Extension of openSCAD with
loop() and loop_extrude()
and some other hacks.

Ruud Vlaming
October 19, 2013

Abstract

Version Y75

Proofreading of version +/2 by William Adams.

1 Motivation

Sometime ago i first encountered openSCAD after having played a while with FreeCAD. Although objects can
be manipulated in python there, it was not as intuitive as I expected. OpenSCAD is much easier to use,
certainly when your experience with CAD programs is not that extensive. However, openSCAD is also lacking
some basic features. This extension fills in the features that were lacking for my project. Hopefully it is of use
to you as well.

2 The source code

The source code can be downloaded from my fork on github, branch ‘loop_extension’:
https://github.com/devlaam/openscad.git

You have to compile it yourself, following the instructions from the openSCAD website. The source is released

under the same license as openSCAD.

3 Syntax

We first present the syntax of both loop commands. It is not meant to be rigorously correct (in a production
language), just to given an idea how the stuff should be used.

3.1 Loop and alike

loop(
points™®-%f = [“cartesian"®’, "polar"**, [z,y]™, 1 ,
rect ™" = ["clock"**, [width, height®*]™®] ,
pOly(req)'OPt = [n>2,req’ "flat""p“, "ClOCk"oPt, ||Q1||°Pt’ {nsideudeflurinn|llr°ut||}1‘eq’ [Si26#1+,]r9q] s
vertices"}“ = ['I’me, [{ndefudEfInlinuInarculnbezu}req, {uidenndEflucennlncsxnlncsyuIncsxyn}req’ [ZD,y]“H]] s
edges™ = [n*, [{"def"®’|"lin"|"wav"|"bez"}**?, {"iden"*’|"cen"|"csx"|"csy"|"csxy"}™ , [z,y1*" 11);

loop-extrude(

points™*P-%f = [vcartesian"®f, "cylinder"®*, "sphere"°**, [z,y,z]1"",] ,
rect Fe¥-opt ["clock"*®*, [width, height®]1*®] ,
poly PPt = [p’BTe wflaghPt "clock"P', {"side"**|"rin"|"rout"}™, [size™*,]1™9] ,
vertices® = [n*”, [{"def"®’|"lin"|"arc"|"bez"}**?, {"iden"*’|"cen"|"csx"|"csy"|"csxy"}™, [z,y,21*" 11 ,
edgeS”Pt = [n"o*’ [{"def"defl"lin"l"bez"}“q, {"iden"defl"cen"l"csx"l"csy"l"csxy"}req s [x’y’z:l#m 11 R
seg-ments"}’t = { [n#o"’ [{"show“defl"hide"}req, {uninlldeflnoutu req, {“rel"defl"abs"}req , val®1 1 |

[n#o"’ [{lldefndeflulinn | "wav" | nbezu}teq’ {nidenudeflucenu | "CSl"}req, [CE,y,Z]“m 11 }DPt);

The (curly) brackets ‘{’, ‘}’ and ‘|’ indicate that only one of the keywords should be specified, and are not part
of the syntax. Some keywords are optional, indicated by superscript opt, or required req or may be default def
in case of absence of any keyword; if a keyword is required, but a default is specified, it is effectively optional.
The superscript #3+ indicates the minimal number of times an element must be present (three in this case),
>2 shows the minimum value for n, which represent a vertex, edge or segment number. Below we give a short
description, but the use of the keywords will become clear in the examples.

points Indicates the points (vertices) the loop passes through. Vertices are numbered from 1 to N, in the
order they appear. Edges connect the vertices, and are numbered as well from 1 to N, where edge
1 connects vertex 1 and 2.

poly Constructs a regular polygon, vertex numbering is counter clock wise and the first vertex is located
on the X-axis.

vertices Allows for possible modification, such as rounding, of each vertex. Without further designation,
each supplied dressing acts on the corresponding vertex number and all that come after that.

edges Allows for possible modification, such as deformation, of each edge. Without further designation,
each supplied dressing acts on the corresponding edge number and all that come after that.

segments Allows for possible modification, such as deformation, of each segment. A segment is a vertex or
an edge, numbered from 1 to 2N. Segment 1 corresponds to vertex 1, segment 2 to edge 1, segment
3 to vertex 2 etc. Without further designation, each supplied dressing acts on the corresponding
segment number and all that come after that.

