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A Network Model for Dynamic Textual Communications
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Abstract
We introduce the interaction-partitioned topic
model (IPTM)—a probabilistic model for who
communicates with whom about what, and when.
Broadly speaking, the IPTM partitions time-
stamped textual communications, according to
both the network dynamics that they reflect and
their content. To define the IPTM, we integrate a
dynamic version of the exponential random graph
model—a generative model for ties that tend to-
ward structural features such as triangles—and
latent Dirichlet allocation—a generative model
for topic-based content. The IPTM assigns each
document to an “interaction pattern”—a gener-
ative process for contents and ties that is gov-
erned by a topic distribution and a set of dynamic
network features. We use the IPTM to analyze
emails sent between department managers in Dare
county government in North Carolina, and demon-
strate that the model is effective at predicting and
explaining continuous-time textual communica-
tions.

1. Introduction
In recent decades, real-time digitized textual communica-
tion has developed into a ubiquitous form of social and
professional interaction (Kanungo & Jain, 2008; Szóstek,
2011; Burgess et al., 2004; Pew, 2016). From the perspec-
tive of the computational social scientist, this has lead to
a growing need for methods of modeling interactions that
manifest as text exchanged in continuous time. A num-
ber of models that build upon topic modeling through La-
tent Dirichlet Allocation (Blei et al., 2003) to incorporate
link data as well as textual content have been developed
recently (McCallum et al., 2005; Lim et al., 2013; Krafft
et al., 2012). These models are innovative in their exten-
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sions that incorporate network tie information. However,
none of the models that are currently available in the liter-
ature integrate the rich random-graph structure offered by
state of the art models for network structure—such as the
exponential random graph model (ERGM) (Robins et al.,
2007; Chatterjee et al., 2013; Hunter et al., 2008). The
ERGM is the canonical model for modeling the structure of
a static network. It is flexible enough to specify a generative
model that accounts for nearly any pattern of tie formation
(e.g., reciprocity, clustering, popularity effects) (Desmarais
& Cranmer, 2017). Several models have been developed that
handle time-stamped ties in which tie formation is governed
by structural dynamics similar to those used in ERGMs
(Perry & Wolfe, 2013; Butts, 2008; Snijders, 1996). We de-
velop the interaction-partitioned topic model (IPTM) which
simultaneously models the network structural patterns that
govern time-stamped tie formation, and the content in the
communications.

The models on which we build, including the relational
event model (Butts, 2008), the point process model of Perry
& Wolfe (2013), and most closely the stochastic actor ori-
ented model (SAOM) (Snijders, 1996), provide frameworks
for explaining or predicting ties between nodes using the net-
work sub-structures in which the two nodes are embedded
(e.g., predict a tie is highly likely to form between two nodes
if those two nodes have many shared partners). Models
based on network structure have been used for many appli-
cations in which the ties between nodes are annotated with
text. The text, despite providing rich information regard-
ing the strength, scope, and character of the ties, has been
largely excluded from these analyses, due to the inability
of these network models to incorporate textual attributes of
ties. These application domains include, among other appli-
caitons, the study of legislative networks in which networks
reflect legislators’ co-support of bills, but exclude bill text
(Bratton & Rouse, 2011; Alemán & Calvo, 2013); the study
of alliance networks in which networks reflect countries’
co-signing of treaties, but exclude treaty text (Camber War-
ren, 2010; Cranmer et al., 2012b;a; Kinne, 2016); the study
of scientific co-authorship networks that exclude the text
of the co-authored papers (Kronegger et al., 2011; Liang,
2015; Fahmy & Young, 2016); and the study of text-based
interaction on social media (e.g., users tied via ‘mentions’
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Figure 1. Sending behavior of two most active nodes in Dare
County email data between 09/01/2012 and 11/30/2012. Top:
the number of emails per day sent by County manager (blue bar)
and the number of recipients from this person per day (red line).
Bottom: the number of emails per day sent by emergency depart-
ment official (green bar) and the number of recipients from this
person per day (red line).

on twitter) (Yoon & Park, 2014; Peng et al., 2016; Lai et al.,
2017).

