Skip to content
Object Detection: HOG, Random Forest, and NMS.
Jupyter Notebook C++ Other
Branch: master-clean
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.ipynb_checkpoints
external
.gitignore
Dataset.cpp
Dataset.h
HOG.cpp
HOG.h
LogReg.cpp
LogReg.h
Logger.h
Makefile
Object Detection Analysis.ipynb
Object Detection.png
PR Curve.ipynb
README.md
RandomForrest.cpp
RandomForrest.h
RegionProposal.cpp
RegionProposal.h
SVM.cpp
SVM.h
SVM_SLIDING.jpeg
benchmark_task3.sh
helpers.cpp
selsearch.jpeg
sliding_window.cpp
task1.cpp
task2.cpp
task3.cpp

README.md

TDCV Exercise 2: Object Detection

Yehya Abouelnaga, Balamurugan Thambiraja, Kamel Guerda

Supervised By:

Dr. Slobodan Ilic
Tracking & Detection in Computer Vision
Technical University of Munich (TUM)
WS 2017/18

Introduction

Pipeline

Compile The Code

In order to build the project, you need to run:

make

That shall yield in three different executables for each part of the assignments:

./task1
./task2
./task3

Resources:

BBox Generation: Selective Search

  1. https://github.com/watanika/selective-search-cpp
  2. https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Classification Accuracy Evaluation

  1. https://github.com/ashokpant/accuracy-evaluation-cpp
You can’t perform that action at this time.