Note that, in the latest update you can define sequences of points with repeated coordinates using empty
strings. This is especially handy when you have long parameter names in modules. Thus

module long(length, width, height)
{ loop-extrude(
points=[
[0,0,0], [length,0,0], [length,width,0], [length,width,height], [0,width,height], [0,0,height]])
circle(1, $fn=20); }

can be written down as:

module short(length, width, height)
{ loop-extrude(
points=[
[0,0,0], [1ength,0,0], ["",width,0], ["","" ,height], [0,"",""], [0,0,""]1])
circle(1, $fn=20); }

which can make a significant difference when you follow long trajectories of points. Besides that, the notation
makes immediately clear what the changes are.

3.2 Boxing and Positioning

Below find the syntax of the box() and position() commands. The first enables you to draw a bounding box
around the object, that may be modified in size, the second to position an object independent of its own position,
but dependent to an other objects position or the origin.

box (
addoPtdet = g
xadd® = d;*,
yaddopt = dy#l’
zadd® = d.",
act® = {true®™|false}™);
position(
{xmin|xmid|xmax}®" = Az*,
{ymin|ymid|ymax}®* = Ay*,
{zmin|zmid|zmax}** = Az*

opt

keep {true|false®™}™1);

Note that the box() command operates on one argument. If it is applied on a list of arguments, they
are implicitly unified. The position may operate on one or two arguments. If only one argument is supplied,
positioning will be relative to the coordinate origin, if two (or more) arguments are supplied, positioning of the
first object will be relative the last object. All other objects are ignored.

3.3 Centering

The keyword ‘center’ can be used at some of the primitives in the original version of openSCAD. However, this
has been done in the rather counter intuitive fashion to my opinion. Cubes and squares are per default not
centered (i.e. they are located in the first quadrant) but can be centered by setting the center keyword to ‘true’.
Spheres and circles are centered per default, but cannot be brought to the first quadrant by setting the center
keyword to ‘false’. The cylinder is kind a centered half-way, per default, and stays that way when center is set
to ‘false’; but becomes fully centered when center is set to ‘true’.

In my version, the sphere and circle also accept the keyword center and move to the first quadrant when
this is set to false, the default remains ‘true’. We cannot change the behavior of the cylinder without breaking
code, so we leave this as is.

In extension to this, all primitives accepting ‘center’ with a boolean will also accept center with a vector
[0z, dy, 0z] as argument where these variables can be —1, 0 or +1. A 0 will lead to centering along the axis,
whereas —1 will shift it to the negative side, and +1 to the positive side. Thus

sphere(4, center=[0,1,-11);
will display the sphere 23 + (y —4)3 + (2 +4)3 = 64, thus centered along the x-axis, with positive y and negative

z coordinates. This brings at least some uniformity in the use of that keyword. Furthermore, it can be quite
practical to partially center an object. No examples are given in this document for this extension.

3.4 Vector addition and generation

Sometimes you want to add an element to a vector. In this version this is possible through the following syntax:

echo([4,5,6] + 7); // generates one array [4,5,6,7]

echo([1,0,0] + [[0,1,0],[0,0,1]1]); // generates one array [[1,0,0],[0,1,0],[0,0,1]]
echo("jan" + ["piet","klaas"]); // generates one array ["jan","piet","klaas"]
echo([] + [[truel, [falsel]l); // generates [[true], [falsel], so no change!
echo([1,0,0] + [0,1,0]); // generates [1,1,0] !!

Extension of the array only works when the arrays cannot be added in the standard way, so this is backwards
compatible and should not break existing code. Therefore you cannot add to ’equal’ arrays, see the last example
above. Also, adding ’empty’ arrays does not have an effect.

If you need the generate a large set of points, make use of the for(<range>,[vector]) function, for example:

function p(t) = for(i=[0:t],[il);

function q(t) = for(i=[0:t],[i,2*%i,t]);

echo(p(5)); //generates [[0], [1]1, [2], [3], [4]1, [5]]

echo(q(5)); //generates [[0O, O, 5], [1, 2, 5], [2, 4, 5], [3, 6, 5], [4, 8, 5], [5, 10, 5]]

ranges can be defined in the same way as for the object related for operator, but only one variable can be
used, and the vector index is not allowed. Of course, the second argument can be a function itself, as long as
that returns a vector.

