
motivation ...
With DJL 0.20.0 I experienced performance problems during training.

Let's illustrate it by measurements on a very basic example from DJL Docs ...

As the duration per epoch increases linearly the integral duration increases quadratically.
The linear growth of the memory on GPU will finally end up with spending all GPU memory and
therefore terminating the JVM process.

searching for the cause ...
Searching for the cause revealed:

• Unused NDArrays accumulated under the BaseNDManager.
Linear growth in number over epochs.

• A code snipped was added between DJL 0.19.0 and DJL 0.20.0 to remove gradients on
PyTorch engine before each new gradient collection. To do so it was collecting all the NDArrays
and thereby translated the memory growth into a duration increase. I see this as a side effect of
the growth in the number of unused NDArrays.

Is this the cause?

To find out ... implement some mechanism to remove the unused NDArrays and measure again.

searching for the cause ... hay-re-ka
With the implemented mechanism to remove the unused NDArrays in place
running the same example as before:

The duration and GPU memory situation looks much better.
(Why there still shows up one little memory jump ... an interpretation on the last slide.)

solution approach ... main idea

Use the JVM's gc to

1. identify no more used NDArrays

2. close them

solution approach ... comments on the approach
• it is not the idea to replace the NDManager hierarchy.

• the JVM's gc protects mainly the heap's memory - it does not even care about GPU memory

• the JVM's gc is not deterministically triggerable, its strategy can be choosen at runtime (normally its
default behaviour), you don't know at coding time how often it runs and what it does on each run ...
but practically it runs often on the time scale our problem piles up

• JVM's gc nicely identifies unused java objects and somewhen cleans them up from the heap

• To remove NDArrays the AutoCloseable mechanism to remove all NDArrays that belong to an
NDManager works deterministically. However, there is no mechanism (as far as I know) that
garantees in a praticable way that no NDArray that is created within opening and closing of a
NDManager will be deleted when leaving that scope if you don't explicitly move it out. Why?
Because when using NDArrays from other NDManagers newly created NDArrays may "escape" to
that scope if you are e.g. not aware that otherwise commutative operations are not commutative
concerning the NDManager the operation result belongs to.

• our approach may have unliked sideeffects - e.g. worse performance in some case.
Therefore it should be switched off by default and only switched on at will by the user.

solution approach ... ingredients
• the JVM gc removes java objects that are no more referenced.

As the NDArrays that are unused by the user are still referenced by their NDManagers we let the
users reference only Proxies to the NDArrays.

• We use DynamicProxies. Therefore we have to separate NDArrays into interface and
implementation.

• To decouple the DynamicProxies from the NDArrays concerning normal references we store the
NDArrays in a WeakHashMap. The Proxies only have an uuid key to retrieve the NDArrays from
the WeakHashMap on each method call.

• When the user no longer references a particular DynamicProxy the Proxy and the uuid key get
garbage collected (somewhen). On a user call to the method of any of the DynamicProxies (not this
particular one) the WeakHashMap clean up the entry (normal behaviour) triggered by polling its
ReferenceQueue (on the calling thread - no separate threads here).

• How to hook in here for closing the resource? As the WeakHashMap code is under GPL license we
are not touching the code. Instead we facade the WeakHashMap by a wrapper that has its own
ReferenceQueue (the ReferenceQueue is the information channel from gc to our code). On a
method call to any of the DynamicProxies we first check the ReferenceQueue for newly deleted
uuid keys. For any of them we close the actual NDArray before calling the WeakHashMap.

solution approach ... lifecycle: NDArray creation 1
PtNDManager

create(...)

<<class>>
PtNDArrayImpl

newPtNDArray(...)

<<create>>
PtNDArrayImpl

attachInternal(...)

default behavior: garbage collection is off

ptNDArrayImpl with interface PtNDArray

user has switched garbage collection on by
SwitchGarbageCollection.on();

PtNDArray
ProxyMaker

WeakHashMap
Wrapper

wrap(PtNDArrayImpl)

<<create>>

put(uuid, ptNDArrayImpl)

Proxy
incl.
DynamicInvocation
Handler

proxy with interface PtNDArray

solution approach ... lifecycle: NDArray creation 2
WeakHashMap
Wrapper

put(uuid, ptNDArrayImpl)

WeakHashMapWeakReference
WrapperSet

<<create>>

WeakReference
Wrapper

uuid, ptNDArrayImpl,
referenceQueue

add(weakReferenceWrapper)

put(uuid, ptNDArrayImpl)

solution approach ... lifecycle: NDArray use
Proxy
with interface

PtNDArray

e.g. getGradient()

Dynamic
Invocation
Handler

invoke(...)

Weak
Hash
Map

WeakHashMap
Wrapper

get(uuid)

Method PtNDArrayImpl

ptNDArrayImpl

invoke(ptNDArrayImpl, ...)
getGradient()

Weak
Reference
Wrapper
Set

solution approach ... lifecycle: NDArray death

deletes last
reference to
some proxy A

JVM GC Reference
Queue

add entry

Proxy B incl
DynamicInvocation
Handler

e.g. getGradient() from proxy B

WeakHashMap
Wrapper

get(uuid) checkQueue()

poll()

weakReferenceWrapper incl ptNDArrayImpl A

PtNDArray
Impl A

close()

ptNDArrayImpl B

remove(...)

Doc History
Version 2:

• BugFix: removed the weakReferenceWrapper from the corresponding collection
fixed a heap space memory leak

• Marketing: before/after image

Version 3:

• Improvement: independent global switch to switch garbage collection on.

• More understanding: added a slide (last one) about why there still is a memory jump in the example

Version 4:

• corrected text on sequence diagram slide 10

Why the memory jump (after) in slide 3
Hypothesis: The frequency of the young generation garbage collections lead to this one time jump
Test: Start the Java JVM with a higher frequency

(only do this for the test - in production accept the jump or keep in mind just in case you tune gc)

java -XX:+UnlockExperimentalVMOptions -XX:G1MaxNewSizePercent=30 -jar app/build/libs/app-0.0.1-SNAPSHOT.jar gc

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12

