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Abstract—Multituple packet classification is one of the key technologies, and often the performance bottleneck in modern network

devices. Devices such as firewalls demand fast packet classification on very complicated rule sets of large size, which is still

challenging today. This paper proposes a practical packet classification algorithm named dynamic discrete bit selection (D2BS), which

achieves high classification speed while requiring low storage. D2BS employs dynamic heuristic schemes at bit level, to explore the

inherent characteristics of the rule sets. D2BS has been implemented on various platforms including Intel-architecture, multicore

network processor, and FPGA, and is compared with the state-of-the-art solutions. Experimental results on real-life rule sets show that

the memory storage required by D2BS is at least one to two orders of magnitude lower than that of the existing work, while the speed is

much higher. With 64-byte Ethernet packet and 10K size ACL rule set, D2BS achieves a throughput over 10 Gbps on Cavium

OCTEON CN5860 multicore network processor and over 135 Gbps on Xilinx Virtex-5 FPGA, which outperforms the existing work

under the same test environment. All results promise that D2BS is a highly practical solution to satisfy vigorous requirements.

Index Terms—Packet classification, quality of service, high-performance network

Ç

1 INTRODUCTION

WITH the rapid development of traffic engineering
technologies on Internet, multituple packet classifica-

tion has been considered as one of the foundational
techniques of network devices in both industry and
academia. Network devices, such as firewall, and Intrusion
Detection/Prevention System (IDS/IPS), require a high-
performance real-time processing. For example, devices
deployed in current 100-Gbps networks are expected to
classify hundreds of millions packets per second, and the
operations in modern financial exchanger must ensure the
latency within 100 microseconds between the exchanger
and data centers [1]. These requirements will become
stricter due to the continual growth of network bandwidth
and the increasing complexity of network applications.

On the other hand, fast accessing memory (e.g., TCAM)

is still relatively small and expensive [2], which limits the

storage requirement of the algorithm. All these require-

ments make it difficult to design a practical and general

algorithm that is suitable to be deployed on various

platforms. Thus, although the problem of packet classifica-

tion has been studied for many years, researchers are still

motivated to design more efficient and practical solutions.

The main task of multituple packet classification is to

lookup a matched rule r in a given N-tuple rule set R with

the highest priority for an incoming packet, where “match”

typically means that five tuples (source and destination

address, source and destination port, protocol) in the packet

header H should be covered by r. From computational

geometry’s view, this can also be considered as a point

location problem in multidimensional space. It has been

proven that the theoretical complexity bounds for classify-

ing N nonoverlapping regions in KðK > 2Þ dimensional

space are OðlogNÞ in time while OðNKÞ in storage, or

OðlogK�1NÞ in time while OðNÞ in storage [3]. Since the

typical size of today’s rule sets has reached tens of

thousands and is still increasing [4], practical packet

classification algorithm should also be designed with good

scalability to the size of rule sets, especially the scalability in

spatial performance.
In this paper, we propose a novel packet classification

algorithm named Dynamic Discrete Bit Selection (D2BS),

which performs well both on spatial and temporal

performance. The algorithm is motivated by inherent

observation on the real-life rule sets. We design dynamic

heuristics at fine-grained level and combine different types

of data structures to optimize the performance. To evaluate

the performance, we implement D2BS on various platforms

including Intel architecture-based (IA-based) platform,

Cavium OCTEON CN5860 multicore network processor

(NP) [5], and Xilinx Virtex-5 FPGA [6]. The evaluation

provides encouraging results over different sizes and types

of real-life rule sets. Our previous work DBS [7] has also

tried a preliminary idea of classifying packets at bit level,

while D2BS improves it with more effective dynamic

heuristics and provides more sufficient evaluation results

on various types of platforms.
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The primary contributions of this paper over existing
work are as follows:

. Performance. D2BS achieves high performance on
various types of platforms, including IA-based, NP,
and FPGA. Taking the Xilinx Vertex-5 FPGA for
example, on 10K size rule set with 64-byte packets,
D2BS achieves over 135-Gbps throughput, while the
latency is only several ns. This is the best result as far
as we know. High performance on various platforms
proves D2BS a practical algorithm to be deployed in
the production quality network devices.

. Scalability. With evaluations results on rule sets of
different sizes and types, D2BS shows a good
scalability. For example, with ACL rule sets whose
sizes increase from 1K to 10K, memory requirement of
D2BS is less than double. The Memory Per Rule
(MPR) ofD2BS also holds very stable for all rule sets.
This good scalability promises thatD2BSwill perform
well on more complicated and larger rule set in future.

. Flexibility. To achieve good flexibility among differ-
ent types of rule sets, D2BS utilizes a P-Function to
adjust its data structures’ parameters intelligently.
By choosing different P-Functions, D2BS can be
utilized for various performance requirements. For
example, when deploying D2BS on different types
of rule sets, D2BS takes different P-Functions to
optimize the performance.

The remainder of this paper is organized as follows:
Section 2 summarizes the related work. Section 3 details the
design of the D2BS algorithm and Section 4 describes the
implementation and analyzes the experimental results. In
the last section, we draw a conclusion of our work.

