
SYMDIFF Manual
Release 1.0.0

DEVSIM LLC

Contents

Contents iv

List of Tables v

1 Front Matter 1
1.1 Contact . 1
1.2 Copyright . 1
1.3 Documentation License . 1
1.4 Disclaimer . 1
1.5 Trademark . 1

2 Release Notes 3
2.1 Introduction . 3
2.2 Release 1.0.0 (May 7, 2019) . 3

3 Introduction 5
3.1 Getting Started . 5
3.2 Using the Tool . 5
3.3 Tcl version . 6

4 Syntax 7
4.1 Variables and Numbers . 7
4.2 Basic Expressions . 8
4.3 Commands . 9
4.4 User functions . 10
4.5 Models . 10
4.6 Macro Assignment . 12
4.7 Handling Exceptions . 12
4.8 Table Output . 12

5 Generating Source Code 15
5.1 model_list . 15
5.2 ordered_list . 15
5.3 remove_zeros . 16
5.4 subexpression . 16

6 Additional Information 17
6.1 Other Examples . 17

iii

6.2 Licenses . 17

7 Installation 19
7.1 Download . 19
7.2 Supported Platforms . 19
7.3 Directory Structure . 19

Bibliography 21

iv

List of Tables

4.1 Basic expressions involving unary, binary, and logical operators. 8
4.2 Predefined Functions. 9
4.3 Commands. 9
4.4 Commands for user functions. 10
4.5 Commands for models. 11

v

vi

Chapter 1

Front Matter

1.1 Contact

Web: https://devsim.com
Email: info@devsim.com
Open Source Project: https://symdiff.org

1.2 Copyright

Copyright © 2009–2019 DEVSIM LLC

1.3 Documentation License

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/.

1.4 Disclaimer

DEVSIM LLC MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

1.5 Trademark

DEVSIM is a registered trademark and SYMDIFF is a trademark of DEVSIM LLC. All other product or
company names are trademarks of their respective owners.

1

https://devsim.com
mailto:info@devsim.com
https://symdiff.org
http://creativecommons.org/licenses/by-nd/4.0/

SYMDIFF Manual, Release 1.0.0

2 Chapter 1. Front Matter

Chapter 2

Release Notes

2.1 Introduction

2.2 Release 1.0.0 (May 7, 2019)

The version number has been updated to having a major revision of 1. We adopt the semantic version num-
bering presented at https://semver.org. The version number can be accessed through the Python interface
using the symdiff.__version__ variable.

This is the first versioned release of SYMDIFF. Using the stable ABI, the software is able to run newer
Python 3 releases, without rebuilding the software.

Unlike previous revisions of software, Python 2.7, is removed from the build.

3

https://semver.org

SYMDIFF Manual, Release 1.0.0

4 Chapter 2. Release Notes

Chapter 3

Introduction

3.1 Getting Started

SYMDIFF is a computer algebra tool capable of taking symbolic derivatives. Using a natural syntax, it
is possible to manipulate symbolic equations to aid derivation of equations for a variety of applications.
Additional commands provide the means to simplify results, create common subexpressions, and order
expressions for use as source code in a computer program. With its Python and Tcl interpreters, you have
the ability to create algorithms to generate equations programatically.

SYMDIFF is available from https://symdiff.org. The source code is available under the terms of the Apache
License Version 2.0 [ApacheSoftwareFoundation]. Examples are released under the Apache License Version
2.0 [ApacheSoftwareFoundation]. Contributions to this project are welcome in the form of bug reporting,
documentation, modeling, and feature implementation.

3.2 Using the Tool

3.2.1 Interactive Mode

The tool is invoked by typing symdiff on the command line. On some platforms, the application may
also be started by clicking on the application name in a file manager. A Python shell is started. In this
introduction, we start by importing the module into the global namespace:

>>> from symdiff import *

We can then start executing SYMDIFF commands.

