A Multi-phase Backtracking Approach to Solving Scope-Resolved MRS

Eric Zinda

Demo

An Example World: A File System

- Individuals are files and folders
- Folders can contain files or other folders
- A user is in a "current folder"
- Individuals can be copied or deleted

What Might Be Said?

- Propositions and Yes/No Questions
 - Files are large.
 - Is a file in this folder not large?
- WH-Questions
 - Which files are in this folder?
 - What folder am I in?
- Commands
 - Delete <file>.
 - Copy <file> in <folder>.

• For all phrases: find a solution to a scope-resolved MRS

- For all phrases: find a solution to a scope-resolved MRS
- Propositions and Yes/No Questions: "Files are large"
 - True: "Yes, I agree!"
 - False: "No, that isn't true"

- For all phrases: find a solution to a scope-resolved MRS
- Propositions and Yes/No Questions: "Files are large"
 - True: "Yes, I agree!"
 - False: "No, that isn't true"
- WH-Questions: "Which files are in this folder?"
 - Find the variable scoped by which_q(x, RSTR, BODY)
 - Print the values of x from the (arbitrarily first) solution

- For all phrases: find a solution to a scope-resolved MRS
- Propositions and Yes/No Questions: "Files are large"
 - True: "Yes, I agree!"
 - False: "No, that isn't true"
- WH-Questions: "Which files are in this folder?"
 - Find the variable scoped by which_q(x, RSTR, BODY)
 - Print the values of x from the (arbitrarily first) solution
- Commands: "Delete <file>"
 - Perform operations* generated from the (arbitrarily first) solution
 - * "operations" are extra data added to state by action verbs

Choosing the "Right" Solution

Heuristic: Respond using first solution that is found ... If no solution, respond with first failure

Solutions to Scope-Resolved MRS

"Which students are lifting a table together?"

- X variables always contain sets
- E variables are always a dictionary (name/value pairs)
- Scopal arguments form the shape of the tree

Solutions to Scope-Resolved MRS

"Which students are lifting a table together?"

- X variables always contain sets
- E variables are always a dictionary (name/value pairs)
- Scopal arguments form the shape of the tree

Solution	
x3	[Amir, Wan]
x9	[table1]
e14	["together":T]

Solutions to Scope-Resolved MRS:

"Which students are lifting a table?"

Solution	
x3	[Amir]
x9	[table1]

Individuals	Facts
Amir	Amir and
Wan	Wan are
table1	lifting table1
	time

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

- Do a depth-first traversal of the tree
- Quantifiers try every individual in their scoped variable iteratively

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

- Do a depth-first traversal of the tree
- Quantifiers try every individual in their scoped variable iteratively
- Failures backtrack to the nearest quantifier and retry next individual

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

- Do a depth-first traversal of the tree
- Quantifiers try every individual in their scoped variable iteratively
- Failures backtrack to the nearest quantifier and retry next individual
- When all predications are true, we have a solution

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

- Do a depth-first traversal of the tree
- Quantifiers try every individual in their scoped variable iteratively
- Failures backtrack to the nearest quantifier and retry next individual
- When all predications are true: a solution
- Global semantics (like plural counting) done in a second phase: a solution group

udef_q(x9,RSTR,BODY)

└─ udef_q(x3,RSTR,BODY)

└___in_p_loc(e2,x3,x9)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

x3 [x PERS: 3 NUM: pl IND: +] x9 [x PERS: 3 NUM: sg IND: +]

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2 txt
File2.txt	

└─ udef_q(x3,RSTR,B0DY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

└─ udef_q(x3,RSTR,B0DY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

- udef_q(x3,RSTR,BODY)

mydocuments

X9

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2 txt
File2.txt	

udef_q(x9,RSTR,BODY)

- udef_q(x3,RSTR,BODY)

State		
X9	mydocuments	
X3	mydocuments	${1n_p_loc(e2,x3,x9)}$

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

L	udef	_q(x3, <mark>RS</mark> 1	R,BODY)
	State		
	X9	mydocuments	
	Х3	File1.txt	└in_p_loc(e2,x3,x9)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	1.102.000

udef_q(x9,RSTR,BODY)

udef_q(x9,RSTR,BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

udef_q(x9,RSTR,BODY)

└─ udef_q(x3,RSTR,BODY)

 in_p_loc(e2,x3,x9)		
State		
X9	Mydocuments	
X3	File1.txt	

All Individuals	Facts
mydocuments	mydocuments contains File1.txt and File2 txt
File1.txt	
File2.txt	11102.1000

udef_q(x9,RSTR,BODY)

└─ udef_q(x3,RSTR,BODY)

 _in_p_loc(e2,x3,x9)			
State			
X9	mydocuments		
ХЗ	File1.txt		

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9, RSTR, BODY)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

udef_q(x9,RSTR,BODY)

└─ udef_q(x3,RSTR,BODY)

└_ _in_p_loc(e2,x3,x9)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

Solution 1! State X9 mydocuments X3 File1.txt

udef_q(x9,RSTR,BODY)

└─ udef_q(x3,RSTR,BODY)

 $_ in_p_loc(e2,x3,x9)$

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

X3 File1.txt Solution 2!

mydocuments

Solution 1!

