
ProvCite: Provenance-based Data Citation

Yinjun Wu
University of Pennsylvania

wuyinjun@seas.upenn.edu

Abdu Alawini
UIUC

alawini@illinois.edu

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il
Tova Milo

Tel Aviv University

milo@cs.tau.ac.il

Susan B. Davidson
University of Pennsylvania

susan@seas.upenn.edu

ABSTRACT
A computational challenge associated with data citation is
how to automatically generate citations to arbitrary queries
against a structured dataset. Previous work has explored
this problem in the context of conjunctive queries and views
using a Rewriting-Based Model (RBM). However, an in-
creasing number of scientific queries are aggregate, e.g. show-
ing statistical summaries of the underlying data, for which
the RBM cannot be easily extended. In this paper, we show
how a Provenance-Based Model (PBM) can be leveraged
to 1) generate citations to conjunctive as well as aggregate
queries and views; 2) associate citations with individual re-
sult tuples to enable arbitrary subsets of the result set to be
cited (fine-grained citations); and 3) be optimized to return
citations in acceptable time. Our implementation of PBM
in ProvCite shows that it not only handles a larger class of
queries and views than RBM, but can outperform it when
restricted to conjunctive views.

PVLDB Reference Format:
Yinjun Wu, Abdu Alawini, Daniel Deutch, Tova Milo and Su-
san B. Davidson. ProvCite: Provenance-based Data Citation.
PVLDB, 12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/TBD

1. INTRODUCTION
The amount of information available online in structured

datasets is rapidly increasing, and there is growing interest
within both the digital library and computer science com-
munities to be able to cite information extracted by queries
over these datasets. Citations play a significant role in giv-
ing credit to those responsible for the data, and enable the
data to be later found or reproduced. Much like a citation to
traditional scholarly products such as journal or conference
papers, a citation to the result of a query over a structured
dataset should include snippets of information describing
the dataset (analogous to a title), who is responsible for the
dataset (e.g. the PI or contributors/curators of the data),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 45th International Conference on Very Large Data Bases,
August 2019, Los Angeles, California.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
Copyright 2018 VLDB Endowment 2150-8097/18/10... $ 10.00.
DOI: https://doi.org/TBD

as well as information about how to find the dataset (e.g.
the http address, database version, and query).

Several computational challenges must be addressed in de-
veloping a data citation system [10]. First, since the number
of possible queries over a database is very large, it is infeasi-
ble to associate a citation to each query. Instead, one should
be able to specify citations for a small number of frequent
queries and use them to automatically derive citations to
other “general” queries. Second, this must be done with an
acceptable time overhead, e.g. without adding significantly
to the query response time. Third, it is useful to allow the
user to select a subset of the query result for which a citation
should be generated, which we call “fine-grained” citations.
This need arises in many different scientific applications, in
particular neuro-imaging [28].

In prior work, we proposed a general framework to auto-
matically generate fine-grained citations for general queries
[4, 35]. The approach is based on a model of citation views [10,
21, 20]: Frequent queries are defined as views with associ-
ated citations. A query against the database is rewritten
in terms of these views, and the associated citations used to
construct a citation for each tuple in the query result. Since a
query may be rewritten by jointly using more than one view,
or there may be several alternate ways to rewrite a query,
the database owner may specify how citations are jointly or
alternatively combined through policies (see Figure 1 for an
overview). The framework also allows for fine-grained cita-
tions: the citations for each tuple in the query result are then
combined to create a final citation for the specified subset
of the result, which is given as another policy. Policies give
an interpretation for the joint, alternate and combined use
operators, for example, taking the union, intersection or join
of the citations. In the remainder of the paper, we will call
the model used in [35] the Rewriting-Based Model (RBM)
since it extends query rewriting using views algorithms to
work at the tuple level.

A shortcoming of RBM, however, is that it addresses a
limited class of queries – (non-recursive) conjunctive queries
and conjunctive views – and cannot be used in applications
in which the queries and views involve aggregate (such as
SUM, MIN, AVG) or user-defined functions. However, there
is a growing number of biomedical applications which ex-
tract summaries from databases by issuing aggregate queries,
in which views possibly involve aggregation. So the tech-
niques of [35] cannot be used.

One such example is Hetionet, a database that “encodes”
biology by integrating various types of biological informa-
tion from different publicly available resources [27]. As data

1

is copied from these source datasets, citation information
(generally in the form of traditional publication IDs) is also
copied and should be propagated to the results of queries.
The majority of queries against this database involve aggre-
gation to retrieve statistical information.

Another example, which requires both aggregate queries
and aggregate views, is GENCODE [26], an encyclopedia of
genes and gene variants whose goal is to identify all func-
tional elements in the human genome using annotations.
The gene annotation process involves a combination of au-
tomatic annotation, manual annotation, and experimental
validation. For genes that are manually annotated, infor-
mation is maintained about the responsible research groups.
Statistics are also provided for every gene – an aggregate
view over the genes – which has another type of citation giv-
ing credit to the creators of the aggregate view. Common
queries over GENCODE also involve aggregation. For in-
stance, one query computes statistics for every type of genes.

In this paper, we address the problem of automatically
generating fine-grained citations when both the queries and
views may involve aggregates. Although at first glance it
would appear that rewriting techniques for aggregate queries
[37, 34, 23, 16, 15] could be used, these techniques reason at
the schema level for the entire query result rather than at the
level of individual tuples, which is required for fine-grained
citations. Extending the implementation in [35] to use ideas
from query rewriting for aggregate queries is possible when
views are conjunctive views but still problematic when views
involve aggregation since aggregation blurs the connection
between tuples in the input relations and tuples in the result.

Instead, to support aggregation, we use the observation
pointed out in [10, 5] that there is a strong connection be-
tween data provenance and data citation – and the prove-
nance of aggregate queries is well understood. We therefore
adopt a Provenance-Based Model (PBM) that captures the
connections between a result tuple and tuple(s) in views.
We illustrate how provenance helps in the example below.

Example. (See Figure 1) Recall that GENCODE is an
encyclopedia of information about genes and gene variants.
Suppose that one of the views defined by the DBA is Vgene,
which counts the number of genes for each gene type, but
only retains the gene types (groups) with more than 10
genes. This corresponds to an aggregate query with a HA-
VING-clause in SQL. Vgene has an associated citation query
which pulls snippets of information from the database and
is formatted by the citation function as {Group: ‘Jones

Group’, Source: ‘HAVANA Project’, ...}.
Now suppose that a query Q counts the number of genes

whose gene ids are smaller than 50 for every gene type.
Then some tuples in the query result will appear in Vgene,
and therefore carry the associated citation. This is true for
the first result tuple in Figure 1, where we assume that gene
type TEC only includes genes whose ids are smaller than 50
and has at least 10 such genes. Other tuples in the query
result may not appear in Vgene, i.e. gene types which include
some genes with ids 50 or greater (which we assume for the
second result tuple rRNA) or which include fewer than 10
genes. In this case, the tuple would not carry the citation
associated with Vgene.

Traditional query rewriting using views techniques would
conclude that Vgene is not useful for Q. Furthermore, the
RBM tuple-level techniques proposed in [35] could not de-
tect whether Vgene is useful for a given tuple in the result

Citation
Views

Policies
DBA

Covering Sets
Calculator

View Mapping
Reasonerdefine

define

Provenance-enabled
Database

User

Query

applicable
policies

Citation

Data

Citation
Generator

Provenance
of Query

Provenance
of Views

{Group: “Jones Group”, Source: ”HAVANA
Project”, Version: 1, Query_id:101}

Compute the number of genes for

every gene type with gene id < 50
V_{Gene}: Compute the number of

genes for every gene type with more
than ten genes

Type COUNT(T)

TEC 11
rRNA 15

Figure 1: System overview of ProvCite

of Q. However reasoning over the provenance of result and
view tuples could detect that TEC exists in the view in-
stance (by comparing provenance polynomials) and that all
tuples in the group have ids smaller than 50 (by finding the
gene ids associated with the provenance tokens). Thus, if
the user in Figure 1 selects TEC as the subset of interest
in the query result, the citation for Vgene ({Group: "Jones

Group", Source: "HAVANA Project", ...}) would be re-
turned.

Approach. Using provenance, we develop a citation sys-
tem called ProvCite, whose architecture is shown in Figure
1; the key differences between ProvCite and the RBM imple-
mentation in [35] are indicated by red stars. The system exe-
cutes over a provenance-enabled relational database system;
here we are using GProM [8]. As in [35], the DBA defines
the citation views and policies to be used. When a query is
submitted, all potential view mappings are computed, which
represent how views can potentially rewrite this query. The
decision of which views are valid, however, depends on the
particular result tuple (as illustrated above), and for this the
provenance of the result tuple is compared with the prove-
nance of view tuples. While the user is presented with the
query result and examines it to determine the subset of in-
terest, covering sets are calculated from the valid views for
every result tuple, representing alternate rewritings in which
sets of views are jointly used. So when the result subset is
selected, the citation for the selected query subset can be
immediately generated.

Our initial fear in developing ProvCite was that, although
the approach is interesting since it develops a novel connec-
tion between citation and provenance, it would be unaccept-
ably slow. To be practical, the citation should be generated
without significantly extending the query time. However,
since in the worst case the number of possible covering sets
may be exponential in the mapping between the views and
the query, the number and size of the views can be large,
the number of result tuples can be large, and provenance
expressions are big, this would seem to be an impossible
task. Surprisingly, the results of this paper not only show
that PBM is feasible and extends results in [35] to aggregate
queries and views, but that our optimized computation al-
lows it to even outperform our previous RBM approach in
some cases.

Contributions of this paper include:

1. A framework formalizing the connection between data
provenance and data citation.

2. A semantics for generating citations to the results of

2

aggregate queries with general aggregate functions given
a set of either aggregate or conjunctive views using
provenance in the view and query instances.

3. An implementation of the PBM called ProvCite, which
automatically generates fine-grained citations for the
results of general queries, where both the queries and
views may involve aggregates. Two strategies are tested
for the provenance of views: In the first, provenance
is generated on the fly (lazy strategy), whereas in the
second provenance is pre-computed (eager strategy).

4. Experiments using both synthetic and realistic work-
loads, comparing ProvCite against RBM approaches [35]
in the case of aggregate queries and conjunctive views,
and comparing the lazy versus eager strategies for Prov-
Cite when queries and views involve aggregates. The
results show that ProvCite has acceptable time per-
formance even when the queries and views have large
instances, and can in some cases significantly outper-
form RBM approaches.

The rest of this paper is organized as follows. Related
work is discussed in Section 2, and the running example and
preliminaries are given in Section 3. Details of the PBM and
its implementation in ProvCite are presented in Sections 4
and 5 respectively. Section 6 gives experimental results be-
fore concluding in Section 7.

2. RELATED WORK
Data citation. Principles for data citation have been pro-

posed within the digital libraries community[1, 22] and in-
clude: 1) identification and access to the cited data; 2) per-
sistence of the cited data; and 3) completeness of the ref-
erence [30, 33, 9, 2]. The community also recognized the
importance of citations to aggregate data [1], as have vari-
ous scientific communities [26, 27, 31]. More recently, data
citation has captured the attention of database researchers,
who formulated computational challenges [10, 20]. To ad-
dress these challenges, a model of citation views was defined
in [21] and implemented in [4, 35]. However, this work was
limited to conjunctive queries and views, and did not ad-
dress aggregates.

Query rewriting using views. Data citation is closely re-
lated to the problem of query rewriting using views. Rewrit-
ing relies on notions of containment and equivalence of queries
[25], and has been extensively studied in the context of con-
junctive queries [12, 14, 32, 3] as well as aggregate queries [17,
18]. Various algorithms have been designed to rewrite aggre-
gate queries. For example, [34, 23] provide algorithms for
determining whether a materialized view is usable for an-
swering an aggregate query by considering both conjunctive
and aggregate views. In [37], an algorithm is given to han-
dle nested subqueries and multidimensional aggregations in
queries and views. However, only standard aggregate func-
tions (e.g. SUM, COUNT) are considered in [37, 34, 23];
general aggregate functions (such as user defined aggregate
functions) cannot be used. The problem of general aggre-
gate functions is considered in [16], and [15] bridges the gap
between theory and practice by providing implementation
suggestions. However, to our knowledge, there is no work
which considers how to rewrite queries using general aggre-
gate views with having clauses.

Figure 2: Hierarchical structure in GENCODE

Data Provenance. Data provenance identifies where a
piece of data came from and the process by which it ar-
rived in the database [11]. It has been used to track the
dependencies between inputs and outputs, detect errors in
complex workloads, and provide explanations for debugging
purposes. Various formulations of provenance have been
studied, such as why- and where-provenance [11], why-not-
provenance [13], and the provenance semirings framework
for conjunctive queries [24], aggregate queries [7] and queries
with negation [36]. This framework has been used to im-
plement several practical provenance-enabled database sys-
tems, such as ORCHESTRA [29] and GProM [8]. The con-
nection between data citation and provenance was discussed
in [10] and explored but not formalized in [5]. This paper
develops those ideas further, provides an implementation
based on a provenance-enabled database system, and shows
the feasibility of the approach.

3. PRELIMINARIES
In this section, we introduce the running example, review

the notions of citation views [21], view mapping and validity
of view mappings [35], and then show why the RBM of [35]
cannot be extended for aggregate queries and views, moti-
vating the need for provenance.

3.1 Running example: GENCODE
We use a simplified schema from GENCODE as our run-

ning example. In this database, information is structured
hierarchically (see Figure 2): Each gene is associated with
one or more transcripts, and each transcript has one or more
exons. Genes, transcripts, and exons may all be annotated
with tags, which are created either by human experts or by
programs. A simplified schema based on this structure is
shown below:

Gene(GID, Name, Type)
Gene2tag(GID, annot) GID references Gene
Transcript(TID, Name, Type, GID) GID references Gene
Transcript2tag(TID, annot) TID references Transcript
Exon(EID, Level, TID), TID references Transcript
Exon2tag(EID, annot), EID references Exon

Relations Gene2tag, transcript2tag and exon2tag capture
the annotations (annot). The source of the annotation (e.g.
a research group or workflow/program) is also stored in
GENCODE and can be used for citations. For simplicity,
we omit these relations.

Citation views [21] define views of the database to which
citations have been specified. A citation view consists of 1)

3

GIDc Name Type
1 TF TEC
2 FH rRNA

λG. V1(G, N, Ty) :- Gene(G, N, Ty) V2(G, N, Ty) :- Gene(G, N, Ty)

Figure 3: Effect of parameters on views

a view query, defining the subset of the data to which the
citation is attached; 2) a citation query, which retrieves in-
formation required for the citation for the view; and 3) a
citation function, which formats the information retrieved
by the citation query to provide the final citation, e.g. in
JSON, BibTex or RIS format. View queries can be consid-
ered to be the frequent queries over the database; all other
queries will be called general queries.

View queries for GENCODE correspond to web-page views
created by the DBAs. Each of these views could have an as-
sociated citation. For example, the citation query for the
web page view of a gene could be used to retrieve the re-
search groups or programs that contributed annotations for
the gene; this information, together with the gene name,
version of the database, and query used to retrieve the data
(e.g. the http address of the web page) could then be for-
matted by the citation function. Below we show several
of these views, which are expressed using S-Datalog [19], an
extended version of Datalog that allows aggregates:

λG.V1(G,N, Ty) : −Gene(G,N, Ty)
V2(G,N, Ty) : −Gene(G,N, Ty)
V3(T1, N1, E, L) : −Transcript(T1, N1, T y1, G1),

Exon(E,L, T2), T1 = T2,
E >= 4

V4(T1, N1, COUNT (E))
: −Transcript(T1, N1, T y1, G1),

Exon(E,L, T2), T1 = T2,
L <= 2

V5(T1, N1,MAX(L))
: −Transcript(T1, N1, T y1, G1),

Exon(E,L, T2), T1 = T2

The first three views are simple conjunctive queries. V1 is
parameterized by the gene id G, meaning that it defines a
family of views, one for each gene. Each view in this family
consists of a single tuple. In this way, each gene may have
different citation, giving credit to the person or program who
annotated that gene. In contrast, V2 and V3 are not param-
eterized, which indicates that the same citation is shared
across all the view tuples. Figure 3 shows the effect of the
lambda term in V1 versus the unparameterized view V2 on a
sample instance of Gene. The last two views are aggregate
views. Their meaning is: For each binding of variables in the
body, group over the variables in the head (called grouping
variables) and apply the aggregate(s) to each group. Each
aggregate function along with its arguments is called an ag-
gregate term, in which the arguments are called aggregate
variables. Thus V4 could be translated into SQL as:

SELECT T.TID, T.Name, COUNT(E.EID)
FROM Transcript T, Exon E
WHERE T.TID=E.TID and E.Level <= 2
GROUP BY T.TID, T.Name

V4 counts the number of exons with level not greater than
2 for each transcript, and includes the transcript name in

the result. V5 returns the maximal level among all exons for
each transcript.

3.2 Query rewriting: View mappings
Given a (general) query Q and a set of views V, the RBM

implementation in [35] starts by building a set of view map-
pings M from V to Q. For each query tuple, RBM then rea-
sons about the validity of each view mapping inM and con-
structs covering sets, which are converted to formatted cita-
tions later. Each covering set is a maximal, non-redundant
set of valid view mappings, i.e. covering sets for which no
other view mappings can be added to cover more subgoals
and head variables in Q, nor can any be removed and still
cover the same subgoals and head variables in Q.

