }, + "source": [ + "Now, we're ready to do some learning! \n", + "\n", + "To fit a deepchem model, first we instantiate one of the provided (or user-written) model classes. In this case, we have a created a convenience class to wrap around any ML model available in Sci-Kit Learn that can in turn be used to interoperate with deepchem. To instantiate an ```SklearnModel```, you will need (a) task_types, (b) model_params, another ```dict``` as illustrated below, and (c) a ```model_instance``` defining the type of model you would like to fit, in this case a ```RandomForestRegressor```." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9kwi2GsvqTtQ", + "colab_type": "code", + "colab": {} + }, + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "seed=23 # Set a random seed to get stable results\n", + "sklearn_model = RandomForestRegressor(n_estimators=10, max_features='sqrt')\n", + "sklearn_model.random_state = seed\n", + "model = dc.models.SklearnModel(sklearn_model)\n", + "model.fit(train_dataset)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "d-imE_PBqTtT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "e951d360-6783-4f3b-de1f-ef57fda22fb2" + }, + "source": [ + "from deepchem.utils.evaluate import Evaluator\n", + "import pandas as pd\n", + "\n", + "metric = dc.metrics.Metric(dc.metrics.r2_score)\n", + "\n", + "evaluator = Evaluator(model, train_dataset, transformers)\n", + "train_r2score = evaluator.compute_model_performance([metric])\n", + "print(\"RF Train set R^2 %f\" % (train_r2score[\"r2_score\"]))\n", + "\n", + "evaluator = Evaluator(model, valid_dataset, transformers)\n", + "valid_r2score = evaluator.compute_model_performance([metric])\n", + "print(\"RF Valid set R^2 %f\" % (valid_r2score[\"r2_score\"]))" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "computed_metrics: [0.8402765501351457]\n", + "RF Train set R^2 0.840277\n", + "computed_metrics: [0.4348811019052432]\n", + "RF Valid set R^2 0.434881\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ioRs1T1tqTtZ", + "colab_type": "text" + }, + "source": [ + "This is decent performance on a validation set! It's interesting to note that a trivial prediction from just the ligand can do reasonably on the task of predicting the binding energy." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "CHAvWVCXqTtb", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "6b8aa022-d8bd-4e3f-8ceb-2d093d10c34c" + }, + "source": [ + "predictions = model.predict(test_dataset)\n", + "print(predictions[:10])" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[-1.40106366 -0.84870136 -1.18206478 -1.71648845 -0.81282409 -0.774844\n", + " -0.46336663 -0.79229381 0.47488378 0.18399203]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1DCOhl9-qTtg", + "colab_type": "text" + }, + "source": [ + "# The protein-ligand complex view." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nApZttv6qTth", + "colab_type": "text" + }, + "source": [ + "In the previous section, we featurized only the ligand. The signal we observed in R^2 reflects the ability of grid fingerprints and random forests to learn general features that make ligands \"drug-like.\" This time, let's see if we can do something sensible with our protein-ligand fingerprints that make use of our structural information. To start with, we need to re-featurize the dataset but using the \"grid\" fingerprints this time." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "jhrZqqCDqTth", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + }, + "outputId": "0c1b70e6-7249-4a07-a336-7f2ca94ebcb2" + }, + "source": [ + "pdbbind_tasks, (train_dataset, valid_dataset, test_dataset), transformers = dc.molnet.load_pdbbind_grid(\n", + " featurizer=\"grid\", subset=\"refined\")" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.225 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.072 s\n", + "Loading dataset from disk.\n", + "TIMING: dataset construction took 0.072 s\n", + "Loading dataset from disk.\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vMp3LG6UqTtl", + "colab_type": "text" + }, + "source": [ + "Let's now train a simple random forest model on this dataset." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "qeHrsc2PqTtm", + "colab_type": "code", + "colab": {} + }, + "source": [ + "seed=23 # Set a random seed to get stable results\n", + "sklearn_model = RandomForestRegressor(n_estimators=10, max_features='sqrt')\n", + "sklearn_model.random_state = seed\n", + "model = dc.models.SklearnModel(sklearn_model)\n", + "model.fit(train_dataset)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P2VlBSPJqTto", + "colab_type": "text" + }, + "source": [ + "Let's see what our accuracies looks like!" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zXyNarwnqTtp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "cd568fc6-dc98-4fbb-8ceb-b8beece0e89c" + }, + "source": [ + "metric = dc.metrics.Metric(dc.metrics.r2_score)\n", + "\n", + "evaluator = Evaluator(model, train_dataset, transformers)\n", + "train_r2score = evaluator.compute_model_performance([metric])\n", + "print(\"RF Train set R^2 %f\" % (train_r2score[\"r2_score\"]))\n", + "\n", + "evaluator = Evaluator(model, valid_dataset, transformers)\n", + "valid_r2score = evaluator.compute_model_performance([metric])\n", + "print(\"RF Valid set R^2 %f\" % (valid_r2score[\"r2_score\"]))" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + "computed_metrics: [0.891357218591319]\n", + "RF Train set R^2 0.891357\n", + "computed_metrics: [0.43630320446768944]\n", + "RF Valid set R^2 0.436303\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3coX59A-qTt1", + "colab_type": "text" + }, + "source": [ + "Ok, there's some predictive performance here, but it looks like we have lower accuracy than the ligand-only dataset. What gives? There might be a few things going on. It's possible that for this particular dataset the pure ligand only features are quite predictive. But nonetheless, it's probably still useful to have a protein-ligand model since it's likely to learn different features than the the pure ligand-only model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HC2XcoaIqTt2", + "colab_type": "text" + }, + "source": [ + "# Doing Some Hyperparameter Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HDVZlzlrqTt2", + "colab_type": "text" + }, + "source": [ + "Ok, now that we've built a few models, let's do some hyperparameter optimization to see if we can get our numbers to be a little better. We'll use the `dc.hyper` module to do this for us." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uxV2wE_5qTt3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "cdab9393-18ec-401b-e425-f6f1f9f74c78" + }, + "source": [ + "def rf_model_builder(model_params, model_dir):\n", + " sklearn_model = RandomForestRegressor(**model_params)\n", + " sklearn_model.random_state = seed\n", + " return dc.models.SklearnModel(sklearn_model, model_dir)\n", + "\n", + "params_dict = {\n", + " \"n_estimators\": [10, 50, 100],\n", + " \"max_features\": [\"auto\", \"sqrt\", \"log2\", None],\n", + "}\n", + "\n", + "metric = dc.metrics.Metric(dc.metrics.r2_score)\n", + "optimizer = dc.hyper.HyperparamOpt(rf_model_builder)\n", + "best_rf, best_rf_hyperparams, all_rf_results = optimizer.hyperparam_search(\n", + " params_dict, train_dataset, valid_dataset, transformers,\n", + " metric=metric)" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Fitting model 1/12\n", + "hyperparameters: {'n_estimators': 10, 'max_features': 'auto'}\n", + "computed_metrics: [0.45050290646786983]\n", + "Model 1/12, Metric r2_score, Validation set 0: 0.450503\n", + "\tbest_validation_score so far: 0.450503\n", + "Fitting model 2/12\n", + "hyperparameters: {'n_estimators': 10, 'max_features': 'sqrt'}\n", + "computed_metrics: [0.43630320446768944]\n", + "Model 2/12, Metric r2_score, Validation set 1: 0.436303\n", + "\tbest_validation_score so far: 0.450503\n", + "Fitting model 3/12\n", + "hyperparameters: {'n_estimators': 10, 'max_features': 'log2'}\n", + "computed_metrics: [0.4171705642324419]\n", + "Model 3/12, Metric r2_score, Validation set 2: 0.417171\n", + "\tbest_validation_score so far: 0.450503\n", + "Fitting model 4/12\n", + "hyperparameters: {'n_estimators': 10, 'max_features': None}\n", + "computed_metrics: [0.45050290646786983]\n", + "Model 4/12, Metric r2_score, Validation set 3: 0.450503\n", + "\tbest_validation_score so far: 0.450503\n", + "Fitting model 5/12\n", + "hyperparameters: {'n_estimators': 50, 'max_features': 'auto'}\n", + "computed_metrics: [0.49574151173668746]\n", + "Model 5/12, Metric r2_score, Validation set 4: 0.495742\n", + "\tbest_validation_score so far: 0.495742\n", + "Fitting model 6/12\n", + "hyperparameters: {'n_estimators': 50, 'max_features': 'sqrt'}\n", + "computed_metrics: [0.5006038352000606]\n", + "Model 6/12, Metric r2_score, Validation set 5: 0.500604\n", + "\tbest_validation_score so far: 0.500604\n", + "Fitting model 7/12\n", + "hyperparameters: {'n_estimators': 50, 'max_features': 'log2'}\n", + "computed_metrics: [0.4644595610283615]\n", + "Model 7/12, Metric r2_score, Validation set 6: 0.464460\n", + "\tbest_validation_score so far: 0.500604\n", + "Fitting model 8/12\n", + "hyperparameters: {'n_estimators': 50, 'max_features': None}\n", + "computed_metrics: [0.49574151173668746]\n", + "Model 8/12, Metric r2_score, Validation set 7: 0.495742\n", + "\tbest_validation_score so far: 0.500604\n", + "Fitting model 9/12\n", + "hyperparameters: {'n_estimators': 100, 'max_features': 'auto'}\n", + "computed_metrics: [0.5137590613848505]\n", + "Model 9/12, Metric r2_score, Validation set 8: 0.513759\n", + "\tbest_validation_score so far: 0.513759\n", + "Fitting model 10/12\n", + "hyperparameters: {'n_estimators': 100, 'max_features': 'sqrt'}\n", + "computed_metrics: [0.5061380771850656]\n", + "Model 10/12, Metric r2_score, Validation set 9: 0.506138\n", + "\tbest_validation_score so far: 0.513759\n", + "Fitting model 11/12\n", + "hyperparameters: {'n_estimators': 100, 'max_features': 'log2'}\n", + "computed_metrics: [0.48516493298554586]\n", + "Model 11/12, Metric r2_score, Validation set 10: 0.485165\n", + "\tbest_validation_score so far: 0.513759\n", + "Fitting model 12/12\n", + "hyperparameters: {'n_estimators': 100, 'max_features': None}\n", + "computed_metrics: [0.5137590613848505]\n", + "Model 12/12, Metric r2_score, Validation set 11: 0.513759\n", + "\tbest_validation_score so far: 0.513759\n", + "computed_metrics: [0.9317458198277879]\n", + "Best hyperparameters: (100, None)\n", + "train_score: 0.931746\n", + "validation_score: 0.513759\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lu25yEOdqTt8", + "colab_type": "text" + }, + "source": [ + "Ok, our best validation score is now `0.53` R^2. Let's make some predictions on the test set and see what they look like." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "5u96D9j1qTt9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 295 + }, + "outputId": "665b7830-c574-4ada-9a41-6ff760f3dc9b" + }, + "source": [ + "%matplotlib inline\n", + "\n", + "import matplotlib\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "rf_predicted_test = best_rf.predict(test_dataset)\n", + "rf_true_test = test_dataset.y\n", + "plt.scatter(rf_predicted_test, rf_true_test)\n", + "plt.xlabel('Predicted pIC50s')\n", + "plt.ylabel('True IC50')\n", + "plt.title(r'RF predicted IC50 vs. True pIC50')\n", + "plt.xlim([2, 11])\n", + "plt.ylim([2, 11])\n", + "plt.plot([2, 11], [2, 11], color='k')\n", + "plt.show()" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydeXhU5dXAfydhgASRgKKVCIpV2QUEFUu1H7hXRdQq7lpZXKCCIAqKAtYFRSouaEHUakGKAqIoCipYFAUFArLXVmUJIGtYA0yS8/0xM2EyuffOnX2SvL/nyUMy9869Z27COe97VlFVDAaDwWAAyEi1AAaDwWBIH4xRMBgMBkMpxigYDAaDoRRjFAwGg8FQijEKBoPBYCjFGAWDwWAwlGKMgiFpiIiKyKn+7/8uIo8m4Z53iMjXib6PwVBZMEahgiMiv4hIoYjsE5EtIvIPETkq6Pg/ROSw/3jgq1sqZQZQ1btV9a/hzhORL0WkRyJkEJGT/YaqWtBrZ4vITBEpEJGdIvKdiPw55PzgZ/lo0HtriMgbIrLH/7vonwi5bT7LzUEyFYpISbCcyZLDQq5K84yrCsYoVA6uVNWjgDZAW2BwyPFnVfWooK/Jsd4w+D95ZUFEzgXmAP8GTgWOAe4BLgs5NSfoWQYbtmHAacBJQCfgQRG5NOGCA6o6MSCTX95Nwb/z4HNFJDMZMllRkZ9xVcEYhUqEqm4BZuEzDhHjX6HdJyI/ich2ERkpIhn+Y3eIyHwReV5EdgDD/Ku250RkvYj86ncJZQVdb6CIbBaRTSJyZ8i9/iEiTwT9fJWILPWvAP8nIpeKyJPAecDL/hXjy/5zm4rIZ/5V5loRuT7oOseIyIf+63wH/DaCRzASeEtVn1HV7epjsapeH/adPm4H/qqqu1R1NfAacEfoSf7nViAiLYNeq+9f4R8nIseKyEdBK+mvAr+HaPA/61f9q/P9QKfQHViom83pGVtc/0sRedq/4t8jIh+ISD2b05PyjA3RY4xCJUJETsS34vpvDJe5GmgPnAlcBQQr83OAn4DjgSeBEcDp+IzQqUAu8JhflkuBB4CL8K3sLnSQ+2zgbWAgkAOcD/yiqo8AXwF9/CvGPiJSC/gMeAc4DrgBeEVEmvsvNwY4CJzgl72MMXKQIRs4F5ji4vR1IrJRRN4UkWP976/rv+eyoPOWAS1C36yqh4BpwI1BL18P/FtVtwIDgI1AfXzP+mEg1n40N+H7ndUGHGMsLp6xFbfhe9YnAEXAixbXTdozNkSPMQqVg+kishfYAGwFhoYcf8C/6iwQke1hrvWMqu5U1fXAaMoqrk2q+pKqFuFTvL2A+/3n7wWewqdAwKfk3lTVFaq6H9+2347uwBuq+pmqlqhqvqqusTn3CnwG401VLVLVPGAqcJ3fLXIt8Jiq7lfVFcBbYT5vgLr4/j9sdjhnO3AWPtdFO3wKdqL/WMBFszvo/N3+c6x4hyPPCnxK+x3/9158yu8kVfWq6lcae5OyD1R1vv/5Hgxzru0zdnjPP4N+148C11u4qZL9jA1RYIxC5aCrqtYG/g9oChwbcvw5Vc3xf4UeC2VD0PfrgAY2x+oD2cDigMEBPvW/jv99odeyoyHwvzByBTgJOCfIyBUANwO/8d+7WgT3DWYXUIJPGVuiqvtUdZFfUf4K9AEuFpHaQCCYe3TQW44G9tpcbi6QLSLniMjJ+HZb7/uPjcS325vtd+UNcvkZnNgQ/pRSnJ6xm+uvAzyU/ztM9jM2RIExCpUIVf038A/guRgu0zDo+0bApuBbBH2/HSgEWgQZnDpBQc3NFteyYwP2vv/QFfIGfG6WnKCvo1T1HmAbPteF2/seuYnqAeBbfDsNtwRky1DVXfg+c+ug462BlTb3KwbexbcTuxH4yL/bQlX3quoAVT0F6AL0F5ELIpDLSdYA+/EZ9QDBCt/pGdsR+sy9+P5GjgiQ5GdsiA5jFCofo4GLRKR12DOtGSgidUWkIdAXsMxUUtUSfEG+50XkOAARyRWRS/ynvAvcISLN/b7kUJdWMK8DfxaRC0Qkw3+dpv5jvwKnBJ37EXC6iNwqIh7/11ki0syvaKfhC4Jn+33gt0fw2R/0yzxQRI7xf6bWIvIv//fniEgTv4zH4PObf6mqAXfG28AQ//NrCvTEZ6TteAfohm8VHnAdISJXiMipIiL43CPF+FbY8WQpcI3/OZ2Kz4UXwPYZO1zvlqDf9ePAFP/vI5RkP2NDhBijUMlQ1W34/uM8FuUlPgAW41MaH+NT2HY8hM/NsUBE9gCfA038cnyCz0DN8Z8zx0Hm74A/A8/jU4L/xufCAHgB+JOI7BKRF/2r6Yvx+eM3AVuAZ4Aa/vP74PM9b8GnLN50+8FV9Rugs//rJxHZCYwDZvpPOQWfi2wvsAI4RNmYy1B8brB1/s8wUlU/dbjfQnwr9gbAJ0GHTsP3LPfhW1m/oqpzAUTkExF52O1ncuB54DA+o/sWR/z2uHjGVvwT3/PeAtQE7rM6KdnP2BA5Env8ylBZEBEFTlPVWLKXDFUMEfkSmKCq41MtiyF2zE7BYDAYDKUkzCiIrxR9q4isCHrtOhFZKb4S/PaJurfBYDAYoiNh7iMROR+fT/RtVW3pf60ZvoDZWOABVV2UkJsbDAaDISoS1r9GVef586+DX1sN4EuqMBgMBkO6kbZNzUSkF76KWWrVqtWuadOmYd5hMKQ/BQe8bNlzEG9xCZ7MDH5zdE1ysj1xvX5+QSElQR6ADBFyc7Lieh9D+nL48GF++eUX9u7dC7BdVeuHe08waWsUVHUcvlQ12rdvr4sWGU+TwRCOjiPmUFRQWO7143OymD+ocwokMiSL4uJixowZw8MPP4yI8PLLL9OnTx+3Ff2lmOwjg6ESscnCIDi9bjjC9Lx8Oo6YQ+NBH9NxxBym5+WnWiTXrF69mvPPP5++ffty3nnnsWLFCnr37h3VtYxRMBgqEQ1ysiJ63eBjel4+g6ctJ7+gEAXyCwoZPG152hsGr9fLk08+SZs2bVizZg1vv/02M2fO5KSTTgr/ZhsSmZI6CV81ZhN/C9zuInK1iGzE1z73YxGZlaj7GwxVkYGXNCHLU7Y5aZYnk4GXNEmRRBWDkbPWUugt25Wj0FvMyFlrUyRReJYsWcJZZ53FkCFDuOqqq1i1ahW33nprzIk8icw+utHm0Ps2rxsMhhjp2jYX8Cm5TQWFNMjJYuAlTUpfN1hTkdxuhYWFDB8+nOeee4769eszbdo0rr766rhdP20DzQaDITq6ts01RiBCGuRkkW9hANLN7TZv3jx69OjBjz/+SPfu3Rk5ciR169aN6z1MTMFgMFR50t3ttmfPHnr37s0f/vAHvF4vn332GePHj4+7QQCzUzAYDIa0drt98skn3HXXXWzcuJF+/frxxBNPUKtWrYTdzxgFgyHNmZ6Xn5bKqrKRbm63HTt2cP/99/PPf/6TZs2aMX/+fM4999yE39e4jwyGNKaipkoaokdVeffdd2nWrBmTJk3i0UcfJS8vLykGAYxRMBjSmoqYKmmInk2bNnH11VfTrVs3GjVqxKJFi3j88cepUcNpvlF8MUbBYEhjKlKqpCF6VJXXX3+d5s2bM2vWLJ599lkWLFhA69bRTtWNHmMUDIY0xlQoV35++uknLrzwQnr06EHr1q354YcfGDhwINWqpSbka4yCwZDGpHuqpCF6iouLGT16NK1ateL777/n1VdfZe7cuZx22mkplctkHxkMaUw6p0oaomflypV0796dhQsX8sc//pG///3vNGzYMNViAcYoGAxpT7qlShqOEGm68OHDh3nmmWf461//ytFHH82ECRO46aab0mrwmDEKBkOCMPUFlZtAunAgOyyQLgxY/p6///57unfvzvLly7nhhht44YUXOO6445IqsxtMTMFgSACmvqDy4zZd+MCBAwwcOJAOHTqwY8cOPvjgAyZNmpSWBgHMTsFgSAhOCiORu4V0252kmzzxxE268JdffknPnj3573//S8+ePRk5ciR16tRJlohRYXYKBkMCSEV9QbrtTtJNnnjjlC68e/du7r77bjp16kRJSQlffPEF48aNS3uDAIkdsvOGiGwVkRVBr9UTkc9E5Ef/v/Fv8WcwpAGpqC9It+rndJMn3tilC3fK3kiLFi147bXX6N+/P8uXL6dz54ozHzuRO4V/AJeGvDYI+EJVTwO+8P9sMFRorGb7JqK+INwM4XSrfk43eeJN17a5PH1NK3JzshDguGqHOG7xWJ7sezs5OTl88803jBo1iuzs7FSLGhEJMwqqOg/YGfLyVcBb/u/fArom6v4GQzKwc5EAZRRGbk4WT1/TKmp/uhtXTLpVP6ebPImga9tcvn6oE0+13sPPY+/i288/ZtiwYSxZsoRzzjkn1eJFRbJjCser6mb/91uA45N8f4MhroQLKM8f1JmfR1zO/EGdYwqwunHFpFv1c7rJkwg2btxIly5duOmmmzjllFNYsmQJQ4cOpXr16qkWLWpSln2kqioiandcRHoBvQAaNWqUNLkMhkhIlovEzX3Srfo53eSJJyUlJYwfP56BAwfi9XoZNWoUffv2JTMzM/yb05xkG4VfReQEVd0sIicAW+1OVNVxwDiA9u3b2xoPgyGVJGu2r9v7pFv1c7rJEw8C6aVffvklnTp14rXXXuO3v/1tqsWKG8l2H30I3O7//nbggyTf32CIK8lykVQFV4xbwgXcE0VxcTGjRo3ijDPOYMmSJYwbN44vvviiUhkESOBOQUQmAf8HHCsiG4GhwAjgXRHpDqwDrk/U/Q2GZJAMF0mgAKzQW0ymCMWq5FYiV0wkRNpaIl6sWLGCO++8k++//54rr7ySV199ldzc5D37ZBYBimr6e2bat2+vixYtSrUYBkPSCVWC4NshxJLJFOn9g5VRp6b1mbtmW8piBB1HzLF0o+XmZDF/UPxrAQ4dOsTTTz/NU089RZ06dXjppZfo1q1bUhvYxfI3ICKLVbV9JPczFc0GQxqTygIwqzTYCQvWp7RCOZm1DwsXLqRdu3YMHz6c66+/ntWrV3PDDTckvaNpsv8GjFEwGNKYVBaAWSmjUNwop3jGAJJR+7B//3769+/Pueeey+7du/noo4+YMGECxx57bNzuEQnJ/hswRsFgSGNSWQDmVuk4nRfv/keJDrjPmTOHM844g+eff5677rqLlStXcvnll8fl2tGS7L8BYxQMhjQmlVlHbpWO03nxdn2EtpaItVI8QEFBAT179uSCCy4gIyODL7/8kldffZWjjz46puvGg2T/DZjW2QZDGpPKArCBlzQpF+AMJZxySoTrI961Dx9++CH33HMPW7ZsYeDAgQwbNiyt+hUl+2/AGAWDIclEml6YqgIwK2UUafZRsor7omHr1q3cd999TJ48mVatWvHBBx/Qvn1EiTpJI5l/A8YoGAxxIJyiDxzPLyhEgEAieLLy7KMlVmVktdtIddGdqjJx4kT69u3Lvn37+Otf/8qDDz5YofsVxRMTUzAYYiRcMDX4OBwxCAEq04yBUBIVA4iWDRs2cMUVV3Drrbdy+umnk5eXx5AhQ4xBCMLsFAyGGAnXKdVNamdlmTFgRTr0PyopKWHs2LE89NBDFBcXM3r0aPr06VMpGtjFG2MUDIYYCRdMdaPw08HH7paKNnf5xx9/pEePHsybN48LLriAcePGccopp6RarLTFGAWDIUbCBVPtjgcI9rGnu8IN13soneQvKirib3/7G0OHDqVGjRq8/vrr/PnPf+aDpZu4dcSctJAxHTExBYMhRsLlkYcLqgZ87IkedB+PymInV1mi5Y+EZcuW0aFDBx566CEuvfRSVq1axZ133skHSzeljYzpijEKBkOMhAumdm2bS06Wx/K9uTlZZVI/E9XjJl4K28lVlso+TQEOHTrEo48+Svv27dmwYQPvvvsu06ZNo0GDBkBqe0lVFIz7yFDliYfLI1wwdViXFmFTM6Mt9HIjf7hguFucXGWp7NME8O2339K9e3dWr17Nbbfdxt/+9jeOOeYYV7JU5kB/pJidgqFKkyyXh5vUTLtgc4aIrTxu5Y+XMnRylaWqT9O+ffvo168fHTt2ZN++fcycOZO33nqrnEFwkqUiBfoTjdkpGKo08VpBuyHcbsKurUSxqm2Bm1v541VZHK7lQrIL1T777DN69erFL7/8Qu/evXn66aepXbu27fnxLKZLp6B6PEmJURCRvkBPQIDXVHV0KuQwGKJZQU/Py2fYhyspKPQCUDfbw9ArW8SsEALvH/DuMopDhl/ZGSon+YOVVp0sD55MwVt85LrRKkM745bMHj27du3igQce4I033uD0009n3rx5nHfeea5kj4eMqZoAlwySbhREpCU+g3A2cBj4VEQ+UtX/JlsWQ+Uj0tVbpCvo6Xn5DHxvGd6SI8p11wEvA6csA2JXCF3b5nL/5KWWx6wMgJ38OdmeMkqroNCLJ0Oom+2h4IA3KmXo5tkmo1Dt/fff595772Xbtm0MGjSIoUOHUrNmTdfvj4eMydxhJptUxBSaAQtV9YCqFgH/Bq5JgRyGSkY08YFI2xKPnLW2jEEI4C3WuGWwROL3tpNflXJKy1uiZFevxs8jLmf+oM4RG4RUp3Ju2bKF6667jmuuuYa9chTH3TKKeXUu4tPVO5ImQ4DKHLBOhVFYAZwnIseISDbwR6Bh6Eki0ktEFonIom3btiVdSEPFI5p0w0h78zj9p4+XQojEUNnJv9vv2oqXjKlM5VRV3n77bZo3b870Dz7k2P+7nWNufo7qvzk1ZXUGlTlgnXT3kaquFpFngNnAfmApUK4xjKqOA8YBtG/fvvzSzGAIIdrVWyTuBKfq5EgUQnDX1EwRilXJDXLJLFq3k0kLN1CsSqYI17azlzFU/ul5+WT4rxmLjMGkamW8bt067rrrLmbNmsXvfvc7DpzTk13V65c5JxVum3Ts/hovUpKSqqqvq2o7VT0f2AX8JxVyGCoXyVi9DbykCZ6M8oPbPZniWiGEdk0NKO/AqnfI9OVMXZxf+nqxKlMX57taDQeubWUQYlFayV4Zl5SUMGbMGFq2bMnXX3/Niy++yFdffUVBiEEIEAisx2sWdDjSrftrPElV9tFxqrpVRBrhiyd0SIUchspFMlZvgf/0sWQfOXVNLfQWl+4QQl93sxp2urbTbiMcyVwZr127lh49evD1119z8cUXM3bsWE4++WTAfWA9GdlA6dD9NRGkqnhtqoisAmYAvVW1IEVyGCoRyVq9dW2by9KhFzO6Wxtyc7IoOOAt7f3jhnAuF6tVPvgUXbgVsNO13e42rAh9tnWzPdSolsH9k5fGbVXu9XoZMWIErVu3ZuXKlfzjH//g008/LTUIYB9vOeQtNu0r4kRKdgqqGj6h2GCIgmSt3mLJUw/XNTXTJh7g5j5O147V9x54tonI0c/Ly6N79+7k5eVx7bXX8vLLL/Ob3/zGUgYoPyJ0woL1ltetDNlAyca0uTAYQnDjm44lG8dqtRsgy5PJjec0tD0euM+Ad5dZyud0bYiPkoxnJtLBgwd5+OGHOeuss9i0aRNTpkxhypQplgYhQNe2ucwf1Lk0tXbuGvvsxMqQDZRsTJsLgyEIt6vgWLJxgle7dtlH7U+qV3rcitDgdOC6TlXREB8lGa9MpPnz59O9e3fWrl3LHXfcwahRo6hXr17c5AHo1NQ6MG2wxxgFgyGIZPUSCufmChzvOGKOo6spVL5AqmuxKkL5edD7DxUxPS8/JhdbrJ997969PPzww4wZM4ZGjRoxa9YsLr744rjLAzjuIgzWGPeRwRCE21VwpJXQkRJwYeUXFFI+AdZavtBUV6uoREGhl/snL+XkGNI2Y/nss2bNomXLlowZM4a//OUvrFixIiaDEJDHDhNTiBxjFAyGINzm4ycy08lKuQcMQ6ZYm4gGOVmO6ajBBIxFtNXA0Xz2nTt3cscdd3DppZeSnZ3NV199xQsvvMBRRx0V0b3t5LEbYmRiCpEjapPlkE60b99eFy1alGoxDFWA0JhCgJwsD8O6RNYJNdrWynYuIxHIqpbBAW9JmdezPJk8fU0r7p+81HJ3EI7cnCzmD+oclfxuzpkyZQq9e/dmx44dDBo0iCFDhkTUwM6tHFZ1FJWloCxaRGSxqraP5D0mpmAwBBFQIMNnrGTXgSP9gwoKva7SLoPbVwT79O0C1lYKz87loUo5gxBcOOcUmHbC6n5uAu7hztm8eTN9+vRh2rRptG3bllmzZtGmTZuIZHMb+E9m2+7KjtkpGAwW2K3W7VbVYL/LsHu/3eq2piejjEFyItz1PBkCQpk5Cm4+k5vPb3dOgzo16fmb9fTv35/CwkKGDx/OgAEDqFYt8jVoNL+HcFTW4ThWmJ2CwWBDpIogmrRLNz79YAU3fMZKy0ynGtUyyg3EcSOn3Wo58Fro7gXsA8RuPr/VOUW7fyVv8svc+Use5513Hq+99hpNmkQffI93I77KPBwnXhijYKj0RKMIokm7dKOoxC8PYLsbCAzEcYNVANxpKppb4+jm8wefoyXF7F3yMQXz3kZEGDNmDHfffTcZGbHlssRrjGiAyjwcJ14Yo2Co9ESjCKJpABeufQX4VunhKn8zRSwH+YQSLI9bZe+2DUi4zz89L5/9h4oA8G7fwI5PXuDQpjXU+m17nn9xDD3/eHbYe7gh3o34KvNwnHhhjIIhKiqSXzYaRRBN4NJKgVkRznDY9T0CXwaSKmVmLCTCJeL0+QP3O3DwEHsWTqXgm0lkeLJodM1ARj9yH1efeWJU93SSIzjwX6Na9LuPeO88KiPGKBgipqL5ZaNVBJE21wtVpHaqPVBrYKX8xUFe8BmEwHsnf7+Bj5ZtLm3hHYzdTigSY273+UfOWkvBhrXsmDka77ZfyG56HvUu7MWJuQ3iahCCORiUdeU2E8yKyjwcJ16Y7CNDxCQiIySRpCqH/eRBH0f1vtHd2jBwyjJXgeZw5OZklekmOvn7DWWu68kURv6ptevnUFhYyG863cae76aRmV2HehffS/bp5wI+g/bziMtdy+bWQMX7760i7XJjxWQfGZJCRfPLJiKH3Y1iqZvtsQwm5/p3KHaKrmvb3DJDfGIhcI/8gkLL9tLeYmX4jJWunsW8efPo0aMHe378kaPOuJicTneSWfNIRXKk40jd7jbj/fdWWYfjxItUTV67H+iBL+62HPizqh5MhSyGyKmIftl4KgK3hV37DhaVe2/w2E4nN8buOBgEt4SridizZw+DBw/mlVdeoXHjxgx/9V9Myq8TkwsmkuB/Rfx7q8gkvfeRiOQC9wHtVbUlkAnckGw5DNGT6GZw6Y6beQIjZ621zCCqVb1aqdILDpjWzfaUcWeli8KbOXMmLVu25NVXX6Vfv34sX76cx+7uFnPfp0hW/1X97y3ZpMp9VA3IEhEvkA1sSpEchiioKi0Fgl1EdbI8iEDBAa9tADlcYRf4dgBWMY6DIe0rrAKingyhSBU3YUCrttlOhLbT3r59O/fffz8TJkygefPmfPPNN3TocGSUeqw7r0hW/1Xl7y1dSEmgWUT6Ak8ChcBsVb3Z4pxeQC+ARo0atVu3bl1yhTRUaabn5Ucc7HXTAiJcPCE4cGoVt3DT9C7XJqjsRnZV5b333qNPnz7s2rWLwYMH88gjj1CjRg1X13GLaWCXHKIJNKfCfVQXuApoDDQAaonILaHnqeo4VW2vqu3r1zfTkwzJZfiMlREZhFB3hpPLw63rJHTsZNe2ueRkW7eIDpCT5WHgJU14omsralV37wjILyjkjdmLufrqq+nWrRuNGjVi8eLFPP7443E3CJDY1uOG2EiF++hC4GdV3QYgItOA3wETUiCLwWCJ24Z0AUILqpxcHnbdTENdJ6E7hU5N61sGr4MJzuF3G6xWVfb98Bk9R79ONYoYOXIk/fr1i6qBXSSYLKD0JBVGYT3QQUSy8bmPLgBMEYIhbYhmGllAGS9at5O5a7Y5+r4HXtKknGsqOCspIENohtPEBetdxQkKvcUMn7HSVdsNb8EWdn76IgfX/UCNhi1pfv2DPPDAre4/uKHSkXSjoKoLRWQKsAQoAvKAccmWw2CwI1xvIjsKvcVlFLdjpXeIdvcWK4vW7SyzwwjNcIok+rfrgJfLzzjBNq6gJcXsXTyDgq/+CZJBvUt6c1TrS9gl5T3KFa3Yq6LJm26kJPtIVYcCQ1Nxb4MhHLEU4YWqX6vce7t01YkL1tP+pHp0bZsbl0LAuWu2Uat6tXJFcIe3rWPHJy9yePNasn57FvUu7k21o48FrF1YdjUZgc+STsq3orVgSUdMRbOhQpDM1Z8bt0skhF7LdrIaMODdZY4yRJJqGnofLfaye8EUdn8zmYwa2ZzQ9UE8p5+H+HsxWeX+29VkDJ+xkoPekrRTvqY1duwkPfvIYIiU4EH2SvQD591ilTnkyZSw/1nsJiAEZihMz8un44g5jkq9WJXB05bTqWl9y+ylmzs0om6YDKQADXKySlf+hzb/h81v3c/uryeS3aQj7fq/ySuP3ceJdbMds3/sDNiuA96wBXypoKK1YElHzE7BkPYkcvXntAOxm2AWnA0UHFTu1LS+ZTBYodzK2olCbzETF64vbZFdrEpukGxPdG1VRu6cbA/7DhaVcUkFVv2HCgu5d8Agdi58n8xadal/7aMc0+x3POw3AOGeX6S7plQrX9MSI3aMUTCkPXaKJr+gsFwlbiSE8z87TTCzw6rpHESe4hrcIjug4EMH1Qf/HGokVOHukW+ze/YYDu7I5/izL6fG727jxOOPjcj1Ztdquka1DMuGfalWvqY1duwYo2BICPGMATitVq382Fb5/VZpoonYgeTGOR7hJJPVMwZ48J0FbP58PPuWfkq1nBM4/oan6NHtCp7o2iriezvtmtJR+ZqWGLFjjIIh7sQ7A8RpolmowrS6d/DqPVgWpx1IxxFzXCuV0B5JnkwpkwbqtLLOyfK4apEdkDVwr/yCwjJB58DnOvTTd6z/8EWK9+/i6LOups55N5PhqVkmsykepLPyNUVxsWGG7BjiTiKG8EzPy6ff5KWWx4KHu9jd20oWsO5BFJrh49STx6qHjydDOKpmNQoOeMOurJ++ppWr2QmBmIKdcU0/xnEAACAASURBVCw+sJudn4/jwOp/4zn2JI657D5qNGhS7hqRPn/To6hiY4bsGNKCRGWABOYThxLsx3Z7j00FhTzfrU05hWeV8hm8Gwl12Rw4XFROSXtLlOzq1ch77OJy97VbWTvNdg64ZSwL2lQ5sHoeOz8fS8mhA9TpeBN1zr0OySyfoRTN8zcpnlUPk5JqiDt2wcZog5DT8/IZ+N4yS4MQ2h7C7T1ysj2WTdmc2mJbpcbaBZBDFXBoIHj/oSLun7yUjiPmAPD0Na3KpJoG0luDU0VDr1m0Zzvbpj7O9hkjqZbzG064YzQ5v7/J0iBAdM/fpHhWPWyNgojUEZERIrJGRHaKyA4RWe1/LSeZQhoqFvEeimJXAQxlh9bY3duKfQeLSjOXgjuR5toozgwR+k1e6iqlFMoq4FBjsuuAl4JCb5mai0XrdpaZqaBQLusocE3VEvYu/ZRNr9/LwXU/ULdzD35zy0iq1z/ZVp5on3+8Dbwh/XHaKbwL7AL+T1XrqeoxQCf/a+8mQzhD4ggUUjUe9DEdR8yJayFYvNsiO61KQzuBWt07y1P+z9xbopaFVp2a1rcsQiuOIPYWqoCtXDDBFHqLmbBgvW3lcICBlzQhc++v/PqvR9g562Wq/+ZUTrjzZY4+qyuSYW8IBbi2XXTBVzP1rOrhFFM4WVWfCX5BVbcAz4jInYkVy5BIYskOcptqGs8MEKeUVLtJXcH3bjzoY8v3Wrl4pi7Oj6jxXDDilyf0mcTiatl1wMvJgz6mQe3qnL59HhtfH0kx1Tjm0r9Q64yLS1tUOKH4+iBFQzpnGRkSg5NRWCciDwJvqeqvACJyPHAHsCEJshkSRLTBw1Q1Gxt4SRMGvresnAspNJ5gh9sq13AreicyRRh1fWvL5xBrL6XD235h8dsv8O3mHznr/It4/503yc3N5WQbY2dFLIbJpHhWLZzcR92AY4B/+2MKO4EvgXrA9UmQzZAgog0euhlYHy1O7qyubXMZeV1rcrKOBFDrZnsY+SdrJRyKWxdILIoz0LPIyg3nNs4RihZ5KfhqIpv/0Zei3Vs5tsuDVLv0IXJzfZ/ZLv5hhYkBGNxiu1NQ1V3AQ/4vQyUi2v4wicpEcbMDiWW16tYF4rYzqSdDKCpRV22yg+8/fMZK1+0uDm1ay45PXsC7fT21WnSibuceZGbXYfPug6XnONUtBGNiAIZIcF2nICK/B84GVqjq7GhvKCJNgMlBL50CPKaqo6O9piEyou0P49aYRNriIhG58FYyhCvcsnsuZzaqw4KfdlGsSqYIJx+bzY9b91teI7+gkMaDPi73uQNtNcIZhZLDByn46p/sXfQhmbWPof6fhpL927NKjwc/62Bjl19QWNo8r66/99HuQq+JARgixtYoiMh3qnq2//ueQG/gfWCoiJypqiOiuaGqrgXa+K+bCeT7r2tIEtEGD90Yk2jiDvHegUQb+7B6Lp2a1mfq4vzS7KNiVVuDECA41TT4uuE+z6F1yzg491X2/rqRo9r+kXp/uAOpkV163MpwG3+/Id7YtrkQkTxVbev//nvgj6q6TURqAQtUNfLuWuXvcTEwVFU7Op1n2lykD+F2AdG0uHD7Hrc7kHi22XDbNsOJQIuKwIo+lJKD+9g19w32/TCbU089lfHjx/OHP/zBjJU0xEy821xkiEhdfMFoUdVtAKq6X0SKYpAzmBuASVYHRKQX0AugUaNGcbqdIVbCrUyjWfXHewcSiQzhFG88KncDsl7bLpepi/PLfM4DPy5g5+xXKN5fwNHnXMsPc/9JVlZW6edyYwSM8TDEEyejUAdYjD/OJiInqOpmETkK+yFTrhGR6kAXYLDVcVUdB4wD304h1vsZoiNShRNNENuNOytc3CFYzgy/bz0UxbfyD1zbjaGJ12jOQm8xc9ds4+lrWjHg3WUc3reLnZ+P5cCar/DUP5n61zzKKc3OKDUIbklUmrAxNFUXp+yjk20OFQNXx+HelwFLAjUQhvTDSuH0m7yUYR+uZFiXFpZKItogdiw7kFA5naqPg5WmmwC32wwfN2wqKOSqNg348uOpvPTCEEoOF1LnvFuoc86fyK5ZI6oMoUQF6VNRj2JID5wCzWcBx6rqJyGHOgG/Aj/HeO8bsXEdGdIDu2KugkKvrZJIVAWs0w7ETs5Mmx1DQGm6nadwbbvccmM3Az/nBGX61MnyIGI/Ze0Y9nLFFVcwc+ZMTm91JtkX9KagxvExPaNEpAmbzqhVGyf30TPAny1eXwm8CUTXGB/wB6svAu6K9hqGxOOkWJyURCIyYqxW7AKlc5GtKFG1bIUNlCp4O9dQ4PX8gkKmLs533btpel5+ufkIqiUcWj6LVfPeYrWWMHr0aPr06UNmZmaZ9wTPi8jJ8tjuxoJJxExi0xm1auNU0VxbVdeFvuh/7dhYbqqq+1X1GFXdHct1DIkl2mK2RNC1bS7XtsstE8xSYOrifLKrW1cLN8jJcuzyOfCSJngyw4fH3FZtB9wuwQbBuzOfHZMf5tdPxtDx3A6sWLGCvn37ljEIA99bVm7ITkGhl4HvLQvbqDARDetMZ9SqjZNRqOtwLNvhmKGSEK49Q7yUhNuOrXPXbLOsIt5/uLzrKNAXyUlpdm2bS63q7uo33RjAYLeLlhSze+EUNr/5Fw7++gtvvPEGs2fPpnHjxuXeY9cWPLiTq90zindHWjCdUas6Tv8jPheRJ4Eh6i9mEF9LxuHAnGQIZ0gtTu0ZYlUS4WYNB98/QCQ7k9A5C8GfoUa1jFIZ3MxHBnsDOGT6ciYuXF9mANDhrT+xY+YLHP71f2Sdfi71LrqH8b/m8vjgmeXiB+E+k1UgPfQZxdtdZzqjVm2cjMIAYDzwXxEJODtbA4uAHokWzJAeBBROPFMUQ5Wc2x5CkaSHhs5ZCB5gU1DoZeCUZRTbrNBDsTOAQ6YvZ0JQPEOLvOz+5l/sXjiFjJq1OfaqQWQ36UiGSJkYRbBCD/eZcrI9KQn8mkrpqottRXPpCSKnAC38P65U1Z8SLlUIpqK5cuG2Sjg3J6uMEQLnWcah7w1UL0dalezJEI6qWY2CA869g347eGZpdtOh/NXs+ORFvDs2UKtlZ18Du6yjw8oXiCnYuZBysjzs9k9pC0WAn0dc7vpzGaoeca1oFpEzg34MOHlzAq+r6pLIRTRUNax2GG7cQALlVtdPX9OKp69pZdsuIkDoyj7SgPjI69y15C5WpeRwIQXz/snexTPIPPpYjrtuOFmntAv73oBMgfsEZx4FE2hqF+8MI4PBDif30SiHY0oMKamGqoFd8ZvY5Yn6sToccJfMH9SZrm1zbVf/mSLlAq2RViW7dZsU/pzHjlkvU7z7V2qfeTk5599ORg13ORihCt2upiIn28P+Q+W7ypjAryFROFU0d0qmIIbKh11RmZXHMmAIch0UePCK365y2irzplPT+mV8/04ED/KxY9euXQwYMICt775JtXq5HH/TCGo2bOnq+gE5Awo9YDitDIInU9h3sKica6lutoehV4avYTAYosH1PAWDIVLCuW0yRShRLee3t9sF2M0SCBf8jmQ+8bAuLRyPv//++9x7771s3baNnHOv5+jf3YBUq+76+hlStu7BqRq7VvVqltlR2SGZVQZDPDFGwZAwwrltSlQtA6UDL2nCwCnL8BYfWSGHzmOOJBvKbUzBqWhny5Yt/OUvf2HKlCk0btKCRpc/gh7buNx5ngwBoYzswQQW/YE4iV3QvETVNl3WVBYbEonT/wODISZiKn4L1alBPwdcLvkFhWUG2tgVvbkNyJZAucplVeXtt9+mefPmzJgxg6eeeorjb/2bpUHIFGHkda0Z+afWruYnF3qLyRTriuqcbI9tK2ITYDYkkrBGQXzcIiKP+X9uJCJnJ140Q0UnUG1bN7u8n94pUGpV5Rtc3euUt29FOOMUTKAZ3vS8fNatW8dll13G7bffTrNmzVi6dCmDBw9my17rFXyx+mS83yaTyO49VtXDqtaxePF/HoMhUbjZKbwCnIuvqynAXmBMwiQyVFisWjF0bZtL3mMXM7pbG9etGMI1ZIu0YZtVKwingPLGXfvpOegJmjZrztdff81LL73EV199RdOmTQH7lXogjTawe3EzdCTwLEKfTWjxXQDFtK82JBY3MYVzVPVMEckDUNVd/gE5BkMp8WzFEC4v323evlPcIVTeAN4dG9nxyYscyl9F7VPbsfzzqZx00kllzrHr2Grl8XLKvg3uwRT6bOxqMdy4pQyGWHCzU/CKSCb+v20RqY/P/WowlBKpS8eJcA3Z3DRsCxd3CHRdDfj0tbiI3d++y6Y3/4J3x3qO+eP91L1mGDdN+l+5WIXVzsNO8SuUcZ8FQgjhdkumKZ0hVbjZKbwIvA8c52+Q9ydgSEKlMlQ44tmDP1y6abzGd05dnE+xKod//R87PnmRw7/+j+wmHal34d1kHuVrEmzXoC+0J5QdtapnUhDUTFC17A4h2mdgMCSKsL2PAESkKXABvt3wF6q6OqabiuTga7bXEt9i6k5V/dbufNP7KLHEo9mdXW1BcA+iZNJ40MeO/YI6jpjDxu27KZg/iT0Lp5KRfTTHXHQv2U1+Z3k9q89h54IK4MkU29TUVD0XQ9Uirr2Pgi7aCDgAzAh+TVXdlYha8wLwqar+yR+fMPMZUkS85vFGO5s5UYSLO/y0YhHbP3mJop0bqdXqQl8Du5pH2V7PasdjV3gGPqW//1CRqTUwVDjcuI8+5kjMrCbQGFjLkc6pESEidYDzgTsAVPUwcDiaaxliJ15tmdPN3WFnpPr8Ppc+ffqwZeIYMuscz3HXP05W4zMdruSjQU5WuR2VXWGeAPMHdabxoI8dr2cwpCNhjYKqtgr+2d8l9d4Y7tkY2Aa8KSKtgcVAX1XdH3KfXkAvgEaNGsVwO4MT8Y4FJNsI2Lm+rIzUhbU3M+jmu9iwYQOX33gnPza8gkMuE+k6Na1fbkdlR7gsKVNrYEhnIq5o9rfMPieGe1YDzgReVdW2wH5gkMV9xqlqe1VtX79+/RhuZ3AiFfN43Y7fdHOdcBlG8wd1ZvGD53Lq6rd4vM8tZGdn8/XXX/PRO69z3bmnuqolyMnyMHfNNldzHMJlSYFv2z1y1tqoP7fBkEjcxBT6B/2YgU+hb4rhnhuBjaq60P/zFCyMgiE5xCMWEEmg2imGAZG5n+xcX8NnrCx935QpU+jduzc7d+7kkUce4Ywr/szAL9ex6cOPyRBx6uAN+J7FsC4tXFUp5zpkSUUydtRgSCVuYgq1g74vwhdjmBrtDVV1i4hsEJEmqroWX1bTqmivZ4iNWGMB4QLVoQbjwOEiW0V+0FtS5jr3T17KonU7aX9SPUv57Fxcuw54eWP2Ej4e+yTTpk3jzDPPZNasWfyiZV1AVu2qAwiUuVe4wT7gM7CBNhehriyr7KxEj9Q0GKLBMSXVX7T2jKo+ENebirTBl5JaHfgJ+LOq7rI736Skpi9OqahWu5BoCE3t9GTat5VWVfYv/5yCua9TTb1cf1d//ntcJzbvPUyGzSAbK0JX/eHSTzMEMjPKyznyT74pbnYpsgCju7VxNAzxnI9tqFrEexxnNVUtEpGOsYtWFlVdCkQkqCE9cQpUO6VsRkJorr+32LqttLdgCzs/fZmD65ZS48QWjHrpVV5evJ/Cvb7kNrcGAazbdAA88v5y9h+2mn9gLWfAleWUreTkRopXyrDB4BanQPN3/n+XisiHInKriFwT+EqGcIb0xylQ7TaDKcuT6WrimR1aUsyeRR+y+Y3eHNq8lnoX38uZ94zmnTVeV0bJrn11obeYfpOXlmnut/LxS7mlQ6PS92SKcEuHRnhtGr/sOuBlel4+nZrWtw1qO7UDiWf7EIPBDW5iCjWBHfhmMgf3+JqWQLkMFQSnQLWdHz4ny0OtGtVK3SGdmtbno2Wbo7q/d/sGdnzyAoc2raHmKe045pLe1D7mBB68rJnrFtY3ntOQiQvW27p3QlfnT3RtxRNdy2RqO477HPjeMhDHsdQRpwab4jdDonAyCsf5M49WcMQYBHC/DzdUasIFqq0MxrAuLVz76u3Q4iL2LJxKwTeTyPBkUf+KAWQ3/z9y62ZHFBwG37jOcFPiwgWFc7I8ttXLobMhrHDacbnpCGswxAsno5AJHAWWu15jFAyl2BWtdW2by6J1O5m0cAPFqmSKcG27sue6iTsEdhb5BYWIwMHN/2XHzNF4t/1CdtPzaHDZvYy89bxyMrgNdG8qKOT5bm3Cnuu0Oh/WpQUD31vmygCE4pQCnG7tQwyVHyejsFlVH0+aJIa0I9asl+BOpOAL9E5dnE/7k+qVXiecGySwswB4aPIitsz9J3u+e5/MWjnUv/oRctucz9ArW9gaJTiyi7HLPmqQk1WupsAKp9V54P0D3l0WUUA7NMvJihrVMkqNQt1sj+3nNRjigZNRcFPsaaikxCPrxU1fJSe3TbDCbHnXaH56byRFuzZx1BkXU7fTnWTUPIrs6tXCtqB2clUFr7qD22FbndepaX06jphjayTtXGaeDIGQ7KQsT6bjPAU7eQ/aRbQNhjjhlH10QdKkMKQd8ch6cRMktRsmM7pbG+YP6kzn39bm3nvvZeW4+6GkmOO6PcExl91Hhr+jqZuYQQCr4ThWitnqvGvb5TJ1cb5tSw2n9468rjUj/9Ta9TjSACbzyJAKbHcKqrozmYIY0ot4ZL24CZI6BapnzpzJ3XffzcaNG6lzVleO/v0tZFSvWeZadumkdrht2hc6RMcqu8gu+OwUY4kEk3lkSAVuUlINVZB4ZL24DZKGKtHt27dz6623MmHCBJo3b84333zDDdN3WN6jWNXRpRMLbjKjEqmgTeaRIRVE3CXVUDWIx4xgt+4a8Cng3z39BcddNYgTTj6NSf/6F4899hhLliyhQ4cOtgPrBcK6dKLFTWZUIhW0mdNsSAVmp1CFccouitfQHDfumul5+dz/5hx+/fQVCn9cQPXfnMbxNz5B265dqVGjBmC96wjuOhogXk3mpuflh41XBCvocJla0WRypdvgIkPVwNWM5lRjGuLFH7sMGzcB0HiiqpzUtT8bZ70GxV5yzruF2u2vQjIyqZvtIe+xi8vI7Hby2c8jLrc85kY5u3EbBWdGhXuW6fKsDVWPhMxoNlRO4jWGMxZ++uknut5wGxu+n0+Nhi055rL78NRtUHp814GyFcKhuw67Dq12Lh23abZObiMrZR7uWabDszYY3GKMQhUllZktxcXFvPjiiwx6+GGKSoR6l/ThqNYXI+Ic4gpd5XdqWp+pi/NdV/u6Vc5Oz6BGtfIyOj1LJzeUySIypCMm0FxFScUYToCVK1fSsWNH+vfvT62TWnNC91ep3eZSS4MQ3DnVavTm1MX5XNsutzSQXTfbQ41qGdwf1Nk0mHDKOzAiNMMhzbWg0FsumG33zHKyPWWmyoVisogM6UhKdgoi8guwFygGiiL1eRliJ9k9dQ4fPsyIESN44oknqFOnDu+88w6Dl9YGGwXsyZDS9hZgv8qfu2Yb8wd1duUasotDBJS3m4lsgfsOn7GydNdSJ8tTbhBQlicTVRzdUMHPOpGDdMyQHkMkpHKn0ElV2xiDkBoiSReNle+//5527doxdOhQrrvuOlatWsWNN95I3VrVLc/PEBh5XWtXLp3A626qf+1SPO2Ut1Nh3K4D3tJdS0GhF9S3Uwl+lrttuqYCZZ611S4oXqm1iby2oXJiYgpVGLfVvdFy4MABHnvsMZ5//nlOOOEEPvzwQ6688srS43YL8qNresrJFa6Qy02MxC7Fs5/N3IUSf2dXNw3uvCVKdvVqZbKl7Jrr5QY14Aucl6hAtAlyGyIlVTsFBWaLyGIR6WV1goj0EpFFIrJo27ZtSRbPECtffvklZ5xxBqNGjaJnz56sXLmyjEEAbFfSVq9brfIDhWsdR8whJ9t6cluGSJlVcde2ucwf1JmfR1zO/EGdS69jRYOcrIg6noYaJrfFZ4kM+ptWGYZISZVR+L2qnglcBvQWkfNDT1DVcaraXlXb169fP/kSVlGCA66hwVqnYwF2797NXXfdRadOnQCYM2cOf//736lTp065cyMJdge7u6Bs4Vp+QSH7DhbhySyv3otVHd0lI2ettRwOIviUul0ltRu53broEhn0T1VCgaHikhKjoKr5/n+3Au8DZ6dCDkNZnPzPbnzTH330ES1atGD8+PE88MAD/PDDD6XGwYpI2zgEVvm5OVnlFLm3RKlVvRoZFst+p86iditm9d/PSsZMi5t4MsVS7tCdiZXLxm4X1Klp7Ish0yrDEClJjymISC0gQ1X3+r+/GDDDfNKAcMFau2MdT6xO3759mTRpEi1btmTatGmcffYRO2+X/RJtGwc7RW43DtPpPXaxisAOIVTGnGwPuw+Uv09xFBPXAgQm1AXPiVZ8c58/Wra5zPjSaK4NplWGwT2pCDQfD7wvvsyOasA7qvppCuQwhBCp/1lV+c83n9J8VDd2797N8OHDGTRoENWrH8kqCpcqGk2w206ROwWFrdwl0/Py2X+oqNzroSvpYBk7jphTrtIaoESJKHgbaigPHC6ydGMF6iICckRDohMKDJWLpBsFVf0JaJ3s+xrCEy7DJ/hY0Z7t7Jw9hsL/fc8555zDTQ88xeT/wpuPfVZabTx3zTbL68Wa/WLXHM8pKBw6Nc2qGhrCj7t0CtC6Dd5aGUonTLaQIZmYimZDKU7+58Ax1RL2Lv2ETa/fw8F1P/Dn/kPpPPDvPL+osEy8YcKC9Y7KLpbsF6egsxXZnoxyU9MmLlhvWZuwp7DItiIanAO0boO3blpyh2KyhQzJwhgFQylO2TJd2+ZyX/ujKJjyKDtnjeHohk15ZdocutzSk0nf5zsqZStizX5xCjqHUlSi5ZSw3XuKVR2LvAZe0sQ3czkEu0CzFdEoeJMtZEgWpnjNUAYr/3NRURGjR4/m0UcfpXr16rz22mt0794dEaHjiDkRG4R4Zr+4UbCHi6MLAlu5bQLfD/twZWlgO5zLKRTbdhtZHkTKd4c12UKGZGKMgsGR5cuX0717d77//nu6dOnCK6+8Qm6uu46iVuTGOfvFaa5COMK5ncD688UauLXrOxXIMjK9igypxBgFgyWHDh3iqaee4qmnnqJu3bpMnjyZ6667DgnpB+RWKcdzqEyw0rRqRueGLE8m17bLZe6abWwqKCTDJnMpEW6bcGmiJlvIkErM5DVDORYsWED37t1ZtWoVt9xyCxfd+RBjF261VGBWU8UE+N1v6/HLjsK4r3at7ufJELxh6gRysjzUqlHNcVymmY5mqGyYyWuGmNi/fz+PPvooo0ePJjc3l48//pjDJ7QO25K6RrWM0uOR+tcjxSpzx1vi3Lgu2DVjhynyMhh8GKNgAOCLL76gZ8+e/Pzzz9xzzz2MGDGCo48+mo4j5jhWOYeurg96SxIqp10Mo1iVLE9mxHUHwUTitjF+f0NlxRiFKk5BQQEDBw5k/PjxnHbaafz73//m/POP9Cd0qnKOpi3z9Lx8hs9YWZphk5PliaiNg1NbioGXNEmKonY769lgqIgYo1CF+eCDD7jnnnvYunUrDz30EEOHDiUrq2xg1anK2U1bjOl5+WXSN0MpKPQy8L1lgDuF6jQxLlkBWjOjwFCZMcVrVZCtW7dyww030LVrV4477jgWLlzIiBEjyhkEcK5yDteWeXpePgPfW+bYqA58MQG7LqahJHNinB1mRoGhMmN2ClUIVWXixIn07duXffv28cQTT/Dggw/i8VgPqIHwAVi7Vfv0vHwGvLvM9ZCaSBRqIncEbmIF4XpEGQwVGWMUqgjr16/n7rvv5pNPPuHcc8/l9ddfp1mzZpbnWinGwJSyYOwMBviMRSRTy9wo1EQHd93GCpxcWAZDRcfUKVRySkpKGDt2LA8++CAlJSU8/fTT9O7dm8zMTMvzo83XD1bYdoVgdngyhJHXtS5T+2BnaELlCi5AC+7OGo3h6Dhijm0QO9QomuwjQ0UgmjoFYxQqMf/5z3/o0aMHX331FRdeeCHjxo2jcePGju+JRDEGsDIkbhHg+W5tHIvhsjyZ1PRkWM4xCNeqIpICtMaDPrYdzfnziMvDvt9gSDeiMQopCzSLSKaI5InIR6mSobJSVFTEs88+S+vWrVm+fDlvvPEGs2fPDmsQILogajStoMGnsIMNgt21Cr3FlgYBwvcuchrFGUq6zDN2MwvbYEgUqYwp9AVWA0enUIZKx7Jly7jzzjtZsmQJV199NWPGjOGEE05w/f5ogqhug8QdLVpfAGWG30Tb3M4Jt/KlQ6zA1EAYUk1KdgoiciJwOTA+FfevjBw8eJAhQ4bQvn178vPzmTJlCtOmTYvIIEB0g97drqR/2VFYZog9+OIEwcNvyk8q8JGT5bEcbu8Gt/KlQ7pruDnZBkOiSdVOYTTwIFDb7gQR6QX0AmjUqFGSxKqYfPPNN3Tv3p01a9Zw++2387e//Y169epFda1IegAFgq0BZR5pG2orBaiUjxMEeheFymU3UpOQ94aO4gwYOKvPaJfumqzAsqmBMKSapBsFEbkC2Kqqi0Xk/+zOU9VxwDjwBZqTJF6FYt++fTzyyCO89NJLNGzYkE8//ZRLLrkk5uu6qQMIdXNYKfNQFJ+rKKBQ7RSd4lul27WVDpbho2WbyzTju/yME8plIwUbjvyCQl8FtVDabjuciyaZLh1TA2FINanYKXQEuojIH4GawNEiMkFVb0mBLBWWzz77jF69evHLL7/Qp08fnnrqKWrXtt14xR23q/xQghWqUx8ju0ynAFZZSge9JbQ/qR5PdG1V+ppVQz+rNttObSqS2dYiHeIahqpN0o2Cqg4GBgP4dwoPGIPgnl27djFgwADefPNNmjRpwldffcXvf//7iK9jVwvg1kXitMoPR6G3mOEzVjL0yhZRK0C3ijoSt0ukrptEuHRMC29DqjEVzRWIadOmpG9GDwAAFCFJREFU0bt3b7Zt28bgwYN57LHHqFmzZsTXsXKHDJyyDPTIKjqciyTWTKFAiunT17SKSgG6VdSRyNkgJ8vSWCbbpWMmrxlSSUqNgqp+CXyZShkqAlu2bKFPnz5MnTqVNm3aMHPmTNq2bWt7frigqOWgGotxlqEr7yHTlzNp4QaKVREgM0MoDnLFuAk2BzNy1lrmD+oclQJ0q6it3DFQXvZAQNoqdnBmozps8mdIBZ9vXDqGyojpkprGqCpvvfUWzZs356OPPuKpp57iu+++C2sQQtM8B09bXqYAKhqXypDpy5mwYH1p+woFikuUWtUzS9M3b+7QqFzaqCfTPnE0FveL29TZrm1zubZdbrn01Qx8geng1NO5a7ZZuqS++d/OMgZBgGvbmdW8oXJijEKasm7dOi677DLuuOMOmjdvztKlSxk8eLBjR1Nwl+ceidsjcO6khRssjx/0lpTWHbQ/qR41qh35k6qb7WHkn1qTk2Utcyzul0hqCuau2VZuB+MtUbKrVyuVPVw2VOjPc9dsi1p2gyGdMTGFNKOkpIRXXnmFQYMGISK8/PLL3HPPPWRkuLPfbnztVi4VT6aUiSlA2ZW3XYO7wOt22UAAw7pEH1B2wq3vPRHxB1M3YKisGKOQRqxdu5bu3bszf/58LrnkEsaOHctJJ51U5pxw8QI3vnanltd218606XyaKVL6PrsdSiC9NB4ZNdEUkcUSf7CLk5i6AUNlxRiFNMDr9fLcc88xfPhwsrOzeeutt7j11lsRKesJd1NE5TbP3W6VbadgbzynIRMWrC/3eodT6tp2VoUjK+p4ZNREW0QWyTOB8FXTJshsqMyYmEKKycvL4+yzz+bhhx/myiuvZPXq1dx2223lDALYr8YHvLustKMmkJD+PU90bcUtHRqV7gwyRej423osWb/b0eUSzxV1tH2B3MYfrHYhT3RtlfJ+SAZDMjHzFFLEwYMHGT58OCNHjqR+/fqMGTOGa665xvE9dv3+g4lkfkCsOO0Q4iFLqJK2u1c85h1EO1zIYEhnKtQ8harM119/TevWrRkxYgS33XYbq1atCmsQwN2qO3TlnMje/E7B1lhX1FaptXbJrfHYjZjupAaDDxNTSCJ79+5l8ODBjBkzhpNPPpnZs2dz0UUXuX6/XSFWKPkFhTQe9DF1sjzsP1xk2fgNYg/8RtO7yG2gOJIOqk7+fbf3M91JDQYfZqeQJGbNmkXLli155ZVX6Nu3L8uXL4/IIEB533imRdwhgAIFhd5ylcqBvkOhq/D7Jy9lyPTllteyI9LZC24K6wKE66Dqxr8fyf3SZeqawZBqzE4hwezYsYP+/fvz9ttv06xZM+bPn8+5554b9fWCs3iinY1sNdpSgYkL1tP+pHqudwyRNm+LpNtoLB1Uo7mf6U5qMPgwRiFBqCpTp06ld+/e7Ny5kyFDhjBkyBBq1KgRt3uEKuVYUwbUf61I3EiRpJpG4qKJh5KO5H6mO6nB4MMYhQSwefNmevfuzfvvv0+7du2YPXs2rVu3Tsi9gpVyuGwg8CnWGtUyKCgsv1uA+PnQY+02Gg8lHWl3U9Od1GAwMYW4oqq8+eabNG/enE8++YRnnnmGBQsWJMwghGLl4/dkSLnGb8O6tEhoJo+dL79T0/oRxSC6ts0tN9M5kkyqaOZNGwxVHbNTiBM///wzvXr14vPPP+f888/ntdde4/TTT0+qDJGsrhet28nEBesT0g7azpc/d822qOcnRFPNbFxCBkPkJL14TURqAvOAGviM0hRVHer0nnQuXisuLmbMmDEMHjyYzMxMnn32WXr16uW6gV2yiHXSWiTYFdnFUmRm5xqLJPAcjmj6KhkM6Uw0xWup2CkcAjqr6j4R8QBfi8gnqrogBbLExKpVq+jRowfffvstl112GWPHjqVhw4ZJu79bJWa3yn76mlZlFGqg0M3pem7umYhJZYmuI4i2r5LBUNlIxYxmBfb5f/T4v9K/10YQXq+XZ555hr/+9a/Url2bCRMmcNNNN1n2K0oUkSgxN6mZdiM6h324kt2FXsvmcHb3jCZzKB7dX2MhkvRVg6EykxIfh4hkishSYCvwmaouTIUc0bB48WLat2/Po48+ytVXX82qVau4+eabk2oQILK2DG5W2XYjOgsKvaXB4okL1ru6ZyQDcMBdkZlV0FiATk3rW14zUkxFs8HgIyWBZlUtBtqISA7wvoi0VNUVweeISC+gF0CjRo1SIGVZCgsLGTZsGM899xzHH38806dP56qrrkqZPJEoMTerbDfKz247Z5f373aF7WaV3rVtbrnguAJTF+dHVHBnR6J3IgZDRSGl0VBVLQDmApdaHBunqu1VtX39+vFZDUbLvHnzaN26Nc8++yzdu3dn1apVKTUIEFlbBjepmbEov1gVp1sDZzVWM15N60z6qsHgI+lGQUTq+3cIiEgWcBGwJtlyuGHPnj3ce++9/OEPf6C4uJgvvviCcePGkZOTk2rRIlJibtw5VtezItRJFg/F6cbATc/LDzvIJxYidXkZDJWVVLiPTgDeEpFMfEbpXVX9KAVyODJz5kzuuusuNm3aRP/+/Xn88cepVatWqsUqJdIc/HDunNDr5WR72HewqNzM5mvb5TJ3zba4pm2GC0wHYg52xMvFYyqaDQYzZKcc27dvp1+/fkycOJHmzZvzxhtvcM455yTl3ulCIBMov6CwdDZzbowGIFx2kdNxp/YdZhCOwWBPRalTSEtUlXfffZe//OUv7Nq1i6FDhzJ48OC4NrCrCISmpharlq7aYx2Y45TK6rRKd3IPGYNgMMSX9Cq7TRGbNm2ia9eu3HDDDZx88sksWbKEYcOGVTmDAImZQBbrNe3cQ7k5WcYgGAxxpkobBVVl/PjxNG/enM8++4znnnuOb7/9llatWqVatJSRiHz9WK9pMoMMhuRRZY3CTz/9xIUXXkjPnj1p27YtP/zwAwMGDCAzM3wGTmUmERPIYr2myQwyGJJHlYspFBcX8+KLL/LII4/g8XgYO3YsPXr0SLsGdqnCTYuKSBvHxWNgjskMMhiSQ5UyCitWrKB79+589913XHHFFbz66quceOKJqRbLNcno4hku1dW0sDYYKjdVIiX18OHDPP300zz55JPUqVOHF198kRtuuCHp/YpiwWoecyrSMZPRwtpgMMSHaFJSK73P5Pvvv6ddu3YMGzaM6667jlWrVnHjjTdWKIMAickKigbTOM5gqNxUWqNw4MABHnjgATp06MCuXbuYMWMGEydOJNV9lKIlXZRxIgLRiSYwJ8LtGE+DoSpTKY3Cl19+yRlnnMGoUaPo2bMnK1eu5Iorrki1WDGRLsq4oqWHumnLbTAYjlCpjMLu3bu566676NSpEwBz587l73//O3Xq1EmxZLGTamUcWG3fP3kpNaplUDfbUyHSQ9PF7WYwVBQqTfbRjBkzuPvuu9myZQsPPPAAw4cPJzs7O9VixY1UZvCEBrkLCr1keTJ5vlubtDUGkPjOqgZDZaTCG4Vt27bRt29fJk2aRKtWrZg+fTpnnXVWqsVKCKnK1a+IoyqT1VnVYKhsVFj3karyzjvv0KxZM6ZMmcLjjz/OokWLKq1BSCXpEuSOBCtDFiCdYyAGQ6qpkEZh48aNdOnShZtvvplTTz2VvLw8Hn30UapXr55q0Sol6RLkjgTTWdVgiI4KZRRKSkoYO3YszZs3Z86cOTz//PPMnz+fFi1apFq0Sk2qg9zRYDqrGgzRkYpxnA1FZK6IrBKRlSLS1837/vvf/3LBBRdw9913c/bZZ7N8+XL69etX5RvYJYOK2JCuIhoygyEdSHqbCxE5AThBVZeISG1gMdBVVVfZvadhw4a6fft2atSowahRo7jzzjsrXEWyIfkko1eUwZDORNPmIuW9j0TkA+BlVf3M4Ry96qqreOWVV2jQoEESpTMYDIaKS4UzCiJyMjAPaKmqe0KO9QJ6+X9sCaxIqnDhORbYnmohQkhHmSA95TIyucPI5J50lKuJqtaO5A0pMwoichTwb+BJVZ0W5txFkVq7RGNkck86ymVkcoeRyT3pKFc0MqUk+0hEPMBUYGI4g2AwGAyG5JGK7CMBXgdWq+rfkn1/g8FgMNiTip1CR+BWoLOILPV//THMe8YlQa5IMTK5Jx3lMjK5w8jknnSUK2KZUp59ZDAYDIb0oUJVNBsMBoMhsRijYDAYDIZS0tooRNsSI8Ey1RSR70RkmV+m4amWKYCIZIpInoh8lGpZAETkFxFZ7o8bLUq1PAAikiMiU0RkjYisFpFz00CmJkHxtaUiskdE+qWBXPf7/8ZXiMgkEamZBjL19cuzMlXPSETeEJGtIrIi6LV6IvKZiPzo/7duGsh0nf85lYiI67TUtDYKQBEwQFWbAx2A3iLSPMUyHQI6q2proA1wqYh0SLFMAfoCq1MtRAidVLVNGuVvvwB8qqpNgdakwfNS1bX+Z9QGaAccAN5PpUwikgvcB7RX1ZZAJnBDimVqCfQEzsb3u7tCRE5NgSj/AC4NeW0Q8IWqngZ84f851TKtAK7BVyDsmrQ2Cqq6WVWX+L/fi+8/cEqb16iPff4fPf6vlEfrReRE4HJgfKplSVdEpA5wPr6UaFT1sKoWpFaqclwA/E9V16VaEHxDuLJEpBqQDWxKsTzNgIWqekBVi/AVv16TbCFUdR6wM+Tlq4C3/N+/BXRNtUyqulpVI547m9ZGIRh/S4y2wMLUSlLqplkKbAU+U9WUywSMBh4ESlItSBAKzBaRxf62JammMbANeNPvZhsvIrVSLVQINwCTUi2EquYDzwHrgc3AblWdnVqpWAGcJyLHiEg28EegYYplCnC8qm72f78FOD6VwsRChTAK/pYYU4F+oT2SUoGqFvu3+icCZ/u3tSlDRK4Atqrq4lTKYcHvVfVM4DJ8rr/zUyxPNeBM4FVVbQvsJ/nbfFtEpDrQBXgvDWSpi2/12xhoANQSkVtSKZOqrgaeAWYDnwJLAevxeilEfXn+KfceREvaG4V0bonhdz3MpbwvL9l0BLqIyC/Av/AVBk5IrUilq01UdSs+H/nZqZWIjcDGoJ3dFHxGIl24DFiiqr+mWhDgQuBnVd2mql5gGvC7FMuEqr6uqu1U9XxgF/CfVMvk51f/WIDAeICtKZYnatLaKKRjSwwRqS8iOf7vs4CLgDWplElVB6vqiap6Mj73wxxVTemqTkRq+edl4HfRXEyKO93q/7d3b6FSlWEYx/+PGZKVQlsNb4RCDVS8CAUpEstORheJh0ghCSuNkKjLDkh1I3SxsbooEiqpLZoHspSUjHILZoZ5SgjFykMUUWJqdsDeLr53Zo/bfXBrOSM+v5u9WGvNmm8G9rzf+tZazxfxI3BQUmWmnYlAp/N41MEDNMDQUToAjJPUN/8PJ9IAF+UlDcq/QyjXE1rq26Kq1cCsXJ4FvF/HtpyX3vVuQDcqkRi7cgwf4OmIWFvHNg0G3pZ0GaWoLouIhrgFtMFcC6zKyZB6Ay0R8VF9mwTAPODdHKrZDzxU5/YA1cJ5BzCn3m0BiIgtkpYD2yh3AX5FY8Q4rJDUBPwNPF6PGwUkLQEmAAMkHQLmAwuAZZJmA98D0xugTb8CrwADgTWStkfEXd0eyzEXZmZW0dDDR2ZmdmG5KJiZWZWLgpmZVbkomJlZlYuCmZlVuShYw5J0KlNDd0t6L6MNzvVYb0mamsuLugpWlDRBUo8f1MpU2AHn2KbLJS3IlM1tkjZLmpTbPpX0TU2KauVe/T6SlkraJ2lLRsGYnRcXBWtkJzM9dBTwFzC3dmMGtfVYRDwcEV09tDaBC//07ouUZ2BGZTTIfcDVNdtnVpJU8wlxgNnAkYgYCjRTIiDMzouLgl0sWoGh2YtvlbQa2JPhhC9J2ippp6Q5UJ6Gl/Rq9rA/BgZVDpQ97zG5fHf2zHdI2pC97bnAk9krvyWfYl+R77FV0s352iZJ6zOzfhGgjhou6bik5txvg6SB7bb3pURCz4uIPwEi4qeIWNbNd1KbzLkcmJife6TKnB/b8zsZdvZfs13qXBSs4eUZwSRgV666EXgiIoZTestHI2IsMBZ4RNJ1wGTgBmAE8CAd9Pzzx/kNYErOjzEtIr4DXgOas1feSpmDoTnfYwpt8eTzgU0RMZKS7TSkk49wJfBl7vdZvq7WUOBAN2GPb+aP/HMZOwElRv4gQEZJHwWaKEVtYYY2jqFkPpmdlUaPubBL2xU18SatlBysm4AvIuLbXH8nMLoyNg/0B4ZR5k1YEhGngB8kfdLB8ccBGyvHioj2GfkVtwMj2n6L6aeS3DuezPOPiDWSjnTy+n+Apbn8DiVcridmRsThzJJaQYl+WdzF/puBZ1Tm2FgZEXt7+H52CXNRsEZ2Mnu7VfnDfKJ2FWXYZV27/e75D9vRCxgXEX900JZz0T5bZh8wRFK/js4WatJmj0lqoaTNLgYOU+YTOJRnU/2BXyKiRdIWyqRLayXNiYiOiqLZGTx8ZBe7dcBjKhHrSBqe4XIbgfvzmsNg4NYOXvs5MD6Hm5B0Ta4/xukXeddTgvTI/SqFaiMwI9dNAjqbl7cXUDmTmQFsqt0YEb9TzoIWZlBfJY13mqTelTua8jPeS1vabG0y51RKOm5Iuh7YHxEvU9I6R3fSLrMzuCjYxW4RJf56m8qk5a9TzoBXAXtz22LKkMppIuJn4FFgpaQdtA3xfABMrlxoJucqzou2e2i7C+p5SlH5mjKMdKCTNp6gTMa0G7gNeKGDfZ6lzAq3J/f7EPgN6AOsk7STMqnMYcp1ECiFpEnSPuAp2iYMmg7szqG3UXQ91GR2Gqekmv3PJB2PiKvq3Q6zs+EzBTMzq/KZgpmZVflMwczMqlwUzMysykXBzMyqXBTMzKzKRcHMzKr+Bb+0UL62EqXAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xtc2hABfqTuB", + "colab_type": "text" + }, + "source": [ + "This model seems reasonably predictive! It's likely that this model is still a ways from being good enough to use in a production setting, but this isn't bad for a quick and dirty tutorial." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fZE3LA36qTuB", + "colab_type": "text" + }, + "source": [ + "# Congratulations! Time to join the Community!\n", + "\n", + "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", + "\n", + "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", + "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", + "\n", + "## Join the DeepChem Gitter\n", + "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!" + ] } - ], - "source": [ - "%matplotlib inline\n", - "\n", - "import matplotlib\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "rf_predicted_test = best_rf.predict(test_dataset)\n", - "rf_true_test = test_dataset.y\n", - "plt.scatter(rf_predicted_test, rf_true_test)\n", - "plt.xlabel('Predicted pIC50s')\n", - "plt.ylabel('True IC50')\n", - "plt.title(r'RF predicted IC50 vs. True pIC50')\n", - "plt.xlim([2, 11])\n", - "plt.ylim([2, 11])\n", - "plt.plot([2, 11], [2, 11], color='k')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This model seems reasonably predictive! It's likely that this model is still a ways from being good enough to use in a production setting, but this isn't bad for a quick and dirty tutorial." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Congratulations! Time to join the Community!\n", - "\n", - "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", - "\n", - "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", - "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", - "\n", - "## Join the DeepChem Gitter\n", - "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.10" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + ] +} \ No newline at end of file diff --git a/examples/tutorials/14_Modeling_Protein_Ligand_Interactions_With_Atomic_Convolutions.ipynb b/examples/tutorials/14_Modeling_Protein_Ligand_Interactions_With_Atomic_Convolutions.ipynb index 27b61c5186..fc13e25e82 100644 --- a/examples/tutorials/14_Modeling_Protein_Ligand_Interactions_With_Atomic_Convolutions.ipynb +++ b/examples/tutorials/14_Modeling_Protein_Ligand_Interactions_With_Atomic_Convolutions.ipynb @@ -81,65 +81,46 @@ "metadata": { "id": "Y2xCQyOInB_D", "colab_type": "code", - "colab": {} - }, - "source": [ - "%%capture\n", - "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" - ], - "execution_count": 0, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "W1cCOOYXnB_L", - "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 253 + "height": 462 }, - "outputId": "37e914af-8a05-45a3-e60e-29a59226c6f0" + "outputId": "6ed5ba7e-fc17-47d7-df30-888de26b6da4" }, "source": [ - "import deepchem as dc\n", - "import os\n", - "from deepchem.utils import download_url" + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 2, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 29010 0 --:--:-- --:--:-- --:--:-- 29010\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", " warnings.warn(msg, category=FutureWarning)\n" ], "name": "stderr" }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, { "output_type": "stream", "text": [ @@ -153,9 +134,39 @@ "\n" ], "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.78 s, sys: 632 ms, total: 3.41 s\n", + "Wall time: 3min 46s\n" + ], + "name": "stdout" } ] }, + { + "cell_type": "code", + "metadata": { + "id": "W1cCOOYXnB_L", + "colab_type": "code", + "colab": {} + }, + "source": [ + "import deepchem as dc\n", + "import os\n", + "from deepchem.utils import download_url" + ], + "execution_count": 0, + "outputs": [] + }, { "cell_type": "code", "metadata": { @@ -177,11 +188,11 @@ "metadata": { "id": "snei1ST1nB_a", "colab_type": "code", + "outputId": "a22b50ea-4c92-415d-f9c0-11dc2a52c42a", "colab": { "base_uri": "https://localhost:8080/", "height": 170 - }, - "outputId": "acd36ebf-eac6-422d-a79c-466701affc60" + } }, "source": [ "print(\"Type of dataset is: %s\" % str(type(raw_dataset)))\n", diff --git a/examples/tutorials/15_Synthetic_Feasibility_Scoring.ipynb b/examples/tutorials/15_Synthetic_Feasibility_Scoring.ipynb index 16ffc6355a..c74ac11196 100644 --- a/examples/tutorials/15_Synthetic_Feasibility_Scoring.ipynb +++ b/examples/tutorials/15_Synthetic_Feasibility_Scoring.ipynb @@ -59,31 +59,88 @@ "metadata": { "id": "IlFeRa3qpbFz", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "a0a53b94-c133-44c7-c02d-f1acf3f97014" }, "source": [ - "%%capture\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')\n", + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')\n", "import deepchem as dc" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 65441 0 --:--:-- --:--:-- --:--:-- 65441\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.54 s, sys: 556 ms, total: 3.1 s\n", + "Wall time: 4min 20s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "code", "metadata": { "id": "d3QTjXKwpbF9", "colab_type": "code", + "outputId": "27683628-d72e-41b5-b0b5-9ff141c5dda7", "colab": { "base_uri": "https://localhost:8080/", "height": 306 - }, - "outputId": "5a4559b8-11bc-42f1-9e4d-a275fd36ed4b" + } }, "source": [ "# Lets get some molecules to play with\n", @@ -109,10 +166,10 @@ "Featurizing sample 5000\n", "Featurizing sample 6000\n", "Featurizing sample 7000\n", - "TIMING: featurizing shard 0 took 5.910 s\n", - "TIMING: dataset construction took 6.369 s\n", + "TIMING: featurizing shard 0 took 4.905 s\n", + "TIMING: dataset construction took 5.264 s\n", "Loading dataset from disk.\n", - "TIMING: dataset construction took 0.473 s\n", + "TIMING: dataset construction took 0.392 s\n", "Loading dataset from disk.\n" ], "name": "stdout" @@ -253,11 +310,11 @@ "metadata": { "id": "AZhS38JLpbGd", "colab_type": "code", + "outputId": "7cf7423c-9bcd-4130-e916-fe3e9c3668b0", "colab": { "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "c45a3112-07bd-47c4-cf51-801a4dee3010" + "height": 343 + } }, "source": [ "from deepchem.models import ScScoreModel\n", @@ -267,6 +324,29 @@ ], "execution_count": 6, "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "If using Keras pass *_constraint arguments to layers.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:54: The name tf.losses.hinge_loss is deprecated. Please use tf.compat.v1.losses.hinge_loss instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/losses.py:55: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.\n", + "\n" + ], + "name": "stdout" + }, { "output_type": "execute_result", "data": { @@ -336,11 +416,11 @@ "metadata": { "id": "CNgjQWQRpbG4", "colab_type": "code", + "outputId": "95856282-2001-4aa5-cc19-4443c66c16ad", "colab": { "base_uri": "https://localhost:8080/", "height": 920 - }, - "outputId": "90bd3386-3b9b-443f-c89e-d7ae1809435e" + } }, "source": [ "plt.figure(figsize=(20,16))\n", @@ -355,13 +435,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAOTCAYAAAAGyjJNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3Bl6Vkf+OcdWdjXFPG1wwDW9fhH\nMCvXGhkrFozZTm2FSYy8GBtVm6zx4l3YJLhSoTYkoZQaracYmxqqO6X8oFJFba0htWsyqQmx3dwy\nDIVwpaGodeGB7pJtQbAWiMGT22wYsEUAX4ysefePvrenpb5X0jnSPeeeq8+nqmtab+vovDpq9fT9\n9vM8b8o5BwAAAAAUcV/dGwAAAACgeYRKAAAAABQmVAIAAACgMKESAAAAAIUJlQAAAAAoTKgEAAAA\nQGHPq3sDRX3lV35lfuUrX1n3NgAAAABmxs2bN/8w53x/kWsaFyq98pWvjBs3btS9DQAAAICZkVL6\nvaLXaH8DAAAAoDChEgAAAACFCZUAAAAAKEyoBAAAAEBhQiUAAAAAChMqAQAAAFCYUAkAAACAwoRK\nAAAAABQmVAIAAACgMKESAAAAAIUJlQAAAAAoTKgEAAAAQGFCJQAAAAAKEyoBAAAAUJhQCQAAAIDC\nhEoAAAAAFCZUAgAAAKAwoRIAAAAAhQmVAAAAAChMqAQAAABAYUIlAAAAAAoTKgEAAABQmFAJAAAA\ngMKESgAAAAAUJlQCAAAAoDChEgAAAACFCZUAAAAAKEyoBAAAAEBhQiUAAAAAChMqAQAAAFCYUAkA\nAACAwoRKAAAAABQmVAIAAACgMKESAAAAAIVNNFRKKf1uSmknpfSJlNKNEb+eUkr/KqX02ymlT6WU\n/uok9wMAAADA+XheBff4lpzzH475tf8hIr5u8OPBiPg/Bv+FWnS3e7G5tRu39vqx0G7F+upirC13\nJnbdI92deOKpp+Mg55hLKd754APx2NrSRO73pn/xS/Fbf/Bnd97+uq/68vjoP/7rJ97rwR/5aPyX\nP/mLO29/9Vd8WTz1njedeN0rH37ynrXfvfoW17nOdTN2XRP26DrXFb3uNe/5ufjzg3zn7RfMpfj0\nj3zbxO5X9rpXbzwZX3pum/G8FPHbVyZ3v1c9/GTcdbtIEfGZC/5nS9ln8rpHfz7+6xcP7rz9l54/\nF59635sndl3Vv1eq/t4r+1y++8d/JT72O5+78/alr31J/Nvv++ap22fZr1/Zv8eXfS5lX2+Uva7M\n82zK17zsPsu+Lh3e78u+5tVvOPGdj6i7/e07IuIn820fj4h2SumlNe+JC6q73Ysf/OAno7fXjxwR\nvb1+/OAHPxnd7d6J121c2zl03ca1nROve6S7E49//LNxkG//4XSQczz+8c/GI92dE++3fmSf6yfs\n8+gf1BERv/UHfxZv+he/dOy9jv6PKCLiv/zJX8SDP/LRY68b9ReJ49Zd5zrXNfO6JuzRda4ret3R\nFw4REX9+kOM17/m5idyv7HVHX2RGRHwp316fxP2OhicREXmwft73a8rvlbLP5OiLzIiI//rFg3jd\noz8/keuq/r1S9fde2edy9EV7RMTHfudz8d0//itTtc+yX7+yf48v+1zKvt4oe12Z59mUr3nZfZZ9\nXTrqfkVMOlTKEfELKaWbKaV3j/j1TkQ8fdfb/3mwBpV7z0/vxMGzh/+wOHg2x3t++viQZ3NrN/r7\nh/+w6O8fxObW7rHXPfHU04XWh977kd+I/SP73H82x3s/8htjrzn6B/VJ60NH/0d00joANN3RFw4n\nrdfl6IvMk9bPatyHna6nUq2yz+Toi8yT1s96XdW/V8oq+71X9rmMexF90ovrqvdZ9utX9u/xZZ9L\n2dcbZa8r8zyb8jUvu8+yr0vPEihFTL797a/lnHsppa+KiI+mlD6dc/7loh9kEEi9OyLi5S9/+Xnv\nESIi4s/+YvQ397j1oVt7/ULrQ8MKpdOuD+319wutAwAAMNvKvi49q4lWKuWce4P//kFE/HREfNOR\nd+lFxAN3vf2ywdrRj/P+nPNKznnl/vvvn9R2oZSFdqvQOgAAAJynul6XTixUSil9eUrpK4Y/j4hv\njYhfP/JuH4mI/2VwCtwbI+KPc86/P6k9wXFSwfWh9dXFmL/v8HvN35difXXxXPZ11AvnR3/bjlsH\nAE7vBXOj/88/br0uzxuznXHrZ1X270mzrOwz+UvPnyu0ftbrqv69UlbZ772yz+XS176k0PpJ+5nU\nPst+/b76K76s0PpQ2efydV/15YXWz3pdmefZlK952X2ury5Ga/7wx27Nz534uvSkj3uSSb4K/eqI\n+H9SSp+MiF+NiCdzzj+fUvp7KaW/N3ifn4uI/xQRvx0RPx4Rf3+C+4FjffcbR7dWjlu/29GWtZNa\n2CIi7hvzZ9C49aGURr/DuHUurneN+b07bn3oR9/x+kLrZ72u6n22W/OF1ofGnVpz0mk2s3xdE/bo\nOtcVve7TP/Jt97xQOM0pP1Xv87evvOWeF5WnORGq7P0+c/Ut94QlpznpbJb/bCn7TD71vjff86Ly\nNCdClb2u6t8rVX/vlX0u//b7vvmeF9OnOWGr6n2W/fo99Z433RMgneb0t7LP5aP/+K/fEwSd5hS3\nsteVeZ5N+ZqX3efacieuXF6KTrsVKSI67VZcubx04ulvo+5XRMqnePE7TVZWVvKNGzfq3gYz6pHu\nTjzx1NNxkHPMpRTvfPCBeGxt6dhrXv++Xxg5z6jdmo9PPPqtY6877gSM4/6nW+a6v7LxZDw74lv9\nvhTxn475H1KVe3Td+V8XUe73dES540gvXb0evRE92512Kz728ENTs89Rp/VEnO6FQNljWjlseDrJ\n3cMkW/Nzp/qLDwAAk5FSuplzXilyzaQHdUOjPLa2dKoXsndrwuDs/+nBl8fjH//syHWq8+IXzsfn\nv3Dv74sXv/D4CplOuzU2rDlJmd/TEbf/paPoi/uzDAescp8LY57nSf3mR4OQ4TGtw31wesedTuJZ\nAgA0hyEsVKK73YtLV6/Hqx5+Mi5dvR7d7XvmsV84ZVtwylh5xUvu+Wa/b7A+Ca0x853GrQ+V7alu\nikff+tqYO9LfOHdfikff+tpjryvbH121OoYDlvmzpezzLHtMK/eq63QSAADOl1CJiRv+635vrx85\nnvvX/UkGS1WGWOOqTE6qPnnv2147csD3e992fMBQxubWbjx7ZO3ZwfokvP0NLyu0PvT93/J1I2cT\nfP+3fN35bOyIOoaejwr3TlK2P7pq66uLMX+k33x+bnJD68v+2VL2eQpCzo9TMwEAZoP2Nyau6jaH\nqltUHn3ra2P9Q5+M/YPnprTMz51cfbK23Ikbv/e5Q3Nk3vFND0xkj6NafY5bH2q35sfOizrOL376\nmULrQ5tbu/fMusmD9eOeS9m2sufPz8UX9o/GbbfXJ2Fzazf2jwy32n82n+p7oUybVy1GfQEn5Cx/\ntlTZNse91lcXR85UmrbqOwAAjqdSiYmr+l/3q25RWVvuxDu+8YGYG5y+NpdSvOMbTw6Hutu9+Klf\ne/rOSXEHOcdP/drTJ1ZZVNk2N+5AuZMOmiv7NS973aNvfe3ICpmTgr1RQdRx60PjZhmdNONo1itd\njgvNJqHq59mUNsQmaEr1HQAAxxMqMXFVtzlU/UKzu92LD9/sHQqHPnyzd2I49L6f+Y1D1U0REfsH\nOd73M79x7HVVts3tjQlXxq0PvWhMwDVufag9prJo3PrQ2nInNr/zGw69QN38zm848QXq3Jh0bNz6\n0Le85v5C60Oz3vJT9fde1c9TEHK+1pY78bGHH4rPXH1LfOzhhzxHAIAG0v7GxFXd5lB1i0rZFpyy\nVTJVts21x7SVnRTylK1wymNapcat361MO9PBmA88bn2obHvfrLf8VP29t766GOsf/OSh6qj5+yY3\nwymiQW2IAABQAZVKTFzV/7pfdYtKUyqjyvjzI2HZSetDZSucRs1vOm79rMq2Epb9mq8td+Ltb+gc\napV8+xtmJ6SopT1s1GR3AACgEiqVqESV/7o/vM/m1m7c2uvHQrsV66uLE7t/2eqMskOwqxx83h8x\nxPq49aGmDDQuW1FV9vMbFwiuvOIlMxEsVf29t7m1O7KFdFKHAAAAAIcJlZhJVYZYZVua3vu2145s\n3TlpNlIThj2vry6OPBFv2tq8yrYglm27qvokxDpU+b3XhO8FoJm6273KAnIAaDKhEpxR2eqMste9\nYP6+kZVCL5gf3836/OfdF1/80r3XPP95x3fAvnjMTKUXnzBTKSJKHS0/l9LIeUYnDc4u60z3K9F2\nJQQ5X02piAOapbvdO/SPRb29fmxc24mIECwBwBFCJWZS1f/CWLY6o8x1o8Kh49YjbldOjfr1o/Nv\njnrL614aj3/8syPXj3Pc0fLHfb7vfPCBkfd754MPHHu/ssoO6i7bdiUEOV+zPvgcqMdFqCoFgPNi\nUDdTrbvdi0tXr8erHn4yLl29fqph1MN/Yezt9SPHc//COIlB1nV4dkzeMW49IuKPxwy6Hrc+VPaU\ns7IVOY+tLcW73vjyQ4Os3/XGl8dja0vHXldWZ0yYM259qOznV8sg6xlW9SEAwMWgqhQATk+lElOr\nbPm5f2G8V9kKmbJ/sT5LRc5ja0sTC5GOKlvpUvbzq3qQ9UVQ5Qwn4GJQVQoAp6dSial1XDh0HP/C\neK+yFTLj/gJ90l+sm1KRU7bS5Syf39pyJz728EPxmatviY89/JBABGDKNOX/YQAwDVQqMbXqqJJp\ngnZrPvZGtK21W+OHZ5etkClbyXOWipwmzMNScQQwu/wZDwCnJ1RiapUNh84yvLcJRwiPO5jspAPL\nyoYnN37vc/HEU0/HQc4xl1K8/Q2n+zhl7tekE3e0XQHMLn/GA8DpaH9japUtPy/b0tSUAd97Xxg9\nXHvc+lDZoecfvtm7cxraQc7x4Zu9iT2Tsi2PAAAAVE+lElPrLOXnZf6FsSkDvstUcDVl6Ll5WAAA\nAM0hVGKqVVl+3pRAo0x7X9lwqOpnMuvzsAAAAGaJ9jcYKHvSWdXKtPedZeh5kfWzcuIOAABAcwiV\nYKCOQKPMnKMyyoZDVT+TsvOwAAAAqJ72Nxio+gjhsnOOylxX9kS8s5z+Vtasn7jThBMGAQAATkOo\nBHepMtAoO+eozHVlA7Nxp7+tvOIlEw3bZjV0KRskAgAATCOhEtSk7Jyjstc14US8WQ9dmnLCIAAA\nwGmYqQQ1KTvn6EWt+ULrZzHqJLbj1s/quNBlFjTlhEEAAIDTECpBTcoOwU6p2PpZzI35oOPWz2rW\nQ5emnDAIAABwGkIlqEnZk872vrBfaH2ozElzw1lKp10/q1kPXeo4YRAAAGBSzFSCGpWZc7TQbo1s\nPzsueCk7q6gz5l6dCYU866uLsf6hT8b+wXOh1fxcmpnQpeoTBgEAACZJqAQNs766eCggiji52qXs\ngOhvec398fjHPztyfWKOFkGdsiiqKafGVXnCIAAAwCRpf4OGKdM2V3ZW0c9+8vcLrZ/V5tZu7D97\nOEXafzafOKh7WInV2+tHjucqsU7T4gcAAEA5KpWggYpWu5RpmYuI2OuPmd80Zv2syoZfZSuxAAAA\nKE+lElwA49rVJtrGVkLZQd2zfmocAADANBIqwQVw7eZ/LrRel7Kno836qXEAAADTSPsb3KXqYc9V\n3e8L+88WWh9KKSKPGJSd0nns6l5lT0crM7wcAACAsxEqwcBw2PMwmBgOe46IiQQ9Vd+vjO9+8OUj\nT3/77gdfPrF7ljkdrWwYBQAAQHlCJRioethzlfcrW3H02NpSREQ88dTTcZBzzKUU73zwgTvr06RM\nGAUAAEB5QiUYqHrYc5X3O0vF0WNrS1MZIgEAAFAvoRIMLLRb0RsR6Exq2HOV92tSxVHVc60AAAAo\nx+lvMFD25LGm3G/lFS+Jr3nRCyJFxNe86AWx8oqXTOQ+ZzGcM9Xb60eO5+ZMdbd7dW8NAACAI1Qq\nwUDVw57Pcr+i1TxNGAoeUf1cKwAAAMoTKsFdyg57LtuyVeZ+ZQKis4Q1VbajVT3X6iy06QEAABed\n9jc4o6pbto4LiMYZNbvpuPWhqj+3cfOkJjXXqixtegAAAEIlOLMyIc9ZlKnmmUup0PpQ1Z9b1XOm\nyqr6uQAAAEwjoRKcUdUtW2WqeQ5yLrQ+VPXntrbciSuXl6LTbkWKiE67FVcuL01dW1mT2vQAAAAm\nxUwlOKOFdmtkG9mkWrbWVxcPzVSKOLmapzNmj50T9lj15xZRfq5Vlep4LgAAANNGpRKcUdUtW2Wq\necrusSntaFXzXAAAAFQqwZkNw5wqTwIrWs2zttyJG7/3uXjiqafjIOeYSyne/oaTP0Ydn1sTeC4A\nAABCJbgQutu9+PDN3p0ZSgc5x4dv9mLlFS85VbAkLLmX5wIAAFx02t/gjJpwvLzTygAAADhvQiU4\noyYENk4rAwAA4Lxpf4MzakJg06TTyrrbPbOKzpHnCQAATIpKJTijccHMNAU2ZzmtrLvdi0tXr8er\nHn4yLl29PtG2via0EjaJ5wkAAEySUAnOqAnHy68td+LK5aXotFuRIqLTbsWVy0snVqxUHUo0oZWw\nSTxPAABgkrS/wRmtLXfixu99Lp546uk4yDnmUoq3v2H6TgYrc1rZcaHEaQKpom1XTWglbBLPEwAA\nmCSVSnBG3e1efPhmLw5yjoiIg5zjwzd7M9FiVDaUKFvh1IRWwibxPAEAgEkSKsEZzXKLUdlQouwz\n+ZbX3F9oneM1oTUTAABoLqESnNEstxiVDSXKPpNf/PQzhdY5XtlZWgAAAKdhphKc0UK7Fb0RYcks\ntBgNw4eis5HKPpNZDujqUmaWFgAAwGkIleCM1lcXY+PazqF2r1lqMSoTSpR9JrMc0AEAAMwa7W9w\nRlqM7lX2mZgBBAAA0BwpD06saoqVlZV848aNurcBTEh3u1e43Q4AAICzSSndzDmvFLlG+xswVcwA\nAgAAaAbtbwAAAAAUJlQCAAAAoDChEgAAAACFmalEIYYoN5ev3fnyPAEAgItOqMSpdbd7sXFtJ/r7\nBxER0dvrx8a1nYgIL6annK/d+fI8AQAAtL9RwObW7p0X0UP9/YPY3NqtaUec1lm+dt3tXly6ej1e\n9fCTcenq9ehu9ya1zcbwvQAAAKBSiQJu7fULrTM9emO+RuPWh1TkjFb2eQIAAMwSlUqc2kK7VWid\n6TGXUqH1IRU5o5V9ngAAALNEqMSpra8uRmt+7tBaa34u1lcXa9oRp3WQc6H1IdVpo5V9ngAAALNE\nqMSprS134srlpei0W5EiotNuxZXLSxe6DaopOmOqycatD6lOG63s8wQAAJglQiUKWVvuxMcefig+\nc/Ut8bGHHxIoNUTZKjPVaaN5LgAAAAZ1w4UwDP82t3bj1l4/FtqtWF9dPDEULHvdrPNcAAAAhEpw\nSHe7N7NBwdpyZ2Y+l2ngeQIAABedUAkGutu92Li2c+e0s95ePzau7UREXNjw4CzPZJYDOgAAAMxU\ngjs2t3bvhCdD/f2D2NzarWlH9Sv7TIZhVG+vHzmeC6O6270J7hYAAIAqCZVg4NZev9D6RVD2mQjo\nAAAAZp/2NxhYaLeiNyIsWbjAx8SXfSZnCei0zQEAADSDSiUYcEz8vdZXF2N+Lh1am59LJz6TcaHT\nSWGUtjkAAIDmECrBwNpyJ65cXopOuxUpIjrtVly5vKRKJp/w9ghlAzptcwAAAM2h/Q3uMsvHxJdp\nK9vc2o39Zw+nSPvP5tjc2j322uGvFb2fuVYAAADNIVSCC2DYVjasAhq2lUXEsUHPWUKeMgGduVYA\nAADNof0NLoCybWVlZyOVZa4VAABAcwiV4AIoW3FUdchjrhUAAEBzaH+DC6BsW1nZ2UhnMctzrQAA\nAGaJUAkugPXVxUMzlSJOX3Ek5AEAAGAUoRJcAHVUHAEAADDbhErQQN3tXuGASMURAAAA52nig7pT\nSnMppe2U0s+O+LXvTSk9k1L6xODH3530fqDputu92Li2E729fuSI6O31Y+PaTnS3e3VvDQAAgAuk\nitPffiAifvOYX/+pnPPrBz9+ooL9QKNtbu0emo0UEdHfP4jNrd2adgQAAMBFNNFQKaX0soh4S0QI\ni+CcjDrF7bh1AAAAmIRJVyr9aET8k4h49pj3eXtK6VMppQ+llB4Y9Q4ppXenlG6klG4888wzE9ko\nNMVcSoXWAQAAYBImFiqllL49Iv4g53zzmHf7mYh4Zc75dRHx0Yj4wKh3yjm/P+e8knNeuf/++yew\nWzib7nYvLl29Hq96+Mm4dPX6ROcbHeRcaB0AAAAmYZKVSpci4m0ppd+NiH8XEQ+llB6/+x1yzn+U\nc/7i4M2fiIg3THA/MBFVD87utFuF1gEAAGASJhYq5Zw3cs4vyzm/MiK+KyKu55zfdff7pJReeteb\nb4vjB3rDxJWpOKp6cPb66mK05ucOrbXm52J9dXEi96uyCgsAAIDmeF7VN0wp/XBE3Mg5fyQi/kFK\n6W0R8aWI+FxEfG/V+4GhYcXRMCAaVhxFRKwtd8Zed2vMgOxx62c13Mvm1m7c2uvHQrsV66uLx+6x\nrLLPBAAAgNmXcsPmsKysrOQbN27UvQ1m0KWr10eeoNZpt+JjDz907tdVrbvdKxxENeVzAwAA4GxS\nSjdzzitFrpn06W/QGGUrjqpuRyuj7NynqquwAAAAaA6hEgwsjBl0PW59aG25E1cuL0Wn3YoUt6t4\nrlxemqr2sLJzn8o+EwAAAGZf5TOVYFqtry4emh8UcfqKo7XlzlSFSEedpQqr7DMBAABgtgmVYKDK\nAdhVW2i3Rs5GOk0VVsRsPpOzKjOjCgAAYJYY1A0XwNFT3CJuVxxNW5teU3ieAADArDGoGxipCXOf\nmqTsjCoAAIBZIlQCKMipeAAAAEIluBCG7Vq9vX7kiOjt9WPj2k50t3t1b62RnIoHAAAgVIILQbvW\n+VpfXYzW/NyhNafiAQAAF43T36BGVZ0gpl3rfDkVDwAAQKgEtTl6gtiwJS0izj2cWGi3ojciQNKu\nVd7acqfU16mqIBEAAGDStL9BTapsSdOuNR3MtgIAAGaJSiWoSZUtaRehXasJFUDHBYnTtlcAAICT\nqFSCmjhB7Pw0pQLIbCsAAGCWCJWgJlW2pDUldCmrKafbCRKnR3e7F5euXo9XPfxkXLp6fWa+FwAA\noEpCJajJ2nInrlxeik67FSkiOu1WXLm8NJE2qKaELmU1pQLIbKvpMOshKwAAVMVMJahRVSeINSV0\nKaspp9tdhNlWTWC2FQAAnA+hEjTMsMpi+KJ4WGUREWNfEDcldClrfXXx0DOJmN4KoLJBIudn1kNW\nAACoivY3aJgyrWzrq4sxf186tDZ/X5rK0KWMKlsJaT6zrQAA4HyoVIKGKV1lkU54u+FUAHFaTaps\nAwCAaaZSCRqmTJXF5tZu7B/kQ2v7B/lUg7qdksWsUdkGAADnQ6USNEyZKouy1U1l5jdBE6hsAwCA\ns1OpBA1Tpsqi7AyZMvObAAAAuBhUKjGTutu9mT62vWiVRdkZMk7JAgAAYByhEjNHy9a9hp930aBt\nod2K3ogAySlZAAAACJWYOce1bF3UUCmi3AwZp2QBAAAwjlCJmaNl6/yUrXACAABg9gmVmDlats6X\nU7IAAAAYxelvzJz11cVozc8dWtOyBQAAAOdLpRIzR8sWAAAATJ5QiZnUlJat7nZP+AUAAEAjCZXg\nLlWGPN3t3qGT1Xp7/di4thMRceI9hVEAAADUzUwlGBiGPL29fuR4LuTpbvcmcr/Nrd07gdJQf/8g\nNrd2p2qfAAAAMIpQCQbKhjxl3RpxQt1x60NV7xMAAABGESrBQNmQp6yFdqvQ+lDV+wQAAIBRhEow\nUDbkKWt9dTFa83OH1lrzc7G+unjsdVXvs7vdi0tXr8erHn4yLl29rs0OAACAiBAqwR1lQ56y1pY7\nceXyUnTarUgR0Wm34srlpRMHble5T/ObAAAAGMfpbzAwDHOqPFVtbblT+ONXuc/j5jc5bQ4AAOBi\nEyrBXcqEPHWoap/mNwEAADCO9jdgrKrnNwEAANAcKpXggnikuxNPPPV0HOQccynFOx98IB5bWzr2\nmvXVxdi4tnOoBW6Sc6YAAABoDqESXACPdHfi8Y9/9s7bBznfefu4YKmOOVMAAAA0Q8o5172HQlZW\nVvKNGzfq3gY0ytdu/FwcjPhen0spfufKt9WwIwAAAKZJSulmznmlyDUqleACGBUoHbd+t+52T6US\nAAAA9xAqwQUwl9LYSqXjdLd7h2Yq9fb6sXFtJyLixGBJGAUAADDbnP4GF8A7H3yg0PrQ5tbuoSHd\nERH9/YPY3No99rphGNXb60eO58Ko7nav0L4BAACYXkIluABWXvGSOFqTlAbrx7m11y+0PlQ2jAIA\nAKA5hEpwAbz3I78RR5vf8mD9OAvtVqH1obJhFAAAAM0hVIILYK+/X2h9aH11MVrzc4fWWvNzsb66\neOx1ZcMoAAAAmkOoBIy1ttyJK5eXotNuRYqITrsVVy4vnThwu2wYBQAAQHM4/Q0ugBe/cD4+/4V7\nq5Je/ML5E69dW+4UPrVt+P5OfwMAAJhdQiW4AB5962vjBz/4yTh49rnJSnP3pXj0ra+d2D3LhFEA\nAAA0h1AJLoj7IuLgyNuT1N3uqVQCAACYYWYqwQWwubUb+88ePv9t/9kcm1u7E7lfd7sXG9d2orfX\njxwRvb1+bFzbie52byL3AwAAoHoqleACuLXXL7R+tzIVR5tbu9HfPzi01t8/iM2tXdVKAAAAM0Kl\nElwAC+1WofWhshVHZwmxAAAAaAahElwA66uL0ZqfO7TWmp+L9dXFY687ruLoOGVDLAAAAJpDqAQX\nwNpyJ65cXopOuxUpIjrtVly5vHRiK1rZiqOyIRYAAADNYaYS1KjKE9LWljuFP/ZCuxW9EQHSSRVH\nw/s4/Q0AAGB2CZWgJsN5RcP2suG8ooiYSPhSJsBaX108tMeI01cclQmxAAAAaA7tb1CTsvOKyig7\ncLts2xwAAACzT6US1OQsJ6QVrTo6LsA6KSBScTRala2LAAAA00ioBDUpO6+oTNvcWQIs7lV16yIA\nAMA00v4GNSl7QlqZtrlxQSgIFQgAACAASURBVNVJARajVdm6CAAAMK2ESlCTsvOKylQdlQ2wGE3l\nFwAAgPY3qFWZeUVl2uaG9zAD6HyUbV0EAACYJUIlaJj11cVD83wiTld1ZOD2+Sn7NQAAAJglQiVo\nGFVH9fM1AAAAiEg557r3UMjKykq+ceNG3dsAAAAAmBkppZs555Ui16hUggbqbvdUyQAAAFAroRI0\nTHe7d2ieT2+vHxvXdiIiBEsAAABU5r66NwAUs7m1e2hAdEREf/8gNrd2a9oRAAAAF5FQCRrm1oij\n7I9bBwAAgEnQ/gbnoMoZRwvtVvRGBEgL7dZE7gcAAACjqFSCMxrOOOrt9SPHczOOutu9idxvfXUx\nWvNzh9Za83Oxvro4kfsBAADAKEIlOKOqZxytLXfiyuWl6LRbkSKi027FlctLhnQDAABQKe1vcEZ1\nzDhaW+4IkQAAAKiVSiU4o3GzjMw4AgAAYJYJleCMzDgCAADgItL+Bmc0bEOr6vQ3AAAAmAZCJTgH\nZhwBAABw0Wh/AwAAAKAwoRIAAAAAhQmVAAAAAChMqAQAAABAYUIlAAAAAAoTKgEAAABQmFAJAAAA\ngMKESgAAAAAU9rxJ3yClNBcRNyKil3P+9iO/9vyI+MmIeENE/FFEvCPn/LuT3hM0XXe7F5tbu3Fr\nrx8L7Vasry7G2nKn7m0BAABwgVRRqfQDEfGbY37t70TE53POr46IfxkR/7SC/UCjdbd7sXFtJ3p7\n/cgR0dvrx8a1nehu9+reGgAAABfIREOllNLLIuItEfETY97lOyLiA4Offygi/kZKKU1yT9B0m1u7\n0d8/OLTW3z+Iza3dmnYEAADARTTpSqUfjYh/EhHPjvn1TkQ8HRGRc/5SRPxxRPzlCe8JGu3WXr/Q\nOgAAAEzCxEKllNK3R8Qf5JxvnsPHendK6UZK6cYzzzxzDruD5lpotwqtAwAAwCRMslLpUkS8LaX0\nuxHx7yLioZTS40fepxcRD0REpJSeFxEvitsDuw/JOb8/57ySc165//77J7hlmH7rq4vRmp87tNaa\nn4v11cWadgQAAMBFNLFQKee8kXN+Wc75lRHxXRFxPef8riPv9pGI+J7Bz79z8D55UnuCWbC23Ikr\nl5ei025FiohOuxVXLi85/Q0AAIBKPa/qG6aUfjgibuScPxIR/zoi/k1K6bcj4nNxO3wCTrC23BEi\nAQAAUKtKQqWc8y9FxC8Nfv5Dd63/eUT8rSr2AJPU3e7F5tZu3Nrrx0K7Feuri0IfAAAAZlrllUow\na7rbvdi4thP9/YOIiOjt9WPj2k5EhGAJAACAmTXJQd1wIWxu7d4JlIb6+wexubVb044AAABg8lQq\nwRnd2usXWq/LI92deOKpp+Mg55hLKd754APx2NpS3dsCAACgoVQqwRkttFuF1uvwSHcnHv/4Z+Ng\ncLjiQc7x+Mc/G490d2reGQAAAE0lVIIzWl9djNb83KG11vxcrK8u1rSjez3x1NOF1gEAAOAk2t/g\njIbDuKf59LdhhdJp1wEAAOAkQiU4B2vLnUpDpO52r1CINZfSyABpLqVJbhMAAIAZJlSCGhUNh4bX\nbFzbuXPiXG+vHxvXbs9GGnftOx98IB7/+GdHrgMAAEAZZipBTYbhUG+vHzmeC4e6271jr9vc2r0T\nKA319w9ic2t37DWPrS3Fu9748juVSXMpxbve+HKnvwEAAFCaSiWoyXHh0HHVSrf2+oXWhx5bWxIi\nTYEy1WkAAADTSKgENSkbDr2oNR97/f2R60y3Mq2LAAAA00r7G9Rkod0qtD40bra2mdvTr0zrIgAA\nwLQSKkFN1lcXozU/d2itNT8X66uLx173+S/cW6V03DrTo2x1GgAAwDQSKkFN1pY7ceXyUnTarUgR\n0Wm34srlpRPboObGlCSNW2d6lK1OAwAAmEZmKkGN1pY7hWfpHORcaJ3psb66eGimUsTpqtMAAACm\nkVCJSjjx6vx02q3ojWiX6qh2mXrD3/O+FwAAgFkgVGLinHh1vlS7NFuZ6jQAAIBpJFRi4o478WpW\nXlxXWYml2gUAAIBpIFRi4mb9xKs6KrFUuwAAAFA3oRITtzBmBtCsnHhVRyVWlZVR5mEBAAAwyn11\nb4DZt766GK35uUNrszQDqOpKrGFlVG+vHzmeq4zqbvcafS8AAACaRajExK0td+LK5aXotFuR4vYp\nZVcuL81Mtcu4iqtJVWIdVxnV5HsBAADQLNrfqMQszwCq+jS2KiujZn0eFgAAAOWpVIIzqroSq8rK\nqKqrsAAAAGgOlUpwDqqsxKqyMqrqKiwAAACaQ6gEDTMMr6o4ka3KewEAANAsKedc9x4KWVlZyTdu\n3Kh7GwAAAAAzI6V0M+e8UuQaM5UAAAAAKEyoBAAAAEBhQiUAAAAAChMqAQAAAFCYUAkAAACAwp5X\n9waA4rrbvdjc2o1be/1YaLdifXUx1pY7dW8LAACAC0SoBA3T3e7FxrWd6O8fREREb68fG9d2IiIE\nSwAAAFRG+xs0zObW7p1Aaai/fxCbW7s17QgAAICLSKUS3KUJbWW39vqF1gEAAGASVCrBwLCtrLfX\njxzPtZV1t3t1b+2QhXar0DoAAABMglAJBprSVra+uhit+blDa635uVhfXaxpRwAAAFxE2t9goClt\nZcN2vGlv0wMAAGC2CZVgYKHdit6IAGka28rWljtCJAAAAGql/Q0GtJUBAADA6alUgoE62sqacNoc\nAAAAjCJUgrtU2VY2PG1uOBx8eNrccB8AAAAwzbS/QU2actocAAAAjCJUgpo05bQ5AAAAGEWoBDUZ\nd6rcNJ42BwAAAEcJlaAmTpsDAACgyQzqhprUcdocAAAAnBehEtSoytPmAAAA4DxpfwMAAACgMKES\nAAAAAIUJlQAAAAAoTKgEAAAAQGEGdTOTuts9p6oBAADABAmVmDnd7V5sXNuJ/v5BRET09vqxcW0n\nIkKwBAAAAOdE+xszZ3Nr906gNNTfP4jNrd2adgQAAACzR6jEzLm11y+0DgAAABQnVGLmLLRbhdYB\nAACA4oRKzJz11cVozc8dWmvNz8X66mJNOxqvu92LS1evx6sefjIuXb0e3e1e3VsCAACAUzGom5kz\nHMY97ae/GSgOAABAkwmVmElry52pD2aOGyg+ib13t3tTH7QBAADQHEIlqEmVA8VVRQEAAHDezFSC\nmlQ5UPy4qigAAAAoQ6gENalyoHiVVVEAAABcDEIlqMnacieuXF6KTrsVKSI67VZcubw0kXa0Kqui\nAAAAuBjMVIIalR0oXnTo9vrq4qGZShGTq4oCAADgYhAqQcOUGbo9XHf6GwAAAOdFqAQNc9zQ7eNC\norJVUQAAADCKmUrQMIZuAwAAMA2EStAwhm4DAAAwDbS/wV2KDsCuQ9mh20343AAAAGgOoRIMdLd7\nsf7BT8b+szkibg/AXv/gJyNi/ADsOpQZul1muDcAAAAcJ+Wc695DISsrK/nGjRt1b4MZ9Pr3/ULs\n9ffvWW+35uMTj35rDTs6P5euXo/eiJlLnXYrPvbwQzXsCAAAgGmSUrqZc14pco2ZSjAwKlA6br1J\nDPcGAADgvAmV4AIw3BsAAIDzZqYSDLz4hfPx+S/cW5X04hfOT+yej3R34omnno6DnGMupXjngw/E\nY2tL536fssO9AQAAYByVSjDw6FtfG/Nz6dDa/FyKR9/62onc75HuTjz+8c/GwWCu2UHO8fjHPxuP\ndHfO/V5ry524cnkpOu1WpLg9S+nK5SVDugEAACjNoG64S3e7V+hUtbP42o2fuxMo3W0upfidK982\nkXsCAADAKGUGdWt/g7usLXcqq94ZFSgdtw4AAADTRKgENZlLaWyl0iyosuoLAACA6pmpBDV554MP\nFFpvku52Lzau7URvrx85Inp7/di4thPd7V7dWwMAAOCcCJWgJo+tLcW73vjyO5VJcynFu9748omc\n/la1za3dQyfNRUT09w9ic2u3ph0BAABw3rS/QY1WXvGS+MVPPxO39vrxNS96Qay84iWnum7aW8tu\n7fULrQMAANA8QiWoybBFbFjRM2wRi4hjA6Ky11Vpod2K3ogAaaHdqmE3AAAATIL2N6hJ2RaxJrSW\nra8uRmt+7tBaa34u1lcXa9oRAAAA502lEtylyraysi1iTWgtGz6zaW7RAwAA4GyESjBQdVtZ2Rax\nprSWrS13Sj23aZ8XBQAAwG3a32Cg6raysi1is9xaNgz2env9yPFcsNfd7tW9NQAAAI4QKsFA1W1l\na8uduHJ5KTrtVqSI6LRbceXy0olVOWWva4ImzIsCAADgNu1vMFBHW1nZFrGy1027JsyLAgAA4LaJ\nVSqllF6QUvrVlNInU0q/kVJ634j3+d6U0jMppU8MfvzdSe0HTjLLbWVNMS7Am7Z5UQAAAEy2/e2L\nEfFQzvkbIuL1EfHmlNIbR7zfT+WcXz/48RMT3A8ca5bbyppCsAcAANAcE2t/yznniPjTwZvzgx95\nUveD8zCrbWVNMXz2Tn8DAACYfhOdqZRSmouImxHx6oj4sZzzUyPe7e0ppf8+Iv7fiPhHOeenJ7kn\nYLoJ9gAAAJphoqe/5ZwPcs6vj4iXRcQ3pZS+/si7/ExEvDLn/LqI+GhEfGDUx0kpvTuldCOldOOZ\nZ56Z5JZhZnW3e3Hp6vV41cNPxqWr16O73at7SwAAADTYREOloZzzXkT8YkS8+cj6H+Wcvzh48yci\n4g1jrn9/znkl57xy//33T3azMIO6273YuLYTvb1+5Ijo7fVj49qOYAkAAIDSJnn62/0ppfbg562I\neFNEfPrI+7z0rjffFhG/Oan9wEW2ubUb/f2DQ2v9/YPY3NqtaUcAAAA03SRnKr00Ij4wmKt0X0T8\n+5zzz6aUfjgibuScPxIR/yCl9LaI+FJEfC4ivneC+4EL69Zev9A6AAAAnGSSp799KiKWR6z/0F0/\n34iIjUntAbhtod2K3ogAaaHdqmE3AAAAzIJKZioB9VpfXYzW/Nyhtdb8XKyvLta0IwAAAJpuku1v\nwIR0t3uxubUbt/b6sdBuxfrqYqwtd8a+//DXilwDAAAAxxEqQcMMT3IbDt4enuQWEScGS0IkAAAA\nzov2N2gYJ7kBAAAwDYRK0DBOcgMAAGAaCJWgYcad2OYkNwAAAKokVIKGcZIbAAAA08CgbmgYJ7kB\nAAAwDYRK0EBOcgMAAKBu2t8AAAAAKEyoBAAAAEBhQiUAAAAAChMqAQAAAFCYQd3QQN3tntPfAAAA\nqJVQCRqmu92LjWs70d8/iIiI3l4/Nq7tREQIlgAAAKiM9jdomM2t3TuB0lB//yA2t3Zr2hEAAAAX\nkVAJGubWXr/QOgAAAEyC9jeoUZnZSAvtVvRGBEgL7daktgkAAAD3UKkENRnORurt9SPHc7ORutu9\nY69bX12M1vzcobXW/Fysry5OcLcAAABwmFAJalJ2NtLacieuXF6KTrsVKSI67VZcubxkSDcAAACV\n0v4GNTnLbKS15Y4QCQAAgFoJlaAmsz4bqcy8KAAAAJpD+xvUZJZnI5WdFwUAAEBzCJWgJrM8G6ns\nvCgAAACaQ/sb1GhWZyOdZV4UAAAAzaBSCTh34+ZCzcq8KAAAAIRKwATM8rwoAAAAbtP+Bpy7YUuf\n098AAABml1AJmIhZnRcFAADAbdrfAAAAAChMqAQAAABAYUIlAAAAAAoTKgEAAABQmFAJAAAAgMKc\n/gY16m73YnNrN27t9WOh3Yr11UUnpgEAANAIQiWoSXe7FxvXdqK/fxAREb29fmxc24mIECwBAAAw\n9YRKcA7KVBxtbu3eCZSG+vsHsbm1K1QCAABg6gmV4IzKVhzd2usXWgcAAIBpYlA3nNFxFUfHWWi3\nCq0DAADANBEqwRmVrThaX12M1vzcobXW/Fysry6e294AAABgUoRKcEZlK47Wljtx5fJSdNqtSBHR\nabfiyuUl85QAAABoBDOV4IzWVxcPzVSKOH3F0dpyR4gEAABAIwmV4IyGoVDR098AAACgyYRKcA6q\nrjjqbveEWAAAANRKqAR3aUJY093uHWq36+31Y+PaTkTE1O0VAACA2WVQNwwMw5reXj9yPBfWdLd7\ndW/tkM2t3UPzmyIi+vsHsbm1W9OOAAAAuIiESjDQlLDm1l6/0DoAAABMglAJBpoS1iy0W4XWAQAA\nYBKESjDQlLBmfXUxWvNzh9Za83OxvrpY044AAAC4iIRKMNCUsGZtuRNXLi9Fp92KFBGddiuuXF4y\npBsAAIBKOf0NBoahzLSf/hZxe6/TuC8AAAAuDqES3EVYAwAAAKej/Q0AAACAwoRKAAAAABQmVAIA\nAACgMKESAAAAAIUJlQAAAAAozOlvcJfudi82t3bj1l4/FtqtWF9ddBocAAAAjCBUgoHudi82ru1E\nf/8gIiJ6e/3YuLYTETETwZLADAAAgPOk/Q0GNrd27wRKQ/39g9jc2q1pR+dnGJj19vqR47nArLvd\nq3trAAAANJRQCQZu7fULrTfJLAdmAAAA1EOoBAML7Vah9SaZ5cAMAACAegiVYGB9dTFa83OH1lrz\nc7G+uljTjs7PLAdmAAAA1EOoBANry524cnkpOu1WpIjotFtx5fLSTAyznuXADAAAgHo4/Q3usrbc\nmYkQ6ajh5+T0NwAAAM6LUAkuiFkNzAAAAKiH9jcAAAAAChMqAQAAAFCY9jeoUXe7Z84RAAAAjSRU\ngpp0t3uxcW0n+vsHERHR2+vHxrWdiAjBEgAAAFNP+xvUZHNr906gNNTfP4jNrd2adgQAAACnJ1SC\nmtza6xdaBwAAgGkiVIKaLLRbhdYBAABgmgiVoCbrq4vRmp87tNaan4v11cWadgQAAACnZ1A31GQ4\njHtWT39zsh0AAMBsEypBjdaWOzMZtDjZDgAAYPZpfwPOnZPtAAAAZt+pQqWU0n+TUvoPKaVfH7z9\nupTSI5PdGtBUTrYDAACYfaetVPrxiNiIiP2IiJzzpyLiuya1KaDZnGwHAAAw+04bKr0w5/yrR9a+\ndN6bAWaDk+0AAABm32kHdf9hSulrIyJHRKSUvjMifn9iuwIabdZPtgMAAOD0odL3R8T7I+I1KaVe\nRHwmIr57YrsCGm9WT7YDAADgthNDpZTSXET8/Zzz30wpfXlE3Jdz/pPJbw3K6273VMkc4ZkAAABw\nnk4MlXLOBymlvzb4+Z9NfktwNt3tXmxc27lzpH1vrx8b13YiIqYuRKkq6GnSMwEAAKAZTjuoezul\n9JGU0v+cUro8/DHRnUFJm1u7d8KTof7+QWxu7da0o9GGQU9vrx85ngt6utu9c79XU54JAAAAzXHa\nUOkFEfFHEfFQRLx18OPbJ7UpOItbe/1C63WpMuhpyjMBAACgOU41qDvn/L9OeiNwXhbareiNCEsW\n2q0adjNelUFPU54JwKwwxw4AuAhOVamUUnpZSumnU0p/MPjx4ZTSyya9OShjfXUxWvNzh9Za83Ox\nvrpY045GGxfoTCLoacozAZgFVbY3AwDU6bTtb/9XRHwkIhYGP35msAZTZ225E1cuL0Wn3YoUEZ12\nK65cXpq6fyGuMuhpyjMBmAXm2AEAF8Wp2t8i4v6c890h0v+dUvqHk9gQnIe15c7UBybD/VXVHtGE\nZwIwC8yxAwAuitOGSn+UUnpXRDwxePudcXtw91gppRdExC9HxPMH9/lQzvnRI+/z/Ij4yYh4w+Dj\nvSPn/Lun3j00XNmgx6wOgOlljh0AcFGctv3tb0fE/xgR/19E/H5EfGdEnDS8+4sR8VDO+Rsi4vUR\n8eaU0huPvM/fiYjP55xfHRH/MiL+6Wk3DheVWR0A080cOwDgojhVqJRz/r2c89tyzvfnnL8q57yW\nc/7sCdfknPOfDt6cH/zIR97tOyLiA4Offygi/kZKKRXYP1w4ZnUATDdz7ACAi+JU7W8ppQ9ExA/k\nnPcGb784Iv55zvlvn3DdXETcjIhXR8SP5ZyfOvIunYh4OiIi5/yllNIfR8Rfjog/LPRZwAViVgfA\n9DPHDgC4CE7b/va6YaAUEZFz/nxELJ90Uc75IOf8+oh4WUR8U0rp68tsMqX07pTSjZTSjWeeeabM\nh4CZMW4mh1kdAAAAVOm0odJ9g+qkiIhIKb0kTj/kOwaB1C9GxJuP/FIvIh4YfMznRcSLYsQA8Jzz\n+3POKznnlfvvv/+0t4WZZFYHAAAA0+C0wdA/j4hfSSl9MCJS3B7U/SPHXZBSuj8i9nPOeymlVkS8\nKe4dxP2RiPieiPiVwce8nnM+OncJuMuwncLpbwAAANTpVKFSzvknU0o3IuKhuD1s+3LO+T+ecNlL\nI+IDg7lK90XEv885/2xK6Ycj4kbO+SMR8a8j4t+klH47Ij4XEd9V9hOBi8SsDgAAAOp2bKiUUnph\n3K422s85/8eU0kFEfFtEvCYijg2Vcs6fihFzl3LOP3TXz/88Iv5WmY0DAAAAUJ+TZir9fES8MiIi\npfTquN2m9lci4vtTSlcnuzUAAAAAptVJ7W8vzjn/1uDn3xMRT+Sc/7eU0pdFxM2IeHiiu4OKdbd7\nZhUBAADAKZxUqXT30OyHIuKjERE557+IiGcntSmoQ3e7FxvXdqK3148cEb29fmxc24nudq/urQEA\nAMDUOSlU+lRK6Z+llP5RRLw6In4hIiKl1J74zqBim1u70d8/OLTW3z+Iza3dmnYEAAAA0+ukUOn7\nIuIP4/ZcpW/NOX9hsP7fRsQ/m+C+oHK39vqF1gEAAOAiO3amUs65HxFXU0pfHhF3v7J+KiI+McmN\nQdUW2q3ojQiQFtqtGnYDAAAA0+2kQd1D/yEi/mZE/Ong7VbcboX77yaxKajD+upirH/ok7F/8Nwo\nsfm5FOurixO7Z9nB4LM8UHyWPzcAAIBZctpQ6QU552GgFDnnP00pvXBCe4L65BPePkfDweDDOU7D\nweARcWyIUva6Jpjlzw0AAGDWnDRTaejPUkp/dfhGSmklDrfDQeNtbu3G/rOHU6T9Z/PEBnWXHQw+\nywPFZ/lzAwAAmDWnrVT6hxHxwZTSrcHbL42Id0xmS1CPqgd1l71f2eua0FZmWDoAAEBzHFuplFL6\nxpTS1+Scfy0iXhMRPxUR+xHx8xHxmQr2B5UZN5B7UoO6y96vzHXDtrLeXj9yPNdW1t3unXq/Vaj6\nawAAAEB5J7W//Z8R8ReDn39zRPzvEfFjEfH5iHj/BPcFlVtfXYzW/Nyhtdb83MQGdZe9X5nrmtJW\nVvXXAAAAgPJOan+byzl/bvDzd0TE+3POH46ID6eUPjHZrUG1hq1gVbWIlb1fmeua0lZW9dcAAACA\n8lLO44+3Sin9ekS8Puf8pZTSpyPi3TnnXx7+Ws756yva5x0rKyv5xo0bVd+WmjRhDlATXLp6PXoj\nAqROuxUfe/ihGnYEAADw/7d398GVpmd9oH8PGnk5gMuKgwtoYeOBeOWF9GLhDra3s1ljQgQOhVUN\n2UCRj02xePOxWUhltTUdUgls4erZUgoSQjasNxBC4XUItqIQbCIoxtkAWTv0WAPCH0ockhifdvCQ\nRMbGJyDLz/6hc3paPfp6X+l86rqqukZ6dF6d50hvd6t/c9/3wyQppTxZa73R5JqzKpXenOT/LaX8\nRg5Pe/u5/hP9niQfbbVLOCfHy5+sadi2trJ05GuZaCsDAADgYk4NlWqtbyil/GwOT3v76fpMWdOn\nJfnzw94cV9tpc4CucqjUJmzTVgYAAMBlO2tQd2qt76y1/sNa6289sPYva63vHu7WuOqmZQ7QqE3L\n0G0AAABm25mhEoyL4+WP1yZsG1Q3dfd6qXmmumlzuzukXQIAADDrhEpMLMfLH69N2Ka6CQAAgMsm\nVGJirS4v5s6t61lc6KTk8KSyO7euX/k5QG3CNq2EAAAAXLazTn+DsVpdXrzyIdLD2gzdvrbQSfeY\nAOmqtxICAADQnlAJplDTsG1tZenIiXGJVkIAAAAuRqgEV0Cb6iYAAAA4jVAJrgithAAAAFwmg7oB\nAAAAaEyoBAAAAEBjQiUAAAAAGhMqAQAAANCYQd3wgM3trhPSAAAA4ByEStC3ud3N7Y2d9PYPkiTd\nvV5ub+wkiWAJAAAAHqL9DfrWt3bvB0oDvf2DrG/tjmlHAAAAMLmEStB3b6/XaB0AAACuMqES9F1b\n6DRaBwAAgKtMqAR9aytL6czPHVnrzM9lbWVpTDsCAACAyWVQN/QNhnE7/Q0AAADOJlSCB6wuLwqR\nAAAA4By0vwEAAADQmFAJAAAAgMa0v8EVsbndNS8KAACASyNUgitgc7ub2xs76e0fJEm6e73c3thJ\nEsESAAAArWh/gytgfWv3fqA00Ns/yPrW7ph2BAAAwLQTKsEVcG+v12gdAAAAzqL9Dcao7Zyjptdd\nW+ike0yAdG2hc6H9AwAAcHWpVIIxGcw56u71UvPMnKPN7e6lX7e2spTO/NyRtc78XNZWli7hlQAA\nAHAVCZVgTNrOOWpz3eryYu7cup7FhU5KksWFTu7cum5INwAAAK1pf4NL0KaNre2co7bXrS4vtgqR\n2rboAQAAMNuESnBBg3a0QfXQoB0tyVDmHI1yPlLb1zYOwi8AAIDR0v4GF9S2ja3tnKNRzkdq+9pG\nre18KgAAANoTKsEFXaQdrc2co1HOR2r72kZtWsIvAACAWaL9DS7oIu1obecctb2uqVG22l3EtIRf\nAAAAs0SlElzQKNvRRm1aXttJIdekhV8AAACzRKgEFzTKdrRRm5bXNi3hFwAAwCwptdZx76GRGzdu\n1Lt37457G8CEcfobAABAe6WUJ2utN5pcY6YSMBNGNWcKAACAQ9rfAAAAAGhMqAQAAABAY0IlAAAA\nABoTKgEAAADQmFAJAAAAgMaESgAAAAA0JlQCAAAAoDGhEgAAAACNCZUAAAAAaEyoBAAAAEBjQiUA\nAAAAGhMqAQAAANCYUAkAAACAxh4Z9waA2bS53c361m7u7fVybaGTtZWlrC4vjntbAAAAXBKhEnDp\nNre7ub2xk97+QZKkcRXTFgAAIABJREFUu9fL7Y2dJBEsAQAAzAjtb8ClW9/avR8oDfT2D7K+tTum\nHQEAAHDZhErApbu312u0DgAAwPTR/gZjNKtzh64tdNI9JkC6ttAZw24AAAAYBpVKMCaDuUPdvV5q\nnpk7tLndHffWLmxtZSmd+bkja535uaytLI1pRwAAAFw2oRKMySzPHVpdXsydW9ezuNBJSbK40Mmd\nW9dnogoLAACAQ9rf4BK0aWOb9blDq8uLQiQAAIAZplIJLqhtG9tJ84XMHQIAAGAaCJXggtq2sZk7\nBAAAwDTT/gYX1LaNbdAaNounvwEAADD7hEpwQdcWOukeEyCdp43N3CEAAACmlfY3uCBtbAAAAFxF\nKpXggrSxAQAAcBUJleASaGMDAADgqtH+BgAAAEBjQiUAAAAAGhMqAQAAANCYUAkAAACAxoRKAAAA\nADQmVAIAAACgMaESAAAAAI09Mu4NwCzY3O5mfWs39/Z6ubbQydrKUlaXF8e9LQAAABiaoVUqlVJe\nWEp5RynlvaWU95RSvu2Yx7y6lPLRUspT/V9/ZVj7gWHZ3O7m9sZOunu91CTdvV5ub+xkc7s77q0B\nAADA0AyzUumTSf5irfXdpZTnJnmylPIztdb3PvS4n6u1fu0Q9wFDtb61m97+wZG13v5B1rd2VSsB\nAAAws4ZWqVRr/XCt9d39tz+W5H1J/AubmXNvr9doHQAAAGbBSAZ1l1JenGQ5ybuO+fCrSim/VEr5\nqVLKl4xiP3CZri10Gq0DAADALBh6qFRK+awkb03y7bXW33zow+9O8gW11i9N8jeTbJ7wOV5fSrlb\nSrn79NNPD3fD0NDaylI683NH1jrzc1lbWRrTjgAAAGD4hhoqlVLmcxgovanWuvHwx2utv1lr/Xj/\n7bcnmS+lfPYxj3tjrfVGrfXGC17wgmFuGRpbXV7MnVvXs7jQSUmyuNDJnVvXzVMCAABgpg1tUHcp\npST5wSTvq7V+zwmP+dwkv15rraWUL89hyPUfhrUnGJbV5UUhEgAAAFfKME9/u5nkjyfZKaU81V/7\nS0lelCS11h9I8g1J/kwp5ZNJekm+sdZah7gnuLI2t7tZ39rNvb1eri10srayJAgDAACgtaGFSrXW\nn09SznjM9yf5/mHtATi0ud3N7Y2d9PYPkiTdvV5ub+wkiWAJAACAVkZy+hswXutbu/cDpYHe/kHW\nt3bHtCMAAACmnVAJroB7e71G6wAAAHAWoRJcAdcWOo3WAQAA4CxCJbgCvuKlL2i0DgAAAGcRKsEV\n8I73P91oHQAAAM4iVIIrwEwlAAAALtsj494AXGWb292sb+3m3l4v1xY6WVtZyury4qU/z7WFTrrH\nBEhmKgEAANCWSiUYk83tbm5v7KS710tN0t3r5fbGTja3u5f+XGsrS+nMzx1Z68zPZW1l6dKfCwAA\ngKtBqARjsr61m97+wZG13v5B1rd2L/25VpcXc+fW9SwudFKSLC50cufW9aFURQEAAHA1aH+DMRn1\nnKPV5UUhEgAAAJdGpRKMyUnzjMw5AgAAYBoIlWBMzDkCAABgmml/gweM6jS2JPc/76ieDwAAAC6T\nUAn6BqexDYZnD05jSzLUYEmIBAAAwDTS/gZ9ozyNDQAAAKadSiXoG/VpbBcxyjY9LpfvHQAAMCuE\nStB3baGT7jEB0qSdxjaONj0uh+8dAAAwS7S/Qd+0nMamTW96+d4BAACzRKUS9E3LaWzT1KbHUb53\nAADALBEqwQOm4TS253Xms9fbP3adyTYtLZYAAADnof0NpkwpzdaZHNPSYgkAAHAeKpVgyux94tlV\nSqetMzmmpcUSAADgPIRKMGW0UE23aWixBAAAOA/tbzBltFABAAAwCVQqwSXY3O6OrKVJCxUAAACT\nQKgEF7S53c3tjZ309g+SJN29Xm5v7CTJUIMlIRIAAADjpP0NLmh9a/d+oDTQ2z/I+tbumHYEAAAA\nwydUggu6d8zQ7NPWAQAAYBYIleCCTjp1zWlsAAAAzDKhElyQ09gAAAC4igzqhgtyGhsAAABXkVAJ\nLoHT2AAAALhqtL8BAAAA0JhKJWAoNre7WgIBAABmmFAJuHSb293c3thJb/8gSdLd6+X2xk6SCJYA\nAABmhPY34NKtb+3eD5QGevsHWd/aHdOOAAAAuGxCJeDS3dvrNVoHAABg+giVgEt3baHTaB0AAIDp\nI1QCLt3aylI683NH1jrzc1lbWRrTjgAAALhsBnUDl24wjNvpbwAAALNLqAQMxeryohAJAABghml/\nAwAAAKAxlUqMxOZ2VysUAAAAzBChEkO3ud3N7Y2d9PYPkiTdvV5ub+wkiWAJAAAAppT2N4ZufWv3\nfqA00Ns/yPrW7ph2BAAAAFyUSiWG7t5er9E6Z9NOCAAAwLipVGLori10Gq1zukE7YXevl5pn2gk3\nt7vj3hoAAABXiFCJoVtbWUpnfu7IWmd+LmsrS2Pa0eTY3O7m5uNP5NHH3pabjz9xrmBIOyEAAACT\nQPsbQzdoy9KudVTbAebaCQEAAJgEQiVGYnV58cqHSA87reLotK/V8zrz2evtH7sOAAAAo6L9Dcak\nbcVRKc3WAQAAYBiESjAmJ1UWnVVxtPeJZ1cpnbYOAAAAwyBUgjFpW3HkND0AAAAmgVAJxqRtxZHT\n9AAAAJgEQiUYk7YVR6vLi7lz63oWFzopSRYXOrlz67pB6AAAAIyU099gTNZWlnJ7Y+fICXDnrThy\nmh4AAADjJlSCMRmEQutbu7m318u1hU7WVpaERQAAAEwFoRKMkYojAAAAppWZSgAAAAA0JlQCAAAA\noDGhEgAAAACNCZUAAAAAaEyoBAAAAEBjQiUAAAAAGntk3BuAWbC53c361m7u7fVybaGTtZWlrC4v\nDu06AAAAGDehElzQ5nY3tzd20ts/SJJ093q5vbGTJKcGRG2vAwAAgEmg/Q0uaH1r934wNNDbP8j6\n1u5QrgMAAIBJIFSCC7q312u0ftHrAAAAYBIIleCCri10Gq1f9DoAAACYBEIluKC1laV05ueOrHXm\n57K2sjSU6wAAAGASGNQNFzQYqt30FLe21wEAAMAkKLXWce+hkRs3btS7d++OexsAAAAAM6OU8mSt\n9UaTa7S/AQAAANCYUAkAAACAxoRKAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABo7JFxbwBobnO7\nm/Wt3dzb6+XaQidrK0tZXV4c97YAAAC4QoRKMGU2t7u5vbGT3v5BkqS718vtjZ0kESwBAAAwMtrf\nYMqsb+3eD5QGevsHWd/aHdOOAAAAuIqESjBl7u31Gq0DAADAMAiVYMpcW+g0WgcAAIBhECrBlFlb\nWUpnfu7IWmd+LmsrS2PaEQAAAFeRQd0wZQbDuJ3+BgAAwDgJlWAKrS4vCpEAAAAYK+1vAAAAADQm\nVAIAAACgMe1vwKk2t7vmNwEAAPAsQiXgRJvb3dze2Elv/yBJ0t3r5fbGTpIIlgAAAK64obW/lVJe\nWEp5RynlvaWU95RSvu2Yx5RSyveVUj5QSvnlUsqXDWs/QHPrW7v3A6WB3v5B1rd2x7QjAAAAJsUw\nK5U+meQv1lrfXUp5bpInSyk/U2t97wOP+ZokL+n/ekWSv93/LzAB7u31Gq0DAABwdQytUqnW+uFa\n67v7b38syfuSPNwv87okP1IPvTPJQinl84a1J6CZawudRusAAABcHSM5/a2U8uIky0ne9dCHFpP8\n2gPvfyjPDp6AMVlbWUpnfu7IWmd+LmsrS2PaEQAAAJNi6IO6SymfleStSb691vqbLT/H65O8Pkle\n9KIXXeLugNMMhnFPw+lvTqkDAAAYraGGSqWU+RwGSm+qtW4c85Bukhc+8P7n99eOqLW+Mckbk+TG\njRt1CFsFTrC6vDjx4YxT6gAAAEZvmKe/lSQ/mOR9tdbvOeFhP5HkT/RPgXtlko/WWj88rD0Bs8kp\ndQAAAKM3zEqlm0n+eJKdUspT/bW/lORFSVJr/YEkb0/y2iQfSPKJJH9qiPsBZpRT6gAAAEZvaKFS\nrfXnk5QzHlOT/Llh7QG4Gq4tdNI9JkBySh0AAMDwjOT0N5gWm9vd3Hz8iTz62Nty8/Ensrn9rBFf\nTCCn1AEAAIze0E9/g2lh2PP0mqZT6gAAAGaFUAn6Thv2LJyYfNNwSh0AAMAs0f4GfYY9AwAAwPmp\nVGImbW53G7dCGfYMAAAA56dSiZkzmI3U3eul5pnZSGcN3TbsGQAAAM5PqMTMOW020mlWlxdz59b1\nLC50UpIsLnRy59Z1c3oAAADgGNrfmDkXmY1k2DMAAACcj1CJmTOO2UhtZjgBz/B7CAAApo/2N2bO\nqGcjtZ3hBBzyewgAAKaTUImZc5HZSJvb3dx8/Ik8+tjbcvPxJ871j9q2M5yAQ34PAQDAdNL+xkxq\nMxtpUC0x+MftoFpi8PlOcpEZToDfQwAAMK1UKkFf22qJk2Y1DXOGE8wSv4cAAGA6CZWgr221xKhn\nOMGs8XsIAACmk/Y3ZlKbk6Tanho3+LyzenKVU7kYtln/PQQAALOq1FrHvYdGbty4Ue/evTvubTDB\nHp6NlBxWPZw1rLvtdeMwqqBnmr4mAAAAtFdKebLWeqPJNdrfmDltZyNd5NS4URrl8etO5QIAAOAk\n2t+YORc5SarNqXGjdlrQc9l7dyoXAAAAJ1GpxMyZ9ZOkRhn0zPrXEgAAgPaESsycWT9JapRBz6x/\nLQEAAGhPqMTMWV1ezNe/fDFzpSRJ5krJ17988tvazmuUQc+0zJkCAABg9MxUYuZsbnfz1ie7Oeif\nbHhQa976ZDc3vuD5MxGGjPr49WmYMwUAAMDoCZWYOaMcZD0ugh4AAADGTfsbM8eJZQAAADB8QiVm\njhPLAAAAYPiESswcJ5YBAADA8JmpxMwZ9SBrAAAAuIqESswkg6wBAABguLS/AQAAANCYUAkAAACA\nxoRKAAAAADQmVAIAAACgMaESAAAAAI05/Q2ghc3tbta3dnNvr5drC52srSw5cRAAALhShEoADW1u\nd3N7Yye9/YMkSXevl9sbO0kiWAIAAK4M7W8ADa1v7d4PlAZ6+wdZ39od044AAABGT6gE0NC9vV6j\ndQAAgFkkVAJo6NpCp9E6AADALBIqATS0trKUzvzckbXO/FzWVpbGtCMAAIDRM6gboKHBMG6nvwEA\nAFeZUAnGyLH002t1edH3CgAAuNKESjAmjqUHAABgmpmpBGPiWHoAAACmmVAJxsSx9AAAAEwzoRKM\niWPpAQAAmGZCJRgTx9IDAAAwzQzqhjFxLD0AAADTTKgED9jc7o405HEsPQAAANNKqEQjow5dRmlz\nu5vbGzv3T2Tr7vVye2MnSSbuNc7y96EtXxMAAIDRMlOJcxuELt29XmqeCV02t7vj3tqlWN/avR8o\nDfT2D7K+tTumHR1v1r8PbfiaAAAAjJ5QiXObltClrXt7vUbr4zLr34c2fE0AAABGT6jEuU1L6NLW\ntYVOo/VxmfXvQxu+JgAAAKMnVOLcpiV0aWttZSmd+bkja535uaytLI1pR8eb9e9DG74mAAAAoydU\n4tymJXRpa3V5MXduXc/iQiclyeJCJ3duXZ+4Yc+z/n1ow9cEAABg9Jz+xrkNwpVZPmFrdXlx4l/P\nVfg+NOVrAgAAMHql1jruPTRy48aNevfu3XFvg4Yc9w4AAACTq5TyZK31RpNrVCoxdIPj3gencw2O\ne08iWAIAAIApZaYSQ+e4dwAAAJg9QiWGznHvAAAAMHuESgyd494BAABg9giVGDrHvQMAAMDsMaib\noXPcOwAAAMweoRIjsbq8KEQCAACAGSJUgjHa3O6q4AIAAGAqCZVgTDa3u7m9sZPe/kGSpLvXy+2N\nnSQRLAEAADDxDOqGMVnf2r0fKA309g+yvrU7ph0BAADA+alUYiZNQ1vZvb1eo3UAAACYJCqVmDmD\ntrLuXi81z7SVbW53x721I64tdBqtAwAAwCQRKjFzpqWtbG1lKZ35uSNrnfm5rK0sjWlHAAAAcH7a\n35g509JWNmjHm/Q2PQAAADiOUImZc22hk+4xAdIktpWtLi8KkQAAAJhK2t+YOdrKAAAAYPhUKjFz\ntJUBAADA8AmVmEnayi7P5nZXQAcAAMCzCJWAE21ud3N7Y+f+aXrdvV5ub+wkiWAJAADgihMqwQNU\n5Ry1vrV7P1Aa6O0fZH1r90p/XQAAABAqwX2qcp7t3jGn6J22DgAAwNXh9DfoO60q56q6ttBptD5O\nm9vd3Hz8iTz62Nty8/EnsrndHfeWAAAAZppQiZnUJmDonlB9c9L6VbC2spTO/NyRtc78XNZWlsa0\no+MNqsy6e73UPFNlJlgCAAAYHu1vzJy2bWxzpeSg1mPXh2XSZzgN9jLJe0zMfgIAABgHoRIzp23A\ncFygdNr6RU3LDKfV5cWJ2s9xzH4CAAAYPe1vzJy2AcPiCXOCTlq/KDOcLs80zX4CAACYFUIlZk7b\ngOEi84PazHBSXXN5pmX2EwAAwCwRKjFz2gYMq8uLuXPrehYXOik5rFC6c+v6ma1fbYdEq665PG2/\ndwAAALRX6pDmxQzLjRs36t27d8e9DSbcKAdg33z8iWNPiFtc6OQXHnvNqXt8cKZSchh+CUMAAAAY\ntVLKk7XWG02uMaibmTTK4dJt29im5WQ1AAAAOI5QCS7oeZ357PX2j10/yzScrAYAAADHMVMJLqiU\nZusAAAAwC4RKcEF7n3h2ldJp6wAAADALhEpwQU5xAwAA4CoaWqhUSvmhUspHSim/csLHX11K+Wgp\n5an+r78yrL3AMK2tLKUzP3dkrTM/l7WVpTHtCAAAAIZvmIO6fzjJ9yf5kVMe83O11q8d4h5g6Jzi\nBgAAwFU0tFCp1vrPSikvHtbnh0niFDcAAACumnHPVHpVKeWXSik/VUr5kpMeVEp5fSnlbinl7tNP\nPz3K/QEAAABwjGG2v53l3Um+oNb68VLKa5NsJnnJcQ+stb4xyRuT5MaNG3V0W4TZsbnd1aIHAADA\npRlbpVKt9TdrrR/vv/32JPOllM8e135glm1ud3N7YyfdvV5qku5eL7c3drK53R331gAAAJhSYwuV\nSimfW0op/be/vL+X/zCu/TCZNre7ufn4E3n0sbfl5uNPCEFaWt/aTW//4Mhab/8g61u7Y9oRAAAA\n025o7W+llDcneXWSzy6lfCjJX00ynyS11h9I8g1J/kwp5ZNJekm+sdaqtY37BtU1gzBkUF2TZOLa\ntia9tezeXq/ROgAAAJxlmKe/fdMZH//+JN8/rOdn+p1WXTNJgc00hF/XFjrpHhMgXVvojGE3AAAA\nzIJxn/4GJ5qW6pppaC1bW1lKZ37uyFpnfi5rK0tj2hEAAADTTqjExDqpimbSqmumIfxaXV7MnVvX\ns7jQSUmyuNDJnVvXJ6aSCgAAgOkztPY3uKi1laUjbWXJZFbXTEtr2eryohAJAACAS6NSiYk1LdU1\nWssAAAC4ilQqMdGmobpmsL9JPv0NAAAALptQCS7BNIRfAAAAcJm0vwEAAADQmFAJAAAAgMaESgAA\nAAA0JlQCAAAAoDGhEgAAAACNOf0NptDmdjfrW7u5t9fLtYVO1laWnD4HAADASAmVYMpsbndze2Mn\nvf2DJEl3r5fbGztJIlgCAABgZLS/wZRZ39q9HygN9PYPsr61O6YdAQAAcBUJlWDK3NvrNVoHAACA\nYRAqwZS5ttBptA4AAADDIFSCKbO2spTO/NyRtc78XNZWlsa0IwAAAK4ig7phygyGcTv9DQAAgHFS\nqQQAAABAYyqVYMpsbndze2Pn/glw3b1ebm/sJIlqJQAAAEZGpRJMmfWt3fuB0kBv/yDrW7tj2hEA\nAABXkVAJpsy9vV6jdQAAABgGoRJMmWsLnUbrAAAAMAxCJZgyaytL6czPHVnrzM9lbWVpTDsCAADg\nKjKoG6bMYBj3+tZu7u31cm2hk7WVJUO6AQAAGCmhElyCze3uSEOe1eVFIRIAAABjJVSCC9rc7ub2\nxs79E9m6e73c3thJEsEPAAAAM0uoxEQbdQVQG+tbu/cDpYHe/kHWt3Ynbq8AAABwWYRKTKxpqQC6\nt9drtA4AAACzwOlvTKzTKoDOsrndzc3Hn8ijj70tNx9/Ipvb3WFtM9cWOo3WAQAAYBYIlZhYbSuA\nBhVO3b1eap6pcDpPsNQmjFpbWUpnfu7IWmd+LmsrS2deCwAAANNKqMTEalsB1LbCqW0Ytbq8mDu3\nrmdxoZOSZHGhkzu3rk9Uix4AAABcNjOVmFhrK0tHZiol56sAalvhdJGB26vLi0IkAAAArhSVSkys\nthVAbSucDNwGAACA81OpxEhsbnezvrWbe3u9XFvoZG1l6VyVPW0qgNpWOF1b6KR7TIB0noHbbV8f\nAAAATCuhEkM3mFU0CHkGs4qSnBm8tAlrBh9vel3bMOoirw8AAACmVam1jnsPjdy4caPevXt33Nug\ngZuPP3FsBdDiQie/8NhrTrzu4bAmOQx5hjkEu02I1fb1AQAAwKQopTxZa73R5BqVSgzdOAZnt9Wm\n3c4sJgAAAK4ig7oZulkfnN329QEAAMA0EyoxdGsrS+nMzx1ZO+/g7Cbr49L29QEAAMA0EyoxdKvL\ni7lz63oWFzopOZw1dJ65SNMS1rR9fQAAADDNDOpmorUZnA0AAAA0Y1A3M6fN4OykfRglxAIAAIDz\nESox0dqEPJvb3dze2Ll/clx3r5fbGztJcuq1ba8DAACAq8hMJSbWIOTp7vVS80zIs7ndPfW69a3d\n+8HQQG//IOtbu0O5DgAAAK4ioRITq23Ic2+v12j9otcBAADAVSRUYmK1DXmuLXQarV/0OgAAALiK\nhEpMrLYhz9rKUjrzc0fWOvNzWVtZOvW6r3jpCxqtAwAAwFUmVGJitQ2HVpcXc+fW9SwudFKSLC50\ncufW9TOHbb/j/U83WgcAAICrzOlvTKxBCNT09LfBtU1PbDNTCQAAAM5PqMREaxMOtXVtoZPuMQGS\nmUoAAADwbNrfoK9tux0AAABcRSqVoO8i7XYAAABw1QiVGInN7e5UhDWjbLcDAACAaSZUYug2t7u5\nvbGT3v5BkqS718vtjZ0kGVqAMy0hFgAAAEwroRJDt761ez9QGujtH2R9a3coQc9VCLGmITSbhj0C\nAADQnlCJobt3zIlqp61f1EVCrDZByKhDrHGEZk1Nwx4BAAC4GKe/MXTP68w3Wr+otiHWIAjp7vVS\n80wQsrndPfW600KsYRj187UxDXsEAADgYoRKDF0pzdYftLndzc3Hn8ijj70tNx9/4syAJ0muLXQa\nrQ+0DUJGXYk16udrYxr2CAAAwMUIlRi6vU/sN1ofaFs5tLaylM783JG1zvxc1laWTr2ubRDSNsRq\na9TP18Y07BEAAICLESoxdKOuHFpdXsydW9ezuNBJSbK40MmdW9fPnOXTdp9tQ6y2Rv18bUzDHgEA\nALgYoRJD1zZg6J5QIXTS+kW13WfbEKutUT9fG9OwRwAAAC6m1FrHvYdGbty4Ue/evTvubdBQm1PV\nvuj223NwzP05V0r+9Z3XnvpcD548lhyGQ+cJNdrsEwAAAKZdKeXJWuuNJtc8MqzNwINWlxcbhzPH\nBUqnrQ+c1jZ31h7a7BMAAACuIu1vTKzf9RnzjdYHnDwGAAAAw6dSiZFo01Z2UkHSWR2bn/GcufzW\n7xwcuw4AAABcDqESQ/fwjKPuXi+3N3aS5NRg6aO9/UbrA584JlA6bR0AAABoTvsbQ3fajKPTXFvo\nNFofOKmQabpG0gMAAMBkEyoxdG1nHK2tLKUzf7RlrTM/l7WVpVOvmyul0ToAAADQnPY3GmkzG+na\nQifdYwKksyqOBp+36fN90ytemB995wePXT9Lm9c363xNAAAAOI5KJc5tMBupu9dLzTOzkTa3u6de\n17biqK3vXr2em1/0/CNrN7/o+fnu1eunXtf29c0yXxMAAABOIlTi3NrORlpdXsydW9ezuNBJSbK4\n0MmdW9fPrHZpG2hsbnfz7g9+9Mjauz/40TOva/v6ZpmvCQAAACfR/sa5tZ2NlBwGS01bpk4LNE77\nXG2vu8jrm1VX4WuivQ8AAKAdlUqcW9vT2NpqG2i0vW7Ur28azPrXRHsfAABAe0Ilzm3Us5Ge15lv\ntD6w8BnHf/yk9YG1laXMzx09IW5+rpzr9W1ud3Pz8Sfy6GNvy83Hn5iZUGLU3/NR094HAADQnvY3\nzq3taWxt7R98qtH6QK3N1o8+6Iz3jzGodhmEE4NqlyRT30Y16u/5qF2F9j4AAIBhESrRSJvZSG39\n1u8cNFof+Ghvv9H6wPrWbvY/dTRF2v9UHdoMp2kxyu/5qF1b6KR7TIA0K+19AAAAw6T9jZEYZXtY\n2zlAx4ULp60PqHaZXrPe3gcAADBMQiWGru0w5M+YP/72PGl94Cte+oJG6wNzpTRaH5j1YdazbHV5\nMXduXc/iQiclyeJCJ3duXZ/ZyiwAAIDLpP2NoWvbHvacR+byif1nz096ziNzxzz6Ge94/9ON1gcO\nThi6dNL6wNrK0pGZSolql2kyy+19AAAAwyRUopHN7W7joc1t28P2TpiBdNL6RZ9vrpRjA6SzKpVm\nfZg1AAAAHEeoxLm1PeWs7TDkUo4/se2MjKf187WtVEqmo9qlTSAIAAAAJzFTiXM7rY3tNG2HIZ+U\n5ZyV8bR9vsUTQqeT1qdJ27lWAAAAcBKhEufWtq1s1MOQV5cX8/UvX7zftjZXSr7+5WdXEq2tLGV+\n7mgZ1PxcmYnZSG0DQQAAADiJ9jfOrW1bWdKuPawkOa4o6Yzut2xud/PWJ7v329YOas1bn+zmxhc8\n/+w9PPyEZ3e+TYW2gSAAAACcRKUS59a2raytk/Kcs3KetlU561u72f/U0c++/6k6E9U8JwV/5wkE\nAQAA4DhCJc5t1G1sbWccta3KmeVqnlEHggAAAMw+7W800vaUszYnj33FS1+QH33nB49dP83zOvPZ\n6+0fu36aT5/3PW0EAAAOv0lEQVT/tPT2P3Xs+lnanqw2qhPZBp/T6W8AAABcFqESQ7e53c3aj//S\n/day7l4vaz/+S0lyaqjxjvc/3Wh9oJwwdOmk9YHf/uSzA6XT1gc2t7tZe8svZf/ggdf3lrNf3+BE\ntkGr3uBEtrOua6ttIAgAAADHGVr7Wynlh0opHyml/MoJHy+llO8rpXyglPLLpZQvG9ZeeLbN7W5u\nPv5EHn3sbbn5+BNDPVr+O3/iPcfOKvrOn3jPqdcdNxT8tPWBvU88u0rptPWBT50wrOmk9YHv+sfv\nuR8oDewf1HzXPz799TmRDQAAgGk2zEqlH07y/Ul+5ISPf02Sl/R/vSLJ3+7/d6qNug3qpd/x9vzn\nBwKNT58ref8bXnvmc337jz11//3uXu/++2c95yve8DP59Y/9zv33P+e5z8m7vuOrTr3muFa009Yv\nqjP/afnEMW1snTPa2NqeNvefTgirTlofuMgMp1G1zV3EX97cyZvf9Ws5qDVzpeSbXvHCfPfq9XFv\nCwAAgEsytEqlWus/S/IfT3nI65L8SD30ziQLpZTPG9Z+RmHQztTd66XmmXams6qA2l73cKCUJP/5\noOal3/H2U69b+/GnGq0PPBwoJcmvf+x38oo3/Myp143acYHSaesDz3nk+N8OJ61fVNsT2dreL6P0\nlzd38qPv/GAO6uH9eVBrfvSdH8xf3twZ884AAAC4LOM8/W0xya898P6H+mtT6yJH2be57uFA6az1\ngZOylTMyl2cFSmetT5u2M5UWThgAftL6QNsT2aahbe7N7/q1RusAAABMn3GGSudWSnl9KeVuKeXu\n00+fPqR5nBxlfzV959d9SeY/7WiT3PynlXzn133JqdetLi/mzq3rWVzopCRZXOjkzq3rZ7axTcP9\nMqhQOu86AAAA02ecp791k7zwgfc/v7/2LLXWNyZ5Y5LcuHFjYv9Vem2hc+wQ6bPamdpeN+vazjhq\ne91CZ/7YOU9nVRwNQqA2M47anMg2DffLXCnHBkhzZx3BBwAAwNQYZ6XSTyT5E/1T4F6Z5KO11g+P\ncT8X1radqe11nz53/D/QT1ofuPlFz2+0PvA5z31Oo/WLXvfNr3xRo/WLXte24ig5DId+4bHX5N88\n/ofzC4+9ZqhDs9veL6P0Ta94YaN1AAAAps/QQqVSypuT/H9JlkopHyqlfEsp5U+XUv50/yFvT/Kr\nST6Q5P9O8meHtZdRadvO1Pa697/htc8KkM5z+tubvvVVzwqQbn7R8/Omb33Vqde96zu+6llB0HlO\nf2t73XevXs8fe+WL7le3zJWSP/bKF515gljb61aXF7P+R770yPdh/Y986cSdqtb2fhmltt8DAAAA\npkepUzbj5MaNG/Xu3bvj3gYAAADAzCilPFlrvdHkmqkY1A0AAADAZBEqAQAAANCYUAkAAACAxoRK\nAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABoTKgEAAAAQGNCJQAAAAAaEyoBAAAA0JhQCQAAAIDG\nhEoAAAAANCZUAgAAAKAxoRIAAAAAjQmVAAAAAGhMqAQAAABAY0IlAAAAABoTKgEAAADQmFAJAAAA\ngMaESgAAAAA0JlQCAAAAoDGhEgAAAACNCZUAAAAAaEyoBAAAAEBjQiUAAAAAGhMqAQAAANCYUAkA\nAACAxoRKAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABoTKgEAAAAQGNCJQAAAAAaEyoBAAAA0JhQ\nCQAAAIDGSq113HtopJTysSS7494HU+Ozk/zGuDfBVHCv0IT7hfNyr9CE+4Xzcq/QhPuF81qqtT63\nyQWPDGsnQ7Rba70x7k0wHUopd90vnId7hSbcL5yXe4Um3C+cl3uFJtwvnFcp5W7Ta7S/AQAAANCY\nUAkAAACAxqYxVHrjuDfAVHG/cF7uFZpwv3Be7hWacL9wXu4VmnC/cF6N75WpG9QNAAAAwPhNY6US\nAAAAAGM2VaFSKeWrSym7pZQPlFIeG/d+mCyllB8qpXyklPIrD6w9v5TyM6WUf9X/7+8a5x6ZDKWU\nF5ZS3lFKeW8p5T2llG/rr7tfOKKU8umllH9RSvml/r3yXf31R0sp7+r/ffRjpZTnjHuvTIZSylwp\nZbuU8pP9990rHKuU8m9LKTullKcGp+34e4iTlFIWSilvKaW8v5TyvlLKq9wvPKyUstT/M2Xw6zdL\nKd/uXuEkpZS/0P8Z91dKKW/u/+zb6GeXqQmVSilzSf5Wkq9J8sVJvqmU8sXj3RUT5oeTfPVDa48l\n+dla60uS/Gz/ffhkkr9Ya/3iJK9M8uf6f564X3jYbyd5Ta31S5O8LMlXl1JemeT/SPK9tdbfk+Q/\nJfmWMe6RyfJtSd73wPvuFU7zFbXWlz1w1Le/hzjJ30jyT2qtL03ypTn8c8b9whG11t3+nykvS/Ly\nJJ9I8g/jXuEYpZTFJP9Lkhu11t+bZC7JN6bhzy5TEyol+fIkH6i1/mqt9XeS/P0krxvznpggtdZ/\nluQ/PrT8uiR/r//230uyOtJNMZFqrR+utb67//bHcviD2WLcLzykHvp4/935/q+a5DVJ3tJfd6+Q\nJCmlfH6SP5zk7/TfL3Gv0Iy/h3iWUsrzkvyBJD+YJLXW36m17sX9wum+Msm/rrX+u7hXONkjSTql\nlEeSfEaSD6fhzy7TFCotJvm1B97/UH8NTvM5tdYP99/+90k+Z5ybYfKUUl6cZDnJu+J+4Rj9dqan\nknwkyc8k+ddJ9mqtn+w/xN9HDPz1JP9bkk/13//dca9wsprkp0spT5ZSXt9f8/cQx3k0ydNJ/m6/\nvfbvlFI+M+4XTveNSd7cf9u9wrPUWrtJ/lqSD+YwTPpokifT8GeXaQqV4ELq4VGHjjvkvlLKZyV5\na5Jvr7X+5oMfc78wUGs96JeRf34Oq2ZfOuYtMYFKKV+b5CO11ifHvRemxu+vtX5ZDkc7/LlSyh94\n8IP+HuIBjyT5siR/u9a6nOS38lD7kvuFB/Vn4Hxdkh9/+GPuFQb6s7Vel8Pg+lqSz8yzx8mcaZpC\npW6SFz7w/uf31+A0v15K+bwk6f/3I2PeDxOilDKfw0DpTbXWjf6y+4UT9VsN3pHkVUkW+mXCib+P\nOHQzydeVUv5tDlv0X5PDGSjuFY7V/z/EqbV+JIczT748/h7ieB9K8qFa67v6778lhyGT+4WTfE2S\nd9daf73/vnuF4/zBJP+m1vp0rXU/yUYOf55p9LPLNIVKv5jkJf1J5M/JYTnfT4x5T0y+n0jyJ/tv\n/8kk/2iMe2FC9Oec/GCS99Vav+eBD7lfOKKU8oJSykL/7U6Sr8rhDK53JPmG/sPcK6TWervW+vm1\n1hfn8GeUJ2qt3xz3CscopXxmKeW5g7eT/KEkvxJ/D3GMWuu/T/JrpZSl/tJXJnlv3C+c7JvyTOtb\n4l7heB9M8spSymf0/300+LOl0c8u5bD6bTqUUl6bw3kFc0l+qNb6hjFviQlSSnlzklcn+ewkv57k\nrybZTPIPkrwoyb9L8t/XWh8e5s0VU0r5/Ul+LslOnpl98pdyOFfJ/cJ9pZT/OocDCudy+D9i/kGt\n9X8vpXxhDqtRnp9kO8kfq7X+9vh2yiQppbw6yf9aa/1a9wrH6d8X/7D/7iNJ/p9a6xtKKb87/h7i\nGKWUl+XwEIDnJPnVJH8q/b+X4n7hAf2g+oNJvrDW+tH+mj9bOFYp5buS/NEcno69neR/zOEMpXP/\n7DJVoRIAAAAAk2Ga2t8AAAAAmBBCJQAAAAAaEyoBAAAA0JhQCQAAAIDGhEoAAAAANCZUAgBmTinl\nO0op7yml/HIp5alSyiv66/+0lPLBUkp54LGbpZSP999+cSnlV/pvv7qU8pPHfO5/WkrZ7X/ep0op\nb+mvL/U/9lQp5X2llDcec+39z3/Jr/fVpZT/5oH3f7iU8g2X/TwAAA96ZNwbAAC4TKWUVyX52iRf\nVmv97VLKZyd5zgMP2UtyM8nPl1IWknxei6f55lrr3YfWvi/J99Za/1F/H9dbfN62Xp3k40n++Qif\nEwC44lQqAQCz5vOS/Eat9beTpNb6G7XWew98/O8n+cb+27eSbFzi835o8E6tdee0B5dS5kop66WU\nX+xXVP1P/fVX9yue3lJKeX8p5U2DyqpSymv7a0+WUr6vlPKTpZQXJ/nTSf5Cv0rqv+0/xR8opfzz\nUsqvqloCAIZBqAQAzJqfTvLCUsq/LKX8n6WU/+6hj/9sDgOXuRyGSz/W4jne9ED723p/7XuTPFFK\n+alSyl/oV0Gd5luSfLTW+vuS/L4k31pKebT/seUk357ki5N8YZKbpZRPT/J/JfmaWuvLk7wgSWqt\n/zbJD+SwSupltdaf63+Oz0vy+3NYtfV4i9cIAHAqoRIAMFNqrR9P8vIkr0/ydJIfK6X8Dw885CDJ\nz+cwUOr0Q5mmvrkf4Lys1rrWf96/m+S/SvLjOWxHe2cp5b845XP8oSR/opTyVJJ3JfndSV7S/9i/\nqLV+qNb6qSRPJXlxkpcm+dVa67/pP+bNZ+xxs9b6qVrre5N8TuNXCABwBqESADBzaq0HtdZ/Wmv9\nq0n+5yRf/9BD/n4OZyD9g0t+3nu11h+qtb4uySeT/N5THl6S/PkHwqlHa60/3f/Ybz/wuIO0m4P5\n4OcoJz4KAKAloRIAMFP6p7C95IGllyX5dw897OeS3MnZ1T5NnverSynz/bc/N4eVR91TLtlK8mce\nuOa/LKV85imP303yhf0ZSknyRx/42MeSPLfl1gEAWnH6GwAwaz4ryd/szzT6ZJIP5LAV7r5aa03y\n187xub6ylPKhB97/I/3/vqmU0uu//Ru11j+Yw3a2v1FK+c/99bVa678/5XP/nRy2tb27P4j76SSr\nJz241torpfzZJP+klPJbSX7xgQ//4yRvKaW8LsmfP8frAgC4sHL4MxUAAJOulPJZtdaP90Oov5Xk\nX9Vav3fc+wIAribtbwAA0+Nb+4O935PkeTk8DQ4AYCxUKgEAAADQmEolAAAAABoTKgEAAADQmFAJ\nAAAAgMaESgAAAAA0JlQCAAAAoDGhEgAAAACN/f91oc+oqPYKugAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAOTCAYAAAAGyjJNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3Dc6X0f9s9DCJZWqiPIMf2DkM7HSC6uvdASLdZSikwmulaBbFlnDGW11lhTu02tZpI2bjJFhhhffSdHHiJBmng66XRGdpo6OUd2JNM7J9M1ogbyJFV95/ICn5CLD7EcyXddutFZEhxbWssQ7ukfxJIEuD+w39397n53X68ZjogH+OL7YJcHYN/6fD5PyjkHAAAAAPTjzLg3AAAAAED1CJUAAAAA6JtQCQAAAIC+CZUAAAAA6JtQCQAAAIC+CZUAAAAA6NvLxr2Bfn391399vv/++8e9DQAAAICp8fTTT/9uzvlsP9dULlS6//7748aNG+PeBgAAAMDUSCn9dr/XaH8DAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6JlQCAAAAoG9CJQAAAAD6NtJQKaX02ZTSbkrp11NKN9q8P6WU/ueU0qdTSp9KKX37KPcDAAAAwHC8rIR7vC3n/Lsd3vedEfGtR3/eEhH/69H/MmL1nUZsbu3Fzf1mnFuoxdrKUqxeXBz3tmbOI/Xd+PBTL8RhzjGXUrz3La+LD65eGMl1Re/1/T/5q/HJ3/rC7beXX/918TM/9Kd6XvfAj/xS/OFhvv32K+ZSPPfj39XzujesX4+v3rksXpYiPn31nT2vO3/letx1WaSI+MxG7+vuv3L9nrXPus51rjv1dVXYo+tcN+nXFf3ZV5WvrwrfW8p+Dor+3vJtj/5y/LuvHN5++4+9fC4+9YF3TM11Zf/eWXSfRe/39r/9K/Gbn/vS7be/9RteFR//q392ZPt8y49/PP7t7//R7be/8Wu/Jp76kbf3vK7oa8Wy91nk9U3R566oos950f8Wil7Xeiy/5pve8OaeH3zCuNvfvici/kG+5cmIWEgpffOY9zT16juNWL+2G439ZuSIaOw3Y/3abtR3GuPe2kx5pL4bjz/5fBzmW9/UDnOOx598Ph6p7w79uqL3OvlNKSLik7/1hfj+n/zVrted/GYdEfGHhzke+JFf6nrdyV/oIiK+mm+td3PyF7OIiHy03k27XwS7rbvOda4b371c57ppva7oz76qfH1V+N5S9nNQ9PeWky/YIyL+3VcO49se/eWpuK7s3zuL7rPo/U6GCxERv/m5L8Xb//avjGSfJ4OaiIh/+/t/FG/58Y93va7oa8Wy91nk9U3R566oos950f8Wil538rHs16hDpRwR/ySl9HRK6f1t3r8YES/c9fb/e7TGCG1u7UXz4Ph/8M2Dw9jc2hvTjqqvvtOI5Y3tOH/leixvbJ8qoPvwUy/0tT7IdT/z5PN9rbec/KbUa73l5DfrXustJ3+h67Xe0undxb4tAkB5iv7sY3jKfg6K/t5y8gV7r/WqXVf2751F91n0fifDhV7rvfbTa58ng5pe6y1FXyuWvc8ir4mKPndFFX3Oi/63UPS6Xq8/exl1+9ufzjk3UkrfEBEfTyk9l3P+Z/1+kqNA6v0REffdd9+w9zhzbu43+1qnu1aa3/rm20rzI6JrmWinJLhXQlzkOqELAADQS1VeKxZ9LcW9Bn3MRlqplHNuHP3v5yLiFyLiO058SCMiXnfX2689Wjv5eT6Uc76Uc7509uzZUW13ZpxbqPW1TncqvwAAgGlQldeKcyn1tU5ngz5mIwuVUkqvSil9bevvEfHnIuJfnviwJyLivzg6Be6tEfF7OeffGdWeuGVtZSlq83PH1mrzc7G2sjSmHU2OIm1sVUjzX/6y9v+pd1oHAMrxsg6/y3daZ/jKfg46fdpet/tjL5/ra71q1813+LW003rLK+baP3Kd1nvtp9c+i97vW7/hVX2t99pPr31+49d+TV/rLUVfK5a9z/e+5XV9rUcUf+6KKvqcL7/+6/paH/S6bo/ZaYzyFeU3RsT/lVJ6JiJ+LSKu55x/OaX0F1JKf+HoY34pIv5NRHw6In4yIv7iCPfDkdWLi3H18oVYXKhFiojFhVpcvXxh5k9/KzqUrmiaX/QXiiKp/MkfDL3WW4p+Y6Laij7vRf9N/8R//qa+1ge12OG/zU7rgyr76yuq02lF3U4xKnKN61znuuM+ffWd94QXpzl5rCpfXxW+t5T9HHxm4533/Gw8zelvn/rAO+55gX6a07Wqct1XX+pvveW5H/+ue0KB05zoVXSfRe/38b/6Z+8JE05zEljRfT71I2+/J5g5zalqRV8rlr3PD65eiPe99b7br4HmUor3vfW+rqe/FX3uiir6nP/MD/2pe37vPs0pbkWvO/lY9ivlivUcXrp0Kd+4cWPc22AKLW9sR6NNddHiQi0+eeWhjtfVdxqx9pFn4uClO/8tzZ9JsfmeN3b95tvtZJBuv4y0pvOf1O2baNF7FX1M/oP/8f+I5sG9vwHU5s/Eb/z17+x4XdF9um6410UUO4606L+XotedX78e7X6EpRTxmS4vBNqduhPR+xf6QR7PIkfzFn1cXr/+S2174+dSit+6OrojcwFgEEV/7gHDk1J6Oud8qZ9rRj2oGypjoDa2dv9304i0gqMPP/VCHOYccynFe9/yuq6p/FxKHV9kdlP0Mfn2+xbanjLw7fctdL2O4Vqozcd+86Dtei+9AqR21laWjg2tjzhduXTRf2e1l52JL7cLL3u0dZ5bqLX9pbVXdeFih+tOU+G0enGx72rQoo+nwZUAVFHRn3vAeBmoAkeKtrFtbu3FwYljKA8Oc89B3UVbhSIiLn3L18U3vfoVkSLim179irj0Ld3bkoq+yCz6mDz5b77Y1/q4dApXThO6VMFjDz8Y82eO/4uaP5PisYcfHMn9ipZLF/131q4artt6S9FZAWXPoyv6eJbd3gcAw2BEB1STSiVKUaT1o2xrK0tt29hGVWXx/W+9r20b2/e/9b6u17VmP7X+X5zW7KeI6PiYFq1UetsDZ9vu8W0PdD+FsSqVEp2+/F7txHMp4rDNlzKiGX+Ftf49lPnfXpkVOUUrjoo+LtP+eDIZqvDzEmBUivzcA8ZLqMTIFQlBxqZAG1vRF7ZF2tgibr2gvfvFYkRE8+AwNrf2Oj6eRUOeX/gX7YeU/8K/aPTcZxXsf/ne1rBu6y3tAqVu6y2v+pq5+NIfHbZd7+Y1r5yPL7bZ02te2buiqgq/nBUNawYJT4o+LtP8eDJ+lfp5CQAQQiVKUCQEGYdubWzd9jnIC9tL3/J18YnnXoyb+81TtbFFFKuMKlqp1C4A6bZeNUUDwaKP55c7PG6d1lsefdeDsfbRZ479+5yfS/Hou0bTxjYORcIa4UlnVQi/uFdVfl4CALQIlRi5gQZgl6joPou+sD15alxjvxlrH3nm2Odsp0gQUnY72iCVNWVaW1lqG9aMahBy2e1as0B4wjSpys9LAIAWoRIjV/SFdNkG2WeRF7aPPfHssflNEREHL+V47Ilnh14ZVTTkSREdj17vplO2MmEjlW45uadT7LHoKWBFZ1RFCE9gFlTl5yUAQIvT3xi5sk9MKmptZSnmT0xaPk3VSlHtjnrvtt5S5GSMoiHPf/z69u14ndZbin5tRRU9xW1za69tsNfr5L5OIVCvcOgTz73Y1zowW6ry8xIAoEWlEiNXqdadAlUr49Bv1UrRkOezn2/fctFpvaVohVNRjz38YNuT+x57uPvMoaKtJkXDIa0tQDeV+nkJABBCJUpShdadblUrk773USkagnTK4kaV0RV9IVa01aTo46K1BeilCj8vAQBahEpwZJAqkkfqu/Hhp16Iw5xjLqV471teFx9cvdD1moXafNtKoV4tW2UqOwSZPxNx8FL79V6KvBArenJf0cdlkJMCAQAAJo2ZSnCkUyDQKyh4pL4bjz/5/O2Tvw5zjseffD4eqe92ve673/jNfa3frb7TiOWN7Th/5Xosb2xHfafR9eM7HXXfab1lbWUp5s+cmDN1ZnRzpv69V7QP1Dqt363fxySi2HyqiOKPS9H7VUmR5wEAAKgmlUpwpGgVyYefeqHjerdqpaJzeeo7jWP7bOw3Y/3arQCrUzjx3re8ru2pY+99y+u63isi4mThUJtCoqHZb3NCXbf1liKPycBO5nGnHBg1za0tY3keAACAsVGpBEeKVpEcdjhCrdN6S9F2u82tvWPBV0RE8+Cw64llH1y9EO976323K5PmUor3vfW+ni16H/jYs3F4Ys7U4Us5PvCxZ7teV9TCKzuc4tZhvaXIYxJxJwRp7Dcjx50QpFd1zebWXhwcnpi/ddj71LhpV/R5AAAAqkmlEtylSBXJXEptA6RerWVlD4n+4OqFniHSSV/sUCHUaX1QnXK4HvncSAK6bv8OnOLWnscFAABmi0olGFCnFrJerWVrK0tRm587tnbaIdH9rFfJ77UZXN5tvaXoY9Iu1Ou2Puj9pp3HZfjMqAIAYJIJlWBARVvLBhkSXSSMKqJTrVWv8UFFB4MXDSWKPiaDDDAv6zmoEo/LcBVtzwQAgLJof4MhKNJaFlGs3a718Ztbe3FzvxnnFmqxtrI0kkHInbrOenSjFR4MvrayFGsfeSYO7prjdNpT1SL6f0yKzsMq8zmoEo/LcBVtzwQAgLIIlaCCJv0EsVbA9uGnXojDnGMupXjvW153quCtzNPmFjvMtVrUrlXYpP/brBIzqgAAmHTa34COavPtv0V0Wh9U0dPmirYJFW3X0pZEGcyoAgBg0gmVgI5ecSJw6bXe8kh9Nx5/8vnbbWSHOcfjTz4fj9R3u15X9LS5okfZF51rVfR+0A8zqgAAmHTa3+Au9Z2GeTB32e8Q5nRab/lHT907T6m1XmT2VC+DtAkVadfSlkQZzKgCAGDSCZXgSKulqVWB0mppioiZfRF3rsPMoV7tNy91mHPdab0lRfsh4L1Omyu6z6LKvh+zy4wqAAAmmfY3OKKl6V5rK0sxP3c80pmf630aW1FFT5sre59rK0sxf+bE/U5xSh0AAMA0UakER6rU0lRqm97JRKdXwjOAgU5jK3GfEcVPqdNiCQAATAuVSnBkHCct1XcasbyxHeevXI/lje1TnR5W5sljm1t7cXCiZ+3gpTyy6q23PXC2r/WWQfZZ5Dko+5Q6AACASSRUgiNln7RUNGAos02v7OqtTzz3Yl/rLUX3WfQ5KPuUOgAAgEkkVIIjRY+XL6powFBm0PPq2nxf64Mq+rUVrTIrO+SpUoslAABAL2YqwV3KPGlpkAClrJPHDg7bTwrqtD6ool/b2srSsZP7Ik5XZVb0OViozcd+896qpIUeYZtT4wAAgGmiUgnGpGh1TZltel/6o8O+1lte88r24Uqn9ZaiX1vRKrOiz8FjDz/Y9vS3xx5+sOt1ZbdYAgAAjJJQCcak7AClTI++68GYnzsRusylePRd3UOX1YuL8e43L8ZcunXtXErx7jePrnpskOdg8z1vPPYcbL7njT33WYXnDgAA4LS0v8EQFDkmvvX+ST5evjZ/JpoH97a61ea759FFv7b6TiN+/ulGHOZbJ6sd5hw//3QjLn3L13W9tjVwu9X+1hq4ffdehrnP1rVFnqsyWywBAABGSagEAyoaaLTe32/AMMj9+vWK+bm2odIrTlT3tFPka+s2OLvb5yp6HQAAAMVpf4MBlX2CWJn3++KX7x1G3W19UEUHZxe9rhXQNfabkeNOQFffaZxqvwAAALNMqAQDKvuY+Hanh3Vbb6nvNGJ5YzvOX7keyxvbpwpOWrONTrs+qKKDs1/d4dS1TustZQeCAAAA00SoBAMqGoQUVSToKVqR05ptdNr1QRUdnN3pS++VfZUdCAIAAEwToRIM6G0PnO1rfVBFgp6iFTmLHYKxTuuDKnr6236HdrxO6y1lB4IAAADTRKgEA/rEcy/2tT6oIpVKRStyilYOFdXp9LdeFVVFw6Gyvz4AAIBpIlSCARWdcVRUkUqloqHL6sXFuHr5Qiwu1CLFrQqlq5cvjOxEtaIVVUXDobK/PgAAgGnysnFvAKpuLqW2gc6ohlkvLtTaBlbdWtLWVpZi/druscBm1BU59Z1GbG7txc39ZpxbqMXaylLPsKZoRVXr8/Z7v9a1QiQAAID+CZVgQOMYZt1vQFQ0dKnvNGLto8/EweGtr6Wx34y1jz5z7HMO87pzHQKz08w4Eg4BAACUS6gEAypSOTSIogFRkdDlAx979nYw1HJwmOMDH3u26+cqet3bHjgbjz/5fNv1WVek8gsAAGCUzFSCAU3zsOcvdjg9rdP6oNeVPfS8Kuo7jVi/thuN/WbkuFX5tX5tt+cAcwAAgFFSqQQDGmSeT5Hqk1bA0Gp/awUMd++lqsoeel4V3QaYV/05BwAAqkuoBENQpLWsaDhUZsCwUJuP/ea91UULtfmRXFf20POqKDrAHAAAYJS0v8GYdAuHuikzYHjs4Qfv+SZx5mi913XzZ44HQfNnUs/ryh56XhWdBpWfZoA5MJj6TiOWN7bj/JXrsbyxre0UAOAuQiUYk6LhUNkBw9xc6vp2O6sXF2PzPW+MxYVapLg1tHzzPW/sWUnVabj5qIaeV8U0z+2CSWaeGQBAd9rfYEzOdTg1rlc4tLaydKxtLmJ0AcPm1l7bU9xO02pXpCWwzK+tSgaZ2zXtnIrHKJlnBgDQnVAJxqRogFJmwFD2LB/hSWdFQrppN81D65kM5pkBAHQnVIIxGSRAKToYvN97Fa2mGoTwhNNSRcKojeN7IABAlQiVYIzKClCKVnS87YGz8fiTz7ddP809VRwxSqpIGDUtuQAA3RnUDTOg6Elzn3juxb7WWwy3pQxOxWPUVi8uxtXLF44dOnD18gUBOQDAEZVKMAOKVnS0a/vott6iLYkyqCKhDFpyAQA6U6kEM6BoRUdK/a23aEuiDKpIAABgvFQqwQwoWtGRc3/rLYbbUhZVJAAAMD5CJbjLtA6XHuSkuSLWVpZi7SPPxMFLd9Kn+TNpItuSpvU5BwAAGDWhEhwpekJa69oyg4ki9ytS0fGaV87HF7980Ha9p5Mtcj1a5sZhkOccAABg1pmpBEeKnpBW9klnZd7v0Xc9GPNzx9Og+bkUj77rwa7XbW7txcHh8R65g8Pc87GMuPX1LW9sx/kr12N5Y3ukJ8YVfc4BAAAQKsFtRYdLlx1MlHm/1YuLsfm9bzw2CHnze9/Ys4qn6KlxZQd0BooDAAAUp/0NjhQdLl12MFE0sCmqSNvcXEpx2Gaa91yPY+O6BWajaEczUBwAAKA4lUpwZG1lKWrzc8fWTnNCWqcAYlTBRKdgpldgU6Z2gVK39ZayA7q3PXC2r3UAAADuECrBkdWLi3H18oVjrV5XL1/oWSFTNIwqqmhgU6bFDoFap/WWsgO6Tzz3Yl/rAAAA3KH9De5SpNWr9fFlnf622KFlq1dgU6a1laVjp6pFnC5oK3pdUWYqAQAAFCdUgrvUdxqFwqEiYVRRZQcvRRQN2soO6MxUAgAAKE6oBEdaJ4+1wprWyWMRUVpgdBplBy9FFQ3aygzo3vbA2Xj8yefbrgMAANCdUAmOlH3y2CDKDF6mmZlKAAAAxRnUDUfM15k9nnMAAIDihEpwpOyTxxg/zzkAAEBxQiU4srayFLX5uWNrkzYAu6W+04jlje04f+V6LG9sR32nMZJrpl2VnnMAAIBJY6YSHKnKAOwiA8WrMoS8bFV5zgEAACaRUAnuUnQAdn2nUSiYKHJdkYHigwwhL/NrG8d1RZV9PwAAgEkjVIIBFa0CKnpdkeHSRQdSl/21Tft1AAAA08RMJRhQtyqgUVxXZLh00YHUZX9t034dAADANBEqwYCKVgEVva7IcOmiA6nL/tqm/ToAAIBpIlSCARWtAip63erFxbh6+UIsLtQiRcTiQi2uXr7Qte2qyDWD7NF1AAAA00+oBAMqWgU0yHH2qxcX45NXHorPbLwzPnnloVPN8SlyTdlf27RfBwAAME0M6oYBFT2WvgrH2a9eXIwbv/2F+PBTL8RhzjGXUrz7zb1PyCv7ManKdYNw2hwAADBpUs553Hvoy6VLl/KNGzfGvQ2YCSdPOYu4VZFzmtY5hsfzAAAAjFpK6emc86V+rtH+BnTklLPJ4HkAAAAmkVAJ6MgpZ5PB8wAAAEwioRLQkVPOJoPnAQAAmERCJaAjp5xNBs8DAAAwiZz+BnRUhRPqZoHnAQAAmEROfwMAAACYcUVOf1OpBEyU+k5DRQ4AAEAFCJWAiVHfacT6td1oHhxGRERjvxnr13YjIgRLAAAAE0aoBDOiChVAm1t7twOllubBYWxu7U3cXgEAAGadUAlmQH2nEWsfeSYOXro1Q62x34y1jzwTEZNVAXRzv9nXOgAAAONzZtwbAEbvsSeevR0otRy8lOOxJ54d047aO7dQ62sdAACA8REqwQzYbx70tT4uaytLMT+Xjq3Nz6VYW1ka0446q+80YnljO85fuR7LG9tR32mMe0sAAAClGnmolFKaSyntpJR+sc37fjCl9GJK6deP/vzXo94PMOFyj7cnQGugeGO/GTnuDBQXLAEAALOkjEqlH46I3+jy/p/LOb/p6M9PlbAfmDmveeV8X+vjsrm117ZNb3Nrb0w7aq/bQHEAAIBZMdJQKaX02oh4Z0QIi2CMHn3Xg23byh5914Nj2lF7VRnUXZV9AgAAjNKoT3/7iYj4axHxtV0+5t0ppT8TEf86Iv5KzvmFkx+QUnp/RLw/IuK+++4bxT6hUuo7jdjc2oub+804t1CLtZWlrqe4td7XzzVl7zHi1kDuRptgZtIGdVdlnwAAAKM0slAppfTdEfG5nPPTKaU/2+HDPhYRH845fyWl9N9ExE9HxEMnPyjn/KGI+FBExKVLlyZwwgqUpzXPp9V+1ZrnExE9g6VRhkjD2OPaytKx6yIiavNzEzeouyr7BAAAGKVRtr8tR8TDKaXPRsTPRsRDKaXH7/6AnPPnc85fOXrzpyLizSPcD0yFKszzKbrH1YuLcfXyhVhcqEWKiMWFWly9fKG0MOy0qrJPAACAURpZpVLOeT0i1iMijiqV/oec8/vu/piU0jfnnH/n6M2Ho/tAbyCibdtVt/VxGGTmUJkVVYOoyj4BAABGZdQzle6RUvqxiLiRc34iIv5ySunhiPhqRHwhIn6w7P1A1cylFIf53i7QuZTafPQdRWYcFWXmEAAAwPQb6elvLTnnX8k5f/fR33/0KFCKnPN6zvnBnPMbc85vyzk/V8Z+oMraBUrd1iPuzDhq7Dcjx50ZR/Wdxkj2uLayFLX5uWNrZg4BAABMl1JCJZh29Z1GLG9sx/kr12N5Y3tkYU3Erfk9/axHlD+HycwhAACA6Vd6+xtMm6InnRVV5OSxQWYcFWXmEP0osz0TAAAYDqESDKhbFdAoXhS3Pmc/L8DNOJocwpN7lR3MAgAAwyFUggFVoQqoSHXTuExz6CI8aa/sYBYAABgOM5VgQJ2qfSapCqgqM47KHihetrJnW1XFOIJZAABgcCqVYEBVqQKqwoyjaa9YEZ60pz0TAACqSaUSDKgqVUBVMO2hSxWq2sZhbWUpavNzx9YmMZgFAACOEyoBE2PaQxfhSXuCWQAAqCbtbzAgw5eHpyqthEUVOblvVlShPRMAADhOqAQDmvY5QEUVOcVtFkIX4QkAADAthEowoGmfA1TEINVbQhcAAIBqMFMJBjTtc4CK6Fa9BQAAwHQQKsGAqjJ8ub7TiOWN7Th/5Xosb2xHfacxsnup3gIAAJh+2t9gQFWYA1T2MPFzC7VotAmQZrl6CwAAYNoIlWAIJn0OUNnDxKf9FDcAAACESjATym5Hq0L1FgAAAIMRKsEMGEc72qRXbwEAADAYg7phjMoanl2VYeIAAABUh1AJxqQ1PLux34wcd4ZnjyJYWr24GO9+82LMpRQREXMpxbvfrJIIAACA4oRKMCbdhmcPW32nET//dCMOc46IiMOc4+efboysMqpKyqoWAwAAmDZCJRiTModnlxlgVUmZ1WIAAADTRqgEY9JpSPYohme3G9LdbX1WCNsAAACKEyrBmJQ5PLs1S+m067OizGoxAACAaSNUgjFZvbgYVy9fiMWFWqSIWFyoxdXLF0YyPLs1S+m067OizGoxAACAafOycW8ARqG+04jNrb24ud+Mcwu1WFtZmsiTzlYvlnMC2+JCrW2r2+KMhydrK0uxfm33WAvcqKrFAAAApo1KJaaO4cv3KrPVrkrKrBYDAACYNiqVmDrdhi/PaljQ+rqLVG+VXfVV9v3KqhYDAACYNkIlpo7hy+0VCU9aVV+tkK5V9dX6fMNW9v1a96xCqyQAAMCk0f7G1DF8eXi6VX1Nw/20SgIAABQnVGLqmB80PGVXfZV9v7JDLAAAgGmi/Y2pM8j8oKooq2XrXIdT40ZV9VX2/bRKAgAAFCdUYipN8/DlMucOra0sHbtXxGirvt72wNl4/Mnn266PQtkhFgAAwDTR/gYVU2bL1urFxbh6+UIsLtQiRcTiQi2uXr4wssDuE8+92Nf6oLRKAgAAFKdSCSqm7JatMqu+xvG1RUx3qyQAAMCoCJWgYqa5ZWscX9s0t0oCAACMkvY3qJhpbtma5q8NAABg2qhUgoqZ5pataf7aAAAApk3KOY97D325dOlSvnHjxri3AQAAADA1UkpP55wv9XONSiVgJOo7DRVHAAAAU0yoBAxdfacR69d2o3lwGBERjf1mrF/bjYgQLAEAAEwJg7qBodvc2rsdKLU0Dw5jc2tvTDsCAABg2IRKwN4rYKQAACAASURBVNDd3G/2tQ4AAED1CJWAoTu3UOtrHQAAgOoRKgFDt7ayFLX5uWNrtfm5WFtZ6nltfacRyxvbcf7K9Vje2I76TmNU2wQAAGAABnUDXRU5xa31/n6vM+AbAACgOoRKQEeDhDyrFxf7DoK6DfgWKgEAAEwW7W9AR2Wf4mbANwAAQHWoVIIZUaSNreyQ59xCLRptPrcB3wAAAJNHpRLMgFYbW2O/GTnutLH1GoJd9ilugwz4BgAAoFxCJZgBRdvYyg55Vi8uxtXLF2JxoRYpIhYXanH18gXzlAAAACaQ9jeYAUXb2Iqe4jaIIgO+AQAAKJ9QCWbAILOKhDwAAAC0o/0NZoBZRQAAAAybSiWYAeNoYwMAAGC6CZWYaPWdhiBkSLSxAQAAMExCJSZWfacR69d2b59a1thvxvq13YiImQ9HhG0AAACMm5lKTKzNrb3bgVJL8+AwNrf2xrSjydAK2xr7zchxJ2yr7zTGvTUAAABmiFCJidXpuPtO67NC2AYAAMAkECoxsTodd99pfVYI2wAAAJgEQiUm1trKUtTm546t1ebnYm1laUw7mgzCNgAAACaBUImJtXpxMa5evhCLC7VIEbG4UIurly/M/EBqYRsAAACTwOlvTLTVi4tTHSIVOcWt9X6nvwEAADBOQiUYgiLhUOsUt9bQ7dYpbhFxqmBJiAQAAMA4aX+DAbXCocZ+M3LcCYfqO42u1znFDQAAgCpTqQQD6hYOdasmmvZT3IpUbwEAAFAdKpVgQEXDoWk+xa1o9RYAAADVIVSCARUNh6b5FDetfQAAANNPqAQDKhoOrV5cjKuXL8TiQi1SRCwu1OLq5QtT0SI27a19AAAAmKkEA2uFQEXmB03rKW7nFmrRaBMgTUNrHwAAALcIlWAIpjUcKmptZSnWr+0ea4GbltY+AAAAbhEqAUM3SPUWwDRwAiYAMAuESsBIqN4CZlXrBMxWtWbrBMyI8H0RAJgqBnUDAAyREzABgFkhVAIAGCInYAIAs0L7GzDTzD0Bhs0JmADArFCpBMys1tyTxn4zctyZe1LfaYx7a0CFra0sRW1+7tiaEzABgGmkUgmGoOxqF9U1w9Ft7onHEyjKCZgAwKwQKsGABjnl55H6bnz4qRfiMOeYSyne+5bXxQdXL4zsfhxn7gkwKk7ABABmgfY3GFDRU34eqe/G408+H4c5R0TEYc7x+JPPxyP13ZHcj3t1mm9i7gkAAEBvQiUYUNFqlw8/9UJf64Pe75H6brx+/Zfi/ivX4/Xrv9QzvJoF5p4AAAAUJ1SCARWtdmlVKJ12fZD7Fa2KmnarFxfj6uULsbhQixQRiwu1uHr5gpYVAACAUxAqwYCKVrvMpdTX+iD3K1oVNQtWLy7GJ688FJ/ZeGd88spDAiUAAIBTEirBgIpWu7z1T7ymr/VB7le0KgoAAAA6cfobDEGRU34++/n2M5A6rQ9yv7mU2gZIvaqiAAAAoBOVSjAmZR5n/963vK6v9WGo7zRieWM7zl+5Hssb21HfaYzsXgAAAJRPqARjUuZx9h9cvRDve+t9tyuT5lKK9731vvjg6oWh3yviVqC0fm03GvvNyBHR2G/G+rVdwRIAAMAUSbliM1UuXbqUb9y4Me5twMBawUvz4PD2Wm1+bipOH1ve2I5Gm4qrxYVafPLKQ2PYEQAAAN2klJ7OOV/q5xozlWBMWsHR5tZe3NxvxrmFWqytLFU+UIoot7UPAACA8RAqwRgVGfBdBecWam0rlUbR2gcAAMB4jHymUkppLqW0k1L6xTbve3lK6edSSp9OKT2VUrp/1PsBRm9tZSnmzxw/WW7+TIq1laUx7QgAAIBhK2NQ9w9HxG90eN+fj4gv5pzfEBF/JyL+Rgn7AcqQerwNAABApY00VEopvTYi3hkRP9XhQ74nIn766O8fjYj/JKXkpSdU3ObWXhwcHj8E4OAwx+bW3ph2NHz1nUYsb2zH+SvXY3lj28l2AADAzBn1TKWfiIi/FhFf2+H9ixHxQkREzvmrKaXfi4g/HhG/O+J9AadU32n0PUx82gd1nzy5r7HfjPVruxERUzkjCwAAoJ2RVSqllL47Ij6Xc356CJ/r/SmlGymlGy+++OIQdgecRis8aew3I8ed8KRXVU6ngdzTMqh7c2vvdqDU0jw4nKpKLAAAgF5G2f62HBEPp5Q+GxE/GxEPpZQeP/ExjYh4XURESullEfHqiPj8yU+Uc/5QzvlSzvnS2bNnR7hl4G5Fw5O1laWozc8dW6vNz03NoO5pr8SK0N4HAAD0NrJQKee8nnN+bc75/oj4vojYzjm/78SHPRERP3D09+89+pgcwEQoGp6sXlyMq5cvxOJCLVJELC7U4urlC1PTGjbtlVhFK9QAAIDZMuqZSvdIKf1YRNzIOT8REX8vIv5hSunTEfGFuBU+ARPi3EItGm0CpNOEJ6sXF6cmRDppbWXp2EyliOmqxOpWoTatzykAANC/UkKlnPOvRMSvHP39R+9a/8OIeE8ZewD6N47wpMhg8LK19jPp+yxqFtr7AACAwZVeqQRUR9nhSZVOVZvmSqxBKtQAAIDZIVQCuiozPNF2NRmmvb0PAAAYDqESMDG0XU2GaW/vAwAAhkOoBEwMbVeTY5rb+wAAgOE4M+4NAOWo7zRieWM7zl+5Hssb2xN5PPzaylLU5ueOrWm7AgAAmEwqlWAGVGUAtrYrAACA6hAqwQyo0gBsbVcAAADVoP0NZoAB2AAAAAybUAlmQKdB1wZgAwAAUJRQCWaAAdgAAAAMm5lKMAMMwAYAAGDYhEowIwzABgAAYJi0vwEAAADQN5VKABVQ32loXwQAACaKUAmggDJDnvpOI9av7Ubz4DAiIhr7zVi/thsRIVgCAADGRqgEM0Kly/CUHfJsbu3dvldL8+AwNrf2PIcAAMDYmKkEM6AVgjT2m5HjTghS32mMe2uV1C3kGYWb+82+1gEAAMogVIIZUHYIMu3KDnnOLdT6WgcAACiDUAlmgEqX4So75FlbWYra/Nyxtdr8XKytLI3kfgAAAKchVIIZoNJluMoOeVYvLsbVyxdicaEWKSIWF2px9fIF85QAAICxMqgbZsDaytKxwdIRKl0G0Qpzyhx8vnpxUYgEAABMFKESzIBxhCDTTsgDAADMOqESzAghCAAAAMMkVAK6qu80VDgBAABwD6ES0FF9p3FsFlNjvxnr13YjIgRLAAAAM87pb0BHm1t7x4Z7R0Q0Dw5jc2tvTDsCAABgUqhUggoqqyXt5n6zr3UAAABmh0olqJhWS1pjvxk57rSk1XcaQ7/XuYVaX+sAAADMDqESDEF9pxHLG9tx/sr1WN7YHknA01JmS9raylLU5ueOrdXm52JtZWno9wIAAKBatL/BgMoeZl1mS1pr/05/AwAA4CShEgyoW+XQKMKXcwu1aLQJkEbVkrZ6cVGIBAAAwD20v8GAyh5mrSUNAACASSBUggGVPcx69eJiXL18IRYXapEiYnGhFlcvX1BNBAAAQKm0v8GA1laWjs1Uihh95ZCWNAAAAMZNqAQDMswaAACAWSRUgiFQOQQAAMCsMVMJAAAAgL6pVIIKqu80tNsBAAAwVkIlqJj6TuPYYPDGfjPWr+1GRAiWAAAAKI1QCSpmc2vv2ElzERHNg8PY3NrrGiqpbgIAAGCYhEpQMTf3m32tR6huAgAAYPgM6oaKObdQ62s9ont1EwAAABQhVIKKWVtZivkz6dja/JkUaytLHa8pUt0EAAAA3QiVoIpSj7dPKFLdBAAAAN0IlaBiNrf24uAwH1s7OMxdW9nWVpaiNj93bK02P9e1umlQ9Z1GLG9sx/kr12N5YzvqO42R3QsAAIDyGdQNFVOkla01jLus098MBgcAAJh+QiWomHMLtWi0CZB6tbKtXlwsLdDpNhhcqAQAADAdtL9BxYyjla1fBoMDAABMP6ESVMzqxcW4evlCLC7UIkXE4kItrl6+MFEVQAaDAwAATD/tb1BBZbayFbG2snRsplLE6aup6juN0mY/AQAAUJxQCRi6ooPBDfgGAACoDqESpahK9UnZ+yx6vyo8nkWqqQz4BgAAqA6hEiNXleqTsvdZ9H5VeTyLMOAbAACgOgzqZuS6VZ9MkrL3WfR+VXk8izDgGwAAoDqESoxcVapPyt5n0ftV5fEsYm1lKWrzc8fWTjvgGwAAgHIJlRi5qlSflL3Povcre5/1nUYsb2zH+SvXY3ljO+o7jZHcJ+JW+97VyxdicaEWKSIWF2px9fKFyrf1AQAATCOhEiNXleqTsvdZ9H5l7rM1v6mx34wcd+Y3jTpY+uSVh+IzG++MT155SKAEAAAwoQzqZuSKHi9ftrL3WfR+Ze7TaWwAAAB0knLO495DXy5dupRv3Lgx7m1A5dR3Gn0HUeevXI923yFSRHxm450j2ScAAADlSyk9nXO+1M812t9gBhRtY6vKPCwAAADKJ1SCGdCtja2bqszDAgAAoHxmKkEF9dvKdnO/2dd6S1XmYQEAAFA+oRJUTKuVrVV51Gpli4iOYc+5hVo02gRIp2ljW724KEQCAADgHtrf4C71nUYsb2zH+SvXY3lju+fMoXEo0sqmjQ0AAIBhU6kER4pUAI1DkVY2bWwAAAAMm1AJjnSrABpV+NLvbKSIiFfX5mO/edB2vRttbAAAAAyTUAmOFB1mXVTRyqiU+lsHAACAUTBTCY50Glp9mmHWRRSZjRQRsf/le6uUuq0DAADAKAiV4EjZw6yLVkaVHX4BAABAO0IlOLJ6cTGuXr4Qiwu1SBGxuFCLq5cvjGwOUdFwyEluAAAATAIzleAuZQ6zXltZOjZTKeJ04ZCT3AAAAJgEQiUYk0HCISe5AQAAMG5CJRgj4RAAAABVZaYSAAAAAH0TKgEAAADQN6ESAAAAAH0TKgEAAADQN6ESAAAAAH1z+hvMiPpOIza39uLmfjPOLdRibWXJyXMAAAAUJlSCIZj0wKa+04j1a7vRPDiMiIjGfjPWr+1GREzUPgEAAKgO7W8woFZg09hvRo47gU19pzHurd22ubV3O1BqaR4cxubW3ph2BAAAQNUJlWBAVQhsbu43+1oHAACAXoRKMKAqBDbnFmp9rQMAAEAvQiUYUBUCm7WVpajNzx1bq83PxdrK0ph2BAAAQNUJlWBAb3vgbF/r47B6cTGuXr4Qiwu1SBGxuFCLq5cvGNINAABAYU5/gwF94rkX+1ofhiKnza1eXKxEiDTpJ+kBAABwi1AJBlT2TKX6TiPWPvJMHLyUI+LWaXNrH3kmIqLy4UvrJL3W4PPWSXoR1f/aAAAApo32NxhQ2TOVHnvi2duBUsvBSzkee+LZkdyvTFU4SQ8AAIBbhEowoLKHYO83D/par5IqnKQHAADALUIlGJAh2MNThZP0AAAAuGVkM5VSSq+IiH8WES8/us9Hc86PnviYH4yIzYhoHC393ZzzT41qT9BL0SHRZQ7Bfs0r5+OLX763Kuk1r5wv5f6jtLaydGymUsRoq74AAAAobpSVSl+JiIdyzm+MiDdFxDtSSm9t83E/l3N+09EfgRJj0xoS3dhvRo47Q6LrO42e15bp0Xc9GPNz6dja/FyKR9/14Jh2NDyqvgAAAKpjZJVKOeccEX9w9Ob80Z/c+QoYr25Doicp1GjtpUhFVRWUWfUFAABAcSMLlSIiUkpzEfF0RLwhIv6XnPNTbT7s3SmlPxMR/zoi/krO+YVR7gk6qdKQaMELAAAA4zbSQd0558Oc85si4rUR8R0ppT954kM+FhH355y/LSI+HhE/3e7zpJTen1K6kVK68eKLL45yy8wwQ6InQ32nEcsb23H+yvVY3tieuPZDAAAAbinl9Lec835EfCIi3nFi/fM5568cvflTEfHmDtd/KOd8Ked86ezZs6PdLDNrbWUpavNzx9YMiS5XVeZaAQAAMMJQKaV0NqW0cPT3WkS8PSKeO/Ex33zXmw9HxG+Maj/QiyHR49dtrhUAAACTZZQzlb45In76aK7SmYj4xznnX0wp/VhE3Mg5PxERfzml9HBEfDUivhARPzjC/UBPZhWNV5XmWgEAAMy6UZ7+9qmIuNhm/Ufv+vt6RKyPag9AtZxbqEWjTYBkrhUAAMDkKWWmEsBpmGsFAABQHaNsfwPoS6v1cHNrL27uN+PcQi3WVpa0JAIAAEwgoRIwUcy1AgAAqAahEjAS9Z2GiiMAAIApJlQChq6+04j1a7vRPDiMiIjGfjPWr+1GRAiWAAAApoRB3cDQbW7t3Q6UWpoHh7G5tTemHQEAADBsQiVg6G7uN/taBwAAoHqESsDQnVuo9bUOAABA9QiVgKFbW1mK2vzcsbXa/FysrSyNaUcAAAAMm0HdwNC1hnE7/Q0AAGB6CZWAkVi9uChEAgAAmGLa3wAAAADom0olGIL6TkOrFwAAADNFqAQDqu80Yv3abjQPDiMiorHfjPVruxERgiUAAACmlvY3GNDm1t7tQKmleXAYm1t7Y9oRAAAAjJ5QCQZ0c7/Z1zoAAABMA6ESDOjcQq2vdQAAAJgGQiUY0NrKUtTm546t1ebnYm1laUw7AgAAgNEzqBsG1BrG7fQ3AAAAZolQCYZg9eKiEAkAAICZov0NAAAAgL4JlQAAAADom1AJAAAAgL6ZqQRjVN9plDbgu8x7AQAAMP2ESjAm9Z1GrF/bjebBYURENPabsX5tNyJi6GFPmfcCAABgNmh/gzHZ3Nq7HfK0NA8OY3Nrr9L3AgAAYDYIlWBMbu43+1qvyr0AAACYDUIlGJNzC7W+1qtyLwAAAGaDUAnGZG1lKWrzc8fWavNzsbayVOl7AQAAMBsM6oYxaQ3ILuNEtjLvBQAAwGxIOedx76Evly5dyjdu3Bj3NgAAAACmRkrp6ZzzpX6u0f4GAAAAQN+ESgAAAAD0zUwlGKP6TsOcIwAAACpJqARjUt9pxPq13WgeHEZERGO/GevXdiMiBEsAAABMPO1vMCabW3u3A6WW5sFhbG7tjWlHAAAAcHoqlZhKVWgru7nf7GsdAAAAJolKJaZOq62ssd+MHHfayuo7jXFv7ZhzC7W+1gEAAGCSCJWYOlVpK1tbWYra/Nyxtdr8XKytLI1pRwAAAHB62t+YOlVpK2u14016mx4AAAC0I1Ri6pxbqEWjTYA0iW1lqxcXhUgAAABUkvY3po62MgAAABg9lUpMHW1l1VaFk/sAAAAQKjGltJVVU+vkvtag9dbJfRHh+QQAAJgwQiWooGmt5ul2ct80fH0AAADTRKjERJvW8GQQ9Z1GrH30mTg4zBFxq5pn7aPPRET1q3mqcnIfAAAABnUzwVqtUI39ZuS40wpV32mMe2tj9YGPPXs7UGo5OMzxgY89O6YdDU+nE/om8eQ+AACAWSdUYmJ1a4WaZV/88kFf61Xi5D4AAIDq0P7GxNIKNXuc3AcAAFAdQiUm1rmFWjTaBEiz3gq1UJuP/ea9VUkLtfkx7Gb4nNwHAABQDdrfmFjjaIWq7zRieWM7zl+5Hssb2xM5v+mxhx+M+TPp2Nr8mRSPPfzgmHYEAADALFKpxMQquxWqNRi8NcepNRj87r1MAi1iAAAATIKUc+79URPk0qVL+caNG+PeBlNoeWO7bbvd4kItPnnloTHsCAAAAMqRUno653ypn2u0v8ERg8EBAADg9IRKcKTTAPBZHwwOAAAA7QiV4Mg4BoMDAABAVRnUDUemfQB2facxtV8bAAAA5RMqwV1WLy5OZdBSlZPtAAAAqA7tbzADNrf2bgdKLc2Dw9jc2hvTjgAAAKg6oRLMACfbAQAAMGxCJZgBTrYDAABg2IRKMAOqdLJdfacRyxvbcf7K9Vje2I76TmPcWwIAAKANg7phBlTlZDsDxQEAAKpDqAQzogon23UbKD7pewcAAJg12t+AiWGgOAAAQHUIlYCJYaA4AABAdQiVgIlRpYHiAAAAs85MJWBiVGWgOAAAAEIlYMJUYaA4ndV3GkJBAACYEUIlAIaivtOI9Wu7t0/wa+w3Y/3abkSEYAkAAKaQmUoADMXm1t7tQKmleXAYm1t7Y9oRAAAwSkIlAIbi5n6zr3UAAKDahEoADMW5hVpf6wAAQLUJlQAYirWVpajNzx1bq83PxdrK0ph2BAAAjJJB3QAMRWsYt9PfAABgNgiVABia1YuLQiQAAJgR2t8AAAAA6NupQqWU0r+fUvqnKaV/efT2t6WUHhnt1gAAAACYVKetVPrJiFiPiIOIiJzzpyLi+0a1KQAAAAAm22lDpVfmnH/txNpXh70ZAAAAAKrhtKHS76aUXh8ROSIipfS9EfE7I9sVAAAAABPttKe//aWI+FBEPJBSakTEZyLi+0e2K2Do6jsNR70DAAAwND1DpZTSXET8xZzzf5pSelVEnMk5//7otwYMS32nEevXdqN5cBgREY39Zqxf242IECwBAABQSM/2t5zzYUT86aO/f0mgBNWzubV3O1BqaR4cxubW3ph2BAAAQNWdtv1tJ6X0RER8JCK+1FrMOV8bya6Aobq53+xrHQAAAHo5baj0ioj4fEQ8dNdajgihElTAuYVaNNoESOcWamPYDQAAANPgVKFSzvm/HPVGgNFZW1k6NlMpIqI2PxdrK0tj3BUAAABV1nOmUkRESum1KaVfSCl97ujPz6eUXjvqzQHDsXpxMa5evhCLC7VIEbG4UIurly8Y0g0AAEBhp21/+/sR8Y8i4j1Hb7/vaO3to9gUMHyrFxeFSAAAAAzNqSqVIuJszvnv55y/evTnf4+IsyPcFwAAAAAT7LSh0udTSu9LKc0d/Xlf3Brc3VFK6RUppV9LKT2TUno2pfSBNh/z8pTSz6WUPp1SeiqldH//XwIAAAAAZTttqPRfRcR/FhH/X0T8TkR8b0T0Gt79lYh4KOf8xoh4U0S8I6X01hMf8+cj4os55zdExN+JiL9x2o0DAAAAMD6nPf3ttyPi4X4+cc45R8QfHL05f/Qnn/iw74mIx47+/tGI+LsppXR0LQAAAAAT6rSnv/10Smnhrrdfk1L6305x3VxK6dcj4nMR8fGc81MnPmQxIl6IiMg5fzUifi8i/vhpNw8AAADAeJy2/e3bcs77rTdyzl+MiIu9Lso5H+ac3xQRr42I70gp/ckim0wpvT+ldCOldOPFF18s8ikAAAAAGKLThkpnUkqvab2RUvq6OGXrXETEUSD1iYh4x4l3NSLidUef82UR8epoMwA85/yhnPOlnPOls2cdOgcAAAAwbqcNlf6niPjVlNJfTyl9MCL+74j4m90uSCmdbbXMpZRqEfH2iHjuxIc9ERE/cPT3742IbfOUAAAAACbfaQd1/4OU0o2IeChuDdu+nHP+Vz0u++aI+OmU0lzcCq/+cc75F1NKPxYRN3LOT0TE34uIf5hS+nREfCEivq/oFwIAAABAebqGSimlV0bEQc75IOf8r1JKhxHxXRHxQER0DZVyzp+KNnOXcs4/etff/zAi3lNk4wAAAACMT6/2t1+OiPsjIlJKb4iIX42IPxERfymltDHarQEAAAAwqXqFSq/JOf/m0d9/ICI+nHP+7yLiOyPinSPdGQAAAAATq1eodPfQ7Ici4uMRETnnP4qIl0a1KQAAAAAmW69B3Z9KKf2tiGhExBsi4p9ERLROdQMAAABgNvUKlX4oIn44bs1V+nM55y8frf+HEfG3RrgvoIv6TiM2t/bi5n4zzi3UYm1lKVYvLo57WwAAAMyQrqFSzrkZERsppVdFRPOudz0VEb8+yo0B7dV3GrF+bTeaB4cREdHYb8b6td2ICMESAAAApek1U6nln0bEK+96uxYR/+fwtwP0srm1dztQamkeHMbm1t6YdgQAAMAs6tX+1vKKnPMftN7IOf9BSumV3S4ARuPmfrOv9XHRogcAADDdTlup9KWU0re33kgpXYrj7XBASc4t1PpaH4dWi15jvxk57rTo1Xca494aAAAAQ3LaUOm/j4iPpJT+eUrpn0fEz0bEfzu6bcFsqO80YnljO85fuR7LG9unCl3WVpaiNj93bK02PxdrK0uj2mbftOgBAABMv66hUkrpP0opfVPO+f+JiAci4uci/v/27j+48rWuE/z7MTeuB6UmKpTSEYarsmHFXmjN8GPbdRGdib/p6mFWKR1nrVnZdV1XLTdbt5VddGqs7qlM6Y7rrMqo41i6VwXbiF41WjauygyMfQkYAbODv4DTKDgQBDmjITz7R87pm/RNJ/096fPje/J6VXXd5Mk5+T4551vd4c3n83mym+RXk/zxGPYHM2vYap5LFxZz9fL5LC50UpIsLnRy9fL5qWota0uLHgAAAMM7aabSDyf5ov7HL0jyHUm+OclzkrwyyUtGtzWYbcdV85wUEF26sDhVIdKdzi100j0iQJqmFj0AAABO56T2t7la6/v6H39VklfWWn+u1vq/J/nM0W4NZtssV/O0oUUPAACA0zkxVCqlDKqZvjDJjQNfu9eT44AjtGHg9rDa0KIHAADA6ZwUDD2c5P8tpfxF9k97++0kKaV8ZpIPjHhvMLQ2HGe/urKUK9e3DrXAzVI1z7S36AEAAHA6x4ZKtdbvKaX8RpKnJPm1Wmvtf+ljsj9bCabOYAD2IKwZDMBOMlUhx2Av0x5+AQAAwFHKYzlROywvL9ebN29OehtMsYvXbhw5JHpxoZPXPfSiCewIAAAAplsp5dFa63KT55w0UwlaZ5YHYAMAAMC0ECoxc2Z5ADYAAABMC6ESM8dx9gAAADB6J53+Bq1jADYAAACMnlCJmeQ4ewAAABgt7W8AAAAANCZUAgAAAKAxoRIAAAAAjQmVAAAAAGhMqAQAAABAY0IlAAAAABoTKgEAAADQmFAJAAAAgMaESgAAAAA0JlQCAAAAoDGhEgAAAACNCZUAAAAAaEyoBAAAAEBjQiUAAAAAGhMqAQAAANDYA5PeAMyC9c1u1ja2c2unl3MLnayuLOXShcVJbwsAAABGRqgEcaFjPQAAIABJREFUp7S+2c2V61vp7e4lSbo7vVy5vpUkgiUAAABmlvY3OKW1je3bgdJAb3cvaxvbE9oRAAAAjJ5QCU7p1k6v0ToAAADMAqESnNK5hU6jdQAAAJgFQiU4pdWVpXTm5w6tdebnsrqyNKEdAQAAwOgZ1A2nNBjG7fQ3AAAAzhKhEtwHly4sCpEAAAA4U7S/AQAAANCYUAkAAACAxoRKAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABoTKgEAAAAQGNCJQAAAAAaEyoBAAAA0JhQCQAAAIDGhEoAAAAANCZUAgAAAKAxoRIAAAAAjQmVAAAAAGjsgUlvAGhufbObtY3t3Nrp5dxCJ6srS7l0YXHS2wIAAOAMESrBAW0Ia9Y3u7lyfSu93b0kSXenlyvXt5Jk6vYKAADA7NL+Bn2DsKa700vNY2HN+mZ30ls7ZG1j+3agNNDb3cvaxvaEdgQAAMBZJFSCvraENbd2eo3WAQAAYBSEStDXlrDm3EKn0ToAAACMglAJ+toS1qyuLKUzP3dorTM/l9WVpQntCAAAgLNIqAR9bQlrLl1YzNXL57O40ElJsrjQydXL5w3pBgAAYKyc/gZ9g1Bm2k9/S/b3Oo37AgAA4OwQKsEBwhoAAAC4N0IlmKD1zW4rKqMAAADgTkIlmJD1zW6uXN9Kb3cvSdLd6eXK9a0kESwBAAAw9QzqhglZ29i+HSgN9Hb3sraxPaEdAQAAwL0TKsGE3NrpNVoHAACAaSJUggk5t9BptA4AAADTRKgEE7K6spTO/Nyhtc78XFZXlia0IwAAALh3BnXDhAyGcTv9DQAAgDYSKsEEXbqwKEQCAACglbS/AQAAANCYUAkAAACAxoRKAAAAADRmphK00Ppm14BvAAAAJkqoBC2zvtnNletb6e3uJUm6O71cub6VJIIlAAAAxkb7G7TM2sb27UBpoLe7l7WN7QntCAAAgLNIpRJjoV3r/rm102u0DgAAAKOgUomRG7RrdXd6qXmsXWt9szvprbXSuYVOo3UAAAAYBaESI6dd6/5aXVlKZ37u0Fpnfi6rK0sT2hEAAABnkfY3Rk671v01aBvUTggAAMAkCZUYuXMLnXSPCJC0aw3v0oVFIRIAAAATpf2NkdOuBTCc9c1uLl67kQcfeiQXr90wiw4AgKmiUomR064F0NzgkIPBTLrBIQdJ/P0JAMBUECoxFtq1AJo57pADf58CADANRtb+Vkp5ainltaWUt5ZS3lJK+ZYjHvPCUsoHSilv6v/5P0a1HwBoE4ccAAAw7UZZqfSRJN9ea31jKeWJSR4tpfx6rfWtdzzut2utXz7CfcDMWd/saie8w7hfE+8Bo+aQAwAApt3IKpVqre+utb6x//EHk7wtif/FBac0mLPS3eml5rE5K2d5gO+4XxPvAePgkAMAAKbdWE5/K6U8PcmFJG844ssvKKW8uZTyK6WUZ41jP9Bmx81ZOavG/Zp4DxiHSxcWc/Xy+SwudFKSLC50cvXyeRVxAABMjZEP6i6lfEKSn0vyrbXWv7zjy29M8rdrrR8qpXxpkvUkzzjie7wsycuS5GlPe9qIdwzTzZyVxxv3a+I9YFwccgAAwDQbaaVSKWU++4HST9Var9/59VrrX9ZaP9T/+JeTzJdSnnTE415Za12utS4/+clPHuWWYerdbZ7KWZ6zMu7XxHsAAAAw2tPfSpIfTfK2Wuv33uUxn9p/XEopz+3v5z+Oak8wC8xZebxxvybeAwAAgNG2v11M8g+TbJVS3tRf+44kT0uSWusPJXlJkm8spXwkSS/JV9da6wj3BK03aIVx8thjxv2aeA8AAACS0rYMZ3l5ud68eXPS2wAAAACYGaWUR2uty02eM5bT3wAAAACYLSM//Q24/9Y3u1qvAAAAmCihErTM+mY3V65vpbe7lyTp7vRy5fpWkgiWAAAAGBvtb9AyaxvbtwOlgd7uXtY2tie0IwAAAM4ioRK0zK2dXqN1AAAAGAWhErTMuYVOo3UAAAAYBaEStMzqylI683OH1jrzc1ldWZrQjgAAADiLDOqGlhkM43b6GwAAAJMkVIIWunRhUYgEAADARGl/AwAAAKAxoRIAAAAAjQmVAAAAAGhMqAQAAABAY0IlAAAAABoTKgEAAADQmFAJAAAAgMaESgAAAAA0JlQCAAAAoDGhEgAAAACNCZUAAAAAaEyoBAAAAEBjQiUAAAAAGntg0huAUVjf7GZtYzu3dno5t9DJ6spSLl1YnPS2AAAAYGYIlZg565vdXLm+ld7uXpKku9PLletbSSJYAgAAgPtE+xszZ21j+3agNNDb3cvaxvaEdgQAAACzR6jEzLm102u0DgAAADQnVGLmnFvoNFoHAAAAmhMqMXNWV5bSmZ87tNaZn8vqytKEdgQAAACzx6BuZs5gGLfT3wAAAGB0hErMpEsXFoVIAAAAMELa3wAAAABoTKgEAAAAQGPa3+CMWN/sjnXO1LivBwAAwHgJlWCCxhW8rG92c+X6Vnq7e0mS7k4vV65vJclMXA8AAIDx0/4GEzIIXro7vdQ8Frysb3bv+7XWNrZvBzwDvd29rG1s3/drTeJ6AAAAjJ9QCSZknMHLrZ1eo/W2XQ8AAIDxEyrBhIwzeDm30Gm03rbrAQAAMH5CJZiQcQYvqytL6czPHVrrzM9ldWXpvl9rEtcDAABg/IRKMCHjDF4uXVjM1cvns7jQSUmyuNDJ1cvnRzY0e9zXAwAAYPxKrXXSe2hkeXm53rx5c9LbgPtiXKe/AQAAwHFKKY/WWpebPOeBUW0GONmlC4tCJAAAAFpJ+xsAAAAAjQmVAAAAAGhM+xtMkJlKAAAAtJVQCSZkfbObK9e30tvdS5J0d3q5cn0rSQRLAAAATD2hEkzI2sb27UBpoLe7l7WNbaHSDFOdBgAAzAqhEkzIrZ1eo3XaT3UaAAAwSwzqhgk5t9BptE77HVedBgAA0DZCJaba+mY3F6/dyIMPPZKL125kfbM76S3dN6srS+nMzx1a68zPZXVlaUI7YtRUpwEAALNE+xtTa9ZbhQY/g/k6Z8e5hU66RwRIqtMAAIA2Eioxtc7CIOtLFxZn5mfhZKsrS4eC0kR1GgAA0F5CJabWJFqFnMzVXm1471SnAQAAs0SoxNQad6vQrLfbzbI2vXeq0wAAgFlhUDdTa9yDrJ3M1V7eOwAAgPFTqcTUGnerkJO52st7BwAAMH5CJabaOFuFnMzVXt47AACA8dP+Bn3jbrfj/vHeAQAAjJ9KJehzMld7ee8AAADGr9RaJ72HRpaXl+vNmzcnvQ0AAACAmVFKebTWutzkOdrfAAAAAGhM+xu00PpmV6sXAAAAEyVUgpZZ3+zmyvWt9Hb3kiTdnV6uXN9KEsESAAAAY6P9DVpmbWP7dqA00Nvdy9rG9oR2BAAAwFkkVIKWubXTa7QOAAAAoyBUgpY5t9BptA4AAACjIFSCllldWUpnfu7QWmd+LqsrSxPaEQAAAGeRQd3QMoNh3E5/AwAAYJKEStBCly4sCpEAAACYKO1vAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABoTKgEAAAAQGNCJQAAAAAae2DSG4BZsL7ZzdrGdm7t9HJuoZPVlaVcurA46W0BAADAyAiV4JTWN7u5cn0rvd29JEl3p5cr17eSRLAEAADAzNL+Bqe0trF9O1Aa6O3uZW1je0I7AgAAgNETKsEp3drpNVoHAACAWSBUglM6t9BptA4AAACzQKgEp7S6spTO/Nyhtc78XFZXlia0IwAAABg9g7rhlAbDuJ3+BgAAwFkiVIL74NKFRSESAAAAZ4r2NwAAAAAaU6kEB6xvdrWxAQAAwD0QKkHf+mY3q696c3Y/WpMk3Z1eVl/15iQRLAEAAMAdhErQ912vecvtQGlg96M13/WatwiVAO4zlaEAAO0nVIK+nd5uo3UAhrO+2c2V61vp7e4l2a8MvXJ9K4nKUACANjGoGwAYq7WN7duB0kBvdy9rG9sT2hEAAMNQqQR9n/iE+bz/w4+vSvrEJ8yf+FxtHAD37tZOr9E6AADTSaUS9L3iK56V+blyaG1+ruQVX/GsY583aOPo7vRS81gbx/pmd4S7BWivcwudRusAAEynkYVKpZSnllJeW0p5aynlLaWUbzniMaWU8v2llLeXUn6vlPI5o9oPnOTShcWsveTZWVzopCRZXOhk7SXPPrHiSBsHQDOrK0vpzM8dWuvMz2V1ZWlCOwIAYBijbH/7SJJvr7W+sZTyxCSPllJ+vdb61gOP+ZIkz+j/eV6SH+z/Fybi0oXFxm1r2jgAmhn8PattGACg3UYWKtVa353k3f2PP1hKeVuSxSQHQ6UXJ/mJWmtN8vpSykIp5Sn950IrnFvopHtEgKSNA+DuhgnxAQCYLmOZqVRKeXqSC0necMeXFpO888Dn7+qvQWucpo1jfbObi9du5MGHHsnFazfMYQIAAKA1Rn76WynlE5L8XJJvrbX+5ZDf42VJXpYkT3va0+7j7uD0hm3jGAz4HsxjGgz4Pvg9AQAAYFqV/c6zEX3zUuaT/FKSjVrr9x7x9R9O8pu11of7n28neeFx7W/Ly8v15s2bo9oyjM3FazeObJtbXOjkdQ+9aAI7AgAA4KwqpTxaa11u8pxRnv5WkvxokrcdFSj1vSbJ1/VPgXt+kg+Yp8RZYcA3AAAAbTbK9reLSf5hkq1Sypv6a9+R5GlJUmv9oSS/nORLk7w9yYeTfP0I9wNTxYBvAAAA2myUp7/9TpJywmNqkm8a1R5gmq2uLB2aqZTc+4BvAAAAmLSRD+oGjjbsgG8AAACYBkIlmKBLFxaFSAAAALTSyAZ1AwAAADC7hEoAAAAANCZUAgAAAKAxoRIAAAAAjRnUTSPrm91WnFbWln3OMu8BAADAbBMqcc/WN7u5cn0rvd29JEl3p5cr17eSZKrCgrbsc5Z5DwAAAGaf9jfu2drG9u2QYKC3u5e1je0J7ehobdlnsh++XLx2Iw8+9EguXruR9c3upLd0X7TpPQAAAGA4KpW4Z7d2eo3WJ6Ut+5zlap62vAcAAAAMT6US9+zcQqfR+qS0ZZ+zXM3TlvcAAACA4QmVuGerK0vpzM8dWuvMz2V1ZWlCOzpaW/Y5y9U8bXkPAAAAGJ72N+7ZoCVr2k/0ass+zy100j0iQJqFap62vAcAAAAMr9RaJ72HRpaXl+vNmzcnvQ04tTtnKiX71TxXL58XvgAAADBWpZRHa63LTZ6jUgkmRDUPAAAAbSZUggm6dGFxqBBpfbMrjAIAAGCihErQMne2zXV3erlyfStJBEsAAACMjdPfoGXWNrYPzWFKkt7uXtY2tie0IwAAAM4ilUrQMreOODHuuPXT0moHAADAUVQqQcucW+g0Wj+NQatdd6eXmsda7dY3u/f9WgAAALSLUAlaZnVlKZ35uUNrnfm5rK4s3fdrabUDAADgbrS/QcsMWs/G0ZI27lY7AAAA2kOoBBM07LyiSxcWxzLX6NxCJ90jAqRRtNoBAADQLtrfYELaMK9onK12AAAAtItQCSakDfOKLl1YzNXL57O40ElJsrjQydXL553+BgAAgPY3mJS2zCsaV6sdAAAA7aJSCSbkbnOJzCsCAACgDVQqMRbDDqSeZasrS7lyfetQC9wszSvyngMAAMw2oRIjNxhIPQhPBgOpk5zpkGHws89i8OI9BwAAmH1CJUbuuIHUZz1gmNV5Rd5zAACA2WemEiPXloHU3D/ecwAAgNknVGLkDKQ+e7znAAAAs0+oxMitriylMz93aG2WBlLzeN5zAACA2WemEiM3ywOpOZr3HAAAYPaVWuuk99DI8vJyvXnz5qS3AQAAADAzSimP1lqXmzxHpRLcB+ubXVU5AAAAnClCJTil9c1urlzfSm93L0nS3enlyvWtJBEsAQAAMLMM6oZTWtvYvh0oDfR297K2sT2hHQEAAMDoCZXglG7t9BqtAwAAwCwQKsEpnVvoNFoHAACAWSBUglNaXVlKZ37u0Fpnfi6rK0snPnd9s5uL127kwYceycVrN7K+2R3VNgEAAOC+MqgbTmkwjLvp6W8GfAMAANBmQiW4Dy5dWGwcBB034FuoBAAAwLQTKsGEGPA9HdY3u42rzAAAADBTCSbGgO/JG7Qgdnd6qXmsBdFsKwAAgJMJlWBCTjPgm/vjuBZEAAAAjqf9DSZk2AHf3D9aEAEAAIYnVIIJGmbAN/fPuYVOukcESFoQAQAATqb9DTiztCACAAAMT6UScGZpQQQAABieUAk407QgAgAADEeoBPfB+mZXtQsAAABnilAJTml9s5sr17duH03f3enlyvWtJBEsAQAAMLOESsykYSuHhnne2sb27UBpoLe7l7WN7TMdKqneAgAAmG1CJWbOsJVDwz7v1hFH0h+3fhao3gIAAJh9HzPpDcD9dlzl0Cied26h02j9LBj2tQQAAKA9hErMnGErh4Z93urKUjrzc4fWOvNzWV1ZOvZ5s0z1FgAAwOzT/sbMObfQSfeI8OKkyqFhnzdo5xpmftDL17fy8Bvemb1aM1dKXvq8p+afXjp/4vOm3bCvJQAAAO0hVGIsxjm0eXVl6dA8n+TeKoeGfV6yHyw1/Xlevr6Vn3z9O25/vlfr7c/bHiyd5rUEAACgHbS/MXKDoc3dnV5qHhvavL7ZHcn1Ll1YzNXL57O40ElJsrjQydXL508MfYZ93rAefsM7G623ybhfSwAAAMav1FonvYdGlpeX682bNye9DRq4eO3Gka1QiwudvO6hF01gR9Ph6Q89ctev/cm1LxvjTgAAADjrSimP1lqXmzxHpRIjZ2jz0eZKabQOAAAA00SoxMjdbTjzWR/a/NLnPbXROgAAAEwToRIjt7qylM783KE1Q5v3h3F/7fOfdrsyaa6UfO3zn9b6Id0AAACcDWYqMRbjPP0NAAAAaGaYmUoPjGozcNClC4tDhUjCKAAAAJhOQiWm1vpmN1eub6W3u5ck6e70cuX6VpIIlgAAAGDCzFRiaq1tbN8OlAZ6u3tZ29ie0I4AAACAAaESU+vWTq/ROgAAADA+QiWm1rmFTqN1AAAAYHyESkyt1ZWldObnDq115ueyurI0smuub3Zz8dqNPPjQI7l47UbWN7sjuxYAAAC0mUHdTK3BMO5xnf5mMDgAAADcO6ESU+3ShcWxBTrHDQYXKgEAAMBh2t+gz2BwAAAAuHdCJegzGBwAAADunVAJ+iYxGBwAAADaykwl6Bv3YPDTWN/stmKfAAAAzC6hEhwwzsHgw3JKHQAAANNA+xu0zHGn1AEAAMC4CJWgZZxSBwAAwDTQ/gYHtGFW0bmFTrpHBEhOqQMAAGCcVCpB32BWUXenl5rHZhWtb3ZHes2L127kwYceycVrN+7pWk6pAwAAYBoIlaBv3LOKhg2xLl1YzNXL57O40ElJsrjQydXL56euogoAAIDZpv2NmTRMG9u4ZxUdF2IJiManDS2PAAAA00ioxMwZVAANAptBBVCSY8OCcc8qOupax60PDPvz8XheSwAAgOFpf2PmDNvGNu5ZRXOlNFofGHeb3izzWgIAAAxPpRIzZ9g2tkFlyrhaofZqbbQ+MO42vVnmtQQAABieUImZc5o2tksXFsfW9rR4l30unrDPcbfpzTKvJQAAwPC0vzFzxt3GNqxh99mWn68NvJYAAADDU6nEzBl3G9uwht1nW36+NvBaAgAADG9koVIp5ceSfHmS99RaP/uIr78wyS8k+eP+0vVa6z8Z1X5gGg3bbjfONr1Z57UEAAAYzigrlX48yQ8k+YljHvPbtdYvH+EeOIMcEw8AAACjN7KZSrXW30ryvlF9f7gbx8QDAADA6E16UPcLSilvLqX8SinlWXd7UCnlZaWUm6WUm+9973vHuT9ayDHxAAAAMHqTHNT9xiR/u9b6oVLKlyZZT/KMox5Ya31lklcmyfLych3fFmmjNh0Tv77ZNSQaAACAVppYpVKt9S9rrR/qf/zLSeZLKU+a1H6YHV/wzCc3Wp+Uweyn7k4vNY/Nflrf7E56awAAAHCiiYVKpZRPLaWU/sfP7e/lP05qP8yO1/7B0S2Sd1ufFLOfAAAAaLORtb+VUh5O8sIkTyqlvCvJK5LMJ0mt9YeSvCTJN5ZSPpKkl+Sra61a22bUONu82jJTqS37BAAAgKOMLFSqtb70hK//QJIfGNX1mR6DNq9BVc6gzSvJSIKltsxUass+AQAA4CiTPv2NM2DcbV6rK0vpzM8dWuvMz2V1ZWkk10v2g7OL127kwYceycVrN+5pLtIk9gkAAAD3yyRPf+OMGHeb16D6aVztdsNWYo17nwAAAHA/CZUYuUm0eV26sDi2cOa4SqyT9jDOfQIAAMD9pP2NkWtTm9cwbWwGbgMAAHAWqVRi5NrS5jVsG5uB2wAAAJxFQiXGog1tXsO2sa2uLB0Ko5LprcQCAACA+0WoxFisb3anvlLpqGqj49YHJlGJ1YbXEwAAgNkmVGLkhm0rG7e5UrJX65HrJxlnJVZbXk8AAABmm0HdjNxxbWXT5KhA6bj1g4YZ8D2stryeAAAAzDaVSoxcW05HW+jMZ6e3e+T6ccZdOdSW1xMAAIDZplKJkbvbKWjTdjra3brcTup+G3flUFteTwAAAGabUImRW11ZSmd+7tDaNJ6OtvPhx1cpHbc+MO7Koba8ngAAAMw27W+M3CRORxvGwhPm8/4jAqSFJxzf/nZuoXPkCXGjqhwa9+vppDkAAACOIlRiLMZ5Otqw7jaP+6Q53asrS4dmKiWjrxwa1+vppDkAAADuRvsb9H3giCHdx60PXLqwmKuXz2dxoZOSZHGhk6uXz89E6OKkOQAAAO5GpRL0naaNrQ2VWMNw0hwAAAB3o1IJ+gzAfjwnzQEAAHA3QiXom+U2tmEJ2gAAALgb7W9MNSePTVZbTu4DAABg/IRKTK1xnzzmpLOjzeq8KAAAAE5H+xtjsb7ZzcVrN/LgQ4/k4rUbWd/snviccZ885qQzAAAAuHcqlRi5YSuAxn3ymJPOAAAA4N6pVGLkhq0AGvfJY046AwAAgHsnVGLkhq0AGvfJY5M46WyYtkAAAACYBtrfGLlzC510jwiQTqoAGvfJY+O+nsHgAAAAtFmptU56D40sLy/XmzdvTnobNLC+2c3qq96c3Y8+dq/Nf0zJ2j949pkOTy5eu3Fk2La40MnrHnrRBHYEAADAWVVKebTWutzkOdrfGI9ywudnkMHgAAAAtJlQiZFb29jO7t7hirjdvXrioO5ZZzA4AAAAbSZUYuRU5BxtEoPBAQAA4H4RKjFyKnKOdunCYq5ePp/FhU5K9mcpXb18/kzPmQIAAKA9nP7GyK2uLB065SxRkTNw6cKiEAkAAIBWEioxcoPQZG1jO7d2ejm30MnqypIwBQAAAFpMqMRYqMgBAACA2SJUYizWN7sqlQAAAGCGCJXOqHGGPOub3UMzlbo7vVy5vpUkgiUAAABoKae/nUGDkKe700vNYyHP+mZ3JNdb29g+NKQ7SXq7e1nb2B7J9QAAAIDREyqdQeMOeW7t9BqtAwAAANNPqHQGjTvkObfQabQOAAAATD+h0hk07pBndWUpnfm5Q2ud+bmsriyN5Hqnsb7ZzcVrN/LgQ4/k4rUbI2sJBAAAgLYTKp1B4w55Ll1YzNXL57O40ElJsrjQydXL56duSPe4Z00BAABAmzn97QwahDnjOv1tcM1pC5HudNysqWnf+70Y54l/AAAAzD6h0hnVhpBn3GZ5oPigCmsQmg2qsJK4DwAAABiK9jfom+WB4uM+8Q8AAIDZJ1SCvjYNFG9qlquwAAAAmAztb9A3iVlT47LwhPm8/8O7R64DAADAMIRKcMCszpqqtdk6AAAAnESoBAfM6glpH+g9vkrpuHUAAAA4iZlK0Dc4Ia2700vNYyekrW92J721U5vlIeQAAABMhlAJ+mb5hLRZHkIOAADAZGh/Yyza0FY2yyekzfIQcgAAACZDqMTIDdrKBlVAg7ayJFMVapxb6KR7RIA0Ky1iszqEHAAAgMnQ/sbItaWtbHVlKfMfUw6tzX9M0SIGAAAARxAqMXKtaisrJ3wOAAAAJBEqMQZtOXlsbWM7u3v10NruXp26iioAAACYBkIlRq4tJ4+1qqIKAAAAJkyoxMhdurCYq5fPZ3Ghk5JkcaGTq5fPT93Q6LZUVAEAAMA0cPobY9GGk8dWV5YOnVKXTGdFVVusb3aztrGdWzu9nFvoZHVlaervAQAAAO6dUImpNs5gYvB9BSGnt77ZPRTQdXd6uXJ9K0m8ngAAADNCqMTUmkQw0YaKqjZY29g+VPGVJL3dvaxtbHt9AQAAZoSZSkyt44IJppuh5wAAALNPqMTU6t4lgLjbOtPD0HMAAIDZJ1Rias2V0mid6bG6spTO/NyhNUPPAQAAZouZSkytvVobrTM9DD0HAACYfUIlptbiQufIVrdFLVStYOg5AADAbNP+xtTSQgUAAADTS6USY7G+2W3cCtWmFqphfj4AAABoM6ESI7e+2c2V61vp7e4l2T+97cr1rSS5p2Bp2sOZ0/x8p7mmEAsAAIBJ0v7GyK1tbN8OXAZ6u3tZ29ie0I7ubn2zm4vXbuTBhx7JxWs3sr7ZPfE54/75BiFWd6eXmsdCrHvZKwAAANwvKpUYuVtHDNs+bv1+GKaSZ32zm9VXvTm7H90/Xa6708vqq96c5PiKo3H/fMeFWKqVAAAAGBeVSozcubuc1na39YOGqRwatpLnu17zltuB0sDuR2u+6zVvOfZ5p/n5hjGJkA4AAADuJFRi5IY9xW3YcGjYdrSd3m6j9YFxn1I37hALAAAAjiJUYuQuXVjM1cvns7jQSUmyuNDJ1cvnT2zVGjYcGnclz7A/37DGHWINa5gqMwAAANrDTCXGYphT3IYNh84tdNI94jEnVfJ84hPm8/4PP74q6ROfMH/s85LxnlI3uM4wM6M13aohAAAQbUlEQVTGdWLcJE7EAwAAYLyESkytYcOh1ZWlQ4FGcm+VPK/4imdl9dVvzu7eY3OV5udKXvEVz2q489FrGmKNO+QxTBwAAGD2aX9jan3BM5/caH1g2Ha0SxcWs/aSZx963tpLnj0TIciwrYTDMkwcAABg9qlUYmq99g/e22j9oHG2o7XBuEOeYavMAAAAaA+VSkytcQchw5421wbjPjGuLcPEAQAAGJ5Qiak17iBk3C1i4zTukGfcJ+IBAAAwftrfGIthTh4bduD2sGZ5DtCwJ8ad9ppCJAAAgNklVGLkhj157NKFxdz80/fl4Te8M3u1Zq6U/P3PvbegYpgQa9bnAAl5AAAAuJ+0vzFyw7aVrW928zO/ux8oJclerfmZ333niTOOhp2NZA4QAAAA3DuhEiM3bFvZd//iW7K7Vw+t7e7VfPcvvuXY5w0bYpkDBAAAAPdO+xsjN2xb2fs/vNtofeCoax23fpAWMQAAALg3KpUYuXG3lc2V0mgdAAAAaE6lEiM37MljC5357PQeX5W00Jk/9nmDGUz3ug4AAAA0J1RiLIZpK/uur3xWVl/15ux+9LEwaP5jSr7rK5917PPmSjkyQFKpBAAAAPeP9jem1qULi/mq5z71dhg0V0q+6rlPPTGcUqkEAAAAo6dSiam1vtnNzz3avR0G7dWan3u0m+W//UnHBkuTqFR6+fpWHn7DO7NXa+ZKyUuf99T800vnR3a9Nljf7DZueQQAAKA9hEqMxTABw9rGdnq7e4fWert7WdvYPva5465Uevn6Vn7y9e84dJ3B52c1WFrf7ObK9a3b7193p5cr17eSRLAEAAAwI0bW/lZK+bFSyntKKb9/l6+XUsr3l1LeXkr5vVLK54xqL9w/L1/fymdc+eU8/aFH8hlXfjkvX9868TmDgKG700vNYwHD+mb32Ofd2uk1Wh9YXOg0Wj+th9/wzkbr98P6ZjcXr93Igw89kovXbpz4Wo7bcYEgAAAAs2GUlUo/nuQHkvzEXb7+JUme0f/zvCQ/2P/vVPiaf/Xv8ro/fN/tzy9+xiflp77hBSO73rDtU8/7nl/Pn3/wb25//ilP/Ni84Tv/7onPe/ChR3Kwbqck+eNrX3biHoepyBm24mjhCfN5/4ePOP3tCcef/vYFz3zyoX0eXD/JMBVVp6mMGuZ6bagCGjYQBAAAoD1GVqlUa/2tJO875iEvTvITdd/rkyyUUp4yqv00cWeglCSv+8P35Wv+1b8byfUGYc3B2UE/+fp3nFgFdGeglCR//sG/yfO+59ePfd6dgVKS1P76cY4Kao5bH+jeJUi42/rAUYHScesDP//Go6t27rY+MGxF1bCGvV4bqoDO3aUq7G7rAAAAtM8kT39bTHKwP+hd/bWJuzNQOmn9tIZtn7ozUDppfeBu9TOzcjbaX/3NXqP1gWHDmruN/z5pLPiw12tDFdDqylI683OH1jrzc1ldWZrQjgAAALjfJhkq3bNSystKKTdLKTff+973Tno79924B0tztGHDmmFDumGv14YqoEsXFnP18vksLnRSsj/P6url81PTngcAAMDpTfL0t26Spx74/NP6a49Ta31lklcmyfLy8swlLXOlHBkgzZWTal04SsnRgc5Jr+a5hc6RLXknhTXDvn/DXm91ZenQTKVkOquALl1YFCIBAADMsElWKr0mydf1T4F7fpIP1FrfPcH93HbxMz6p0fppvfR5T220PvApT/zYRusDw7ZrPXCXB9xtfeDj5o5+wN3WT9rPSfv8muc/rdH6wLAtW8O+f8NeTxUQAAAA06DUEbVYlVIeTvLCJE9K8udJXpFkPklqrT9USinZPx3ui5N8OMnX11pvnvR9l5eX682bJz7s1Jz+drTPvPJIPnLgiQ+U5O1XT37eM7/zl/Of9h574sfNlfzB93zpyPY57Os5zGlsk7geAAAA3E+llEdrrcuNnjOqUGlUxhUqAQAAAJwVw4RKrRjUDQAAAMB0ESoBAAAA0JhQCQAAAIDGhEoAAAAANCZUAgAAAKAxoRIAAAAAjQmVAAAAAGhMqAQAAABAY0IlAAAAABoTKgEAAADQmFAJAAAAgMaESgAAAAA0JlQCAAAAoDGhEgAAAACNCZUAAAAAaEyoBAAAAEBjQiUAAAAAGhMqAQAAANCYUAkAAACAxoRKAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABoTKgEAAAAQGNCJQAAAAAaEyoBAAAA0JhQCQAAAIDGhEoAAAAANCZUAgAAAKAxoRIAAAAAjQmVAAAAAGhMqAQAAABAY0IlAAAAABoTKgEAAADQmFAJAAAAgMZKrXXSe2iklPLBJNuT3get8aQkfzHpTdAK7hWacL9wr9wrNOF+4V65V2jC/cK9Wqq1PrHJEx4Y1U5GaLvWujzpTdAOpZSb7hfuhXuFJtwv3Cv3Ck24X7hX7hWacL9wr0opN5s+R/sbAAAAAI0JlQAAAABorI2h0isnvQFaxf3CvXKv0IT7hXvlXqEJ9wv3yr1CE+4X7lXje6V1g7oBAAAAmLw2VioBAAAAMGGtCpVKKV9cStkupby9lPLQpPfDdCml/Fgp5T2llN8/sPZJpZRfL6X8h/5/P3GSe2Q6lFKeWkp5bSnlraWUt5RSvqW/7n7hkFLKx5VS/n0p5c39e+W7++sPllLe0P/36GdKKR876b0yHUopc6WUzVLKL/U/d69wpFLKn5RStkopbxqctuPfIe6mlLJQSnl1KeUPSilvK6W8wP3CnUopS/2/UwZ//rKU8q3uFe6mlPJt/d9xf7+U8nD/d99Gv7u0JlQqpcwl+ZdJviTJZyV5aSnlsya7K6bMjyf54jvWHkryG7XWZyT5jf7n8JEk315r/awkz0/yTf2/T9wv3Omvk7yo1vrsJM9J8sWllOcn+WdJvq/W+plJ3p/kH09wj0yXb0nytgOfu1c4zhfUWp9z4Khv/w5xN/8iya/WWp+Z5NnZ/3vG/cIhtdbt/t8pz0nyuUk+nOTn417hCKWUxST/S5LlWutnJ5lL8tVp+LtLa0KlJM9N8vZa6x/VWv8myU8nefGE98QUqbX+VpL33bH84iT/pv/xv0lyaaybYirVWt9da31j/+MPZv8Xs8W4X7hD3feh/qfz/T81yYuSvLq/7l4hSVJK+bQkX5bkR/qfl7hXaMa/QzxOKeVvJfn8JD+aJLXWv6m17sT9wvG+MMkf1lr/NO4V7u6BJJ1SygNJnpDk3Wn4u0ubQqXFJO888Pm7+mtwnE+ptb67//GfJfmUSW6G6VNKeXqSC0neEPcLR+i3M70pyXuS/HqSP0yyU2v9SP8h/j1i4P9M8r8l+Wj/80+Oe4W7q0l+rZTyaCnlZf01/w5xlAeTvDfJv+631/5IKeXj437heF+d5OH+x+4VHqfW2k3yz5O8I/th0geSPJqGv7u0KVSCU6n7Rx067pDbSimfkOTnknxrrfUvD37N/cJArXWvX0b+admvmn3mhLfEFCqlfHmS99RaH530XmiNz6u1fk72Rzt8Uynl8w9+0b9DHPBAks9J8oO11gtJ/ip3tC+5XzioPwPnK5O86s6vuVcY6M/WenH2g+tzST4+jx8nc6I2hUrdJE898Pmn9dfgOH9eSnlKkvT/+54J74cpUUqZz36g9FO11uv9ZfcLd9VvNXhtkhckWeiXCSf+PWLfxSRfWUr5k+y36L8o+zNQ3Cscqf//EKfW+p7szzx5bvw7xNHeleRdtdY39D9/dfZDJvcLd/MlSd5Ya/3z/ufuFY7yRUn+uNb63lrrbpLr2f99ptHvLm0KlX43yTP6k8g/NvvlfK+Z8J6Yfq9J8o/6H/+jJL8wwb0wJfpzTn40ydtqrd974EvuFw4ppTy5lLLQ/7iT5O9mfwbXa5O8pP8w9wqptV6ptX5arfXp2f8d5Uat9WviXuEIpZSPL6U8cfBxkr+X5Pfj3yGOUGv9syTvLKUs9Ze+MMlb437h7l6ax1rfEvcKR3tHkueXUp7Q/99Hg79bGv3uUvar39qhlPKl2Z9XMJfkx2qt3zPhLTFFSikPJ3lhkicl+fMkr0iynuRnkzwtyZ8m+W9rrXcO8+aMKaV8XpLfTrKVx2affEf25yq5X7itlPJfZn9A4Vz2/4+Yn621/pNSyqdnvxrlk5JsJvnaWutfT26nTJNSyguT/K+11i93r3CU/n3x8/1PH0jy/9Rav6eU8snx7xBHKKU8J/uHAHxskj9K8vXp/7sU9wsH9IPqdyT59FrrB/pr/m7hSKWU707yVdk/HXszyX+f/RlK9/y7S6tCJQAAAACmQ5va3wAAAACYEkIlAAAAABoTKgEAAADQmFAJAAAAgMaESgAAAAA0JlQCAGZOKeU7SylvKaX8XinlTaWU5/XXf7OU8o5SSjnw2PVSyof6Hz+9lPL7/Y9fWEr5pSO+92+WUrb73/dNpZRX99eX+l97UynlbaWUVx7x3Nvf/z7/vC8spfxXBz7/8VLKS+73dQAADnpg0hsAALifSikvSPLlST6n1vrXpZQnJfnYAw/ZSXIxye+UUhaSPGWIy3xNrfXmHWvfn+T7aq2/0N/H+SG+77BemORDSf7tGK8JAJxxKpUAgFnzlCR/UWv96ySptf5FrfXWga//dJKv7n98Ocn1+3jddw0+qbVuHffgUspcKWWtlPK7/Yqq/6G//sJ+xdOrSyl/UEr5qUFlVSnlS/trj5ZSvr+U8kullKcn+R+TfFu/Suq/7l/i80sp/7aU8keqlgCAURAqAQCz5teSPLWU8v+VUv7vUsp/c8fXfyP7gctc9sOlnxniGj91oP1trb/2fUlulFJ+pZTybf0qqOP84yQfqLX+nSR/J8k3lFIe7H/tQpJvTfJZST49ycVSyscl+eEkX1Jr/dwkT06SWuufJPmh7FdJPafW+tv97/GUJJ+X/aqta0P8jAAAxxIqAQAzpdb6oSSfm+RlSd6b5GdKKf/dgYfsJfmd7AdKnX4o09TX9AOc59RaV/vX/ddJ/oskr8p+O9rrSyn/2THf4+8l+bpSypuSvCHJJyd5Rv9r/77W+q5a60eTvCnJ05M8M8kf1Vr/uP+Yh0/Y43qt9aO11rcm+ZTGPyEAwAmESgDAzKm17tVaf7PW+ook/3OSv3/HQ346+zOQfvY+X/dWrfXHaq0vTvKRJJ99zMNLkm8+EE49WGv9tf7X/vrA4/Yy3BzMg9+j3PVRAABDEioBADOlfwrbMw4sPSfJn97xsN9OcjUnV/s0ue4Xl1Lm+x9/avYrj7rHPGUjyTceeM5/Xkr5+GMev53k0/szlJLkqw587YNJnjjk1gEAhuL0NwBg1nxCkv+rP9PoI0nenv1WuNtqrTXJP7+H7/WFpZR3Hfj8H/T/+1OllF7/47+otX5R9tvZ/kUp5T/111drrX92zPf+key3tb2xP4j7vUku3e3BtdZeKeV/SvKrpZS/SvK7B778i0leXUp5cZJvvoefCwDg1Mr+71QAAEy7Uson1Fo/1A+h/mWS/1Br/b5J7wsAOJu0vwEAtMc39Ad7vyXJ38r+aXAAABOhUgkAAACAxlQqAQAAANCYUAkAAACAxoRKAAAAADQmVAIAAACgMaESAAAAAI0JlQAAAABo7P8HJ+QtGsOgrzAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] diff --git a/examples/tutorials/16_Conditional_Generative_Adversarial_Networks.ipynb b/examples/tutorials/16_Conditional_Generative_Adversarial_Networks.ipynb index 29989b8a91..ed4dfc78d8 100644 --- a/examples/tutorials/16_Conditional_Generative_Adversarial_Networks.ipynb +++ b/examples/tutorials/16_Conditional_Generative_Adversarial_Networks.ipynb @@ -56,20 +56,76 @@ "metadata": { "id": "gXeKc6O9qSSw", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "002abc70-3ff8-4f10-d74a-02e04737607e" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 90774 0 --:--:-- --:--:-- --:--:-- 90774\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.58 s, sys: 541 ms, total: 3.12 s\n", + "Wall time: 4min 12s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -86,11 +142,7 @@ "metadata": { "id": "IdfLLsjGqSTC", "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 253 - }, - "outputId": "96715d0f-8a61-4fdd-f838-0ae91ceb4e84" + "colab": {} }, "source": [ "import deepchem as dc\n", @@ -109,49 +161,8 @@ " class_transforms.append(m)\n", "class_transforms = np.array(class_transforms)" ], - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n" - ], - "name": "stdout" - } - ] + "execution_count": 0, + "outputs": [] }, { "cell_type": "markdown", @@ -198,11 +209,11 @@ "metadata": { "id": "CXy5-cJkqSTk", "colab_type": "code", + "outputId": "34e4d6bd-d68d-4d5d-9a57-82d235f9b133", "colab": { "base_uri": "https://localhost:8080/", "height": 282 - }, - "outputId": "58447aff-5365-464a-b5b7-81e5f1d3df30" + } }, "source": [ "%matplotlib inline\n", @@ -216,7 +227,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": { @@ -227,13 +238,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3QUZduHr5nZmh6SUBJC77333gQV\nAUVAULC92MWKiKJIEV8UQcWOoCCgICJSpfceegktdEjv2T4z3x9LQpbdhQQp+r1zncM57JRnntmF\ne565y+8WVFVFQ0NDQ+Pfi3i3J6ChoaGh8ffQDLmGhobGvxzNkGtoaGj8y9EMuYaGhsa/HM2Qa2ho\naPzL0d2Ni0ZGRqoVKlS4G5fW0NDQ+NcSFxeXqqpq1LXb74ohr1ChArt3774bl9bQ0ND41yIIwllf\n2zXXioaGhsa/HM2Qa2hoaPzL0Qy5hoaGxr8czZBraGho/MvRDPktxGaxc2jzUc4cPo+mYaOhoXGn\nuCtZK/8fWf7DGr56ZQaiJCK7FMpULMm4JW9TqrxXppCGhobGLUVbkd8Cjmw/zpfDpmPLs2PJtmK3\n2Dl39AIjuo/TVuYaGhq3Hc2Q3wL++GI5DqvTY5uiqKReTOfEnoRbei1FUdiz5iDLpq255WP7Ii8r\nj6SzKSiKctuvpaGhcXNorpVbQEZips+VtySJZKfloigKu1bsY+P8bRjMBu55vAM1mlUt9nXSEzN4\nrf37pCdmoCoqqgp1WldnzJ8jMBj1f+seLp1KJPlcKhXqxBIWFYolx8onT33F9sW7ESURU6CJl798\nmnZ9W/6t62hoaNx6NEN+C2jRszFHtx/HbnV4bHfanVRrUonxA6awc/kebHl2BFFg1cz1PDqqLwPe\n6lOs60wcMpXE00nIrqur4wMbjvDLRwsZ/H6/m5p7XraFDx76mIOb4lFkBUVRqNKwEkFhARzeEo/T\n7gLAbnEw8fGpRMaUoFbL6jd1LQ0NjduD5lq5Bdz7dGciy0ZgMBsKthkDjAwe3Y/juxMKjDiAqqjY\nLQ5mfTCf1ItpHuNkJGdx/thFZFn2uoY118r+9Yc9jDiA0+FiweQlNz33T//zDfvXH8blcKHICqhw\nck8C+9YeKjDi+TisDuZ9vOimr6WhoXF70FbktwBzkJmvdv+XxV//xeaFOwmNDKbPy/fSuGt9Pnv+\n+wIjXhhFUfnuzVk8NWEQ5iAT4x+ZwsFNR5F0IgaTgWFf/8fDjSG7FBQ/gVNLtpXUS+lERpco1ryt\nuVa2/rETRS5aQFZV4XJCcrGuoaGhcfvRDPktIiDYTP/hvek/vLfn9iAToiS6V7uFcDlcbFywnS1/\n7CS8dBhpF9NxOWWcdrDl2Zn4+FRKVShJ9SaVAQgKCyQw2ExORp7XtSWdxN7VB+k6uH2x5mzNtaEK\nRT9ep5eo165Wsa6hoaFx+9FcK7eZrkM6oDP4fl7KThmHzUnSmRRcTk93isPm9HKZNLu3kc9xDEY9\n5mBTsecWXiqMkBLBRTpWFAVMQSb6De/ltc9msTPnwwU8UWMYT9Z6hXmfLMLpcPoYRUND43agGfJi\nYM214rAX3UDJssylU4lUa1IZURLRGaQin6sqKklnPN0Y/Yf3Qm/yzk4RdSJNuzco8tj5CILAm9Of\nRxD9L8sFUSAsKoSOA9vy1e7/ElU2wmO/LMu82Wk0s8cv4MLxS5yPv8jM9+cxsseHWg69hsYdQnOt\nXIeM5Cxmvv8rG3/bhiXHhuyUEXUirR5owqvfPUtweJDfc50OJyO6jePEngSsuTZ0eglFVhFEAVUp\nmoE7e+QCy6atpsdTnREEgYp1y/PCZ0/w1bAZBat8QRR4a+ZLZCZnU7JcJIJQDF8J0LR7Qz5e/T4j\n7x2Pw+b9kAoINjP3wrfo9O7rpV5KJ/F0MmWrlSEsKpTdK/Zx9sgFjzx6u9VB/M4THN4ST502NYs1\nHw0NjeKjGXI/WHKsPN/kLTISMzwyRWSnzLbFcSTdM46pOyb4NZyrZm7k+O5T2CzuQOe1rpPCiDoR\nnV6H45r0xbwsC1+98iM5GXn0f9Pt0rjvP11p17cl+9Ydxm6xs+TbVYx9eBKiKBISGcxbP71E/Q61\ni3Wv9TvU5qeTUxla9zX3A8vlnqsxwMgLnz/pnpvNwUeDv2DHkjj0Rj1Ou5Nuj3ckuEQQ1lyb15hO\nh4sj245rhlxD4w6guVb8sGrmenLSc73S/cAdqDx39ALH4/xXVq6ZvbHAiBdGb9ShM+iQdBKSTsJg\nNvDE2AG88cPzBASbvY63W+zMGbfAw+ccHB5Emz7NmD1+AUe3H8dpd2G3Okg5n8a7PSeQeKb4mSWR\n0SWYdngyfYbdS+X6FWjZswkTlr9D18fcAdRv3pjJjqVxOGxO8rIsOGxOVs1cz7mjFzAGGL3GMxj1\nRMYUL4tGQ0Pj5tBW5H44uCkeuw9DnI/L4eLte8YSXCKIe4d2od8bvTxW5waTwed5kk7ijenPc+lk\nEqqq0vah5sRWjwHgq1emY8mxep0jyzKZydke/unDW+JJu5junQ3jdLHk25U8PeHRYt0vQInS4Tzz\n8WCf1/9rxjovGQK7xcGRbceQdJ7rAUEAvVFP6z7Nij0HDQ2N4qOtyAtht9rJy7YAULZaGfRG/885\nl1MmJyOPS6eSmPbWbJ6oMcxj1Xzf0C6YAr1Xqg6rg6CwQB55uw/t+7Vk6ferGfPwJJZ8u4rSFUv5\nuZpAaFSIx5aUC+lui3ntvBwyl08lFTouje+Gz+L1ju/z5bDpXD6d5HXOjXA5XLgcLp/7LNlWJq37\ngJiqZTCYDRhMesrViuXTDR9gNHvfv4aGxq1HW5EDWanZTHrqa3at2IeqqlSoE8tTHw5Ep9d5VTf6\n4+KJyyz6cgV9X+0JQOvezejyWDuWfLsKCsU2FUXl/T4f8+LnTzD15Rm4nC5kp8yuFXsJDAvEYNZ7\nrHyNAUYeHHavl5ZKtSaVkJ3eczMFGqnfoQ4AZ49e4OWWI3HYnLgcLo5sPcaKGev4ZO3ogvz0omA0\nGylTqSQXTyR67avTugZVGlZkRvxnJJ1NQRQFSpbTpHs1NO4k//MrclVVebPzB+xcsddtVF0yp/ad\nYVz/yYyc+woxVcugM+gQRAFREq+bqrf4m5Ukn0vB5XQhCAL3PN4Ro9nbxeJyuvjixenYLXbkK0FQ\nW56d7NQcWtzfhNIVSiKIAoGhATwyojePjx3gNUZMlTK07dvSwz+tM+gIjQyh6+B2AHz9ygysOdaC\n1bTLKWPLtfH5898V6zvKTMkiKyXHa7vOIPHMpCGAO5WxdIWSmhHX0LgL/M+vyA9vPcbl08kFBjUf\nl9PFqX2nmRH/GZnJWRhMegJDA3mtw3sc3HjU51iXTiTyWKUXMQUaGTK2P1ExEUg679xx2Sn7TEF0\n2p2cPniOWQlf4rA70Rt0BX73XSv2Mu/jP0m7nEHjLvXoP6I3b854npotqvLnl39hs9ho+2BzBo58\nCHOQO2h6YONRfKVyn4g7jeySPeamqiqn9p0hNzOP6k0rk52Wi+ySKVOpFL9PWYrd6h0vEASRkrER\nXts1NDTuLP/zhvxyQhK+1tgOm5OzRy4iCALhpcIKtj/23sMM7zrGw11SGEVRsORY+eHtOTw9YRBO\nH75lg9ng1+dsDnJXaBZ2pfwxdRnTRswpCL5ePpXIul828+3+SfR6vju9nu/uNY6qqoiS7xcuvVHn\nse9yQhJv9xhP2qV0QMBusSHqJCRJJKxkKKZAk08Xk8GkJ+HAOeq21VIMNTTuJrfEtSIIQndBEI4J\ngnBSEIQRt2LMO0WVBhV8Nk0wBhip1bKa1/aGnerS30eZ+rU4rA6WfLuSum1qUPhJIYoioRHBVKhb\nzsvQmgKN9H6xh8c2u9XuYcTB7SLJzbJcV4nwp9G/+nxY6Aw6uj3esWClr6oqI7qP49KpRGx5dmx5\nNlT1qnxA8rlUzh294PMaLoeLEmXCfO7T0NC4c/xtQy4IggR8CfQAagGPCILwr1FWqli3PPXa1/bw\nZYuSgMGsp93Dnk0UZFlmxYy1LJ+2xu0rv0ERZfK5VA5tifdcvYvQrl9Lxv4xnFLlozAHmTAHm9Ab\n9XR+tC1dHmvnMcaZwxdw2DwLhcBtaHcu3+vzutY8G7/+d1FBYU9hzEEmnp10NcXw+O5T7sYYRaw2\nzUdnkKjSqBIxVcoU67zbjd1qZ9eKvexeub9YcgoaGv9mboVrpRlwUlXVBABBEH4BegFHbsHYt5WM\n5CzysiyMmv8a8z/+k8Vf/UVWWg6CIOByuBhS9SVe/vJpuj7WHkVReL/3RHYu31tkoyfpJGxZnr5l\nxaWw9NtVPDl+ID8e/5wN87exY0kcJctF0eOpTl6Voolnkvxez5+WyYSBn/l13egNOo+0wOy0nOsG\ncPMRJAHTlfNcTpk6bWrw7i+v3vC8O8n2JXF8OHCKx/28/9sbNOpS7y7OSkPj9nMrDHkMcL7Q5wtA\n82sPEgRhKDAUoFy5crfgsjdPZkoW4wdM4fBWdzGLKcDIsG+fcTeGUN3a39Ycd9n5Z89+R8W65Ui7\nlMG+tYeKbMQNZoPf8n1bnp2B5Z6lduvq7Cq0ql4weTFPjB9I31fvByDxTDIXjl32q89Sqrx3hsjp\ng2fZs/qA33mVr13W43PNFtX8Gv3CiKJIQIgZW56deq2q8dynjxMSUTTlxDtB2uUMxvX/1KtL0/t9\nJjL77NdFVnnU0Pg3csfSD1VV/U5V1SaqqjaJirq7KWoj7/2QQ5uP4rQ7seXZyUzJ5sMBk8lKzfFa\n5TodLhZ/vZLti3d7GQl/GAMMPPjKfVSqX97vMVkp2Wz9YxdOu6vgj8PmZMa7c9m79iBD67/OU7Vf\nZc74BT6NuM4g0bqXd+XkoS3Hrjs3S7aVtXM3F8QFgsICeXzsAJ9l9oWRnTJplzLIy7KwZ9VBXmo5\nkgsnLl//HFlmxYx1vNzqHZ5v+hYLP19629wdG37d6vsNRYVNv22/LdfU0PincCsM+UUgttDnsle2\n/SM5ffAs545e9BKxcrlknwU2iqyQnphBYGiA3ywQQRTQm/QF++0WBws/W0ZoZAjGAN+l+v6QnS7e\n6z2R0wfP4bA6fCoSCgKgwtev/ciAskNZMGUJqqpy+XQSWSlZ13WVHNt1islDv+GDhz7h0JZ4Es8k\n8/DrDzBu8Qha92lGzeZVMZiv38hZVVWsOTa+Hz7rusdNGPQZX778A0e3H+dEXAI/vD2H4V3G+Gxl\n93fJzcrzmVnjcrrIy7Lc8utpaPyTuBWulV1AVUEQKuI24AOAgbdg3NtC6sV0dHqRa7OiVUVFxjt7\nxRRopGXPptRpU4OFXyz3UigEdxqe7FI8dE/sFjvbl8Yx8udhzB7/Gyf3ninS/GSXguxDTVCURPRG\nd165w+YseBClXcpg+jtzWfj5MjISM9Eb9D5byxXGlmdn66Jd7Fl9AEVWqNWqOqMXvMHoBW8CbtfT\nuz0ncGznqeuOs23xbpZNW03yuVTK14qldZ9mBWmTJ/edZvuSOOyWq9+X3eogYf8Zdq/YR/P7Ghfp\n+yiM0+Fk3dwtbPxtG0HhQdz/TFfqtK6BqqpemjP5SHqJJvcUX6tdQ+PfxN9ekauq6gJeBP4CjgLz\nVFU9/HfHvV1UaVQJh5+c6PodanvooxjNBspUKkXnQW0oVyOGV74ZisFswBhgQNSJiJJIl8faUaF2\nrE8/sygIBIQG8HXcxzTt0fBvzVuRFToNbEvTHg29XC0Oq4OkMyluZcIrWjGC4DZi/roTgdugO2xO\nDm+O56PBUwu2z/t4ESd2n77hnFRFZepLPzB73AImD/2GJ2q8TEZSJgAHNx712QvUmmtj77pDRbrn\nwjgdTt7oOJovXpzGjqV7WDt7IyPuGcf8SX/y7ZszWTB5iZdrxRhgoPOgtlSq59/FpaHx/4FbUhCk\nquoyYNmtGOt2E14ylF4vdGfJNysLVq46vURQeBCj5r3GsZ0nWfTlCnIy8mj/cEt6PN25IMuj62Pt\nadWrKfvXH8ZgMlC/Qy30Bj0fP/Elx+MSvAys3ergeNwpGnWuy2PvPcyBDYc9VqjFQoA6bWoye+z8\nInXeUVWIKBNOl8fa89uni32+SeTjdLjY/ddestNz0Bv1/PnlXz5z632ee+WhaM21Ybc6+KDvJzwy\nog/B4YHoDBLOa3ziBpOeiDLh1x1TdslsXbSLrX/ucqtLPt2Fk3tPk3DgbMFvpqrut54Z7871mEc+\ngijQpk9zXvnmmSLdB7jfRDbO344l20LjbvWp2qhSkc/V0Lib/E9Wdg6d+BiV61dgweQl5Gbk0aJn\nYwaOfJCQEsE07d6Qpt39r54DQwJo9UBTj219X7ufVTPX+zz+j8+XMWB4b2o2r8qYP95i4uNTSbuU\nUfxJq+4S/nI1y3I5Icln6f215GVbqNa0MkoRfNIuh8zaOZto2r0hgp9YwI1QZIXDW47x4aDP3Lnz\nPuYoSiJdHm3nvSN/Hk4Xb3Ub627KkWdHlESWfbeacjVjfLqM/MUtVEUl5UJakTsm7Vy+lzEPfwKq\nO73y53G/0XFAG177/tlid13S0LjT/E+KZgmCQJdH2/F13ERmJXzJC5896VGGX1SyUrP5aPAXvNRy\npF/DmnYpoyC416hLPUbNex2jD3nbojD9nTlUb1rZZ99OX+RlWhjdeyIuR9GCi9NGzCY3M6/YxUHX\nYsm2YsmxosgKJctFYgo0YjQb0Jv0lKtZlo2/bcOa5x0HAFg3d0uBEQf3w8FudXBq/1mfBVgCgk8X\njiiJRFfyJwvsid1qZ9yAT7FbHNitDmSXjN3iYP2vW9i5bE/Rb1xD4y7xP2nIi4Oqqpzaf4Y9aw6S\nl5VXsF12ybzc6h3W/7rluu6SEmXCkaSr4lS1WlYjulIpJH3RGzHnk52aw8wx8wkOD/IlRf63cdic\nrPhhbYF64t9FlEQeHzuAAW/1RlVVXA4Xx3ef4rs3Z/F07Ve5lOAti7t+3lafK2+DSV/QN7QwpiAT\nFeuW8/o+9UYdD75y3w3nmHw+lbH9PvV5TVuenVUzN9xwDA2Nu83/pGulqKRcSGNkj/EknklGlER3\nteeYAfR74wG2L4kjIynTSzWxMMYAA4+P6e+xTRAEPl7zPh8/+RVxf+0DQSC6SmkadKjNypkbkGUZ\np9V/rrUqqzfnmikCqqKybNrqG+aUFxWnw8XKn9ZzaHO8RzA4X8PlyRrD6PFUZ1768mlE0b2mMAeb\nfI4liiIPPNeZJd+uRmeQUFV3RtFHK94lIjqcDwd+xsFNRxAliYBgE699/xwV614/yHn5dBLPN34L\nS4612NWzGhr/JDRDfh3evX8C5+IveqS2zRo9jyoNKnDm8HlsuddP84uKjfQKmKVcSGPVrA3EVClN\nj6deo3br6oRFhgLQrEdDxvafjCnQ6O73eRdsiCKrBVWtfxeXw8W+tf4zVGSXwqpZG4mtEcODw9yr\n5/v+04Xti+O82uwZzAaGfjKYwaP7cXBTPAEhZmq3rl7wtjNuyQhSL6ajKiqlK5YseDBcj5mj5xW4\ngHxhCjTSdXCHgs+qqmr+co1/JMLdWHE0adJE3b179x2/7o04c/g8f361guRzqVSsV57fpyzx6lMJ\n0Py+RnQb0oFPnvrqhkbPFGjky13/pVyNGHYs28PYfpNQZAWn3YUpyESdVtUZt+RtbHk2BpR95oY5\n4P8fKVU+ip9Pf0VmShYOq4Pl09cxb+IfSDoJQRSQdBL/XTnKZxaJNdfK589PY8O8rSiKStlqZXj1\nu2ep3ar6Da/7SOwzpF5M97nPYDbQoV8rXpv2LPM/Wcz8TxaRnZZLbI0Ynp/yBE261f/b962hUVwE\nQYhTVbXJtdu1FfkVti7axYeDpuC0u1BkhT2rD/rVIMlIzqLlA00ILhGEw+pAdvlP1XPYnMz8YB6V\n6pXnx/d+QS0UmLPl2ji0JZ61czaDwB1d7enNOpzWorWxu93kZOTyWof3id9xHASBoNAAnpvyOOZA\nM4GhATTuVg+9wXeA971eEzm8Nb5A9/3skQuMuGcs3+77hIAQM79PWUrcyv1ExUbQ9/UHqNO6RsG5\nYaVCfRpyURIZv+RtGnSsw/R35rDws2XuNyTgfPxFRveZyEcrR3mMpaFxN9GCnbgDl5889RV2i6Pg\nNdtpd/r0jxpMelr3aoreoOfzrR/S/L7GSFeKg0Sd99epyApbFu5k1gfzPYx4PrY8Oytnrndfu4i5\n2+BWIwyJDL4p4y+IAgY/hrE4RESH/209ckEUUBSVI1vj3ZozNicZSVl89uz3LPt+NXXb1fRrxM8f\nu8jR7ce9csiddhdzJyxkaL3X+e3TxRyPS2DLH7sYcc9Y/vppXcFxA4b39sog0hv1tO7TjAYd62C3\n2vm9kBHPx2518NP7v/6t+9bQuJVohhw4d/SC39W3IFxtVm8wG4iILkGvF9wdeSLKhPPBwuEst//C\nvMvfe2SnFEaRlesqDBqMeprcU99nwE0QBETJ01iLksjwH19kQfJ0vt4zsUgytIXRG/VYfcgAFJes\n1GwvX/YNEa7mfusMOoxmA6qi+HyrObQlno8f/9LvUJdOJfmsXJVdMnEr95OTnuth5O0WB1+/8iNO\nh9td1r5fKwa+3Qej2UBAiBmDSU/jrvV4c/rzAKQnZvrNDjof/4+VE9L4H0RzrQABIQHIfgJe5WvH\nUr5WWdIvZ9Li/sbc90xXAkMCPI4RBIHQyBA6DmjNhnlbPVQSBVHwG0zLp+MjbShdoSTtHm7J6lkb\nrxkb6ratRYU6sVw6mUjNFlXp8/K9BIUFAVCxbjkCgswFpfk3QqeXCC8VStKZlCIdfz1UFSzFCIwK\ngkDDLnWJiinBufhL1GpVjdIVSjL9nbk+j1dkhZ3L3RWnvmRoK9Yt51NNUW/UYbPYvYTRwN2K78Kx\nSwUZLQNHPkSfl+/l/LFLlCgTTmR0iYJjI8qE+60PKF871vcODY27gGbIcQfbKtSO5eTe0x5G1xRo\nZNA7D9Ghf+sijfPqd88QHBHEkm9W4bQ7ia5ciqjYSLeOuR+LIOklqjaqCED65Uyv/YqicnT7cd75\n5VXCS4Z67RdFkbfnDGNUz4+KlCrncsokn0st0v3ciOulXvpCb9JTsU45gsODuP/ZblRvWoVLpxKv\nq6IoiALZabk+DXnJ2Eja923Jpt+3F+TyC6KAMcBITLUyxG8/4XWOyyETXCLIY5s5yEy1xpULPquq\nyoGNRziy9TgNO9dh75qDHrUCxgADQz7wTCvV0LibaK6VK4z+/U2iq5TGHGQiIMSM3qjnvqFdaN+v\nVZHH0Ol1PPvJEP7Mnsmf2TOZEf85T45/5LqysDq9jlIVSgKQdM73Klmn15GR6G3k82l+byO+OzCJ\n+h1rF2mef7dysziIkojRbCAwNABFlln89V/8NPpX3uj0Af8dMpXoyqVp27el31J7h9XBqJ4TSDyT\n7HN/r5d6EBoZUvA5KCyAIR/0p9+bvXxKCJcqH0VkTITf+TodTt7qNpZ3e37EjFFziVu5H5fTRVB4\nIKIkUql+ecb+OYJaLbz7uWpo3C209MNCqKrK0R0nyEjMpHqzKh6v2cUh9WIalhwbMVVLI0kSy39Y\nw9SXp3sJVxkDjPR78wEGv98PgE+HfsPKH9d5+YtNgUZ+S/7Bo0WbL45sO8aw1u/e1JxvF4J0pbuR\nj39mpkAjb88eRvP7GjHnw9/5+YP5KD4eMqIoEFO1DD8cmeIR3L10KpFnGr6J7Rp/v6QTiakaTWCo\nmaPXrMqNZgMj57xCq16eejn5LJiyhBnvzvWu1hXgoVfu55lPBmu55Bp3DX/ph9qKvBCCIFCrRTVa\n9252U0Y87XIGr7R9l8FVXuKFpm/Rv8xQti3eTY+nOvN76nRe/f5ZqjWpjDHQSOmKJXlu8hAee+/h\ngvMHjnwQU6AJsVDw0hhgZPDofjc04gCfDv222HO+3aiybyMO+SXw65EkicdGPczPZ74mukppr+OU\nKwJYp/af8dj+26TFOH003pBdCpdOXebYbm89dbvVwawx8/3O968Z63xLLqiw5JuV7Fiqaa9o/PPQ\nfOS3CFVVGXHPWM7HX0R2KTjtbkM1/pEpTN0xgQq1Y7n3qc7c+1Rnv2OUrlCSr+MmMvODeexfd5gS\nZcIZMKI3bfp4tUD1IiMpk0snr9967Z+IIFxdS0SVjSCiTDiXTnprsEg6iey0XI9tJ/YkILt8++mv\nJxR2vRjB9d5Q7VYHS75dSYv7i98UQ0PjdqKtyG8RJ/YkkHgmxcst4rQ7+WPq8iKPU6ZSKd766SXm\nnPuGqTsmFMmIg9vQFctL9g/wDgii4OXXr9qook9/udPhonrTyh7bKjeo6JWaWRSqNKzod1+3IR3Q\n36AZh4bGPw3NkN8i0i5l+HQhKLJC4mnfgTpwPwA+GvwFr7V/jzkfLiAnI9fvsdcjJCKYqo0qebhl\nrkfFOrG8v+ANIsveXBzgVqAqKj+8PYeks+4g7+xxv7H0u9Ve6ZoGs4GnJwzySvt8+I2eGIrgciqM\nMcDAkx/670TY68UeVGtWxc+5RjoOKFoGk4bGnUQz5H+DY7tPMfHxqQzvOoajO45j86OxXa99TZ/b\nN8zfxqvtRrF2ziYObjrK7HEL+E+918lMybqp+YycM4zw0mGYg03ojXp31oYPuy7pRMpULMXaOZt5\nYuwjtO9f9MycW43T5mD+pD9JPJPMnA9/98jBB3fWyzOfDKbPy/d6nRtTpQyfrB1NxXrlbnwhARp0\nqs2kdR9QvUllv4cZjHombxjDoHcfQtJJBSt+U6CJKg0r0HVIh2Ldn4bGnUDzkd8kq3/ewJRnv8Nh\nc6IqKgc3HfV9oADB4d450C6niynPfusRWHPYnGSlZDNtxGweHdWX0lfSEotK6Qol+fn0V+xctpek\nsylUb1qZPasPMPejP3Da3JIDok5Edils/dOdNbTlj53EVC1NSEQw2Wk5xbrercDllInfcZKdy/bi\nq4xSURSS/KQeAlRvUpkBw3vz6dBvrqsLL0kiY/98G1MRJHoFQeDxMQPo8lh7VvywhoykLJrf14jW\nvZsVu4pWQ+NOoBnym8Bhd/L5C9M8DIf/En/Bp4G8cPyyz4Ial8PFyh/Xs+6XLURXLsV7818ntnpM\nkeem0+s8UutqtaxO0+4NWZWRLNgAACAASURBVP3zRpLOpLBtsWfapyIrXDh+mUfefpDUi6ms+mlD\n8XztxUAQBK9goiiJVKgTy/ljF31WwEqSdEN99Oz0XNQbyNQEhgViNHvnlV+PslXL8PRHjwKweeEO\nnqgxjMsJSZiCTASGmgmNDKH7k53o+Ww3n00vNDTuFJpr5SY4te9MkXOJTQFGalzxuSadTWH8I5N5\nMOJxRtwz1suNkI+qqjisDs4ePs9r7d7zWYZeHKo3rcILnz3pt4xfVVS2/LGDN6e/yBLLbKIrl7qp\nICK45Q7a9Gnme6ePIRVZ4a8Z6/jji+V+H4aHNsfz89j5ZCT5Lopq2KnOdTsmGQOMDBndz+9vZsmx\nMuPduQyu+iJP1X6FBVOW4HJencuuFXv56NHPuZyQBLhVK9MuZpCw/yw/vD2bd+6boDWg0LiraIb8\nJggOD/Sb9lb41dtgNlCxbjkadq5LVmo2zzd5i43zt5GTkUfapQz3f/7rGCBVBbvNyY4lcbdk3mmX\nfGtv589766JdbPszjknrx9D39Qf8Vlvmk9/NJ7/PsqoXSXugFl3HPkyN5lW9jvdVUeqKCCCnczWy\n7q+NvVxYQbz4qpKkyt41B5k7YSFP1BjGOR9iVeVrxdL50baYCisZXvleS5QJ57nJQ+j53D0+78Hp\ncPJyq3eY/+liLp9K4tzRi8x49xfGPDyp4JgZ7871+9C1Wxwc2XaMAxuP+NyvoXEn0N4Hb4Ky1aKJ\nqVqGM4fOe7gDjAFG2vRp5q4mFKDbkPY89Or9xO88yawP5pGXbfGoXFQVd8cZg1mP7EchUXa6bllr\nt0ad63HxhHeONsDF44n8d8gXBV3km9/XEEknebk7BFGg2+D29H39AaSSwQwY9jXK+QyUYCPO2HAQ\nBV7/ZjEhh8/dcD7WOmWwNCsHkgiiQG7JIKS0PEIXHy6Q/M1P53TYnDjtTqa+NI2Jq94vGCM9MYP0\ny5k8M2kITbs3ZPm0NTidLro+2p6Oj7RGUVTiVu5n9c8badCxDlFlPcvzN/++k+SzKR6FRXaLnT2r\nD3By72mqNKzIRR957YVxWB0c2hxP/fZFk0jQ0LjVaIb8Jhn75whG3DOWlPNpSDoRp91F/+G9PCo1\nXU4X7/WayMFNR/y2bjOHmHli7ACyUrP5bdJirzxlQRSp2fLW6Hr0f6s3q2dv9OpqJIgCTrvbUOaz\n6fcdPucrCAI1W1SjQu1Yvlu6HWeJAFyh1/TZVFVssWEYjib5nYsK6C9mok8Mxxl7RdNcLyFHBGKr\nURLzkavnqqKAo0IJXKWD2ZaaTnp2HmZR5MNBnxO3cj96ow7ZpfDYe30Zv3RkwXnH404x4p5xyE4Z\nRVWRXTIPv/EAT4wZUHDMwU1HfEr65ss1VGlYkbLVojnuo0o0H4PZQESZcL/7NTRuN5ohv0lKxkby\nw+EpnNiTQGZyNjWaVSEkwjM75c+v/uLAxsPXzaaQnTL1O9R2t4JbEsfZIxdx2NzHGwMMNOxc57rp\ncoVZ98sWpr/jzssuWS6SJ8cPpNMjbQr2lyofxddxE5n+zlz2rDqAKchI3ba12L54t5cxy3f5Xuv5\nUWSFr1/7iaY9GmKxOXzK/6qAcoPsDgHQZVgJXhlPdo+auKKvKDvqJRwVIwoMuaoTyepdFznYCAYd\nuBQeeG8GTZLtHF+53+MB9POY3yhTqRTt+rZElmXeuW8COemeefm//vcPqjetTKue7oBwqQpRGEx6\nHNeW+gsCoVFuMa6nPhzIe73+69e9IkkS7R5ued371dC4nWg+8r+BIAhUa1yZZj0aehlxgOU/rLmu\nEdcbdFRpUIGKdcoh6SQ+3TiWQe8+SGz1aCrWLcfTHz3K6AVvFmku637ZwqSnvyLxdDKqopJ0JoVP\n//M1a+Zs8jgupkoZRv36GgvTf2TuuW+p166W/85Efmyx7JJZNHUF7etXxuSjClIQwHjBv1qjx7Eu\nhYCdbjeMlGEhePkRQv6KL9hvrR+NHGpyG3EAnYjF7mSL6PAKAtssdn6duAhwB0h9GV7ZKfPRo18U\nnNttcAcknXdDEKfVwcdPfMlfP62jUZd6vL/gDcrXKuvuBCWJ6AwSRrOBUuWjmLjmPQKCzUW6Xw2N\n24FmyG8j12soodNLtOzVlPFL3y7YZgowMnDkQ0w/+hnf7Z9E7xd7+DQyvpg+crbXQ8NucTB95Jzr\nnuevMxE6EUf5cJ96Vy6Hi5P7TtOgcjQdG1TBbHTL9AoCmAw6Hu3cmG69/GSu+EDKtCBm2QhZeBD9\nuUyEQjIH9qpR4OM7kM16lGDvtMR8uV+H1eE3k8RusbNx/jYAwkuF8dHKUZSqEOXx4FJVd3bKFy9M\n49iukzTt3pBphybzW/IPdBjQGlR3GmrZ6tFe+uYaGncazZDfRjo/2g6Dj9zlkrERLMz4iVG/vkZg\naOANx1FVlZU/rWdI1ZfoGfwor7R5lyPbjnkck+RHCCrlfNp1U+NKVyhJv+G9MQYYr6bn6SUc5cOx\nNC/vc1WuN+io1rgSgiAw9vHufDz0frrWr0wlWaTE6uNse3U2wWVKIAUa/Qkfet5fqBlz3DkEl+x1\nOcGvdroAindOeoNOdQCo06aG33RGRVbYv+5QwedaLarx7i+v+lSYdNicfPPGTMb0m8QnT33FC81G\nsHH+NlxOGVVR2bv6AC81H1nkDk0aGrcDzZDfRh565T4q1S2HOcgdDDQGGAgINvPeb28UqcIwn98+\nXcznL0zj0qlEbHl2Dm89xvCuYzxkWkvGRvo8N6pshEf+9LnkTCYv2Mjw75ewcPNBrA4nQ0b3478r\nR9H9qU50eawdgycNRgwyErrgAPhQodWb9PR6sQfgdi/Vj4nizNgl5MzYhv1oIklnUvj9k0W48uwe\nhlk261CvsdRGs4EXPxlCaIoFwYfNDjyViuHaXqiKipRpQcq7+gYiSgLmYBOPve8ONpuDzPR+qYfP\n70Rn0FG6krtqNi/bwtkj50m5kIZO7/3fQVVUDm+JZ9Nv21n54zoun0ryeEAoiorNYmfNz5u8ztXQ\nuFP8rWCnIAgPA6OBmkAzVVX/ed0i7iJGs5EpW8axa/k+Dm0+SmTZCDoNbOOzbZk/nA4nP4/5zavJ\nsd3i4MdRc5mw3N1I4onxjzD5mjJ1Y4CBx8ddzdDYcvgMb363GJes4JIVthw6w8zVccx66xFqt6pO\n7VbVycu2MLTe6xgupPl0uQSFBzJl01gPvfa/flxPXlaeZ269XCjNUi+S3aMWrogATIcuYz5wGdHu\nokylUjz76RBaPdCU3XO3sGv5Pq/rmQ8nU3tga/aeuYzsUnDZneCQCV513OO4kuWjmLR2NCXLRQFu\nf3mZiiXRGfXucwqh00t0GtSWT5/9ljUzNyDpdchOF7YAHZY2FRGtLozHkpFy3d95/vfg78XGbrFz\n+uBZ3zs1NO4Afzdr5RDwIPDP62jwD0GSJFrc3/imNawzEjP9NoY+ufdMwd87D2yLqqrMGDmX5Aup\nRJWN4Ilxj9D1sfYAyIrCez+uwFZoNWl1OLmcls3Pa/bw7P3urIsVP6whMyXbbzs4W56dEtek2h3c\ndNRnUDd/8Z3buhKuqCDQidgaxWJrFItRJ9GiaxNaPdCUS6cSObL1uNf5kl6iTIUoIjecoqleQIgt\nweH1+1CPJXu4XARBoH772gVGPC8rj6c6v8+pmpGoPWsRvO4EUqYVnSRRolQoNZ7rxCP9JqLbd8Ht\nj7+SsSI4XYgWB9aGsVjrRxOy5gT6s/6LqPIxBRqpVL/CDY/T0Lhd/C1DrqrqUUBrfXUbCY0K8bsU\njK5SyuNzl0Ht6DKoHaqqev0mZxLTsTm9fcYOl8yS7Ud45r4WCILAnjUHvVrSFUYQYH3cCTJUmSox\nkbSoUZ7Y6tHoDTqc1/ikVQABHFUi3UU/hbC7ZBZsOsDzD7Tis+e+x5Jj9bqW7JQ5H3+R81eqOU2B\nRkSXTHaL8rhKBqNLt2Def5EAp8K9/+lScN7cSYs5Ua8UqlEHQUay+jZAzLMj2GXa9WzKkp3xmPdf\n8AiqAgiyinnPRQxnM8i5pwaWLtUInbEdrqPjIooCpkATnQe19X+QhsZt5o75yAVBGCoIwm5BEHan\npPhuMqzhjdFspOfz93gJRxkDDAwZ7buTu68Hq9mo95tmeDk9m/7jZpGWnUfpiiXhOjngDrOeCX9u\n4otFWxj+3RIGjJ9Fx8c7IOk9/dgFvnBR8KlqCO43AlVV2bfuUJEaQtvy7MiKghJkQi4VjL16SbIe\nqk+XEb08miEv23jAyxevBBqRQ0z8sWY/NpsTwen7uxAAKd1CyJIj6Ex6hJgwr2P0Rh3GAAM6g47m\n9zfmy50TPNIPVVXVtFc07ig3NOSCIKwWBOGQjz+9inMhVVW/U1W1iaqqTaKiom5+xv+DPP3RIB58\n5V7MQSYknUhk2QjenPEijbrU83m8U3avsp/4+FeGTJzLnDV7iAoLokLpEog+jKqqwunEdEZOX06v\nF3og+kj3U3EX52S3r4LNKSPLCha7k7NJGczZdYT/rhxFbPVodAYdOoOO+p3rEv1ka+RQM1Jantd4\noiDQsmZ5wK2PXlQEp4LhXHr+IKh6iZ3iNcU8gUbfDyOdiCqJIInu3HR/11BBzHMgJebw0Ev3YjDp\nCQgxExBiJiQimMmbxrEkdzbLbXMZ88dbBS4dS46VSU9/zf2Bg+huGMCbXT7gwvFLRb43DY2bRbgV\nKwdBENYDbxQ12NmkSRN1924tLlpcZFnGYXVgCjQhCAIuWSErz0pIgAn9FePrdMkM+fgX4s95anhH\nhATwxQu9eeO7JVxOz/bprdHrRP6aMJS1C7bx5fPTEBwuUFRUow5bzVLYa5dGCfTOtgkyGdg4+QUA\nMlOyMJjc2TmKouKSFU5eSmXo5Pk4XQpOWcaglzDp9fw84hHKRoXx3yFfsObnTUVaxaoCWOvFYG1R\nvmCbAOz8chiS6H4gzPx6BV+s3EHArvPoUnJRA/RYGpbFVTkCQ4ARm8OF/nwmwSvjwaX4rHtSAale\nDCv2TiYnI5cDG45gCjTRoGNtn5K1qqryStt3ORGXgNPudjEJgkBgWAA/Hvuc0MiQG96bhsaNEAQh\nTlXVJtdu10r0/yE4ZZkN+09x8lIa5UuG06lhFYzXGAxJkjAHuV/h567dyzdLtmF3uZAEkUGdG/Hs\n/S1ZvP0Ix857N2JIy7bw/aKtLPrgCToP/4Zsi3fvSQGBSb9t4FJaNrU/6sueuFMIBgmXUYfdj9oj\nuAOp2ek5hJQIJiwqlKw8GyOmLWXtvpMoikqDytFMea4X246e5eTFVOpULE3ftvUID3a3bnt8bH9W\n/7yxaF+UIGCv7vlGZzToPN40WreqwaxhMyDfB54lE7Q5gRCDgQff7MhXf27FFhtG9v21CdxwAinD\n5p2/DkjHk3HYHISUCL5h79TjcQkk7D9bYMTBbdzzsiy82u49nv5oEC17NtHiSRq3hb+bftgH+AKI\nApYKgrBPVVXfeqEafsnItTJk4lzSsy1Y7E4CjHo+W7iJn4YPoJSP7kJLtx/hi0WbC2WgyPy8Jg6d\nJLL7+Hm/aXLrDibQffi35PkJZjpcMst3HkVRQS+JGMIDGDWoC1FhQTz32QIcvoy5rKAeSWRA9FBq\nt67BiJ9f5oXpS0i4nI7rSrbN3lMXeeO7xSwa8yShgd4uDUVWMZgM1w2ywpXgqapi3n+JvPaVQRAw\nSBIPtqnrYSBnjp6HIKse+e+CS8G5NYF+beoRHhTAd0u3k6iTyH6wAeEzdngVF4G78OnskQtUa3xj\nrZvz8Rd9GmlVUTkff5EJgz6j25AOvDT16RuOpaFRXP5WsFNV1YWqqpZVVdWoqmopzYjfHJ/+toHE\ntBwsV/KdLXYnqVl5jJu92ufx3y3b7pFGCGBzuJi1Oo4A43W64IgCaRYb8nVcGPn2zCkr5NkcLNxy\niPqVogkJ8OFTdrgQ8xyYtyTgdLg4uOkoL7cbxfnkzAIjDiDk2lHXHmdoozcZN+BTjsd5KgmWLBdZ\ntBZsuP3XxlOp6BPSwKXQuEJpXu59VRhMVVX2bYn3ctOogL1UMDOXbCcy0MQ7vdog4fb7O0v7dnu4\nHC7CS10NdmYkZ7F//WESfbSeK1+r7HVdQ7Y8OytmrNN85hq3Bc218g9g7b6TuK7JKFFUlW1HzyIr\nSoHvN5+ULO/gIYDN4aR369psPnQa5VqjoqpuK13Mzj874s9hdTgZMaAj7xbKQ9ddzMIYn4QxIQ1B\nUVFCRGzdQ8itoUMxpEByKNhFxGwboQv2I7gU0hWVjSeT2L5kDyPnDKPVA24FQkmSeOHzJ/j0P1cL\nmiSdhGTWY6kSSV5sGIJTxnQkEf3ZDASXQtDmBNRtZ5h48TkMhVxQCzYdJMcgUjhcq5h0ZPesgxKg\nZ9boeejjkwEVs0GHFBOKLiUHFU81AlEnYjAZeKnFSCo3KI8x0MT2xbsxGPU47U7qd6zDqHmvoTcZ\nOJuUTkjFKKo0qsixnac85ICvZe/aQ5StFl2s30BD40ZohvwfgD/T6m975ehIDp/xbnYQERJI+3qV\n6de+Pr+s2+u50yGD8eZ+7j+2HGJQ50Z8HRrIjBU7uZCShT7uMqkn3fouchk9uVNiwSCAUQSnE4l0\n5E1hmNecQ3Bc1VBRVRW7xc5nz31Hi/sbI155SHV6pC2RMRH88t8/SDqTQu12NVgXoJKdnYuaH8gt\nE4Lp8GUCd5xDtLmoWK8cgSEBHnP9ftl2chuVJSQ5pyBPPK9NJeRQE4EbTqFPSEW4UnUqWJ0YT6Z6\nfM8qbn12VVHJzcwjNzPPo7NSfgOK/esO8eZL33I43IBDdmfxVO9WnQ7Volk3a6NPnRdJJxKiCWxp\n3AY0rZV/AF0aVUV3TcGMJAq0ql3BazUO8OqDbb0CoSa9jlcfbIcgCAzv35F3mtcnMD4Zw/EUglYe\nI2j9CfAjIuWTUCdi8yykbmlMy1rOzrST1K8UzZTne/Pb+0Po91gHBIPbwNqejYJA0W3EAfQCgqQi\n1svBcDHL5wMpU5b59vfNzFodx8XULADqtavFh0tH8sPhydR4oh3pLmeBEXePK2GrE40cZMAcZGLU\nr695jZualYcrJpTcDlWQAwwokrspheBSMBYy4vn4CnLqdBKuQAOWRmXJa1kBR9lQL70ZS4CerZKT\nLIsNq92JwyVz5FIqceWDmBH/mc9Gz6Io0vwmK3w1NK6HZsj/Abz6UHtiIkMJMOoRBYEAo56o0CDe\nHdjF5/GNqpbl62EP0qhqDMFmI6XCgqhdoRTnkjNIveJ2efDxTjxYoyIR288SmpJHWLoNY64Dg19Z\n3PzOm0CYE6lNJkIpB4JZIS8gj9fjZrHm8sGCo7sO7oAsCqiAq77ZO29bBDHChRKg97qStV4ZUnrW\n5sf1e5m6aDMPffATc695g9h88DRWXw8eRcXaKJbvT3xObPUYr93RskDguhMYjyZhq1+GjAGNQBQQ\nLQ7UGzS7yCcvJpTMfg2wNiyLrW4ZcrrVIOeeGh5FRrY6ZbzuWVZULqRkkSnByDmvYA42ERBixhxs\nIqxkKB/99W6xxNI0NIqK5lr5BxAaaGL+qMFsOXTanX5YKoz29SoX5Ib7okHlGCY8dS+DJswhy2Ij\n6UQuB08n8tPq3Xz/6sMEmY3QtSaVq0cQ5YAONd1NoH/ddICl249id7pITHf7hillg1QjyG7DJNbK\nQ7jmX4ZdcfJp/FI6la6DILiVBq2NYzFvPQ1OFXzEWA2SjrcmDuHLl6cXtLCTQ01YmpYHnYizUED0\ns4WbaF+vMtER7sBjiZAABHx0m9OJUC+aPWeT6FHKU/NlzZxNuH7eidHuRFBBn5iD6XASmf0aIAca\nfKorXouqE8ntWMVTA10v4YwJxVExAmNCmvs+go3g421JFAVSs/Jo06spvyVP58jWY+iNemo0r4J0\nrYqjhsYtQjPk/xB0kkj7+pVpX79obd0APl+4mYwcC/KVVBOHS8bhkhn+/VLSsvMKVA7NBh17LLnM\n7Fqfp7o356nuzRk6eT6X03MQIh0IdXNR1l5dKQphvl0wGY5c8lx2gvQmJFGkUseqnBzgAoPoDqYW\nSr+TVIHuZRpwT9eOXDh+mYWfLUVv1JNRNQJBErwNtArr9p1kYKeGpGVbqBnoR6ddFBAQcMqeqZAO\nu5PPn/sel81Z4C4RZAUx107QsiPkda2OpX40AfsvFfjO8+fgsa4uXwJB8DE/vYSjahTGhDREScSc\nlIOtfAmPhxG4C7JqlnNL5BqMehp0rOP7PjQ0biGaIb8LJGfmMm/9Pk5eSqNOxdI81LYe4UHFbxW2\n6WBCgREvTL7POR+rw8Xl9Gx+XhXHcw+0AiDjikiVUN2CYFbdeX35Js0ugt47Z1wv6jBJbldJdp6N\nvKZ5KIIRdNe01pGhdkQ5Xqt5H4Ig8PSEQfQf3ouzh8+z7kIiszYf8EhPzOdCSiYPvDeDzDVHMO4+\nj7F+NLbGsV5aLYqq0qpWBY9tpw/4lpEVFBXjpWz0c/dgrxyJvVIEhjPpCA4ZuWwouugwAk+lYc20\nUL5WWeo815kf9x/zHkhVCSwZQo3mVYmtEc29L/bgzQVrSc+2FBhzs0FPv/b1iQi5cbMQDY1biWbI\n7zDx55N5etK8gnL1HfFnmb1mD7PecperFwd3wNO7QtMXDpfMqj3H6dmlOsE6M63rVOBcSgZKoOy2\n33r1ioa4gHLcjFgv18O9YhR09C3XAp0okZFrZcCHs8hok+ztGxcEgk0mprV8FpvDxdp9J7HYHDSr\nUY46bWoSnFSaOVsPeRlyFVi49RCuDAthu84hyCoBcRdQgoxu9URRRBAFDHodL/duQ+Q1nZUCwwI9\n9dALT0kUEB0y5qNJ2CuUIKtvA5QgAwEmA4O6NeXJ7s0Qr9zHqrjj4MuQCwJlasbwxU9Xe6jOrR7N\nT6t2s37/KUICjAzs1Ihujat5n6uhcZvRDPkdZtzs1QWFPwB2p4zTpTB5wUYmPftAscbq06YuP63c\njb2QPK0kiqiq4qtQkfOOVAZu+RxZVWgcU4nQECOZ2TqUbBWcAvkrcvW8CcWgIlbPu6L7rdIupCrP\nVe0KwE8rd5GRZ/HKvc5HQWV/wiVemrrwSvq6iiwrPNm9GUPva8Ez97fg2yXbUK5MUhQFalcozYGE\ny+jPZ6IKAgIqAhC04RSuY8k4KkZQrUEFRo3oT+Vo725IZauWoWz1aE4fPOfRK9UUYKRex9rsXX0Q\ne81S5DYtW+DbttidTP9rJw6XzPNX3lSqxkSilyQv140oUCDylU9YkJkeTWtQLiqMkuHBtKhZTivB\n17graIb8DuJwurzErOBq8U9xeap7M46cTWLXsfNIVzJIYiJCAIGEy2meRUGSilohD5vsfojEZSZQ\n5/5ylE1txqJTewoCnW4E1FMByKdMmE5cJHxvCu+eG41OdAfrNh08jcuhImVLqKGyh+dDRKBVRHWG\nffkHudeU3E9bvgOzUc/gLk3o1KAq6/adRBCgU4MqjJ+/EleIHdGEx9NB4ErQMjWPtu0b+DTi+YxZ\n9BYj7hlL6oV0BFHE5XDS940HGDK6H1PmrmXWxv1e59gcLmav2cN/7m2OXidRoXQJmtWIZdexczgK\n6ZUHmAz079Cg4LNLVhj+/RK2X/ndRFEgxGxi2uv9CgK2Ghp3Cs2Q30EkSUQSBRTZe7lsMnin6d0I\nvU7i8xd6c+JiKscvpBATGUL9StFcTs9h6OT5ZOa6/eA2lxO1rA0h9qobxqnK7Ms6Q3JIJkKQApJ6\njTEHnCqmZBePj3wYJzDtj82s3XeS5MxcAOT9wUhtM90r8yspJoqgUkmJZqOS5jVfl6zw+cJNLNtx\nlO9fe5gh3ZogqwqfHFnMvkoH0MWqyA1VhA0qqgBKtB7BqSImu5D0Orpc6XYEcNGSzu70BIJ1JlpF\nVcck6SkZG8kPh6dwPC6BzKRMgkoEcWD9ESa+8zPz0lP8NoJWVJXMPCtRoe5inU+e6cnURVv4Y8sh\n7E4XjauWZXj/jh7unF/W72X7kbMezTpsdhcjpi1l5luPFP1H1NC4BWiG/A4iiSJdG1dj9Z4THgJU\nRr2OB9vUvelxq8ZEUjXm6ko1OiKEP8c8yZ6TF0jNyuPH9FUkqLle56moXLRmQBngUGCBjzx/r6QT\nGPneAByx4fQZ/SO5VrtHloYQ6QCFq770K6cuSN+KypUKRr2CUNaGEKCgZuiRLxtISExj6qItjBjQ\niZ9Pb2TpxT3IKKAHHHqyR1eGcgqYBRBAvOik6jyVLQt3EBoZzMy0rcw7tw1Ut2KjThSZ2vRJaofF\nIggC1ZtUZs6HC5g9/ndkp0xu3dIojWO9uhTlI4kCYYWCzUa9jtf7tuf1vu19Hg/w+6aDXh2XFFXl\n2Plk0rLztICnxh1FM+R3mBEDOnExLZtj55ORRBGXrNC8RixD772+TGphVFXlQMJlNh5MIMCop3vT\nGsREhnocI4oCTarFAnAsPoFzZ5NxqX6CgRJIbTOQ40Ig0/1PQgyT6dmpOqOX7MEpu/341yKWs3vl\nmwPkqBZcBgOEOpCaZoMAggiqywrVJZybwlix6xgjBnTilzNbsSlOZAeom8LAJSB1zkAolMetlDdw\n/GmZtGcX8Ounf5I+OQZHISVbuwzPb5/Omm7vgiow4/fNTNtzBKV7dYzHkj3FrGTF06A7ZUz7L5Gb\nmuMhkHUjfCpB4hYbO3EhlYhamiHXuHNohvwOE2Q2MuON/hy/kMK55AyqREdSoXSJG594BVVVef+n\nv1i99wR2hwudJDJt+U5GPdqFGrElOXI2iVLhwTSuWrYgE+O+mEb8fn4niqyg+HEwCIEKunaZqE4B\nVDCaJP5ak4DV7r+Kxn9gT6Bb94qssO266nbBvXJXA2XEahbkBBPTV+wkZaMeRRcCKe6KIqGaxTuC\nKgmoZgFLLT36PRbE6ZfhrTKoCqhpelAELCEO/ozfx4b159l26Iy72TNgCQ9Al5oHqopgdRK09jiW\npuWQSwQiWhyY91xAfxBFgwAAIABJREFUfyadhZ8v48nxA4v6M9C1cTVmrtrtUzL426XbaFGrvPcO\nDY3bhGbI7xLVykZRreyNW96dS85k78mLlAg206JWeXbGn2fN3pNuFUKdgivCDi6B935agU6UCjRb\nIkICea1vO7bmHGVp7k5EwV1I46NWsgBVBhQwmXU0N9Zghy0d8K8RLl4wI9W04LxmpV/KFMpmx0H3\nSvyacwQJqGRFOSvz/bLtKE4dFGgVCggBsvsYr4sJqOE6UEAXZ0HN0CFvD73aGFkR+PHYHtIu23EV\ntq56CVdEIMYjSchhZnTJuYQtPOgxtAvYuuUowf/H3pnHR1Hef/z9zMwe2c2dAAmBcCOnHAoCKoo3\nCmIPrVqtNx61l7Xaavvrr9V6t1atd7UerVe9C4qCgAhy3zcBwhUIScidPWfm+f0xm002O7skgBT5\n7ef14qW7M/PMM9ndz3zn+3y/n8+81fQtymd4764xNynTlNGbYjOuv2A0r35u73K1pnSfrWplCil8\nU0gR+TEKKSV/euMLpi/egCIUFEXgcmgM7VWAPxRGFPtRTmwEM0IwJoQWZhGqsxZNfY0H+OXSf6J0\nDWLH363fkiaYa9NhdxpCgupxkTeyM6aMX7BshiIgv7oThR6TLYG9BIwwCgJFCC7qOoJXSr9MeKxQ\nIDy4Bn1Jc3VHC0nKKieyyCZlo4C6yVq8lWkqxsIsCMcSZdnORnufZ4eCCBmkz9uGaFO/bjpU6qcM\n4UCulxVvzgYgw+Pi5V9exhcrt/KvL1bQ4A/SuzCPuy47k9EDiq190lx43U6aAvE3OkUInvpwPj06\n53DqkF50zk5HSsnslVt5Y/YK6n1BJgzvw1Vnn0SmjdFGCil0FEfEs7OjSHl2Hhwzlm7ivn/OjBGO\nEkCay4HP5Uc9vSaO7GRQYHyWBw6JelY1OCTCJii0qrRbPndjZTpyj7vlpgC4HCpGxHPTDooQODQF\nU0JaV5PgiQcwVCsydwoNExNd2h8LVvRvfJofXymjSNQzasDbKjIPmDgWNuJ5dD+mplB/4QCMrlnE\nqFhF/j6KIuK7XcMG3iW7MHLSUJpCCN1ALW9Aq2ik/oIB6MU5cd2jDlVBVZUYAw+3Q+PFOy5lcM8C\nAB5/70ve+XI1wXCCtQcsJcVbJ42lwR/krTmr8Ies8k+nppKf5eXt316N153EDCSFFFohkWdn6tnv\nKCNghJhXsZE5+9fTqAds95FS8ty0hXHqfxII6jpKT7/9J6eA6BRC9PSDak/i1jgtRCfDIo7EwWpU\nKsjNxJlA6MmUMtLMZFC/xyS0pGVxLyR1yygjMY9HWDf6TEBU0coUGF9lY27xIOsVlJ1hXH+vwvVk\nFUa6k9rLR2IUZNlmiKyam/iQ3OnUePDF23CP7kXwlB40je5B/aTBNEwajN49nsTBWrRs68IUDOu8\nMH1R9PVtF5/KyH7dcDk0HDYVMRJLe+X56Qt5fdbyKImDtVh6oN7H+/PXxh2XQgodRSq1chSxsHIL\nv171BrppRPPKp3cawP3DLidNa4nKnvxwPrsra23HMISBkhlOQNLSisLzwrbVJDIM5mrLA1QZ2ohw\nSQgosTorrc9lmAzv15Ulm3YnvzBTWCkRv4JIi7C3DtIUVuu/sOHKJtXqJhUSZVwtmGAub8l5yxIP\nxhYvBmB4sgidGSRclAWOxAqCaS4H54zox4xlm9ENA1VRyPK6eWzqZB5884toXT2qAiqEu2bakngi\nSODrDTv5eOF6Jo8ZhMuh8fRPvsv2fQe4/rF3CPvsb8wh3bDNlwfDOgs37ODqc1Ia5SkcHlIR+VFC\nfdjP3Sv/hd8IxSwOflW5iRsWPYsZSUPUNwV4c85Kq2ROsQk7BYgcw95gWbFyzDSq2GY1NFBOaLII\nfb3XGsNjnxZQhGBIr4KEaYP4AyT4W75OEoGxJANzeYZF6pFhpAlSB2NVOm6nA1efMEq2gdJZRz3/\nAOqYepTR9SjnHYhev5HnJdwzNzmJOzW8LifTF28grFt/HyklqiLI9LjYts8m338I7fSGafLQW7Nj\nFjp7F+bh0BL/lJrn0haKImzNtVNIoaNIEflRwpz96xOW/u1oqmTpAcuQeOveKsv8oTAE6TqoEUYW\nElSJclIDQrHhoIiKrDKqDqmacQF2VGU23UQd0wDpYesY1VJARI2dm8upcfNFYzh9SC9cSQg0ClNA\nRivSN4FqJ3KvG2NWHuZmD2aFA1nqxpiTC9VOBhZ3pucID2gR6zUFRF4YpVPYyo9nJ/a+bIvcDA9V\n9U0xGjOGKTlQ7+PjhRvsb3xJ0LsgF7fT/oE1ENJ58dPFhFo1BJ09oh9qAuOKNKeD/Cxv3HaHqnJ5\nq7b/FFI4VKSI/CjBrwcxTPuksS5NNtVb7uoFuRmEdQORoaOMr0UZ0Ygo9iP6+VDPqkbp0lIloSBw\nCNXibEHUlUftEWoh+giBRWu5I2kOpV8Quc2qmND6BXCN8CEyDNxuld69s0k/o4mr1/yV2e4lpHtd\nOGPIvJWbEICQiD4+QKIYCg4zUhrYfDcJKcgSL+bCbMx1GeCzxlpXWk5ZRX2Cv5iMy9snQ9kB+3EM\nU7Jsyy4ykjjzNEftbqdGl5x07r3ybN7+7dXcfNGYpEF7s1QBwK2Tx1GYlxln2edyaIwf2otXfnU5\nA7p3xuXQ8LqdZKS5+OM153NC987tvsYUUkiEVI78KGFsfn+eFJ/aLtK5FI3CNKursGteFiP6FrG8\nIYApfYiiIBTZS9WqkUS5XbApdZD7NZSu9iYRAnD20Xll7O3s9B8gMDTMmKv68eHuJbxWOs8S15Kw\nJbAX16lOLvSP4cM5GyIna3WXECBOaEJu9WA2akhDcMOY8Txbu8j2vNHjEIQNk/B6DfUU4nP6uhLt\nMj1sCMED11/Ij59633azYUoCIZ37r5vIOSP7Rd+/5rxRzF+3g+Ule+KOMU2T3IwW4+dml6dZK0qY\nv66U6nofXfMzuWDUAEafYEkHvP7rKymrqqOmwUdjwLLd0w0zjvxTSKGjSJUfHkEEQjqbdu8n3e2i\nT9e8uM7HB9d8yAdlS6wXrTblOLx8fOZduCKmDbWNfu54/iPWZG6CwhBKAj77QfFYpu9dQaMeT/RS\nglniQukXTBhVSgOclV4uzh3NzeeeSprTwTlf3EfQjCf/vvU92TSvAYwI6QgZrTwRJzYiV2V0KIJu\nJnOQkKmjnFYbEd6yOkuNBdlQr7Xa79Bx08TR3HrxqSzfsodfvfAfapvsFyWdmsqb915Fr1adtks3\n7+Znz3wYV4Y4Zdxg7r78rA7PZcG6Un7z0ifRm6+mKvzllosZ0TfefzSFFNoiUflhisiPED5euJ4H\n35xNWDcwpURTFX588TiuOW8Upil5+N3ZfPTVepROYUIFjQiPgZprMiinK38c9gO6efLYtLuCv3+y\nmHlrt6MpCkJAwAwjRtWhdI7NF/960BRG5vbi6q+fJmja55KbFxhtOyVb7WPMzUFxwoWX9mBG+Srb\n/dzbsmlcp4EKyokN1pOCAFmpYZa5YHcah0W4DhNRGISwgtzvjNwUDp/ENVXh84emRkWxlmzaxR3P\nfRyjCd8ahbkZTLv/hpib8BcrSnj033OpbvChqQqXnTGM26ec1uFIurKukSn/84+4skaPy8GMB2+y\nfFZTSCEJEhF5KrVyCNjaUM6/dy6iIljHuPz+9DW78cAbX8QIKVmSrfMJK2Fm7FnD9mU+q/llnwL7\nMnFqKhPHDOD3F54HwOszl/HMfxZGTSJaGnEEytIclHMPgNPEo7n4xYAL0RSVZ0tm4lWdCYkcLKKl\ns56wphwJomsQc5ubT1ZvQOliv1vXLpmUbg5ijKpG5FqLkcZGD3Krh3a5Gh8MYQW5q63d3eGRuBDw\n4A0XxigbDu/TFSVJ4ruuKcCGnfujTT8AZ4/sx1kj+tIUCOF2Og45FfLpkk1RM422mLNqK5PHDj6k\ncVNIIUXkHcSsfWv5w9p3CZs6JpLlB7ajhDRCeGi7diyRPF86C2OjB4zYsDikG8xYvIl7Lz+HmgYf\nT3/8dUJFPcM0ya/M544LJ3B65wHctuQlNtfvjdU4sQteJchKJ/KAE2WAz2oYihOkAqW/D4oDmHud\nkIDI7zzjXP6wbRblORaJmxUO5DZPJHI+9lxx3E6N1+66gr5F+TT4g3y2bDN7q+oY0quQ+6+fyC+e\n+ch2bUEIQaNN270Q4rAj5rqmgO1nHDYM6nzts+xLIQU7pIi8AwibOg+s/yAmAg6YYYSiI3oJZEm8\ndKlUTAjZE51umITCOl9v2JmwdA0AE/av1Ll75Sy691pMZb996M521HcLkHvdEFAx9rlQz6yJ+8SF\nAFSQaSZKT3syyXF6OblTH753wT6e3rULkMgdbmhniXn70b5UisflYOKoAUxbvMG2zl0R8MIvLqVv\nUT5by6q4/rG3CYZ1woaJEFapYvdO2eyyaboKhXVO7FV4JC4mDmMG9uCtuavwt0nrqELhlIiGSwop\nHAoOa7lcCPGoEGKTEGKNEOIDIUTH3IO/ZShpKI+1T4tAKhIlQWWJWemIcFP8caqiUN3gw+VQk2gS\nYh3vNsEQ7N7aQKiR+LroCP9JaeW9pQHmmnQIRJ4EmjTMpVnIoLCactqKaCmAJuMaiVyKg6t7jUdK\nyd/fXh5t0pG6wpGPxNs3nj+k068onyvPGmm73aFpbNy5H4DfvPQJjYFQ1BBDSjhQ77MlcYBMj4s0\nV8fdmtqDk/t3Y1T/7qS1coNKczo4/+QTYoxBUkihozjciHwm8BsppS6EeBj4DXD34U/r2ERJfTl+\nw56wHdIRG6C6DUR+2KqhjlZzxEacYd3gusfe5s17ropzm4lCMaEghDK8ASqdmEszEel6wkoUISyy\nMlZmoPSNKCQGFczNHuQuF+YGD8rQJtsWfgDZqIDHREiB6hCcWziUK3qeyrod5fhqTJRyJ3QJoRQF\nMKsd8aJXRwFSShZv2kXfonxUG5EsISxbvS9Xb7Pv6EyGQ+j2XL19L099OJ+SPVV0yc3glkljOWt4\nX5uhBX++ZTKfL9vCtMUbUBWFKeMG2+6bQgodwWERuZTy81YvFwHfP7zpHHvQTYOaUBP7/DX8eeN/\nbCNnt+rg3lOn8K9d61lXuh/RrwnlBF9LOZ5stBpkalpFeqqEvj7quldzxddPoI4NYizJAITVFWkK\nSNdRBvoQhVaDj+wcQhQHwKciHUZiMtdAjXSAAuAxUYY2YroNlO4hK+ViJKhm2e/E2GWJaHmEl9Iu\nOrOCJewotwjRXJ6JGNCE6O2HXW6o0yIliRIhRIc7KA8VX60r5ZbJY3lt5nKMNuWSUkpOHdSTS+9/\nrUNjKkIwZmDHDCFWb9/LrU+8F61EaSgL8tt/fMpdl03gklOHxO2vKgoTRw9g4ugBHTpPCikkw5HM\nkV8PvH0Ex/uvQkrJP0u/4uXtcyyRK9NI2GI/pWgU3dLyWLerHHJ1lP4+iyRbtb2rY+owZuRZddJC\nop5eA+kGqFBHIyIf1InVyH0uMEB0DiHcbSJNDUTPAMZ6L+q4RB2RzTu3eamBMsBv3RB0IKAg3abl\n2iNbOj7pHUDJNDAXZVNPkNXb97FlTxUDiiMmGFJEJQLUU+uQ+5xW+WFIgTQD9rStPIn5q8ZP7BBh\nmpKeBbncdvE4nv54AQKiN5LfXXUO28oPJKwQgUh3qxDIyFhOTSXN5eC2i8d1aB5PfTg/rpwwENJ5\n8sP5XDx2cJwhRQopfBM4KJELIWYBBTab7pVSfhTZ514so5V/JRlnKjAVoLj42F/Y+XDPUl7c+gWB\nJKV9AGmqk8ndRvK7zz6ylPx6+FsMb1pDgMgPIyudiIJQrN5283aBVZ+dBEJIKwo2sT9PdD/796QB\nssaBuTgL5bRqyDJj9hUqkB+GDB0arK+HPxRmbWk5igKmCeSGMUs8EBJITcJ+q5pDHnCQmKwlaKa1\nuU0Fj1NTUYRInF5qex3A0F6FOFSVq885iXNG9mPemu1oqsKEYX3JzfTw+bLNcQTbGpqq8sStU5ix\nbBM7K2o5qV8RV0wY0WHT5JI9Vbbv+wIh6n2BmNLHFFL4pnBQIpdSnpNsuxDiWmAScLZM0l0kpXwB\neAGshqCOTfPo4+Vtcw5K4gCmNClMy6G0aT+QAZpMnGZVJWSEEX199jnqVhxol/qQulX2p55VnbTJ\nJxGkBLnfgbkiCwyByDDt56qAyNKRDVrMsf2KOrF5dyXmguyI3Ep7mnZkix2RrloiYNlhq2szknr6\n/ulDuWjMIF78ZDGLNloVPP6gbruwrAiBx+3gd1e1fC0LczP5QRvxqRVby2yPb0aPztmMGdTjsL01\nu+Rk0OCPv/mqioI3LWUYkcLRweFWrVwA3AVcLKX0HZkpHRs4EGw86D5u1cFlPcaR4UjD2UVaddtl\nLit10RaKREpQTqtDZOuJc8kmVov68gxLLyUyltSxUi4FYcShuoNJELk66rkHUEbWJf30ZVPsncIw\nTa46O1IlYopW7jztSB3IVrXmhgINKqKXP7r5rbmrufaRtwiEwky77wb+dvt3E5LwKQOK+eiP19O7\nMC/pKT9btjnp9kBIZ23pPnZV1Bx8/klwy+SxcSqJbqfG5ROG40hgypFCCkcah6vW8zcgA5gphFgl\nhHjuCMzpmEDv9MSqdKpQcCsOJnQezNS+ZwMwqXgkrlOakPudyGpHC5lLUFEgDNqYehSntJehhaiC\noZTAPhfGzDzMEg8ygJVGcYKSeejF20KAcEuESyKKEpsqYwI1seQkgL0JFAbtkJ/pJT3NaZ/+MRRk\nUETXEEwpCRsmy7bs4dYn32Pp5l0Jbw8leyrJbofPZSKlyWbsPVDHbU++zw/u/ydXPvCvGCXDjuCs\n4X2567IJZHvdVp7d6eCKCSM6nGtPIYXDQUprJQGWHdjGT5b9AyOJ72Sa6qTYm8+Lp9yMlJI7VrzG\nuoo96HsdmA6DrEKVc4tPZFVNKSUN5e0+t5RYC6OaaflXOg6pKu6QYVZpmF9nx3piComnu8S3q333\n/r/d/h2CYZ07X/oYqdu0nPb0wz4XBGOZPs3lYFjvQhZt3GU7rkNVePu3V9OzlbCVHX7/6md8snQT\nRgLP0dZQFUGvglze/u3VcUJn7YVpSup9AbxpzrhIfObyLbwwfREVtY2c0L0TP/vO6TESACmk0F78\nv9Za0U2DBZWbKffXMjCriKHZxQghaAj7eb10HrPL1+PVXFzaYywXdR2BEIKT8/rgVDT8RuLI1W+E\n2NFYyZulC9jlq2Rj3R4Ul2T4sM5cVDSSfHcmAzOL+M2qNzs0XyFAPfdANJo9miQOoGQZMQYNKCai\nU5jg0HrYlc/B0imqIuiSk05RfjaKUDDaVvuooBSEMHfELwQqCPKz0qP18G0hhLAlW18gxNw126j3\nBTllQDE/+87pLNuym9qmQFwnZVsYpqSsqp6Ssir6d+sUfd8fDPPq50uZvmQTioDJYwdz9Tkn4XLE\n/2wURdgubP573moef29edOF12ZY93PT4v/n7HZcyqEeKzFM4MjiuidyQJh/tXsrjm6ZHI2uHojEw\nq4iHhl3JdYuepSJQF9UseWTDR6yr3cWvB18SPf5gCJphXto+G1O2uMYvryllRU0pHs1FyNDJdaZ3\neO6JGnbaC1mrWmmZJgWRp6P09bf4adrtL0GY1iJdJ5HNnizdqo5RQBQHUYY0WimXTiHLEzRbh1rN\nIuNAbASqCEFIN3A7Ne6beh73PD+DaGerKdAG+ThR68t6R21UJKwZYdPgh2eNYPbKEluFws7Z6RR3\njm0gXr1tL7f/7QOklJGUimDK2MG89/trmLWihHWl+3hv/rqk6RZVFdQ0tCzzGKbJjX9+h237DkT1\nUV76dAmLNuzkxTsubVfkrhsmf/twgW154t8+WsAzP/3eQcdIIYX24LhVtDelyZ0rXufhDR8TNHX0\nCNH6jRDra3fzh7X/piJYFyM8FTDCTCtbwT6/tQA2Kq+PrSt7W+imESXxZkigSQ8Slgb7g3XtmvOR\nynLJJgVjfjZyrwvqnMjSNIw5OcimJA07EoxdLpibjztLRTuzFnVyFeqkKtRhjVaVjAbq2HqU/n6U\nLmFEPz/qWdWQGUtUumEy9fF3WbWtjAuGDOL9+6/mtPMKKTxFZfyV+fzjymt4/LuXkelxxSgJup0a\n54zoxwndO/PWvVeRm9ES4aqKwOt28sjUSTEkqhsmv3j2I5oCIXzBMMGwQTCs859FG1iyeTeTxgzi\nl5eembSCBawu20E9WhTDFqzfwc6KmhiRq2BYZ+PuClaUlLXjU4CaBl9CIbRNuyvbNUYKKbQHx21E\n/nXlFpYf2I60aeIJmjpfV5XYbtOEyvq6PRSm5fDLgZNYW/sMASNMyMZsoRmJGoU6iiOWQnGZiB4B\n5PaIg026gTKiHjyRebapGJSR10q3EHpRJTubIvNpc5tvTndEbeMUK42uDGvA/Co7OqgEmgIhfv7M\nR8x8+GZ6ZnXiyclXxk3zjXt+yPPTFjJ3zXY8LgeXnTEsWkbYrVM2Mx++meUle1i9bR/5WV7OGdkP\nrzu2pG/1tr1RHZXW8IfCfLhgHeOH9sahqfQvymfzHnvyFAKuOe9kMjwti6hrt++zfSIIhXXW7tjH\nSf272Y7VGpled8LPtDA3ZbrcUUgZgMAsMCvBeTLCMfS/PaVjBsctkX9ZsSFpHbgdiQNIaZLvsn5k\nqlA4q/NgPtu3+ojPT9arGOu9Vtu+y0T086F0T+zmY83N+u/BCF9oIHr7LSLP0FHH14Aae1ycaJYA\nHLJlWxItl7jXOTp29eSWX+Yexiao1c7L9HLPledwTyuO94fCrN9RhsdlmTOf3L87J/fvnvBadSNx\nFU+olTLiPVeezS1PvEcwFF+frgjBpl2xJF+Qm4HLocapK7ocGgU57SNhl0Pj0vEn8u95a2Idhpwa\nN08a264xUrAgw5uR1VcBOsgQCA3pPBWR/STicPOQxwGO279AuuZGRcQvtB0EaZqTdNXF05tn8ObO\nrwmb+kFHaONzfFDIBhVjXnZEcEpYpgpr0jEDCmr/lvpqKWmRihUgd7gRPQNJOzpllQNjTTo0WDsp\nA5viSBxaujzBpvGo1cW06ykhxsczFiH94N2aW8uq+Gz5ZrbsqWTJxt1omoKUkuz0NJ66/Tsx1mtt\nMbxvEXaVV2lOB5PGDIy+HtqrkLfuvYprH3mLmkZ/zL6GKVm0cSe1jf7ogmWfwjxbiVyXQ2NCB0Su\nfvqd01GEwttfrsIwJeluJz//3njGD+3d7jH+v0NKiaz9MchWKUoZhuACpO9dhPfy+GPMWqTvDQgt\nAbUHwvsjhNbnKM766OK4JfJJRSfx7q7FGO3ozmyGgqCzO4vrFj1HyAy3m5gLXNk0GAEadXsvyLYw\nN3taSLwZhoLc4kH28bcQa0BgbvJateUVTvCpKC5LDdEuCJH1qiXO1UqRUOSGE5OxpXUVByFA+hVk\nQIHsxEqLUfgVqya8jRKibphJo2mAf3y2hBemL45a5AEEI9zvD4a59Yn3+Pi+65izcluMYuCZw/og\nhMDl0PjTdRP5zUufYJgmYcMkzeXgpH7dOPek/jHn6t4pG5fT/iuvKkq0pd40JXf/fbrt3+X2Kafa\nVq0kgqoo/Oy7p3PbxeNoDITI8rhT+isdhVEKhl1azA/+d5CeH0BwFtL/nhX9uCdAwxMgG4EgsBjp\n/xBynkG4Tj3Kkz86OO6IfE3NTp7fOovSxgoK3Fns9dfgUFTCpoEhrWx2orSKKhRKGytszYeTYV/Q\nXts6EWSNA9sIVgA+FTKsSFCkSWStA+rV6P7mykyUIQ1QHLRy2K2GMbd44s0eAgq47NMPIoG5j9TB\nLHEjd7tRT69DZrQoLTYHvwoCp6qiN0FwkxvSTPATVUIEa4Hylr++iy8QZndVLbkZHq47fxSXnTEM\nIQR7Kmt5Yfoi28iXyCiN/iC3/PU9Nu+uxB+ybspLN+/m/FEn8D9XnQvAGcP68P7/Xsu0xRuoawpw\n2uCejB5QbFtZMmZADz5euI62elpOh0rXvCwA1u7YR5ONS5CUMH99Kd85reO5WYemkpPSXTk0SKNF\n5iEOOrLu1xD8DJqby0PziLZIA9aPwo+suwc6zT3kXoFjGccVkS85sJVfLn896uBTRQNOoXFlz9MY\nml1MJ1cG1y161paoXYpGZ3cWu30d1K8+FHgNi7DbwhSWgUQrqKPqMb7KBl1a200w12QiAk2oA2JV\nESxtlNgvqbnFgzKiISaCl9bdDEIiTmFRGoBfRe6ynhqMr7JRBjVCcRBMkHtcmDvTML0mWtBNsMZs\nZZSMpaUSedrwBcOsjxg8AFTUNvLEB19R2+Tn5ovGMm/t9oNW6phSsmHn/pjqD38ozIwlm7hiwoio\nIUNBbgY3Tjwl+WBAp2xvHIkD3HjB6GgFTSCkJ/yx7yivtn1/T2Uts1dtBWDC8L5073Rce6wcXWh9\nQGSC9NtsTIfAp0Drp+EE6yZmNZj7QT3+6vePq/LDxzdOjzMiDkmdL8rXMbZTf/pmFnJ5j3G4FQci\nUljoECrj8vvz2Vn34lSOzn1N7e+LkbgFQJGIbgGEo837XsMyXu4ajHB0hGAatDhNF5Edpm3YIve6\nLVMJieUMZAI+BePrLMytnth9fZYBRUv+HtAVzDWZGNM6YXzSCXNNJtQ5kHtd+A/IFs11IuF925RR\nGwRCOq9+toyte6siFTDJo6NQWLct4TNMk8Wb7Ls/m4/bvLuC/TUN0fc+mL+WFz9ZHLevELBiW0tJ\n4Ym9C+Pq25uxp6o+ri78jdkruPS+13j6owU8/dECLrvvdV6feWx3Lh8upL4Vs+EpzIYnkOEN3+i5\nhFAg6zH7jfpKoL3pUxPE8flUdNxE5GtqdrGtcb/tth1NFUhpGR/8+IQLGN9lEJ/tXYUJdHZlMn3v\nSs794n68mgtNKHE14WBRk1NxMCirCK/qZmn11g6nYKJj5YdRRtRjrk2HsHUvFcUBlKEteh9SAmGQ\njSoiy0A4JLJ1DFXvAAAgAElEQVRVy7wsd1qLpKoZLRNU+vkxylyRgCSyrypBV8AEY0kmVDus10BG\nuhMfTdExzQ1eZFkrHRNFIroHID+E3OyBxviI3+bqDnr9gbDOjx5+E9OUSZt03E6NYb27snJrWRyZ\na5pKpsfeDPmjr9fx2L+/tAQXdYOhvQr403UT+fO7X9ruL6WVrmlGmtNB56x09lbHa8s4VIXNeyoY\n1rsrAGVVdTz14fzY9JBh8sx/vuaMYX0o7pyT8Pq+rTCbXoaGx7GUqyWy6SWk5xqUzF9+Y+cU0ofE\nC62+r5HZ0O541DkKoWQd4ZkdGzguiHxnUxW3L3sp4fYshwchBEsObOXVbV9SHqhleE5PBmYW8eTm\nT6NlirVhK1WhoaBjEYyC4LIeY7msx1i6efJo1AN8XbGFJdVbbc+VMJXXBkpRCNG12tL0ViVxDwN6\nJC3S21r8FNk6UjUjOWhACox52SjDGqDAWtAU6Qbq6bVW1UqtAxwmopcf0cdvLbBWxBJfQyAYUwAj\nugatG4RhLV6qp9eA18BckQlN7SHx9qM5qtVUgaoIHJoKEsKGSdfcDHp3zeP0ob0o2VMVQ7LRuYKt\nRdqKkj08/PacmKh5eUkZ37/v9aRNQRlpsUJcPQtzbYncNCVZrerN56zaajuuaUpmr9rKteeNSnjO\nbyOkURYh8dbSvQHwvYpMuxDhGJjo0MNEIMGPq70lCQp4px7ZKR1DOC6I/F+lXxE27KNjl9C4uvd4\nppUt55H1H0dJe6+vmmlly22/Bs0kDtZ35+M9y7ioaCSflq3kgfUfIgRxDUICuLb3mbhVB5vq9rK6\ndif1YV90gdUOQoB0Snt61LDs4iKfkCgKwiYvBGSLmFVYwdziRS1oWWwVWQbaaXU4hYPAXoGs0TDn\n5kSIOBat9cYBRGEI8sJwwIno4bdy+VIg9ztjBbSOIHRD4nE7+MmU0xACzhzWl87Z6bw/fy2PvjMX\n3WipZlEVq0pFU1X+cstk0tPiI/LXZ62wNZRotNEMb4YiBN87fSi6YUbz5FeeNYIVJXtixlIVQY8u\nOQcV7DquEZidYEMIGfj8myNy5xhs9aGFBzw3QNOLxObJ20JDOI5fe73jgsi3NpQnrBc/q2AwlxeP\nY+LcB2MahNpbX24g8Rkhrv76bweNtpv0ALf2Py/mvZe2zuYf2+YSsvsSSpBVGnKfA2Wwv2XRUGtu\n0InsJq1ab3V8Neb6dGS5C1VRULqHMAfUx5cHCggRRnQGc4fblsQBFF1B1mqWbgoR+7PR9ch1XpSu\nQcsGzicOOxBPdztptKkCaYYvEObRd+aiqQolZVXcNHEMj74zJ66aRVEUzhnZn1smjaUgQWdkRW2D\n7fsQyeIL4hY7FQHPTVvIPz5bytXnnMRNF57CuEE9mXrhGJ6fvhCHpmIYkq55mfz1tikxx04Y3pen\nP14Qdy5FEcenqbJoqaBqswHQkEY5suFxCM4F4QXPVQjvNYhDcUJpPbqSg8y4GxoeAUJYKRUPOE5G\npN+GdJ4MNVOJfVJohgruCxHK8XsDPi6IfGBWEZvqy+Jy2w5F5fYTJlIRrCdsHrqOdzOSkbgEppWt\n4M5BFwNQH/bz1o4FzKvYSJrmJGSzeOYWTsLLcgl1bkLWqeCSEBYomWbMbyWqBOgCZUQjQm/knuFT\nqA37kzoZCQ3UQU0YX9rnkmVYYM7PRgxuQO0VROogdIFZ7kIU6IBulRVqZpw9W3vgUBXu+P4Z/ODM\n4YQNg+seeYsNuyps9zWlJKQbTFu0gU27KtBUJY7Iw7rB9MUb+GTxRs4Z2Y8/XT8xbrF0zMAelouR\nTbpDCCjMy6KqrhFFKIR0HSklummV8ehGiFc+X4qmKlx/wWiuPX8U3xt/Iht27icnPY1+Rflx5yvK\nz+Inl5zGUx/Oj3qEKorCbZPHHpf5cVznAg/abNDAdRrywHfArAUMkDXQ+FekvhGR/ehhn1rxXoV0\njkT63gXZhHCfC64JEF4D9fdjT+KA+2JE1n2Hff5jGceFHvleXw1XLngSn9HyQboUB+cUDOH3J15K\nYzjABXMeSKqXcqSw8Pz78elBfrjgKapDjUnP6VIcpNV6qfXUgdasDojt2k1rjRMpQRWCmWf/lhl7\nV/HStjlUh+yNEWRQYMzITzpnRQUxoh5R50Ds9qAYCpMn92UGiwkYYcx9TszlmbGLqAeBU1P5yy0X\nM25wz+h7K7eW8eOn3icYSt4tqykKTodqq3XSGsWds/nnr6+MSbHUNPiY8vt/0OiPfwJwOVROGdCD\nvEwPI/t247npCymrihc0y0hzMeexWzvUuNNcfiilFaW3VWg8nmA2vQUNf4y8ilQpZdwJMgCNzxCf\n4nAh8j9FaAfXp5FmDSARSm60QCHp/vpO5IGLbUoTVeuJIOM+FM/E9l3YtwDHtR55V08OL425mb9s\nms7qmp14NReXFY/lmt5nAJDucHNG54F8WbExhlhdikbYNI6Y6BVYiofv71pMzUFIHMCQBv7sxthn\n/QQL8KJNhG4ieXfXIq7rM4HvFp/C+bP/RH24zZdZYlVcFVqLmEIK2ytNczj5zZDLqGn0I4fBhGF9\nKMrPovNWF69s/xJHd4HubcTc6qWrzCMYMNhjQ4CtoakKdU2xP+gRfYt48ReX8ty0hZSUVdEUCNIU\niCdrl9NKZRwMuypque3J9/nxlFM5uX83VEUhJ8PD2/dezaX3vRZzIxBASDf4au12hBB8smRTQp2W\npmAoKsPbXnTrlM2Pzo37fR13kOFN0PgYFnUEAAdofRGey5E1t2ObpxYO0DdCEiKX+k5k7S+t/TCR\nKEAYqeSD93aE5wqEEEgZgtBSQAfnaGTTq1a7fvxJIfctFEfy9JaUEsJLIbwJ1O7gGn/YaaD/Br41\nRL6hbg/v71pCg+5nQpfBnFMwFE1p+YP3ySjg6VE3JDz+t0O+h7723yyo3IwmVCSSqX3PYZ+/ho/3\nLItJT6goSOQhEbwmFBZUbj5oaaJDKPTNKKS00T7V0B6UNlpty6pQuL3/+fxl4/S4NItIk6gjG5B1\nKuaCHNv8kJSS4i45XHhK7ELVjX3P5nvFp7CmZhdZTg8nXlrMyzOW8uL0RQedm2FKBhbH2+UN7lnA\nU7d/B4CH3prN+/PXordRLwzrJvdfdwG/f+1zkEQ7Ou2wbkc5dzz7EU5N4wcThnPRKQPp3imbD/5w\nLY+9M5e5a7aDtGSNDbNZFEwSDOsJny3yMjy4HN++H/PRgKz9BcjW1Txh0Lchm14GrTeEFhJf122A\nWpR4TBlEVk0BWje4RW6yZhU0PozEAMcJyJpbienYFEVYZZBtoUPgE3D8NPF5zSZk9TVgbLUWUoUD\nlBzIfQuhJrZ6PBbxrSDyf+9cyJObPiUYWTBcWLmF93Yv5tlRN8aQeTKkaU4eHvFDakKNVAcbKfLk\n4VYdmNLEo7l4bfuXmFgVJB7Nxe39z+PJzTNoMhJXO9jhwjkPMSCz60EXRhWhcFHXETxTMrND47fG\niNye0f+/pPtospxeXij5gm2NEVu5ZqbSJGTpyE7BuBJEAWR53QxupcXdGjnOdM7oMgiABn+Qlz5d\nbCsb2xpup8Zpg3sdtLrjR+eezPTFGzCMllum26kxcdQAzhnZn7GDejJvzTYeemuOrVN9M/whHX9I\n58Xpi3j186Vcc94obpk0lodvmgTAo+/M4a05q+KOc2gqppQxNxK3U+Pn3x1/XLZxHy6ksQ+MPTZb\nguD/AJHzEtL3NrFE7gC1H8IxKHYsswb0raB2Rdb8klgSb3tiPzQ8iRThljb86LbSxMf5P4KMJETe\n+ATom7AWT7FUFY0Asu4eRO7fE497DOKY7+ysD/t5YtMnURIHCJhh1tfuZlb5WnTToMxXjU9vH+Hm\nONPpk1GAW7VKQkwpeXfnwmj0LYEG3c9fNk3nLyf9iLO7DMGruch3ZTAqtzeOg9w4fEaQ9XW7cR5E\nWjNo6ry3ezEuVUuadXYlGMetOJjYdXjMexO6DObOgZNwNZe7tILQQOkb3+Kc5nLwxG2XtIu4Nu+u\nSOoMryqCrrkZ3HzRWB644cKDjtc1L5NX77qCMYN64HZq5Gd5uenCMdxzpWVo7XU7mTh6IA/eePCx\nwPrsgmGD1z5fxvodLR6pTodmm+/WVIVrzj2ZE3sXku520q8onwdvuJCJo4/fMrXDQ7LviEBoxRYB\nqj0AJ+CwUhWtSNEMLsWsPA9ZMQZZfT2y8jzQV7Tj3PUJIqMkFGbuTT6k/yOiJB6FAaGvrRTOtwjH\nfES+4sD2GBefZujS5PktM3lkw0fo0sSUkoldh3PXoItxdKDV/rmSmTTaRN0hU2fxga08OCLWEKEm\n2MikuQ/bzqkZqlA4t+uJzNy3BiEEPj1o+x0sbarkhIyupKlO9gfqbK3lgnZli8B5hSfSqAeZVb4O\nl6IxrtMJeDUXihQEdd3+k40zQQbDMHlr7ip++8NzEl5PM/IyvXFpkGYowqrHHtSjgMvOGBbj/JMM\nvQvzePon3026z7hBPeneKYvdle1zWgqEdT5YsC5qcHzR6IG8NWcVRpt0lyklPzrvZH485fhUxDvS\nEGoBUi22UhEx32g3pFm2dcI5CvI/typWcCEUb3Qvs+k1aHiIllRIR5523dhrqOiAy34sxf4pswWJ\nfsNmkm3HJo75iLwq2JAwRVEWqKFRD0YdfGbsXc1jG6bZ7rvfX8s9K9/gjJn/y7lf3M9Tmz8laISZ\nVrbcdn8JfFm+Pu79HFc69wy5JGGkDBZBDMgs4rOz7uVvJ19PkSdximFrQzlezcWLo6eS6UhDaRX1\nKEkioBl7VzFl7iM8uuFj/rTuAybOeYCFlVtw+zygx1u6SR3kTnfcOMFIyV+9L8D2fQcoLa+21fcG\n6FWQS++uebYkbUa6Mueu2cak377E9//4Ko+/N4/q+iSPzB3A/1x9Hi6t/XnrDxes49I/vsaGneX0\nLcrnJ5ecilNTSXM68LgcuJ0aj9w0iQybpqIUEkNk/9USsMKDZejqAcdghPfaln2EQCi5MSQuzQZo\neBT7fPbBkAbe67FXDE2DtCuxyLzNMemJ0yoAuM/DXtxfIgNzDmGe/z0c8+WH8ys28csVr7V72dGp\naMw6+7e41RZLsIawn0u/+gu1IV80heJSNPqkd2FjfVnCsVUE747/JUWeXHY1VfHsls9ZUVNKjjOd\nU/NPYGb5asoD8VGiU9F4+7SfRwn8npVvMGv/uoRzTlOdPDv6RnKd6fxx7busrNmBgsBEtssAuhlu\n1cErw3/CFX99FXN0NShRzVnk9jTMDV7sfgxup4bX7cQXCCOR5GV4ePTmyQzoHr/gU13v484X/sOG\nXfvRdTNp27tDVcjyunn7dz86IhKu63aU8+x/vmbLnkqa/CFMaRLSk/99PC4HH/7hOvKzvFTVNbFg\n/Q6cmsrpQ3vZdoam0AJpVCAbn7NkYZVchPcGhPt8pOmD4GdIfY+V5w4tBILgHI/I/A1C7Ro/VnA+\nsvanEY3wDkAUQMZPUTzfx6y/D/zvtio1TAPXaaCNhKY/E3OTcJ6Nkvts8uszq5EVZ2AfzXdCdJp/\nzK2VfGvLD0/M6YEm1KSpjNYQCOrC/hgin1a2HJ8eiqlCCZo6G+qTm+gaSG5a/DyF7mxKGsoJmjoS\nSU2oie2N+20jZrfq4Ioep0ZJ3K+HmF+5Oel5FCHY76/ls72rWVe3GzPS1t9+Co+Mg6AkXMaQ3O6s\nnaVi5AXAKZFVDvCrCRdgAyE9phW97EA9Ux9/lxkP3IinjUdmbqaHl+/8AeXVDfzo4Tepqm8rYtSC\nsGFS7wvyxhcr+PGUU1mzfR//nrea2kY/Zw3vy4WnDOyQScOQngXRNEwgpDNj2Sbe/2oNG3dVWH8v\nG31a3TD5YMFabrpwDPlZXqaMG9zu8/1/hjQOIKsujlSo6GDsQtbehUzfhpJ+G6R9B1l9LYSWEyXC\n4Exk1VJk1kNWy7y+DbReiPSfg8hosaTqAETWH8B5CjK8HtKuBaPM6hrFBMULzrOg4X+Ji/RDC5D6\ntqSuQELJReLAlsjNWpC1INrX1CWNctBLQO2G0Hq17+KOII55Is90pHFr/3N5oeSLaGmdS9FQhILf\nsGn6UDXynOkx762v3ZPUvzMZqoINVAXt277blieqQqGzM5N/7ZjPJ3tXcl3vM+nkzkRt62LcBmHT\nQBUqH+xeEp3noTwnSazc/mNTJ/HzZz5iS1kVDlUhbBjcNGUMg3p04Y7nPo4hbU21bNWMNiSo6wZf\nrCxh8lh74ivIzWDMwGI+WbIpaVQe0g0WbthJfraXJ97/imBYR0pYXrKHd+at5pVfXd4hMm+G26lx\nybghXDJuCLsra3ny/a/4cu32uBx+SDfYub+mw+P/f4f0vRKJnlsTpB8an0V6fgTGbgitIJYETeuY\n2luJ5pjD1ciamyD7SWvFvYNfbNn0CtT+LHJsc5ou8hmbVdBwL/aD6hCYCektRC71Pcimf4C+BrQB\nCO/1oHYGw+4pwUSaNQglOZFLaSDrfwf+j0E4QepI53BE9jMIJT3psUcSxzyRA1zVazwnZBbxzs6v\nqQ35OLPLYIbnFHPb0pcJGOGo449bcfDTEybGlST2zuiCq0I7ZNnZ9sKQJrv8ljHF/kAdf938CWd3\nSe4m41YcnF04hPV1uw97foY0GZvfjxy3h1fvvoKd+2s4UN9E/26dommEv99xKX95dx7rd+4nOz2N\nPoW5fL1hZ9xYgbDO1xt2JCRygKkXjWHumm34AuGkZJ6bmcZf3/sqRuM7ENLZub+GaYs28L3TTzyM\nq7Ys3KZOGsuC9TviiNzt1BjeJ/5RP4WDIPg18RUdADqyYgwWddh9X+2OCUDD/SA7VsoLQHih9d+E\nX69Ez60G0qxo8dMNb0ZW/8AqMUSH8Dpk4GNIuxF8f8eyt2oNCVWXYGY9ipJ2fsLpyaZXwD8NCEXG\nBkIrkPW/R2T/+eDXd4TwrSBygFF5fRiVF/uY9PKYW3l+6yzW1e6iMC2b6/ucxamdTohun7lvDS9s\nncV+f90R0VrpKAJGmNnla1EU+4i8syuTH/Uez/eLx/DytjkoQmC0IUQVBVVR0A/SgepUVG7tdx75\n7szoez265NCjS2xEMahHAX//5WXR14s27mTJ5t221Sjz1pQSNoyEJYfdOmXz5j1X8cL0RazYWkZt\now9/SI9JcbidGif3786qrXtp23EfCOl8sbKE751+ImHDYO6qbSzbspvOORlcPHYQnbLaH9H0K8pn\n1IDuLNm0O3rD0CI5+gtHf1PSqscx1ELQ1xHPoEbkXwfL84xdgLfjxx0yJPjeQbovRDhPRjbc36YG\n3bBy7aHZkP4TaHyCuKcLAlB/N9J9BkLEFwoA4Hud+G7WEARmIOUDCHF01mG+NURuhz4ZXXhkxA9t\nt32wawmPb4rtdBSRLLEqVHqnd2ZnU1Wco9CRhhRw98ApPLjhQ8CKmgVwSbdR3DFwUnQx5dyCE3l1\n+5dxi5uaovD++DvxaC7uX/seX9gsmqZrLp4ddRMnZHU88hx9QrF1o7AtK5SU7qumf7dOCY8vys/i\nD9dYEUtNg49fvTiNdTvKcaiWoeidl55Bz4JcexErrGYkfyjM9Y+9za6KWvzBME5N5eVPl/Dk7Zdw\nUr+D63M047Gpk3l15jLe/2otwbDOhOF9uW3yuLg8fwoHh/DegAzOI7k0bEcGzLK0WI4qQsj6BxD5\n70Nopf0u+gaE911kaCGEvrLZQbHWARKZNidcvJXWE0iKyA8dpjR5puTzuLy4RDIkqzsvnDIVVSi8\ntG02r27/sl0pDYHVjakJq32/p7czOxorcaiWsbNTUWm0a0qScGbBYE7rPIC5+9fTpAc5Jb8vPdNj\nK0J6pHfiJydM5MnNn6IgEEJgSpP/Gfp9OkWi7AeGX8EzWz7nn6XzEEKgCEFhWi5/PemapCWOyaAo\nghO6d2LN9n1x2wwpyfImiERskJPh4e93XEZ5dQO1TX56F+TidGiYpiTT68YfDMfEdy6nxqXjh/HG\n7BXsKK+Oqh1abkAG97z0CZ8+cFO7xascmsqNE09pl3dnCrGQRiWy6SUIzQelAOG9ETLvj4hj6ZFK\nkfYkuF1YVc2tUxUKuCeBuQ+CC+hY/fhhQt9k/Vd4W1IfMVCt+SWKuGUjsuanSM9liIyfxUfmznGW\n8XPbv43a3VrgPUo4LCIXQtwHTMF6DqkArpVSHqSd6ptHQziQsNOztKkimkO/se/ZXN1rPNctfIbS\nxkqMNoYSLtWBioIuDfpmFPLwiB8CknTNjUdz0aQH2dawnzxXOuX+Wn6+/NWYCN+tOLi0x1iri1R1\nMKnbSUnnfVmPsUzoMpgFlZtRhcLpnQeQ7WypxbWs6s7nhr4T2FhXRrrDTd/0gsMukbr6nJP43Ssz\n4kwUBhV3oUtOx7+MBbkZMXrhiiJ4+iff5bYn36PBF0QIgW4Y3DZ5HCP7dePBN2fHSdYCNPpD7Nhf\nTe/CvEO7sBTaBWlUIKsmR6LLMLAFGVoKmfciOi8EYyey6V/gf4eD+2Oq4DoLgq37OUzwvwcZv7cI\nNTCjHeM0wx3Zt/n74cCqYW+yxj1YbVczmXp+CE1PE38zskSzhOdSZHA+8blygAbw/RMZXgO5/4z+\n3qQMRdI1bcd0I7LuP6qli4cbkT8qpfwdgBDip8D/ALcc9qwOE6VNFQnrrwvTYnPGLtXBM6Nv4n/X\nvMOiqpJoHtqpODBNkxv7nsXZhUNtI16v5uLEnGIAijy5PDD8cv68cRr7/LV4NCdX9jyNG/pM6NDc\nO7kzuaR7cnswt+pkRO6RK3E6e0Q/SsqqePXzpTg0Fd0w6VWQy2NTJx+xc/QqyGX6/TeypnQv9b4g\nw3t3JTMS7TsSNPqYUibclsKRg2x8HmQDcRUqDQ9C2iUIrS+kT0UGPkigNNgKQkRuCCqx3ZEBaHzI\nujFk3odsfAp8b2BPnK2hW+QvckErRqTfjHCOQkodWXeXVZkinJEnBoM4UpW1mAeuhMzfQ9Mz8dsx\nkI0vIXKeA8+l4Hs7Mk7bp/QghNdZ2ufOYZG/29MQamvmrYLrbKvD9SjisIhcyhgZNC+HVjV3RPHB\nriU8tOGjaCVLa7gVBzf3tVrR9/pq2OevoVd6Z3Jd6fxq0MVc9tXjmJFa1+bI+oWtsw4aSTfj9M4D\nOb3zQMKmjibUY66ZIBlumTSWKyeMYOPuCjpleb+RKFhRBMP7xKvgfe/0ofz53S9jngiEgKL8TLp3\nOn51vY8ZhOaTsONS3w6OAQi1EHLfQNb9DvT1tDSWtX2SUkHfbPM+EVGqMutfaCkWXTSvXxj2x6Bb\nUa/zJJSc56PvCqEhsv8SaUraglS7gv998L1KLA1JCC+zfEaFxz6nbZZb3aiZv8VMuxLqfgO6XU5d\nWqka5zCkNKHpJWy1WoKz2qWlfiRx2DlyIcSfgB8BdUDC8FMIMRWYClBcXHy4p7VFbagpIYmrQuHX\ng6cwOq8vP1/2Csuqt+NUVEKmwcXdTiZN0WybjkLS4MWtX3D34Clx2xKhI1ovxxIyvW5OGfDNfDbJ\ncMmpQ1iyaRfz1lpKdpqq4HJoR/SJIIUkUPLBsFERlDq0skcTjkGI/PeQMmRJQNT9zOrqlH7ABUIg\nsp9ENv7ZyofHwUCG1kL9PcQuojbn1RNVlukQ/AopgwjhQkojoluuWPXgWjerjEG7y6p/t0PoS7AR\nkwMnuMYjzTpk/e+tCB8dW6dnoYJq/T6k71USV+CEItdy9HjgoC36QohZQIHNpnullB+12u83gFtK\n+fuDnfRIOwQ14/Xt83hqy4yE25dc8AD/u+bfzCpfG2P64FYcZDk87A/aizKpCJ4YdR2j845DD8Zj\nCCVlVazeVkZ+VjqnDu6ZSqscJcjAHGTtz4lNczjAORol9x+Jj5NWtCuDCxFKNqRNsrolAzOQtXe3\nGc8iTPQSMOL7Fiwyt0tpNENFdF4G+oZIq39kbJGOyH4a4RyGaTZBxYjEF5rxa2h4otW8HKBkQd7H\nUHO91YmaMHevgVqMyP8EIRTMijMTqytqQ1Dy3088j8PAIbfoSykPLotn4V/AJ8BBifybws6mqoTb\nPKqLoBFmZvmauJrygBlGDyU27TWQPF8yK0Xk3zD6FeXTryi5LV0KRx7CPQGZ8XNo+KsVdcowOEda\nAlnJjhMCnKPi8sHCfQEyvRQan410ZIbBORoyHoKqRC5KYSAHOGB3JtAGASGrS7R1Pbj0IauvQKq9\nLWOLhHCgeK9Han2s6hyjElxnWNU5RinS2EU8iTenRlRLjjfzT4jmLm2ZmC/IuDvJPL4ZHG7VSj8p\nZUnk5RRg0+FP6dAxJLs7n+xdiW6TIplcNNLSSknyBJLMDGJXkptECil826F4r0N6LrciZiXfVviq\nQ+Ol34r0XA3GdqThh8aHoWp0kiNM7EncYTn3ZNwJ/ulgW8Sgg7EFjBKsFI3NPp7LARCuMxCuM2I2\nyeAc4uRCrS3gPBOR8zeEaNOL4BwDwS/iz6UUIZzJrvObweHK2D4khFgnhFgDnAf87AjM6ZBxfuEw\n8lzpcVJWBe5s7hg4iQzNTYE7fvFMIBiR0wuXYpdDs9Ar/dtl/ZRCCh2FEGkIx4mHTeLR8ZR0ZLgU\naq+OdIl2VAYOIGxFVzXXIxseInmDUrPUnAOrakaz/jnPRCSLkrX+JAzhQosAw9JUMeut/DwgMu6y\nqmmieXcVq+zwwf9KkcMxL2PbURwINvD0ls/5cv8GVCGYVDSSm/udiyviCLTkwFbuXP46IVPHRKIJ\n1ZJ/HXsbB4IN/HrVG9SEYhX9XIqDJ0++9oiW/KWQwvEOaVQiK88kad45WqZ4JHWQnJDzMkLWgtYf\nofVEGuWWDZ1RCo6TEWmXREWtpJTIyrPBtLOxS7N0y4NzrLy8SIP0HyM814K539JaCa8Erbcl86t9\ns+nXRDny447I24NtDeX8c8dX7Gis5MTsHlzZ6zS6uLMA60N9Z+dCXtv+JdXhJnqnd+ZnAy5M5cdT\n+H+J5vblkAYAABtRSURBVAVNjH3gGBqVaJVGJbL+/kh6QYD7PETmvYhWVS7S9y9k/Z9ISNKe68Ax\nDOrvBZlYDrnjcCK6LIt2YcrQamTNNVYVDiEgDZQsRN4HCNUqszXrHgD/KzZjKVg3m9Y3ozTIuBvF\ne6XN/t8sUkSeQgopdAjSqEBWXw3mfkBYROg+FzL/BFUTwayghaQ1S4s7/xNExD1LNv0DmdAVSED6\nrxDeq5AV4zpuOJEMrapGpJTIqvPB2NF2J3BdgHCdBkqmlVipuzPe3DkRlE4onRccuTm3E99aY4kU\nUkjhvwNZe0dEtbBV8UBgFuCwTBdiCFoHsxKCX4LbMs/GNQEa/oI9kUtofAQZ2oDIecG6YRwpn0yR\njpQmsuk5aHwRq52/LXQITkOGvsCKujXLNFovpSUPn0bCzlPz2Cp+OOY9O1NIIYWjD2lWW7nfOHIN\nQGC2feQq/cjAF5h1d2PW/QaM/eC5AUsvJQFC05BmI2T/X3tnHh1ZXeXxz321p7Knu1mEplU2WwdQ\nFsUFFRAUEWQUhUFFVjcEQURHHHGao446IwyIDjAioiCOw+KGGyrDMoMKDYps2iLQgtjQ6SSdVKW2\nd+eP38ta71VVkkoqIfdzTk53vfq9927qdN936/7u/d4vM9HlORc8iO/gJACGLyXciU+1GR0BHXQP\novazIP5CSOyBdJ4LsTXh58V2aoKtzcMcuWEY1WiRSPcguHb3KjwY/R7kb4D89eiWU4ERpO8aiNUo\nFBg6H4mvhsRLgntGV481RPr1kLuC+jou09A8ktwTb8UNeH3/jbS9Den4GNUPonTtKpgWYI7cMIxq\nvG1c634VCSdJK51MnUA/1mI/1rauQD4QoUqCV6N813/CqS+W7sSVD85lRoAPg5+Y1XxQELTwM/zB\nT+KPXIn6A0j6QKTnS64hSbIQX+vqysfSR4sEy5EbhlGFiED359EtJwfVHiVctUcP0vFBaH+vE9Aq\n3hKcoUTNztTRHwdCWlE0IEc7E3SIWcWoOgIjV+Mi+bRLz/Reg6QOQFIHNM++ecAcuWEYoUhyX1jx\nIzR3rdNHib8EUHTgIy5aL2+YtDqq+i3ulA6bWl5YB81B4hVQWk90emWsaWgU5wbHHkRj60dBR9HB\njyIrbpx3k+eKOXLDWGao349uvQgKP3OjyDLHItkTxssGJyOx7ZGOs1DNo5uPhvJGZpx7rjxKdLqk\nCyec2kwySNubUT0Chi+MUGIs4YS8XgfeymCA8lD1svIfUH8r4i3ctJ/ZYDlyw1hGqD+CPnOUm/bj\nPw2Vv8DwxYH6YY3zct+B8uPM2Iln3wNSY4h2+2nUrGqZDZJBE3tD4Rbw+3HRd5iry7mOzfx11K5u\naY6bVD+Hlje4Kp0mY47cMJYJqj46tA78p5ha2z0KhVvRKamSaYz+lNkNYi5C+ojotytPBtUqc6xU\nmYwOw+Yj3TcOCrjoO3y4uPscCoTXsMcg+VLEy4a8NwNzVPGH/g3d9DJ089Hopv3xh9aN67Y0A0ut\nGMYyQYf+0ZUHhuWzxXOjzKK0QrzZTGpKI14fSg1d+fzXcBG54HLWk22b7QZoMWLQciMkccOYY+D1\nIl2fq3uGlu5Hh7/i9MwTe7hxdJMkdTX3dchdhcu7Bwfz16HSiXTU/ibUKObIDWMZoOU/Qf4manZP\nxqrH8I0hbcehxdsmBjo0gniQORzy0cNeHLOJ9OeJ5L5I+hCI7QDJlyNSe7iJFu5At7wPF9Wr0zYv\n/MRVuyTWukUj/0lVSkrzkLsKbT+jKWqJlloxjOVA8W5q/ndX0MKvXUdnCJLaH7Kn4Ua6tQcNQb24\nlMh0R9QGXh/Sc7kT0crUSK0sOlJI27FI6lWIxJxWiz/sZnSGoEOfwj2IxkJt3w27GPw4Wgk2Wf0t\n4bfSEZql+mgRuWEsB7wVwfSfqAU5GPkPlwbouw6J7zj+jvrDoMNumk7b0VC8x6VaEnu5wREj33Tl\nid5qKN8HlY3grQF1g1yk8mc0eSAUf7EQv+ncSEyMivNHroXhC9w0IGlD29+HtJ04HkGr5t1mcRjl\nB9CnD0FT+0N8t0CPfRqxNYg0Z2/AHLlhLAdSr3KlhjpCtDcvgJbQwfNQ8lB6IFhbBOLgdSOd65D0\ngROnxJ+PdJ2HFtej/e9mPE1Svtu16Me2hcqmGvdcTCSQtrcC4OdugK2fZTwlokOw9SKUOJI9Plif\nxH0jiUpXFaDwf27MHWnG0y8ApJHOf2qa5ZZaMYxlgEgC6f1GIPaUidBKAfChdDuU7sY5sVF3jCL4\nm9CBD6Gl6uhSt36W6lx3IRi0nA95bxHSdcG4PjnDF1FdapmH4S+PvxKJQdvbqF0+WYDiHa7FP/5C\nkOdA8gCk9xtOQrdJmCM3jGWCxHdGVvwEWXE99FzF7L6QF9GR/6w+XGrpuN4mIJD7GloKRhCHNhEB\nugXViby2dJwD6UOprdzoQ3l9UNWyGum5FEnu2TTLwRy5YSwrRASJPx8vuYdTCZyxdKwP5ccA0NID\n+FsvwN96EXhdTbd1YVEorUf7j8GvPEl0Kig1pQNWJInX/QVk1a2QeBnVG7+TyUPpt64JqclYjtww\nlinSuQ6tPAmlB4ON0CIT6oVRJCC5H/7QFyD3jWD9WDwYp7mzNxcadRubTx+Mc8hhzjz8wSdeL3St\nQze/JSjRjPgcNIcWfo6kD26SzQ5z5IaxTBGvHem7Fi09BJXH0NiusOVE8J+IOMNzw4eTr4CB05jI\ne4+V5sXcmshGnijnOJlY8DPbhp5mUONhlFwbelj9fijeCW3Hu6qd0j1QeYLqjdAYSPO/vVhqxTCW\nOZLYHUkfipd4LtJzCdWbdwLSC+k3In03BBuhYY42AamDgFTUneob462E9tOZWcv+WGdoI+vmgjhH\nPQ0d/QW66TXo0Gdh5DIY/TGkDonQmJmojGkmFpEbhjGOJNbCqlvR3PegsgGS+yDpw6bkhTUy8hZX\nalf6fTDTcrriYb2W+zRkT0CkHSUecn4UBWA74Mnwt2M7Q2xHJH0wmvs2lH/X4HWn40HuGpiUFlF/\nGB04k6qqnNxVkDwAiv8HqOty1TJ0rkOiZBDmgDlywzCmIF430v6u6PczhwWVK9NTEGVIHYRk3oQO\nX+ZEq/xcMKi5lkBUHPAg8xak7fggJTETnRUFIqpMwD2QKo+i/hB0nOXSQuP7AbVSQVUXguKvpsra\nFm8LnPT0tUUo3uymCpGGzo8iqUPmLMAVhaVWDMOYERLfGTrOxKVQkkykNWKw+Y3o6G14nR/DW/lz\niK8hUlkw9kJoOwGyH4C+65G2t6CDZ6ODZ0F8V2aWCqmXey9D+W4YOh/6boLsyZB6LbR/EHqvDxxu\nI/ioP2nwdETr/sT7wWDn/E3z5sTBInLDMGaBlz0BP/U6Jxc7rjQYqPsN/ROa2A1J7O6m0JfuoTrq\nrUDlfsg9AKRg5BJ0fEqPDyRBEs1vCK08gfhPVakOau/VTuK3dI/b0PV2gMojVH/rqMAzr8bv/jJe\n+kBIvRK0XgqoAsXbUS2HDu9oBhaRG4YxK6SykfC0RBHNXYtqMZjVWStqVVx+uYyL3MfWFkFHab6L\nKqCVjVVHJbEWr+9aZJuH8La5F+m9Erw+CJXg9WHg/Whls5tH2lBqZn4lCsyRG4YxO3SQ8GoRH/zN\nbnxa+U9zuEEl4vphNLpOoRKdTx8TxJLYCmTFj4h2kT468m0Y+gyN1c5n5i0aB3PkhmHMlsTeEQMc\nEpDYEx39PjMeDTcdL1ojfQrxtYwPhahH8Y6GLileOzUfEOWgkaohSq75ap5oiiMXkQ+LiIrIimZc\nzzCMxY/EVkL2FJdTnkLZDT2uRDUWzQCvj/rRtgfZE9yfxOuvlxkMUk6+NPqeqf2oXY0zmRhoofH7\nzpA5O3IR2RE4BHh87uYYhtFqVBXN/wB/8zH4zxyBP3wp6ocPJ/Y6zoCuC5iaSw6kbytPMnMtl2mU\nN1A7v+xBx/kwdB4u116ssz6DtB3b8O2l6zOENjjFd4PMseBtT0Nu1Ot0G7/zRDMi8guAc1gagsOG\nYdRBh85DB8+F0nooPwTDX0L73+42L0MQJCQqBygFzivpZHOlHeiCzLtcpyie+zO2M+EOP6hciSKx\nL9J3PVBpYASd566XPQlJvaLO2gkktg2svANSR4D0gKyC9jORvu/geXGk53LwtmPqtwCPidLJJEgG\n6f63pox0i2JO2XcRORJ4QlV/W89IETkVOBVg9erVc7mtYRjzhJYfh/wNuG7JMQpuEs7oDyFzVMhZ\nUeV3ColdkN7LnQ6JdEHqlYgkoesTE6u0hD79mqAbdFI8KDHIHA25K6fZA3irkd5vgg7D8HHUrxyJ\nQfxFUPwV/taLkew7EK+nzjnBrWKd0POvEZddGfIQCWxJHwnxNUjmLUhs24buNVvqOnIRuRkIs+Jc\n4OO4tEpdVPUy4DKAffbZx6J3w1gkaHkjOnwhFP8X5xJCnKLm0MLtSJgjT+7v2s+nI21I+k1IbLuI\nB0CwTBLQezW65QNQeRzwwOtEur8IiT3Q0m/cNwPN4YZixJGeixAR/Nx3QRvJU5egfA9OrvZ3aP4a\n6LvRRdxzYfRmpk7+Gf+tkORLZpTGmQt1HbmqhuotisjfAc8FxqLxHYD1IrKfqj7VVCsNw5gXtPIU\nuvkoF9nWjGrjbmxbCOJ1oJ3nw9AncJt/FZC00xpJvaYhOyS+Bln5Q7S8EShC7HkTqYjea9xDpnQP\neNtA+rCgooQgh97o9KExZ1sAv4IOX4J0rWvw3OAK/jA68hXIfx8Q17mqYffPo5UnGi6KnCuzTq2o\n6n3AqrHXIvIosI+qPtMEuwzDWAB05IogNVAvNRFHMm+PfNdrOxJN7oXmvwu6FUkdBMmXzjgvPHno\n8/gx8VwHZchoNEm8CM23Abmq92pThsItoe9o5Rmn8CjdTjQsKDFUraD9/wDlRxhXfyxOSweNG9aG\nJPaaoU2zx1r0DWM5U/wN4TnuoJRPEkAC6f48Eq+9tyXxnZCO0+fByBpk3ujma/oFwksBE0Tm8L1O\nVDVoxY9BbCd0+GInRTu2ySod0HslEn+ec/yVx5kq4VvCfVaT75Nym7wNfhtpBk1z5Kq6plnXMgxj\ngYjv5BpbqiLyBPRcjnidEN91XrsSAdQfQXNfh9GbXDTbdhykj6gb0YtkoO+/0f5TofJA+KLEywIN\n9ckOPQPJA4NN1gFAXYmgP4iTBwictebQLafAipvR0n1Bnr7KCldvXtno8vWZI5DsKfP+mU3GInLD\nWMZI9hR09BdMzTMnIbkvXuplC2KDagHtfxuUH2esOkUHH4biXUjX+XXPl9gq1GsLD8glBdnjYCQP\npYcDIa4CZI5wmuGTUzJ+WK5bndxA+QEk9hyUDFXdqpJCMn+PZA5v8DduPtaibxjLGEm8EOn+d/BW\n4RpfEpA6EOm+aOGMGP1h0AU6ucQwD/kbXTlkI8RWEd7RWUFiq/H6voP0XYd0X4isvAWJ70rjOuSe\nk6NNvwFksmxv8J5kIP26Bq81P1hEbhjLHEm/FlK3gv80SHaiImSB0MIdESkLdfrk8d2RtrciiT0i\nryFtx6OjP2Nq+kScHG18d/cqsQuwCwC+/zcar3apQGIPRNLQ9y104Gwo/9G9FX9B0OwTNd5uYTBH\nbhiGqwyZa031bIlth3NF02vRi1C6N6j7vhHtOAMve1LoJbT8J0KrR9JvCs2zS2JvVNpCHiCC6zIt\nMN4N2rHOOXHcUA1ZcaMbtow03FQ031hqxTCMliKZt1E7pvSBUdh6IVrZHL5k+CKqHwQK+W+Er08d\n4PRSJk8hkgwkXwmd50HqYMi8Hen7Nl7bkdU2e72LxomDReSGYSwAqgV05GuQvx5QyByFZE9EJI3E\nV6Ndn4HBs6mZt5a4G2Yctqnobwo/x38aVa2KykVi0HsVOvJNGL0BcHIA0naMqzaZh0n384k5csMw\n5hVVRfvfDaX7Gc9LD38FLdwCvde6tE7uGhrafJS28OOx1VB5NOT4DpEljCIppP0kaK9O12h5Azp8\nCZTuc12m7e9HkgvX4DNTzJEbhhGK6ijkf4AWb4fY9kjmmLpNQaEU7wxq1SdvLhag/Aco3oFfehxK\ndzVwIS+0uxNAOj6KDpw57R5paD+naq1qxTX2SAcSqx6hoKX7XQenFgAfKo+j/XdCz8VI6tUN2Lnw\nmCM3DKMK9YfRzW8NxqLlgYRLQ/R8CUkd0Ng1yo86XZLRW8KrUjSHFu+GkSvrXEmc0+253Cknhq1I\nHwTd/44OfxHKj7pyxLaTkPShU285erOT6KUAWkaTL3EliV7vxJqt/xKiaDjqhjOvuHle5Whni212\nGoZRhY5c4aRrx5tfSsAoOniOi2jrnV/6I7r5zZD/LuiWiFUx14RTzzFKBln1v0jyxbWXpV+LtJ/h\nmoD8ftj6L+gzh6HlxwKbHkQHznL2aA4oQvEutP+UqRcq/S78BpUnG9A9bw3myA3DqGb0x0zVFAnQ\n0UA0qja69fMNiHFVYPRHoFF65uDSKYdERuJT7ll+JHDUQ66Bh1Go/BntfyeqPpq7kurfqQzlDWjp\njxOHJKIaRZLuIbEIMUduGEY1XtjEH5yWSOg0oGmU1tPY0LAhiD+f8AlBCfB6kY4PN3Ad0Ny1VAtk\n+aBbofhrKP+F0AeLxMH/28Tr7CnA9N8xDZljxpUQFxvmyA3DqELa3hHisD2IPw+J71D/ApNyzjXR\nvFMJTO6HkwjIAHGIr4WOjyArftL48IfKU0QNQ9bKU+APRdhQhMTa8ZfS9g+QPR5IB+PpkpA5HOk4\nuzE7WoBtdhqGUU36zVBcD/kbXcQKIN1I9yWhy7XyNOggxHZyE3+yp8DQp6kSmJqOZJDEWqTjTLTy\nNydQFX/+rFreJfVqtPg/1XlsLTm53rDyROLQ9s4pm50ignSchWbf4/YJYtsiXteM7VlIzJEbhlGF\niCBd56PZU12bvLcSkvu5mu9JqL8FHfgQFO8OHH4c7TwPyRyNVp6Eka8GioNFXAKgxETUHAevB1IH\nunvGtqmSCVAtQ+E2l/pI7IkkXhBtdOZwyF0xRUXRCVodDfnvUDX3E0DSSMdHwj8DLwvebnU+qcWB\nOXLDMCKR+I4QMrVnDN3yfij9FihPaHgPnguxHfE6PoRmT3Y127FtQSuuhK/wc0AgdRDS+UkXwYdd\nu7wxqOceDuZyKpp8KdLzH6Fa3yIp6P0vNHd1oGueRbLvQJMHRbfqa3FRlhPOFMuRG4YxK7T8WNCt\nOV3jpODKFwHx2l3qxOsFybqNTW+V+4nvAoHSoqqipd+7Ou+KG/mrA2c4RcaxChQKULwVffpwNCLf\nLV4Wr/1UvBU34vVdjaTfgOclIbZz+C+R2HPuH8QiwCJywzBmh78pSJtMl4NVV3M9+YhW0P7jgmHJ\nQYpj5DK0eDvadQkMnOhSIuKBFtH0G6D8MKFVJv4j6MDpSO+VDZsqXZ9C+0/ClR/6QMwNhOg8t+Fr\nLGbMkRuGMTviu0+kU6aQhNQrph4q3AqVPzM1T11wznrg5MDBlycqFkdvomb5YvFutPJXJLZdQ6ZK\ncl83Em7kMicNkPg7N44tvqah8xc75sgNw5gV4nWg7e+B4cuZqE6Jg9eBZI+fsjZy3qUGzryqbLBE\n+MSfsZsnXNqlQUfuTtkV6f7XhtcvJcyRG4Yxa7z209D4LujIV8HfAskDkPb3TinnA5DY9ihtTJmR\nCbhGoKjOTgVihNaGayU6770MMUduGMackPShVeJUVaTfAFs/BypMpEwEJA2aBAbDz0vsE1TFFCbO\nkwxkT0e8CEnbZYhVrRiGMe+Il0V6r4H4rrgoPOnmXfZ9C9pPjj4xthJZ+VPIHOs0xxN7I11fxAvR\nEF/OWERuGMaCIIldkBXfd12gyIQWePYEdPhSYHjaGRkkczQS2xbp+tTCGrvEsIjcMIwFRWIrpwx0\nEEkivZc7XRPJ4vRWUtD2LiS1f8vsXEpYRG4YRsuR5N6w6g4Y/aXr5Ey+vDFxLgMwR24YxiJBJAOZ\nw1ptxpLEUiuGYRhLnDk5chH5lIg8ISL3Bj/2ODUMw1hgmpFauUBVn53tUoZhGEsAS60YhmEscZrh\nyE8Tkd+JyBUiUVNLDcMwjPlCVGsPSBWRm4FtQ946F7gTeAbXO3s+sJ2qnhhxnVOBU4OXuwEPz9Lm\nhWQF7vdbapjdC4vZvbAsZ7t3UtWV0w/WdeSNIiJrgB+o6ouacsFFgIjcpar7tNqOmWJ2Lyxm98Ji\ndlcz16qVyRqSRwG/n5s5hmEYxkyZa9XK50VkL1xq5VHgPXO2yDAMw5gRc3LkqvrOZhmySLms1QbM\nErN7YTG7FxazexpNy5EbhmEYrcHqyA3DMJY45sgNwzCWOObI6yAi5wcNT/eKyE9FZPtW29QIIvIF\nEXkosP0GEelutU2NICJHi8j9IuKLyKIuMROR14vIwyKyQUQ+1mp7GiVo3tskIkumykxEdhSRX4rI\nA8G/jzNabVMjiEhaRH4tIr8N7P7nebmP5chrIyKdqjoU/P10YK2qvrfFZtVFRA4BfqGqZRH5HICq\nfrTFZtVFRF4A+MClwNmqeleLTQpFRGLAH4DXAX8BfgMcq6oPtNSwBhCRA3DjeK5aKn0fQanzdqq6\nXkQ6gLuBNy/2z1tEBMiq6rCIJIDbgTNU9c5m3sci8jqMOfGALBOTYxc1qvpTVS0HL+8EloRKv6o+\nqKpLoet3P2CDqj6iqkXgWuDIFtvUEKp6K9Dfajtmgqr+VVXXB3/fCjwIPKe1VtVHHWMz7BLBT9N9\niDnyBhCRT4vIRuA44JOttmcWnAj8qNVGPMt4DrBx0uu/sAQcy7OBoIv8xcCvWmtJY4hITETuBTYB\nP1PVptttjhynJyMivw/5ORJAVc9V1R2Bq4HTWmvtBPXsDtacC5Rxti8KGrHbMMIQkXbgOuBD074t\nL1pUtaKqe+G+Fe8nIk1PZ9moN0BVD25w6dXATcB582hOw9SzW0TeDRwOHKSLaDNkBp/3YuYJYMdJ\nr3cIjhnzRJBjvg64WlWvb7U9M0VVB0Tkl8DrabKciUXkdRCRXSa9PBJ4qFW2zAQReT1wDnCEquZa\nbc+zkN8Au4jIc0UkCRwDfK/FNj1rCTYNvwo8qKpfbLU9jSIiK8cqxkQkg9scb7oPsaqVOojIdTjZ\nXR94DHivqi76yEtENgApYHNw6M4lUm1zFHAxsBIYAO5V1UNba1U4wWjDC4EYcIWqfrrFJjWEiHwL\neA1OVvVvwHmq+tWWGlUHEXklcBtwH+7/IsDHVfWm1llVHxHZA/g67t+IB/yXqq5r+n3MkRuGYSxt\nLLViGIaxxDFHbhiGscQxR24YhrHEMUduGIaxxDFHbhiGscQxR24YhrHEMUduGIaxxPl/F4ybXPNn\n9+QAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3gU1frHP2dmWzoJCYHQQu8IiDRFARv23nuXa7l67T+73qtiL9eOvVx7B0VFQJDepPdeEtLL9p05vz82LAm7m2TDAgmcz/PkIZk5c86ZTfjOmfe8RUgpUSgUCkXTRTvQE1AoFArF3qGEXKFQKJo4SsgVCoWiiaOEXKFQKJo4SsgVCoWiiWM5EINmZmbK3NzcAzG0QqFQNFnmz59fKKXM2vP4ARHy3Nxc5s2bdyCGVigUiiaLEGJTpOPKtKJQKBRNHCXkCoVC0cRRQq5QKBRNHCXkCoVC0cRRQq5QNCE8ho9FJRtZV5GPypOk2MUB8VpRKBSx8/3WuTy/4ic0NAxMchLSeeHwK2iVkB6xfbG3kjK/i7aJzbFo+n6erWJ/ooRcodgHmNJkcelmSryV9G7WjixH6l71t6R0M88t/wmP6Q8d21hZwC1z3+PL4bcjhAgdr/C7eeDvz5hfvB5d6FiExp09TuOk1v33ag6KxosScoUizmx3lXDT3Hco8VUCgoA0OL/dUG7pNrqG4MbCF5tm4jUDNY6ZSAq85aws306PtNah43cv/ITFJZvwSwMwAHhy2XfkJGZwWHr7ht6WohGjbOQKRZy5c8GH7HCX4DJ8uAwvPjPA11tmMTl/WYP7LPJWIAm3iWtCUOZ3YUoTnxlgu6uEpaWbq0R8N17Tz0cb/mzw+IrGjVqRKxRxZJOzkC2uYsw9RNdt+Ll/0Wdc03kkV3UaiS5iW0MNb9GdJaVb8FYzrQD4jACzCldz78JP8Bh+mttTIl4vgTx3aUxjKpoOakWuUMQRV8AbVaQNTD5c/ycvrBgfc79ntDmCFo5U7NrutZdDt9I9rTXfbJ6Dy/CFTC17mmAArEJnUPNO9R7PlCYzC1bzworxvL9uCvmespjnrNh/qBW5QhFHOqdko9ViB/eYfr7bOpcbuxxPstVR734TLXY+HHYzX2+exeT85aTbEjmjzRE88PdnEYVbIEKmGF1oJFnsXNxheL3GCpgGt8//gMWlm3EbPqyazrvrJnN9l+PY5ioGYHROP2Vvb0QoIVco4ohVs3B3j9N4eMlXEW3aABY08jyldLa2jKnvJIudyzsew+UdjwGCZhwtyuo/zZpAm8TmFPsqGZrZlas7jSQzitllT37ZvojFpZtwG0Ezjt808GPw8qqfgeBDYvz2BZzTdjD/7H5yTPeg2DcoIVco4oTH8PP8ip/4cdv8qCIOwY3HlgnN9nq8bEdqxKAgAfRNb8+zAy5rUL8Tti8KiXgkJBKP4eerzbM4tfXhdErJbtA4ivihhFyhiBMP/v0ZswrXYEiz1nYp1gSSLfUzqywq2chba35nbUU+ze3JXJo7nBNz+rKoZBNF3krOaDOQ77fOq+FfbtesXNf52Abfh7WewUMBaTK9YKUS8kaAEnKFIg7ku0uZWbgGXwR79Z7UNzho4va/eXTxlwQIPhhK/U4eXfoVTy7/FovQAYHfDNAzrQ15nlJKfE66peZwW/eT6Zaa0+B7ObPNQBaVbMRt+GptpwsNh2Zt8DiK+LHXQi6EcAB/Avaq/r6SUj68t/0qFE2Jbe4SbJqlTiF3aFZObz2wzv4MafLM8h9CIl4dn2ngY7ef+Kry7dzX+0xOyolP5OaI7F6cULiaCdsXYphmmCvlLgQwqmXvuIwJIKVkfWU+PtOgS0pLlVYgBuKxIvcCo6SUlUIIKzBdCPGzlHJWHPpWKJoEuUlZdYq4ADomZ3N2u0F19pfnLq1zRbwLj+nni00z4ybkQgjaJ2WCFFFFHOC27ifHnHogYBroQguLcF1Xkc+dCz6iyFcBEiyazmN9z+eoFt0bdA+HGnst5DK421JZ9aO16kulZVMcUmTYkzklZwA/b19Yw15dHQlschZQGfCQbkuutb9Ua0KtIronrkB00ZdSsqxsK4tKNpJhS2Zkdi8SLLawdjMKVvHKql/Y7CwMiwzdE4dmJd2aVO/5Tc5byosrJ5DnKSXFmsCVHY/hktzhCBE0D42ZM45Sv3P3Baaffy34kH92O4lL6uk2eSgTFxu5EEIH5gOdgVellLMjtLkeuB6gXbt28RhWoWhU3N3rdNokZvDZphmU+V0ETCNMjAPS4KdtC7isw9EAlPpcbHEVkpOQXiMqM8WawFFZ3Zm6c3md49o0C8e36hPxXMA0uGfhJ8wtXkfANLFpOs+t+JHXBl1bw44+o2AV9yz8NCxyNBoe08+Di7/g9/ylPND7bL7ePJvvts4lYBoc16ovV3UcEfKTn1mwmocWfxnqu9zv5q01k/AaAa7pPIoZBavxRRn31dUT6ZnWhv4ZHeo1r0OVuER2SikNKWU/oA0wSAgRZjiTUr4lpRwopRyYlRVWBFqhaPLoQuOyjkczfuS9/Kv7Kdi08HWS1wywxVmEKU2eXv4Dp055in/Oe48zpj7DA4s+w1/NPPNI3/Po26zmokdDoAsNS5X/uEO30iohnQtzj4w4px+2zmNu0To8hp+ANHAZPioCHu5e+HHIdVFKyXMrfqq3iO/CLw2m7VzBhdNf5K21k9jiKmKHp5RPN0znipmvhu7ljTW/hfXtMf18tGEaAdOgxOckYEb29AlIk082Tq91HpV+DzMLVrO0dMshm6M9rl4rUspSIcRkYDSwNJ59KxRNiZ5pbSIeT9Bt9EvP5ZMN0/lp63x8ZiBkW5+6czmvrPqFf/U4FQgGAI0bciObnYVMyltCgm7jyKygzfjbLbPZ4S5lSFZXTmx1GA49svfID9vmRzT1lPicbHDuJEm3c+u899niKmrQfXrNAHl7hO8bmGxxFXH/os94esClUfsOSIOKgJt+6e1r9buvnh7AlCZzitaxtHQzmfZUyv0u3l47CYumY0pJM1sSrwy8inZJmQ26n6ZKPLxWsgB/lYgnAMcDY/d6ZgpFE6Z7Wmv6ZeSysHhjaDVqFTqZ9hSObdmbs/58NkxgvWaA77bM5bbuJ9eI2GyXlMlVnUbWaHtrPSMqzSg+7X7D4NK/XiFQh8/73jBl53KeWvodHZJbsKR0c9h5u2Yh1ZpIui2Z41r24ecdi8LaWDWdIc274DF8vLtuMp9smB6y39uEjq/q+11pCjxuP7fMe4/vjr6zwSmDmyLxMK20AiYLIRYDc4HfpJQ/xaFfhaJJ89yAy7i60whaJaSTZU/hnHaDeW/oP7DrVir87ojXeM1AXMX15Jz+2CP4ehuY+1TEd/Hd1rkMy+wSNgeHZuXazseGEow93PdcTmjZF43d4msRGimWBC7IHcYNs9/m/fVTa2zC+iJsyEokxd5KPtowjUJvxT66q8aHOBA2pYEDB8p58+bt93EVisbCmDnjmF+8Pux4blIWXwy/vcaxgGkwq3ANeZ5SeqS2plVCM7a6immdmBE1be0u/GaAm+e8y4rybXhMPxa0iL7pDUUTggTNhtPwRm3TPTWHm7uO5qVVE9hYWUCmPYVrOo/k9DZHhLWdtnMln2z4kyKfk2GZXbm849GsLN/OPQs/qVew1S50NDQhuKD9sL0q6NHYEELMl1KGBSKoyE6F4gBwe/dTuG72m/gMPwYSDYFNs3BPzzNqtMt3l3Ld7Lco97sxpEFAmpjSJEG3E5AGo7J781Cfc9jkLOS9dZNZWb6djsktuLrTSLqntWZZ2VYKfRUh8059RNwqdDTAW4cLIoBNWHj9iGu5YtZrUe3cBZ5yBmV25pPMW+vsb3iL7gzfw3d8WemWmEQcgm8choTPNv1Fr2ZtOLZlZK+egwUl5ArFAaBrais+HnYLH6yfyoryrXRIzubKjsfQOaVmRsQHF3/BTk9ZmBujq2oFPDl/GUIE//UaASSSLa4iZhWu4b7eZ/Hksm/x1JIAa0/smoUsRyr39zqbuxZ+jCklpjSj+sZ7TT9vrZvEvT3P5Mnl30Zs0ze9PTvcJfywdR47PeUMat6ZUS17YY3g1ROJFo60es9/TwLS5KMN0w56IVemFYWikVLud3PSH0/UGZyjETkCM9WSgMvw1mkL1xFYdQvdU1tzdIsenNV2EIm6jXlF65iwYxF2zUql38OveX9H7WNARgf6p7fnvXVTQ3MRBL10but+Cs+v+AlDmvilgVXoWDWdI7O6c1qbw3EFvDh0K0c07xQm7svLtvL4kq9ZV5lf6z3URpY9hf/0u4hPN0wn31PG0KyuXNh+GM1s9Q9oaixEM60oIVcoGiklvkpOnTy2TiHfG3Q0RmT35K6ep5NhD0ab+swAt817n2VlW/GbBjbNglVolAUib9BCMCjpxFaH0S01h0l5S9jhLqVzSjaDMrrw9rpJVNRyrYaGXbdgERovHH4lfdODvvN57lIumP5ivVMVRKNrcis2uwpDbxU2oZNqS+STI2+pM8K2sRFNyFWpN4WikZJuS6ZtPfyhY63/uYtE3cafxz/Ck/0vDok4wP82/MWSqupAwSAib60iDkHxH79tAf9d/QtSSrqn5jC3aB2vrZ1Yq4gDmJi4qwKVbpv/Pt4qU9CXm2fiN8MfYgJqeLfUxerKHTVMQz5pUOZ38fGGafXuo7GjhPwQQUpJ/qYC/vpuNs9c9V8eO/85fv/4T/y+2KL5FPuPUp+TVGtC1POC4Er4pFb9sIvYt7tcho9Tp4xlcUlNH+8fts2LWD6uLsyqghOLSzczrWAlXjMQk30eglkfZxetBWBtRR6BCG8jDs0aNXxIQ6DXQ+T9psFfBatimltjRm12HgKsXbSBx897jh3r86luSZv103y+/+/PPDf1MWx2lVe6MSGl5Oa577J+D9uwRegc3aI7ayry2Okpw28aTNi+sMGr8hK/kzFz3uaVgVcxoHlHIHoQUX0xkdBAk23ANHAFghu5fZq1Y37xhjCPlYA0sQodnwx/2GTZU7m849G8unoirjpMMhlNzKxSG2pFfpBTWerkzpGPsH1dftj/Lb/Hz7rFm/j1/cnM+GEu95/yBHeOeoQJ4yZFXKnv3FLI6vnr8Lqj+wwr6o/H8LHNVRwyJVRnWdlWNjsLwzYqTWmSaU9lh7sErxnARGIi98qO7pcGN84dx7Wz3mCLs4jROf0i5onZH/ilETKnnN12MA7diqi2wrZrVgY170y0RXczexKntRlY55uATbNwce5RcZv3gUatyA9ypnw+A58n+srE7/Hz6RPfUFFciccZFOhVc9fy+0dTeWbSw+gWnfLiCh479zlWzFqNbtEx/AYX3HsGlz10/kETaLE/MaXJf1dP5MtNs9BEsNr9pbnDua7zsaHPc4e7JKJZwUTy247F+yQqc0npFq6Z9QbvDLmRn7YtYKen7IDko35mxQ8UeSu4stMIPhh6Ey+tnMDsorUk6FbObjuYqzuN5Ja57/J36aYan4NDt3JR+yOrQv8TKPW7oo5hSpOPN0xjUGbnA/bQiidqRX6QU7C1CL+3dntn4daikIgDeJxe1izcwMwfg55Fj5/3PEv/WoHP48dd6cHn9fPRo19xbtbVrJi9Zp/O/2Dk/XVT+GrTLLymH7fhw2P4+XjDNL7YNDPUplNKy6hiXV6LQFVHI+h6l2xx1GtrUCJxGz4u+etlynyuA1ZUwGP4eWfdZCoDHlonZvD0gEuZevwj/DLqfq7vchwWTec//S6iY3I2Dt1KksWOTbNwZpsjOCmnH0IIru98XNREYhA0zywr28pnG2fsxzvbdyghP8jpOaRLnW0imTM9lR7m/LyQnVsKWTZjJYY/XFTKiyu5+9hHKdlZFt6BIiJSSj7eOD0swMZj+vlgw9TQz9mOtKjiW1umQA1Bkm4nQbfRNimL94fexB/HPcTs0U/QK0pGxup4TT+eqq9diBg8ROKFRdNYU74j6vkMezIfDr2JS3KPwiJ0/GaA6QWrmJofzN9+TrvB3N79FDLtKVFn7zX9/LRt/j6Y/f5HCflBzsDR/UhMje75EA2L1UKzFmmUFZSjadH/THxeP79+MHlvpnhIYSKpDHginiv17V5pJ+o2Mu2Ry6jV5rHxxqDreLDPObwy8Gq+OOq2GqXY3hh0HaflDIhZmGt7cOwrAqYZ9f538c2WOXyyYTpl/uDbw1ZXEQ8u/oJpO1cihOCstoOYMPI+vhl+Z1Wx6nAOxL3tC5SQNxFM02TqFzO476T/cPcJj/H7x39iGHVvcOm6zv3/ux1Nj+1XrVs0Rl81knY9WmNESfoPYBom+RsLYur7UEYXGu0SI/uGd07JDn0vhOD27qdEzFwYSXo0BA/1OYd+GbmMatmbvuntwvYv7LqVB/uey4wTH2fSsQ/QOaUl1mreLpZa5MCuWdH3k1xoCBJ1G59s/JNlpVsitpFS8vqa3yKkAvbz2uqJNY7NKFyFEWG/wSp0Ts05PH4TP4CoyM4mwlOXv8Jf384O2bJ1i05SWiJn3jqazod1QNM1eh/VnaS0yGHHEz+YzBv/+oCAL4DX7UOakX/vjiQ7mqZx6cPnkbc+n8pSF163l7++nRN1brpVp/+oPox54UradW+99zd7kDOzYDV3L/ykRtUch2blxYFXMqBaSTOP4ePjDdOYuP1vyvwu0m1JbK/yVqmOAM5tN4S7ep4e0zzK/W4eWfwlc6r8tke06Mk2dzEryrbVCPm3aRbOanMEf+QtpdBXsd/XsH3S2vLfI66pUWfU5fcyYtKjEdvbNAvTT3gMCG5qnvjHE5RF2FdI0Kz8euwD2GuxpTc2VPbDJszahRuY/s0svK7d3idGwKC8qIIPH/4SBCQkOTAMkzEvXMmp1x8f1seJV4zkuEuOZseGnSydtoJX//lujQ3OXTRrkcoJV47kgwc/w+8LYBomjiQHiWmJuMoib7IZfoP5vy7i5sH38tzkR+kyoGP8bv4gZGhWV1454ireXjOJjc4COqVkc0Pn4+jVrG2ozfSdK7n/789CEYwmksGZXfh+a6QFkAiVfqsvAdPgvoWfsrQsmFlQR2PqzhXc2OU48tyllPvd+KWBhiAnIZ2buo3m+FaHMWbu2xGjLfclS8u28MLK8fxf77NCx/b0r69OdS8UV8CHM4opC4gq4oY0+WTDdL7YPBNnwMOg5p25pdto2iQ2b8Ad7HuUaaUJsPCPpQR8tfznkQS9Sdw+3rj9fdYu3BCxmW7RadOlFcdfcQzpLZtFbJO3sYAPH/4Cr9uHaQRNKh6nB8Mf4NhLh9OsRSqaJfzPRkpwV3i4afC93Db8AYp2lMR+o4cQ/dJzeXXQNYwfeS8vD7yqhogXeSu4b9H/cBs+nIYXp+HFbfj4ZvMcjAieLHbNwvGtDotp/N/zlrC0bHMoj4mBidf08/rq37AIDaPqTd1EstFZwJjZb+MyPAfEVU8C47cvCNXjDJgGE7YtjNq+VcLuv+0Eiw2HbovYrnUtovzvJV8zbu0kdnrKcAa8TM1fzhUzXmu0xSqUkDcBrDYdI1C/VZDX7eP2Yx7in0c9wIR3JvH9qz9z/6lP8MINb7Du740AzJmwkJK80sgdRHlv9rp8+Nw+vsx7h8e+u4ektMTIlxuSFbPWcPdxjx2yhXD3lkl5S4n0ixACRmX3xq5ZsAodHYFds3JuuyH0rvYgqA8Td/yNO0LQjERS6KvE3CNv+bLyrXy+aSbmAfqdBkwDQ5pIKblxztt8tXV21LabnYUc9etD3DH/Q/LcpVzVaQSOCBWKxnQNf3OFYI3Q3/KW1LC/m0g8po8vq7mINiaUaaUJEPDH9irrqfSwfMYqls9chaZpmIaJpmtM+mQa/xo3hj8+mRbRrFIXc35exJyfF9K6Syv83uiRc6Zhsn1dHnN/WcigkwbEPM6hjivgJRDBfBEwDTokt2BM19uZlLcUr+nn6BY96JLSKuYxEqOsUg1pRkyJCzC7cC23dz+Zl1f9gr8qqnR/0SohHYum83fJJhZHqP9ZnV17CH8VrGJx6Wa+POp2dKHx3roplPtdZNlTOb/dULIdaZjSrFEfFWBdRR42zRKWGsBvGiwu3RTfG4sTe70iF0K0FUJMFkIsF0IsE0L8Mx4TU+zG52lgYitJyDxiGiZel4+XbnyL5TNXN6g7r8vLY+c9i8/to+8xPbE5agm48AV47Lzn2LxyW4PGOpQZktklYtEFq2ZhaGYXWiWkMzK7F+0SM3EHfPV68yn3u9nhLgnlUTmz7aCIATNaLZG6FjQ2OQtwaJb97rbn9HswpMlvOxbX+5pdSbx+2Dafi3OP4tdR9/P6EddiSJN31k/mutlvcdqUp1la5RkjpWRdRR5lPhe+CG8rutDokNQibvcUT+KxIg8Ad0gpFwghUoD5QojfpJTL49C3AsholR63vqQpqSiubPD1fm+Ar174kYe/vos37viAX975I6rZx+vy8eqt7zL21wcbPN6hSPe01pyYcxi/7lgcsmEn6DaOze7N3KJ13DT3HSoDnqB5RdNp4UjjtSOuqeEzvosKv5uHF3/J7MI1aEIj2WLn/3qfxfAWPbi4/VF8vHEautDQEGhCcH2X43hx5YSItni/DPD91vk1vG32F2UBN5f89TKDMuoOcKuO1/SzomwrEHyY3b7gwxr5zd2Gj1vmvsu4oTdy/6LP2O4uRhcaAWmGFeywajoX5h4ZnxuKM3st5FLKHcCOqu8rhBArgNaAEvI44a50IzQR1WUwFgK+2NOTVsc0TLatycORaOe2168nPTuNjx/7Kmr7v6cs26vxDlX+r9dZjMruzfhtCwAYndOPD9ZP5eftizCq7Nc+aYBhsNVZyP1//4+3Bt8Q1s+dCz5iaemWYFItaeD1+bl/0WeMG3IDN3Y9nrPaDWJe0TqSLQ6GZnXFplko9JTzwYY/a/RjEzoG8oCI+C42O4uwEDmwJxp2zUKX1KDp6be8xRHfXgxpcsvcdyn2VtYQbk0IdKmBgDYJGZzTbjAfrJ+KJgSjW/VjQEaHRpNrKK42ciFELtAfCNuJEEJcD1wP0K5du3gOe9DjLHNFD+eLkdTMFIq2N9yjxGq3cNgxPYPzKnfxxTM/1HmNlLLR/ME3FYQQDM3qytCsrgDMKlzD6oodIRGvjoFkWdlWirwVNLenhI5vdhayvGxbWGZEnxnglVW/UO53s7Yij2a2JC7vcDTWqujHm7qNZlTLPry0cgLrKvJokZDG0S168PmmmVGjUvcHAWmwujJ62D4EKx7t+owEQXPUmW2OAKDE54z4IPKZAUp9rjCbv5SSY7J78mCfc3h11UReW/MrHsOPILhZfGabI/hXj1Pjcm97S9yEXAiRDHwN3CalLN/zvJTyLeAtCAYExWvcg511f2/ks6e+i5sHSFpW6l4JuSPJzlm3ngwE/dvro89zfl7I4JPVpufesLhkU60lz3S0sNSt+Z4yrJoeJl4mkjlFa0OyVeAt59XVEykPuBiR3Yu310xiZfk22iZmMnbApfRPz+XrzbNr9cduDOhCI8OWTEnVyrpvejvu7XVmqPrRgPQOOHRb2OeoaxoWoRPYI1JaAsXeSra5ihm/bUHIi0USTOz11ebZtHCk0T89l55pbQ7oYiUuQi6EsBIU8U+klN/Eo09FkI///VWtaWhjZfOKvdt89FR6WTx1OQOO78uzV79WI0gpEkbA4N8XPE9CcgLDzhjIFY9eQHp2ZB92RXQy7Sk4dGvUPNsp1gRyEmrupXRJaRnmeQHBleqeywKP6eeD9VP5aP00vGYAiSTPU8bieZsZ1LwTc4vXNfqsJIY0KfU5Obx5R144/AosWk0zzICMDhyW3p5FxRtDouzQrQxI78D84vVh/dk1C0dn9+CvglX4I3yOAWnw8qqfsWkWWjqa8XT/S+hYLc3C/mSvQ/RF8DH0AVAspbytPteoEP3aMQIGv304lc/Gfsu2NXkHejphWGwWjhjdj5k/xPY7FELQrEUq7616maTUyH7oishU+N2cPuVpnEa426hDs/Ls4ZcFCy7swUsrJ/D1ltmhB4COhomM6HWy5+ZeU8UqdL495k5aONJqHN/uKuHn7QtYXLKZfE85SRYbZ7Q9glNaD+DzTTN4Y/Xu3C12zUKaLYl2iZksL9uC2/DV+ckIoE+z9jx+2Pm0Soifg0KNMaKE6MdDyI8CpgFLIGTA+z8p5YRo1yghj46UkgdPf4qFk5Y03O1wP7A3m68X3nsm1zxxSZxndPCzvGwr9y36lGJvJYZpYtF0RrXszbWdR0UNHZdSMn77Qj7dMI1yv5shmV3Z6NxZpy92Y6JtQgYWzcIG5856X/PGEdeGStcBTNy+iH8v/QZTSgLSwK5bGZXdi4f7nBcyicwrWsdnG2dQ7KukW2oOP22djzdCObnaEEALRxrfHn1n2BtBPNhnQt4QlJBHZ/Gfy7n/lCcaFLDTVMholc7n29460NNokkgp2ewqQgBtE5s3yC67qGQjt8x9r2bSLt2KRegHdDMToGNSCzY6C4IeI0KjU0pL2iVlMiVvWVimw9q4tetJXNpxOACVfg8nTX4iLNlYgm7jyX4XMSyrW9j1189+k0UlDQv+SdTtPH7YBQxv0b1B19eGSprVRFg8dTled/xs4o2RytKG+7Ef6gghaJ8UOQ1ubTgDXqSUJFsd9EvPZWz/i3l+xXi2uApJsji4OPdImtuSeWHVhBp2eIdmxarpOAPeeptdNEQU403dnNJ6ACNb9mJN+Q5yEjOwCI0rZ74es9vjRufu1Mpzi9ZiETpeagq52/Dx2JKvubXbSZyYc1iNAtarailqURcBabDDvX9zDSkhb2SkZaVic1jr3EQ8kLTtloPH7aVgc1GDrs9qE7sQKRrGDncJjyz+kiVVppSuqTk80udchmV1Y1hWNwKmgS40hBBIKSn2Oflgw1QEAkOanNJ6AJd1GM69iz5lQ+XOkNj5TSNqwWeJxKZZwlbA9eHLzbO4KPdIpuYv59kVP1K0h293fXDoVrqm7k5bsGcIfnWKfZU8tfw7fs9bwnMDLgu94WTaU9jiatjftyYEHZJb8MmG6cwoWEWWI5UL2g+jR9q+S/GsTCuNjIqSSi5uPwZPZeN09UpMTaD74M78PXl5vcT2aR8AACAASURBVBN5Vcdqt3LHuDEce8nwfTA7RXX8ZoAzpz5LkbciJIYCQao1ge+PuYtEiz3idR7DT76njEx7CknV2mxzFeMMePl80wx+rKVEWorFQffU1vxdsjEYtBQDSRY7OhrlAXdM1+1CQ5BmS+Tro+8g2eKouh8fJ/7xRK3umwm6jRcOv5wBGUG7+g9b5vOfZV/H/FZh1yz0TGtDvqeMIm8lXtOPQGDXLNzX60xOat2/Qfe1i2imFZX9sJGRkp7Mkz/fT3p2WtSqPkITaPqB8VkN+AMsntIwEQewJVjpOlDlK98fTN+5MswkIpH4zAC/1pKzxKFbaZ+UWUPEAVonZtA1tRU2zRK1XJxV07mi4zG8MPAKruo0klaOZmTaU0i3RS54Uh0NgWnKmEVcrxJKi9AZltWN94b8IyTiwfux8VS/i4Nmoigl39yGj7sWfMxxvz/OPQs/Yae3tIappS6sQqeVoxlXdhzBgIwOFHorQuYgicRj+nl6xQ8R3UHjgRLyRkjvI7vz8cbXOPyEvmHnhIDsdlmkZaZiT4icwW6fIcAMmHVmYxSCqJtwrjI39574b8xayscp4sM2d0lE4XAbPrZGMRsEzACT85bxxurf+GbzbCr84aJ6SusB2KPkJb+8w9Fc1uFobJqFazqP4vsRdzNh5H3c2eO0WqvaawgSLDY8ZuwmRQNJui2ZKcc/zPOHX05OYrjr39Csrvw08l5OzDksqphXBDyUB9xMzl/GuLV/EIiQbyYamfYUvh9xN9d0HsW0nSsjfu5SwtqKfeNOrIS8kfLiDW+xeEp4uprElATSWqTS95ie9D+2DxmtmkUs9LBPkPVLqSs0gW6LUuxWSop2lPD9f39R+cr3Md1Sc7BGcIFL1G30TGsTdvyrTbMY/tsj3LPoE95dP5lnVvzIaZPHsrwq6dQuejdry+Udg2Jt16wk6DbsmpXnB1zODV2Oj/gQP65lHy7NHY6tKpc6BMVbAOnWJC7pcBT39TozapHkuijzu/gjb2mtbVKtCfyr+6n18vSJxS4vEHRLzQn9nGaNHCNhSJMUS+yF0OuD2uxshJTklzLl8xkRc347y92smrOWVXOCdRYtNguapmFLsuJxetF0LZS6dn9jseoIXUMaJgFv9FdIw28w7t6PmfvLQh7/4V50S/z9bRUwMKMjHZNbsKYiL7RCtIpgtsSjW/So0faX7Yt4fuX4GlkPDWnikj7+b9H/eG/IGBaVbCTJ4mBARgeu7XwsJ+cMYEbhKhy6jWNa9CDFGl2kRFVmxYtyj2R95U4cuhW/adAqoVkoP0yxt7LB4Uhuw8eC4g2MzukXOhYwDTymnyTdHhLvOUVrg0vjOGLXLFzb+djQzxfmDmNJ2eYa3j8agtykTNom7ZtScUrIGyE71udjtVtrLd6wi13ZDAO+ADaHlcNG9GLuL4v29RRr4Eiyc8z5w8hsncFRZw/m5sH31XmNz+NnybQV/PbhVEZfPWo/zPLQQwjBa0dcy7h1k5iwfRGmNDm+ZV9u6HJcWLDK22snEYiyMZnvLuXUKWNDOdLtuoVXBl5N19RWnNtuSK1zKPW5mJS3hHK/mxaOVEp9TprZkhiR3SvMBp9hT+bcdoP5YtPMBkWYjt+2gBHZPRnYvBMvrBjPT9vmE5AmLRxp3NvzDIZmdeXNNb/HvAEbDYvQ6JXWln92PznkJWNIE4duY1hWN6bvXIFVWDCRZDvSePbwy+MybiSU10ojpGRnGZe0H1MvId+TeKW7jZWxvz7IgOP6IqXkii63sGN99OK41el9VHde+PPxfTw7RV0M//WhmNwFM2zJjB95b60bgvOK1vGvBR8iTRmKkBQQ2iw9rfXh/J4fFPnOydnc3uNU+qfnctH0l1gfQxRndRKrRHTazhU17sehWXlj8HWMmTOuVu+VWHjjiOsY0LxD6OdNlQX8Y+47OANeBMGsike36MEVHY+hW2pOXJJqKa+VJkR6izSOvWQ49sTYNzMPhIgD/OfiF5FSUlpQHlOmw7LCsESZigNA+6SsmNp7DT+LijdGPR8wDe5Z+Ckew18jzF0SLMXmMf18uWUWJT4nhjRZVbGD2+a9z4LiDQ323wZwGb6qMng1H0peM8AH66fSMTlyUiur0LFqehRfnMi8tGp3FhIpJbfN/4BCbwWuqoLZfmkwo3AVBd6KfZ4ZUQl5I+W2N67nvDtPbzJ5vF1lLn5+dxKXdfwHP78zqd7XFe8oVZuejYBbu50U0RNFiyZtgogJvHaxpHRzqKxcffGYfp5d8WPUv3mtys2wLiLFlEokmyoLuKXbidgjFGK+p9cZ/HHsQ3xy5K1k2lNIqKpp6tCtUcV9TUUe5VVePWsq8ij2VYaN7Tb8PL/iJ8Yu+543Vv/Kj1vns6p8e533ECvKRt5I0S06VzxyAQWbC5n4/pQDPZ06kVLy2j/fjzki1ev2UVFSSWpGSt2NFfuMQZmdee7wy3l11UTWV+aTZHFwfMs+dEppyfMrx+PZwxwRMA36p+dG7a+hj+b1lfm1XCuj+q/XhY6gZ7O2DMjoyEsDr+CVVRPZUJlPtqMZN3Q5jlEtewPQOaUlXw+/g4k7/mZl+XY6J2czbt0fFPsipZWQodm4DV/Ueqfb3MV8vWV3rR27ZqFbag4vDbwqbJ+goSghb+SMvuZYJv1veq1eIDWIlGx6P5DTuWWDClboFp3ElH3jkqWIjUHNOzNoWM1UuAHTYPy2Bayu2BEUKwRWzcI/u51Uq5dK32btag2Nj0Ztf7omxJQ4qzo23cpVHUcAMCCjI+8NHVNz3GpVrBIsNs5se0To3JSdy4PeLnv2qVlCn0H31Jx6v1l6zQAryrbx3IofeajPubHfTASUaaWR02tYN7r074DFVvczV2hiv4u4btVp1Smbc+84PeZr7Yk2zrjpRCxWtZ5orFg0ndcHXct9vc5kZHYvTmszkDcHX8e57Wv3VrFoOk/1vxiHbsXWQN/weNEvvT3vDrkxzPXPbwZ4ceUERvz2CEMm3s9VM18L85kH2Okui9ivzwxQ5K0AwK5b+b9eZ9V7Tn5pMHHH3zGbn6KhhLyRI4Rg7K8PMuKCYbW20/dXUFA1EtMSGDvxAT5Y/QojLxiGEajfH6Wma9gTbJx6/fFc/Z+L9/EsFXuLRdMZndOPsf0v4f7eZ0UMJtqTzc5CJuctpWtyK/qnd8AuDszDOsli54bOx9MppWXYuYcXf8nXm2fhqioasaxsK2PmjAuLeo2Wk1xDw2vsPndCzmExmX4CpokZp/0hJeRNgITkBO585x+kZCRHbWOacr97rLjK3Dx4+ljG3fsxutXCPR/egi3Bhm6NvgLre3RP3l3xEl8XvsuNz1+pgoEOQv4u2cTFf73MV1tms7hsM3OK10KM1m09RmnSERGvCZhGjUyIu8h3l/LnHi6KEFxlf7Jheo1jR2WG5ysHMKVJq4TdZQtdAS+xvBL3adY2bsUnlJA3EXSLzq2vXovVHjlfhRACqyN6LotI2GJsHwl3pYfv/vszD505lt5Hdadj33YRvQ6sdiu5vdvy1K8P0LpzS+wJ8dnkUTQ+Hln8ZY1cIxLwSn/UbIvVXf8EQU+RIZldYlrF23UrSRZ7jTwqDt3KlR1HRLTlb3YVYYsgooY0w7xKmtuTIz6EApj8d9UvoZ/L/C6s9ZizTbOQZLFzX68z62xbX5Rxsgkx4oIjyc5twdgrXmH7mjyklGi6hsVq4YpHz+fL536kIlARMnHYE204khyUFUT21fb74pOJzef2M3/i31yQc11ww2ePRYnVbuHyh8/jjFtOwmrb+4eHovHiDHjZ5i6OeM4V8JIQoYq9JjSe7n8JU/KXIYHROf1o6UjjzD+fjdiPVWj497Atm0g+OvImvtg0i+kFq0i3JXJx7nBGZPeM2Ef7pEx8ZniEp0VoYXnDNzgLoq6zP9o4jf9t+ovOKS25ueto7LoFXyDy/6uWjjQ6Jrekd7M2nNl2EJn2+HlqxUXIhRDvAqcCO6WUvePRpyIyPQZ34f2VL7N24Qamfzcbi9XCiAuOpE2XVoy6+Cg+ePhzZo1fQGJyAj6vn7KCyBs1EP/goWj9CU3j6POG8tlT3/Lj67/irvTQc2hX/vHiVXQ6LDeuc1AcWCKtcnchCZoTlpQGixnrQsMidP6v15kMzerK0KyuobavrpqIRWhhGQg1BB2Ts9noLMBnBrBoOhqCR/ucR5HXyWZnEUhJK0c6HWoJcmrhSGNEdi+m5i+vUX3Iqlm4OPeoGm07J7dkslgaNbQ/IE1Wlm/nzgUfcV77oXy5aWZE75pCbyXJljKu6XR53OND4hKiL4Q4GqgEPqyPkKsQ/X3PxPcn8+KNbxLw1ZFXIkZ3Rc2iYdZzU3MXtgQbWa0z2La2ZgpPR7KDNxc+Q06n8I0oRdNl2MQHI+ZtsQidaSc8yoyCVUzNX0EzWyKntT6c9snhgnvFjFdZUb4tYv+7bOFp1kSGZXXl2s6j2OAs4L6Fn+I1/Uiqgod0K+OG3ECXlHAbOQTt5/9e+g2/bF+EicQqdC7KHcZNXUfXENoSXyVnT32u1gCoXfRPz+Xyjsfw1LLvyPeEL6ISdBsvDbySfrX44NfGPg3Rl1L+CUR+n1Lsd3weH6/f/n7dIg4xiXhm6wz+9faN2BJit8XvKeIAXqeXL575Pqa+FI2fC9oPDdva1BCc024wutAY3qIHD/Q5m5u7jY4o4gAtE5pF3Rw1MDEwKfZX8suORVw58zX+s/QbPFUiDkFTi9vw8fLKn6POc33lTv7IWxpK0OWXBl9snsUba36r0S7dlsy4ITfWq9DE+sqdHJnVjf7pHaK22epseAqCaOy3zU4hxPVCiHlCiHkFBQV1X6BoMFM+n4HHVffqIVYqSipp3bkVr8x8knY9664/6Eiyk5SWGMrQuCdSSlbPWx/vaSoOMDd1PZHjWvbGKnQcerB489HZPbml2+h693Fph+FhofSRCEiTUr+Lwip/7j1ZVLIp6rXj1k4K81rxGH4+3jCNlWU13wY6pWTzQO+zcdQxpzaJQV/13s3aRGwrkRG9aPaW/bbZKaV8C3gLgqaV/TXuoYSUEtMwWfD7Yox6FICIFa/Lx+PnP89r88eS07Elm5dHfvW12q2cNuYE2vdsyzHnD+WsjCuj9pnbp23c56k4sFg0nf/0u4h8dymbnIW0TWpOq4Twqj210adZO+7vfRZPL/8BvzRq5PaOhWipeQFWlW+PmJfFLw2unf0mPVJb8/zhl4e8Xk5pPYBmtiTeWfsH6yrz8Rr+Gul27ZqVG7och5SSHmltsGsWfKafXYZIm2ahb7P2dK1WhCJeKK+VgwDDMPj4sa/45qXxuCvcJDWrvT6iLcGKbtFxV8Re4Ll0ZxmXtv8HhhH5P4jQBK06ZTNh3CSQkoWTFtO+Zxs2Lt0S3lYILrg7fi5YisZFdkIzsqv5WcfKiTn9OLZlH7Y4i7hq5mu4GlIGTpr4zUAol3p1cpNbsMNTGvE6nxlgedlWHl3yFc8OuAyAX7Yt4q11v1PgKad9YhZd01oxJX85zoCXbEcat3c/mRaOVM7+87lQbhZN6FiFINFi5/TWh9coQBFPlJAfBLx5x4dMGDcJb5U5pbLEWWv71OapBPyBBgm5aZi1ViCSpmTz8t1hzlO/nElKRjJWhwW/Z/drrBCCm16+mvY96o4SVBy6WDSdDiktGNP1BJ5b+VPM1zs0a9Tycdd0GsXC4g1R87f4pcHMgtVU+j38uuNvXlw5IdR2deUONrkKeX7AZfTLyMWqWQiYBqdOeYoSn7PGOl8XVt4dMobWiRkxz7++xMVGLoT4HzAT6CaE2CqEuCYe/Srqxl3pZvxbv4dEvD4YfoPS/OCOuqZroa8GJparFWlKfC4f591xOkedPZhWnbIZdsYRvDZvLGfcVH+bqeLQ5vz2QxmY0QlLDIm4BIIL2w+L6urXN70dY/tfErJrR+xDCCoDbl5f81uY4HtNP6+t+TW02p9ZuAaPEQgz1hjS5Iet+9ZLLy4rcinlRfHoRxE7hduKY86zUpK/+3Vy1+paaAJNCMyqIKN41v30uLyU5Jfx8Fd3xq1PxaGFEIKXB17JrzsWM37bAkr9Lhyahc4prVhRvpU15Tsw9pDQIc07c32X42rtd2hWV77JuoNHFn/JxO2LwvpoZk0iUbfjDEReKG2o3O24UepzRixRF5AGBVE2Y+OFMq00cbLaZmLWN7BHgK5rEZNbSXP3to8041+8uSQvsi1SoagvFk3n5Nb9Obl1/xrHS3yV3DH/I9ZU5KELgd80uLTDcMZ0PaHefY/pcjwzClbhDAQr+2gIbJqF+3ufRZLVgV23EAiE7wvlVNvE7Zeei4yQzTBBtzE0s0sMdxo7SsibOI5EO+fcdgpfvzi+hnlFt+oIIYKeLAETBGS1bc7OTYV19rkvXIrm//Y3JTvLSG+Rtg96VxzKpNuSeXfoGDY5CynyVtA1pRXJVkdMfWQnNOPz4bfx+caZLCjZQNvE5lyce2Qoa+LlHY7mvfVTanjPOKq8VHbRNqk5J+cM4OcdC0Pt7JqV3KQsRmb3isOdRkcVXz4IkFLy3SsT+Pzp7ykrrKBTv1zOv+sMnr/mdZyVLmjAAjveRZwTUhzc9sYNjLroqLobKxSNDCklH234kw/WT8UZ8NLcnsIt3U5kdE7/sHa/5y3h682z8Zh+Tmx1GGe1HYRDj0+OoWiRnUrID0Jmj5/Pvy98EY8zdq+UfUViagL3fnQrQ08L+xtUKJoMUkp8ZgCbZjkg9XSjCbkyrRxkrJyzhscveD7m2pn7GqEJDj/hsAM9DYVirxAimMOlsaHykR9k/O/Jb/G56yfimr7/fv2X3H8utii51BUKxd6hhPwgY+vqHdTXWhZPF8PasCXayGqz74IhFIpDHSXkBxk9h3TZdyvthpoETUn/Y/vEdSoKhWI3SsgPMi687yzsiTaq78NY7VZad2mJI8ne4BqZXQd2onU98oZbbBaEFhxciGBel2uevJi0zNQGjatQKOpGbXYeZATTzD7B2/d8zNK/VpKWmcr5d53OydcehxCCKZ//xXPXvo7HGVua243LttBjSJeIecUhWDzCnmDjucmPsH1dPtO+nkViagKjrx5F18M7xePWFApFFJT74SGGETC469hHWTFrNYEYUt0KIbj341t44fo3wx4CCSkObnz2CkZceCSJKeGFbhUKRXzYpxWCFE0H3aLz9O8PccoNx0e2pUexg3cd2JGRFx7FiAuODK6+E20kpiSQkpHMC38+zsnXHadEXKE4QKgV+SGK3+fnym63UrStOJR7RbdopGam4nF68HsDBHwBLFYdi93Kc5MfCZlINq/cxuKpy0nLTGHwqYcrt0KFYj+hIjsVYRTtKOGVm8cx68fg72LwKYdzy6vXYhom3748gVVz19LpsFzOvu0UWnXIPsCzVSgUSsgVUdn1N3AgQo4VCkX9USH6iqgoAVcomjZqs1OhUCiaOErIFQqFookTr5qdo4UQq4QQa4UQ98ajT4VCoVDUj70WciGEDrwKnAT0BC4SQvTc234VCoVCUT/isSIfBKyVUq6XUvqAz4Az4tCvQqFQKOpBPIS8NbCl2s9bq47VQAhxvRBinhBiXkFBwZ6nFQqFQtFA9ttmp5TyLSnlQCnlwKysrP01rEKhUBz0xEPItwFtq/3cpuqYQqFQKPYD8RDyuUAXIUQHIYQNuBD4IQ79KhQKhaIe7HVkp5QyIIS4GZgI6MC7Usplez0zhUKhUNSLuIToSyknABPi0ZdCoVAoYkNFdioUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHGUkCsUCkUTRwm5QqFQNHH2SsiFEOcJIZYJIUwhxMB4TUqhUCgU9WdvV+RLgbOBP+MwF4VCoVA0gL0qviylXAEghIjPbPYD0tgBvvmgNQPbEISIS/3pyGN5/kBWvgTGVrB0RqTcibAdUcvctoF/NVhyEZYO+2xeCoXi4GLfqdgeCCGuB64HaNeu3f4aNoSUElnxNLg+AqwgAJEIGR8gLJ3jPp7p/hHK7gc8wQP+hcjiayD9bYR98B5z8yPL7gbP7yBsIP1I2wBIGgOVz4B/CYhkSLwEkXwLQljjPl+FQtF0qdO0IoT4XQixNMLXGbEMJKV8S0o5UEo5MCsrq+EzbijeP8D1KeADnCCdYBYii69HShnXoaSUUDGWkIiH8CArxoa3d74JnkmAF2RF8DrfXCi5EvyLARk87nwfWXZ/XOeqUCiaPnWuyKWUx+2PiTQEKf1I12fg/iZ4IOEcROIFEVes0vUp4N7zKMhiCKwAa884zswDZlHkU4G14cdcnxIu+v7I/XomII27ILAc6fwUZCU4TkIknocQ9r2ct0KhaIrsN9NKvJFSIkuuA98CQiJYsQ7p/R3S3wu320tnlJ40kHsKfLXLTCf4ZgXb2YcihKMes7MHzTayIvyUnh1hkGhzizgjZMGJgBOoepPwL0G6v4HmnyGELdjKvyq40g+sAWtvRNINCEtuDOMoFIqmwt66H54lhNgKDAXGCyEmxmda9cA3B/yLqLmS9QSP+eeGt3ecDEQSYQnWPhGHMN0/I3cOQ5bdhSy7A7lzKKZ7ItLYXqs5RggNkq4FEvY4kwBJt4RfYBtC0GhfH/xAJSERB8ADgXXg+Tk4b+9MZNF54BkPgVXg/g5ZdCbSv7yeYygUiqbE3nqtfAt8G6e51G9M/2KkZxL4FkVeSUtP0CvFNqjGYZF4PtL9XVDwcAM6YIXUJ0Kr2BrdGDug7G6CdutqJ8puQWIDLR3SnkDYh0ecp0i6AYkBzndA+kEkQPJtaImnh7dNuQ/pm191P/6quRn1+0BCuINeMmYlVDwOmNXOGSBdyPInEM0/jrFfhULR2GkyphUpJbL8cXB/TXAVLqipsLuwgZYZdlQIBzT/DDw/I71TQMsK2tMtnYKra99M8C8FvTU4jke6f4zSP4APzHxkyXVI21BE4mVgH1nDnCOEhki+GZl0Y9DEIlIRQo98X55JVffjB+xg6RK028ck5lrwIeWdSE0Rr4b/74iHpX8F0v01yAqE/YSqe1FBvwpFU6HJCDn++eD+it2mlGgi6wfHSRHPCGGDhDMQCbsdbqTpQpZcEfTfxgPoUO4A+8lE3nCsjgm+v4Krab0tUgjQWiCSrkHYj6wa0wIiPWoP0vkqON+u9nbhDZpDYl6RSzDWEP1zAbTU8DtwfgoVTxH05jGR7olgOwLS34j44FEoFI2PJiPk0j2ecM+OSAiIIchHOl8H/3J2i3Yg6Ani+Raw13NMT5WIAqxG+uYjU+5GS7pk9zhSgm92cFWstwLHCYBeZXrZ00RU1wNkT3Z56dR2nQPsJ2CW3AzGJrAOhMQLoOJJwFutnSu4x+D9HRwnxjgPhUJxIGgyQk5gW/3bSh/Uy7sEcH9HZAH0g0ipWuDWR8xrdAqVzyATz0EIB1J6kcVXBs0l0gvCDuX/gfT/ggzE2PeeWMDao8rfvBa09uD+lNCKPbC2ykwVwYQiXUjPzwgl5ApFk6BJGEJlYC0EIniiREJrh3R/j1kwCjO/P2bRpZj+DbV1Xsu5YsAASz/Qc4HwTdFaJhLyGZfOcUH7u3Sxa+MRWQplj0HUKM36/mqsIGvzeLGA9UgwV1HT7GIQfED5IlwjQCTVc3yFQnGgafRCLqWBLL6qHr7W1qBniLVzMKrS2Bq8xj8HikZjeiZHvkzPraNff3AlnfEZpDwIWj1zoEg/aM2D37u+pqb5AoI27fWQeBnhbooOSL4bRGowNF8kE/RkiYQbHKdG6AOCXjlPRXbHDBFpY9SOSDivlmsUCkVjovGbVvzzgzbraIiMYFSmpXNQ0IovItxUIqH0ZmT2/PCAHmNrPSahB3O0+P4CcwuQAniCJhJpEB4xagHrYQi9VdXwpVH6DYDjQtBagvO1YDSopSMi5T6E/Uhk0qVVvvICWfkq+GZE+gDA0gmSrgHnm4T80bU0RMaHYOQjhS1oboqElgOynGCUqxmcU/LNCFu/enwuCoWiMdD4hdwsI2qwjNYGkfk9QksBQHpnIaMG1hjgnRzu0SLL6jEJA5xvsfsBUQE4wDYYkXgh0r8enC8CenAlbj0Mkf5KtTFqCR7SNETSRZB0Ufg5YQv5w8topg6RGJyXWUHQdOIHNDCLkCW3gZYV9K2PiB4U7YRTwTstaPKxDUXoByAXjkKhaDCNX8hthwc3CCOReEVIxAHQc6jVbc8sDz9m7Q3+eXVMIkreE+90SBuLZj8GmXRh0CauNUfoOTWbaulgRjIN6cFsh/VAJJyG9P1VZWevhjSDDwr3R+w2k1T9a6wKfkXDcSYi4eyg/7uj0abUUSgUddDobeSI9OgeKEbNBFTC0g4s3aJ0pINtaHj3qfcRtC/v+VEIgm59dtAyiGxL9iKLb0AGtiBEAsLaJ0zEpfRH9N8OYkVWvolZ8SLSvzpiCykl0r8aKZqBdVDVCpyquTkg7UlwvRtlftGwQOpYtGZPNqlc8gqFIjKNf0Vu5ke373qnhB9L/wgKR4MsqHbQFszlbQnPgy6sfaD5l8jK/0JgGegdg8FA5ragacNxcjD1rPdXIgbbBBYgi86FrN8QWirSrEA63wnmPREJQdNGYH2Um3NXibCOdL6LTL4ZLfn60Flp7AgmBgtsAaEHPWwc51Z50/gh4Tw0xwjMCKlxa0VYEZYOSN8csPaLmKJAoVA0HUS8c3HXh4EDB8p58+oyZwSRZily55FENG/oHdGyfgm/RgaQrq/B+QEgIfEUSLwRTav9uSXNSmTFE+D+MTiedSAi7VGQXmTRhUT3J7dDyr8QiRchC88AYxuR3frqwo7InICwtMV0gc6cMAAAIABJREFUfgUVDwF7ukcKwFYl7CbYBgb/9UfaCK0FkcSuNAci7RnEHqYVKQPg/QPp/StoLko8B6G3Dp4z8gANobdowD0qFIqGIoSYL6UMq4/c6IUcwCy+KhgVWUPUHJByN1rSpWHtpbENWXR+lb+2O7gy1lsjMv5X06a+5zhFF4B/GbtFWIBIQWT9Cv41yLI7g28IkdC7g7m9ygOkodgQKXchhQPK/024y2Ik7GA/Cbw/EntY/y4ciMzxoLcO+rw73wVZQlDoTYL+8xqk3A2uT6o8fSRYOiGavYCwdGzguAqFIhaiCXnjt5EDIu3ZoIudSKzyqbZDwsmIxIsjtpdl9wZd+aQTMIP/BjYgK17c3cYzEbPwNMz8gZjFl2G6v4XASmqupCVIH9L1BcI+GNHsFXaHw++BsXIvRRxAQ6JD5UvUT8QJtvNPh+Q7q+bWEGuZgXR/E3wbqXy1ynQj2W139wEeqHgMjHVVc/NBYAWy6GJktM1ohUKxX2j8NnJA6M2h+Q8QWALGDrD0QljaRGwrpRt88wjf/POD50dIexDT9XkwRH6XqcQ3u6pARaSgG09VJkLAehhBsYw1F0p9kWAfWZWGNpbLPGjJ12AmnAIFJxPMVx4LfjDywPMT9X+A7B4bz2+QcCoysBbpW1hlWnIgbH2C7oxVmRSldCNdn4PnFxBpiKRLo6YBVigU9adJCDkQ9K6w9kVaegVrbUo3QtSMZpRSIivfoDYTg5QGVDxL5NJqka5zgKVXaA5SSwLTFaFdfagjz3jSjQg9BykyQEYpFRepT/vI4Lf/3955x1lRXv///Uy5ZQvbYFnKAgsLLL03C0oTLNjQiNg1GluMNYma6DdRk6iJ+ZmYRE0sscTEShMLoIJKE+lFeq/LAttvm3l+f8xl2bv33u26LDzv1wtee+/MPHPm7t0zz5znnM/xLyS6OKk2uMDo4MgF1Hl2Xe402jhyZ3jx+fgTjSx1vl6SEJAKFFH5BmsHFrH+0IWsK7iMkX06k5UeP+x1qLCUd+evZP2ug/TIzuSykf1omRKZW19U6uOrtduQEk7v1YnUpFjVrg4hyyYQDJHgiaFFLyUlvgBuQ8dlNps/EcUpTLP6ltplUx21PlkOSKT3IkSLR463Nyt7C0pfjXO0CZ7zwT5cTYGMhvORBCq9doHeFrvw104aoZYFdn6c42vCCo8ZJ1Ww9N9I92hHGbH8rVqM5wYt2YmrSwkl/4/6xclDTkilvjF2aw/45xO9wFt5TSO6ulVQTpfUd3ngjWSeedfDXZecwZTRA6P227qvgOuf/i+BoEUgZLF4/U7+8/lyXn1gMp3bODIIn367gUf//Sm65qRTWrbNw1PGcsHwyF6s/mCIP70zjxmL1hKybNpmpPDQlDEMy3MympZ8t5PH/zOH/YeLEUIwfnB3Hpw8Gq87niaOQtH0NIvFTgDp/xp55HYiZ5we8J6HlvIHAOyDZ4G9L/4gIgkSpkDpa8TMQDF6gDkQfFOdlEdzOI4++DHBK4PjDSC+T2obvkmAlp+B/2NH09yug0JkTOI166jukCSn4MnaVa8zlvhMHp06hnkbcnCbOm/8cgq78gv5ZsNOWqUkcf7wHjz88kd8u3F3hGUCGNw9mxfuvoxDhaVM/PVL+IORNyK3qfP+/11Pm/Tjefy/+OdM5q/ehj94/CbjcRm8+sBkdE1wzZNv4Qsc3+YydIbmZfOXOy6p1/UpFI1JvMXOBs3IhRBPAxNxpmJbgBukjCss0iBkyd+JDhv4oHwmMvlhJxvFPlzTII4T19uHMy8qO3MvIukuhGcMpDzq7F4+C1n0UKVqymN/4PVweHWiljcKIaDoF2ENlsa4udTjmlr8Doofr/NhOwpSmPddDiFbcLDICZEELZs7n/uAojI/5f4gLkPnxVmL8AetKMsk8O1GRydn7vJNxJJxsKVk9rcbuXac873PLyxh3qqtBEKRDj8QtHjlkyW4TSN6W8hiyYZd7C0opG1GSp2vU6H4IWhoaGU28KCUMiSEeBJ4EPhFw82KQTxxK2GAfQi0ZDDz4rYzO44PrJ3gvRzK38fRHXdD4i2OE6+E9H0YXRIP4RxsD8hD9bmSxkOWQWBe053fOwXNOwE7sATKa98L9KX5A3n5y0FYtkAICFrOYqhtSw4VlmLZjtuu6lSr4nYZFfvZdnS4yrYlgUqz9H0FxbgMPWpcW0q27TuMyzSw7eibmaFpLF6/iwtGJGHqqmuS4sSjQemHUspPpawQ9F4ExE4laQzM/sQ2Vzh9NnGaGIOHGjvSCze4zwQtE0fP24aSf2AfuQNZWZ88njSA9EHyw6C1q/t1NCo/fFjsOBoi8SYARPKdjuRuFWJF7TYfTOflLwfiDxmEbJ2gpVP592XFdKQC04h0oC5TZ2I4/n1G7xw0Lfq7Yeg6Z/Y5LjvcsXVazJuDrgl657Shb+c2GHr0OGX+IH989wvG/vyF8OxfoTixaMw88huBj+JtFELcIoRYKoRYmp9f98VCkXxX2LFWdtJeSPrZ8RJzozMkTAatNZAMIoPYHXD84ZjybpxwTTmOCNaXyEqLpcL7I2LfFEJQ9EgNMWktzrEnCxqy/G0AhJYOaa+CiJRAmLOuM0dK3UgJZX6DkCWYvaZL2HlHkxQjgwTA0DV6ZGfiNg0SPS7cpsGA3HbcfelIAHKy0pkyegAel4EmnFm+x2Uw6cw+dM8+Xn2akuhh0pl98LgiH0TdpsH15wzmmrGDKsaoSrk/SHGZn1+/+jGb9zTxk5hCUYUaFzuFEHOArBibHpZSTgvv8zAwGLhU1mL1tD6LnQAyuAlZ8gwElztNjpNuQ4RlaWVoC7LgirAuiw/wOo5fhp10BR7wjHNymWOW/WejtZobHnMn8tB46l8xeaLRyLF9z0WIlMeQR+6AwBKClpupyzrx4cpcdM3maJmHHQVp4XMK3EYIyxaE7GhH7jJ0xg7symcrNkcsNgK0b5nCtN/ewNZ9BWzff4ROWWl0adsyaozV2/bx0ZLvsKXk3CF59OvSlkAwxDcbdxOyLAZ3y8brMnnr8+W8MXcZRWU++ndpyz2XjiS3nTPejgNHeOa9eSz5bmfU4ik4s/eLT+vNw1cptUjFD0+9FzullNV+Y4UQ1wMXAGNq48QbgjC7ItL+EXObLHwY5DFNboByZ+btGuEscgZXh7NWrgLvZPB9EvsklVMTZXm4eUR988ZPNBrz1+MF12nIot9DYAm29PPQu2excEs2vqAzs3bpITRhY0vnqcgfMtBFnJuigDsvOgPLlsxbuQVbSgxdwzR0nrn1QoQQdGnbMqYDP0afnDb0yWlT8frbjbu55/npHPtaWpbNr64ey1VjBnLVmOg0R4AvV29laZUMmcpYtmT/keIaPhuF4oeloVkrE4CfA2dJ2XTeTspAuJNO1T8/GwJL0bJWV9lfIkVCbFVFs1JnHCMXJ+Z+cjjyz9fn8NzcYew50oKslBJuH72Yc3pvqfM4QUtDCB9G8bMgDwIhkPDEpDkcLfPwhw9HMn9jDgHLwNBCJHv8lAdMhIAxvY6S7LX5YGkGttQBDSEE919+Flnpyfz+pvPYuDuf5Zv3kNEigTP7dMZtGny1ZhsvfLiQvQVF5GVncseFp9OzY+sKm6SUEZK8Zb4AP/v7VMr8kU9dj70xhz45bchulRp1XXOXb+LvMxZEPRFUxmManNazU50/M4Xi+6ShWSvPAW5gdviPaJGU8tYGW1VnqotH+5HWIYReeSYXDIdcYhDcirSPILQ0hNAh9SmnahGL7z9//Pvjs/U5PPLBGHxBp7Bl95EUfjNtFPuLkrhi6BrchoWUTkZjbNxsP5TF49MHsGp3azQhObPbdp6YNAeXAZoGLs0ms0UZT0yaw63/vpC1e1sjBNw88hvG99mC1y3QRQBNWHRu2YM/f3K6k7kiBe9+NoPhHebQrv11JHldLFy/g4XrduAydHp3as3KLfvwhXO/F67bwbJNu/nXvT/CHwzx1Nufs2n3IZIS3EwZNYAfnzeMeatiSwdbts3Mxeu47YLTora98sk31Tpxl6HTMjWRi07rVafPXqH4vmmQI5dS5jaWIQ1BCANp9HS0WKLQkeUzEEk3VLwjy2cQV2bW3oo8OBKZdDta0m0I90hoOdOpGi17Pf5xNWLg3AyaJtPkr3OGVzjxY/hDJn+dPYJ/fjGEm0Yu5ZoRKygLugiEdFITytE1w+lgJJIoMn/HjS9/TXG5C4mGLWH93tgt4dxGiOvOWM6TH47kt5fOYUinPRU3CCFgZ0EKf/7k9Ah7Nh/wcuvzpXxw17nc+8/L2bzfhS0lwZDF4u+ii438QYuHXv6I/MKSCudbXObn37OXcrSknC7tWsbMgAlZNiVlsWUICgpjN/gWArJbpTJhSB5XjR4Qs6xfoWhKmoX6Ya2okgN+HMvJMw8j/fOh6FHiO1QJ+KHkeaT/S8DpPCQ8Yx0tknphQsK1YA6r5/ENZ+/R2F2KJILyoMm/5g9m+oo87v/fBCb86Xp+Me23iIx3EOn/QbSaz4xvApT5TGSlr0xGUjmBUPTCpaZBdnohL1w/jYEd96JpkTP9Wau7VuSOH8OWGgeLEvjVe0M4q9sq7Fost+zKPxo1g/YFQkxdsIY+OVnE+h17XSYj+8SW3R3YtX3MjBWXrqNrGnOXbWLqgjUEgvFn7QpFU3DSOHLhPhsnnl11QwLC7bR4k9YeJ8OiVrPqcmTpaxWvpO0Ld5mvDzaUvQ2Jt4DepZ5jNIzWLapXRPQFTV6cN4Rvt7dFAtsP+hBmL4TZEyE0lq5fwlWnreTyIWtISygDJNsLUjH06M8kaAkOFCaS2aIEUz/uTI/5yI7pR7FiZK6EbI3Za3N57eu+DblUDF1HILhy1ICIVEOv22R4jw4MzYvuFAVw68QRJHjMCr2WYzZbUrJt/2G27Cvg79MX8tPnptIU0hYKRTyalWhWdQizJ9IzFvxzK8W/vY70rOs0pLSRh6+lTjKttqM2IGUo3JKttsqCVVUOLaAECu8HzwQo30F05594NE7K4O2jF/PY9LPxh+I/VeQXO12DNE0wrncAu/A3IEspKTvI7y5ZgqlbBC2du8Yu5JfvnsPiLe15c2FfpgxfjdflXI9lC0KWji01TC12hkrPtvl4zSDlwaq2OA60OhtrQ8iyaJPRgrsuOZMRPTsxbcEaAkGL8UO6M6pfbtw+pdmtUnnroat56aMlLNu8G6/bZPv+wxFpiP5giDU79vPtpt0M7pbdIDsVisbipHHkEG5A4ZuJLHsbCIHnEkTCpQihIQPf1KzFEoEbPOOdH8unhzXOG4gsgfL3qL0TNyHlj05GTtkb1GWx1bKhPHDcIZ7ZbQfZ6YVsPhg/fe+YI73hjBXcfPoyKA8ANh4pMFzOzcTQHdt/f9mnjHv6et5a3IfdR1K49rQVpCb4+HZ7W6atGseFw1pg6E9HnUFKaJNaSOuUEvYeTSYQiv0VFNi0Tilhf2ELdE3EjHfHwuMyuOT03iR73QAM6Z7NkO61d7jtWqbwyDXjALj/hRls2BVdvOYPhFi1dZ9y5IoThpPLkQsNvBcivBdGb7Srq8YTOLNoO/zPA3obRMJkAGT5e9RN5zteAVGQus2uLfB97lSrShPKX6z1kZqA8/58DX3aHwRg+Y42BKyaf93n9E/lJ2cvRasUfjL0aJt1IRnZfRu+oMmMFT2YsaJHxbZEt58Hxr8U9xwLt+Tx3NUzmb48jw+W9eBQcUJE7B2ckMboHlvZsK81e4q6YUvJ4eIyQlb88JYAJgzuzn2XnV3jddbEm3O/Zf7q2JkvbpdBqypa6ApFU3JSOfJqMQc4Xehj4T4fEq93+lHaB8E9GuGdhNASwjs01lJCXUMkNvingn8a6N1wemfWLmvGcYTb+GhVNyx53H5DCwEaITv6mnQhGdsnHy3c0ceyBdsOpZKbeSRqX5dhcc+4hSzc0p4vN+ZEbHvq8k9pl3okZiqjP6SxdHtrHp06jlYtbJ69pT03/GUX/mDkZ2PqFkdKvazb24ryYHH4vep/DxL4ZOlGLjmjD+/OX8XWfQX0zsnimrGDaZsRe7E3FkHL4vmZi+LeNAxNY8yArrUeT6H4vjllHLnQs5AJV0DZOxyfXbucpsypTzjdhlzHF9mktR/76K/BPw/HRcTq7lPXtm/1jXdLsDZR3Q3FlhqaiHQ8rZJLqrSwkNhS40dD1/PfxdG50JYUvP7ZYUZ3dqpb//TxaRwoTOLxSXMrYuAVVyIgI7kMW0Z666yUYvp12IeuxbtOwcLNbSjxhSjx2dz6941c2H8b05d3RRM2UgpsBFcMXc3/lvTFXyn0ErRsNE2gCRHXyVq2zY//9DaWlNi2ZMPufGYuWs+/fz6ZTq3T+Xjpd7z/5WqClsX5w3owILcdn6/YgmXbjOqfS152Jmu37ycYR3lRE4J/3nu5SkFUnFCcMo4cQCQ/DGZ/ZNkbYBeDZwIi8YbolnF2EbLgkvBiZ9U/aA3wOJ6sxW+dBcxaO+eq+1XtSFQdtqMwGEfu/UBRAi2TSiuyREp8Jm8t7oeUlZ2/cyPZc7gFLkMQCEXbnZ5UipRQ6ncxdXlPAiGd1bszGZKzN2qGrWvQKjmy6rVVcilBS8djRjtCy4aPVnVj+6G0iusvKvcwY0Uu6YllXD1iBf6QweFSLwu3dCBkxdAYtyXtM1PYfagwpuRsVXXDkGVjWQGeeW8+KQkevli5mfJwyuL6nQexbDu8MiB4bfa3pCV5OVxcFldCt1fH1nRrHzt/XqFoKk4tRy4EeC9AeC+odj9Z9g7YpcSOdQtIuAKRdCcgkBjEnpUnhd8PEdmRvspYGZ9AwXlUF4MPhDR8QYMWSW3Biu3Ib3n1Qu45ZyEju21DE7BhX0tsO1azBY2Vu1ph6gaBUKTdhmZxz/gFCAH7C5MwNJsABi98MZQ+7WdGzcpDlqjITzd1i1F5W+nV7gAeMzqEZUv4amNHnph5VtQ2X9DkUInGjBV5bD6YgZQiHA6KdtRCwIQhefTq2Jqf//PDiE4/8ajchKLy/sdm9TL8vz8YqlZHxeMy+MnEETWeT6H4oTlp8sgbleByYraCA8CC4AqElozQksB9Fk6IpTJeSL4f0XoFIvNbnNh2LGzQU3HCNsepmqLsMmzcpsXK/aNAi50pkZ3u47k5wykLuAhYOlmpJVFFN+HRKfa5GdhxC24jhAjfYEzNItnjp12q48iyUosr4uirdmVRUJKAVeXGoGuST9Z0IcVbzju3/5eHJ87jqhGrHS2bStdg2VDic/G7D0cST0ohaOl8t78VIVuvFNOP3ldKMA2dM3rncEavTnhdxz97jxlbghbANLQG5X63bJHII1ePUzorihOSU2pGXmuMXPB/Ttz4d6VuRSLlD8gjP4HgWqdbkQyA9yJEwmQni0YkIN0jwT+H6Fm5gPwxoKeDdbxgJ5YvEkgWrNlIv1YHYpr0pyu/ZNVOD4nuALbUuOvN8+OE5AW3j17E5GGr2Xggg9e/7s++wmSGdt7NlOEr8AUNvK4QSe4glw5axzvf9MayNW57bSLPXPkR7dOKsKXA0Gx0zWJ0j20keTbQOqUEM1wc5DIktg1lAZMSn4sDRYn839TRFJQkVfepU1v99mlfr+GmCUN58uYLmLN8IzMXrUfXBBed1puv1mxl5qL1EaERj8vgzN45Mdu81YbWacnMeuKmuPnnCkVToxx5DETCZGTZqyDjOHLjeGd2obVAZLyFDG0Gay8YeQg9M2J30eJB5KFvnDzyiJuDDfKwE3fA4Lt9qRwsSuC03F1RKX+mbnP96Z8RtGzMGH0ZvEYpQ3MKEAI+X9uJ/OLEKvHx4+f0mCFM3aZf9gH6TXbkfKWErfmpzF3XnosHrsdjWtw7/mtaeHy8/OUg9hUmc9ULl9Mx4zBje27jprOWYmhwdt52Wnj9FU78GJoGbjPEQ++O5XBpAjsPp8WwpX7sKSgiaFmYus45g7pzzqDuFduG9+hIQVGZI7hl6gSCFucNzePuSSP5au32Op9L1wSn9+qknLjihEY58hgIPQvSX0ceuc1JR4zAg0i+J/oYIzcse+sgpWTW4vX86+MlHC4qY1DuT3ni4ldwa7G6zfvZW34VN79ikpFUxqBO76BpQSpViiMEeF1WzPZpDnZYC8bP2r2ZlAXihXM0/vbZML7a1JHnrp4ZIWaV6A7y7OwRtEwq48xuOwhYOtedsYIumYfJbV3AwaJkOrU8ErHAWep3keSJvVgrgMcunc1db06MY4ustGftMTTBuu0H6NelbdQ2j8vgz7ddxL7DRew9VESnrDQyWjg53y/cfRn3/GM6RWW+ijMGQxa67oRdLFsiw9kuEifdMdHj4ubzmk4jR6GoDcqRx0GYfRCZX2GX/g9KX3IaLRs9ES1+jjB71nj8v2cv5cUPF1WIOn2xOp/1g4L07xjzbKzecZScVibr9rbk5lcu5t7xX9Mn+wAlPhdJbj9u05nxxp8YSvJ9I/HIL0hNKMdjBqPUDo/hC5qs2t2apdvbMSTHaVdnS9ian07QMvjlu+Np3aKE7PSj7ChIJb84ieevm0b/DnsjtFPKAgZvLe5LjzYHuXjgelzG8Vl5yBIs3tqeF74YgmVpOGGlqk8I9Zvl2lIybcEaVm7d6+S8CxiW14Gu7Y5XrbZJb0Gb9Mjc8bzsTGY9cRMbd+cTsmy6Z2dSWFrO5yu3ELJsRvbpzKHCUl6fs5Q9BUUM7Z7N1WMG0VIV/yhOcGps9fZ9UN9Wb82FQDDE6Aeej2pqMGnwGu4etzAq+wOcma0QNvuOJnPnGxeQX+zEkxPdfv5x7Qx6tnVKxWNrhuuE9BH83/RLmLv8O4BKfTHjOUvJj0d+y62jvgGgPGBw22sTWbMnVlc/SEso4+5zFrA9P40Ed5BxvTazYHMHnvroTBJdQV68firt04sq9FgKyzzc9PIlFPqSsSXVVmQ2FE2AyzCYMDSPX181VoVBFCct9W71pqg7+4+UxMwsn768B+f33UhuZgEJ7hASHRFOcUx0O+GJjhlHefqKT7j+X5MACIZ02qYeT4kLWhq6ZnO8yNELCTfw10/78cXKNQQjyvDj36R1zcZrBjlQlMCHK/L4eHUuWw9lVDou0hkeKUvg0amOVLAQkr99Nqxin9KAi6tfvIyfnL2E8b238P6yHsz/rhNDOu/ks/W5BCqJYPVpv5/bRy+mS+Zhdh1O4YXPh7JkW/vqPs4asSX4giE++WYDI/t05ux+TaMwqVA0FcqRNxLBkMW8VVvYnV9Ih8xULCs6OyJo6dz86kWcnbeds7rvZlzvfEwtUpTJ0CW5mQW0SSniYHESo3tswdAtSnwmEsHd/zmXoTm7+cmotZD2EpYxkJdmLebNuYtjWBV/ZmrZOn+dO4K/zh0eY794xznvSxm9PSOxjL1HW3DlCz/CHzTQNZtdR1Ir+nUCDOy4l2ev+hBvOM88PdHHnyZ/xK/eH8O8DbE1wutCeSDItAVrKhx5Sbmfd+av4svVW2mVmsSUUQNixtUViuaOcuSNwP7DxVz/9H8pKffjD4ZwmwZetwsIRqW7WbbO3HVd+GpTN87pOwuIVtezbI3UBB/5xYks2NyRx6Yb+IIGS7a2x7YF5QGTtmmSCaP78uA/P2RBnbIxqi4w1j8MYeqhiieAI2VeZq/tWhGXD1XojR+f3d89bkGFEz+G1xXivvELmLehM0I4JfDJCW6OlsTL468efzDEyi17WbBuO+/MW0mZ3/kdCJzGyvdffjaXntGnXmMrFCcqDW2+/BhwEc5K1kHgeinl3sYwrDnxm9c/paCotEJqtcwfxLQskr1uDhfHrtjs1SkLI3G8s5Aao0Tf1ELomk2Rz83cdZVDBZKNB1rx1EeteXXRW+wrKKpjbnTjxY91TdIu9TDbC9IxdSuGvngkXVrHlhHOSimmfUsv4wb15twheezKP8qvXvmY8kDde6Ru23eY2//yPr5AMCKwJHG6B/3pnXmcN7RHRMMJhaK509DKzqellH2llP2BmcAjjWBTs8IfDLF0464ovexgyKawNPasUhOCa8cORiTeCFp6xfuWDb6gzm+nnc2qPW2RCEzdxm1W1UuB8oDNjgNHCMUI4Xw/RMfbfUGDXUdSAIkvjq74sWNdeojDJd6YW0sDLnYfKuOVT77hjc++ZeaidQAR6Ze1Jb+wlPIqTrwymibYsKtqSqlC0bxpkCOXUhZVeplIU3UWPkERQsSc/7pMnfatUhBaCmRMA0zKAzqzVnXjxpcuZe56Jx89EDIwNJtJZ/TEG2cGWct+Cw1Ekuotx20EwyX9x8MzTss2gfNVinW1AhDYUrC18DzKA5HXUR4weP3rfhXHTl+wjs9XbqE8EKy4Nr0OHr2mXp+WZZOSGKMloELRjGmw1ooQ4gkhxC7gKqqZkQshbhFCLBVCLM3Pj44LN1fcpkH/Lu2iND4MXeO0nh1xx3DAXpeJoTsxZE1Pg6Sf8cmaHjw5ayQbD0R28CkPmhw46qcxQyKR1HwnEEhm3P0GL1w3DU1EZ7TUCmFw32sZvPDFEEr8Jr6gQVnA4D+L+vLKV4OqPbSqczY0jcyUxKjPvKasQ10TdGydRqes9Op3VCiaGTU6ciHEHCHEmhj/LgKQUj4spcwG3gTujDeOlPJFKeVgKeXgVq1OHhnQolIfA3LbYRhaReODBLdJu4wUfnPdBG67IFot72hpOZOfeJ0F67YDIBJvJjXjfHQR7VRNXaNLm3RapiREbWscanbKEo3fzRxJSoIvZreg2hCyJCEb3ljYnzFP3cAlf72SMU/dyD8+H4aswYaqk2whoF2rFLIzU/G6TZI8LtymwYTBeXGfXDwug5ysdJ694+J62a9QnMg0WkGQEKIDMEtK2bumfU+WgqAdB45w3VP/JRAK4QuEKjSq0pK93D5xBC1TkvjrB1+xdX/sRb60JC+zn/wJmiYIBEOMf/CfUXF1j2nw7iPXcuBoMT9+5p1qSvSqsc5/AAAOz0lEQVS/f9qnHaWgJLHGRc0fApehM/PxGzlUVEZRqY9enbJwmwb3Pj+dbzfuxhcIVjwN3XnR6Qzp3oHcthmqWEjRrIlXENQgRy6E6Cql3BT++afAWVLKy2o67kR25JZts2LLXnyBEAO6tI3qBHPgSDGaJmiVksS1T77Fmu37G3S+dhktSPS6uWhEL/p1acv9L86gsNSHJpxOODdMGML7X67mwJFigt9jdWR8ItMVDU1gy5pj0UKIBsnG1kSC2+S1X1xJ5zYZEe9LKVm2eQ/LNu0mLcnLuEHdVUxccdLwfVV2/kEI0R0n/XAHcGsDx2tSvtt1kJ8+90GFPopl2zw4eTQTR/Riw66DPPjSLPYWOOu7yQluCorKqhuuVuwJj/fXaV8xMLc9Mx+7kU17DuEPWqQmebjyiTcqOtrUB49p4KtF84VI4jvg84b14MIRvfjze/NZuyO2pG56spcLR/Ti1U9rd7NO9JiU+uqWaqjrGtmZqVHvCyEY1LU9g7o2rFpUoWhONDRrZZKUsnc4BXGilHJPYxn2QxMMWdz27HsUFJVR6gtQ6gvgC4T43VufsWLzHm5+5h22HzhCIGQRCFmN4sQr4wuEWL55D6u37ad7diYHjhRzw9P/a5ATd5sGd154Olp98viAYxknlePoH3+zgZysdF7/5RSGds+OGttj6kwc3pP3vlpd67MEQzZZacnV7nPsPAIn3v2LH43C1GPo+SoUpyCqQ1CYRet3xBR2ClkWf5++4HsVfTpGIBRixZa9/OezZTz62iccKYnf/q029O7UGtOl4zHr+uAV6bwrY+gaX4cXaZ+8+QL65rTBbRokekx0IchMS+aNucsoLvPX+mwSeOuhKdXuk+A26dEhk7P75/KPuyZx3rAetR5foTjZUeVtYUrKAzFjupYtKSguq0d4ou5I6SyUPv32FxXhndriMnSCISsiKLJiy1427T7U6LF1Q3Pu/ymJHl6+/wpWbtnLvc9Px7IlOw/G7ikaD10TnNWnMy6Xia6JqMKqY4QsmzcfvKrBtisUJyNqRh5mcLf2MWfdXpfJGb1zInpDfl/YUvKvjxYTCNa9WtOWEq870kbLlhSV+wnWo71Z3PPYkjN650S8N23BWorK/dXefDRNMKJHBzJaJJAQtjPBbdIyJZEHrjgbr8tkSPfY/UgBemRnxt2mUJzqqBl5mFapSVw/fgivzV5a4ZA8LoMeHTO5beJpzFqyPq72hybA0HUMXYvSIK8ru/ML63Wcy9AbfO6aMHWN3910Lkled8T7n6/cjFXDrN/QNB6+ahwZLRKYs2wTW/cVkNu2JWMG5OIKh35+c914Jj/+RlRIyWMa3D1pZONejEJxEqEceSVuvWAEA3Pb8d5XqyktDzB+cDcmDM3D1HV6ZGfG7fmY6HHxhx+fz78+WsLyzT/8eq8mBH1ysli9bX+jO3MhQCCYOKInd186MmYqn8uoftHR6zK4YHhP2mY4HXvOjxPfbpWSxKdP3sJrny5l6oK1FJf56J2TxW0TT6NHh9YNvxiF4iRFdQiqJc/PWMCrny6NqTSoCUGS14U/EMJfZbsmRI0517HQNYGuOb0kGzvGXV0sujK5bVsyeVR/RvXrQlpy/MrS52cs4N+zl+KvFBISAjymSW67DK44uz/nDslTxTgKRQNRHYIayGUj+/HmZ8tiOnJbSoriZGl4XAa2beOrY9zb0DVmPXEzq7ft474XptfK8dYG09BJT/Zy4EhJtft53SZ3Xnw6I/vU3PDhxglDWb1tP8u3OE8jmhBkpibxz3svr2h8rFAovj+UI68lLVMSueX84fz5vS/rdJxl2yR53fiCdcs779e5Hcs27+bBl2bV2YnrmlMVWnkmrwmB2zTo3CYdj8us0ZFrQjAsr0OtzucyDf5216V8t+sg3+06SLuMFAZ1bd+A/HWFQlEXVNZKLbBtyecrNvPel7UvcjlGXodM/n7XJFKT6lYmvmVvPg++NKte+euWLWnbMgUhHKdu6Bqt05L4w4/P47VfXMkFw+PL4npdBglukz/fdiHuOuaf52VncvFpvRkSo1BIoVB8f6gZeQ1IKXngxRksWr+z2o41vTtlsW7nAewqs+eCwjI6ZqbSITONoyX7an3egjidhWqD29TZe6gQKcGSEpAcPFrCK598w5l9OnPesDxmLlrHup0HKPcHMXQNTRNMHNaTwd2yGdm3c1Qqo0KhOHFRjrwagpbFH9/+gi9WbalWdbBFgptHrxnHlN//B9uOjIUXFJUxe9km1m6PrUtSXyYM7sbnK7cQCFkRtmlCYNvRC6SWLVm38wD7DxeTlZ7M83dPYv6qrXy5ehupyV4uPq0XHTLTGtVGhULxw6AceRyklPzsb1P5ZsOuuE5cF4I+ndvw+A3n8u3GXRiaRpBIR14eCLJ4/Q6SvK64rd/qiq5pPHDFaH599Tl8tXYb785bybLNe5FS0jIlkaLScmKtrRq6RlGZj6z0ZHRNY1T/XEb1z20UmxQKRdOhYuRhpJTkF5ZUONvlm/ewcsu+uAuNXrfJQ1PG8PL9V9A2owUZKYkx48KmrtM6LZnJo/o3WsPfrLQk0pK8eN0m4wZ244V7Lue+y0ZiGhr5hSVxM2Q0IchR3XEUipMONSMHVm/bx69f/Zj9h4uRSPrmtKVv5zYEQvFLzgUwYUhexeuh3TuQ6HFR7g9G5I3ruuCSM3qTmZrMvoIipi9c12B7u2VHdlgqKffz7AdfReRxR9gqHCXEX14xGrOG4h2FQtH8OOVn5PmFJdz27HvsPHiUQMgiGLJZsWUPUxesqSgdr4rb1Hn2josjFgQNXePFey4nJysdt2ngdZukJXt55tYLaZuRgqFrPHrNObjNhjvSqsqCq7btq2gzV5Ukr8uZtd99mVIMVChOUk75GfnUr9dEpfhZtsTnDxJLytVtGsx8/MaYhS4dMlN555Fr2ZV/FF8gROc26YQsm5mL1rFiy16yW6Vy3tAezFryHf56qim6DJ3+XdpGvJfkccesHhXA6b068fubzq/XuRQKRfPglHfku8Iz8WgE144bxIeL13OoqBSAtKQEnrr5/BqrFbNbOZ1rikp9XPPkWxwqLKU8EMRt6uiaxoAubVm2eQ+modWpM44mBF63yRVn9494v3enLFokeij3ByNkbN0ug8tH9qv1+AqFonlyyjvyAbntmLtiM+VVxKZsKRk9oCu3nD+cHQeOIIFOrdPqpBfy4oeL2H+4qCIV0IlhWxw4WsKMx25k96FCnn3/S1Zv3xc/M0YTSOkIc53euxN3XnR61I1E0wR//+ml3P6X9ykq8yGEIGRZ3HHh6QxULc8UipOeRnHkQoj7gD8CraSUhxpjzB+KCUPzeOnjJQRDVkWIxWMaDOvRka7tWgLQqZ6ZHrOXbYwpeLX7UCGaJhiQ247fXDee6576L4FQCF8ghNdl4nbpDO3egUNFpQzr3oHLz+pHapK32nN1ykpn5uM3sXrbPorKfPTv0pbkBNV0WKE4FWiwIxdCZAPnADsbbs4Pj9dl8sYvp/Dih4v4bMUmXIbBpDP7MmXMgAaPHTdDREqMcL/Jjq3TmPHYDcxYtJ6t+wro0SGTc4fkkeBx1fl8miboVyV+rlAoTn4aLGMrhHgXeAyYBgyuzYy8OcrY1oeXPl7Mv2YtiVjY1DVB385teem+HzWhZQqFojkST8a2QemHQoiLgD1SypW12PcWIcRSIcTS/Pz8hpy22XDt2MEM6toOj8vAE25QnJmazBM3nNvUpikUipOIGmfkQog5QFaMTQ8DDwHnSCkLhRDbUTPymKzbcYB1Ow/QJr0Fw3t0QNdO+fR9hUJRD+rdWEJKOTbOgH2AHGBlOJOjPbBMCDFUSrm/gfaeVPTs2JqeHVWrMoVC8f1Q78VOKeVqoKK1eV1m5AqFQqFoPNQzvkKhUDRzGq0gSErZqbHGUigUCkXtUTNyhUKhaOYoR65QKBTNnAYXBNXrpELkAzt+8BPXTEugOS/WKvubjuZsOyj7m5ra2t9RStmq6ptN4shPVIQQS2PlaDYXlP1NR3O2HZT9TU1D7VehFYVCoWjmKEeuUCgUzRzlyCN5sakNaCDK/qajOdsOyv6mpkH2qxi5QqFQNHPUjFyhUCiaOcqRKxQKRTNHOfI4CCHuE0JIIUTLpralLgghHhNCrBJCrBBCfCqEaDYtg4QQTwshvgvb/4EQIrWpbaoLQojLhRBrhRC2EKLZpMIJISYIITYIITYLIX7Z1PbUBSHEy0KIg0KINU1tS10RQmQLIT4XQqwLf29+Vt+xlCOPQTNvX/e0lLKvlLI/MBN4pKkNqgOzgd5Syr7ARuDBJranrqwBLgXmN7UhtUUIoQN/A84FegJXCiF6Nq1VdeJVYEJTG1FPQsB9UsqewHDgjvp+9sqRx+bPwM+BZrcSLKUsqvQykWZ0DVLKT6WUx/riLcLRuG82SCnXSyk3NLUddWQosFlKuVVKGQD+C1zUxDbVGinlfOBwU9tRH6SU+6SUy8I/FwPrgXb1GavR1A9PFiq3rws3zGh2CCGeAK4FCoFRTWxOfbkR+F9TG3EK0A7YVen1bmBYE9lyyiKE6AQMABbX5/hT0pHXpn3dD2tR3ajOfinlNCnlw8DDQogHgTuBR39QA6uhJtvD+zyM89j55g9pW22ojf0KRV0QQiQB7wF3V3mirjWnpCNv7u3r4tkfgzeBWZxAjrwm24UQ1wMXAGPkCVjkUIfPvrmwB8iu9Lp9+D3FD4AQwsRx4m9KKd+v7zinpCOPx8nQvk4I0VVKuSn88iLgu6a0py4IISbgrE2cJaUsa2p7ThG+AboKIXJwHPhkYErTmnRqIJzZ4kvAeinlMw0ZSy12nnz8QQixRgixCidEVO+UpibgOSAZmB1On3y+qQ2qC0KIS4QQu4ERwIdCiE+a2qaaCC8u3wl8grPY9raUcm3TWlV7hBBvAQuB7kKI3UKIm5rapjpwOnANMDr8fV8hhDivPgOpEn2FQqFo5qgZuUKhUDRzlCNXKBSKZo5y5AqFQtHMUY5coVAomjnKkSsUCkUzRzlyhUKhaOYoR65QKBTNnP8PZu+DCfio+XgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] @@ -342,11 +354,11 @@ "scrolled": true, "id": "3o85U5VJqSVG", "colab_type": "code", + "outputId": "7333127b-9d76-413d-ec3e-99154097dacd", "colab": { "base_uri": "https://localhost:8080/", "height": 700 - }, - "outputId": "09322dc4-5cb9-4e52-cd55-c66f7ba2f169" + } }, "source": [ "batch_size = model.batch_size\n", @@ -377,45 +389,45 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/tensor_graph.py:714: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/tensor_graph.py:714: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "If using Keras pass *_constraint arguments to layers.