State

X9

State	
X9	mydocuments
X3	File2.txt

Handling Plurals

- Both files (x3) and folders (x9) are plural
- Plurals, counting and other global (i.e. cross-solution) constraints are handled *after* solutions are found in Phase 2

All Solutions:

	X9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

Start with the full set of solutions

All Solutions:

	X9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

Group Being Tested:

	X9	X3
Solution 1	Mydocuments	File1.txt

Examine every combination of solutions to find those that meet constraints

	X9	X3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt
Group Being Tested:	X9 greater than 1	X3 greater than 1
	Х9	Х3
Solution 1	Mydocuments	File1.txt

	X9	X3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt
Group Being Tested:	X9 greater than 1	X3 greater than 1
	Х9	Х3
Solution 2	Mydocuments	File2.txt

	X9	X3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt
Group Being Tested:	X9 greater than 1	X3 greater than 1
	Х9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

Response to "files are in folders"

- "files are not in folders"
 - ... because "folders" is plural and no solution groups have > 1 folder
- Successful Groups
 - Create *solution groups* that meet the constraints
 - Solution groups are the actual solution to the scope-resolved MRS

Predication "Semantic Layers"

_this_q(x,RSTR,BODY)

Predication "Semantic Layers"

Predication "Semantic Layers"

Predications can contribute any combination of: scoping, local or global constraints

Predicate	Scoping	Local	Global
_large_a_1(e,x)	<none></none>	True for "large" x	<none></none>
udef_q(x,RSTR,BODY)	x	<none></none>	<none></none>
_a_q(x,RSTR,BODY)	x	<none></none>	Exactly 1
<pre>_the_q(x,RSTR,BODY)* * one of several meanings</pre>	x	<none></none>	1 or more Where all rstr satisfy the body
_this_q(x,RSTR,BODY)	х	True if x is "in scope"* * among other meanings	Exactly 1
_this_q(x,RSTR,BODY) card(CARG,e,x)	x <none></none>	True if x is "in scope"* * among other meanings <none></none>	Exactly 1 At least CARG
_this_q(x,RSTR,BODY) card(CARG,e,x) a_few_a_1(e,x)	x <none> <none></none></none>	True if x is "in scope"* * among other meanings <none> <none></none></none>	Exactly 1 At least CARG Between 3 and 5* *top value is debatable

Phase 1: Solve After Removing Global Constraints

"The two students learned a few songs"

"student(s) learned song(s)"

Phase 1: Solve After Removing Global Constraints

" student(s) learned song(s)"

	X3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"

Phase 2: Find Global Constraints For Variables

"The two students learned a few songs"

Phase 2: Find Global Constraints For Variables

"The two students learned a few songs"

MRS: x3 [NUM: pl] and x11 [NUM: pl]

X3 Predications	Constraints
card(2,e9,x3)	Min=2, Max=inf
_the_q(x3,RSTR,BODY)	Min=1, Max=inf and all_rstr_meet_body
x3 [NUM: pl]	Min=2, Max=inf
	Min=2, Max=inf and all_rstr_meet_body

Phase 2: Find Global Constraints For Variables

"The two students learned a few songs"

MRS: x3 [NUM: pl] and x11 [NUM: pl]

X11 Predications	Constraints
_a+few_a_1(e16,x11)	Min=3, Max=5
x11 [NUM: pl]	Min=2, Max=inf
	Min=3, Max=5

Phase 2: Find Solution Groups that Meet Constraints

"The two students learned a few songs"

All Solutions:

	X3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"
Group Being Tested:	X3: Min=2, Max=inf and all_rstr_meet_body	X11: Min=3, Max=5
	X3	X11
Solution 1	Diya	"Words Get in the Way"

*All other single solution groups fail for the same reason, not shown

Phase 2: Find Solution Groups that Meet Constraints

"The two students learned a few songs"

All Solutions:

	X3	X11		
Solution 1	Diya	"Words Get in the Way"		
Solution 2	Diya	"More than Words"		
Solution 3	Wan	"Ten Thousand Words"		
Group Being Tested:	X3: Min=2, Max=inf and all_rstr_meet_body	X11: Min=3, Max=5		
	X3	X11		
Solution 1	Diya	"Words Get in the Way"		
Solution 3	Wan	"Ten Thousand Words"		

