diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 95ba7613f4c6..b87cfac16e47 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -254,6 +254,8 @@ title: Euler scheduler - local: api/schedulers/heun title: Heun Scheduler + - local: api/schedulers/multistep_dpm_solver_inverse + title: Inverse Multistep DPM-Solver - local: api/schedulers/ipndm title: IPNDM - local: api/schedulers/lms_discrete diff --git a/docs/source/en/api/schedulers/multistep_dpm_solver_inverse.mdx b/docs/source/en/api/schedulers/multistep_dpm_solver_inverse.mdx new file mode 100644 index 000000000000..1b3348a5a3ea --- /dev/null +++ b/docs/source/en/api/schedulers/multistep_dpm_solver_inverse.mdx @@ -0,0 +1,22 @@ + + +# Inverse Multistep DPM-Solver (DPMSolverMultistepInverse) + +## Overview + +This scheduler is the inverted scheduler of [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://arxiv.org/abs/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models +](https://arxiv.org/abs/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. +The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/pdf/2211.09794.pdf) and the ad-hoc notebook implementation for DiffEdit latent inversion [here](https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/diffedit.ipynb). + +## DPMSolverMultistepInverseScheduler +[[autodoc]] DPMSolverMultistepInverseScheduler diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 0888d8781f98..53f79127e5c3 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -76,6 +76,7 @@ DDIMScheduler, DDPMScheduler, DEISMultistepScheduler, + DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, diff --git a/src/diffusers/schedulers/__init__.py b/src/diffusers/schedulers/__init__.py index c4b62c722257..05414e32fc9e 100644 --- a/src/diffusers/schedulers/__init__.py +++ b/src/diffusers/schedulers/__init__.py @@ -33,6 +33,7 @@ from .scheduling_ddpm import DDPMScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler + from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py b/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py new file mode 100644 index 000000000000..b424ebbff262 --- /dev/null +++ b/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py @@ -0,0 +1,701 @@ +# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver + +import math +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch + +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + + +# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of + (1-beta) over time from t = [0,1]. + + Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up + to that part of the diffusion process. + + + Args: + num_diffusion_timesteps (`int`): the number of betas to produce. + max_beta (`float`): the maximum beta to use; use values lower than 1 to + prevent singularities. + + Returns: + betas (`np.ndarray`): the betas used by the scheduler to step the model outputs + """ + + def alpha_bar(time_step): + return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 + + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + + +class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin): + """ + DPMSolverMultistepInverseScheduler is the reverse scheduler of [`DPMSolverMultistepScheduler`]. + + We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space + diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic + thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as + stable-diffusion). + + [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` + function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. + [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and + [`~SchedulerMixin.from_pretrained`] functions. + + Args: + num_train_timesteps (`int`): number of diffusion steps used to train the model. + beta_start (`float`): the starting `beta` value of inference. + beta_end (`float`): the final `beta` value. + beta_schedule (`str`): + the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from + `linear`, `scaled_linear`, or `squaredcos_cap_v2`. + trained_betas (`np.ndarray`, optional): + option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. + solver_order (`int`, default `2`): + the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided + sampling, and `solver_order=3` for unconditional sampling. + prediction_type (`str`, default `epsilon`, optional): + prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion + process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 + https://imagen.research.google/video/paper.pdf) + thresholding (`bool`, default `False`): + whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). + For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to + use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion + models (such as stable-diffusion). + dynamic_thresholding_ratio (`float`, default `0.995`): + the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen + (https://arxiv.org/abs/2205.11487). + sample_max_value (`float`, default `1.0`): + the threshold value for dynamic thresholding. Valid only when `thresholding=True` and + `algorithm_type="dpmsolver++`. + algorithm_type (`str`, default `dpmsolver++`): + the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++` or `sde-dpmsolver` or + `sde-dpmsolver++`. The `dpmsolver` type implements the algorithms in https://arxiv.org/abs/2206.00927, and + the `dpmsolver++` type implements the algorithms in https://arxiv.org/abs/2211.01095. We recommend to use + `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling (e.g. stable-diffusion). + solver_type (`str`, default `midpoint`): + the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects + the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are + slightly better, so we recommend to