4 Examples, for the 2D loop() primitive

Big fat warning to start out with: Just “copy-past” the examples from this pdf into openSCAD may not
work at all because invisible characters are copied along that are not displayed but invalidate the instructions.
OpenSCAD will display nothing (no top level object found), and source highlighting may also be absent.

loop(points=[[-5,5],[5,5],[6,0],[-5,0]11);
loop([[-5,5]1,[5,51,[5,01,[-5,011);

With points it is possible to specify a number of
2D points that are drawn as a 2D primitive figure.
The last point is automatically connected with the
first. The points are numbered 1,2 ... starting with
the left point first. The designation ‘points’ can be
omitted, the first argument is understood as being
points. From now on the points themselves will
be called vertices, and the connecting lines, edges.
The edges are numbered themselves, with edge 1
connecting vertex 1 and 2.

loop(points=["polar", [0,0],[4,0],[2,30], [4,45],[2,60],[4,90]11);

It is possible to define the coordinates of the points
in polar form, thus [r, ¢]. Angles are, like usual in
openSCAD, in degrees.

loop(poly=[6, [5]11);

loop(poly=[6,"side", [6]11);
loop(poly=[6,"rin", [5]1]);
loop(poly=[6,"rout", [6]11);

loop(poly=[5,"flat", [5]1);
loop(poly=[5,"clock", [5]11);
loop(poly=[5,"flat","clock", [5]1]1);

—

loop(poly=[4,"Q1","flat",[3,6]1);
loop(rect=[[3,6]1);

With ‘poly’ it is possible to draw many regular
polygons. The first (integer) parameter specifies
the number of vertices, the second, which must be
enclosed in square brackets, the size. The min-
imum number of vertices is three. Polygons are
always centered. The vertices are numbered from
1 to N, starting with the first vertex on the X-axis
and increasing the numbering counter-clockwise.
This is conform the mathematical definition of the
positive angle. Per default the given size equals
the size of the side. It is possible to specify other
sizes. These are ‘rin’ and ‘rout’. In these cases the
size defines the radius of the inner or outer circle.

If a flat size is needed on the X-axis, use the option
‘flat’. The first edge is now perpendicular to the
X-axis, meaning that the first vertex is below the
X-axis. Sometimes it is more convenient to have
a vertex numbering that is clockwise and starts at
the top. To that end use the option ‘clock’. The
first vertex now lies on the positive Y- axis and
vertices are numbered towards the X-axis. Note
that this option can be combined with ‘flat’. In
that case the first edge is on top.

In fact, the polygon generator is more versatile. If
used with the ‘default’ option ’side’, you may spec-
ify more side sizes which will be used sequentially
to generate a cyclic polygon. Note, there are some
restrictions, for instance the origin must be inside
the polygon, and it must be possible at all to con-
struct the polygon. With the option ‘Q1’, you can
enforce the result to be situated in the first quad-
rant. This is useful when performing a rotation
afterwards. Since the rectangle in the first quad-
rant is used so often, we defined a special keyword
for that. Numbering of points however start at the
origin.

loop(poly=[40,"rout", [5,5,4,4]1]1);

loop(poly=[4,[5]], vertices=[["1lin",1]1]1);

Likewise, you can use ‘rout’ and ‘rin’ with more
size parameters to generate equiangular polygons
with predefined inner and outer radii. In this case
you may easily specify values from which no poly-
gon can be constructed (especially with ‘rin’).

loop(poly=[4,[5]], vertices=[["1lin",1],["1in",1.3],["1in",2]]);
loop(poly=[6,[5]], vertices=[["1lin",1],["1in",1.3],["1in",2],["def"]1]);

loop(poly=[6,[56]], vertices=[1,3,["lin",1]]);

Vertices can be modified with a couple of different
modifiers. First, it is possible to define a single
cut-off on each vertex. This is done using the key-
word ‘lin’. If only one parameter is given this is
interpreted as a length to be cut off on both sides,
after which both loose ends are connected using a
straight line. Note that these new points are not
counted as extra vertices, they both stay mem-
ber of the same vertex. It is possible to specify
modification of each vertex by putting them into
succession. Note that the modification is applied
to all remaining vertices. If you need to stop that
process, define the remaining vertices using ‘def’
without parameters.

