Skip to content
Branch: main
Go to file
Code

Latest commit

dfm committed c14b212 Feb 27, 2020
avoid using the rootlogger

Files

Permalink
Failed to load latest commit information.

README.rst

emcee

The Python ensemble sampling toolkit for affine-invariant MCMC

https://img.shields.io/badge/GitHub-dfm%2Femcee-blue.svg?style=flat http://img.shields.io/travis/dfm/emcee/master.svg?style=flat https://ci.appveyor.com/api/projects/status/p8smxvleh8mrcn6m?svg=true&style=flat http://img.shields.io/badge/license-MIT-blue.svg?style=flat http://img.shields.io/badge/arXiv-1202.3665-orange.svg?style=flat https://coveralls.io/repos/github/dfm/emcee/badge.svg?branch=master&style=flat&v=2 https://readthedocs.org/projects/emcee/badge/?version=latest

emcee is a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the Astrophysics literature.

Documentation

Read the docs at emcee.readthedocs.io.

Attribution

Please cite Foreman-Mackey, Hogg, Lang & Goodman (2012) if you find this code useful in your research and add your paper to the testimonials list. The BibTeX entry for the paper is:

@article{emcee,
   author = {{Foreman-Mackey}, D. and {Hogg}, D.~W. and {Lang}, D. and {Goodman}, J.},
    title = {emcee: The MCMC Hammer},
  journal = {PASP},
     year = 2013,
   volume = 125,
    pages = {306-312},
   eprint = {1202.3665},
      doi = {10.1086/670067}
}

License

Copyright 2010-2019 Dan Foreman-Mackey and contributors.

emcee is free software made available under the MIT License. For details see the LICENSE file.

You can’t perform that action at this time.