2 RELATED WORK

Currently, there are two major types of packet classification
algorithms according to their designing motivations in
academic community and industry: searching space parti-
tion ones and rule set partition ones.

Searching space partition algorithms try to partition the
searching space into smaller subspaces to reduce the lookup
complexity, such as RFC [8] and HSM [9]. Space partition
algorithms usually take advantage of the indexed table
data structures based on different tuples to obtain high
searching speed. RFC and HSM both perform independent
parallel searches on their indexed tables, and the results of
the searches are cross-producted into a final search result
in several phases. Although this type of algorithms is fast in
classification speed, they might require relatively large
memory storage to store the searching tables, which
degrades their performance sharply for the large rule sets.

Based on the idea of decision tree, many effective rule set
partition algorithms were designed to improve the perfor-
mance in practical cases, leveraging on the inherent
characteristics of the real-life rule sets. These algorithms
mostly aim to cut the large rule set into smaller ones,
including HiCuts [10] and HyperCuts [11]. HiCuts and
HyperCuts both take heuristic methods and relatively
simple decision-tree structures to select the tuple to cut at.
Since these algorithms exploit more inherent relationship

between different fields when building the decision tree,
they typically achieve better tradeoff between time and
space in practical cases. In most cases, rule set partition
algorithms require less memory storage than space partition
ones; however, they cannot ensure a stable worst case
classification performance.

Although a lot of novel algorithms have been proposed,
most of them stagnate in theoretical analysis or only simulate
on commodity platforms (mostly on general-purpose
processor), without being widely implemented in commer-
cial products. The main reasons can be categorized twofold:

. Performance limitation. Today’s devices like routers
require more than tens of Gbps processing perfor-
mance, which is hardly achieved by those algo-
rithms on commodity platforms. On the other hand,
commercial network devices require a stability of
performance, which demands a performance guar-
antee in worst case. To the best of our knowledge,
none of current algorithms can meet those two
requirements at the same time.

. Scalability shortage. Some of current algorithm can
work well for small rule sets, such as RFC and
HiCuts. However, the storage and speed perfor-
mance will fall when rule set sizes increase. A
practical algorithm should provide reasonable scal-
ability to the sizes of rule sets.

For those reasons, traditional devices mainly utilize
algorithms based on special hardware, such as Application
Specific Integrated Circuits (ASIC) chips. These ASIC-based
network devices can achieve multi-Gbps processing speed.
However, these devices are only limited to be used at the
backbones [12], due to several issues:

. Programmability. Most of the ASIC architectures have
special design for high performance which in turn
leads to less general programmability. This trends a
tradeoff between performance and programmability.

. Scalability. Special chips like Ternary CAMs can
accelerate the packet processing speed. However, it
requires too much power and board area to support
large number of classification rules. Also, special
chips usually mean higher cost, longer time-to-
market and more difficulties in product upgrade.

Today, some researchers are seeking to combine the
intelligence of software-based solution and the performance
of hardware-based architectures, with the help of multicore
network processors and FPGA, which can support both
flexible software programmability and powerful hardware-
level packet processing.

Qi et al. [13] implemented an intelligent trie-based
algorithm named HyperSplits on Cavium OCTEON
CN3860 NP which achieve good performance in both time
and space. On FPGA platform, Jiang and Prasanna [14]
proposed two optimization methods for the HyperCuts
algorithm to reduce memory consumption, which can
achieve a throughput of 80 Gbps. To the best of our
knowledge, the work of Qi et al. [15] is the first one that
gives results over 100 Gbps throughput on Xilinx Vertex-5
platform. All these works show an appealing way to design
novel packet classification algorithm on platforms like NP
and FPGA.
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3 DYNAMIC DISCRETE BIT SELECTION ALGORITHM

D2BS is designed based on two principles: 1) utilize
dynamic heuristics to split the rule set efficiently, and
2) combine different data structures to optimize both the
time (classification speed) and space (memory storage)
performance. In this section, we first introduce the defini-
tions of E-Bit, M-Vector D-Table, and S-Block, after that we
explain the algorithm. An example rule set is utilized to
help introduce the idea, as shown in Table 1 and Fig. 1.

3.1 Terminology

3.1.1 E-Bit

Suppose r is a rule of the given rule set R, and r is
constructed by numbers of bits that belong to different
tuples. The values of these bits can be “0”, “1”, or “*”. We
observe that some bits will partition R more “effectively”
(In D2BS, we judge this effectiveness by an heuristic
function, J-Function which is given in Section 3.2.1) than
others. We name these “effectively partition” bits as “E-Bits”.
D2BS will employ these E-Bits to partition R into smaller
subrule sets. Notice that the subrule sets may be disjoint or
not, and here we utilize the term “partition” for both cases.

3.1.2 M-Vector

Suppose the header of the incoming packet is H (L bits), and
we have generated n E-Bits. By them, we can filter out n bits
from H (n � L) at the corresponding position with E-Bits.
To facilitate this filtering, we design a masking vector as the
M-Vector, whose definition is described as follows.

Definition 3.1 (M-Vector). An M-Vector V is a bit vector that
satisfies: V ½i� ¼ 1 only if biti is an E-Bit; otherwise, V ½i� ¼ 0.

