
The Redundant File System: Designing a
Resilient and Scalable File System

Devon Slonaker
University of Maryland,

Baltimore County
devons1@umbc.edu

Ben Lagnese
University of Maryland,

Baltimore County
blagnese1@umbc.edu

Abstract—File systems are constantly facing the
challenge of trying to be the most secure and
reliable that they can be. Redundancy is one of the
greatest ways to ensure that a file system does not
face too many adverse effects when something
goes wrong in the system. Redundancy is also one
of the greatest challenges in file systems with
people constantly trying to find the best and most
efficient ways to handle how data is stored, how to
load-balance the system, and how to make the
system feel transparent to an end user.

I. INTRODUCTION
The Redundant File System (RFS) leverages

various techniques to ensure that user data is securely
stored and isn’t lost. Utilizing a Linux-based
environment, RFS is able to built-in functionality to
easily copy, read, and write data from one node to
another. RFS also ensures that data is replicated
across nodes in an optimistic manner using
CODA-like protocols. User data is partitioned into
their own sectors so only users who are owners of
that data can access, read, modify, write, and delete
said data. RFS also ensures resilience in a
catastrophic scenario such as when a storage or
master node goes down. RFS will react in a downed
node scenario to reroute the appropriate data from a
failing node to another node that is still currently
alive. In doing this, there is also a focus on
attempting to give the user a seamless experience
with logging in and accessing their data.

II. ENVIRONMENT
The Redundant File System resides in a

Linux-based environment. This is to ensure less
operating system overhead from a system like
Windows Server which, on average, uses more
resources than Linux. When running a file system,

the environment the system runs on determines how
expensive your cost of operation will be. Using an
environment with more overhead, and thus using
more resources, will not be able to support as many
clients or as much data as a system with less
resource overhead.

The Linux operating system was also chosen
for its built-in tools. Tools such as sshpass, ssh,
touch, and rsync allow for a quick and easy way for
systems to transport files. Instead of creating our own
file sharing protocol, which may have numerous
bugs, vulnerabilities, and exploits, we have opted to
use rsync for file sharing which is a highly matured
file sharing protocol. Rsync was also chosen over
something like SCP for the way it copies files. Rsync
will append new and changed data on copy instead of
outright completely overwriting previous files and
data to make way for an updated version. We feel that
this approach will overall reduce the chance of
corruption of user data as only changed and new data
is copied instead of all the data being overwritten
with new data, even if most of that data is largely the
same as the previous data. The approach of using
rsync also allows for less network overhead since less
things are being copied with rsync as opposed to
something like SCP. Using sshpass, we are able to
run rsync between servers without being prompted
for a password by the ssh handler every time a server
wants to pass data or a file to another server. In this
fashion, we can still have system passwords for
security purposes and still have them enabled for
standard rsync and ssh commands for things such as
administrative purposes and maintenance, but RFS
can internally bypass them to ensure a smooth file
exchanging experience.

The other major tools used in RFS are
Python, Flask, and Python’s OS library. Python is a
very powerful language with many great built-in



tools that make the development of our file system
extremely simple and intuitive. Flask is a web
framework and is the thing that gives our file system
life. It enables us to develop a user-friendly
environment in which anyone is able to use our
system so long as they have a compatible browser.
Flask also allows us to easily transfer data over
HTTP, allows us to take advantage of reading user
input from the web interface, and allows us to list out
files to the users on the web interface. Flask also
makes the upload (write) and download (read of files
very simple for both the user and us as developers. A
user can upload a file and from there we can then do
things with the file in the back end such as versioning
the file and replicating it. Additionally, Flask itself
helps with load balancing through the use of
multi-threading. So not only does this prevent traffic
backup in the system by eliminating the use of just
one single thread, but it also utilizes a more balanced
approach to accessing the system resources. Using
Python’s OS library is another thing that plays a huge
part in the communication in RFS. While Flask
handles front-end communication, Python’s OS
library handles back-end communication between
master-master and storage-storage communication.
The Python OS library allows us to run system
commands within python such as sshpass and rsync
which make communication between servers
seamless for both developers and for the users.

