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1. INTRODUCTION

Examining information in temporal gaze patterns can reveal insights
into gaze behaviour essential for studying patterns in visual defect
conditions. These patterns provide insight into how a gaze changes
it’s spatial location and orientation under a landscape and the reason
why a specific gaze is focused on a particular set of objects for a larger
period of time. The notion here is that it changes widely in patients
concerning different visual defects and specifically examining the
patterns exhibited in different visual defects may potentially be of
clinical relevance for diagnosis and prognosis. Specifically exam-
ining patterns in patients with Homonymous Hemianopia allows
extrapolating temporal trends to other visual defects as well. Quan-
titative analysis of these patterns are central to drawing reasonable
inferences in behavioral patterns associated with each visual defect.
Such an autonomous and non-invasive approach for identification
of behavioral patterns provides a low-cost alternative in domains
where MRI is not readily accessible or required.

Homonymous Hemianopia is a visual defect associated with the
damage of the occipital lobe and the visual cortex leading to loss
in visual information from the contralateral visual field. Previous
studies focusing on oculography focused on manually observing
quantitative patterns using approximated methods to classify them -
Meienberg et al. [1]. These studies observed patients to consciously
or unconsciously exhibit specific common strategies to spatially
locate and fixate objects observed through gaze patterns. This helped
draw assumptions that locating and fixating strategies are specific
to visual defects and can be used to identify the defect. However,
we still observe limitations in oculographic methods to manually
classify patterns in longer temporal-trends and hence we propose
this Research to employ gaze estimation for localizing quantifiable
patterns temporally.

Comparing strategies previously used for diagnosis and prognosis
of visual defects is significantly distinctive specifying the evaluation
strategies for gaze checks which commonly rely on rapid vibration
or change in object around a fixation point throughout the focal
view to identify signs of visual defects, in this case Homonymous
Hemianopia. Evaluation experiments relying on acquisition of vi-

sual stimuli specific to tracking an object around the fixation point
does not give insight into behavioural analysis of the same patient
under contemporary real world conditions. The following research
develops a data acquisition system tracking gazes as well as relative
head angles and spatial movements for a Homonymous Hemianopic
patient walking in locations namely classified as empty street walk-
ing which involves gaze directional towards objects of other classes
than ’person’ evaluating the nature of objects and trends in gaze over
specific object characteristics, crosswalks or lane-crossing mainly to
evaluate simultaneous attention distribution over vehicles, people
and crosswalk over the focal view, under stationary conditions assess-
ing trends in tendency to observe objects under a certain quadrant
of the focal view (characteristic distinctive to Homonymous Heman-
iopia) and other similar instances.

The task of calculating gaze extends to the standard gaze esti-
mation method under fixation point experiments where the head
position is fixed as a function of time. Under simulated real-world
conditions with moving head position in the coordinate space, gaze
estimation is achieved through eye gaze estimation relative to the
head spatial location and angle, and calculation of head coordinates
in space relative to the ground frame. This creates an ensemble of
both these calculation algorithms working simultaneously to achieve
accurate gaze estimation for objects irrespective of the orientation of
head in space. The calculation of head location is based on the infor-
mation retrieved through IMU sensors positioned on the Homony-
mous Hemaniopic patient.

Temporally, the gaze is tracked and estimated for the person
in-motion using a camera positioned to capture the gaze; simulta-
neously another camera positioned horizontally outwards captures
the focal view of the landscape to correspond to the objects being
observed by the gaze. Concerning studies involving mobile sub-
jects with head and gaze position varying with time, most research
focused solely on tracking gaze in-head orientation without consid-
ering the impact of head orientation over eye-gaze results. (Fotios,
Uttley et al.[2], Li, Munn et al.[3]). Since head-orientation wasn’t
taken into account, an accurate picture of what the eye-gaze is di-
rected towards could not be made. Relative analysis to some-extent
may reveal important results; however an absolute estimation of spa-
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Fig. 1. Designed methodology of the proposed research. Here, modules [a], [b], [c] denotes a feature detection module, thresholding mod-
ule and realtime pupil and optional corneal reflection tracking module which form an ensemble network for eye-gaze extraction. A Faster
RCNN Inception V2 Object Detection framework is used for detecting objects for identifying salient gazed objects.