A view mapping M consists of a relation mapping, h and
variable mapping, φ (denoted M = (h, φ)). The former, h,
maps relational subgoals in a view V to relational subgoals
with the same relation names in query Q, while the latter
variable mapping φ is an induced mapping by h.

Intuitively, for a query tuple t, view mapping M is valid
iff there exists a view tuple t′ in V such that t′ is visible in t
under M , the reasoning of which depends on examining the
lambda variables, the head variables and predicates of views
by RBM in [35]. We say that a head variable or a relational
subgoal of Q is covered by M iff it is involved in M .

Example 1. Suppose a conjunctive view and a conjunctive
query are defined below:

V ′1 (E, T): −Exon(E,L, T), E <= 4
Q′1(Eid, T id): −Exon(Eid, Level, T id)

There is a view mapping M ′1 = (h′1, φ
′
1) from V ′1 to Q′1, in

which the relation mapping h′1 is {Exon(E,L, T) → Exon
(Eid, Level, T id)} while the variable mapping φ′1 is {E →
Eid, L→ Level, T → T id}. M ′1 is only valid for query tuples
with Eid <= 4 since 1) all the view tuples in V ′1 satisfy
E <= 4; and 2) no lambda variables in V ′1 and the head
variables E, T in V ′1 are mapped to head variables Eid, T id
in Q′1 respectively, which implies visibility. For the query
tuples for which M ′1 is a valid view mapping, one covering
set can be constructed: {M ′1}. After the user selects the
query subset or the entire query result, the citation queries
associated with V ′1 are executed and the citation function is
applied to construct formatted citations.

3.3 The need for provenance
We now show how to reason about the validity of view

mappings for query tuples in the context of aggregate queries
and views via an example, and illustrate why RBM fails,
motivating the need for provenance.

Example 2. Consider the following query and view:

λT.V ′2 (T,COUNT (L), SUM(L)) : −Exon(E,L, T),
COUNT (∗) < 3

Q′2(AV G(Level)) : −Exon(Eid, Level, T id), T id <= 4

Note that V ′2 corresponds to an SQL query with a HAVING
clause, since COUNT (∗) < 3 appears as a subgoal in the
body. V ′2 is parameterized by T , and is associated with a pa-
rameterized citation query CV ′2 which retrieves the citation
information for every transcript ID. First, we can derive a
view mapping M ′2 = (h′2, φ

′
2) where h′2 = {Exon(E,L, T)→

Exon(Eid, Level, T id)} and φ′2 = {E → Eid, L→ Level, T →

4

T id}. Due to the subgoal COUNT (∗) < 3, V ′2 cannot be
used to rewrite Q′2 since not every tuple in Q′2(D) can be
computed using tuples in V ′2 (D) for every database instance
D. However, some query tuples may be still computable
from view tuples when a database instance is given. There-
fore, V ′2 is potentially useful for fine-grained citations for
some tuples in the instance of Q′2.

To see this, consider the instances of relations Exon, Gene
and Transcript in Tables 1, 2 and 3 respectively. Given those
instances, the corresponding instances of V ′2 and Q′2 are
shown in Tables 4 and 5 (ignore for now the last columns).
Note that the citations for each view tuple retrieved by in-
stantiated CV ′2 are also provided in Table 4 (see the column
with green background).

Table 1: Instance of relation Exon with provenance

EID Level TID prov
te1 1 1 1 e1
te2 2 3 2 e2
te3 3 3 2 e3
te4 4 2 4 e4
te5 5 3 5 e5
te6 6 2 5 e6
te7 7 2 5 e7

Table 2: Instance of relation Gene with provenance

GID Name Type prov
tg1 1 TF TEC g1
tg2 2 FH rRNA g2

Table 3: Instance of relation Transcript with provenance

TID Name Type GID prov
tt1 1 MB-203 TEC 1 r1
tt2 2 PC-203 rRNA 2 r2
tt3 4 HP-218 rRNA 2 r3
tt4 5 GK-207 rRNA 2 r4

Table 4: Instance of view V ′2 with provenance and citation

T COUNT(L) SUM(L) citation prov
tv′

21
1 1 1 {Group: [‘Lee’]} e1

tv′
22

2 2 6 {Group: [‘Joe’]} e2 + e3
tv′

23
4 1 2 {Group: [‘Liu’]} e4

Table 5: Instance of query Q′2 with provenance

AVG(Level) prov
tq′21

2.25 e1 + e2 + e3 + e4

Although V ′2 and Q′2 do not have the same aggregate
terms, there exists a computation rule [15] from COUNT
and SUM to AV G: For the same input, the output of
AV G can be computed using the output of COUNT and
SUM . By applying the computation rule over the aggre-
gate terms COUNT (L) and SUM(L) under view mapping
M ′2, AV G(Level) in query tuple tq′21 is computable. This re-

lies on the fact that: 1) under M ′2, V ′2 retains all the columns
needed for the aggregation in Q′2 (i.e. Level); 2) the predi-
cates in V ′2 and Q′2 retain the same set of base relation tuples
used to construct the view tuple tv′

21
, tv′

22
and tv′

23
as well

as the query tuple tq′21. Note that this implies provenance.

Intuitively, the aggregate results in tq′21 can be obtained by

further aggregation over tv′
21
− tv′

23
in V ′2 (D). Meanwhile,

citation of tq′21 can be produced by combining the citations

of tv′
21
− tv′

23
, i.e. {Group: [‘Lee’, ‘Joe’, ‘Liu’]}.

However, it is not trivial to extend RBM to handle such
cases. The core idea of RBM is to determine whether there
exists a view tuple that can provide a citation to a given
query tuple (before duplicates are removed), which is achieved
by explicitly evaluating the predicates of every view in each
individual query tuple. In contrast, every tuple in an ag-
gregate query or aggregate view instance is derived from a
set of tuples, which complicates the reasoning since we are
looking for a group of view tuples that can match exactly
a group of query tuples. We therefore adopt an alternative
model, called the Provenance-Based Model (PBM).

4. PROVENANCE-BASED MODEL
We now present the model for determining valid view

mappings for each query tuple using provenance. We start
by introducing some basic concepts before presenting va-
lidity conditions for view mappings, first for conjunctive
queries and then extending them to handle aggregate queries.

4.1 Basic concepts
To determine the validity of view mappings, it is nec-

essary to understand the relationship between the schema
of the query and the schema of the views under the view
mappings. Validity also relies on the notions of 1) how-
provenance polynomials; and 2) an isomorphism between
how-provenance monomials and subgoals, to pave the way
to reasoning about valid view mappings at the tuple level.

Granularity of queries and views. An essential step
in determining the validity of a view mapping M = (h, φ)
is to compare the schemas of Q and V , and detect whether
V keeps all necessary variables in its head. In particular, if
V has the set of grouping variables {Y1, Y2, . . . , Ym}, then
{φ(Y1), φ(Y2), . . . , φ(Ym)} should be a superset of the set of
grouping variables ofQ, {X1, X2, . . . , Xk}. If {φ(Y1), φ(Y2), . . . ,
φ(Ym)} = {X1, X2, . . . , Xk}, we say Q has the same gran-
ularity as V . Otherwise, if {φ(Y1), φ(Y2), . . . , φ(Ym)})
{X1, X2, . . . , Xk}, we say V has finer granularity than Q.

Example 3. Consider Q′2 and V ′2 from Example 2 of Sec-
tion 3.3. V ′2 has finer granularity than Q′2 since V ′2 has one
grouping variable T while Q′2 does not have any grouping
attribute. If we add variable T id into the head of Q′2, then
V ′2 has the same granularity as Q′2 since φ′2(T) = T id.

How-provenance. We use the notion of how-provenance
introduced in [24]. It starts by annotating each base rela-
tion tuple with a unique provenance token, and propagates
those tokens along with the tuples to the query result. Each
tuple in the query result then has a how-provenance poly-
nomial expressed using + (alternate use) and ∗ (joint use)
to indicate how base relation tuples contribute to the query
result. Each how-provenance polynomial is composed of mul-
tiple how-provenance monomials which are joint-use terms
expressed with ∗. For example, the provenance polynomial
for tuple tq′21 in Q′2(D) (see Table 5) is e1 + e2 + e3 + e4,
which has four how-provenance monomials. It means that
four tuples from base relation Exon with how-provenance
tokens e1 − e4, respectively were used to create tq′21. The ∗
operator is used if there are multiple relational subgoals in

5

the query body, in which case base tuples are jointly used to
create the result.

Isomorphism between how-provenance monomials
and subgoals. Since we need to reason about the validity of
view mappings using how-provenance, we need to build con-
nections between them. Such connections are natural since
how-provenance tokens in the query tuple can be traced back
to the corresponding base relation tuples. When the query
is evaluated, those base relation tuples are assigned to rela-
tional subgoals which may be involved in view mappings.
We therefore introduce the notion of assignment, before
defining an isomorphism between how-provenance monomial
and relational subgoals under an assignment.

