
SEREN - Version 1.5.1

David Hubber, Christopher Batty & Andrew McLeod

July 27, 2013

Contents

1 Overview 3

2 Using SEREN 4
2.1 Obtaining SEREN via github. 4

2.1.1 Updating Seren and managing conflicts on the command line 4
2.1.2 Other important commands. 5

2.2 Compiling and running SEREN. 5
2.2.1 Command-line arguments. 6
2.2.2 Restarting simulations. 6

2.3 SEREN-MPI . 7
2.3.1 Compiling and running SEREN-MPI. 7
2.3.2 Combining data snapshots with MPI. 7

2.4 Makefile. 8
2.5 Debug flags. 14
2.6 Parameter file. 16

3 Additional physics modules 19
3.1 Sink particles . 19

3.1.1 Formation criteria. 19
3.1.2 Basic sink accretion. 19
3.1.3 Sinks with smooth accretion. 19

3.2 Radiative cooling approximation. 20
3.3 UV photoionising radiation. 20
3.4 Stellar wind . 20

4 Generating initial conditions 21
4.1 ic BB . 21
4.2 ic binary . 22
4.3 ic core . 22
4.4 ic jeans . 23
4.5 ic KH . 24
4.6 ic lattice cube . 24
4.7 ic NTSI . 24
4.8 ic plummer . 24
4.9 ic polytrope . 25
4.10 ic radtest . 26
4.11 ic randomcube . 26
4.12 ic replicatecubes . 26
4.13 ic RT . 27
4.14 ic sedov . 28
4.15 ic shocktube. 29
4.16 ic sphere. 30
4.17 ic vel pert.F90 . 31

1

5 Running the SEREN bash test script 32

6 Coding style of SEREN 33
6.1 Design philosophy of SEREN. 33
6.2 Macros . 33

6.2.1 Function-like macros. 33
6.3 Real variable types. 34
6.4 Particle data arrays. 34
6.5 Particle types. 34

7 Units 36

8 File formats 39
8.1 ASCII format . 39
8.2 Dragon format. 39
8.3 Seren format. 40

9 Structure of code 40
9.1 Basic directory structure. 40

10 Variable conventions 41
10.1 Integer variables. 41
10.2 Real variables. 41

2

1 Overview

SEREN is a Smoothed Particle Hydrodynamics (SPH) code designed for solving self-gravitating hydrodynam-
ical problems in astrophysics, particularly in the fields ofstar and planet formation. SEREN largely grew from
DRAGON, the star formation SPH code written by Simon Goodwinat CardiffUniversity, although many routines
have significantly diverged from the original DRAGON versions, or have been rewritten from scratch. SEREN
has also been designed to be compatible with DRAGON in its features and file formats.

The basic elements of SEREN can be used to simulate any problem involving hydrodynamics and gravity,
but SEREN also contains many specialized features for star formation problems. The main features present in
SEREN 1.5.1 include :

• Smoothed Particle Hydrodynamics (Standard SPH or conservative ’grad-h’ SPH)

• Self-gravitating SPH/ N-body dynamics

• Isothermal, barotropic or polytropic equations of state

• Octal-spatial (Barnes-Hut) neighbour-searching and gravity tree

• Sink particles, using new accretion algorithm of Hubber et al. (2013)

• Different particle types (gas, inter-cloud, boundary, CDM and dust particles)

• 1, 2 or 3 dimensions

• Periodic boundary conditions (independent for each dimension) or spherical wall

• Ewald method for periodic gravity

• Hierarchical block timesteps, with neighbour-checking for safety

• 2nd order Runge-Kutta, Leapfrog-KDK and Leapfrog-DKD and integration schemes

• Artificial viscosity with Balsara switch, time-dependenceand Keplerian pattern-matching

• Artificial conductivity with switches

• N-body evolution of sinks using 4th order Hermite integrator at termination of SPH

• Radiative cooling approximation of Stamatellos et al. (2007), and hybrid flux-limited diffusion method
(Forgan et al. 2009)

• Ionising radiation using HEALPix (Bisbas et al. 2009)

• Hybrid SPH and 4th-order Hermite N-body algorithm (Hubber et al. 2013)