tial coordinates helps decipher accurate results with respect to the
ground frame. Recent improvements are observed in tracking by esti-
mating spatial positions of head movement with respect to confined
environments using walking simulators of head-in-space motion
capture systems (Barabas, Goldstein et al., [3]; Bowers, Ananyev et
al., [4]; Cesqui, de Langenberg et al., [5])

Considering the case of Homonymous Hemianopia can be ob-
served as uni-hemispherical peripheral visual field loss, quantifi-
cation of temporal patterns in data through gaze tracking provides
important behavioural insights which possibly might not be accom-
plished through eye tracking alone. According to Luo et al. [6], pa-
tients with tunnel vision observed saccadic eye-movements large
enough to match those of normal vision person under specific con-
ditions while walking outdoors. This makes it hard to distinguish
between specific cases in people with visual defects compared to
those with normal vision under different environments and using
only in-head eye-movements. Extrapolating such data might not
yield accurate results and might also contradict findings of previous
experiments. Contrary to the frequent methods published to solely
identify Homonymous Hemianopia, this paper provides a deeper
insight in the behavioural and temporal gaze patterns observed for
the patients under various outdoor conditions.

2. BACKGROUND

3. DATASET

Write about dataset in details. I will give you 2-3 papers which has
used this dataset

4. METHOD

One of our main aims in this research is to to analyse and recog-
nize the qualitative nature of the objects guided by a gaze. Here, we
make use of Object detection to detect and classify objects based
on their extrinsic properties and use these qualitative temporal pat-
terns to identify Homonymous Hemianopic bio-markers. Object
detection has been at the epicentre for different computer vision
applications. Over the years, Object detection and classification

frameworks have been widely used over a spectrum of applications
from Autonomous Driving Assistance Systems (ADAS), Healthcare,
Robotics etc. and contextually, the mode of deployment of the devel-
oped framework varies as well which can be observed in the form of
two subsequent algorithms performing similar task extracting com-
pletely different patterns of data. Essentially, this research focuses on
an Object detection model with a notion of saliency to understand
gaze-aware relative importance of different classes and its demo-
graphics. The post-processing of our results focuses on identifying
relative saliency of detected object classes distinguishing between
observant behavioural patterns in Homonymous Hemianopic pa-
tients.

We start by comparing different Object detection models suited
for our research environment and going with the one which yields
the most accurate detections specific to the objects in our curated
dataset. The detected objects are classified as whether they are gazed
or not using three different levels of classification algorithms namely
a Euclidean thresholding method through the centroid of the detect-
ing bounding boxes and the other two being geometrical approaches
calculating whether a gaze fixation at a spatial frame exists inside
the bounding box temporally and the last one being a combination
of the previous two; using a Euclidean thresholding method for the
foot of perpendicular from the spatial gaze coordinates onto each
localised segment of the bounding box using the distance for the per-
pendicular as the threshold for classification. This will be elaborated
upon later.

Initially in this research, we gauge a comparison between 6 differ-
ent Object detection frameworks each trained on the COCO (Com-
mon objects in context) dataset namely YOLO v4 Darknet (You Only
Look Once), Faster R-CNN Resnet 50 COCO, SSD Mobilenet V1
COCO- (quantized), SSDlite Mobilenet V2 COCO, SSD Incpetion
V2 COCO, Faster R-CNN Inception V2 COCO. It must be noted here
that we gauge the frameworks such that a trade-off for speed or pro-
cessing time for accuracy is preferred in each case. This is because
the research focuses on evaluating behavioural patterns and this
does not require a real-time on-device processing out-of-the-box
and hence post-processing accurate methods (even though compu-
tationally heavy) are preferred. Additionally, even though we try to
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Fig. 2. Comparison of 31/6500 frame from all networks to visually understand comments based on subjective comparison from ??