Also taking Table 1, for example, if we select bit 2 and
bit 4 as the E-Bits, then the corresponding M-Vector is
V ¼ ð0101Þ, while the number of the E-Bits is 2.

3.1.3 D-Table

With the M-Vector V , we can filter n bits from the packet
header H, where V ½i� ¼ 1ð0 � i < nÞ. These bits are com-
bined as a bit-string whose possible values range from 0 to
2n � 1. To achieve a fast indexing from these values, we
design a dynamic indexing table T as the “D-Table”. For
n bits, T consists of 2n cells, where each cell stores a pointer,
respectively. Notice the bit-string with “*” may result in
several values, which means 1-bit string may match
different cells.

3.1.4 S-Block

S-Blocks are memory blocks that are pointed by T ’s
cell. Each S-Block stores a subset of the rule set R. All
rules in S-Blocks are stored orderly from high to low by
their priority.

3.2 Preparation Phase

With definitions given, the preparation phase is described
in three steps: E-Bits selection, M-Vector generation, and
D-Table construction.

To describe the algorithm clearly, a simplified example
of rule set is given in Table 1, and the preparation phase on
the rule set is shown in Fig. 1. The rule set consists of seven
rules, and each rule only contains N ¼ 2 tuples, while each
tuple has 2 bits, so the length of each rule L ¼ 4. Notice that
although the example only shows prefix lookup, real packet
classification also needs range lookups. However, a range
can always be represented by one or several prefixes [16].

3.2.1 E-Bits Selection

In this step, there are two problems to address: one is that
which bits are E-Bits (E-Bits choosing) and the other is how
many E-Bits should be chosen (length optimization). We
solve these two problems by designing two dynamic
heuristic functions: the Judging Function (J-Function) and
the Performance Function (P-Function). Although heuristics
cannot always guarantee the optimization, we take advan-
tage of these two heuristic functions to achieve good
balance between the calculation cost and the optimization
by well designs.

J-Function. J-Function is used to judge which bits are
E-Bits; hence, the efficiency of J-Function will affect the
performance of classification directly. Suppose the rule set
R is partitioned into m subsets (R0 . . .Rm�1) by an E-Bits
set e, J-Function can be given based on the optimal goals
of the partition. Suppose the optimal goal is to minimize
the maximum size of all subsets, then J-Function is defined
as follows:

JðR; eÞ ¼ �max
m�1

i¼0
ðNumRuleðRiÞÞ; ð1Þ

where NumRuleðRiÞ means the number of rules in Ri.
Hence, with maximizing JðR; eÞ, we can choose E-Bits
which are the best ones to partitioned the global rule set R
into small subsets effectively.

Notice with different optimal goals, we can define
various J-Function. For example, with the optimal goal of
minimizing the size of subsearching space, J-Function is
defined as follows:

JðR; eÞ ¼ �max
m�1

i¼0
ðNumSubspaceðRiÞÞ; ð2Þ
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Fig. 1. The preparation phase on the example rule set.

TABLE 1
A Simplified Rule Set Example



where NumSubSpaceðRiÞ means number of subspaces
generated by Ri. Hence, with different requirements,
D2BS can flexibly adjust its performance to satisfy them
dynamically.

P-Function. P-Function is used to decide the number of
E-Bits, i.e., to optimize the length of n. Choosing smaller n
will result in larger S-Blocks which means a longer
searching time inside; on the contrary, choosing large n
will result in small S-Blocks but a large M-Vector, which
may occupy too much memory storage. So an optimization
of n can gain a better tradeoff between the temporal and
spatial performance. Suppose we choose n based on the
memory storage, then the P-Function can be defined
as follows:

P ðR; nÞ ¼MemðV Þ þ
X2n�1

i¼0

MemðRiÞ; ð3Þ

where MemðV Þ means the memory used by the M-Vector.
Notice that we can also define different P-Functions
according to various performance requirements such as
the worst case classification time.

3.2.2 M-Vector Generation

M-Vector V is built with the processes of E-Bits choosing
and length optimization. Here our motivation is to select the
most effective V which can split R into subsets as small as
possible. Since D2BS is designed to provide good scal-
ability, intuitive selection methods such as exhaustive
searching will be impractical. Here, we design a heuristic-
based scheme named as “Intelli-Swap” (I-Swap), which
includes two steps: Fast-Growth and Intelli-Evolution.

For the Fast-Growth step, we generate V by fast selection
methods. Several method can be taken, for example,
Sequential Forward Selection (SFS) [17] which increases
V ’s length by testing each bit with the J-Function and the
P-Function. This step generates a local-optimal V which is
prepared for the Intelli-Evolution step. The length of V is
calculated by the heuristic functions.

After that, for the Intelli-Evolution step, we try to swap
some selected E-Bits with the unselected ones, and examine
if the new combination is better in optimization. A limitation
number can be set to restrain the time of this process. As
shown in Fig. 1, the E-bits by the Fast-Growth are bit 0 and
bit 1. After the Intelli-Evolution step, bit 0 is swaped with
bit 2. Finally, the E-Bits results are bit 1 and bit 2.

3.2.3 D-Table Construction

After the generation of V , the D-Table T can be constructed
by the following steps:

1. Set up T with length 2n, where each cell T ½i� stores a
pointer to an empty S-Block. Then pick each rule
from R orderly from higher to lower priority, for
example, r.