• Simple external background gravitational potentials

• Parallelized using OpenMP

• Parallelized using MPI (partial implementation, currently in beta-mode)

• Output compatable with Splash (Price 2007)

Features currently in development, or implemented but not full tested

• Wind feedback from high-mass stars (Ngoumou & Hubber)

• Multiple fluid components and independent EOSs (Hubber)

3

2 Using SEREN

2.1 Obtaining SEREN via github

SEREN is hosted on the github website (https://github.com/) which uses thegit (http://git-scm.com/) version-
control software, written by Linux-kernel author Linus Torvalds. The SEREN code is held in the github reposi-
tory

https://github.com/dhubber/seren,

and a webpage describing the features of the code, tests and other information can be found at

http://dhubber.github.io/seren/.

Although you must register to join and use github, the SEREN code itself can be downloaded anonymously. One
advantage of joining github is that it is easier for us to track usage of the code and that it is possible for users
to give feedback, such as bug reports or suggested improvements, or share information about the code that can
be useful to other users. Another advantage is that you can use the github desktop manager, which can make
downloading and updating the code easier for those who prefer graphical interfaces rather than simple command
line interfaces.

In order to download SEREN, you must first installgit on your system. It is required that the user hasgit
version 1.6 or later. If you have version 1.5 or older, it is recommended asking your computer administrator
if he/she could updategit to the latest version, since I have noticed that v1.5 does different things with regards
to password authentication and therefore the instructionsbelow will be invalid. For your own computers (e.g.
laptops),git can easily be obtained with package managers such as apt, rpm, etc .. For Mac users,git can be
obtained with fink or macports.git can also be downloaded directly from thegit webpage (http://git-scm.com).

Before downloading the code, either from the command line orusing the github programme, you should set
the following important variables in order to track your local changes (i.e. what changes are your own, and which
changes are made by the authros):

git config - -global user.name ”Your name here”
git config - -global user.email ”Your email address here”

This creates a file called .gitconfig in your home directory containing this information.
Once this is done, you can download the code by one of two ways

• Anonymous command line download
First change into the directory you wish to download the codeto. Next, copy the https clone address into
the command line as

git clone https://github.com/dhubber/seren.git

• Desktop application download First, register with github and download and install the github desktop
application. Next, go to the SEREN repository webpage and click the ’Clone in desktop’ option. Select
the directory you wish to download the code into and then follow the links to the end.

2.1.1 Updating Seren and managing conflicts on the command line

The SEREN git repository can be updated quite easily with a few commands. First, if you have changed any
files in the repository (e.g. most likely with the Makefile or the params.dat file), then you have to commit your
changes to the local repository. This can be done easily using

git commit -am ”Message”

where ”Message” is some status message which is recorded in the git logs. This command allows git to know
the changes you have made to the SEREN files so it can easily be merged with the new version’s updates. The

4

update can now easily be obtained with the same command as above :

git pull origin master

with the same password to be entered at the prompt. If you havechanged any part of the SEREN files which
have also been changed in a different way by the update, then there will be a conflict and the merging of the two
versions cannot proceed automatically. In this case, you have to intervene manually and resolve the conflict by
selecting which version (i.e. your altered version or the new update) you would like to use. To view which files
have a conflict (plus other information about your local repository), simply type

git status

Once you have identified which files have conflicts, you have toopen each one individually with a text editor,
and edit the conflicted regions (which are clearly marked with both versions of the code in conflict) and save
with the chosen version. Once ALL conflicted files have been modified, you can inform your local repository by
commiting the new files by again typing

git commit -am ”Another message”

All conflicts should now be resolved, and you are free to update to any later versions. Note that you must commit
your changes locally and resolve any potential conflicts every time you want to update the code.

2.1.2 Other important commands

A selected list of important commands that will be needed from time to time :

git log : Outputs log of various commits to screen
git log - -online : Less verbose version of ’git log’
git status : Status of local repository, including what has been modified or added, but not commited
git branch : Tells you which code branch you are currently on (should always say master)
git diff : Displays difference between local files and those in the repository
git gc - -aggressive : Compresses parts of the git repository to reduce the overall size

2.2 Compiling and running SEREN

SEREN has been designed so to be compiled withGNU make. The user must specify a number of compiler
options, which are set at the head of the Makefile (see Section2.4 for more information). In order to compile, a
compatible compiler must be specified in the first line of the Makefile. SEREN has been successfully tested on
the following operating systems and compilers.