If only special vertices need to be dressed, you can
indicated this by putting the vertex numbers in
front of the dressing.

loop(poly=[6,[5]], vertices=[1,["lin",1,1.5]]);

It is not obligatory to cut off the portion of the
vertex in a symmetrical manner. You may supply
two parameters, which are then used to shorten the
edges around the specified vertex with the different

values.

Besides the linear cut-off, it is also possible to fill
the space with a curved structure. If one parame-
ter is given, after the cut-off the gap is filled with
an arc with constant curvature that is tangent to
both sides. This gives a symmetrical rounding off

effect.

loop(poly=[4,"flat",[6]], vertices=[2,["arc",1,2]], $fn=20);
loop(poly=[4,"flat",[6]], vertices=[2,["arc",1,2,10]], $fn=20);

If an elliptic rounding off effect is required, you
can specify two different cut off values. An ellipse
that is tangent to both edges will be fitted into the
space. Since this ellipse is not uniquely defined by
both edge ends and their tangents, you may specify
an extra parameter, that determines the size of the
fitted ellipse. This parameter may be any double,
where negative values make it flatter and positive
values make it more convex. Note that, if both cut-
off values are equal, a zero for the third parameter
represents the unique fitting circle.

loop(poly=[4,"flat",[6]], vertices=[1,["bez",2,2,2,1],4,

["bez",2,2,1,2]], $fn=20);

If more than a rounding is needed, it is also pos-
sible to define a Bézier curving within the open
space after cut off. The fitted curve is a predefined
cubic Bézier with the outer points fixed on the ends
of the edges and both other points in the exten-
sion of the edges. Only the distance from the edge
end may be defined (third and fourth parameter),
where a 0 puts it on the cut off point and a 1
puts it on the original vertex location. By putting
the point even further the vertex may be pulled
outside the original figure. Negative values cause
inside bending.

loop([[-5,5],[5,5]1,[5,0],[-5,011, edges=[1,["1in",[0,6]11]1);

L |

loop([[-5,5],[5,5],[5,0],[-5,01], edges=[1,["1lin","cen",

Besides the vertices, also the edges can be modi-
fied. The parameters are defined in the same man-
ner, so selection of which edges to modify is done
by their numbers before the modifier, and if they
are absent, all edges are modified in succession.
The default edge is defined by ‘def’. By using the
‘lin’ keyword, extra points can be added to the
edge. In the example above, one extra point is
added. The edge does not necessarily lie between
the points specified with ‘points’, but are rather
the points as they arise after the cut-off of the ver-
tices has been applied. This even holds true if the
‘edges’ are specified before the the vertices.

[0,1111);

In the former example, the coordinates system is
simple, since our edge is horizontal with the center
on the Y-axis. So if we want to add a point in the
middle one unit elevated, we know we have to pick
[0,6]. However, if the edge is not as situated as
ideal it is much harder to lift the middle one unit
outwards. To that end we may add the keyword
‘cen’. In that case the edge is thought to be lying
on the X-axis, with its middle in the origin (cen-
tralized). Now we can simply define the point as
[0,1]. In real space this implies that it will land
on [0,6]. So this command and the former give the
same result. It is very practical for edges that are
not parallel to the X-axis for they are rotated as
well.

loop(poly=[5,[5]], edges=I[1,["1lin","csx",[-0.1,0],[-0.1,1],[0.1,1],[0.1,0111);

L.

loop(poly=[5,[5]], edges=[["bez","csxy",[0,0.4]111);

L.

Suppose you need an extra “needle” sticking out
distance 1 with a width of 10% of the side. How
to do this? For that we have the transformation
option ‘csx’. It does the same as ‘cen’ does, so a
translation to the center of the edge and a rotation
to become parallel to X-axis, but it also scales the
edge to lay between —1 and +1. Now you can spec-
ify relative coordinates from —0.1 to 0.1 and that
will always be 10% of the edge length. Note btw
that the “needle” is pointing inwards. This is due
to the counter clock orientation of the polygon ver-
tices. Add a ”clock” option to poly to correct this.
The last scaling option we have is ‘csxy’ which also
scales lengths perpendicular to the edge according
to the side length.