2. Use V to mask r at the E-Bits positions, which results
in a bit-string i of length n (where n is the number
of E-Bits).

3. Insert r into the bottom of the S-Block pointed by T ½i�.
Notice that for one rule, it may generate bit-string of

several different values. Here, we duplicate and store the
rule into different S-Blocks. This may increase the storage of

D2BS but facilitates the processing of the classification
phase. On the other hand, we pick each rule following the
priority order and only insert the new rule into the bottom
of the S-Block; thus, the rules stored in the S-Blocks are also
ordered. Actually, most real-life rule sets are generated with
priority already [4]. Even when the rule set is not in order,
it’s easy to sort them before the construction.

Consider the rule set in Table 1, for example. Suppose 2
E-Bits are selected from all the 4 bits. Then the preparation
phase can be shown as Fig. 1. In this example, each of the
four bits can split the rule set into two parts. For example,
the first bit can split the rule set into two subsets: three rules
of {#r0, #r1, #r6} (which covers 0 at the first bit) and five
rules of {#r2, #r3, #r4, #r5, #r6} (which covers 1 at the first
bit). The other bits (bit 2-4) can also split rules into subsets
as {#r0, #r2, #r5, #r6} þ {#r1, #r3, #r4, #r5, #r6}, {#r1,
#r2, #r5, #r6} þ {#r0, #r2, #r3, #r4, #r6}, and {#r0, #r1,
#r2, #r4, #r5, #r6} þ {#r0, #r3, #r4, #r6}. We take the
partition with the smallest subsets’ size as the optimization
goal in the Fast-Growth step. After the Fast-Growth step,
we choose bit {0, 1} as the possible E-Bits, and the resulted
maximal size of the subset is 4. Then with the Intelli-
Evolution, we test to swap bit 0 with bit 2, and successfully
get the new E-Bits as bit {1, 2}. The new result induces the
max subset’s size from 4 to 3, which is an optimized result.

After the E-Bits Selection, the M-Vector and the D-Table
are constructed. The entire procedure of preparation is
shown in Fig. 1.

At last, with E-Bits selection, M-Vector generation, and
D-Table construction, all data structures for classification are
built. As a summary, the pseudocode of the preparation
phase is demonstrated in Algorithm 1. Notice the prepara-
tion phase is usually processed offline in advance, and the
generated data structures can be loaded into the system
during maintenance.

Algorithm 1. Algorithm of the Preparation Phase.

Input:

R

Output:

V ; T

1: V ¼ f0g; J 0 ¼ �1==Init

2: ==Fast-Growth

3: repeat

4: for i 2 fi : V ½i� ¼ 0g do

5: J ¼ JðR; eÞ
6: if J 0 < J then

7: s i

8: J 0  J

9: end if

10: end for

11: V[s]¼1

12: nþþ
13: until P ðR; nÞ � Pupper
14: for i < LIMEVO

1 do

15: TryEvolution(V )==Intelli-Evolution
16: end for

17: ==D-Table Construction
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18: for r 2 R do

19: bstring ¼ JoinBitðr&V )

20: for i 2 bstring do

21: T ½i�.append(r)

22: end for

23: end for

24: return V ; T

3.3 Classification Phase

After the preparation phase, we now get the data structures
of V and T . With them, the classification phase can be
performed in two steps, as illustrated in Algorithm 2.

1. For each incoming packet header H, filter out all
bits with V , at the E-Bits positions, and combine
them into a bit string bstring. Calculate bstring’s
value as the index i, which will be utilize in the
second step.

2. Check the rules in the S-Block that is pointed by T ½i�,
and then find out the best matched one. Typically,
“best matched” means the rule that is both matched
and with the highest priority. Since the rules in the
S-Block are already ordered during the D-Table
construction (see Section 3.2.3), the process is
simplified to find out the first matched one.

Algorithm 2. Algorithm of the Classification Phase.

Input:

V , T , H
Output:

r== The result rule.

1: bstring ¼ JoinBitðH&V )

2: i ¼ getV alueðbstringÞ
3: for r 2 T ½i� do

4: if isMatchedðH; rÞ then

5: goto END

6: end if

7: end for

8: return r

Fig. 2 shows the classification process of D2BS on the
example rule set in Table 1. Since most blocks only contain a
few rules, the searching inside a block will be fast even with
linear lookup. Certainly, other searching technologies can
also be taken recursively inside.

On the other hand, the rules in a block are stored
continuously in the memory space, hence network

processors, for example, Cavium OCTEON can take
advantage of their cache mechanisms. From this example,
we can see that after the bit masking, D2BS only requires
one memory access times (find the correct cell of the
D-Table with the index) to reach the small rule block. The
bit masking step is also fast because these bit operations
can be done within cache, and special hardware can also
accelerate this step.

3.4 Complexity Analysis

Consider rule setR consists ofN rules andnE-Bits are chosen.
If D2BS is utilized as space-sensitive, or the P-Function
is defined based on the memory storage, less E-Bits will
be chosen to reduce the memory storage cost. On the other
hand, if D2BS is utilized as time-sensitive, or the P-Function
is defined based on the memory access times, more E-Bits
will be chosen to cut down the memory access times.

