SEREN - Version 1.5.1

David Hubber, Christopher Batty & Andrew McLeod
July 27, 2013

Contents
1 Overview 3
2 Using SEREN 4
2.1 Obtaining SERENviagithub o 4
2.1.1 Updating Seren and managing conflicts onthe commaed li 4
2.1.2 Otherimportantcommands e 5
2.2 Compilingandrunning SEREN. 5
2.21 Command-linearguments 6
2.2.2 Restarting simulations 6
2.3 SEREN-MPI . . . 7
2.3.1 Compilingand running SEREN-MPL 7
2.3.2 Combining data snapshotswithMPIl 7
2.4 Makefile. e 8
25 Debugflags. e 14
2.6 Parameterfile. L e 16
3 Additional physics modules 19
3.1 Sinkparticles. e 19
3.1.1 FormationcCriteria e 19
3.1.2 Basicsinkaccretion. 19
3.1.3 Sinks with smooth accretion. 19
3.2 Radiative cooling approXimation 20
3.3 UV photoionising radiation 20
3.4 Stellarwind. e 20
4 Generating initial conditions 21
4.1 QCBB .. e 21
4.2 Qchinary. . . . e e e e 22
e o o = 22
A4 QCJEANS e e 23
45 QCKH . . e 24
4.6 iclatticecube. L 24
A7 QCNTSI . . e 24
4.8 QCplummer e e 24
4.9 ICPoIYIrope e e 25
410 icradtest e 26
411 icrandomcecube L L e 26
4.12 icreplicatecubes. 26
413 ICRT . o e 27
414 1CSEdOV. . . . o v e 28
4.15 icshocktube e e 29
416 icsphere o 30
417 icvelpert.FO0 L e 31

10

Running the SEREN bash test script

Coding style of SEREN

6.1 Designphilosophy of SEREN. e

6.2 MaACIOS o e e e
6.2.1 Function-like macros e

6.3 Realvariabletypes.

6.4 Particledataarrays e

6.5 Particletypes. e e

Units

File formats

8.1 ASCIllformat e e e
8.2 Dragonformat L
8.3 Serenformat. e e e e e

Structure of code
9.1 Basicdirectory Structure. e e

Variable conventions
10.1 Integervariables. L e
10.2 Realvariables e

32

33
33
33
33
34
34
34

36

39
39
39
40

1 Overview

SEREN is a Smoothed Particle Hydrodynamics (SPH) code wegitpr solving self-gravitating hydrodynam-
ical problems in astrophysics, particularly in the fieldstfr and planet formation. SEREN largely grew from
DRAGON, the star formation SPH code written by Simon Goodati@ardit University, although many routines
have significantly diverged from the original DRAGON versip or have been rewritten from scratch. SEREN
has also been designed to be compatible with DRAGON in itsifea and file formats.

The basic elements of SEREN can be used to simulate any prabi®lving hydrodynamics and gravity,
but SEREN also contains many specialized features for stardtion problems. The main features present in
SEREN 1.5.1 include :

e Smoothed Particle Hydrodynamics (Standard SPH or contbarvgrad-h’ SPH)

e Self-gravitating SPH N-body dynamics

e Isothermal, barotropic or polytropic equations of state

e Octal-spatial (Barnes-Hut) neighbour-searching andityr&ee

e Sink particles, using new accretion algorithm of Hubber.e2013)

e Different particle types (gas, inter-cloud, boundary, CDM aust garticles)

e 1,2 or 3 dimensions

e Periodic boundary conditions (independent for each dimeh®r spherical wall

e Ewald method for periodic gravity

e Hierarchical block timesteps, with neighbour-checkingdafety

e 2nd order Runge-Kutta, Leapfrog-KDK and Leapfrog-DKD antgration schemes
o Avrtificial viscosity with Balsara switch, time-dependerared Keplerian pattern-matching
¢ Artificial conductivity with switches

¢ N-body evolution of sinks using 4th order Hermite integratbtermination of SPH

¢ Radiative cooling approximation of Stamatellos et al. @20@&nd hybrid flux-limited dfusion method
(Forgan et al. 2009)

e lonising radiation using HEALPIx (Bisbas et al. 2009)
e Hybrid SPH and 4th-order Hermite N-body algorithm (Hubbteale2013)
e Simple external background gravitational potentials
e Parallelized using OpenMP
e Parallelized using MPI (partial implementation, currgritl beta-mode)
e Output compatable with Splash (Price 2007)
Features currently in development, or implemented butulbtdsted
e Wind feedback from high-mass stars (Ngoumou & Hubber)

e Multiple fluid components and independent EOSs (Hubber)

2 Using SEREN

2.1 Obtaining SEREN via github

SEREN is hosted on the github website (httfosthub.comi) which uses theait (httpy/git-scm.cor) version-
control software, written by Linux-kernel author Linus Valds. The SEREN code is held in the github reposi-
tory

httpsy/github.conidhubbefseren,
and a webpage describing the features of the code, testdfadmformation can be found at
httpy/dhubber.github.iseren.

Although you must register to join and use github, the SERB#Edtself can be downloaded anonymously. One
advantage of joining github is that it is easier for us to krasage of the code and that it is possible for users
to give feedback, such as bug reports or suggested impraspoe share information about the code that can
be useful to other users. Another advantage is that you cahasgithub desktop manager, which can make
downloading and updating the code easier for those whopgediphical interfaces rather than simple command
line interfaces.

In order to download SEREN, you must first instgill on your system. It is required that the user gas
version 1.6 or later. If you have version 1.5 or older, it ism@mended asking your computer administrator
if he/she could updatgit to the latest version, since | have noticed that v1.5 dofsrdit things with regards
to password authentication and therefore the instructi@hsw will be invalid. For your own computers (e.qg.
laptops),git can easily be obtained with package managers such as aptetpm For Mac usergit can be
obtained with fink or macportgjit can also be downloaded directly from thi¢ webpage (httg/git-scm.com).

Before downloading the code, either from the command lingsarg the github programme, you should set
the following important variables in order to track yourdbchanges (i.e. what changes are your own, and which
changes are made by the authros):

git config - -global user.name ” Your name here”
git config - -global user.email ” Your email address here”

This creates a file called .gitconfig in your home directorgtaming this information.
Once this is done, you can download the code by one of two ways

e Anonymous command line download
First change into the directory you wish to download the dodeéNext, copy the https clone address into
the command line as

git clone https//github.conidhubbefseren.git

e Desktop application download First, register with githuidalownload and install the github desktop
application. Next, go to the SEREN repository webpage aioét tghe 'Clone in desktop’ option. Select
the directory you wish to download the code into and therofolihe links to the end.

2.1.1 Updating Seren and managing conflicts on the commandk

The SEREN git repository can be updated quite easily withnademmands. First, if you have changed any
files in the repository (e.g. most likely with the Makefile betparams.dat file), then you have to commit your
changes to the local repository. This can be done easilgusin

git commit -am ”Message”

where "Message” is some status message which is recordée igittlogs. This command allows git to know
the changes you have made to the SEREN files so it can easilelgedchwith the new version’s updates. The

update can now easily be obtained with the same command as abo
git pull origin master

with the same password to be entered at the prompt. If you tlaaeged any part of the SEREN files which
have also been changed in @&dient way by the update, then there will be a conflict and thegimg of the two
versions cannot proceed automatically. In this case, yoe tmintervene manually and resolve the conflict by
selecting which version (i.e. your altered version or the npdate) you would like to use. To view which files
have a conflict (plus other information about your local myy), simply type

git status

Once you have identified which files have conflicts, you havep®n each one individually with a text editor,
and edit the conflicted regions (which are clearly markedh witth versions of the code in conflict) and save
with the chosen version. Once ALL conflicted files have beedifigal, you can inform your local repository by
commiting the new files by again typing

git commit -am ” Another message”

All conflicts should now be resolved, and you are free to upttatiny later versions. Note that you must commit
your changes locally and resolve any potential conflictsyetrme you want to update the code.

2.1.2 Other important commands

A selected list of important commands that will be needethftione to time :

git log : Outputs log of various commits to screen

git log - -online : Less verbose version of 'git log’

git status : Status of local repository, including what has been madlifieadded, but not commited
git branch : Tells you which code branch you are currently on (shouldagwsay master)

git diff : Displays diference between local files and those in the repository

git ge - -aggressive : Compresses parts of the git repository to reduce the dwiral

2.2 Compiling and running SEREN

SEREN has been designed so to be compiled withU make. The user must specify a number of compiler
options, which are set at the head of the Makefile (see Seetibior more information). In order to compile, a
compatible compiler must be specified in the first line of thakifile. SEREN has been successfully tested on
the following operating systems and compilers.

e GNU/Linux

— f95 - NAG f95 compiler (Linux workstations)

— 295 - g95 compiler (Linux workstations)

— gfortran - GNU Fortran compiler (Linux workstations)

— ifort - Intel Fortran compiler (Merlin cluster)

— pgf90 - Portland group Fortran compiler (Coma cluster)
— pgf95 - Portland group Fortran compiler (Iceburg cluster)

e MacOS X (1.4,15,1.6&1.7)
— 295 - g95 compiler
— gfortran - GNU Fortran compiler
— ifort - Intel Fortran compiler

Once all the other Makefile options have been set to theirelksialues, SEREN is compiled 8yNU make
with the command

make [-j N] seren

GNU make will compile the source code of SEREN and produce the exbtfaogramseren. The optional
argument;j N, allows parallel compilation on multi-core architectunghereN is the number of routines to be
compiled in parallel at any one time. Prior to performing madiation, the user must set all simulation param-
eters in the fileparams.dat (See sectior2.6 for more information) and provide an initial conditions fitethe
appropriate format. To run SEREN, the user must type

./seren

SEREN will read in the default parameters filerams.dat before performing the simulation.

