Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
654 lines (502 sloc) 27.9 KB

Neural Morphological Tagging

It is an implementation of neural morphological tagger from Heigold et al., 2017. An extensive empirical evaluation of character-based morphological tagging for 14 languages. We distribute the models for 11 languages trained on Universal Dependencies corpora. Our model achieves the state-of-the-art performance among open source systems.

Language Code UDPipe accuracy Our top accuracy Model size (MB)
Arabic ar 88.31 90.85 23.7
Czech cs 91.86 94.35 41.8
English en 92.53 93.00 16.9
French fr 95.25 95.45 19.0
German de 76.65 83.83 18.6
Hindi hi 87.74 90.01 21.9
Hungarian hu 69.52 75.34 15.4
Italian it 96.33 96.47 32.0
Russian ru_syntagrus 93.57 96.23 48.7
Spanish es_ancora 96.88 97.00 20.8
Turkish tr 86.98 88.03 16.1

Usage examples.

Before using the model make sure that all required packages are installed using the command:

python -m deeppavlov install morpho_ru_syntagrus_pymorphy

For Windows platform one have to set KERAS_BACKEND to tensorflow (it could be done only once):

set "KERAS_BACKEND=tensorflow"

Python:

For Windows platform if one did not set KERAS_BACKEND to tensorflow from command line it could be done in python code in the following way:

import os

os.environ["KERAS_BACKEND"] = "tensorflow"
from deeppavlov import build_model, configs
model = build_model(configs.morpho_tagger.UD2_0.morpho_ru_syntagrus_pymorphy, download=True)
sentences = ["Я шёл домой по незнакомой улице.", "Девушка пела в церковном хоре о всех уставших в чужом краю."]
for parse in model(sentences):
    print(parse)

If you want to use the obtained tags further in Python, just split the output using tabs and newlines.

You may also pass the tokenized sentences instead of raw ones:

sentences = [["Я", "шёл", "домой", "по", "незнакомой", "улице", "."]]
for parse in model(sentences):
    print(parse)

If your data is large, you can call :meth:`~deeppavlov.core.common.chainer.Chainer.batched_call` method of the model, which will additionally separate you list of sentences into small batches.

from deeppavlov import build_model, configs
model = build_model(configs.morpho_tagger.UD2_0.morpho_ru_syntagrus_pymorphy, download=True)
sentences = ["Я шёл домой по незнакомой улице.", "Девушка пела в церковном хоре о всех уставших в чужом краю."]
for parse in model.batched_call(sentences, batch_size=16):
    print(parse)
1   Я       PRON,Case=Nom|Number=Sing|Person=1      _
2   шёл     VERB,Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act      _
3   домой   ADV,Degree=Pos  _
4   по      ADP     _
5   незнакомой      ADJ,Case=Dat|Degree=Pos|Gender=Fem|Number=Sing  _
6   улице   NOUN,Animacy=Inan|Case=Dat|Gender=Fem|Number=Sing       _
7   .       PUNCT   _

1   Девушка NOUN,Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing       _
2   пела    VERB,Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act       _
3   в       ADP     _
4   церковном       ADJ,Case=Loc|Degree=Pos|Gender=Masc|Number=Sing _
5   хоре    NOUN,Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing      _
6   о       ADP     _
7   всех    PRON,Animacy=Anim|Case=Loc|Number=Plur  _
8   уставших        VERB,Aspect=Perf|Case=Loc|Number=Plur|Tense=Past|VerbForm=Part|Voice=Act        _
9   в       ADP     _
10  чужом   ADJ,Case=Loc|Degree=Pos|Gender=Masc|Number=Sing _
11  краю    NOUN,Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing      _
12  .       PUNCT   _

If you want the output in UD format, try setting "data_format": ud in the tag_output_prettifier section of :config:`configuration file <morpho_tagger/UD2.0/morpho_ru_syntagrus_pymorphy.json>` you import.