III. ARCHITECTURE
The Redundant File System is set up in a

way in which there are numerous “master” servers
and numerous “storage” servers. The job of the
master server is to keep track of what storage servers
a single user belongs to, monitor the session data of
the user, and ensure that a user is routed to a storage
server in a given session. No file data is ever stored
on or handled by the master server. With the storage
servers, their job is to keep track of all user data
including who the owner or “primary” storage server
is of any given file, allows the user to upload
(write/create), download (read) and delete files, and
also replicates user data among other storage servers
called “replicas”. Because the master server does not
handle any form of user file data, the storage nodes
communicate with one another directly in a form of
peer-to-peer basis. This eliminates any overhead and
bottlenecks from having to constantly communicate

with the master server for file communication, and
also ensures faster file transfer since there is one less
hop a storage server needs to make when it is
working with any given file.

We have put careful thought into the file
hierarchy of the file system to ensure the most
efficient way of handling user files and data. We
eventually settled on a hierarchy in which the file is
not directly stored in a username directory, but
instead a directory with the same name as an
uploaded file is placed into a username directory of a
user and the file is then placed into the corresponding
directory with the same name. We have decided on
this course of action for the file hierarchy so then the
file system can keep track of file versioning. Stored
alongside the file is a version file containing the
current version of the file and the primary storage
server that the file belongs to. The file hierarchy of a
storage server is as followed: FILES (directory) ->
FILE NAME (directory) -> FILE NAME (file) /
VERSION FILE (file).

IV. USER ACTIVITY
When a user initially logs into the master

server, they are greeted to enter in a username. If the
user does not have a username, they can just enter a
new one and a profile will be created for them. If the
user does have a username, they will be given their
files. After the user has submitted their username,
before having access to their files, the master server
will order random storage servers (up to five storage
servers) to ping the user, and the master server will
then sort the round-trip-times (RTTs) of the pings to
find the lowest latency storage server. The random
selection allows for around equal distribution of users
belonging to the storage servers without any one
given storage server being saturated with users and
potentially becoming slow. Because the selection of
nodes is random, we realized that in a real world
scenario with nodes thousands of miles away, this
could potentially create an issue where a user may
possibly be stuck with a slow storage server for their
session. We attempt to remedy this by selecting the
lowest RTT storage server for the user in that user’s
given session. These two techniques just for user
login are great strides towards scalability in the real
world. After sorting the RTTs of the storage servers
to the users and selecting the lowest RTT for the user
in their session, a session is created for the user on



the master server and that session is replicated on the
storage server. After session creation occurs, the user
is then rerouted to said storage server where a session
is created. RFS uses sessions to reroute a user back to
their storage node without having to constantly ping
and sort ips for the user every time the user closes
and opens a new tab. As long as the user is in the
same session, they will be rerouted to the same
storage server as they were connected to at the
beginning of the session. This allows for faster
connection on the user’s end and less overhead on the
server end as there is no need for constant pinging
and sorting which takes up time and resources. Any
servers that the user currently does not have in their
list of known storage servers will be appended to
their list of servers.

When the user is rerouted to their primary
storage server, that storage server is now considered
the “primary” server for any and all files created by
the user in that server. At this point, the user can
begin uploading (writing/creating), downloading
(reading), and deleting files. When a user downloads
a file, the download is handled locally by the current
session storage server. Because the storage server
holds replicas of user files, the user will directly
download the file from the storage server they are
currently connected to. This peer-to-peer download
communication eliminates even more overhead by
preventing the need of going through the master
server to download the file, or the need of making a
connection to the primary storage server of the file
(assuming the current storage server is merely server
a replica of the file) to alleviate another connection
hop both the user and current session storage node
need to take. The specifics about how user write and
delete are handled will be discussed later in this
paper.

V. STORAGE SERVER RESILIENCE
In the event a storage server crashes or shuts

down, we have a protocol that ensures that user data
remains accessible and safe. For all intents and
purposes, we will always assume that a storage server
shuts down gracefully without interruption. When a
storage server is given the shutdown signal, it will
gather information of all the users and append its ip
to an array which it will then send to the current
master server. The master server will receive the