use the `midpoint` type. + lower_order_final (`bool`, default `True`): + whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically + find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. + use_karras_sigmas (`bool`, *optional*, defaults to `False`): + This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the + noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence + of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf. + lambda_min_clipped (`float`, default `-inf`): + the clipping threshold for the minimum value of lambda(t) for numerical stability. This is critical for + cosine (squaredcos_cap_v2) noise schedule. + variance_type (`str`, *optional*): + Set to "learned" or "learned_range" for diffusion models that predict variance. For example, OpenAI's + guided-diffusion (https://github.com/openai/guided-diffusion) predicts both mean and variance of the + Gaussian distribution in the model's output. DPM-Solver only needs the "mean" output because it is based on + diffusion ODEs. whether the model's output contains the predicted Gaussian variance. For example, OpenAI's + guided-diffusion (https://github.com/openai/guided-diffusion) predicts both mean and variance of the + Gaussian distribution in the model's output. DPM-Solver only needs the "mean" output because it is based on + diffusion ODEs. + """ + + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__( + self, + num_train_timesteps: int = 1000, + beta_start: float = 0.0001, + beta_end: float = 0.02, + beta_schedule: str = "linear", + trained_betas: Optional[Union[np.ndarray, List[float]]] = None, + solver_order: int = 2, + prediction_type: str = "epsilon", + thresholding: bool = False, + dynamic_thresholding_ratio: float = 0.995, + sample_max_value: float = 1.0, + algorithm_type: str = "dpmsolver++", + solver_type: str = "midpoint", + lower_order_final: bool = True, + use_karras_sigmas: Optional[bool] = False, + lambda_min_clipped: float = -float("inf"), + variance_type: Optional[str] = None, + ): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == "linear": + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == "scaled_linear": + # this schedule is very specific to the latent diffusion model. + self.betas = ( + torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 + ) + elif beta_schedule == "squaredcos_cap_v2": + # Glide cosine schedule + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") + + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + # Currently we only support VP-type noise schedule + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + + # standard deviation of the initial noise distribution + self.init_noise_sigma = 1.0 + + # settings for DPM-Solver + if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]: + if algorithm_type == "deis": + self.register_to_config(algorithm_type="dpmsolver++") + else: + raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") + + if solver_type not in ["midpoint", "heun"]: + if solver_type in ["logrho", "bh1", "bh2"]: + self.register_to_config(solver_type="midpoint") + else: + raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") + + # setable values + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32).copy() + self.timesteps = torch.from_numpy(timesteps) + self.model_outputs = [None] * solver_order + self.lower_order_nums = 0 + self.use_karras_sigmas = use_karras_sigmas + + def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): + """ + Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. + + Args: + num_inference_steps (`int`): + the number of diffusion steps used when generating samples with a pre-trained model. + device (`str` or `torch.device`, optional): + the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + """ + # Clipping the minimum of all lambda(t) for numerical stability. + # This is critical for cosine (squaredcos_cap_v2) noise schedule. + clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.lambda_min_clipped) + self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx + timesteps = ( + np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64) + ) + + if self.use_karras_sigmas: + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + timesteps = timesteps.copy().astype(np.int64) + + # when num_inference_steps == num_train_timesteps, we can end up with + # duplicates in timesteps. + _, unique_indices = np.unique(timesteps, return_index=True) + timesteps = timesteps[np.sort(unique_indices)] + + self.timesteps = torch.from_numpy(timesteps).to(device) + + self.num_inference_steps = len(timesteps) + + self.model_outputs = [ + None, + ] * self.config.solver_order + self.lower_order_nums = 0 + + # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample + def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: + """ + "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the + prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by + s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing + pixels from saturation at each step. We find that dynamic thresholding results in significantly better + photorealism as well as better image-text alignment, especially when using very large guidance weights." + + https://arxiv.org/abs/2205.11487 + """ + dtype = sample.dtype + batch_size, channels, height, width = sample.shape + + if dtype not in (torch.float32, torch.float64): + sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half + + # Flatten sample for doing quantile calculation along each image + sample = sample.reshape(batch_size, channels * height * width) + + abs_sample = sample.abs() # "a certain percentile absolute pixel value" + + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp( + s, min=1, max=self.config.sample_max_value + ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] + + s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 + sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" + + sample = sample.reshape(batch_size, channels, height, width) + sample = sample.to(dtype) + + return sample + + # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t + def _sigma_to_t(self, sigma, log_sigmas): + # get log sigma + log_sigma = np.log(sigma) + + # get distribution + dists = log_sigma - log_sigmas[:, np.newaxis] + + # get sigmas range + low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + + # interpolate sigmas + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + + # transform interpolation to time range + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras + def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor: + """Constructs the noise schedule of Karras et al. (2022).""" + + sigma_min: float = in_sigmas[-1].item() + sigma_max: float = in_sigmas[0].item() + + rho = 7.0 # 7.0 is the value used in the paper + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output + def convert_model_output( + self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor + ) -> torch.FloatTensor: + """ + Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. + + DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to + discretize an integral of the data prediction model. So we need to first convert the model output to the + corresponding type to match the algorithm. + + Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or + DPM-Solver++ for both noise prediction model and data prediction model. + + Args: + model_output (`torch.FloatTensor`): direct output from learned diffusion model. + timestep (`int`): current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + current instance of sample being created by diffusion process. + + Returns: + `torch.FloatTensor`: the converted model output. + """ + + # DPM-Solver++ needs to solve an integral of the data prediction model. + if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: + if self.config.prediction_type == "epsilon": + # DPM-Solver and DPM-Solver++ only need the "mean" output. + if self.config.variance_type in ["learned", "learned_range"]: + model_output = model_output[:, :3] + alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == "sample": + x0_pred = model_output + elif self.config.prediction_type == "v_prediction": + alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError( + f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" + " `v_prediction` for the DPMSolverMultistepScheduler." + ) + + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + + return x0_pred + + # DPM-Solver needs to solve an integral of the noise prediction model. + elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: + if self.config.prediction_type == "epsilon": + # DPM-Solver and DPM-Solver++ only need the "mean" output. + if self.config.variance_type in ["learned", "learned_range"]: + epsilon = model_output[:, :3] + else: + epsilon = model_output + elif self.config.prediction_type == "sample": + alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] + epsilon = (sample - alpha_t * model_output) / sigma_t + elif self.config.prediction_type == "v_prediction": + alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] + epsilon = alpha_t * model_output + sigma_t * sample + else: + raise ValueError( + f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" + " `v_prediction` for the DPMSolverMultistepScheduler." + ) + + if self.config.thresholding: + alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] + x0_pred = (sample - sigma_t * epsilon) / alpha_t + x0_pred = self._threshold_sample(x0_pred) + epsilon = (sample - alpha_t * x0_pred) / sigma_t + + return epsilon + + # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update + def dpm_solver_first_order_update( + self, + model_output: torch.FloatTensor, + timestep: int, + prev_timestep: int, + sample: torch.FloatTensor, + noise: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + """ + One step for the first-order DPM-Solver (equivalent to DDIM). + + See https://arxiv.org/abs/2206.00927 for the detailed derivation. + + Args: + model_output (`torch.FloatTensor`): direct output from learned diffusion model. + timestep (`int`): current discrete timestep in the diffusion chain. + prev_timestep (`int`): previous discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + current instance of sample being created by diffusion process. + + Returns: + `torch.FloatTensor`: the sample tensor at the previous timestep. + """ + lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] + alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] + sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep] + h = lambda_t - lambda_s + if self.config.algorithm_type == "dpmsolver++": + x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output + elif self.config.algorithm_type == "dpmsolver": + x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output + elif self.config.algorithm_type == "sde-dpmsolver++": + assert noise is not None + x_t = ( + (sigma_t / sigma_s * torch.exp(-h)) * sample + + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output + + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + ) + elif self.config.algorithm_type == "sde-dpmsolver": + assert noise is not None + x_t = ( + (alpha_t / alpha_s) * sample + - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output + + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + ) + return x_t + + # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update + def multistep_dpm_solver_second_order_update( + self, + model_output_list: List[torch.FloatTensor], + timestep_list: List[int], + prev_timestep: int, + sample: torch.FloatTensor, + noise: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + """ + One step for the second-order multistep DPM-Solver. + + Args: + model_output_list (`List[torch.FloatTensor]`): + direct outputs from learned diffusion model at current and latter timesteps. + timestep (`int`): current and latter discrete timestep in the diffusion chain. + prev_timestep (`int`): previous discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + current instance of sample being created by diffusion process. + + Returns: + `torch.FloatTensor`: the sample tensor at the previous timestep. + """ + t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] + m0, m1 = model_output_list[-1], model_output_list[-2] + lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] + alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] + sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] + h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 + r0 = h_0 / h + D0, D1 = m0, (1.0 / r0) * (m0 - m1) + if self.config.algorithm_type == "dpmsolver++": + # See https://arxiv.org/abs/2211.01095 for detailed derivations + if self.config.solver_type == "midpoint": + x_t = ( + (sigma_t / sigma_s0) * sample + - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 + ) + elif self.config.solver_type == "heun": + x_t = ( + (sigma_t / sigma_s0) * sample + - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 + ) + elif self.config.algorithm_type == "dpmsolver": + # See https://arxiv.org/abs/2206.00927 for detailed derivations + if self.config.solver_type == "midpoint": + x_t = ( + (alpha_t / alpha_s0) * sample + - (sigma_t * (torch.exp(h) - 1.0)) * D0 + - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 + ) + elif self.config.solver_type == "heun": + x_t = ( + (alpha_t / alpha_s0) * sample + - (sigma_t * (torch.exp(h) - 1.0)) * D0 + - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + ) + elif self.config.algorithm_type == "sde-dpmsolver++": + assert noise is not None + if self.config.solver_type == "midpoint": + x_t = ( + (sigma_t / sigma_s0 * torch.exp(-h)) * sample + + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + ) + elif self.config.solver_type == "heun": + x_t = ( + (sigma_t / sigma_s0 * torch.exp(-h)) * sample + + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 + + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + ) + elif self.config.algorithm_type == "sde-dpmsolver": + assert noise is not None + if self.config.solver_type == "midpoint": + x_t = ( + (alpha_t / alpha_s0) * sample + - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 + - (sigma_t * (torch.exp(h) - 1.0)) * D1 + + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + ) + elif self.config.solver_type == "heun": + x_t = ( + (alpha_t / alpha_s0) * sample + - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 + - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + ) + return x_t + + # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update + def multistep_dpm_solver_third_order_update( + self, + model_output_list: List[torch.FloatTensor], + timestep_list: List[int], + prev_timestep: int, + sample: torch.FloatTensor, + ) -> torch.FloatTensor: + """ + One step for the third-order multistep DPM-Solver. + + Args: + model_output_list (`List[torch.FloatTensor]`): + direct outputs from learned diffusion model at current and latter timesteps. + timestep (`int`): current and latter discrete timestep in the diffusion chain. + prev_timestep (`int`): previous discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + current instance of sample being created by diffusion process. + + Returns: + `torch.FloatTensor`: the sample tensor at the previous timestep. + """ + t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] + m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] + lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( + self.lambda_t[t], + self.lambda_t[s0], + self.lambda_t[s1], + self.lambda_t[s2], + ) + alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] + sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] + h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 + r0, r1 = h_0 / h, h_1 / h + D0 = m0 + D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) + D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) + D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) + if self.config.algorithm_type == "dpmsolver++": + # See https://arxiv.org/abs/2206.00927 for detailed derivations + x_t = ( + (sigma_t / sigma_s0) * sample + - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 + - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 + ) + elif self.config.algorithm_type == "dpmsolver": + # See https://arxiv.org/abs/2206.00927 for detailed derivations + x_t = ( + (alpha_t / alpha_s0) * sample + - (sigma_t * (torch.exp(h) - 1.0)) * D0 + - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 + ) + return x_t + + def step( + self, + model_output: torch.FloatTensor, + timestep: int, + sample: torch.FloatTensor, + generator=None, + return_dict: bool = True, + ) -> Union[SchedulerOutput, Tuple]: + """ + Step function propagating the sample with the multistep DPM-Solver. + + Args: + model_output (`torch.FloatTensor`): direct output from learned diffusion model. + timestep (`int`): current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + current instance of sample being created by diffusion process. + return_dict (`bool`): option for returning tuple rather than SchedulerOutput class + + Returns: + [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is + True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. + + """ + if self.num_inference_steps is None: + raise ValueError( + "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" + ) + + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + step_index = (self.timesteps == timestep).nonzero() + if len(step_index) == 0: + step_index = len(self.timesteps) - 1 + else: + step_index = step_index.item() + prev_timestep = ( + self.noisiest_timestep if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] + ) + lower_order_final = ( + (step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15 + ) + lower_order_second = ( + (step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 + ) + + model_output = self.convert_model_output(model_output, timestep, sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + + if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: + noise = randn_tensor( + model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype + ) + else: + noise = None + + if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: + prev_sample = self.dpm_solver_first_order_update( + model_output, timestep, prev_timestep, sample, noise=noise + ) + elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: + timestep_list = [self.timesteps[step_index - 1], timestep] + prev_sample = self.multistep_dpm_solver_second_order_update( + self.model_outputs, timestep_list, prev_timestep, sample, noise=noise + ) + else: + timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep] + prev_sample = self.multistep_dpm_solver_third_order_update( + self.model_outputs, timestep_list, prev_timestep, sample + ) + + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + + if not return_dict: + return (prev_sample,) + + return SchedulerOutput(prev_sample=prev_sample) + + # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input + def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: + """ + Ensures interchangeability with schedulers that need to scale the denoising model input depending on the + current timestep. + + Args: + sample (`torch.FloatTensor`): input sample + + Returns: + `torch.FloatTensor`: scaled input sample + """ + return sample + + # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise + def add_noise( + self, + original_samples: torch.FloatTensor, + noise: torch.FloatTensor, + timesteps: torch.IntTensor, + ) -> torch.FloatTensor: + # Make sure alphas_cumprod and timestep have same device and dtype as original_samples + alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps diff --git a/src/diffusers/utils/dummy_pt_objects.py b/src/diffusers/utils/dummy_pt_objects.py index 014e193aa32a..e07b7cb27da7 100644 --- a/src/diffusers/utils/dummy_pt_objects.py +++ b/src/diffusers/utils/dummy_pt_objects.py @@ -450,6 +450,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) +class DPMSolverMultistepInverseScheduler(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + class DPMSolverMultistepScheduler(metaclass=DummyObject): _backends = ["torch"] diff --git a/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py b/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py index d32f4d665f55..c9da7b06893f 100644 --- a/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py +++ b/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py @@ -27,6 +27,8 @@ AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, + DPMSolverMultistepInverseScheduler, + DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNet2DConditionModel, ) @@ -256,6 +258,30 @@ def test_inversion(self): def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=5e-3) + def test_inversion_dpm(self): + device = "cpu" + + components = self.get_dummy_components() + + scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} + components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args) + components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args) + + pipe = self.pipeline_class(**components) + pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inversion_inputs(device) + image = pipe.invert(**inputs).images + image_slice = image[0, -1, -3:, -3:] + + self.assertEqual(image.shape, (2, 32, 32, 3)) + expected_slice = np.array( + [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799], + ) + max_diff = np.abs(image_slice.flatten() - expected_slice).max() + self.assertLessEqual(max_diff, 1e-3) + @require_torch_gpu @slow @@ -320,3 +346,54 @@ def test_stable_diffusion_diffedit_full(self): / 255 ) assert np.abs((expected_image - image).max()) < 5e-1 + + def test_stable_diffusion_diffedit_dpm(self): + generator = torch.manual_seed(0) + + pipe = StableDiffusionDiffEditPipeline.from_pretrained( + "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 + ) + pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) + pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) + pipe.enable_model_cpu_offload() + pipe.set_progress_bar_config(disable=None) + + source_prompt = "a bowl of fruit" + target_prompt = "a bowl of pears" + + mask_image = pipe.generate_mask( + image=self.raw_image, + source_prompt=source_prompt, + target_prompt=target_prompt, + generator=generator, + ) + + inv_latents = pipe.invert( + prompt=source_prompt, + image=self.raw_image, + inpaint_strength=0.7, + generator=generator, + num_inference_steps=25, + ).latents + + image = pipe( + prompt=target_prompt, + mask_image=mask_image, + image_latents=inv_latents, + generator=generator, + negative_prompt=source_prompt, + inpaint_strength=0.7, + num_inference_steps=25, + output_type="numpy", + ).images[0] + + expected_image = ( + np.array( + load_image( + "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" + "/diffedit/pears.png" + ).resize((768, 768)) + ) + / 255 + ) + assert np.abs((expected_image - image).max()) < 5e-1