Exclusively for Russian language you can obtain lemmatized UD output by using :config:`augmented version <morpho_tagger/UD2.0/morpho_ru_syntagrus_pymorphy_lemmatize.json>` of Pymorphy model.

from deeppavlov import build_model, configs
model = build_model(configs.morpho_tagger.UD2_0.morpho_ru_syntagrus_pymorphy_lemmatize, download=True)
sentences = ["Я шёл домой по незнакомой улице.", "Девушка пела в церковном хоре о всех уставших в чужом краю."]
for parse in model(sentences):
    print(parse)
1   Я       я       PRON    _       Case=Nom|Number=Sing|Person=1   _       _       _       _
2   шёл     идти    VERB    _       Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act   _       _       _       _
3   домой   домой   ADV     _       Degree=Pos      _       _       _       _
4   по      по      ADP     _       _       _       _       _       _
5   незнакомой      незнакомый      ADJ     _       Case=Dat|Degree=Pos|Gender=Fem|Number=Sing      _       _       _       _
6   улице   улица   NOUN    _       Animacy=Inan|Case=Dat|Gender=Fem|Number=Sing    _       _       _       _
7   .       .       PUNCT   _       _       _       _       _       _

1   Девушка девушка NOUN    _       Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing    _       _       _       _
2   пела    петь    VERB    _       Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act    _       _       _       _
3   в       в       ADP     _       _       _       _       _       _
4   церковном       церковный       ADJ     _       Case=Loc|Degree=Pos|Gender=Masc|Number=Sing     _       _       _       _
5   хоре    хор     NOUN    _       Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing   _       _       _       _
6   о       о       ADP     _       _       _       _       _       _
7   всех    весь    PRON    _       Animacy=Anim|Case=Loc|Number=Plur       _       _       _       _
8   уставших        устать  VERB    _       Aspect=Perf|Case=Loc|Number=Plur|Tense=Past|VerbForm=Part|Voice=Act     _       _       _       _
9   в       в       ADP     _       _       _       _       _       _
10  чужом   чужой   ADJ     _       Case=Loc|Degree=Pos|Gender=Masc|Number=Sing     _       _       _       _
11  краю    край    NOUN    _       Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing   _       _       _       _
12  .       .       PUNCT   _       _       _       _       _       _

Command line:

If you want to use our models from scratch, do the following (all the examples are for ru_syntagrus_pymorphy model, change the filenames accordingly to invoke models for other languages):

  1. Download data

    python -m deeppavlov download morpho_ru_syntagrus_pymorphy

    To perform all downloads in runtime you can also run all subsequent commands with -d key,

  2. To apply a pre-trained ru_syntagrus_pymorphy model to ru_syntagrus test data provided it was downloaded using the previous command, run

    python -m deeppavlov.models.morpho_tagger morpho_ru_syntagrus_pymorphy \
    > -f ~/.deeppavlov/downloads/UD2.0_source/ru_syntagrus/ru_syntagrus-ud-test.conllu

    -f argument points to the path to the test data. If you do not pass it the model expects data from stdin. This command writes the output to stdout, you can redirect it using standard > notation.

    • By default the deeppavlov.models.morpho_tagger script expects the data to be in CoNLL-U format, however, you can specify input format by using the -i key. For example, your input can be in one word per line format, in this case you set this key to "vertical". Note also that you can pass the data from
    echo -e "Мама\nмыла\nраму\n.\n\nВаркалось\n,\nхливкие\nшорьки\nпырялись\nпо\nнаве\n." \
    > | python -m deeppavlov.models.morpho_tagger morpho_ru_syntagrus_pymorphy -i "vertical"
    1       Мама    NOUN    Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing
    2       мыла    VERB    Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act
    3       раму    NOUN    Animacy=Inan|Case=Acc|Gender=Fem|Number=Sing
    4       .       PUNCT   _
    
    1       Варкалось       NOUN    Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing
    2       ,       PUNCT   _
    3       хливкие ADJ     Case=Nom|Degree=Pos|Number=Plur
    4       шорьки  NOUN    Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur
    5       пырялись        VERB    Aspect=Imp|Mood=Ind|Number=Plur|Tense=Past|VerbForm=Fin|Voice=Mid
    6       по      ADP     _
    7       наве    NOUN    Animacy=Inan|Case=Dat|Gender=Masc|Number=Sing
    8       .       PUNCT   _
    