Framework Speed(ms) COCO mAP Comments

Faster R-CNN Inception v2 58 28
Efficient to Deploy, Accurate and low latency

on the given input video sequence.

SSDlite Mobilenet V2 COCO 27 22
Efficient and real-time however

not as accurate results
.

SSD Inception V2 COCO 42 24
Results comparable to Faster R-CNN Inception,

however few missed objects
in occluded scenes

SSD Mobilenet V1
COCO - quantized

30 21
Slightly depreciated performance as compared to

SSDlite Mobilenet V2, however lower latency.

Faster R-CNN Resnet50 COCO 89 30
Not efficient enough and multiple false-negatives

for other classes, prominent flickering
between frames.

Yolo V4 Darknet 73 47.5
Efficient, however produces few false

negatives and performs worse in occluded scenarios

Table 1. Initial Objective and Subjective comparison of all tested frameworks on the HMS Homonymous Hemanopia Dataset. As observed
in the next section, YOLOv4 Darknet and Faster R-CNN Inception v2 performs better than most other compared.

minimise false negatives as well as false positives in our framework,
there is a general preference towards having no-detections in any
given frame rather than false-positives since those might yield ar-
bitrary conclusions which might drive our findings onto a different
tangent which is avoided. The models trained on COCO dataset are
preferred here since the classes in the set of COCO list are repre-
sentative of most common objects influencing major proportion of
behavioural patterns reflective of the visual information perceived.
Withing this set of COCO classes, we primarily focus on 24 classes
overly dominant in each spatial frame combined temporally which

primarily constitute the person class, 4 major vehicle classes, road
signs and symbols classes and a few other influencing gaze patterns.
We use a subjective method of ranking different Object detection
frameworks relative to our use-case by observing:

• The accuracy of detected objects in major classes.

• Consistency of the detected objects over temporal frames

• Performance of occluded regions of objects
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• Percentage of false-negatives observed in random sample
frames and overall calculating the information retrieved
through the detected objects overall.

Additionally, we consider the quantitative results such as mAP for
the dataset (COCO) and speed(ms) in case two frameworks observe
identical performance. Even though in the short term we do not
intend on using a real-time Object detection framework for analysing
behavioral patterns, we still include SSD Mobilenet v1 and SSDlite
Mobilenet v2 COCO for understanding their relative performance on
this dataset for future studies which are real-time Object detection
models which can be deployed on an edge-device.

A. Subjective Evaluation of Frameworks
According to our subjective assertion in ??, we narrow our focus on
comparing the two most optimum frameworks i.e. YOLO v4 Darknet
and Faster R-CNN Inception v2 COCO by evaluating the subjective
comments in the table. Narrowing our focus down to two frameworks
after subjectively and objectively testing the others helps eliminate
any other ambiguity in our evaluation. Despite both the frameworks
being trained on the COCO dataset, the object detection method
both employ widely varies according to the application and in this
case, both frameworks tend to vary in their performance depending
on the tasks. Assigning each task a weightage according to relative
importance and then deciding the most optimum framework based
on our discretion 4.

A.1. YOLO V4 Darknet

Fig. 3. A generalized network architecture for YOLO

YOLOv4 is a single stage detector framework with it’s core of tar-
get detection algorithm in it’s efficient calculation and small size.
The model is capable of effectively localizing the objects in an image
which makes it efficient in various applications for object detection.
YOLO V4 skips the region proposal network in it’s algorithm and
tends towards making a trade-off for efficient and faster detection
by running over a dense sampling of all possible locations using a
one-stage object detection approach. In theory this might impact
the performance to some margin, however the magnitude of this
difference varies with different applications. YOLO’s efforts in min-
imizing the overlapping of detection boxes lies in using the global
image for detection, which encodes the global information reduc-
ing the detections of background as an object. In general, YOLO v4
Darknet outperforms most other networks in scenarios where the
object is distant in the focal view and has a clear consistent visible re-
gion temporally over the frames. Additionally, YOLO is known for its
consistency in detecting objects in temporal frames which preserve
spatial appearance.

