Instructions

The following code was designed in order to implement batch processing of location tracking. Currently, for this to work, all videos must take the same settings, including the defined regions of interest. To confirm that regions of interest are consistent across videos, for each video an overlay of the reference frame, the regions of interest and the animal trace are produced. Moreover, the reference frame is currently required to be generated by taking the median of each individual video. In addition to saving frame by frame location, distance travelled, and whether the animal is in each ROI in separate csv files, bins can also be defined for summarizing videos (e.g. minute by minute). All summary information will be saved in a single file.

1. Load Necessary Packages

The following code loads neccessary packages and need not be changed by the user.

```
In [1]: %load_ext autoreload
%autoreload 2
import os
import holoviews as hv
import numpy as np
import pandas as pd
import LocationTracking_Functions as lt
```


2. User Defines Batch Processing Directory and Settings

Below, options are set by user for batch processing of videos. If you are unfamiliar with these settings, please see LocationTracking_Individual.ipynb.

```
#define video paramaters
         video dict = {
             'dpath'
                            : r"G:\20211128-LPS-depression\oft\VideoOutput",
             'ftype'
                           : 'avi',
             'start'
                             : 0,
                             : None,
             region names: ['Area', outer', center'], #['Left', Right']
             'dsmpl'
             'stretch'
                             : dict(width=1, height=1)
         #define parameters for location tracking
         tracking params = {
             'loc_thresh': 99,
'use_window': True,
'window_size': 100,
             'window_weight' : .9,
             'method' : 'abs',
                          : False,
             'rmv wire'
             'wire_krn'
                             : 10
         #set bin dict
         #set bin dict = None if only overall session average is desired
         bin dict = None
         #code below loads folder with files.
         video dict = 1t.Batch LoadFiles(video dict)
         video dict['FileNames']
Out[3]: ['LPS+Flu-1. avi',
          'LPS+Flu-2. avi',
          'LPS+Flu-3. avi',
          'LPS+Flu-4. avi',
          'LPS-1. avi',
          'LPS-2. avi',
          'LPS-3. avi',
          'LPS-4. avi',
          'saline-1. avi',
          'saline-2. avi',
          'saline-3.avi',
          'saline-4.avi']
```

#set bin_dict #set bin_dict = None if only overall session average is desired bin_dict = $\{ '1' : (0,10), '2' : (10,20), '3' : (20,30) \}$

3. (Optional) Crop Image if Desired

To crop video frame, after running code below, select box selection tool below image (square with a plus sign). To start drawing region to be included in analyis, double click image. Double click again to finalize region. If you decide to change region, it is best to rerun this cell and subsequent steps. Note that this is done based upon first video in folder.

```
In []: %%output size=100
    img_crp, video_dict = lt.LoadAndCrop(video_dict, cropmethod='Box', fstfile=True)
    img_crp
```

4. (Optional) Mask Internal Regions

The following code is used to exclude internal portion of image from the field of view. After running cell below, draw regions to be excluded. To start drawing a region, double click on image. Single click to add a vertex. Double click to close polygon. If you mess up it's easiest to re-run cell.

```
In []: %%output size=100
    img_mask, video_dict['mask'] = lt.Mask_select(video_dict, fstfile=True)
    img_mask
```

5. (Optional) Define Regions of Interest

After running cell below, draw regions of interest on presented image in the order you provided them. To start drawing a region, double click on image. Single click to add a vertex. Double click to close polygon. If you mess up it's easiest to re-run cell. Note that this is done based upon first video in folder.

```
In [4]: %%output size=600

video_dict['reference'], img_ref = lt.Reference(video_dict, fstfile=True, num_frames=50)
img_roi, video_dict['roi_stream'] = lt.ROI_plot(video_dict)
img_roi
```

Out[4]:

6. (Optional) Define Scale for Distance Calculations

6a. Select two points of known distance

After running cell below, click on any two points and the distance between them, in pixel units, will be presented/returned. Will be used to convert pixel distance to other scale. Note that once drawn, points can be dragged or you can click again.

```
In [5]: %%output size = 600

video_dict['reference'], img_ref = lt.Reference(video_dict, fstfile=True, num_frames=100)
img_scl, video_dict['scale'] = lt.DistanceTool(video_dict)
img_scl
```

Out[5]:

6b. Define real-world distance between points

Below, set the distance between the points selected, and the scale. Note that scale can be any desired text.

```
In [6]: distance = 50
scale = 'cm'
video_dict['scale'] = lt.setScale(distance, scale, video_dict['scale'])
```