Here, we give out the theoretical complexity of D2BS.
The time complexity is Oðð23Þ

n �NÞ, while the storage
complexity is Oðð43Þ

n �NÞ. Thus, with different E-Bits
number, we can easily tune the performance of D2BS on
various platforms. Furthermore, in the practical cases, the
complexity will be even better. As indicated in [4], for both
source and destination address prefixes, the prefix nesting
thresholds. A more detailed analysis of the complexity is
given as the following.

Proof. Suppose rule set R consists of N rules, and n E-Bits
are selected. Thus, the length of the D-Table is 2n.
Suppose the length of the largest S-Blocks is L. It is clear
that the time complexity is OðLÞ, while the storage
complexity is Oð2n � LÞ.

The next step is to find out the complexity ofL. Each bit
may have three types of values: “0”, “1”, and “*”. With an
E-Bit, the rule set will be partitioned into two subsets.
Suppose the size ratio between the subsets and the original
rule set is �. Then the size of the partitioned subsets will be
� �N . Thus, with n E-Bits, OðLÞ ¼ Oð�n �NÞ.

In theory, on average (Assume each type of bit values
has the same probability, i.e., 1

3 .), � ¼ 2
3 , as the rules with

“*” will be copied into both subsets. For example, if we
have a rule set with three rules: {r1, r2, r3}, and the first bit
of each rule is “0”, “1”, and “*”. We choose the first bit as
the E-Bit, this will partition the rule set into two subsets:
{r1, r3} and {r2, r3}. However, in the practical case, � < 2

3 ,
as the “*” bit has low existence probability in real-life rule
sets. Taking the ACL series rule sets, for example, the
ratios of the “*” bit are only about 3.0 and 6.4 percent on
the source and the destination tuples, respectively. Thus,
in the worst case, OðLÞ ¼ Oð�n �NÞ ¼ Oðð23Þ

n �NÞ.
In summary, the theoretical time complexity is

Oðð23Þ
n �NÞ, while the storage complexity is Oðð43Þ

n �NÞ,
where n is the number of E-Bits, and N is the size of the
rule set R. tu

Notice that in the practical cases, the complexity is better
than this theoretical bound. As indicated in [4], the prefix
nesting thresholds for both source and destination address
prefixes. It is also clear that with larger n, better temporal
performance will be achieved with more storage cost.
Specially, when n ¼ lgN , then we have constant (relative to
N) time of OðN1þlg2

3Þ, and space of OðN1þlg4
3Þ.
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Fig. 2. The classification phase on the example rule set.



4 IMPLEMENTATION AND EVALUATION

To evaluate D2BS’s performance objectively, we first
implement D2BS on our IA-based platform with both
time-sensitive P-Function (D2BS-Pt) and space-sensitive
P-Function (D2BS-Ps). Performance results are given in
term of time, space, and scalability, compared with other
well-known algorithms such as HiCuts, HSM, and HyperS-
plit. To evaluate the real throughput performance of D2BS
on the industrial platform, we also test D2BS on Cavium
OCTEON CN5860 multicore NP (16 cores with 750 MHz,
and the memory is 4-GB DDRII) and Xilinx Vertex-5 FPGA
platform (99:64-146 MHz with 2-MB BRAM). Notice that
there is only 2-MB L2 cache on our NP platform, and the
memory storage of the FPGA platform is also limited.

All the experiments are carried out with publicly
available real-life rule sets, containing the types of Access
Control List (ACL), FireWall (FW), and IP Chain (IPC). We
use 12 rule sets of all types for evaluation, with different
sizes from several hundreds to about 10,000, for example,
the ACL10K rule set contains about 10,000 rules. All rules
are of five tuples with 32-bit source/destination IP
addresses, 16-bit source/destination port numbers, and
8-bit transport layer protocol. More details about the rule
sets can be found in [4].

4.1 IA-Based Implementation

4.1.1 Memory Access of Average Case

The memory access of the average case is one of the
important evaluation parameters, which is usually used to
evaluate the algorithm’s temporal performance in practice.
We compare D2BS with other well-known algorithms. As
Fig. 3a shown, both D2BS-Pt and D2BS-Ps require much
less memory access than other algorithms in most cases.
Taking the ACL series rule sets, for example, D2BS only
needs about 10-30 percent memory access of other algo-
rithms, which indicates that D2BS requires less time on
accessing the memory.

We notice that D2BS-Ps needs more memory accesses
on FW5K and FW10K rule sets than other rule sets. This
result may because the P-Function used in D2BS-Ps tries to
optimize the spatial performance, with the cost of more
memory accesses. We also notice that HiCuts needs the
most memory accesses in the average case. This is because
the linear searching inside HiCuts trie’s leaf nodes
increases the access times a lot. Although D2BS also
adopts linear searching inside its S-Blocks, the sizes of

the S-Blocks are kept small because of the effective partition
by the M-Vector. Taking ACL10K rule set for example, the
average size of S-Blocks is only around 10 when the
M-Vector size is set to 4,096 (12 bits E-Bits are utilized).