As mentioned in [24], the how-provenance for a query or
view tuple is a polynomial of how-provenance tokens. To
simplify reasoning over these expressions, [6] defines a nor-
mal form for how-provenance polynomial: First, the prove-
nance tokens in each how-provenance monomial preserves
the same order as the relational subgoals in the query body.
Second, the exponent of every provenance token is forced
to be 1. Third, the coefficient of every monomial in a how-
provenance polynomial is forced to be 1 by breaking the
monomials with coefficient greater than 1 into multiple how-
provenance monomials, which is closely connected to the
notion of assignment as below.

Definition 1. Assigment. [6] An assignment γ for a
(conjunctive or aggregate) queryQ with respect to a database
instance D is a mapping of the relational subgoals of Q
to tuples in D that respects relation names, and induces
a mapping over variables/constants. If a relational subgoal
R(x1, . . . , xn) is mapped to a tuple R(a1, . . . , an) then we
say that xi is mapped to ai (denoted as γ(x1, . . . , xn) =
(a1, . . . , an)).

A tuple t in Q(D) may have multiple assignments, (de-
noted as Γ = {γ1, γ2, . . . , γm}), each of which should corre-
spond to one how-provenance monomial. It is exemplified
as below.

Example 4. Suppose we have a query which is a self join
on relation Transcript, and retrieves some pairs of gene ids
of the same type:

Q′4(G,G′) : −Transcript(T,N, Ty,G), T >= 4, T y = Ty′,
T ranscript(T ′, N ′, T y′, G′), T ′ >= 4

The query result along with the how-provenance expres-
sion is shown in Table 6 using the instance of Transcript in
Table 3. Note that the second and the third how-provenance
monomial of the tuple tq′41 is written differently i.e. r3 ∗ r4
vs r4∗r3 (although they are equivalent to each other), which
represent different assignments. The former monomial r3∗r4
represents one assignment γ in which tuples tt3=(4, HP-
218, rRNA, 2) (with token r3) and tt4=(5, GK-207, rRNA,
2) (with token r4) from Transcript are assigned to subgoals
Transcript(T,N, Ty,G) and Transcript(T ′, N ′, T y′, G′) re-
spectively (denoted as γ(T,N, Ty,G)=(4, HP-218, rRNA,
2) and γ(T ′, N ′, T y′, G′)=(5, GK-207, rRNA, 2)) while the
latter one reverses the order of the assignment γ.

Besides, the first how-provenance monomial of tq′41 is writ-

ten as r3∗r3 instead of the compact form (r23). Furthermore,
the coefficient of all the monomials in the how-provenance
polynomial of tq′41 is 1 (although in a more compact form,

r3∗r4 and r4∗r3 can be combined into 2∗r3∗r4 or 2∗r4∗r3)

Table 6: Q′4(D) along with how-provenance

G G’ prov

tq′41 2 2
r3 ∗ r3 + r3 ∗ r4

+r4 ∗ r3 + r4 ∗ r4

For a given query tuple, [6] defines an isomorphism be-
tween assignments and the how-provenance monomials in a
query. Borrowing some ideas from there, we define an iso-
morphism between relational subgoals and how-provenance
monomials under an assignment γ, which relies on the nor-
mal form of how-provenance monomials mentioned before.

Definition 2. Isomorphism between how-provenance
monomials and subgoals. Given a conjunctive or aggre-
gate query Q with relational subgoals B1, B2, . . . , Bm, un-
der an assignment γ, base relation tuples tb1, tb2, . . . , tbm
are assigned to relational subgoals B1, B2, . . . , Bm respec-
tively to generate an output tuple, which can be written as
γ(Bi) = tbi(i = 1, 2, . . . ,m) [7]. If tuple tbi is associated
with how-provenance token hbi, then we say that under the
assignment γ there is an isomorphism F between each rela-
tional subgoal Bi and each provenance token hbi (call iso-
morphism under an assignment for short thereafter), which
can be written as: F (Bi|γ) = hbi and F−1(hbi|γ) = Bi.

Returning to Example 4, consider the second how-provenance
monomial r3 ∗ r4 and corresponding assignment γ in query
tuple tq′41 in Table 6. Since tt3 and tt4 are associated with
how-provenance tokens r3 and r4 respectively, there should
be an isomorphism F such that F (Transcript(T,N, Ty,G)|γ)
= r3 while F (Transcript(T ′, N ′, T y′, G′)|γ) = r4.

4.2 Validity conditions without aggregation
We now discuss how to apply provenance to determine the

validity of view mappings for conjunctive queries. Note that
aggregate views have previously been shown to be invalid
for rewriting conjunctive queries [34]. We therefore only
consider view mappings of conjunctive views.

The validity conditions of view mappings can be divided
into schema-level conditions and a tuple-level condition. A
view mapping M is valid for a given query tuple iff M sat-
isfies both schema-level and tuple-level conditions.

Definition 3. Schema-level conditions. A view map-
ping M from a conjunctive view V to a conjunctive query Q
should satisfy the following conditions at the schema level if
it is valid for some query tuples:

1. There exists at least one distinguished variable y ∈ Ȳ
such that φ(y) is a distinguished variable; and

2. All lambda variables in V are mapped to variables in
the body of Q.

Now suppose that head variables Y1, Y2, . . . , Yr from V
are mapped to head variables X1, X2, . . . , Xr from Q, which
implies that φ(Yi) = Xi (i = 1, 2, . . . , r). Then we say that
the head variables Xi(i = 1, 2, . . . , r) are covered under M .

Definition 4. Tuple-level condition. Let the how-pro-
venance polynomial of tq ∈ Q(D) (tv ∈ V (D)) include a
how-provenance monomial W (W ′) with corresponding as-
signment γ (γ′) and the isomorphism F (F ′) under γ (γ′.)

6

Given a tuple tq and a view mapping M = (h, φ) satisfying
the schema-level conditions above, if we can find a tuple tv
such that the following condition holds, then we say that M
is valid for the how-provenance monomial W in tq: For each
relational subgoal Ai in the view body that is involved in
the view mapping M and mapped to relational subgoal Bj

in the query body under M , then F (Bj |γ) = F ′(Ai|γ′).
Furthermore, we say that the how-provenance monomial

W ′ of tv is mapped to the how-provenance monomial W of
tq under view mapping M .

Example 5. Suppose Q′2 and V ′2 in Example 2 are mod-
ified as follows by throwing away aggregate functions, and
adding one predicate to V ′2 :

λT.V ′′2 (T,L) : −Exon(E,L, T), E <= 3
Q′′2 (Level) : −Exon(Eid, Level, T id), T id <= 4

We can build the obvious view mapping M ′′2 = (h′′2 , φ
′′
2)

from V ′′2 to Q′′2 . Using the instance of Exon in Table 1, the
instances of V ′′2 and Q′′2 can be constructed as in Tables 7-8.

Table 7: V ′′2 (D) with how-provenance

T L citation prov
tv′′

2 1 1 1 {Group: [‘Lee’]} e1
tv′′

2 2 2 3 {Group: [‘Joe’]} e2 + e3

Table 8: Q′′2 (D) with how-provenance

Level prov
tq′′2 1 1 e1
tq′′2 2 3 e2 + e3
tq′′2 3 2 e4

We can show that M ′′2 is a valid view mapping for the
query tuple, tq′′2 1 and tq′′2 2, as follows: The schema-level

conditions are satisfied because 1) the head variable L in
V ′′2 are mapped to the head variable Level in Q′′2 ; and 2)
the lambda variable T in V ′′2 is mapped to T id in the body
of Q′′2 .

The tuple-level condition also holds for the two result
tuples. For example, for query tuple tq′′2 2 (and view tu-

ple tv′′
2 2), for its first monomials, the assignment and iso-

morphism under the assignment are γ (γ′) and F (F ′) re-
spectively. Since under the view mapping M ′′2 = (h′′2 , φ

′′
2),

h′′2 (Exon(E,L, T)) = Exon(Eid, Level, T id),
F ′(Exon(E,L, T)|γ′) = e2 = F (Exon(Eid, Level, T id)|γ).
So we say that M ′′2 is a valid view mapping for the how-
provenance monomial e2 for query tuple tq′′2 2. We can also

prove that M ′′2 is a valid view mapping for how-provenance
monomial e3 in tuple tq′′2 2 and for e1 in tuple tq′′2 1.

4.3 Validity conditions with aggregation
The validity conditions for view mappings are next ex-

tended to handle aggregate queries and views, using the fol-
lowing intuition: for a query tuple t, if 1) a set of view
tuples can be used to compute t by applying some aggregate
function(s) and 2) the view tuples and t are constructed by
the same multiset of tuples from the base relations (captured
by provenance), then the citation information of those view
tuples can be used to construct the citation of t.

We start by introducing requirements on the aggregate
function before formalizing this intuition.