\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/layers.py:1634: The name tf.log is deprecated. Please use tf.math.log instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/layers.py:1634: The name tf.log is deprecated. Please use tf.math.log instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/tensor_graph.py:727: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/tensor_graph.py:727: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/tensor_graph.py:1012: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/tensor_graph.py:1012: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/tensor_graph.py:1012: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/tensor_graph.py:1012: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/tensor_graph.py:738: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/tensor_graph.py:738: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/tensorgraph/tensor_graph.py:748: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/tensorgraph/tensor_graph.py:748: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.\n", "\n", - "999 0.5353480346798897 0.42010479140281676\n", - "1999 0.4970605837404728 0.5927191683650017\n", - "2999 0.32337378211319445 0.7835518234968185\n", - "3999 0.6442742827236653 0.44793607395887375\n", - "4999 0.7197044906020165 0.3560899528264999\n", - "5999 0.6842574814558029 0.35353413671255113\n", - "6999 0.681817068874836 0.35413561046123504\n", - "7999 0.6773326816558838 0.36418179589509964\n", - "8999 0.680501739025116 0.3696627883315086\n", - "9999 0.6853346248865128 0.35303945660591124\n", - "10999 0.6879503725767135 0.35497990638017657\n", - "11999 0.6917924422621727 0.3506708189845085\n", - "12999 0.6924710651636123 0.3495020810961723\n", - "13999 0.6911373255252838 0.3482625074982643\n", - "14999 0.6910281682610512 0.35186264622211455\n", - "15999 0.6905803002119064 0.3522126387357712\n", - "16999 0.6895883530378342 0.3526522752642631\n", - "17999 0.6900975884199142 0.35136979585886\n", - "18999 0.6905963387489319 0.34954379898309706\n", - "19999 0.6901651693582534 0.3524894942045212\n" + "999 0.40659638777375223 0.46297103410959245\n", + "1999 0.3384278678447008 0.8597527861595153\n", + "2999 0.28886374438554047 0.9156105797290802\n", + "3999 0.42119870174676177 0.840492086827755\n", + "4999 0.6085479544401169 0.45372276908159254\n", + "5999 0.7160498830676079 0.35652754533290865\n", + "6999 0.6727188802361488 0.36548557299375534\n", + "7999 0.6745303119421006 0.36139536756277085\n", + "8999 0.6672571448087692 0.3725837562680244\n", + "9999 0.6735138981938362 0.36844821578264236\n", + "10999 0.6764357801675797 0.36131750684976577\n", + "11999 0.6835235329866409 0.3585679198503494\n", + "12999 0.6849101437330246 0.3555546105504036\n", + "13999 0.6862603163719178 0.35470631182193757\n", + "14999 0.6857899969816208 0.3557598451972008\n", + "15999 0.6868707528114318 0.35640183770656586\n", + "16999 0.6868409720659256 0.3557077826857567\n", + "17999 0.6868168808817864 0.3548824065327644\n", + "18999 0.6882137333750725 0.35393582719564437\n", + "19999 0.6891591399312019 0.3511381688117981\n" ], "name": "stdout" } @@ -436,11 +448,11 @@ "metadata": { "id": "JqJCBFIcqSV3", "colab_type": "code", + "outputId": "a51bb593-2547-43ee-cf79-9da56f84bf46", "colab": { "base_uri": "https://localhost:8080/", "height": 282 - }, - "outputId": "979bb631-6546-4e55-e801-e9fc52ef55c6" + } }, "source": [ "classes, points = generate_data(1000)\n", @@ -455,7 +467,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": { @@ -466,13 +478,14 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3gUVReH35nZnS1pQEJC772LSBcE\nFKSJCtgQG0UFVBARK6BiAUGaCkgRlE+kqRQRkA6C9NBCJ4RAQkJ62z7z/bGwsuxuErpl3ufxeXT2\nzszdRX5z59zfOUdQVRUNDQ0NjX8H4p2egIaGhobGzUMTdQ0NDY1/EZqoa2hoaPyL0ERdQ0ND41+E\nJuoaGhoa/yJ0d+KmERERaoUKFe7ErTU0NDT+sezZsydFVdXi+Y25I6JeoUIFdu/efSduraGhofGP\nRRCEuILGaOEXDQ0NjX8RmqhraGho/IvQRF1DQ0PjX4Qm6hoaGhr/IjRR/weTnZ7DwS1HSDh14U5P\nRUND42/CHXG/aNwYqqoyZ+QCFo9bht6gx2FzUKNJVT74+U2CiwTd6elpaGjcQTRR/5tgs9jITsuh\naFQRJJ3kOb533UGmD51LXEw8RSLDePLtRwgpGsxPE1ZgtzqwWx0AxGw/zme9JzN6+dt36itoaGj8\nDdBE/Q7jdDiZNnQuv81ajwDojXr6jXmaTn3v59AfRxnx0GfYLHYAUhPS+ebNeRiDDFhzbd7XsTvZ\nu/YAWanZhIaH3IFvoqGh8XdAE/U7iM1i4/MXvmb70l2eFbfNYmdC/+ksn7oGQRQ8gn4Zu8WO/apj\nl5F0EjkZubdU1FVVRRCEQo1NPnuR5LMplK9dlpCiwbdsThoaGn+hifodYsU3vzNt6FxsV624L3Ny\nX+w1X9NgMhBVId8M4uvm1P4zTBk4k5g/j2MwyTz4fBv6je2NbJR9xlpyLHz0+AT2bzjkifk//Gon\n+n7aq9APBA0NjetDc7/cAaI3HGLa64EF/XowmGRe/bovkiQVPPgaST57kSGtRnB42zFURcWaa2Pl\nzHV82HO83/Ff9JtG9PpD2K0OcjPzsFsdLP1yFatmr7/pc9PQ0PBGE/U7wKLxy7Dl3TxBL121BOM3\nfkCrHs1u2jWv5Ocpv+GwXRUGsjrYt+4g508meh235Fj445edOGwOr+O2PBuLxi+/JfPT0ND4Cy38\ncgdIPZ9e6LERZcIxmGXOH0/0+7kgCvT97Gmq31PlhuelKArr5m1h5cy1OO1OHnjmPjr2bcupfbE4\n7S6f8XqDjnPHEihdpaTnWF62FQKEWLLTsm94jhoaGvmjifo1cGz3KU5Fn6FkpUjq31cbUby+F51G\nD9bn7JFzOOzOAse26HYPg6b0weVy0S3sGWx5vpuk8UcTrmseV/NZ78lsX7bb46yJPRTPpoXbqN64\nCge3HsV51XxtFgdzRi7gk16TiCpfnGc/eJzm3e4htFgwqQneDy5RFGjQps5NmaeGhkZgtPBLIbBb\n7Qy7/wPeaDOSqYO/ZeTDY+lTewjpyZnXdb06LWugqqrXMUH0v7rd+vMOVFXlXICVuqqorJ+/5brm\ncSUno2PZtnSXl1XSlmfjxN7TVKhTFtmo9xqvl3UoThcn98aSl2Uh9uBZPn16Mr9/v4kh01/EYJY9\n30mnlzCHmnnh46dueJ4aGhr5o4l6IZj30WJith3DmmvDmmfDkmMl8XQS4/t8fc3X2rv2AKMfm4DT\n8Vc4QxAFr4SjK8lIzsSSY0WnD7wBqtMHfuFyOV0oilLgvPZvOOw3xGLJsXL6wFkmbh1Ngza1kXQS\nQWFmQsKDURTvB5Mtz8bM4fNo3Kkhb84dRIP7alOpfnm6DujANwfGk5dtYcmEFayZu5G8bEuBc9LQ\n0Lh2tPBLIVg1e73HR34Zl8PFnjX7sVlsGEyGQl/r6yHf+njP1avE8Upkk4zBLFOqcgkiyxUn/uh5\nnzEul4Il14opyOg5FnvoLBNfnM6RHSeQdBKtH2vOK1NeICjMt4yAJcfCT5N+xeX0FXXZqCe8ZBEq\n1inH5+tGeY53De3td75ZqTm8dNcwzp+8gKSTUFwuOve7n9nv/sCWJX+iOBV0so4vX53FK1P6oJP1\nlKtZmsr1KwT8DTQ0NAqPJuqFIFDsW1XB5Sx4FXwlZ2N8RRncGaEGs8HLFaM36Gn7ZEuPTXHkkjd4\npek7WK5a5Z47lsD4vlN5b/4QANKTMhhy7/vkZuZ5rr150TbOn0hk8raPPV5xl8vFT5NW8u1783Fc\n9dC6jCiKtOt1r8/x4mXC/T5gFEXh9ME4uOI59fWQOUiS6HkwXv49xz73FaYQI4pLpUbjKny0/C2v\nB5OGhsa1o4VfCuBkdGzAbMhK9ctjDjH5/cxuc7BrdTQ7ft2DJdfqOR4a4T/bM6x4KH0+fYqgMLMn\nFKOqKmvnbealhsM4dyKBE3tOExTqez+HzcG2X3aSm+UW8V9nrPWxFDpsTs4cOsvxPac91/6g+zi+\neeO7gIIO4HA4ebHBG3zYcxxxMfGe48+OegyD2TvxSDbKbjG/6sXD5XD5vOlcxpJtxZZnI2b7cWYM\n+z7gPDQ0NAqHJur5sOPXPQxu+R4XziR7Hdcb9ASFmRk2e4Df8/atP8hjUX0Z/fgXfNJrEj2j+rJ5\n8XYAHn+zGwazd7jGaDbw+PBuPPJKJ16f8ZInfu60O7Hl2Yk9EMcLNQczecAMUs6n+b2nKIrkZuQC\nEHvwrF8RFUSB88fdTpkjO06wa1V0gb+By+EiIzmLLT/tYFDTdzhz2C3srR9rTucX2yNescFbumoJ\nnw3gwuKwOfj9+03Xda6GhsZfaKIeAEVRmPDidGx5du+YtwAV6pRl7okpVKxb3ue83MxcRnQbQ25W\nHnlZFvKyLNjybIx59kuS4i7S4/Wu9BjaBWOQwfNP96Fd6DGkKwA/T17pE3NXFBVVUbHkWH3udxlj\nsJHw0sUAqH5PFWSTb/q+4lKoUKccAHt+3+9jUcwXFWy5Nua8/yMAXw/+lp8mrPDaLD1zxUr+erBZ\n7Dgd1zAnDQ0NHzRRD0BqQjrZ6bm+H6iQej6NsIhQn4/2/L6fF2oN9qmgCKC6FNb/sAVBEHjugydY\ncnE2Mw5+wZKLs3nugyc8ce6stJxrnqvBLPPKlD6e2PuDL7TBGGTwWkXLRj21m1enYt1yLBj7C/M/\n+fma76OqKjF/HufAphh+nrzSz3cMvEovbM2X11uPxG4LHA7S0NDIH03UA2AOMaIGsAKGFPONscf8\neZyRj4wlLTHD7zkOu5OcjL8eErJRpkSFSGSjjDXPRmZKFqqq0qzr3egNhdu/Dgoz06RTQ+57oiVf\nD/mWbkWeZfQTE7DmWHl/wRCCL1drFKDefbX5cOlwlk9bw9xRC31i7oWleOliTB/23TWdo9NLSHLB\nNWlUReX0gTjWzNnodTzxdBK7Vu3zCYNpaGj48p93v7icLhJjkwktFuxVsjYoLIjGHRuyc+VeL/eL\nMchAj9e7+lzn+w8W+s32vPK8Jp3vBuDYrpP8OOYX4o8l4LDaSTqbgiAIRJQqRv9xvSkSGUbmxWzs\nVjsI+Gw8Xr7eOz8MZuXMtWycv9UTstmyeDt7ft9PbmbeX2EjFXavimZcn6/ZsmQHLoevdbEwGMwG\nnnq3OxNfml74kwQoXa0kcYfPFWq4Lc/GxgV/0OXFB7Bb7Yx+YgJ71uz3VHts3LEh78x/Db2sL/hi\nGhr/Qf7TK/X1P26lZ4m+vNxwGE+U6c/7D31GbuZfq+lh3w6gVvPqyCaZoDAzeoOezv0foMPzbQB3\n3H3pV7/xbNVB7Pn9QMD7GMwyjTs2pO69NflzxR6G3jeSP37eSdzheBJOJeFyuHDanVw4k8yYZ77k\nvR9fp/eIHlRqUJ7Q8BAEyR26EEUBQXALetOujShZKZJdv+3zisErikpuRp5f7/vGH7ddt6ADdOrb\nlhYPN6ZMtVKFPsdgkqnSoCKSrvD/q5mC3bbGmW//jz1r9ntVe9y5ap8nrq+hoeHLTRF1QRAeFATh\nmCAIJwVBeOtmXPNWc3jbMb7oO5XstBysuTYcNid71uzngx5/lZMNCgti3PpRfLN/HB/8/Cbz46fx\n0vhnPfHhr16bzYzh/yPhVFLABCJRFBk6awDv/jgYgEkDZmCz2AO6RBw2Bytn/E6jDg04fzyRrJRs\nT6xaEEWqN67C6OVv887/XuPQH0e9MlMvc70OlIJYOXMdSWdTaPFI40Kfo6rQ4fn70F21shYEAVHy\njbMbgwx0eak9AL/N9E36slvs/PrN2uuYvYbGf4MbDr8IgiABXwEPAOeAXYIgLFNVNeZGr30rWTRu\nqU8HIYfdyeE/jpIUd5Go8n81myhdpaRXJUJwJ/j8NnN9vrFpg9lA98Gdue+x5mxZ8idLvlhO6vnU\nfOeluBTijyUwd9RCn/m5nC5iD8ZTvXEVBEHgl8m/obiuLfnpRrDl2eldaQB1mtdAp9cV6FQRRIEy\nVUtyV9t6jFg0lDHPTiErNRtUdyFHURTd8fZLq3inw8VDAzrQuONdqKqKzeK/PLE119sFZLfa2bJk\nBztX7SPlXColKkXR4dn7qNeq1s354hoa/yBuRky9MXBSVdXTAIIg/Ah0A/7Won7hzEX8LWh1so7U\nhDQvUffHmcPxyEZ9QFEPLhpEr3e7031IF6YPncuvM9b6dcVcjV7WUadlTTYu+MPv/ERRIOVcqttz\nfiJAOV5BuGWrdVVxO2D0Bh2iJARMKgIIDgti5JI3AGjc8S6KlShCdloOqqqiKCqK4sIo6+g26EHK\n1ypLvda1SL+QwbudPyH24FkMJtnvb1a7RQ3Pv6cmpvNK07dJS8zwlDk4sCmGTT/+QdcBHXjx82du\n8i+gofH35maEX0oDVxqUz1065oUgCP0FQdgtCMLuixcv3oTb3hgN2tRB58eR4XK4KF+7bIHnR5Uv\nnu8q3WFzULtFDVLOp7Fs6ppCCTq4U/f/XLEHvdH/RqA118b3HywkZtsxpACFvIpGhVGlYcVC3e96\ncDldIEDjTg0xBgWuexNVsTilKpcA4NyJRBJP+4aprLk2Dv9xjPufbkXSmYsMbTOSXauiSTmf5vOb\nSXoJU4iJQZNf8BybMmgmqQnpPnVrbBY7y75eTdwR7w1al8t1yx54Ghp/B27bRqmqqt+oqtpIVdVG\nxYvfmj6a10KPoV0xhZi8NvCMQQaefPsRgkLNBZ5fqnIJ6rSs4ffBAO5QxXejFhCz7Rh+l9y4G0VL\neglzqHseoiSiuFTOHjlHctxFv+V4VVVl48LtTHz5G59uRJdJu5BB3OF49EY9Or2ETr62FzJTsNHL\n4+4X1b36/mb/eIxm/8J+MT6VD7qP46nyL/Fpr0kBL3W5vMG0oXMCO4gEiCwbzviNo7ySvnas2BMw\nBKW6FHb9tg+A43tOMbDxW3SUn6RLUC8mDZiB9SZ2n9LQ+LtwM0T9PHDl0rbMpWN/ayJKFWPa3s9p\n/1wbIstHUP2eyrwxeyC93utR6GuMXDKMux+oH/DzY7tOkXDqQsCCYI061KdV96aXqhmqXuLksDnR\nyzrCSxbxOU9xKdgtDr9Zo1ee77A6cF5y1hSWEpUieev7V3lx/LM8P/pJKtQpiyj5/m+iqiqVG1Qg\nsnxEwHlkXszij192cjE+leO7T/kVbL1BT8N29di/8TCnD5wNPDEVEmOTGdziPX6bve6v4/kkNYk6\nEYPZwIUzybzRZhTHd59CVVXsVgdr5mwI2GNVQ+OfjHCjr6KCIOiA40A73GK+C3hKVdXDgc5p1KiR\nunv37hu6798Fa56N7sVf8NnUBPdGYYXaZYk96F+szKEmrLm2fDc7736gHvs3xfgX5gAe9mtB0kte\nNkeD2Z0U9fn6URSNDMOSa6Vv7SGkJqZ7xskmmTotqjNmzQgunktl4D3DSU+6voYh4N7HMJhkT1XJ\ngpCNembFTKREhUg+fnKC23vvp2ywwSTzv7ip/PDxTyz7epWPU8hgkpm+f5zPJriGxt8VQRD2qKra\nKL8xN7xSV1XVCQwCVgNHgIX5CfqtICcjl5PRsV4Zm7cLo9lA537t/H6mKioJpy74/UzSidjz7AW6\nV/ZvPBx4pX2jgq6TKFujlNdK3JZn59zxRD5//isATEFGvtz5Ge2faU1oeAjhJYvS842H+Gj52wB8\n2HM8mSk31nvUaXcWWtDB7cXftNBdIG3g5BeIqlDcqzOTIAjIJpl3fxxCWEQop/af8Wv91Mm6gB2l\nNDT+qdyUjFJVVVcCvsVAbjEul4uvB3/Lqlnr0ck6HDYnD77QhoGTX/DUQbkddHihLcun/e5XfCVJ\nQtJJPitJVXXPvyD8idHNwuV0kXgyyefB4nK62Lf2gKfxRtHIMF6f8TKvz3jZa1zK+VRO7z9z022V\nghBwGwJwh58cdvcmtSXHyvC5g7h4LpWzMeew5tmpdnclGne6C1Owu0xx9XuqcHjbMZ8/H4fNQfla\nZXyuH3swjlP74yhVOYqaTasVum6NhsbfgX9UmYDUxHTiDscTVaE4pauUZP4nP7H62w3YrQ6PtW7N\n3I0UjSpC7xE9b9u8SlUugaSTfERDFAXqt63DoS1HyMu2eMIXBrOBSvXLc2zHCZ+WcOAOL+RnFSwI\nvaxD0ksFOm5EScRmDVzawGl3EnPwOF8P/paTe2MJLhpE98GdeXz4w4iiiCXH6jfefqMUiQxj5E/D\n+P27jfw2c73PQ8Nt+6zBay3e5WT0GSSdiOJSeHHcM3R9qYPP9R55tSMrpq/B5XB6HhaySaZJ54aU\nqBDpGWe3ORj1yFgObI5BFEVU1V1OeOzaEYQW818HX0Pj78Y/QtQVRWHSyzP4/btNHm94nXtr+t18\ns+XZ+WnSr7dV1E1BRh4f3o2FY5Z6OSpks4G+n/bCHGJkwdil7F13kMiy4Tw2rBthEaG82vwdr/nr\nZR2V6ldg6KyX6V9vqN97SXoRnazHlp9gC1C2RmmqNqxEYmwSBzfH4HK4fFa/+a2wy9YoTcr5NN68\n/0NPN6bMi1n87+MlJJ9N4e729XG5FIxmQ6HtmoVBEAUatW9A7WbVqd2sOsVKFGXh2KXuyo2qW4wf\nGtCBWW//wIm9p732AyYPmEl6UibPjHzM65oRpcOZvP0Tpg7+lgObYzAGGeny4gP0Hun9/8i8jxax\nf1OM1/5I3OF4JvSfzsjFb9y076ihcSu54Y3S6+FaN0qXTFzBt+/96NPqLZBPXBAF1jgX3vA8C4PV\nYmPf2oPsWbufi/FpxB6IIys1m1pNq9F3zNNUqudbc/0yO3/bx4T+08hKy0FxKTTp1JBh3w7g8Lbj\njOg2xu/mX82m1Th75FyBMWjZqOd/cVMpUjyMrLRsDm49ytwRP3LueCKKU/F7bXD/rnpZx+frR7Jo\n3DI2LdrutwSCbJKRJBGnw+l527iRujKXMQYZmHloglfy14m9p1k/fyuqonLf480JLhrMSw3e8Kk7\nD+7QzeDpL9KxT7trDpv0LNGXjGQ/G74CmENMhEWE8NiwbnTu/4AWktG4IxRmo/QfsVL/efJKL0EH\n8k38uR1NjA9vO8aE/tOIi/FObhEEGPRlXx562TcMcDWNO97FD2enkXI+DXOoyeOPP7brZMB4e6X6\n5Xnpi2d5v+unOB0uLDlWv6IrCAJHd57k50kr2bf+oGeMqBMD1j2XdBIdnruP3iN7UqxEUU5FnwlY\n0+bK1aykk6h3Xy0MJpnju0/5lB+WjXrPSjs/dHqJvmOe9snmrdqwElUbVvL896E/jgYM+6gqTHp5\nBj9NWsnn60ZSNDIs/5te+Z0ChbxUPA1Ppg39jqS4i/T5pFehr6uhcTv5R1RpDLQqlSQRg0n2JOkI\nooDBbGDgpOdv6Xzij53nrfYf+Qg6uEXly1dmefXzzA9BECheJtwj6BkXM1n65W9+BdBglqndvDq1\nmlZjQcIMRv00jLva1nVbG6/CZrHz8ZMTvQQdQHEqATMqBRFa9WxGsRJFAahQt1yhvoPL6eLg5hii\n1x/ijVkDeOKthwkrHkpI0SA697+fiVs/KpRTR9JJ3O+nyfWV5GVbOL0/Lt89B8WlcO54AmOfnVKo\n+V+mSee7CtwjsOXZ+GniSk/ClIbG341/hKjf1baO3+zKqAqRTNr2Ma16NKVM9VLc270pk7d9TJ2W\nNW/pfBaNX55vdx5VUf12BsoPa56NDx8bz5NlXwpoEZR0Eq17NgNAp9dxV9u6vDa1X0CnjzXAKj4Q\nikvl/Yc+4+W73+TCmWRKVows+KRLOO0urLk23u38KXe3r8/ipFn8lDqHwdNe5MifJ/M997IF8Z0f\nBhMUFhRw3Irpa3i46LNMGTQzYPjoMi6Hi+gNh69JfPuN6U1YRMhfPWQDRFh0skTiqaRCX1dD43by\njwi/9P3safatP4Qt14bD7kSURGSDniHfvEjl+hV478fXC32tpLiLHNt1kvBSxajV7PrsarEHzxZo\n40tJSL+ma47r8zU7VuzJN/uzTssayEbv7M1SlUtQrEQRLp7Lv/pjYVBcCrY8O6cPxNG3zuuo6rVb\nFVVV5Z2OnzDr8ARKVooCYPGE5QHHG8wyfT7tRbte9+brMEk6e5FJA2ZckzdfENwhlSDfzoN+KV4m\nnG+PTmL1nI0c3XGCk9GxxB9L8Lmnw+Ykokyxwk9EQ+M28o8Q9VKVSzDj4Bf8PGklh7cdo1yN0nR/\nvQvla/p6jAPhcdB8vwm9XoeqqoSXLsbna0cQUTq8UNew2xzsWLEHvaxD1IkoTv+iJ4gCzbrcXei5\n5WTksu2XnThsgQXdGGSgWdd7At7vZuIW9+t3tLicTpZMXMGgyX0ASDmXFnDssx88wSOvdCrwmj9+\n9ss1J1tFlS9+TTF1cNfQf/S1zgAc3XmCN9qM8tqQlU0yLR5uTJHi13ZdDY3bxT9C1MFdq6XfmKev\n+/w1czay/octOKwOHJfisQknL/DR4xOYtHV0geefO57AkFYjsFlsOGyOgIIOULJiFPf3blXouWWl\nZiPppICirjfqiSgd7veaDruDdH+OjTuI4nL3Gr1MaHgwqQHfXAqn1OlJ/nu/BkI26hn27UDvO6kq\nR3eeJCM5k5pNqxYozDUaV+X9RUOZPHAGaQnpiJJI+2da8/LEW7tno6FxI/xjRP1G+eXL33z81IpL\n4cSe06QmphNesmi+53/0+BdkXszy2mQURAFRFNHLOnSyuyxsp77teHRwFwymwCVpryayXASS3n9c\nPCjMzKODO1OjSVUWfr6U0GIh3PdEc4oUD8NutTNnxILrbiJ9KzGHuLM5j+48QUZylt8xkk4iL9vC\n3FELiD14lppNqtKxbzu/YZgGbWvzx887C3VvQYAeQx+iVrPqnmNJcRcZ3v5D0hIzECUBh83JY8O6\n8ewHj+d7rSadGjLv9NfkZuZhMMtab1SNvz3/GVG3ZFv8Hpd07szI/Eg5n8q5Ywk+rhFVUSlVrQSz\nYybe0Nx0eh0vjXuWL1+d7Ql7iJKIKdjIlzs+ZcbweSwatwxrng3ZKDPr7f/xwS9vMm/0Eo7tOnnD\nNWBuBTtW7mXh50tZ+tWqgJuagiiwePwKXE4nDpuTXauiWThuGV/t/Mwr0xNg2VerC31vY7CRmk2q\neh17/6HPSDyV5JXBu/iL5VRrVJlmXQPbflVVRRAEgosE3sDV0Pg78Y9wv9wMWjzSBL2fuuKmEBOl\nKkfle67T4QpY4vVaEm6O7znF9x8uYtG4ZSSfdTcKcblcbF++m+N7T3Nv9ybUbFKVkpXc4Zupe8Zy\nbNcp9q494H7LUN3+cGuejVHdP+f47pN+q0P+LVBhxvB5pARo3ycIAsVKFMGaa/WEnewWO1kp2Yx8\neCz2K8oXqKpK/NGEQt1W0kkUjSrCPR0beI6dPXqehFMXfEoyWHNtfPXabJLjUzzHcjJymfjSdDqZ\nnuQBsSftpcfoVeFl9vy+v9BfXUPjTvKfWak/8dbDbFn8J+nJmdjybEh6CUEQaNGtMeeOJ1Kuhk+z\nJg9R5YsTUboYCSe9Ky7KRj3tns7fVw1uUZo8cCa/f7cJu9WOTicxZ+QCBk/rx6rZGzi+5zTWHCs6\nWYckibz74xDP6nHiS9/4TcO3Wx2oSsHuFFESkfQiDmvha6rfTJQAiU5lqpcK2I7v9IE4hrQaQY/X\nu2LNtdKgbZ187yGbZBw2B5Ik0qzbPbzyZV8vm2deVh6Szn94K+nMRZ6v/iq1W1THFGzi5L5Yt8hf\nMe3ksym8/eDHjF7xFo07NizgG2to3Fn+EWUCbhaWHAtrvtvEhh+2cnTnCSS9hKq4wwCd+93PyxOe\nC2hxPLb7FG+2+wCX04XNYscUbKRUlRJM2PIRpiBjvveN3nCI9x/6zG97Np1e8qlfYw41sTh5FnpZ\nz1sPjmbPmmtbJUqXmkOoqsqrX/clLSGDheOWknnx2krkFitRhH5je/NFv6n5OnOuFdko0+fTp5gx\nfF6+Fk7ZKCNKAopLweVy4XL4PsRMIUaWXJyNpHM/pP39+dltDnpG9iEvQAjuWujxelde+ORJLbau\ncUe4LfXU/0mYgk10fKEtsYfO4nK6uwc5bA7sFju/zVrH3rUHAp5bvVFlvj/9FX0+60X317vw5txB\nfLXzswIFHWD9/K1+LYKqogRs33Z0hzth58Hn2+TbB9QfgiQwYNLzLE6axf29WvPYsG50G9gxYDJN\noOO5WRbK1SzNB78MJ7xUUXSyDkEUKF21JG9+NwiDOXDnpfwoWSmShwZ04N5Hm+SbwWm32rHm2rBb\nHX4FHaDPJ0+Rm5kXUNABZIOeV6f2w5BPp6jCsvTrVYx55toyVTU0bif/KVEHiN7gv3+HNdfG6jkb\n8z03NDyER17pxEvjnqXlI028XulVVSV6wyEmD5rJ9DfmcjI61vOZKIoEVlRfVEVFb3BHxlr1bEaz\nhxpdU59RxaGwb+1Br0Sl8FLF/PYSFQQhYD9Sh9XOjl/3ck+HBkz581MeeKYVleqVp+rdlahQqywf\nLh1+zf1PDWaZp9/vgU6v47Wp/TwJStfLl6/O5qlyL/F0pQHsWh0dcFxoeAjFCnA4FQaH1cH2Zbtv\nSrKXhsat4D8n6vllgroc1xdiUFWVz1/4ivcf+owVU1fz08RfGdziPRaNXwbA/U/f67ePpyhJf6Wk\nX4E51ES1RpXdY0SRd/43mLbSoeYAACAASURBVJ5vPIQugO3xahRF5dxx743F1o818xtXVlU1YNxb\n0kkYzQYSY5PoX38ov3+3iVPRZ9i0cBtDWr1P/JHzAeckiILf55hOr6PZQ+63x6CwIGYcHH9jzhLV\nneGZHJfCB90/59T+Mz5Dojcc4oNHPyfx9M1J7dcb9D6/r4bG34X/nKjXb1Mbl5/EIWOQgXa9Cp8w\ndCUHNsewZfGfWHNtqKpbVG0WO3Pe/5GU86nUaVmThwZ0QDbJ6GUdBrOMwSTz7vzBtH+2NbJJxmCW\nMYUYCS4axEfL3rq0uv+LDs/dV+iGFDpZos693vVvgkLNjFs/ipKVotz3N8sFZqIKkkjrx5vz7Xvz\nycvMw2l3O31URcWWZ+f7jxb7zPMy5WqW4b0Fr2MMMmAONV0qXRvKp6ve8/Lw62U9E7Z8RMlKURiD\nDJiCCw5nBcJhdbBo3DKf49++N99vmd7rvo/NQdnqpW7a9TQ0bib/GffLZUxBRt6cM5Axz36J4lJw\n2p0Ygww07XI3TbsWPrX/Srb+tMNvzFyURHatiqZjn3b0H9ubB19oy45f92IMMnBv9yYUKR5Gy0ea\n8Ohrndm/8TCh4SE06dzQp74LuJN5KjeowPHdpzwPJWOQgZCiwWSmZnusjaIoYAwy0mNIF59rVLmr\nInNPTPH0TR3Y+C1yM/wXvBJEgdY9mxEUZmbfuoN+OzTlZeX53TA0mGU69W1H6x7NaNq5IYf/OIZO\n1lG7eXW/bwsVapdl7okpxMWcw261c/pgHJMHzPRk/hYWf28o4LY0+uNywtfVtlSdrGPSH6PZtGg7\ni8cv93q7EyWRyPLFSTydTHipYlpddY2/Hf85UQdo1aMZNRpXYf38reRk5NG0c0Nqt6hx3X9BZZOM\nIIqoV4V2BEHwEuhyNUr7tU6WqVaKMtUCr/xO7D3NG21G4bA7cDkVt01RJ/L86Cfp+nJ7Vn+7gcVf\nrCA7LYe72tWlzydP+a1ns3vNfhaM+YWL51Ko17o2TTo1ZPPiP30dKIJ7Nb558Xb2rj2AOdQUMCu0\n2ysPsnDsUhRFRVVUjEEGylQrRef+9wNgMBloeH89v+e6nC7W/7CVdT9sQTbq6dT3fpp0bki1uyuz\nYf4f7P3d/8a1pJf85gfoZInaLWr4HC9dtSTHdvpWipQkEUEU/F5r2tC5JMVdJCwiGEmvI+V8Gqju\ncNX544m80+ljWvdsxtBZAzRh1/hb8Z+yNF4LGRczWfj5Mnau3EvRqDC6D+lK0wBFumIPnWVQk7d9\nEoEMZgMLzk/Pt5xsYehX73XOHPKuzy7pJNo/29qrGbSqqvw06VeWfrWKnIxc6reqTZ/PelGmaklW\nzlzL14O/9bhtJJ2I0WwktHgIGUmZWHKsCKLgU6pXlESq3l2JM4fifTpPFYkMJTstx23VFNxvCQ/2\nacegyS8UaPlTFIW3O35MzLZjHqunMcjAgy+0ZeCkF+hW5BnysnwtiIIgYAgyYPWTBRxUxMyMA19Q\nvIz3A23P7/sZ+fBYrxCMwWygwX212bf+4HX3gzUGGfho2Vs0aJO/j15D42ahWRqvk8yULF5sMIyf\nJ68kLuYc0RsOM/qJCSz4fKnf8RXrlKPvZ72QjXqMwQZMIUYMZgMjFg29YUHPTs/h3DHfkILL6WLb\n0r8ejOdOJPJ46f5Me30uiaeSyE7NYesvOxh4z3DOnUhg+hvfedknXU4FS66VuvfWYPh3r/DE8If9\nrjgVl8KxnScpWSkSvUFHUJgZ2ainfK0yZF0WdADVnWi09vvNhcpy3bUqmpjtx728+9ZcGytnrOX8\nyURP7ZirEQT/m92iJDJ8ziAfQQe4+4H6vPvjEEpVKQFAWEQIz49+gv7jegfMFC4MtjwbmxZtu+7z\nNTRuBf/J8EtB/DzpV7LTcrzCErY8G9+PWkjXl9r7FZxHXulE657N2LUqGr1BT5PODT3djG6E/Bwv\neqN7NWyz2HitxbtkXd1cQ3U33/hu1CK/zTIUl8KBTUcY/M3LLIk/h0tVAxovE08n0anv/bR+rDmR\n5SKY/e58Tu6L9Rmn00nsXXeIMtVK8sPHSzixL5YKtcvS693uVG1YCVVVObztGD9NXOF3tS0IAvvW\nHaLboI7M+2iRd2Nug46iUUVIPpvic57BJJPrZ2V/mWZdG9GsayMURfHa3O028EGWT12NLc/m05i7\nQARBS0LS+Nuhibofdq3e77fyoaSXOL3/TMDOSsVKFKXDc21u6lxMwSbqt67NnqsTowRo+2QLALb+\ntNNvKQFwt687fSDOXb/GDxGlijF1xXa2nziPXKYI+nPpCH5cn7Y8O6vnbGDg5BcQBMHjo78al8vF\nhdgkxjwzBbvVjqqoJJy4wO7V0Qz/7lXmjlxActzFgJUlRUkkpGgQHfu2JS4mns2LtqM36HHandRs\nWo26rWqyYOxSn7cBVVUpm0+pB8/1r3Lr9B/bmyadGrJm7kZysyz88fOOAq9xGdmov6YSyxoatwMt\n/OKH4gG62rgcLopEFbnNs4Hydcr69XzHHjxLcnwK374/P9+QR/mapWnc8S4fITaYDTR/uR0LNkZj\nczjJua8KriJmVJ2IohdRJdGrAKQtz+6puNjhuTZ+ywXb8uzMGD7PvfK99Hagqm4L5NjnvuTcsQQs\nOdaADxlLjhVzqAlJkhg+9xW+PTaZd34YzNS9Y/l83Ui6DXwQ2aAHQcAZHoSjZCg6s0zFuuWpdncl\nv9csiPr31WbYtwMJLmLON+v2cnjNYDYgG/X0eq8H1e6ufF331NC4VWgbpX44tPUIbz042uvVX9JJ\nVGtUicnbPrnt83m8dD/SEn2bREh6iWJRRUhJSAvYi1Rn0DFxy2jK1SjFp09PZvfq/ehkCZcsoT7d\nmExFwWK/YtWsquiSshGzbbiKmQlbsh/h0qXL1SrDrEMTAHdY5+Giz15TlcrCEhRmZlHSzIChje3b\nj/LGzBVYBBBUFUmv460n2vDofQ38ji8sPSL7kJni3+Xz3EeP021gR7Yv243NYqdxp7uILBtxQ/fT\n0LhWCrNRqoVf/FCnZU0GTenD1MFzAHA6nFS7pwojFw+9bXPISsvm9+82EX/0vF8XCLhth2lJGYEF\nXS8xYsHrVL+UnfrhL8NJT84kIzmTsWt3sufkeZxXbzoKAs4SoVACdEnZHkEH6Nzvfs+/pyakoTfo\nb4moq6rKwc1H/FohFUXlo+VbsRokt8UQcAKf/riBUiFmmt5d7ZruE73hEAc2xVAkMgy90f9fB0kn\n8uhrnTEFm3jgmdbX+a00NG4PmqgH4MHn29L2qXs5e+QcoeEht3VVFhcTz+CW7+OwO7Dl2RF1/qNk\nqqqiBCh0VbFuOSZuHe2zqVs0MgwpyMBef4J+CUFRUZ0KQVtPex3/bfZ6zM0rM3/DPrLzbGTWKYF+\nbzyivWBhN5hl9AY9Oem5BY4FcAWY275T58nKs3pvajpc6E5e5J1HPqf/wE50ebF9gaUHnA4n73X9\njMN/HMOaa8VgknE6XegNeq94v6SXaNShAaZg/24cDY2/G1pMPR9kg54qDSreFEFPTMti88HTnE4s\nuBDUuD5Tyc3M9YR/LvdDlS6Ju2yS8y2kZQo28sTwhwPaAi12R8AiXnpJxBRzgSKLotGleAvw4RCR\nD+f9zsHYC5xJSievfimyutdHDfDQuYykk6jVrDqW3Pw7TF1GVVTqtfK/GZ2Za/VuKZhnp8jCfZi3\nnUE6l8HcEQt4psog4o+5s0hTEtL46rXZ9Kv7Om93/JjoDYcAWDV7A4e2HsV6aU42i9391qGqyCZ3\nyQbZJCNJIvvWHuDZaq+wZcmfhZq/hsadRFup32KcLoVR361m7b4TyJKEU1GoVS6KiQO6Eeynj6kl\n18qJPaf82uskvY52TzenXI3SLPt6tV9rH7grErbs3hSAtAvpzPtoMX+u2ENQWBCPvtaJDs+3oWiw\nmQvp3hZISRJ5qHltohcfJCPH203jCpKx1ioBV9g8FUAXZoK7ysDus+hlHS6n4uUjN4eamLD5I15p\n9g6uQqzoZaOet+a9GrDHa4NKpXBc2qwV8uyErDqKmGP37G86HS5y0nMZ32cq7y0YwosNhpGXlYfT\n4eLM4XgObjnCwEnPs2buRr+lHRx2J11fbk9IsRB++GSJp1mGu0n5Fwya8gIPvfxggd9DQ+NOcUMr\ndUEQegqCcFgQBEUQhHyD9/9Vvl+7h/XRJ7E7XORY7VjtTg6ducDHP6z1O16SxIBp5+ZgI8NmD+Tx\nNx+mSGSo/xsKUL1xFaa/MZc9a/fzUsM3WTlzHRfjUzlz6Cxfv/YtU4fMYdQz7THKOqRLK3aDXkcR\ng0y/B5vw6OBOPtUjhTJF0PspKOZUVeo814o1zoX8eP4bWvVo6u4qJQrUaluHdl8/x4gf15FRMxIl\nQMxaFcAZakCVJbp+8jjNH7on0M9JsVAzDzeoinwsmaI/7EV3McfHsKKqKkd2nGDeR4vJzczzctrY\n8mxMGzqX/Bq7/jZ7PcunrvIZoioq04d+h8VqY82eY8xZvYvtMXHkWu18v3YPvT/7gRcnLmbd3hM+\n/Ww1NG4XN+R+EQShJu4F23TgDVVVC2Vp+bu7X24mHd+eQVJGjs9xvU5kyxcDkfW+Qvde10/ZvXq/\nV8NmvVHPI690ot+YpwHY8OMffNFvqpc/XRBAEEUUl4IgCoiSiKqoPhmYeoOe709/Ra4EP26I5ui2\nY2QtjSbrXBqyQU+HF9rgsDlZ+/1mZKM7xlyjR2N2FNORd5W/XBIFerSqx/DH23qOKYpCfHI6z41b\niNXuxOZwgtOF4FQJ++UAUqY75KECql7CWjsKS/3SIIqY4tP5dHwfWtUNbE/MTM2mR1QfCLBBfJnw\nUkVJTUj3OW4KMfLYG92Y/9nP19zj1RVsQHqpJZZL30vW69x1b1QV+6U/L5Os5+EWdRj22H3XdG0N\njYK45e4XVVWPXLrRjVzmX02uzb9oKArYnS6/oj505su83noEqYnpKE63QFdpWJFnRvX0jLnv8eac\nOXSWRV8sRzbosVvsOJ0uj4CriopL8R/ukA06Tu6LpUmnhvSsVYlX+szyhCJsFjurZm+g+UONmB8/\njfMnEilRMZKiUUV4ZNQczqVkelVsdNmdZP12iKSmdfn9u40c3XWKinXKsssE2Xk2lMuLBp2EKqrk\ntKxE2K8xOCKDyepYEww6r1R9S4ViTPlla76ivuu3fRhNcsCEq8tkpfo+TAGcdhcP9mnD7jX7OfzH\n0XyvcTU5baqg5Fg938viJ4nKYnewZMsBerVrSKnwAG9UGhq3iNsWUxcEoT/QH6BcuXK367Z3nKY1\nyrM++uRf4naJcpFF/MbUAYpGFWFWzESi1x8i4VQSleqXp2aTql4PT0EQeH70k3R/vQun98exdt5m\nVs3diK16JLYqEQguBeORJPRx6T7hCadTIbKsu0bK3NGLsVu9Hzx2i50/lu7ipS+eo1az6p7j017r\nwcAvFhGblA6KiqAoBG88yc64dJ7+botn3J41+3GoKsJDdSDiCheKKOAsFYYCWKtHgqzzrb0iCpxN\n9l1dA6QnZ6LTS24LZyEWEoqiYDDJXoW89LKOBm1qQ7jM3TPasXdEErqduUhnC16xq3rRbfcsxNut\nThKJPnVeE3WN206Boi4IwlqghJ+P3lVV1X+FKz+oqvoN8A24wy+FnuE/nNcevZddx+Ox2BzYnS50\nkoheknj/6fvzPU8URRreX4+G+Q8jtFgIDdrUYd+Gg2R3qY0jIgguZXo6SoVhOJJE8PYznvE6vUT5\nWmUoUa0Ug6cu5cCGg0h+whiyQc+F2GTCr2gBV6JYCHVjUshYdwBFLyGl53n52C9zuWZO0OZTZD16\nldf8siBKIvhz4AgC4SHedsTje04xpvcUEmOTUFWo1qhSofzxqgpq0wqw9RQ6vYSgqNS7tyYtJrTn\nkU2fA2DrHQ69iiGvyMQ066+NZ52sQxQFrwqOeqMeSSfiKiDsc+lrUDT4xmv/aGhcKwWKuqqqBciK\nRn6UjghjyYhnWbgpmujTiVQqWYwn29xF2eI3t9xASLMqOBPOewQdAL2ErVYJSlzIwZGUheJSqNeq\nFm//7zU+nLeGP2Pi0EcEIabm+ohzbq6VzfGJ5B41cToxlaiiIbSsW5HzJy4gZtsK3GEXAF1KDrgU\nt4ADOBXkkxcRAcPpVOwVw0H2LTXw2qP3ev49PTmTYW0/IC/7rwSsoztOElI0CIvgTkZyOpy+m5oC\n2EuGkKkTEOuXQjLJlG1ehXdG9aLzps+wKZdcPHoBELB3DkO/PQddjBWdXqL1Y83pN+Zplk9bzfHd\np6nVrBpdX2rPa7NXcujMBZ83r6u/u8kg07hG2QJ+JQ2Nm49mabwNFAs181LX5rf0HkdSM1D91GKR\nDTp6z32Z5mVKYA4xERoeQq7VzoboU9idLpwNymA4lYLqUDxhGlUnYqtWnJmb9jFz4z70OgmdJBJk\nlGnZohrxxxK8NnEDIgiXwjQuBFFASs8jeJu7sqP+bDpyfDr2ckVBJ4IgIAA9W9WjQ6O/Qj6rZ693\ni/YVKC4Fu83BkG9eJC0xgyM7TrDtl52eWL8qgCvMiJCaR/DGE+B0P1iSYi4wq30pJMH7kSQkOdBv\ny0Et5m41WKJCJAMmPkdosRCe++AJr7EfPteB5z9fgNXhxGJzYDboCTEbyLHYAAFFUYkIC2LSgG5I\nAVr9aWjcSm5I1AVBeASYAhQHfhUEIVpV1Q43ZWYa10SxEBM6SfTJEtXrdRQJNlOiQiQup4udv+3j\nzKlExAwLBMsoYUYyu9XFvP0M+gvZqAYJS52SWBuU9qx+7U4XdqcLi93BoZLFMJhlLDlWr/IEqoDX\nal8VBWxV3ElbQraV0M2nEZOyPQ8OAQheexxnmSJU7HkPd7WsSZemtahU0rse+vkTiX6bWKguFbvF\nwWPDujHgnuFem7e2KhGIeQ70mZl/zcmpQGou64Yshc9L/vX7/JqBaUYKqCqCKuASJe7v3YrQYiF+\nf+dykUVZMboPv+89zvmUTGqUjeTeupVQUTl6NhmTrKdyqXDNPKBxx7hR98vPwM83aS7/WpZvj2H6\nr9tJzsihfGRRBndvRYvaFQA8fuYbFYGHmtfhf+v2+Yi6JAq0rF2B8ycTGXrfSPKyraiKgtnmQKpY\njNw2VXGFB5HdpXaB91BVOHkhjWHzBnJs7hai1x8iNzMPl17EGRWC/nwWqiggqCrOiCByW1QCvYQS\nYkSxObj6PUIAQjOt9GlZn5aPNPF7z9ota7Jx4TYfp4vN4UQq7Q5hZV/lchEUFX1Cpk9ISQBsB9Ow\n2SJAB0KKA9OMFAT75YEqTpx8/+Fimndr7Lf1IIDJoOehZr6/V92KJf2M1tC4vWhVGm8xizbvZ8KS\nzVivyMQ06HWMeqY9a/ceZ9MBd32V1vUqMfzxtkTcQKekdXtPMPK71QiCgKqqmA0ykwc9TI2ykfSv\nP5Qzh+K9kmJUnUhui4rYakQhiUKhNgABjLKONvWrMPr5Bzl79DzvvTGbw1EmRIsDXVoerjAjrvAr\nvsflB5fNiaCoSGl5mPbEY0rNI6pCJLMOT/DbkBrcDUD61R1K0tkUlEshH1UScJQOw9GtHtNe68HG\n8StYOWOdJySkSpfCPgG+jtIuDNuwUkhL09DPSr5C1N1IOoneI3vS693uhfo9rhWbw8meE+cAuLtq\nGQx+bK0aGv7QqjTeYRRFZeqybV6CDu6/1CPmrEJRVY+Qbtx/ipi4ZOa99QSbD54h12qjWa0KXMzI\nYdyijSSkZlEqPJShPVrTpGZ5v/dr17AqLetW5GBsIrJOR50KJRBFgcTTSSScvOCT5Sg4FSJi0zG2\nqUXDamXYfSyes8npBYq71e5k4/5T7DwWT5Oa5UitXxLSc1AMOuxF/NSbufQWohp0qIKAYpZxlgih\nviLz0djnAwo6uBtXT/nzE7p3HIUzMRPsLuwVi2GvUhxdzAXGjF3MxPeeYsuSHeRm5rmLcRn14FJQ\nrc6/9gnAHbt3KZj/tDK54nPMj1zJbiEFF1fvD6i3LCN0W8wZ3vxmhefNTFVVxvTr4nlz09C4UTRR\nv4Xk2ezkWP37nx1XhUlcikpadh4d35mFJIq4FIWJSzbjvEJgTyakMmDKT4zs3d7v6z+43wJqlYvC\nYnd4rNx2qx0hwKZdVLCZmSOeASApPZtBU37mfGqmz4Poaix2B+v2nqBMRBgXMwpXefFKb7mqkzgo\ni4QUCy7wtCW7j5DWqCxQFlQV0444iizchyoKJG0+xSu/HuKDX4axYcUeFsWdIydIj97iwLwoGmwO\nHGWKkNuiIkqIEVwKwSdTqFSmFK8+/zjPj9nmI+o6vY57H/UfDroR0rPzeGP6cp/f9o3py/h1dF+K\nFbL94cWMHH7cGM3hMxeoWro4T7ZtQKnwsJs+X41/Jtr2/C3EbJAxXUMPS5vD6dmQtDtdXoJ+GVWF\nMQs24FJ8S9NmW2y8MX05bYZNo/O7s+jy3ix2HImjbI3SiH7qrshGPW0utcQDiCoawsL3ezP3zSfp\n3rIuhnz6o4qCQFaelaXbDyMEqPhYEBlWO5uX7sp3zIbok8z8bafnv/Vx6ZgOX0BwqYgOBcHhIi0h\nnTHPfMk6nZ3cUBlFAJtZT/pTDcl+oDrZD1RHCTO5ffF6idyaUbz+za8ULxtB/897Ixv16GQdkl5C\nNup58p1HKV/r5tsRf997wm/JGZvDRb8Ji8jOK7iKZeyFNLp/OJd56/aw81g8CzZF89hH3xMTl3TT\n56vxz0QT9VuIKAr0ebAxxqvK5OolMV/BLAir3UFqVp7P8SFTl7Ll4Gkcl9wqiWnZDJm2jGXbD5N6\nb0VUnYh6SYBVvYguIphHX+vsdQ1BEKhaOoK3n2zHU20bIgcIjaiobDpwmu/W7A5Yl71AXArfvPM/\nHC7XVYcVciw2VFXl29W7vFa2xsOJCE7v+6mqSkpCGhdPXvAOHeklHBXD3WEXr7nDjqNnGf2/tXQb\n2JGZhybQ673uNOvaiM79H6Bmk6oofh6aN0qOxebzXS8Tl5zOmzN/LfAa4xZtJNdix3HpN3C6FPJs\nDj6dv+6mzlXjn4sWfrnF9H7gbnQ6kZkrd5CZayWqaAivPNKCr5ZuIzkjxyOIoiCgoha6o33IVSUG\nzlxII+ZMkk9Yx+F08dWybeRFhWB97C4Mx5IQs204Shchp3okLj+VF8H9QHrl4Zb07dSENbuPMXbB\nBvcGLGC7JLI2R/4hmnxxuDAeTiTpTDJd35vNnGFPULxIEF8v/YMfN+7H7nQRHmr2qa0iBCrfKwg+\nYn/lZ/5YsSOGZ9s3wpljZckXK3A6nNjy7Pw2ez2V65dn7O8jkI3y9X/Hq2haszwzf9uBy09oS1FU\n9p04z4W0bEoEsFMC7Dl+zm99yZizSThdCroAf54a/x00Ub/FCILAU20b8lTbhl5/6RpXL8e4hRvZ\nsP8UAPfWrcjWQ7HYCpH+flfl0pgM3mGdhLQsdDoRrrJ0uxSVrEvFupQQA5ZGf9XdMck60rItAWvQ\nuMfo6da8Dg80rMaWQ7HYHU4+nb8O6420sVNVdBdzMO08i6NkGBmZOYz6fjVVSkbw0x8HPSvzZD/V\nLW2VI9Cl5fkIuCQK2IuZfeqyiIIQMPtTFAR2HYtnRf9Z5FyxL2DNsXJibyw/TfyVJ956pMCvk22x\n8fue46Rk5lK/Ukka1yjn16Jaq3wUDzSsxoo/Y/wKs14nkZqVm6+omwx6TzXIq8+VrjMMpvHvQhP1\n28iVq6jw0CA+7esd+li79zjvz1mNoig4XQqyXofD6fISpbLFw5gyyFdoqpUujt2P0Mo6iVLhoZxN\nzvARN0VRGL94I4diL2B3uogsEsxTbe+iXsVSrNx1hFyLnTYNqtC0ZjnMRpl761R0rwgLaX0MiCC4\n+59KIpYm5VBU2Hk0nuhTCX6/w5XYapfAeDwZMdOK6FRQBdDLeobOHMAmWw6rdh31PBR0ooDJoCfP\n5vDr6JFEEVeOjQtnkn0+s1vsrJm7sUBRj4lL4qWJi3EqCja7E6NBT61yUXz1yiN+K3COeqY9WXlW\nNh847SPsLkXxJF8piuoupXzVw6H7vfX437q9Xm9Jsk6iS5NaWsKTBqCJ+t+K+xtWo3aFEqzadZTs\nPBv31q1EnQol2HooltOJqTSrVYFa5aP8nhsRFsRDzWqzYkeMR9QEwKCXeO+p+3nl61+w2hweIdHr\n3NmnWw7Geq4ReyGNz+avQ72Usu9SVH7deYTmNcvTuEY5Jvy0GZ0oemVvXhcuBcHuIqtLbZyRf61K\nCxJ0ACSRzEfqYTiZgv5sOs7KRoRORdlaI5F2UbWpXT6KBRujib+YidPlwqWoiKLotwyxJIos33oQ\nh1PxqWRZGFRV5c0ZK7wcThabg8NnLrBos7v0bkaOhTlrdrFp/2mCTTJPtW3I20+2Zf+pBHKsdk/4\nzSjr6N+pKRfSsxm/eBN/HolDFATaNKjCW0+0peilHqkvdm5KXFIaWw7FIksSDpdCw6qlGdpTa4it\n4UZLPvoXoSgq89bu5qvl23E4XUiigCSKtKhTgT4PNmH6iu0ciE0kPNRMUnoOuVfaLQUVStog0eDO\n+b8Cg16HoiqezbmrEQCDrKNa6QgOxF64hd/wqvtWzEOslQsiCCKYJJlmEVUpf74i363Z47WavRya\nMMp6VFUlyCjzSIu6fLd2N4bvdyFlWLyEXTbJ9B7RkyeGPxzw/nFJ6Tz5yTy/9s8qpSOYPfQxHvvo\ne1Kzcj17HZIocHfVMrz9ZDt+WL+X7UfiKBZiJtRkZNfxeJ99Cp0kUiYijMUjnvXqK3s+JZPTiamU\niyxK+aiiaPw30JKP/mOIosChM0mexBnXpUYZ2w7HUaNMJJMGugXqYkYOnd6decWZKmKzTFSLiJos\ng9Nb1AvaEL28LCgZHsaJhFT35qbJBS7Afv0un3yRFcTauQhXXN7isrM95QR/Hr6IzeG9WHEpKjpR\nYFz/LpiNMrXLl2DQzFayiQAAIABJREFUlz9htTtx3F+N0OWHwKW6a8ToRUrWLM2jr3W67ukpisLP\nfxwkI8fitXntUlR2HovnhfEL+OHtXrz9ZDuGz/yVzQdO+/2dnS6F5Iwc/jwaR/NaFTzHS0eEUTpC\n86Zr+KJtlf+LsDmcbDxwysdiaHM4WbzlgOe/g4yyV3xdiLIjFHUg6K//rc1qd7Ju3wnMsg6hRi5S\nuzSQA9kCr+U+/scKkXZ3I8UrUBJkslcHkXXG/31VBOpWLEndiiURRQGzwe1scYUHkd6rEbktK2G5\npxz2LnUY+OOrBTpfykUWISLUf1mHMxfSmfXbTqwBHogZORY+X7iRi5k5bNp/Kt8Hp9OlcOZCWr5z\n0dC4jCbq/yKcLiWgJdJi97bFXJkUJUTZEXSXhLJAVITidoRKeQiRNq4UXadLIVXORKychyCBEOUg\nsICrIFwSX1HNZ9ylsVw1xuWug34ZJUFG2RsKuTqv41dSoURRzFcI9aMt62K6nEOgl7BVj8TSsAyG\nKpHUq1Qqn/m4EQSBsf27EGwy+NRvUVSV7LzA7fZUFbYcPE1CalbAXIDL6CSRyqUiCpyPhgZo4Zd8\nSUrP5lRiKmUiilAu8tqaWiSlZ7P9SBwmvZ5761b0EpPrxelSEAQ8ZQS2HT5DXHIGVUqF07h6OYKM\nMhVLFOVkQqrXeaIg0LL2/9k77zgryusPP2dmbtte2KVXpYNIEQTsIlZssffYS3qMiTFqjDGJMTHG\nxGjUxBgT8yMWYknsXQRBlC6g9LrA9nbbzPv7Yy67e/feu3u3AYvv8/lQdu57Z85llzNnznvO9wxu\n+PrOJ18j2LT+OywoB8QEY0oVzvwc1y8q4p2nx8E8osJNrRiAIxA0sD/Mg7AbHxgDguyRY5TcCIpA\n7ERxKiyxvwqmBSMn57F8eSnUmO45G9bFO25QYDpgC2p3fEmnszIzZmtqNpaU8/Rbn1KwqYIn75jN\n7m1lFPbIpuzQPjCyFyKCZRr84RtnIUluDLbj8P7Sdby/dB25WQHOnDaaEf2LefUXV/Oth/7DZ2u3\nxt1U03keGVicn7REcQ8e06Bvj1wOG6YHbmjSQzv1JERth7ueep03Fq3B6zGJRG0mDu3PfdeellAf\nnoy/vrqAR/87H9OQhjKz+68/nckj2jabtao2yH3/fpc3Pl1DJGqjcB301JEDWF9S7uZrow4ey/2P\n//j3z+Onl83k2t89SyTqELFtfB6LDJ+Hb53lThN66MW5vLX4y7jrOJsCmAe7k4WMHhHkpFJUiQ8V\nFNSKrAbvZIypgUy7MY9tKpRhY4ytwVkUm8VpuKV49qoA6ssMkjrzJg7TtmHFilLMI8tx1gVQW/wQ\nBeqTRK8CFIcx8mywHJwFORiTK90X6lrP3Udth4d/8Sw58zcSjs0trd9VTe6H6zn+6EOYNGsSO8uq\nuf6BZ6mqC+H3Wlw2YyLXz5pGxLb5xoNzWL5xB/WhCKYhzH53MbdfMoNTJo/ENI2kT0l+r5VSR0dE\nyMsKcOb0Mbw4b0XCOp/H5KTDRvC9rx0Vt0mq0bSErn5JwuP/+5i/vhqfD/VaJidPHsGdl85s8b3L\nN+zg2t89k/AfNMPn4Y1fX0cgVn2xfkcZwXCEYf2Kk3YBOo7i/J8/xcad5Wm14XtMg1lTR/OTi2dQ\nUl7NM+8tYc2WXVTWBdlYUo5pGIwb0od5KzcQShIZSu8gxoTqxsoXG+yPc6Gi8SZmnrYrbmNyD8oG\n++VCwEB6hZCx1ThvFTaJuhtWkjQ1YijM48uQDPdz2hv8qKVZCVU4ADKoHvOQGpztXpyFuWAqpDiM\n2ukBu/VsYv5TCzHqEodueIuyGf7TM3hv2boE53zChKEcecgQfvn02wlpLL/X4q1fX8+/3vmMx/43\nP6F5zGuZLUbii/70HZSCf779Kf94axHVdSEOPagP3/3a0Qztq1Mumnh09Us7mf3e4oQNrnDU5pUF\nq7jtohkttmK/+NGKpPXWIsL8lRsZ0ruQ7zz8AiXl1ZiGgWkId19xEkeOHRK3fsHqTWwvq0pbVyVi\nO7z2yWp+cvEMeuZnc92sqZx391Ns213ZUH3x3rK1jQ7LUEifEJIXQdWYqC1+7Fd6IAURd6JRtQWR\nNCtXmvhetcML2QE3T57g1FNEm0Jc6kTt8iTPXZgO0juEoQycL2OKhragtvtIK9nhKCSJQwcIldbw\nbkzbvjlvfPoF5TX1CQ4d3FTY4rXbOOfIQ5j97mLKa+rjas9nTR3FM+8tTXgfuLlyEUEELp0xkUtn\nTGz9M2g0raCdehLqkoxPAzenGrHtFp16KBJN2paulKI+FOGa3z1DaVVtXDT4w8f/y+yfXBo3jHrd\n9tKU4k+paKrc+N6SteyqqIkrp2u4ptfBPKocvA7iAafKQIUN2O5D7fYg/eqRg4JuSqWJY1YlXugV\npumIT+XEjhObZ2cq1Fp/EocOjY632WseB7JiAy6qTNjhS1yDQjIcevXP4Lii0fzLXOneOESlzKUb\n7qyMuANOhgcziWN3slNLJUDqnwlw0yQ5mX6e/vHF/OXVBby3dB05AR8XHz+BaaMG8vwHy5OqatqO\nww8efYntZVWs215GXlaAK2ZO4tyjxunuUE270dUvSZg0rF9SDajBvQpaldI9YeKwpHn3qO1gWQb1\noUjC433Udnj+w2XNrlWIx0y/xts0hGPGHdTw9arNO6kLJXdExqgaCLgOXdUZOB/kw7ZY01FeFGNc\nLUafMDKilqYRsLMsC0IGKvYQo6JA2HXm5mm7MU/ZjXF0ORSncoDNNj5jNwFjQnXDv7ezO0WUjiA1\nFj/rdzHr63ci0yswjytDhtSDmZjW8XstjjrkoISz1B82ANVctdEyqJucfPAIuHpgR4wdlPR77/NY\njDvIrZQpzMnklvOO5b8/v4p/3XYJpx0+ivzsDIrzkpc9KgVvffYlKzfuJBiOsqOsmgee/4BHXp6X\n0haNpjW0U0/C9845mky/t8GpGuK21V96QuuPx9NGDeKI0YMbHLtpCD6Pxc3nHkM4aiedqBO1HXY1\nE6+aMmIAPfOz01Ld81gGRblZfP+cxlbxfkV5KW9A0rsx2nZK9lTliJvbnlqJ7Hl+CzW5tqEwhte5\nteeG69BVlQmikOKIW8JogWQ4mKNbH5ohAhSGMY8vwyiKoOoNnF2eFpMojoL7n32fqLLdm9GaDNSG\nQNJIPRiOErUdjGZ359CIntQcOQQ7y4cSsHN81BxzMOEhhQnn2IPPsrhi5mQuOGYcXssk4POQ6feS\nk+HjwZvOwEwxgMT9nMJPLj4Bv9dKS4ogGI7y9zcWJahTajTpojdKU7CzooZ/vLWIFz9aQW0wjNdj\noZRiRP9i/vCNs8hsoURRKcWCVZt467MvyQx4mXX4KIb0LmTLrgrO+dnfEzbOAl4PP77oeE6dMjLu\neGVtkNufeIW5Kza06OwyAx4GTQywM3s3RTlZXDJsOkfkj+D0O56gqjbUkA4yDKEgO4Py6RuQmL9X\nDm6QGxXUdo/r8D3ucfvNAggJKMGYWIX0CsdtlCrlbpJKrE2/4XgUnPk5qNKWUxr0CGNOrcRZlI3a\n4WvMwydN3biYhsE3b5jEA4/Oh0jzksdGMnweJg3rz/vLkufJUyESL/RoGsLk4f257IRJTB4xgB3l\n1XyyejPZGX6mjRqYVLQrGWu27OKvr3zM659+0eraDJ+Hv//wwgZxL41mD3qjtAMU52VhGgahiCsK\ntSdyWrGxhF/Pfoe7Lj8x5XtFhCkjBybMEu1XlMcZ00bz8vzPGzbdfB6LAcV5nDBhaMJ53ln8JQvX\nbGkYJJ0cRf24XazKjSAWlAcr+dmS5zi292j+9oMLuPPJ11m+wdVjGT64kJIRGxvqyKGJM/Yo6Bdu\nSH04awMYk6qQvGji2qbs8mIvzEH6hDDG1SAet6TRkw/h0iTrm9iNLdhLM90cepwzT1ElA+Rl+Vn3\nWQ1EU0fHPo/FkN6FFOe3PiqvOYXZGYSjdkOkbzuKeZ9vYvHa7Zw+dRQ/vOA4ZqUYJQjuDNLfP/8B\nG0rKyfBZHD9+GN8+6wiG9Svi7q+fzLtL17VYDQNurr04r+22azSg0y8t8p+5yxPatyNRm1c/Wd1u\npcIfXXAcd1x6AhMO7suI/sXcMGsqf/3B+QkRX019iHtnv5Ny47UBASmMNKZMgKjYvL9zJTXeWs65\ncCiDz1FkzapkzZiVVFq1qWZGuE7bcCNVY1AQyY82RuFJ3iMCkmmDEtQ2H/Y8V4vEwOCX55/O1SdP\nZkivAryWmdxFV5iwMZB2lYzfY9GnIIeX5q1MmncXgd4FOVx18mQe+ubZfLFld/IPmgLTMCirrqeq\nLkS4meRxfTjCfz5awZdbU5/zg2Xr+N7DL/LF1t1EojaVtSGe/3AZx9/yZ5as3YbHMjllyshWO0hn\nTR3dosa9RtMSOlJvgVRNI1HbwVYOBm0XqxIRTpw0nBMnDW9x3WdfbsUyDVpNrSpQRqIbjDoOD615\njWWVmwjabcvPKgViqTjnn+xGoBxQ5bEfISVQZeGUm/TpncPRfUdwbD+DG0+fzrbSKr7x0HNsKCt1\nO08VgCStQ0+GCHgtC5/HYuXGHSmlEDymyT9uvYj8rAC/nv0On29KPrfTE7vJRB0Hx1EN+xaGCOFU\n05NwRbo+WrmBg1PUjz/w/AdJo/Co7XDN757hrV9fxy3nHcvuylo+XL4+yRkgJ8PHLecdm9IGjaY1\ndKTeAlNGDEjYaAMYM6hnmypT2oPf6yGt2mvLRpIsMzD4tGxdUoeuHHAqTDef3uSYii11hzMknjOu\nBT4mIeCsaVLZIQrqTC4fcjS3L5nN9Qse418b5lIulWwv3u6mTFTTPHjrn0+AI8cM5q7LZxKORrFb\neEs4avOtP85h6brtzJm7PGWa44ZZU/nnrRdx6uSRjBxQzFnTx3DI4N6tpkVM02hR7mHTzvKUr0Vt\nh6ff/gy/1+LBm87k0IP6JEwq8nstbpg1TY+k03QIHam3wM3nHs3itdsIRSKEIjZey8Rjmdx20Ywu\nv/YhQ3on1R9xUa4Oy+FVkN+Cut9uCxUVpCCCeONLE1WFiTm90vWxjntK8cSi9BYCaFVngKVQpRbO\nyqz49vyo4KwJcJ/3NeyiehSwvHwz4bBNdENukioViftbMn9tWQYTh/ZjzZZdKZ+cmrJiYwk3/P45\nItHka/1eiytmHgYQty/ym2feZen67a02e80Yn7j3sYei3Cx2lFenfP3jVZu47rSp7vWuncUNDz7H\nlt2VGAKRqMOM8UM596hxLV5fo2kN7dRboF9RHnPuuoLnP1zK8vU7GNq3B+ceNY6iLtjEWlS6jt9+\n/jJra0rIimYQ/SA3yRzQJiJXtjQ07MQ5YQWeah/1HzURuHIEGVWDeVAQFRHUJrc5yJ6Xi3lYFeJv\nIsPbUkbEBvuNphUZqtnfBaq8BD/2IOMczP4hgrtA8lSLQbkhcMiQPjiOIhSNsrGknGA46mrI2IoH\nnv+gBaMSidg2fq8naZ3+IUN6J33PBcccyvMfLktw6oa4I/GUUtx79ankxSYQJeO6Uw/n7n++Qart\nlr6FjfrnBTkZ/N9tl7BiYwk7yqoYOaCn1kfXdAraqbdCflaAq06a0qXXWFm5he8uepKg4zqh8o8t\nqAqToFDYNLItjLo14s2csALq52XGasybdIN+noXKj4KlGksHa0236iVdBKRnCFXiazzQ9MU92IJa\nkYnqF8JZk4ExrB7pE0LVWklrypWCFRt2MKR3IX/85lkEfB6O/8GfCUWiqDZpr7tEbYeBxflsLa0k\nFI66QmixfoHrTp3Kmi276F2QTXaGv+E9/YryeOibZ3PXU6+zvbQKgKmjBnLipOFkBnxMHj4Av7fl\n/y5nTB9DVX2Q3z2XeBPyeUwuPG583DERYcygXowZ1KvNn1GjSYV26vsBj3/5NqGYQ1cRgVIPiVuf\nSVrrk1HqiU0uarbeBmeDH2NsbWO1iSMp5ViSISbI0LomTr0Fwgb2kizY5cUp97jO3BMrircNMBw3\nv64Ehatds3rLLm568HmuPmUK4VamLbWEZRocPnIgMycN4y+vfMyGknJGDeiJaRrc8PtnMQ2TqG1z\nxrQx3HL+sQ057PEH92XOT6+gsjaIz2OlpcjZnEtnTGLmhOFcff+/2V5WhYh7M7n9khNSzpfVaDoT\n7dT3A9ZW72iMR1MFpqLiqkVUqTfpNreKpvLS4laeWAoG18MGP0QMqDNQmU7LaZemZ/GlJzAGwJaY\nhssemyIG9AxBhoOIQq3PgMwoRj9Xg93Z4WXN1l1s2FHejvi8Ea/H5KLjx9O7IIcHbnRH+D368jwe\n/d/HsTJF9zP856Pl5GUHuHHWtMbPF5PD7QhPv/MZu6vqEJHY0GunbcOeNJoO0KFtdhG5T0RWichS\nEZkjIm2bJPEV4/VFqznjjieY8s0H+dpdT/Le0rUAHJTVGMGJV0G2TfJC7CbHwoKz3p9Q3icFkeQd\nmabjqjIKGCNrkeF14LNx1mQktTVZ2aByiA2nUJAdcQdWJH+3m+JpLoWrBEp8EDRQ6zJc35odhcH1\nyEH1mIdXYoyvTrnJCWC2cvMJeD387eYL6F2QE3f88VcXJNT7R22Hf7y5qIXGrrazZO02nnl/CaFI\nFNtRRKI2oYjNT596neq6YKddR6NJRUdrp94AxiilDgHWALd23KQDD9tx+PPL87jjb6+xeVcFkajN\n+h1l/Ojx//HIx++wuGJj3HpzQlUs9x1zmqYDPht6hMFju2WMxWGMfuG4CFsp9zcZWRMTuVKN78+2\nkb7ueDXDBOOgesxjyjDG17i17imceBzijr4zTtmNMbmq5TrzVFOIlMA2f2NpY4kPtSjHLaO0QPqE\nqM+pY+LQfglvFWixpBHcJqEhvQvijn28amPKqpZg2G3uqguG+XD5ehas2pS23HEyXlm4Kum8UdMQ\nPly+od3n1WjSpUPpF6XU602+nA+c0zFzDjwWr93KzX9+mfLquoTYO+QL8sTuN1Fms1e8CmNKJarM\ng6o3MPIjSF9Xd2WP803YIK0TVLWF2uJHbfdCUQgshUQMN0LvF4pv81fgrAu4m5hWTMelaTmjAlVh\nglchWU7jNQPKTcN7HFTvkKvZ0kKpYqs4gtrtRdUbSMBBTCjNKuOR75zLrY//l7cXf4mIYBoGs6aO\n4rkPlrV6ymDYJsPvfthVm3dy04PPp1zrtUxeXbCae55+E8s0ULg5+QdvOpOxg+MrZZRS7K6sxe+1\n4jZZ49ek/9E1mq6gM3PqVwKzU70oItcC1wIMGNC2sW7dler6EN/4w5zUErgjalFGoxdQQcFemONO\nGyoMYx5SA83y3SmbggIKIyOCKoyg+ntwPs5B+oXcWvakF8etfDFiTUcGcWJdYgD5Ns6KDMwxdclP\nMaEaZ7XtKiVGJZaqbocOuKGg3nDlgIG8jADPvr+Uhau3AILfa3H1KVMYVFzQqlP3mAYBn/tj7TiK\n7zz0n5QlhgCThvfn50+/6UbXTb5NN/1hDm/ce23DQOmFqzfz07+/RmlVHUopDhven7u/fjL5zfLv\nJ08ezkvzE0fT2Y5i+uhB6f6LaDTtptX0i4i8KSLLk/w6o8ma23AnS/4z1XmUUo8qpSYppSYVFRV1\njvX7OW99+kXqfK0opHc4vhJwfi6UeyBgY06uQrLS28Bs2gEqlptXl3HV7hSjZqXuKiTYC7OxX+6B\n+jwL+5Nst/EoWYOsAzhC9L08nM2+xPy9AebIOqyTS/GcWsppU0dxyODe+NNULmy8jsT2EcBnesjY\nlc3v53xAZV0QRylqgxH+/PJ8Pt+0k9ZGdV4/a2rDgIk1W3dRXR9q+dKOkzRdopRqaOXftLOCb//p\nP2wvqyYctYnYDgtWb+amB5+P+/5+smYzf3llAT7LwjQE0xC8lonPY3LnpSeQk5k8utdoOpNW//cp\npVpsnxSRK4DTgOPVvtDx3Y+pqK0nnCo/mxHf3q+qTKixIMPGnFJJO2RlGhALjP7hBBlZ5YD9fr4b\nFe/Jh+/w4WyOuAJeza+pQJV5oNKDs8RCKiyMmFZ601SOR0xOHTCBH59yEsFwlCt/M5tVm3emaa3C\n7BvGmZeLqjPoPbiQ2RsSI91gOMqzHyxl1MBerNiwIyGVlZ3h47tnH8mZ08c2HIvaDtLCXSDT7409\nDSTiOA41seHUs99dnJBnj9oOG0vKWbV5JyMH9OSFj5Zz7+x3Guw2DcEyTS6fOYmzjxirVRc1e40O\npV9E5CTgFuBopVTyZ/SvMIcN64/HNLCTOPZAgYEyTaLExrgFDciKYk6vdHPh7chiNKUhcm+6kbrD\n06CP3nhQMDdkwqBgXE5d2aCqLKiM1WrbgtoQwPHbSJYNxRG3fHK3h4xQHscOHI9Sijc/XcPGkrL0\nbATGHtSbpWt3NBz7YlVFyvVl1XVU1dYT8DV2i5qGcM0ph3PtqYcnrB/Rvzim0ZOY/vJ5zFiFSvKb\nbtR2GDfEnWiUavi3YQg7yqo5uE8Pfvvse3E3IttRgE1ZVZ126Jq9SkerX/4IZANviMhiEXmkE2w6\nYBg9qBdHjhkSN4HI77U4YswgnvvuVRhNokjJi2IMrQOz4w49JSEzaVWKXWPgW+SmxJSKlS7u9ODM\na9a27ghqZTbOgjzst/JxXi/E+SSXihVw8yMv8/X7ZjNn7jLq09Bo8XlMBvbKj3Po6RB1VNwehe0o\nnnhtIe8tWZuw1jINfnnVKfi9Fp5Yg5FpCAN65hG1nRarXKKOw4W/+Ae/n/MBEw/u25Bbb0okajNi\nQDGbd1UklWK2HcX8VRsTjms0XUlHq18O7ixDDlR+edUpvPrJKp6ft4TdOWX0GZjBcQf3I8+bwRVD\njuHv694j6MQEt/qEu8yhKwX47aTKWQGfB7PaQNUZiN8BB6QogjGlEmd+XvLyxPrGH509Q0RWbdmZ\nsHGYilDEZsOO1KqGbSEUifL7OR9w9LjEmaSHjxzIC3d9nZc//pyyqjomj+jPo/+bH4ukU6OUe97Z\n7y7mkuMnkh3wEnWchqcuv9di5sTh9C7IoayqLuUNokdO8vmkGk1XoTtKuxjDEEaN6sF9lasJORG2\nhR2Wfb6OR758g5uGnUiuN4NgsBJoRUyrDTRXWlQKqDNwFubEUi+NOjKmIWQWmVQM345kxDZm9+TW\n86MYY6txFjc28giuQ0sWjYcjNiXlNQnH9wabd1WmfK0oL4uvn+gqM24rrWTFhuQ668kIhqP8+70l\nPHPHpfz55fm8v2wdmX4vFxxzaIOiYkFOBpNH9OfjVZuINNFj93stLp/Z4uQxjabT0U69i9hWV85r\n25ewpXY3r25fQqRJGUpIRQmFa7h7+XNdc/HY7FD2yOo6gv1xrjtNoyFMV1imyaSJvVjWZwWOE024\nqYgJ9AvBYvcm4PdafPusI/F7Le7+55vtnv7UFfRMc3TdG4tanxHanKq6IIXZmfzk4tQ1A/dceQo/\nfOxlPv1iKx7LxHEcrj9tKkcfkvj0oNF0JdqpdzJfVu/gtsX/x/radKs/OhelYvnwVZlIYcRtyd8z\nA9RwoFcYY2gdZ3im8ZOzT+I7i54ktCvRoTcQE3sUIMvv5fRpowl4PTz7/lJWbizpUkkTEcjLDCDi\nDuFOlTKxTIMbmui3tIST0CbbOoN65sftfyQjO+DjT9/6GiXl1ZRW1TK4V2G7BME0mo6inXo7CdoR\nNtXuIt+bRZHfTU+Uhqq5cv7DbR4f15kYjhBZkQU1FqqyiVMRhYyswzioHnGgJH8HIsLS8o0t9gup\nCguUMHpQL+695tSGTd+7Lj+RK3/zbyLRKPXhKOYe4ap2YBrQVPPKbSDy8MCNZ3DI4D5U1QW59//e\n5rVFa5K+vyA7wKlTRiZ97cutu/lo5QYy/F6OHz+U6aMH8+eX57c65WgPPo/Fzecdk/Zn6ZmfTc/8\n7LTXazSdjXbq7eDZjfP5w5pXMRAiymZ8/iDuHHsOV85/ZJ86dBPhoLUjWFmTZDiyqTAKIw0580+r\n12Irh1xPJrV2YoOOUkAUnCVuWmPs4F5xIllDehfy0s+v5LWFq9i40y1DfO6DpWlNJwI3uvZ7LMJR\nm8tnTuLCY8fzwkcrWL1lJ8P7FXPm9DHkxpp18rIC3HD6dN5dui5po1DT4RON9ivu+/c7zJm7Asdx\nME2D+599j/uuOY0zp49JOhAD3KeRQb0KKCmvZnDvAq4/bSqHHtQ3rc+k6V4oZaPsElB1iNkLMQ6M\n0lPt1NvI/N1f8OCaV+Kc96dl67luwWPsDKberOtqPBjcN/FSyvJsfrn2rcSNTAPIazzmKIVSiisP\nPoZ7lsyJ059RCqg03Tx80N01/WRNYpNOdsDHObHNQttxWL15J8vWbycU2TORye1+ap40CXgtbrt4\nBgXZGYzoX9wgddvSpuKA4jwGFOexdltpnNpiwOvh/GMPTVi/YNUmXvhoZcNNIBJz4D98/L+8fu+1\nvLt0LTuTbOqGozb3XXuajrYPcJy62VB1D+AqZypMlP8MJPdniDTOoVXKBoyGLuXugHbqbeTv695L\niMYjymZLXWla+eVUglwd5aS+45lWNBy70OHdJWuZu2KD69AMBaIwJ1c2NiQhHJo/CMswmdV3ImtK\nS/j3lo/AAWUo1FYfzpLsOAnfDTvK2FlezVNvfsr/FnyOUoqZk4Zz0+nTyM7wU1UbxDSMuOoPpVRC\nZsfvtZg6ahAnTRqOrVSbBnjff/3pXPfAs1TU1COxuZ5nHTGGEyYMS1j78vzPqQ8nPjWJCAtXb8Zn\nJf/RF6HVckdN90YFX4Oqu4Fwk6M2BF9AiYXk/hwVWY2quhMinwEeVOAMJPvHiLH/l6hqp94KddEQ\nhgh+08vuUDXb6lPVVqcandyIioCqtjAK2j/VJxWLyzYAYBoG9117GsvW72D+5xtZX7qbj/IXYXsh\nrMBvePAYFreOdodHiAg3jzuVa0ccx0tLlvLQv+cTrE3ePXnjH+awZVdFQz56zofLWLB6M/ddcypX\n/fbfVNUlSeOcopRcAAAgAElEQVTgOsrC7AwG9izg9Kmj2LCznKO+9yfqwxH69cjjlvOPbVHsqro+\nxMoNO8jNCvDCXV9n8bptlFXVcciQ3ikj6uba6XE2KTh1ykieeG1Bw1PFHnoV5NC7QEfpBzKq5o/E\nO/Q92FD/Ak7mtVB2Iag9T3JhqH8BFd2IFP5jL1raPrRTT8HG2t38bNkzrKzcCkCW5aMuGk4p0JXW\nLE3TrUxROVGkk//lMzyNj4wiwiFDejcMWa6LnsAr2xazsmIL3ooM+jnFVOyMMCBTNTxW5vgCXDx5\nCiuWlfL6ojUJTtE0DHaUVcVtMEZshx1lVVz4i3+22J2pYp79se+dy69nv8N/PlrekHvfvKuCm//8\nEo98+2uMO6hPwnufenMRf3pxLh7TxHYUBTkZHD5yAI6j8HktMn1eymrqKM7LjpshesrkEby7ZG1C\ntG47DpOH92fKyAF8sGwd63eUUReK4PdaWKbBr646pVs9amvagd1KF3Pd30E1d/phiCxFRVYjnuFd\nZlpnoJ16EmqjIa6e/whVkfoGZ10Zqe+Uc6stfjgo6KYm9uisqNTpmAzTS8iOYtNyZcmRPUakfC3D\n8jGjcByzn1zNpp1bidirQEGP3EyevOVCejWJTK+fNY0Plq8nGI40pCH8Hovpowfz9uLEGu90N0Yz\nfB5qg2HmzF2WEB2HIlEeenEuj3733LjjH6/axMMvfUQoYje8Z+vuygb53ZfmrcRWToMq5OUzD+Oa\nU6YgIkwbPYgTJg7l9UVrCEWieEwTEeHuy08iw+/eAP92ywV8tGIDS9dtp2dBNidOGk52II35q5ru\njWckhOcnf00CEN1E0kheLLDXg3bq3Y83ti8l7LRvkn0qlALCArUW9od5mOOrUDl2y+WEIaHWiWL6\nVasy5aXh6hZf/8XTb7Jue2mctviuylrO+dmTvPara8mMOboBxXn868cX85dXF/DZl1spzMnkvKPH\nYYgwd8X6lNrwLeH3Wlx47Hh2VdRgGgaQWE74yZotzF2xIS4N83/vfNbiTSMaK6Hcsyn8t9cXkp8d\n4NyjxiEi/PSyEzn3qHF8uHw9mX4vMycNjxPXMg2DI8cO4cixQ9r8mTTdF8m+GVV6EYmO2wPZPwJn\nG4TnAc3SiSoK1v6vjNJRQa8Dki11pdTbyXJu7UcEVK3pzhmtsrDfK8Cemwt2kilGCpydHuzXC7Hf\nLCD8Vh6qrOX779rq1M1OtuPw9uK1SYdF1IUivDB3edyxfkV5XHL8BDymyYoNO7jzydd45KWP8Hms\nuCYcQwQjjVTFjPFDOfeocfQsyG4x1/3Dx16OK1ksq26b8GcwHOWJ1xbGHRs9qBfXnTaVS2ZM1GqJ\nGgDEcwhS+C/wjAc8gAXmECT/YYyMs5HAhSCxoekN+MA7GdFOvXsyPKcPXqPzH2IkJwr5EbcixXIQ\nT/IIXGLjO3HE/VVrYX+UiwqmdqA53uQDpMHdNGypk/Kjz+OVBOtDEa767TOs215KOGoTjtqsLykn\nErUZN6Q3lmlgmQZjh/TmxtOnxeWym+P3Wtx1+YkYhhDwerjk+IkpbwQiwqdfbG34+thxBydVR2yJ\n8urOSZNpui8qugmn8k6c3WfjlH8Tp/wGnJ1H4Ow+HVX/opv69IzFKJyN0WsFRq+VGEWvIr6jABCz\nECl8FrxHAl6QbMi4GMl/aN9+sDTR6Zck5HszCDudX6EiHrCOrETVGhAyICeadOKQioLa4W12UHA2\n+jGHJzotSwxO6D024fgePKbJsH5FrN68K+nrfQtz4r5+89M1RGw7IflkO4rTp47hj984G6UUGX4v\nSilCkSh/fXVBQimg32Nx/tGHxm083jBrKu8vXcuarUkapJpx7tHjmDN3OTsrapI2HSVjRP/itNZp\nDkxUZBWq7ILYRmcUok2eQp2dqMrbIboeyf52i+cRaxBS8HjyaziVYG8Hs99+2bCkI/UmzN/9Bee+\nfz83Lvxrl15HMh2kIHkFjKEECZqojc0kbB2BOhMDwWrybfMaFoOzijm+V2qnDvDLK09JGiH7PCbn\nHxPfvLOzopZgkhrvYDjCzopqAj5Pw2ajiHDDrGm8c98NnDplBF7LJNPvxWuZnDR5BDedMT3+s8fW\nN9WY34NCMXFoY/dmpt/L0z++mBtPn8qEoX2ZPLw/Aa+HDJ8HrxV/N9yjHvndrx3V4r+D5sBGVd8D\nqg53umYy6qH2cRy79aAi4dwqglN5G2rndFTZhaidU3Gqfp16ZOU+QvaFQZMmTVKffPLJXr9uSbCS\nN7cvI+REOKJoBMNyelMersFjWKyrLuGmhX8l5Oz9Nn8DYVz+QKLKYYxvILP/voZwsFm6xHTwjQsy\n9pAizux3GM9t+pigE2Zmr3GcN3AqAcub/ORNWLe9lG/+cQ4l5dUYhkGm38tPL5uZoCT48ecb+d6f\nX6K+2aZohs/DfdfOYuqogSmvUVMfYuvuSnoV5DS0+TdHKcVdT73O64vWEInaeGIO+jfXzWLaqEEt\nfoZgOMrcFeupDYbJ8LnCYhtLyhnev5jrZ03VkfpXHGfHGJLXoDdHwDMeyb0HsdJT0nSqfg11/2BP\nF6pLALK/h5F5eTusbTsiskgp1aKe81fCqddFQ/x25Uv8d9tnDccsw8RnWNRHwyBCpuVtc9miAAZG\nq+WGrWGKwXNHfZ8+gXwAvvfwi8z/fCPBWMpBDLAy4BvXTuL8g6Z2ON9fUl5NbTDMwJ75sWqUeBxH\ncfX9/+bzTTsb0h4+j8WwfkU8cfP5rSoWpsvnm0qYt3IjWQEfJ0wclvaADc1XG2XvgOhaMPsj1oC4\n15ySw0GlN07RlR/NQYreQoycFlcq5aB2Tog9BTTD6IlR/EGa1+wY2qkD5eEaLpn7R3aFqjr93P0z\nCjmx9yE8se5d7A78OwrgNTyc1f8wvjX8ZJRyy/me/WAZ4UiUEyYM4+qTp+zVafTBcJR/vLWIl+av\nBAWnHT6SS2dManFTVKPpSpSKoipvheArbnWKCoP3cCT/QUTcgMCpeRhqHiY+mm4JP2R/v9VIW6kw\nquQQSBXASQ74T0KyfxSXZ1eRz8HeBNYwxBqcpk2p0U4d+NWKF/jP5gU4naz8bSBcNGg61w09gZlv\n/5z6TlBn9BseZvWbyA9Gnd4JFnYuSineXbKWFz5agaMUpx0+khnjh3Va1K7RtIZT8yeoeYR4h+2D\nwJkYuXcDMeXFqtuh/sWY46/H3Tp0SJlnD1yAkfuzuENKBSH0PqggeKchZg+cXTPB3tCykZINRe8j\nKFT51RD53J02oyLgOwLJ+32cYFhb0U4dOPntX1Aa7vwRa5mmj2eP+h6Fvmz+sf4DHv3iTYKdkI/3\nGRZvHP8T/GZ63/j6cITH/vsxL81fgW07HD9hKDedPr1B+bCz+OnfX+ONRV80tN0HvB6mjR7Ir685\nLWlb/byVG/nNM++yYUcZ+dkBvn7iZC46brxuwde0G2fnNHCSbXD6kJ6LkSalZMre7XZ/mv3BKEIF\n34TKW4DmKdYAkvMTJKOxm1mFF6LKr8MdIQYQhezvIdYwVPkNuE1JLfhNz+FgFkPwVeLz+37IvBIj\n+ztt++BNSMepH5DP0lvqSnlm4zw21pZ2SWkiwGNTrqXQ57bXXzL4SHoF8nj0izfZVOv+0HnEwsYt\nC9yju54OglARrqNXoHWnrpTipgefZ+XGkgZNlhc+WsH8zzfx7B2XtbnGOxWrN+/k9UVr4ro768MR\nPlqxkSXrtiXojS/6Ygvff+TFhj2Bsup6HnpxLjXBENedOrVTbNJ8BXFSBWcR3Ci80amL2QPMHqjo\nFlTlLRCaixutmzR2NBsgPpTvuIZ2EaWCrkNXza5V/TsofBop/Aeq5k8QXgQqhdR2ZCFEjJhdTQlC\n3f9BB5x6OhxwTn1R6Tq+++mTRB2bqHIwJXXVZlNdRa9YRJWdVppmUsEQDs7pHXdsRq+xzOg1FqUU\n62t3ErKjDM3uBcDamhKumvcw4TQcu2UY9PClpxK4ZN02Vm/ZFSeyFbUdyqrrePPTL1JOA0qHNVt2\n8bfXFrJ+Rxlej9mgR96UYDjCvJUbE5z6wy991ODQG9dG+fsbi/j6zMPwdtLNRvMVwzsFwu+TECVb\nQxFJ1OxR9k5U6VmgqmnMhVs0pmMc1zHvOgon5xcYGWdA6IPE8wMQQtU9h5F7J5L/CKp+DqryhykM\nNWixpLKLOaDq1JVS/Gz5swTtCNFYB6Ud+9NAXNlZMcnzZPDr8ZdwZr/DyPdm0tufx3kDp+I3Wp8p\n6TM8XDo4dS20iDAkqycjc/tiGSaWYTI8pw99MgpaPbff8HD90BOwjPQ0xldt3oWdxNnWhyIs37A9\nrXMkY8GqTVxx3//x+qI1rN6yi+UbdiS9jscyyclI3LxdvyN59YFyFOU1uuNT0z4k50cgWbit/eBG\n3QEk52dJ16u6v8WqVZr+7Eabfa2ACFT9AKfix6jQZ7Gp7QlnA3tz45f+k4BUT9OZYCYLqIxYl2rX\nckCFTKWhakpDyR/RcjwBvj3iFHoH8hifPxgR4Zieo7iVswC4ccFfkubETYQ9vZV+w8PY/AFM6dF2\n/Yebhp3IrYufbrjZ7CHbcgcrF/lyuOrg45jRShNRU/r1yMWyjIR5m36vxaCerd9EUvGLf70Vl2pJ\nte1iiHDipETFusG9Ciiv3ppwXAzRZYua9mMOgZx7oO5fbm7dMxHJuhKxBiVfH1pIYgqkBYLP4rrE\nFFF29POYuqogEkDlPwrlVxJ/k/BBzk8Qz0GoskvcDVLC7nEJINmpovvO44By6n7Tm7K7K9sT4NS+\nE5K+FnVsPi1blzT1YhomE/IGElE2p/adwKl9xmO0kNJJxdE9R3HdwTN4fO3bCIKNw5jcAfx6/MXk\ntqDb0hJTRw0kLzNAKBxtaNEXwGuZnDI5tRRvS9QFw2zdnXos3x41R4BfXXUKPXITJ8HcMGsa3/zD\nnLgUjN9rcdkJE3XqRdMulFOLKrsc7C9BOW5FSSQKxndQoXmo2kfd1n3rYFAhcEpxq2T2pFrSpYU9\nOKcCZW9BrP4AGL5pqB6vo2r+AOFPwRqAZF6H+A531/d4BVX3T4iuAc84JOMCxGh/sJUuB1z1y7c/\n+RsLS7+Mi4j9hodvDD+R8wZOS/qeqGNz5Bt3NqRqmpJl+Xl7xh2dZl9tNMTa6hIKfVn0TSMl0xo7\nK2q488nXWPTFFlAwrH8RP7v8RIb0LmzX+aK2wxHf+WNC9A9QnJfF3VechKMU4w/q06KDnrdyI799\n5l3W7ygjPzuDr594mK5+0bQbp/JuqJ9NfDWJCdIL1C6Sd5G21aGnQwBybsPIOK+Tz5seX8mSxopw\nLd/85Ak21e5uqDqZXjScYdm9qbVDTOsxjIkFQxKcy82fPsXcXavjHLtHTE7vN4kfjj6jS2ztTOpD\nEWzHIasThjzc8/SbvDx/ZdwwC7/X4qbTp3Px8cmfdjSarsQpmQSqvQ2EZuyXAqMYnMTUYNvwIQVP\nIN4WfWuX8JV06uBumK6u2sb2YAVloWoeWPUKjnKIKJuA6WVy4cHcO/6iuDRKaaiaaz7+M2WhGiKO\njccw6ZdRyCNTriHL2nudnHuL3ZW1fLh8PYYhHDV2SFxdeygS5fYnXuX9ZevwekzCEZuzjxjDzece\nq5uNNPsEp+TQ5C366ZJzL/hOgOgyKL+aNuXak+E7AWMfSPF+ZZ36HoJ2mBPf/kXCwIuA6eXOsedw\nXK8xccdt5TBv1xo215VyUHZPJhUMaVf+fH/nmfeX8Ntn3sM0BERwHIe7Lj+RmRPjNz13VdSwrbSK\ngT3zO72ZSaNpC87ur7kOub14jwWCEF6MW6fe0SE4HvBORDIuR/zHd/Bc6fOVaT7aWlfGX9a+zWdl\nG+gVyOWKIccwpcdQPi1bj5FkCkW9HeaVbZ8lOHVTDI4obt8GY3dh085y7n/2/YSc+Z1Pvs6kof0p\nyGnctC3Ky6JITwvS7GOUCkN0XcdOEl0HznY67sz3EIHwfFR4CSrzKozsb3XSeTtOh5y6iNwNnIG7\nG7ETuEIpta0zDEuXzbWlXDbvj9RHwzgottaXsaJyCzePnEUvf17K2Z6eNGvBDzRe+2QNtpO4eSQC\nby/5knOOPGQfWKXRgHIqXLEupwK8U92KERGwt7ljINudVLBAVdB5Dr0p9VD7GCrzkr1S2ZIOHc0t\n3KeUOkQpdSjwMtB5ZSJp8tiXbzU49D0E7Qi/X/U/xub1Txqp+00Ps/ru/U2O/YFINJrUqSuliCap\neNFo9gYq9DFq19Goql+han6PKrscVfFtHCeKiqxyyxTbjZO6pb8zEA9EOpAa6mQ65NSVituOzqQD\n99J0KAlWsq6mJK5C5bPy9Unry6PKoTRcw30TLiFgeskwvfgMC59hcUbfSRzeY2hXmrrfcuyhqed+\nHjl2yF62RqOJSepWfDOmqFiP++BfD+H3oPRUqPoRjXot7aGzyxqboRwwenTtNdpAh3PqInIPcBlQ\nCRzbwrprgWsBBgwYkGpZUnYGK/nhZ0/zRfV2TDHwGRZ3jD2HI4pHUOTLoSSYeBeOKptcTwb9Mgr5\n37G38l7JSmqiQab0GMrAzP3nG7C3GTmgJ2cfMZbnP1xGKBxFRPBYJlefPIW+PXL3tXmaryKRJSSt\nRlH1Manb5kGb4JYodo1YX3JSdZoKmL3BGrUXbWmZVqtfRORNoFeSl25TSr3QZN2tgF8pdWdrF21L\n9YtSivM/fIBNtbvjInK/4eHv025iY+1ubl86m2ATPXOvYXF08UjuOfTCtK7xVWTZ+u28vmgNlmlw\n8mEjGNavaF+bpPmKosKfoMqvAVWb5jsErAkQXdSldsVfsicQAVVOwk1GciD7dlcQrKvN6IzqF6XU\njDSv90/gf0CrTr0tLK/cTEmwMiHFEnFsntk0nx+MOp2bhp7Iw1+8DrhplyOLRnD72K91phkHHGMH\n92bs4N6tL9RouhrPoSR3RU11VJuiILq4a21KuGRJC69VQdXtKMOH+E/aezaloKPVL0OVUl/EvjwD\nWNVxk+LZHapOutlp47CtvhyA8wdN48z+h7G1vowCbzZ57dRS0Wg0ex8RC/L+iKq4NqYeFxPAsgbF\nShmTbZLub5v6QVT1A93fqQO/EpHhuDsRG4HrO25SPKNz+yUdMOEzPBxe2LjZ6TM9DMnq2dmX12g0\newHxTYGid2MljZXgnYqyRkHFDRCeT/s7QA3ciH8v3ATsjsoPdA4dcupKqS7PcRT7czmz32G8uPWT\nhry5R0wKfVmc1m9iV19eo9G0A6UcqJ+DqnvKbe/3n4hkXoMYOSnfI0Y+ZFzUeCCyEiW5YBSAs4uW\nq1gsXMfdNF0jrv665IKzjS537KkkgPcy3aKj9PsjT2N0Xj9mb5xHTSTIsT1Hc8ngI8m0Oi5epdFo\nOh9VdTsEX46VKQK1T6CCr0Dhi4jRenrUCb4LFd/EjdDTKEk0BoL3MIgsAHsLYIN3KpJzO8oph7KL\nWj1FxzCR7O938TXSo1s4dRHh5D7jObnP+H1tikajaQUV3Qz1LxKfCw+DvQtV/wJkfA3CH7kNRd7D\nESMX5dS5k4XMnqjIWjft0pbI2lkLwbWACb4ZSN7vETHc81beRpfXqhv9EN8xLS5RKuJ2yxq5iKQ3\nWL49dAunrtFouhGRpSBWki7Qegj+F1V9H42pEhvlne7mzRveY9N+J2xD6DVU9f2owNlQeh7QXsne\nNmCmriRTSqHq/go1D7mTkMREZV6FZH6jS+YLaKeu0Wg6F7OY5KWIFkQWkRCBh991/+zMfvS6v7i/\n9kqVjAG+41K+quqfgeoHaRg6rYCax1H4kKxru8IajUaj6UQ8E2Nt88ncy94qRbT34rUcCL2OiqxI\n/nLNn2hw6A3EhMC6QPpcO3WNRtOpiBhIwVPgGYs7cDkDjCJXefFAJfIJquwiVPTLxNecXcnfo6ro\nihuPduoajabzccrAMwkCZ0DOL5CiD8Azel9b1bWoEKrmT4nHrYOTrzf7uo1XnYzOqWs0mk7FqfkD\n1DyG2xmqoP4lVGQp4j8ZVfs4e1eIa2/iJJXglewfocqvA4JNjvoh69YusUJH6hqNptNQ0Q1Q8yiu\nA3NwdwXroe5pFF7wHQM07S/Z0/F5ICBgJspXi28qUvAX98lF8tzhH/kPYwRO6BIrdKSu0WjSQikF\nwVdQ9bPd0jz/GUjGWfE116F3SF7GEobQW0jeH6D+P25FCA74ToKaPwDpKjTuz/iQrBuTviLew5DC\np/eKFdqpazSatFBVt0H9f2mo5IiuQAVfhoK/IbJnPKSH5AkAgeBLqOB/wHMIknsPGL1RZRfTvdMx\nsc9t9kFy7kC84/atOWinrtFo0kBFv4T6l4nLC6t6iC6D0Pvgj83H8c+E6nuTnMEGe33sr1tQobfB\nfwZEvyS5CmN3wA9Z30YyLgQJdEkjUXvQOXWNRtM64Y9JmlZRdajw3IYvxSyG3F/i5s0ziM+f78Fx\nRb7q/0P3deiG68gzzkWMjP3GoYN26hqNJh0kz23jT8CbMJ/TCJyGFL+P5N4BRp8WTtq8Iae7YIHv\nOKTwuRZVJ/cV2qlrNJrW8R9PQ/44DgMJJI5xEyMffCeCs6nLTdu7mJD3Z4z8PyFWv31tTFK0U9do\nNK0i4kcKngSj2O0QlSyQHCT/j0hKMav9bTpRZ+BAeMG+NqJF9EapRqNJC/GMhqL3IbrCLWn0jEXE\nk3q9kYOSbFAVe9HKrkZB/VOo7O/tV3n0pminrtFo0kbEiGm6pPsGT+eqL+4PqCDu8I6u00TvCDr9\notFoug6jOMULJvtXJ2kbbDEHdumQi46inbpGo+kyJPMqkECzo14w+9OuEN46sjPMSkI6tgjgR3Lu\n6CIbOgft1DUaTZehfDMgcBmuBG+W+6dnHNgb23fCzGs607xmJIvWPa6eizkAvMcgBU8hvuldaEPH\n0Tl1jUbT6Sh7N6ryVgjPBRRYIyDzCsQzARX6ECIL23fiyss61c54LMAPEnW7ZSXDTbUUPI0YmV14\n3c5FO3WNRtOpKOWgyi4CewsNui7RlVB1NxS9BZHFrZzBwtWQ6armpD36NE27WX0QOBXJvs2do2pv\nRTyHgu/oLtE870q6l7UajWb/JzwvNu2nqVCXig2ReATMfrgbpS3UsVsjIPpZFxmowDoIomtj1Tlh\n8B2D5PwUET9kXLBfbeG2Fe3UNRpN52JvApXMYYdiw6CTdaY2RUDVun92ST1kFOzNSPE8sDeA0RMx\ni+JWqPAiVP0cUBEkcAp4j9pv69Kbo526RqPpXKwRIEYL/ri1TtMI2F/Q1QXuYmSBMSbhuFP9ANQ+\ngatIqVCh18B3POT+pls4dl39otFoOhfPoWCNJLlCY7p0pUP3gP/U5FeNboLav+Dm82M2qDoIvQmR\nT7rQps5DO3WNRtOpiAhS8FfIvAxXfnc/QjLBHIBk35z89fCHJC1tVEFU8K0uNa2z0OkXjUbT6YgE\nkOwf4FijoPK7+9ocwITAuYjvmFhFS4q8vgRIHuua7g2hG6AjdY1G02WI72ha3xjdG5jg7Eb8x6V2\n6AC+GSRP/VhI4PSuMq5T6RSnLiLfFxElIj1aX63RaL4qiJEFWbew73VewhD6ABVd1+IqMbKR/Iea\nyAtnAj7I+SliDdw7pnaQDqdfRKQ/MBM40NTwNRpNJyCZl6PM3lD5ra6+Ei1usIoHoqvBGtLyWXxH\nQPE8CM0FIuCdvl9OOEpFZ0TqvwNu4cAT2NRoNO1EKYVT8zhOyWRUyQiouR+yfkKiXG1nRPAGEADP\nYTR2iybDjgmJtY5IAPHPQPwndyuHDh2M1EXkDGCrUmpJa/WbInItcC3AgAEDOnJZjUazn6NqHoTa\nv9LQ6m9vgJrfQP4jEPkcQm+BkQ9GP6j/N22TBBCwDgWrD0TXgWcMknktYg1EObUoezOUnt/snB4w\nDwZrdGd9xP0WUarlAFtE3gR6JXnpNuDHwEylVKWIbAAmKaV2t3bRSZMmqU8+6R41nxqNJj2UsiH8\nASr8OdQ+BIQTF3kmYRQ+HVuvUOFPofoeiC5v49Us8EyB7G8h1hDEyI23JbIMVXkbRL8ADHdQdO7P\nE9Z1N0RkkVJqUktrWo3UlVIzUpx8LDAY2BOl9wM+FZHJSqkd7bBXo9F0U5RThSq7EOxtsclAKbpG\n7fUAOHXPQ9VPiNeHaQtRiMyFso9QeFC+o5HcexEjCxVegqr/PzfVknEZ+E/G6EYqix2l3ekXpdQy\noGGsSVsidY1Gc2Chqu+F6AbcMW8tYB2ME1oIVbfSOdtwCrey5T1UxXdRvulQfb97DMfd7Kyfg5P3\nOySyAsxCsMZ2i3b/9qKbjzQaTccJ/o9WHTp+8J8OlT8kbYcufcHIAHszrhZLKsKuOmR4HvFpnzqI\nfAa7jkZJAHDA6AUFTyBm7/Rs6GZ0WvORUmqQjtI1mq8WKvIFTsUtMVXFVJhg9AHxQdXt4GxpwxXK\n3QKZ7FuA5mPxmmOQvNEpCtigalwdF3sDqvz6NtjQvdCRukajaRcqNB9Vfh2pK1cEPFNx89+fAE47\nLlIH0U3glLnVMk6E1Hl4G8SbxkOAA9H1qOgGxBrUdpv2c7RMgEajaTNKKVTV7bRciugBzwQ3/dEe\nh95ACEJvIoXPQeBsIBc3fG+aFw9A5o2kHaeKBaq6Azbtv2inrtFo2o6qAXtry2skH+r+ROu59jSQ\nDMQsxMj9OUavhUjR2xA4E4zeYI1B8n6FBE4EFUr25uTntIZ33K79EJ1+0Wg0bUd8tBoTqpJOulgA\nybgk/vJmXyT33rhjTvk3iJ872rAaV9s9iGuzF3J+hkjz7tYDA+3UNRpNmxHxogKnQv1/SdpklDYW\nyXPkhiuDq6JuRJ5iqEUckU9JnlD3QObVbhrI7IVkXIp4RnXA5v0b7dQ1Gk27kOw7UXZZkjLCNDHH\ngOGDyBLiHbsfsr6DmD3AMwGx+qV3PqMYnOQFeJJ5NWLsZwM7ugidU9doNO1DAu7sTqOAdglz2cvB\nHOpupvPxD/oAAAZ/SURBVOJzZW4lE3J+gpF1JRI4PX2HDkjW9SSWPfogMOsr49BBR+oajaadqNqH\noOYx2ibG1YzgbMj9LeK9D5xysA5CpH2zTcV/Eip7B9T8HlBu6sZ/EpJzZ/vt64Zop67RaNqMUvUd\nd+jumaDmd0jRW5Ckw1M5tajah6H+BUAgcAaSeUPKyNvIvAKVcZFbmWMUdjvZ3M5AO3WNRtN27K0g\nRopGnwBujjzNUkZ7e9LDStmososh+iUNOfvav6FCH0Lhc4gkzx6LeMEanN61D0B0Tl2j0bQdo6eb\n3kiGdwJk3QT43ZFweMEckfpcZoq8efgDV4c9bhM25Co9hue2y+yvAtqpazSaNiNGtltqiL/ZK34k\n6yaMrBuR4nlIwT+Qoncwil4E/zlJzuRHsm9OfpHIclBJ0jsqCJFlHfwEBy7aqWs0mnYhOXdAxkVu\nFUxMtEvyHkC87gwHMTIRzyjELALAyPsF5N4fGylngTkIyfsN4p+Z/AJmH5KLeHlQ4QU41b9FRdd2\nxUfr1rQ6+agr0JOPNJoDB6VsN6KWzE7VKVeqHrXzGFAVJE/eW+6vnDsxMr7Wadfdn0ln8pGO1DUa\nTYcQMREjq9MHT4gEkMJ/xeaKenBldZu6rCgQhKqfopyqTr12d0Y7dY1Gs98i1hCMHs8jxR+6jU7J\n1B7FinW1akA7dY1G0w0QIx+MHJJ3rgpwYIpztQft1DUaTbdAAmeTWG0Twzdtr9qyP6Odukaj6RaI\ndxJkXY0roxto0IqR/EfaLS1wIKI7SjUaTbfByPomKvA1CM0FyQDfsV8psa500E5do9F0K8TsAxnn\n7msz9lt0+kWj0WgOILRT12g0mgMI7dQ1Go3mAEI7dY1GozmA0E5do9FoDiD2iaCXiOwCNrbjrT2A\n5JNl91+6o82g7d7bdEe7u6PN0L3tzlRKFbW0aJ849fYiIp+0plC2v9EdbQZt996mO9rdHW2GA99u\nnX7RaDSaAwjt1DUajeYAors59Uf3tQHtoDvaDNruvU13tLs72gwHuN3dKqeu0Wg0mpbpbpG6RqPR\naFpAO3WNRqM5gOi2Tl1Evi8iSkR67GtbWkNE7haRpSKyWEReF5E++9qmdBCR+0RkVcz2OSKSt69t\nSgcROVdEVoiIIyL7demaiJwkIqtF5EsR+dG+ticdROSvIrJTRJbva1vagoj0F5F3RGRl7Ofj2//f\n3v2ExlHGYRz/PoSI0npUlKaQHoIQ0jR6CBFv/UeUYrAnSymUemwOglBoA0oPQkHQSwu9FHoJLYW2\nKK1SIxR6qRoIiY3EluLBplg8iFARlMjjYaawtLs7s0Lzzgy/DyzsO7sDD8PyMPO+s7upMxWR9Kyk\n7yUt5ZmPF+1Ty1KXtBnYDfySOktJn9getT0GXAE+TB2opDlgxPYocAc4mjhPWcvAXuBG6iDdSOoD\nTgFvAsPAPknDaVOVchaYTB3if1gDPrA9DEwAh2twvP8GttveBowBk5Imuu1Qy1IHPgOOALVY5bXd\n+lfnG6hP7q9tr+XDb4GBlHnKsr1i+3bqHCWMA3dt/2z7H+A8MJU4UyHbN4DfU+fole1fbS/kzx8C\nK8CmtKm6c+bPfNifP7r2R+1KXdIUcN/2UuosvZD0saR7wH7qc6be6hDwVeoQDbMJuNcyXqXiJdMU\nkgaBV4Hv0iYpJqlP0iLwGzBnu2vmSv7zkaRvgJfavDQDHCObeqmUbpltf257BpiRdBSYBj5a14Ad\nFOXO3zNDduk6u57ZuimTO4R2JG0ELgLvP3YVXUm2/wXG8jWty5JGbHdcz6hkqdve2W67pK3AFmBJ\nEmTTAQuSxm0/WMeIT+iUuY1Z4EsqUupFuSUdBPYAO1yhLzX0cLyr7D6wuWU8kG8LT4mkfrJCn7V9\nKXWeXtj+Q9J1svWMjqVeq+kX27dsv2h70PYg2eXqa6kLvYikoZbhFPBTqiy9kDRJtnbxtu2/Uudp\noHlgSNIWSc8A7wJfJM7UWMrOBM8AK7Y/TZ2nDEkvPLrrTNJzwC4K+qNWpV5jJyQtS/qBbOqo8rdS\n5U4CzwNz+e2Yp1MHKkPSO5JWgdeBq5Kupc7UTr4IPQ1cI1u0u2D7x7Spikk6B9wEXpG0Kum91JlK\negM4AGzPP8+Lkt5KHarAy8D1vDvmyebUr3TbIX4mIIQQGiTO1EMIoUGi1EMIoUGi1EMIoUGi1EMI\noUGi1EMIoUGi1EMIoUGi1EMIoUH+AysbscMQButMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xUVdrA8d+5d2p6QkInoTeRXgTFDoi9rSuuhbWgay+71nXV1fVdXXVXXXtbe+9YQREVRAhVOqG3kF4n0+497x8TQpKZSZ1kMnC+fvKR3Lnl3BCeOfPc55wjpJQoiqIosUuLdgMURVGU1lGBXFEUJcapQK4oihLjVCBXFEWJcSqQK4qixDhLNC6anp4ue/fuHY1LK4qixKylS5cWSCkz6m+PSiDv3bs32dnZ0bi0oihKzBJCbA+1XaVWFEVRYpwK5IqiKDFOBXJFUZQYpwK5oihKjFOBXFGaqcLnZnnRVnZWFka7KYoCRKlqRVE6OiklK4q3saFsD93j0piUPhCLpvNSzvf8b8sPWDQdv2kwKKk7j4y+mBRbXLSbrBzCVCBXlHrchpfrlrzMxvJc/NLAKiwkWh1c2vc4Xt06H4/px2P6AVhbupu7Vr7NU+Mui3KrlUOZCuSKUs9LOfNYV7YHb3Ww9mHgMX08seEr3Iavzr5+abCyeDsFnnLS7YnRaK6iqBy5otT3xZ5lNUF8P0OaVBqekPtbhEaZz9UeTVOUkFSPXFHqMaQZcrtAoCEwqPu6LjQy49JbfL3driI+2bmEXHcJ4zr1Y2q3ETh0a4vPpxx6VCBXlHpO6DqMT3Zm45dGzTYBZDiSKPFWIk2JiUQAds3KX4aehkXTgUBQnrdvDblVJWTFp3Nit8NJtSWEvdbighz+vPx1/KaJXxr8sG8tz2+ay79GXciQlJ5tfKfKwUJEY6m3sWPHSjXXitJRlXpdXLroGQo95bgML3bNitf0Y9N0PKYfXQikhDFpfblq4BQOT8nEbxrcu+p95ub+hkng35RAYBM6D43+A5MyBgVdx5Qmp8z7J4XeiqDXdATj0/vz0KgLVe9cqSGEWCqlHFt/u8qRK0o9ybY43jnqBu4cdhYzso5kSHJ3NERNpYohAz3yQm85h6dkAvDm1p+Zt29NTRAHkEg80s+dK97BU+8hKcD2ygJchjdkGwwkS4u28uSGr9rgDpWDjQrkihKCVbMwtdsIbhpyCjsrC4Py4gA7Kwspru5Nv79zEb5aqZi6JMuKtgZtdehWzDD5eACv6efzXUtb1H7l0KICuaI0wqqFfpQkAYsI5Mar/KF71jU7htDNmUrv+M5oiLCHekw/0Uh/KrFFBXJFacSZvcZirxfMdQQjUrNItDoBOCJ9QPhwLASj0/qEfOmhUX+gsyM5bDAfkZqJEOEDvaKACuSK0qiL+hzN6LS+OHQrDt1KnG6jqzOVvw8/r2af6wadRJI1LiggW9F4cOT52MM8sOwel8pHR9/CRX2OxiI09OrjrUInTrdz69Az2u7GlIOGKj9UlEaU+qro7kxlY9kehNA4seswrh90EpZavfSuzhTen3wT9636gIUFGwDQhIYQGnnuMoCaFEntHna5r4qrl7zEjsoCLELHJ/0kWhyc3nMs5/c+ki6O5DptcRs+NCGwhUn3KIemVv82CCEcwI+Avfp8H0gp72nteRWlIyjzVXHxwv9S4q3EX/1g8pOdS/CZBrcdVre3XOF3k120uSYlbkgTQ5r8a+1n/JS3jkUFmzCRTEwfyG1DT6eLM4X/W/MJm8tza84N4PJ7WVm8nYnpA+lsT0IIwfaKfO5a+Q4by/cCgbr2E7sczl8OO0NN2KW0vo5cBLoX8VLKCiGEFfgZuEFKuSjcMaqOXIkVr26ez4ubv8dj1i0ftGkWPjr6FjrX6jG/umU+z22aUyco76chakoTNQRp9gRO7T6G/239ocHrp9rieX78LC755amQpYoC6BnXibN6jef8rEk1A5OUg1Ob1ZHLgP0jGqzVX+oxu3JQWFK0OSiIA1g1nQ1le+psM6UM+4tfu77cRFLqdfHGth8bvX6xt5IrF78Qtt5cAjtdhTy3aS5/Wf5G3dekZG3pLhYVbKLcV9XotZTYFZFEmxBCB5YC/YGnpJS/hthnFjALIDMzMxKXVZQ21yuuE0sLN2PUC9GGNOniSGZT+V6+2r0Cr+lnSHJ3LEILO1dLbeFrzoMVhRj5WZ/H9LG0cAvrS3czOLkHu11FXJ/9CgWecjQh8JsGVw2Yyh/6HNXk6yqxIyKBXEppACOFECnAx0KIYVLK1fX2eR54HgKplUhcV1Ha2u+zJvLF7mUYtXrlFqHROz6DJYVbeHbTt/hMA4nErlvJis9ge2UBPtNfpxfeHnymn7m5vzEoqTvXZb/MbldRnRY8t2kOg5K6MbZTv3Ztl9L2Ilp+KKUsAeYBJ0XyvIoSLb0TOvPQqD+QYU/CrlmxCp3RaX25e9g5PLPpWzzVAVsSqCjZ4SrgtqGnM63bCKyiffPVBpK3tv3MDdmvsKteEAdwmz7e2/5Lu7ZJaR+RqFrJAHxSyhIhhBOYAjzU6pYpSgcxMWMgs4+9jVx3CU7dTootjk92Lgk5iMdj+NhYvpcp3YbzY946fEbTUyiR4Jcmiwpzwr5e7K0ku3ALc/aupNLvYVRab6Z3H0Wcxd7geffn27dU5JEZn87wFDVQqSOJRGqlG/BqdZ5cA96TUs6OwHkVpcMQQtDNmVrzvU2zoIUIZBqBGu9RaX1CVq80JFF34DX9eKS/8Z1bQACby3O5esmLNdvm5a3llS0/8NrEa0mzH5hud1P5Xl7d8iPrSndR7qui1OeqnpJAwyJ0MuPTeWb85TUjW5XoikTVyiop5Sgp5XAp5TAp5d8j0TBF6cgmdx6MGaJ016JZmN59JPEWO3cediZ2zYpFNO2fWbnhxiP9Dcy80joSqKi3ypHP9FPoqeCZTXNqti0t3MJlvzzLnL0r2ekqpKQ6iEOgx+82fWytyOPhtZ+1UUuV5lLDwxSlBRKtTv4xcgZ3rXgbTQgkEkNKrhk4lX6JXQGY3mMUQ1N6MXv3Ugrc5Wwo201Oxb5Gz93elQCGNJmzdyUO3cKwlExe2PQd7hAll7X5pMHcvb9x7+Hnoqva9ahTC0soSitU+Nz8nL8er+lnUvpA0h1JDe6/vnQ3M395ut0rWtpK7/gMnhp3GRmN3LcSGWphCUVpAwlWByd1H8npPcc2GsQBBif34LNjb8WuHRyr/uysLOC25W9GuxmHPBXIo0hKyZcvfsesEbdwYd+reeqGlynJL412s5Q21tmRzOuTrmFi+sB2L1GMNAPJxvK97HOr39toUjnyKHry2heZ8+p83K7AA6jZz37Lzx//you/PUZ8cnyUW6e0pd4JnXl87Ewq/R5OmPv3mE61aAgq/W4gudF9lbaheuRRkr+rkK9fnlcTxAH8PoPSvDK+eGFuFFumtKc43UYne2K0m9EqbtPH97mrKfW61GpGUaICeZRsWroFqz34A5HP6+fjJ75U/yAOEUIIbhx8csynWJ7P+Y6Tvn+QU394iO9zVzd+gBJRKpBHSXrPNPy+0KP+inNLWfvLxnZukRItx3U5DGsTSvh0odHdmdpmdeatZWCS7ynj3lXvh1xsWmk7KpBHyYDRfUlMC50HNwyDhZ8ubucWKdGS5y5rNEeuIzg/axLPjr+CFFs8jg5c9eI2fdy98l2+3L0cr+nHkCZ+s32nKjjUqIedUWCaJsvm/sagsf35ZU92UBpF13XszuC5L7at2ckP7y5AmpLJ5x5B/5F9cLs8lBdVkNY1Bd0S2x/PD1VJNmfIUaK12XUrl/Q9hhRbPB9OvoXZu5eytnQ3vxRspNTnaqeWNl2+p4wHV3/MQ2s/DcwEKSUjUrO487CzyErIiHbzDjpqQFA7Ky+u4OZj/sa+7fl43T6MMOmVYZMH8+eXrqZH/24AvPvwJ7x+3/v4vH6QEqvdSq8hPdixdhdCCKwOK1c8dCEnX35ie96OEiF/W/ku3+9bg9esO8+KVdNJtcZz/aDp/Jy/gVUl2+nuTOWP/Y5jXKd+TP3uAUo6YCAPRSBIsDj46OhbSFbL07VIuAFBKpC3s0cue5rv3vwJv7eRiZEE2B02Hvn+XpIzkrh82E143Q0Pm7bH2bnzrRuYdPq4CLZYaQ9uw8vff/uQ+XlrsQoLEsl5mRM5uccopJRcuugZ3IavJgWjI7igz1Hsqyplbu5vIVMzgo63VJdds3LVgClNWuCiyFPBhrI9pDsSGZDYrR1a1/GFC+QqtdJOKstcWKw6899b2HgQB5DgqfJyw1F/ZczUEU26hsfl4c37P1CBPAY5dBsPjpxBiddFkbecHs407HogD37r8jepMnzUXkjOQPL61p8YnNSdeIsdt+nDZxpoCCyazl2Hnc2o1N7ctfJtfivdCQR6xOEXo2sfHtPH5orcBveRUvLEhq94f8cirJqOIU2y4jN4fMzMOjM0KgeoQN7GclZs5ZFLn2bb6p0IITCaOT+1aZgsn7sKoTXtuXTezoJG9yneV8KvXy5H1zUmnDqapLTYrmM+mKTY4kiplXZYXJjDT/vWhQ3AWyryuKjPZPymyfLirWTFZ3BB76OwCJ0ZCx6nstZsh9EO4gAOzcrQpJ4AVPo9fLTzV37KW08nWwK/7z2Jkam9+WbvSj7c+Ste01+Tasopz+WuFW/zzIQrotn8DksF8jZUvK+EW469B1dZrYVvW1A7ZhgmWhNSYELA4PEDGtxn9vNzeObGV9B0DYRA/snkL/+7lmN+N7H5DVPa1Kri7dyy9HUMws9r7jX9zNu3hneOurFm296qYn7/038ancEwGpy6jek9RlHhd3Pxwv+S7y7DYwam7l2Qv4EbBp/Mp7uW4Dbqtt2QJr+V7qTAU056jA+gaguq/LANff3y98FpFAkIsDqaXj4mTYmma2i6ht1pw+60oeki+G9PCE65ckrY8+zZnMszN76C1+3DXenBXeHGU+Xl4Zn/pThPzZXR0Ty7aQ6eJgRjUat34PJ7eHTt7CYdFw1XDjgRt+Hlw+2/1gRxCPyzcJs+Hl//JWW+qpDHGtIkp6zhtMyhSgXyNrRj3e6QDygdcXamXHQ0PQd2D/SMm8Dn8SMEaBaBYZiYhqR+R02aknvOfJgV80KPrPvh3QUYRnDvTghY8LGqW+9oNpTtbXQfu2bl9J5jAPhg+yKmff8gP+Wvb7ckimjmR8xH183m9PkP89Lm72uCeG2aEAxO6hFyMQ5Dmty2/A02l6tgXp8K5G1g9YL13HnyP1jy9fKQgVpKyelXn8S/f/o7Xft0xmJrWv234TepKvc0+LDUNEz+csJ93HfuI1RV1O3ZeD0+zBCBXJoSn6dj9uAOZXoDa2JqCJy6jeGpmZybeQQrirfxxIav8Ji+ds2FN/daPmngM42waR+X4WVR/kYcui3k627TxxMbvm52Ow92KpBH2MJPl3D7tPtZ8vUKSgvKgwKnzWHl8MlD6DeiNykZyby89j8MmTCwTdpx2bCb+Oql72om5pp0+jhsYVI6R5w6JuJtUFqnqyMl5HYdwWk9xvD42Jn8d+ylWDUL721f2Gg6RVT/19G5TC9Vfk/I1ySwqmR7+zYoBqhAHkFSSp687iU8Lm/Qa7pFI61bKr/78+nc98lttbbrTD5nQtgA21KmYZK/o5B/X/kcM3rOYtuaHQwc04+TLz8Re5wdIQSaJrA7bVxw59l069slotdXWu/MXuNCTqZlETo3DzmVkam9a1ayL/RUNNg31hCcl3kEx3Qe0qR5XaLNaOBukq21qnoKcrjg5yeY9M1fOfWHh/h45+JDcsK5Vg8IEkL0Al4DuhB4w3xeSvl4Q8ccrAOCyosrOK/bFSFTH3FJcXxa8mrI4ypLKzmv2xWNDvhpDSEEyemJoAmGHTmY5Iwk4hIdHD9jMv1H9Wmz6yot5zX9zPr1ebZW5FFleNGrV7C/dejpnNaz7ieoN7f+3OjD0az4dN6ffDMQGIB054p3+Dl/fZveQ6QJBCnWOBKtTkan9earPSvr3LNDszJrwAlc2OfoKLay7bTlgCA/cIuUcpkQIhFYKoSYI6VcG4FzxxRHvD3sw8vUzqGXActZvpWHZ/63TYM4BD4tlOSXAbBo9lIyenbixdWPYXOEzkUq0WfTLLwwYRbf5a7mh31rSbPHc1av8SFHOZ7Vaxwf71xMrrskaJj/flqtD+AO3cbMvseQXbQ5qNSvI5NIin2VFPsq2ekqDMrRu00fL2+ex/lZR2KJgU8ekdLq1IqUcq+Ucln1n8uBdUCP1p43FlltVqZfejx2Z93g6Iizc/7tZwXtX5xXyi3H3sPW33a0VxMB8Hv97N2yjxsm3UXejvx2vbbSPFbNwkndR/LPURdw69Azwg5Vj7PYeXXSNVw1YAp2Lbh/FqhuqduROzwlkyldh+MM82Cxowv3oNVnGjEz/0ykRDRHLoToDYwCfg3x2iwhRLYQIjs//+ANHlc+ejHHnDcJq92KM9GJ3Wnjd385nWl/PC5o3zcf+CCosqQ95azYxrUT7oxqG5TIibfYubDPZF6ddA3J1jjidDsWoePUbYxMzeK8rCPq7C+E4K/DzuaR0RcxLq1fo+eP04Nn5OyIdKGRYj20JuWK2KRZQogEYD7wDynlRw3te7DmyGsrL66gYHcRXft0xhnvCHq9KLeYCzL/hOGP7jzNdqeNP/17JqfMCj+QSIk9bsPHj3lryXeXcXhKJoenZNY8GA1l9q5l3L/6gw4wiL91HLqVi/sczeX9T4h2U9pEm06aJYSwAh8CbzYWxA8ViakJJKaGn+Dnq5e+w2zmvCttwVPl5fGrX+CtBz+iorQSZ7yTU648kRm3n4XFqmZwiFUO3crUbiPILtzM/7bMp8BTxpEZg/h91pF15nLZz2mx4tBsVJnBFVexItHiYGa/Y7mw92Ryq0rILtxMgtXJxPQBNROQHaxa/S9VBN7mXwLWSSkfa32TDg3b1+6mo1RJSVOStyMw2ZartIp3//kJOcu3ct9Ht0a5ZUprfLB9EU9s+Kpm8M2W8n18tmspbx55fVAwn5Q+KOQ8QIJAnj7cA9T9NASd7InoQpDrbv/pHixozD72dpwWG09t+Ia3ty9AFwKBhi4ET467lKHJPdu9Xe0lEjnyI4GLgOOFECuqv06OwHkPav1GZkW7CWF5qrxkf7OSHet3R7spSgu5DS9PbvyqzghKrzQo8Vbyzrafg/Z3Wmw8MvoinJoVp2bDoVmxaRZO6zGmwbpzh2Zl/on3sOikf/DFcbfzwIgZbXI/jeken4ZV0/m1YBPv7liI1/RTZfhwGR7K/W5uWvoqhgw/+Visi0TVys9SSiGlHC6lHFn99WUkGncwO/nyE2kgZRl1FovO1lVqBF2s2lSeixZivhKfNPg5f0PQ9kq/h492/IpfmvikgUXTueOwM7lh8Mlh19u0Cp1bDzsdp+XAQ9DDU3pFZT3Rva5i/m/Nx3y8M3jmRACP4WdlcdN+n5cVbeG+Ve/z1xXv8FPeOswYeANQIzujJDE1gRl3ndPkSbPam2madO3TOdrNUFoo1RaP3wwdgEJNA3vHirf4KW8dPmnglwYVfjcPrfmUna5Crhs0vU5wFgiSrE6eGDuTU3vUHZgkhOCB4ee3+0QAPmnwxe7lbCoPPdGYEOBpQr38Uxu+5salr/LlnuV8m7uKv658l7+ufLfDjxZVT7OiaOZ9vyetSzJvPvARxXkl2OPseCpDzzHR3iw2KyldkqPdDKWFesZ1YkBiV9aV7a6TUnDoVi6ot8za3qpilhVtxSvr9rw9pp83tv7EgyNnMDS5Jx/tXEyZz8XxXYYxpdvhWOvVq5d6Xdy96l2WFW1tuxtrgIlkp6sw5GuGaTIqrXeDx+9yFfL29oV1ngdUGV4W5G9gefFWRqf1jWRzI0oF8igSQnDGNdM545rp/Puq5/jy+bnRblINV5mLa8fdzn8WPsDK79dQVeFm7EkjyRpy8D4wOtj8a/SF/HnZ6+SU78OiaRimyTUDpjG+U/86++W5y7BqetADTVkrMA5L6cWwlF4NXu/W5W+wumQnPhn9aqz6rEJnn7uMrPh0vKafr/es4Id9a0m1xXNO5gSGJvdkUcGmkJOKuQ0vP+atU4FcadjeLfuY+9r8aDejDtMwqSx1cdmQm7DaLBiGwct/fZtTZ53IVY/NbLAmWekYOtkTeWXi1eyoLKDEW8mAxG44LcGjOPskdMYXIg9uETqjU3s36Vq7XIWsLd3VIYM4QIXh5sbsV3j7yBu4YvHzbK/Mx234EAi+3buKmwefQpxuDzl1sC504jv4YKiOmaA9xKz+eV2HzJX7vH4Mv4Hb5cHn8eOt8vLli9+FXbhC6Zgy49MZnpoVMogDJFmdzMg6sk4efP9853/oM7lJ18h3l3XouU0kUOSt5OXN82qCeGC7xGP6eHT9bBbmbwiZR9eFYHqPUe3c4uZRPfIoWjZ3FU9e9xK7Nu4hVobUuSs9zHltPqOOPzzaTVEi6OqBU8mKT+eNbT9R4nUxvlN/rhxwIp0dTXtO0j+xa8hefTgaIITWziWBkl8KN4WsavGafr7NXVWrfQKHZsVActewM+kZ16kd29l8KpBHyYYlOfztzIdCzl3e0UV7WgEl8oQQnNpzDKf2bNkCI4lWJxf3OZo3tv1UEyg1BJoQmFJi1uupnJt5BJrQ+GTXEjyGv11WNaoyfOyoaNo8TxZN5+ysCVza7zgSLMFTbHQ0KpBHyRv3f4C3KvaCuCPezgl/ODjnelZa54r+J9AnoTNvbfuZYm8lE9MHMrPvMczPW8c72xZQ7nczJq0P1wycRq/4dHLKc0mxxrGlIg+X4WVJ4eYG51O3CT2osqa5qpq4KLXX9LOvqjQmgjioQB41O9btCjlE32KzIE3ZoXq9VpsFv8/AHmfjqLMnMO6kkdFuktIBCSGY0m04U7oNr7P9vKyJnJc1seZ7l9/Dlb++wLrSXeiaht80GZfWl8z4TmyryA96YBqn2TCQjErrzR5XMTtcBcHXBqZ1Hc7XtdIjraEhSLTGRhAHFcijpt+oPuzdmoc060ZzKSVC6zgVIUITdOqeCghOuHAyF959rqpYUVrlkXWfs7pkRyBgV6fIFxdt5uxe4xma3Itv967ElCZHZQzmzF7jKPNV0S+xC30TuvDRjl95eO1nQakaCfyQty5ibbRqFs7oOa7m+yq/l1x3CZ0dycRbOl4FiwrkUXLR3eey+MvleFx1BwAZfqNDPfiUpiR3WyCv+OG/Z7N+cQ4PfnknmtbxqmyUjs9jePli97KgX3Gv6eerPcuZc8Ld3DUseBGW/TLj08O+5m5i2qQhds2KRHLtwGnYNJ2nNnxNdtEWNpXvxSJ0DGlyRs9x3DTkFPQQUyBES8dpySGmz+FZ/Ou7exg6cSC6pdZfQwcK4vW5Kz2sWbiBpXMi8/FVOfQ8uPqTsL/iTVly7vvc1UG98Ugypcl/Rl+CT/qZ+cszvLb1R9aU7sJrGrgMLx7Tz2e7snkp5/s2a0NLqEAeRUMmDODxBf+ga5/YWcHeXeEm++vl0W6GEoNKvS6+2xd+DMK4eiNOQ9GECDn6MlL80uTt7Qt4dtNcPKYv5FuG2/Tx9vYFHWr+FRXIO4DK0spoN6HJNF2QlB56IWlFaUiepxSrCD1oSCC4afApjZ5jWveRIdckjRSJZGP53kbfKir9Hn7MW8v2JpYztjUVyDuAsdNipwrENCSeqo4xsZcSW3o40/CHGAAkgOO6DKVXfOODbg5PyeT83pOwhXhDiFTOuosjpUkP9O/97QMuXPgk1y15BbcR3VJiFcg7gD8+MANnYuyUOn35wnfRboISg+Isdv7Q+ygc9ZZdc+g2rhrQ9DVjrx44jTePuoE/DZjKURmDyYxLZ3BSd87oOTYic6FLaTYpbVLp9+Ax/Swv3sp/1kd3CYaILb7cHIfC4svNVZJfyu3T7mfzigOT3+8vQ6xfotgRPDTnb4w+QQ3TV5pHSsknu5bw2pYfKfFWMiylF9cPns6AxG6tPrchTa5e/CLrynY36cFpOLrQuGfYOdy/+qMmTwJm0yy8d9SNLMjfgCY0jukyNOS8760VbvFlFcg7mII9RXz7yjziU+I54rQxzBx4PX5vw+slRoM9zsYNz8xiykXHRLspilLDZ/r5cs8KvtmzgpzyXEp8rmafQxca35/wN9aX7eHaJS81K5gHul4CieTOw87k5B6jm339hoQL5Cq10sGkd0/jgrvO4YxrTqJLZgZDjhjYoQYI7edxeXn25v9hGB1nBKqiBAbyjOXp8ZdzVMbgFp1jaHJPnBYbI1OzyHA07cG+QOA1/XhMPx7Th9f0839rPiHfXcZvJTv4tWATlf62e7akBgR1cLe/fh03HvlX8neFXvkkmjxVXgp3F9E5MyPaTVEOIRU+N3Nzf6PYW8notD4MT8kM+XCyV3wnrEJv1hzpGoK/DTsHCEw58Ojoi/jT4hfxmgamNDGRNWt4+qWJReiAxJTB035JYMbPj+OXBkII/KbJzYNP4azM8S288/AiEsiFEC8DpwJ5UsphkTinEtC5Vzqvb32Ka8ffTs7ybe167bNvOoWl36xk+7pdIQcqmaYkMS2hXdukHNp+K9nB9UtewcDEa/ix61bGpPXh4VEXBs2HflrPsby6ZT6+ZnxqjLfY6VmreqZfYldmH3c7C/I3UOypYFRaHxItDt7b8QtrS3czMLEbXtPPBzsWBZ3La/qDVl369/ovGJTcnaHJkV1pK1Kplf8BJ0XoXEo9uq7z0Ld/Y/CEAe2aZvniuTlc/Z8/ctNzV2KPq7sogc1h5ZjfTcSZ4Gy39iiHNlOa3Lb8TSoND27Dh4mkyvCSXbSFL/YED1JLtyfy5LhL6e5Mxa5ZsQoNp27D0kCZos80yHOX1tlm0ywc1+Uwzs6cQJ+EzqQ7krh64DT+O+5Srh88ndN6jglavzQcr+nnox2Lm3fjTRCRQC6l/BEoisS5lNCSOiXy5C8P8sJvj/G3D24hPiWuza/pcXl5eOZTnHTp8cz8+/k4Ehw4Ex1Y7VaOPGsCNz47q83boCj75ZTn4gqRZ3YbPj7bFbp44vCUTD4++s88O/5ypnQbTqLFQQ9nGox+d2sAACAASURBVOm20BUlBiaJ1uZ1TgYldef8rInYNSsaAl1oWIQecvCTiaTYW9Gs8zdFu+XIhRCzgFkAmZmZ7XXZg07WkJ6kdU3BXeFul+tVlFSyd8s+zr35NE6/ehp7t+aR2iWZpLTIl1YpSkMaqq9rqPqu3O/mL8vfoMRbWTMgySp0dARGrbPaNAvHdh7aojnIrxl0ElO6DWfevjXoQmN8p/5cveSloEY7dSvHdjms2edvTLsFcinl88DzECg/bK/rHox0i95uU8mahokjPvCLbXPYyBoS2dyeojTVgMSuOC12XPVGUTo0K6c3sLLRJzsXU+6rqjOq1CcNdKFhR8ei6/hMg0npA7lr2Nktbt/ApO4MTOpe8/0V/Y7npS3zamradSEwZSDPPzqtDz3i0lp8rfpU1UoMikt0MmzyEFb+sKZJg4U0XaPnoO7sWLurWdfRdI0BY/rSqVtqS5uqKBGjCY2HRv6B67NfxkTiMfw4dCujUntzao/wgTy7aAseM3gshkO3cufQs8hMSCfdnkinCA/guaTfsRyW0ouXNs9jWdFWDCkxZCAN9O3elTw/4UoGJrV+IBSoOvKYddur19IlKwNnohOb04puDb+C+Tk3n8qLvz2GpjfeixeawB5nx5ngoFvfLtz97k2RbLaitMrw1Ew+O/Y2bhx0MrP6n8B/xlzCv8dcElSxUluvuE4h52ExpUlmQjqDkrpHPIjvN7ZTP8q8rjprkppIXIaXR9d+HrHrRKr88G3gWCBdCLELuEdK+VIkzq2Elt6jE//b+ATL5qwid1s+e3Jy+fSpr/B56vU8BFitFlbNXwtCEC7TaLHqPLPsYexxdjYsziG9RxqHHTlYrQakdDhJVidnZ05o8v7nZU3i811LMWqlVixCIzM+g4ERmBqgIX7TYFNFbsjXVpZsD7m9JSISyKWUMyJxHqV5dF1n3EmjAMjdlsdnT38dtI/daePIs8az8oe1DaZh/D6Da8ffwaX/dwFnX9/4dKKKEiuy4tN5ZPRF3L/6Q0q8lZhSMjqtD38fcV6bd1QampHRRAaWdoxAG1SO/CDRtXdnLr73PF6/7318Xj/SlNicVk69cgoDx/Qjd2seukXD7w0/OMJT5eWVO9+mU7c0jvndxLD7KUqsGZ/en8+OuZV97lKcuo1kW9uX70JgdKiGCLuqkVEzOrR1VCA/iPz+1jMZP30U37/9M4bf4OhzJzJ4/AAAJp4+loTkeEryyxo8h9vl4c1/fFgTyMuKyvnx/UVUlroYfeLhDBjdt83vQ1HaghCCrs6Udr/uoKTurCvbHbQ9My69wdx+c6jZDw8he7fu46rRf8FVWtXgfkmdEph5/ww+e+prdqzbhW7RMU2JxaZzzO8m8eeXr1a5c0VpolXF27l2yct1lo6za1YeHvUHJmYMbNa51DS2CgC7c/Zy6dAbMf3BK7VA4HloQmoCniov3qrgVU8c8XZuf/16jjwz/MQ/m5ZtYc5rP+Cu9DD53ImMnTpCBX7lkLahbA8v5HzHxrK99I7P4PL+JzA8tfkDI8MFcpVaOcR0zkzH4bTjKg/dK5cE0is+d+iJ+d2VHr7537w6gVxKyfrFORTtLWbTsi188OjneD0+pCmZ984CJpwyhrvevlEFc+WQNSipO4+MvqjNzq8C+SHGarMy84HzeemOt/C4guetEBA2iO9X+1Ncwe5Cbp1yPwXV0+xW1Zs6wF3p4dcvlrJs7irGTBnR+htQFCWIGhB0CDrrupO57dVrsTmC1zdsLNPmiLcz9eJja77/++8eZfemvVRVuIOC+H7uSg8/f/Rra5qsKEoDVCA/RE0+5wiS05u2+sl+jjg7R5w2liPPCqRV8ncVsnnFNkwjdL59P03XsMfbW9xWRVEaplIrh7AjThvDly9+h+GrW1ue1CkRw28gpcT0m+hWnePOP5IplxzLkAkDanLdrjIXmq4DDadirDYL0y45to3uQlEUFcgPYRf97Xcs+GQJFSWVeKu86BYNi83KHW/ewMjjDmNj9mYsNgv9R/VB04I/vPUc1B2704a7MjilYrFZsNos+H0Gl/3zD/Q5PKs9bklRDkmq/PAQV15cwRfPz2XFvNX06N+VM66dTubgHk0+ftHspTxw/mP4PH5Mw8QeZyM5PYmL7z0P3aIzZuoIUjsnt+EdKMqhQ9WRK21m+7pdfPb01+zbls+YqSOYNvM44hLVEnCKEmmqjlxpM1lDenLdk5dHuxmKcshSVSuKoigxTgVyRVGUGKcCuaIoSoxTgVxRFCXGqUCuKIoS41QgVxRFiXERCeRCiJOEEBuEEDlCiNsjcU5FURSlaVodyIUQOvAUMB0YCswQQgxt7XkVRVGUpolEj3w8kCOl3CKl9ALvAGdE4LyKoihKE0QikPcAdtb6flf1NkVRFKUdtNvDTiHELCFEthAiOz8/v70uqyiKctCLRCDfDfSq9X3P6m11SCmfl1KOlVKOzcjIiMBlFUVRFIhMIF8CDBBC9BFC2IDzgc8icF5FURSlCVo9+6GU0i+EuBb4BtCBl6WUa1rdMkVRFKVJIjKNrZTyS+DLSJxLURRFaR41slNRFCXGqUCuKIoS41QgVxRFiXEqkCuKosQ4FcgVRVFinArkiqIoMU4FckVRlBinArmiKEqMU4FcURQlxqlAriiKEuNUIFcURYlxKpAriqLEOBXIFUVRYpwK5IqiKDFOBXJFUZQYpwK5oihKjFOBXFEUJcapQK4oihLjVCBXFEWJcYdEIJf+zUjPfKSRG/yasQez+DrMfSMx903ALH8EKT1RaKWiKErLtGrxZSHE74B7gSHAeClldiQaFSnSrEAWXwW+VSAsIH1IxymI5H8ghI40S5EFZ4MsAUzABZUvI71LEZ3eRhoF4FsKIgVsYxFCj/YtKYqiBGlVIAdWA2cDz0WgLQ2SZgXS9R54fwK9GyLuQoR1aMPHlN0NvhWAF2T1RveXSEt/RMLlSNcHIF0Egvh+fvAtxcybAuYeELbAZpEAaf9DWPq1wd0piqK0XKsCuZRyHYAQIjKtCXcdsxRZeBYYBYAb0JBVs5HJD6E5p4dpmwfc3wK+eq+4wfUGJFwOvpXV5wvB3F59ourjZSWycCZ0/rHN71dRFKU52i1HLoSYJYTIFkJk5+fnN+tYWfkKGHkcCLpm4M9lf0XK+oF6/0EeDnTD6zHLkdIAywDA1oyG7EOW3dP0/RVFUdpBo4FcCDFXCLE6xNcZzbmQlPJ5KeVYKeXYjIyM5rXSPQfwhnjBBP+mMA1PBL1XmBNWIPPGgFkWyJ03R9VHSN+q5h2jKIrShhqNYlLKE9ujIQ3SksEIsV0agYAdghACkh9AFl1O4E2g9glkIDde9R44poP7M8DfxMb4ka6PEcnDm3ULiqIobSUmyg9F/CUgnPW26mDph7CE7nVL/1akZwk4zwb7VCA+xF5V4P4KUl8AHIC1eruT8O9xJqE/HSiKokRHa8sPzwKeBDKAL4QQK6SU0yLSstrsU8G5Glz/qykjREuD5MeAQC047m9A+sFxAtKzEMofItALNwnkwcPkyzERloGQ8W2gisXcg7BNRFoOg8LpIY5zIhwnN7npUnrBvx5EMsKS1dw7VxRFaVRrq1Y+Bj6OUFvCEkIgkm7B1DpDxf8BFjDLoehMTMfvoOpdAgHXhIrHCQTw2qkUNxCu0sSPNErRbP0RidfWbJWl9wE6QSkXPROp90eW/h28P4LWCRF/GcIxNejMputTKL83cG3pR1r6IVKfQehdW/qjUBRFCSKkDNdTbTtjx46V2dnNGzsk/TuQBacAbTHq0gqWPoiUpxGWTKSUyH3DQ19LJAM6yDIOBHknJFyFlvCnA+31/YYsvCD4HFomImOOKmFUFKXZhBBLpZRj62+PiRw5gHTPJvQTz6bSCPSwQ/GBfxOy8GxMzzKk9BM2Dy4rAl91eupVUPE00qyotdvzhHwjMHcgPT+36A4URVFCiZlAHhiB2dTKklA0Gr5dGehlF18MJZeDZVCY/QxCBnlhBf/GA997l4W/VNV7DbZUGoVI31qkWdngfoqiKND6IfrtQhq7wf11M47QCQRtC4Hg7yOQIw8zeKgOL3h/bUEjfaBlVD/c3AiyKvy+/h2hTyGrkCW3gmdeYGoA6UcmzELEX6NSMYqihNXhe+RSSmTRJWDsCvGqldAPMR2Q/h1Yh3AgeDcliO9nUnf+lcZYwToUWfE0ct8oZOEMoCL87rYRITfL0nvA8wOBuWEqADdUvgDuz5vRFkVRDjUdPpDjWw5mIcGBVQRKEEOWFVZCyZ/Bt6aBE0eqh2sB62HgWw/uDwm8YTT0QFZDJFwVtFWaLnB/GXysrEJWtvmcZIqixLCOH8jNAkIHXQmmK/xx/sU0HFAjVK1jmwRmKdBAKmU/kQSpbyD07iGaU07YNxezqDUtVBTlINfxc+TWUSBDVZA4wToafPPbvUl1eH9s2n5JTyFsA5GVT2OW3RmYByb+KoSZj3S9AmYxoQO5BtZxkWyxoigHmQ4fyIWegYy7JDD1bE2v1w5aF7ANj34gb6qyG5FIAlUvEoxt4P0FWechbP3ySB2EE5F4U3u2VFGUGNPhAzmASPwz2EYgK18LpCAc08DYC5UvRrtpzRDqYWv9ckoDsILWHYQOtjGI+CsRlsx2aJ+iKLEqNgK5EOCYWjMMXppFyLxjaP0oT43AZFpVtK5GPZJ8IMsQKc8gbKOj3RhFUWJAx3/YGYp/y4El2FpDxIMwCPwYbHSYH4csRhZdjFn2CNGYQkFRlNjSQSJXM+k9wzwAbSZZXj1i1EugR65zYCrbaPOC63lk3rFI/+Z2uaKU3sCAJkVRYkpMBnKhdwX7ZJq1TFujzEAv3zqKDvVjkXuRRTMDS9O11SWMXMyiS5H7RiD3jcAsuiQwmlZRlJjQgSJW84iUx8AWNAlY60h3YABSs0Z1tgOzEFn+b2RDw/5bSEovsvA88C6kZvpf76/IwvOQMszC1IqidCixG8iFA5F4K4GVfSLFoHlD+duLH1wvIfeNwyx9EGk0b/HqBnm+qx6MVPvNywyknNzfRO46iqK0mZgN5ADCOhQsA4nccPuOrHrWxapXkQVTa2ZHlGZp607r3x74JFKfrET6t7fu3IqitIuYKD9siEh7GZk/DWRhtJvSTmQgyBaeeWCL1gOR+lTgja2xo72LkZWvB+avsZ8Iem8Q9uqHvrWIeIQ13FS+iqJ0JLEfyLUkZNzvqwcHHaIVF+ZuZOE5yPTv0Szdwu9W+SqUP0pg6TvAtxq0rqB1A2MHB9JKFtA6g/34FjdJSiNQJqolIPTwbVIUpfViPpADiLgLkK7XA3OC10yGpQX+LJwgJTVreh60wd6AkqshPfQSqtKsgPJHqDuIyg1mLiRcHRgp6/4CkOCYjkj8M0JYkUYuuL8NnN9+Qs0oUykN8PyA9C4PHCN0hNYJHCeDbxWy9M7AtaSBtA5GpDyp1ipVlDbSqkAuhPgXcBqB6LgZ+KOUsiQSDWtWO/TO0OldZNnfwbsEhAOc54L9VCi/L7CKPTqtWyquPTgI9Ir3v/FoBN58mjgoyL8uELCFDu7vArMm2iYEUiS+VYFVjGT90bBucH0AwhIYIOWYiki4GqGlYLreg7L7q/eTUP4YMuFGRNwMZNEFgfliaqVkJNbqNwuTOg+NfauRRX+E9C/VAhmK0gZa2yOfA9whpfQLIR4C7gBua32zmk9Y+iPSXquzzSz6Y/Xya346zhD8hlSnPBwXIeLPQYoMKDiapr8B6UjvIii9jUDliQ/QkI6TIO5ikGHKKs1d1FStuN5CuuciU1+uDuL1An/F40hjB/g3B78WtuLHAHNv4M0kzKIaiqK0XKuqVqSU38rASsUAi4CerW9SZEj/LvBm07RUyv4h+h2E+w2k1h0hCwKpoaYSNii9p3rEaiWBe3cHygj9W0HvQui/8toB3hfoyVc8TuhqIF91Cqa589xoYEawbFJRlBqRLD+8FPgq3ItCiFlCiGwhRHZ+fjv8gzb3hp+PRaSB1gn0LEh6EDovhU4f0nGCuYTyfwbmLJdN/SThAMthIEP9bKvA9RykPA9aJmAnMFmYldD3XBVIm4RN6bQgPSK9YD28+ccpitKoRgO5EGKuEGJ1iK8zau1zF4HcxZvhziOlfF5KOVZKOTYjIyMyrW+IZUCY+Vis4DwTrfMvaBlz0OLORdPi0ayDqpeO6yDcHwceRDrPbmRHDUQnQIBvcfjd/Buh+DIw8wL74gF9EKFHsVrBOjLMiazgOIPmDcRyQtwMhN6lGccoitJUjebIpZQnNvS6EGImcCpwguxAU/UJLQUZd3G9BSk0EHGI+D+GPqgNhsC3nEQWXwfW8QQCb7gfrdn0GnpzR93vjdWh9xMWRMIVSEtfKP8XNYthYIWEKxDxVyL9G8D/W/XPrIG/dpGESLoXHKc0rY2KojRba6tWTgJuBY6Rsv6IkugTiX9GWvqB6yUwS8A2CZFwQ/ieoXVEmKXbbESlbNHYDsZWIra+aJPYEakvIvQeiPiLkfZjqofqG+CYgrD0D+yW9hr4sgOlhv7dUPUuIR92al0QzlPbsf2KcugRrelECyFyCCRc93cJF0kpg5eIr2fs2LEyOzu7xddtK9K3Hll0fvWQ9f0pBxtYRoB/Ga0rX2yoV92RWNG6rmnWEdKsROZNpKbqpoYFnOehJd8bqcYpyiFNCLFUShk0W2CreuRSyv6tOb6jEdbBkPY+suIJ8P5cXSOtgX9J606sdYX4y6tnGLQHJqrqqAOTRPMnIRNaPDLhKqh8rlZ6SgusN5owq9VNklIGziucqg5dUUKI6Umz2oKwDgDrYJD788KtncpVB/txaPEXo6U+i4g7JzKrGzVAyurBrM1mB8dZgXOYxUhjb8gViqRRgPRvxTQrauZJF/F/QiT9AyxDAsP7HaciOgVGmUrXR0j3N8igwUiN3YfErHwTmXcEMm8MMu8IzMqwz9MV5ZB1UAzRj7jKV2l9AN/PgKqPMM0CRNKdYB1WPVCnbUgJP6zvzas/j+SVyz8hbAdWGw6aL1BfjiBwv16oegvTPZvdRZIn5k5g8ZYeJDgTOf/4Ccw4Ngut7Obq+vzAG53EinT+HpF0O8J5ap18uFn+GFS+AkIj0GfQIPVlRBMHBcmq96D8YWoeVstiKH8YU1jR4s5r4U9IUQ4+qkceiiyL8Ak94PkOWXA2oEP8ZUAzBvo0g9tn4bkfxlPmtrNqZxfcPh23T6/XQ9cQGe+jpX8KKU9yoCpFAn4Kyqu46IUzmbcui3K3jb3FHp75bAH/eOVfgSkQ8HMg3++DqveQpbfXaYdZ9TlUvhC4d1kVGKAky5HFs5BNrY2veJIDFUf7VVVvVxRlPxXIQ7EMCb1d7w3O3xMYSBNHIBg3NWdrgqxCuj4MVM6k/Aus4wjMARMZUsLnKwaRk9eJS49ezuBu+TisBg6rgRC10i36EJAVgRWHPN9T/yHue4sPx+21YMoDvx5un8GXKzPIK3PUud7CnF7c9+kk/vlhBb9tXh/YbpYiS++oszzdgTcSL3iXNu2Gwo0ENfOadryiHCJUaiUEkXQ3smgmgQeSJvuH8IvkBxG2scjEv4DnR0AiK54FY1MTz+wG73yI/yPCMRXhmIpZ+VZgFGejqRzBgTeOypB7eP0aby0ajkUzmHpYDjZL3cE+B9IsZci8CYFziXjqB/Ll27vhNYJ/NXyGxgvzR3PXaT8hJfz1oxP4cUNvqnw2hDCZvfIbLju5jPPHL0XzGdhrrWN94I1EIpqattJ7grEzxPZeTTteUQ4RqkcegrCNRnR6H+zTQO8D9qmITu8hqtcIFVpSdT74NLCNplm9au9iZP5xmAXnYpbeA7ZJEH9tIwelgP00PEZn8svjwz7IlEBRZRxW3UQTDTztNHYSSI/4QAavMNQ3owhdhCq1FMxeOZidRUlkb+vBjxv6UOULPLiVUsPtM3nhi0Vs3DIHuzX4eK9fx+d38/hsN36jCeuiJtxG8AhSR/V2RVH2Uz3yMIR1ECL18cb3i78C6Z5dXaq4P3g6QcRVB8n6+WADzD2BL/8aqPqA8MPdBVgngX8Di9au4rb3T6BPeiF/nLycdXs6k55YybRhOSQ6vPhN+GLFIFxeGyA5/fELOWPUOs4as45XF4xk7pp+6JrkmMFbuOq4JSQ7A+WPv+T05N/fTmJbQQqdEqq4dHI2M45YxeyVgzFCpLKlFHy/ri/7yuKp8gX/+gghWLLZzuCuGvZ6nwgMKXj1p9G89+tGJE5uOufoBn+2mnMqUvwHWfEo+HeCJRORcAvCcVyDxynKoaZVA4JaqqMOCGop6duELP8n+JaBSIb4P4L9jOopaFtS/aIjsbO24Fw+XJxIF2c2ry08HI8/kKsQSCTgsPrRNZNnL/6MvhkFnPPUBeSWJrL/g5ZF+AMFI4CvJlUisVv8fHLdG2wvSuOGN0+uOS+Aw+rjimOyKaqI481Fw6n/DEDX4PJjc3B7Knlj4eEYsu6HOqfNQqKjhPevfod4+4HqHK9fI2dfJy5+8RxA4LBZmP/Y1Vj1yD0jUJSDXbgBQSqQtxHpW4MsnEFLArnf0Ln8fzPZnBdPldeHLvwYUifcg9UeqaVce/wv3PHhtBD7yDDb9gs+p9Pq47RR6/hhfV/yyhKCXrdZdKaMGci32Rvw1UuRWHWNft07IYy13HXqD/TvXIgpBfM39ObB2cdS7rbX7PfNP2eRktA21TuKcjBqk5GdSgOkK7DqToj3Sb8hkAiseug8caBcsJgqbyD/bEgLDQ3vzytL4IUfx4V5NVTwb7jSpspn4YMlw6qrVoLfCLx+g++WbyI9OZ69ReV1XjNMydbcInz+zlz2ygw0qvCbGj6jbs87Mc5BUlzzR5EqihJMPexsK9bhhAq+UsLslQPx+MKnFHYUJrEpt1O9reGDr8/Q2FmY3OA+zSNqlR6GniPG7fUHBXEAU0o8PgNTSuxWnUmHDQksAVeLw2bh5nOORtPUcHtFiQTVI28Fn2Hw8leL+eCnVbi9Po4YksVN5xxN907JCGFHJj0ApXcQmBXQACxUeJy8MH8MJx2eE3Q+04Rft/bgprdOwW82J3csgnLVB8iafZomVCqmZQHXb5hcNGUsl04fz/Nf/EAXxwIGdXcxuO8xDO4fmKZHen5Clj98YAWj+BvQ4k7HNCVLNuxg0+4CemWkMGlgIRZjaWBBEMd0hJbYojYpysFIBfJWuOPFL1mwZhseX6C8Y96KzSzduIsP751JaoITzXkK0jIQ6XoHzHyE43g+X92FfWWLeOWn0Vxy1HLibIFj/abA47Pw4OfHNjOIB5hyf8+5tUG4OfuHul6tMwlBucvNpMEWHj3nP9UjPF0gspEFbyATb4aSv1DzHMHYCWV3U+Ut49KnYGd+CT6/gdXiI8Xp4uVLPyE90QjU3ae+0uSh/opysFOplRbakVdcJ4hDIK3g8vj48KdVNduEdQBa8t1oqU8gnGeS1SUwF/pLP43h/s+OY/3edPLK4vlq1QDOf+Y89pYmtaJV7ZeqsGrhhtkfSMP4DYPhfbshS+8Es7i6RJPA/41dUHo3wQ+DqzDKHmNLbgEujw+fYeLy6OwrjeOBzycDVYFRqSXXhZzQS1EORapH3kKbdheEnJDK6zdYnrM75DFur59d+fsH4AjmrOnPnDWRmgm4PfPNJjdNW8Az847A5bVitwSCuikF15/4Cx9mH8auks5cdeokEpwCWZZN8JJyPpAlIc9u011YNQ++WuuJGlLnl82Z+A0Ni24G5sPxbwTroDa6R0WJHSqQt1DP9GTc3tC90oqq4OlaPT4/M//1NjvyQgev6Gs4TVKbAHYVJ3PsoM3cPG0h63M74zc0EuwecssSuOu0+Vz/1tk8/flClm7axmNngVbrs1+528Znywdz4tAtdEmuCDp/lc9KldcatB0Jpqy3QVEUFchbKt5hqzsRVS35pcFzocxetJYdeSVhg3/0Nb1HLxFsL0jGa1i4/7PjmNh/J5+vHMTG3HR0zcRv6CTYK6lwx/Pz6p38N2ks15ywGF2T7C5O5JIXz8HttbBse3ceOGcuTmvtn4mTX7ZNRdf1OsP4hTAZlbXnwPwxIhEsAyN074oS21QgbyGb1YJF04IGxADE24MXjpi/anMHDuLNJViY05vAfOQa8zf0wZQgaz1y8RkH/vzmLyP5/fjVJDi8PPL1ZMqq7JgycNz9nx7LDVN+ISOpEk1LgYQ/MWH0eXSe+w4lFVW4PD6cVgOH1ctfT/8RhBPQECn/RQj1iEdRQAXyFuuckkD/Huls2JmPWatb7rBZOGfy8KD90xLj0ISos28skwj29+JDlT7WngLXkBpnPPEHjhm0jYU5mdUVNgHfrhnAt2sGYNNNFj5+E5qukQp8dM8lfL8ih/U788jqnMq0ERU4RUp1+eHJqvxQUWpRgbwVHr7iVC579D0q3B5MUyIlHHlYb849+kAgl1IihOB3R4/g2+yNuH0HS6+8cbpmkuRwU+yKw2/qfLeuX9gEjhRWRK0BQjarhZPGDeakcYNr7TWxTdurKLGqVYFcCHE/cAaBkoQ8YKaUck8kGhYLeqQnM/uBy/h13XbySioY1qcbA3qkA7By8x4eenceG3bmkeC0c96xI7j+rMk8/N68KLe6vUicVi/3nvE9rywYzYod3QFISXBS6fbi9R+Y5tZq0Zk2ZqBaWFlRWqhVk2YJIZKkDKyLJoS4HhgqpbyqseMO9kmzcnYXcPHDb9fJiTusFqaPH8zSjbvYkd9RK1daa/8iHAcITPp1LiInrxM2i4W/XXgiH/z0Gxt25iGEQEro2y2Np284h0SnPTrNVpQY0SaTZu0P4tXiUfVgALz8zWK8vroLK7h9fr74dR13XXAC97z2bZRa1rZsuoHXqBvIJRo5eekIJFaLzskThnLyhKGs3Z7L5j2FZHVJ4/A+XVVvXFFaodU5ciHEP4CLgVIg7Iz/xFxlDAAACaVJREFUQohZwCyAzMzM1l62Q9u0qyDkQ02rRadP17QotKh9BKbaDU0iqHR7WbB6K0cO68PQrK4MzeoKwIrNu3nhy1/Ztq+YoZmdmXXKxJoUlaIojWu0fksIMVcIsTrE1xkAUsq7pJS9gDeBsGuWSSmfl1KOlVKOzcjIiNwddEADe2aghehh+vwGPTNScFgPzmfMogkfyH5ctaXO9z/9toWrH/+IX9ZuZ29hGd+vyOGSh99mzbbctmqmohx0Gg3kUsoTpZTDQnx9Wm/XN4Fz2qaZseWy6eOxWev2Th02C6ceMZSUBCeJcQdPLvhAEWJg4i+r3nBVTu+uqTV/llLy0Lvz6lTySBmYyuAfb33XBq1VlINTq0ZUCCEG1Pr2DGB965pzcOjbrRPP3Xguh2V1QROCpDgHl0wZyx0zjgfg3MnDsbdDr/z/27v34KjuKoDj33Pvbh6EADEhCCQhkUeAQAHlTZkIVJpWFMEiisOjZaZTEacVGKWlaplW7cMX0zKtWotjpYXaom1pHR7CDB0FKkXk0aTAIIRQMTAWyvDIA45/7FJZskthd5Obuzmfmczk3r1czpkkZ+/+7u/c35VFtjnd8uk+ZKQFACe8pJwS7XaJIxIxx/5CQyPHP2j6THOAqqO1vLj5H80TsDEpJtFq8qiIlBKarnAE+NgZK23FwJKuPL94RtTX5lQM48Cxk7y19xAB16W+sZGLFzXpzUKXR3easwcpIz3I1JsH0LNbLivWvU1dw0VivX18fcIQ0q54A0sLuKQHXM7H6HhdtuYtKoaWkpPdrjlCNyZlJDprxYZS4hB0XR6/exLVtac4cOwEudntmPfkmiYt/OlBN1wY43OpmecQZQQD9C/qwvC+RYzo14Ppnx3MuEVPxzz+6oLsOg7Tygfx+7/s5FKUYAOuw/aq6quagowxV7OHVXioKL8TE4b0ZnCv7jwyp4L0YID0oIvrCBnBAF8cVcaI0kJa44poPbvlMm/yaJZ/a8pHUwezM9MIBmL/SvUtzG+yb/7kmynpEn0mj4i0yBCUMX5nfyWtxPghvXn9U93Y8M5+ztc3MKasmNLCfM6cu8C3n3mNfYf/E7GIhZeCrsNLD86MmPt99kI99/zi5ahX1gCdO2YxvLTptNOA67B09q3M/clq6hojP30oyqj+xUmN3ZhUlFBnZ7xSvbOzOVTXnmL+k2uoOXk65jEdMtM433CRhqsKYqf2GXx4ti5pY/B9CvIYUNyV4i45fGFUGR2zMvjRCxt5deu7Tf7v0PGdeXbBNNpfo3Pz+Q07WP7a3wi4TrjjU1k270t8pk9BUmI2JhXE6uy0Qu4jm3Yd5MEVf24ylh5wHe6bMpapYwdyz7JXOHDsJOfrGshICz1qd+nsW/nus29EPN87EcGAQ0PjJdKDAYIBlxWLvsLsx1dxrq6hybGuI7z91L3X1bl58vRZtlUdITMYZPSAYjLToiwuYUwb1iwt+qZljR/ci29MGsXTa7fiOg71DY0MLS3kx3fdToesDACeWzidrZVH2HPofTp3as/EoaU8tmpTUmfENDSG3hDqGhqpb2jkod+tj/kmoRr6up4O/LyOWUwa0T9pcRrTVlgh95mZnxvKHeWDOFp7itwO7cjtkBXxuuMIY8qKGVNW/NG+Pf86HnXsOtbz0bMy0lg8fRwPr9wY8ZTCaBSoOnqC0WU9+OvewxHnc0QYVlqI0xrv1hqTQmzWig9lpgXpU9C5SRGPpSi/U9T9GqOlXlUp6foJfr1gGj275RJwHYKuE3NGigALvlxOTnZmuDEo1Mma3S6dB2ZMuK4YjTHxsyvyNmDubcN5Z39NRCt8ejBAWY8uVFbXcr4+cmy7fWY6fQu74DjCH743izPn60gLuPxy7TZe2LQz4irddYQR/Yro0SWHPy29kze3V1J1tJZe3fKYNLIf2e0yWixPY9oqK+RtwOCe3XnkzgoeW72ZU2cv4AhMGtmPRXeU89OXt/D6tn2ICK7j4DrCsnmTI4ZDLj8n/O7Pj2T3ofeprK7lkiquI+R1zOKhWROB0JDMtPJBnuRoTFtms1baEFXl1NkLZKUHI1rlq2s/YMf+GjpmZTB2QEnEa9HOsffwcfbXnKAgryPDSotsDNyYFmKzVgwiQk77zCb7i/JzKMrPifIvop9jYElXBpZ0TXZ4xpg42c1OY4zxOSvkxhjjc1bIjTHG56yQG2OMz1khN8YYn/Nk+qGInCC0olC88oCTSQrHa5ZL65QquaRKHmC5APRQ1Sar13tSyBMlIjuizaX0I8uldUqVXFIlD7BcrsWGVowxxueskBtjjM/5tZD/yusAkshyaZ1SJZdUyQMsl5h8OUZujDHm//x6RW6MMSbMCrkxxvic7wu5iCwUERWRPK9jiZeIPCwiu0Vkl4isF5FuXscULxF5QkSqwvn8UUSiL0/UyonINBHZJyKXRMSXU95EpEJE3hORgyKy2Ot44iUiz4lIrYjs9TqWRIlIoYhsFpF3w79f9ybjvL4u5CJSCEwEqr2OJUFPqOpNqjoYWAt83+uAErABGKCqNwH7gfs9jidee4GpwBavA4mHiLjAcuA2oD/wNRHx68rWvwUqvA4iSRqBharaHxgJfDMZPxdfF3Lg58B3IMbikz6hqh9esZmFj/NR1fWqenlNuW1AgZfxxEtVK1X1Pa/jSMBw4KCqHlLVemAVMNnjmOKiqluA/3odRzKo6r9VdWf4+zNAJdA90fP6dmEJEZkMHFPVf4r4f4UaEfkhMAs4DYzzOJxkuQtY7XUQbVR34OgV2zXACI9iMVGISDEwBNie6LladSEXkY3AJ6O8tAR4gNCwii9cKxdVfVVVlwBLROR+YD7wgxYN8AZ8XC7hY5YQ+hi5siVjuxHXk4cxzUFE2gOvAPdd9Yk8Lq26kKvqLdH2i8hAoAS4fDVeAOwUkeGqerwFQ7xusXKJYiXwJq24kH9cLiIyB5gETNBW3KhwAz8TPzoGFF6xXRDeZzwmIkFCRXylqq5JxjlbdSGPRVX3APmXt0XkMDBUVX35ZDQR6a2qB8Kbk4EqL+NJhIhUELpvUa6q57yOpw37O9BbREoIFfCvAjO8DclI6MrzN0Clqv4sWef1+83OVPGoiOwVkd2EhouSMiXJI08B2cCG8HTKZ7wOKB4iMkVEaoBRwBsiss7rmG5E+IbzfGAdoRtqL6nqPm+jio+IvAhsBUpFpEZE5nodUwLGADOB8eG/j10icnuiJ7UWfWOM8Tm7IjfGGJ+zQm6MMT5nhdwYY3zOCrkxxvicFXJjjPE5K+TGGONzVsiNMcbn/geJqAQ/1f3NFgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { - "tags": [] + "tags": [], + "needs_background": "light" } } ] diff --git a/examples/tutorials/17_Training_a_Generative_Adversarial_Network_on_MNIST.ipynb b/examples/tutorials/17_Training_a_Generative_Adversarial_Network_on_MNIST.ipynb index c6bbca1baf..1ce1c921d9 100644 --- a/examples/tutorials/17_Training_a_Generative_Adversarial_Network_on_MNIST.ipynb +++ b/examples/tutorials/17_Training_a_Generative_Adversarial_Network_on_MNIST.ipynb @@ -54,20 +54,76 @@ "metadata": { "id": "4qlydaTAr0bv", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "ac58162b-1501-497e-ca5e-25ecf1a2391e" }, "source": [ - "%%capture\n", "%tensorflow_version 1.x\n", - "!wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "!chmod +x Miniconda3-latest-Linux-x86_64.sh\n", - "!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" ], - "execution_count": 0, - "outputs": [] + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 12908 0 --:--:-- --:--:-- --:--:-- 12908\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.41 s, sys: 557 ms, total: 2.97 s\n", + "Wall time: 4min 12s\n" + ], + "name": "stdout" + } + ] }, { "cell_type": "markdown", @@ -84,11 +140,11 @@ "metadata": { "id": "23zZTDoar0b7", "colab_type": "code", + "outputId": "7f706e98-a012-4dd4-d1d5-955f453629d1", "colab": { "base_uri": "https://localhost:8080/", - "height": 746 - }, - "outputId": "f7947e36-8045-4ffe-9818-63f9609f5380" + "height": 530 + } }, "source": [ "import deepchem as dc\n", @@ -109,40 +165,6 @@ { "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n" - ], - "name": "stderr" - }, - { - "output_type": "display_data", - "data": { - "text/html": [ - "

\n", - "The default version of TensorFlow in Colab will switch to TensorFlow 2.x on the 27th of March, 2020.
\n", - "We recommend you upgrade now\n", - "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", - "more info.

\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "stream", - "text": [ - "WARNING:tensorflow:\n", - "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", - "For more information, please see:\n", - " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", - " * https://github.com/tensorflow/addons\n", - " * https://github.com/tensorflow/io (for I/O related ops)\n", - "If you depend on functionality not listed there, please file an issue.\n", - "\n", "WARNING:tensorflow:From :10: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Please use alternatives such as official/mnist/dataset.py from tensorflow/models.\n", @@ -192,11 +214,11 @@ "metadata": { "id": "mmhulNHor0cK", "colab_type": "code", + "outputId": "c1392973-8910-4a2e-e18d-34e235c59d5e", "colab": { "base_uri": "https://localhost:8080/", "height": 197 - }, - "outputId": "00cbc721-ac92-4c24-faf9-de92e02ec368" + } }, "source": [ "def plot_digits(im):\n", @@ -215,7 +237,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAAC0CAYAAAAn8ea8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3Rb53n/P9gAAZAASBAc4BCXKFIc\nEilSsjYlUSuyrSiOm8Sx06Yjbuo2TZM67ek4SZq2qXPSNG2Gm6RJjtM6cmLFsWQn2luiRWpRJMW9\n9wBBggPEur8/+Ls3ovYAQcrm9xwcyyDA+/Dii/d93md9ZYIgsIAFvF8hn2sDFrCA2cQCwRfwvsYC\nwRfwvsYCwRfwvsYCwRfwvobyQV4sk8nmdchFEAQZLNgZRAwKgmCF+W+reE9vxsIKvoC7oW2uDXhU\nLBB8Ae9rLBB8Ae9rPJAPvoAFBBtms5mPfvSjrF69mqGhIb7zne/Q1taG1+sNyu9fWMEXMCdQqVTY\n7Xby8vLYunUrW7ZsYeXKlcTExKBQKIJ2nYUV/D4hk932kM5CLc+DQyaTYTKZ2Lp1K6WlpezevRuA\n3t5eYmJiUCqDR8sFgt8Fer2eqKgonnzySUpKSsjOzkYQBGQyGRMTE3R3d/OTn/yEyspKamtr59rc\nxwI6nQ6LxcInP/lJtm/fzvLlywGor6/n4sWLXLlyhampqaBdb4HgN0Eul6PRaMjOzmbRokWkpaXx\nxBNPkJubS0JCgkTwqakprFYrW7ZsQRAEWltbcbvdIbFRJpMRExPDE088QXR0tLSlezweLly4QH19\nPRMTEyGx5UEgk8mIjY1l+fLlbNy4kbS0NNRqNdeuXePgwYOUl5czNDSE3+8P2jVDRnCZTCZtPeK2\nLpfLCQQC0mOuoVKp0Ol0WK1WnnrqKYqKiigoKMBkMgHMsFOpVBIdHc2OHTtwuVyUlZXR2dkZEpdF\np9ORmZnJF77wBfLz81Gr1fj9fgYHB/n6179OT0/PHQkuk8nmzK3SarVkZGSwc+dONm7ciFwuZ2ho\niEOHDvGjH/2IxsZGfD5fUK8ZMoLHxsZSUlKCIAhMTU0xOTlJamoq7e3ttLa2cuXKlVCZckc8/fTT\nbNq0iU984hMolUoUCoW0OjqdTkZHRxkeHgamvwzh4eHExsby8Y9/nOXLl7Njx45ZXzlVKhUvvvgi\nmzZtYsWKFcjlclpbW7l8+TKvvvoq169fZ3Bw8Lbv1el06PV6hoaG5oTkn/nMZ9iyZQubN29GpVJx\n/vx5Tpw4wVe+8hU8Hs+sLHKPRPCMjAyio6OxWq0sW7YMrVZ7x9eGh4eTlpYGgM/nw+v1EhkZidPp\nZHh4mK6uLoaGhmhqauK3v/0t4+PjIf8QFi9eTFZWFnq9fsa1+/v7eeedd3jvvfckghsMBhYtWsRn\nP/tZIiIiSEpKuuNBNFjQ6/WsW7eO9evXk5OTg1wup7y8nHPnznHo0CGuXbvGyMjIbYlSWlpKZmYm\nKSkpvPvuu1RXV9PV1TWr9oqwWq0UFxezc+dOFi9ejFwu58yZM+zfv59Tp07Nqmv3UARXKBRYLBYK\nCgpIT08nKSmJ0tJSDAbDnS+kVBIWFgZMuyiCIKBUKvH5fPh8PtxuN52dnZIP2dDQwNTUVMhcF7Va\nTWJiIvHx8Xi9Xvx+v/SoqamhrKyMY8eO0d7ejt/vx2g0kpGRwac+9SnMZjMmkwmTyYTX68Xj8QTd\nPoVCQUREBCUlJeTm5hIfH08gEOD8+fMcOXKEo0eP3va64pliw4YNrFq1iqysLLq7u+nt7Q0JwdVq\nNbGxsZSWllJQUIBOp2NoaIgTJ05w4sQJLl68OLsGiGS7nwcgAILVahVeeeUVoampSfD7/UIwMTQ0\nJBw5ckTIzc0VjEajIF7zfh4323m/D7VaLWRmZgpHjx4VHA6H0NraKly+fFk4ffq08NZbbwn5+fnC\niy++KHzta18TEhMTBa1WKwCCXC4XGhoaBEEQhPHxceGll14SsrKyZsXO2NhYYfv27YLL5RJ8Pp/g\n9XqFkZERISMjQ5DL5Xd8X3h4uFBUVCRUVlYKLpdLmJiYEF5++WUhNzf3fq5b8bD3VHxkZmYKL774\nojA0NCT4/X7h2rVrwre+9S0hLCxM+P8FXEF53ImzD7WC63Q6NmzYQFRUFG63m76+Pjwezy0uxdTU\nFA0NDdTU1OB0Om/7uxISEkhKSmL16tWYzWbCw8NZtmwZn/vc5zh8+DDvvPMOo6OjD2PmfcPr9dLR\n0cErr7yC2WxmdHSUoaEhfD4fgiCQlpbG+vXrSUpK4vXXX8fhcGAymVi6dCkajYZAIIDP5+P8+fP0\n9PTMio2FhYVs375dcgNra2v54Q9/SH9//113uZiYGJ555hliYmLQaDRMTExQVlZGb2/vrNh5M0pL\nS9myZQtGo5GrV69y7NgxfvnLXzI1NRUSF/ShCO7z+Whvb5e24/r6eiYnJ29L8MbGRmpqahgZGbnt\n77Lb7SQnJ+P3+ykqKsJms2GxWFi1ahUOh4Nr165RU1Mzq66KIAiMj49z8eJFFAoFExMTjI2NEQgE\nUKlUZGZmEh4eTnh4OAA2mw2r1crGjRvR6XQEAgGmpqbo7u5mbGxsVmyMj48nMzMThULB8PAwLS0t\nHD16dMahVi6fmZjWaDRER0eTn5+PXq/H7XbT3d1NW1sbLpdrVuy8GampqaSlpaFSqbh+/TqVlZXU\n19cHNRR4NzwUwQcGBnj55ZdJSUnB7XZz6dKlhz4UVlVVoVKp+O1vf8vXvvY11qxZQ2JiIpmZmQwO\nDtLe3k5dXV1IfPGBgYHbPj86OkpfXx8qlYqxsTHWrFlDcXExzz77LCaTCY/Hw8jICCMjI0GrobgZ\nVquVxMREYDopcunSJaqqqoBpYsvlctRq9Yz3xMXFkZ6eTm5uLmq1mqamJs6ePUtvb2/IYvYxMTHY\nbDYEQeDkyZNcunQJh8MRkmvDQxLc6/XS1tZGd3e3tHo9ynbj9Xrp7Ozk9ddfZ2hoiJdeegmAnJwc\n9Ho9P/rRj2aNODcjPDycjIwMKakzPj5OR0cHSqWSoqIifvnLX2K1WjEajRgMBlwuF4cOHeInP/lJ\nyEgjhjBhOvKzcuVKNm/eTFFR0Yw6DoVCIWUOR0dHKSsrC9m91Ol0FBcXk5ycjNfr5be//a10SA8l\nHjpM6PV6g3qjfD4fTqdzhiuj0WikJEuoIJ4BVq5ciUqlwu12MzAwQGZmJnq9nvT0dCka5Ha7qa6u\n5vLly1y7dm1Wd5mOjg6qq6tJSUnBarWSk5PD7t27WbZsGUuWLCEvL4/U1NQ7hirr6uqoqamhpaUl\nJLuhRqMhJyeHiIgIxsfHqaysZHh4eFYiTHfDvEnVq1QqVCrVLYU2MpkMhUIRsgxceHg4hYWFfPjD\nHyYiIgJASs/DdPxbEAQmJycZGBjgxIkTXLhwYdZDbrW1tZSVlbFr1y7sdjt6vR6LxcKyZcvQ6XQI\ngoDH40EmkyGTyVCpVDPeX15ezrVr1+jr65tVO0VoNBry8/MxGo0MDg5y+fLlu9aYiG6WSqVCLpfj\n8/mCUpMyLwgeERHBM888Q2ZmJllZWdLzYux86dKl1NfX3zFDNxu4ITwm/b+I69evc+HCBf7nf/6H\nysrKkNR9mM1mbDYbME0G8SCuUCjo7++nubmZw4cPo9friYuL4/d+7/dm2F5bWxuyxA5Mu0dmsxmV\nSoXX62V4ePiuO0d6ejpZWVls27aN6Ohojh07xmuvvXbH6Nv9ImQEVyqV6PV6cnJySEtLIyMjQ/qZ\nTqdj+fLlmEwmzGaz9LxCocBoNPLSSy/xwx/+kKNHj866nSMjI5SXl5OVlUV0dDRarRar1YpKpUKh\nUCAIAufOnePEiRPU1dUxPj4eki2/paWFs2fPzsiYCoJAVVUVvb29UnQkLy9PcqEAJicn6erq4tq1\nayEjuFjGILp1d9p5FQoFVquVP/7jPyY5OZnY2FgWLVpEWFgYgUCA0dFR/u///u+RXOFZJbhMJkOn\n06FSqTAajcTHx1NSUsKKFSsoKiqSXqdQKIiMjLzt+7VaLWvWrOE3v/nNbJoqweVyceXKFZYsWUJ0\ndDQGg4G0tDQiIyMxGo2EhYXR29tLR0fHPVelYKKrqwuv14vJZJpB8OPHjzM4OMjo6CiBQICoqCiy\ns7Ol942NjXH9+nVaW1tDFr1QqVQYDAYSEhLuWL5hMBgwm80sXryYF154gejoaHQ6nXRInpiYYHBw\nkL17985fgut0OlatWkVGRgZZWVls376dxMTEW/zDu8Hr9fL222/T1NQ0i5b+DqOjo1RUVFBRUYFM\nJkMul5OWlsZTTz3Fpk2b2LRpE88++yzR0dFcv349ZCR3uVy4XK573gePx8Pk5KT0/93d3fzsZz/D\n6XSGrLZHLpdLO/btDr0qlYpt27axfft2Vq5cSUpKym1fc7fSj/tF0Aku1iqXlJSwcuVKVq1ahV6v\nx2AwEBkZiVKpZHJyktHRUSl2Pjo6yr59+/D5fCQkJPDkk09KnR2CIOBwOIIaglOr1Wi12ntmSAVB\nwO/309HRwd69e7ly5Qomk4mEhATy8vLYtGkT77777qwldx4GN54dxMNwV1dX0MtQ7wafz8fExASd\nnZ1ER0dLz2u1WuLi4sjJyeFLX/oSsbGxUvLsZvj9/vl3yDQajURHR7N8+XI2bdrEypUrSU9PJxAI\nMDExQXt7Ox6PB4fDQV9fn1S2OTo6yqFDh/D5fOTk5LBu3Tqio6MRBAGv10tXV1fQSBQeHk5cXByJ\niYn09fXR2dnJ0NDQXd8zMTFBW1sbk5OTXLhwgdjYWCIjI0lNTX2g3SgUMJlMxMTEANO70cDAAH19\nfSHLHMLvCN7f34/JZJLCqxqNhri4OPLz88nNzb3jvRsbG6O7u5va2tpH3h2DSvDU1FS2bdvGCy+8\nQFxcHAaDgfHxccbHx2lsbGTfvn0MDAzQ2dlJU1PTbRsE1Gq1lPb3+XyMjY1RXl5Of39/UGzMzMxk\ny5YtPPnkk9TX1/OTn/zkvg+vLpeLX/ziFxQXF2Oz2UhISAhq/2AwsHTpUtavXw9AQ0MDlZWVIXPv\nRIgEb29vJzExkbi4OF544QXMZjMWiwWLxXLH9wr/vzvq+PHj/M///M8j51qC+ulYrVby8vJISkqi\ntbWV69ev84tf/ILr168zNDTE2NgYfr9fqge/mdyJiYmkp6cTGxuLUqnE6/Xidrtpbm6+Yy3L/UI8\n2X/+858nNjaW4eFh/u7v/u6+vzgqlYr4+Hi+/OUvk5qaOq/cEhEGgwGDwSBFUQ4ePMjhw4fnxBaX\ny8XevXtJSUkhOzub3Nxc5HL5HTvmBUGgt7eXEydO8IMf/IDGxkYcDscjnxuCSvCenh7Onz+P3W6n\nvLycixcvUlFRQVdX14yDz51gMpmIiooiIiICuVyOy+Wis7MzKHXhYWFhpKenk5GRgUwmo7Ozk76+\nvvvy7U0mE/n5+axYsYKMjAz0ej3Dw8MhjaLcC3K5nJiYGKKiojAajQQCARwOR0jrPm7E1NQUV69e\nlaoy7xRN8Xg8tLa20tHRQWNjI8ePH5eqT4Nxb4NK8IaGBvr7+5HL5Zw4ceKB29AsFotU5wEwNDRE\ndXV1UP5Qg8HA0qVLiYuLY2BggKGhIammQxCEGdcQs6cKhQKVSkVKSgp79uxhx44d2Gw2/H4/LpeL\njo6OkNXI3AtyuZz09HTi4uIIDw/H6/UyMTERsvqYm+HxeKitrWVwcJDJyUm0Wi0+n0/qaxV38NHR\nUU6fPs2pU6eoqamhoqIiqHYEleBTU1MMDAzw3e9+96FO7WlpaVJbm8vloqKigtdeey0oJBoZGaGs\nrIypqSliY2NZtWoVu3fvpqOjg97eXmnsg5jYWb58OUuWLGHZsmWUlpZK8XyA3/zmNxw5ciSkRWD3\ngkaj4e///u/JyMggEAgwNjZGfX19yP3vu+HAgQO0trbS1tbGL3/5SzweD36/n/Hxcal7KtgI+glJ\nrIl4EFgsFl588UXWrFkjEbyxsZG6ujoaGhqCsoKLtdCVlZVkZmaSmJjIpz71KVwuFyMjI9TU1ADT\nBLfZbCQlJREVFYXVasVgMCCXy5mYmOD06dMcOHCAS5cuzRtyw/Suo9frpTZA0S0MVez7bujt7eXw\n4cP8/Oc/p6enB5fLJTVqiKHY2cK8CAGEh4fz3HPPER8fT1hYGH6/n9raWsnlCQZ8Ph/Dw8NcvHgR\nvV7PypUr2bBhAzC984grnUajkbKWYgPB1NQUExMT9PT0cPDgQc6dOxfyss/7gViwJI6QmA9fQLGk\n+p133uHYsWOMjo6G9Es3LwiuVColcguCwNjYGPv27Qu6PyYIAt/+9rfp6OjAZDKRl5cnlQPcOLVK\nhNgM3djYyG9+8xtOnjzJ4cOH58WqeDeIfu58sPMv//Iv53QWy5wTPCMjg+LiYjQaDV6vl+bmZt54\n4w3Ky8tnpbRzdHSUo0eP0tvby6c//WlUKhV6vZ7169dTXV3NwMCAVB3Y2NjIpUuXaGhoYGBggOHh\n4XlBmntBq9WSk5PD008/TUREBMePH59Te+byns0pwWUyGSkpKSxbtgyZTMbg4CD19fUcPXr0vkN4\nDwqfz0d3dzcul4uEhASJ4GLzwuDg4AyCV1ZW0t3dPe+JHQgE6OzsJCIiAq1Wi8ViISEhQcpqflAx\npwRXKBQUFBSwZcsWfD4flZWVnDx5kjNnzszqdT0eD0NDQ3z/+9+XnvvXf/3XWb3mbMPn83HgwAHk\ncjlGo5Hw8PBbato/iJA9yA0IthCRQqFg586d5OXl0d7eTnl5Od3d3Q9d5C48JuJOs2VnREQEer0e\nrVaLXC5ndHRUmhDwkLgoCEIhPD739GbM6QouCAL19fWMjIzQ19dHe3v7vJyK+rhA7OxfwO8wpyt4\nsPFBX8FnAR+4FXyQ+Sstl3TDvxfsDA4eF1uT7vSDhRV8DvC42MmCEOwC3ueYryv2fWOB4At4X2OB\n4At4X2OB4At4X2PO4uByuZyMjAwsFgtyuZzKykqpLngBD4+oqCgiIyOJioqisbFxTuYB3g0qlQqt\nVkt8fDxRUVFoNBp6enpoa2tjfHw8+Be802T82z0I0jR+QNBqtcJ//ud/ClevXhXq6uqEgoKCB1Z0\nuPkxG3be/JDJZHd8zAc7t2/fLnzjG98Qqqurhd27dwsxMTGP8vseWeHh5ofFYhHy8/OF73znO0JN\nTY3gdDqFV199VcjMzAzKZx8UhYdgQBAEuru7cbvdWCwWEhMT6ejoCNlg9gdFQkICqamp7Ny5kyee\neAKr1Sr9rK+vj9bWVk6ePElFRQVNTU1z8ndERETwxBNP8OSTT5KYmDhDj2c+oLS0lLVr17J161ZS\nU1PR6/UArF+/np/+9KfS6zZt2sTw8DC1tbWPnNmeU4I7nU48Hg9arZa8vDyuXr0atAaHYEGpVJKf\nn09BQQHZ2dkUFxezePHiGQNroqOjpTFvZrMZs9kc8hJVhULBkiVLSE5OxmazoVar0Wg0cz63RRzf\nFx0dzfbt2yXhMvH++Xw+9Ho9crkcg8FAcnIyu3btYnJykvr6ekkW5mFLEOaU4MPDw0xNTaHValmx\nYgVvvfXWXJlzWyiVSsLDw6WxbUuXLpVWHTFBFggEMBgMhIeHS02/0dHRnDhxIqSVfAqFgpUrV5Ka\nmio1bc8HiDIqxcXF7Nmzh9jYWKlTSmxXEwUUzGYz69ev59lnn5V88//4j//gzJkzjI+PP1Sf75w3\nPIgQBZ/mEwoKCvjwhz/MZz7zGcLCwqQO/Btx9epVzGYzixYtAqYbp6empjAYDExMTITs0KxQKCgq\nKpp39d87d+5k06ZNvPDCC2g0mhkdUwMDA7S2tvL666/T3t6OSqXCYrGgVCqJiIjAaDTyla98hZ//\n/Oe8++67HDp06IGvP6dRlJycHCIjI3G73VRUVMybSji5XM6mTZvYsGEDpaWl0iAdp9NJWVmZFJ0Q\nR0fk5uaydetW8vLypMHtoWwZi4iIICEhgfT0dGlo/3yAOKslLi7ulrkoIyMjnD59mrNnz3L06FEc\nDgcxMTEzvgByuRyTycS6deuwWCzo9XrOnj37QG7snBBcoVAQFhZGdnY2ZrOZiYkJLl++PC+mRYlu\nSUlJCWvWrCEnJwefzyeNnDt48CAXL16ku7sbh8PB+Pg4TqeTlJQUcnJycLvd0gSvUEGv12O324mP\nj5dcqLmGOBL75q4iv9/P5OQk169f58yZMxw5ckSaaCCOkBgdHSUsLAytVotKpWLJkiVERUXR0dFB\nZWXl/Ce42WwmMzOT9evXI5fLqa2t5dixY3M2pOZGREdHU1paygsvvIDNZiMQCNDW1sYPfvAD9u/f\nT11d3S3v8Xg8Uge7w+Ggs7MzpH+LWq3GZDIRERFxi9LaXEAmk2E2m/n0pz/N7t27pVEgMB1xqqqq\n4o/+6I8YHByccZ8cDgcnTpzAbrdTXFxMUVERMpkMtVqNUqmksbHxviak3Yg5Ibg4P1ocjywqtc2H\nMWixsbE8++yzGI1GyQX5h3/4B6qrq+ns7JReJ+rJFBcXs3btWpYsWcL4+DhvvfUWe/funRPbxe1d\nVEcYHBx8ZAmQh4HNZmPp0qV86lOfIi4uTnq+qamJgwcP8vrrrzM4OHhLAmp8fJz6+nq+973v0d/f\nT3JyMtHR0TPclgd1++aE4GFhYcTExKBQKKTD5XwgN0wP7U9OTkatVtPW1sbFixc5f/48DodD+kDC\nwsKIjIwkIyOD9evXk5+fT0xMDA6Hg8bGRmlKVqgQHh5OYmKiRAS/38/Q0BD9/f0hPdfIZDJsNhu5\nubkUFRVJK7c4JfjUqVOcPn2aS5cu3XaHE0fiuVwuurq6grILzgnB4+PjJQGlUA5mfxAIgkB1dTWv\nvfYaAwMDkk8tl8ux2+2sXr2aL37xi6SkpKBWq/H5fNJhKdRITU1l165d0ihnj8dDc3MztbW1dHR0\nhMwOpVLJxo0b2bVrFytXrpSeHxsbo7q6mn/6p3+io6Pjoc8nD3NonxOC63Q6oqKi7qjpOF/gdrul\nIf0w7eump6fzta99jeLiYklFrKuri+rqar74xS/OycQrk8lESkqKFF+enJzkyJEjDA8Ph8wGg8GA\n3W7nz//8z1m0aJEkJlZfX8+ZM2d45ZVX6O7uvi9yx8fHEx0dLUWvpqamGBkZkSYNPwjmhODi9Nb5\niBuVm1NTU9m9ezcZGRm4XC5J7TgnJ4fo6GgCgQA1NTVcuXKFM2fO0NraOidN0zfLeE9NTVFVVRXS\nqFRKSgqlpaUsWrSIiIgIaTdpbm6mpqaGtra2+x4ll5WVJamtyWQy3G43TqeT1tbWx+OQKYo7we+y\nWfMFHo9Hmvudl5dHZmYmtbW1kgzIpk2bpFHA4+PjHD9+nCNHjnDw4MGgaMo8KMTD+o2YmpqipqZm\ndqrz7mBDbm4uv//7v09kZCRyuVw6V9XU1FBTU3Pf90Yul7Ny5Uqys7OlkOfk5CSDg4M0NTXN/0Om\nUqnEZDJht9uRyWQMDAyE1E+8F+rr6/nCF77Avn37sNvtKJVKli1bJt1YcecRT/t79+5leHh4zs4S\n27ZtY8WKFRiNRmQymaSy5vf7Q5ZoEnMGopvk9XoZGxujsrKSY8eOcfny5fv6PWq1GovFwp49e0hP\nT5eeFyNCD4OQE1ytVhMZGSndjJ6eHhobG+dFmj42NpaEhAQKCgrQarXSGUGUEofpHae5uZmKigqO\nHDmC0+mcE3LL5XK0Wi3FxcVkZGRIq3hdXR3nz58PqV2RkZFERERIhV1Op5OGhga+9a1vUVVVdU81\nOxFms5k1a9ZgsVgkl8vv91NVVcWZM2cej0OmRqMhIiJCkpfr6+ujpaUl1GZIEFUcoqKiWLp0qTQM\nVKfTSa+ZmprC4/EQCAQk+ZKenh7a29vnbOVWKBTodDpycnJITEyUXL62tjauXr0aUv/bYDCg0+mk\nRcDhcNDQ0MD+/fsfiJQGg4GsrCx0Op3094yPj1NbW8vFixcfyraQEzwyMnJGOrmpqYny8vJQmyHB\nZDKRnp7OP//zP5OXl4fJZJJ+JvqRVVVV1NbW4nK52LVrFykpKUxMTPDEE09w9uzZBz74BAOizHle\nXh6JiYnAtGju0NDQnNd/19fXU1ZW9sArrhh8uDGeX1VVRUVFxQPL4YgIOcF37dpFUVERfr+fy5cv\nc+3atTkJrYnlpU8++SRr1qwhMzNT8mNFN6Sjo4OGhgb27dtHX18fgUCA8vJyPve5z5GWlsaLL75I\nVVXVnBBcdFFudJ1Ev3e2h5feC93d3TQ0NDzQezIzM1m7di2f+MQnpHJfv9/PlStXHtr/hhATXCaT\nSSuOKBs3NDQU8u4XcbxwSUkJ69evZ9myZcC04KvL5aKnp4dLly7R2tpKY2Mj7733nhSRmJiYYNu2\nbRQUFLBs2TKioqJwOp0hr6MxGo1kZ2dLvqogCPT19dHd3c3AwEBIbbkZBoPhrlqYIhQKBWq1GpvN\nxurVq1m9erVUdixGqWpqau4p1Hs3hHwFX7JkCXa7HUEQGB8fx+PxhPyAGR0dTUFBAZ///OclPfSR\nkRFaWlqorKxk7969vPfee7etCmxubuadd97B4/Hw0Y9+lPT0dFwuF21toZ2Rk5CQwGc+8xmpPNbv\n93Px4sV50RFVXFyMTCZj3759d/1sw8LCsNls7NmzhxdeeGFGUdb4+DidnZ0cP36crq6uh7YlZARX\nqVSYTCY0Gs0MP2suYDabycjIQK1W43K5aGxs5OWXX6ajo4PR0VHGxsZwu9231MfIZDJUKhVpaWmk\npKSgUChQKpUh/1uMRiNms5nw8HDkcjm9vb3U1NTwta997ZHIEEz7rFYrNpttRg0PTJf2RkZGUlpa\nyhNPPEFOTg5JSUmEh4fPSP6dOXOG7373u7S2tj5SfiFkBI+MjGTjxo2YTCaUSiWBQICGhoY5qXZT\nKBRoNBrkcjl9fX3U1tZSVVWF0+m8Y7ZNoVBIdeLLli3DbrcDzMkXNTo6GrvdTkxMjKQI7XK5GBgY\nwO12h1wTp7m5mdbWVoaGhqTGhISEBJ555pnbEtxsNrN27VoWL15MfHz8DJ97YmKC1tZWrly5wvXr\n16Ws8sMiJASXyWTEx8fz3Fol5QgAACAASURBVHPPERkZiUKhYGJiYtZ0eO6FQCAguR49PT3U19fj\ncrlum1EVs65Go5FFixbxp3/6p+Tn52M2myVtx1C7WHa7nbS0NCl6AtM+uF6vx+fzScmeUOHq1ask\nJiayatUqTCYTBoOB1NRU/uIv/gKXyzVj0dBqtRgMhhnVj6L9ExMTdHR0cOTIES5cuEBvb+/8kvK+\nE8SxEDk5OWg0Grq7u7ly5QonT56ck/EK4kgCt9vNihUrSE1NRafTsXfvXhobG6V6Eo1Gg9FoJDk5\nmRdeeIFt27aRlJSEQqFgfHyc9vZ2qqur6enpCfnfAEiqcHa7ndjYWDZv3szhw4c5cuQI3/ve90Jm\nx9DQEGfPnkUQBL71rW+h1+tRqVQkJyfflqAymWwGuf1+Px0dHZSVlfHKK6/Q2NiI2+0OSo4hJAQP\nCwvDZDJhNptRKBT09PTw3nvvPfL287AYGhri6tWrvPXWW6xatYr4+Hi2b9+O3W6ns7NTOjBGR0eT\nmJiI2WwmKytLqmHv6+ujrq6OX//61wwMDIQ82eN2uyWZbrGRV6lUEhYWRiAQCHlER4yIVVRU0Nra\nSmxsLEaj8ZYm45sxOjrKwMAAx48f5/Lly9TV1UkFa8HqDwgJwTUaDWFhYej1eqampujq6uLKlStz\nVmQ1NjZGW1sbp06dwm63k5yczNKlS0lLS2N4eJj6+noA4uLiSEtLk84MYiKlurqasrIyDhw4wOjo\naMibNVwuF4ODg3R2dko7iiisNVeDfkZHR2lqauLSpUskJSVJh0ydTodarUalUjE8PDzjM+/s7KSh\noYG33nqLCxcuPFI48E4IeZiwqqqK8+fPc/LkyTltdggEArS0tNDc3ExCQgJGo1FqkhUPkDdicHCQ\n9vZ2Dhw4wN69e2lpaZkzJeGamhqcTieTk5P827/9GwqFgubmZr7//e9z9uxZ6QsaakxOTvLpT3+a\niIgIYmJi+NCHPsSaNWvIyMhg8eLF/PjHP2ZgYEDatS9dukRtbe2sRn5CovAgNjgsXryY0dFR+vr6\n6OzsDPoK/iDKCTKZDJPJhM1mIyoqCovFwoc+9CGJ3FlZWcD0alleXs7p06eprq6mv7+f/v7+R9KB\nD4bCg1i0lp6ejkwmY3Jyks7OTpxOZzBr0h9Ko0epVKJWq7FarZhMJnQ6HQaDgdbW1hmLgqgCF4wy\n4zspPCxImDCd9g4PD6e0tJTY2FhkMhlZWVlS+ru8vJzy8nJJz36u7JwDPPYiVAsEnwM8LnbyPiD4\nwgD8BbyvsUDwBbyvsUDwBbyvsSAEG3o8LnbC42Nr0p1+8ECHzAUs4HHDA63gj8tJesHOoGFB6XgB\n72vMV5fkvrFA8AW8r7FA8AW8rzFvNHrmG1QqFWq1Wqqj0ev16HQ69Ho9g4ODUj9pZ2cnXq9XqkuR\ny+XI5fJ5OzU31AgLC0Oj0aDT6VCpVJIQ7I3tix6PR1LMeJQO+tthgeB3QEREBDabjeTkZEpLS8nM\nzCQ5OZm0tDQOHTpEY2Mj3d3d/PjHP2ZwcFAitPhBhqoV735a5uYyUpaQkEBcXBwJCQlERkZitVqJ\njY2luLiYuLg49Ho9vb29/O///i8nT57kN7/5TVCvv0DwmxATE8O6det47rnnSEhIICoqirCwMKmm\nGWDNmjUUFRXh8/nw+XycPn2asrIyAPbs2UN2djYvv/zyrNopSvN98pOfJDExkcjIyFte09PTw4UL\nF3jllVcYHh6esdPMNnQ6HcXFxfzVX/0Vubm5Ug+sqO6h0+mk5nObzcYf/MEfsGLFCkwmE/v37w/a\nZK6QE9xgMGCz2UhISCA6Ohq9Xk8gEOC9996jvb19TsYPi9DpdNjtdkpKSiQFuLCwMKn30uv14vV6\npS0XplV5YboNrqGhAavVKvUbzhaZRMGr3bt3U1hYSFRUFAaDAZ/PJ7WDKRQKoqKi0Gq1OJ1Ourq6\nuH79OlevXg1Jv6ZGoyE3N5fU1FRp0KrX62ViYoLR0VFGR0cZHx/H7XajVCqJj48nMTGRFStWcPTo\nUcbHx4Ny/0JGcLGtym63U1hYyPr168nOzsZut+Pz+fiXf/kX3n333TkluMViIT09na1bt0qCpWLH\n+uTkpDTDxWKxoNFo0Gg0bN68GYVCQW9vL83NzWi12llTOhMFmYqKiti8eTPPP/888LshOS6XSxpt\nIYrTFhYWUlhYSFNTE/v27aOnp4eOjo5Z70JSq9VkZmai0+mkxmxxpqM4Tbinpwen04lOp2PLli0Y\nDAZWrFhBeHi4pIL9qAgJwRUKBbGxsaxZs4Z/+qd/Ijo6Go/Hw3//938TExNDTEwMzz33HJcvX57T\nuR67du1iy5Yt2O12/H4/DQ0NVFRU8OMf/5iWlhbpALR27VqKior48Ic/TEZGhjSGAh5t1O+9YDQa\n2bNnD3/+538uNWQEAgEuXbrE/v37+d73vieNbHj++efZvn078fHxyOVyUlJSeP755ykqKuLZZ5+V\nXJbZwuDgIH//93+PIAhkZWUxPDzMN77xDVpbWyXlCUEQpFX6D//wD9m0aRM7d+7kmWee4eTJk5w7\nd+6R7Zh1gisUClatWkVhYSE7d+5EoVBw6dIlLly4wNtvv43ZbCYqKoro6GiUSiUpKSn4fD66u7tD\nHonIysoiKysLmUxGe3s7J0+e5I033qCmpobR0VGpmbeyslKaevUXf/EXM35HZ2cnOp0u6O6JTCZD\nq9WSlZWFyWSSzgOnT5/m2LFjvPPOOzidTsbHx5mYmOBnP/sZfX19LFu2jHXr1mEwGDCZTCxatAid\nTsfo6OisEjwQCDAyMsKFCxfo7Oykv7+f5ubmW+akiBgfH2dychKlUkleXh4tLS3zn+AqlYqYmBjW\nrl3LmjVrWLNmDRUVFZw9e5a3336b8vJy9Ho94eHh2Gw24uLiiI2NlSb6h5rgN/ZjdnV1cfXqVU6c\nOHHL67q7uyVX6tOf/jRer1f60IaGhm5R9Q0G5HI5YWFhLF68GL1ejyAIeDwezp8/z5kzZ6Tpq1NT\nU0xNTXHmzBncbjejo6Pk5eVJ4TpRKlscTzyb8Pl8VFVVSbvfncgtvlZsYVy0aJE0XvtRMWsEVyqV\nxMbG8tWvfpXNmzdjNBqpr6/nn//5n6mqqpL8MJfLxfj4OGNjY3zpS18iNzeXtrY2KisrQ+6P6/V6\niTxtbW13dTUmJydpbW1lYGCArq4uGhsbJb92Nsij1+uJj49n586dyGQyxsfHaW1t5e23375jk3FF\nRQUKhYI9e/ZgtVpvkToJBR5mrrfNZguaJPmsfI2VSiUrV67kE5/4BJs3b8br9XLy5Em+9KUv3XZA\npE6nY+3atSQlJREdHU1cXBxhYWEh/0Cqq6uprq5GEIQZOo83Iz4+nrVr1/Lyyy8TGxvL0qVLeeaZ\nZyR7Z+MAl5KSwvLly5HJZAQCAVpbW/nhD39IS0vLXRUUmpub+dd//Vfa2tqYnJxEoVCwadOmWyZL\nzRXEw2hxcbF0rhgYGLhvVYh7IegMEuOaBQUFrFmzBrPZzPHjx6VY8cjIyC0EEKMrRqMRlUo1JysN\nTPvWUVFRJCYmEhMTw6JFi0hLS6Ojo0PqDBfHpmVlZbF27VrCw8ORyWQsX74ci8WCVqsNuoKcQqFg\n0aJF5ObmAtO7R19fH2fPnr2nVInoBzc2NqLX67HZbKxZs4aOjg46OjpCJlR1M8RxeFFRUZJSdGxs\nLD6fj9ra2qBNCws6kxQKBUVFRWzfvp2SkhK6u7t59dVXOX369B11G+VyOQaDAYVCQSAQYHx8nKmp\nqZD74AcOHGB4eJj8/HxSU1NZvnw5zz//PD/4wQ9ITExk6dKl/Mmf/Anx8fEYDAYpcqLX6yX5jejo\naOkAGCzodDpWrFhBaWkpgCSpV1FRcc/3ejwe+vr6OHnyJBqNBrvdznPPPUdLSwt1dXU0NzcH1db7\ngXhgXrJkCQUFBbz00kvEx8ej1WoZGxtj//799/W33Q+CSnC1Wk1UVBSf+9znSElJobOzky9/+ctc\nunTpjpLSBoOBhIQEtm7dSlRUVDDNeWA4HA6uXLnCd77zHf7xH/+R7OxsFi1axMc//nFUKhUajYbw\n8PAZI5PFcWM1NTU0NTWxevVqsrKy+MlPfhKUSIoY146MjCQ2NvahfocgCLS3t884UyxfvpyBgQH+\n67/+65FtvBe0Wi02m42srCxsNhsxMTGsWrWK5ORkbDabFBXq7OzknXfe4fz58/NzBRfn4yUnJ6NU\nKuns7KSiokLSnbwRCoWC9PR0lixZQk5ODmlpaeh0ujmbFgXTej0xMTEkJSVJhNZoNJjN5hlSIUND\nQ/T09FBZWUl9fT1dXV10dXUxPDyMQqEIeqJHTJKJrpvb7X7gbKTX650xaEl0uWYDolTkjh070Ol0\n6HQ6TCYTiYmJREREEBERQXp6OhaLRVIzLisr48qVKxw8eBCHwxG03XtWCG6xWHA6nfT19VFfX48g\nCNKHo1QqUSgUhIWFsX79erZu3UpBQQE2mw2VSiWpmYUaSqWSRYsWUVBQwObNm2eohokQBIHJyUka\nGxs5f/48P/jBD+js7MTtdkvkmY0vqEqlmhGZcTqdQTuEzQZEV+jLX/4yUVFRUh3K3Q61Bw4c4PDh\nw1y8eDGoOYRZO81FRESQmprKhz70IUktQSaTsWHDBnJycqQZ2y6Xi/7+ft58800+/OEPExYWxsDA\nQEgHc+r1ejZs2MDzzz9PXl4eqampt4T65HI5AwMDfP3rX2f//v2SNPVsfxlVKhVPPvkkKSkp0nMn\nT57k5MmTs3rdR4FarSYiIgK73X7fIVMxqxnsBFlQCe52u+nv7+fgwYPk5eURFxfHZz7zGXw+n0QE\ncdAlwLvvvktlZSXNzc04nU42bNgATEsLBqMO4X6g0WiIiYnh937v98jPz8dms0n13IODg/T19ZGe\nno5Wq8Xv90tx+1DJdotRKXErB6Tir/kKj8eD0+nk0qVLGI1G3G43ra2tjI2NSQudwWAgPT0du91O\nREQETzzxBDCd0WxqagraThhUgns8HhwOB4cPH0aj0VBYWMjKlSuB32nSj4+PMzIyIok5nT9/npaW\nFqxWKw6Hg7CwsKBVkt0LYjIqNzeXkpISzGYzMB2HdTgctLa20tTUhMlkIioqSjr9321VEoueggWR\nDKKa2uMAj8fD8PAwp0+fxmKxSPKG4vhkmUyGxWKhqKiInJwcsrOzyc7OBqbj9mITSTAQdBfF4/Hw\n6quvUlFRQX5+PiUlJchkMqampnA4HPz2t7+loaGBtra2GSQWZ0VbLBa2bNnCd7/73VmZFy1CXBn/\n+q//mo997GMYjUbJv/6///s/3nzzTfr7+6Uy2c2bN5OcnMzGjRs5deoUnZ2dt/0SXrx4MSjSG48z\nvF4v7e3tfOELX7hr2fDPf/5zkpKS+MpXvsLq1atZsWIFgUCAs2fPzv9y2fr6eknJAaaze+K2PzEx\nMcN4cWU0GAyEhYWFRIZapVLx0Y9+VJJVcTgc/OpXv6KsrIxjx47R19cnuUnf//73mZqaYtu2baxc\nuZL169cD3FZ9V4yszAbE+hOHw/HIHUNOpzMkg/LvRtLJyUna2tr4yle+wt/8zd9QUFDAypUrWbNm\nDRcvXqSxsfGRrz9rBHe5XLhcLrq7u+/5WplMhk6nkzKZNysBzAYUCgUrVqwgLi4Or9fLe++9x4kT\nJ7h8+fItmpf19fVcv36dzMxMcnJyWLZsGf39/bcl+Gy3qgmCMKMw6V6Qy+VoNBoSEhJmiLMODg5K\n9UDBgCjWJcqf3w/EpJ64KCQnJ5OamkphYSEOhyMoBJ8XXfUKhQKTyURkZCRyuZyqqqpZP2QqlUqK\ni4uJjo7G4XDw9a9/nXfffZfa2trbvr65uZnLly8jCAIbN25k48aNs2rfzRAFp8R2r/utWBSVhHfu\n3El+fr70vFjrHiyIIWKxkfhB0djYKMl/79y5k+XLlwfFrnlBcK1WS1FREREREXi9XhwOR8iiBOKq\n43Q673rN6upqjh49Snt7OyqVCrPZjF6vn/WCJbHxQtwZlEolu3btYufOnff1/szMTF555RUKCwul\nRpNvf/vbM+TJHxURERE89dRT/OhHP+ITn/gE6enp9/U+uVyO2WzmueeeY/fu3VJAQtT1CQbmRdOx\nQqHAbDZLyaBQ1KAIgsDo6KjUfpaXlyfJktzug3e73bhcLqampoiIiMBkMpGcnExDQ8OM3cZsNqPV\naoOWag4EAtTV1c1wfSIjI+9LCz4tLY1ly5aRl5cn9Ww6HA5OnjxJR0dH0BaRyMhIUlJSKCgoQC6X\nS4m8pqamW3zwiIgIrFYrarWamJgY7HY769atIysrSyrVqKioCIp7AvOE4DKZjLCwsKBX4d0NgUCA\n3t5eqWF369atUk9jT0/PLV+ysLAwqVNHlCVPS0ujtbV1BsETEhKwWq1BJXh1dTUDAwMEAgHkcrk0\nn0Wr1Up9ojcTSaFQsHr1akpKSkhOTkYulzM8PExTUxPnzp3D4XAELdJjtVqJi4sjKSkJu92OwWAg\nOjqat99++5bXLlq0iJycHCIiIsjPz2fx4sXExcVJZcBut5sDBw5w+fLloNg2Lwg+F/D5fBw7dgyT\nycSKFSv46Ec/yo4dOxgeHqa1tZXz58/PqPdYu3Yt+fn5REVFMT4+TltbG4cPH76lJmT79u0UFRVx\n7NixoBBIEASmpqbo7u6mtbWVlJQUoqOjWb16NV/96lf52c9+RkdHBw6HQ3qPOLLhD//wDyksLESp\nVNLa2sqvfvUrvve970lflmBhaGiItrY2rl+/zpIlSygpKWH9+vX89V//9W1fLxariWMkYDq83Nra\nyq9//WuOHDkSNAXseUVwMV5+uxU02PD7/Zw6dYr8/Hyys7MJCwsjPDxc0vS0WCwzkg3x8fFYLBbk\ncjljY2OMjIzgdrtvIbHYdBzMOLjH45G+TJ/97GelHtatW7diMBioqamhqqoKgOTkZJKSksjKyiIt\nLU3yZcvKyrh8+TI9PT1BLy/o7+/nwoULaLVaPvKRj0gRG7Gc+GYEAgGGh4cl4doLFy5QV1dHQ0MD\nZ8+eDeoZbF4RHKZ7Cnt7e2f9kOn3+6murqampoYlS5Zgt9ulqVQ2mw2bzTbj9aIGvLjNt7e335Yo\nXV1dQe/J9Pl8XL58GafTydatW1Gr1ZjNZpYuXYrZbCYlJUUqpc3LyyMjI4OYmBhUKhVjY2MMDAxw\n/vx5amtrZ6XBYXR0lOvXrzM5OUlMTAx5eXkkJycTEREhHcTdbjfj4+MEAgHp4GyxWAgEAhw5coSK\nigpaWlqC5nuLmBcqa2azmT/4gz/gj//4j+nv7+eP/uiPHqoe4WHmbpvNZuLj43nmmWdYvXo1KSkp\nJCYm3vK6pqYm6uvrOXbsGEePHqWtre2ONe6zYSdM185v27aNT37yk+Tm5pKUdEdhA2D6y3b69Gn+\n9m//lu7u7oeZbPVQKmtpaWlkZmaya9cuSktLUavVVFRUcOjQIcbGxvB4PBw8eFDqgBLbBB8Fd5oP\nPq9W8LnoEXS5XLS0tPDTn/6UX//611L98s2YmJhgYmICh8OBw+EIuR48TGf+Tp06RWNjI1FRUVit\nVjZs2EBCQgIxMTFcv35dSp6cOXOGvr4++vr66O3tDenYtq6uLpxOJ42Njbz22mvA9H0eGhrC7/cT\nCAQYHR1lcnJSCtPOFuYVwf1+vzTvL1QQrzcXrVsPCr/fT39/P4ODg6hUKoxGIx6Ph4SEBGw2G7W1\ntQQCAcbGxjh37hwjIyNzUl8/OTkpjf64G0LxOc8bggcCASYnJxkbG2NycnJOmh4eFwQCAWn+yZtv\nvjnX5sxrzAsfXJTSNhqN+Hw+qYrvQfG4aN88LnbyPlA6nhcreCAQwOl0hmym9gI+OJgXtSgLWMBs\nYUEINvR4XOyEx8fWBSHYBXwwsSAEOwd4XOxkQQh2Ae9zzFeX5L6xQPAFvK+xQPAFvK8xJ3Fws9lM\nXFwccXFxdHR00NPT89CFSwt4PKHVajEajRiNRiwWC0aj8ZY2Nb/fz5UrV6ROqofCjSOz7vUAhGA8\n1q1bJ7z66quC2+0W/v3f/10oKioKyu8Nlp0ymeyWR7D+9mDaGYJHxWzYKpfLhaSkJOHJJ58U/uZv\n/kY4fvy44HA4BEEQBL/fLz1cLpewfft2IS4u7r7v6c2POctkigaIvXwXLlyYK1OkntCcnBzsdjtx\ncXEkJiaSnJxMYmIie/fupbq6mra2Ntrb2yVNHrEaLiUlhfz8fDQaDRcvXqShoWFej1abS8TFxZGd\nnc1nP/tZUlNTsdls0pSAm+uPNBoN3/zmN/nWt77Fvn37GBgYeODrzXmq3mw2S5qUc1FgJYrSbtmy\nhaSkJCwWC2azGavVitVqJSoqik2bNrF48WKpkm90dJSuri7KysqIiYmhoKCADRs2oFarpfmMN7aQ\nLWC63igrK4tly5axdu1a8vLyJKFd+F2p9I15GblcTmJiItnZ2dTV1d1WEOxemBcEj4uLQ6lUhrRm\nGaZvanp6OiUlJfzjP/4jwC3XFwSBdevWzfhZf38/FRUVjI2NSTJ927dvRxAE6urquHr1alAJLo6c\nfph6eVE6G6Zb3+aijl3sst+0aROlpaVs27YNuPVeBwIBqYFboVCgUqnQarVkZ2fT09PD6dOnH3hn\nnHOCZ2ZmSkKqoZyaKpPJiI6O5iMf+Qgf+9jHbvsasfcyPj5+BrmsViulpaVs3LgRhUKBQqGQZqu4\nXK6gkkipVPL000+Tmpr6wNJ6KpUKu90uyY2/+uqrd2wEnk0kJCSwZ88ePve5z931b2hra+ONN94A\nkOa0A2RnZyOTyfjVr371wHLvc05wcY5GqLt55HI5ixcvJj4+nvDwcGC6La2lpUU6D4jyhjabDbVa\njcVi4amnnpJkTMTucJ/Px8jICD/96U+5cOHCHbWIHgaiEkZxcTGLFi0Cbr+di7jxZ6LQk8FgwOFw\nhFQ9Q6lUYrPZWLp0KXl5eTz99NOSRqco693Z2Ul3dze1tbV0dnbS29tLQ0MDkZGRmEwmieBGoxGr\n1UpkZOQDj+OYc4LPFRQKBUuWLJFEo0Qdm4sXL3LgwAFgJsHFQT+lpaXo9foZSnAej4eRkRH279/P\n9evXg97Yq1QqUavVko6nqJZwO4IrFAqUSqUkTyIO+6mpqbmvOZHBgkqlIjU1lZKSEgoLCykqKgKm\nJ8+63W5qa2upqqqitraWs2fPUl9fL6lWJCUlSfPCYTqkKPYLPKgC3weW4CqVio985COkpaUhCII0\npN3lcrF27VoA+vr66OzsJD8/n/z8fJYsWUJ8fPwtv2tiYoLu7m7Ky8uDLl47NTXFN7/5TWkH2bFj\nh7SD3A4Gg4GYmBjJ7erq6uKtt97i29/+dkimyYoIDw/nmWeeYdeuXZJ6NEyrRF++fJl/+Zd/oaWl\nZVZHZMMHmOB+v5+amhpiYmKkUNXWrVtntMt5PB6mpqYIDw/HYDBIIxB8Ph/d3d2cOnWKHTt2EBYW\nJskO1tbW3rMX8UExOTnJ1NQUbrebt956C4VCccch/KKe5sc+9jGmpqZob2/nzTffZHBwMCSqGUql\nkvz8fFauXMmuXbuwWq3Sz1wuF8ePH+c//uM/aG1tfWAhrYeyZ9avME/h9/upqKggPj5ekuiLj4+/\n7bYvl8vxeDx4PB76+/vp7OyktraWQ4cOkZaWRkpKCkajkfT0dHp7e4NO8EAgIM1Xv9fIY3E4EUwT\nqre3l/r6emnu4mwjLCyMnJwcNmzYIK3cYgNyQ0MDFy5coLKyctbtEPGBJbjX6+W1114jEAggCAK7\nd+++IwEEQWBkZIShoSFqamr4xS9+wZUrV6irqyM+Pp4tW7awevVqli9fTl1dXdCH1zwIUlNTpTHJ\nXV1dtLS0BP0LdyfI5XKsVislJSU8/fTT0vODg4McOHCAvXv3hnx6wQeW4CJOnTpFU1OTdLC8E3p6\neujv76e3t5exsbFbaiPEjGZERMRsmntPrFixgieffBKZTEZ9fb00czsUUCgULF++HJvNJkVzhoaG\nqKqq4n//93+prq5+4DOKODdFJpM9VKTtA0/woaEh3G73PUN7IyMjjI2NzZBXkclkmEwmKRs3Pj4+\np0K2gKSUIcqdhEqtThTALSgomOF3t7e3U19fT0tLCxMTE/eV58jNzZ0xXczpdEpiuw9adPWBJ7g4\nseph6hwUCgUxMTGYTCb8fj8dHR0h0Re6mz1i+FB0txQKhaQMJ050hd8pHwfrC6nRaLBYLKxevZrY\n2FhJaqWmpoarV6/e17RYUW6lpKREUl0LBAJ0dXVRU1NDY2PjAyfR5ozg4pZz4wjdxwnh4eGkp6ez\nfv16rFYrfX19vP766zQ1Nc2JPaLm0I1DQw0GA8uXL6ewsBC73Y7NZpPId+jQIU6cOMHevXuDcv2o\nqChyc3PJzc2VpCBPnTrFf//3f9/3rO+MjAxeeuklNm/ePCPjee7cOX75y18+VAh2TqsJxf+GhYWx\nY8cOjh8/HrS50LMJhUJBSkoKf/Znf0ZUVBR+v1/aRmdjeisg1WXYbDa0Wi0Wi2WGVIhSqWT16tUs\nXbpUei4vL4+0tDQpoylOx62pqaGsrIyrV68GzT6r1Up+fj4qlQqZTIbf76evrw+n03nf4cDw8HCy\ns7OJiopCp9Ph9/tpa2ujtrb2oReOOXVRxK1Uo9GwYsUKKioq5j3BxRqWJUuWsGvXLgwGA319fQwM\nDOB0OmfF59VoNNKwzaVLl0rJHDE7CL9bwW9URI6Li2NyclLSH+rr66OhoYHTp09TXl4e1N0mMjKS\nrKwsyRXyer00NTVJ6sb3gsViIT4+nqSkJPR6PSqVCq/XS21tLS0tLQ+dpJoXPrhMJkOlUoVUwuRh\nIJPJ0Ov1vPjii2zcuBGTyQRMi9ieOXNmVgrFFAoFS5cu5emnn2bDhg2sXLnyrtGEG39WV1fHuXPn\n+O53vwuAw+GYNZFaIRIz5gAABoBJREFUm83G8uXLpQyrqFx3vyXQf/qnf0ppaemMw6XX6+WNN97g\n2rVrD50hnhcEf1wQFhbGxo0bWbNmDVlZWcB0lOC9997j3XffnZVpqQqFgoKCAgoLC1m8eDG9vb3S\noNKBgQFqampwu92o1WqefvppTCaTpJog+r9icigU5chiSE/8992gVCqJjIzk4x//ODt37iQjI0P6\nWV1dHWfOnOHEiROPFMdfIPh9QC6XExcXR3JyMuvXryc5ORmDwcDY2BhVVVVUV1fT3Nw8aw0bWq0W\nr9fLwMAA5eXleL1eJiYmGBoaorq6mqmpKbRaLSUlJej1emC6Zv3atWt31P0MNm6M3NxOFOtmhIeH\nY7fbycjIYMuWLaSmpmIymaTwZnt7O2fPnpVmmz8sPvAEv5/kgVarZceOHXzoQx9i3bp16HQ6Jicn\naW1t5Y033uDixYtBLZG9EYFAgPb2dk6fPs25c+f4z//8z9uOl9br9Xzxi18kMjJSqo6cr1AqlaSn\np7Nnzx42bdpEQUHBjM9BPAgfO3bskXfFDyzBlUol27dvZ8mSJaSkpJCbm3vLawYHB+nv7yc7O5vY\n2FgsFgs6nQ6ZTEZNTQ2f//znqaurm7XICUyXux4+fJgTJ04gk8mYmJi4J3lHR0fZt28f/f39s2bX\nvaDX69m6dSvl5eUzKgYLCwvZsWMHiYmJFBYW3lY09siRI5w/f56enp5H/qJ+IAkuRiGeeuopkpKS\nsNlskt7NjTfU5XLhdDpJTExEq9WiVCrx+/1cvnyZM2fOUF9fz8jIyKz3kt7rCyQmSJRKpdTb6nA4\nQqqUMT4+Tm9vL0lJSZKW5xNPPIHf72diYoLExERMJhOLFy9m2bJlREREEB8fLwl2yWQynE4n1dXV\nHDlyhJqamqDYP6eJnrlCZGQk+fn5PPvss4SFhUlJp5t9R6PRKLWrCYJAIBDA6/Vy8OBBjh07Nm8a\ni9VqNQaDAa1WK0WifD5fSN2U4eFh6urqKCwslNL2GzduRKvVolar2bp1K4sWLUKtVt9yr8Vqyc7O\nTt588032798ftFnxISe4uNqIxJoL2O121q5dK4W0bjwc3YwbfzY5OUlVVRXl5eVcv349dAbfAxaL\nhaysLOx2O3q9fk6EBGpra3n99dfZvHkzkZGR6HQ6ioqKJP9arGG/+V57PB6am5s5ceIEZWVlvPnm\n/2vvbFZa18Iw/JSQ1kJAKpEiFhVBvAARZ+LEK3DmpXgNzvQadCB74sBBQIUMagQJSAz4VxIUrAUt\njTWJlUbPYNPg4VQ5nONO27ieSQdd0I/ydtH15V3v9+tbfeKJPyNXFIWpqSnm5+eRJIm3tzeCIMCy\nrER8HNlsltHRUWZmZrp+4V3CjuLXbDbLxMQEq6urrKysxP/He81H20PHA5L08CnP87i4uGB7ezt2\nMEqSRDabRZblv9kxOtOba7UalmWxubnJzs4OR0dHXYfr/h8S38FzuRyKolAoFAjDkGazieu62Lad\niMDz+TyqqjI5OfmlOMMwjN14mUyGfD5PLpejWCyyvLyMJElsbW3RarX6qmPRbrcJgoDn5+dEw4fC\nMKRaraJpGqVSiVKpxMjISNe17+/vVKtVHMfBtm12d3d5eHj47/FsX5C4wIMg4Pj4mI2NDRYXF9E0\nDV3XE0u2GhsbY3p6mtnZ2S/XGYbB+fk5l5eXZDIZlpaWmJubY3x8nOHhYQqFQnyrvp+o1+u4rotl\nWYn/8KIowjRNZFnGcRzW1ta6rmu1Wqyvr3N4ePjH+/SJC/zl5QXbtrm7u2Nvb4/Hx8c/1kPuRrPZ\npFKpUC6XWVhYiDNNXl9f2d/fx7IsTNPk9vYWz/PiDka5XEZVVRRFoVgsxjtOP+3e8PuitOM4PavL\n931OTk6oVCrout51TWeUdxKH9MQFHkURnufheR6u6yb98fi+z9XVFZqm0Wg04nNAu93m4OCAs7Mz\nTNPE932iKIqFUqvVkGU5zvvopDD1g8CHhoZQVRX4/QTz5uamZ7V0Yirq9XrPrMMf+XF98Eajga7r\nn+4un/Hxdky/RT13rKqSJOE4zr/2X/8EBu+mgeAfdDpR19fXGIZBuVzudUl9w4/bwdPI/f09hmHw\n9PTE6elpInkjg0JfjPL+LgZletmg1MkPHOU9KMNARZ3fw6DUOvnZG2IQrCDViEOmINUIgQtSjRC4\nINUIgQtSjRC4INUIgQtSjRC4INUIgQtSjRC4INX8BZY1nN9ndRVEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAAC0CAYAAAAn8ea8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3Rb53n/P9gAAZAASBAc4BCXKFIcEilSsjYlUSuyrSiOm8Sx06Yjbuo2TZM67ek4SZq2qXPSNG2Gm6RJjtM6cmLFsWQn2luiRWpRJMW99wBBggPEur8/+Ls3ovYAQcrm9xwcyyDA+/Dii/d93md9ZYIgsIAFvF8hn2sDFrCA2cQCwRfwvsYCwRfwvsYCwRfwvsYCwRfwvobyQV4sk8nmdchFEAQZLNgZRAwKgmCF+W+reE9vxsIKvoC7oW2uDXhULBB8Ae9rLBB8Ae9rPJAPvoAFBBtms5mPfvSjrF69mqGhIb7zne/Q1taG1+sNyu9fWMEXMCdQqVTY7Xby8vLYunUrW7ZsYeXKlcTExKBQKIJ2nYUV/D4hk932kM5CLc+DQyaTYTKZ2Lp1K6WlpezevRuA3t5eYmJiUCqDR8sFgt8Fer2eqKgonnzySUpKSsjOzkYQBGQyGRMTE3R3d/OTn/yEyspKamtr59rcxwI6nQ6LxcInP/lJtm/fzvLlywGor6/n4sWLXLlyhampqaBdb4HgN0Eul6PRaMjOzmbRokWkpaXxxBNPkJubS0JCgkTwqakprFYrW7ZsQRAEWltbcbvdIbFRJpMRExPDE088QXR0tLSlezweLly4QH19PRMTEyGx5UEgk8mIjY1l+fLlbNy4kbS0NNRqNdeuXePgwYOUl5czNDSE3+8P2jVDRnCZTCZtPeK2LpfLCQQC0mOuoVKp0Ol0WK1WnnrqKYqKiigoKMBkMgHMsFOpVBIdHc2OHTtwuVyUlZXR2dkZEpdFp9ORmZnJF77wBfLz81Gr1fj9fgYHB/n6179OT0/PHQkuk8nmzK3SarVkZGSwc+dONm7ciFwuZ2hoiEOHDvGjH/2IxsZGfD5fUK8ZMoLHxsZSUlKCIAhMTU0xOTlJamoq7e3ttLa2cuXKlVCZckc8/fTTbNq0iU984hMolUoUCoW0OjqdTkZHRxkeHgamvwzh4eHExsby8Y9/nOXLl7Njx45ZXzlVKhUvvvgimzZtYsWKFcjlclpbW7l8+TKvvvoq169fZ3Bw8Lbv1el06PV6hoaG5oTkn/nMZ9iyZQubN29GpVJx/vx5Tpw4wVe+8hU8Hs+sLHKPRPCMjAyio6OxWq0sW7YMrVZ7x9eGh4eTlpYGgM/nw+v1EhkZidPpZHh4mK6uLoaGhmhqauK3v/0t4+PjIf8QFi9eTFZWFnq9fsa1+/v7eeedd3jvvfckghsMBhYtWsRnP/tZIiIiSEpKuuNBNFjQ6/WsW7eO9evXk5OTg1wup7y8nHPnznHo0CGuXbvGyMjIbYlSWlpKZmYmKSkpvPvuu1RXV9PV1TWr9oqwWq0UFxezc+dOFi9ejFwu58yZM+zfv59Tp07Nqmv3UARXKBRYLBYKCgpIT08nKSmJ0tJSDAbDnS+kVBIWFgZMuyiCIKBUKvH5fPh8PtxuN52dnZIP2dDQwNTUVMhcF7VaTWJiIvHx8Xi9Xvx+v/SoqamhrKyMY8eO0d7ejt/vx2g0kpGRwac+9SnMZjMmkwmTyYTX68Xj8QTdPoVCQUREBCUlJeTm5hIfH08gEOD8+fMcOXKEo0eP3va64pliw4YNrFq1iqysLLq7u+nt7Q0JwdVqNbGxsZSWllJQUIBOp2NoaIgTJ05w4sQJLl68OLsGiGS7nwcgAILVahVeeeUVoampSfD7/UIwMTQ0JBw5ckTIzc0VjEajIF7zfh4323m/D7VaLWRmZgpHjx4VHA6H0NraKly+fFk4ffq08NZbbwn5+fnCiy++KHzta18TEhMTBa1WKwCCXC4XGhoaBEEQhPHxceGll14SsrKyZsXO2NhYYfv27YLL5RJ8Pp/g9XqFkZERISMjQ5DL5Xd8X3h4uFBUVCRUVlYKLpdLmJiYEF5++WUhNzf3fq5b8bD3VHxkZmYKL774ojA0NCT4/X7h2rVrwre+9S0hLCxM+P8FXEF53ImzD7WC63Q6NmzYQFRUFG63m76+Pjwezy0uxdTUFA0NDdTU1OB0Om/7uxISEkhKSmL16tWYzWbCw8NZtmwZn/vc5zh8+DDvvPMOo6OjD2PmfcPr9dLR0cErr7yC2WxmdHSUoaEhfD4fgiCQlpbG+vXrSUpK4vXXX8fhcGAymVi6dCkajYZAIIDP5+P8+fP09PTMio2FhYVs375dcgNra2v54Q9/SH9//113uZiYGJ555hliYmLQaDRMTExQVlZGb2/vrNh5M0pLS9myZQtGo5GrV69y7NgxfvnLXzI1NRUSF/ShCO7z+Whvb5e24/r6eiYnJ29L8MbGRmpqahgZGbnt77Lb7SQnJ+P3+ykqKsJms2GxWFi1ahUOh4Nr165RU1Mzq66KIAiMj49z8eJFFAoFExMTjI2NEQgEUKlUZGZmEh4eTnh4OAA2mw2r1crGjRvR6XQEAgGmpqbo7u5mbGxsVmyMj48nMzMThULB8PAwLS0tHD16dMahVi6fmZjWaDRER0eTn5+PXq/H7XbT3d1NW1sbLpdrVuy8GampqaSlpaFSqbh+/TqVlZXU19cHNRR4NzwUwQcGBnj55ZdJSUnB7XZz6dKlhz4UVlVVoVKp+O1vf8vXvvY11qxZQ2JiIpmZmQwODtLe3k5dXV1IfPGBgYHbPj86OkpfXx8qlYqxsTHWrFlDcXExzz77LCaTCY/Hw8jICCMjI0GrobgZVquVxMREYDopcunSJaqqqoBpYsvlctRq9Yz3xMXFkZ6eTm5uLmq1mqamJs6ePUtvb2/IYvYxMTHYbDYEQeDkyZNcunQJh8MRkmvDQxLc6/XS1tZGd3e3tHo9ynbj9Xrp7Ozk9ddfZ2hoiJdeegmAnJwc9Ho9P/rRj2aNODcjPDycjIwMKakzPj5OR0cHSqWSoqIifvnLX2K1WjEajRgMBlwuF4cOHeInP/lJyEgjhjBhOvKzcuVKNm/eTFFR0Yw6DoVCIWUOR0dHKSsrC9m91Ol0FBcXk5ycjNfr5be//a10SA8lHjpM6PV6g3qjfD4fTqdzhiuj0WikJEuoIJ4BVq5ciUqlwu12MzAwQGZmJnq9nvT0dCka5Ha7qa6u5vLly1y7dm1Wd5mOjg6qq6tJSUnBarWSk5PD7t27WbZsGUuWLCEvL4/U1NQ7hirr6uqoqamhpaUlJLuhRqMhJyeHiIgIxsfHqaysZHh4eFYiTHfDvEnVq1QqVCrVLYU2MpkMhUIRsgxceHg4hYWFfPjDHyYiIgJASs/DdPxbEAQmJycZGBjgxIkTXLhwYdZDbrW1tZSVlbFr1y7sdjt6vR6LxcKyZcvQ6XQIgoDH40EmkyGTyVCpVDPeX15ezrVr1+jr65tVO0VoNBry8/MxGo0MDg5y+fLlu9aYiG6WSqVCLpfj8/mCUpMyLwgeERHBM888Q2ZmJllZWdLzYux86dKl1NfX3zFDNxu4ITwm/b+I69evc+HCBf7nf/6HysrKkNR9mM1mbDYbME0G8SCuUCjo7++nubmZw4cPo9friYuL4/d+7/dm2F5bWxuyxA5Mu0dmsxmVSoXX62V4ePiuO0d6ejpZWVls27aN6Ohojh07xmuvvXbH6Nv9ImQEVyqV6PV6cnJySEtLIyMjQ/qZTqdj+fLlmEwmzGaz9LxCocBoNPLSSy/xwx/+kKNHj866nSMjI5SXl5OVlUV0dDRarRar1YpKpUKhUCAIAufOnePEiRPU1dUxPj4eki2/paWFs2fPzsiYCoJAVVUVvb29UnQkLy9PcqEAJicn6erq4tq1ayEjuFjGILp1d9p5FQoFVquVP/7jPyY5OZnY2FgWLVpEWFgYgUCA0dFR/u///u+RXOFZJbhMJkOn06FSqTAajcTHx1NSUsKKFSsoKiqSXqdQKIiMjLzt+7VaLWvWrOE3v/nNbJoqweVyceXKFZYsWUJ0dDQGg4G0tDQiIyMxGo2EhYXR29tLR0fHPVelYKKrqwuv14vJZJpB8OPHjzM4OMjo6CiBQICoqCiys7Ol942NjXH9+nVaW1tDFr1QqVQYDAYSEhLuWL5hMBgwm80sXryYF154gejoaHQ6nXRInpiYYHBwkL17985fgut0OlatWkVGRgZZWVls376dxMTEW/zDu8Hr9fL222/T1NQ0i5b+DqOjo1RUVFBRUYFMJkMul5OWlsZTTz3Fpk2b2LRpE88++yzR0dFcv349ZCR3uVy4XK573gePx8Pk5KT0/93d3fzsZz/D6XSGrLZHLpdLO/btDr0qlYpt27axfft2Vq5cSUpKym1fc7fSj/tF0Aku1iqXlJSwcuVKVq1ahV6vx2AwEBkZiVKpZHJyktHRUSl2Pjo6yr59+/D5fCQkJPDkk09KnR2CIOBwOIIaglOr1Wi12ntmSAVBwO/309HRwd69e7ly5Qomk4mEhATy8vLYtGkT77777qwldx4GN54dxMNwV1dX0MtQ7wafz8fExASdnZ1ER0dLz2u1WuLi4sjJyeFLX/oSsbGxUvLsZvj9/vl3yDQajURHR7N8+XI2bdrEypUrSU9PJxAIMDExQXt7Ox6PB4fDQV9fn1S2OTo6yqFDh/D5fOTk5LBu3Tqio6MRBAGv10tXV1fQSBQeHk5cXByJiYn09fXR2dnJ0NDQXd8zMTFBW1sbk5OTXLhwgdjYWCIjI0lNTX2g3SgUMJlMxMTEANO70cDAAH19fSHLHMLvCN7f34/JZJLCqxqNhri4OPLz88nNzb3jvRsbG6O7u5va2tpH3h2DSvDU1FS2bdvGCy+8QFxcHAaDgfHxccbHx2lsbGTfvn0MDAzQ2dlJU1PTbRsE1Gq1lPb3+XyMjY1RXl5Of39/UGzMzMxky5YtPPnkk9TX1/OTn/zkvg+vLpeLX/ziFxQXF2Oz2UhISAhq/2AwsHTpUtavXw9AQ0MDlZWVIXPvRIgEb29vJzExkbi4OF544QXMZjMWiwWLxXLH9wr/vzvq+PHj/M///M8j51qC+ulYrVby8vJISkqitbWV69ev84tf/ILr168zNDTE2NgYfr9fqge/mdyJiYmkp6cTGxuLUqnE6/Xidrtpbm6+Yy3L/UI82X/+858nNjaW4eFh/u7v/u6+vzgqlYr4+Hi+/OUvk5qaOq/cEhEGgwGDwSBFUQ4ePMjhw4fnxBaXy8XevXtJSUkhOzub3Nxc5HL5HTvmBUGgt7eXEydO8IMf/IDGxkYcDscjnxuCSvCenh7Onz+P3W6nvLycixcvUlFRQVdX14yDz51gMpmIiooiIiICuVyOy+Wis7MzKHXhYWFhpKenk5GRgUwmo7Ozk76+vvvy7U0mE/n5+axYsYKMjAz0ej3Dw8MhjaLcC3K5nJiYGKKiojAajQQCARwOR0jrPm7E1NQUV69elaoy7xRN8Xg8tLa20tHRQWNjI8ePH5eqT4Nxb4NK8IaGBvr7+5HL5Zw4ceKB29AsFotU5wEwNDREdXV1UP5Qg8HA0qVLiYuLY2BggKGhIammQxCEGdcQs6cKhQKVSkVKSgp79uxhx44d2Gw2/H4/LpeLjo6OkNXI3AtyuZz09HTi4uIIDw/H6/UyMTERsvqYm+HxeKitrWVwcJDJyUm0Wi0+n0/qaxV38NHRUU6fPs2pU6eoqamhoqIiqHYEleBTU1MMDAzw3e9+96FO7WlpaVJbm8vloqKigtdeey0oJBoZGaGsrIypqSliY2NZtWoVu3fvpqOjg97eXmnsg5jYWb58OUuWLGHZsmWUlpZK8XyA3/zmNxw5ciSkRWD3gkaj4e///u/JyMggEAgwNjZGfX19yP3vu+HAgQO0trbS1tbGL3/5SzweD36/n/Hxcal7KtgI+glJrIl4EFgsFl588UXWrFkjEbyxsZG6ujoaGhqCsoKLtdCVlZVkZmaSmJjIpz71KVwuFyMjI9TU1ADTBLfZbCQlJREVFYXVasVgMCCXy5mYmOD06dMcOHCAS5cuzRtyw/Suo9frpTZA0S0MVez7bujt7eXw4cP8/Oc/p6enB5fLJTVqiKHY2cK8CAGEh4fz3HPPER8fT1hYGH6/n9raWsnlCQZ8Ph/Dw8NcvHgRvV7PypUr2bBhAzC984grnUajkbKWYgPB1NQUExMT9PT0cPDgQc6dOxfyss/7gViwJI6QmA9fQLGk+p133uHYsWOMjo6G9Es3LwiuVColcguCwNjYGPv27Qu6PyYIAt/+9rfp6OjAZDKRl5cnlQPcOLVKhNgM3djYyG9+8xtOnjzJ4cOH58WqeDeIfu58sPMv//Iv53QWy5wTPCMjg+LiYjQaDV6vl+bmZt544w3Ky8tnpbRzdHSUo0eP0tvby6c//WlUKhV6vZ7169dTXV3NwMCAVB3Y2NjIpUuXaGhoYGBggOHh4XlBmntBq9WSk5PD008/TUREBMePH59Te+byns0pwWUyGSkpKSxbtgyZTMbg4CD19fUcPXr0vkN4Dwqfz0d3dzcul4uEhASJ4GLzwuDg4AyCV1ZW0t3dPe+JHQgE6OzsJCIiAq1Wi8ViISEhQcpqflAxpwRXKBQUFBSwZcsWfD4flZWVnDx5kjNnzszqdT0eD0NDQ3z/+9+XnvvXf/3XWb3mbMPn83HgwAHkcjlGo5Hw8PBbato/iJA9yA0IthCRQqFg586d5OXl0d7eTnl5Od3d3Q9d5C48JuJOs2VnREQEer0erVaLXC5ndHRUmhDwkLgoCEIhPD739GbM6QouCAL19fWMjIzQ19dHe3v7vJyK+rhA7OxfwO8wpyt4sPFBX8FnAR+4FXyQ+Sstl3TDvxfsDA4eF1uT7vSDhRV8DvC42MmCEOwC3ueYryv2fWOB4At4X2OB4At4X2OB4At4X2PO4uByuZyMjAwsFgtyuZzKykqpLngBD4+oqCgiIyOJioqisbFxTuYB3g0qlQqtVkt8fDxRUVFoNBp6enpoa2tjfHw8+Be802T82z0I0jR+QNBqtcJ//ud/ClevXhXq6uqEgoKCB1Z0uPkxG3be/JDJZHd8zAc7t2/fLnzjG98Qqqurhd27dwsxMTGP8vseWeHh5ofFYhHy8/OF73znO0JNTY3gdDqFV199VcjMzAzKZx8UhYdgQBAEuru7cbvdWCwWEhMT6ejoCNlg9gdFQkICqamp7Ny5kyeeeAKr1Sr9rK+vj9bWVk6ePElFRQVNTU1z8ndERETwxBNP8OSTT5KYmDhDj2c+oLS0lLVr17J161ZSU1PR6/UArF+/np/+9KfS6zZt2sTw8DC1tbWPnNmeU4I7nU48Hg9arZa8vDyuXr0atAaHYEGpVJKfn09BQQHZ2dkUFxezePHiGQNroqOjpTFvZrMZs9kc8hJVhULBkiVLSE5OxmazoVar0Wg0cz63RRzfFx0dzfbt2yXhMvH++Xw+9Ho9crkcg8FAcnIyu3btYnJykvr6ekkW5mFLEOaU4MPDw0xNTaHValmxYgVvvfXWXJlzWyiVSsLDw6WxbUuXLpVWHTFBFggEMBgMhIeHS02/0dHRnDhxIqSVfAqFgpUrV5Kamio1bc8HiDIqxcXF7Nmzh9jYWKlTSmxXEwUUzGYz69ev59lnn5V88//4j//gzJkzjI+PP1Sf75w3PIgQBZ/mEwoKCvjwhz/MZz7zGcLCwqQO/Btx9epVzGYzixYtAqYbp6empjAYDExMTITs0KxQKCgqKpp39d87d+5k06ZNvPDCC2g0mhkdUwMDA7S2tvL666/T3t6OSqXCYrGgVCqJiIjAaDTyla98hZ///Oe8++67HDp06IGvP6dRlJycHCIjI3G73VRUVMybSji5XM6mTZvYsGEDpaWl0iAdp9NJWVmZFJ0QR0fk5uaydetW8vLypMHtoWwZi4iIICEhgfT0dGlo/3yAOKslLi7ulrkoIyMjnD59mrNnz3L06FEcDgcxMTEzvgByuRyTycS6deuwWCzo9XrOnj37QG7snBBcoVAQFhZGdnY2ZrOZiYkJLl++PC+mRYluSUlJCWvWrCEnJwefzyeNnDt48CAXL16ku7sbh8PB+Pg4TqeTlJQUcnJycLvd0gSvUEGv12O324mPj5dcqLmGOBL75q4iv9/P5OQk169f58yZMxw5ckSaaCCOkBgdHSUsLAytVotKpWLJkiVERUXR0dFBZWXl/Ce42WwmMzOT9evXI5fLqa2t5dixY3M2pOZGREdHU1paygsvvIDNZiMQCNDW1sYPfvAD9u/fT11d3S3v8Xg8Uge7w+Ggs7MzpH+LWq3GZDIRERFxi9LaXEAmk2E2m/n0pz/N7t27pVEgMB1xqqqq4o/+6I8YHByccZ8cDgcnTpzAbrdTXFxMUVERMpkMtVqNUqmksbHxviak3Yg5Ibg4P1ocjywqtc2HMWixsbE8++yzGI1GyQX5h3/4B6qrq+ns7JReJ+rJFBcXs3btWpYsWcL4+DhvvfUWe/funRPbxe1dVEcYHBx8ZAmQh4HNZmPp0qV86lOfIi4uTnq+qamJgwcP8vrrrzM4OHhLAmp8fJz6+nq+973v0d/fT3JyMtHR0TPclgd1++aE4GFhYcTExKBQKKTD5XwgN0wP7U9OTkatVtPW1sbFixc5f/48DodD+kDCwsKIjIwkIyOD9evXk5+fT0xMDA6Hg8bGRmlKVqgQHh5OYmKiRAS/38/Q0BD9/f0hPdfIZDJsNhu5ubkUFRVJK7c4JfjUqVOcPn2aS5cu3XaHE0fiuVwuurq6grILzgnB4+PjJQGlUA5mfxAIgkB1dTWvvfYaAwMDkk8tl8ux2+2sXr2aL37xi6SkpKBWq/H5fNJhKdRITU1l165d0ihnj8dDc3MztbW1dHR0hMwOpVLJxo0b2bVrFytXrpSeHxsbo7q6mn/6p3+io6Pjoc8nD3NonxOC63Q6oqKi7qjpOF/gdrulIf0w7eump6fzta99jeLiYklFrKuri+rqar74xS/OycQrk8lESkqKFF+enJzkyJEjDA8Ph8wGg8GA3W7nz//8z1m0aJEkJlZfX8+ZM2d45ZVX6O7uvi9yx8fHEx0dLUWvpqamGBkZkSYNPwjmhODi9Nb5iBuVm1NTU9m9ezcZGRm4XC5J7TgnJ4fo6GgCgQA1NTVcuXKFM2fO0NraOidN0zfLeE9NTVFVVRXSqFRKSgqlpaUsWrSIiIgIaTdpbm6mpqaGtra2+x4ll5WVJamtyWQy3G43TqeT1tbWx+OQKYo7we+yWfMFHo9Hmvudl5dHZmYmtbW1kgzIpk2bpFHA4+PjHD9+nCNHjnDw4MGgaMo8KMTD+o2YmpqipqZmdqrz7mBDbm4uv//7v09kZCRyuVw6V9XU1FBTU3Pf90Yul7Ny5Uqys7OlkOfk5CSDg4M0NTXN/0OmUqnEZDJht9uRyWQMDAyE1E+8F+rr6/nCF77Avn37sNvtKJVKli1bJt1YcecRT/t79+5leHh4zs4S27ZtY8WKFRiNRmQymaSy5vf7Q5ZoEnMGopvk9XoZGxujsrKSY8eOcfny5fv6PWq1GovFwp49e0hPT5eeFyNCD4OQE1ytVhMZGSndjJ6eHhobG+dFmj42NpaEhAQKCgrQarXSGUGUEofpHae5uZmKigqOHDmC0+mcE3LL5XK0Wi3FxcVkZGRIq3hdXR3nz58PqV2RkZFERERIhV1Op5OGhga+9a1vUVVVdU81OxFms5k1a9ZgsVgkl8vv91NVVcWZM2cej0OmRqMhIiJCkpfr6+ujpaUl1GZIEFUcoqKiWLp0qTQMVKfTSa+ZmprC4/EQCAQk+ZKenh7a29vnbOVWKBTodDpycnJITEyUXL62tjauXr0aUv/bYDCg0+mkRcDhcNDQ0MD+/fsfiJQGg4GsrCx0Op3094yPj1NbW8vFixcfyraQEzwyMnJGOrmpqYny8vJQmyHBZDKRnp7OP//zP5OXl4fJZJJ+JvqRVVVV1NbW4nK52LVrFykpKUxMTPDEE09w9uzZBz74BAOizHleXh6JiYnAtGju0NDQnNd/19fXU1ZW9sArrhh8uDGeX1VVRUVFxQPL4YgIOcF37dpFUVERfr+fy5cvc+3atTkJrYnlpU8++SRr1qwhMzNT8mNFN6Sjo4OGhgb27dtHX18fgUCA8vJyPve5z5GWlsaLL75IVVXVnBBcdFFudJ1Ev3e2h5feC93d3TQ0NDzQezIzM1m7di2f+MQnpHJfv9/PlStXHtr/hhATXCaTSSuOKBs3NDQU8u4XcbxwSUkJ69evZ9myZcC04KvL5aKnp4dLly7R2tpKY2Mj7733nhSRmJiYYNu2bRQUFLBs2TKioqJwOp0hr6MxGo1kZ2dLvqogCPT19dHd3c3AwEBIbbkZBoPhrlqYIhQKBWq1GpvNxurVq1m9erVUdixGqWpqau4p1Hs3hHwFX7JkCXa7HUEQGB8fx+PxhPyAGR0dTUFBAZ///OclPfSRkRFaWlqorKxk7969vPfee7etCmxubuadd97B4/Hw0Y9+lPT0dFwuF21toZ2Rk5CQwGc+8xmpPNbv93Px4sV50RFVXFyMTCZj3759d/1sw8LCsNls7NmzhxdeeGFGUdb4+DidnZ0cP36crq6uh7YlZARXqVSYTCY0Gs0MP2suYDabycjIQK1W43K5aGxs5OWXX6ajo4PR0VHGxsZwu9231MfIZDJUKhVpaWmkpKSgUChQKpUh/1uMRiNms5nw8HDkcjm9vb3U1NTwta997ZHIEEz7rFYrNpttRg0PTJf2RkZGUlpayhNPPEFOTg5JSUmEh4fPSP6dOXOG7373u7S2tj5SfiFkBI+MjGTjxo2YTCaUSiWBQICGhoY5qXZTKBRoNBrkcjl9fX3U1tZSVVWF0+m8Y7ZNoVBIdeLLli3DbrcDzMkXNTo6GrvdTkxMjKQI7XK5GBgYwO12h1wTp7m5mdbWVoaGhqTGhISEBJ555pnbEtxsNrN27VoWL15MfHz8DJ97YmKC1tZWrly5wvXr16Ws8sMiJASXyWTEx8fz3Fol5QgAACAASURBVHPPERkZiUKhYGJiYtZ0eO6FQCAguR49PT3U19fjcrlum1EVs65Go5FFixbxp3/6p+Tn52M2myVtx1C7WHa7nbS0NCl6AtM+uF6vx+fzScmeUOHq1askJiayatUqTCYTBoOB1NRU/uIv/gKXyzVj0dBqtRgMhhnVj6L9ExMTdHR0cOTIES5cuEBvb+/8kvK+E8SxEDk5OWg0Grq7u7ly5QonT56ck/EK4kgCt9vNihUrSE1NRafTsXfvXhobG6V6Eo1Gg9FoJDk5mRdeeIFt27aRlJSEQqFgfHyc9vZ2qqur6enpCfnfAEiqcHa7ndjYWDZv3szhw4c5cuQI3/ve90Jmx9DQEGfPnkUQBL71rW+h1+tRqVQkJyfflqAymWwGuf1+Px0dHZSVlfHKK6/Q2NiI2+0OSo4hJAQPCwvDZDJhNptRKBT09PTw3nvvPfL287AYGhri6tWrvPXWW6xatYr4+Hi2b9+O3W6ns7NTOjBGR0eTmJiI2WwmKytLqmHv6+ujrq6OX//61wwMDIQ82eN2uyWZbrGRV6lUEhYWRiAQCHlER4yIVVRU0NraSmxsLEaj8ZYm45sxOjrKwMAAx48f5/Lly9TV1UkFa8HqDwgJwTUaDWFhYej1eqampujq6uLKlStzVmQ1NjZGW1sbp06dwm63k5yczNKlS0lLS2N4eJj6+noA4uLiSEtLk84MYiKlurqasrIyDhw4wOjoaMibNVwuF4ODg3R2dko7iiisNVeDfkZHR2lqauLSpUskJSVJh0ydTodarUalUjE8PDzjM+/s7KShoYG33nqLCxcuPFI48E4IeZiwqqqK8+fPc/LkyTltdggEArS0tNDc3ExCQgJGo1FqkhUPkDdicHCQ9vZ2Dhw4wN69e2lpaZkzJeGamhqcTieTk5P827/9GwqFgubmZr7//e9z9uxZ6QsaakxOTvLpT3+aiIgIYmJi+NCHPsSaNWvIyMhg8eLF/PjHP2ZgYEDatS9dukRtbe2sRn5CovAgNjgsXryY0dFR+vr66OzsDPoK/iDKCTKZDJPJhM1mIyoqCovFwoc+9CGJ3FlZWcD0alleXs7p06eprq6mv7+f/v7+R9KBD4bCg1i0lp6ejkwmY3Jyks7OTpxOZzBr0h9Ko0epVKJWq7FarZhMJnQ6HQaDgdbW1hmLgqgCF4wy4zspPCxImDCd9g4PD6e0tJTY2FhkMhlZWVlS+ru8vJzy8nJJz36u7JwDPPYiVAsEnwM8LnbyPiD4wgD8BbyvsUDwBbyvsUDwBbyvsSAEG3o8LnbC42Nr0p1+8ECHzAUs4HHDA63gj8tJesHOoGFB6XgB72vMV5fkvrFA8AW8r7FA8AW8rzFvNHrmG1QqFWq1Wqqj0ev16HQ69Ho9g4ODUj9pZ2cnXq9XqkuRy+XI5fJ5OzU31AgLC0Oj0aDT6VCpVJIQ7I3tix6PR1LMeJQO+tthgeB3QEREBDabjeTkZEpLS8nMzCQ5OZm0tDQOHTpEY2Mj3d3d/PjHP2ZwcFAitPhBhqoV735a5uYyUpaQkEBcXBwJCQlERkZitVqJjY2luLiYuLg49Ho9vb29/O///i8nT57kN7/5TVCvv0DwmxATE8O6det47rnnSEhIICoqirCwMKmmGWDNmjUUFRXh8/nw+XycPn2asrIyAPbs2UN2djYvv/zyrNopSvN98pOfJDExkcjIyFte09PTw4ULF3jllVcYHh6esdPMNnQ6HcXFxfzVX/0Vubm5Ug+sqO6h0+mk5nObzcYf/MEfsGLFCkwmE/v37w/aZK6QE9xgMGCz2UhISCA6Ohq9Xk8gEOC9996jvb19TsYPi9DpdNjtdkpKSiQFuLCwMKn30uv14vV6pS0XplV5YboNrqGhAavVKvUbzhaZRMGr3bt3U1hYSFRUFAaDAZ/PJ7WDKRQKoqKi0Gq1OJ1Ourq6uH79OlevXg1Jv6ZGoyE3N5fU1FRp0KrX62ViYoLR0VFGR0cZHx/H7XajVCqJj48nMTGRFStWcPToUcbHx4Ny/0JGcLGtym63U1hYyPr168nOzsZut+Pz+fiXf/kX3n333TkluMViIT09na1bt0qCpWLH+uTkpDTDxWKxoNFo0Gg0bN68GYVCQW9vL83NzWi12llTOhMFmYqKiti8eTPPP/888LshOS6XSxptIYrTFhYWUlhYSFNTE/v27aOnp4eOjo5Z70JSq9VkZmai0+mkxmxxpqM4Tbinpwen04lOp2PLli0YDAZWrFhBeHi4pIL9qAgJwRUKBbGxsaxZs4Z/+qd/Ijo6Go/Hw3//938TExNDTEwMzz33HJcvX57TuR67du1iy5Yt2O12/H4/DQ0NVFRU8OMf/5iWlhbpALR27VqKior48Ic/TEZGhjSGAh5t1O+9YDQa2bNnD3/+538uNWQEAgEuXbrE/v37+d73vieNbHj++efZvn078fHxyOVyUlJSeP755ykqKuLZZ5+VXJbZwuDgIH//93+PIAhkZWUxPDzMN77xDVpbWyXlCUEQpFX6D//wD9m0aRM7d+7kmWee4eTJk5w7d+6R7Zh1gisUClatWkVhYSE7d+5EoVBw6dIlLly4wNtvv43ZbCYqKoro6GiUSiUpKSn4fD66u7tDHonIysoiKysLmUxGe3s7J0+e5I033qCmpobR0VGpmbeyslKaevUXf/EXM35HZ2cnOp0u6O6JTCZDq9WSlZWFyWSSzgOnT5/m2LFjvPPOOzidTsbHx5mYmOBnP/sZfX19LFu2jHXr1mEwGDCZTCxatAidTsfo6OisEjwQCDAyMsKFCxfo7Oykv7+f5ubmW+akiBgfH2dychKlUkleXh4tLS3zn+AqlYqYmBjWrl3LmjVrWLNmDRUVFZw9e5a3336b8vJy9Ho94eHh2Gw24uLiiI2NlSb6h5rgN/ZjdnV1cfXqVU6cOHHL67q7uyVX6tOf/jRer1f60IaGhm5R9Q0G5HI5YWFhLF68GL1ejyAIeDwezp8/z5kzZ6Tpq1NTU0xNTXHmzBncbjejo6Pk5eVJ4TpRKlscTzyb8Pl8VFVVSbvfncgtvlZsYVy0aJE0XvtRMWsEVyqVxMbG8tWvfpXNmzdjNBqpr6/nn//5n6mqqpL8MJfLxfj4OGNjY3zpS18iNzeXtrY2KisrQ+6P6/V6iTxtbW13dTUmJydpbW1lYGCArq4uGhsbJb92Nsij1+uJj49n586dyGQyxsfHaW1t5e23375jk3FFRQUKhYI9e/ZgtVpvkToJBR5mrrfNZguaJPmsfI2VSiUrV67kE5/4BJs3b8br9XLy5Em+9KUv3XZApE6nY+3atSQlJREdHU1cXBxhYWEh/0Cqq6uprq5GEIQZOo83Iz4+nrVr1/Lyyy8TGxvL0qVLeeaZZyR7Z+MAl5KSwvLly5HJZAQCAVpbW/nhD39IS0vLXRUUmpub+dd//Vfa2tqYnJxEoVCwadOmWyZLzRXEw2hxcbF0rhgYGLhvVYh7IegMEuOaBQUFrFmzBrPZzPHjx6VY8cjIyC0EEKMrRqMRlUo1JysNTPvWUVFRJCYmEhMTw6JFi0hLS6Ojo0PqDBfHpmVlZbF27VrCw8ORyWQsX74ci8WCVqsNuoKcQqFg0aJF5ObmAtO7R19fH2fPnr2nVInoBzc2NqLX67HZbKxZs4aOjg46OjpCJlR1M8RxeFFRUZJSdGxsLD6fj9ra2qBNCws6kxQKBUVFRWzfvp2SkhK6u7t59dVXOX369B11G+VyOQaDAYVCQSAQYHx8nKmpqZD74AcOHGB4eJj8/HxSU1NZvnw5zz//PD/4wQ9ITExk6dKl/Mmf/Anx8fEYDAYpcqLX6yX5jejoaOkAGCzodDpWrFhBaWkpgCSpV1FRcc/3ejwe+vr6OHnyJBqNBrvdznPPPUdLSwt1dXU0NzcH1db7gXhgXrJkCQUFBbz00kvEx8ej1WoZGxtj//799/W33Q+CSnC1Wk1UVBSf+9znSElJobOzky9/+ctcunTpjpLSBoOBhIQEtm7dSlRUVDDNeWA4HA6uXLnCd77zHf7xH/+R7OxsFi1axMc//nFUKhUajYbw8PAZI5PFcWM1NTU0NTWxevVqsrKy+MlPfhKUSIoY146MjCQ2NvahfocgCLS3t884UyxfvpyBgQH+67/+65FtvBe0Wi02m42srCxsNhsxMTGsWrWK5ORkbDabFBXq7OzknXfe4fz58/NzBRfn4yUnJ6NUKuns7KSiokLSnbwRCoWC9PR0lixZQk5ODmlpaeh0ujmbFgXTej0xMTEkJSVJhNZoNJjN5hlSIUNDQ/T09FBZWUl9fT1dXV10dXUxPDyMQqEIeqJHTJKJrpvb7X7gbKTX650xaEl0uWYDolTkjh070Ol06HQ6TCYTiYmJREREEBERQXp6OhaLRVIzLisr48qVKxw8eBCHwxG03XtWCG6xWHA6nfT19VFfX48gCNKHo1QqUSgUhIWFsX79erZu3UpBQQE2mw2VSiWpmYUaSqWSRYsWUVBQwObNm2eohokQBIHJyUkaGxs5f/48P/jBD+js7MTtdkvkmY0vqEqlmhGZcTqdQTuEzQZEV+jLX/4yUVFRUh3K3Q61Bw4c4PDhw1y8eDGoOYRZO81FRESQmprKhz70IUktQSaTsWHDBnJycqQZ2y6Xi/7+ft58800+/OEPExYWxsDAQEgHc+r1ejZs2MDzzz9PXl4eqampt4T65HI5AwMDfP3rX2f//v2SNPVsfxlVKhVPPvkkKSkp0nMnT57k5MmTs3rdR4FarSYiIgK73X7fIVMxqxnsBFlQCe52u+nv7+fgwYPk5eURFxfHZz7zGXw+n0QEcdAlwLvvvktlZSXNzc04nU42bNgATEsLBqMO4X6g0WiIiYnh937v98jPz8dms0n13IODg/T19ZGeno5Wq8Xv90tx+1DJdotRKXErB6Tir/kKj8eD0+nk0qVLGI1G3G43ra2tjI2NSQudwWAgPT0du91OREQETzzxBDCd0WxqagraThhUgns8HhwOB4cPH0aj0VBYWMjKlSuB32nSj4+PMzIyIok5nT9/npaWFqxWKw6Hg7CwsKBVkt0LYjIqNzeXkpISzGYzMB2HdTgctLa20tTUhMlkIioqSjr9321VEoueggWRDKKa2uMAj8fD8PAwp0+fxmKxSPKG4vhkmUyGxWKhqKiInJwcsrOzyc7OBqbj9mITSTAQdBfF4/Hw6quvUlFRQX5+PiUlJchkMqampnA4HPz2t7+loaGBtra2GSQWZ0VbLBa2bNnCd7/73VmZFy1CXBn/+q//mo997GMYjUbJv/6///s/3nzzTfr7+6Uy2c2bN5OcnMzGjRs5deoUnZ2dt/0SXrx4MSjSG48zvF4v7e3tfOELX7hr2fDPf/5zkpKS+MpXvsLq1atZsWIFgUCAs2fPzv9y2fr6eknJAaaze+K2PzExMcN4cWU0GAyEhYWFRIZapVLx0Y9+VJJVcTgc/OpXv6KsrIxjx47R19cnuUnf//73mZqaYtu2baxcuZL169cD3FZ9V4yszAbE+hOHw/HIHUNOpzMkg/LvRtLJyUna2tr4yle+wt/8zd9QUFDAypUrWbNmDRcvXqSxsfGRrz9rBHe5XLhcLrq7u+/5WplMhk6nkzKZNysBzAYUCgUrVqwgLi4Or9fLe++9x4kTJ7h8+fItmpf19fVcv36dzMxMcnJyWLZsGf39/bcl+Gy3qgmCMKMw6V6Qy+VoNBoSEhJmiLMODg5K9UDBgCjWJcqf3w/EpJ64KCQnJ5OamkphYSEOhyMoBJ8XXfUKhQKTyURkZCRyuZyqqqpZP2QqlUqKi4uJjo7G4XDw9a9/nXfffZfa2trbvr65uZnLly8jCAIbN25k48aNs2rfzRAFp8R2r/utWBSVhHfu3El+fr70vFjrHiyIIWKxkfhB0djYKMl/79y5k+XLlwfFrnlBcK1WS1FREREREXi9XhwOR8iiBOKq43Q673rN6upqjh49Snt7OyqVCrPZjF6vn/WCJbHxQtwZlEolu3btYufOnff1/szMTF555RUKCwulRpNvf/vbM+TJHxURERE89dRT/OhHP+ITn/gE6enp9/U+uVyO2WzmueeeY/fu3VJAQtT1CQbmRdOxQqHAbDZLyaBQ1KAIgsDo6KjUfpaXlyfJktzug3e73bhcLqampoiIiMBkMpGcnExDQ8OM3cZsNqPVaoOWag4EAtTV1c1wfSIjI+9LCz4tLY1ly5aRl5cn9Ww6HA5OnjxJR0dH0BaRyMhIUlJSKCgoQC6XS4m8pqamW3zwiIgIrFYrarWamJgY7HY769atIysrSyrVqKioCIp7AvOE4DKZjLCwsKBX4d0NgUCA3t5eqWF369atUk9jT0/PLV+ysLAwqVNHlCVPS0ujtbV1BsETEhKwWq1BJXh1dTUDAwMEAgHkcrk0n0Wr1Up9ojcTSaFQsHr1akpKSkhOTkYulzM8PExTUxPnzp3D4XAELdJjtVqJi4sjKSkJu92OwWAgOjqat99++5bXLlq0iJycHCIiIsjPz2fx4sXExcVJZcBut5sDBw5w+fLloNg2Lwg+F/D5fBw7dgyTycSKFSv46Ec/yo4dOxgeHqa1tZXz58/PqPdYu3Yt+fn5REVFMT4+TltbG4cPH76lJmT79u0UFRVx7NixoBBIEASmpqbo7u6mtbWVlJQUoqOjWb16NV/96lf52c9+RkdHBw6HQ3qPOLLhD//wDyksLESpVNLa2sqvfvUrvve970lflmBhaGiItrY2rl+/zpIlSygpKWH9+vX89V//9W1fLxariWMkYDq83Nrayq9//WuOHDkSNAXseUVwMV5+uxU02PD7/Zw6dYr8/Hyys7MJCwsjPDxc0vS0WCwzkg3x8fFYLBbkcjljY2OMjIzgdrtvIbHYdBzMOLjH45G+TJ/97GelHtatW7diMBioqamhqqoKgOTkZJKSksjKyiItLU3yZcvKyrh8+TI9PT1BLy/o7+/nwoULaLVaPvKRj0gRG7Gc+GYEAgGGh4cl4doLFy5QV1dHQ0MDZ8+eDeoZbF4RHKZ7Cnt7e2f9kOn3+6murqampoYlS5Zgt9ulqVQ2mw2bzTbj9aIGvLjNt7e335YoXV1dQe/J9Pl8XL58GafTydatW1Gr1ZjNZpYuXYrZbCYlJUUqpc3LyyMjI4OYmBhUKhVjY2MMDAxw/vx5amtrZ6XBYXR0lOvXrzM5OUlMTAx5eXkkJycTEREhHcTdbjfj4+MEAgHp4GyxWAgEAhw5coSKigpaWlqC5nuLmBcqa2azmT/4gz/gj//4j+nv7+eP/uiPHqoe4WHmbpvNZuLj43nmmWdYvXo1KSkpJCYm3vK6pqYm6uvrOXbsGEePHqWtre2ONe6zYSdM185v27aNT37yk+Tm5pKUdEdhA2D6y3b69Gn+9m//lu7u7oeZbPVQKmtpaWlkZmaya9cuSktLUavVVFRUcOjQIcbGxvB4PBw8eFDqgBLbBB8Fd5oPPq9W8LnoEXS5XLS0tPDTn/6UX//611L98s2YmJhgYmICh8OBw+EIuR48TGf+Tp06RWNjI1FRUVitVjZs2EBCQgIxMTFcv35dSp6cOXOGvr4++vr66O3tDenYtq6uLpxOJ42Njbz22mvA9H0eGhrC7/cTCAQYHR1lcnJSCtPOFuYVwf1+vzTvL1QQrzcXrVsPCr/fT39/P4ODg6hUKoxGIx6Ph4SEBGw2G7W1tQQCAcbGxjh37hwjIyNzUl8/OTkpjf64G0LxOc8bggcCASYnJxkbG2NycnJOmh4eFwQCAWn+yZtvvjnX5sxrzAsfXJTSNhqN+Hw+qYrvQfG4aN88LnbyPlA6nhcreCAQwOl0hmym9gI+OJgXtSgLWMBsYUEINvR4XOyEx8fWBSHYBXwwsSAEOwd4XOxkQQh2Ae9zzFeX5L6xQPAFvK+xQPAFvK8xJ3Fws9lMXFwccXFxdHR00NPT89CFSwt4PKHVajEajRiNRiwWC0aj8ZY2Nb/fz5UrV6ROqofCjSOz7vUAhGA81q1bJ7z66quC2+0W/v3f/10oKioKyu8Nlp0ymeyWR7D+9mDaGYJHxWzYKpfLhaSkJOHJJ58U/uZv/kY4fvy44HA4BEEQBL/fLz1cLpewfft2IS4u7r7v6c2POctkigaIvXwXLlyYK1OkntCcnBzsdjtxcXEkJiaSnJxMYmIie/fupbq6mra2Ntrb2yVNHrEaLiUlhfz8fDQaDRcvXqShoWFej1abS8TFxZGdnc1nP/tZUlNTsdls0pSAm+uPNBoN3/zmN/nWt77Fvn37GBgYeODrzXmq3mw2S5qUc1FgJYrSbtmyhaSkJCwWC2azGavVitVqJSoqik2bNrF48WKpkm90dJSuri7KysqIiYmhoKCADRs2oFarpfmMN7aQLWC63igrK4tly5axdu1a8vLyJKFd+F2p9I15GblcTmJiItnZ2dTV1d1WEOxemBcEj4uLQ6lUhrRmGaZvanp6OiUlJfzjP/4jwC3XFwSBdevWzfhZf38/FRUVjI2NSTJ927dvRxAE6urquHr1alAJLo6cfph6eVE6G6Zb3+aijl3sst+0aROlpaVs27YNuPVeBwIBqYFboVCgUqnQarVkZ2fT09PD6dOnH3hnnHOCZ2ZmSkKqoZyaKpPJiI6O5iMf+Qgf+9jHbvsasfcyPj5+BrmsViulpaVs3LgRhUKBQqGQZqu4XK6gkkipVPL000+Tmpr6wNJ6KpUKu90uyY2/+uqrd2wEnk0kJCSwZ88ePve5z931b2hra+ONN94AkOa0A2RnZyOTyfjVr371wHLvc05wcY5GqLt55HI5ixcvJj4+nvDwcGC6La2lpUU6D4jyhjabDbVajcVi4amnnpJkTMTucJ/Px8jICD/96U+5cOHCHbWIHgaiEkZxcTGLFi0Cbr+di7jxZ6LQk8FgwOFwhFQ9Q6lUYrPZWLp0KXl5eTz99NOSRqco693Z2Ul3dze1tbV0dnbS29tLQ0MDkZGRmEwmieBGoxGr1UpkZOQDj+OYc4LPFRQKBUuWLJFEo0Qdm4sXL3LgwAFgJsHFQT+lpaXo9foZSnAej4eRkRH279/P9evXg97Yq1QqUavVko6nqJZwO4IrFAqUSqUkTyIO+6mpqbmvOZHBgkqlIjU1lZKSEgoLCykqKgKmJ8+63W5qa2upqqqitraWs2fPUl9fL6lWJCUlSfPCYTqkKPYLPKgC3weW4CqVio985COkpaUhCII0pN3lcrF27VoA+vr66OzsJD8/n/z8fJYsWUJ8fPwtv2tiYoLu7m7Ky8uDLl47NTXFN7/5TWkH2bFjh7SD3A4Gg4GYmBjJ7erq6uKtt97i29/+dkimyYoIDw/nmWeeYdeuXZJ6NEyrRF++fJl/+Zd/oaWlZVZHZMMHmOB+v5+amhpiYmKkUNXWrVtntMt5PB6mpqYIDw/HYDBIIxB8Ph/d3d2cOnWKHTt2EBYWJskO1tbW3rMX8UExOTnJ1NQUbrebt956C4VCccch/KKe5sc+9jGmpqZob2/nzTffZHBwMCSqGUqlkvz8fFauXMmuXbuwWq3Sz1wuF8ePH+c//uM/aG1tfWAhrYeyZ9avME/h9/upqKggPj5ekuiLj4+/7bYvl8vxeDx4PB76+/vp7OyktraWQ4cOkZaWRkpKCkajkfT0dHp7e4NO8EAgIM1Xv9fIY3E4EUwTqre3l/r6emnu4mwjLCyMnJwcNmzYIK3cYgNyQ0MDFy5coLKyctbtEPGBJbjX6+W1114jEAggCAK7d+++IwEEQWBkZIShoSFqamr4xS9+wZUrV6irqyM+Pp4tW7awevVqli9fTl1dXdCH1zwIUlNTpTHJXV1dtLS0BP0LdyfI5XKsVislJSU8/fTT0vODg4McOHCAvXv3hnx6wQeW4CJOnTpFU1OTdLC8E3p6eujv76e3t5exsbFbaiPEjGZERMRsmntPrFixgieffBKZTEZ9fb00czsUUCgULF++HJvNJkVzhoaGqKqq4n//93+prq5+4DOKODdFJpM9VKTtA0/woaEh3G73PUN7IyMjjI2NzZBXkclkmEwmKRs3Pj4+p0K2gKSUIcqdhEqtThTALSgomOF3t7e3U19fT0tLCxMTE/eV58jNzZ0xXczpdEpiuw9adPWBJ7g4seph6hwUCgUxMTGYTCb8fj8dHR0h0Re6mz1i+FB0txQKhaQMJ050hd8pHwfrC6nRaLBYLKxevZrY2FhJaqWmpoarV6/e17RYUW6lpKREUl0LBAJ0dXVRU1NDY2PjAyfR5ozg4pZz4wjdxwnh4eGkp6ezfv16rFYrfX19vP766zQ1Nc2JPaLm0I1DQw0GA8uXL6ewsBC73Y7NZpPId+jQIU6cOMHevXuDcv2oqChyc3PJzc2VpCBPnTrFf//3f9/3rO+MjAxeeuklNm/ePCPjee7cOX75y18+VAh2TqsJxf+GhYWxY8cOjh8/HrS50LMJhUJBSkoKf/Znf0ZUVBR+v1/aRmdjeisg1WXYbDa0Wi0Wi2WGVIhSqWT16tUsXbpUei4vL4+0tDQpoylOx62pqaGsrIyrV68GzT6r1Up+fj4qlQqZTIbf76evrw+n03nf4cDw8HCys7OJiopCp9Ph9/tpa2ujtrb2oReOOXVRxK1Uo9GwYsUKKioq5j3BxRqWJUuWsGvXLgwGA319fQwMDOB0OmfF59VoNNKwzaVLl0rJHDE7CL9bwW9URI6Li2NyclLSH+rr66OhoYHTp09TXl4e1N0mMjKSrKwsyRXyer00NTVJ6sb3gsViIT4+nqSkJPR6PSqVCq/XS21tLS0tLQ+dpJoXPrhMJkOlUoVUwuRhIJPJ0Ov1vPjii2zcuBGTyQRMi9ieOXNmVgrFFAoFS5cu5emnn2bDhg2sXLnyrtGEG39WV1fHuXPn+O53vwuAw+GYNZFaIRIz5gAABoBJREFUm83G8uXLpQyrqFx3vyXQf/qnf0ppaemMw6XX6+WNN97g2rVrD50hnhcEf1wQFhbGxo0bWbNmDVlZWcB0lOC9997j3XffnZVpqQqFgoKCAgoLC1m8eDG9vb3SoNKBgQFqampwu92o1WqefvppTCaTpJog+r9icigU5chiSE/8992gVCqJjIzk4x//ODt37iQjI0P6WV1dHWfOnOHEiROPFMdfIPh9QC6XExcXR3JyMuvXryc5ORmDwcDY2BhVVVVUV1fT3Nw8aw0bWq0Wr9fLwMAA5eXleL1eJiYmGBoaorq6mqmpKbRaLSUlJej1emC6Zv3atWt31P0MNm6M3NxOFOtmhIeHY7fbycjIYMuWLaSmpmIymaTwZnt7O2fPnpVmmz8sPvAEv5/kgVarZceOHXzoQx9i3bp16HQ6JicnaW1t5Y033uDixYtBLZG9EYFAgPb2dk6fPs25c+f4z//8z9uOl9br9Xzxi18kMjJSqo6cr1AqlaSnp7Nnzx42bdpEQUHBjM9BPAgfO3bskXfFDyzBlUol27dvZ8mSJaSkpJCbm3vLawYHB+nv7yc7O5vY2FgsFgs6nQ6ZTEZNTQ2f//znqaurm7XICUyXux4+fJgTJ04gk8mYmJi4J3lHR0fZt28f/f39s2bXvaDX69m6dSvl5eUzKgYLCwvZsWMHiYmJFBYW3lY09siRI5w/f56enp5H/qJ+IAkuRiGeeuopkpKSsNlskt7NjTfU5XLhdDpJTExEq9WiVCrx+/1cvnyZM2fOUF9fz8jIyKz3kt7rCyQmSJRKpdTb6nA4QqqUMT4+Tm9vL0lJSZKW5xNPPIHf72diYoLExERMJhOLFy9m2bJlREREEB8fLwl2yWQynE4n1dXVHDlyhJqamqDYP6eJnrlCZGQk+fn5PPvss4SFhUlJp5t9R6PRKLWrCYJAIBDA6/Vy8OBBjh07Nm8ai9VqNQaDAa1WK0WifD5fSN2U4eFh6urqKCwslNL2GzduRKvVolar2bp1K4sWLUKtVt9yr8Vqyc7OTt588032798ftFnxISe4uNqIxJoL2O121q5dK4W0bjwc3YwbfzY5OUlVVRXl5eVcv349dAbfAxaLhaysLOx2O3q9fk6EBGpra3n99dfZvHkzkZGR6HQ6ioqKJP9arGG/+V57PB6am5s5ceIEZWVlvPnm/2vvbFZa18Iw/JSQ1kJAKpEiFhVBvAARZ+LEK3DmpXgNzvQadCB74sBBQIUMagQJSAz4VxIUrAUtjTWJlUbPYNPg4VQ5nONO27ieSQdd0I/ydtH15V3v9+tbfeKJPyNXFIWpqSnm5+eRJIm3tzeCIMCyrER8HNlsltHRUWZmZrp+4V3CjuLXbDbLxMQEq6urrKysxP/He81H20PHA5L08CnP87i4uGB7ezt2MEqSRDabRZblv9kxOtOba7UalmWxubnJzs4OR0dHXYfr/h8S38FzuRyKolAoFAjDkGazieu62LadiMDz+TyqqjI5OfmlOMMwjN14mUyGfD5PLpejWCyyvLyMJElsbW3RarX6qmPRbrcJgoDn5+dEw4fCMKRaraJpGqVSiVKpxMjISNe17+/vVKtVHMfBtm12d3d5eHj47/FsX5C4wIMg4Pj4mI2NDRYXF9E0DV3XE0u2GhsbY3p6mtnZ2S/XGYbB+fk5l5eXZDIZlpaWmJubY3x8nOHhYQqFQnyrvp+o1+u4rotlWYn/8KIowjRNZFnGcRzW1ta6rmu1Wqyvr3N4ePjH+/SJC/zl5QXbtrm7u2Nvb4/Hx8c/1kPuRrPZpFKpUC6XWVhYiDNNXl9f2d/fx7IsTNPk9vYWz/PiDka5XEZVVRRFoVgsxjtOP+3e8PuitOM4PavL931OTk6oVCrout51TWeUdxKH9MQFHkURnufheR6u6yb98fi+z9XVFZqm0Wg04nNAu93m4OCAs7MzTNPE932iKIqFUqvVkGU5zvvopDD1g8CHhoZQVRX4/QTz5uamZ7V0Yirq9XrPrMMf+XF98Eajga7rn+4un/Hxdky/RT13rKqSJOE4zr/2X/8EBu+mgeAfdDpR19fXGIZBuVzudUl9w4/bwdPI/f09hmHw9PTE6elpInkjg0JfjPL+LgZletmg1MkPHOU9KMNARZ3fw6DUOvnZG2IQrCDViEOmINUIgQtSjRC4INUIgQtSjRC4INUIgQtSjRC4INUIgQtSjRC4INX8BZY1nN9ndRVEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -245,11 +267,11 @@ "scrolled": true, "id": "8zLMNX5Xr0cW", "colab_type": "code", + "outputId": "5a0cb8db-18a9-4c8a-dfd7-f5fbf6158e85", "colab": { "base_uri": "https://localhost:8080/", "height": 122 - }, - "outputId": "664bd1a7-7884-45ce-95cc-f4ceb9497b75" + } }, "source": [ "class DigitGAN(dc.models.WGAN):\n", @@ -285,8 +307,8 @@ "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "If using Keras pass *_constraint arguments to layers.\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n" + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n" ], "name": "stdout" } @@ -307,11 +329,11 @@ "metadata": { "id": "lP7x5ZT1r0cc", "colab_type": "code", + "outputId": "78c9ac0a-fe3f-402e-af5c-8eb95beee60b", "colab": { "base_uri": "https://localhost:8080/", "height": 513 - }, - "outputId": "0cf8ecdf-d144-42c7-f73e-9e1763ecb467" + } }, "source": [ "def iterbatches(epochs):\n", @@ -326,34 +348,34 @@ { "output_type": "stream", "text": [ - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:191: The name tf.train.exponential_decay is deprecated. Please use tf.compat.v1.train.exponential_decay instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:191: The name tf.train.exponential_decay is deprecated. Please use tf.compat.v1.train.exponential_decay instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/gan.py:314: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/gan.py:314: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", "\n", - "WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/deepchem/models/gan.py:315: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/gan.py:315: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.