In defining and testing the IPTM we embed core conceptual
property—interaction pattern—to link the content compo-
nent of the model, and network component of the model
such that knowing who is communicating with whom at
what time (i.e., the network component) provides informa-
tion about the content of communication, and vice versa
(Section 2). Figure 1 (plot needs to be replaced) illustrates
this structure. IPTM leads to an efficient MCMC inference
algoritm (Section 3) and acheives good predictive pefor-
mance (Section 5). Finally, the IPTM discovers interest-
ing and interpretable latent structure through application to
email corpora of internal communications by government
officials in Dare County, NC (Section 6).

2. Interaction-partitioned Topic Model
Data generated under the IPTM consists of D unique doc-
uments. A single document, indexed by d ∈ [D], is rep-
resented by the four components: the author ad ∈ [A], an
indicator vector of recipients rd = {udr}Ar=1, the times-
tamp td ∈ (0,∞), and a set of tokens wd = {wdn}Ndn=1

that comprise the text of the document, where Nd denotes
the total number of tokens in a document. For simplicity,
we assume that documents are ordered by time such that

td < td+1.

2.1. Interaction Patterns

They key idea that combines the IPTM component model-
ing “what” with the component modeling “who,” “whom,”
and “when” is that different documents comes from the
introduction of “interaction patterns”. Each interaction pat-
tern c ∈ [C] is characterized by a set of dynamic network
features—such as the number of messages sent from a to r
in some time interval—and corresponding coefficients. We
associate each document with the interaction pattern that
best describes how people interact, and that is reflected to
what people talk about via topic assignments. To be specific,
we assume an interaction-pattern distribution over C unique
interaction patterns

ψ ∼ Dirichlet
(
ζ, (

1

C
, . . . ,

1

C
)
)
, (1)

where ζ is the concentration parameter, and then each docu-
ment d ∈ [D] draws an interaction pattern cd as below:

cd ∼ Multinomial(ψ). (2)

2.2. Content Generating Process

The words wd are generated according to the cluster-based
topic model (Wallach, 2008), an extension of a well-known
Bayesian topic model, latent Dirichlet allocation (LDA)
(Blei et al., 2003). As in LDA, we generate the corpus-wide
global variables that describe the content via topics. First,
we model each topic k ∈ [K] as a discrete distribution over
V unique word types

φk ∼ Dirichlet
(
β, (

1

V
, . . . ,

1

V
)
)
, (3)

where β is the concentration parameter. Next, following the
cluster-based topic model, document d has the document-
topic distribution

θd ∼ Dirichlet(α,mcd), (4)

where α are the concentration parameter and m =
(m1, . . . ,mK) is the base measure. In order to capture
the overall prevalence of each topic in the corpus, we as-
sume that each mc is given Dirichlet priors with a single
corpus-level base measurem

mc ∼ Dirichlet
(
α1,m

)
, (5)

where α1 is the concentration parameter determining the ex-
tent to which the group-specific base measures are affected
by the corpus-level base measure. Finally, the corpus-level
base measure is assumed to have Dirichlet prior with uni-
form base measure

m ∼ Dirichlet
(
α0, (

1

K
, . . . ,

1

K
)
)
. (6)
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Given that N̄d = max(1, Nd) where Nd is known, a topic
zdn is drawn from the document-topic distribution and then
a word wdn is drawn from the chosen topic for each n ∈
[N̄d]—i.e.,

zdn ∼ Multinomial(θd),
wdn ∼ Multinomial(φzdn).

(7)

Pseudocode for content generating process is provided in
the supplementary material.

2.3. Tie Generating Process

We generate ties—author ad, recipients rd, and timestamp
td—using a continuous-time process that depends on the
interaction patterns’ various features. Conditioned on the
document-specific interaction pattern (Seciton 2.1), we as-
sume the following steps of tie generating process. Much
like in the SAOM (Snijders et al., 2010), we conceptualize
tie generation as a process that is governed by senders acting
in continuous time.

2.3.1. LATENT RECIPIENTS

For every possible author–recipient pair (a, r)a6=r, we de-
fine the “recipient intensity”, which is the likelihood of
document d being sent from a to r:

λadr = bcd
>xadrcd , (8)

where bc is P–dimensional vector of coefficients and xadrc
is a set of network features which vary depending on the hy-
potheses regarding canonical processes relevant to network
theory such as popularity, reciprocity, and transitivity. We
place a Normal prior bc ∼ N(µb,Σb).