>>> symdiff ('x^y')
'pow(x,y)'

In this expression, both x and y are independent variables. To differentiate the expression with respect to x,
we type the following:

5

https://symdiff.org

SYMDIFF Manual, Release 1.0.0

>>> symdiff('diff(x^y,x)')
'(y * pow(x,(y - 1)))'

By default, any non-numeric string which is not already a function name is treated as an independent vari-
able.

If we wish to simplify the expression, we do the following

>>> symdiff('simplify(x*x+ 2*x^2)')
'(3 * pow(x,2))'

and to expand out an expression

>>> symdiff('expand((x+ y)*x)')
'((x * y) + pow(x,2))'

A semicolon ; is used to send multiple commands to the interpreter, but it is not recommended, as it makes
debugging more difficult.

3.2.2 Script Mode

With its built-in Python interpreter, SYMDIFF will execute a script and can be invoked on the command
line of your terminal program as:

symdiff myfile.py

where myfile.py is the name of your input file.

3.2.3 Unicode

The Python interpreter, by default, only allows ASCII characters. In order to enable unicode in your
Python scripts, the following line on the first or second line of the script should contain:

-*- coding: utf-8 -*-

This assumes that the source file is written using utfeight. In interactive mode, using unicode is not
recommended, based on issues in setting the environment properly for the Python interpreter.

3.3 Tcl version

A Tcl interface to SYMDIFF is also available by starting symdiff_tcl. In order to use SYMDIFF in the
Tcl intepreter, the following line is required:

% package require symdifftcl

6 Chapter 3. Introduction

Chapter 4

Syntax

4.1 Variables and Numbers

Variables and numbers are the basic building blocks for expressions. A variable is defined as any sequence of
characters not beginning with a number or underscore, (_), followed by any number of characters. Note that
the letters are case sensitive so that a and A are not the same variable. Any other characters are considered
to be either mathematical operators or invalid, even if there is no space between the character and the rest of
the variable name.

SYMDIFF supports unicode character sets, so that special characters such as 𝜓 can be used. Note however
this feature should be used carefully when generating source code since these characters are not valid input
for many computer languages. Please see Unicode (page 6) for more information.

Examples of valid variable names are:

• a, dog, var1, var_2

Numbers can be integer or floating point. Scientific notation is accepted as a valid syntax. For example:

• 1.0, 1.0e-2, 3.4E-4

7

SYMDIFF Manual, Release 1.0.0

4.2 Basic Expressions

Table 4.1: Basic expressions involving unary, binary, and logical
operators.

Expression Description
(exp1) Parenthesis for changing precedence

+exp1 Unary Plus
-exp1 Unary Minus
!exp1 Logical Not

exp1 ^ exp2 Exponentiation

exp1 * exp2 Multiplication
exp1 / exp2 Division

exp1 + exp2 Addition
exp1 - exp2 Subtraction

exp1 < exp2 Test Less
exp1 <= exp2 Test Less Equal
exp1 > exp2 Test Greater
exp1 >= exp2 Test Greater Equal

exp1 == exp2 Test Equality
exp1 != exp2 Test Inequality

exp1 && exp2 Logical And

exp1 || exp2 Logical Or

variable Independent Variable
number Integer or decimal number

In Table 4.1, the basic syntax for the language is presented. An expression may be composed of variables
and numbers joined with mathematical operators. Order of operations is from bottom to top in order of
increasing precedence. Operators with the same level of precedence are contained within horizontal lines.

In the expression a + b * c, the multiplication will be performed before the addition. In
order to override this precedence, parenthesis are used. For example, in (a + b) * c, the
addition operation is performed before the multiplication.

8 Chapter 4. Syntax

SYMDIFF Manual, Release 1.0.0

4.2.1 Functions

Table 4.2: Predefined Functions.
Function Description
exp(exp1) exponent
log(exp1) natural log
pow(exp1, exp2) take exp1 to the power of exp2
ifelse(test, exp1, exp2) if test is true, then evaluate exp1, otherwise exp2
if(test, exp) if test is true, then evaluate exp, otherwise 0

In Table 4.2 are the built in functions of SYMDIFF. Note that the pow function uses the , operator to separate
arguments. In addition an expression like pow(a,b+y) is equivalent to an expression like a^(b+y).
Both exp and log are provided since many derivative expressions can be expressed in terms of these two
functions. It is possible to nest expressions within functions and vice-versa.