    • Untokenized sentences (one sentence per line) can be tagged as well, in this case input format should be "text"
    echo -e "Мама мыла раму.\nВаркалось, хливкие шорьки пырялись по наве." \
    > | python -m deeppavlov.models.morpho_tagger morpho_ru_syntagrus_pymorphy -i "text"
    1       Мама    NOUN    Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing
    2       мыла    VERB    Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act
    3       раму    NOUN    Animacy=Inan|Case=Acc|Gender=Fem|Number=Sing
    4       .       PUNCT   _
    
    1       Варкалось       NOUN    Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing
    2       ,       PUNCT   _
    3       хливкие ADJ     Case=Nom|Degree=Pos|Number=Plur
    4       шорьки  NOUN    Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur
    5       пырялись        VERB    Aspect=Imp|Mood=Ind|Number=Plur|Tense=Past|VerbForm=Fin|Voice=Mid
    6       по      ADP     _
    7       наве    NOUN    Animacy=Inan|Case=Dat|Gender=Masc|Number=Sing
    8       .       PUNCT   _
    
    • You can also obtain the output in CoNLL-U format by passing the -o ud argument:
    echo -e "Мама мыла раму.\nВаркалось, хливкие шорьки пырялись по наве." \
    > | python -m deeppavlov.models.morpho_tagger morpho_ru_syntagrus_pymorphy -i "text" -o "ud"
    1       Мама    _       NOUN    _       Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing    _       _       _       _
    2       мыла    _       VERB    _       Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act    _       _       _       _
    3       раму    _       NOUN    _       Animacy=Inan|Case=Acc|Gender=Fem|Number=Sing    _       _       _       _
    4       .       _       PUNCT   _       _       _       _       _       _
    
    1       Варкалось       _       NOUN    _       Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing   _       _       _       _
    2       ,       _       PUNCT   _       _       _       _       _       _
    3       хливкие _       ADJ     _       Case=Nom|Degree=Pos|Number=Plur _       _       _       _
    4       шорьки  _       NOUN    _       Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur   _       _       _       _
    5       пырялись        _       VERB    _       Aspect=Imp|Mood=Ind|Number=Plur|Tense=Past|VerbForm=Fin|Voice=Mid       _       _       _       _
    6       по      _       ADP     _       _       _       _       _       _
    7       наве    _       NOUN    _       Animacy=Inan|Case=Dat|Gender=Masc|Number=Sing   _       _       _       _
    8       .       _       PUNCT   _       _       _       _       _       _
    
  3. To evaluate ru_syntagrus model on ru_syntagrus test subset, run

    python -m deeppavlov evaluate morpho_ru_syntagrus_pymorphy
  4. To retrain model on ru_syntagrus dataset, run one of the following (the first is for Pymorphy-enriched model)

    python -m deeppavlov train morpho_ru_syntagrus_pymorphy
    python -m deeppavlov train morpho_ru_syntagrus

    Be careful, one epoch takes 2-60 minutes depending on your GPU.

  5. To tag Russian sentences from stdin, run

    python -m deeppavlov interact morpho_ru_syntagrus_pymorphy

Read the detailed readme below.

Task description

Morphological tagging consists in assigning labels, describing word morphology, to a pre-tokenized sequence of words. In the most simple case these labels are just part-of-speech (POS) tags, hence in earlier times of NLP the task was often referred as POS-tagging. The refined version of the problem which we solve here performs more fine-grained classification, also detecting the values of other morphological features, such as case, gender and number for nouns, mood, tense, etc. for verbs and so on. Morphological tagging is a stage of common NLP pipeline, it generates useful features for further tasks such as syntactic parsing, named entity recognition or machine translation.

Common output for morphological tagging looks as below. The examples are for Russian and English language and use the inventory of tags and features from Universal Dependencies project.