In the example of email networks, we form the covariate vec-
tor for recipients xadrc using dynamic network statistics on
three time intervals prior to t+d−1 (i.e., immediately after the
previous document was sent). We compute eight network
statistics within each time interval (Perry & Wolfe, 2013),
where the intervals are [t+d−1 − 384h, t+d−1 − 96h), [t+d−1 −
96h, t+d−1 − 24h) and [t+d−1 − 24h, t+d−1). We define the in-
tervals to have equal length in the log-scale, and use i = 1 to
denote the earliest interval—i.e., [t+d−1−384h, t+d−1−96h)—
and i = 3 to denote the latest. The network statistics (illus-
trated in Figure 2) are:

1. outdegree(a, c, i) =
∑

d′:td′∈i

I(cd′ = c)I(ad′ = a);

2. indegree(r, c, i) =
∑

d′:td′∈i

I(cd′ = c)I(ud′r = 1);

3. send(a, r, c, i)
=

∑
d′:td′∈i

I(cd′ = c)I(ad′ = a)I(ud′r = 1);

4. receive(a, r, c, i) = send(r, a, c, i);

5. 2-send(a, r, c, i)
=

∑
i′,i′′≥i:

i′=i or i′′=i

∑
h6=a,r

send(a, h, c, i′)send(h, r, c, i′′);

6. 2-receive(a, r, c, i)
=

∑
i′,i′′≥i:

i′=i or i′′=i

∑
h6=a,r

send(h, a, c, i′)send(r, h, c, i′′);

6. sibling(a, r, c, i)
=

∑
i′,i′′≥i:

i′=i or i′′=i

∑
h6=a,r

send(h, a, c, i′)send(h, r, c, i′′);

6. cosibling(a, r, c, i)
=

∑
i′,i′′≥i:

i′=i or i′′=i

∑
h6=a,r

send(a, h, c, i′)send(r, h, c, i′′);

where I(·) is an indicator function. Note that in order to
obtain two-path statistics (i.e., 2-send, 2-receive, sibling,
and cosibling) within a single time interval i, we compute
the number of two-paths from a to r in interaction pattern
c by summing over the pairs of intervals (i′, i′′) where the
earlier email in the path was sent during interval i.

Next, we hypothesize “If a were the author of document
d, who would be the recipent/recipients?” To do this, we
draw each author’s set of recipients from a non-empty Gibbs
measure (Fellows & Handcock, 2017)—a probability mea-
sure we defined in order to 1) allow multiple recipients or
“multicast”, 2) prevent from obtaining zero recipient, and 3)
ensure tractable normalizing constant.

Because the IPTM allows multicast, we draw a binary (0/1)
vector uad = (uad1, . . . , uadA)

uad ∼ Gibbs(δ,λad), (9)

where δ is a real number controlling the average number of
recipients and λid = {λadr}Ar=1. We place a Normal prior
δ ∼ N(µδ, σ

2
δ ). In particular, we define Gibbs(δ,λad) as

p(uad|δ,λad)

=
exp

{
log
(
I(‖uad‖1 > 0)

)
+
∑
r 6=a(δ + λadr)uadr

}
Z(δ,λad)

,

(10)

Figure 2. Eight dynamic network statistics used for the application
to email networks.
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where Z(δ,λad) =
∏
r 6=a(exp{δ + λadr} + 1) − 1 is the

normalizing constant and ‖·‖1 is the l1–norm. We provide
the derivation of the normalizing constant as a tractable
form in the supplementary material.

2.3.2. LATENT TIMESTAMPS

Similarly, we hypothesize “If a were the author of document
d, when would it be sent?” and define the “timing rate” for
author i

µad = g−1(η>cdyadcd), (11)

where ηc is Q–dimensional vector of coefficients with a
Normal prior ηc ∼ N(µη,Ση), yadc is a set of time-related
covariates, which can be any feature that could affect times-
tamps of the document, and g(·) is the appropriate link
function such as identity, log, or inverse.

For example, the covariate vector for timestamps yadc can
include author-specific intercepts to account for individual
differences in document-sending behavior. In addition, tem-
poral features which possibly affect “when to send” can
be added—e.g., an indicator of weekends/weekdays and an
indicator of AM/PM when the previous document was sent.