Special care should be used when using the exponentiation operator, since the unary minus has a higher
precedence than the exponentiation operator.

>>> symdiff('x^-1 + 3')
'(pow(x,(-1)) + 3)'
>>> symdiff('-x^3')
'pow((-x),3)'

Parenthesis are recommended to avoid ambiguity in this situation.

4.3 Commands

Table 4.3: Commands.
Command Description
diff(obj1, var) Take derivative of obj1 with respect to variable var
expand(obj) Expand out all multiplications into a sum of products
scale(obj) Get constant factor
sign(obj) Get sign as 1 or -1
simplify(obj) Simplify as much as possible
subst(obj1,obj2,obj3) substitute obj3 for obj2 into obj1
unscaledval(obj) Get value without constant scaling
unsignedval(obj) Get unsigned value

Commands are shown in Table 4.3. While they appear to have the same form as functions, they are special
in the sense that they manipulate expressions and are never present in the expression which results. For
example, note the result of the following command

> diff(a*b, b)
a

4.3. Commands 9

SYMDIFF Manual, Release 1.0.0

4.4 User functions

Table 4.4: Commands for user functions.
Command Description
clear(name) Clears the name of a user function
declare(name(arg1, arg2,
...))

declare function name taking dummy arguments arg1, arg2,
. . . . Derivatives assumed to be 0

define(name(arg1, arg2,
...), obj1, obj2, ...)

declare function name taking arguments arg1, arg2, . . . hav-
ing corresponding derivatives obj1, obj2, . . .

Commands for specifying and manipulating user functions are listed in Table 4.4. They are used in order to
define new user function, as well as the derivatives of the functions with respect to the user variables. For
example, the following expression defines a function named f which takes one argument.

> define(f(x), 0.5*x)

The list after the function protoype is used to define the derivatives with respect to each of the independent
variables. Once defined, the function may be used in any other expression. In addition, any expression can
be used as an argument. For example:

>>> symdiff('diff(f(x*y),x)')
'(5.000000000000000e-01 * x * y * y)'
>>> symdiff('simplify(5.000000000000000e-01 * x * y * y)')
'(5.000000000000000e-01 * x * pow(y,2)'

𝜕

𝜕𝑥
𝑓 (𝑢, 𝑣, . . .) =

𝜕𝑢

𝜕𝑥
· 𝜕
𝜕𝑢
𝑓 (𝑢, 𝑣, . . .) +

𝜕𝑣

𝜕𝑥
· 𝜕
𝜕𝑣
𝑓 (𝑢, 𝑣, . . .) + . . .

The declare command is required when the derivatives of two user functions are based on one another.
For example:

>>> symdiff('declare(cos(x))')
'cos(x)'
>>> symdiff('define(sin(x),cos(x))')
'sin(x)'
>>> symdiff('define(cos(x),-sin(x))')
'cos(x)'

When declared, a functions derivatives are set to 0, unless specified with a define command. It is now
possible to use these expressions as desired.

>>> symdiff('diff(sin(cos(x)),x)')
'(-cos(cos(x)) * sin(x))'

4.5 Models

Models are a feature unique to SYMDIFF. They are used to specify symbolic names which have a definition
in a symbolic expression. The most useful property of a model, is that taking the derivative of the model

10 Chapter 4. Syntax

SYMDIFF Manual, Release 1.0.0

with respect to a parameter results in a new model being created.