It gets more exiting, when we use the Bézier func-
tion on the edges. This is implemented a little dif-
ferently here. Bézier points themselves are speci-
fied, not parameters. The same transformation op-
tions as with ‘lin’ are possible. The specified points
are interpreted as intermediate Bézier point, the
edges ends (after vertex modification) as first and
last point of the Bézier curve. Thus, this Bézier
curve is not limited to cubic, but is fully of N*"-
order.

loop(poly=[10,[5]] , edges=[["bez","csxy",[-0.5,0.5],[0.5,-0.5]1]1, $£fn=20);
loop([[-5,5],[5,5],[5,0],[-5,0]] , edges=[["bez",[-2.5,7.5],[2.5,2.5]]1], $£fn=20);

10

With the Bézier functionality it is possible to make
beautiful and bizarre figures. Please note that the
resulting figures may not be printable (try the lat-
ter yourself) or not even be drawable.

loop([[-5,5],[5,5],[5,0],[-5,01], edges=[1,["wav",5,1,5]], $fn=200);

L.

If you need to define a wobbly edge, or have a lot
of bumps, using Bézier is possible, but not practi-
cal. To that end we can use the keyword ‘wav’. It
has many parameters of which two are obligatory.
Also, all transformations discussed before are us-
able, for the parameters that are lengths. The first
parameter designates the length of the wavy pat-
tern, the second its height. If no other parameters
are given, one single bump is drawn, i.e. a centered
cosine function of half a period. Note that it may
be needed to increase the number of faces quite a
bit, otherwise the whole wave may disappear.

loop([[-5,5],[5,51,[5,0]1,[-5,011, edges=[1,["wav",4,1,4,0,0,-1]11, $fn=200);

L.

It is possible to shift the height in order to make it
nicely fit the edges. In this example we have chosen
for 4 extrema (third parameter, note that each side
counts as half, due to the shift) and we lowered the
whole wave by 1 (-1 in the sixth parameter).

loop([[-5,5],[5,5],[5,0],[-5,01], edges=[1,["wav",4,1,5,2,0.5]], $fn=200);

T

11

The fourth and fifth parameter denote the enve-
lope and phase shift respectively. If an envelope
is used, the width is not rigid any more, but de-
fines the border of a smooth transition between
the wave and the edge. The larger the value the
steeper the transition. The phase shift of 0.5 cor-
responds to an full inversion, with other values,
you may shift the wave to the left or right.

5 Examples, for the 3D loop_extrude() function

loop_extrude(poly=[6,[10]]) circle(l, $£fn=20);

The loop extrusion command extrudes its child
along the loop defined with its parameters. The
child itself can be any 2D object, including a
loop generated by loop(). The parameters of
loop_extrude() resemble those of loop() but there
™~ are a few differences. These will be discussed be-
low. Just as with the standard extrusion com-
mands, the child is rotated from the XY plane to
the ZX plane. As you can see in the picture the
extruder must make a choice how to handle the
extrusion around the vertices, for the size of the
extruded object makes the sharp turn impossible.
) Therefore the largest dimension is used to shorten
K the edge size of the extrusion loop, and both open
x ends are connected.

loop_extrude(poly=[6,[10]], segments=[["out"]]) circle(1l, $fn=20);

The former example shows the vertices being bent
inwards as a result of the size of the extruded ob-
ject. There are two alternatives to this solution.
First, you may define any vertex of the type ‘out’
so that both edges are extended as far as possi-
ble. Note that 3D dressing of the any component
of the extrusion loop (vertex or edge) is called a
segment, numbered from 1 ... 2N, where 1 corre-
sponds to vertex 1, 2 to edge 1, 3 to vertex 2 etc.
So all odd segment numbers represent vertices all
even numbers represent edges.

loop-extrude(poly=[6,[10]], vertices=[["arc",1]]) circle(l, $fn=20);

Another possibility to make better corners is
to smooth the extrusion curve itself. As the
loop_extrude command takes most parameters of
the loop command (those which are not supported
will be discussed later on) we can define an arc on
T g the vertices. The keyword ‘out’ on the segments
is of no use in this case, and is typically only used
to extend sharp edges.

