New supertaggers for the ERG for the DELPH-IN summit

Olga Zamaraeva & Carlos Gómez-Rodríguez

Department of Informatics/CITIC, Universidade da Coruña

June 28 2023

lew supertaggers for the ERG

or the DELPH-IN summit

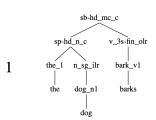
Introduction

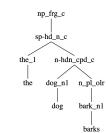
aseille

Experiments

Introduction

Baseline


Experiment


References

► Without tagging:

orthographies are mapped to all possible lexical entries

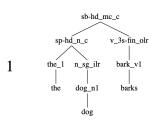
- parser has to consider each possibility
- ► charts become too big

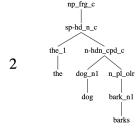
Supertagging is useful for e.g. :

New supertaggers for the ERG for the DELPH-IN

Introduction

Baseline


Experiment


- word sense disambiguation
- parse ranking
- improving parsing speed

Baseline

Experiment

- ► If a wrong lexical type is predicted:
 - the chances of getting the parse right are 0

Prior work on supertagging for HPSG

for the DELPH-IN

Introduction

Baseline

Experiments

- model training tok tagset size speed-up factor grammar N-gram (Prins and van Noord 2004) Alpino (Dutch) 24 mln 1365 HMM (Blunsom 2007) ERG (English) 113K 615 8.5 MEMM (Dridan 2009) ERG (English) 158K 676
 - ▶ Dridan (2009):
 - 92% accuracy on in-domain data
 - ► 74.6% out of domain (up to 80.8% with additional training data)
 - ► Recent work on CCG (Liu et al. 2021):
 - ▶ 95.5% accuracy in domain
 - ▶ 81% and 92.4% on two out-of-domain datasets

- **2022**:
 - Supertagging (no ubertagging)
 - ► Single tag accuracy (top 1)
- **2**023:
 - Started integration into ACE
 - Added fine-tuned BERT

dataset	description	sent	tok	train tok	MaxEnt	SVM	NCRF++	BERT	D2009
cb	technical essay	713	17,244	0	88.96	89.53	91.94	93.88	74.61
ecpr	e-commerce	1088	11,550	24,934	91.80	91.99	95.09	96.09	
jh*,tg*,ps*, ron*	travel brochures	2116	34,098	147,166	90.45	91.21	95.44	96.11	91.47
petet	textual entailment	581	7135	1578	92.88	95.31	96.93	97.71	
vm32	phone conv.	1000	8730	86,630	93.57	94.29	95.62	96.64	
ws213-214	Wikipedia	1470	29,697	161,623	91.31	92.02	93.66	95.59	
wsj23	Wall Street J.	950	22,987	959,709	94.27	94.72	96.05	97.26	
all	all test sets as one	7,918	131,441	1,381,645	91.57	92.28	94.46	96.02	
all	average	7,918	131,441	1,381,645	91.89	92.72	94.96	96.18	
speed (sen/sec)	average	7,918	131,441	1,381,645	1024	7414	125	346	

Preliminary Spanish experiments

for the ERG

Introduction

Baselin

Experiments

- Spanish treebanks are much smaller and 'gold' is of lower quality
- ► Accuracy of the NCRF++ supertagger in the 70%s
 - ▶ BERT will be better but probably not much
- Will try to do some multilingual training
 - ...and also improve the Spanish treebanks

Integration into ACE

for the ERG

for the DELPH-IN summit

Introduction

Baseline

Experiments

- For now:
 - Oracle-style experiments for effects on parsing speed
 - ► ACE gets list of supertags for each sentence
 - eliminates edges with wrong lexical type
- Not sure for now how to integrate the model itself for new input

Example (not a fair comparison!)

for the ERG

for the DELPH-IN summit

Introduction

Baseline

Experiments

References

No tagging:

SENT: Abrams heard barks.

NOTE: 5 readings, added 1194 / 315 edges to chart (124 fully instantiated, 89 actives used, 92 passives used) RAM: 3975k

Ubertagging:

NOTE: 3 readings, added 1133 / 258 edges to chart (101 fully instantiated, 83 actives used, 73 passives used) RAM: 3661k

NOTE: parsed 1 / 1 sentences, avg 3661k, time 0.02434s

NOTE: parsed 1 / 1 sentences, avg 3413k, time 0.02154s

NOTE: parsed 1 / 1 sentences, avg 3975k, time 0.02536s

BERT oracle supertags:

NOTE: 3 readings, added 1052 / 177 edges to chart (73 fully instantiated, 78 actives used, 50 passives used) RAM: 3413

Summary

for the ERG
for the DELPH-IN

Introduction

Baseline

Experiments

- ► Some progress on supertagging since last year
 - added BERT
 - started integrating with ACE
 - tried training a supertagger for Spanish

Summary

for the ERG
for the DELPH-IN

Introduction

Baseline

Experiments

- Some progress on supertagging since last year
 - added BERT
 - started integrating with ACE
 - tried training a supertagger for Spanish
- ▶ BERT is more accurate than other things

- Some progress on supertagging since last year
 - added BERT
 - started integrating with ACE
 - tried training a supertagger for Spanish
- ▶ BERT is more accurate than other things
- scikit-learn SVM (Pedregosa et al. 2011) remains the fastest model

- ► Some progress on supertagging since last year
 - added BERT
 - started integrating with ACE
 - tried training a supertagger for Spanish
- ▶ BERT is more accurate than other things
- scikit-learn SVM (Pedregosa et al. 2011) remains the fastest model
- ACE integration underway but for now only for treebank experiments

References

New supertaggers for the ERG

for the DELPH-IN

Introductio

3aseline

xperiments

Philip Blunsom. 2007. Structured classification for multilingual natural language processing. PhD thesis, University of Melbourne.

Rebecca Dridan. 2009. Using lexical statistics to improve HPSG parsing. PhD thesis, University of Saarland.

Yufang Liu, Tao Ji, Yuanbin Wu, and Man Lan. 2021. Generating ccg categories. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 13443–13451.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830.

RP Prins and GJM van Noord. 2004. Reinforcing parser preferences through tagging. *Traitement Automatique des Langues*, 3:121–139.