In modeling “when”, we do not directly model the times-
tamp td. Instead, we assume that each author’s the time-
increment or “time to next document” (i.e., τd = td − td−1)
is drawn from a specific distribution in the exponential fam-
ily. We follow the generalized linear model framework:

E(τad) = µad,

V (τad) = V (µad),
(12)

where τad is a positive real number. Possible choices of
distribution include Exponential, Weibull, Gamma, and log-
normal1 distributions, which are commonly used in time-to-
event modeling. Based on the choice of distribution, we may
introduce any additional parameter (e.g., σ2

τ ) to account for
the variance.

Our preliminary analysis revealed that the Dare County
email networks and the Enron data set showed the best
fitting when we assume lognormal distribution on the ob-
served time-increments—i.e., log(τadd) ∼ N(µadd, σ

2
τ )—

compared to Gamma or Weibull distributions. We also
observed significant lack-of-fit for single parameter distribu-
tion (e.g., Exponential distribution) since it failed to capture
the variance in time-increments. Therefore, we chose log-
normal distribution by taking the log-transformation and
apply µ = E(log(τad)) = µad and σ2

τ = V (log(τad)) =
V (µad), using identity link function g = I .

1lognormal distribution is not exponential family but can be
used via modeling of log(τd).

2.3.3. ACTUAL DATA

Finally, we choose the actual author, recipients, and
timestamp—which will be observed—by selecting the
author–recipient-set pair with the smallest time-increment
(Snijders, 1996):

ad = argmina(τad),

rd = uadd,

td = td−1 + τadd.

(13)

Therefore, it is an author-driven process in that the author
of a document determines its recipients and its timestamp,
based on the author’s urgency to send the document to cho-
sen recipients.

3. Posterior Inference
Given that we only observe the authors, recipients, times-
tamps, and tokens {(ad, rd, td,wd)}Dd=1 in real-world, our
inference goal is to invert the generative process to ob-
tain the posterior distribution over the unknown parame-
ters, conditioned on the observed data and hyperparamters
α0, α1, α, β, ζ,µb,Σb,µη,Ση, µδ, σ

2
δ . After integrating

out Φ, Ψ, and Θ using Dirichlet-multinomial conjugacy
(Griffiths & Steyvers, 2004), we draw the samples using
Markov chain Monte Carlo (MCMC) methods, repeatedly
resampling the value of each parameter from its conditional
posterior given the observed data, hyperparamters, and the
current values of the other parameters. We express each
parameters conditional posterior in a closed form using the
data augmentation schemes in u (Tanner & Wong, 1987). In
this section, we outline a Metropolis-within-Gibbs sampling
algorithm and each latent variable’s conditional posterior.
Pseudocode is provided in the supplementary material.

First, since uadr is a binary random variable, new values
may be sampled directly using

P (uadr = 1|uad\r, c, b, δ,x) ∝ exp{δ + λadr};
P (uadr = 0|uad\r, c, b, δ,x) ∝ I(‖uad\r‖1 > 0),

(14)

where I(·) is the indicator function that is used to prevent
from the instances where the author has no recipients to
send the document.

Next, the conditional posterior for topic assignment zdn is
derived by multiplying the two sampling equations of the
cluster-based topic model:

p(zdn = k|z\dn, c,w, α0, α, β)

∝
(
N̂dk,\dn + α

N̂kcd,\dn + α1
N̂k,\dn+

α0
K

N̂\dn+α0

N̂cd,\dn + α1

)
×
(N̂wdnk,\dn + β

V

N̂k,\dn + β

)
,

(15)
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where N̂ are defined according to the minimal path assump-
tion (Wallach, 2008). Specifically, N̂dk,\dn is the number
of times topic k has been used in document d, N̂kcd,\dn
is the number of different documents belonging to cd that
use topic k, N̂k,\dn is the number of different interaction
patterns in which k has been used, N̂wdnk,\dn is the number
of tokens assigned to topic k whose type is the same as that
of wdn, and the subscript \dn denotes the exclusion of nth

element in document d.