• Backbone - CSPDarknet53 is a modified version of the Darknet-
53 network. The number of convolution layers in the network
are represented by the number ’53’ and CSP stands for Cross-
stage-partial connections.

• Neck: Path Aggression Network (PAN) and Spatial Pyramid Pool-
ing (SPP) form the components of the neck of the network. PAN

serves as the method of parameter aggregation for different
detector levels and SPP is used to increase the receptive field
by a significant amount which separates the most significant
context features without compromising the network operaton
speed.

• Head: YOLOv3 is used as the end of the chain object detector
for dense predictions and detections.

In general, various different versions of YOLO have shown high
computation speed and real-time inference, however since our ap-
plication focuses on accuracy over real-time detection, the real-time
factor isn’t taken into consideration while choosing frameworks. The
YOLO algorithm is designed to employ an image into a grid of multi-
ple cells and the confidence scores inside the region of the bounding
box are predicted for each cell and assigned a class probability. This
is done by using IOU metric (Intersection over Union), a common
method for evaluating semantic segmentation models, which mea-
sure the extent of overlap between detected object and the defined
ground truth as a fraction of the total area spanned by the union of
the two. Looking at a brief cycle of improvements in the YOLO algo-
rithm, YOLOv2 [7] consisted of anchor boxes- a pre-determined set
of boxes to predict the offsets from these pre-defined anchor boxes
rather than directly predicting the bounding box. However, YOLOv3
[8] included bounding box prediction over different scales and the
inclusion of 53 layers in Darknet. Currently, the most optimum of
all proposed, YOLOv4 [9] was superior in terms of both speed and
accuracy. As seen in ??, YOLOv4 provided 47.5% mAP over MS COCO
Dataset at a speed of 73ms per frame. In theory, YOLOv4 can be
summarised as follows:

It might be further worth noting the workflow of YOLO which is a
one-stage detector explained through 5:

• An image is split into a grid of N xN cells, where locally those
cells in which the object’s centre is located, are responsible for
the detection of the object. Associated with each cell is a loca-
tion of B bounding boxes, confidence score and the probability
of an object class dependent on the existence of an object in
the bounding box.

• A tuple of 4 values normalized between [0,1] con-
tain the coordinates of the bounding box namely

(center x-coordinate, center y-coordinate, width, height)

in the format (x, y , w ,h) where x and y are conditioned

depending on the cell location.

• Each cell is associated with its individual confidence score
which indicates the likelihood of the presence of object.

Pr (containing an object) x I oU (pred, truth) . Pr : Probability,
I oU : Intersection over Union.

• The probability of an object contained by a cell belonging to

every class Ci , i = 1. . .K is predicted by Pr (the object belongs

to the class Ci | containing an object). This allows the model

to predict only one set of class probabilities per cell regardless
of the number of bounding boxes, B .

• Cumulatively, an image contains N xN xB bounding boxes
where each box corresponds to 4 location predictions, 1 confi-
dence score, and K conditional probabilities for object classifi-
cation.

• Finally, the final layer of YOLO’s CNN Network outputs a

tensor of size N xN x(5B +K )
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Fig. 4. Different stages of object detection explained through A.1 for a standard one-stage YOLO detection algorithm, further generalized to
YOLOv4 Darknet.

Fig. 5. Frame-wise comparison of Faster R-CNN network with YOLOv4 Darknet

A.2. Faster R-CNN

R-CNN, coined by [10], is a Convolutional Neural Network (CNN)
with an added region-proposal algorithm which hypothesizes object
locations. This network employs a selective search to initially extract
a fixed number of regions (2000). Further, using a greedy algorith,
this network merges similar regions together to obtain the selected
regions where object detection is applied. Since R-CNN came with a
speed bottleneck, both in terms of training and testing, the authors
designed an enhanced algorithm entitled Fast R-CNN [11] using a
shared convolutional feature map that the convolutional neural net-
work would generated from the input image which is used to extract
the Regions of Interest (RoI). While Fast R-CNN was arguably better
in terms of both training and testing time, the improvement was not
dramatic because the region proposals were generated separately
by another model which tends to be expensive. However, Ren et
al. [12] proposed a Faster R-CNN algorithm which introduced the
Region Proposal Network (RPN) by integrating the region proposal
algorithm in the CNN model itself. Faster-RCNN introduces the