1   Это PRON    Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing
2   чутко   ADV Degree=Pos
3   фиксируют   VERB    Aspect=Imp|Mood=Ind|Number=Plur|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act
4   энциклопедические   ADJ Case=Nom|Degree=Pos|Number=Plur
5   издания NOUN    Animacy=Inan|Case=Nom|Gender=Neut|Number=Plur
6   .   PUNCT   _

1   Four    NUM NumType=Card
2   months  NOUN    Number=Plur
3   later   ADV _
4   ,   PUNCT   _
5   we  PRON    Case=Nom|Number=Plur|Person=1|PronType=Prs
6   were    AUX Mood=Ind|Tense=Past|VerbForm=Fin
7   married VERB    Tense=Past|VerbForm=Part|Voice=Pass
8   .   PUNCT   _

The full UD format (see below) includes more columns including lemma and syntactic information.

Training data

Our tagger accepts the data in CONLL-U format:

1   Four    four    NUM CD  NumType=Card    2   nummod  _   _
2   months  month   NOUN    NNS Number=Plur 3   obl:npmod   _   _
3   later   later   ADV RB  _   7   advmod  _   SpaceAfter=No
4   ,   ,   PUNCT   ,   _   7   punct   _   _
5   we  we  PRON    PRP Case=Nom|Number=Plur|Person=1|PronType=Prs  7   nsubj:pass  _   _
6   were    be  AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin    7   aux:pass    _   _
7   married marry   VERB    VBN Tense=Past|VerbForm=Part|Voice=Pass 0   root    _   SpaceAfter=No
8   .   .   PUNCT   .   _   7   punct   _   _

It does not take into account the contents except the columns number 2, 4, 6 (the word itself, POS label and morphological tag), however, in the default setting the reader expects the word to be in column 2, the POS label in column 4 and the detailed tag description in column 6.

Test data

When annotating unlabeled text, our model expects the data in 10-column UD format as well. However, it does not pay attention to any column except the first one, which should be a number, and the second, which must contain a word. You can also pass only the words with exactly one word on each line by adding "from_words": True to dataset_reader section. Sentences are separated with blank lines.

You can also pass the unlemmatized text as input. In this case it is preliminarly lemmatized using the NLTK word_tokenize function.

Algorithm description

We adopt a neural model for morphological tagging from Heigold et al., 2017. An extensive empirical evaluation of character-based morphological tagging for 14 languages. We refer the reader to the paper for complete description of the algorithm. The tagger consists of two parts: a character-level network which creates embeddings for separate words and word-level recurrent network which transforms these embeddings to morphological tags.

The character-level part implements the model from Kim et al., 2015. Character-aware language models. First it embeds the characters into dense vectors, then passes these vectors through multiple parallel convolutional layers and concatenates the output of these convolutions. The convolution output is propagated through a highway layer to obtain the final word representation.

You can optionally use a morphological dictionary during tagging. In this case our model collects a 0/1 vector with ones corresponding to the dictionary tags of a current word. This vector is passed through a one-layer perceptron to obtain an embedding of dictionary information. This embedding is concatenated with the output of character-level network.

As a word-level network we utilize a Bidirectional LSTM, its outputs are projected through a dense layer with a softmax activation. In principle, several BiLSTM layers may be stacked as well as several convolutional or highway layers on character level; however, we did not observed any sufficient gain in performance and use shallow architecture therefore.

Model configuration.

Training configuration

We distribute pre-trained models for 11 languages trained on Universal Dependencies data. Configuration files for reproducible training are also available in :config:`deeppavlov/configs/morpho_tagger/UD2.0 <morpho_tagger/UD2.0>`, for example :config:`deeppavlov/configs/morpho_tagger/UD2.0/morpho_en.json <morpho_tagger/UD2.0/morpho_en.json>`. The configuration file consists of several parts:

Dataset Reader

The dataset reader describes the instance of :class:`~deeppavlov.dataset_readers.morphotagging_dataset_reader.MorphotaggerDatasetReader` class.

