Converting RDF Data into MRS for generation

LizConrad — DELPH-IN 2023

Generating Referring Expressions

e GOAL: Generate a variety of referring expressions for different entities
o indefinite expressions
o definite expressions
o pronouns
o etc.

Graph Based Generation

older-looking younger-looking younger-looking

// h N o e 7\\\ // 7 ‘\

/ \\ / \ / \

/ wears suit \ /wears t-shirt \ / wears t-shirt\
e S I 7 o\ A A
f / / \ \ | f J’/ \ 1‘ [/ \ \
[/ man \ | [/ woman \ | [/ man \ |
It = "\ [~ | 7. Y]
bl o \ |/ V7 X i (| / Xt
\ / \ ||/ \ / \ | / \ ||/

\ \ |/ / / \| / |

‘.‘I [| ;}," \| | }," \ i\‘ [\ &

\\ | | /i/‘ // \ | //

\\ 1/ left of /o leftof \\ 1/

1 right of right of 3 wears suit

Figure 4
Representation of our example scene in Figure 1 as a labeled directed

Krahmer and Deemter (2012)

man man

Figure 5
Some referring graphs for target d;.

man

left of ;

wears t-shirt

/ woman

https://direct.mit.edu/coli/article/38/1/173/2136/Computational-Generation-of-Referring-Expressions

General Idea

| Resulting referring expressions,
generated by the ERG from MRS

Graph representation of some entity

General Pipeline

1. Obtain a graph representation of an entity

2. Convert the graph to MRS using three levels of rules
a. LOW LEVEL — ‘nitty-gritty’ rules to combine MRS fragments (e.g. via intersective combination)
b. MID LEVEL — rules for particular syntactic/semantic phenomena that use the low level rules
c. HIGH LEVEL — rules for the domain of interest that use the mid level rules

3. Generate English text from the MRS using the ERG

Low Level Rules

An Algebra for Semantic Construction in Constraint-based Grammars

Ann Copestake Alex Lascarides Dan Flickinger
Computer Laboratory Division of Informatics ~ CSLI, Stanford University and
University of Cambridge University of Edinburgh YY Software
New Museums Site 2 Buccleuch Place Ventura Hall, 220 Panama St
Pembroke St, Cambridge, UK Edinburgh, Scotland, UK Stanford, CA 94305, USA
aac@cl.cam.ac.uk alex@cogsci.ed.ac.uk danf@ecsli.stanford.edu
Abstract 4. All signs have an index functioning some-

what like a A-variable.
We develop a framework for formaliz-

ing semantic construction within gram- A similar approach has been used in a large
mars expressed in typed feature struc- number of implemented grammars (see Shieber
ture logics, including HPSG. The ap- (1986) for a fairly early example). It is in many
proach provides an alternative to the ways easier to work with than A-calculus based
lambda calculus; it maintains much of approaches (which we discuss further below) and
the desirable flexibility of unification- has the great advantage of allowing generaliza-
based approaches to composition, while tions about the syntax-semantics interface to be
constraining the allowable operations in easily expressed. But there are problems. The
order to capture basic generalizations operations are only specified in terms of the TFS
and improve maintainability. logic: the interpretation relies on an intuitive cor-

moacmnndonno il o soanronisanal Innisaalrameoanam:

Low Level Rules

def intersective(hole_ssement, plug_ssement, arg_name, lbl_identity, head):
TOP = LBL/TOP of head
INDEX = INDEX of head
RELS = sum of both RELS lists
HCONS = sum of both HCONS lists
ICONS = sum of both ICONS lists
VARIABLES = combine both VARIABLBES dicts
HOLES = HOLES list - ARG hole (which gets plugged)
EQs = EQs + hole.TOP=plug.TOP + hole.ARG.variable=plug.INDEX

:param hole_ssement: SSEMENT object with the hole being filled

:param plug_ssement: SSEMENT object plugging the hole

:param arg_name: ARG that is the hole

:param lbl_identity: whether the hole and plug should have their labels identified