construction of an ensemble of a unified model composed of RPN
and Fast R-CNN with shared convolutional feature layers which is
trained end-to-end to predict both- the object bounding boxes and
objectness scores in a computationally inexpensive manner (10ms
per frame).

Workflow explaining the Faster R-CNN architecture in 7:

• The RPN (region proposal network) is fine-tuned end-to-end
for the region proposal task, further initialized by the pre-train
image classifier. The positive samples are assigned an IoU score
> 0.7 and negative samples an IoU score < 0.3 which might be
indirectly treated as a threshold.

• A spatial window cover of size n x n is slid over the convolu-
tional feature map of the frame.

• At the center of each sliding window, multiple regions of
varying scales and ratios are predicted simultaneously. An an-

chor is a combination of (sliding window center, scale, ratio) .
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Fig. 6. Consistency analysis of both networks - YOLOv4 Darknet and Faster R-CNN Inception v2

Fig. 7. Network architecture for Faster-RCNN model

For example, 3 scales + 3 ratios => k=9 anchorsat each sliding position.

• Finally, a ’Fast R-CNN’ object detection model is trained using
the proposals generated by the RPN.

• The Fast R-CNN network is used to then initialize RPN training.
The Shared Convolutional layers are kept and simultaneously,
the RPN-specific layers are fine-tuned. Now, the detection net-
work and RPN have shared convolutional layers which com-
pletes the workflow.

Loss function for Faster R-CNN network: The loss function of the
Faster R-CNN network can be described in the following manner-

The multi-task loss function combines the losses of classification
and bounding box regression:

L =Lcls +Lbox

L
({

pi
}

,
{

ti
})= 1

Ncls

∑
i

Lcls
(
pi , p∗

i

)+ λ

Nbox

∑
i

p∗
i ·Lsmooth

1
(
ti − t∗i

)
where Lcls is the log loss function over two classes, as we can easily
translate a multi-class classification into a binary classification by

predicting a sample being a target object versus not. Lsmooth
1 is the

smooth L1 loss.

Lcls
(
pi , p∗

i

)=−p∗
i log pi −

(
1−p∗

i

)
log

(
1−pi

)
The variables used to defined the loss function can be enlisted

in the form: |pi | Predicted probability of anchor i being an object.
|| p∗

i | Ground truth label (binary) of whether anchor i is an object.
||ti | Predicted four parameterized coordinates. ||t∗i | Ground truth
coordinates. | | Ncls | Normalization term, set to be mini-batch size
( 256) in the paper. | Nbox | Normalization term, set to the number
of anchor locations ( 2400) in the paper. || λ | A balancing parameter,
set to be ∼ 10 in the paper (so that both Lcls and Lbox terms are
roughly equally weighted).

B. Comparison of Both Frameworks through Standard Metrics
Since YOLOv4 performance widely varies as per context and the
dataset, we subjectively carried out our evaluation by localizing the
detected objects in each frame, penalizing the performance for each
undesired object detected or object missed out with separate cate-
gories for occlusion based missing or inconsistent frame tracking.
Table 1 proposes a direct comparison between YOLOv4 Darknet and
Faster R-CNN based on theoretical information on the architecture
of the given models.

Quantifying rate of False-positives and False-negatives in both net-
works Amar et al. [13] conducted a comparative study between
the frameworks (Faster R-CNN Inception V2, Faster R-CNN Resnet
50, YOLO V3 and YOLO V4) and found that the difference is False pos-
itives, negatives and precision is closely intertwined with the dataset
chosen for the study. While the above research was conducted on
two aerial datasets, the performance of both models widely varied
with the nature of the dataset- (Stanford Dataset and Prince Sultan
University (PSU) Dataset). The representation of the images and
nature of images widely influenced the performance of the models.
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YOLOv4 Faster R-CNN

Phases
Concurrent bounding box

regression, and classification.
RPN + Fast R-CNN

object detector.