*All other double solution groups fail for various reasons, not shown

Phase 2: Find Solution Groups that Meet Constraints

"The two students learned a few songs"

	X3	X11	
Solution 1	Diya	"Words Get in the Way"	
Solution 2	Diya	"More than Words"	
Solution 3	Wan	"Ten Thousand Words"	
Group Being Tested:	X3: Min=2, Max=inf and all_rstr_meet_body	X11: Min=3, Max=5	
	X3	X11	
Solution 1	Diya	"Words Get in the Way"	
Solution 2	Diya	"More than Words"	
Solution 3	Wan	"Ten Thousand Words"	

Collective, Distributive, Cumulative

"The two students learned a few songs"

- This solution group is a **cumulative** reading
- Phase 2 checks the constraints for all three types of readings

	X3: Min=2, Max=inf and all_rstr_meet_body	X11: Min=3, Max=5
	X3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"

Collective, Distributive, Cumulative Math

- Variables have an order due to forward and reverse readings
- Count this variable per the previous variable
- *How* to count depends on type
- First variable always counted the same (since no previous variable)

	X3: Min=2, Max=inf		X11: Min=3, Max=5
Х3	and	X11	
	all_rstr_meet_body		Counting math
			depends on type
	First Variable:		
	Count unique		
	individuals across all		
	x3 values		

Distributive: "The two students sang a few songs"

- Students: must be grouped distributively into subgroups:
 - More than one subgroup
 - The total of students across the subgroups must add up to two
- Songs: Each student subgroup must be singing a few songs

	X3	X3: Min=2, Max=inf and	X11	X11: Min=3, Max=	5
		all rstr meet body			
Solution	[Diya]	un_isti_incet_sody	["Words Get in the Way"]	Distributive Counting:	
Solution	[Diya]	First Variable Counting:	["More than Words"]	3-5 x11 individuals	
Solution	[Diya]	Count unique individuals	["Ten Thousand Words"]	per x3 <i>set value</i>	
Solution	[Wan]	across all x3 values	["Word Up"]		
Solution	[Wan]		["Paperback Writer"]		
Solution	[Wan]		["Unwritten"]		

Collective: "The two students sang a few songs"

- Students must be grouped collectively:
 - Exactly 1 "subgroup" that contains the entire set of students
- Songs : Each student subgroup must be singing a few songs

	Х3	X3: Min=2, Max=inf	X11	X11: Min=3, Max=5
Solution	[Diya, Wan]	all rstr meet body	["Words Get in the Way"]	Collective Counting:
Solution	[Diya, Wan]	/	["More than Words"]	- exactly one x3 set
Solution	[Diya, Wan]	First Variable	["Ten Thousand Words"]	- 3-5 x11 individu <mark>als</mark>
		Counting: Count unique individuals		for the one x3 <i>set</i>
	Х3	across all x3 values	X11	
Solution	[Diya, Wan]		["Words Get in the Way", "M	ore than Words"]
Solution	[Diya, Wan]		["Ten Thousand Words"]	

	Х3	X11
Solution	[Diya, Wan]	["Words Get in the Way", "More than Words", "Ten Thousand Words"]

Cumulative: "The two students sang a few songs"

- Students: must be grouped distributively into subgroups, which means:
 - More than one subgroup
 - The total of students across the subgroups must add up to two
- Songs: The total of songs across all subgroups must be a few

	Х3	X3: Min=2, Max=inf	X11	X11: Min=3, Max=5
		and		
Solution	[Diya]	all rstr meet body	["Words Get in the Way"]	Cumulative
Solution	[Diya]		["More than Words"]	Counting:
Solution	[Wan]	First Variable	["Ten Thousand Words"]	3-5 x11 individuals
		Counting: Count		across all x3
	Х3	unique individuals	X11	subgroups
Solution	[Diya]	across all x3 values	["Words Get in the Way",	"More than Words"]
Solution	[Wan]		["Ten Thousand Words"]	

Summary

- Phase 0: Generate MRS and scope-resolved MRS
- Phase 1: Find solutions using scope-resolved MRS minus global constraints
- Phase 2: Find solution groups using global constraints
- Phase 3: Respond using the first solution group (or error)
 - If no solutions: "<error>"
 - Propositions and Yes/No Questions: "Files are large"
 - "Yes, I agree!"
 - WH-Questions: "Which files are in this folder?"
 - Find the variable scoped by which_q(x, RSTR, BODY)
 - Respond with the values of x from the solution group
 - Commands: "Delete <file>"
 - Perform operations* generated from the solution group
 - * "operations" are extra data added to state by action verbs

*optimization: Individual solutions are pulled through the phases in a pipeline

Questions?