4.1.2 Memory Access of Worst Case

The memory access of the worst case is usually used to
evaluate the robustness of one algorithm’s performance.
Many algorithms may work well on average, but the
performance will descend sharply on the worst case. The
comparison results are given in Fig. 3b. As the figure
shown, D2BS-Pt still keeps the least memory accesses in
most rule sets compared with other algorithms, while
D2BS-Ps also performs well in all rule sets except for FW5K
and FW10K. That’s also because that for D2BS-Ps, we let
the algorithm try to optimize for storage first, which may
introduce some cost on memory accesses.

Comparing memory access times of the average case
and the worst case, some interesting results are observed.
For example, heuristic partition-based algorithms such as
HiCuts keep similar largest access times on almost all rule
sets, which means its time performance is not good but
steady. While for D2BS-Ps, it presents small access times
except for very large rule sets including FW5K and FW10K.
This is because to achieve good storage performance,
D2BS-Ps smartly optimizes its data structures to be more
space-effective with the tradeoff on temporal performance.
On both cases, D2BS-Pt performs the best results on most
rule sets, which indicates the effectiveness of our dynamic
design.

4.1.3 Memory Storage Usage

Memory storage is also quite important, as most of today’s
platforms only have small fast accessing memory. Some
platforms such as FPGA even have more strict memory
limitations. The comparison results are shown in Fig. 4. In
the figure, with logarithmic scale Y -axis, we can see that the
memory used by D2BS-Ps is at least an order of magnitude
less than that of other algorithms for most of the rule sets,
especially for large ones, for example, ACL10K, FW10K,
and IPC10K. Note that on rule sets FW5K and FW10K,
HiCuts cannot calculate out the final data structures on our
platform; thus, we give the theoretical number of storage
required for comparison. Also take rule set FW10K, for
example, HSM, HiCuts, and HyperSplit require more than
50-MB memory while D2BS-Ps only requires less than
1 MB. Even D2BS-Pt, whose P-Function aims to optimize
the temporal performance, also performs well in the spatial
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Fig. 3. Memory access time comparison of the average and the worst case between D2BS and other well-known algorithms.



performance. Although with some rule sets such as ACL
series rule sets, HiCuts and HyperSplit can obtain a little
better space performance than D2BS-Pt, they both require
much more storage than D2BS-Pt in other large rule sets.

We also notice that the memory required on FW rule
sets by all the algorithms is larger than that on ACL and
IPC ones. This implies that FW rule sets have more
complicated inherent structures. Thus, with the same rule
set size, FW ones will generate more and complicated
subspaces in the classification space than ACL and IPC
ones. Therefore, we suggest that FW rule sets be suitable
candidate to evaluate the real performance of the packet
classification algorithm. Specially, with the largest FW rule
set (FW10K), both D2BS-Ps and D2BS-Pt require far less
memory than other algorithms.

4.1.4 Scalability

The scalability of the performance is another important
evaluation factor as the size of rule set is growing larger
quickly. We measure the scalability through the ratio of
MPR. If this ratio jitters sharply among different types and
sizes of rule sets, it implies that the algorithm’s perfor-
mance will be not stable with larger and more complicated
rule sets in future; even it can perform well on small and
simple rule sets.

In Fig. 5, we compare D2BS’s scalability with other three
algorithms, which shows that both D2BS-Pt and D2BS-Ps
perform better scalability than all the other algorithms.
Among all 12 rule sets, MPR of HSM increases over 30,000
times from the best to the worst result, while the same
results are over 4,500 for HiCuts and 480 for HyperSplit.
However, for our algorithm (both D2BS-Pt and D2BS-Ps),
MPR only increases about 20 times. This novel scalability
will facilitates D2BS perform well even for future’s various
rule sets.

Comparing HSM (best space partition-based algorithm)
with HiCuts and HyperSplit (best rule set partition-based
algorithm), we can see that the space partition-based
algorithms show worse scalability than those based on the
rule set partition based ones. This is because space partition
algorithms build their data structure without considering
the inherent characteristics of rule set. Even for rule sets
with the same size but different inherent characteristics,
performance of the space partition algorithms may still jitter
a lot. In summary, space partition-based algorithms are
more sensitive on the inherent complexity of the rule sets.
Based on this observation, we can evaluate the complexity
of rule sets with the same size but different types. Taking all
the 10K size rule sets, (ACL, FW, IPC) for example, Fig. 5
illustrates that the highest MPR is obtained on the FW10K
rule set, which means FW rule sets own more complicated
complexity, and are more difficult to be classified.

On the other hand, comparing the trend of MPR between
D2BS and other algorithms on rule sets from small to large
ones, only D2BS performs a clear descending on MPR. This
result implies that only D2BS achieves a sublinear storage
requirements with the rule set size. This elegant property
also promises that D2BS is quite practical to process
complicated rule sets.

4.2 Multicore NP Implementation

To evaluate the throughput performance of our algorithm
on popular NP platform, we also implement and test D2BS
with one of the largest rule set, ACL10K, on the Cavium
OCTEON CN5860 multicore platform. Our program runs in
Simple Executive (SE) mode, thus we can evaluate the exact
throughput performance of the algorithms. The block
diagram of Cavium OCTEON CN5860 is shown in Fig. 6,
and up to 16 cnMIPS64 cores can be utilized in parallel.