"dataset_reader": {
    "class_name": "morphotagger_dataset_reader",
    "data_path": "{DOWNLOADS_PATH}/UD2.0_source",
    "language": "en", "data_types": ["train", "dev", "test"]
  }

class_name field refers to the class MorphotaggerDatasetReader, data_path contains the path to data directory, the language field is used to derive the name of training and development file. Alternatively, you can specify these files separately by full (or absolute) paths like

"dataset_reader": {
    "class_name": "morphotagger_dataset_reader",
    "data_path": ["{DOWNLOADS_PATH}/UD2.0_source/en-ud-train.conllu",
                  "{DOWNLOADS_PATH}/UD2.0_source/en-ud-dev.conllu",
                  "{DOWNLOADS_PATH}/UD2.0_source/en-ud-test.conllu"]
    "data_types": ["train", "dev", "test"]
  }

By default you need only the train file, the dev file is used to validate your model during training and the test file is for model evaluation after training. Since you need some validation data anyway, without the dev part you need to resplit your data as described in Dataset Iterator section.

Your data should be in CONLL-U format. It refers to predict mode also, but in this case only word column is taken into account. If your data is in single word per line format and you do not want to reformat it, add "from_words": True to dataset_reader section. You can also specify which columns contain words, tags and detailed tags, for documentation see :func:`Documentation <deeppavlov.dataset_readers.morphotagging_dataset_reader.read_infile>`.

Dataset iterator

:class:`Dataset iterator <deeppavlov.dataset_iterators.morphotagger_iterator.MorphoTaggerDatasetIterator>` class performs simple batching and shuffling.

"dataset_iterator": {
    "class_name": "morphotagger_dataset"
}

By default it has no parameters, but if your training and validation data are in the same file, you may specify validation split here:

"dataset_iterator": {
    "class_name": "morphotagger_dataset",
    "validation_split": 0.2
}
Chainer

The chainer part of the configuration file contains the specification of the neural network model and supplementary things such as vocabularies. Chainer refers to an instance of :class:`~deeppavlov.core.common.chainer.Chainer`, see :doc:`configuration </intro/configuration>` for a complete description.

The major part of chainer is pipe. The pipe contains vocabularies and the network itself as well as some pre- and post- processors. The first part lowercases the input and normalizes it (see :class:`~deeppavlov.models.preprocessors.capitalization.CapitalizationPreprocessor`).

"pipe": [
      {
        "id": "lowercase_preprocessor",
        "class_name": "lowercase_preprocessor",
        "in": ["x"],
        "out": ["x_processed"]
      },

The second part is the tag vocabulary which transforms tag labels the model should predict to tag indexes.

{
    "id": "tag_vocab",
    "class_name": "simple_vocab",
    "fit_on": ["y"],
    "special_tokens": ["PAD", "BEGIN", "END"],
    "save_path": "{MODELS_PATH}/morpho_tagger/UD2.0/tag_en.dict",
    "load_path": "{MODELS_PATH}/morpho_tagger/UD2.0/tag_en.dict"
  },

The third part is the character vocabulary used to represent words as sequences of indexes. Only the symbols which occur at least min_freq times in the training set are kept.

{
   "id": "char_vocab",
   "class_name": "simple_vocab",
   "min_freq": 3,
   "fit_on": ["x_processed"],
   "special_tokens": ["PAD", "BEGIN", "END"],
   "save_path": "{MODELS_PATH}/morpho_tagger/UD2.0/char_en.dict",
   "load_path": "{MODELS_PATH}/morpho_tagger/UD2.0/char_en.dict"
 },

If you want to utilize external morphological knowledge, you can do it in two ways. The first is to use :class:`~deeppavlov.models.vectorizers.word_vectorizer.DictionaryVectorizer`. :class:`~deeppavlov.models.vectorizers.word_vectorizer.DictionaryVectorizer` is instantiated from a dictionary file. Each line of a dictionary file contains two columns: a word and a space-separated list of its possible tags. Tags can be in any possible format. The config part for :class:`~deeppavlov.models.vectorizers.word_vectorizer.DictionaryVectorizer` looks as

{
    "id": "dictionary_vectorizer",
    "class_name": "dictionary_vectorizer",
    "load_path": PATH_TO_YOUR_DICTIONARY_FILE,
    "save_path": PATH_TO_YOUR_DICTIONARY_FILE,
    "in": ["x"],
    "out": ["x_possible_tags"]
}