4.3.1 Aggregate function requirements
A view mapping M , which maps an aggregate view V

to an aggregate query Q, is valid for a query tuple only if
the aggregate functions of V and Q satisfy certain require-
ments; this has been explored in previous work [15, 16] in
the context of query rewriting using views with aggregation.

In particular, [15] formalizes the notion of a well-formed
aggregate function. Loosely speaking, a well-formed aggre-
gate function can be characterized by some initial “mapper”
function, followed by a “reduce” function, followed by a “fi-
nalize” function, which we will call a terminating function.

It is easy to see that some common aggregate functions
are well-formed. For example, the “mapper” function for
AV G takes a set of rational numbers, {d1, d2, . . . , dk}, and
maps each number di to a pair (di, 1). The reduce func-
tion is pair-wise addition, whose result is a pair whose first
element represents the sum of the di’s and second element
represents the count (k). The “finalize” function divides the
first element by the second element. Similarly, SUM maps
each di to itself and takes the sum of all di’s in the reduce
step; “finalize” is the identity function.

Invertibility. One of the most important properties of
a well-formed aggregate function is invertibility [15]. An
aggregate function is invertible iff its terminating function
is invertible. For example, SUM is invertible whereas AV G
is not.

Invertibility is important for determining the validity of
view mappings when the view has a finer granularity than
the query, as illustrated below.

Example 6. Consider the following query and view:

V ′6 (E, T, SUM(L)) : −Exon(E,L, T)
Q′6(E,SUM(L)) : −Exon(E,L, T)

V ′6 computes a coarser-grained aggregation result than Q′6
does. Both share the same aggregate function SUM , which
is invertible. This means that we can take the sum of the
aggregation results in V ′6 to get the result of Q′6 under the
obvious view mapping M ′6.

However, if we replace SUM with AV G, the aggregation
result in V ′6 will not be useful to compute the aggregation
result in Q′6 under M ′6; the intermediate sum and count
from V ′6 that were used in the terminating function (divide)
cannot be regained to use in the further aggregation for Q′6,
since divide is not invertible.

Computation rules. A view may also be usable to com-
pute the aggregation results in the query without sharing the
same aggregate function with the query [15]. For example,
the result of an AV G function in the query can be computed
by dividing the result of SUM by the result of COUNT
from the view. In [16], an aggregate function β is said to be
computed from a set of aggregate functions α1, α2, . . . , αn if
there is a function g such that for any multiset of values M :
β(M) = g(α1(M), α2(M), . . . , αn(M)). It can be also writ-
ten as a computation rule: α1, α2, . . . , αn → β. For instance,
as Example 2 shows, there is a computation rule from SUM
and COUNT to AV G, i.e. SUM,COUNT → AV G. Such
computation rules can be predefined by the DBAs.

The authors in [15] and [16] consider aggregate function
requirements for potentially valid views to rewrite a query
by combining the aggregate function properties mentioned
above, which are adapted below for data citation:

7

Definition 5. Aggregate function requirements Sup-
pose a query Q has an aggregate function α, which takes a
set of variables X as arguments, if M is valid for some query
tuples, the aggregate functions in V should satisfy the fol-
lowing conditions under view mapping M = (h, φ) mapping
V to Q:

1. V also has an aggregate function α with arguments Y ,
and φ(Y) = X

2. there exists some computation rule β1, β2, . . . , βm → α
and β1, β2, . . . , βm also appear (or can be derived by
other computation rules) in the schema of V , all of
which take same set of variables Y as arguments and
φ(Y) = X.

3. If Q has coarser granularity than V , then the functions
α or β1, β2, . . . , βm must also be invertible.

In this case, we say that the aggregate term α(X) in Q is
covered under view mapping M .

Note that there is a special case in which the grouping
variables of a view can be used to compute an aggregate
term of a query under some view mapping, and in this case
the view mapping is also potentially valid. In order to deal
with this case, we assume that those grouping variables are
associated with the identity function (a special aggregate
function mapping its arguments to themselves), by which
the rules in Definition 5 are then applicable.

Example 7. Suppose Q′7 and V ′7 are defined as:

V ′7 (E,L,COUNT (∗)) : −Exon(E,L, T)
Q′7(E,AV G(L)) : −Exon(E,L, T)

Although V ′7 has a finer granularity than Q′7 under the ob-
vious view mapping M ′7, there is no computation rule from
COUNT to AV G. However, it is possible to assign the iden-
tity function to the grouping variable L of V ′7 such that the
following two computation rules work, and thus M ′7 satisfies
the rules in Definition 5:

IDENTITY,COUNT → SUM
SUM,COUNT → AV G

4.3.2 Valid view mappings for aggregate queries
We can now formally provide conditions for valid view

mappings for aggregate queries, which are still composed of
schema-level conditions and a tuple-level condition.

Definition 6. Schema-level conditions for aggregate
queries. Given an aggregate query Q and a view mapping
M = (h, φ) from view V to Q. The schema-level conditions
are as follows:

1. For grouping attributes of Q, the following must hold:

(a) If V is a conjunctive view, then for every grouping
attribute X of Q there is an attribute Y in the
head of V such that φ(Y) = X.

(b) If V is an aggregate view, then Q must have the
same or coarser granularity than V under M .

2. There exists at least one aggregate term with aggregate
function α taking a set of variables X ′ as arguments
in the head of Q such that:

(a) If V is a conjunctive view, then there is a set of
head variables Y ′ in V such that φ(Y ′) = X ′.

(b) If V is an aggregate view, then Q and V should
satisfy the conditions in Definition 5.

Suppose the schema-level conditions are satisfied for a
view mapping M . M is a valid view mapping for some query
tuples iff the following tuple-level condition holds:

Definition 7. Tuple-level condition for aggregate queries.
Let t ∈ Q(D) with how-provenance polynomial W . Fur-
thermore, given a multiset {t1, t2, . . . , tp} ∈ V (D), let ti(i =
1, 2, . . . , p) have a how-provenance polynomial W ′i = W ′i1 +
W ′i2 + · · · + W ′iq . If for {t1, t2, . . . , tp} and t, the following
condition holds, then we say that M is valid for t (not for
a single how-provenance monomial): Every monomial W ′ij
in

∑p
i=1W

′
i (

∑p
i=1W

′
i again follows the normal form men-

tioned in Section 4.1) can be mapped to some monomial in
W as a one-to-one function under M .

Example 8. RecallQ′2, V ′2 , and view mappingM ′2 = (h′2, φ
′
2)

from Example 2. M ′2 is valid for query tuple tq′21. The rea-
sons are as follows.

In terms of schema-level conditions, M ′2 is satisfied be-
cause 1) V ′2 has finer granularity than Q′2 under M ′2; and
2) the arguments in the aggregate terms of V ′2 , COUNT (L)
and SUM(L), can be mapped to the aggregate term of Q′2,
AV G(Level), and there exists a computation rule:
COUNT, SUM → AV G.

The tuple-level condition also holds for the query tuple
tq′21 if we compare its provenance to the sum of the prove-

nance polynomials of the view tuple set {tv′
21
, tv′

22
, tv′

23
}, i.e.

W ′ = e1 + e2 + e3 + e4, and the monomial mapping be-
tween W ′ and the how-provenance polynomial of tq′21 (i.e.

e1 + e2 + e3 + e4) is a one-to-one function. This reasoning is
more complicated than that in Example 5, since the validity
of view mappings is determined by comparing entire how-
provenance polynomials between the query tuple and view
tuples instead of single how-provenance monomials.

Finally, as in [35], covering sets are computed which cover
as many aggregate terms in the query as possible using the
fewest view mappings, i.e. that are maximal and non-redundant.

Example 9. Consider the following three views and query:

V ′9 (E,MAX(L)) : −Exon(E,L, T)
V ′′9 (E,MAX(T)) : −Exon(E,L, T)
V ′′′9 (E,MAX(T),MAX(L)) : −Exon(E,L, T)
Q′9(E,MAX(L),MAX(T)) : −Exon(E,L, T)

There is a valid view mapping from each individual view
to Q′9 for all query tuples, denoted M ′9,M

′′
9 and M ′′′9 re-

spectively, which form two covering sets. The first one is
{M ′9, M ′′9 }, which jointly cover the two aggregate terms in
Q′9. The other covering set is {M ′′′9 }, which covers the same
terms as {M ′9,M ′′9 } does. The two covering sets provide
two alternative ways to generate citations and are denoted
{{M ′9,M ′′9 }, {M ′′′9 }}.

5. FROM THEORY INTO PRACTICE
Generating provenance-based citations for aggregate queries

and views relies on ideas from query rewriting using views as

8

well as provenance. However, bringing those ideas from the-
ory into practice raises several engineering challenges, which
must be overcome to provide a solution with acceptable time
performance. We discuss those challenges in this section,
starting with a discussion of the algorithmic complexity of
ProvCite, before discussing implementation details and op-
timizations used in the context of an example.