For example:

>>> symdiff('define_model(c, (a^2 + b^2)^0.5)')
'c'
>>> symdiff('diff(c,a)')
'c__a'
>>> symdiff('diff(c,b)')
'c__b'
>>> symdiff('model_value(c__a)')
'(a * pow((pow(a,2) + pow(b,2)),(-5.000000000000000e-01)))'
>>> symdiff('model_value(c__b)')
'(b * pow((pow(a,2) + pow(b,2)),(-5.000000000000000e-01)))'

For models which are declared, but not defined, it resolves to a special value of UNDEFINED. This example
is called undefined1.py in the examples

symdiff('declare_model(y)')
symdiff('define_model(x, 3 * y + z)')
symdiff('diff(x, z)')
print('%s' % symdiff('model_value(x)'))
print('%s' % symdiff('model_value(x__z)'))
print('%s' % symdiff('model_value(y__z)'))

((3 * y) + z)
(1 + (3 * y__z))
UNDEFINED

Clearing a model removes its name from the list of models. Subsequent evaluation of new expressions will
treat this name as a variable or function name. Care should be taken when other models depending on the
cleared model remain.

>>> symdiff('declare_model(y)')
'y'
>>> symdiff('diff(y,x)')
'y__x'
>>> symdiff('clear_model(y)')
'0'
>>> symdiff('diff(y,x)')
'0'

Table 4.5: Commands for models.
Command Description
clear_model(name) clear model name
declare_model(name) declare model name
define_model(name, exp) define model having expression
model_value(name) retrieve expression for model

Commands for specifying and manipulating models are listed in Table 4.5.

4.5. Models 11

SYMDIFF Manual, Release 1.0.0

4.6 Macro Assignment

The use of macro assignment allows the substitution of expressions into new expressions. Every time a
command is successfully used, the resulting expression is assigned to a special macro definition, $_.

In this example, the result of the each command is substituted into the next.

>>> symdiff('a + b')
'(a + b)'
>>> symdiff('$_ - b')
'(a + b - b)'
>>> symdiff('simplify($_)')
'a'

In addition to the default macro definition, it is possible to specify a variable identifier by using the \$
character followed by an alphanumeric string beginning with a letter. In addition to letters and numbers, a _
character may be used as well. A macro which has not previously assigned will implicitly use 0 as its value.

This example demonstrates the use of macro assignment.

>>> symdiff('$a1 = a + b')
'(a + b)'
>>> symdiff('$a2 = a - b')
'(a - b)'
>>> symdiff('simplify($a1+$a2)')
'(2 * a)'

4.7 Handling Exceptions

If a SYMDIFF evaluation results in an error an exception of type symdiff.SymdiffError will be
thrown. It may be caught and printed as a string:

try:
out = symdiff(arg)

except SymdiffError as x:
out = x

print out

4.8 Table Output

symdiff_table command is like the symdiff command, except that it creates a table for the expres-
sion. The last row is the full expression, and it is made up of entries in the previous rows. Each column of a
row is

0. The name of the operator

1. The operator type

2. A list of indexes for the operator arguments into the table

12 Chapter 4. Syntax

SYMDIFF Manual, Release 1.0.0

3. A list of indexes of operators in other rows using this row as an argument

4. The full string value of the expression composed of this row and the rows it depends on

Example output for the code

symdiff('declare_model(x)')
for i, v in enumerate(symdiff_table('a*x + b*c')):
print '%s %s' % (i, v)

is

0 ('a', 'variable', (), (2L,), 'a')
1 ('x', 'model', (), (2L,), 'x')
2 ('*', 'product', (0L, 1L), (6L,), '(a * x)')
3 ('b', 'variable', (), (5L,), 'b')
4 ('c', 'variable', (), (5L,), 'c')
5 ('*', 'product', (3L, 4L), (6L,), '(b * c)')
6 ('+', 'add', (2L, 5L), (), '((a * x) + (b * c))')

4.8. Table Output 13

SYMDIFF Manual, Release 1.0.0

14 Chapter 4. Syntax

Chapter 5

Generating Source Code

5.1 model_list

This command prints a list of all models which have been defined up to this point in the execution of
SYMDIFF. This is shown in the modellist1.py example:

symdiff('declare_model(x)')
symdiff('declare_model(y)')
l = model_list()
for i in l:

print('%s' % i)