Figs. 7a and 7b show the throughput results of the
average case and the worst case, respectively. From these
results, as we expected, both D2BS-Ps and D2BS-Pt gain
the best throughput performance over other algorithms
from 1 core to 16 cores. Typically, D2BS’s performance are
about 200-300 percent of that of other algorithms.
Specially, with 64-byte packets2 and 16 cores, only D2BS
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Fig. 4. Comparison of the memory requirement between D2BS and
other well-known algorithms.

Fig. 5. Comparison of the scalability on spatial performance between
D2BS and other well-known algorithms.

Fig. 6. Architecture of the Cavium OCTEON CN58XX platform.

2. 64 byte is usually used as the minimal packet size for evaluation.



achieves full 10-Gbps throughput in the average case.
While in the worst case, D2BS-Ps is also the only one that
achieves full 10-Gbps throughput with 16 cores. All these
results prove D2BS a practical algorithm with the best
performance for NP platform. Comparing D2BS-Ps with
D2BS-Pt, we notice that the performance of D2BS-Ps is a
little higher than that of D2BS-Pt. This may suggest that
on NP platforms, algorithms should be designed to
achieve efficient spatial performance.

4.3 FPGA-Based Implementation

To evaluate D2BS on FPGA, the algorithm has been
implemented on the Xilinx Virtex-5 FPGA. The FPGA
(model: XC5VSX240T) has 2,048 Kb of Block RAM (BRAM).
Considering the hardware limitation, we take D2BS-Ps for
the evaluation. The search algorithm has been pipelined to
achieve high throughput. By pipelining, this design can
classify one packet per clock cycle. The general architecture
of the design is shown in Fig. 8.

The pipeline consists of two phases. The first phase
involves masking out the bits from the packet header and
using the masked bits as a pointer to the S-Block stored in
the BRAM. To take advantage of parallelism of the BRAM
within the FPGA, S-Blocks have been stored horizontally so
that all the entries of an S-Block is read and matched at the
same time. One entry of the S-Block is stored in one BRAM.
Making the number of parallel BRAM equal to the size of
the largest S-Block, we can then guarantee being able to
match an S-Block within one clock cycle; hence, this step is
always implemented in one pipeline stage. The second
phase involves finding and selecting the highest priority
rule from all the possible matched rules within the S-Block.
Depending on the size of the S-Blocks, this step may involve
multiple pipeline stages.

Within the actual hardware implementation, 10 match
blocks are placed into a group and 10 groups are arranged
into a cluster. Each group has its own rule selector that
selects the highest priority rule from the match blocks and
each cluster has its own rule selector to select the highest
priority the groups. So for a 100 match block design, there
will be 10 groups and 1 cluster. The second phase is then
pipelined into two pipeline stages. The overall pipeline
length is 3 for this design.

The performance of the FPGA implementation is shown
in Fig. 9 and Fig. 10. Even with a 10K ACL rule set and
64-bytes packets, the FPGA design is capable of running at

131.987 MHz which is equivalent to 135 Gbps. This
represents a 14 percent increase in bandwidth compared
to the best FPGA design today [15]. For a packet classifier,
the latency of the classification is just as important as the
throughput. A short pipeline is desired because the shorter
the pipeline, the lower the latency of the packet classifier.
Compared to other FPGA-based packet classifier [14], [15],
D2BS’s pipeline is significantly shorter. The latency is also
reduced by four times, from 12 to 3 clock cycles.

All these results promise that D2BS is naturally well
suited to the FPGA architecture. Although masking bits
from the packet header is difficult on normal processor, this
is very simple on FPGA. Because each BRAM within the
FPGA is separately addressed, the FPGA implementation
does not require an index to find the S-Block. This,
furthermore, reduces memory usages as well as a task
required to translate the masked bits into an address.
Finally, the parallelism offered by the FPGA allows the
S-Block to be read and matched in parallel in one clock cycle.

4.4 Probability Distribution of E-Bits

The selection of E-Bits is important to the performance of
our algorithm. With few well-selected E-Bits, the rule set
can be partitioned effectively; while with badly selected
ones, the rule set may be partitioned poorly. Thus, the
distribution of E-Bits can illustrate the inherent character-
istics of rule sets. In Figs. 11a and 11b, we show the
probability distribution and the respective cumulative
distribution function (CDF) of the E-Bits locations on
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Fig. 7. Comparison of the throughput of the average and the worst case on the NP platform.

Fig. 8. Architecture of the system implementation on FPGA platform.



different types of rule sets (ACL, FW, and IPC), among the
total 104 bits (bit 0-103) in the packet header. In the
evaluation, we choose 16 E-Bits on each rule set.

From the distribution on the ACL rule sets, we can see
that most E-Bits occur at bit 0-3 (the start of source IP
address field), bit 26-30 (the end of source IP address),
bit 32-39 (the start of destination IP address) and bit 101
(within the protocol field), while both source port and
destination port fields only provide few E-Bits. For IPC rule
sets, similar distribution is observed. Most E-Bits stay at the
IP address fields and the protocol field, quite few ones are
found at the port fields. However, the distribution of FW
rule sets is more average. Besides, the IP address fields and
the protocol field, the destination port field also provides
numbers of E-Bits.

