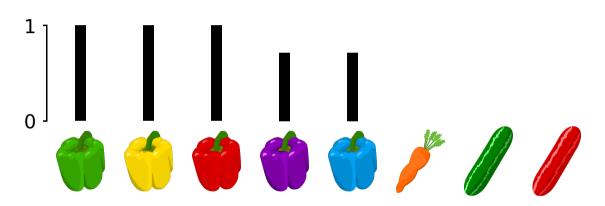
Bernoulli Fields

Probability distributions for vague semantics and pragmatics

Truth-Conditional Functions



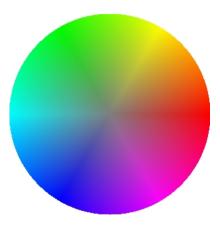
For each pixie x, truth-valued random variable T_x

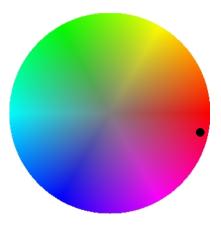
- For each pixie x, truth-valued random variable T_x
- f : pixie \mapsto probability of truth

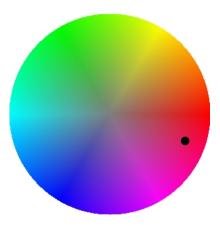
- For each pixie x, truth-valued random variable T_x
- f : pixie \mapsto probability of truth
 - $\mathbb{P}(T_x=\top) = f(x), \qquad \mathbb{P}(T_x=\bot) = 1 f(x)$

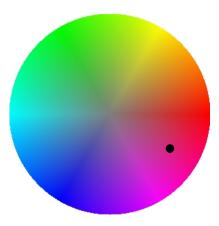
- For each pixie x, truth-valued random variable T_x
- f : pixie \mapsto probability of truth
 - $\mathbb{P}(T_x = \mathsf{T}) = f(x), \qquad \mathbb{P}(T_x = \bot) = 1 f(x)$ $\mathbb{P}(T_y = \mathsf{T}) = f(y), \qquad \mathbb{P}(T_y = \bot) = 1 f(y)$

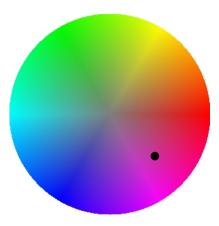
- For each pixie x, truth-valued random variable T_x
- f : pixie \mapsto probability of truth
 - $\mathbb{P}(T_x = \top) = f(x), \qquad \mathbb{P}(T_x = \bot) = 1 f(x)$ $\mathbb{P}(T_y = \top) = f(y), \qquad \mathbb{P}(T_y = \bot) = 1 f(y)$
- What about $\mathbb{P}(T_x=T, T_y=T)$?

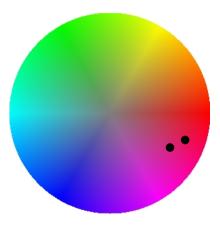


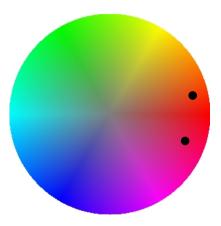












Probabilistic but Coherent

 Language use is probabilistic: the extension of "red" varies from discourse to discourse

Probabilistic but Coherent

- Language use is probabilistic: the extension of "red" varies from discourse to discourse
- Language use is coherent: the extension of "red" is self-consistent within a discourse

	$T_y = \bot$	$T_y = T$
$T_x = \bot$	$p_{\perp\perp}$	$p_{\perp op}$
$T_x = T$	$p_{ op \perp}$	$p_{ op}$

$$\begin{array}{c|c} \hline T_y = \bot & T_y = \top \\ \hline T_x = \bot & \rho_{\bot\bot} & \rho_{\bot\top} \\ \hline T_x = \top & \rho_{\top\bot} & \rho_{\top\top} \end{array}$$

 4 outcomes; probabilities sum to 1, so 3 degrees of freedom

$$\begin{array}{c|c} \hline T_y = \bot & T_y = \top \\ \hline T_x = \bot & \rho_{\bot \bot} & \rho_{\bot \top} \\ \hline T_x = \top & \rho_{\top \bot} & \rho_{\top \top} \end{array}$$

- 4 outcomes; probabilities sum to 1, so 3 degrees of freedom
- f(x) and f(y) are 2 degrees of freedom

- Degrees of dependence:
 - No dependence: $p_{\top \top} = f(x)f(y)$
 - Max dependence: $p_{TT} = \min \{f(x), f(y)\}$

- Degrees of dependence:
 - No dependence: $p_{\top \top} = f(x)f(y)$
 - Max dependence: $p_{TT} = \min \{f(x), f(y)\}$
- Dependence as: covariance? correlation coefficient?

- Degrees of dependence:
 - No dependence: $p_{TT} = f(x)f(y)$
 - Max dependence: $p_{TT} = \min \{f(x), f(y)\}$
- Dependence as: covariance? correlation coefficient?
 - not useful as parameters:
 range depends on f(x) and f(y)

Degrees of dependence:

- No dependence: $p_{TT} = f(x)f(y)$
- Max dependence: $p_{TT} = \min \{f(x), f(y)\}$

• Dependence as odds ratio: $\omega = \frac{p_{\top \top} p_{\perp \perp}}{p_{\top \perp} p_{\perp \top}}$

- Degrees of dependence:
 - No dependence: $p_{TT} = f(x)f(y)$
 - Max dependence: $p_{TT} = \min \{f(x), f(y)\}$
- Dependence as **odds ratio**: $\omega = \frac{p_{\top \top} p_{\perp \perp}}{p_{\top \perp} p_{\perp \top}}$
- 3 degrees of freedom: f(x), f(y), $\omega(x, y)$

Local Dependence

- $f: x \mapsto$ marginal probability of truth
- ω : x, y → odds ratio (degree of dependence)
 Coherence: if x and y are close, ω is high

Local Dependence

- $f: x \mapsto$ marginal probability of truth
- ω : x, y → odds ratio (degree of dependence)
 Coherence: if x and y are close, ω is high
- For details, see forthcoming book chapter "Probabilistic Lexical Semantics: From Gaussian Embeddings to Bernoulli Fields"

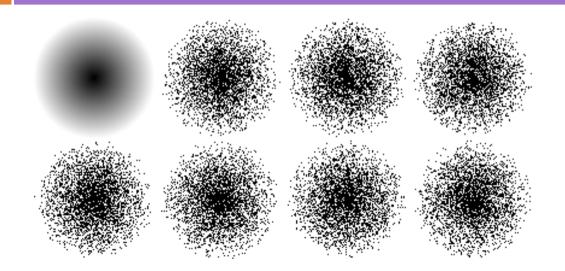
Distributions for Regions

Joint distribution for truth values ⇔ Distribution for regions

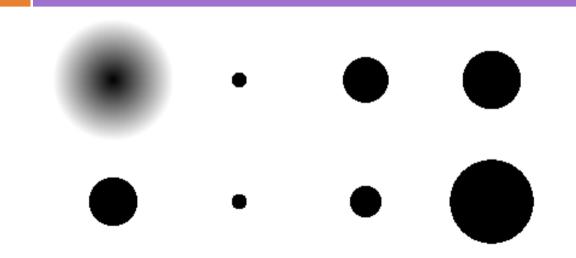
Distributions for Regions

f, darker is higher probability of truth

Independence



Maximum Dependence



Local Dependence

Summary

Language is probabilistic but coherent

• Can model this with f(x) and $\omega(x, y)$

Summary

- Language is probabilistic but coherent
- Can model this with f(x) and $\omega(x, y)$
- Experiments on real data underway...