The resulting output is then:

x
y

5.2 ordered_list

This command takes a list of 1 or more model names. The resulting list is in the order necessary to ensure
that the models are evaluated in the correct order. In this example, ordered.py, we define 2 models, and
SYMDIFF prints what order the models would have to be defined.

symdiff('define_model(b, a)')
symdiff('define_model(d, b * c)')
mylist = ordered_list('d')
for i in mylist:

print('%s' % i)

The resulting output is then:

b
d

15

SYMDIFF Manual, Release 1.0.0

For ordering multiple model names, pass multiple names, or a list using this syntax.

ordered_list('a', 'b')
args = ('a', 'b')
ordered_list(*args)

5.3 remove_zeros

This command removes all models whose evaluation results in 0. Any models which rely on the definition
of models will substitute a 0 in their expression for this model. This is shown in the remove1.py example.

symdiff('define_model(x, 0)')
symdiff('define_model(y, x + z)')
remove_zeros()
print('%s' % symdiff('model_value(y)'))

The resulting output is then:

z

5.4 subexpression

This command will evaluate all of the currently defined models and find common sub expressions. If more
than one dependent model uses the same sub-expression, SYMDIFF will automatically substitute it with a
new model with a generated name, as shown in the subexpression1.py example.

symdiff('define_model(x, simplify(y * z))')
symdiff('define_model(z, simplify(z * y))')
subexpression()
l = model_list()
for i in l:

print("%s, %s" % (i, symdiff('model_value(%s)' % i)))

The resulting output is then:

unique0, (y * z)
x, unique0
z, unique0

The use of the simplify method is important to ensure that the subexpression elimination algorithm can
recognize the common expressions.

16 Chapter 5. Generating Source Code

Chapter 6

Additional Information

6.1 Other Examples

The arrhenius.py example demonstrates the use of all of the model manipulation algorithms. The
utf8.py is an example using unicode encoding.

6.2 Licenses

6.2.1 SYMDIFF

Copyright 2012-2016 Devsim LLC

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

6.2.2 Python

The Python license is available by typing license() in an interactive session. More information is
available from their website at http://www.python.org.

17

http://www.python.org

SYMDIFF Manual, Release 1.0.0

6.2.3 Tcl

The Tcl license is may be viewed at http://www.tcl.tk/software/tcltk/license.html.

18 Chapter 6. Additional Information

http://www.tcl.tk/software/tcltk/license.html

Chapter 7

Installation

7.1 Download

SYMDIFF is currently released as a source code distribution. The software download is available at http:
//github.com/devsim/symdiff. Installation notes are in the INSTALL file in the source code distribution as
well as on the project website.

7.2 Supported Platforms

Currently supported platforms are Linux, Apple Mac OS X, and Microsoft Windows.

7.3 Directory Structure

A symdiff directory is created with the following sub directories.

bin contains the SYMDIFF invocation scripts
doc contains SYMDIFF documentation
lib contains runtime libraries
examples contains example scripts
testing contains example scripts using the Tcl interface

19

http://github.com/devsim/symdiff
http://github.com/devsim/symdiff

SYMDIFF Manual, Release 1.0.0

20 Chapter 7. Installation

Bibliography

[ApacheSoftwareFoundation] Apache Software Foundation. Apache License, Version 2.0. URL: http:
//www.apache.org/licenses/LICENSE-2.0.html.

21

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

	Contents
	List of Tables
	Front Matter
	Contact
	Copyright
	Documentation License
	Disclaimer
	Trademark

	Release Notes
	Introduction
	Release 1.0.0 (May 7, 2019)

	Introduction
	Getting Started
	Using the Tool
	Tcl version

	Syntax
	Variables and Numbers
	Basic Expressions
	Commands
	User functions
	Models
	Macro Assignment
	Handling Exceptions
	Table Output

	Generating Source Code
	model_list
	ordered_list
	remove_zeros
	subexpression

	Additional Information
	Other Examples
	Licenses

	Installation
	Download
	Supported Platforms
	Directory Structure

	Bibliography