For each document d ∈ [D], we sample interaction-pattern
assignment from the discrete distribution over C interaction
patterns using

P (cd = c|z, ζ,u,a, t)
∝ P (cd = c|c\d, ζ)P (zd|γ, α, cd = c, c\d, z\d)

× P (ad, td|cd = c,η, σ2
τ )P (u|cd = c, c\d, b, δ)

∝ (N̂c,\d +
ζ

C
)

×
N̄d∏
n=1

(N̂dzdn,\dn + α
N̂zdnc,\dn + α1

N̂zdn,\dn+
α0
K

N̂\dn+α0

N̂c,\dn + α1

)

× ϕτ (τd;µadd, σ
2
τ )×

∏
a6=ad

(
1− Φτ (τd;µad, σ

2
τ )
)

×
A∏
a=1

exp
{

log
(
I(‖uad‖1 > 0)

)
+
∑
r 6=a

(δ + λadr)uadr

}
Z(δ,λad)

.

(16)

New values for continuous variables δ, b, and η and σ2
τ

(if applicable) cannot be sampled directly from their con-
ditional posteriors, but may instead be obtained using the
Metropolis–Hastings algorithm. With uninformative priors
(i.e., N(0,∞)), the conditional posterior over δ and b is

D∏
d=1

A∏
a=1

exp
{

log
(
I(‖uad‖1 > 0)

)
+
∑
r 6=a

(δ + λadr)uadr

}
Z(δ,λad)

,

(17)
where the two variables share the conditional posterior and
thus can be jointly sampled. Likewise, assuming unin-
formative priors on η (i.e., N(0,∞)) and σ2

τ (i.e., half-
Cauchy(∞)), the conditional posterior is

D∏
d=1

(
ϕτ (τd;µadd, σ

2
τ )×

∏
a6=ad

(
1− Φτ (τd;µad, σ

2
τ )
))
.

(18)

Although the IPTM is a highly complex model with a lot
of latent variables, it yields an efficient inference algorithm
by taking advantage of the two main parts of the likelihood
repeatedly appear in the sampling equations—one from the
latent recipients (Section 2.3.1) and another from the latent
timestamps (Section 2.3.2).

4. Data
Our data come from the North Carolina county govern-
ment email dataset collected by (ben Aaron et al., 2017)
that includes internal email corpora covering the inboxes
and outboxes of managerial-level employees of North Car-
olina county governments. Out of over twenty counties, we
chose Dare County to 1) see whether and how communica-
tion networks surrounding a notable national emergency—
Hurricane Sandy—differed from those surrounding other
governmental functions, and 2) limit the scope of this initial
application. The Dare County email network contains 2,247
emails, sent and received by 27 department managers over
a period of 3 months (September–November) in 2012.

To verify that our model is applicable beyond the Dare
County email network, we also performed two validation
experiments using the Enron data set (Klimt & Yang, 2004).
We took a subset of the original data such that we only
include emails between actors who sent over 300 emails,
and actors who received over 300 emails from the chosen
authors. Emails that were not sent to at least one other
active actor were discarded, which resulted in a total of
6,613 emails involving 30 actors. For the Enron data set,
we changed the time unit from hour to day in modeling the
timestamps.

5. Experiments
We conducted a set of posterior predictive experiments—
1) out-of-sample tie predictions, 2) topic coherence, and
3) posterior predictive checks—to gauge the IPTM’s pre-
dictive performance as compared to alternative modeling
approaches.

5.1. Out-of-Sample Tie Predictions

We evaluated the IPTM’s ability to predict ties in textual
communications from either the Dare County email net-
work or the Enron data set, conditioned on the text of those
emails and “training” part of the data. We separately formed
a test split of each three components—author, recipients,
and timestamps—by randomly selecting “test” data with
probability p = 0.1. Any missing variables were imputed
by drawing samples from their conditional posterior distribu-
tions, given the observed data, estimates of latent variables,
and current estimates of test data. The full conditional pos-
terior distributions for “test” author, recipients, and times-
tamps are provided in the supplementary material.