:param head: which SSEMENT object is the semantic head. Either member of the Fragment enumeration (Fragment.hole or Fragment.plug)
:return: the new combined SSEMENT

wmn

Low Level Rules

def scopal_quantifier(scoping_ssement, scoped_ssement):

nmnn

Scopal rules for quantifiers (plug both the ARGO and RSTR holes)

TOP = new LBL

INDEX = INDEX of scoped

RELS = sum of both RELS lists

HCONS sum of both HCONS lists + scoping.holes.RSTR=scoped.TOP

ICONS sum of both ICONS lists

VARIABLES = combine both VARIABLBES dicts

HOLES = HOLES list - ARGO hole of scoping (which gets plugged) - RSTR hole of scoping (plugged via geq)
EQs = EQs + hole.TOP=plug.TOP + scoping.ARGO.variable=scoped.INDEX

:param scoping_ssement: SSEMENT object doing the scoping
:param scoped_ssement: SSEMENT object being scoped
:return: New combined SSEMENT object

mon

Mid Level Rules

PARTS OF SPEECH
Liz Conrad
def noun(noun_pred, constraints=None):
return ep(noun_pred, constraints)

Liz Conrad
def verb(verb_pred, constraints=None):
return ep(verb_pred, constraints)

Liz Conrad
def pronoun(constraints=None):
pron_ep = ep("pron", constraints)
pron_g = ep("pronoun_g")

pron_mrs = quant_phr(pron_g, pron_ep)

return pron_mrs

Liz Conrad
def adjective(adj_pred):
return ep(adj_pred)

Liz Conrad
def preposition(prep_pred):
return ep(prep_pred)

Liz Conrad
def quantifier(quant_pred):
return ep(quant_pred)

Mid Level Rules

> Liz Conrad

def guant_phr(quant_ssement, noun_ssement):
perform scopal combination with the quantifier and the noun
return scopal_quantifier(quant_ssement, noun_ssement)

= Liz Conrad
def adj_phr(adj_ssement, noun_ssement):
perform intersective combination with the ADJ and NOUN
plug ADJ.ARG1 with NOUN
identify labels
assign NOUN (plug) as the HEAD
return intersective(adj_ssement, noun_ssement, "ARG1", True, Fragment.PLUG)

Liz Conrad
def poss_phr(possessor_ssement, possessee_ssement):
get poss EP
poss = ep("poss", None, {"ARGO": "e", "ARG1": "u", "ARG2": "u"})
plug ARG1 hole with noun, identify labels, assign the noun (plug) as the head
u poss_argl_plugged = intersective(poss, possessee_ssement, "ARG1", True, Fragment.PLUG)
Mld Level RUles # plug ARG2 hole with pron_ssement, don't identify labels, assign the SSEMENT with the hole as the head
(i.e. the one with the noun at this point)
S poss_arg2_plugged = intersective(poss_argl_plugged, possessor_ssement, "ARG2", False, Fragment.HOLE)

def_explicit_q with poss
def_q = quantifier("def_explicit_g")

final_poss = quant_phr(def_q, poss_arg2_plugged)

return final_poss

TOP ho |
INDEX e2

i . def_explicit_q0:4)| | poss(0:4) pronoun_q0:4)

fg’l‘_”"w”(o' 1,:; LBL h5 LBL hg | |LBL h11 | | prono:4) _cookie_n_1¢5:11)
RELS inco oph|ARGo x4 ||ARGO 9 |[ARGO x10|[LBL h14|,| LBL h8

