- Computation as Subtyping

On the Turing Completeness of Type Systems,
with Applications to Formal Grammars

Guy Emerson

Update

= Draft paper!
https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

Update

= Draft paper!
https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

= Simplified constructions/proofs
= Best practices, with examples

= Detailed discussion (comparison with “junk slots”,
two kinds of input, “currying” for multiple
arguments, nondeterministic computation)

https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

Recursion: Pathological Counterexample
N

()"

Recursion: Pathological Counterexample
N

Recursion: Pathological Counterexample
N

Recursion: Pathological Counterexample
N

Recursion: Pathological Counterexample
N

b X
\y/ b ax
y—F>b—F>x N b-x
F F F F

str—a-str mn ner0—n
L >symostr
str—mach - str
str—mach - str

str—a-str
L >symostr
str—mach - str
str—mach - str

n

ner0—n

np<a0-np
LNLN M
npebOﬁ
(SR
Ip<al
Ip<cO-np

S LS
Ip<bO-np

[
%aoﬁn
N 7
b131

0

Theorem 1
S S

= For any FSA, there is a one-feature type system
where unification can determine whether the FSA
accepts a string

= For any one-feature type system, there is an FSA
which recognises when two feature structures are

unifiable

Theorem 2
-~ !

= For any Turing machine, there is a two-feature type
system where unification can determine whether
the Turing machine halts on a given input

“Programming interface”

my-phrase-type

MY-PATH [AnD ([T, 2)]
HEAD-DTR|MY-PATH [BOOL [1]]
NON-HEAD-DTR|MY-PATH [BOOL [2]]

“Programming interface”

my-phrase-type

MY-PATH [AND ([T, [2])]
HEAD-DTR|MY-PATH
NON-HEAD-DTR|MY-PATH

Wrapper types as input?

“Programming interface”

my-phrase-type

MY-PATH [anD ([BOOL [1]], [BOOL [2]])]
HEAD-DTR|MY-PATH [BOOL [1]]
NON-HEAD-DTR|MY-PATH [BOOL [2]]

Wrapper types as input, cutting off computation history

“Programming interface”

| my-phrase-type

MY-PATH [AnD ([T, 2)]
HEAD-DTR|MY-PATH [BOOL [1]]
NON-HEAD-DTR|MY-PATH [BOOL [2]]

Data types as input: never have computation history,
but also never allow composition of wrappers in one rule
9

Practical Examples
1

= Logical operations (negation, and, or)
= Application: coordination

= List operations (append, nondeterministic pop)
= Application: long-distance dependencies
= Application: valence changes
= Application: flexible word order

10

Deterministic head-comp rules
S

head-1st-comp-phrase

SYNSEM|L|CAT|VAL|COMPS
FIRST
HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS [REST]

NON-HEAD-DTR|SYNSEM

11

Deterministic head-comp rules

S
[head-1st-comp-phrase

SYNSEM|L|CAT|VAL|COMPS
HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS [;'ESSTT]
| NON-HEAD-DTR|SYNSEM
[head-2nd-comp-phrase] |
SYNSEM|L|CAT|VAL|COMPS ;'E:TT]

[FIRST

HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS FIRST]

REST [REST
| NON-HEAD-DTR|SYNSEM

Nondeterministic head-comp rule

[head-any-comp-phrase

SYNSEM|L|CAT|VAL|COMPS

HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS

NON-HEAD-DTR|SYNSEM
POP-INPUT

NDET | POP-OUTPUT-LIST
POP-OUTPUT-ITEM

12

Word order ambiguity

[ndet-pop-select-phrase]

[ndet-pop-select-phrase] [head-any-comp-phrase]

[head-any-comp-phrase] [ndet-pop-select-phrase] [noun]

[ndet-pop-select-phrase] [noun] [ndet-pop-continue-phrase]

[head-any-comp-phrase] [head-any-comp-phrase]

[verDb] [noun] [verDb] [noun]
13

Summary
1

= Relational constraints are possible and practical
= Both deterministic and nondeterministic

= Feedback welcome!
https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

14

https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

	Update
	Formal Results
	``Programming interface''
	Practical Examples
	Summary