2.2.1 Command-line arguments

SEREN has a number of optional command-line arguments #émabe invoked to change the behaviour of the
SEREN executable. The behaviour can depend on severatdaptoticularly what Makefile options have been
invoked while compiling SEREN.

Table 1: List of all command-line arguments available in EBR

Argument Behaviour
-d, -D, --debug SEREN prints out the debug output column data for-
mat to screen and then exits without running any sim-
ulation. (N.B. The same information is printed to the
runid.params file when a simulation is performed using
SEREN)
--diag SEREN prints out the column data format that is used
in the diagnostics file to the screen (enabled with DIAG-
NOSTIC. OUTPUT= 1 in the Makefile).

-h, -H, --help SEREN prints out all available command-line options
-m, -M SEREN prints out the Makefile options used to compile

the code to screen and then exits without running any sim-
ulation. (N.B. The same Makefile options are printed to

therunid.params file when a simulation is performed us
ing SEREN)
-S, -S, - - sinks, - - stars SEREN prints out the column data format to screen |for
the sink files.

-V, -V, - -version SEREN prints out current version number

paramsfile SEREN reads the parameters fileramsfile instead of
the defaultparams.dat

—

2.2.2 Restarting simulations

If a simulation is terminated for some reason, then it cands¢éarted by simply running SEREN without any
modification to theparams.dat file. Each simulation generates a fitenid.restart which contains the name of
the last snapshot to be outputted. SEREN will search foffilkisand if it exists, it will read the snapshot name
contained and restart the simulation from that point. If gounot wish to restart the simulation from this point,
but want a fresh run, then you should delete theid.restart file. If you wish to restart a simulation from a
different snapshot, you can delete thaid.restart file and alter some of the parameters in theams.dat file,
such as theestart logical flag (See Sectioh.6).

2.3 SEREN-MPI

The SEREN source code also contains an MPI version, SEREN{M&rder to compile SEREN-MPI, one must
download and install an implementation of MPI that works onrysystem. To date, we have tested SEREN-MPI
using the mpich2l{ttp://http://www.mpich.org) library at the development stage. SEREN-MPI has not been
fully tested or debugged using other MPI implementationg. (epenmpi). Therefore, it is recommended to use
mpich2 if possible.

We note that SEREN-MPI is currently only a partial implenaiun of all features and is in the beta-testing
stage. Although it has been shown to run for a limited numbegst cases, it has not been through an exhaustive
list of tests. Therefore bugs may still (and probably dokeii the code that can only be identified and fixed
through thorough usage, bug-reporting, fixing, updating @atesting. We welcome any feedback from users
who wish to trial SEREN-MPI to help us fix any problems rapidly

2.3.1 Compiling and running SEREN-MPI

In order to compile SEREN-MPI, several extra options mustdddn the Makefile. These options are
e MPIF90
e MPI
e MPI_LIBRARY

The default values to compile with MPI should BEPIF90= mpif90, MPI = 1 andMPI_LIBRARY = mpich2.

If the user wishes to compile also with OpenMP, then this flagugd also be switched on. In this mode, the
code will run on each local node parallelised with OpenMPgauallelised using MPI to communicate between
nodes. This mode could potentially have scaling advantadg®ugh this will be determined with more testing
of the code.

make Or make seren
To run the code
mpiexec -n N ./seren-mpi
whereN is the number of tasks that the MPI job will run on.

2.3.2 Combining data snapshots with MPI

Since MPI runs segments of the simulation ofietent CPU tasks (often onftBrent nodes), it is morefecient
during runtime for each task to write its own contributiortite overall simulation to a separate file. In order for
these files to be meaningfully analysed with SPLASH or sorherafata analysis tool, they must be combined
together to a single file per output. A python script has bedttem to easily accomplish this with minimal
effort, calledjoinlots.py which is located in thgoinsim sub-directory. It may be required to add the pathname
of both the main SEREN directory and thensim sub-directory to youPATH environment variable. To join
all snapshots for a simulation, we simply type :

joinlots.py runid

whererunid is the run id of the simulation as chosen in the parametergflé. this currently only works with
double precision simulations).

2.4 Makefile

The head of the Makefile contains the complete list of contipitavariables that are available. Most variables
have two or more possible values which must be entered in tileefe. If an illegal value is entered, tharake

will halt during compilation, or the program will stop dugmuntime (see the routinénain /sanitycheck.F90).
The Makefile is technically split into two separate fild$akefile, which contains the user options, amchke-
filetail.mk, which processes all the selected options to compile the.c®te full list of all Makefile variables

and possible options is given in the table below.

3%
1

St-

db,

Table 2: List of all available Makefile options in SEREN
Variable Options
F90 fo5: NAG f95 compiler (Linux)

g95: free (not gnu) f95 compiler (Linux, Mac OS
X)

gfortran : gnu f95 compiler (Linux, Mac OS X)

pgfaoo : Portland Group compiler (Coma cluster)

mpif90 : Portland Group compiler (Coma cluster)

ifort : Intel Fortran compiler (Merlin cluster)

MPIF90 mpifo0 : MPI Fortran compiler
VERSION.NO \ersion no. string
SRCDIR Absolute path of main SEREN directory (d
fault $§(PWD)/src)
EXEDIR Absolute path of location for SEREN exe
cutable (default $(PWD))
OPENMP 0: Compile as serial code
1: Compile using OpenMP directives
MPI 0: Compile as serial code
1: Compile with MPI directives
MPI_LIBRARY pich2 Name of MPI library used
COMPILER MODE 0: No optimisation or debugging flags

STANDARD : Use standard optimisation flags (-O3 plus
line functions)

FAST : Use fast optimisation flags for increased
speed. (Note that fast math optimisations are
potentially unsafe and can lead to floating
point errors, even in apparently bug-less code,
and therefore should not be used without tg
ing with the required compilation flags.)

DEBUG : Use all available debug flags (e.g. bounds-
testing, floating point erros, etc..). Should be
selected when debugging the code using g
or another debugger.

OUTPUT.LEVEL 0: Outputdebug flags switched®

1: Outputdebug flags switched on to level 1

2: Outputdebug flags switched on to level 2

3: Outputdebug flags switched on to level 3

DIAGNOSTIC.OUTPUT 1: Print diagnostic information of conserve

guantities (e.g. total mass, momentum, ¢
ergy) to screen (if OUTPULEVEL ¢ 0) and
file (run_id.diag’)

2N-

=

AN

Ko

Variable Options
0: Do not compute diagnostic information
NDIM 1: One-dimensional
2: Two-dimensional
3: Three-dimensional
PRECISION SINGLE : Single precision for main real variables
DOUBLE : Double precision for main real variables
INFILE_FORMAT ALL : Include routines to read all possible file for
mats
DRAGON: : Only include DRAGON-format reading rou
tines
SEREN : Only include SEREN-format reading routines
ASCII : Only include column-ASCII format reading
routine
OUTFILE_FORMAT ALL : Include routines to write all possible file for
mats
DRAGON : Only include DRAGON-format writing rou
tines
SEREN : Only include SEREN-format writing routines
ASCII : Only include column-ASCII format writing
routine
PERIODIC 1: Periodic boundary conditions (Note : mu
be set to 1 if any of XBOUNDARY,
Y _BOUNDARY, Z_ BOUNDARY or SPHER-
ICAL_MIRROR are set to any value othe
than 0)
0: No periodic boundary conditions
X_BOUNDARY PERIODIC : Periodic box in x-dimension
WALL : Walls in LHS and RHS directions of x4
dimension
0: No periodicity in x-dimension
Y_BOUNDARY PERIODIC : Periodic box in y-dimension
WALL : Walls in LHS and RHS directions of y-
dimension
0: No periodicity in y-dimension
Z_BOUNDARY PERIODIC : Periodic box in z-dimension
WALL : Walls in LHS and RHS directions of z
dimension
0: No periodicity in z-dimension
GHOSTPARTICLES 1: Use ghost particles for periodic boundari
(experimental; advise not to use for now)
0: No ghost particles; use relative position pe
odic wrapping
SPHSIMULATION 1: Perform SPH simulation
0: No SPH simulation
NBODY _SIMULATION 1: Perform N-body simulation
0: No N-body simulation
SPH STANDARD : Use traditional SPH formulation (Monagha
1992)
GRAD_H_SPH : Use ’'grad-h’ SPH formulation (Springel