ARG °2'|RsTR hm6 ||ARG2 x10||RSTR hi2||ARGO x10||ARGO x4

i BODY h7 ||ARGH x4 | |BODY h13

geq geq geq
HCONS (|HARG h12|,|HARG h6||HARG ho

LARG hi4| |LARG ~ h8||LARG hi

Mid Level Rules

Liz Conrad
def

get poss EP
poss = ep("poss", None, {"ARGO": "e", "ARG1": "u", "ARG2": "u"})
plug ARGI hole with noun, 1dentiyy Labels, assign the noun (plug) as the head

poss_argl_plugged = intersective(poss, possessee_ssement, "ARG1", True, Fragment.PLUG)

plug ARG2 hole with pron_ssement, don't identify labels, assign the SSEMENT with the hole as the head
(i.e. the one with the noun at this point)

poss_arg2_plugged = intersective(poss_argl_plugged, possessor_ssement, "ARG2", False, Fragment.HOLE)

def_explicit_q with poss
def_q = quantifier("def_explicit_q")
final_poss = quant_phr(def_q, poss_arg2_plugged)
return final_poss
ToP ho |
INDEX e2
[. def_explicit_ q(0:4)- poss0:4) pronoun_q0:4)
fg{”"""”(a AR hs | |LBL he ||l LBL h11 | | pronco:4s _cookie_n_1(5:11)
RELS ARGO e2 | ARGO x4 ARGO e9 [} ARGO x10 |,|LBL h14|,| LBL h8
ARG x4 RSTR hé ARG2 x10|}| RSTR h12| | ARGO x10| | ARGO x4
L BODY h7 ARGH1 x4 BODY h13
qeq qeq qeq
HCONS HARG h12|,|HARG hé |, | HARG ho
LARG h14 | | LARG h8| [LARG ht

Liz Conrad
def poss_phr(possessor_ssement, possessee_ssement):
get poss EP

LUAREAN. Mot NADRGIN. Nyt MAREON. nynl)
plug ARG1 hole with noun, identify labels, assign the noun (plug) as the head
u poss_argl_plugged = intersective(poss, possessee_ssement, "ARG1", True, Fragment.PLUG)
Mid Level Rules - B s el p——

(i.e. the one with the noun at this point)
S poss_arg2_plugged = intersective(poss_argl_plugged, possessor_ssement, "ARG2", False, Fragment.HOLE)

def_explicit_q with poss
def_q = quantifier("def_explicit_q")

final_poss = quant_phr(def_q, poss_arg2_plugged)

return final_poss

TOP ho
INDEX e2
[. def_explicit_ q(0:4)- poss0:4) pronoun_q0:4) _
fg’li”"w”(o' 1;; LBL hs | |LBL he ||l LBL h11 | | pronco:4s _cookie_n_1(5:11)
RELS ARGO o2 || ARGO x4 ARGO e9 |} ARGO x10 |, |LBL h14||| LBL 8
ARG «4 | |RSTR hé ARG2 0|} RSTR h12| | ARGO x10 ||| ARGO @
A BODY h7 ARGH @ BODY h13 &
qeq qeq qeq
HCONS HARG h12|,|HARG hé |,| HARG ho
LARG h14 | | LARG h8| | LARG h1

Mid Level Rules

Liz Conrad
def poss_phr(possessor_ssement, possessee_ssement):
get poss EP
poss = ep("poss", None, {"ARGO": "e", "ARG1": "u", "ARG2": "u"})
plug ARG1 hole with noun, identify labels, assign the noun (plug) as the head

plug ARG2 hole with pron_ssement, don't identify labels, assign the SSEMENT with the hole as the head
(i.e. the one with the noun at this point)

— poss_arg2_plugged = intersective(poss_argl_plugged, possessor_ssement, "ARG2", False, Fragment.HOLE)
def_explicit_q with poss
def_q = quantifier("def_explicit_q")
final_poss = quant_phr(def_q, poss_arg2_plugged)
return final_poss
ToP ho |
INDEX e2
[. def_explicit_ q(0:4)- poss0:4) pronoun_q0:4)
fg’li”"w”(o' 1;; LBL hs | |LBL LBL pron(0:4) _bookie_n_1¢5:11
RELS ARGO e2 | ARGO x4 ARGO ARGO ,| LBL ,| LBL h8
ARG x4 RSTR hé ARG2 RSTR ARGO GO x4
- BODY h7 ARGH1 BODY h13
qeq qeq qeq
HCONS HARG h12|,| HARG hé |,| HARG ho
LARG h14| |LARG h8| | LARG ht