12

loop_extrude(poly=[5,[20]], vertices=[2,["bez",10,15,3,0.5]],$fn=60) circle(l, $fn=20);

Bézier deformation of the vertices is also possible
for loop_extrude() but usually you need a lot of
space to guarantee a smooth extrusion. If insuffi-
cient space is provided, this may result in a sharp
cut off of the corners or the total inability to ren-
der the object. Also the default ‘lin’ keyword is
allowed; no example is provided.

loop-extrude(poly=[4, [10]], vertices=[],$fn=60) loop(poly=[4,"flat",[2]1);
loop-extrude(poly=[4, [10]], segments=[1,["rel",0.70711) loop(poly=[4,"flat",[2]]);

If you extrude a shape with irregular form, the
extruder may have difficulty to determine a lower
bound on the cut off needed at the corners. It may
therefore be too wide (usually it is not to small).
This can be corrected by adding a parameter to the
keyword ‘rel’ (default, or to ‘in’,‘out’ or ‘show’) or
‘abs’, in which case the size will be interpreted as
absolute minimal allowed curvature. In this exam-
ple we need to reduce it by a factor v/2 to make it
fit exactly. Try the latter instruction yourself.

loop_extrude(poly=[4,[10]], edges=[1,["lin",[5,5,2]1]1]) circle(l, $£fn=20);

13

Again, besides the vertices, it is possible to modify
the edges. Parameters are like those that are used
in the loop primitive, but now there is no need
to be limited to two dimensions. So, if we spec-
ify an extra point using ‘lin’, we may also spec-
ify a third coordinate. Without any transforma-
tion modifiers, these are points in absolute space.
As with the vertices, the extrusion is performed
as long as physically possible (to not cause inter-
nal overlap of the exterior walls) and then subse-
quently connected by the shortest route.

loop_extrude(poly=[4, [10]], edges=[1,["bez",[5,5,31]1], $fn=20) circle(l, $fn=20);

The ‘lin’” keyword can be replaced by a Bézier ‘bez’
keyword. In that case the points are interpreted
as Bézier points (in 3D space). Adding a few more
faces may be needed to get a sufficiently smooth
curve. Note that the keyword ‘wav’ is not allowed
in edges, since we could not define a suitable gen-
eralization of a wave in 3D without adding a lot of
new parameters. That would make working with
the option very confusing.

loop_extrude(points=[[0,0,0], [10,0,0],[10,10,0],[10,10,10],[0,10,10],[0,0,10]11) circle(l, $fn=20);

Just as it is possible to use 3D points in the edge
you can directly specify which points are visited in
the first place. These are in absolute coordinates,
per default interpreted as cartesian, but you may
use ‘cylinder’ [r, ¢, z] or ‘sphere’ [r,¢,0] as well.
Note that in the latter case 6 is measured from
the x — y plane, and not from the z-axis. This
is because we want # = 0 to coincide with the
default z = 0. Corners are cut as usual, but the
‘out’ keyword can be used to prohibit that.

loop_extrude(
points=[[0,0,0], [10,0,0], [10,10,0], [10,10,10], [0,10,10], [0,0,10]],
vertices=[["arc",2]],
$£n=20)
circle(l, $£fn=20);

In this case it is also possible to dress the vertices
and edges. In order to dress the segments, a mov-
ing frame is introduced along the curve. This is
a so called Bishop frame, reducing the torsion as
much a possible. Usually this makes smooth con-
nection between the beginning and end possible.
However, this cannot be guaranteed in all circum-
stances.

14

loop_extrude (

points=[[0,0,0],[10,0,01,[10,10,01, [10,10,10], [0,10,101,[0,0,1011,

segments=[2, ["1in","cs1",[0,2,0]]1],
$fn=20)
circle(1, $fn=20);

loop-extrude (
points=[[0,0,0],[10,0,0],[10,10,0], [10,10,10], [0,10,10],[0,0,1011,
vertices=[["arc",2]],
segments=[2,4,6,8,10,12, ["bez","cs1",[-0.6,1,0],[0,3,0],[0.6,1,0]]1],
$£n=50)
circle(1, $fn=50);

15

Segments can be separately dressed. In this case
you can influence the scale (along the radius) and
the angle. Since it is almost impossible to formu-
late this in absolute coordinates, the segment is
translated and rotated (centralized) per default.
You can additionally request for ‘csl’, which then
subsequently scales the length of the segment to
-1..1. The middle is then easily addressed by a
0. The coordinates for segment modulation are in
a moving cylinder frame: [l,r, ¢], with respect to
the local curve (which can be curved by itself).