Hernquist 2002; Price & Monaghan 2004)

Variable Options
RTSPH : Use Ritchie & Thomas (2001) SPH formula-
tion
SPHINTEGRATION RK2: 2nd order Runge-Kutta integration scheme
LFKDK: 2nd order Leapfrog kick-drift-kick scheme
LFDKD : 2nd order Leapfrog drift-kick-drift scheme
KERNEL M4 : M4 kernel (Monaghan & Lattanzio 1985)
MATC : M4 kernel with modifed 1st derivative
(Thomas & Couchman 1992)
QUINTIC : Quiitic kernel (Morris 1996)
QUINTICTC : Quintic kernel with modified 1st derivative
(c.f. Thomas & Couchman 1992)
GAUSSIAN3H : Gaussian kernel truncated &t 3
HFIND NUMBER : Determineh by number of neighbours
MASS : Determinéh by total mass of neighbours
H_RHO: Determineh by iterating h-rho relation (as in
‘grad-h’ SPH")
CONSTANT : Use contant smoothing length
MINIMUM _H 1: Set a minimum smoothing length
0: Allow any smoothing length
HYDRO 1: Hydro forces switched on
0: No hydro forces
ENERGY_EQN 1: Activate energy equation
0: Do not include energy equation in complia-
tion
ENTROPYEQN 1: Activate entropy equation
0: Do not include entropy equation in complia-
tion
ARTIFICIAL VISCOSITY MON97 : Monaghan (1997) artificial viscosity
AB: Standardr-B viscosity (Monaghan & Gingold
1983)
0: No artificial viscosity
VISC_TD 1: Use time-dependent value aof (Morris &
Monaghan 1997)
0 Constant value fow
BALSARA 1: Use Balsara switch (Balsara 1995)
0: No Balsara switch
ARTIFICIAL _CONDUCTIVITY | 0: No artificial conductivity
PRICE2008 : Artificial conductivity with constant,,,
(Price 2008)
WADSLEY2008 : Wadsley et al. (2008) conductivity
EXTERNAL_PRESSURE 0: No external pressure
1: Simple external pressure formulation
RAD_WS 1: Activate radiative cooling scheme (Stamatel-
los et al. 2007)
0: Do not include radiative cooling in compila-
tion
FLUX_LIMITED _DIFFUSION | 1: Switch on flux-limited difusion for hybrid ra-
diation scheme (Forgan et al. 2009). Only ac-
tivated when RADWS = 1.

10

Variable Options
0: No flux-limited difusion
SINK_POTENTIAL. WS 1: Use gravitational potential from sink in radia
tive cooling calculations
0: Ignore gravitational potential from sinks fg
cooling
AMBIENT _HEATING_WS 1: External ambient heating source (e.g. CMB)
0: No ambient heating

SINK_LHEATING_WS

STARHEATING :
STARSIMPLE_HEATING :
HDISC_HEATING :

0:
COOLING_HEATING 0: No cooling or heating terms added
EXPLICIT : Explicit coolingheating terms added to en
ergy equation (Experimental)
EXPONENTIAL : Exponential cooling integration
IONIZING _RADIATION 0: No ionizing sources

SINGLE.STATIC_SOURCE :

Single static source of ionizing radiation (BJs-

bas et al. 2009)

STELLAR_WIND

0 .

No wind sources
Single static source of wind

SINGLE_STATIC_SOURCE :

EXTERNAL_FORCE 0: No external forces
PLUMMER : Plummer sphere potential
UDS: Uniform density sphere potential
NFW1996 : Navarro, Frenk & White (1996) potential
SELF.GRAVITY 0: No gravitational forces computed
KS: Kernel-softened gravity for 2-body forces
NBODY : Newton’s gravitational law for all 2-body
forces
MEANH_GRAVITY 1: Use mean-h gravity (cf. Price & Monaghan
2007)
0 Use default gravity
EWALD 1: Ewald periodic gravity switched on
0: No Ewald corrections
SINKS 0: No sinks
SIMPLE : Simple (i.e. only gravitating) sinks (Bate
Bonnell & Price 1995)
NO_ACC: Simple sinks with no accretion
SMOOTHACC : Sinks with smooth accretion (Hubber et al.
2013)
SINK_RADIUS FIXED_ABSOLUTE : Absolute value (in AU in params.dat file;

same for all sinks)

FIXED_HMULT : Multiple of mean h at sink density (same for
all sinks)
HMULT : Multiple of h at sink density (individual val-
ues for sinks)
SINK_REMOVE_ ANGMOM 1: Deposit sink ang. mom. on nearby particles
0: Sink particle retain ang. mom. of accrete
particles
SINK_GRAVITY _ONLY 0: Consider all physical sources of gravity
KS: Sinks only source of gravity using Kernel-

softened gravity for 2-body forces

11

=

Variable Options
NBODY : Sinks only source of gravity using Newton(s
gravitational law for all 2-body forces
NBODY_INTEGRATION HERMITE4 : 4th-order Hermite integration scheme
(Makino & Aarseth 1992)
LFKDK : 2nd-order Leapfrog KDK integration schemge
BINARY _STATS 1: Calculate binary statistics and output to file
0: No binary calculations
TREE 0: No tree (all quantities calculated by direct
summation)
BH: Use Barnes-Hut tree (octal-spatial; Barnes &
Hut 1985)
MULTIPOLE 0: No higher-order multipole terms
QUADRUPOLE : Include quadrupole moment terms in gravity
calculations
OCTUPOLE : Include both octupole and quadrupole mo-
ment terms
MAC GEOMETRIC : Use standard Barnes-Hut geometric opening
angle criterion (Barnes & Hut 1985)
GADGET : Use Gadget-style higher-order moment crite-
rion (Springel et al. 2002)
GADGET2: Use Gadget 2.0 moment (Springel 2005)
EIGEN : Use Eigenvalues of Q tensor to compute ap-
propriate MAC (Hubber et al. 2010)
REORDER PARTICLES : Re-order particles in arrays according to tree-
walk order
0: No re-ordering
SORT INSERTION : Use insertion sort for sorting lists
HEAP : Use heapsort for sorting lists
TIMESTEP ADAPTIVE : Block timestep levels adjusted at resync
FIXED : Fixed block timestep levels, with maximum
level set by thelt_fixed parameter
RESTRICTED : Timestep levels can only take certain values
(dt_fixed parameter times integer power of 2),
but are readjusted at resync
CHECKNEIB_TIMESTEP 2: Ensure neighbours have similar timesteps
1: As option 2, but doesn’t change timestep|in
middle of current step
0: No neighbour timestep comparison
NEIGHBOURLISTS 1: Store neighbour lists in memory
0: Do not store neighbour lists in memory
KERNEL_TABLES 1: Tabulate kernels in arrays for quick lookup
0: Use inline function calls for kernel functions
REMOVE_OUTLIERS 1: Remove outlying particles from the simula-
tion (Experimental)
0: No removal of outliers
TURBULENT_FORCING 1:
0: No turbulent forcing
TIMING _CODE 1: Use custom subroutines to produce timing

statistics

12

Variable Options
0: No timing output

TEST FREEFALL : Freefall collapse test
SPIEGEL : Spiegel (ref??) test
BINARY : Orbitting binary stars test
PLUMMER : Plummer sphere stability test
ENTROPY : Entropy core test
0: No test flags

13

2.5 Debug flags

The SEREN Makefile contains a number of debug flags below thie omions which can be switched on df o
by uncommenting them or commenting them out. Most of the gdlags produce verbose output of each rou-
tine, and in some cases produce extra files with more impartéormation. The full list of debugging options
with additional output is shown in the table below.

Table 3: List of special debugging options available in SERE

Variable Options
IEEE.EEXCEPTIONHANDLING
DEBUG.DIV _A
DEBUG.ACCRETE
DEBUG_ALLOCATE_MEMORY
DEBUG_BHTREEBUILD
DEBUG.BHTREESTOCK
DEBUG_BHTREEWALK
DEBUG.BHTREEGRAVITY

DEBUG_BINARY _PROPERTIES Ouput binary properties to screen when calculated
DEBUG_BINARY _SEARCH
DEBUG.BLOCK_TIMESTEPS Outputs occcupation of timestep levels

DEBUG_COPY_PARTICLE_DATA
DEBUG_CREATE_SINK
DEBUG._.CREATEHP_SOURCE
DEBUG._DENSITY
DEBUG.DIV .V
DEBUG.DUDTRAD
DEBUG.ENERGY_EQN
DEBUG_FOLIATE
DEBUG_FORCES Records individual grav, hydro, magnetic forces
DEBUG_FREEFALL
DEBUG._GATHER.NEIB
DEBUG._GET_NEIB
DEBUG_GHOSTPARTICLES
DEBUG_GRAD_H_SPH
DEBUG_GRID_RESULTS
DEBUG_HEAPSORT
DEBUG_HERMITE4
DEBUG.H_GATHER
DEBUG.H_GATHER DENSITY
DEBUG.H_GUESS
DEBUG_HP.IF
DEBUG.HP.OUTPUT Outputs various ionization properties to files
DEBUG._HP_SPLIT_ACTIVE_RAYS
DEBUG.HP_.WALK _ALL _RAYS
DEBUG_HP_WALK _RAY
DEBUG.INTEGRATE
DEBUG_KERNEL Outputs file 'kernel.dat’
DEBUG_MHD
DEBUG.NBODYSETUP
DEBUG_OUTPUT.STAR DATA
DEBUG_PARAMETERS