\n", "\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n", - "Ending global_step 4999: generator average loss 0.542297, discriminator average loss 0.536499\n", - "Ending global_step 9999: generator average loss 0.552842, discriminator average loss 0.547032\n", - "Ending global_step 14999: generator average loss 0.571728, discriminator average loss 0.565844\n", - "Ending global_step 19999: generator average loss 0.585051, discriminator average loss 0.579021\n", - "Ending global_step 24999: generator average loss 0.553326, discriminator average loss 0.54777\n", - "Ending global_step 29999: generator average loss 0.5744, discriminator average loss 0.5684\n", - "Ending global_step 34999: generator average loss 0.555237, discriminator average loss 0.54947\n", - "Ending global_step 39999: generator average loss 0.557185, discriminator average loss 0.551523\n", - "Ending global_step 44999: generator average loss 0.544566, discriminator average loss 0.538901\n", - "Ending global_step 49999: generator average loss 0.543208, discriminator average loss 0.537636\n", - "Ending global_step 54999: generator average loss 0.539997, discriminator average loss 0.534515\n", - "TIMING: model fitting took 555.919 s\n" + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4\n", + "Ending global_step 4999: generator average loss 0.494329, discriminator average loss 0.4893\n", + "Ending global_step 9999: generator average loss 0.572398, discriminator average loss 0.566265\n", + "Ending global_step 14999: generator average loss 0.578495, discriminator average loss 0.57274\n", + "Ending global_step 19999: generator average loss 0.592253, discriminator average loss 0.586059\n", + "Ending global_step 24999: generator average loss 0.614171, discriminator average loss 0.607895\n", + "Ending global_step 29999: generator average loss 0.580813, discriminator average loss 0.574856\n", + "Ending global_step 34999: generator average loss 0.550079, discriminator average loss 0.544504\n", + "Ending global_step 39999: generator average loss 0.533705, discriminator average loss 0.528218\n", + "Ending global_step 44999: generator average loss 0.51776, discriminator average loss 0.512585\n", + "Ending global_step 49999: generator average loss 0.517917, discriminator average loss 0.512593\n", + "Ending global_step 54999: generator average loss 0.507587, discriminator average loss 0.502417\n", + "TIMING: model fitting took 390.000 s\n" ], "name": "stdout" } @@ -374,11 +396,11 @@ "metadata": { "id": "fSQtVhSer0ck", "colab_type": "code", + "outputId": "43a24f21-715f-40c7-971a-488c26ddca7d", "colab": { "base_uri": "https://localhost:8080/", "height": 197 - }, - "outputId": "b03f0782-a009-4b79-c32d-83306f102678" + } }, "source": [ "plot_digits(gan.predict_gan_generator(batch_size=16))" @@ -388,7 +410,7 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAAC0CAYAAAAn8ea8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOxdaXBc1ZX+Xr/X+6qWWktr31dLMvIu\ny9jyGmMw4ABmCAFCyASSIhBIMTBJhgmBGmZIAilmEhLIUAkONrEzGMLi3cay5UWSZcmytViLJVlS\nS63e9+3ND+feSF7AkrpbMuir6iqw2/1Ovz7v3HPPPef7GJ7nMYtZfFkhmG4DZjGLSGLWwWfxpcas\ng8/iS41ZB5/FlxqzDj6LLzW4ibyZYZgZXXLheZ4BZu0kYBiGXG+yH2HkeV7398+6Ie7p5ZiQg8/i\nxoFAIIBUKgXP8/B4PAiFQpP5mAvhtivamHXwLyEYhoFUKoVcLgfP8wgEAvD7/VOJ5DcsZh38Swix\nWIw5c+ZApVLB6/XiwoULMBgM8Pl8CAaD021eVDHr4F8yMAwDkUiExMREZGZmQiKRoLS0FO+//z6M\nRiPcbvd0mxhVTJuDMwyDhIQE2O12OJ3O6TLjS4fMzExkZWWhuLgYmZmZkEql8Hg82L17NwSCr17R\nbFocnESZm2++GY2Njejo6JjsJmgWYyAQCLBp0yZs2rQJSqUSSqUSoVAIo6OjEIvF023etGBaHDw7\nOxuVlZX4/ve/j7fffhtutxsXL15EKBSaMRshjuPA8/wNk7OyLIvy8nKUlJQgJyeH2u10OmG322G1\nWr9y6QkwTQ6enp6O6upqpKeno7KyEizL4uLFizh16hQMBsO0pSwMwyAlJQVr1qxBKBTC0NAQOjo6\n0NXVNeNXGJZlMX/+fOj1erAsC4vFArFYTCsowWBwRn4HUvFZsmQJkpKSIJPJ6MPJ8zxcLhcaGhom\nvcpH3cGFQiGys7OxZs0aqNVqrFixAmVlZRgZGcFvfvMb1NXVoaenJ+qRk+M4yGQyzJ07Fy+++CI8\nHg9OnjyJjz76CKOjo7QC4ff7AVy6+TPJYViWRWVlJRISEuDxeDAwMIC4uDgEAoGp1MHDBoFAAI7j\nIBAIwLIs3Q9wHAedToeHHnoIixYtQnx8PHw+H3ieB8/zMBqN+OUvf4mRkRHYbDYEg8EJrfLMhN4c\nhtOsr3/969i4cSPuvfdehEIheL1e+P1+sCyL3t5e1NfX47e//S0aGxvh8Xgm9NmTOSEUCARQqVRY\ntWoVfvCDH6C0tBRKpZKmJ16vF4ODg+jq6kJ7ezt27NgBjuMwOjqKxsbGCX77ydv5RZBIJPjpT3+K\n1NRUiMViNDc3Y+7cuXC73dizZw927NgBu90+0Y+t53l+3lRtlcvlSEpKwooVK1BcXIzS0lJqp0gk\ngkwmg0QiAcuyYBgGPM/TU9hQKASXy4Wenh489dRTqK+vh8lkuuIa036SyXEcVCoVNm7ciPnz50Mg\nENCI6PV6wbIs1Go1SkpK8PDDD+O1115DX18frFZrROxhGAY6nQ7Lly/HvHnzUF5ejvz8fCgUCjAM\nA4ZhaNRJTk6GQqFAamoq0tLSIBAIYDab0dTUhLfeegsWiyUiNk4EgUAAJ0+exPDwMHQ6HRITE6FS\nqeDz+WAymaIawRmGgVwux/z585GdnQ29Xo/s7GykpaUhLi4OcXFxUCgU4DiOOrLH44HBYEBdXR0G\nBwepP6xduxYKhQLx8fFYt24duru7r+rg10LUHFyhUKCoqAhLly5FamoqeJ6H2+2mS49MJoNcLkdC\nQgJWr16NgwcPIhAIwG63R+THEQgEyMvLw7p167B27Vro9fqrvo/kiGKxGDqdDvn5+RAIBLDb7Sgp\nKcHx48fR2toKo9EYdhsnglAohJaWFtjtdmRmZmL16tXQaDRwuVxgWTYqNjAMg9jYWMhkMsTFxWH1\n6tWYO3cu0tPTkZWVBY7j6PvGnrDa7XYMDQ2hra0NH3zwATo6OsBxHBITE5GXl0fLnaWlpVCpVBOy\nKWoOPnfuXLz33nuIiYmBQCBAIBBAe3s7PvjgA5w5cwYLFixARUUF9Ho9EhIS8OSTT2L79u347//+\n78ksrV8IsqSXlJQgKSnpmu8jvRwejweBQABCoRByuRxKpRKlpaX44IMP8MYbb+DZZ58Nu40TQSgU\nQkdHB4xGIywWC26//XYkJCTQKFhTUxPRzTuJ2k899RTKysqQlZWFjIwMCAQCuiKS1IPnefh8PhgM\nBgwMDKChoQFbtmxBW1sbzGYz/TyxWIykpCRs3rwZpaWlcLvdEw52UXHwRYsWoaqqCmq1mka/wcFB\n/OlPf0JzczOMRiNiYmKQmZlJo45KpYJcLo/Y4UQwGERjYyO0Wi00Gg1YlkUoFALDMGBZFj6fD3v2\n7MGf/vQnWCwWurlhGAYKhQLFxcX41re+Bb1ejzvuuAMpKSl44oknYLVaEQgEImLzF4HnebAsC6VS\nieLiYmi1WjidTuTk5EAoFEbsusXFxVi2bBluvfVWFBQUQKlUQiKRgOM4BAIBulIfPXoUXV1d6Orq\ngtFohMvlgsfjgc1mw+Dg4LgHkET45uZmrF69mm5OJ4qoOPi8efMwb948CIVC+vRarVYYDAaYzWY4\nHA5YLBa6e2YYhu64I1VNCQaDqKurg1gshtlshkqlgkgkgkAgQCgUQn9/P3bt2oU9e/bAZrON+7cS\niQQDAwNISUmhqcDKlSuxevVqHDt2DD09PRGxeSJQq9UQiUQIhUJISEig6UE4wbIsZDIZKioqsGzZ\nMqxYsQIikQiBQABOpxNNTU2w2Wyw2+0wGAw4duwYOjs7aR5Ngsa1Ch0CgQAZGRlQqVTgeR5er3fm\nRXCBQIBbb70Vq1evpn8WCATg8/mQlpaGgYEBWCwW+P1+CIVCyGQyKJVKmM1meL1euFyuiNjl9/vx\n3nvv4cCBA4iPj0deXh4yMjLAcRyMRiN27twJq9V61QfM4/GgoaEBp06dwn/913+hsrIS5eXl+MMf\n/oAnn3wSv/vd76btwMrn88Hr9dLri8Vi6PX6iKyEUqkU6enpuO+++1BQUECDg9VqRVtbG5588kn0\n9PTAZrMhEAh8rjNfDoZhIJPJ8NxzzyElJQWBQABGoxE+n29CNkbUwWNjY/HYY48hKyuL/lkwGEQg\nEEAoFIJEIkFMTAwCgQCKiorojlsmk6Gvrw8ulyviu3+TyURXkKysLIRCIRw4cAB2u/0LVw+e5/HK\nK69gaGgIubm5UKvVyM/Px/z583HixImI2k2WbOI4Y20KBoNwOp2QyWQQCAQRe9icTifa29vx7W9/\nG0qlEjKZDCzLwm63w2azYWRkhLbpTrAcjTlz5mDlypXQ6/WQSCTo6enBv//7v094Mx9RB5dKpais\nrIRarab5rdvthtlsRm9vL91USCQSFBUVQafTQS6Xg+M4CIXCqOz+Sa3bYrGgt7eXHi5cbx49PDyM\nzs5OnD59GosXL0ZqaiqKi4tx8uTJiDkWuTdksz4WPp8PdrsdfX19UCqVUCgUNPUKN0i6efHiRXAc\nB5FIBIZh4PF46IHYREGqWwsXLkR1dTVEIhHq6upw+PBhDA0NTThljWh7mUgkQl5eHgDAZrPBYrFg\ncHAQnZ2daG5uxtGjRzEwMED7KOLi4iAWiyEQCOjuOxoghwktLS04c+YMnE7ndTtnKBRCX18fampq\n4PF4kJGRgXnz5kEul0fsAZVIJJBKpdShxoI8rK2trXA6nXSyJ5KdhKFQCD6fDy6XC3a7fVLOzTAM\nhEIhFAoFli5dijVr1mDVqlXgeR4ffvghXn/99UntxyIawXt6elBRUQGtVguGYeiX9/l88Pl88Pv9\nEIvFkEql9BQLuBQZXnvtNRw9ejSS5o0Didxkg3v50v95cLlcGBkZAc/zyMnJQWxsLAQCAV577TW0\ntbWFPZKTE0C/33+Fg4/t31iyZEnE8u/LMdVglJCQgLKyMnzrW9/CkiVLoNFoAAC7d+/GqVOn0N/f\nP6nPjaiDkw2Hx+MBwzDw+Xy0Y5D86GQnrdFoxlVZWlpa0NfXF0nzrkB8fDzS09NpudLr9cJsNmPr\n1q1wu93XjCDx8fEoKyuDRCKBQCCARqNBWVkZ1Go1rfuGE06nEx6P55oNVKFQCA6H4wp7I2HL2M8m\npdaJQigUYvPmzaisrERFRQViY2PBcRzcbjfefvtttLS0TNruiFdRQqHQ57ZpsiwLkUgEpVIJlmXh\ncrnQ39+PCxcuTOhINhzIzs7GvHnzUFVVhaSkJNq01NzcjL6+PphMpiv6Y8RiMRITE1FcXExTBp7n\nERcXF7HaM7HhWj86z/Pw+/3jnG2mRnGRSISUlBSsXbsWlZWVdI7UYrGgu7sbe/fundIB1bSPrMXF\nxSE9PR1CoRAMw+DMmTN4+umnYTAYom7LN77xDaxevRoqlYr+WHPmzMHy5cvxm9/8Btu3bx+XNjEM\ng9zcXMyZMwdz5syhObff76c14EhUgb4ompGBkrFOHelee5KHTwQcx0Gv1+MXv/gF5s6dC7lcDuDS\nCvXOO+/g+eefn/Lp67Q6OMMwqK6uxu233w6RSASe52Gz2dDS0jLhmzVVO+RyOVQqFWQy2bhOtkAg\nAJPJBJVKhZycHPT29sJsNtO+i8ceewzz5s2jBynBYBDDw8P4+c9/ju7u7qh9h8sxU/u/CdRqNR58\n8EFs2LABpaWl0Gg0sNlsOHv2LH75y1/izJkzcDgcU77OtDq4XC5HdnY2SkpKIBAIYLVaYTKZot6d\nJ5FIMG/ePGi1WnAch1AohJGREQwPD+PixYswGo2wWq1ITk7GihUrYLVaIRAIEBMTg4ULFyIlJQXA\npcjd3d2NkydPoqmpadocjLQAj51KmimTUmR1qaqqQnV1NSorKyGRSBAIBDA4OIhdu3bhwIEDYUtP\np83BWZZFSkoKkpOTodPpwPM8Ojs70dXVFXVbYmNj8eyzzyIzM5NucmtqavDpp59i586dCAQCWLt2\nLVasWIEf/vCHtM2TVFwA0MGCLVu24C9/+cu0Rk+RSIT8/HzI5XLacz9THJzjOGi1WvzqV7+CXq+n\n5EQ2mw319fX42c9+Ft7rhfXTrhNCoRAajQbf/e53MW/ePMhkMgDAn/70J+zevTvq9kgkEixevBgS\niQTNzc145ZVXUFNTA5PJRHNAg8GAoaEhiEQimt+SDSXJP19//XXs2rULnZ2dUf8Ol3+f8vJyKBQK\ndHd349133w3LqjjVKoxEIsG9996Lf/3Xf0VqaipdYXw+H37wgx9g7969U7bxckTVwRmGQXJyMnJy\nclBWVoabbroJOp0ODMMgEAigr68PAwMD0TSJlrdkMhm6urrQ0NCAuro6DAwM0H2AUCiETqdDamoq\nzW0vH0j2er04ceIE+vv7J32KFw5wHAepVIrExEQIhUJYLBbU1dXB6/VO+bOn4twMw+Dee+/Fhg0b\naOtGKBSCyWTCli1bcPLkyYgUFqI60SOVSjF37lysWbMGmzZtglQqBcdx8Pv9MJlMdPghmiAODgBn\nz55FY2MjDAYDeJ4Hx3FgWRYajQZFRUUoLy9HIBCgkcftdtPqj8fjQWNj47QPPkgkEqjVasTFxdHh\n46amprA4+GTBcRyUSiWeeeYZ5OTk0E086WV5+umnI9diTA5drucFgJ/MSywW80uXLuUPHjzIGwwG\n3ul08sFgkPf7/XxHRwe/bds2XqVS8SzLTurzyWsydopEIr6srIwPhUK8x+Phh4eH+ZMnT/K33XYb\nv2HDBv7xxx/ne3t7ebvdzvt8Pt7r9fI+n4/3eDy83W7nrVYrbzKZ+M7OTl6pVEbMzut9lZeX848/\n/jjv9/t5l8vF79y5k+c4brKfVzdVW0UiEb9u3TreYDDwgUCAJwgEAvwTTzzBy+XysHzva/lsRCO4\nQCCAUqnEP/3TP6GqqgoFBQV0d096rt9//33s2rULdrt9WjZCwWCQphoikQhqtRrZ2dl49NFHwfM8\n1Go1YmNjaaT2er10lpQ08vf396O1tTWipU0S9UhL6tXulUqlQlVVFW677TYwDINPPvkEu3fvnjZu\nF4FAgAcffBCrVq2CVqsFy7Lw+/2w2Wx44YUXpnyIcz2IiIOTXl6FQoGMjAzccccdWLBgAWVaIpuy\nU6dOYc+ePRHZXFwvSK07EAiAZVkIhULExMRg3bp1AP4xWQJcKgMajUbY7Xa4XC5YLBb09PSgra0N\njY2NEVtmyQA0y7JQKBSUwmJs2wPpwluwYAEWLFiAQCCAzz77DDU1NdNWQSHnHCtWrKCTXCaTCZ2d\nnfj9738fsV7/sYiIg5M6Z2VlJe68804kJyfTU6pQKASn04mLFy/igQceiMi85UQwdj5QpVJBLBZf\nQXNGnMlkMuG9997DyZMn0dPTg+7u7nHN/JG0USwWIyYmBlVVVbBYLHA4HHA4HHRWVCwWY+vWrdDp\ndGBZFoODg6ivr0dLS0vE7Loeu51OJxwOB2QyGXbv3o33338fW7ZsidpDF1YHJxs20vbq8XjQ0tIC\nk8kEqVQKAOjv70d9fT327dsXlSf4ejA4OIh7770XQqGQRkpSErs8gg8NDcFms8HtdtMGrGj8WGS6\nyev1YsGCBZDJZDCbzXC73dBoNEhJSYFCocCZM2dw5swZ/PnPf8aZM2cibtfnged52n48ODiI/fv3\n0577aCHsEZzUhUdHR9HZ2Qmn0wmtVkvnAwcGBtDY2Ija2toZc/jgdrtRU1ND/3/sFPhMsTEYDMLj\n8WBwcBAJCQlQKpVwOBzw+/10dWxoaMDp06fR0NCAmpqaaedV5HkeLS0ttHmuqalpwmROU8WEma2u\np9hPIjlpnxy7q2UYJmKNP5FgjIoEwmmnRCJBbGwsEhIS4PP5MDAwEM4uzLAwW0UD12K2ioiDj3l/\nVCPgV9HBxwYTkk6FsU3ghnfwiJYJZ8ry/mUGcerp4mKZ6ZhQFzzJTWcxixsFE4rgPM8beZ6fqdJy\n6WP+24iZK4F3o9gJ3Di2pl/rL6JOnxxJfBVz8AjjhheC/eqpEs1iIpipEfu6Mevgs/hSY9bBZ/Gl\nRtQnesj0DqFMm8UsLgep1jEMM+XT2Kg7+Ny5c6lMSFNTE+2nmMUsWJaFXC5HQUEBbe04fvz41Jw8\nGgMP5CUQCPgdO3bwHR0d/PDwMH///ffz2dnZYWv2j+QgQThfN4qdCMPAw0ReKpWKr6io4A8cOMA3\nNzfzR44c4WUy2YTu6eWvqObgPH9JgYC0fr7wwgtYvHhxNE2YxQyFSCSCXq/H+vXrkZWVRSn0CCXz\nZBHVFIXneXz88ccIhUJYv349YmJi6BeY7s63iUIulyMlJQWJiYkYHBxEe3v7tNgxlrCUgAxGCIVC\nBAIBWK3WGds2wbIsdDodysrKUFBQgJKSEuoTDMMgPj4eXq8XDodjUt8h6jn4m2++iVAohCVLllCa\nZIlEMm3qxhMFoY1ITk7GsmXLMG/ePNTU1ETdwQmBjkQiGdfaKxAIaDSUy+XweDzo7u6mQxvBYHDG\n9OFzHEf1jjZv3oz8/HzKUenxeOB0OpGeng6XywW/3z+pVtuoO3goFMKxY8fw8ssv45lnnkFxcTGW\nLFmCPXv2RNuUCUOj0eD+++/HLbfcgpycHOh0OjidTgwPD0fdlvT0dNx999347ne/C5VKhWAwSFkA\nyIgbmd8kL6PRiI6ODmzatGlGbOxXrlyJ5cuX42tf+xqAS+T9Q0ND6O/vh8ViwfDwMNatW4dFixah\nr68Pb7311oSj+LQQ/wwMDODIkSOwWq2YM2cOeJ5Hc3MzTCZTVDkJrxccx6G4uBhz5szB1772NWRm\nZkKpVNLpH7FYDIVCERYuvetBcXExFixYgDvvvBOJiYkQiUQIBoNU0sTlcuHs2bNQq9WU65wwiAGI\nmm7mtcCyLObOnYulS5di4cKFEIlEGB0dhcPhgNPphMvlQjAYhEqlQlxcHOx2+6TZcafFwc1mM1pb\nW9He3o6srCwsXboUc+fORX19PUZHR2dEPp6amkrpkEUiEcrLy1FWVoa4uDjYbDZ4vV7KaS6VShEX\nFzchZYipoLS0FDfffDMWLFhAOVkcDgctuVosFtTW1kKn01HnX7lyJTQaDZ1uj3avPvAP7UuNRoMl\nS5agvLwcGRkZsNlsGB4epnm2z+eDVCqlo3hT4YmftmYrsoF48cUX8c1vfhM8z+OBBx7Avn37MDIy\nMqnPDEcTE+Eb3L17NwoLC6FUKuFyuXD06FGcOHECf/vb3+B2u5GWloa7774bX/va19DS0oKdO3fi\nzTffvC5Wq6nYKRKJ8OGHH2LlypV0YurMmTPYt28fXn755SvkGMmGc9u2bSgqKoJYLEZRURHMZvP1\nBJKwDjyIxWLMnTsXq1evxv333w+WZeH1etHZ2YmDBw/C4/GgqKgIOTk50Gq1tAjx2muvYdu2bZ8r\nzzgtAw+fB57nYTabYTAYYDAYoNfr8fDDDyMlJQWvvPLKtNgkEAhw00034YUXXkBpaSnkcjn8fj+2\nbt2K/fv349SpUzAajVRQq6OjA+vWrRsn8R1JxMXF4amnnkJubi7Nr99++23U1NTgyJEjMJlM4yb8\nyXys3+/H8ePH0dbWBqvVCqfTGXVyUJZl8cMf/hDl5eXIzc2FUqnEyMgIRkdH4XQ6kZiYCIVCgcrK\nSsTFxVH+x9bWVvT09Eya1m1a6ZN9Ph/OnDmDmpoabNq0CcXFxbh48eK02ZOXl4fFixfT6NjX14fm\n5mYcPHgQp06dGhdBeJ6nhEAulwtDQ0MRX/JlMhlWrFgBrVZLJ3lqampQW1t7zSoOoU0bGBjAhQsX\nKHdiNNMTrVaLOXPmoLq6GpmZmYiJiaH37MKFCwgGg9BqtUhMTERKSgpkMhl4/pLWUE1NDXp6eia9\nKZ52hYd3330XJ0+exOrVqxETEwOdTkc3RtGEQCDAAw88gNWrV4PjOASDQXz88cd49tlnYbVar3h/\nfHw87rzzTkrVcL3pyVQgEolQXFwMmUxGpWEOHz78uWy2crkc+fn5MJvNuHDhAk6fPh3VeysQCFBS\nUoLXX3+datf7fD6YTCbKo56Tk4NFixYhMzMTCoUCAoGACnv9/Oc/nxJ3zozoJuzv78eGDRtw+vRp\nzJ8/H5988gn0en3Urp+QkIDf/OY3uOuuu1BSUgKGYdDe3o4LFy5c9eZqNBro9Xqkp6fDZrPBaDTC\nZDJFJSoSPvJQKASPx/O51xQKhcjOzsa3v/1ttLS04Ny5c1GlbeA4Dvfffz8efvhhpKeng2VZOBwO\n9PX1Yc+ePWhra4PH46Eq0wkJCWBZFk6nEzt27MDmzZunvHGfEQ7u8/lw7tw5OBwOKJVKlJaWIiYm\nBiKRKCrXF4vFqKioGFd12Ldv31VVGliWxdq1a7F27VoIhULs3bsXjY2NUclpyfQ8qYCQFePyOVmG\nYSCVSpGbm4u4uDg0NDRgZGQkalUe4NLKsXr1aixduhRFRUX0vhqNRrS2tqK+vp6y+MbExECtVkMq\nlYJhGBiNRvT29uL8+fM3Xjfh1UDkBolevU6nQ3JyMpURiTQ4jqOpESHj/PDDD9HU1ESdh1RXVCoV\nHnzwQSxbtgzBYBBbtmxBY2NjxG0k7aNjHTwYDEIikUAsFlMVB6I4rNPpMH/+fGpjtMuvarUaDzzw\nAMrLyxEfH0+JSwcGBlBfX49Tp05BLpcjLS0NMTExkMvllDKvq6sLfX19N75Gz+Xwer3wer2QyWTY\nunUr3njjDTz77LMRv+6FCxcwb948vPzyy1i8eDFUKhVWr14NuVyOo0ePIhgMUonuH//4x9Dr9fB6\nvWhvb0dbW9uky5oTAamI+Hw+WmFQKBR44okncOLECdTW1sJsNmP58uVYtGgRqqqqqJo0EamNFkgw\niImJocrVJIgRJl6FQoG5c+fipptuQl5eHpUP9Hq9eOaZZ3Du3Lmw2DKjHNxiscBisUAmk0GlUlE+\nw0gjGAzCZDJRKWmlUolVq1YhPz8fK1eupBWThIQEpKSkQCQS4cyZM3j55ZcxOjoaNedxOBz46KOP\nsHTpUsr/uHDhQmi1WqSmpsLr9WLu3LnIz8+HXq/HO++8gxMnTkxLoxXpMZJIJJQ22WQyweFwgOM4\n5ObmUgdXKBSUrL+xsREjIyNh2yvMKAf3eDz0i7EsGxXxUoJgMAipVAqlUgmZTIbS0lLk5+dTe6RS\nKY1GdrsdXV1d2L59e1TryW63G0eOHEFJSQl0Oh3EYjGys7NpQOB5Hnl5eXSD3t7eHrZIOFGMFb8K\nhUJ0M+52uyGRSJCdnY2CggJkZ2fT1GR0dBSfffZZWPcKM8rB1Wo11Gr1tF2f9JaQXg2xWEyrFmMf\nuCNHjuDo0aNRPyzx+Xzo6uqC2+2mDVWE69Hj8WB0dBRJSUm0a9DpdE5LUxXP83A4HNi/fz9VsT5/\n/jy6urpgtVoRHx+PlStXIisrCwqFAsClh/fs2bN46aWXwlrGnFEOTrreAEzLsmq322Gz2agord/v\nh9/vpyN2gUAARqMRf/7zn3Ho0KGo2+f1etHY2EhLlzzPo7e3F8eOHcPBgweRnJwMvV4PiUSCI0eO\nROXw6Vqw2+3YunUr9u7dS0t/Ho+Hqn48+OCDkMvlYFkWPp8Pr776Kvbt2xf2jfCMcnCTyQSz2Qyd\nTjfO2aMFUg3RarUALtWRJRIJFixYAJ6/pOW4a9cuNDQ0oLe3N6q2Af9QUfZ6vQgEAvB6vTh37hzO\nnTuH8+fPQy6Xw2g0guM4HDx4MJwssxOG3+9HT0/PuNNfhmEgkUgQHx8PmUwGoVAIj8eDpqYmHD58\nGI2NjWF/IGeUg7e2tiItLQ15eXnw+/1R7yp89dVX6dIvFouRkpKC0tJSFBUVgWVZdHR04OGHH562\nbkeev6TsRoYBLBYLPvnkE3R1dcHj8dAy3NDQEN57772oc3F/EcjIolQqpRtLg8GA//iP/0BDQ0NE\nFK5nlIPn5eUhLy8PAKbFwclUDMlhSTOYRCKBx+OBy+WaEfrvx44dg0wmw7x587Bx40Yqo5KUlIRD\nhw6htrYWbrd7xo2pEc2e73//+9BoNAAuVYZqamoiJmUzoxxcpVJBoVCA53kcOnQIZ8+enTZbSLQh\nI2EGgwGdnZ0zwmmOHTsGuZyFuCEAACAASURBVFyOBQsWIDc3l1YrvF4vTCYTzp8/PyPsvBxFRUUo\nKytDYWEhOI6Dx+OB2+2G3W6PWH/MjDiqJ5DL5dTBt2/fjtra2mm1RyaTUVGnnp4eNDU1Tas9BIcO\nHcKhQ4cQCoWQnp6OgoIC5OXlIRQKwWAwTGlAIJJYtmwZ5s+fj6SkJLAsC5fLdb196ZPGjIrgYxXO\nzp07N62tswCQmZmJ9evXg+M4WCwWDA0NTas9BKFQiJ5kktIlz/O0t3omTERdDoFAgIceegiFhYW0\nDLt9+3a89957EV1tZpSDk9yXjC1Np+a7QCCATqej3YVdXV1R6Tm5HpCB4rEHYTzPY2RkZEYME18O\nsVgMnU4HlUoFiURCh13Onz+P1tbWiF57RqUoY5/kSGtPfhGIRn16ejp4nsfQ0BC6u7unzZ6xEAqF\nV3RaEhtnCiUEAbmPpI9dIBAgGAzizJkz6OrqmvSkzvViRkVwmUxGyTlJ19x0geM4SCQSyi0SZnGn\nKSEpKQmJiYnj/szv9+PYsWMzJo0iiI2NxeLFi/H8888jLi4OPM/Dbrdj48aNVx0kCTdmjIOPbQEF\nLi1rQqFwWhhoGYZBWVkZ0tPTEQqFYLFYZlRNmTSlAaAO09vbi/r6+mnhaLkWiFZ9VVUVEhISAABn\nz57F4cOHv3BYI1yYMQ4OXGpb7erqQlxcHLRaLRU7jTYYhkFhYSFti21ubobRaIy6HdeC2+2m/CFk\n1rK5uRnDw8Mz5kEkp5YFBQUoLCyERCIBcOk3PnjwYNTG5maMg/M8j507d2J4eBjr169Hfn4+TCYT\nBgcHo2oHGSqoqqpCVlYWTCYT/vCHP0xrTf5yEO6TgYEBvPvuuzhw4AAOHDgw3WaNA8m9FQoF7cLk\neR6dnZ3YuXPnV8/BgUv13dOnT+Pjjz/GypUr6bIWTZBp9a1bt6KxsREZGRloamqa1r6Oq+Hs2bP4\n/ve/j9OnT0cll50oQqEQTCYTXnrpJeTk5GDhwoXQ6/VRH3qeUQ5OSBa9Xi9SUlIwOjpKx7GiCZ7n\n0d7eDovFgs7OToyOjs44NQqHw4EzZ87AaDTOSBFY0o3Z29sLh8MBh8MBnU6H9vb26E4XzUQZQZZl\nodfrEQqF4HK5YLFYruumhFsie6zwbSgUCtsPEy47o0C/NiVmq7EzpCQn9/v9EanVX4vZaqIOPoKZ\nKy2XPkbTcdbO8OBGsZXaeTkm5OCzmMWNhgnl4DeK2u2snWHDrNLxLL7UmKkpyXVj1sFn8aXGrIPP\n4kuNGVUHvxHAMAyEQiGlkfB6vdMyIH2jgmVZKuJlNBojMoc5FrMR/DpABpFZlgXHcYiNjaXssmq1\nmh5Fz+KLIZVKodfr8dBDD6GoqCjiHaOzEfxzEB8fj4KCAvz617+mk0aBQABisXgcCSbP83A6nfjR\nj36E5ubmqPXPMAwDuVxOVRzGss0KBALExcUBuETHIRKJoFarodVqYTQaYbVaoz4cwXEc7rrrLvz4\nxz+GWq1GcXExDh06hNdeey1iK2BUHZyQMF4L0yGMdC07br/9dmRnZyMzMxP5+fmUedbtdsPn80Eg\nEEAmk1HKX6/Xiw0bNsDhcETcwWNiYpCamorKykrapTc2TSInh0qlEgzDwG63g+M4OvNqs9lw9OhR\n2oEYLWRkZCAnJwcZGRlgGAZFRUUIhUJobGxEY2MjzGZz2K8ZNQcnS/zlDk5Gr4ijAJeipM/no+Nr\n0QTLspDJZHjyySdRUFAAlUpFj5d9Ph/MZjNMJhMEAgESExOpjJ9QKMTmzZvR0NCAo0ePRsw+hmGQ\nnp6OVatW4YUXXhg3vja2teCL8Prrr8Pv90eVebaiogJZWVm0szAtLQ0KhQKjo6MYHByMiINfVcD+\nWi/8Xfh+oi+5XM4rlUpeJBLxfz8w4AHwAoGAz87O5jdu3MgfOXKEb2pq4hsaGviPPvqIX7NmDZ+W\nljah60zVTgB8RUUF/+GHH/JNTU18c3Mzf+TIEf6WW27hc3JyeKVSycvlcl4mk/FyuZxXqVT81q1b\n+Y6ODj4YDPLBYJD/3ve+x7MsGxE7OY7j9Xo9v2vXLt7tdvPXg2AwyHu9Xt7r9fJ+v58PhUI8z/O8\nx+PhGxsbeYVC8Xn21oXjnpLf+vjx47zdbud5nud9Ph9vsVj4vr4+vq6ujl+0aBEvEAgm/fnX8tmI\nRnCWZREbG4uVK1dCJBLh5MmT6O/vh0AggEajwcMPPwy9Xo/4+HhkZWVBLBaD53nodDp873vfg8Fg\nwMjICAYHB3Hw4EGcOXMmkuZixYoVWLJkCVJTU/HOO+/AYDDAZrPR5fPyeUeGYdDd3Y20tDRkZ2fT\nnFitVoe9vZbIc//kJz+higmBQAButxsulwsulwtKpRJGoxH9/f34+OOP4fP5rkhdhEIhFi1ahPnz\n5yMxMRGPPfYYtm3bhgsXInemk5KSgltuuYXyJpKhY4PBALPZDJvNRumWwz1TGlEHF4lEyM3NxcqV\nK+kmTaVSgeM46PV6PPjgg1RMNRgM0s2RQqHAunXr4PV64XA40NbWht7e3og6OMuyWLRoERYuXAiB\nQIDdu3fj/PnzXzhR5PF44Pf7aWogFArpdw0nYmNjUVhYiPvuuw9erxcGgwGjo6Ow2Wz0FRsbi97e\nXrS2tuKNN96Ax+O5IiUUCoWwWCxISEjA4sWLsWnTJhw6dAi9vb0RSVXEYjHS09OxadMmaDQaqsbc\n3d2Nvr4+mEwmcByHuLg4JCUlfa6g1mQQMQdnGAaxsbH40Y9+hMLCQsTGxuLOO++Ez+ejMhtEt4WQ\no1Oj/r4hYlkWarUamZmZ9OZEgvODZVnExMRg4cKFyMjIwKFDh3Dx4sUvdG6O47Bq1SqUlJQAuJTu\nWSyWiEyKb9iwAZs2bYLf78fevXuxd+9evPHGG1d1ys9z1GAwSEfwOI5DUVERdDodpFJpRCbyCwsL\nUVVVhZUrV0IgECAQCMBut1PxAKFQiNtvvx3f/e53ce7cOTz99NNhfdAi6uBisRgZGRnQarWQyWR0\nM8b/nf+vr68Pn376KWpra9HV1UXVeckGLiMjA9nZ2QgGgxgZGYFCoQj79ApJK0hForu7G1u3bv1C\nrryCggI88sgjyMrKglQqpYTvfr8/rCUvlmUxf/58lJeXQ6lU4l/+5V9QX1+P/v7+SV2H/zvlstVq\nBc/zkEgkePLJJzFnzhz88pe/HKehORVHE4vFmDNnDh5//HG6KgKA1WpFV1cXbDYbkpKSkJWVhcrK\nSuh0OqSmpuK3v/0t/u3f/o0KVE0VEXNwQrsQExMDiUQy7vRvaGgInZ2daG9vx549e3D8+HH09/fT\nL0RId/Ly8mC32yGXy+F2uyOiukaqOyKRCG1tbVQFzOfzXfX9DMMgPz+fCsZqNBpwHIdQKIRz585F\nZLSN4zgMDAwgFAph37596Ovrg9PpnNRnkfIhsVkoFKK0tBSjo6NQKpX0QZ0qeadCoUB1dTUWLlyI\n3Nxc+uc+nw8Oh4NK1AiFQjAMA4VCQZXW/vjHP1ItzakiYg4ukUigVCqhVqvplwAu1WuPHz+OX//6\n1zh8+PBVx62CwSAMBgOEQiGEQiEyMzPh9/up2kI4QZbNs2fPoqGhAQ6HA6Ojo1d9L8MwEIlE+M53\nvoPq6mqUlJTQyOR2u/H222+HfTg5FArh9OnTaGhooOXTyYJs5JYtW4akpCSa7snlcsTGxiIlJQVy\nuRwGgwEXLlyY9ErEsix0Oh2eeeYZqFQq+tuPqcjgpptuQkdHB86ePYvk5GR6OpyamooVK1YAuKSk\nMVVEzMFJVCSSIKT2ee7cOZw4cQLHjx//3FlChmHg9/vhdDrHcaaE+zCI0DR3dHTQ1GksSMUnMzMT\neXl5uPfeezF37lzExcVR5/b7/bBYLNixY0fY6SXIKelY55goWJZFYmIiKioqsHLlSixZsgTJyck0\nYJAVc9WqVdBqteju7sbp06dx4sSJSV0vFAohEAhcka55vV7U1dXh7bffRkNDA2WVraurQ2JiIq1A\n5efno62tbVLXvhwRc3CijkAOIMi0+r59+9DY2HhdGxqfzweLxYL+/n64XK5xx+PhBJHnGwuxWIzU\n1FQUFRUhPT0dqampSE1NRXl5OVU4I+jq6sJnn30Gk8k0pQj7efZNBgUFBUhMTERCQgJSU1ORn5+P\nsrIypKWlUQU7Umq02+2wWq2QSqUIBAJT6hHh/67R89FHH6G6uhqJiYkQCARobm7GqVOn0NzcDIPB\nQPN9r9eLkZERWK1WqNVqJCUlUf7wqSKiDi4SieiwLvkiO3fuxNmzZyESicBxHP07IsA61nk9Hg9M\nJhMCgQA97SRT9pHu3tNoNFi0aBHuu+8+lJSUQKPR0Ad2bGMVSSF+//vfR8S5r4axD/rYfpixnY4s\ny2L58uWoqKgY59TkwST/hgSRwcFBtLW1we12w2w2T7lPxWKx4He/+x10Oh29Z/v378fRo0fR3d09\nrhpGeM2tVisYhkF8fHzYxMgi5uDDw8NobW3FqVOnkJ2dDY7jYDQakZ+fj9TUVGg0GlRVVdHNRE1N\nDRobGyk7UzAYpKtAcnIytFot1Go15HI5PvnkE/T19UWMfZbjOHzjG99AZWUlysrKxm2QL4fH48HF\nixdx+vTpiD10JL0jFZ/i4mIolUrY7Xao1WpYrVYYjUYkJyfj1ltvRWVlJXJyciCRSMapxBGMfTAC\ngQCGh4fR1dWF06dPo7GxEfHx8cjIyJiSzR6PBydPnsR9991Hq2cOh4O2YFwOuVwOuVwOABgcHAxb\nG23EHJzkYMFgkEZfnU6Hu+++G6FQiGrgBAIBOBwOKBQKWCwWeL1e2rykUCiQmJiIZcuWITU1FbGx\nsRCJRGhtbYXFYokYGQ//d3UHsgpxHEdTrbEIBoP4+OOPUVdXF7GHjZwnZGVlISsrC1VVVdBoNBCJ\nRHTTS/YqKpUKmZmZ0Ov10Gg0tLnt8pVlbNpI9kUtLS20cmIymcKSBoZCITgcDhrBr9VbJBQKERsb\ni5iYGACXUr5wkYhGzMHJhk0gENCSoUQiQVVVFa11k/cQPr3jx4/DbrdTTZz4+Hjk5uZiwYIFSE9P\nR0xMDDiOQ2JiImQyWUQd3GQywWazjZPOHuvgpLNw//79Ead1k8lkKCsrw80334w777yTbs7HNqgB\nuGKFIQ5MUjzyXvLfwWAQVqsVLS0taGtroyeydrs9bByHY9PPq4FQvBEuSv7vpEsz3sGBf1QgiKDq\n5RFw7MGOSCTC8uXLUVhYCJvNBq/Xi+zsbMydOxeZmZm0B9vj8UAul1PtnEgcL4dCIbz77rswm83Q\naDRYsGABrcGT6zkcDnR0dOCjjz6KqKQgOR2tqKjA3XffDY7j6MrodrshFAoB/KPP5HKiIlJaJPeZ\nvBe4lCe/++672LlzJ60ikVe0JpTkcjnWr1+PpKQkCIVChEIh7Nq1C+3t7WH5/Ig6OMkZSf5Hbp7L\n5YLD4YDL5aJ5okQiwZw5c1BYWEjTG6VSibi4OEilUvoZHMchIyMDmZmZ6Ovro9Es3Ef4Ho8HbW1t\n2LVrFxYtWjQuOvp8Ppw+fRrPPPNMVPqpnU4njcLAJedtb2/Hli1b0NfXB51Oh8LCQjz00EM0dQEu\nbd66urrwf//3f6ivr4fL5aLpl0AgoFqWAwMD4wJFNB2c6JCSTSV5KMP1e0a8m3Asq7/H46Gs/kND\nQ3C73cjIyIBer6dLFEld/H4/zYMB0J6VkZER2Gy2iE+jkL0DWX3GOnhvby+amppw/PjxqPRSE/J9\nci2fzweDwYBDhw6hu7sb8fHxMJvN2Lx5M7XV5/OhoaEBDQ0NOHDgAOrq6qgM4thK0LX2DtH4XsCl\ngKXT6egKSbofw3X9iEdwkjd7PB4MDg7i1VdfRUNDAy3k33XXXVi3bh02bNhAd/zkSwaDQQQCAbos\nWywWHDp0CHv37sW5c+ciSohJjuS//vWv0/Igwa5du7B79+6oDmOQB5xlWVitVgwMDODs2bNwuVxU\nJttsNtOKBWF2/eyzz6441v+8nHg6MHZlGtsLEw5EPAcnPQ9tbW147bXXsHv3blgsFvh8PojFYphM\nJvT29qK3t5dOzHR0dKC7u5uSvLe1tcHlcsHn82F0dJT++0jim9/8JtavX4/S0lL64JEN0/79+3Hw\n4MGIXv9ykJ4ZANDpdFiwYAGee+45bNmyBYWFhbj99ttpL8n58+dx55130gOymQyRSIScnBxaNDhx\n4kRYbY5oNyHZrTudToyMjKCzs5NWJgQCAfR6PWQyGWw2G9577z16ojYwMICRkRHaa93f3w+/3z/l\nXozrgUqlQl5eHlatWoU5c+bQBn1SdbDb7bBYLFFXnujs7ERDQwMWLlwIoVCIhIQELFu2DAKBAElJ\nSSgtLYXH40FtbS1qa2tx/vz5aRn5mwgYhgHHcbRhzWQy4eDBg2FNPyPm4GMjDjkGdrlctOQmFotR\nUlKCuLg42Gw2bNmyBQ6HY1q5rglt88aNG7F+/XpotVoAl36IQCAAj8eDvr6+aZHJrq+vpxUdgUAA\nrVaLxYsXY+HChfD5fHC73ejs7MQ777yDv/71rzOSM/xykOKCWq0Gy7IYHh7GRx99NOlOyateI2yf\ndBnIZAuJMGvXrkVpaSlqa2shk8mQnJwMnU6Hv/3tb9i7dy/tT55OLFu2DKtXr8ZTTz1FN7cEJ06c\nwKFDh/DSSy9NixZlbW0tjEYjnn76aVpVIqtkY2Mj/vrXv+LNN9+c9iAxEaSnp2POnDlQKBQALlWL\nurq6wnpoFvGDHlKWksvlSElJQVVVFdWAb2hoQFNTE1paWqbVuUk585ZbbqHzowQejwc///nP0dbW\nhp6enmkRxQIubQwHBwfx9NNP47HHHkNWVha8Xi927NiBkydP4tixY7DZbDOGYUssFiM/Px9GoxF2\nu/2qAyRz5sxBdXU1gEutHaQBK5yIqIOPbQJiWRZKpRJKpRI2mw2Dg4Oor6/H2bNn0d/fHykzrgvk\nxyC9JwQOhwMDAwP43//9XxiNxqg1U10LVqsVb731FsrLy+HxeOBwOPCXv/xlRsieXw6WZREfHw+f\nz0fH1MaCYRgkJiYiOzsbHo8HnZ2d6O7uDn+gu9a4/dVemMAYP8MwfH5+Pu/1enmbzUbpAgKBAL91\n61a+oqLiC+kVJvqarJ3Z2dn8+fPneZfLxY/F7t27+XvuuYfnOG7a7bzcZvIKp11XeU2aNkIgEPAq\nlYrX6/V8fHz8FX8vEon42267jf/FL37B19fX8/feey+flZU15XsaNdoInufR19eH9evX02WTbDqH\nhoZw4cKFGVGLValUSEhIQFxc3Li822Qy4dy5czh48OCMsHMspnuvcj0IhUJwOp3wer1Xtdfv96O2\nthatra147733cOHChYioxUW0Du5yubBv375IXmLKSE1NRXFxMT3MIYcNhw8fRn19fcS11L/M+LwD\nJZ7nMTIygpGRkYja8JUn36yqqsI999xDm8HIYdIPf/hDdHd3T7d5s5givtKcvyzLIiUlBbm5ubT/\n5cSJE9i0adMVDUizuDHxlY7gpJmLMGv19vbi3Llzn0sbMYsbC195Byc95X6/n062RFp1YBbRw6wQ\nbPRxo9gJ3Di2Ujsvx6wQ7Cy+1JgVgp0G3Ch2YlYIdhZfcszUlOS6Mevgs/hSY9bBZ/GlxrSXCTmO\ng1gspsMFhOkqEAjckActRAhqprStftUx7Q6uUqkQHx9PKXOHhoZQU1MDs9lMnWSmOcvViCnJ8AE5\n8p+OoYhZXIlpcXCxWAylUomcnBxs3rwZN998M53Ls9lsaG1txX/+53/C4/FAqVTi+PHjEaNGmygY\nhsFzzz1HOQsdDgd0Oh0yMjIoPUZ3dzduu+22sE/WCAQCqn3JsiykUimGhoZumAme6UDUhWDXrl1L\nx9WSkpKwePFi5OTkQCgUQiAQUGnsdevWIRAIQC6Xg+M4tLW1RU1B+GooLS1FXl4e9Ho9Vq1ahYyM\nDLAsC5fLBZVKBZ1ORzWEWJZFQUHBlCaACG3FwoULaacjx3GQyWQ0DRKLxZTP0e1203lGMmQwiyg5\nuEAggFAohEKhwKOPPoqysjKkpqYC+MdyT/JtmUyGlJQUbN68mVK6KZVK/OUvf8HIyEhEfzjCAnA5\nUaRUKsWaNWvw9a9/HQsXLgTwDw4Pj8dD2boI4b9cLkdVVRXsdjvcbvek+slVKhVWrFiBZ555BrGx\nsRAKheA4bhxLLAHh1+7q6sLAwADlFhxLsEmokiPJJTMVjE3xSF8+ua9T2YtFxcEzMjKwatUq/OIX\nv4BEIqE9INcCz/NITk6mzVD33XcfLBYLrFYrTp8+HTE7MzMzkZycjOzsbBw5cgQWiwUMw+CVV17B\nggULkJWVBQBUBu/999/Htm3b4Pf7qYrcokWLkJmZiR/96Edwu92oqanB+fPnr9sGlmWhUCjw2Wef\nIS8vD2Kx+AvJ6MViMZKTk/HJJ59cdb/C/52Q/q233sJPf/rTad+8E50gMrcbDAYRExODzMxMrFmz\nBhs2bIBUKoXVasXGjRthNpsnHdgi6uAymQxVVVVYt24dbrrpJjo9TaLf0NAQ2tvbceHCBfT391Pu\nEa/Xi7y8POTm5qKwsBASiYTSI5BOv3D+SCzLIiEhAXfccQfS09Ph8Xgo+YxWq0VJSQm0Wi08Hg9a\nW1vx6aeforW1FR0dHejs7EQoFILBYEAwGEQoFKK6jxUVFXA6nRNycCICZTQakZSURLXorwbiIOR1\nOdvsWEgkEtxyyy3QarWw2+14//33cezYsYndqOuEQCBAXFwc/vmf/xkxMTGUdH+sbSKRaNzqIhaL\noVarkZaWhqysLMqG9vzzz+PPf/7zpPV6IubgGo0GKSkpWLt2Le644w6kpaUBuDTIa7FYMDo6is7O\nThw7dgzNzc1obW0FcOlH83g8WLJkCaqrq5GamgqJRILCwkKEQiEoFArYbLawbToZhqH0xERuo729\nHRaLBWKxGImJidBoNPB4PDAajfjss8+wZcsWtLe3j4uWNpsNJpMJpaWlKC4uRmJiIlUv2759+3U/\nkCSVaGpqglqthk53ZQ8ReZB4nsfo6CiVL1SpVHSZVygU4xh9hUIhysvLUVZWRtnDTpw4EdYKlUAg\nQGZmJoRCIdLS0vDAAw8gKSnpcx+8z4NUKsWiRYtw4MCBSdsUMQe///77cffdd6OyspJ+OUJ79te/\n/hV//OMfAVx7vvCTTz6BWq2mKsnx8fHweDzIz89HS0tL2Ob3xGIxsrOzsW3bNsrvp1arERcXh+Hh\nYZw6dQoxMTE4f/48mpqasG3btms6BcMwkEql0Gg0iI2NxeLFi+FwOCAUCifEuRcKhfDss8/i0Ucf\nRXl5+RXOQchHfT4f3nzzTfT398NmsyE7OxsSiQRxcXHYtGkT4uLixkVKAsJuIJfLv1AP9HrBMAzU\najVOnDgBtVp9VcGAicLhcGDt2rUwm82T/oywO7hEIsGvfvUrLFiwgOq3OxwO1NXV4cUXX8TIyAiG\nh4e/8McOBoNwOp0wGo3IzMykTFljmUjDgbKyMlRVVYHneZw/fx6NjY14//33MTw8DJfLRenQHA4H\nHA7HVZ2bbJDUajU4jqP0z4Q6YePGjejo6IDH47nuMTiv14ujR4/ixRdfRGFhITIzM5GYmAilUklJ\nSUdHR6nmjcvlQkNDA2X0PXXqFB566CEqH2O1WumGXSKRIDY2Funp6WGRRxcKhdiwYQO+973vQalU\nXrERJlzmv/rVr9DR0XEFuT3HcXjooYeolhDLsjAYDFR1YipD32F1cFK6qq6uhl6vh0KhQDAYRF1d\nHXbv3o29e/de92cRqe+xpO4AwkqtCwDx8fFIT0+H1+vFxYsX0dHRgdOnT9Nym9/vR19fHwBQjheZ\nTAaxWAyxWDyO7pcsx36/H1arFX6/H6Ojo5NWJL5w4QL27NmDvr4+5OTkIC0tDXl5eVTCUCwWQyQS\nUZ0dApK3V1dXQ6VSQSwWU0Fdoq6mUCjComRGRKNKSkqwfPnycVzw5MBrZGQEp06dwu7du9HR0XHF\nILdQKMTatWtRUFBA+cF7enpw4MCBKaeiYXVwEj2SkpKgUCgQCoXgcrnws5/9bMJ5lEajQVJSEtLT\n08GyLNVeHBwcDNs4GcMwUKlU0Gg0sFgs6O7uprVrouQ29mEiByypqalITExEUlIS3ZA6nU5kZ2dD\no9HA4XCgs7MTfX19OHnyJHbu3DlObe56MTQ0BIPBgJqaGqpXdM899+CWW25BVlYWsrOzsWbNGgDA\nxYsX6WeTezUwMAClUgmFQgGhUAiZTEbLcDKZjIo+TQUsy6KiooKu1uT6xMFHRkawf/9+PPnkk9dk\n3gqFQvR3EIlEsNvtOHbsGF599dUp/9ZhdfCqqircf//9lJHVarXi3XffndABjUgkglarxUsvvYSS\nkhI6L2m1WtHX14eWlpaw1HLJhohoMnIch8zMTJhMJsq2NVanRi6XIykpCd/5znewePFixMXFIRAI\nwGAwoK6uDgcPHoTNZsOePXvw4YcfYmBgAFardcpcgcRpnU4nLly4gP/5n//B8PAwli1bhrvuugvr\n16+Hz+dDW1sbXWnkcjnKy8uRkJAAtVpNXwqFAhKJBDabDU1NTWGpogQCAezfv5/S31VXV8Nms8Hl\nckEmk6G2thZ1dXX0vOByyOVyLFu2DEVFRYiPjwfDMHjiiSdw/PjxsASysDp4XFwcSktL6Yme1WrF\np59+et3qvxzHQa/XY82aNSgtLUViYiI4joPT6cSRI0dw8ODBa96o6wXDMMjNzUVFRQXy8vKQmppK\nVwitVou0tDTk5+fTTWwgEEBubi6KiopQWFiIpUuXIicnB3K5HH6/H0KhEO3t7bTs6Xa74XK5aHUj\nXKRBZG7UbDbj5MmT0Gg0uPPOO5GQkICFCxfC5XLh0KFDsNlskEgkKC4uhlarpbo3RARMIBBgcHAQ\no6OjYeNZdDgcsNlsLpqyOgAADL1JREFUMJvN6O7uxsWLFzE8PAy/308FrsYquwGXSsi5ubnIz8/H\nmjVrqPKy3+9Ha2vruBVpKgirg6vVamRkZFAZ7tHRUXz00UfXlYMSwaqSkhI88sgjtNwUDAYxMjKC\nDz74ANu2bZvyl5ZKpVi8eDGeeuopZGZm0pwwGAxSub558+bh4sWLNH9euXIlbr31VsybN2+cXhA5\ntWRZFg6HA62trVRuJJINYo2NjYiNjYXP54NSqURVVRUqKioQHx9P9UMrKiogk8nA8zxsNhvdvBGC\nfJPJFFbGLr/fD4fDgVOnTqG1tRVdXV0YHByE2WyG0+mke6lQKETz9tWrV2Pt2rW4+eabwXEcfD4f\nRkZGYDAYwlbdCauDk9yOYRiYzWYMDg5el0OSuunzzz9PBYnGpibbt2/H2bNnp9yhxzAMfvKTn2DZ\nsmUoLCykEiuEb5thGKSmpqKiogL3338/OI6DVCqFTCajYrDkByI/6Llz53Du3Dn09PTA5/NFrfOR\nHM/L5XIIhUIolUo88sgjsNvtcDgcMBqNOHbsGC5evEglxuPj4yESifC3v/0NPT09YVWpq62txcmT\nJ6kTkzxcIBBAoVAgNTUVd999N+RyOUKhEJKTk1FcXIz09HTaGnHo0CHcc889sNlsYbEJCLODkxNK\nqVT6hVFMLBbjwQcfREJCAlQqFc0btVrtuCNcn8+Hw4cPh4U9led5HDlyBImJiVi4cCEEAgFiY2Oh\nUCigUCjGyRrK5XJ6aDK27EVEskgZk+Sb4daW+SIIhUJotVpqGxGFJZt7i8WCgYEB9PX1weFwIBgM\n0tPC6upqmEwmKgcTjsrUtWjaSKHBYDBgcHAQSUlJUKlUkMlkVFqcYRiMjo7CYDCEnSc+rA5OdM7H\n9hmQp5MgPj4eUqkUMTExuOuuu5CZmYmYmBiq2QOAbiJJyejs2bMYHR0Ni40NDQ3IyclBdXU1UlJS\nqHOTNgEAV21oIiCVEPIwjxXLipaDkxIhObkcC/I9BgYGMDQ0RB1YLBZDKpVCpVJh8eLF6O7uphr1\nNpsNHo8HHo9n3PcIRwrD8zy8Xi9GR0fR09ODYDCIhIQEKBSKcUoZpIIV7nsYVgfv7OzE+++/j0cf\nfRR+v58eH5MIwnEcnn/+ecyfPx8FBQXUoYmTkBs81tlJS2q4uggHBgawY8cOdHd345133oFcLh+n\nAAzgc8t5RFQVuNTxl5aWhpiYmKi2pyqVSqhUKiqORRAIBGCxWNDT04MdO3bA7XZDJpMhJycHWVlZ\nNEVJSUnBk08+icceewxmsxl79uxBc3MzTp06hd7eXloincoJ4uUIhUI4fPgwxGIxJBIJpFIpHn/8\nccTExECn0+H111+PCFFrWB38/Pnz2LlzJx555BEkJiaiqqoK27dvpy2PHMehpKQEarV6XH8CESMi\n/01YXu12O/r7+8Oe25IjeJPJRHViCHw+H+x2O+rq6mh+XVRUhJtuugk5OTmQSCQQiURUEW7Hjh2o\nra0Nm/T154FlWWi1Wjz33HO4+eabAVy65zU1Nfjkk0/gcrlo3Ts9PR3p6elISEhARkYGYmNjqeId\ny7JgWRaBQADHjh3Dzp070draCovFAo/HE/bDNIKxn63RaGhjGQB6UhxuhNXBLRYL/r+983tp6g/j\n+HuuM/Xkpvvlmjtu/XBIIinkKkKzqJvEoquEiLrwv7C66C4KDLoIgohuDIToJugmFEdJLA3nVv4I\nnMe1zR8bY2yeOXXufC++fD46vin+OEf9jvO6Ggzms+3xs+fzPO/neQKBADKZDMrLy2GxWGCxWOiM\naLVanScAIlWqbDaLdDpNF5QyDEOrcxMTEzQUkAqi1vN4PHC5XDh+/Di1JxqNwuv1wu1249evXxgf\nH0coFKLNBiQbkUwm4ff7MTw8DJ7nZbtcFhUVQa/Xw2KxwGw2g+M4tLa2wul0IhwOY2BgAP39/fj8\n+TMymQzsdjucTidu3ryJmpoamM1mqkkRBAGJRIJuiiNFpLGxMYTDYdkvyORXjoSt5FceQN5jKZHU\nwUmsFY/HUVJSApZlASDvhNwo7ySVrZWVFfz58wcGgwFHjx6FTqdDIpHAxMQEPn78KMsgTLJ7p6ur\nCw6HAyqVCul0Gn6/H48fP8bY2Bg9cUKhEHQ6HbRaLex2O9bW1sDzPF6/fo3v379LuhVsI6Thw+Vy\n4datW2hpaUFNTQ1yuRwikQj6+vrw6NGjvNJ3SUkJOI5DR0cHvcCRDh+e5zE8PEyLL1NTU/veAEEO\nM7J1j4R8cqVWJRdbCYKAa9euobOzEzdu3EBjY2Pe8+QCNDk5iZ6eHppaNBgMaGlpofLY8fFx/Pjx\nA0NDQ7JsWBBFEaFQiP4siqKIeDyOcDhMv3iSEiTOXVxcDEEQMDIygq9fv+LLly+yLlq12WxobGxE\nd3c3TCYTPSg+ffoEt9uN3t7evCIay7Joa2tDR0cHLeqk02mEw2G8f/8eQ0NDGBoaopsXDqrPlRSt\nysrKUFlZScPE4uJiyQ8zyR2ciIT6+vqQTCYxOjoKu90OhmGQSCQwNzeHaDSKSCSCQCAAo9FIb9Vk\nh2Y2m0U0GkU8Ht9zy9JWdpJ4kGR7iNrOYrHQpgqWZXH16lU0NDTAarVSB/d6vbLZRrBYLDh37hw4\njqOXblLNXFhYQDQapTbq9Xq0t7ejubkZNpuNhnhTU1Po6+vDt2/fwPM85ufnD7yjBwDtXdVoNFCp\nVDAajbQZQ0pk04O73W4MDg7CZrPh8uXLKCsrA8/z8Hq9WF5epsPnWZaF2WzGyZMnafcHqYKmUinZ\nvgwinALW9R7l5eX01CTbmCsrK3H//n04HA5otVrMz89jZGQEfr9fVkchRafW1lZaBSR5epVKBYZh\nUF5eDlEUYTKZ4HQ68fDhQxgMBhw5cgSpVAo+nw8DAwN48eLFodozROoIwPoIa47jwHEcZmaknRYn\na8taNptFMBjEu3fvAKxLKKuqqlBbW4u2tjbU19fD4XDQ1FFRURGWl5cRCoUQi8X+k+eVCiIGI3pj\n0gXjcrnw/PlzJJNJOt5Cq9VSLYXJZMKpU6cwPT29bY3NbrBarairq8P58+fzijkMw+Du3bu4ffs2\nnj17BlEUodFo6OdH8uC5XA5v3rw5lEu0ANCTmtwTOjs7UV1dvevWtM2QvemYxFsEIrJpb2+Hy+Wi\nijdyopJ/Ar1eD47jkEql8PPnT1m+pLW1NczPz4PnedTW1lIH0uv1KCsro03PxLlJliUSiUhWeNoM\nUiH92/smOnmi2ty4Nj2ZTCIYDKK7uxsjIyOyXYD3CrkDTU5O4syZM/SeI6V8ADiAwT9qtRomkwl1\ndXXgOI6KlzaOaSgqKkJVVRUymQwYhsHMzAwEQZC8WiiKIniex+joKJ1zQnLyRNkmCAJtXlhaWkIg\nEEAwGJS0CPI3BEHA7OwsJiYmoNVq8+SuBFI7IP2gKysrNLX69u3bQxFrb0U4HMbk5CTq6+uh0Who\n03E4HJascLbTDQ97/sQYhsHZs2dx/fp1XLlyJc/BTSYTWJaFRqOhp5cgCOjq6oLP50MoFNoyrbWb\nudtqtRonTpzAhw8faKZCrVZjdXUVPM/D5/Ohp6cH09PTiEajWFxc3LPjbNdOUvQyGAy4d+8e2tvb\nceHCBRqHk4JYb28vnj59ivHxcamLND9EUWzajq27oampCS0tLXjy5AlNQvj9fty5c2fH2qPN5oPv\nu4OT5lSTyYSKioq85lSdToeqqio0NTWhubkZRqMRpaWlGBwcRH9/PzweDzwez6avvdvB8qWlpWho\naKBZHJKXzWQySKVSmJ2dRSaTwcrKilT6jB3ZyTAMrFYrzGbzX/Unc3Nz4HlejnBEVgfX6XRwOp14\n9eoVnQGTSCTw8uVLDAwMwO12b/u1NnPwfQ9RyOXub+1LJSUlOHbsGBYXF6HT6VBTU4Pq6mro9Xqw\nLLulCGovLC0tyTYjRApWV1cRDAYRDAYP2hRJSSaTtO80l8vR9Gx9fT0CgYAkf+NAhm9uJmbKZDLg\neR7BYBCxWAwXL17EpUuXaCPw79+/D8BaBTmJxWJ48OABFhYWUFtbi+XlZZw+fRpGo5GGrnth30OU\n7cKyLCoqKmAwGJBOpxGPx5FKpbZ8w/+X3Tf/Fzshc4iyEdJwDAB2ux2pVIrOWdwOhyZE2S4kPy0I\nAlZXVyWLfw8TyrD8dchuUpKOBTYfCrUTDq2Dk/w5aXooRCfYmAlR+BdRFJFIJGgNYq/s1MFj2MfN\nW0RpuE0cGx7vq507hNqZy+ViuVzusNoJHNBnSg61HeTCHZs9oSyCVSholC1rCgWN4uAKBY3i4AoF\njeLgCgWN4uAKBY3i4AoFjeLgCgWN4uAKBY3i4AoFzT+pBoxtIfahAAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAAC0CAYAAAAn8ea8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOx9d3Sc1Zn+803vVZqmkUa9Wd1FNm7CxmDTlixlgTRCliSkbBJSdnPyCyHZ3WzIwrIbp7EJxDnBiWmBAAsYyxhjG8uybFmWLKtr1GdGM9Joev9+f3jvZeSqMiMbVs85OrblKXe+eb/3vvctz8OwLItlLOPjCs7VXsAylpFOLBv4Mj7WWDbwZXyssWzgy/hYY9nAl/GxBm8+D2YY5ppOubAsywDL60whnCzLZgLX/lrJNT0fyx58GZfD0NVewGKxbODL+FjjmjZwhmHA4VzTS/xI4Vq6nnw+H1wuN+3rmVcMnm4wDAMulwuhUAiJRAIAiMVicLvdWK64Lgx8Ph8qlQpbtmyB3++H1WpFZ2cnEonEVVmPTCaDyWTCP//zP+P06dM4ceIE3n777bS93zVj4BwOB0KhEFKpFBkZGVCpVIhGo/B6vZiZmVk28AVAKpVCr9ejtrYWN9xwA7xeL7q7u9Hd3X1VDFylUqG4uBj19fXYunUrPB4POjo60vqeV93AGYYBwzDg8/nQ6XQwm82ora2FVqvF1NQUBgcHMTg4eNU8Dllj8lrJzcYwzKx1XUs3IcMwyM7OxqZNm/C9730POp0O0WgUExMTeO655xCNRpd8PStWrMC9996Lr371q0gkEhgZGcGpU6fS+r5X1cA5HA4EAgGkUimqqqqwevVqmM1maLVaqFQqWK1W+Hw+amBLvbbKyko0NDTgtttuAwDE43EaRsXjcXi9Xhw+fBgDAwPo7+/H2bNnEY/Hl3yt569bJBKhvLwc27dvR3V1Nb0xhUIhFArFkl/P0tJSfOUrX8GNN94IvV5Pfx+NRhEKhdL63lfFwDkcDng8HkwmE3Q6HYxGIzZu3IiCggIoFApwuVzIZDJ4vV7I5fIlOxjxeDyYzWZs27YNQqEQubm5WLFiBaqrqwGAGi+Hw0E8HkcgEEA0GoVOp4NGo8H4+Di8Xu+Se0fgnIfUaDQQCASQSCTIysqCVCoFwzAIBoOIRqPg8XjU2JcKAoEABoMBGzZsgMVigVAoRCQSwcsvv4zTp0/D7/en9f2X3MA5HA7EYjGUSiVqa2tRWlqKkpISbNu2DTweD7FYDD6fD0KhEE6nE3K5/ILQIF3rUiqVWL16NX76059CLpdTgwA+DD9YlqU/sVgM1dXVMBqNMJvN+OCDDxCNRpfcwMn5pbCwEDweDwKBABqNBoFAAC6XCzMzM1Cr1RCJREsWRpEdQ6PRwGKxoKamBsA5rz09PY3HH3+c7tDpxJIaOIfDQXl5OXbs2IH7778fZrMZPB6PenQSz8rlckSjUSiVSmg0GgDpjW8FAgHy8/Px2GOP4brrroNarZ7l5Ygxx2IxRKNR6skZhgGPx4NCoYDRaER+fj78fj+8Xm/a1no+yDW9/vrrcd9992H//v04duwYjhw5ArVajdzcXDAMg8zMTAiFQggEAvD5fHA4nLSeazIyMvDtb38bN998M3JzcwEAiUQCBw4cwK5du3D27FlEIpG0vT9B2g2cYRhYLBbk5uaipqYGBQUFKC0thclkoh4lHo/D5XLRi8/n8wGA/l86jZvH40Gn0+ErX/kKqqurqXGzLItEIoFYLIaxsTEMDg5ifHwcMzMz0Gg00Gq1KCgoQCAQAMuykEgk0Gq1EIlEaVvr+euWy+V46KGHUFJSAovFAolEgqmpKfT19cHhcMDv94PP58PtdlPPzrJs2g2cw+FAKpVi8+bNMJvNkEgkSCQSePLJJ3Hs2DG0trbOa5cTiUQQCoU0vIlEIggEAnN6btoMnMvlgs/nQy6Xo6amBrW1tbjxxhthMBggk8kgkUgQj8cRiUQQDAYxMTEBpVIJiURCPbjf78f09HRaDVyj0aCoqAi33347NBoNvekikQh8Ph+mpqbQ1taGtrY29Pf3Y3p6Gnl5eSguLkZmZib9rEKhkBpOuiGRSKh3vv/++5GVlQUAOHXqFEZHRzE2NkbPB4FAAHw+H0KhEDweD9FoNO1xuEajQV5eHkpLSyGRSMCyLKLRKF566SWcPXt2TjscOcwbDAaoVCrIZDJwuVyMjY3B7XZfXQMnW6LZbMb27dtx5513Ij8/HyKRiBoA8c6Tk5MYHR3F6dOnkZeXB4PBgOzsbExOTuL48eN45ZVX0hbTMgyDO++8E3fffTcyMzOpV0skEhgdHcXhw4fx17/+FUeOHEEoFEI8HodYLEY0GoVcLgfLsvTCh0IhDA4OYmZmJi1rTca6devQ0NCAz3/+89BoNPD5fBgZGcGPfvQj9Pb2wu/3g2VZyOVyFBQU4Pbbb4darQaPx0M8Hoff70/rNf3sZz+Le++9F0KhEAAQDAbhcDjg8XgQDoev+BpcLhdisRharRa/+MUvUFRUBKlUivb2dvz4xz+GzWab83pSZuBcLhc6nY6GI+QAWVRUBJPJBIlEAi6XCwB0+2cYBrFYDPF4HCqVCiqVCnK5HEKhECKRCGKxGBKJJC3ehmQdCgoKUFJSQr/8SCQCr9eL//7v/0ZbWxvOnj2LcDhMMzsVFRXYsGEDVqxYAZ1OB5FIhGg0imAwiNHR0bQemsRiMaqrq/HAAw9g9erVUKvV4HA4mJiYQHNzM025kXBkx44daGhogE6nA4/HQzgcTmvRjGEY5OTkID8/HxaLBRwOByzLgsPhQC6X495774XVasX09DTKy8uRnZ0NjUaDRCIBlmXB4/EgkUjgdrsBnLMplUoFgUAAkUgEo9E47xBwUQZOthGRSIT8/HwaX+fk5KCiogK5ubnQaDTg8/mzshHESwLnvgyxWAyTyQStVguFQkFTXUqlElqtlqblUgk+n481a9agsLCQGkosFkM4HIbb7UZvby9GR0cRCoWg1+uhUCig1WpRV1eHFStWwGKxQCAQAAACgQDsdju8Xm/KD04Mw0Amk8FoNMJkMmHdunWoqalBTk4OOBwOnE4n+vv7cerUKbqjSKVSlJSUYMOGDaisrKROwul04syZM2nL1XM4HJjNZhrqJRIJcDgc6pHXr1+PgoICeDwelJeX08eS9RBbsNvtCIVCCIfD8Pv9NAmh0Wig1+uh0Whgs9nmdIZYlIETr2YymfCVr3wFlZWVKCwsRDQapTFpLBZDIpEAl8sFl8ulBzfiwaVSKQwGA5RKJcRiMfh8Pk3PZWdno6ysDEeOHEE8Hk/ZoYgcgn74wx+ioKAAAoGA7iaBQACTk5Pg8XhQKpXg8/lYvXo1iouLYbFYUFxcDLVaDYFAQGPc/v5+nDhxAn6/P6XGQyq8RUVFuPPOO9HQ0ID8/HzIZDKwLAufz4fm5mbs378fe/fupbFvXl4evvvd7yIzMxNisRjAuQxGR0cHdu3albbwhMvloqysDDKZjO4mAoGA7ihbt24F8GGqlTi9i1WDk3ebRCIBHo+HzMxM1NXVYWZmBlNTUwiHw1fcjRZs4BwOB0ajEYWFhbRiplKp4Ha78f7778PlcsHr9cLv90MqlVKjtdls8Pv9CAQCyMzMhNPpRCwWw6233orVq1fDZDJBoVBAIpGgpqYGGo0GR44cwcDAAKanpxe63FkwGAyoqKiAxWK5oJDE5/Oh0Wiwfv16xONxKBQKrF27FjKZDAKBgB6eo9EoPB4PWlpacPLkSRw5cmROF3yu4PP52LFjB/7+7/8eBQUFkMlkEIlE4PP58Pv96O3txZ49e3Dw4EE4HA7MzMwgFAqBx+OBZVnqRblcLj3vkLx4ukKUaDSKV155BYODg6iqqsJtt92GkpISqNVqmgGZmprC2NgYmpqaqKGePn0a4XCYXnubzYZVq1bh9ttvR3l5Ob32AGAymWAwGObsSOZt4MkFFxIbMQxDD4sOhwMHDx6E2+2G3+9HJBKhhgEAbrebbj8qlQper5fGX5FIBBUVFVi5ciUt4RsMBpSXl8PtdqfEwPl8PrKzs7Fu3Tp64wGgHkUoFEKlUqG2tpaGByRfD5zrbiRZgZmZGUxOTsLhcGBqaorGkqnArbfeim3btqGmpgZqtRqhUAjBYBAulws2mw3t7e04duwYhoeHEQwGaevA9PQ03G43IpEI/W7IZ1MqlSgoKKA7YqrBsizcbjf6+/vB4/GwZcsWRCIR+P1+OBwO7N+/H+Pj43A6nejp6UEgEIDf78fQ0BCttEqlUni9XhQWFkKpVFLjJjtsX18f+vr65nytF+TBk5uPQqEQxsfHEY1GafNMe3s7IpHIBReRbE0Xe72RkREEg0H4/X5UVlbSUEUikaC2tha9vb3o7+9fyHJnQSqVoqioCFu2bIFQKLygUsnlcqFQKFBXV0fDKuLhyVZKcrFerxc+nw+hUIjGm6kwci6Xiy9+8YuoqqqCTqdDLBaD0+mEw+HA6Ogozpw5g/b2dnR0dCASidDr6vP54HQ6MTExAafTCYZhIBaLaahjMBhQX1+P3bt3py1MIZkxiUSCcDgMj8cDj8eD/v5+/OQnP8Ho6OhlMylOpxMcDgccDgc6nQ5CoZBe10gkgqamJjQ3N6fPgwMfGoPVasXo6ChOnjxJD2nky09+3JXK7KRS2NXVBaPRiEAgQPvBGYaBXC6nW9RiQDraqqqqUFJSAoZhEI/H6fbd0dEBn88HqVQKpVIJhUJBT/FcLpd+DlJkyc/PB5fLhUajgUQiwd69e+Hz+RCJRBZ8XiCvrdfroVQqwTAMotEo9u3bh71796K/vx+hUAher/eCRiXiQbu6uvDEE0+gsrISOTk5KCgooBmLuro6iESiRa3xciDZKblcjhdffBFnz57F5OQk3bnncvMnOxsOh0OvQX9/P92d5ooFx+AkriOHxuTfk0MFl8ulpe3zH3cxkC2JGF2yQS22gEL6NTZs2ICysjIIhUJ6Y4VCIYyMjKCpqQnj4+N0LRkZGTAajbBYLNDpdFCpVODz+UgkErQzLycnh2aS3G43uru7MTExQSuc8wWXy51VHEkkEhgbG6Mdi3a7nWZ7LoZEIgG/34+jR4+iv78fBoMBZWVluOeee5CRkQG9Xo/Vq1ejvb19XvnkK4GEF9u3b6ftFfv374fD4UAgEJiXUZIuU7L7sCwLv9+Pd999Fy6Xa37rmtejzwPZGoknIGlDk8kElUoFsVhMww6/308PlOd/8eR5mZmZtOCS/JhU5MFJG2lpaSmys7NpRicSicDj8aC3txenTp3C4OAggsEg5HI5MjMzkZWVhZqaGpSXl4PP50OhUNCbjRziuFwueDwe+vr64PP54PV651xpOx/EgyfvLjMzM3C73XC73fD5fPT3FwPLsgiHw+jr64PVaoVarcbk5CS2bt0KjUYDhUKB2tpa2O32lBk48dr5+fm45ZZbIBAIYLPZ8MwzzyAajc77Rid1EBJCkvPFkSNH5l1Im7eBX26xHA4HMpkMjz32GNasWYPs7Gy43W6cPXsWzc3NeOaZZ2C32+n2SErGXC4XarUaq1evRl1dHSQSCc0GMAyDQCBwRe9/JfD5fKjVahpGkR6XyclJ9Pf3Y9euXejo6IDL5UIgEKA7kEAgQEtLC/7mb/4GGzZsQElJCQ2XSJGK7DIWi4Xmwx0Ox4LWKZVKaaqNpNgMBgP0ej20Wi3sdvslU6bE25EfkukZHBzEyMgIrTPccMMN6OzsRHt7e0oOxXw+H7fffjseffRRZGZmYnBwEOFweEHGDQDZ2dnQ6/W0EjozM4PBwUG89tpr8w6rUlqqJx6upqYGBoNhVl7baDRixYoVmJiYgMvlooemeDwOHo+H7OxsmuclKUWyO5DYazEIh8Ow2Wzo7OyEXq9HWVkZAFDvKxAI6NZPjIMYr9frhc1mw8jICPR6Pe1XCQaDNO612WyYmZmBy+Wa9zaaDHLATc4eyGQy1NbWIhgMYnJyElNTUwiFQvQwJhQKIRaLaf8J2SVJp2N+fj70ej1kMhl9D7FYDC6Xu2jHAQDFxcXIz89HRkYG+Hw+rQjPF6Q78/vf/z7WrFlDd/I9e/bgxRdfXNCZIeW9KCzLwuFwQKlU0jSiSqWCRCKBTqfD1NQU3G43nE4njSdJTt1isUCpVAI4F0uStFhPT8+iDZy8Xm9vL8rKysCyLI2dFQoFvSFJ6ALMrtSSaippmyWhAOlvttlsGBsbg9PpXHC5nhhzYWEhzR4A5xyHXq+HxWKhDkMkEtE2X61WC7VajenpaXoD+Hw+OkxSUVEBlUpF++3JDZKqFggOh0MbuhiGoQ1z5P3m6sUVCgXKyspQX18Pk8kEn8+HpqYmHDx4ECdOnFjQ2lJq4NFoFG63G7/73e9w8803o76+HllZWdRDkjAB+LBkT6qapGeBdPIlEglMTEygo6MDBw8eTEmPB8uyOHbsGEpKShCLxSAUCqHVasHj8bBmzRp0dnbC4/HQbjc+nw+ZTIb8/Hy6bSZXZBmGgd/vh91uR3d3N44dO4axsTH4fL4Fbc3EwCsqKuj2TMI4mUwGlUqFWCwGkUgEkUgEs9mMRx55BKWlpcjKyoLdbsfRo0dx6tQpdHZ2YvPmzSgoKKCTU1wuF16vF4cOHaKH6VRgZGQELpeLrtVoNNIGKZ/PN6ddgmEYFBUV4Yc//CH0ej2i0ShGR0dxzz33wOPxLDwrtaBnXQLxeBw+nw9vvfUW3n//fajVaqxduxYPP/wwysvLIRQKaboNAO1NJsZAvGMkEoHb7UZ7ezv27t1L88ypwNTUFI4cOYKnn34aDz/8MJ0uuummm8CyLHp6ejA6OopIJAKlUomsrCzU19fTtk0SF5MbUiAQIBAIwOFw0GLQYtZqs9nw4osv4stf/jK0Wi0YhoFAIEBmZiZqamrw+OOPIysrC0qlEnK5HBkZGXRNYrEYer0eO3bsQDgcpiEicRzBYBA+nw85OTnQ6XSQy+WYmppa9DXNy8uDTqej/xYKhSguLkZjYyPeffddHDt2DH/9618vaegMw+DWW2/Fli1bsHbtWvD5fLz66qt46qmn4PV6F3U90xKi+Hw++Hw+WnnMzs7G+Pg46urqYDQaZ8XYycWfeDxOexBGRkYwMDCAgYGBlFbd4vE4RkZGcPDgQWzZsgX5+flQq9XQaDSora1FVlYWXC4XwuEwJBIJNBoNcnNzIZVK6cAAmT4in3V6ehp9fX2YnJxEIBBY8HpZlsXMzAyamppw7733QiqVQiKR0N4ZLpeLuro6aLVaiMXiWRVi4MNQIXm8jmSJrFYrAoEAgsEgbSArKipCc3Pzog+ahMSHgBSYyE5pNBphNBrh8/kwNDSE/v5+RCIRZGRkQKvVIiMjAzfccAMqKiogEonQ0tKClpYW9Pb2Lvq7T+tETyQSQVdXF/7whz+gvb0dPB4PQqGQxmckFCEXmAwZOBwO9Pb2oq+vDyMjIynvnRgbG8PU1BSOHj1KzwhCoRBVVVW00zEYDFImKOKZAdCBAXJjer1e9Pf34+jRoxgeHp5XzHk+WJbF1NQUmpqaMDw8DLlcTiecJBIJ5Yy53PPJn5FIBLFYDF6vF1arFQcOHKDhTSQSgcVigVgsRktLy6Krr8Qx+f1+2rlIbso1a9Zg1apVuPvuu2G323Hw4EG88sor8Hg8qKqqQllZGcrKylBYWAipVAqPx4M333wTx44dS0lvPTOfD7ZQhtHkw1ppaSnq6+uxadMmnDp1CnK5HFKpFCzLQqvVgsvl0ni7paUFe/fuxfDw8FwrYPNibRUKhXjkkUdw3333obKykrwGgA/DjORdhhh/IpGggwOPP/44mpqa5jWGdaV1MgyD6upqrF+/Htu3b8fWrVtnHTqTkbwmj8cD4Fy/zwsvvIDe3l5YrVa0tbWBz+dj5cqV2L59O/72b/8WLpcL7e3teOCBBy7nJU+wLLvqcmsFALVaDaPRiJKSEjzxxBPIzMyc1f+f9LlnHdJJlTIej2N8fBzNzc146qmn0NvbSzNCcwV7CXbZJRk6Jh/M7/ejv78fPp8P3d3dcDqdEAgEdKsl2RaRSASlUonx8fG08maEw2G89dZbcDqd+PKXv4ycnBzIZLJZIRRwzohIVZFUWH0+H+0LGR0dTUm6jYBlWVitVoRCIfT39+O1116btYuQPHxySwTx2iS709vbC7fbDY/Hg5mZGfB4PHR0dMDv9+Ps2bN0p0zF2cbv99PD9aOPPgqFQgGTyYTPfvazyMzMpEMKpCcmeeY2GAzi5MmTeP3119Ha2krtI1Vh6ZJ48Cu8Jv3gMpkMMpkMGRkZ0Gg0mJycxMDAAPVMV8J8PTiBTqfDD37wA1RWVsJsNsNsNs+aPiLjasTQI5EIHA4HWlpa8LOf/WzeN+JC10luOpJhIQY9HxDaDpIvv4KBz8mDnw+RSASLxYJ/+7d/g8VioWN9xLj5fD4t38/MzKCxsRG7du1aVMx9KQ9+1Q08lVio4RDI5XI0NDTgV7/6FVQqFWWwIt1x5Is5ceIEjhw5gt/85jfw+/3z9oKLXecSYkEGTkCyZQKBACqVig5jWCwWNDY2Ynh4GC6XKyXeetnA5wDSMlBaWjqLWiGZFSqRSGBmZgbT09MYHR1d0Jfzf8XACUiFkoSfYrEYLpcLoVAoZW27ywa+SCSzay02q/N/zcCXAlf1kPlxQCoMexlLj2uD7n8Zy0gTlg18GR9rLBv4Mj7WmG8M7sS1Ky1nSfr78jpTg4/KWi2X+o/lLMpVwFKsM0V86ksiBEtakAFcdhzvcljOoqQZ6Sbony9SRGGRdo9NxhwJU6/D4YDP50sdi1lKXmUZ15RxA0g7r3qqQPhasrKykJGRkXL66WUPvoyrBsIy9tRTT4HH4+Hs2bP41a9+taD2h0thyQ2cEPokEom0K2ylCmR4Vy6XQ61Ww+12w+v1Ympq6iPhJa81cLlc6PV63HXXXbjhhhtQXV1NhzVqa2spU1oqsKQGzjAMNm7cCIlEglAohMbGxquiSDYXMAwDs9mMwsJC2r5LDHx6ehpOpxODg4Po7+9HMBhMabvsfNcpFoshlUopF+TVWsuVwOFwkJmZidzcXEqft379ekilUgDnho6T6fRSguSG/iv9AGAX88Pn89menh42Go2yDoeD1Wq1LJfLXdRrJv+kap0AWKFQyD788MOsy+ViQ6EQG4lE2Gg0ysZiMTYQCLBWq5V9+eWX2ZqaGlalUl21dQoEAra4uJi97bbb2MLCQlahUKTsegJoSfU1/cQnPsHu3buXnZycZIPBIJtIJNh4PM5Go1H26NGj7NatW1mxWLzg7/4Cm10qA6+oqGCfeeYZdmZmhmVZlg2Hw+yf//xnduvWrXN6PofDYXk8Hvu/6aq0GY5IJGItFgv77rvvsjabjY3H42wikZj1E4/H2VAoxE5PT7PHjx9nv/Wtb7F8Pn9JDVyhULCrVq1i9+/fz3Z1dbGdnZ3stm3bWKPReM0aeGZmJvsP//AP7MjICBsIBNhoNEqv5/T0NPviiy+yUqn0st/xfA18SUIUHo+HjIwMrFu3btZ0R/KE/ZVQXFyMvLw8yOVyNDc3w263IxgMpnytZrMZn/rUp1BZWUmn2gHQkTXC1kTI+3NycmCxWGA0GtMyP3op6HQ6fOITn8CKFSugUqloau1qSp5fCStXrkRZWRmUSuUsvsl4PI6jR4/igw8+SLkwbNoNnPRYm81myiZFRtj6+vrmTOhTX1+PHTt2ID8/H//yL/+CY8eOpdzAeTweSkpK8P/+3/+bNU9IhmoJHTChciCy2EqlErm5uRgbG1sSKW+ifvHggw9Sokty8wEf5sCvJTAMg4aGBtTU1NCYm9QOwuEwXn/9dbz77rspf9+0GrhQKMSKFSvwxBNPoL6+nv7e6/VieHgYTz755JwMXCAQoKSkBNdddx0UCgWqqqooM1YqsXHjRmzcuHGWccdiMfT29uKVV17Be++9h87OTmi1WhQVFeGWW26B3+9HZ2dnWsWdzofJZEJubi50Oh0dwhCLxbj//vuxb98+nDhxAlardUnWMlewLIvR0dELeFhCoRCOHz+O48ePo7e3N+Xvm1YDV6vV+PrXv46SkhKIxWKwLIvnn38eXV1d6OrqgsfjuazHI57ytttuQ3l5OeXUu/nmmykp5kIJHi+GhoYGbNq0if6bCFLt3r0bH3zwAbq6uuByueDz+eDxeOhwrNvtTqs0yPm45ZZbcOONN9Itnlyn9evXIycnBzt27EBvby+ef/75a8bQiXpG8vB0IpGAy+XCr3/9awwPD6dl10mrgctkMtx+++10S4rH49i7dy+amprQ1dV1+YX9L1OTVqvF1q1bqc4mn89HXV0dpqenIZFIKPPRYo2Lz+ejsrISFRUVAEA5T6xWK/bu3YvBwUGa9yb8LUSNgDx+KQycw+Fg3bp1s3ZE8vvCwkIUFxcjEolgcHAQ3d3dCAaDKd/pFoqMjAzI5XIAoBP1drsdb775ZlrOU8ASxOCEQzsWi8Hn86GlpQWDg4OXfDw5fJrNZlRVVWHjxo24/vrrqZ4ieYxEIkFubi56enoQDocXFfvyeDxaKiZfQCKRQFtbG3bv3o2Ojo4LBKZI7EhYrpYin8/hcKBQKGCxWGA2m+nvCYl/KBSCRCKBWCxGaWkp/uu//gvvvPMOHnroobSv7UpgGAY333wzSkpKAJxbc3d3N5qamhYsFjAXpNXASZdYMg/4ihUrwOFw4HK5kJmZic2bN6O6uhoajYZSGRNebqlUCrlcDoVCMUtrk8PhwGQy4e6778avf/1rTE5OLsrADQYDfvnLX9JDMABMTEzg1KlTeOedd2YZL/kcQqGQ8o0TaY5Ua2SeD51Oh5/97GcoLS0FcO4me+2113Ds2DE0NTWBZVlkZWWhqKgIDz74IORyOdauXYuf/OQnePLJJxdF67wYkKFjwn+TSCTgdrvR1taGI0eOpPW90+7BCXsRKcWuW7cOJpMJ09PT0Ol02LhxI2pqai7QwiEkO0SLkrwO+RGLxVT9bDF3P+EK37Bhw6xQ6ujRozhx4sQsFlby3kKhEBKJBDKZDF6vN7WVt0uAMMw2NDRAo10pr4MAACAASURBVNFQSb6DBw/i0KFDaGlpAcMw0Ov1sFqtyMvLw+bNm6HX67F161YcPHiQkhQtNVQqFRWkJRkeQqgqEAig1WoxMzOTll0wrQaebHiEcOarX/3qLLpkYrgXAzFwIkWYPNUej8fptryYC3PdddfhlltumSUbEgwG8aMf/Qg9PT30MyTvQkqlklIgOJ3ORYdIc4FAIKCiuxwOBw6HA0eOHMGePXswMTEB4Nz1ttlscDgc6OzsxK5du7Bp0yZUVlbim9/8Jl566SU888wzS94/U1JSgn//93+nWR+y25WWlkIkEsFut+PEiRPpOains5KZnZ3NHjp0iJ2ammITiQTLsuysamDy32OxGBuLxdhoNMpGIhHW6/WyDoeDtVqt7NTUFK18xeNx1uFwsC+88AJrNBpZHo+3oAohwzCsXq9nd+7cyU5PT7MELS0t7I4dO1ipVHrJ50mlUlaj0bAmk4kViUQsl8udV/VtIdfzO9/5DtvW1kav4f79+1mTyXTJVgcOh8N+4hOfYHfu3Mm63W52amqKbWpqYv/jP/6DValUs67bpT4nUlDJNJvN7Oc+9zlalk8kEmwsFmMdDgfrcDhYm83GWq1WdteuXeznPve5BVdJr0ol0+v1Ys+ePbjjjjtQWloKk8lEvfX59MmkUpicjSCxLiHhAc7Rle3btw+NjY2w2+0LTi0JhULce++9qKuro6oSRHO+ra3tsp2O5FBJFB/Iukn4Qs4L4XCY6vgsFgaDAfn5+QDOcQFOTU1hYmLikh4vkUigt7cXBoMBU1NTyMzMRE5ODhiGwUMPPURFWDs6OhAMBuH1ejExMUHZc4mixUJBwsgdO3Zg69attIKdTJFNmsJkMhlKSkoQDAbR2dmJ06dPz1ly8EpIq4G73W788pe/hEgkQjQapbImwOx2WXIIAT7cUQi5PFGGYP5XK3F6ehrPPfcc3n///QUbN4fDgUQiwSOPPEK3TeCc2JHD4bio4SQT/wDnsgCEkJOAaGaqVCokEglMTk6mTL+eyOoB567rXApLQ0ND0Ov1GB4eppqfWq0WtbW1VFx2165dsNvtGBgYmEWjtlgDJ+JZn/nMZ7B+/XoA575bcnP29/fD6/UiFotRdb3y8nLceuutsNvtKWvFWJJelJ07d+Lll1/G+vXrsW3bNoTDYVitVjz33HOUiP0zn/kMiouLKSegUCikMTg5dff39+Oxxx5Da2vronoWyIH3fIHZ0dFRjI6OXjB+xufzIRKJwOPx6OGI/BDPzeVyYbFY8PDDD2Pz5s1UVe5K+f6F4Hwd0UshEAjg9OnTeOyxx3DnnXeipqYGFRUVUCgU4HK50Ol0+PSnP422tjZ88MEHNKORip6WrKwsvPHGG8jOzqYOxG6347nnnsPjjz+OYDBI34PD4aCoqAj19fX44he/iFWrVuHVV1/F008/vag1AEtk4JFIhOrHjI2NUWJ2Mn8XDAZx+vRpmEwmqNXqC5qwOBwO3G43hoeHcebMmUXr9SSHQ8m/Y9lzkioajQbRaBQKhYJ6lrGxMYyNjdGK2/lhiVKpxB133IHq6mro9XqYzWYIBIKUVec8Hg+cTifVCZJIJDAYDJfUHiUIBAKwWq04fvw4BAIBjEYjxGIxOBwOQqEQBgYGcOjQIZw8efKCXP9CQdK8XC4XIyMjsNvtaGpqQl9fHzo6OjA9PX3B7jAxMYHp6WlkZGRApVIhKysLAoFg0anXJRt4CAaDVJIkGeSiWq1WhMPhWYoKJCxIJBIYHx/H2bNnYbfbF/0lkCzM+dVHoVAIjUZDq4Ekbq2oqEBzczMmJydnGTfLnpMzUalUyM/PR0NDA/Ly8qgCGrA4vZ5k2Gw29Pf3Q6fTgc/nQ6VSobS0FAMDA/D5fAiFQrPOAyzLUinsaDQKm80Gp9M5ayhiamoKJ06cQFNTE3p7exdEx3wxkLDS4XBgZGQEnZ2deOWVV+h7XAxer5cK8BI22o+UgV8OJB7ncDjUeyfrlDscDuzZswe7d+9OyRdA1N2SX4thGBQXFyMzMxMrVqyg0oGRSAS7du1Ca2sruru7Zz2PYRgoFAps3LgR999/P9avXw8ul4upqSkcPnwYTqczZenD119/HTabDfX19ZDL5airq8OPf/xjDAwM4OzZs2htbaUk9CR9KpPJoNfrUVVVhZycHCoT4na70dfXh9bWVjz66KMp161XqVQQiUTYtWsX9u3bN6cuS3Lukkql9PxFiPIXg2vCwPl8PlVXSFZiIxLO3/3ud9Hc3HxJffaFIBaL4fDhw1i5ciWys7MBfDh7mZeXBy6XC5vNBqvViqNHj2JiYoIaN7kBeTwebr/9dqxfvx7FxcWIx+MYHh5Gb28vzU4QjvHFwuFwYHBwEIlEAlwuFwqFAqWlpbBYLFi1ahVuueUWjI+PY2ZmBoFAgJ4J1Go1lEolxGIxFRjweDw0C0PEtaLR6KIPdSRzwuFw4PP5cPjw4Tnzf4vFYohEIsRiMTgcDthsNirnuBhcdQMnMSzxLsRzA+e+1Pb2dhw+fJiGB6lCLBbD+++/T+NlcmAjBSnymKmpKTidTqo9zzAM5bjWaDSor69HSUkJlEolPB4PRkZGqCEqlUpEIhFMTk4uer1EApCsUSgUQigUQqVSQafTIScnB2azGTMzMwiFQpBKpTCbzdQjcjgc2lZw8uRJdHR0wGq1QigUIjs7G6FQaFEHYhJaZmRkQCaT0WJULBabE2eMyWSCyWQCAHR3d6dMFuaqGzjxRlu2bIFWq6XGnUgkcOzYMezcuRPj4+MprxRGIhH89re/RXFxMVatWgUej4dwOIxIJEIzN16vlyp9ESPhcDjQarXIyspCTU0NNm/eDK1Wi0QigcHBQXR0dGBwcBCFhYVQKBQYGhpKiYEDoLtHck8OAcMw0Gg01AtqtVoqXEWMKxgMYmxsDD/60Y9oBVYoFGLHjh0IBAKLMnAejwepVIoVK1aAy+UiEokgFArRGPpK8f3GjRuxadMm8Pl8vPnmmzh58uSC1zJrXSl5lUXgrrvuwm233QatVktjrkQigW9/+9s4evQo2tra0lYGDwQCcLvdmJqaQkZGBj39EwnqgoIC6PV6lJaWwmq1wuv1oqamBgaDgarDabVa2lloNBqxbt061NbWIjs7m0pRnz59etFsTSQsSj4gJxs78OE2T7JByc7i5Zdfxv79+/H222/DbrfPeo3f/OY3ixNb/V/1hszMTGzcuBEOhwNTU1PIycmBRCJBOBzG+Pg4WltbMT09PSvFy+VyIZfLUVNTg7KyMkQiEQwMDMDhcCx4PbPWlpJXWQA4HA5ycnJQU1OD2tpaKhHi8XjQ3d2N48ePU0qGdIE03I+Pj1NJ72R9eKFQCJlMBpFIhKysLIRCIeTm5tKCFTkEk6ELIu/NsixcLhf6+vrQ09OTkqGMrKwslJSU0IMvEcWKxWJU4IkcjJOLUiMjI3jrrbdw8OBBtLe3Y3h4+ILXJoK9CwX57OFwGO3t7XC73QgEArSRjTSHVVVV0UKa0+mE1+tFPB5Hbm4uMjMzwefzkUgk4PP5UnbeumoGzuVysXLlSlRXV6OoqIhupXa7HW+88QY6OztTIjN9JYyNjaGnpwcVFRX04Jg8xAAASqUSOTk5AD4UVkpuLyCxrc/ng8vlgsvlwvT0NN5991309PSk5CYtKSnB2rVraSwdDocRjUYRCoUgEAggkUjoTUeGCWKxGFpbW/G9730PMzMzaZvTTCQSVFH57bffRiwWA4/HQ35+Pm699VaqIC0UCjE2Nobu7m60t7dTBb3Vq1dTrhxSxErVrn1VDJykg77whS+gvLyc5ronJibwwQcf4Kc//Wnae6sJXnvtNfT29mLr1q1QKBSzKpvJ23/y32OxGJ3qCYVCGB4eRmdnJ44ePUoHOojgaaqMauXKlbj55ptpnwiZGyVqyKSwEg6HMTExgSeffBKNjY0YGRmhB+R0gWXPSS0me10ul4vh4WEajkgkEiQSCUilUhgMBnR1dcHtdqOnpwcnT56kO9Qtt9wCg8FAw5zF4qoYuF6vR0VFBQoLC6FSqcCyLDweD3bv3o133313yYwb+LAA9d3vfhcVFRUoKytDQ0MDNXTSUEV6T/x+P1577TUMDAzA7XbTqqzT6YTNZqN69alu+wwEAvB4PEgkErTVIPnMQNKqe/fuxYEDB7B//36Mjo6m3biTkfyZ4/E4fD4fmpubaQ/K4cOHYbfb4XQ60dPTA5vNhunpaUSjUXi9XkxPTyMSiWD9+vXIzc1FVlYW3nvvvcX1xKTig80Xer0ea9asgU6ng1gsRjgcRn9/P9588000Nzcv6VoSiQSmpqbw+9//HmvWrMHatWuRkZFBU4WkH4ZkBNxuN1566SW0tbXB4/Es2Szm1NQUxsbGaB4cABVVTSQSNEPS2NiIV1999aoMNiSDeHXSGRgMBvHiiy/S/Pb09PSs6+b1euH1ehEIBHDHHXfAaDRCIBDg8OHDiwtX0tkPfqmfT37yk2xXVxcbiUTYSCTC9vX1sRs2bJg3Bdr5P6laJ8Mwl/1Z7OsvZJ0rVqxgH3roITYYDLLhcJiNRCJsPB5n4/E4a7fb2UOHDrFGo5EVCAQp+Y7+9yelzFZzvfb/9E//xD777LPsSy+9NGemq6vSD34xyGQyqFQqaDQahMNhjIyM4NSpUylpokoVlsIjzxfhcJj2bPf29qK/vx/Hjx+HzWajvd0ul+uaJTOdK1iWxZ49eyCRSGj35mK+jyU3cMIeGggEkEgkMDQ0RA8c16JhXSvw+/0YHR3Fvn37Zhm43W7/yBv1+Ugll8uSG7hIJILX68WZM2eg1+vR3t6O1tbWZeO+AiYmJjAxMYHDhw9f7aV8pLDkIlQ8Ho+GKVVVVRgYGMDY2Niiiw0AwC6LUKUay1Le80UsFsPMzAz8fj8dZEhF19gylnExXJU0IcuyiEajGBoaSgnt2jKWcSlcVSHYFDdRWZL+/lERLb2W1wl8dNZqudR/zCsGX8YyPmqYlwf/qBw0lteZMiyJ0nEqcKlD5rIQ7DIuh2s1JJkzlg18GR9rXPWJno8Kksk3xWIxpWZL9UT6MlKLZQO/BAwGAzQaDTQaDW1HJdP+MpkMPB6PNvmPjY2hv79/SQSo5gMyCCyRSCCVShEOh2kP+/8VLImBJw8LfBSyNhwOB5s3b8b111+PG264ARKJhBp3LBaDXC6n42F2ux1/+MMf8K//+q/XTLMYADrGplQqUVBQgLKyMthsNnR0dGBkZOT/zK6TUgNPniwh/IJmsxl5eXnQ6/UwmUx44403KJ3XUg42zAVarRZr167Fo48+CpPJBLlcDolEcoFWJhlrYxiGktxcKw1PEokEZrMZX/va1ygRqF6vh16vp/OOjY2NeOGFF9KurpAKzIVy4nJImYFzOBwYDAYUFhbSqROhUIi8vDyUl5fDaDRCp9NBKBTCZrPBbrfj5MmTGB8fv6D5falBtG9uvPFGNDQ0oLy8nKoREEQiEUqFIJPJKCE/4Va8FvTh+Xw+Vq9ejfr6eqxZs2aWCptSqaSEphs2bIDb7YZAIMCBAweu8qpng2EY5OTkIDs7G3l5eeBwOBgbG8P4+Dg6Ozvn/XopMXBCR1xcXIzt27fTHl4+n4+8vDxUVVUhMzMTUqkUlZWVCAaDcLlcePbZZ3HkyBGqBpZKScD5rF0sFiM3Nxef+9znsHbtWshkslmPiUaj8Hg8lBGKMF8xDAO73X5RMsmlBtlNtm/fjrvuugsajQajo6OYnJzExMQEtFot1Go1xGIxampqIBKJkJ2djQ8++CBlnIQLXbdIJJolc7Nq1So0NDRg+/bt4PP5OHLkCA4fPoyhoSE6mDxnLGaih2EYVigUsjqdjv3iF7/I/v73v2e7u7vZ3t5etq2tjW1ubmZbW1vZkZER1u12s+FwmE6jRKNR1u/3s5OTk2x7ezv77W9/m7VYLFdlUuaBBx5ge3t7WY/Hw0ajUZYgHo+zwWCQff3119kvfOEL7MqVK9m6ujr2nXfeYWdmZth4PM7+6U9/Yu+55560r/NyPwzDsDKZjN25cyd77Ngx1mq1si+99BJ7/fXXs3q9npXJZOytt97K7ty5k52YmGBjsRgbDofZoaEh9uGHH2bNZvNVmehhGIbNyspi//jHP7Jvv/0229LSwrpcLtbv97PhcJgqf4RCIdbhcLB/+ctf2Orq6vRN9CSzvQKgKTOdTofa2lqUlJRQIhyRSET5O4hQVPLzyHMFAgGEQiHuuusuFBUVoampCbt27VoSjyIQCGAymVBcXAydTkcPjsC5kOTMmTM4dOgQDhw4QIdkuVwupqenEQwGIZVKcfToUfT09KR9rZeDQqFAdnY2MjMzEQwG0dPTg927d6Onp4cO9XZ2diIvLw82mw0qlYpmWAhdXrrB4XBQV1eHyspK1NXV0TOMVCrFddddB7FYDLFYDIVCMSs0JGceQjiq1+shkUjmPEw9bwMnKlnk7yKRCJmZmcjPz4fJZIJUKqVkNEKhkGpJJh/UyGsBoIuvr69HWVkZTCYTDh06hImJiflvR/P8LAKBAFlZWSgoKKCZEgK324329na88soraGlpoZQICoWCku6wLIuOjo6rOuDLMAwyMjJQUVFBec3Hxsbw3nvvUQUFAJQ+2efzUd4S4NwIYboMXCAQQKfT0fGzzZs3Y8uWLbjpppuu+J6k45RcWz6fD7PZjIKCAgwMDKCvr29Oa5h3DE7uPEICKRKJYDabaTaByJEQGjZyI5z/GheDQqHA9u3bsWHDBtx3331oa2ujCmLpgFqtxsqVK7Fly5ZZFzwej1PPffz4cQSDQQgEAiiVSmzcuJHuVJFIBMPDw3A6nWlb45VApBm/9a1vITs7GxMTE7DZbBfIpAsEAigUChgMBkoeRMiXXn311ZSvSyAQID8/Hzt37sTatWtpcex8urmLgdBMjI+P484774RIJEJpaSmeeeYZfP3rX0d5eTm+8Y1vzMn5LciDA6CCnsFgECMjIzh79uws1tPkxRIQBiQAFzA08Xg8KJVK8Pl8SCQSPProo/jzn/+MX/ziF2kJV7hcLqqrqyltM7nosVgMfr8ff/3rX3H8+HFEIhGo1Wrccsst2LBhA+rq6pCbm4uBgQH8+c9/Tskk0mKgUqmQmZkJg8EALpeLkydP4u23374gzy2TyaDRaKDT6SAQCKgY1P/8z/+k/AblcrkwmUz4+c9/jqqqKur4bDYbAFAR3eRrTjJRsVgML7zwArq6utDd3Q2r1QqFQgGtVkuJWuVy+ZxtYkExOPBhTjgYDFJVYODDrYSEJWSLJB9ifHwcwWCQsrj6fD5EIhFIpVJUV1dDp9NBKpWipqYGLS0tkEqlaSmg8Hg8rFq1ikplEESjUbjdbqpNLxQKsX79ejQ0NGD9+vXIy8ujHNb79+9fUmKdi4Ewgh09ehSJRAJHjhxBe3v7BQagUqmgUqkofzchDD116lTKJ6qKioqwbt06rFu3jp5ryPsRp6ZQKMAwDEKhEHp7ezE6OkrDp3feeQe9vb00a1JYWEjp/QgXTNoMnCyWGLjX64Xf78crr7yCgYEBOJ1O7Nixg/JSBwIBRCIReL1ejI2N4Z133sHQ0BDGx8dp+i0Wi8FoNOKRRx5BfX09CgoKIBAIoFarkZOTg66urpRW3khq6r777qPCqsC5m5Zo2oRCIfD5fBgMBvz0pz9FVlYW5b0OBAKw2WzXRKHE5XLhhRdewIsvvnjZLZsU25IdTzAYRGtra0oLblwuFw888AAefPBBqhxN7IXP5yMUCsHj8cBgMCAej2N8fBw///nPsX///ovSZHO5XNxxxx34zGc+Q+1vPsWfeRl4NBq9oKBB6HzHxsYQDAYxOjoKp9NJY73Dhw9Tii6XyzVLI4bQjQHnqMl27dqFgYEBfO1rX4NSqcSqVavwzW9+E1/72tdS2j/B4/EgFouhVqupfiNwbpfp7+/HU089BavVCpZloVQqqcIaubDBYDCtrLfzwVyZtUjG6vy2iVTVHkhG5Pvf/z62bdtGQxA2ieaZ2A7hLff5fFScbGpqapZxk/rEt771LezYsQNmsxkA8Ic//AHvvPPOnNc170PmpS5GNBql2o0tLS1QKpVgGAanT5/G9PQ0AoEA5ey72GuwLIv+/n5KvEi04C0WyyUPpQtFZmYmKisrKRsreX8iWWK1WiEQCJCbm0s1cUjWATh3gxAlio9CTwfDMMjPz4der6e/I2T+qTBuLpdLw5INGzYgKytr1qGd5qR5PCos5fV64fF4KGVbsuMkZzm1Wk1V60iq+ezZs/Mi6k9pLwrh7ztx4gT1zoQw8kqIx+OYmJiA1WrFxMQEjEYjVT270ql7PuBwOMjOzsbmzZtppofsQr29vejs7MTk5CQUCgXq6+vx4IMPUu1O8liRSAS5XA65XA6v13vNGznDMKiurobFYpn1u1RdV3Ke+frXv47S0lIq3AuAHhxJyjcSidDEBBGFJSlbctPx+XwoFAqYTCYUFRVBKpXSc1tvb++8iIFS3k1IRFuBuW+fBOSxJAUpFovp6XmxTTcEMpkMZWVluOmmm8AwDD3sTk5O4le/+hU++OADTE1NUa7wjIyMWTsIy7IQCARYs2YNnn/+eXzpS19KmZ5MOkDaKGpqapCbm0t/H41GUxZ7RyIRuFwuDA0NwWKxgGEYSgp6+vRptLS0YM+ePejo6KBtHBwOB2VlZSguLsZ3vvMdeL1eyOVyWgshcukZGRk4evQojh49iqeffhoej2dea0tLu+x8DZsgmQqYsKheLI++EJDCU21tLUpLS2kemzCd9vT0wG63IxwOQyAQoKKiAvn5+RCLxRekOhmGgVwux4oVK/DDH/4Qp06dwvHjx3H8+PFrpquQID8/H5///Oeh0+lmXce//OUveO2111LiNFj2nJLEe++9h02bNs1SmSD8352dnRf07AwMDIDD4eCTn/wkJBIJPRc5nU4qGkskTaxWK9xu97x3y7QZ+HxBjIYIgAKYpSa8WA/O5XIhlUpRVlYGi8UCiURC6ZDtdjv6+voQDAap9yktLaVqxUQ2O5FIwO/3QyAQUNXg++67D2azGX6/HydPnrys6vDVgNlsxqc+9SmaliNiWW+99RZeeumllL3P5OQkWltbZzkkDoeDoaEh9Pb2XlRzx+VyQSaTISMjgypARCIRtLS0oLm5GQcOHIDL5aLSiAtByg38/JL8XJ8jEomwcuVKrFu3Djk5ORAKhTR+W6xSAvHeWq2WboEsy9IW2GAwCKfTCT6fD6lUCr/fTx8Xj8cpUWggEMCpU6dQXFxMJaeTCemvNRIjPp8PuVyOrKws+r14vV5s2rQppSK1wDn+8p6engti++HhYYyMjFz0OSzLIhaLwe12w2AwIBaLYXx8HC+88ALa29sxODi46DWmxMDJISH5w11MC57IYCc/j8TZ27Ztw0033YTi4mJqOENDQzh27FhKtv3MzEzcdNNNVC9GIBAgEAhAJBJBp9OhuroaY2NjYFkWMzMzlHBeJBLB7XZjeHgY4+PjGBoaQjgchslkoroyJDy52i2z5+POO++kZw0A9LDn9/tTHkqRvPr5jqi8vBwjIyOX7R0JhUJUEOzAgQM4ffo0JiYmUnI9F23gZCzKYDBQISQSVgDnJEL8fj/dupPTRTKZDEqlEnq9Hg0NDbRvPJFIoK+vD6dOnVo8wz8+zHxkZ2dDp9NBoVCAy+UiFotRZWWdTgetVguPxwOxWEy1HmdmZuBwODA8PEz7Tnw+HwKBAPU+NpsNNpvtmsumVFVVobKykv7b6XSio6MjLX33ZEdsbm5GZWUljEYjAKC0tBSjo6N49913EQwGZ70v6WgkM64+nw9nzpyZJby7WCzawBUKBWpqarBt2zaYzWbodDqEQiE6ETM4OEg1JoFz4YJarYbBYEBeXh4d7iVtm+FwGA6HA7/97W9x7NgxtLW1LfrLIM8XCoWzxtCi0SjUajUEAgEmJyeRmZlJwyFywwaDQUxNTcHj8SAQCEAoFEKhUEChUAD4UIHY7/fPOidcC3OopaWlKCkpof9ubW3F008/nbZRwWAwiH/8x3/E9773Pdx1113gcDi4/vrrwePx8Oqrr2JwcHDWzUUawAoKCiCTyeDz+WhzW6qwKAOXSCQwGAyoq6vDddddB6PRCIVCQTMNiUQCOTk5WLlyJa1cEu8tFoupQhgpnMTjcYyMjOCPf/wj3njjDTidzpSd8icnJ7F3715s3LiR9h4bDAaIRCLw+XyaRguHw4jH41AqlTSjU1VVhVAohGg0Cg6HQ9cNAIWFhaitrcU999yDvXv3oqOjA16vF3fffTcKCwsxNjaG3/zmN+jq6loyigkul4uMjAyo1WpIJBIAgM/nQ09PDxobG9OW0kwkEujs7MQ3vvENPPPMM3jrrbfA4XCwZs0avPnmm/jTn/6EY8eOobm5GdFoFNXV1Vi7di3UajWAcyT/Vqs1peHTvA082UvF43H4/X7YbDaa30yWj04kEtSYibIumfYWCAS0y4x4u+npaQwODtLSbarEQIFzF6+rqwvPP/887V0XiUQoKiqi8TQ5KMbjcVqsSB7ySM7okOsgEokgEonouaG0tBShUAjr1q2DXq+f1Ri0VJ6cx+NBr9fP+i727NmDAwcOzFIZTgcikQgmJiaQSCTwi1/8AnfccQfMZjMsFgs2bNhAQ9iTJ0/SrBmXy4XL5cLU1NSiJUvOx6IMPBqNYnp6Gm1tbdi4cSPkcjlVDCZ5bCIpHYvFEI/HZ3WEJRt3OBzG8PAwzpw5Q9tUU4lAIIC+vj78/Oc/R15eHlasWAG9Xo+bb74ZUqkUYrGY3niXqvAlGyox9mTukS1bttDPSTx1IpHAzMwMvcGXAjweD7m5uVQpLpFI4IknnkBvb++SvD8A2O12fOMb30B2djZtg66srIRQKASfz8eZM2eocyC9TMPDwynfXeZtw8CBXQAAGEdJREFU4MlbbCKRgMfjwZkzZ/Dkk09i27ZtuPvuu1FeXk4/CPHk0WiUDg6QUAX4UFzpxIkTePbZZ9Ha2ppSz30+/H4/Ojs70dXVBYZh8Lvf/Q5arRZ33XUXPv3pT6OoqOiCoWPgQ6MmLcLRaJQKm5ID1vT0NBobG3HkyBHs27cPgUAA4XA45V7pStBqtfjBD36A/Px8xONx2mu91IdglmXxyU9+EllZWdi8eTPEYjGMRiOMRiOUSiWysrKQnZ0Nj8eDZ599FgcPHkz5GhZ9yCS5zPHxcRw6dAg+nw8PPfQQsrOzodFoaP8B6RxTqVRQKBTg8/kIh8MYGBhAd3c39uzZg9bWVkxOTqbic10WyenKaDSKeDyOffv2YWRkBBaLBaWlpWhoaKCGPj4+ju7ubthsNsjlcgwNDdHeZYlEQnU0PR4PhoaG6HjY1WAJAM5ltkjhpL+/H7t27VoSWfSLgcwAHDx4ECqVCpWVlVCr1TCZTFCr1eDz+XC5XBgbG0vLd5+yQo/H40FXVxcmJydRV1dHW1JJeEKMgEzwEK9utVrR3NyMffv2pXUG83IIh8Po6OhAR0cHMjIysGrVKohEImg0GgBAb28vmpqaMDAwAK1Wi56eHszMzNA0I9mdroUWWhICqlQqMAyDkZER7N69+6rKxJDwUKFQQK1Wo7S0FJmZmTR7Rlom0nE+SHk34fj4OL7//e/jS1/6Eu644w4UFRVBLBbTgxiJv3k8HrxeL06fPo1Dhw7B7/dfE1VAp9OJt99+G3v37qW/uxbWNVeQ0TQulwuv10tz+NcCPB4PRkZG0NXVBblcjoKCAlRXV0MoFEIqlaa0a5Qg5aV6MjD6wgsv4P3334daraasSjwej4YnhLGIlGSvNSO61tYzVxQXF6O+vh7hcBj/+Z//icbGxqu9pFkYHR1FY2MjHVFcu3btrIGSVCMtzVbxeBxDQ0MYHR2lxRVy6CRVKw6HA4fDAZfLtayylkJkZWWhqKgI4XAYbW1tOHPmzNVe0iz4/X4EAgGIxWK43W6Ew2HI5fIL2jhShbSxy5LDJ5lSX0b6QYY5SkpK6KTMtXAuSAbJRpFhB6fTCaVSSTNOqcYyP/jHCIlEArt378Ybb7wBhUKBwcHBa3YQAwAaGxtht9tRUVGBsbGxtLzHsoF/zOB2u+HxeCAUCq95ovuxsTFEo1HYbDa4XK60vMeSS3mnE+xHRL3so7JOpFnKmwxuk5nYxRzs2RRJeX9UxECX15kapHWt8Xg8VXUPy6X+Y1kIdhkfaywLwV4FfFTWiSUSgr1Y/nu+jjdVIcoy/m8h7eET6ShNJmBKZXvxsoEv46qBGLZEIpl1yEylpMqygS9jyUC0RslgiV6vh06ng8lkgsfjgdvtxtjY2IL4Ty6FZQNfJNI9e5kqRq9rAQzDQK1WQ6/XIxaLoaysDLm5uTAajZicnKQSMeFwmA51LxbXpIEn0zRfa5PqySAeiRh5qqkYyLRQuvrKF8Jhsxjw+XyUlJTgxhtvRDQaxfr161FeXg4+n08pOQwGA1wuF+Lx+MfLwMm0vdlsxoYNG1BdXY3u7m40Njbi9OnT15Shc7lcZGdnY8eOHdDr9QgEApiYmEBjYyPcbnfK+j94PB5EIhEd2AbOGX0qxt/+7u/+Dg0NDdBoNHj77bfR3t6OlpaWVCz7kjCbzVi/fj0+/elPIxwOQ6VSQSqVIh6PUw5IHo8Hs9mMEydO4L333sPIyMiiPutVNXDi/bhcLpRKJbKzs1FWVoZNmzah9P+3d20xTZ5/+On5SM8HWmG0HCwMQTwNJbKJBzBx55iwmCwxy7yaS5bMZVmy7HJLll3tZssutmjc1GRB55Jp4mRIEBQdcloLQqmUQ4GW0jNtaen/wv/7rmWwA7TFMZ6kN1jb9/v6+973d3ye0lJKOm82m9ddFZkYm1arxbZt22hbqkQiQSgUgtvthlKphNVqhd1ux9DQECW0WS2Iv0o0j/h8Pp2Wl0qlkMvldPQvHo/D7/fD6XTC4/EgGAzC6/VSlgAmkwkWiwU+n4/6+no0NDRg165dEIlEGB8fx9zcXMYN/MiRI6iuroZGo0E0GqVsCqFQCOFwGAwGAzqdDkqlEhKJBAKBAOfPn1+WUOjvYt0MnMlkQiwW0+FkjUaDoqIiVFRUYN++fdBoNCguLkZZWRk+++yzjBt4snoAgBTCe0IVIZfLsXv3brz++usoLS2limsLCwtYWFjAwYMH0dnZic7OTszOzsLpdK66Q448+ESpTi6XQ6lUYtu2baisrITBYIDJZKK0ELFYDKOjo+jt7cXw8DAcDgdGRkbg9XqpMXG5XCiVSrz//vsoKCiAVCpFOBzGli1boFar03YvV7qexsZGVFZWpjAYkMF1wuibm5sLuVwOg8GA4uJi/PDDD2tiwl0XA+fz+VAqlXjzzTfR3t6Onp4eqqggl8vpkUR+4EyDyWRCKpWiqqoKMpkM0WgUDQ0N4HA4WFhYgMFggNFopJzlhBNlKQ0dm81GfX09TCYTBgcH0dHRsWoDV6lU0Gq10Ol0mJ6exjPPPIPdu3ejvr4eCoWC8rkko6SkBHV1dbS3eumLrJNIi0xNTeHTTz/FTz/9lJWpn9zcXMhkMgCP4xW32w2Hw4GrV69Cq9WisLAQZWVlVJGNnOB+v//fY+BKpRJarRZ6vR6tra2w2Wzw+/2Uo9vtdtPdM3n6PpNgs9nQ6XSoqKiA0WiESqVCeXk5NSCpVAqpVEp1hwh3Cjn6yYvBYMDtdsNms6Gvr2/V4lnk2hcWFuD3+8FkMlFYWIidO3dCpVLR6ajlaKWXU1YgREzJn+90OjE8PIzm5mZMTU1lnPY5WRUjkUggEAhgeHgYFosF/f39UCqV9KFlMBgIhUKYmJiAz+db0+mdVQNnMBjIy8uDWq1GTk4OmpubKW8h8HhmLxAIpPx4mRhjWgoiT6fX62EymfD0009DqVRSQyIgQxyhUIjqFSX7yMluwujo6JqCI/I95CGXSqXQ6XSULIkY71LpD0JQtFRodalC3sTEBHp7e2E2mzOeRSF0EYQWO5FIwOVywWazYXBwEC6XC3w+HxKJhN7v2dlZWCwWuvmtFlkzcMK7/eKLL8JisaCpqWnZwCHZLVlcXMx4wz7ZVTweDzweD0Kh0B+0e8haotEopqam0NXVBa/XC4FAgPz8fEgkEsqtd/78eVy5cmWtrZ9wu90p8h6Dg4OwWq1QqVRgsVi0xXRmZobeI4FAQANbpVJJsxJLjT0Wi6GpqQnnzp3LSoqwvLwcn3zyCTQaDf3+W7duwWKxwOl0YseOHdi7dy9MJhOl8Gtra8NHH3205p72rBh4eXk5iouLsWvXLlgsFgwPDy9r3GTiPjnYy2R6UCgUQqPRQKVSQa/Xo7S0FAaDgQZ2hIvQ4XBQ8aMbN27A4/GAwWBAqVTCZDJBoVBAKBSivb2dchOmC0QJraWlBeFwGBUVFeDz+VTC8bvvvoPD4YDf76e7tFgsRk1NDbZv3w61Wp2ijRmNRtHW1ka1iLKBnJwcVFVVgcvlYnFxEeFwGHfu3MHMzAzYbDYOHjxIOVISiQQGBgYwMjICt9u95gcwowbOYDDA4/GwZ88eqgc/OjqK6enpZd8vlUopVx3hA8yEb0iI7vft2we9Xg+FQgG5XI6ioiKo1WpwuVzK3RKLxeB2uzE6Ogqz2Yy7d+8iFotRHc9IJAKxWAwOh4M7d+7A6/Wmfc2Li4sYHx/HwMAApYUjhEpjY2OwWq3UWMViMdRqNfx+P1WmIIjH4wiHw2hvb4fdbs/KxI9MJoNGo6FiYtFoFMFgEDMzM1QQNj8/nzL+xmIxdHR0wGKxpCVzllEDZ7PZyM3NxcmTJ8FisXDmzBl0d3evmFkg2QoSaCwsLFDpwXRCKpVi69at+Oqrr5CTk0PdES6XS49zFotF01N+v5+SEpG1JRIJ+Hw+PHz4kKpErCVf+1cIBAIp7FQkrUk4FQnxqVarhcFgQEFBAWQyGVUaBh67Bj6fDxcuXMD4+HhG1rkU5eXlKC8vpwWqUChEWYO1Wi2MRiMKCgogEAgoLd7nn3+eNh7FjBm4WCyGyWTCxYsXkZubi7a2NvT09PzpU1lYWAij0UiNLBKJYG5uLq0GzuFw0NDQgPfeew8ajYZmGVgsFj05yIsUV6qrq1FRUQGPx4Pnn38eFosFo6OjGBwchMPhwPz8PCKRSEbdKaLOMD8/T1OVcrkcr7zyClwuFzweDzQaDWQyGaRSKRQKBSQSCTWsQCCA1tZWXLp0iapUZAOnTp3CkSNHADxODc7OzuLRo0coKSnBU089hcLCQlqwCoVCNKuWrrpHxgx83759OHLkCIxGI7q7u/HgwYO/PBKVSiVUKlVKYLc0xbUWMBgMHD9+HEePHkVhYSFlwU0u8iztTyZyggKBAGKxmHJvGwwGyOVydHV1wW63w+v1pmWNK4G4S7OzsxCJRDTDYzAYoNFoMD8/D4lEAj6fT0WyWCwWFc5qaWlBa2srurq60tqOuhJIcExiHAKilbR7927k5uZCq9VSSmW/309PxCe+Xfbo0aM4deoUFhcX8fPPP+PmzZt/+n4Gg0FvRnL+Np0qa2KxGO+++y5MJhMtdgCPA7nkh4+UtUmGhbzYbDYKCwuh0+mwdetW2hUXjUYxOpr50cpoNIpHjx5BqVTSaiBRL05uTCP3irh5Xq8XFy5cQHd3N6xWa8bXCfxePCMuFFmXRCKB0WiEXq+HSCQCn8+nGSGfz4fBwUHae/NEDzzY7XZ0dnYiEong+++/R3d394rvJbtiUVER8vLyaA7Y6XTC4XCkRQh27969+PLLL1FSUkIpnGOxGMbGxjA0NIRz585hcnISAKhqRXFxMUwmE/Lz82l2h5DeE+kVmUwGJpOZFRGqmZkZvP3223jrrbdQW1uL6upqMBgMGnBOTk7SlCWJFcLhMGZmZmC1WpeV8ssUJBIJTpw4QbV6gFRWXyKPTkiASHp4z549kMvlNO5ZKzJm4DKZDDqdDi6XCwBWzGczmUzIZDK88MILyMvLozlw8ndSIid+5GqgVquRn5+PvLw8GpAFg0F88cUXsFqtGB8fh8VioQxcNpsNIyMj1JfNycmBWCyGXq/Ha6+9BoVCQcnyyb8TXzeTiMfjmJ2dxa1bt8BkMlFVVUVz+BMTE7h+/TpqampQWVmZonq3tM8mG2Cz2cjPzwefz6d/I0acXPklGSHSEqxSqfDyyy+jvb0dHR0dT4aM4HKQSCQpXWNLQW66XC5HQUEBamtrqeQH8HszllarpTvSakGI1sViMRgMBoLBIBwOBy5evAibzYa5ubk//J9kPXQGgwGZTEabwcrLy6lgLYfDSekJzySIK9Xb24ucnBzY7XYIhUI4HA4MDAzg5s2b0Ol0KCsrSzFu4I+yjtnA0lYCkjwgFVdyTQBo24NcLsehQ4cQjUYxMDCA2dnZJ7NdlsvlQiQSQSgU0tI7uShS2pbJZHjppZfw3HPPoby8nPYjJB+7gUAAdrt91bs3ANTW1qK2thbA45Okr68PP/74I5WK/iskEgnMzc2hq6sLJ06cwMcff4za2lps2bIFk5OTcLvdWeU1dzgcaG5uhtPpxJ49ezA3N4ehoSH09/fD6/XS2AF4bNiRSIRWabOFQCCAy5cvo6amBvn5+SntBaTYk/wAiEQiquek1+vBYDDg9/tx7ty5J7dUT5qYiFqC2+3G0aNHaXEFANWnVKlUKb0K09PT6OnpQWtrKwKBwJoMiDRvRaNRxONxDA8P48aNG/+4DYA0CY2MjECj0WBxcRHt7e0YGhrK+u7o9/vx22+/wev1Qi6XQ61Wo7CwkDZjEUNyOBy4fPky1QnKFuLxOBUSI5kqIqcSCATg8XggFoupC8Nms1MolD0eD6xW65pTrxlllwUet8YWFxfTiztw4ADy8vKgUCgQjUZp37NAIEhp3rfZbOjp6UFHRwctmZO0HilekKpeIpH407wuUZYgN5rL5SInJ+cfuxUsFivFZSIVxrUeo6sBEaFls9m0f1qlUkGn09HgLRKJwOl0oqurK+s8hYlEAvPz83T6iLQckOGQZDkbsrGRIJ4UpBwOx5NbqieBA4fDgdFopC2y+fn5NHWU/HQmBx2k96KtrY2OqxGO8Wg0SvVngsEg1a9cqfwPPO57Jn0PHA4HO3fuxBtvvIE7d+787fEy0uNx+PBh1NXVoaioiBrZWtyn1YKk1lgsFvLy8vDss89Cq9WioKAAfD6fpgfHxsZw7969rBs46ZUhpwbpg3G73bDb7RgZGYFarYZKpYJGo0nZcILBIJxOJ+x2+5O7g/f396OlpQUHDhyA0WikwwzJpWPg93ZYYtzE5zabzXA4HGCz2aisrMSrr76K6upqxONxDAwMYGxsDDabDc3NzVQvZyX09PSAx+Nh+/btqKqqotJ2H3zwAa5evYqurq4VbySDwYBUKsXJkydx7NgxmEwmqn8TCARoU9Z6gMFgYP/+/aitrcWOHTsgFAohFArp7rlU0jDbIG4S+f7kWVJSOJNIJDT2IkFoOBymG9dakTED7+vrozLf8Xic+ljA7xF9NBpNSRkBoCNiZWVlkMvlmJ+fh8lkQlVVFVQqFVpaWtDT0wOHw4GZmRkEg8G/vBEulwsWiwVXrlyhfqpMJkNdXR0kEglqampSovrkAhOLxYJIJEJdXR0qKiqgUCgo5W9bWxtsNhu8Xu+6UTts27YNJSUlVIuS+LFEjIrP51OhrGyukfy+RL6QVIRFIhHUajVtNZDJZLRoRRIR09PTaeNGyZiB379/Hy6XC42NjeDxeBCLxTQVlDw4kBxckN5lqVSKQ4cOIRaL0WZ/DoeDmZkZfPPNN3j48CF8Pt/fXovP54PZbMbExAQaGxshFoshEomwf/9+7N+/n75vaZRP5hiTT5x4PA6v14v+/n58/fXXMJvNWc1OLMX27dtppybZHIDH8QLZ0fl8ftZVNkgMQE4Romwtl8vB5XKRm5sLLpcLHo8HgUCQUsyz2WyYnp5+sg2cRPBnzpzBsWPHUFVVBYVCQXdrFosFLpdL/WJi5DweD3w+H0KhkOpTnj59mu7Wq51UJ40+x48fR2NjI9555x1otdo/jHKR3W85MViyc3/44Ydoa2vLiDLvP0EikaCZCJKlICDDEOPj43C5XOsiAksSC5FIhD5oRLOJIDlXT8R0L126hAcPHqRlHRlNE0ajUQwNDWF0dBR5eXk0H57cK5HsnpDdcXh4GE1NTZicnITT6cTY2FhamI5I+vHatWuYmpqCUCikLaelpaVoaGiAXq9PydkvLi7CbDajt7cXVqsVNpsN7e3tmJ6eTllPcr9MNl0BgUAAHo+Xci/JvX348CGGhobWzQcnqcK5uTnI5XL6dxJvJW8uJPZqbm6GxWJJm+JDRg2c7CJut5u6I8mzlktZoYhe+b179/Dtt9+mjGOlC/Pz8+jt7UVvby8AUEqImpoaKJVKbN26lY5NkV3x9u3b+OWXX/DgwQPYbLYV88nrQbNGWmeXVi6ZTCYePXqUlSawlZBIJGC32zE2NgaDwZDCVkaC4FgsBr/fD5fLBbPZjGvXrmF8fDxtbl/GR9YSiQT1v4g/m8w9QvKjk5OTOH36NG7fvp1VWcHFxUV4vV5cu3YN169fX/Ea/grJwWm2sNSok08PBoOBkZGRrHUPLodEIoHz58/D4XBg165dlKVrfn4eFosFNpsNQ0NDaGpqgt1uRzAYTPtpk5WZzK6uLuTk5ODw4cPg8Xj05fV60dLSgs7OTjqmtJ4B21qNcz16PZKHislpF4/H4XK54PP51l2Iyu12U3qKSCQCi8WCu3fvwuVyIRwOIxAIwOl0rpkFbCVkxcAnJyfR19eHGzdu0KhZIBDA5XLh1q1b6OzsRE9Pz4ZhUc0GOBwOpVkg/SZOp5NWC/v7+zExMbHuGqVE3r25uRmhUAgDAwP49ddfs/bgZU1ljYyAkUwJj8fD7OxsWp/af4s0SDrWKZVKUVZWhrNnz0KtViMYDKKzsxMejweTk5M4e/YspqamEAqF1nKP06KyRgLgTPbCrCRhknUZwWS/Md0X/F8ycMIzWF9fj0AgAJvNBp/PR0fbXC4XJd5cAzIqI5hOrGTgWaduy3YabaOCsMnev38fwWAQLpcLCwsLNOAkFcT/OjaFYNcB6VonGSr+/2fi/5+Z/D1r+XjgP7iDP8nCpf8WgdW0rXM59yPNp+O/8Z6mYFMIdhMbGn/k393EJjYQNg18Exsamwa+iQ2NTQPfxIbGpoFvYkNj08A3saGxaeCb2NDYNPBNbGhsGvgmNjT+B9IB/uG0A3EsAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/examples/tutorials/18_Using_Reinforcement_Learning_to_Play_Pong.ipynb b/examples/tutorials/18_Using_Reinforcement_Learning_to_Play_Pong.ipynb index 0fef300233..7d7287c975 100644 --- a/examples/tutorials/18_Using_Reinforcement_Learning_to_Play_Pong.ipynb +++ b/examples/tutorials/18_Using_Reinforcement_Learning_to_Play_Pong.ipynb @@ -1,272 +1,392 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Part 18: Using Reinforcement Learning to Play Pong\n", - "\n", - "This notebook demonstrates using reinforcement learning to train an agent to play Pong.\n", - "\n", - "The first step is to create an `Environment` that implements this task. Fortunately,\n", - "OpenAI Gym already provides an implementation of Pong (and many other tasks appropriate\n", - "for reinforcement learning). DeepChem's `GymEnvironment` class provides an easy way to\n", - "use environments from OpenAI Gym. We could just use it directly, but in this case we\n", - "subclass it and preprocess the screen image a little bit to make learning easier.\n", - "\n", - "## Colab\n", - "\n", - "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/18_Using_Reinforcement_Learning_to_Play_Pong.ipynb)\n", - "\n", - "## Setup\n", - "\n", - "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment. To install `gym` you should also use `pip install 'gym[atari]'` (We need the extra modifier since we'll be using an atari game). We'll add this command onto our usual Colab installation commands for you" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh\n", - "!chmod +x Anaconda3-2019.10-Linux-x86_64.sh\n", - "!bash ./Anaconda3-2019.10-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')\n", - "import deepchem as dc\n", - "!conda install pip\n", - "!pip install 'gym[atari]'" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", - " warnings.warn(msg, category=FutureWarning)\n", - "RDKit WARNING: [17:47:46] Enabling RDKit 2019.09.3 jupyter extensions\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + }, + "colab": { + "name": "18_Using_Reinforcement_Learning_to_Play_Pong.ipynb", + "provenance": [] } - ], - "source": [ - "import deepchem as dc\n", - "import numpy as np\n", - "\n", - "class PongEnv(dc.rl.GymEnvironment):\n", - " def __init__(self):\n", - " super(PongEnv, self).__init__('Pong-v0')\n", - " self._state_shape = (80, 80)\n", - " \n", - " @property\n", - " def state(self):\n", - " # Crop everything outside the play area, reduce the image size,\n", - " # and convert it to black and white.\n", - " cropped = np.array(self._state)[34:194, :, :]\n", - " reduced = cropped[0:-1:2, 0:-1:2]\n", - " grayscale = np.sum(reduced, axis=2)\n", - " bw = np.zeros(grayscale.shape)\n", - " bw[grayscale != 233] = 1\n", - " return bw\n", - "\n", - " def __deepcopy__(self, memo):\n", - " return PongEnv()\n", - "\n", - "env = PongEnv()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we create a network to implement the policy. We begin with two convolutional layers to process\n", - "the image. That is followed by a dense (fully connected) layer to provide plenty of capacity for game\n", - "logic. We also add a small Gated Recurrent Unit. That gives the network a little bit of memory, so\n", - "it can keep track of which way the ball is moving.\n", - "\n", - "We concatenate the dense and GRU outputs together, and use them as inputs to two final layers that serve as the\n", - "network's outputs. One computes the action probabilities, and the other computes an estimate of the\n", - "state value function.\n", - "\n", - "We also provide an input for the initial state of the GRU, and returned its final state at the end. This is required by the learning algorithm" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "from tensorflow.keras.layers import Input, Concatenate, Conv2D, Dense, Flatten, GRU, Reshape\n", - "\n", - "class PongPolicy(dc.rl.Policy):\n", - " def __init__(self):\n", - " super(PongPolicy, self).__init__(['action_prob', 'value', 'rnn_state'], [np.zeros(16)])\n", - "\n", - " def create_model(self, **kwargs):\n", - " state = Input(shape=(80, 80))\n", - " rnn_state = Input(shape=(16,))\n", - " conv1 = Conv2D(16, kernel_size=8, strides=4, activation=tf.nn.relu)(Reshape((80, 80, 1))(state))\n", - " conv2 = Conv2D(32, kernel_size=4, strides=2, activation=tf.nn.relu)(conv1)\n", - " dense = Dense(256, activation=tf.nn.relu)(Flatten()(conv2))\n", - " gru, rnn_final_state = GRU(16, return_state=True, return_sequences=True)(\n", - " Reshape((-1, 256))(dense), initial_state=rnn_state)\n", - " concat = Concatenate()([dense, Reshape((16,))(gru)])\n", - " action_prob = Dense(env.n_actions, activation=tf.nn.softmax)(concat)\n", - " value = Dense(1)(concat)\n", - " return tf.keras.Model(inputs=[state, rnn_state], outputs=[action_prob, value, rnn_final_state])\n", - "\n", - "policy = PongPolicy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will optimize the policy using the Asynchronous Advantage Actor Critic (A3C) algorithm. There are lots of hyperparameters we could specify at this point, but the default values for most of them work well on this problem. The only one we need to customize is the learning rate." - ] }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "m0jRtbRGsoZy", + "colab_type": "text" + }, + "source": [ + "# Tutorial Part 18: Using Reinforcement Learning to Play Pong\n", + "\n", + "This notebook demonstrates using reinforcement learning to train an agent to play Pong.\n", + "\n", + "The first step is to create an `Environment` that implements this task. Fortunately,\n", + "OpenAI Gym already provides an implementation of Pong (and many other tasks appropriate\n", + "for reinforcement learning). DeepChem's `GymEnvironment` class provides an easy way to\n", + "use environments from OpenAI Gym. We could just use it directly, but in this case we\n", + "subclass it and preprocess the screen image a little bit to make learning easier.\n", + "\n", + "## Colab\n", + "\n", + "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/18_Using_Reinforcement_Learning_to_Play_Pong.ipynb)\n", + "\n", + "## Setup\n", + "\n", + "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment. To install `gym` you should also use `pip install 'gym[atari]'` (We need the extra modifier since we'll be using an atari game). We'll add this command onto our usual Colab installation commands for you" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "qXdmcnhtst-z", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "30790158-71f8-40de-f11d-7ea9c936b71c" + }, + "source": [ + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 35620 0 --:--:-- --:--:-- --:--:-- 35175\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.69 s, sys: 598 ms, total: 3.28 s\n", + "Wall time: 3min 48s\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9sv6kX_VsoZ1", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 187 + }, + "outputId": "4563471c-497e-42a7-b5ed-22f205381510" + }, + "source": [ + "!pip install 'gym[atari]'" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: gym[atari] in /usr/local/lib/python3.6/dist-packages (0.17.2)\n", + "Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (1.18.4)\n", + "Requirement already satisfied: cloudpickle<1.4.0,>=1.2.0 in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (1.3.0)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (1.4.1)\n", + "Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (1.5.0)\n", + "Requirement already satisfied: Pillow; extra == \"atari\" in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (7.0.0)\n", + "Requirement already satisfied: atari-py~=0.2.0; extra == \"atari\" in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (0.2.6)\n", + "Requirement already satisfied: opencv-python; extra == \"atari\" in /usr/local/lib/python3.6/dist-packages (from gym[atari]) (4.1.2.30)\n", + "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym[atari]) (0.16.0)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from atari-py~=0.2.0; extra == \"atari\"->gym[atari]) (1.12.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "EuRrb3vpsoZ_", + "colab_type": "code", + "colab": {} + }, + "source": [ + "import deepchem as dc\n", + "import numpy as np\n", + "\n", + "class PongEnv(dc.rl.GymEnvironment):\n", + " def __init__(self):\n", + " super(PongEnv, self).__init__('Pong-v0')\n", + " self._state_shape = (80, 80)\n", + " \n", + " @property\n", + " def state(self):\n", + " # Crop everything outside the play area, reduce the image size,\n", + " # and convert it to black and white.\n", + " cropped = np.array(self._state)[34:194, :, :]\n", + " reduced = cropped[0:-1:2, 0:-1:2]\n", + " grayscale = np.sum(reduced, axis=2)\n", + " bw = np.zeros(grayscale.shape)\n", + " bw[grayscale != 233] = 1\n", + " return bw\n", + "\n", + " def __deepcopy__(self, memo):\n", + " return PongEnv()\n", + "\n", + "env = PongEnv()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GNnO3MZ_soaG", + "colab_type": "text" + }, + "source": [ + "Next we create a network to implement the policy. We begin with two convolutional layers to process\n", + "the image. That is followed by a dense (fully connected) layer to provide plenty of capacity for game\n", + "logic. We also add a small Gated Recurrent Unit. That gives the network a little bit of memory, so\n", + "it can keep track of which way the ball is moving.\n", + "\n", + "We concatenate the dense and GRU outputs together, and use them as inputs to two final layers that serve as the\n", + "network's outputs. One computes the action probabilities, and the other computes an estimate of the\n", + "state value function.\n", + "\n", + "We also provide an input for the initial state of the GRU, and returned its final state at the end. This is required by the learning algorithm" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "BLdt8WAQsoaH", + "colab_type": "code", + "colab": {} + }, + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.layers import Input, Concatenate, Conv2D, Dense, Flatten, GRU, Reshape\n", + "\n", + "class PongPolicy(dc.rl.Policy):\n", + " def __init__(self):\n", + " super(PongPolicy, self).__init__(['action_prob', 'value', 'rnn_state'], [np.zeros(16)])\n", + "\n", + " def create_model(self, **kwargs):\n", + " state = Input(shape=(80, 80))\n", + " rnn_state = Input(shape=(16,))\n", + " conv1 = Conv2D(16, kernel_size=8, strides=4, activation=tf.nn.relu)(Reshape((80, 80, 1))(state))\n", + " conv2 = Conv2D(32, kernel_size=4, strides=2, activation=tf.nn.relu)(conv1)\n", + " dense = Dense(256, activation=tf.nn.relu)(Flatten()(conv2))\n", + " gru, rnn_final_state = GRU(16, return_state=True, return_sequences=True)(\n", + " Reshape((-1, 256))(dense), initial_state=rnn_state)\n", + " concat = Concatenate()([dense, Reshape((16,))(gru)])\n", + " action_prob = Dense(env.n_actions, activation=tf.nn.softmax)(concat)\n", + " value = Dense(1)(concat)\n", + " return tf.keras.Model(inputs=[state, rnn_state], outputs=[action_prob, value, rnn_final_state])\n", + "\n", + "policy = PongPolicy()" + ], + "execution_count": 0, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From /Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Call initializer instance with the dtype argument instead of passing it to the constructor\n", - "WARNING:tensorflow:From /Users/bharath/Code/deepchem/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", - "\n", - "WARNING:tensorflow:From /Users/bharath/Code/deepchem/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", - "\n", - "WARNING:tensorflow:From /Users/bharath/Code/deepchem/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", - "\n", - "WARNING:tensorflow:From /Users/bharath/Code/deepchem/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", - "\n", - "WARNING:tensorflow:From /Users/bharath/Code/deepchem/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", - "\n", - "WARNING:tensorflow:From /Users/bharath/Code/deepchem/deepchem/rl/a3c.py:32: The name tf.log is deprecated. Please use tf.math.log instead.\n", - "\n", - "WARNING:tensorflow:From /Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/tensorflow/python/ops/math_grad.py:1250: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.where in 2.0, which has the same broadcast rule as np.where\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "YU19h0aUsoaN", + "colab_type": "text" + }, + "source": [ + "We will optimize the policy using the Asynchronous Advantage Actor Critic (A3C) algorithm. There are lots of hyperparameters we could specify at this point, but the default values for most of them work well on this problem. The only one we need to customize is the learning rate." + ] + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "id": "Fw_wu511soaO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "outputId": "64a01d40-960f-4f4a-a21e-cd42457fcc37" + }, + "source": [ + "from deepchem.models.optimizers import Adam\n", + "a3c = dc.rl.A3C(env, policy, model_dir='model', optimizer=Adam(learning_rate=0.0002))" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "If using Keras pass *_constraint arguments to layers.\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:169: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/optimizers.py:76: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:258: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:260: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/models/keras_model.py:237: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/rl/a3c.py:32: The name tf.log is deprecated. Please use tf.math.log instead.\n", + "\n", + "WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.where in 2.0, which has the same broadcast rule as np.where\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-PUD4JG2soaU", + "colab_type": "text" + }, + "source": [ + "Optimize for as long as you have patience to. By 1 million steps you should see clear signs of learning. Around 3 million steps it should start to occasionally beat the game's built in AI. By 7 million steps it should be winning almost every time. Running on my laptop, training takes about 20 minutes for every million steps." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Wa18EQlmsoaV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 105 + }, + "outputId": "39aa4c1a-6da2-4b18-a83b-0bac0a62155a" + }, + "source": [ + "# Change this to train as many steps as you have patience for.\n", + "a3c.fit(1000)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/rl/a3c.py:412: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.\n", + "\n", + "WARNING:tensorflow:From /root/miniconda/lib/python3.6/site-packages/deepchem/rl/a3c.py:253: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_xHNjusSsoaa", + "colab_type": "text" + }, + "source": [ + "Let's watch it play and see how it does! " + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ud6DB_ndsoab", + "colab_type": "code", + "colab": {} + }, + "source": [ + "# This code doesn't work well on Colab\n", + "env.reset()\n", + "while not env.terminated:\n", + " env.env.render()\n", + " env.step(a3c.select_action(env.state))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3MGK4nrhsoah", + "colab_type": "text" + }, + "source": [ + "# Congratulations! Time to join the Community!\n", + "\n", + "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", + "\n", + "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", + "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", + "\n", + "## Join the DeepChem Gitter\n", + "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!" + ] } - ], - "source": [ - "from deepchem.models.optimizers import Adam\n", - "a3c = dc.rl.A3C(env, policy, model_dir='model', optimizer=Adam(learning_rate=0.0002))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Optimize for as long as you have patience to. By 1 million steps you should see clear signs of learning. Around 3 million steps it should start to occasionally beat the game's built in AI. By 7 million steps it should be winning almost every time. Running on my laptop, training takes about 20 minutes for every million steps." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Change this to train as many steps as you have patience for.\n", - "a3c.fit(1000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's watch it play and see how it does! " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "env.reset()\n", - "while not env.terminated:\n", - " env.env.render()\n", - " env.step(a3c.select_action(env.state))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Congratulations! Time to join the Community!\n", - "\n", - "Congratulations on completing this tutorial notebook! If you enjoyed working through the tutorial, and want to continue working with DeepChem, we encourage you to finish the rest of the tutorials in this series. You can also help the DeepChem community in the following ways:\n", - "\n", - "## Star DeepChem on [GitHub](https://github.com/deepchem/deepchem)\n", - "This helps build awareness of the DeepChem project and the tools for open source drug discovery that we're trying to build.\n", - "\n", - "## Join the DeepChem Gitter\n", - "The DeepChem [Gitter](https://gitter.im/deepchem/Lobby) hosts a number of scientists, developers, and enthusiasts interested in deep learning for the life sciences. Join the conversation!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.10" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + ] +} \ No newline at end of file diff --git a/examples/tutorials/21_Introduction_to_Bioinformatics.ipynb b/examples/tutorials/21_Introduction_to_Bioinformatics.ipynb index 8313bd7036..3b0144641a 100644 --- a/examples/tutorials/21_Introduction_to_Bioinformatics.ipynb +++ b/examples/tutorials/21_Introduction_to_Bioinformatics.ipynb @@ -1,2106 +1,2596 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Part 21: Introduction to Bioinformatics\n", - "\n", - "So far in this tutorial, we've primarily worked on the problems of cheminformatics. We've been interested in seeing how we can use the techniques of machine learning to make predictions about the properties of molecules. In this tutorial, we're going to shift a bit and see how we can use classical computer science techniques and machine learning to tackle problems in bioinformatics.\n", - "\n", - "For this, we're going to use the venerable [biopython](https://biopython.org/) library to do some basic bioinformatics. A lot of the material in this notebook is adapted from the extensive official [Biopython tutorial]http://biopython.org/DIST/docs/tutorial/Tutorial.html). We strongly recommend checking out the official tutorial after you work through this notebook!\n", - "\n", - "## Colab\n", - "\n", - "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/21_Introduction_to_Bioinformatics.ipynb)\n", - "\n", - "## Setup\n", - "\n", - "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh\n", - "!chmod +x Anaconda3-2019.10-Linux-x86_64.sh\n", - "!bash ./Anaconda3-2019.10-Linux-x86_64.sh -b -f -p /usr/local\n", - "!conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0\n", - "import sys\n", - "sys.path.append('/usr/local/lib/python3.7/site-packages/')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll use `pip` to install `biopython`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: biopython in /Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages (1.76)\r\n", - "Requirement already satisfied: numpy in /Users/bharath/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages (from biopython) (1.18.1)\r\n" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + }, + "colab": { + "name": "21_Introduction_to_Bioinformatics.ipynb", + "provenance": [] } - ], - "source": [ - "!pip install biopython" - ] }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "'1.76'" + "cell_type": "markdown", + "metadata": { + "id": "Euiq_EOntgQm", + "colab_type": "text" + }, + "source": [ + "# Tutorial Part 21: Introduction to Bioinformatics\n", + "\n", + "So far in this tutorial, we've primarily worked on the problems of cheminformatics. We've been interested in seeing how we can use the techniques of machine learning to make predictions about the properties of molecules. In this tutorial, we're going to shift a bit and see how we can use classical computer science techniques and machine learning to tackle problems in bioinformatics.\n", + "\n", + "For this, we're going to use the venerable [biopython](https://biopython.org/) library to do some basic bioinformatics. A lot of the material in this notebook is adapted from the extensive official [Biopython tutorial]http://biopython.org/DIST/docs/tutorial/Tutorial.html). We strongly recommend checking out the official tutorial after you work through this notebook!\n", + "\n", + "## Colab\n", + "\n", + "This tutorial and the rest in this sequence are designed to be done in Google colab. If you'd like to open this notebook in colab, you can use the following link.\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepchem/deepchem/blob/master/examples/tutorials/21_Introduction_to_Bioinformatics.ipynb)\n", + "\n", + "## Setup\n", + "\n", + "To run DeepChem within Colab, you'll need to run the following cell of installation commands. This will take about 5 minutes to run to completion and install your environment." ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import Bio\n", - "Bio.__version__" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('AGTACACATTG')" + "cell_type": "code", + "metadata": { + "id": "9k2qhejltgQo", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "outputId": "d10d7d7d-5fb6-4805-c225-212cfb94a466" + }, + "source": [ + "%tensorflow_version 1.x\n", + "!curl -Lo deepchem_installer.py https://raw.githubusercontent.com/deepchem/deepchem/master/scripts/colab_install.py\n", + "import deepchem_installer\n", + "%time deepchem_installer.install(version='2.3.0')" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "TensorFlow 1.x selected.\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 2814 100 2814 0 0 35175 0 --:--:-- --:--:-- --:--:-- 35175\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "add /root/miniconda/lib/python3.6/site-packages to PYTHONPATH\n", + "python version: 3.6.9\n", + "fetching installer from https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "done\n", + "installing miniconda to /root/miniconda\n", + "done\n", + "installing deepchem\n", + "done\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:\n", + "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + " * https://github.com/tensorflow/io (for I/O related ops)\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "deepchem-2.3.0 installation finished!\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "CPU times: user 2.95 s, sys: 647 ms, total: 3.6 s\n", + "Wall time: 4min 2s\n" + ], + "name": "stdout" + } ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from Bio.Seq import Seq\n", - "my_seq = Seq(\"AGTACACATTG\")\n", - "my_seq" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('TCATGTGTAAC')" + "cell_type": "markdown", + "metadata": { + "id": "APnQxtIKtgQs", + "colab_type": "text" + }, + "source": [ + "We'll use `pip` to install `biopython`" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_seq.complement()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('CAATGTGTACT')" + "cell_type": "code", + "metadata": { + "id": "HeYSJWSAtgQt", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "67253897-cae0-4b69-82b2-be881731982c" + }, + "source": [ + "!pip install biopython" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting biopython\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/a8/66/134dbd5f885fc71493c61b6cf04c9ea08082da28da5ed07709b02857cbd0/biopython-1.77-cp36-cp36m-manylinux1_x86_64.whl (2.3MB)\n", + "\u001b[K |████████████████████████████████| 2.3MB 2.7MB/s \n", + "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from biopython) (1.18.4)\n", + "Installing collected packages: biopython\n", + "Successfully installed biopython-1.77\n" + ], + "name": "stdout" + } ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_seq.reverse_complement()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Parsing Sequence Records\n", - "\n", - "We're going to download a sample `fasta` file from the Biopython tutorial to use in some exercises. This file is a set of hits for a sequence (of lady slipper orcid genes)." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2020-03-07 20:24:08-- https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta\n", - "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.40.133\n", - "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.40.133|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 76480 (75K) [text/plain]\n", - "Saving to: ‘ls_orchid.fasta’\n", - "\n", - "ls_orchid.fasta 100%[===================>] 74.69K --.-KB/s in 0.03s \n", - "\n", - "2020-03-07 20:24:08 (2.81 MB/s) - ‘ls_orchid.fasta’ saved [76480/76480]\n", - "\n" - ] - } - ], - "source": [ - "!wget https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's take a look at what the contents of this file look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "4CxSQrxptgQx", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "0e6411b1-8709-4010-b1b6-d3cfcf1788f1" + }, + "source": [ + "import Bio\n", + "Bio.__version__" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'1.77'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "gi|2765658|emb|Z78533.1|CIZ78533\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC', SingleLetterAlphabet())\n", - "740\n", - "gi|2765657|emb|Z78532.1|CCZ78532\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAG...GGC', SingleLetterAlphabet())\n", - "753\n", - "gi|2765656|emb|Z78531.1|CFZ78531\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG...TAA', SingleLetterAlphabet())\n", - "748\n", - "gi|2765655|emb|Z78530.1|CMZ78530\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAAACAACAT...CAT', SingleLetterAlphabet())\n", - "744\n", - "gi|2765654|emb|Z78529.1|CLZ78529\n", - "Seq('ACGGCGAGCTGCCGAAGGACATTGTTGAGACAGCAGAATATACGATTGAGTGAA...AAA', SingleLetterAlphabet())\n", - "733\n", - "gi|2765652|emb|Z78527.1|CYZ78527\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAG...CCC', SingleLetterAlphabet())\n", - "718\n", - "gi|2765651|emb|Z78526.1|CGZ78526\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAG...TGT', SingleLetterAlphabet())\n", - "730\n", - "gi|2765650|emb|Z78525.1|CAZ78525\n", - "Seq('TGTTGAGATAGCAGAATATACATCGAGTGAATCCGGAGGACCTGTGGTTATTCG...GCA', SingleLetterAlphabet())\n", - "704\n", - "gi|2765649|emb|Z78524.1|CFZ78524\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATAGTAG...AGC', SingleLetterAlphabet())\n", - "740\n", - "gi|2765648|emb|Z78523.1|CHZ78523\n", - "Seq('CGTAACCAGGTTTCCGTAGGTGAACCTGCGGCAGGATCATTGTTGAGACAGCAG...AAG', SingleLetterAlphabet())\n", - "709\n", - "gi|2765647|emb|Z78522.1|CMZ78522\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG...GAG', SingleLetterAlphabet())\n", - "700\n", - "gi|2765646|emb|Z78521.1|CCZ78521\n", - "Seq('GTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAGAATATATGATCGAGT...ACC', SingleLetterAlphabet())\n", - "726\n", - "gi|2765645|emb|Z78520.1|CSZ78520\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG...TTT', SingleLetterAlphabet())\n", - "753\n", - "gi|2765644|emb|Z78519.1|CPZ78519\n", - "Seq('ATATGATCGAGTGAATCTGGTGGACTTGTGGTTACTCAGCTCGCCATAGGCTTT...TTA', SingleLetterAlphabet())\n", - "699\n", - "gi|2765643|emb|Z78518.1|CRZ78518\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGGAGGATCATTGTTGAGATAGTAG...TCC', SingleLetterAlphabet())\n", - "658\n", - "gi|2765642|emb|Z78517.1|CFZ78517\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAG...AGC', SingleLetterAlphabet())\n", - "752\n", - "gi|2765641|emb|Z78516.1|CPZ78516\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAT...TAA', SingleLetterAlphabet())\n", - "726\n", - "gi|2765640|emb|Z78515.1|MXZ78515\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGCTGAGACCGTAG...AGC', SingleLetterAlphabet())\n", - "765\n", - "gi|2765639|emb|Z78514.1|PSZ78514\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGGACCTTCGGGAGGATCATTTTTGAAGCCCCCA...CTA', SingleLetterAlphabet())\n", - "755\n", - "gi|2765638|emb|Z78513.1|PBZ78513\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...GAG', SingleLetterAlphabet())\n", - "742\n", - "gi|2765637|emb|Z78512.1|PWZ78512\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGGACCTTCGGGAGGATCATTTTTGAAGCCCCCA...AGC', SingleLetterAlphabet())\n", - "762\n", - "gi|2765636|emb|Z78511.1|PEZ78511\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTTCGGAAGGATCATTGTTGAGACCCCCA...GGA', SingleLetterAlphabet())\n", - "745\n", - "gi|2765635|emb|Z78510.1|PCZ78510\n", - "Seq('CTAACCAGGGTTCCGAGGTGACCTTCGGGAGGATTCCTTTTTAAGCCCCCGAAA...TTA', SingleLetterAlphabet())\n", - "750\n", - "gi|2765634|emb|Z78509.1|PPZ78509\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...GGA', SingleLetterAlphabet())\n", - "731\n", - "gi|2765633|emb|Z78508.1|PLZ78508\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...TGA', SingleLetterAlphabet())\n", - "741\n", - "gi|2765632|emb|Z78507.1|PLZ78507\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCCCCA...TGA', SingleLetterAlphabet())\n", - "740\n", - "gi|2765631|emb|Z78506.1|PLZ78506\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCAA...TGA', SingleLetterAlphabet())\n", - "727\n", - "gi|2765630|emb|Z78505.1|PSZ78505\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...TTT', SingleLetterAlphabet())\n", - "711\n", - "gi|2765629|emb|Z78504.1|PKZ78504\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTTCGGAAGGATCATTGTTGAGACCGCAA...TAA', SingleLetterAlphabet())\n", - "743\n", - "gi|2765628|emb|Z78503.1|PCZ78503\n", - "Seq('CGTAACCAGGTTTCCGTAGGTGAACCTCCGGAAGGATCCTTGTTGAGACCGCCA...TAA', SingleLetterAlphabet())\n", - "727\n", - "gi|2765627|emb|Z78502.1|PBZ78502\n", - "Seq('CGTAACCAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGACCGCCA...CGC', SingleLetterAlphabet())\n", - "757\n", - "gi|2765626|emb|Z78501.1|PCZ78501\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCAA...AGA', SingleLetterAlphabet())\n", - "770\n", - "gi|2765625|emb|Z78500.1|PWZ78500\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGCTCATTGTTGAGACCGCAA...AAG', SingleLetterAlphabet())\n", - "767\n", - "gi|2765624|emb|Z78499.1|PMZ78499\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAGGGATCATTGTTGAGATCGCAT...ACC', SingleLetterAlphabet())\n", - "759\n", - "gi|2765623|emb|Z78498.1|PMZ78498\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAAGGTCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "750\n", - "gi|2765622|emb|Z78497.1|PDZ78497\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "788\n", - "gi|2765621|emb|Z78496.1|PAZ78496\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...AGC', SingleLetterAlphabet())\n", - "774\n", - "gi|2765620|emb|Z78495.1|PEZ78495\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...GTG', SingleLetterAlphabet())\n", - "789\n", - "gi|2765619|emb|Z78494.1|PNZ78494\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGGTCGCAT...AAG', SingleLetterAlphabet())\n", - "688\n", - "gi|2765618|emb|Z78493.1|PGZ78493\n", - "Seq('CGTAACAAGGATTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...CCC', SingleLetterAlphabet())\n", - "719\n", - "gi|2765617|emb|Z78492.1|PBZ78492\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...ATA', SingleLetterAlphabet())\n", - "743\n", - "gi|2765616|emb|Z78491.1|PCZ78491\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...AGC', SingleLetterAlphabet())\n", - "737\n", - "gi|2765615|emb|Z78490.1|PFZ78490\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", - "728\n", - "gi|2765614|emb|Z78489.1|PDZ78489\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GGC', SingleLetterAlphabet())\n", - "740\n", - "gi|2765613|emb|Z78488.1|PTZ78488\n", - "Seq('CTGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACGCAATAATTGATCGA...GCT', SingleLetterAlphabet())\n", - "696\n", - "gi|2765612|emb|Z78487.1|PHZ78487\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TAA', SingleLetterAlphabet())\n", - "732\n", - "gi|2765611|emb|Z78486.1|PBZ78486\n", - "Seq('CGTCACGAGGTTTCCGTAGGTGAATCTGCGGGAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", - "731\n", - "gi|2765610|emb|Z78485.1|PHZ78485\n", - "Seq('CTGAACCTGGTGTCCGAAGGTGAATCTGCGGATGGATCATTGTTGAGATATCAT...GTA', SingleLetterAlphabet())\n", - "735\n", - "gi|2765609|emb|Z78484.1|PCZ78484\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGGGGAAGGATCATTGTTGAGATCACAT...TTT', SingleLetterAlphabet())\n", - "720\n", - "gi|2765608|emb|Z78483.1|PVZ78483\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", - "740\n", - "gi|2765607|emb|Z78482.1|PEZ78482\n", - "Seq('TCTACTGCAGTGACCGAGATTTGCCATCGAGCCTCCTGGGAGCTTTCTTGCTGG...GCA', SingleLetterAlphabet())\n", - "629\n", - "gi|2765606|emb|Z78481.1|PIZ78481\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", - "572\n", - "gi|2765605|emb|Z78480.1|PGZ78480\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", - "587\n", - "gi|2765604|emb|Z78479.1|PPZ78479\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGT', SingleLetterAlphabet())\n", - "700\n", - "gi|2765603|emb|Z78478.1|PVZ78478\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCAGTGTTGAGATCACAT...GGC', SingleLetterAlphabet())\n", - "636\n", - "gi|2765602|emb|Z78477.1|PVZ78477\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGC', SingleLetterAlphabet())\n", - "716\n", - "gi|2765601|emb|Z78476.1|PGZ78476\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...CCC', SingleLetterAlphabet())\n", - "592\n", - "gi|2765600|emb|Z78475.1|PSZ78475\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GGT', SingleLetterAlphabet())\n", - "716\n", - "gi|2765599|emb|Z78474.1|PKZ78474\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACGT...CTT', SingleLetterAlphabet())\n", - "733\n", - "gi|2765598|emb|Z78473.1|PSZ78473\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGG', SingleLetterAlphabet())\n", - "626\n", - "gi|2765597|emb|Z78472.1|PLZ78472\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "737\n", - "gi|2765596|emb|Z78471.1|PDZ78471\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "740\n", - "gi|2765595|emb|Z78470.1|PPZ78470\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GTT', SingleLetterAlphabet())\n", - "574\n", - "gi|2765594|emb|Z78469.1|PHZ78469\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GTT', SingleLetterAlphabet())\n", - "594\n", - "gi|2765593|emb|Z78468.1|PAZ78468\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...GTT', SingleLetterAlphabet())\n", - "610\n", - "gi|2765592|emb|Z78467.1|PSZ78467\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", - "730\n", - "gi|2765591|emb|Z78466.1|PPZ78466\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...CCC', SingleLetterAlphabet())\n", - "641\n", - "gi|2765590|emb|Z78465.1|PRZ78465\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGC', SingleLetterAlphabet())\n", - "702\n", - "gi|2765589|emb|Z78464.1|PGZ78464\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAGCGGAAGGGTCATTGTTGAGATCACATAATA...AGC', SingleLetterAlphabet())\n", - "733\n", - "gi|2765588|emb|Z78463.1|PGZ78463\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGTTCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "738\n", - "gi|2765587|emb|Z78462.1|PSZ78462\n", - "Seq('CGTCACGAGGTCTCCGGATGTGACCCTGCGGAAGGATCATTGTTGAGATCACAT...CAT', SingleLetterAlphabet())\n", - "736\n", - "gi|2765586|emb|Z78461.1|PWZ78461\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...TAA', SingleLetterAlphabet())\n", - "732\n", - "gi|2765585|emb|Z78460.1|PCZ78460\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...TTA', SingleLetterAlphabet())\n", - "745\n", - "gi|2765584|emb|Z78459.1|PDZ78459\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TTT', SingleLetterAlphabet())\n", - "744\n", - "gi|2765583|emb|Z78458.1|PHZ78458\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TTG', SingleLetterAlphabet())\n", - "738\n", - "gi|2765582|emb|Z78457.1|PCZ78457\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...GAG', SingleLetterAlphabet())\n", - "739\n", - "gi|2765581|emb|Z78456.1|PTZ78456\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "740\n", - "gi|2765580|emb|Z78455.1|PJZ78455\n", - "Seq('CGTAACCAGGTTTCCGTAGGTGGACCTTCGGGAGGATCATTTTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", - "745\n", - "gi|2765579|emb|Z78454.1|PFZ78454\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AAC', SingleLetterAlphabet())\n", - "695\n", - "gi|2765578|emb|Z78453.1|PSZ78453\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", - "745\n", - "gi|2765577|emb|Z78452.1|PBZ78452\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", - "743\n", - "gi|2765576|emb|Z78451.1|PHZ78451\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGTACCTCCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "730\n", - "gi|2765575|emb|Z78450.1|PPZ78450\n", - "Seq('GGAAGGATCATTGCTGATATCACATAATAATTGATCGAGTTAAGCTGGAGGATC...GAG', SingleLetterAlphabet())\n", - "706\n", - "gi|2765574|emb|Z78449.1|PMZ78449\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGC', SingleLetterAlphabet())\n", - "744\n", - "gi|2765573|emb|Z78448.1|PAZ78448\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGG', SingleLetterAlphabet())\n", - "742\n", - "gi|2765572|emb|Z78447.1|PVZ78447\n", - "Seq('CGTAACAAGGATTCCGTAGGTGAACCTGCGGGAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", - "694\n", - "gi|2765571|emb|Z78446.1|PAZ78446\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...CCC', SingleLetterAlphabet())\n", - "712\n", - "gi|2765570|emb|Z78445.1|PUZ78445\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGT', SingleLetterAlphabet())\n", - "715\n", - "gi|2765569|emb|Z78444.1|PAZ78444\n", - "Seq('CGTAACAAGGTTTCCGTAGGGTGAACTGCGGAAGGATCATTGTTGAGATCACAT...ATT', SingleLetterAlphabet())\n", - "688\n", - "gi|2765568|emb|Z78443.1|PLZ78443\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGG', SingleLetterAlphabet())\n", - "784\n", - "gi|2765567|emb|Z78442.1|PBZ78442\n", - "Seq('GTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACATAATAATTGATCGAGT...AGT', SingleLetterAlphabet())\n", - "721\n", - "gi|2765566|emb|Z78441.1|PSZ78441\n", - "Seq('GGAAGGTCATTGCCGATATCACATAATAATTGATCGAGTTAATCTGGAGGATCT...GAG', SingleLetterAlphabet())\n", - "703\n", - "gi|2765565|emb|Z78440.1|PPZ78440\n", - "Seq('CGTAACAAGGTTTCCGTAGGTGGACCTCCGGGAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", - "744\n", - "gi|2765564|emb|Z78439.1|PBZ78439\n", - "Seq('CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT...GCC', SingleLetterAlphabet())\n", - "592\n" - ] - } - ], - "source": [ - "from Bio import SeqIO\n", - "\n", - "for seq_record in SeqIO.parse('ls_orchid.fasta', 'fasta'):\n", - " print(seq_record.id)\n", - " print(repr(seq_record.seq))\n", - " print(len(seq_record))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sequence Objects\n", - "\n", - "A large part of the biopython infrastructure deals with tools for handlings sequences. These could be DNA sequences, RNA sequences, amino acid sequences or even more exotic constructs. To tell biopython what type of sequence it's dealing with, you can specify the alphabet explicitly." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "7eXZ-43CtgQ6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "67edb7fd-f16a-457f-81f7-e7f1995670f7" + }, + "source": [ + "from Bio.Seq import Seq\n", + "my_seq = Seq(\"AGTACACATTG\")\n", + "my_seq" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('AGTACACATTG')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, { - "data": { - "text/plain": [ - "Seq('ACAGTAGAC', IUPACUnambiguousDNA())" + "cell_type": "code", + "metadata": { + "id": "Fd-wViuTtgRB", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "ef3c2283-eb10-4c55-808c-41fd0283da2c" + }, + "source": [ + "my_seq.complement()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('TCATGTGTAAC')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from Bio.Seq import Seq\n", - "from Bio.Alphabet import IUPAC\n", - "my_seq = Seq(\"ACAGTAGAC\", IUPAC.unambiguous_dna)\n", - "my_seq" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "IUPACUnambiguousDNA()" + "cell_type": "code", + "metadata": { + "id": "GlO-43FNtgRF", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "0466b5b6-ff69-4a00-b071-0bcb857a5291" + }, + "source": [ + "my_seq.reverse_complement()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('CAATGTGTACT')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_seq.alphabet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we want to code a protein sequence, we can do that just as easily." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('AAAAA', IUPACProtein())" + "cell_type": "markdown", + "metadata": { + "id": "W-LumeWptgRJ", + "colab_type": "text" + }, + "source": [ + "## Parsing Sequence Records\n", + "\n", + "We're going to download a sample `fasta` file from the Biopython tutorial to use in some exercises. This file is a set of hits for a sequence (of lady slipper orcid genes)." ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_prot = Seq(\"AAAAA\", IUPAC.protein) # Alanine pentapeptide\n", - "my_prot" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "IUPACProtein()" + "cell_type": "code", + "metadata": { + "id": "U0A0B3-FtgRK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "24b1cd34-25ae-410c-dd19-6370337da8cf" + }, + "source": [ + "!wget https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2020-05-31 03:16:22-- https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 76480 (75K) [text/plain]\n", + "Saving to: ‘ls_orchid.fasta’\n", + "\n", + "\rls_orchid.fasta 0%[ ] 0 --.-KB/s \rls_orchid.fasta 100%[===================>] 74.69K --.-KB/s in 0.03s \n", + "\n", + "2020-05-31 03:16:23 (2.70 MB/s) - ‘ls_orchid.fasta’ saved [76480/76480]\n", + "\n" + ], + "name": "stdout" + } ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_prot.alphabet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can take the length of sequences and index into them like strings." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n" - ] - } - ], - "source": [ - "print(len(my_prot))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "iNwHJES1tgRP", + "colab_type": "text" + }, + "source": [ + "Let's take a look at what the contents of this file look like:" + ] + }, { - "data": { - "text/plain": [ - "'A'" + "cell_type": "code", + "metadata": { + "id": "5ZudMHxttgRQ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "1b9b1d3b-11ca-4d5b-df82-bb81b3191fec" + }, + "source": [ + "from Bio import SeqIO\n", + "\n", + "for seq_record in SeqIO.parse('ls_orchid.fasta', 'fasta'):\n", + " print(seq_record.id)\n", + " print(repr(seq_record.seq))\n", + " print(len(seq_record))" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "gi|2765658|emb|Z78533.1|CIZ78533\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC', SingleLetterAlphabet())\n", + "740\n", + "gi|2765657|emb|Z78532.1|CCZ78532\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAG...GGC', SingleLetterAlphabet())\n", + "753\n", + "gi|2765656|emb|Z78531.1|CFZ78531\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG...TAA', SingleLetterAlphabet())\n", + "748\n", + "gi|2765655|emb|Z78530.1|CMZ78530\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAAACAACAT...CAT', SingleLetterAlphabet())\n", + "744\n", + "gi|2765654|emb|Z78529.1|CLZ78529\n", + "Seq('ACGGCGAGCTGCCGAAGGACATTGTTGAGACAGCAGAATATACGATTGAGTGAA...AAA', SingleLetterAlphabet())\n", + "733\n", + "gi|2765652|emb|Z78527.1|CYZ78527\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAG...CCC', SingleLetterAlphabet())\n", + "718\n", + "gi|2765651|emb|Z78526.1|CGZ78526\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAG...TGT', SingleLetterAlphabet())\n", + "730\n", + "gi|2765650|emb|Z78525.1|CAZ78525\n", + "Seq('TGTTGAGATAGCAGAATATACATCGAGTGAATCCGGAGGACCTGTGGTTATTCG...GCA', SingleLetterAlphabet())\n", + "704\n", + "gi|2765649|emb|Z78524.1|CFZ78524\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATAGTAG...AGC', SingleLetterAlphabet())\n", + "740\n", + "gi|2765648|emb|Z78523.1|CHZ78523\n", + "Seq('CGTAACCAGGTTTCCGTAGGTGAACCTGCGGCAGGATCATTGTTGAGACAGCAG...AAG', SingleLetterAlphabet())\n", + "709\n", + "gi|2765647|emb|Z78522.1|CMZ78522\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG...GAG', SingleLetterAlphabet())\n", + "700\n", + "gi|2765646|emb|Z78521.1|CCZ78521\n", + "Seq('GTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAGAATATATGATCGAGT...ACC', SingleLetterAlphabet())\n", + "726\n", + "gi|2765645|emb|Z78520.1|CSZ78520\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG...TTT', SingleLetterAlphabet())\n", + "753\n", + "gi|2765644|emb|Z78519.1|CPZ78519\n", + "Seq('ATATGATCGAGTGAATCTGGTGGACTTGTGGTTACTCAGCTCGCCATAGGCTTT...TTA', SingleLetterAlphabet())\n", + "699\n", + "gi|2765643|emb|Z78518.1|CRZ78518\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGGAGGATCATTGTTGAGATAGTAG...TCC', SingleLetterAlphabet())\n", + "658\n", + "gi|2765642|emb|Z78517.1|CFZ78517\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAG...AGC', SingleLetterAlphabet())\n", + "752\n", + "gi|2765641|emb|Z78516.1|CPZ78516\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGTAT...TAA', SingleLetterAlphabet())\n", + "726\n", + "gi|2765640|emb|Z78515.1|MXZ78515\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGCTGAGACCGTAG...AGC', SingleLetterAlphabet())\n", + "765\n", + "gi|2765639|emb|Z78514.1|PSZ78514\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGGACCTTCGGGAGGATCATTTTTGAAGCCCCCA...CTA', SingleLetterAlphabet())\n", + "755\n", + "gi|2765638|emb|Z78513.1|PBZ78513\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...GAG', SingleLetterAlphabet())\n", + "742\n", + "gi|2765637|emb|Z78512.1|PWZ78512\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGGACCTTCGGGAGGATCATTTTTGAAGCCCCCA...AGC', SingleLetterAlphabet())\n", + "762\n", + "gi|2765636|emb|Z78511.1|PEZ78511\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTTCGGAAGGATCATTGTTGAGACCCCCA...GGA', SingleLetterAlphabet())\n", + "745\n", + "gi|2765635|emb|Z78510.1|PCZ78510\n", + "Seq('CTAACCAGGGTTCCGAGGTGACCTTCGGGAGGATTCCTTTTTAAGCCCCCGAAA...TTA', SingleLetterAlphabet())\n", + "750\n", + "gi|2765634|emb|Z78509.1|PPZ78509\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...GGA', SingleLetterAlphabet())\n", + "731\n", + "gi|2765633|emb|Z78508.1|PLZ78508\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...TGA', SingleLetterAlphabet())\n", + "741\n", + "gi|2765632|emb|Z78507.1|PLZ78507\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCCCCA...TGA', SingleLetterAlphabet())\n", + "740\n", + "gi|2765631|emb|Z78506.1|PLZ78506\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCAA...TGA', SingleLetterAlphabet())\n", + "727\n", + "gi|2765630|emb|Z78505.1|PSZ78505\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCCA...TTT', SingleLetterAlphabet())\n", + "711\n", + "gi|2765629|emb|Z78504.1|PKZ78504\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTTCGGAAGGATCATTGTTGAGACCGCAA...TAA', SingleLetterAlphabet())\n", + "743\n", + "gi|2765628|emb|Z78503.1|PCZ78503\n", + "Seq('CGTAACCAGGTTTCCGTAGGTGAACCTCCGGAAGGATCCTTGTTGAGACCGCCA...TAA', SingleLetterAlphabet())\n", + "727\n", + "gi|2765627|emb|Z78502.1|PBZ78502\n", + "Seq('CGTAACCAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGACCGCCA...CGC', SingleLetterAlphabet())\n", + "757\n", + "gi|2765626|emb|Z78501.1|PCZ78501\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACCGCAA...AGA', SingleLetterAlphabet())\n", + "770\n", + "gi|2765625|emb|Z78500.1|PWZ78500\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGCTCATTGTTGAGACCGCAA...AAG', SingleLetterAlphabet())\n", + "767\n", + "gi|2765624|emb|Z78499.1|PMZ78499\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAGGGATCATTGTTGAGATCGCAT...ACC', SingleLetterAlphabet())\n", + "759\n", + "gi|2765623|emb|Z78498.1|PMZ78498\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAAGGTCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "750\n", + "gi|2765622|emb|Z78497.1|PDZ78497\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "788\n", + "gi|2765621|emb|Z78496.1|PAZ78496\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...AGC', SingleLetterAlphabet())\n", + "774\n", + "gi|2765620|emb|Z78495.1|PEZ78495\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...GTG', SingleLetterAlphabet())\n", + "789\n", + "gi|2765619|emb|Z78494.1|PNZ78494\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGGTCGCAT...AAG', SingleLetterAlphabet())\n", + "688\n", + "gi|2765618|emb|Z78493.1|PGZ78493\n", + "Seq('CGTAACAAGGATTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...CCC', SingleLetterAlphabet())\n", + "719\n", + "gi|2765617|emb|Z78492.1|PBZ78492\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...ATA', SingleLetterAlphabet())\n", + "743\n", + "gi|2765616|emb|Z78491.1|PCZ78491\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...AGC', SingleLetterAlphabet())\n", + "737\n", + "gi|2765615|emb|Z78490.1|PFZ78490\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", + "728\n", + "gi|2765614|emb|Z78489.1|PDZ78489\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GGC', SingleLetterAlphabet())\n", + "740\n", + "gi|2765613|emb|Z78488.1|PTZ78488\n", + "Seq('CTGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACGCAATAATTGATCGA...GCT', SingleLetterAlphabet())\n", + "696\n", + "gi|2765612|emb|Z78487.1|PHZ78487\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TAA', SingleLetterAlphabet())\n", + "732\n", + "gi|2765611|emb|Z78486.1|PBZ78486\n", + "Seq('CGTCACGAGGTTTCCGTAGGTGAATCTGCGGGAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", + "731\n", + "gi|2765610|emb|Z78485.1|PHZ78485\n", + "Seq('CTGAACCTGGTGTCCGAAGGTGAATCTGCGGATGGATCATTGTTGAGATATCAT...GTA', SingleLetterAlphabet())\n", + "735\n", + "gi|2765609|emb|Z78484.1|PCZ78484\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGGGGAAGGATCATTGTTGAGATCACAT...TTT', SingleLetterAlphabet())\n", + "720\n", + "gi|2765608|emb|Z78483.1|PVZ78483\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", + "740\n", + "gi|2765607|emb|Z78482.1|PEZ78482\n", + "Seq('TCTACTGCAGTGACCGAGATTTGCCATCGAGCCTCCTGGGAGCTTTCTTGCTGG...GCA', SingleLetterAlphabet())\n", + "629\n", + "gi|2765606|emb|Z78481.1|PIZ78481\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", + "572\n", + "gi|2765605|emb|Z78480.1|PGZ78480\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", + "587\n", + "gi|2765604|emb|Z78479.1|PPZ78479\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGT', SingleLetterAlphabet())\n", + "700\n", + "gi|2765603|emb|Z78478.1|PVZ78478\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCAGTGTTGAGATCACAT...GGC', SingleLetterAlphabet())\n", + "636\n", + "gi|2765602|emb|Z78477.1|PVZ78477\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGC', SingleLetterAlphabet())\n", + "716\n", + "gi|2765601|emb|Z78476.1|PGZ78476\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...CCC', SingleLetterAlphabet())\n", + "592\n", + "gi|2765600|emb|Z78475.1|PSZ78475\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GGT', SingleLetterAlphabet())\n", + "716\n", + "gi|2765599|emb|Z78474.1|PKZ78474\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACGT...CTT', SingleLetterAlphabet())\n", + "733\n", + "gi|2765598|emb|Z78473.1|PSZ78473\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGG', SingleLetterAlphabet())\n", + "626\n", + "gi|2765597|emb|Z78472.1|PLZ78472\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "737\n", + "gi|2765596|emb|Z78471.1|PDZ78471\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "740\n", + "gi|2765595|emb|Z78470.1|PPZ78470\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GTT', SingleLetterAlphabet())\n", + "574\n", + "gi|2765594|emb|Z78469.1|PHZ78469\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GTT', SingleLetterAlphabet())\n", + "594\n", + "gi|2765593|emb|Z78468.1|PAZ78468\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCGCAT...GTT', SingleLetterAlphabet())\n", + "610\n", + "gi|2765592|emb|Z78467.1|PSZ78467\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGA', SingleLetterAlphabet())\n", + "730\n", + "gi|2765591|emb|Z78466.1|PPZ78466\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...CCC', SingleLetterAlphabet())\n", + "641\n", + "gi|2765590|emb|Z78465.1|PRZ78465\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGC', SingleLetterAlphabet())\n", + "702\n", + "gi|2765589|emb|Z78464.1|PGZ78464\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAGCGGAAGGGTCATTGTTGAGATCACATAATA...AGC', SingleLetterAlphabet())\n", + "733\n", + "gi|2765588|emb|Z78463.1|PGZ78463\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGTTCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "738\n", + "gi|2765587|emb|Z78462.1|PSZ78462\n", + "Seq('CGTCACGAGGTCTCCGGATGTGACCCTGCGGAAGGATCATTGTTGAGATCACAT...CAT', SingleLetterAlphabet())\n", + "736\n", + "gi|2765586|emb|Z78461.1|PWZ78461\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...TAA', SingleLetterAlphabet())\n", + "732\n", + "gi|2765585|emb|Z78460.1|PCZ78460\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...TTA', SingleLetterAlphabet())\n", + "745\n", + "gi|2765584|emb|Z78459.1|PDZ78459\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TTT', SingleLetterAlphabet())\n", + "744\n", + "gi|2765583|emb|Z78458.1|PHZ78458\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TTG', SingleLetterAlphabet())\n", + "738\n", + "gi|2765582|emb|Z78457.1|PCZ78457\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...GAG', SingleLetterAlphabet())\n", + "739\n", + "gi|2765581|emb|Z78456.1|PTZ78456\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "740\n", + "gi|2765580|emb|Z78455.1|PJZ78455\n", + "Seq('CGTAACCAGGTTTCCGTAGGTGGACCTTCGGGAGGATCATTTTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", + "745\n", + "gi|2765579|emb|Z78454.1|PFZ78454\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AAC', SingleLetterAlphabet())\n", + "695\n", + "gi|2765578|emb|Z78453.1|PSZ78453\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", + "745\n", + "gi|2765577|emb|Z78452.1|PBZ78452\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", + "743\n", + "gi|2765576|emb|Z78451.1|PHZ78451\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGTACCTCCGGAAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "730\n", + "gi|2765575|emb|Z78450.1|PPZ78450\n", + "Seq('GGAAGGATCATTGCTGATATCACATAATAATTGATCGAGTTAAGCTGGAGGATC...GAG', SingleLetterAlphabet())\n", + "706\n", + "gi|2765574|emb|Z78449.1|PMZ78449\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGC', SingleLetterAlphabet())\n", + "744\n", + "gi|2765573|emb|Z78448.1|PAZ78448\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGG', SingleLetterAlphabet())\n", + "742\n", + "gi|2765572|emb|Z78447.1|PVZ78447\n", + "Seq('CGTAACAAGGATTCCGTAGGTGAACCTGCGGGAGGATCATTGTTGAGATCACAT...AGC', SingleLetterAlphabet())\n", + "694\n", + "gi|2765571|emb|Z78446.1|PAZ78446\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTCCGGAAGGATCATTGTTGAGATCACAT...CCC', SingleLetterAlphabet())\n", + "712\n", + "gi|2765570|emb|Z78445.1|PUZ78445\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...TGT', SingleLetterAlphabet())\n", + "715\n", + "gi|2765569|emb|Z78444.1|PAZ78444\n", + "Seq('CGTAACAAGGTTTCCGTAGGGTGAACTGCGGAAGGATCATTGTTGAGATCACAT...ATT', SingleLetterAlphabet())\n", + "688\n", + "gi|2765568|emb|Z78443.1|PLZ78443\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT...AGG', SingleLetterAlphabet())\n", + "784\n", + "gi|2765567|emb|Z78442.1|PBZ78442\n", + "Seq('GTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACATAATAATTGATCGAGT...AGT', SingleLetterAlphabet())\n", + "721\n", + "gi|2765566|emb|Z78441.1|PSZ78441\n", + "Seq('GGAAGGTCATTGCCGATATCACATAATAATTGATCGAGTTAATCTGGAGGATCT...GAG', SingleLetterAlphabet())\n", + "703\n", + "gi|2765565|emb|Z78440.1|PPZ78440\n", + "Seq('CGTAACAAGGTTTCCGTAGGTGGACCTCCGGGAGGATCATTGTTGAGATCACAT...GCA', SingleLetterAlphabet())\n", + "744\n", + "gi|2765564|emb|Z78439.1|PBZ78439\n", + "Seq('CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT...GCC', SingleLetterAlphabet())\n", + "592\n" + ], + "name": "stdout" + } ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_prot[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also use slice notation on sequences to get subsequences." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('AAA', IUPACProtein())" + "cell_type": "markdown", + "metadata": { + "id": "UV-0Mvv-tgRV", + "colab_type": "text" + }, + "source": [ + "## Sequence Objects\n", + "\n", + "A large part of the biopython infrastructure deals with tools for handlings sequences. These could be DNA sequences, RNA sequences, amino acid sequences or even more exotic constructs. To tell biopython what type of sequence it's dealing with, you can specify the alphabet explicitly." ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_prot[0:3]" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "You can concatenate sequences if they have the same type so this works." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('AAAAAAAAAA', IUPACProtein())" + "cell_type": "code", + "metadata": { + "id": "kdkqKHmgtgRW", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "2b14f4ac-5a4e-4e9e-fb4e-c919acb317c2" + }, + "source": [ + "from Bio.Seq import Seq\n", + "from Bio.Alphabet import IUPAC\n", + "my_seq = Seq(\"ACAGTAGAC\", IUPAC.unambiguous_dna)\n", + "my_seq" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('ACAGTAGAC', IUPACUnambiguousDNA())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_prot + my_prot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But this fails" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ + }, { - "ename": "TypeError", - "evalue": "Incompatible alphabets IUPACProtein() and IUPACUnambiguousDNA()", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_prot\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmy_seq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/opt/anaconda3/envs/deepchem/lib/python3.6/site-packages/Bio/Seq.py\u001b[0m in \u001b[0;36m__add__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 381\u001b[0m raise TypeError(\n\u001b[1;32m 382\u001b[0m \"Incompatible alphabets {0!r} and {1!r}\".format(\n\u001b[0;32m--> 383\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malphabet\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malphabet\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 384\u001b[0m )\n\u001b[1;32m 385\u001b[0m )\n", - "\u001b[0;31mTypeError\u001b[0m: Incompatible alphabets IUPACProtein() and IUPACUnambiguousDNA()" - ] - } - ], - "source": [ - "my_prot + my_seq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Transcription\n", - "\n", - "Transcription is the process by which a DNA sequence is converted into messenger RNA. Remember that this is part of the \"central dogma\" of biology in which DNA engenders messenger RNA which engenders proteins. Here's a nice representation of this cycle borrowed from a Khan academy [lesson](https://cdn.kastatic.org/ka-perseus-images/20ce29384b2e7ff0cdea72acaa5b1dbd7287ab00.png).\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note from the image above that DNA has two strands. The top strand is typically called the coding strand, and the bottom the template strand. The template strand is used for the actual transcription process of conversion into messenger RNA, but in bioinformatics, it's more common to work with the coding strand. Let's now see how we can execute a transcription computationally using Biopython." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "j5xDuf7DtgRb", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "b71c66eb-9d9d-47fc-c1b2-6c695bed8072" + }, + "source": [ + "my_seq.alphabet" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "IUPACUnambiguousDNA()" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, { - "data": { - "text/plain": [ - "Seq('ATGATCTCGTAA', IUPACUnambiguousDNA())" + "cell_type": "markdown", + "metadata": { + "id": "dUw07rNrtgRr", + "colab_type": "text" + }, + "source": [ + "If we want to code a protein sequence, we can do that just as easily." ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from Bio.Seq import Seq\n", - "from Bio.Alphabet import IUPAC\n", - "\n", - "coding_dna = Seq(\"ATGATCTCGTAA\", IUPAC.unambiguous_dna)\n", - "coding_dna" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('TTACGAGATCAT', IUPACUnambiguousDNA())" + "cell_type": "code", + "metadata": { + "id": "O6WUnJEftgRs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "79c056e1-c85a-4a72-84e7-f6d414c4679d" + }, + "source": [ + "my_prot = Seq(\"AAAAA\", IUPAC.protein) # Alanine pentapeptide\n", + "my_prot" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('AAAAA', IUPACProtein())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "template_dna = coding_dna.reverse_complement()\n", - "template_dna" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that these sequences match those in the image below. You might be confused about why the `template_dna` sequence is shown reversed. The reason is that by convention, the template strand is read in the reverse direction.\n", - "\n", - "Let's now see how we can transcribe our `coding_dna` strand into messenger RNA. This will only swap 'T' for 'U' and change the alphabet for our object." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('AUGAUCUCGUAA', IUPACUnambiguousRNA())" + "cell_type": "code", + "metadata": { + "id": "jdgRxL6qtgR0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "87748f50-1267-48cb-a8bb-fb27d82a2fe6" + }, + "source": [ + "my_prot.alphabet" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "IUPACProtein()" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "messenger_rna = coding_dna.transcribe()\n", - "messenger_rna" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also perform a \"back-transcription\" to recover the original coding strand from the messenger RNA." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('ATGATCTCGTAA', IUPACUnambiguousDNA())" + "cell_type": "markdown", + "metadata": { + "id": "pTPKw7cHtgR3", + "colab_type": "text" + }, + "source": [ + "We can take the length of sequences and index into them like strings." ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "messenger_rna.back_transcribe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translation\n", - "\n", - "Translation is the next step in the process, whereby a messenger RNA is transformed into a protein sequence. Here's a beautiful diagram [from Wikipedia](https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg) that lays out the basics of this process.\n", - "\n", - "\n", - "\n", - "Note how 3 nucleotides at a time correspond to one new amino acid added to the growing protein chain. A set of 3 nucleotides which codes for a given amino acid is called a \"codon.\" We can use the `translate()` method on the messenger rna to perform this transformation in code." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "messenger_rna.translate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The translation can also be performed directly from the coding sequence DNA" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('MIS*', HasStopCodon(IUPACProtein(), '*'))" + "cell_type": "code", + "metadata": { + "id": "OkY6Tx60tgR4", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "90d9fa0c-0f34-4ead-dfbe-f5bda3d8c34a" + }, + "source": [ + "print(len(my_prot))" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "5\n" + ], + "name": "stdout" + } ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "coding_dna.translate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now consider a longer genetic sequence that has some more interesting structure for us to look at." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('MAIVMGR*KGAR*', HasStopCodon(IUPACProtein(), '*'))" + "cell_type": "code", + "metadata": { + "id": "YSOUpm8FtgR8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "2e1efe60-ad60-40cf-ba79-07e85b8f8af4" + }, + "source": [ + "my_prot[0]" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'A'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "coding_dna = Seq(\"ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG\", IUPAC.unambiguous_dna)\n", - "coding_dna.translate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In both of the sequences above, '*' represents the [stop codon](https://en.wikipedia.org/wiki/Stop_codon). A stop codon is a sequence of 3 nucleotides that turns off the protein machinery. In DNA, the stop codons are 'TGA', 'TAA', 'TAG'. Note that this latest sequence has multiple stop codons. It's possible to run the machinery up to the first stop codon and pause too." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('MAIVMGR', IUPACProtein())" + "cell_type": "markdown", + "metadata": { + "id": "PdQ8weemtgR_", + "colab_type": "text" + }, + "source": [ + "You can also use slice notation on sequences to get subsequences." ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "coding_dna.translate(to_stop=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We're going to introduce a bit of terminology here. A complete coding sequence CDS is a nucleotide sequence of messenger RNA which is made of a whole number of codons (that is, the length of the sequence is a multiple of 3), starts with a \"start codon\" and ends with a \"stop codon\". A start codon is basically the opposite of a stop codon and is mostly commonly the sequence \"AUG\", but can be different (especially if you're dealing with something like bacterial DNA).\n", - "\n", - "Let's see how we can translate a complete CDS of bacterial messenger RNA." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HR*', HasStopCodon(ExtendedIUPACProtein(), '*'))" + "cell_type": "code", + "metadata": { + "id": "U5v3swWFtgSA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "4cc11741-2f62-4854-afcd-ebf34973b533" + }, + "source": [ + "my_prot[0:3]" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('AAA', IUPACProtein())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from Bio.Alphabet import generic_dna\n", - "\n", - "gene = Seq(\"GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA\" + \\\n", - " \"GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT\" + \\\n", - " \"AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT\" + \\\n", - " \"TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT\" + \\\n", - " \"AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA\",\n", - " generic_dna)\n", - "# We specify a \"table\" to use a different translation table for bacterial proteins\n", - "gene.translate(table=\"Bacterial\")" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HHR', ExtendedIUPACProtein())" + "cell_type": "markdown", + "metadata": { + "id": "Ng_LjVQ6tgSI", + "colab_type": "raw" + }, + "source": [ + "You can concatenate sequences if they have the same type so this works." ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gene.translate(table=\"Bacterial\", to_stop=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Handling Annotated Sequences\n", - "\n", - "Sometimes it will be useful for us to be able to handle annotated sequences where there's richer annotations, as in GenBank or EMBL files. For these purposes, we'll want to use the `SeqRecord` class." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class SeqRecord in module Bio.SeqRecord:\n", - "\n", - "class SeqRecord(builtins.object)\n", - " | A SeqRecord object holds a sequence and information about it.\n", - " | \n", - " | Main attributes:\n", - " | - id - Identifier such as a locus tag (string)\n", - " | - seq - The sequence itself (Seq object or similar)\n", - " | \n", - " | Additional attributes:\n", - " | - name - Sequence name, e.g. gene name (string)\n", - " | - description - Additional text (string)\n", - " | - dbxrefs - List of database cross references (list of strings)\n", - " | - features - Any (sub)features defined (list of SeqFeature objects)\n", - " | - annotations - Further information about the whole sequence (dictionary).\n", - " | Most entries are strings, or lists of strings.\n", - " | - letter_annotations - Per letter/symbol annotation (restricted\n", - " | dictionary). This holds Python sequences (lists, strings\n", - " | or tuples) whose length matches that of the sequence.\n", - " | A typical use would be to hold a list of integers\n", - " | representing sequencing quality scores, or a string\n", - " | representing the secondary structure.\n", - " | \n", - " | You will typically use Bio.SeqIO to read in sequences from files as\n", - " | SeqRecord objects. However, you may want to create your own SeqRecord\n", - " | objects directly (see the __init__ method for further details):\n", - " | \n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.Alphabet import IUPAC\n", - " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\",\n", - " | ... IUPAC.protein),\n", - " | ... id=\"YP_025292.1\", name=\"HokC\",\n", - " | ... description=\"toxic membrane protein\")\n", - " | >>> print(record)\n", - " | ID: YP_025292.1\n", - " | Name: HokC\n", - " | Description: toxic membrane protein\n", - " | Number of features: 0\n", - " | Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())\n", - " | \n", - " | If you want to save SeqRecord objects to a sequence file, use Bio.SeqIO\n", - " | for this. For the special case where you want the SeqRecord turned into\n", - " | a string in a particular file format there is a format method which uses\n", - " | Bio.SeqIO internally:\n", - " | \n", - " | >>> print(record.format(\"fasta\"))\n", - " | >YP_025292.1 toxic membrane protein\n", - " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", - " | \n", - " | \n", - " | You can also do things like slicing a SeqRecord, checking its length, etc\n", - " | \n", - " | >>> len(record)\n", - " | 44\n", - " | >>> edited = record[:10] + record[11:]\n", - " | >>> print(edited.seq)\n", - " | MKQHKAMIVAIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", - " | >>> print(record.seq)\n", - " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", - " | \n", - " | Methods defined here:\n", - " | \n", - " | __add__(self, other)\n", - " | Add another sequence or string to this sequence.\n", - " | \n", - " | The other sequence can be a SeqRecord object, a Seq object (or\n", - " | similar, e.g. a MutableSeq) or a plain Python string. If you add\n", - " | a plain string or a Seq (like) object, the new SeqRecord will simply\n", - " | have this appended to the existing data. However, any per letter\n", - " | annotation will be lost:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", - " | >>> print(\"%s %s\" % (record.id, record.seq))\n", - " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", - " | >>> print(list(record.letter_annotations))\n", - " | ['solexa_quality']\n", - " | \n", - " | >>> new = record + \"ACT\"\n", - " | >>> print(\"%s %s\" % (new.id, new.seq))\n", - " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNNACT\n", - " | >>> print(list(new.letter_annotations))\n", - " | []\n", - " | \n", - " | The new record will attempt to combine the annotation, but for any\n", - " | ambiguities (e.g. different names) it defaults to omitting that\n", - " | annotation.\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> with open(\"GenBank/pBAD30.gb\") as handle:\n", - " | ... plasmid = SeqIO.read(handle, \"gb\")\n", - " | >>> print(\"%s %i\" % (plasmid.id, len(plasmid)))\n", - " | pBAD30 4923\n", - " | \n", - " | Now let's cut the plasmid into two pieces, and join them back up the\n", - " | other way round (i.e. shift the starting point on this plasmid, have\n", - " | a look at the annotated features in the original file to see why this\n", - " | particular split point might make sense):\n", - " | \n", - " | >>> left = plasmid[:3765]\n", - " | >>> right = plasmid[3765:]\n", - " | >>> new = right + left\n", - " | >>> print(\"%s %i\" % (new.id, len(new)))\n", - " | pBAD30 4923\n", - " | >>> str(new.seq) == str(right.seq + left.seq)\n", - " | True\n", - " | >>> len(new.features) == len(left.features) + len(right.features)\n", - " | True\n", - " | \n", - " | When we add the left and right SeqRecord objects, their annotation\n", - " | is all consistent, so it is all conserved in the new SeqRecord:\n", - " | \n", - " | >>> new.id == left.id == right.id == plasmid.id\n", - " | True\n", - " | >>> new.name == left.name == right.name == plasmid.name\n", - " | True\n", - " | >>> new.description == plasmid.description\n", - " | True\n", - " | >>> new.annotations == left.annotations == right.annotations\n", - " | True\n", - " | >>> new.letter_annotations == plasmid.letter_annotations\n", - " | True\n", - " | >>> new.dbxrefs == left.dbxrefs == right.dbxrefs\n", - " | True\n", - " | \n", - " | However, we should point out that when we sliced the SeqRecord,\n", - " | any annotations dictionary or dbxrefs list entries were lost.\n", - " | You can explicitly copy them like this:\n", - " | \n", - " | >>> new.annotations = plasmid.annotations.copy()\n", - " | >>> new.dbxrefs = plasmid.dbxrefs[:]\n", - " | \n", - " | __bool__(self)\n", - " | Boolean value of an instance of this class (True).\n", - " | \n", - " | This behaviour is for backwards compatibility, since until the\n", - " | __len__ method was added, a SeqRecord always evaluated as True.\n", - " | \n", - " | Note that in comparison, a Seq object will evaluate to False if it\n", - " | has a zero length sequence.\n", - " | \n", - " | WARNING: The SeqRecord may in future evaluate to False when its\n", - " | sequence is of zero length (in order to better match the Seq\n", - " | object behaviour)!\n", - " | \n", - " | __contains__(self, char)\n", - " | Implement the 'in' keyword, searches the sequence.\n", - " | \n", - " | e.g.\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Fasta/sweetpea.nu\", \"fasta\")\n", - " | >>> \"GAATTC\" in record\n", - " | False\n", - " | >>> \"AAA\" in record\n", - " | True\n", - " | \n", - " | This essentially acts as a proxy for using \"in\" on the sequence:\n", - " | \n", - " | >>> \"GAATTC\" in record.seq\n", - " | False\n", - " | >>> \"AAA\" in record.seq\n", - " | True\n", - " | \n", - " | Note that you can also use Seq objects as the query,\n", - " | \n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.Alphabet import generic_dna\n", - " | >>> Seq(\"AAA\") in record\n", - " | True\n", - " | >>> Seq(\"AAA\", generic_dna) in record\n", - " | True\n", - " | \n", - " | See also the Seq object's __contains__ method.\n", - " | \n", - " | __eq__(self, other)\n", - " | Define the equal-to operand (not implemented).\n", - " | \n", - " | __format__(self, format_spec)\n", - " | Return the record as a string in the specified file format.\n", - " | \n", - " | This method supports the python format() function added in\n", - " | Python 2.6/3.0. The format_spec should be a lower case string\n", - " | supported by Bio.SeqIO as an output file format. See also the\n", - " | SeqRecord's format() method.\n", - " | \n", - " | Under Python 3 binary formats raise a ValueError, while on\n", - " | Python 2 this will work with a deprecation warning.\n", - " | \n", - " | __ge__(self, other)\n", - " | Define the greater-than-or-equal-to operand (not implemented).\n", - " | \n", - " | __getitem__(self, index)\n", - " | Return a sub-sequence or an individual letter.\n", - " | \n", - " | Slicing, e.g. my_record[5:10], returns a new SeqRecord for\n", - " | that sub-sequence with some annotation preserved as follows:\n", - " | \n", - " | * The name, id and description are kept as-is.\n", - " | * Any per-letter-annotations are sliced to match the requested\n", - " | sub-sequence.\n", - " | * Unless a stride is used, all those features which fall fully\n", - " | within the subsequence are included (with their locations\n", - " | adjusted accordingly). If you want to preserve any truncated\n", - " | features (e.g. GenBank/EMBL source features), you must\n", - " | explicitly add them to the new SeqRecord yourself.\n", - " | * The annotations dictionary and the dbxrefs list are not used\n", - " | for the new SeqRecord, as in general they may not apply to the\n", - " | subsequence. If you want to preserve them, you must explicitly\n", - " | copy them to the new SeqRecord yourself.\n", - " | \n", - " | Using an integer index, e.g. my_record[5] is shorthand for\n", - " | extracting that letter from the sequence, my_record.seq[5].\n", - " | \n", - " | For example, consider this short protein and its secondary\n", - " | structure as encoded by the PDB (e.g. H for alpha helices),\n", - " | plus a simple feature for its histidine self phosphorylation\n", - " | site:\n", - " | \n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.SeqFeature import SeqFeature, FeatureLocation\n", - " | >>> from Bio.Alphabet import IUPAC\n", - " | >>> rec = SeqRecord(Seq(\"MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLAT\"\n", - " | ... \"EMMSEQDGYLAESINKDIEECNAIIEQFIDYLR\",\n", - " | ... IUPAC.protein),\n", - " | ... id=\"1JOY\", name=\"EnvZ\",\n", - " | ... description=\"Homodimeric domain of EnvZ from E. coli\")\n", - " | >>> rec.letter_annotations[\"secondary_structure\"] = \" S SSSSSSHHHHHTTTHHHHHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHHHHHHHTT \"\n", - " | >>> rec.features.append(SeqFeature(FeatureLocation(20, 21),\n", - " | ... type = \"Site\"))\n", - " | \n", - " | Now let's have a quick look at the full record,\n", - " | \n", - " | >>> print(rec)\n", - " | ID: 1JOY\n", - " | Name: EnvZ\n", - " | Description: Homodimeric domain of EnvZ from E. coli\n", - " | Number of features: 1\n", - " | Per letter annotation for: secondary_structure\n", - " | Seq('MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE...YLR', IUPACProtein())\n", - " | >>> rec.letter_annotations[\"secondary_structure\"]\n", - " | ' S SSSSSSHHHHHTTTHHHHHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHHHHHHHTT '\n", - " | >>> print(rec.features[0].location)\n", - " | [20:21]\n", - " | \n", - " | Now let's take a sub sequence, here chosen as the first (fractured)\n", - " | alpha helix which includes the histidine phosphorylation site:\n", - " | \n", - " | >>> sub = rec[11:41]\n", - " | >>> print(sub)\n", - " | ID: 1JOY\n", - " | Name: EnvZ\n", - " | Description: Homodimeric domain of EnvZ from E. coli\n", - " | Number of features: 1\n", - " | Per letter annotation for: secondary_structure\n", - " | Seq('RTLLMAGVSHDLRTPLTRIRLATEMMSEQD', IUPACProtein())\n", - " | >>> sub.letter_annotations[\"secondary_structure\"]\n", - " | 'HHHHHTTTHHHHHHHHHHHHHHHHHHHHHH'\n", - " | >>> print(sub.features[0].location)\n", - " | [9:10]\n", - " | \n", - " | You can also of course omit the start or end values, for\n", - " | example to get the first ten letters only:\n", - " | \n", - " | >>> print(rec[:10])\n", - " | ID: 1JOY\n", - " | Name: EnvZ\n", - " | Description: Homodimeric domain of EnvZ from E. coli\n", - " | Number of features: 0\n", - " | Per letter annotation for: secondary_structure\n", - " | Seq('MAAGVKQLAD', IUPACProtein())\n", - " | \n", - " | Or for the last ten letters:\n", - " | \n", - " | >>> print(rec[-10:])\n", - " | ID: 1JOY\n", - " | Name: EnvZ\n", - " | Description: Homodimeric domain of EnvZ from E. coli\n", - " | Number of features: 0\n", - " | Per letter annotation for: secondary_structure\n", - " | Seq('IIEQFIDYLR', IUPACProtein())\n", - " | \n", - " | If you omit both, then you get a copy of the original record (although\n", - " | lacking the annotations and dbxrefs):\n", - " | \n", - " | >>> print(rec[:])\n", - " | ID: 1JOY\n", - " | Name: EnvZ\n", - " | Description: Homodimeric domain of EnvZ from E. coli\n", - " | Number of features: 1\n", - " | Per letter annotation for: secondary_structure\n", - " | Seq('MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE...YLR', IUPACProtein())\n", - " | \n", - " | Finally, indexing with a simple integer is shorthand for pulling out\n", - " | that letter from the sequence directly:\n", - " | \n", - " | >>> rec[5]\n", - " | 'K'\n", - " | >>> rec.seq[5]\n", - " | 'K'\n", - " | \n", - " | __gt__(self, other)\n", - " | Define the greater-than operand (not implemented).\n", - " | \n", - " | __init__(self, seq, id='', name='', description='', dbxrefs=None, features=None, annotations=None, letter_annotations=None)\n", - " | Create a SeqRecord.\n", - " | \n", - " | Arguments:\n", - " | - seq - Sequence, required (Seq, MutableSeq or UnknownSeq)\n", - " | - id - Sequence identifier, recommended (string)\n", - " | - name - Sequence name, optional (string)\n", - " | - description - Sequence description, optional (string)\n", - " | - dbxrefs - Database cross references, optional (list of strings)\n", - " | - features - Any (sub)features, optional (list of SeqFeature objects)\n", - " | - annotations - Dictionary of annotations for the whole sequence\n", - " | - letter_annotations - Dictionary of per-letter-annotations, values\n", - " | should be strings, list or tuples of the same length as the full\n", - " | sequence.\n", - " | \n", - " | You will typically use Bio.SeqIO to read in sequences from files as\n", - " | SeqRecord objects. However, you may want to create your own SeqRecord\n", - " | objects directly.\n", - " | \n", - " | Note that while an id is optional, we strongly recommend you supply a\n", - " | unique id string for each record. This is especially important\n", - " | if you wish to write your sequences to a file.\n", - " | \n", - " | If you don't have the actual sequence, but you do know its length,\n", - " | then using the UnknownSeq object from Bio.Seq is appropriate.\n", - " | \n", - " | You can create a 'blank' SeqRecord object, and then populate the\n", - " | attributes later.\n", - " | \n", - " | __iter__(self)\n", - " | Iterate over the letters in the sequence.\n", - " | \n", - " | For example, using Bio.SeqIO to read in a protein FASTA file:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Fasta/loveliesbleeding.pro\", \"fasta\")\n", - " | >>> for amino in record:\n", - " | ... print(amino)\n", - " | ... if amino == \"L\": break\n", - " | X\n", - " | A\n", - " | G\n", - " | L\n", - " | >>> print(record.seq[3])\n", - " | L\n", - " | \n", - " | This is just a shortcut for iterating over the sequence directly:\n", - " | \n", - " | >>> for amino in record.seq:\n", - " | ... print(amino)\n", - " | ... if amino == \"L\": break\n", - " | X\n", - " | A\n", - " | G\n", - " | L\n", - " | >>> print(record.seq[3])\n", - " | L\n", - " | \n", - " | Note that this does not facilitate iteration together with any\n", - " | per-letter-annotation. However, you can achieve that using the\n", - " | python zip function on the record (or its sequence) and the relevant\n", - " | per-letter-annotation:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> rec = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", - " | >>> print(\"%s %s\" % (rec.id, rec.seq))\n", - " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", - " | >>> print(list(rec.letter_annotations))\n", - " | ['solexa_quality']\n", - " | >>> for nuc, qual in zip(rec, rec.letter_annotations[\"solexa_quality\"]):\n", - " | ... if qual > 35:\n", - " | ... print(\"%s %i\" % (nuc, qual))\n", - " | A 40\n", - " | C 39\n", - " | G 38\n", - " | T 37\n", - " | A 36\n", - " | \n", - " | You may agree that using zip(rec.seq, ...) is more explicit than using\n", - " | zip(rec, ...) as shown above.\n", - " | \n", - " | __le___(self, other)\n", - " | Define the less-than-or-equal-to operand (not implemented).\n", - " | \n", - " | __len__(self)\n", - " | Return the length of the sequence.\n", - " | \n", - " | For example, using Bio.SeqIO to read in a FASTA nucleotide file:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Fasta/sweetpea.nu\", \"fasta\")\n", - " | >>> len(record)\n", - " | 309\n", - " | >>> len(record.seq)\n", - " | 309\n", - " | \n", - " | __lt__(self, other)\n", - " | Define the less-than operand (not implemented).\n", - " | \n", - " | __ne__(self, other)\n", - " | Define the not-equal-to operand (not implemented).\n", - " | \n", - " | __nonzero__ = __bool__(self)\n", - " | \n", - " | __radd__(self, other)\n", - " | Add another sequence or string to this sequence (from the left).\n", - " | \n", - " | This method handles adding a Seq object (or similar, e.g. MutableSeq)\n", - " | or a plain Python string (on the left) to a SeqRecord (on the right).\n", - " | See the __add__ method for more details, but for example:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", - " | >>> print(\"%s %s\" % (record.id, record.seq))\n", - " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", - " | >>> print(list(record.letter_annotations))\n", - " | ['solexa_quality']\n", - " | \n", - " | >>> new = \"ACT\" + record\n", - " | >>> print(\"%s %s\" % (new.id, new.seq))\n", - " | slxa_0001_1_0001_01 ACTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", - " | >>> print(list(new.letter_annotations))\n", - " | []\n", - " | \n", - " | __repr__(self)\n", - " | Return a concise summary of the record for debugging (string).\n", - " | \n", - " | The python built in function repr works by calling the object's ___repr__\n", - " | method. e.g.\n", - " | \n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.Alphabet import generic_protein\n", - " | >>> rec = SeqRecord(Seq(\"MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKAT\"\n", - " | ... +\"GEMKEQTEWHRVVLFGKLAEVASEYLRKGSQVYIEGQLRTRKWTDQ\"\n", - " | ... +\"SGQDRYTTEVVVNVGGTMQMLGGRQGGGAPAGGNIGGGQPQGGWGQ\"\n", - " | ... +\"PQQPQGGNQFSGGAQSRPQQSAPAAPSNEPPMDFDDDIPF\",\n", - " | ... generic_protein),\n", - " | ... id=\"NP_418483.1\", name=\"b4059\",\n", - " | ... description=\"ssDNA-binding protein\",\n", - " | ... dbxrefs=[\"ASAP:13298\", \"GI:16131885\", \"GeneID:948570\"])\n", - " | >>> print(repr(rec))\n", - " | SeqRecord(seq=Seq('MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTE...IPF', ProteinAlphabet()), id='NP_418483.1', name='b4059', description='ssDNA-binding protein', dbxrefs=['ASAP:13298', 'GI:16131885', 'GeneID:948570'])\n", - " | \n", - " | At the python prompt you can also use this shorthand:\n", - " | \n", - " | >>> rec\n", - " | SeqRecord(seq=Seq('MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTE...IPF', ProteinAlphabet()), id='NP_418483.1', name='b4059', description='ssDNA-binding protein', dbxrefs=['ASAP:13298', 'GI:16131885', 'GeneID:948570'])\n", - " | \n", - " | Note that long sequences are shown truncated. Also note that any\n", - " | annotations, letter_annotations and features are not shown (as they\n", - " | would lead to a very long string).