request from the downed storage server, read the ip of
the storage server from the data that was sent over,
and then immediately remove the presence of the
storage server from the list of nodes to prevent
anyone from connecting to it. The master server will
then read every user’s list of storage servers to find if
anyone has the downed storage server in their list of
servers. If so, the master server will remove the
storage server from their list of servers. After that, the
master server will change the session data of the
users currently connected to the downed storage
server to the next available storage server in their list
of servers. We use the next available storage server in
the user’s list of storage servers because since the
storage nodes for the user are sorted by RTT, the next
available storage server is also the new fastest
primary server. The master server also removes all
references of the downed storage server from all
users’ list of storage nodes. After that, the master
server will send data back to the storage server going
down with data of every user regarding their
username, new primary server, and replica servers.
After receiving this information, the downed storage
server will then read the server data of all the users
and then check to see if itself is the primary server of
users’ files. Any file it is the primary server for, it
will change the version file to have the primary
server ip to be the new primary server provided by
the master server, essentially changing ownership of
the file from itself to a replica server that is now the
primary server for its files. After that, it will replicate
the version file to all of that user’s replica servers for
that file to keep everyone up to date on the new
storage server owner. After all of this has happened,
the downed storage server can then be safely shut off.

VI. MASTER SERVER RESILIENCE
In the event a master server goes down, we

have a protocol that ensures that both master server
data and user storage server data remains accessible
and safe. Again, for all intents and purposes, we will
always assume that a master server shuts down
gracefully without interruption. As a definition, a
“shadow” master server is a master server that is not
the current active primary master server. When the
master server is given the shutdown signal, it will
read its list of available shadow master servers and
ping them. The master server that is going down will
copy all of its information to every available shadow



master server for the sake of redundancy. For the sake
of being quick, it will pick the first available
responsive shadow master server to be the new
primary master server. After selecting the new
primary master server, the downed master server will
then send the news to all the available storage servers
that they now have a new master server. When all of
this is completed, the downed master server can
safely be shut off.

As sort of a side effect to the way RFS
implements the use of shadow masters, a shadow
master can still route a user to a storage node.
Although this is unintentional on the end of
development, there is no foreseeable negative impact
in allowing this functionality. If anything, after
ironing out any bugs or issues that could be caused in
the current implementation, this can help with load
balancing on the primary master server.

VII. Optimistic Replication
The Redundant File System uses a robust

optimistic replication approach. Files are replicated
immediately on creation, and afterwards are managed
by version-vector controlled logic. Periodically, each
storage node will loop over all the files it owns to
sync with its replicas. For performance, this occurs
on a fairly slow timer (with some randomness),
which allows for concurrent writes to occur easily. To
manage this, storage nodes maintain a version file
for every file in the system. These version files list
each other replica for that file alongside their
respective version number. The version number for a
node increments for every change it initiates. Each
version number need not match when replication is
complete. Instead, we utilize the causal relationship
between version vectors. If the respective version
numbers between two vectors are equivalent, the file
is synced. When all elements of one vector are
greater or smaller than the other, the smaller vector
can be replaced safely by the larger vector. When
none of these conditions are true, however, one of the
nodes attempts a merge between the two files.

To facilitate the merge, we utilize the linux
diff command. If diff can merge the files without any
conflicting sections, the version vector is updated to
hold the maximum values between the two vectors.
The resulting vector and file are synced between the
two servers and it is finalized as a successful merge.
If diff fails to merge cleanly, however, the file is

marked as a merge conflict. Utilizing a the -D flag on
diff, merge conflicted files are marked with directives
to show which parts of the file conflict. The version
vector and file are then synced between the two
nodes as in a successful merge. To improve the speed
of detecting merge conflicted files, however, an
additional file is created similar to the version file to
indicate the conflict. The conflict must be fixed
manually by uploading a new version. The directives
are used to detect merge conflicts within the file, so if
the file undergoes another merge without removing
those, it will be flagged again as under conflict.

Optimistic replication is also used to handle
deletions. When a file is deleted, it is initially moved
to a deleted directory on the primary server. As part
of its periodic syncing, the node will then ask all
replicas to delete the node as well, moving it into
their deleted directories. Replicas that do this
successfully will also ask replicas to delete the nodes
as well, to ensure no server repeatedly fails to heed
the message from the primary due to conflicting sync
timings. Once all replicas acknowledge a successful
deletion, they delete the file from memory.

VIII. DIAGRAMS

Fig 1. A diagram of 10,000 initial connections being
distributed among their primary storage servers.

IX. REFERENCES
[1] “Repairing Conflicts,”
www.coda.cs.cmu.edu.
http://www.coda.cs.cmu.edu/doc/html/manual/x367.h
tml (accessed Dec. 11, 2023).