We then run inference to update the latent variables given
the imputed and observed data. We iterate the two steps—
imputation and inference—multiple times to obtain enough
number of estimates for “test” data. Algorithm 1 outlines
this procedure.
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Algorithm 1 Out-of-Sample Tie Predictions
Input: data {(ad, rd, td,wd)}Dd=1,
number of new data to generate R,
number of interaction patterns and topics (C,K),
hyperparameters (α0, α1, α, β, ζ,µb,Σb,µη,Ση, µδ, σ

2
δ )

Test splits:
Draw test authors with p = 0.1 (out of D authors)
Draw test elements of recipient vector with p = 0.1 (out
ofD×(A−1) receipient indicators {{rdr}r∈[A]\ad

}Dd=1)
Draw test timestamps with p = 0.1 (out ofD timestamps)
Set the “test” data as “missing” (NA)

Imputation and inference:
Initialize the parameters (l, z, b,η, δ,u)
for r = 1 to R do

for d = 1 to D do
if ad = NA then

for a = 1 to A do
Compute πa using P (ad = a|·)

end for
Draw ad ∼ Multinomial(π)

end if
for r ∈ [A]\ad do

if rdr = NA then
Draw rdr using P (rdr = 1|·) and P (rdr = 0|·)

end if
end for
if td = NA then

Draw proposal τnewd ∼ lognormal(µadd, σ
2
τ )

Use Metropolis-Hastings to decide accept or re-
ject using the probability

P (τnewd |µadd, σ
2
τ )P (τnewd |·)

P (τ oldd |µadd, σ2
τ )P (τ oldd |·)

,

where τ oldd is from earlier iteration.
end if
Run inference and update (c, z, b,η, δ,u) given the
imputed and observed data

end for
Store the estimates for “test” data

end for

We compared the IPTM’s performance with that of
baseline—the IPTM with C = 1. This amounts to an ab-
lation study (Richardson et al., 2006; Bilgic et al., 2010),
as a single interaction pattern breaks the link between text
and network structure in the IPTM. The text and network
structure are linked through the assignment of topics to dif-
ferent interaction patterns, and with one interaction pattern
all topics are associated with the same network structure.
We do not define any other baselines (i.e., other models‘test”
a fr machine learning literature) to which to compare the

predictive performance of the IPTM. We omit comparison
to baselines because we are unable to identify existing mod-
els that can predict the same form of social data that can
be modeled by the IPTM—a form that includes one out of
n authors, one through n− 1 recipients, and a continuous
and positive time point. Consider the prediction of e-mail
recipients. As far as we are aware, the Gibbs measure model
we derive is unique among existing methods in its ability
to predict a set of one through n − 1 (out of n − 1) re-
cipients of an e-mail. This is just the recipient component
of the model—we are also not able to identify any other
method that permits the prediction of the author, recipient
multicast, and timing of ties. We could construct baseline
models to compare in terms of predictive performance for
each component of the social data (e.g., a regression model
to predict e-mail timing, a multi-class classifier to predict
author). However, that would be an arbitrary exercise, as
it is not clear why we would select any particular baseline
out of the dozens of candidates for each component of the
social data modeled in the IPTM.

We varied the number of interaction patterns C from 1 to
3 and the number of topics K from 1 to 50 (Dare) or 100
(Enron) as a grid-search based hyperparameter selection pro-
cess. For each combinations of C and K, predicted values
of tie data were then compared to the true values to yield:
F1 scores for author predictions, multiclass version of the
area under the ROC curve (AUC) measure (Hand & Till,
2001) for reciptient predictions, and median absolute error
(MAE) on timestamp predictions. We show the tie predic-
tion results, averaged over five random test splits of each tie
component, in Figure 3 (Plots to be updated). Although our
model is intended for exploratory analysis, it achieves better
link prediction performance than the baseline, validating our
assumption that the IPTM acheives better predictive perfor-
mance when topic-based contents are accounted to infer the
parameters that govern the generation of tie data—authors,
recipients, and timestamps.

5.2. Topic Coherence

Topic coherence metrics (Mimno et al., 2011) are often
used to evaluate the semantic coherence in topic models.To
demonstrate that the IPTM’s incorporation of network fea-
tures improves the ability of modeling text, we compared
the coherence of topics inferred using our model with the
coherence of topics inferred using LDA. Instead of re-fitting
the data using standard LDA algorithms, we used the topic
assignments from the IPTM with C = 1, which reduces the
IPTM to LDA in terms of topic assignments. We varied the
number of interaction patterns and the number of topics as
in Section 5.1, and drew five samples from the joint poste-
rior distribution over the latent variables. We evaluated the
topics resulting from each sample and averaged over the five
samples, where the results are shown in Figure 4. Combined
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Figure 3. Average F1 score, AUC, MAE of out-of-sample tie pre-
dictions. Top: Dare County email network. Bottom: the Enron
dataset.

with the findings in Section 5.1, this result demonstrates that
the IPTM can achieve good predictive performance while
producing coherent topics.
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Figure 4. Average topic coherence scores: (left) Dare County email
network. (right) the Enron data set.