14

Variable

Options

DEBUG_PLOT_DATA

DEBUG_RAD
DEBUG_.REDUCETIMESTEP
DEBUG_.REMOVE OUTLIERS
DEBUG_.RSPHOUTPUT
DEBUG_SINK_.REMOVE_.ANGMOM
DEBUG_SINK_SEARCH
DEBUG_SINK_TIMESTEP
DEBUG_SKELETON
DEBUG_.SMOOTHACCRETEPARTICLE
DEBUG_SPHUPDATE
DEBUG_SWAP.PARTICLE.DATA
DEBUG_TIMESTEP.SIZE
DEBUG_.TRACK_PARTICLE

DEBUG.TREEBUILD
DEBUG.TREE.GRAVITY
DEBUG.TREESTOCK
DEBUG_.TREEWALK
DEBUG.TYPES
DEBUG_VISC_BALSARA
DEBUG._VISC_PATTERN.REC
DEBUG.WRITE_MPI_TASK

Outputs regular debug files with snapshot files. Files
simple column-data files where the information of eg
column is written to theun_id.params file.
Outputs 'runid.rad’ file for RAD_WS tests

Outputs files in RSPH format

:S

Outputs single file (trackl.dat’) which contains larg
amount of information (same as that ouputted by de
files including the time) of one single chosen particle (
by parameteptrack in params.dat file) which is printed
every timestep.

are
1Ich

je
bug
set

15

2.6 Parameter file

SEREN contains all simulation information in a single pagten file, callechbarams.dat. The information con-
tained in the parameters file in version 1.0 is shown in thieviohg table.

Table 4: List of user parameters in SEREN

Variable Type Description

run_id char(256) Run identifier string

run_dir char(256) Output directory name

in_file char(256) Name of initial conditions file

in_file_form char(50) Format of initial conditions file
out_file_form char(50) Format of output snapshot files

restart logical Is this a restart or a new run?

com _frame logical Change to centre of mass frame?

rseed int Random number seed

ptrack int i.d. of tracked particle

sph_endtime DP End time of SPH simulation
nbody_sph_endtime | DP End time of hybrid N-bodfSPH simulation
nbody_endtime DP End time of N-body simulation

firstsnap DP Time of first snapshot

snaptime DP Snapshot time interval (in real time)
noutputstep int Screen output interval (in integer steps)
ntempstep int Temporary snapshot interval (in integer steps)
ndiagstep int Integer time interval between diagnostic output
nsinkstep int Sink output time interval (in integer time)
nsnapstep int Snapshot time interval (in integer time)
courant_mult DP Courant timestep multiplication factor
accel_mult DP Acceleration timestep multiplication factor
sink_mult DP Sink accel. timestep multiplication factor
nbody_timemult DP Timestep factor for N-body simulations
nlevels int Number of multiple timestep levels
dt_fixed DP Fixed ref. time for creating timestep levels
dimensionless int Use dimensionless units?

runit char(256) Length scaling unit

munit char(256) Mass scaling unit

tunit char(256) Time scaling unit

vunit char(256) Velocity scaling unit

aunit char(256) Acceleration scaling unit

rhounit char(256) Density scaling unit

sigmaunit char(256) Column density scaling unit

Punit char(256) Pressure scaling unit

funit char(256) force scaling unit

Eunit char(256) Energy scaling unit

momunit char(256) Momentum scaling unit

angmomunit char(256) Angular momentum scaling unit
angvelunit char(256) Angular velocity scaling unit

dmdtunit char(256) Accretion rate scaling unit

Lunit char(256) Luminosity scaling unit

kappaunit char(256) Opacity scaling unit

Bunit char(256) Magnetic field (B-field) scaling unit
Qunit char(256) Electric charge unit

16

Variable Type Description

Junit char(256) Current density unit

uunit char(256) Specific internal energy unit

dudtunit char(256) Rate of change of specific internal energy unit

tempunit char(256) Temperature unit

rscale DP Length scaling factor

mscale DP Mass scaling factor

periodic_min(1) PR Size of periodic box in x-dimension

periodic_max(1) PR Size of periodic box in x-dimension

periodic_min(2) PR Size of periodic box in y-dimension

periodic_max(2) PR Size of periodic box in y-dimension

periodic_min(3) PR Size of periodic box in z-dimension

periodic_max(3) PR Size of periodic box in z-dimension

rspheremax PR Radius of spherical wall

psphere int Mirror origin id (O : co-ordinates origin; p : SPH particl¢
-s @ sink particle)

pp-gather int Neighbours required to determihe

hmin PR Minimum allowed smoothing length

h_fac PR grad-h density-h iteration factor

boundaryeos char(256) Boundary particle equation-of-state

icmeos char(256) ICM particle equation-of-state

gaseos char(256) Gas particle equation-of-state

isotemp PR Temperature for isothermal, barotropic EOSs (K)

rhobary PR Adiabatic density for barotropic density (cgs units)

gamma PR Ratio of specific heats

mu_bar PR Mean gas particle mass (in a.m.u.)

Kpoly PR Polytropic constant

Pext PR External pressure

cooling_law char(256) Cooling law used

alpha PR a-viscosity value

beta PR [B-viscosity value

alpha_min PR Minimum value ofa

abserror PR Absolute error fraction in GADGET MAC

thetamaxsqd PR Maximum opening angle squared (Geometric MAC)

nbuildstep int Frequency of DRAGON tree builds (in integer time uni

rhosink PR Sink formation density (cgs units)

sinkrad PR Sink radius (in units oh or in AU depending on options

nsearchstep int No. of integer timesteps between sink search

rho_search logical Calculate density for selecting sink candidates

potmin_search logical Only consider particles at potential minimum

hill_sphere_search logical Hill spheres of sinks must not overlap

energy_search logical Only create sinks from bound objects

thermal _search logical Only create sinks from thermally bound objects

div_v_search logical Only create sinks from converging objects

div_a_search logical Do not create sinks if particles are accelerating apart

energy_accrete logical Only accrete bound particles

alpha_ss PR Sunyaev-Shakura viscosity parameter

smooth_accrete_frac | PR Fraction of mass for instant accretion

smooth_accrete_dt PR Timestep fraction for instant accretion

f_accretion PR Fraction of accretion energy radiated as luminosity

17

Variable Type Description

feedback_tdelay PR Time delay between sink formation and feedback
feedback_minmass PR

rho_remove logical Remove particles below density threshold?
energy_remove logical Remove unbound particles from system?
rad_remove logical Remove distant particles?

rholost PR Density removal threshold

rad_lost PR Distance removal threshold

npec int No. of Predict-correct-evaluate iterations
nbody _frac PR Fraction of mass accreted before switching to N-body
ptemp0 PR Disc temperature at= 1 AU from star (K)
temp_inf PR Disc temperature at infinity (K)

ptemp_r0 PR Temperature softening radius<(1 AU)
ptemp_q PR Temperature power law index

fcolumn PR Column polytrope factor

nionallstep int Integer steps inbetween HEALPIx walk

f1 PR Integration step accuracy variable

2 PR HEALPIx resolution factor

f3 PR Temperature smoothing parameter

4 PR Density interpolation parameter

Tneut PR Temperarure of neutral gas

Tion PR Temperature of ionized gas

Xfrac PR Fraction of hydrogen

mu_ion PR Mean gas particle mass for ionisied gas
a_star PR Recombination ca@cient

N_LyC PR No. of ionizing photons per second

rstatic PR(1:3) Location of single static ionizing source
Imax_hp PR Maximum allowed number of HEALPIx levels
M_loss PR Wind mass loss rate from source

v_wind PR Wind velocity from star

comp_frac PR

turb_T PR

turb_Ndt PR

turb_min PR(1:3)

turb_max PR(1:3)

18

3 Additional physics modules

SEREN contains various additional physics modules whichbesactivatefieactivated in the Makefile (Section
2.4) and are controlled by various input parameters (Se&ién

3.1 Sink particles
Sink particles are used to approximate the formation of dquntostars, or proto-binaries, without following the
time-consuming evolution of the protostar to stellar déesi SEREN contains two fiierent implementations
of sink particles; a variation of the original Bate, Bonn&IPrice (1995) sinks (described in the SEREN paper;
Hubber et al. 2011), and an improved algorithm as descripddiibber, Walch & Whitworth (2013).
3.1.1 Formation criteria
A number of sink formation criteria are available to selecthe parameters file.

e rho_search : Form a sink if an SPH particle exceeds the sink denditysink.

e potmin_search : Form a sink if it lies at a local potential minima

¢ hill_sphere_search : Form a sink if an SPH particles’ Hill sphere does not ovenldth existing sinks Hill
spheres.

e energy _search : Form a sink if the total mechanical energy (kinetigravitational) of a particle plus its
neighbours is negative

e thermal_search : Form a sink if the thermal energy of a particle plus its newlrs is less than the
gravitational potential energy.

e div_v_search : Form a sink if the velocity divergence of a particle is négafi.e. local contraction)

e div_a_search : Form a sink if the acceleration divergene of a particle gatige (i.e. no strong tidal forces).
More details of all sink criteria in SEREN are discussed itbbter et al. (2011) and Hubber, Walch & Whitworth
(2013).