Neural network type Fully convolutional.
Fully convolutional

(RPN and 4 detection network).

Backbone feature extractor CSPDarknet53 (53 convolutional layers).
VGG-16 or Zeiler

Fergus(ZF).
Other feature extractors can also be incorporated.

Location detection Anchor-based Anchor-based

Number of anchor boxes
Using multiple anchors
for a single ground truth

3 scales and 3 aspect ratios,
yielding k = 9 anchors

at each sliding position.

Default Anchor sizes
(12,16), (19,36), (40,28),

(36,75), (76,55), (72,146),
(142,110), (192,243), (459,401)

Scales: (128,128),
(256,256), (512,512).

Aspect ratios: 1:1, 1:2, 2:1.

IoU thresholds One (at 0.213) Two (at 0.3 and 0.7).

Loss function Complete IoU loss: CIoU
Multi-task loss:

- Log loss for classification.
- Smooth L1 for regression.

Input size
Different possible input sizes
(n × n with n multiple of 32).

- Conserves the aspect ratio of the original image.
- Either the smallest dimension is 600,

or the largest dimension is 1024.

Batch size Default value: 64. Default value: 1

The Stanford dataset had nearly 30 times as many object instances
to be trained on than PSU dataset per image. Following this, one
of the conclusions made by the authors were that the YOLO V4 was
specifically tuned for the COCO dataset and did not yield as high
Average Precision values for the rest of the datasets. It could also
be subjectively observed that YOLO V4 had a higher tendency of de-
tecting fainter, distant objects which Faster R-CNN could not easily
catch, and while this hints at YOLO V4 being a better algorithm for
this niche of datasets, these results cannot be smoothly extrapolated
in our case. The reason is that Faster R-CNN performs better than
YOLO V4 for occluded images considering the nature of the algo-
rithm; and with most of the dataset consisting of occlusions, the
result changes drastically.

5. RESULTS

We used the Faster R-CNN Inception V2 Framework to carry out
the object detection for the Focal view of the gaze combined with
gaze estimation done discretely and later combined into a single
analysis algorithm to calculate the description of different objects
being gazed which breaks down into qualitative and quantitative
analysis. The results section is also further broken down into two
parts:

• Raw data analysis

• Visual description of quantitative results

Work in Progress. Generating visualisations from csv data through
google colab.

TBD 6Sept

Algorithm 1. Euclid’s algorithm

1: procedure EUCLID(ab) ▷ The g.c.d. of a and b
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a ← b
5: b ← r
6: r ← a mod b
7: return b ▷ The gcd is b

6. CORRESPONDING AUTHOR

We require manuscripts to identify a single corresponding author.
The corresponding author typically is the person who submits the
manuscript and handles correspondence throughout the peer review
and publication process. If other statements about author contribu-
tion and contact are needed, they can be added in addition to the
corresponding author designation.

7. EXAMPLES OF ARTICLE COMPONENTS

The sections below show examples of different article components.

8. FIGURES AND TABLES

It is not necessary to place figures and tables at the back of the
manuscript. Figures and tables should be sized as they are to appear
in the final article. Do not include a separate list of figure captions
and table titles.

Figures and Tables should be labelled and referenced in the stan-
dard way using the \label{} and \ref{} commands.
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Algorithm Feature Extractor Input Size AP

TP FN FP Precision

Recall F1 Score FPS Inference Time (ms)

Faster R-CNN Inception v2 992 × 550 (variable) 0.739

548 190 11 0.980

0.743 0.845 9.5 105

Faster R-CNN Inception v2 608 × 608 (fixed) 0.731

541 197 14 0.975

0.733 0.837 9.5 105

YOLOv4 CSPDarknet-53 320 × 320 (fixed) 0.961

715 23 59 0.924

0.969 0.946 22.4 45

YOLOv4 CSPDarknet-53 416 × 416 (fixed) 0.965

720 18 66 0.916

0.976 0.945 19.4 52

YOLOv4 CSPDarknet-53 608 × 608 (fixed) 0.950

715 23 66 0.915

0.969 0.941 13 77

Table 2. Numerical score for different metrics associated with PSU Dataset.