5.1 Algorithmic complexity
In what follows, we assume that the underlying database

system is provenance-enabled, i.e. we do not consider the
cost of carrying provenance through queries and generating
the how-provenance of final results. Rather, we focus on the
cost of using provenance to generate fine-grained citations.

An overview of our implementation is shown in Algorithm
1. The algorithm consists of three steps: 1) Preprocessing,
2) Reasoning about valid view mappings, and 3) Covering
sets calculation.

The major overhead of the Preprocessing step is loading
the query provenance into memory, which is determined by
the underlying provenance-enabled database.

In the Reasoning about valid view mappings step, the time
to check the validity of a view mapping includes: 1) the time
to retrieve the view provenance from the database, which is
proportional to the total number of how-provenance mono-
mials in the view instance on average (denoted as Npv);
and 2) the time to compare the view provenance and query
provenance in memory, which is proportional to the total
number of how-provenance monomials in the query (Npq).
As a consequence, if there are m view mappings the time
complexity for this step is O(m∗Npq)+O(m∗Npv). Suppose
k is the upper bound for the number of relational subgoals
in the query or view body and the largest relation in the
database has n tuples, then O(Npq) = O(Npv) = O(nk) and
thus the time complexity becomes O(m ∗ nk). Our experi-
ments with realistic queries in Section 6, however, show that
in practice the performance is still acceptable since both Npq

and Npv are not very large (usually no more than 1 million).
The time for the Covering sets calculation step depends on

the policies on how to convert covering sets into formatted
citations – see [35]. Since in the worst case the number of
possible coverings sets may be exponential in m, if m is large
and all covering sets are used in a policy this can be very
costly. However, in practice m is small (e.g. 1 or 2) since
views associate different parts of the database with citations
and queries have a small number of subgoals. Performance is
therefore acceptable even when all covering sets are used in
a policy, as shown in Section 6. Furthermore, in practice we
believe that a “minimal cost” policy will be used to generate
concise citations, in which case covering sets are pruned,
resulting in a cost which is linear in m.

5.2 Optimization and implementation (via an
example

Our worst case complexity analysis shows that if naively
implemented, it might be quite expensive to generate fine-
grained citations, and therefore challenging to do with ac-
ceptable performance. We therefore use a number of op-
timizations, which are discussed below using an example
which also illustrates how ProvCite is implemented.

Example 10. Given the views V1 − V5 defined in Section
3.1, suppose the query is as follows:

Algorithm 1: Overview of PBA

Input : a set of views: V = {V1, V2, ..., Vk}, user
query: Q, a Database instance D

Output: Covering sets for every query tuple in Q(D)
1 Preprocessing step: Return a set of all possible view

mappings M and the provenance of Q
2 Reasoning valid view mapping step: Retrieve

provenance of every view. For each query tuple t,
determine valid view mappings by comparing the
provenance of Q and the provenance of V

3 Covering sets calculation step: Calculate covering sets
by combining valid view mappings for each query tuple.

Q(T,N,COUNT (E),MAX(L)) : −Exon(E,L, T ′), E <= 6
Transcript(T,N, Ty,G), T = T ′

In the pre-processing step, the provenance of the query is
retrieved. Using the instances of Exon, Gene and Transcript
shown in Tables 1-3, the instance of Q along with the how-
provenance polynomials is shown in Table 9.

Next, all possible view mappings are constructed. We can
find three view mappings, M3, M4 and M5, under which
the relational subgoals of V3, V4 and V5 are mapped to sub-
goals of Q with the same name, respectively. Note that all
the schema-level conditions are independent from individual
query tuples, which can be applied to remove invalid view
mappings early. In this example, M3, M4 and M5 are all sat-
isfied, since under each mapping all the grouping variables
and at least one aggregate term of Q are covered.

In the Reasoning about valid view mappings step, since V3

is a conjunctive view, the validity of its view mapping M3

can be determined by reasoning about the satisfiability of
predicates in V3 under M3 without retrieving the provenance
of V3. This is because the provenance of each tuple in the
query result is expressed in terms of the base relation tuples,
which can be evaluated against the view predicates to deter-
mine whether or not the tuple would appear in the view. For
example, the validity of M3 can be checked simply by exam-
ining the predicates of V3. Since the first predicate, T = T ′,
in V3 is the same as that in Q, every tuple in the query
instance must satisfy it. The second predicate, E >= 4, is
only related to relation Exon and the how-provenance tokens
e1 − e6 in Q(D). Looking at Table 1, only the tuples with
how-provenance token e4 − e6 satisfy E >= 4. Thus M3 is
only valid for tq3 and tq4, whose how-provenance polynomi-
als only include e4 − e6 without any other how-provenance
tokens from Exon.

In contrast, since both V4 and V5 are aggregate views,
their how-provenance expressions are needed to check the
tuple-level conditions of view mappings, which can be dealt
with by two alternative strategies. One is to pre-compute
their how-provenance (eager strategy) while the other one is
to retrieve their how-provenance on the fly (lazy strategy).
Their trade-offs will be discussed in Section 6.

The instances of V4 and V5, along with their how-provenance
expressions, are presented in Tables 10 and 11, respectively.
We find that view mapping M4 is only valid for tuple tq3
since it shares the same set of how-provenance monomials
with view tuple tv41.

Similarly, we can determine that M5 is valid for query tu-
ples tq1 - tq3. Note that for tuple tq4, although all of its how-
provenance monomials exist in the view tuple tv54, it does
not include e7 ∗ r4 which is used to construct tv54, violating

9

Table 9: Q(D) with how-provenance polynomials

T N COUNT(E) MAX(L) prov
tq1 1 MB-203 1 1 e1 ∗ r1
tq2 2 PC-203 2 3 e2 ∗ r2 + e3 ∗ r2
tq3 4 HP-218 1 2 e4 ∗ r3
tq4 5 GK-207 2 3 e5 ∗ r4 + e6 ∗ r4

Table 10: V4(D) with how-provenance polynomials

T1 N1 COUNT(E) prov
tv41 4 HP-218 1 e4 ∗ r3
tv42 5 GK-207 2 e6 ∗ r4 + e7 ∗ r4

Table 11: V5(D) with how-provenance polynomials

T1 N1 MAX(L) prov
tv51 1 MB-203 1 e1 ∗ r1
tv52 2 PC-203 3 e2 ∗ r2 + e3 ∗ r2
tv53 4 HP-218 2 e4 ∗ r3
tv54 5 GK-207 3 e5 ∗ r4 + e6 ∗ r4 + e7 ∗ r4

Table 12: Q(D) with valid view mappings and covering
sets (aggregate terms omitted)

T N valid view mappings covering sets
tq1 1 MB-203 M5 {{M5}}
tq2 3 PC-203 M5 {{M5}}
tq3 2 HP-218 M3,M4,M5 {{M3}, {M4,M5}}
tq4 3 GK-207 M3 {{M3}}

the Tuple-level condition. Intuitively, since the max term
may come from this component of the monomial (e7 ∗ r4),
tv54 should not provide citation information for tq4.

Finally, valid view mappings and derived covering sets are
shown in Table 12. Note that for tuple tq3, there are two
covering sets, {M3} and {M4,M5}; other combinations of
view mappings either redundantly or non-maximally cover
the query’s aggregate terms, and therefore are not valid.

Three strategies are applied to speed up the covering sets
calculation: 1) representing coverings sets using bit arrays;
2) applying clustering algorithms to avoid an explosion of
intermediate results; and 3) query tuples associated with the
same set of valid view mappings form a reasoning group to
avoid repetitive computations of covering sets. For example,
tq1 and tq2 have the same set of valid view mappings, {M5},
which should end up with the same covering sets. So those
two tuples are grouped together to compute covering sets
once. These optimizations can result in orders of magnitude
speed-up.

6. EXPERIMENTS

6.1 Experimental set-up
We implemented ProvCite in Java 8 using PostgreSQL

9.6.3 as the underlying DBMS. All experiments were con-
ducted on a Linux server with an Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz and 64GB of central memory.

Datasets. Two realistic datasets were used in addition
to GENCODE: Hetionet1 and DBLP-NSF2. Summary in-

1https://neo4j.het.io/browser/
2https://data.mendeley.com/datasets/ycnngyv5bd

Table 13: Summary of datasets

Dataset name relation # average tuple
per relation

tuple # of
largest relation

GENECODE 7 600k 2000k
Hetionet 38 60k 500k

DBLP-NSF 17 600k 6000k

formation of the three datasets, including the number of re-
lations, average size per relation, and the size of the largest
relation is presented in Table 13.

We converted Hetionet, which is stored in Neo4j, into a
relational database3. DBLP-NSF was developed by the au-
thors of [35], and integrates DBLP publication information
with NSF award information to augment traditional paper
citations with funding information.