Apart from ‘lin’ it is also possible to use ‘bez’. In
this particular example we modulated the scale in
such a way the a smooth transition to the rounded
corners arises. Note that, if you want to dress all
edges, you must specify all even numbers.

loop_extrude(
points=[[0,0,01,[10,0,0], [10,10,0], [10,10,10], [0,10,10], [0,0,10]1,
vertices=[["arc",2]],
segments=[2,8, ["bez","cs1",[-0.6,1,0],[0,1,90],[0.6,1,0]1],
$£fn=50)
loop(poly=[6,[1]]1);

loop_extrude(

In order to observe the effect of angular displace-
ment (torsion) you cannot use a circle as ex-
truded object, so in this example we made use of
a hexagon. Note that, in this example there is no
residual torsion between the segments.

points=[[0,0,0],[10,0,0], [10,10,0],[10,10,10], [0,10,10],[0,0,10]],

vertices=[["arc",2]],

segments=[2, ["1in","cs1",[-1,1,0],[0,1,30],[1,1,60]],3, ["1in","cs1", [-1,1,60],[0,1,30],[1,1,0]1],

$£fn=50)
loop(poly=[6,[1]11);

16

If you need an ongoing bending or scaling, just
apply this torsion to every segment, and making
sure the borders (located at [= —1 and [= 1) of
the segments are explicitly defined. If they are not
defined they are implicitly set to [-1,1,0] and [1,1,0]
to ensure continuity. Depending on the form of the
curve, at one joint continuity problems may arise
due to built up torsion.

loop_extrude (
points=[[0,0,0],[10,0,0],[10,10,0], [10,10,10],[0,10,10],[0,0,101],
vertices=[["arc",2]],
segments=[2,4,6,8,10,12, ["wav",4,0.5,3]],
$£n=50)
circle(1, $fn=50);

The last modifier that can be applied to the seg-
ments is the wave. It only affects the scale (so the
angle cannot be modulated), but it enables one
to modulate the width with an ongoing sine wave.
Parameters are as with the two dimensional loop,
but now the default value of the height equals 1
instead of zero (scaling 1 results in the identity
transformation).

loop-extrude(
points=[[0,0,0], [10,0,0], [10,10,0], [10,10,10], [0,10,10], [0,0,10]],
vertices=[["arc",2]],
segments=[2,6, ["hide"]],
$fn=50)
circle(l, $fn=50);

If you do not want or need a complete closed loop,
you may cut out any segment you do not want by
using the ‘hide’ keyword. Open ends are automat-
ically closed by a plane.

17

6 Examples, for the box() function

box() sphere(r=10);

8

box(add=-2, xadd=2) sphere(r=10);

sphere (r=10) ;

box(act=false) sphere(r=10);

/

18

Basic use of the box() function is to replace the
object with the its rectangular bounding box. So
in this example we thai the long route to define an
cube that is not even precisely 10 units long (be-
cause of the render accuracy. The main purpose
for this function is to use it for complex objects of
course. For example to be able to cut a region out
of an other object. It is much faster than hull();
Note that the underlying object itself is removed.

It is possible to shrink or enlarge the boxing box
is all directions (‘add’) or in one specific direction.
Values are added per direction. To make this clear
we redraw the original object. Other directions are
‘yvadd’ and ‘zadd’, which all may be used simulta-
neously.

The last option, which may seem rather pointless
is ‘act’. If it is set to true, box() works as usual
and if set to false, it just passes the child, or a
union of the children, on. The idea is that with
this option it is possible to define a module for an
object once, and choose between the object itself
or its outer boundaries,for example for a cut-out.
See a more sophisticated example below.