3.1.2 Basic sink accretion

We have implemented the sink algorithm described by Hubbat. €2011), which is itself a variation of the
original sink particle algorithm described by Bate, Boh&lPrice (1995). These sinks can be activated by
selecting

SINKS = SIMPLE
in the Makefile. In this algorithm, sink particles readilycaete all SPH particles that enter the sink accretion
radius. If theenergy_accrete parameter istrue., then a particle is only accreted if it is gravitationallyusal to

the sink particle (i.e. kinetic energy is less than the dgedidnal potential energy; thermal energy is ignored). If
energy_accrete is set to.false., then all particles that enter the sink are accreted.

3.1.3 Sinks with smooth accretion

The improved sink accretion can be activated by selecting
SINKS = SMOOTHACC

in the Makefile. An extra feature, where angular momenturfeid-back’ into the surrounding gas, can be acti-
vated by selecting

19

SINK_. ANG_MOM =1

SEREN contains a number of parameters that control the $namotetion.

e alpha_ss : Shakura-Sunyaev alpha parameter for disc accretion antlofling the anglar momentum
feedback rate.

e smooth_accrete_frac : Fraction of original particles mass where the particleliwily accreted (to prevent
very small mass particles from existing in the simulation).

e smooth_accrete_dt : If particle timestep falls lower thasmooth_accrete_dt times the sink orbital period
(the orbital period at the sink boundary), then the pariglgholly accreted (to prevent extremely smooth
timestep particles from existing inside the sink).

3.2 Radiative cooling approximation

To be written

3.3 UV photoionising radiation

To be written

3.4 Stellar wind

To be written

20

4 Generating initial conditions

SEREN contains a large number of small programs which carséeé 1o generate initial conditions to run sim-
ulations. These programs are contained in the sub-dige¢teren/ic and can be compiled. To compile any
initial conditions program of some nanmename, Simply type

make ic_name

Some of the initial conditions programs require their owpagate parameters file, a template of which can be
found in theseren/datafiles sub-directory. These parameters files must be copied ietm#in seren run direc-
tory in order to be accessed by the initial conditions progr&o run the initial conditions program, type

./ic_name

4.1 icBB

ic_BB sets-up the Boss-Bodenheimer test (Boss & Bodenheimer),1lB&9 a uniform density sphere with an
azimuthal density perturbation in solid-body rotationodtam reads in a unifrom density sphere of unit radius
(centred at the origin), scales to the required density adais, and then adds the azimuthal perturbation and a
solid-body velocity field. The original Boss-Bodenheimesttconsidered simply an isothermal EOS, but many
subsequent studies have used barotropic and other EO@sé&ars read in from filBBparams.dat.

Required Makefile options :
e NDIM =3
e SPH= STANDARD/GRAD_H_SPH
e HYDRO =1
e GRAVITY =KS
e DIMENSIONLESS=0

Variable Type Description

in_file char(256) Input filename (file containing uniform density sphere|of
unit radius)

in_file_form char(256) Input file format

outfile char(256) Output filename

out file_form char(256) Output file format

mass PR Mass of cloud

munit char(256) Mass unit

rcloud PR Radius of cloud

runit char(256) Length unit

tempcloud PR Temperature of cloud

angvel PR Angular velocity of cloud

angvelunit char(256) Angular velocity unit

mpert integer Order of azimuthal perturbation (usually mpe?)

amp PR Amplitude of density perturbation (usually 0.1 or 0.5)

21

4.2 icbinary

ic_binary sets up a binary system from two polytropes (or other selfstating structures) read in from files.
Parameters read in from filgnaryparams.dat.

Required Makefile options :
e NDIM =3
e HYDRO =1
e DIMENSIONLESS=1

Variable Type Description

in_filel char(256) Input filename 1

in_file2 char(256) Input filename 2

in_file_form1 char(256) Input file 1 format

in_file_form2 char(256) Input file 2 format

outfile char(256) Output filename

outfile_form char(256) Output file format

abin PR Separation (semi-major axis) of binary

ecc PR Eccentricity of binary

corot logical Are stars co-rotating with binary orbit?
4.3 iccore

ic_core creates a spherically symmetric density distribution for given density function (as a function of radial
distance). Currently only contains the distribution forlanpmer-like density profile and a radial power-law
density function. Requires the params fitee.dat.

Required Makefile options :
e NDIM =3
e HYDRO=1
e SELFGRAVITY =KS

DIMENSIONLESS=0

22

4.4 icjeans

ic_jeans sets-up the Jeans instability test (Hubber et al. 2006) wtests the ability of SEREN to resolve the
Jeans gravitational instability. Program reads in a relaxgt cube (with the cube placed in positive octant) and
stretches the particle distribution to produce a 1-D siida&daensity perurbation. Currently reads in parameters
from the command line rather than via a separate paramdeers fi

Required Makefile options :
e NDIM =3
e PERIODIC=1
e PERIODICX =1
e PERIODICY =1
e PERIODICZ =1
e SPH= STANDARD/GRAD_H_SPH
e HYDRO =1
e GRAVITY =KS
e EWALD =1
e DIMENSIONLESS=1

Variable Type Description

in_file char(256) Input filename (File containing unit-uniform density
sphere)

in_file_form char(256) Input file format

outfile char(256) Output filename

outfile_form char(256) Output file format

npert int No. of wavelengths

amp PR Amplitude of sinuosoidal perturbation

23

4.5 icKH

ic_KH creates the initial conditions for the Kelvin-Helmholtziability test. RequireKHparams.dat file.

4.6 iclattice_cube

ic_lattice_cube creates a cubic-lattice distribution of particles withesidngthlength andppd particles in each
dimension. Therefore the total number of particles in thtck is ppd"\°™. In 1-D, the program produces a
uniformly-spaced line of particles, in 2-D a square-grigafticles, and in 3-D a cubic lattice. The lattice extends
from O tolength in each dimension. Parameters are currently read in fromndhenand-line.

Required Makefile options :
e NDIM = 1/2/3
e DIMENSIONLESS=1

Variable Type Description
ppd integer Particles per dimension in lattice (Must be a positive |in-
teger)
length PR Total length of lattice edge (For a unit cube, length)
out file char(256) Output filename
out file_form char(256) Output file format
4.7 icNTSI

ic_N'TSI generates the initial conditions for the non-linear thirelsinstability (NTSI) test. Requires the param-
eters fileNTSIparams.dat.

4.8 icplummer

ic_plummer generates the a Plummer sphere, either with stars, gas, adiulgs, or a mixture of the three.
Requires the parameters filummer.dat.

24

4.9 icpolytrope

Creates a finite polytropiefinite polytrope with surrounding medium from a uniforressity sphere of unit
radius centred at the origin. For an isothermal polytropg. (@ Bonner-Ebert sphere), the inputted sphere is
divided into 4 regions; the polytrope (self-gravitatingsahe gas envelope (self-gravitating gas), the surround-
ing inter-cloud medium (non-self gravitating gas) and dictauter-wall (boundary particles). The outer-three
regions are optional depending on the parameters selaettedyitrope.dat.

Required Makefile options :
e NDIM =3
e THERMAL = ISOTHERMAL/POLYTROPIGBAROTROPIC
e HYDRO =1
e SELFGRAVITY =KS
e DIMENSIONLESS=0

Variable Type Description

in_file char(256) Input filename (File containing unit-uniform density
sphere)

in_file_form char(256) Input file format

out file char(256) Output filename

out file_form char(256) Output file format

isocloud logical Flag true if isothermal polytrope (if true, ga®s must
equal isothermal)

etapoly PR Polytropic index

xi_bound PR Dimensionless cloud boundary (6.35 for a mariginglly
stable Bonner-Ebert sphere)

mpoly PR Mass of cloud

munit char(256) Mass unit (e.gm_sun)

rho0 PR Central density of cloud (Only ifnflag = rho0)

rhounit char(256) Density unit

mflag char(20) Set the total mass (mass) or central density (rho0) of|the
polytrope

Kpoly PR Polytropic constant, aa% for isothermal polytrope

vunit char(256) Velocity unit (unit of isothermal speed of gas if isother-
mal polytrope is selected)

menvelope PR Mass of gas envelope around polytrope (distributed uni-
formly around the polytrope with the same density and
pressure as the polytrope at its surface)

micm PR Mass of IcM envelope which surrounds gas (distributed
uniformly around the polytroggas envelope with the
same density and pressure as the polytrope at its surface)

hboundary PR Size of static boundary zone (in units of the mean
smoothing length; should be 3 or 4 to ensure no egdge
effects occur for interior gas particles)

25

4.10 icradtest

ic_radtest creates the initial conditions to perform the Masunagdsiuka test (Masunaga & Inutsuka ??7?7?)
using the radiative cooling method of Stamatellos et al0R2RAD_WS option).