Workloads. We test the performance of ProvCite using
both synthetic and realistic workloads. As mentioned ear-
lier, one essential step for aggregate views is to compare the
provenance of views and queries. In order to retrieve the
provenance of views, we can use either eager or lazy strat-
egy. We compare these two strategies using both forms of
workloads. The performance also depends on the policies.
As mentioned in Section 5, different policies can lead to dif-
ferent results, and can generate either all or some of the
covering sets. Due to space limitations, only the case where
the all the covering sets are generated is presented here.

The purpose of using synthetic workloads is to determine
the key factors which influence performance. Extensive ex-
periments were performed in [35] measuring the total rea-
soning time to generate the covering sets (tcs) and the ci-
tation generation time after covering sets are constructed
(tcg). The citation generation time (tcg) is not considered
here since ProvCite only changes how valid view mappings
are determined during covering sets construction process rel-
ative to the implementations of RBM.

In [35], tcs primarily depends on: 1) the number of view
mappings (denoted Nv); 2) the total number of predicates
under the view mappings (denoted Np); 3) the size of the
query instance before duplicates are removed (which is the
same as the total number of how-provenance monomials in
the query instanceNpq). The experiments measure the effect
of these metrics on tcs. The total number of how-provenance
monomials in the view instance on average (Npv) can influ-
ence performance according to the analysis in Section 5, and
is also considered in the experiments.

The trade-offs between ProvCite and two implementations
of the RBM proposed in [35], TLA and SSLA, are also mea-
sured. As mentioned before, RBM can be extended to han-
dle aggregate queries when views are conjunctive views (but
not aggregate views). In this case, TLA, SSLA and ProvCite
all generate the same final, fine-grained citations.

In the realistic workloads, we use frequent queries against
the three databases, and build views to represent the por-
tions of data in the database associated with predefined ci-
tations. Complete details of the views and queries used are
available in our Github repository4.

3Available at https://github.com/thuwuyinjun/
Data_citation_provenance/files/2417454/hetionet_
postgresql.zip

4https://github.com/thuwuyinjun/Data_citation_
provenance

10

Table 14: Notation used in the experiments

Notation Meaning
tcs total reasoning time to generate the covering sets

for all query tuples
tcg citation generation time after covering sets are

constructed
Nv total number of view mappings
Np total number of predicates under the view mappings
Npq total number of how-provenance monomials in the

query instance
Npv total number of how-provenance monomials in the

view instance on average

To mimic the summary information provided by GEN-
CODE, we defined aggregate views to compute the total
number of transcripts per gene, and total number of exons
per gene and per transcript. Two additional parameterized
views are also defined to represent basic information (e.g.
ID, name and type) for each transcript and gene, respec-
tively. The realistic queries compute the total number of
exons (q1) and the total number of transcripts per type of
gene (q2) respectively.

For DBLP-NSF we use the realistic views defined in [35].
We also add aggregate views to reflect publicly available
statistics related to this database, such as the total number
of publications per faculty member5 and total number of
grants per institution6. Some realistic aggregate queries are
designed to represent other summary information, such as
total number of publications per institute (q3) and total
amount of grants per state (q4).

Hetionet integrates information from various resources,
and includes information about genes, biological process,
drugs etc. This information is stored in different relations
in the database. Of these, the biological process relation is
associated with citation information (i.e. related publica-
tion IDs). After consulting with the authors of Hetionet,
two views were defined. The first one is a parameterized
view showing the biological processes that a particular gene
is involved in. The second counts the total number of con-
nections between each biological process and corresponding
genes by joining several relations, such as the biological pro-
cess and gene relations. A typical query (q5) counts the
total number of connections between each biological process
and a certain drug via some genes.

Table 14 provides a summary of the notation defined in
this subsection.

6.2 Experimental results
We now report on results from the synthetic and realistic

workloads.

6.2.1 Synthetic workloads
We measured the impact of the size of provenance in both

the query and view instances on time performance (Exp1),
and the relative performance of ProvCite and two imple-
mentations of the RBM, i.e. TLA and SSLA while varying
the number of view mappings (Exp2) and number of view
predicates (Exp3).

Exp1. This experiment measures how the total reasoning
time tcs is influenced by the total number of how-provenance

5http://csrankings.org/
6https://dellweb.bfa.nsf.gov/awdlst2/default.asp

monomials in the query instance (Npq) as well as in the view
instance (Npv). We randomly generate an aggregate query,
and vary Npq by adding appropriate predicates. A fixed
number of aggregate views are also generated such that there
is exact one view mapping from each of them to the query
and the total number of view mappings is fixed at 10, which
is a reasonable number in practice. Both Npq and Npv are
varied from 50K to 1M. tcs is measured for different (Npq,
Npv) pairs under both the eager and lazy strategy.

Results. The time performance, tcs, is shown using 3D
surfaces in Figure 4a, with the eager strategy shown in blue
and the lazy strategy shown in red. It shows that the time
performance under the eager strategy is only slightly better
than under the lazy strategy (10% - 40% faster). In the
worst case, in which both Npv and Npq are 1 million, it
takes no more than 150 seconds. This case will be rare,
so the performance in practice should be much better. We
also measured the extra space needed for the eager strategy,
where the provenance of views is precomputed and stored
in the database; it takes about 180 MB in the database to
store the provenance for each view when the instance of the
view includes up to 1 million how-provenance monomials.

Exp2. The goal of this experiment is to compare the rela-
tive performance of ProvCite, TLA and SSLA while varying
the number of view mappings (Nv). Since TLA and SSLA
cannot handle aggregate views, only conjunctive views are
used. So there is no difference between eager and lazy strat-
egy since the provenance of views is not necessary. The
query is a fixed aggregate query, with 500k how-provenance
monomials in its instance. Nv is varied from 1 to 50 and
there are no predicates or lambda variables for each individ-
ual view.

Results. The experimental results are presented in Fig-
ure 4b, which shows that tcs grows rapidly with the in-
creasing number of view mappings (Nv) for all the three
approaches. This is due to the fact that an exponential
number of covering sets are generated, which is inevitable.
It is worth noting that ProvCite outperforms TLA when
Nv < 40, and is on par with SSLA until Nv > 30. Fur-
thermore it only adds a little extra overhead when Nv > 40
compared to the competitors.

Exp3. In this experiment, ProvCite is compared with
TLA and SSLA while varying the total number of predicates
(Np) in views. Similar to Exp2, the query is an aggregate
query which can generate about 500k tuples. The number of
view mappings is fixed at 10 and there are initially no pred-
icates. At each run, one more local predicate is added. As
shown in [35], increasing Np can significantly influence the
performance of TLA and SSLA by 1) increasing the query
time since the query is extended to explicitly evaluate the
satisfiability of predicates of the views in the query instance;
2) increasing the number of reasoning groups since we need
to compute covering sets for each group and thus more rea-
soning groups in the query instance means more reasoning
time. In theory, ProvCite will also suffer from a large num-
ber of groups but will save on query time.

Results. The experimental results are shown in Figure
4c, which matches the analysis above. As the number of
predicates increases, tcs increases slowly for ProvCite. In
contrast, TLA and SSLA are twice as slow as ProvCite for
large Np. To understand the reason for this, the query time
for TLA and SSLA is also presented in this figure, which
implies that the increasing query time becomes the major

11

0
15

50

10

100

t cs
 (

s)

10

150

105

N
pv N

pq

105

200

55

0 0

eager strategy

lazy strategy

(a) tcs with varied Npq and Npv

10 20 30 40 50

N
v

0

100

200

300

400

500

t cs
 (

s)

TLA

SSLA

ProvCite

(b) tcs with varied Nv

0 10 20 30 40 50

N
p

0

10

20

30

40

t cs
(s

)

TLA

SSLA

ProvCite

query time of TLA

query time of SSLA

(c) tcs with varied Np

Figure 4: Experimental results for synthetic workloads

overhead for both TLA and SSLA, thus slowing down the
computation.

Discussion. The experiments reveal that all four metrics,
Npq (the total number of how-provenance monomials in the
query instance), Npv (the total number of how-provenance
monomials in the view instance on average), Nv (the total
number of view mappings), Np (the total number of predi-
cates under the view mappings) can affect the total reason-
ing time tcs. In extreme cases, where the value of the met-
ric is very large, bad performance is unavoidable. However
these cases are unlikely to happen in practice. We therefore
expect reasonable time performance for realistic workloads.

In the case of aggregate views where how-provenance is
necessary, the eager strategy beats the lazy strategy in terms
of time. The speedup is small (10%-40%), however, extra
space is needed (up to 180 MB per view). So in practice,
the choice between the eager or lazy strategy depends on
whether speed or space is more important. In comparison
to the previous approaches, TLA and SSLA, ProvCite is not
only more powerful in that it supports aggregate views but
is also (surprisingly) frequently more efficient.