Algorithm Feature Extractor Input Size AP

TP FN FP Precision

Recall F1 Score FPS Inference Time (ms)

Faster R-CNN Inception v2 600 × 816 (variable) 0.202

1780 6351 1813 0.495

0.219 0.304 19.2 52

Faster R-CNN Inception v2 608 × 608 (fixed) 0.317

2916 5215 2654 0.524

0.359 0.426 21.1 47

YOLOv4 CSPDarknet-53 320 × 320 (fixed) 0.157

1278 6853 5 0.996

0.157 0.272 21.1 47

YOLOv4 CSPDarknet-53 416 × 416 (fixed) 0.202

1646 6485 1 0.999

0.202 0.337 18.5 54

YOLOv4 CSPDarknet-53 608 × 608 (fixed) 0.209

1701 6430 64 0.964

0.209 0.344 12.5 80

Table 3. Numerical score for different metrics associated with Stanford Dataset
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A. Sample Figure
Figure 8 shows an example figure.

Fig. 8. False-color image, where each pixel is assigned to one of
seven reference spectra.

B. Author Photographs
Author photographs. The final printed size of an author photograph
is exactly 1 inch wide by 1 1/4 inches long (6 picas × 7 1/2 picas).
Please ensure that the author photographs you submit are propor-
tioned similarly.

C. Sample Table
Table 4 shows an example table.

Table 4. Shape Functions for Quadratic Line Elements

local node {N }m {Φi }m (i = x, y , z)

m = 1 L1(2L1 −1) Φi 1

m = 2 L2(2L2 −1) Φi 2

m = 3 L3 = 4L1L2 Φi 3

9. SAMPLE EQUATION

Let X1, X2, . . . , Xn be a sequence of independent and identically dis-
tributed random variables with E[Xi ] =µ and Var[Xi ] =σ2 <∞, and
let

Sn = X1 +X2 +·· ·+Xn

n
= 1

n

n∑
i

Xi (1)

denote their mean. Then as n approaches infinity, the random vari-
ables

p
n(Sn −µ) converge in distribution to a normal N (0,σ2).

10. SUPPLEMENTAL MATERIAL

Consult the Author Guidelines for Supplementary Materials in Op-
tica’s Journals for details on accepted types of materials and instruc-
tions on how to cite them. All materials must be associated with a
figure, table, or equation or be referenced in the results section of
the manuscript. (1) 2D and 3D image files and video must be labeled
“Visualization,” not “Movie,” “Video,” “Figure,” etc. (2) Machine-
readable data (for example, csv files) must be labeled “Data File.”

Number data files and visualizations consecutively, e.g., “Visualiza-
tion 1, Visualization 2. . . .” (3) Large datasets or code files must be
placed in an open, archival database. Such items should be men-
tioned in the text as either “Dataset” or “Code,” as appropriate, and
also be cited in the references list. For example, “see Dataset 1 (Ref.
[1]) and Code 1 (Ref [2]).” Here are examples of the references:

A. Sample Dataset Citation
1. M. Partridge, "Spectra evolution during coat-
ing," figshare (2014) [retrieved 13 May 2015],
http://dx.doi.org/10.6084/m9.figshare.1004612.

B. Sample Code Citation
2. C. Rivers, "Epipy: Python tools for epidemi-
ology," (figshare, 2014) [retrieved 13 May 2015],
http://dx.doi.org/10.6084/m9.figshare.1005064.
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Formal funding sources should be listed in a separate paragraph
block before any other acknowledgment information. Funding
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use labels such as “grant no.”). The acknowledgments may contain
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