411 icrandom_cube

ic_random_cube creates a line, sheet or cube (depending on the dimendignafirandomlly-placed parti-
cles. Distributes particles between 0 dndgth in each dimension. Parameters are currently read in from the
command-line rather than a separate parameters file.

Required Makefile options :
e NDIM = 1/2/3
e DIMENSIONLESS=1

Variable Type Description

ptot int Total number of particles
length PR Total length of lattice edge
out file char(256) Output filename

out file_form char(256) Output file format

4.12 icreplicate_cubes

Loads in a unit cube (from 0 to 1 in each dimension) and creatgscat periodic replicas in each dimension.
The larger cube is then scaled to a unit cube itself. Usededaterlarge-relaxed uniform density fields from
smaller files. Parameters are read in from the commandditner than a separate parameters file.

Required Makefile options :
e NDIM = 1/2/3
e DIMENSIONLESS= 1

Variable Type Description

in_file char(256) Input filename (File containing unit cube)

in_file_form char(256) Input file format

nrepeat int No. of replicas in each dimension (must be a positive
integer)

out file char(256) Output filename

out file_form char(256) Output file format

26

4.13 icRT

Generates initial conditions for Rayleigh-Taylor instaptest. Prepares two layers of gas witlfdrent densities
in hydrostatuc balance on top of each other with a sinusdielasity perturbation to seed the instability. A cubic
grid of particles is generated rather than reading in a filgaeters are read in from the fR@'params.dat.

Required Makefile options :
e NDIM =2
e PERIODIC=1
e PERIODICX =1
e PERIODICY =1
e ENERGY.EQN=1
e HYDRO =1
e SELFGRAVITY =0
e DIMENSIONLESS=1

Variable Type Description

out file char(256) Output filename

out file_form char(256) Output file format

pertmode char(20) Perturbation mode Evelocity, 2=boundary)
ppdl,ppd2 int Particles per dimension
nlayersl,nlayers2 int No. of layers of particles (in y-direction)
rhol,rho2 PR Densities

Pressi1 PR Pressure

accgrav PR External y-gravitational acceleration
gamma PR Ratio of specific heats

xsize PR X..

amp PR Amplitude of y-velocity perturbation
lambda PR Wavelength of perturbation

pp_gather PR Required no. of SPH neighbours

hmin PR Minimum smoothing length

h_fac PR 'grad-h’ SPH factor

27

414 icsedov

Creates initial conditions for Sedov blast-wave test froypuitted unit-uniform density sphere. Requires in-

putting a unit-sphere. A ’point-explosion’ is added by giyithe central particle and its neighbours a total energy
of unity (weighted by the kernel from the centre, while thstref the particles equally share an energy of total

10°5. Parameters are read in from the fitelovparams.dat.

Required Makefile options :
e NDIM =3
e PERIODIC=0
e PERIODICX =0
e PERIODICY =0
e PERIODICZ =0
e HYDRO=1
e ENERGY.EQN=1
e SELFGRAVITY =0
e DIMENSIONLESS=1

Variable Type Description

in_file char(256) Input filename (File contains unit sphere)
in_file_form char(256) Input file format

outfile char(256) Output filename

outfile_form char(256) Output file format

rho0 PR Density of sphere

radius char(20) Radius of sphere after rescaling

28

4.15 icshocktube

Generates initial conditions for general 2-part shocktigisés (e.g. Sod 1978). Reads in two relaxed cubic den-
sity distribution, creates periodic replicas in the x-difen to elongate the shocktube and sets particle progertie
to create the desired test problem. Parameters are reamhirtlie filesodparams.dat.

Required Makefile options :
e NDIM = 1/2/3
e PERIODIC=1
e PERIODICX =1
e PERIODICY =1
e PERIODICZ =1
e HYDRO =1
o ARTIFICIAL _VISCOSITY = AB/MON97
e SELFGRAVITY =0
e DIMENSIONLESS=1

Variable Type Description

out file char(256) Output filename

out file_form char(256) Output file format

filel char(256) Input filename

filel_form char(256) Input file format

file2 char(256) Input filename

file2_form char(256) Input file format

pl, p2 int, int No. of particles in file 1, 2
nl, n2 int, int No. of replicas for LHERHS
rhol, rho2 PR, PR Density of LHSRHS layers
Pressl1, Press2 PR, PR Pressure for LH&RRHS

x1, X2 PR, PR X

yl,y2 PR, PR y

z1, z2 PR, PR z

v1(1), v2(1) PR, PR VX

v1(2), v2(2) PR, PR vy

v1(3), v2(3) PR, PR vz

B1(1), B2(1) PR, PR Bx

B1(2), B2(2) PR, PR By

B1(3), B2(3) PR, PR Bz

29

4.16 icsphere

Creates a spherical distribution of particles of unit radind centred on the origin containing an exact number of
particles. First, loads in a unit cube and then iterates tbtfie radius that contains the correct number of parti-
cles. Finally the spherical cut is rescaled and placed atrigan. Will fail to find the required number of particles

if the inputted unit cube has too few particles. Sphere patara are read in from the filghereparams.dat.

Required Makefile options :
e NDIM =3
e PERIODIC=0
e PERIODICX =0
e PERIODICY =0
e PERIODICZ =0
e DIMENSIONLESS=1

Variable Type Description

in_file char(256) Input filename

in_file_form char(256) Input file format

outfile char(256) Output filename

outfile_form char(256) Output file format

rcloud PR Required radius of sphere

nwant int Required number of particles in sphere

30

4.17 icvel_pert.F90

Adds a variety of perturbations to any inputted (spheridat)sity distribution. Requires parameterstilgpert.dat.
Required Makefile options :

e NDIM =3

e DIMENSIONLESS=0

Variable Type Description

in_file char(256) Input filename

in_file_form char(256) Input file format

out file char(256) Output filename

out file_form char(256) Output file format

densmode char(20) Mode of density perturbation (not used yet)

amp PR Amplitude of azimuthal perturbation (not used yet)

mpert integer Azimuthal perturbation mode (not used yet)

fenhance PR Density enhancement factor (increase all particle masses
by fenhance; used to make stable polytropes unstable

vpower PR Turbulent velocity power spectrum index

eturb PR Ratio of turbulent to gravitational energy

ngrid integer No. of grid points for vel field (determines resolution pf
velocity field; must be a multiple of 2)

iseedl integer Random No. seed 1

iseed2 integer Random No. seed 2

velradmode char(20) Radial velocity mode (energy, dvdr or none)

dvdr PR Radial velocity gradient

erad PR Ratio of radial kinetic to gravitational energy

velrotmode char(20) Rotational mode (energy, angmom, angvel or none)

angmom PR Total angular momentum (if velrotmodeangmom)

angmomunit char(256) angular momentum unit

angpower PR Angular velocity power law (angular velocity is a func-
tion of axial distancey oc rngpower)

angvel PR Angular velocity

angvelunit char(256) Angular velocity unit

erot PR Ratio of rotational kinetic energy to gravitational energy

31

5 Running the SEREN bash test script

SEREN contains a bash script designed to run batches ofaeSEREN for development and debugging pur-
poses. The script, and all related files for running the tésiscated in the/seren/testsuite sub-directory. In
the testsuite directory, there is théest-seren.sh bash script and further sub-directories which contain fikesd
by test-seren.sh when performing batch tests.

A test is launched from the command line as in the followingregle :

./test-seren.sh -gfortran -openmp -debugl -test POLYRAD1-AB

The current list of command line options for the script arBD) :
The list of tests currently set-up for use with the test saip BD) :

Table 5: List of automated tests in SEREN

Test name Description

ADSOD-3D Classic SOD test of two initially static columns of gas in @t which
then interact forming a shock. Gas is nhon-radiative so tleeggnequa-
tion is solved and no energy escapes the system (i.e. itabatic).

BURRAU1 Burrau 3-body problem (Burrau 19?7?); also known as the yitean
problem. Three stars with masses 3, 4 and 5 placed on thersmhe
right-angled triangle all with zero-velocity and allowexdvolve until
the system dissolves into a single star and a binary star.

COL-3D Two columns of uniform density gas collide supersonicadlyptoduce
a dense shocked layer.

EIGEN1 Gravitational force accuracy using eigenvalue MAC

FIGURES Figure-8 3-body test for N-body integrator (???7?).

FREEFALL1 Free-fall collapse test.

GEO1 Gravitational force accuracy using geometric MAC

ISOFREEFALL1 Isothermal free-fall collapse test

KH-2D 2D Kelvin-Helmholtz instability test

NTSI-2D 2D Non-linear thin shell instability test

POLYRAD1 Masunaga & Inutsuka (???7?) collapse test

SEDOV-3D Sedov blast wave test (Sedov 19?7?).

SHEAR-2D 2-D shearing layer test.