6.2.2 Realistic workloads
The experimental results for realistic workloads are pre-

sented in Table 15, which includes the time to generate cov-
ering sets (tcs) for both the lazy and eager strategies, as well
as the metrics that can potentially affect the performance:
the total number of how-provenance monomials in the query
instance (Npq), the total number of view mappings (Nv), the
total number of predicates in the views under all the view
mappings (Np) and the query time to simply generate in-
stance. Except for q1, most of tcs is less than 10 seconds for
all queries. Although Npq is more than one million in q1, the
total reasoning time (tcs) is only about a half minute under
both strategies, which is an acceptable considering the large
query instance. To see how this compares to simply generat-
ing the query output, we list the query running time in the
last column. When users are browsing the query result, the
system can generate covering sets for all query tuples in the
back-end, ready to instantly construct formatted citations
when users select tuples of interest.
Discussion. The experimental results above show that

reasonable time performance can be guaranteed in practice
where none of the crucial metrics become too large. Revis-
iting the experimental results for synthetic workloads, when
the total number of how-provenance monomials in the query

Table 15: Experimental results on realistic datasets

Query tcs (s)
(eager)

tcs (s)
(lazy)

Npq Nv Np query time
(s)

q1 22.51s 36.84s 1237914 1 0 1.02
q2 4.40s 6.03s 203835 2 0 0.13
q3 8.47s 11.23s 507515 2 0 1.15
q4 3.72s 5.68s 416716 1 0 0.67
q5 4.56s 6.82s 243901 3 0 0.51

instance (Npq) is more than 1 million (as in q1), the reason-
ing time (tcs) can be large (up to 150 seconds). However,
the time shown for q1 is significantly smaller since the num-
ber of view mappings (Nv) is only 1, and the reasoning time
relies on both Nv and Npq.

7. CONCLUSIONS
This paper builds on the connection to data provenance

to develop a model for data citation which is able to handle
aggregate queries and views. The model reasons about cita-
tions at the level of tuples in the query result using prove-
nance to enable citations to arbitrary subsets of the query
result.

The Provenance-Based Model was implemented in Prov-
Cite, and extensive experiments conducted under both syn-
thetic and realistic workloads. The results show that Prov-
Cite can not only handle a larger class of queries than pure
Rewriting-based approaches (which assume conjunctive queries
and views, e.g. [35]), but is much faster in some cases. How-
ever, the approach assumes a provenance-enabled DBMS.
Trade-offs between an eager versus lazy strategy for generat-
ing view provenance was also explored. The choice involves
a trade-off between speed and space.

In future work, we would like to explore how to insert
data citation into the larger citation ecosystem involving
bibliometrics. We would also like to explore how to use
citation within machine learning pipelines.

8. ACKNOWLEDGMENTS
This research was partially funded by NSF IIS 1302212

and NSF ACI 154736. The authors would like to thank Pe-
ter Buneman for conceiving the idea that data citation is a
computational challenge and recognizing its connection to
provenance; to Val Tannen for discussions on query rewrit-
ing and provenance; and Boris Glavic for his support in
understanding details of GProM’s source code.

12

9. REFERENCES

[1] Out of Cite, Out of Mind: The Current State of
Practice, Policy, and Technology for the Citation of
Data, volume 12. CODATA-ICSTI Task Group on
Data Citation Standards and Practices, 2013.

[2] DataCite Metadata Schema Documentation for the
Publication and Citation of Research Data, v4.0.
Technical Report, DataCite Metadata Working
Group, 2016.

[3] F. N. Afrati, C. Li, and J. D. Ullman. Using views to
generate efficient evaluation plans for queries. Journal
of Computer and System Sciences, 73(5):703–724,
2007.

[4] A. Alawini, S. B. Davidson, W. Hu, and Y. Wu.
Automating data citation in CiteDB. Proceedings of
the VLDB Endowment, 10(12):1881–1884, 2017.

[5] A. Alawini, S. B. Davidson, G. Silvello, V. Tannen,
and Y. Wu. Data citation: A new provenance
challenge. 2018.

[6] Y. Amsterdamer, D. Deutch, T. Milo, and V. Tannen.
On provenance minimization. ACM Transactions on
Database Systems (TODS), 37(4):30, 2012.

[7] Y. Amsterdamer, D. Deutch, and V. Tannen.
Provenance for aggregate queries. In Proceedings of
the thirtieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
153–164. ACM, 2011.

[8] B. S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and
Q. Zeng. GProM-a swiss army knife for your
provenance needs. Data Eng. Bull, 41(1):51–62, 2018.

[9] J. Brase, I. Sens, and M. Lautenschlager. The Tenth
Anniversary of Assigning DOI Names to Scientific
Data and a Five Year History of DataCite. D-Lib
Magazine, 21(1/2), 2015.

[10] P. Buneman, S. B. Davidson, and J. Frew. Why data
citation is a computational problem. Communications
of the ACM (CACM), 59(9):50–57, 2016.

[11] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and where: A characterization of data provenance. In
International conference on database theory, pages
316–330. Springer, 2001.

[12] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 77–90.
ACM, 1977.

[13] A. Chapman and H. Jagadish. Why not? In
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 523–534.
ACM, 2009.

[14] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
In Data Engineering, 1995. Proceedings of the
Eleventh International Conference on, pages 190–200.
IEEE, 1995.

[15] S. Cohen. User-defined aggregate functions: bridging
theory and practice. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, pages 49–60. ACM, 2006.

[16] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries
with arbitrary aggregation functions using views.

ACM Transactions on Database Systems (TODS),
31(2):672–715, 2006.

[17] S. Cohen, W. Nutt, and Y. Sagiv. Deciding
equivalences among conjunctive aggregate queries.
Journal of the ACM (JACM), 54(2):5, 2007.

[18] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In Proceedings of the
eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
155–166. ACM, 1999.

[19] M. P. Consens and A. O. Mendelzon. Low complexity
aggregation in graphlog and datalog. In International
Conference on Database Theory, pages 379–394.
Springer, 1990.

[20] S. B. Davidson, P. Buneman, D. Deutch, T. Milo, and
G. Silvello. Data citation: A computational challenge.
In Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2017, Chicago, IL, USA,
May 14-19, 2017, pages 1–4, 2017.

[21] S. B. Davidson, D. Deutch, T. Milo, and G. Silvello. A
model for fine-grained data citation. In CIDR, 2017.

[22] FORCE-11. Data Citation Synthesis Group: Joint
Declaration of Data Citation Principles. FORCE11,
San Diego, CA, USA, 2014.

[23] C. Galindo-Legaria and M. Joshi. Orthogonal
optimization of subqueries and aggregation. In ACM
SIGMOD Record, volume 30, pages 571–581. ACM,
2001.

[24] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
31–40. ACM, 2007.

[25] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270–294, 2001.

[26] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari,
M. Diekhans, F. Kokocinski, B. L. Aken, D. Barrell,
A. Zadissa, S. Searle, et al. Gencode: the reference
human genome annotation for the encode project.
Genome research, 22(9):1760–1774, 2012.

[27] D. S. Himmelstein, A. Lizee, C. Hessler,
L. Brueggeman, S. L. Chen, D. Hadley, A. Green,
P. Khankhanian, and S. E. Baranzini. Systematic
integration of biomedical knowledge prioritizes drugs
for repurposing. Elife, 6, 2017.

[28] L. B. Honor, C. Haselgrove, J. A. Frazier, and D. N.
Kennedy. Data Citation in Neuroimaging: Proposed
Best Practices for Data Identification and Attribution.
Frontiers in Neuroinformatics, 10(34):1–12, August
2016.

[29] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E.
Taylor, V. Tannen, P. P. Talukdar, M. Jacob, and
F. Pereira. The ORCHESTRA collaborative data
sharing system. ACM Sigmod Record, 37(3):26–32,
2008.

[30] J. Klump, R. Huber, and M. Diepenbroek. DOI for
Geoscience Data – How Early Practices Shape Present
Perceptions. Earth Science Inform., pages 1–14, 2015.

[31] J. McEntyre, U. Sarkans, and A. Brazma. The
BioStudies database. Molecular systems biology,
11(12):847, 2015.

13

[32] R. Pottinger and A. Y. Levy. A scalable algorithm for
answering queries using views. In VLDB, pages
484–495, 2000.

[33] N. Simons. Implementing DOIs for Research Data.
D-Lib Magazine, 18(5/6), 2012.

[34] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering queries with aggregation using views. In
VLDB, volume 96, pages 318–329, 1996.

[35] Y. Wu, A. Alawini, S. B. Davidson, and G. Silvello.
Data citation: Giving credit where credit is due. In
Proceedings of the 2018 International Conference on
Management of Data, pages 99–114. ACM, 2018.

[36] J. Xu, W. Zhang, A. Alawini, and V. Tannen.
Provenance analysis for missing answers and integrity
repairs. Data Engineering, page 39, 2018.

[37] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh,
and M. Urata. Answering complex SQL queries using
automatic summary tables. In ACM SiGMOD Record,
volume 29, pages 105–116. ACM, 2000.

14

