No description, website, or topics provided.
Switch branches/tags
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
__pycache__ Update paper info Mar 25, 2018
README.md Add details on CompPol paper Sep 14, 2018
__init__.py Class: fills all dicts while looping over collections May 14, 2017
twitter_bots.py Fix a creation date bug in update_static Oct 26, 2018

README.md

twitter_bots

This is a package for preprocessing Twitter data collections in order to perform bot detection on Twitter using the methodology described in:

Stukal, Denis, Sergey Sanovich, Richard Bonneau, and Joshua A. Tucker. (2017). "Detecting Political Bots on Russian Twitter." Big Data 5(4): 310-324.

It also creates static Twitter snapshots for reproducible Twitter account coding, along the lines out papers:

  • Sanovich, Sergey, Denis Stukal, and Joshua A. Tucker. (2018). “Turning the Virtual Tables: Government Strategies for Addressing Online Opposition with an Application to Russia.” Comparative Politics 50(3): 435-482.

  • Stukal, Denis, Sergey Sanovich, Richard Bonneau, and Joshua A. Tucker. (2017). "Detecting Political Bots on Russian Twitter." Big Data 5(4): 310-324.

Installation

  1. Clone or download this repository

  2. Use pip install to install pysmap and numpy

Making Static Twitter Snapshots

This package allows one to process Twitter data stored in JSON format.

Suppose, you have Twitter data from April 1 to April 3, 2017 stored in two data files: /Users/mydata1.json and /Users/mydata2.json.

Suppose also that the code repository is stored as /Users/twitter_bots.

  1. Import the module:
import codecs, re, os, datetime, time, math, sys
import numpy as np
from pysmap import SmappDataset
sys.path.insert(0, '/Users/twitter_bots')
from twitter_bots import Twitter_accounts
  1. Use SmappDataset function in pysmap to set up your data for processing:
dataset0 = SmappDataset(['json', '/Users/mydata1.json'])
dataset1 = SmappDataset(['json', '/Users/mydata2.json'])
  1. Instantiate an object of Twitter_accounts class:
mycol = Twitter_accounts(dates = [('2017-04-01', '2017-04-03')])

The dates argument is a list of tuples of length 2, where the first element of the tuple specifies the start date and the second element specifies the last date for tweets to be processed. All dates must be specified in the 'yyyy-mm-dd' format.

  1. Loop over the dataset. Specify the dataset as a list. Specify ['html'] for the functions argument.
mycol.loop([dataset0, dataset1], functions = ['html'], max_tweets = 'all')

In the case you have only one dataset called mydataset, you would run:

mycol.loop([mydataset], functions = ['html'], max_tweets = 'all')

The functions argument specifies what type of processing you want to perform on your data. The only type that is relevant for creating static Twitter snapshots is 'html' that must be specified as a string inside a list.

  1. Write out HTML files to the desired directory:
mycol.make_html(path = '/Users/htmls_directory', min_num_tw = 10, max_num_tw = 100)