SIT1-AB A variation of the Boss-Bodenheimer (1979) test. A unifalensity
spherical cloud is given a sinusoidal azimuthal densityysbation and
a solid-body rotationaal velocity field such that it collapgo form a
dense filament with a star on each end and eventually bouraiyb
system.

STATPOLY1 Relax a polytropic gas to hydrostatic balance.

32

6 Coding style of SEREN
6.1 Design philosophy of SEREN

SEREN is a highly modular code written in Fortran 90 which poises of several layers of subroutine calls
in performing basic simulations. Each subroutine is desigio perform one single task. If a long procedure
consists of a number of independent steps (i.e. not usingaie local variables), then it is broken down into
a sequence of smaller subroutines. Also, edtt file contains one single subroutine (with the exception of
sanitycheck.F90 which has two extra smaller subroutines for clarity).

For the benefit of anyone reading through the source codey dhdse wishing to develop new routines, we
discuss here in detail some of the more important codingexttions that are used in SEREN. We do not discuss
the particular features of any one subroutine (since eadinmis extensively commented), but focus on the style
used in most subroutines of SEREN.

6.2 Macros

SEREN uses C-like macros throughout the source code, bothédcclarity (by reducing the number of lines)
and the #iciency and runtime speed of the code. Macros are stringséotionally in upper case as in C) which
are substituted for some user-defined value or expressititelpye-processor, i.e. before the compiler generates
machine code from the source code. This can improve themergerformance somewhat by removing common
variable references.

Macros are defined in two separate locations in SEREN. Someéefined in the Makefile (e.gNDIM).
Most macros however are defined in the header/fileaders/macros.h. In order to make use of the macros,
we must import the file/headers/macros.h into the subroutine by way of the pre-processor commétiek
clude “macros.h”. The majority of macros in SEREN are straight-forward nupaisubstitutions of important
information, such as array sizes or physical constants.

6.2.1 Function-like macros

Function-like macros are macros that look like functjgnbroutines by their syntax, but work by the substitution
of a string of commands, rather than calling a subroutinevetgre in memory (thereby eliminating the extra
cost associated with a subroutine call). In SEREN, we usetifumlike macros as a compact and concise way
of writing debugging information to the screen when in debwage. For example, we define thebugl macro

in the following way.

#ifdef DEBUG1

#define debugl(x) write (6,*) x
Felse

#define debugl(x)
#endif

If we wished to write debug information to screen (e.g. ineor indicate the current location in the code),
we could write in long-hand:

#ifdef DEBUG1
write(6,*) “Calculating smoothing lengths”
F#endif
In SEREN, we can instead write the short-hand form
debugl(“Calculating smoothing lengths”)
If the DEBUG1 compiler flag is defined in the Makefile, thendl®ugl() macro is replaced witlyrite(6,*)

“Calculating smoothing lengths”. If DEBUGL1 is not defined in the Makefile, thelebug1() macro is replaced
with nothing. For subroutines (particularly those in depehent) that contain many debugging statements, these

33

macros allow us to write code with more clarity and fewerdiné/e use four levels of debug macros, which are
all defined in/headers/macros.h.

6.3 Real variable types

Rather than hard-wiring in the precision of real variabteshie source code, SEREN allows the user to specify
the precision through one of the options in the Makefile (PEEGN). The precision is controlled by several
lines in the modulelefinitions (in modules.F90) :

integer, parameter :: DP = selected _real kind(p=15)
integer, parameter :: SP = selected real kind(p=6)
#if defined(DOUBLE_PRECISION)
integer, parameter :: PR = DP
F#else
integer, parameter :: PR = SP
#endif

The first two lines use the intrinsielected_real kind function to define the precision independent of the pro-
cessor type (i.e. whether it is 32-bit or 64-bit). The coiodial compilation section then defines the precision
used in the code (i.ePR) depending on the option selected in the Makefile. Any reghtsde in the code must
be defined in the following way, e.g.

real(kind=PR) :: drmag

If we wish to declare a double or single precision variablespective of the general precision (e.g. any sum-
mation variables in/main/diagnostics.F90 always use double precision), then we I or SP in place of
PR.

If we wish to convert a variable to a real variable of requipedcision, we must specify the kind (i.8R,
DP or SP) as a second parameter in thl function, e.g. to convert the integer variabl® a real variable of
precisionPR, we write

ireal = real(i,PR)

6.4 Particle data arrays

SEREN mainly uses simple arrays to store particle data. Mexyveata which are important in gravity calcula-
tions are stored dlierently. The position, mass and smoothing length inforomadire grouped together in a sin-
gle array,parray(1:NDIM+2,1:ptot). The position of particle is stored in the elementsrray(1:NDIM,p),
the mass is stored in the elemgntrray(MASS,p), and the smoothing length is stored in the element
ray(SMOOQO,p) (See/seren/headers/macros.h for macro definitions).

6.5 Particle types
SEREN accomodates the following particle types:

e Static boundary particlepboundary)

Non-gravitating inter-cloud medium (IcM) particlesi¢m)

Self-gravitating gas particlepgas)

Dark-matter particlespcdm)

Dust particlesfdust)

lon particles pion)

34

e Sink particles {tot)

where the variable names indicate the number of each matipk present in the simulation. All data for the
first three (boundary, IcM and self-gravitating gas pags¢lare stored in the main arrays, which confatiot
elements whergtot = pboundary + picm + pgas + pcdm + pdust + pdust. The data is stored such that the
first pboundary elements contain the information for boundary particles, nextpicm elements contain the
information for the IcM patrticles, and the ngxgas elements contain the information for the gas particles, and
the finalpcdm elements contain the information for the cdm particles.hdligh provision has been made for
their use in future versions of SEREN, dust and ion partiatesnot currently active.

The sink particles are stored in separate data structuneg ey can have many additional properties that
are not possessed by normal SPH particles and thus reqgeireothin data structures. We use Forttames
(equivalent to C structures) to hold sink data. The mainydirat contains each sink structure is caldatkdata
and elements can be accessed using the Fortran % notatioith@mass element of sisks sinkdata(s)%m).

35

7 Units

Dimensionless units are used in numerical simulationsatethvalues are as close to unity as possible, to avoid
having very large or very small values that may result in i§icgmt rounding errors. SEREN contains a flexible
system of units which allows the user to select from a widggeaof commonly used astrophysical units, or
easily construct their own set of units. All variables rethto units and scaling are determineduitits.F90.
Each quantityX, has four scaling variables associated withXitinit, Xscale, X_ST andXcgs.

e Xunit is a string which contains the name of the unit that the qbahtiis measured in; e.g. for length
units, runit may take the valuesc, au, r_sun, etc. All Xunit strings are defined in the parameters file.
The available options in version 1.0 of the code are givehénfollowing table:

e Xscale is a real variable that allows us to convert between physigdlcode units. In order to convert any
variable from physical to code units (where the physicalade is measured in units specified Bynit),
then we divide the physical unit Byscale. Conversely, to convert any code variable to physical unies
multiply the code value b¥scale

e X _Slis areal variable that allows us to convert between the peitified byXunit and S.I. units. In order
to convert fromXunit to S.I. units, we multiply the variable (in units &funit) by X_SI.

e Xcgs is a real variable that allows us to convert between the y@ti§ied byXunit and cgs units. In a
similar way to converting to S.I. units, in order to conveadrh Xunit to cgs units, we multiply the variable
(in units of Xunit) by Xcgs.

In a self-gravitating code like SEREN, we choose a set ofsusttas to make the gravitational const@nt
equal to unity. We are free to choose the valuessaile andmscale. The value oftscale is then set to ensui@
= 1 in the new system of units. Therefore, the valuesefile can be obtained using

(rscale x r_SI)%?
VG x mscale x m_S|

tscalex t_S| =

)

whereG is the gravitational constant in c.g.s. units, i&.= 6.67 x 108 cm®g~ts2. All other scaling factors
can be determined in a similar way using:

rscalex r_Sl

vecalex V.Sl =t e ter (2)
al _Sli

ascalex a Sl = ~>2EXo1 (3)

(tscale x t_Sl)?

mscale x m_SlI

rhoscalexrho S| = —— 4)
(rscalex r_Sl)3
sigmascale x sigma_Sl = w (5)
(rscalexr_Sl)
Pscalex P_SI = mscalex m S| 6)

rscale x r_Sl x (tscale x t_SI)?

fscalex f.g| ~ McalexmSl ercalzex r_S| o
(tscalex t_Sl)

mscale x m_Sl| x rscale x r_Sl

Escalex E_SI = - @)
(tscalex t_Sl)
momscale x mom.S| = mscale x m.S| x rscalex r_Sl ©
tscalex t_Sl

mscale x m.SI x rscale? x r_S|2
tscale x t_Sl

angmomscale x angmom.S| = (10)

36

mscale x m_Sl

Escale x E_SI
Lscalex L_SI = m (12)
(rscalexr_SI)?

kappascale x kappa_S| = (13)

mscale x m_Sl

In MHD, we must also introduce the unit of charge and assediahits such as magnetic field and current
density. As with gravitational problems, we can scale thieswof the magnetic field such that the permiability of
free spaceyo, is equal to unityto be completed