The second variant for external morphological dictionary, available only for Russian, is Pymorphy2. In this case the vectorizer list all Pymorphy2 tags for a given word and transforms them to UD2.0 format using russian-tagsets library. Possible UD2.0 tags are listed in a separate distributed with the library. This part of the config look as (see :config:`config <morpho_tagger/UD2.0/morpho_ru_syntagrus_pymorphy.json>`))

{
  "id": "pymorphy_vectorizer",
  "class_name": "pymorphy_vectorizer",
  "save_path": "{MODELS_PATH}/morpho_tagger/UD2.0/ru_syntagrus/tags_russian.txt",
  "load_path": "{MODELS_PATH}/morpho_tagger/UD2.0/ru_syntagrus/tags_russian.txt",
  "max_pymorphy_variants": 5,
  "in": ["x"],
  "out": ["x_possible_tags"]
}

The next part performs the tagging itself. Together with general parameters it describes the input parameters of :class:`~deeppavlov.models.morpho_tagger.morpho_tagger.MorphoTagger`) class.

{
    "in": ["x_processed"],
    "in_y": ["y"],
    "out": ["y_predicted"],
    "class_name": "morpho_tagger",
    "main": true,
    "save_path": "{MODELS_PATH}/morpho_tagger/UD2.0/ud_en.hdf5",
    "load_path": "{MODELS_PATH}/morpho_tagger/UD2.0/ud_en.hdf5",
    "tags": "#tag_vocab",
    "symbols": "#char_vocab",
    "verbose": 1,
    "char_embeddings_size": 32, "char_window_size": [1, 2, 3, 4, 5, 6, 7],
    "word_lstm_units": 128, "conv_dropout": 0.0, "char_conv_layers": 1,
    "char_highway_layers": 1, "highway_dropout": 0.0, "word_lstm_layers": 1,
    "char_filter_multiple": 50, "intermediate_dropout": 0.0, "word_dropout": 0.2,
    "lstm_dropout": 0.3, "regularizer": 0.01, "lm_dropout": 0.3
}

When an additional vectorizer is used, the first line is changed to "in": ["x_processed", "x_possible_tags"] and an additional parameter "word_vectorizers": [["#pymorphy_vectorizer.dim", 128]] is appended.

Config includes general parameters of :class:`~deeppavlov.core.models.component.Component` class, described in the :doc:`configuration </intro/configuration>` and specific :class:`~deeppavlov.models.morpho_tagger.morpho_tagger.MorphoTagger` parameters. The latter include

  • tags - tag vocabulary. #tag_vocab refers to an already defined model with "id" = "tag_vocab".
  • symbols - character vocabulary. #char_vocab refers to an already defined model with "id" = "char_vocab".

and other specific parameters of the network, available in :class:`~deeppavlov.models.morpho_tagger.morpho_tagger.MorphoTagger` documentation.

The "train" section of "chainer" contains training parameters, such as number of epochs, batch_size and logging frequency, see general readme for more details.

chainer also includes the "prettifier" subsection, which describes the parameters of :class:`~deeppavlov.core.models.morpho_tagger.common.TagOutputPrettifier` which transforms the predictions of the tagger to a readable form.

{
"in": ["x", "y_predicted"],
"out": ["y_prettified"],
"class_name": "tag_output_prettifier",
"end": "\\n"
}

It takes two inputs — source sequence of words and predicted sequence of tags and produces the output of the format

1 Это PRON Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing
2 чутко ADV Degree=Pos
3 фиксируют VERB
Aspect=Imp|Mood=Ind|Number=Plur|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act
4 энциклопедические ADJ Case=Nom|Degree=Pos|Number=Plur
5 издания NOUN Animacy=Inan|Case=Nom|Gender=Neut|Number=Plur
6 . PUNCT _

1 Four NUM NumType=Card
2 months NOUN Number=Plur
3 later ADV *
4 , PUNCT *
5 we PRON Case=Nom|Number=Plur|Person=1|PronType=Prs
6 were AUX Mood=Ind|Tense=Past|VerbForm=Fin
7 married VERB Tense=Past|VerbForm=Part|Voice=Pass
8 . PUNCT _

To generate output in 10 column CONLL-U format add "format_mode": "ud" to the described section.

You can’t perform that action at this time.