7. Perform Batch Processing and Display Traces from Each Session

The code below will save frame by frame data for each video file in its own csv. Binned summary information will be saved in a single file entitled 'BatchSummary.csv'. Additionally, the reference frame for each session will be displayed, along with a trace of the regions of interest (if supplied), and a trace of the animal's location across the session.

```
%%opts Layout [shared axes=False]
%%output size=600
summary, images = 1t. Batch Process (video dict, tracking params, bin dict)
images. cols (2)
Processing File: LPS+Flu-1. avi
total frames: 90093
nominal fps: 25.0
dimensions (h x w): 90,90
100%
00:00, 1706.40it/s]
total frames processed: 90093
Defining transitions...
Processing File: LPS+Flu-2. avi
total frames: 90093
nominal fps: 25.0
dimensions (h x w): 90,90
100%
 90093/90093 [00:53<
00:00, 1680.90it/s]
total frames processed: 90093
Defining transitions...
Processing File: LPS+Flu-3.avi
total frames: 90093
nominal fps: 25.0
dimensions (h x w): 90,90
100%
 90093/90093 [00:53<
00:00, 1697.86it/s]
total frames processed: 90093
Defining transitions...
Processing File: LPS+Flu-4.avi
total frames: 90093
nominal fps: 25.0
dimensions (h \times w): 90,90
100%
00:00, 1651.26it/s]
total frames processed: 90093
Defining transitions...
Processing File: LPS-1. avi
total frames: 90092
nominal fps: 25.0
dimensions (h x w): 90,90
```

```
0:54<00:00, 1641.33it/s]
total frames processed: 90092
Defining transitions...
Processing File: LPS-2. avi
total frames: 90092
nominal fps: 25.0
dimensions (h x w): 90,90
100%
                                                      90092/90092 [00:53<
00:00, 1678.18it/s]
total frames processed: 90092
Defining transitions...
Processing File: LPS-3. avi
total frames: 90092
nominal fps: 25.0
dimensions (h x w): 90,90
100%
                                                      90092/90092 [00:52<
00:00, 1713.35it/s]
total frames processed: 90092
Defining transitions...
Processing File: LPS-4. avi
total frames: 90092
nominal fps: 25.0
dimensions (h \times w): 90,90
100%
                                          90092/90092 [00:54<
00:00, 1646.28it/s]
total frames processed: 90092
Defining transitions...
Processing File: saline-1.avi
total frames: 0
nominal fps: 25.0
dimensions (h x w): 90,90
0it [00:00, ?it/s]
total frames processed: 0
Defining transitions...
ValueError
                                       Traceback (most recent call last)
~\anaconda3\envs\ezTrack\lib\site-packages\pandas\core\indexes\range.py in ge
t loc(self, key, method, tolerance)
   384
                     try:
```

```
return self. range. index (new key)
--> 385
   386
                       except ValueError as err:
ValueError: 0 is not in range
The above exception was the direct cause of the following exception:
                                         Traceback (most recent call last)
C:\Users\ADMINI~1\AppData\Local\Temp/ipykernel 2832/3721950665.py in <module>
----> 1 summary, images = 1t. Batch Process(video dict, tracking params, bin dict)
     2 images. cols(2)
\sim\ezTrack-1.2\LocationTracking\LocationTracking Functions.py in Batch Process(v
ideo dict, tracking params, bin dict, accept p frames)
  1617
               video dict['reference'], image = Reference(video dict, num frames=50)
  1618
-> 1619
                 location = TrackLocation(video dict, tracking params)
  1620
               location. to csv(os. path. splitext(video dict['fpath'])[0] + 'Locati
onOutput.csv', index=False)
  1621
               file summary = Summarize Location(location, video dict, bin dict=bin di
ct)
^\sim\ezTrack-1.2\LocationTracking\LocationTracking Functions.py in TrackLocation(v
ideo dict, tracking params)
   788
               print('Defining transitions...')
               df['ROI location'] = ROI linearize(df[video dict['region names']])
   789
                 df['ROI transition'] = ROI transitions(df['ROI location'])
--> 790
   791
   792
           #update scale, if known
\ezTrack-1.2\LocationTracking\LocationTracking Functions.py in ROI transitions
(regions, include first)
  1243
  1244
-> 1245
             regions offset = np. append (regions [0], regions [0:-1])
           transitions = regions!=regions offset
  1246
  1247
           if include first:
`\anaconda3\envs\ezTrack\lib\site-packages\pandas\core\series.py in __getitem_
(self, key)
   940
   941
               elif key is scalar:
--> 942
                      return self._get_value(key)
   943
   944
               if is hashable (key):
~\anaconda3\envs\ezTrack\lib\site-packages\pandas\core\series.py in get value
(self, label, takeable)
  1049
   1050
               # Similar to Index.get value, but we do not fall back to posit
ional
-> 1051
                 loc = self. index. get loc(label)
   1052
               return self.index._get_values_for_loc(self, loc, label)
  1053
~\anaconda3\envs\ezTrack\lib\site-packages\pandas\core\indexes\range.py in ge
```

t loc(self, key, method, tolerance)

${\bf LocationTracking_BatchProcess-Jupyter\ Notebook}$

```
385 return self._range.index(new_key)
386 except ValueError as err:
--> 387 raise KeyError(key) from err
388 raise KeyError(key)
389 return super().get_loc(key, method=method, tolerance=tolerance)
```

KeyError: 0