Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

divination - platform, iospace and physmem inspection framework

Overview

divination is a python package that exposes a simple interface for transacting with physical memory and IO space - cross platform (currently Windows10 and Linux).

IO and physical memory regions are mapped into the python usermode process and are transacted directly with the assistance of ctypes.

To function, the module requires a resident kernel-mode driver.

Features

  • Reading PCI configuration space
  • Reading MSRs (writing MSRs - TODO)
  • Mapping and RW from/to IO regions
  • Mapping and RW from/to physical memory regions (Linux-only - TODO Windows)

Dependencies

  • (Windows) pywin32
  • (Linux) <none>

Installation

Python module

The python module is available off PyPI:

pip3 install divination

Kernel module (Windows)

The KMDF driver can be built by installing VS, SDK + WDK and running msbuild under the driver/win directory from within the VS Developer Command Prompt.

Please do not (non-test-)sign this kernel module; we do not want to further enable attackers! Unless a restrictive DeviceGuard policy is employed, enabling testsigning should be sufficient to allow the driver to run:

bcdedit /set testsigning on ; shutdown -f -t 0 -r

Kernel module (Linux)

The Linux kernel module can be built by running make under the driver/linux directory. The usual prerequisite dependencies (kernel headers, gcc, etc.) will need to be installed.

Usage

There are currently 3 classes available: PciDevice, Msr and MemoryObject. Examples follow for usage of each.

  • PciDevice(bus, device, function)

    >>> amd_lpc = PciDevice(0, 0x14, 3)     # LPC Bridge @ D14F3
    >>> hexdump.hexdump(amd_lpc.read_cfg())
    00000000: 22 10 0E 79 0F 00 20 02  51 00 01 06 00 00 80 00  "..y.. .Q.......
    00000010: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000020: 00 00 00 00 00 00 00 00  00 00 00 00 62 14 37 7C  ............b.7|
    00000030: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000040: 04 00 00 00 40 C0 03 20  07 FF 20 03 00 00 00 00  ....@.. .. .....
    00000050: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000060: 00 00 00 00 40 16 00 0A  00 00 0F 00 00 FF FF FF  ....@...........
    00000070: 67 45 23 00 08 00 00 00  90 02 00 00 07 0A 00 00  gE#.............
    00000080: 08 00 03 A8 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000090: E0 03 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    000000A0: 02 00 C1 FE 2F 01 00 00  00 00 00 00 00 00 00 00  ..../...........
    000000B0: 00 00 00 00 00 00 00 00  04 00 E9 3F 00 00 00 00  ...........?....
    000000C0: 00 00 00 00 00 00 00 00  00 00 00 80 00 00 F7 FF  ................
    000000D0: 86 FF FD 08 42 00 00 00  00 00 00 00 00 00 00 00  ....B...........
    000000E0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    000000F0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
  • Msr(register)

    >>> amd_hwcr = Msr(0xc0010015)
    >>> hex(amd_hwcr.read())
    '0x89000111'
  • MemoryObject(base_address, range, mem_type, alloc=False)

    >>> spi_bar = MemoryObject(0xfec10000, 0x100, MemoryType.IoSpace)
    >>> hexdump.hexdump(spi_bar[0:])  # MemoryObjects are sliceable and can be read from + written to
    00000000: 05 21 CC 4F 00 00 00 00  00 00 00 00 6A 00 00 02  .!.O........j...
    00000010: 06 20 04 04 06 04 9F 05  03 0B 0A 02 FF 98 06 02  . ..............
    00000020: 13 07 33 10 08 20 20 20  0C 14 06 0E C0 54 C0 14  ..3..   .....T..
    00000030: C0 14 08 46 03 00 00 00  FC FC FC FC FC 88 00 00  ...F............
    00000040: 3B 6B BB EB 00 05 00 00  01 00 00 02 02 00 06 00  ;k..............
    00000050: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000060: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000070: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    00000080: 00 40 40 69 24 6A 4A 16  CA C5 EB 7B E2 95 09 4C  .@@i$jJ....{...L
    00000090: C8 AD 4A FC CB 1D 83 A9  C4 82 C1 D9 7E 35 F9 27  ..J.........~5.'
    000000A0: 92 8A 43 4B 78 D3 6B 04  9C B8 AF 79 8C 68 C6 E8  ..CKx.k....y.h..
    000000B0: 2E 24 04 68 F4 97 2A CC  83 74 C9 E2 17 C0 5A C7  .$.h..*..t....Z.
    000000C0: C7 C7 C7 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    000000D0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    000000E0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
    000000F0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................

About

Python module for platform, iospace and physmem inspection

Resources

License

Releases

No releases published

Packages

No packages published