5.3. Posterior Predictive Checks

Finally, we performed posterior predictive checks (Rubin
et al., 1984) to evaluate the appropriateness of the model
specification for the Dare County email network. We for-
mally generated entirely new data, by simulating ties and
contents {(ad, rd, td,wd)}Dd=1 from the genenerative pro-
cess in Section 2, conditional upon a set of inferred param-
eter values from the inference in Section 3. Pseudocode is
provided in the supplementary material. We specified the
number of interaction patterns as C =? and the number
of topics as K =?, which yielded the best performance in
Section 5.1. For the test of goodness-of-fit in terms of net-
work dynamics, we defined multiple network statistics that
summarize meaningful aspects of the Dare County email net-
work: indegree distribution for author activities, outdegree
distribution for recipient activities, recipient size distribu-
tion, document time-increments distribution, the edgewise
shared partner distribution, and the geodesic distance dis-

Figure 5. Posterior predictive checks for the Dare County email
network: (a) outdegree, (b) indegree, (c) recipient size, (d) QQplot
of time-increments, (e) geodesic distance, and (f) edgewise shared
partners.

tribution. We then generated 100 synthetic networks and
texts from the posterior predictive distribution implied by
the IPTM and Dare County email network. We applied each
discrepancy function to each synthetic network to yield the
distributions over the values of the six network statistics

As shown in Figure 5 (Plots to be updated), the IPTM shows
“good fit” for the Dare County email network in that the ob-
served data is not an outlier with respect to the distributions
of new data drawn from the posterior predictive distribution.
The IPTM generated synthetic networks with indegree dis-
tribution, outdegree distribution, recipient size, document
time-increments, and edgewise shared partners that are very
similar to those of the Dare County email network, showing
that the model captures some important work features of the
data including spreadness and transitivity.

6. Exploratory Analysis
Our model is primarily intended as an exploratory analysis
tool for time-stamped textual communication. Our main
goal in this exploratory analysis was to test three hypotheses:
1) personal or social topics (if any) would exhibit strong
reciprocity and transitivity in tie formation, 2) topics about
dissemination of information would be characterized by a
lack of reciprocity, and 3) topics about Hurricane Sandy
would exhibit a very different interaction pattern from the
normal day-to-day conversations.
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6.1. Topic Assignments

6.2. Interaction Pattern Coefficients

7. Summary
The IPTM is, to our knowledge, the first model to be capa-
ble of jointly modeling the author, recipients, timestamps
and contents in time stamped text-valued networks. The
IPTM incorporates innovative components, including the
modeling of multicast tie formation and the conditioning
of ERGM style network generative features on topic-based
content. The application to North Carolina county govern-
ment email data demonstrates, among other capabilities, the
effectiveness at the IPTM in separating out both the content
and relational structure underlying the normal day-to-day
function of an organization and the management of a highly
time-sensitive event—Hurricane Sandy. Finally, although
we presented the IPTM in the context of email networks, the
IPTM is applicable to a variety of networks in which ties
are attributed with textual documents. These include, for
example, economic sanctions sent between countries and
legislation attributed with sponsors and co-sponsors.
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8. Psuedocode for posterior predictive checks

Algorithm 2 Collapsed Content Generating Process
Input: number of new data to generate R,
observed text data {wd}Dd=1,
estimated latent variables (u, l, z, b, δ,η, σ2

τ ),
hyperparameters (α, β,m),
number of vocabularies V

for r = 1 to R do
Initialize Nvk and Nk from z and w
for d = 1 to D do

if Nd > 0 then
for n = 1 to Nd do

Draw wdn from P (wdn = v) =
Nvzdn+ β

V

Nzdn+β

Increment Nwdnzdn and Nzdn
end for

end if
Compute xd given {(ad, rd, td)}[1:(d−1)]

Draw (ad, rd, td) following Section 2.3
end for
Store every rth new data {(ad, rd, td,wd)}Dd=1

end for