7 Examples, for the position() function

position(xmid=0, ymid=0, zmid=0) cube(10);

position(xmin=5, keep=true)
{ sphere(5);
cube(3); }

19

With the position() function you can quickly place
an object somewhere without knowing its location.
Normally you would use translation() for placing
object, but this requires knowledge of the objects
own location. Per coordinate you can choose be-
tween 'min’, mid’, max’. So if you quickly want to
place an object in the center use the construction
above, or choose other values to place it at that
point. If you use ‘xmin’, for example the leftmost
side will be placed to that coordinate. So with po-
sition(xmin=0, ymin=0, zmin=0) the object will
placed in the first quadrant.

The position() command can operate on two ob-
jects. The last object will be used as reference
for the placement of the first. In this example the
sphere is placed with it leftmost side to right of
the cube with a distance of 5. Note that normally
the object of reference will be removed from scene
unless we use the ‘keep’ option. If ‘xmax’ was used
the sphere was placed to the left of the cube, but
due to the shift of 5, would result being covering
the cube. In that case you need a negative value.

8 Other examples.

union()
{ loop-extrude(poly=[6,[10]], vertices=[["arc",3,3,-10]]1) circle(0.5);
linear_extrude(height=3, center=true) loop(poly=[6,[10]11); }

Hexagon with tabs.

-

$fn=20;

module base(axis)

{ rotate(90,axis)
linear_extrude(height=10, center=true, convexity=3)
loop(poly=[4,"flat",[10]], vertices=[["arc",1]], edges=[["wav",2,1]1]); }

intersection()

{ base([1,0,01);
base([0,1,0]);
base([0,0,11); }

Cube with groove and partially rounded edges.

20

$£n=50;

loop-extrude (
poly=[4,[30]],
vertices=[["arc",4]1],
segments=[
2,["bez","cs1",[-1,1, o0],[-0.8,1, 0],[0,1, 45],[0.8,1, 90],[1,1, 9011,
3,["bez","cs1",[-1,1, 90],[1,1, 90]1],
4,["bez","cs1",[-1,1, 90],[-0.8,1, 90],[0,1,135],[0.8,1,180],[1,1,180]1],
5,["bez","cs1",[-1,1,180],[1,1,180]],
6,["bez","cs1",[-1,1,180],[-0.8,1,180],[0,1,225],[0.8,1,270],[1,1,270]],
7,["bez","cs1",[-1,1,270],[1,1,270]],
8, ["bez","cs1",[-1,1,270],[-0.8,1,270],[0,1,315],[0.8,1,360],[1,1,360]11])
union()
{ translate([2, 2]) circle(1);
translate([-2, 2]) circle(1);
translate([2,-2]) circle(1);
translate([-2,-2]) circle(1); }

'
>

'
>

My garden hose, somehow i can never find the be-
ginning.

$fn=50;

loop_extrude(

points=["cylinder", [0,0,0],
[8,0,0]1,[8,90,1]1,[8,180,2],[8,270,3],
[8,0,4]1,[8,90,5],[8,180,6],[8,270,7],
[8,0,8],[8,90,9]1,[8,180,10], [8,270,11],
[8,0,12], [0,0,12]],

vertices=[["arc",5.65],1,15,["arc",2.3]])

circle(1);

Use of cylinder coordinates to draw a helix.

21

$£n=50;

module rotor (marge)
{ box(add=marge, act=(marge>0))
position(xmid=0,ymin=-1,2zmid=0)
{ child(0);
child(1); } }

module emplace(marge)
{ union()
{ rotor(0)
{ child(0);
child(1); }
difference()
{ child(1);
rotor (marge)
{ child(0);
child(1); } } } }

emplace(0.5)
{ rotate([0,90,0]) cylinder(h=2, r=1);
cylinder(r=5, h=1); }

Use the box() and position() functions to place a
rotor in a plate at unknown location.

$£fn=50;
r=163/150;

function p(t) = [3*(2+cos(7*(3*t)/3)) , (3xt) , 3*sin(7*(3*t)/3) 1;
function q(t) = (t%2==0) ?

["1in" , "es1l" , [-1,1,t/2*r] , [1,1,t/2*r]]

["1in" , "esl" , [-1,1,(t-1)/2*r] , [1,1,((t-1)/2+1)*r]];

function pnts(t) = for(i=[0:t-1],p(i));
function segs(t) = for(i=[0:t-1],q(i));

loop-extrude(points="cylinder"+pnts(360) , segments=segs(720)) square([0.8,1.6], center=true);

Use vector generation and addition to make space
curves

22

