Glossar

Acronyms

Acronym	Description	Page(s)
APSP	All-Pairs Shortest Path	1
SPSP	Single-Pair Shortest Path	
SSSP	Single-Source Shortest Path	1

Symbols

Symbol	Unit	Description	Page(s)
a	m/s^2	acceleration	1
F	$m\cdot kg\cdot s^{-2}=J/\!\!m$	force	1
f	s^{-1}	frequency	1
l	m	length	1
m	kg	mass	1
t	S	time	1

Introduction

1

In graph theory, the solution of the problem of the shortest path between two nodes is often sought. This problem is often referred to as Single-Pair Shortest Path (SPSP). It can be extended to the variations Single-Source Shortest Path (SSSP) and All-Pairs Shortest Path (APSP). Different algorithms are used to solve SPSP, SSSP or APSP.

The units for the frequency f as well as the force F are derived from the SI"=units of the basic quantities length l, mass m and time t.and then there is the basic equation of mechanics, which in the case of a constant force effect in the direction of movement of a point mass reads:

 $F=m\cdot a$