\n", - " | \n", - " | __str__(self)\n", - " | Return a human readable summary of the record and its annotation (string).\n", - " | \n", - " | The python built in function str works by calling the object's ___str__\n", - " | method. e.g.\n", - " | \n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.Alphabet import IUPAC\n", - " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\",\n", - " | ... IUPAC.protein),\n", - " | ... id=\"YP_025292.1\", name=\"HokC\",\n", - " | ... description=\"toxic membrane protein, small\")\n", - " | >>> print(str(record))\n", - " | ID: YP_025292.1\n", - " | Name: HokC\n", - " | Description: toxic membrane protein, small\n", - " | Number of features: 0\n", - " | Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())\n", - " | \n", - " | In this example you don't actually need to call str explicity, as the\n", - " | print command does this automatically:\n", - " | \n", - " | >>> print(record)\n", - " | ID: YP_025292.1\n", - " | Name: HokC\n", - " | Description: toxic membrane protein, small\n", - " | Number of features: 0\n", - " | Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())\n", - " | \n", - " | Note that long sequences are shown truncated.\n", - " | \n", - " | format(self, format)\n", - " | Return the record as a string in the specified file format.\n", - " | \n", - " | The format should be a lower case string supported as an output\n", - " | format by Bio.SeqIO, which is used to turn the SeqRecord into a\n", - " | string. e.g.\n", - " | \n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.Alphabet import IUPAC\n", - " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\",\n", - " | ... IUPAC.protein),\n", - " | ... id=\"YP_025292.1\", name=\"HokC\",\n", - " | ... description=\"toxic membrane protein\")\n", - " | >>> record.format(\"fasta\")\n", - " | '>YP_025292.1 toxic membrane protein\\nMKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\\n'\n", - " | >>> print(record.format(\"fasta\"))\n", - " | >YP_025292.1 toxic membrane protein\n", - " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", - " | \n", - " | \n", - " | The python print command automatically appends a new line, meaning\n", - " | in this example a blank line is shown. If you look at the string\n", - " | representation you can see there is a trailing new line (shown as\n", - " | slash n) which is important when writing to a file or if\n", - " | concatenating multiple sequence strings together.\n", - " | \n", - " | Note that this method will NOT work on every possible file format\n", - " | supported by Bio.SeqIO (e.g. some are for multiple sequences only,\n", - " | and binary formats are not supported).\n", - " | \n", - " | lower(self)\n", - " | Return a copy of the record with a lower case sequence.\n", - " | \n", - " | All the annotation is preserved unchanged. e.g.\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Fasta/aster.pro\", \"fasta\")\n", - " | >>> print(record.format(\"fasta\"))\n", - " | >gi|3298468|dbj|BAA31520.1| SAMIPF\n", - " | GGHVNPAVTFGAFVGGNITLLRGIVYIIAQLLGSTVACLLLKFVTNDMAVGVFSLSAGVG\n", - " | VTNALVFEIVMTFGLVYTVYATAIDPKKGSLGTIAPIAIGFIVGANI\n", - " | \n", - " | >>> print(record.lower().format(\"fasta\"))\n", - " | >gi|3298468|dbj|BAA31520.1| SAMIPF\n", - " | gghvnpavtfgafvggnitllrgivyiiaqllgstvaclllkfvtndmavgvfslsagvg\n", - " | vtnalvfeivmtfglvytvyataidpkkgslgtiapiaigfivgani\n", - " | \n", - " | \n", - " | To take a more annotation rich example,\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> old = SeqIO.read(\"EMBL/TRBG361.embl\", \"embl\")\n", - " | >>> len(old.features)\n", - " | 3\n", - " | >>> new = old.lower()\n", - " | >>> len(old.features) == len(new.features)\n", - " | True\n", - " | >>> old.annotations[\"organism\"] == new.annotations[\"organism\"]\n", - " | True\n", - " | >>> old.dbxrefs == new.dbxrefs\n", - " | True\n", - " | \n", - " | reverse_complement(self, id=False, name=False, description=False, features=True, annotations=False, letter_annotations=True, dbxrefs=False)\n", - " | Return new SeqRecord with reverse complement sequence.\n", - " | \n", - " | By default the new record does NOT preserve the sequence identifier,\n", - " | name, description, general annotation or database cross-references -\n", - " | these are unlikely to apply to the reversed sequence.\n", - " | \n", - " | You can specify the returned record's id, name and description as\n", - " | strings, or True to keep that of the parent, or False for a default.\n", - " | \n", - " | You can specify the returned record's features with a list of\n", - " | SeqFeature objects, or True to keep that of the parent, or False to\n", - " | omit them. The default is to keep the original features (with the\n", - " | strand and locations adjusted).\n", - " | \n", - " | You can also specify both the returned record's annotations and\n", - " | letter_annotations as dictionaries, True to keep that of the parent,\n", - " | or False to omit them. The default is to keep the original\n", - " | annotations (with the letter annotations reversed).\n", - " | \n", - " | To show what happens to the pre-letter annotations, consider an\n", - " | example Solexa variant FASTQ file with a single entry, which we'll\n", - " | read in as a SeqRecord:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", - " | >>> print(\"%s %s\" % (record.id, record.seq))\n", - " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", - " | >>> print(list(record.letter_annotations))\n", - " | ['solexa_quality']\n", - " | >>> print(record.letter_annotations[\"solexa_quality\"])\n", - " | [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]\n", - " | \n", - " | Now take the reverse complement, here we explicitly give a new\n", - " | identifier (the old identifier with a suffix):\n", - " | \n", - " | >>> rc_record = record.reverse_complement(id=record.id + \"_rc\")\n", - " | >>> print(\"%s %s\" % (rc_record.id, rc_record.seq))\n", - " | slxa_0001_1_0001_01_rc NNNNNNACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT\n", - " | \n", - " | Notice that the per-letter-annotations have also been reversed,\n", - " | although this may not be appropriate for all cases.\n", - " | \n", - " | >>> print(rc_record.letter_annotations[\"solexa_quality\"])\n", - " | [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]\n", - " | \n", - " | Now for the features, we need a different example. Parsing a GenBank\n", - " | file is probably the easiest way to get an nice example with features\n", - " | in it...\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> with open(\"GenBank/pBAD30.gb\") as handle:\n", - " | ... plasmid = SeqIO.read(handle, \"gb\")\n", - " | >>> print(\"%s %i\" % (plasmid.id, len(plasmid)))\n", - " | pBAD30 4923\n", - " | >>> plasmid.seq\n", - " | Seq('GCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGA...ATG', IUPACAmbiguousDNA())\n", - " | >>> len(plasmid.features)\n", - " | 13\n", - " | \n", - " | Now, let's take the reverse complement of this whole plasmid:\n", - " | \n", - " | >>> rc_plasmid = plasmid.reverse_complement(id=plasmid.id+\"_rc\")\n", - " | >>> print(\"%s %i\" % (rc_plasmid.id, len(rc_plasmid)))\n", - " | pBAD30_rc 4923\n", - " | >>> rc_plasmid.seq\n", - " | Seq('CATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCA...AGC', IUPACAmbiguousDNA())\n", - " | >>> len(rc_plasmid.features)\n", - " | 13\n", - " | \n", - " | Let's compare the first CDS feature - it has gone from being the\n", - " | second feature (index 1) to the second last feature (index -2), its\n", - " | strand has changed, and the location switched round.\n", - " | \n", - " | >>> print(plasmid.features[1])\n", - " | type: CDS\n", - " | location: [1081:1960](-)\n", - " | qualifiers:\n", - " | Key: label, Value: ['araC']\n", - " | Key: note, Value: ['araC regulator of the arabinose BAD promoter']\n", - " | Key: vntifkey, Value: ['4']\n", - " | \n", - " | >>> print(rc_plasmid.features[-2])\n", - " | type: CDS\n", - " | location: [2963:3842](+)\n", - " | qualifiers:\n", - " | Key: label, Value: ['araC']\n", - " | Key: note, Value: ['araC regulator of the arabinose BAD promoter']\n", - " | Key: vntifkey, Value: ['4']\n", - " | \n", - " | \n", - " | You can check this new location, based on the length of the plasmid:\n", - " | \n", - " | >>> len(plasmid) - 1081\n", - " | 3842\n", - " | >>> len(plasmid) - 1960\n", - " | 2963\n", - " | \n", - " | Note that if the SeqFeature annotation includes any strand specific\n", - " | information (e.g. base changes for a SNP), this information is not\n", - " | amended, and would need correction after the reverse complement.\n", - " | \n", - " | Note trying to reverse complement a protein SeqRecord raises an\n", - " | exception:\n", - " | \n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.Alphabet import IUPAC\n", - " | >>> protein_rec = SeqRecord(Seq(\"MAIVMGR\", IUPAC.protein), id=\"Test\")\n", - " | >>> protein_rec.reverse_complement()\n", - " | Traceback (most recent call last):\n", - " | ...\n", - " | ValueError: Proteins do not have complements!\n", - " | \n", - " | Also note you can reverse complement a SeqRecord using a MutableSeq:\n", - " | \n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> from Bio.Seq import MutableSeq\n", - " | >>> from Bio.Alphabet import generic_dna\n", - " | >>> rec = SeqRecord(MutableSeq(\"ACGT\", generic_dna), id=\"Test\")\n", - " | >>> rec.seq[0] = \"T\"\n", - " | >>> print(\"%s %s\" % (rec.id, rec.seq))\n", - " | Test TCGT\n", - " | >>> rc = rec.reverse_complement(id=True)\n", - " | >>> print(\"%s %s\" % (rc.id, rc.seq))\n", - " | Test ACGA\n", - " | \n", - " | translate(self, table='Standard', stop_symbol='*', to_stop=False, cds=False, gap=None, id=False, name=False, description=False, features=False, annotations=False, letter_annotations=False, dbxrefs=False)\n", - " | Return new SeqRecord with translated sequence.\n", - " | \n", - " | This calls the record's .seq.translate() method (which describes\n", - " | the translation related arguments, like table for the genetic code),\n", - " | \n", - " | By default the new record does NOT preserve the sequence identifier,\n", - " | name, description, general annotation or database cross-references -\n", - " | these are unlikely to apply to the translated sequence.\n", - " | \n", - " | You can specify the returned record's id, name and description as\n", - " | strings, or True to keep that of the parent, or False for a default.\n", - " | \n", - " | You can specify the returned record's features with a list of\n", - " | SeqFeature objects, or False (default) to omit them.\n", - " | \n", - " | You can also specify both the returned record's annotations and\n", - " | letter_annotations as dictionaries, True to keep that of the parent\n", - " | (annotations only), or False (default) to omit them.\n", - " | \n", - " | e.g. Loading a FASTA gene and translating it,\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> gene_record = SeqIO.read(\"Fasta/sweetpea.nu\", \"fasta\")\n", - " | >>> print(gene_record.format(\"fasta\"))\n", - " | >gi|3176602|gb|U78617.1|LOU78617 Lathyrus odoratus phytochrome A (PHYA) gene, partial cds\n", - " | CAGGCTGCGCGGTTTCTATTTATGAAGAACAAGGTCCGTATGATAGTTGATTGTCATGCA\n", - " | AAACATGTGAAGGTTCTTCAAGACGAAAAACTCCCATTTGATTTGACTCTGTGCGGTTCG\n", - " | ACCTTAAGAGCTCCACATAGTTGCCATTTGCAGTACATGGCTAACATGGATTCAATTGCT\n", - " | TCATTGGTTATGGCAGTGGTCGTCAATGACAGCGATGAAGATGGAGATAGCCGTGACGCA\n", - " | GTTCTACCACAAAAGAAAAAGAGACTTTGGGGTTTGGTAGTTTGTCATAACACTACTCCG\n", - " | AGGTTTGTT\n", - " | \n", - " | \n", - " | And now translating the record, specifying the new ID and description:\n", - " | \n", - " | >>> protein_record = gene_record.translate(table=11,\n", - " | ... id=\"phya\",\n", - " | ... description=\"translation\")\n", - " | >>> print(protein_record.format(\"fasta\"))\n", - " | >phya translation\n", - " | QAARFLFMKNKVRMIVDCHAKHVKVLQDEKLPFDLTLCGSTLRAPHSCHLQYMANMDSIA\n", - " | SLVMAVVVNDSDEDGDSRDAVLPQKKKRLWGLVVCHNTTPRFV\n", - " | \n", - " | \n", - " | upper(self)\n", - " | Return a copy of the record with an upper case sequence.\n", - " | \n", - " | All the annotation is preserved unchanged. e.g.\n", - " | \n", - " | >>> from Bio.Alphabet import generic_dna\n", - " | >>> from Bio.Seq import Seq\n", - " | >>> from Bio.SeqRecord import SeqRecord\n", - " | >>> record = SeqRecord(Seq(\"acgtACGT\", generic_dna), id=\"Test\",\n", - " | ... description = \"Made up for this example\")\n", - " | >>> record.letter_annotations[\"phred_quality\"] = [1, 2, 3, 4, 5, 6, 7, 8]\n", - " | >>> print(record.upper().format(\"fastq\"))\n", - " | @Test Made up for this example\n", - " | ACGTACGT\n", - " | +\n", - " | \"#$%&'()\n", - " | \n", - " | \n", - " | Naturally, there is a matching lower method:\n", - " | \n", - " | >>> print(record.lower().format(\"fastq\"))\n", - " | @Test Made up for this example\n", - " | acgtacgt\n", - " | +\n", - " | \"#$%&'()\n", - " | \n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data descriptors defined here:\n", - " | \n", - " | __dict__\n", - " | dictionary for instance variables (if defined)\n", - " | \n", - " | __weakref__\n", - " | list of weak references to the object (if defined)\n", - " | \n", - " | letter_annotations\n", - " | Dictionary of per-letter-annotation for the sequence.\n", - " | \n", - " | For example, this can hold quality scores used in FASTQ or QUAL files.\n", - " | Consider this example using Bio.SeqIO to read in an example Solexa\n", - " | variant FASTQ file as a SeqRecord:\n", - " | \n", - " | >>> from Bio import SeqIO\n", - " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", - " | >>> print(\"%s %s\" % (record.id, record.seq))\n", - " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", - " | >>> print(list(record.letter_annotations))\n", - " | ['solexa_quality']\n", - " | >>> print(record.letter_annotations[\"solexa_quality\"])\n", - " | [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]\n", - " | \n", - " | The letter_annotations get sliced automatically if you slice the\n", - " | parent SeqRecord, for example taking the last ten bases:\n", - " | \n", - " | >>> sub_record = record[-10:]\n", - " | >>> print(\"%s %s\" % (sub_record.id, sub_record.seq))\n", - " | slxa_0001_1_0001_01 ACGTNNNNNN\n", - " | >>> print(sub_record.letter_annotations[\"solexa_quality\"])\n", - " | [4, 3, 2, 1, 0, -1, -2, -3, -4, -5]\n", - " | \n", - " | Any python sequence (i.e. list, tuple or string) can be recorded in\n", - " | the SeqRecord's letter_annotations dictionary as long as the length\n", - " | matches that of the SeqRecord's sequence. e.g.\n", - " | \n", - " | >>> len(sub_record.letter_annotations)\n", - " | 1\n", - " | >>> sub_record.letter_annotations[\"dummy\"] = \"abcdefghij\"\n", - " | >>> len(sub_record.letter_annotations)\n", - " | 2\n", - " | \n", - " | You can delete entries from the letter_annotations dictionary as usual:\n", - " | \n", - " | >>> del sub_record.letter_annotations[\"solexa_quality\"]\n", - " | >>> sub_record.letter_annotations\n", - " | {'dummy': 'abcdefghij'}\n", - " | \n", - " | You can completely clear the dictionary easily as follows:\n", - " | \n", - " | >>> sub_record.letter_annotations = {}\n", - " | >>> sub_record.letter_annotations\n", - " | {}\n", - " | \n", - " | Note that if replacing the record's sequence with a sequence of a\n", - " | different length you must first clear the letter_annotations dict.\n", - " | \n", - " | seq\n", - " | The sequence itself, as a Seq or MutableSeq object.\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data and other attributes defined here:\n", - " | \n", - " | __hash__ = None\n", - "\n" - ] - } - ], - "source": [ - "from Bio.SeqRecord import SeqRecord\n", - "help(SeqRecord)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's write a bit of code involving `SeqRecord` and see how it comes out looking." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "from Bio.SeqRecord import SeqRecord\n", - "\n", - "simple_seq = Seq(\"GATC\")\n", - "simple_seq_r = SeqRecord(simple_seq)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "ZG77QUj2tgSJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "cdbfa06f-c65e-4ada-e5af-47577e9b4a91" + }, + "source": [ + "my_prot + my_prot" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('AAAAAAAAAA', IUPACProtein())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "AC12345\n", - "Made up sequence\n" - ] - } - ], - "source": [ - "simple_seq_r.id = \"AC12345\"\n", - "simple_seq_r.description = \"Made up sequence\"\n", - "print(simple_seq_r.id)\n", - "print(simple_seq_r.description)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now see how we can use `SeqRecord` to parse a large fasta file. We'll pull down a file hosted on the biopython site." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "y2XacTYttgSM", + "colab_type": "text" + }, + "source": [ + "But this fails" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2020-03-09 11:07:05-- https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.fna\n", - "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.40.133\n", - "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.40.133|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 9853 (9.6K) [text/plain]\n", - "Saving to: ‘NC_005816.fna’\n", - "\n", - "NC_005816.fna 100%[===================>] 9.62K --.-KB/s in 0s \n", - "\n", - "2020-03-09 11:07:06 (42.9 MB/s) - ‘NC_005816.fna’ saved [9853/9853]\n", - "\n" - ] - } - ], - "source": [ - "!wget https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.fna" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "metadata": { + "id": "MZ53Yjr1tgSO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 287 + }, + "outputId": "418c486c-8e8e-4ef0-cac0-176b29d1107e" + }, + "source": [ + "my_prot + my_seq" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_prot\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmy_seq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/Bio/Seq.py\u001b[0m in \u001b[0;36m__add__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mAlphabet\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_type_compatible\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malphabet\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malphabet\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 336\u001b[0m raise TypeError(\n\u001b[0;32m--> 337\u001b[0;31m \u001b[0;34mf\"Incompatible alphabets {self.alphabet!r} and {other.alphabet!r}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 338\u001b[0m )\n\u001b[1;32m 339\u001b[0m \u001b[0;31m# They should be the same sequence type (or one of them is generic)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Incompatible alphabets IUPACProtein() and IUPACUnambiguousDNA()" + ] + } + ] + }, { - "data": { - "text/plain": [ - "SeqRecord(seq=Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG', SingleLetterAlphabet()), id='gi|45478711|ref|NC_005816.1|', name='gi|45478711|ref|NC_005816.1|', description='gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence', dbxrefs=[])" + "cell_type": "markdown", + "metadata": { + "id": "_Z-KdC2WtgSR", + "colab_type": "text" + }, + "source": [ + "## Transcription\n", + "\n", + "Transcription is the process by which a DNA sequence is converted into messenger RNA. Remember that this is part of the \"central dogma\" of biology in which DNA engenders messenger RNA which engenders proteins. Here's a nice representation of this cycle borrowed from a Khan academy [lesson](https://cdn.kastatic.org/ka-perseus-images/20ce29384b2e7ff0cdea72acaa5b1dbd7287ab00.png).\n", + "\n", + "" ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from Bio import SeqIO\n", - "\n", - "record = SeqIO.read(\"NC_005816.fna\", \"fasta\")\n", - "record" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note how there's a number of annotations attached to the `SeqRecord` object!\n", - "\n", - "Let's take a closer look." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'gi|45478711|ref|NC_005816.1|'" + "cell_type": "markdown", + "metadata": { + "id": "1ZjlCDDmtgSU", + "colab_type": "text" + }, + "source": [ + "Note from the image above that DNA has two strands. The top strand is typically called the coding strand, and the bottom the template strand. The template strand is used for the actual transcription process of conversion into messenger RNA, but in bioinformatics, it's more common to work with the coding strand. Let's now see how we can execute a transcription computationally using Biopython." ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "record.id" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'gi|45478711|ref|NC_005816.1|'" + "cell_type": "code", + "metadata": { + "id": "TvPiRx_0tgSU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "b14310f2-9e00-43d3-e3d4-2e87ad1dd12b" + }, + "source": [ + "from Bio.Seq import Seq\n", + "from Bio.Alphabet import IUPAC\n", + "\n", + "coding_dna = Seq(\"ATGATCTCGTAA\", IUPAC.unambiguous_dna)\n", + "coding_dna" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('ATGATCTCGTAA', IUPACUnambiguousDNA())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "record.name" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence'" + "cell_type": "code", + "metadata": { + "id": "arGizrBztgSX", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "f0b34687-7cfc-410c-a5d8-ed7e0db81611" + }, + "source": [ + "template_dna = coding_dna.reverse_complement()\n", + "template_dna" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('TTACGAGATCAT', IUPACUnambiguousDNA())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "record.description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now look at the same sequence, but downloaded from GenBank. We'll download the hosted file from the biopython tutorial website as before." - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2020-03-09 11:19:25-- https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.gb\n", - "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.40.133\n", - "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.40.133|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 31838 (31K) [text/plain]\n", - "Saving to: ‘NC_005816.gb’\n", - "\n", - "NC_005816.gb 100%[===================>] 31.09K --.-KB/s in 0.02s \n", - "\n", - "2020-03-09 11:19:25 (2.01 MB/s) - ‘NC_005816.gb’ saved [31838/31838]\n", - "\n" - ] - } - ], - "source": [ - "!wget https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.gb" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "x8FjupA9tgSa", + "colab_type": "text" + }, + "source": [ + "Note that these sequences match those in the image below. You might be confused about why the `template_dna` sequence is shown reversed. The reason is that by convention, the template strand is read in the reverse direction.\n", + "\n", + "Let's now see how we can transcribe our `coding_dna` strand into messenger RNA. This will only swap 'T' for 'U' and change the alphabet for our object." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "oo8bBugUtgSa", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "ec994b9b-19fb-47e8-eb20-9e5931c72adb" + }, + "source": [ + "messenger_rna = coding_dna.transcribe()\n", + "messenger_rna" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('AUGAUCUCGUAA', IUPACUnambiguousRNA())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6UTMKVfAtgSe", + "colab_type": "text" + }, + "source": [ + "We can also perform a \"back-transcription\" to recover the original coding strand from the messenger RNA." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "edClUMputgSf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "0a7e0b83-18ee-4146-ef9b-9c13f9d0e652" + }, + "source": [ + "messenger_rna.back_transcribe()" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('ATGATCTCGTAA', IUPACUnambiguousDNA())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0GqZSdFptgSk", + "colab_type": "text" + }, + "source": [ + "## Translation\n", + "\n", + "Translation is the next step in the process, whereby a messenger RNA is transformed into a protein sequence. Here's a beautiful diagram [from Wikipedia](https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg) that lays out the basics of this process.\n", + "\n", + "\n", + "\n", + "Note how 3 nucleotides at a time correspond to one new amino acid added to the growing protein chain. A set of 3 nucleotides which codes for a given amino acid is called a \"codon.\" We can use the `translate()` method on the messenger rna to perform this transformation in code." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7K_pm48HtgSm", + "colab_type": "text" + }, + "source": [ + "messenger_rna.translate()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IiUYHWmRtgSm", + "colab_type": "text" + }, + "source": [ + "The translation can also be performed directly from the coding sequence DNA" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cy8y6y9CtgSn", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "24fd9456-7d23-4bb5-c0a9-d9f9472f07f4" + }, + "source": [ + "coding_dna.translate()" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('MIS*', HasStopCodon(IUPACProtein(), '*'))" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 22 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6hHsJnfQtgSq", + "colab_type": "text" + }, + "source": [ + "Let's now consider a longer genetic sequence that has some more interesting structure for us to look at." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "iwpB4lYatgSs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "aba507e8-0321-4745-c14e-fc1110666d1a" + }, + "source": [ + "coding_dna = Seq(\"ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG\", IUPAC.unambiguous_dna)\n", + "coding_dna.translate()" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('MAIVMGR*KGAR*', HasStopCodon(IUPACProtein(), '*'))" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 23 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ulq6Gc06tgSv", + "colab_type": "text" + }, + "source": [ + "In both of the sequences above, '*' represents the [stop codon](https://en.wikipedia.org/wiki/Stop_codon). A stop codon is a sequence of 3 nucleotides that turns off the protein machinery. In DNA, the stop codons are 'TGA', 'TAA', 'TAG'. Note that this latest sequence has multiple stop codons. It's possible to run the machinery up to the first stop codon and pause too." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6uScm61FtgSw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "eaaa0949-37d7-45c0-bf07-324a2062ee53" + }, + "source": [ + "coding_dna.translate(to_stop=True)" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('MAIVMGR', IUPACProtein())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aVLT-471tgS2", + "colab_type": "text" + }, + "source": [ + "We're going to introduce a bit of terminology here. A complete coding sequence CDS is a nucleotide sequence of messenger RNA which is made of a whole number of codons (that is, the length of the sequence is a multiple of 3), starts with a \"start codon\" and ends with a \"stop codon\". A start codon is basically the opposite of a stop codon and is mostly commonly the sequence \"AUG\", but can be different (especially if you're dealing with something like bacterial DNA).\n", + "\n", + "Let's see how we can translate a complete CDS of bacterial messenger RNA." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "iy9-Co_WtgS3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "d6bc133f-1753-40a9-c621-4b0ba52be8d7" + }, + "source": [ + "from Bio.Alphabet import generic_dna\n", + "\n", + "gene = Seq(\"GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA\" + \\\n", + " \"GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT\" + \\\n", + " \"AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT\" + \\\n", + " \"TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT\" + \\\n", + " \"AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA\",\n", + " generic_dna)\n", + "# We specify a \"table\" to use a different translation table for bacterial proteins\n", + "gene.translate(table=\"Bacterial\")" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HR*', HasStopCodon(ExtendedIUPACProtein(), '*'))" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yWmqHt3GtgS6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "6205609f-6925-4271-b13d-1dc466d6b22c" + }, + "source": [ + "gene.translate(table=\"Bacterial\", to_stop=True)" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HHR', ExtendedIUPACProtein())" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hqQlZA2dtgS8", + "colab_type": "text" + }, + "source": [ + "# Handling Annotated Sequences\n", + "\n", + "Sometimes it will be useful for us to be able to handle annotated sequences where there's richer annotations, as in GenBank or EMBL files. For these purposes, we'll want to use the `SeqRecord` class." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "nnHQ_fObtgS9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "b751ab6b-cabc-454b-e9f7-691e95e4d282" + }, + "source": [ + "from Bio.SeqRecord import SeqRecord\n", + "help(SeqRecord)" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Help on class SeqRecord in module Bio.SeqRecord:\n", + "\n", + "class SeqRecord(builtins.object)\n", + " | A SeqRecord object holds a sequence and information about it.\n", + " | \n", + " | Main attributes:\n", + " | - id - Identifier such as a locus tag (string)\n", + " | - seq - The sequence itself (Seq object or similar)\n", + " | \n", + " | Additional attributes:\n", + " | - name - Sequence name, e.g. gene name (string)\n", + " | - description - Additional text (string)\n", + " | - dbxrefs - List of database cross references (list of strings)\n", + " | - features - Any (sub)features defined (list of SeqFeature objects)\n", + " | - annotations - Further information about the whole sequence (dictionary).\n", + " | Most entries are strings, or lists of strings.\n", + " | - letter_annotations - Per letter/symbol annotation (restricted\n", + " | dictionary). This holds Python sequences (lists, strings\n", + " | or tuples) whose length matches that of the sequence.\n", + " | A typical use would be to hold a list of integers\n", + " | representing sequencing quality scores, or a string\n", + " | representing the secondary structure.\n", + " | \n", + " | You will typically use Bio.SeqIO to read in sequences from files as\n", + " | SeqRecord objects. However, you may want to create your own SeqRecord\n", + " | objects directly (see the __init__ method for further details):\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.Alphabet import IUPAC\n", + " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\",\n", + " | ... IUPAC.protein),\n", + " | ... id=\"YP_025292.1\", name=\"HokC\",\n", + " | ... description=\"toxic membrane protein\")\n", + " | >>> print(record)\n", + " | ID: YP_025292.1\n", + " | Name: HokC\n", + " | Description: toxic membrane protein\n", + " | Number of features: 0\n", + " | Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())\n", + " | \n", + " | If you want to save SeqRecord objects to a sequence file, use Bio.SeqIO\n", + " | for this. For the special case where you want the SeqRecord turned into\n", + " | a string in a particular file format there is a format method which uses\n", + " | Bio.SeqIO internally:\n", + " | \n", + " | >>> print(record.format(\"fasta\"))\n", + " | >YP_025292.1 toxic membrane protein\n", + " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", + " | \n", + " | \n", + " | You can also do things like slicing a SeqRecord, checking its length, etc\n", + " | \n", + " | >>> len(record)\n", + " | 44\n", + " | >>> edited = record[:10] + record[11:]\n", + " | >>> print(edited.seq)\n", + " | MKQHKAMIVAIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", + " | >>> print(record.seq)\n", + " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", + " | \n", + " | Methods defined here:\n", + " | \n", + " | __add__(self, other)\n", + " | Add another sequence or string to this sequence.\n", + " | \n", + " | The other sequence can be a SeqRecord object, a Seq object (or\n", + " | similar, e.g. a MutableSeq) or a plain Python string. If you add\n", + " | a plain string or a Seq (like) object, the new SeqRecord will simply\n", + " | have this appended to the existing data. However, any per letter\n", + " | annotation will be lost:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", + " | >>> print(\"%s %s\" % (record.id, record.seq))\n", + " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", + " | >>> print(list(record.letter_annotations))\n", + " | ['solexa_quality']\n", + " | \n", + " | >>> new = record + \"ACT\"\n", + " | >>> print(\"%s %s\" % (new.id, new.seq))\n", + " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNNACT\n", + " | >>> print(list(new.letter_annotations))\n", + " | []\n", + " | \n", + " | The new record will attempt to combine the annotation, but for any\n", + " | ambiguities (e.g. different names) it defaults to omitting that\n", + " | annotation.\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> with open(\"GenBank/pBAD30.gb\") as handle:\n", + " | ... plasmid = SeqIO.read(handle, \"gb\")\n", + " | >>> print(\"%s %i\" % (plasmid.id, len(plasmid)))\n", + " | pBAD30 4923\n", + " | \n", + " | Now let's cut the plasmid into two pieces, and join them back up the\n", + " | other way round (i.e. shift the starting point on this plasmid, have\n", + " | a look at the annotated features in the original file to see why this\n", + " | particular split point might make sense):\n", + " | \n", + " | >>> left = plasmid[:3765]\n", + " | >>> right = plasmid[3765:]\n", + " | >>> new = right + left\n", + " | >>> print(\"%s %i\" % (new.id, len(new)))\n", + " | pBAD30 4923\n", + " | >>> str(new.seq) == str(right.seq + left.seq)\n", + " | True\n", + " | >>> len(new.features) == len(left.features) + len(right.features)\n", + " | True\n", + " | \n", + " | When we add the left and right SeqRecord objects, their annotation\n", + " | is all consistent, so it is all conserved in the new SeqRecord:\n", + " | \n", + " | >>> new.id == left.id == right.id == plasmid.id\n", + " | True\n", + " | >>> new.name == left.name == right.name == plasmid.name\n", + " | True\n", + " | >>> new.description == plasmid.description\n", + " | True\n", + " | >>> new.annotations == left.annotations == right.annotations\n", + " | True\n", + " | >>> new.letter_annotations == plasmid.letter_annotations\n", + " | True\n", + " | >>> new.dbxrefs == left.dbxrefs == right.dbxrefs\n", + " | True\n", + " | \n", + " | However, we should point out that when we sliced the SeqRecord,\n", + " | any annotations dictionary or dbxrefs list entries were lost.\n", + " | You can explicitly copy them like this:\n", + " | \n", + " | >>> new.annotations = plasmid.annotations.copy()\n", + " | >>> new.dbxrefs = plasmid.dbxrefs[:]\n", + " | \n", + " | __bool__(self)\n", + " | Boolean value of an instance of this class (True).\n", + " | \n", + " | This behaviour is for backwards compatibility, since until the\n", + " | __len__ method was added, a SeqRecord always evaluated as True.\n", + " | \n", + " | Note that in comparison, a Seq object will evaluate to False if it\n", + " | has a zero length sequence.\n", + " | \n", + " | WARNING: The SeqRecord may in future evaluate to False when its\n", + " | sequence is of zero length (in order to better match the Seq\n", + " | object behaviour)!\n", + " | \n", + " | __contains__(self, char)\n", + " | Implement the 'in' keyword, searches the sequence.\n", + " | \n", + " | e.g.\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Fasta/sweetpea.nu\", \"fasta\")\n", + " | >>> \"GAATTC\" in record\n", + " | False\n", + " | >>> \"AAA\" in record\n", + " | True\n", + " | \n", + " | This essentially acts as a proxy for using \"in\" on the sequence:\n", + " | \n", + " | >>> \"GAATTC\" in record.seq\n", + " | False\n", + " | >>> \"AAA\" in record.seq\n", + " | True\n", + " | \n", + " | Note that you can also use Seq objects as the query,\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.Alphabet import generic_dna\n", + " | >>> Seq(\"AAA\") in record\n", + " | True\n", + " | >>> Seq(\"AAA\", generic_dna) in record\n", + " | True\n", + " | \n", + " | See also the Seq object's __contains__ method.\n", + " | \n", + " | __eq__(self, other)\n", + " | Define the equal-to operand (not implemented).\n", + " | \n", + " | __format__(self, format_spec)\n", + " | Return the record as a string in the specified file format.\n", + " | \n", + " | This method supports the Python format() function and f-strings.\n", + " | The format_spec should be a lower case string supported by\n", + " | Bio.SeqIO as a text output file format. Requesting a binary file\n", + " | format raises a ValueError. e.g.\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\"),\n", + " | ... id=\"YP_025292.1\", name=\"HokC\",\n", + " | ... description=\"toxic membrane protein\")\n", + " | ...\n", + " | >>> format(record, \"fasta\")\n", + " | '>YP_025292.1 toxic membrane protein\\nMKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\\n'\n", + " | >>> print(f\"Here is {record.id} in FASTA format:\\n{record:fasta}\")\n", + " | Here is YP_025292.1 in FASTA format:\n", + " | >YP_025292.1 toxic membrane protein\n", + " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", + " | \n", + " | \n", + " | See also the SeqRecord's format() method.\n", + " | \n", + " | __ge__(self, other)\n", + " | Define the greater-than-or-equal-to operand (not implemented).\n", + " | \n", + " | __getitem__(self, index)\n", + " | Return a sub-sequence or an individual letter.\n", + " | \n", + " | Slicing, e.g. my_record[5:10], returns a new SeqRecord for\n", + " | that sub-sequence with some annotation preserved as follows:\n", + " | \n", + " | * The name, id and description are kept as-is.\n", + " | * Any per-letter-annotations are sliced to match the requested\n", + " | sub-sequence.\n", + " | * Unless a stride is used, all those features which fall fully\n", + " | within the subsequence are included (with their locations\n", + " | adjusted accordingly). If you want to preserve any truncated\n", + " | features (e.g. GenBank/EMBL source features), you must\n", + " | explicitly add them to the new SeqRecord yourself.\n", + " | * The annotations dictionary and the dbxrefs list are not used\n", + " | for the new SeqRecord, as in general they may not apply to the\n", + " | subsequence. If you want to preserve them, you must explicitly\n", + " | copy them to the new SeqRecord yourself.\n", + " | \n", + " | Using an integer index, e.g. my_record[5] is shorthand for\n", + " | extracting that letter from the sequence, my_record.seq[5].\n", + " | \n", + " | For example, consider this short protein and its secondary\n", + " | structure as encoded by the PDB (e.g. H for alpha helices),\n", + " | plus a simple feature for its histidine self phosphorylation\n", + " | site:\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.SeqFeature import SeqFeature, FeatureLocation\n", + " | >>> from Bio.Alphabet import IUPAC\n", + " | >>> rec = SeqRecord(Seq(\"MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLAT\"\n", + " | ... \"EMMSEQDGYLAESINKDIEECNAIIEQFIDYLR\",\n", + " | ... IUPAC.protein),\n", + " | ... id=\"1JOY\", name=\"EnvZ\",\n", + " | ... description=\"Homodimeric domain of EnvZ from E. coli\")\n", + " | >>> rec.letter_annotations[\"secondary_structure\"] = \" S SSSSSSHHHHHTTTHHHHHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHHHHHHHTT \"\n", + " | >>> rec.features.append(SeqFeature(FeatureLocation(20, 21),\n", + " | ... type = \"Site\"))\n", + " | \n", + " | Now let's have a quick look at the full record,\n", + " | \n", + " | >>> print(rec)\n", + " | ID: 1JOY\n", + " | Name: EnvZ\n", + " | Description: Homodimeric domain of EnvZ from E. coli\n", + " | Number of features: 1\n", + " | Per letter annotation for: secondary_structure\n", + " | Seq('MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE...YLR', IUPACProtein())\n", + " | >>> rec.letter_annotations[\"secondary_structure\"]\n", + " | ' S SSSSSSHHHHHTTTHHHHHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHHHHHHHTT '\n", + " | >>> print(rec.features[0].location)\n", + " | [20:21]\n", + " | \n", + " | Now let's take a sub sequence, here chosen as the first (fractured)\n", + " | alpha helix which includes the histidine phosphorylation site:\n", + " | \n", + " | >>> sub = rec[11:41]\n", + " | >>> print(sub)\n", + " | ID: 1JOY\n", + " | Name: EnvZ\n", + " | Description: Homodimeric domain of EnvZ from E. coli\n", + " | Number of features: 1\n", + " | Per letter annotation for: secondary_structure\n", + " | Seq('RTLLMAGVSHDLRTPLTRIRLATEMMSEQD', IUPACProtein())\n", + " | >>> sub.letter_annotations[\"secondary_structure\"]\n", + " | 'HHHHHTTTHHHHHHHHHHHHHHHHHHHHHH'\n", + " | >>> print(sub.features[0].location)\n", + " | [9:10]\n", + " | \n", + " | You can also of course omit the start or end values, for\n", + " | example to get the first ten letters only:\n", + " | \n", + " | >>> print(rec[:10])\n", + " | ID: 1JOY\n", + " | Name: EnvZ\n", + " | Description: Homodimeric domain of EnvZ from E. coli\n", + " | Number of features: 0\n", + " | Per letter annotation for: secondary_structure\n", + " | Seq('MAAGVKQLAD', IUPACProtein())\n", + " | \n", + " | Or for the last ten letters:\n", + " | \n", + " | >>> print(rec[-10:])\n", + " | ID: 1JOY\n", + " | Name: EnvZ\n", + " | Description: Homodimeric domain of EnvZ from E. coli\n", + " | Number of features: 0\n", + " | Per letter annotation for: secondary_structure\n", + " | Seq('IIEQFIDYLR', IUPACProtein())\n", + " | \n", + " | If you omit both, then you get a copy of the original record (although\n", + " | lacking the annotations and dbxrefs):\n", + " | \n", + " | >>> print(rec[:])\n", + " | ID: 1JOY\n", + " | Name: EnvZ\n", + " | Description: Homodimeric domain of EnvZ from E. coli\n", + " | Number of features: 1\n", + " | Per letter annotation for: secondary_structure\n", + " | Seq('MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE...YLR', IUPACProtein())\n", + " | \n", + " | Finally, indexing with a simple integer is shorthand for pulling out\n", + " | that letter from the sequence directly:\n", + " | \n", + " | >>> rec[5]\n", + " | 'K'\n", + " | >>> rec.seq[5]\n", + " | 'K'\n", + " | \n", + " | __gt__(self, other)\n", + " | Define the greater-than operand (not implemented).\n", + " | \n", + " | __init__(self, seq, id='', name='', description='', dbxrefs=None, features=None, annotations=None, letter_annotations=None)\n", + " | Create a SeqRecord.\n", + " | \n", + " | Arguments:\n", + " | - seq - Sequence, required (Seq, MutableSeq or UnknownSeq)\n", + " | - id - Sequence identifier, recommended (string)\n", + " | - name - Sequence name, optional (string)\n", + " | - description - Sequence description, optional (string)\n", + " | - dbxrefs - Database cross references, optional (list of strings)\n", + " | - features - Any (sub)features, optional (list of SeqFeature objects)\n", + " | - annotations - Dictionary of annotations for the whole sequence\n", + " | - letter_annotations - Dictionary of per-letter-annotations, values\n", + " | should be strings, list or tuples of the same length as the full\n", + " | sequence.\n", + " | \n", + " | You will typically use Bio.SeqIO to read in sequences from files as\n", + " | SeqRecord objects. However, you may want to create your own SeqRecord\n", + " | objects directly.\n", + " | \n", + " | Note that while an id is optional, we strongly recommend you supply a\n", + " | unique id string for each record. This is especially important\n", + " | if you wish to write your sequences to a file.\n", + " | \n", + " | If you don't have the actual sequence, but you do know its length,\n", + " | then using the UnknownSeq object from Bio.Seq is appropriate.\n", + " | \n", + " | You can create a 'blank' SeqRecord object, and then populate the\n", + " | attributes later.\n", + " | \n", + " | __iter__(self)\n", + " | Iterate over the letters in the sequence.\n", + " | \n", + " | For example, using Bio.SeqIO to read in a protein FASTA file:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Fasta/loveliesbleeding.pro\", \"fasta\")\n", + " | >>> for amino in record:\n", + " | ... print(amino)\n", + " | ... if amino == \"L\": break\n", + " | X\n", + " | A\n", + " | G\n", + " | L\n", + " | >>> print(record.seq[3])\n", + " | L\n", + " | \n", + " | This is just a shortcut for iterating over the sequence directly:\n", + " | \n", + " | >>> for amino in record.seq:\n", + " | ... print(amino)\n", + " | ... if amino == \"L\": break\n", + " | X\n", + " | A\n", + " | G\n", + " | L\n", + " | >>> print(record.seq[3])\n", + " | L\n", + " | \n", + " | Note that this does not facilitate iteration together with any\n", + " | per-letter-annotation. However, you can achieve that using the\n", + " | python zip function on the record (or its sequence) and the relevant\n", + " | per-letter-annotation:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> rec = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", + " | >>> print(\"%s %s\" % (rec.id, rec.seq))\n", + " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", + " | >>> print(list(rec.letter_annotations))\n", + " | ['solexa_quality']\n", + " | >>> for nuc, qual in zip(rec, rec.letter_annotations[\"solexa_quality\"]):\n", + " | ... if qual > 35:\n", + " | ... print(\"%s %i\" % (nuc, qual))\n", + " | A 40\n", + " | C 39\n", + " | G 38\n", + " | T 37\n", + " | A 36\n", + " | \n", + " | You may agree that using zip(rec.seq, ...) is more explicit than using\n", + " | zip(rec, ...) as shown above.\n", + " | \n", + " | __le___(self, other)\n", + " | Define the less-than-or-equal-to operand (not implemented).\n", + " | \n", + " | __len__(self)\n", + " | Return the length of the sequence.\n", + " | \n", + " | For example, using Bio.SeqIO to read in a FASTA nucleotide file:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Fasta/sweetpea.nu\", \"fasta\")\n", + " | >>> len(record)\n", + " | 309\n", + " | >>> len(record.seq)\n", + " | 309\n", + " | \n", + " | __lt__(self, other)\n", + " | Define the less-than operand (not implemented).\n", + " | \n", + " | __ne__(self, other)\n", + " | Define the not-equal-to operand (not implemented).\n", + " | \n", + " | __radd__(self, other)\n", + " | Add another sequence or string to this sequence (from the left).\n", + " | \n", + " | This method handles adding a Seq object (or similar, e.g. MutableSeq)\n", + " | or a plain Python string (on the left) to a SeqRecord (on the right).\n", + " | See the __add__ method for more details, but for example:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", + " | >>> print(\"%s %s\" % (record.id, record.seq))\n", + " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", + " | >>> print(list(record.letter_annotations))\n", + " | ['solexa_quality']\n", + " | \n", + " | >>> new = \"ACT\" + record\n", + " | >>> print(\"%s %s\" % (new.id, new.seq))\n", + " | slxa_0001_1_0001_01 ACTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", + " | >>> print(list(new.letter_annotations))\n", + " | []\n", + " | \n", + " | __repr__(self)\n", + " | Return a concise summary of the record for debugging (string).\n", + " | \n", + " | The python built in function repr works by calling the object's ___repr__\n", + " | method. e.g.\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.Alphabet import generic_protein\n", + " | >>> rec = SeqRecord(Seq(\"MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKAT\"\n", + " | ... +\"GEMKEQTEWHRVVLFGKLAEVASEYLRKGSQVYIEGQLRTRKWTDQ\"\n", + " | ... +\"SGQDRYTTEVVVNVGGTMQMLGGRQGGGAPAGGNIGGGQPQGGWGQ\"\n", + " | ... +\"PQQPQGGNQFSGGAQSRPQQSAPAAPSNEPPMDFDDDIPF\",\n", + " | ... generic_protein),\n", + " | ... id=\"NP_418483.1\", name=\"b4059\",\n", + " | ... description=\"ssDNA-binding protein\",\n", + " | ... dbxrefs=[\"ASAP:13298\", \"GI:16131885\", \"GeneID:948570\"])\n", + " | >>> print(repr(rec))\n", + " | SeqRecord(seq=Seq('MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTE...IPF', ProteinAlphabet()), id='NP_418483.1', name='b4059', description='ssDNA-binding protein', dbxrefs=['ASAP:13298', 'GI:16131885', 'GeneID:948570'])\n", + " | \n", + " | At the python prompt you can also use this shorthand:\n", + " | \n", + " | >>> rec\n", + " | SeqRecord(seq=Seq('MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTE...IPF', ProteinAlphabet()), id='NP_418483.1', name='b4059', description='ssDNA-binding protein', dbxrefs=['ASAP:13298', 'GI:16131885', 'GeneID:948570'])\n", + " | \n", + " | Note that long sequences are shown truncated. Also note that any\n", + " | annotations, letter_annotations and features are not shown (as they\n", + " | would lead to a very long string).\n", + " | \n", + " | __str__(self)\n", + " | Return a human readable summary of the record and its annotation (string).\n", + " | \n", + " | The python built in function str works by calling the object's ___str__\n", + " | method. e.g.\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.Alphabet import IUPAC\n", + " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\",\n", + " | ... IUPAC.protein),\n", + " | ... id=\"YP_025292.1\", name=\"HokC\",\n", + " | ... description=\"toxic membrane protein, small\")\n", + " | >>> print(str(record))\n", + " | ID: YP_025292.1\n", + " | Name: HokC\n", + " | Description: toxic membrane protein, small\n", + " | Number of features: 0\n", + " | Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())\n", + " | \n", + " | In this example you don't actually need to call str explicity, as the\n", + " | print command does this automatically:\n", + " | \n", + " | >>> print(record)\n", + " | ID: YP_025292.1\n", + " | Name: HokC\n", + " | Description: toxic membrane protein, small\n", + " | Number of features: 0\n", + " | Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())\n", + " | \n", + " | Note that long sequences are shown truncated.\n", + " | \n", + " | format(self, format)\n", + " | Return the record as a string in the specified file format.\n", + " | \n", + " | The format should be a lower case string supported as an output\n", + " | format by Bio.SeqIO, which is used to turn the SeqRecord into a\n", + " | string. e.g.\n", + " | \n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.Alphabet import IUPAC\n", + " | >>> record = SeqRecord(Seq(\"MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\",\n", + " | ... IUPAC.protein),\n", + " | ... id=\"YP_025292.1\", name=\"HokC\",\n", + " | ... description=\"toxic membrane protein\")\n", + " | >>> record.format(\"fasta\")\n", + " | '>YP_025292.1 toxic membrane protein\\nMKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\\n'\n", + " | >>> print(record.format(\"fasta\"))\n", + " | >YP_025292.1 toxic membrane protein\n", + " | MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n", + " | \n", + " | \n", + " | The Python print function automatically appends a new line, meaning\n", + " | in this example a blank line is shown. If you look at the string\n", + " | representation you can see there is a trailing new line (shown as\n", + " | slash n) which is important when writing to a file or if\n", + " | concatenating multiple sequence strings together.\n", + " | \n", + " | Note that this method will NOT work on every possible file format\n", + " | supported by Bio.SeqIO (e.g. some are for multiple sequences only,\n", + " | and binary formats are not supported).\n", + " | \n", + " | lower(self)\n", + " | Return a copy of the record with a lower case sequence.\n", + " | \n", + " | All the annotation is preserved unchanged. e.g.\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Fasta/aster.pro\", \"fasta\")\n", + " | >>> print(record.format(\"fasta\"))\n", + " | >gi|3298468|dbj|BAA31520.1| SAMIPF\n", + " | GGHVNPAVTFGAFVGGNITLLRGIVYIIAQLLGSTVACLLLKFVTNDMAVGVFSLSAGVG\n", + " | VTNALVFEIVMTFGLVYTVYATAIDPKKGSLGTIAPIAIGFIVGANI\n", + " | \n", + " | >>> print(record.lower().format(\"fasta\"))\n", + " | >gi|3298468|dbj|BAA31520.1| SAMIPF\n", + " | gghvnpavtfgafvggnitllrgivyiiaqllgstvaclllkfvtndmavgvfslsagvg\n", + " | vtnalvfeivmtfglvytvyataidpkkgslgtiapiaigfivgani\n", + " | \n", + " | \n", + " | To take a more annotation rich example,\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> old = SeqIO.read(\"EMBL/TRBG361.embl\", \"embl\")\n", + " | >>> len(old.features)\n", + " | 3\n", + " | >>> new = old.lower()\n", + " | >>> len(old.features) == len(new.features)\n", + " | True\n", + " | >>> old.annotations[\"organism\"] == new.annotations[\"organism\"]\n", + " | True\n", + " | >>> old.dbxrefs == new.dbxrefs\n", + " | True\n", + " | \n", + " | reverse_complement(self, id=False, name=False, description=False, features=True, annotations=False, letter_annotations=True, dbxrefs=False)\n", + " | Return new SeqRecord with reverse complement sequence.\n", + " | \n", + " | By default the new record does NOT preserve the sequence identifier,\n", + " | name, description, general annotation or database cross-references -\n", + " | these are unlikely to apply to the reversed sequence.\n", + " | \n", + " | You can specify the returned record's id, name and description as\n", + " | strings, or True to keep that of the parent, or False for a default.\n", + " | \n", + " | You can specify the returned record's features with a list of\n", + " | SeqFeature objects, or True to keep that of the parent, or False to\n", + " | omit them. The default is to keep the original features (with the\n", + " | strand and locations adjusted).\n", + " | \n", + " | You can also specify both the returned record's annotations and\n", + " | letter_annotations as dictionaries, True to keep that of the parent,\n", + " | or False to omit them. The default is to keep the original\n", + " | annotations (with the letter annotations reversed).\n", + " | \n", + " | To show what happens to the pre-letter annotations, consider an\n", + " | example Solexa variant FASTQ file with a single entry, which we'll\n", + " | read in as a SeqRecord:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", + " | >>> print(\"%s %s\" % (record.id, record.seq))\n", + " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", + " | >>> print(list(record.letter_annotations))\n", + " | ['solexa_quality']\n", + " | >>> print(record.letter_annotations[\"solexa_quality\"])\n", + " | [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]\n", + " | \n", + " | Now take the reverse complement, here we explicitly give a new\n", + " | identifier (the old identifier with a suffix):\n", + " | \n", + " | >>> rc_record = record.reverse_complement(id=record.id + \"_rc\")\n", + " | >>> print(\"%s %s\" % (rc_record.id, rc_record.seq))\n", + " | slxa_0001_1_0001_01_rc NNNNNNACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT\n", + " | \n", + " | Notice that the per-letter-annotations have also been reversed,\n", + " | although this may not be appropriate for all cases.\n", + " | \n", + " | >>> print(rc_record.letter_annotations[\"solexa_quality\"])\n", + " | [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]\n", + " | \n", + " | Now for the features, we need a different example. Parsing a GenBank\n", + " | file is probably the easiest way to get an nice example with features\n", + " | in it...\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> with open(\"GenBank/pBAD30.gb\") as handle:\n", + " | ... plasmid = SeqIO.read(handle, \"gb\")\n", + " | >>> print(\"%s %i\" % (plasmid.id, len(plasmid)))\n", + " | pBAD30 4923\n", + " | >>> plasmid.seq\n", + " | Seq('GCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGA...ATG', IUPACAmbiguousDNA())\n", + " | >>> len(plasmid.features)\n", + " | 13\n", + " | \n", + " | Now, let's take the reverse complement of this whole plasmid:\n", + " | \n", + " | >>> rc_plasmid = plasmid.reverse_complement(id=plasmid.id+\"_rc\")\n", + " | >>> print(\"%s %i\" % (rc_plasmid.id, len(rc_plasmid)))\n", + " | pBAD30_rc 4923\n", + " | >>> rc_plasmid.seq\n", + " | Seq('CATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCA...AGC', IUPACAmbiguousDNA())\n", + " | >>> len(rc_plasmid.features)\n", + " | 13\n", + " | \n", + " | Let's compare the first CDS feature - it has gone from being the\n", + " | second feature (index 1) to the second last feature (index -2), its\n", + " | strand has changed, and the location switched round.\n", + " | \n", + " | >>> print(plasmid.features[1])\n", + " | type: CDS\n", + " | location: [1081:1960](-)\n", + " | qualifiers:\n", + " | Key: label, Value: ['araC']\n", + " | Key: note, Value: ['araC regulator of the arabinose BAD promoter']\n", + " | Key: vntifkey, Value: ['4']\n", + " | \n", + " | >>> print(rc_plasmid.features[-2])\n", + " | type: CDS\n", + " | location: [2963:3842](+)\n", + " | qualifiers:\n", + " | Key: label, Value: ['araC']\n", + " | Key: note, Value: ['araC regulator of the arabinose BAD promoter']\n", + " | Key: vntifkey, Value: ['4']\n", + " | \n", + " | \n", + " | You can check this new location, based on the length of the plasmid:\n", + " | \n", + " | >>> len(plasmid) - 1081\n", + " | 3842\n", + " | >>> len(plasmid) - 1960\n", + " | 2963\n", + " | \n", + " | Note that if the SeqFeature annotation includes any strand specific\n", + " | information (e.g. base changes for a SNP), this information is not\n", + " | amended, and would need correction after the reverse complement.\n", + " | \n", + " | Note trying to reverse complement a protein SeqRecord raises an\n", + " | exception:\n", + " | \n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.Alphabet import IUPAC\n", + " | >>> protein_rec = SeqRecord(Seq(\"MAIVMGR\", IUPAC.protein), id=\"Test\")\n", + " | >>> protein_rec.reverse_complement()\n", + " | Traceback (most recent call last):\n", + " | ...\n", + " | ValueError: Proteins do not have complements!\n", + " | \n", + " | Also note you can reverse complement a SeqRecord using a MutableSeq:\n", + " | \n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> from Bio.Seq import MutableSeq\n", + " | >>> from Bio.Alphabet import generic_dna\n", + " | >>> rec = SeqRecord(MutableSeq(\"ACGT\", generic_dna), id=\"Test\")\n", + " | >>> rec.seq[0] = \"T\"\n", + " | >>> print(\"%s %s\" % (rec.id, rec.seq))\n", + " | Test TCGT\n", + " | >>> rc = rec.reverse_complement(id=True)\n", + " | >>> print(\"%s %s\" % (rc.id, rc.seq))\n", + " | Test ACGA\n", + " | \n", + " | translate(self, table='Standard', stop_symbol='*', to_stop=False, cds=False, gap=None, id=False, name=False, description=False, features=False, annotations=False, letter_annotations=False, dbxrefs=False)\n", + " | Return new SeqRecord with translated sequence.\n", + " | \n", + " | This calls the record's .seq.translate() method (which describes\n", + " | the translation related arguments, like table for the genetic code),\n", + " | \n", + " | By default the new record does NOT preserve the sequence identifier,\n", + " | name, description, general annotation or database cross-references -\n", + " | these are unlikely to apply to the translated sequence.\n", + " | \n", + " | You can specify the returned record's id, name and description as\n", + " | strings, or True to keep that of the parent, or False for a default.\n", + " | \n", + " | You can specify the returned record's features with a list of\n", + " | SeqFeature objects, or False (default) to omit them.\n", + " | \n", + " | You can also specify both the returned record's annotations and\n", + " | letter_annotations as dictionaries, True to keep that of the parent\n", + " | (annotations only), or False (default) to omit them.\n", + " | \n", + " | e.g. Loading a FASTA gene and translating it,\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> gene_record = SeqIO.read(\"Fasta/sweetpea.nu\", \"fasta\")\n", + " | >>> print(gene_record.format(\"fasta\"))\n", + " | >gi|3176602|gb|U78617.1|LOU78617 Lathyrus odoratus phytochrome A (PHYA) gene, partial cds\n", + " | CAGGCTGCGCGGTTTCTATTTATGAAGAACAAGGTCCGTATGATAGTTGATTGTCATGCA\n", + " | AAACATGTGAAGGTTCTTCAAGACGAAAAACTCCCATTTGATTTGACTCTGTGCGGTTCG\n", + " | ACCTTAAGAGCTCCACATAGTTGCCATTTGCAGTACATGGCTAACATGGATTCAATTGCT\n", + " | TCATTGGTTATGGCAGTGGTCGTCAATGACAGCGATGAAGATGGAGATAGCCGTGACGCA\n", + " | GTTCTACCACAAAAGAAAAAGAGACTTTGGGGTTTGGTAGTTTGTCATAACACTACTCCG\n", + " | AGGTTTGTT\n", + " | \n", + " | \n", + " | And now translating the record, specifying the new ID and description:\n", + " | \n", + " | >>> protein_record = gene_record.translate(table=11,\n", + " | ... id=\"phya\",\n", + " | ... description=\"translation\")\n", + " | >>> print(protein_record.format(\"fasta\"))\n", + " | >phya translation\n", + " | QAARFLFMKNKVRMIVDCHAKHVKVLQDEKLPFDLTLCGSTLRAPHSCHLQYMANMDSIA\n", + " | SLVMAVVVNDSDEDGDSRDAVLPQKKKRLWGLVVCHNTTPRFV\n", + " | \n", + " | \n", + " | upper(self)\n", + " | Return a copy of the record with an upper case sequence.\n", + " | \n", + " | All the annotation is preserved unchanged. e.g.\n", + " | \n", + " | >>> from Bio.Alphabet import generic_dna\n", + " | >>> from Bio.Seq import Seq\n", + " | >>> from Bio.SeqRecord import SeqRecord\n", + " | >>> record = SeqRecord(Seq(\"acgtACGT\", generic_dna), id=\"Test\",\n", + " | ... description = \"Made up for this example\")\n", + " | >>> record.letter_annotations[\"phred_quality\"] = [1, 2, 3, 4, 5, 6, 7, 8]\n", + " | >>> print(record.upper().format(\"fastq\"))\n", + " | @Test Made up for this example\n", + " | ACGTACGT\n", + " | +\n", + " | \"#$%&'()\n", + " | \n", + " | \n", + " | Naturally, there is a matching lower method:\n", + " | \n", + " | >>> print(record.lower().format(\"fastq\"))\n", + " | @Test Made up for this example\n", + " | acgtacgt\n", + " | +\n", + " | \"#$%&'()\n", + " | \n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Data descriptors defined here:\n", + " | \n", + " | __dict__\n", + " | dictionary for instance variables (if defined)\n", + " | \n", + " | __weakref__\n", + " | list of weak references to the object (if defined)\n", + " | \n", + " | letter_annotations\n", + " | Dictionary of per-letter-annotation for the sequence.\n", + " | \n", + " | For example, this can hold quality scores used in FASTQ or QUAL files.\n", + " | Consider this example using Bio.SeqIO to read in an example Solexa\n", + " | variant FASTQ file as a SeqRecord:\n", + " | \n", + " | >>> from Bio import SeqIO\n", + " | >>> record = SeqIO.read(\"Quality/solexa_faked.fastq\", \"fastq-solexa\")\n", + " | >>> print(\"%s %s\" % (record.id, record.seq))\n", + " | slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN\n", + " | >>> print(list(record.letter_annotations))\n", + " | ['solexa_quality']\n", + " | >>> print(record.letter_annotations[\"solexa_quality\"])\n", + " | [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]\n", + " | \n", + " | The letter_annotations get sliced automatically if you slice the\n", + " | parent SeqRecord, for example taking the last ten bases:\n", + " | \n", + " | >>> sub_record = record[-10:]\n", + " | >>> print(\"%s %s\" % (sub_record.id, sub_record.seq))\n", + " | slxa_0001_1_0001_01 ACGTNNNNNN\n", + " | >>> print(sub_record.letter_annotations[\"solexa_quality\"])\n", + " | [4, 3, 2, 1, 0, -1, -2, -3, -4, -5]\n", + " | \n", + " | Any python sequence (i.e. list, tuple or string) can be recorded in\n", + " | the SeqRecord's letter_annotations dictionary as long as the length\n", + " | matches that of the SeqRecord's sequence. e.g.\n", + " | \n", + " | >>> len(sub_record.letter_annotations)\n", + " | 1\n", + " | >>> sub_record.letter_annotations[\"dummy\"] = \"abcdefghij\"\n", + " | >>> len(sub_record.letter_annotations)\n", + " | 2\n", + " | \n", + " | You can delete entries from the letter_annotations dictionary as usual:\n", + " | \n", + " | >>> del sub_record.letter_annotations[\"solexa_quality\"]\n", + " | >>> sub_record.letter_annotations\n", + " | {'dummy': 'abcdefghij'}\n", + " | \n", + " | You can completely clear the dictionary easily as follows:\n", + " | \n", + " | >>> sub_record.letter_annotations = {}\n", + " | >>> sub_record.letter_annotations\n", + " | {}\n", + " | \n", + " | Note that if replacing the record's sequence with a sequence of a\n", + " | different length you must first clear the letter_annotations dict.\n", + " | \n", + " | seq\n", + " | The sequence itself, as a Seq or MutableSeq object.\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Data and other attributes defined here:\n", + " | \n", + " | __hash__ = None\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "20ZEptbZtgTC", + "colab_type": "text" + }, + "source": [ + "Let's write a bit of code involving `SeqRecord` and see how it comes out looking." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yD3E6wrYtgTC", + "colab_type": "code", + "colab": {} + }, + "source": [ + "from Bio.SeqRecord import SeqRecord\n", + "\n", + "simple_seq = Seq(\"GATC\")\n", + "simple_seq_r = SeqRecord(simple_seq)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3FItR96PtgTG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "1cc21f88-bce0-421c-c407-79368717351d" + }, + "source": [ + "simple_seq_r.id = \"AC12345\"\n", + "simple_seq_r.description = \"Made up sequence\"\n", + "print(simple_seq_r.id)\n", + "print(simple_seq_r.description)" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "stream", + "text": [ + "AC12345\n", + "Made up sequence\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cxAH3YE0tgTK", + "colab_type": "text" + }, + "source": [ + "Let's now see how we can use `SeqRecord` to parse a large fasta file. We'll pull down a file hosted on the biopython site." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vNxAQJkqtgTL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "73621273-91f0-4cdb-8a71-52c03a1c6d18" + }, + "source": [ + "!wget https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.fna" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2020-05-31 03:18:24-- https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.fna\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 9853 (9.6K) [text/plain]\n", + "Saving to: ‘NC_005816.fna’\n", + "\n", + "\rNC_005816.fna 0%[ ] 0 --.-KB/s \rNC_005816.fna 100%[===================>] 9.62K --.-KB/s in 0s \n", + "\n", + "2020-05-31 03:18:24 (95.0 MB/s) - ‘NC_005816.fna’ saved [9853/9853]\n", + "\n" + ], + "name": "stdout" + } + ] + }, { - "data": { - "text/plain": [ - "SeqRecord(seq=Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG', IUPACAmbiguousDNA()), id='NC_005816.1', name='NC_005816', description='Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence', dbxrefs=['Project:58037'])" + "cell_type": "code", + "metadata": { + "id": "mvFt3fVqtgTP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + }, + "outputId": "2cd7e864-6a4c-4ef7-d6bd-bca9a9ebf5a2" + }, + "source": [ + "from Bio import SeqIO\n", + "\n", + "record = SeqIO.read(\"NC_005816.fna\", \"fasta\")\n", + "record" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SeqRecord(seq=Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG', SingleLetterAlphabet()), id='gi|45478711|ref|NC_005816.1|', name='gi|45478711|ref|NC_005816.1|', description='gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence', dbxrefs=[])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 31 + } ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5_fCYXkttgTW", + "colab_type": "text" + }, + "source": [ + "Note how there's a number of annotations attached to the `SeqRecord` object!\n", + "\n", + "Let's take a closer look." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "N7OdmewwtgTa", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "6e06606b-471f-4aa1-f4a5-31a746882b7d" + }, + "source": [ + "record.id" + ], + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'gi|45478711|ref|NC_005816.1|'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "156aQviwtgTd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "3b15a4ae-af16-4828-ba71-89539eba8edf" + }, + "source": [ + "record.name" + ], + "execution_count": 33, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'gi|45478711|ref|NC_005816.1|'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ov2neH1XtgTk", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "1834c5b8-93aa-4b15-fee6-5456a2fc79ed" + }, + "source": [ + "record.description" + ], + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 34 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HTOwKix8tgTr", + "colab_type": "text" + }, + "source": [ + "Let's now look at the same sequence, but downloaded from GenBank. We'll download the hosted file from the biopython tutorial website as before." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "LpqMN5Z_tgTs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "65c34e55-317d-49d4-f804-fb28c9662ce5" + }, + "source": [ + "!wget https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.gb" + ], + "execution_count": 35, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2020-05-31 03:18:38-- https://raw.githubusercontent.com/biopython/biopython/master/Tests/GenBank/NC_005816.gb\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 31838 (31K) [text/plain]\n", + "Saving to: ‘NC_005816.gb’\n", + "\n", + "\rNC_005816.gb 0%[ ] 0 --.-KB/s \rNC_005816.gb 100%[===================>] 31.09K --.-KB/s in 0.01s \n", + "\n", + "2020-05-31 03:18:39 (2.50 MB/s) - ‘NC_005816.gb’ saved [31838/31838]\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "PhalU4PRtgTw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + }, + "outputId": "6c84a014-cdf7-4e26-a282-b366267f9424" + }, + "source": [ + "from Bio import SeqIO\n", + "\n", + "record = SeqIO.read(\"NC_005816.gb\", \"genbank\")\n", + "record" + ], + "execution_count": 36, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SeqRecord(seq=Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG', IUPACAmbiguousDNA()), id='NC_005816.1', name='NC_005816', description='Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence', dbxrefs=['Project:58037'])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 36 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "inhAKrVItgT2", + "colab_type": "text" + }, + "source": [ + "## SeqIO Objects\n", + "\n", + "TODO(rbharath): Continue filling this up in future PRs." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "okON0bUHtgT6", + "colab_type": "code", + "colab": {} + }, + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] } - ], - "source": [ - "from Bio import SeqIO\n", - "\n", - "record = SeqIO.read(\"NC_005816.gb\", \"genbank\")\n", - "record" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SeqIO Objects\n", - "\n", - "TODO(rbharath): Continue filling this up in future PRs." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.10" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + ] +} \ No newline at end of file