Mid Level Rules

Liz Conrad

def

poss_phr(possessor_ssement, possessee_ssement):

get poss EP

poss = ep("poss", None, {"ARGO": "e", "ARG1": "u", "ARG2": "u"})

plug ARG1 hole with noun, identify labels, assign the noun (plug) as the head

poss_argl_plugged = intersective(poss, possessee_ssement, "ARG1", True, Fragment.PLUG)

plug ARG2 hole with pron_ssement, don't identify labels, assign the SSEMENT with the hole as the head
(i.e. the one with the noun at this point)

poss_arg2_plugged = intersective(poss_argl_plugged, possessor_ssement, "ARG2", False, Fragment.HOLE)

def_explicit_q with poss
def_q = quantifier("def_explicit_q")
final_poss = quant_phr(def_q, poss_arg2_plugged)
return final_poss
ToP ho |
INDEX e2
[. def_explicit_q<0:4 | poss<0:4) pronoun_q0:4)
fg’i""""”(o' 1,:; LBL ns |||l LBL h8 | |LBL h11 | | pronco:4) _cookie_n_1¢5:11)
RELS ARGO o2 ARGO x4 ARGO e9 |,| ARGO x10 |,|LBL h14|,| LBL h8
ARG x4 RSTR hé ARG2 x10| |RSTR h12| | ARGO x10| | ARGO x4
L BODY h7 ARGH1 x4 BODY h13
qeq qeq qeq
HCONS HARG h12|,|HARG hé |, | HARG ho
h14 | | LARG LARG ht

LARG

h8

High Level Rules

DOMAIN RULES
NODE RULES

Liz Conrad

subject(upload_date\size photographer

def event_node(event_pred_label):
return noun(event_pred_label, {'NUM': 'sg'})

Liz Conrad
def object_node(object_pred_label):
return noun(object_pred_label)

RELATIONAL RULES
Liz Conrad
def object_edge(event_ssement, object_ssement):
of = ep("_of_p")
return prepositional_phr(of, object_ssement, event_ssement)

Switching to WikiData

e Existing structured data

e Canobtain partial RDF dumps

e Choosingthree related domains
o Video games

o Video game developers
o Video game genres

Entity Example

The Sims 4 (Q12579896)

2014 video game

edit
Sims 4 | TS4

» In more languages

Statements
instance of @ video game & edit
» 1 reference
+ add value
part of 5 The Sims 4 + Star Wars: Journey to Batuu Bundle & edit
~ 0 references
+ add reference
+ add value
logo image @

Sisg

Logo of The Sims 4.svg
980 x 373; 14 KB

~ 0 references

+ add reference

+ add value

Property Example

instance of s

that class of which this subject is a particular example and member; different from P279 (subclass of); for example: K2 is an instance of mountain;
volcano is a subclass of mountain (and an instance of volcanic landform)
is a | is an | unique individual of | unitary element of class | rdf:type | type | € | example of

~ In more languages

Configure
Language Label Description Also known as
English instance of that class of which this subject is a particular is a
example and member; different from P279 is an
(subclass of); for example: K2 is an instance of unique individual of
mountain; volcano is a subclass of mountain unitary element of class
(and an instance of volcanic landform) rdf:type
type
€

example of

Aspirationally...

e By focusing on asubset of properties from each domain, will hopefully be able to generate

referring expressions such as...
o TheSims4
A life simulation game
A life simulation game developed by Maxis
A life simulation game released in 2014 by Maxis
The Sims 4, a life simulation game released in 2014 by Maxis

o O O O O

QUESTIONS & DISCUSSION

1. What would be good terminology to use for the mid-level rules in particular?
What existing projects are there that involve building MRS fragments outside of a grammar?

What other domains/use cases can you imagine for this type of system?

> 0D

How would you imagine evaluating this system?