Qscalex Q_SI
tscale x t_SI x rscale? x r_S|2

Jscalex J_SI = (14)

Table 6: List of unit options in SEREN

Xunit Options Description
runit mpc megaparsecs
kpc kiloparsecs
pc parsecs
au astronomical units
r_sun solar radii
r_earth Earth radii
km kilometres
m metres
cm centimetres
munit m_sun solar masses
m_jup Jupiter masses
m_earth Earth masses
kg kilograms
g grams
tunit gyr gigayears
myr megayears
yr years
day days
sec seconds
vunit km_s kilometres per second
au_yr astronomical units per year
m._s metres per second
cm_s centimetres per second
aunit km_s2 kilometres per second squared
au_yr2 astronomical units per year squared
m_s2 metres per second squared
cm_s2 centimetres per second squared
rhounit m_sun_pc3 solar masses per cubic parsec
g_cm3 grams per cubic centimetre
sigmaunit m_sun_pc2 solar masses per parsec squared
g_cm2 grams per centimetre squared
Punit Pa pascals
bar bars

37

Xunit Options Description
g_cms?2 grams per centimetre per second square
funit N newtons
dyn dynes
Eunit J joules
erg ergs
GJ gigajoules
momunit m_sunkm_s solar masses kilometres per second
m_sunau_yr solar masses astronomical units per yea
kgm_s kilomgram metres per second
angmomunit kgm?2_s kilogram metres squared per second
gem?2.s gram centimetres squared per second
angvelunit rad_s radians per second
dmdtunit m_sun_myr solar masses per megayear
m_sun_yr solar masses per year
kg s kilograms per second
g.s grams per second
Lunit L_sun solar luminosities
kappaunit m2_kg metre squared per kilogram
cm_g centimetre per gram
Bunit tesla tesla
gauss gauss
Qunit C coulombs
Junit C.m2.s coulombs per second per metre squared
uunit J kg Joules per kilogram
erg.g ergs per gramme
dudtunit J kgs Joules per kilogram per second
tempunit K kelvin

38

8 File formats

SEREN 1.5.1 uses both the DRAGON file format and the nativeENERle format for reading in initial con-
ditions and writing out snapshots. Unlike in DRAGON, thenfiatt of the initial conditions file need not be the
same as the format of the output snapshots. This is cordrbjiehe two input parameters in the parameters file,
in_file_form andout_file_form. The possible values for these parameters are :

e ascii - Simple (ASCII) column format

e dragon_form - Formatted (ASCIl) DRAGON snapshot files

e dragon_unform - Unformatted (binary) DRAGON snapshot files

e seren_form - Formatted (ASCIl) SEREN snapshot files

e seren_unform - Unformatted (binary) SEREN snapshot files (Not yet working

As well as standard snapshot files, SEREN can also produaamesASCIl output which is useful for
debugging purposes. This can be enabled by using the -DDEBUGT_DATA compiler flag.
8.1 ASCII format

Seren can use a simple flexible ASCII column-format. The @astored in columns with widtiN_, .. and
lengthN (whereN is the total number of particles of all types). The data dpsmrof each column is contained in
a file labelledasciicolumns.dat (a template copy should be stored in thiatafiles sub-directory). The possible
data descriptors currently enabled in SEREN are

e ptype - Particle type. The following particle types are availaiblSEREN :

— -1: sink/star

— 0: dead particle

—1:gas

— 6 : boundary particle

— 9: ICM particle

— 10 : cold-dark matter particle

e x Ory or z - Cartesian position coordinates

e vx Or vy Of vz - Cartesian velocity components
e h - Smoothing length

e m - Mass

e u - Specific internal energy

e temp - Temperature (in K)

The only constraint on the column order is that the first caolumust beptype. Thereafter, the remaining
columns can be arranged in any order. In the file containiegdéita, the data must match up to the chosen
columns correctly, or the particle data will be read-in imeotly. All physical quantities are measured in the
units defined in thearams.dat file. Due to the simplicity of this format, it contains no exinformation (e.g.
time, gamma, etc.), and therefore is perhaps not of long-pgactical use, but should be suitable for those who
wish to generate their own initial conditions from other gmammes without learning all the complications of
the other available formats.

8.2 Dragon format

To be written

39

8.3 Seren format

To be written

9 Structure of code

9.1 Basic directory structure

Subroutines in SEREN are not all contained in a single sadireetory, but are grouped in several sub-directories
depending on their purpose. In version 1.0, the following-directories exist :

e /seren/src/advance - integration routines

/seren/src/analyse - analysis routines

/seren/src/BHtree - Barnes-Hut octal tree subroutines

/seren/src/binarytree - Binary-number tree subroutines

/seren/datafiles - Contains initial conditions parameters files

/seren/docs - Contains latest version of the userguide

/seren/src/gravity - subroutines that calculate gravitational forces

/seren/src/headers - macro and modules files

/seren/src/healpix - HEALPIX ioniaztion routines

/seren/src/ic - programs to generate initial conditions for regularly disenfigurations (e.g. relaxed
rectangular cubes, spheres)

/seren/src/io - subroutines that read and write files

/seren/src/main - contains important and commonly used subroutines

/seren/src/mhd - contains magneto-hydrodynamics routines

/seren/src/nbody - N-body routines

/seren/src/nbody_sim - N-body simulation subroutines

/seren/src/nbody_sph_sim - Hybrid N-bodySPH simulation routines

/seren/src/radiation - contains radiation transfer subroutines

/seren/src/setup - contains subroutines called during initialization of SE¥R.

/seren/src/sinks - subroutines that search for, create and advance sinkleatti

/seren/src/sorts - subroutines for sorting lists

/seren/src/sph - subroutines that perform important SPH functions

/seren/src/sph_sim - SPH simulation routines (e.g. h-finding, neighbour seiagh

/seren/src/tests - test programs

/seren/src/timestep - timestepping routines

/seren /testsuite - bash script for running batch tests of seren

40

10 Variable conventions

In SEREN, the names of all commonly used local variables apt &s consistent as possible betwedfecgnt
subroutines. Here we list the names of all common local artegd real variables.

10.1 Integer variables

c
cc
i

Cell identifier
Child cell identifier

Auxiliary counter (often used when looping over neighbasis)

k Dimension counter

1 Level counter (for BH tree and HEALPIX)

p Particle identifier

pp Neighbour identifier

pp-pot No. of potential neighbours (e.g. after a tree walk)

pp-templist(1:pp_limit)

pp-tot
S

SS

Temporary list of neighbour identifiers
Total number of neighbours for particle p
Sink particle identifier

Secondary sink counter

10.2 Real variables

dr(1:NDIM) Relative position vector
drmag Distance
drsqd Distance squared

dr_unit(1:NDIM)

Unit position vector

hp Smoothing length of particle p

hpp Smoothing length of neighbouring particle pp
mp Mass of particle p

mpp Mass of neighbouring particle pp

ms Mass of sink particle s

invdrmag Reciprocal of distance, i.e./drmag

invdrsqd Reciprocal of distance squared, i.g.drsqd
invhp Reciprical of smoothing length of p, i.e./hp
invhpp Reciprical of smoothing length of pp, i.e/hpp
qc(1:NQUAD) Quadrupole moment tensor for cell ¢
rp(1:NDIM) Position of particle p

rpp(1:NDIM) Position of neighbouring particle pp
rs(1:NDIM) Position of sink particle s

sound_p Sound speed of particle p

sound_pp Sound speed of neighbouring particle pp

up Specific internal energy of particle p

upp Specific internal energy of neighbouring particle pp
vp(1:NDIM) Velocity of particle p

vpp(1:NDIM) Velocity of neighbouring particle pp
vs(1:NDIM) Velocity of sink particle s

41

	Overview
	Using SEREN
	Obtaining SEREN via github
	Updating Seren and managing conflicts on the command line
	Other important commands

	Compiling and running SEREN
	Command-line arguments
	Restarting simulations

	SEREN-MPI
	Compiling and running SEREN-MPI
	Combining data snapshots with MPI

	Makefile
	Debug flags
	Parameter file

	Additional physics modules
	Sink particles
	Formation criteria
	Basic sink accretion
	Sinks with smooth accretion

	Radiative cooling approximation
	UV photoionising radiation
	Stellar wind

	Generating initial conditions
	ic_BB
	ic_binary
	ic_core
	ic_jeans
	ic_KH
	ic_lattice_cube
	ic_NTSI
	ic_plummer
	ic_polytrope
	ic_radtest
	ic_random_cube
	ic_replicate_cubes
	ic_RT
	ic_sedov
	ic_shocktube
	ic_sphere
	ic_vel_pert.F90

	Running the SEREN bash test script
	Coding style of SEREN
	Design philosophy of SEREN
	Macros
	Function-like macros

	Real variable types
	Particle data arrays
	Particle types

	Units
	File formats
	ASCII format
	Dragon format
	Seren format

	Structure of code
	Basic directory structure

	Variable conventions
	Integer variables
	Real variables