Since the locations of E-Bits means the dimensions that
are effective for partition, E-Bits actually indicate the
significance bits for the classification rule sets according to
our definition, or which bits can represent the real inherent
structures of rule sets with high probability. These results
indicate that the IP address fields and the protocol fields are
important for all classification rule sets, while the FW rule
sets also care the destination port field. This conclusion can
be understood with the intentions of designing different
types of rule sets. Both ACL and IPC rule sets mainly limit
the access of users through IP or basic protocols, while FW
rule sets also need to provide more advanced control of
filtering the applications in a granular degree.

The global probability distribution and the global CDF on
all rule sets are also given in Figs. 12a and 12b, respectively.
From these figures, we can find the similar result. Most

E-Bits occur at IP address fields, protocol fields, and
destination port fields. One interesting observation is that
for each field, a majority of E-Bits stay at the start and end
parts, while few are located in the middle part. Taking the
source IP address filed for example, the start 4 and end 4 bits
provides 46.7 percent E-Bits of the whole 32 bits. Bits on the
start part of field will cut the whole classification hyper-
space into continuous subspaces, while bits on the end part
will only influence smaller local subspace.

This characteristic implies that the global classification
hyperspace can be partitioned effectively through two-level
splitting: one is to split the global hyperspace into large
continuous ones, and the other is to split at the bottom level
subspaces. On the other hand, the results indicate the
location of rules in the global classification hyperspace is
quite uneven-distributed, which is also the foundation that
intelligent algorithms designed based on rule sets’ inherent
characteristics such as D2BS can perform better than other
ones.

4.5 Discussion

All experimental results show that with granular heuristics,
D2BS works well in performance and scalability on various
types and sizes of rule sets. At the same time, effective
partitioning by dynamic data structures of D2BS helps it
perform flexibly with different requirements on diverse
environments. This indicates that heuristic algorithms with
dynamic data structures may get more advantages than
traditional ones, especially for more complicated situations.

Comparing D2BS-Pt and D2BS-Ps, which are time-
optimized and space-optimized, respectively, we can see
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Fig. 9. Comparison of the throughput between D2BS and HyperSplit on

FPGA platform.
Fig. 10. Comparison of the latency between D2BS and HyperSplit on
FPGA platform.

Fig. 11. The probability distribution and the respective CDF of E-Bits location on different types of rule sets.



D2BS-Pt gains less memory access times but require more
storage. Through results on NP platform, we can see
D2BS-Ps performs better than D2BS-Pt in real through-
put. This implies memory hierarchies especially cache in
network processing hardware platforms, help to make
algorithms with smaller storage requirement processing
faster. Thus, for future memory hierarchical networking
platforms, for example, multicore platforms, storage
efficiency is really important for algorithms toward high
processing performance.

Results on FPGA also prove the effectiveness of D2BS.
To the best of our knowledge, D2BS is the first one that
achieves over 135-Gbps throughput on Xilinx Vertex-5
FPGA platform with 10K size rule set. Leveraging pipelin-
ing and paralleling, our algorithm shows great capability in
modern hardware platforms. This also promise D2BS can
even perform better in more powerful platforms.

5 CONCLUSION AND FUTURE WORK

Technologies that try to achieve QoS via classifying
packets have evolved rapidly over the last decade.
However, practical solutions that can meet all require-
ments such as performance and scalability at the same
time are still lacking.

In this paper, we propose a novel multituple packet
classification algorithm called D2BS. Unlike other existing
solutions, D2BS takes advantage of a dynamic heuristic
partition of rule set at bit level, which allows it to better
explore the inherent characteristics in rule sets and split
rules more effectively. To meet different requirements
under diverse situations, D2BS utilizes a P-Function to
optimize its data structure dynamically, which also pro-
mises a good flexibility.

To evaluate the performance of the proposed algorithm,
we implement D2BS on various types of platforms
including IA-based platform, multicore NP, and FPGA,
and compare it with existing well-known algorithms such
as HiCuts, HSM, and HyperSplit. Experimental results
show that D2BS achieves superior temporal and spatial
performance to existing algorithms, especially on very large
rule sets. With 10K size ACL rule set and 64-byte packet,
D2BS achieves over 10-Gbps throughput on Cavium
OCTEON CN5860 multicore NP, and over 135-Gbps
throughput on Xilinx Vertex-5 FPGA, which is the best
performance on the same platform. On the other hand,

D2BS also guarantees good scalability with the size of rule

sets. Compared with other well-known algorithms, D2BS is

the only one that shows sublinear storage requirement with

rule set size. All results promise D2BS to be a practical

algorithm with even larger and more complicated rule sets

in future.
We also notice D2BS’s access time in worst case is

several times larger than that in average case for some rule

sets, which may decrease the storage utilization on FPGA

platform. We are trying to design more effective storage

structures on FPGA, which will even improve D2BS’s

scalability for quite large rule sets in future. Our future

work includes finding more effective heuristics and

designing more efficient data structures, to improve the

performance of D2BS with other types of advanced

platforms. Other interesting topics include the optimal

results of the E-Bits selection, and the relationship between

the D-Table construction and the partition.
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