• GNU/Linux

– f95 - NAG f95 compiler (Linux workstations)

– g95 - g95 compiler (Linux workstations)

– gfortran - GNU Fortran compiler (Linux workstations)

– ifort - Intel Fortran compiler (Merlin cluster)

– pgf90 - Portland group Fortran compiler (Coma cluster)

– pgf95 - Portland group Fortran compiler (Iceburg cluster)

• Mac OS X (1.4, 1.5, 1.6 & 1.7)

– g95 - g95 compiler

– gfortran - GNU Fortran compiler

– ifort - Intel Fortran compiler

5

Once all the other Makefile options have been set to their desired values, SEREN is compiled byGNU make
with the command

make [-j N] seren

GNU make will compile the source code of SEREN and produce the executable programseren. The optional
argument,-j N, allows parallel compilation on multi-core architecture,whereN is the number of routines to be
compiled in parallel at any one time. Prior to performing a simulation, the user must set all simulation param-
eters in the fileparams.dat (See section2.6 for more information) and provide an initial conditions filein the
appropriate format. To run SEREN, the user must type

./seren

SEREN will read in the default parameters fileparams.dat before performing the simulation.

2.2.1 Command-line arguments

SEREN has a number of optional command-line arguments that can be invoked to change the behaviour of the
SEREN executable. The behaviour can depend on several factors, particularly what Makefile options have been
invoked while compiling SEREN.

Table 1: List of all command-line arguments available in SEREN

Argument Behaviour
-d, -D, - - debug SEREN prints out the debug output column data for-

mat to screen and then exits without running any sim-
ulation. (N.B. The same information is printed to the
runid.params file when a simulation is performed using
SEREN)

- - diag SEREN prints out the column data format that is used
in the diagnostics file to the screen (enabled with DIAG-
NOSTIC OUTPUT= 1 in the Makefile).

-h, -H, - - help SEREN prints out all available command-line options
-m, -M SEREN prints out the Makefile options used to compile

the code to screen and then exits without running any sim-
ulation. (N.B. The same Makefile options are printed to
therunid.params file when a simulation is performed us-
ing SEREN)

-s, -S, - - sinks, - - stars SEREN prints out the column data format to screen for
the sink files.

-v, -V, - - version SEREN prints out current version number
paramsfile SEREN reads the parameters fileparamsfile instead of

the defaultparams.dat

2.2.2 Restarting simulations

If a simulation is terminated for some reason, then it can be restarted by simply running SEREN without any
modification to theparams.dat file. Each simulation generates a filerunid.restart which contains the name of
the last snapshot to be outputted. SEREN will search for thisfile, and if it exists, it will read the snapshot name
contained and restart the simulation from that point. If youdo not wish to restart the simulation from this point,
but want a fresh run, then you should delete therunid.restart file. If you wish to restart a simulation from a
different snapshot, you can delete therunid.restart file and alter some of the parameters in theparams.dat file,
such as therestart logical flag (See Section2.6).

6

2.3 SEREN-MPI

The SEREN source code also contains an MPI version, SEREN-MPI. In order to compile SEREN-MPI, one must
download and install an implementation of MPI that works on your system. To date, we have tested SEREN-MPI
using the mpich2 (http://http://www.mpich.org) library at the development stage. SEREN-MPI has not been
fully tested or debugged using other MPI implementations (e.g. openmpi). Therefore, it is recommended to use
mpich2 if possible.

We note that SEREN-MPI is currently only a partial implementation of all features and is in the beta-testing
stage. Although it has been shown to run for a limited number of test cases, it has not been through an exhaustive
list of tests. Therefore bugs may still (and probably do) exist in the code that can only be identified and fixed
through thorough usage, bug-reporting, fixing, updating and re-testing. We welcome any feedback from users
who wish to trial SEREN-MPI to help us fix any problems rapidly.

2.3.1 Compiling and running SEREN-MPI

In order to compile SEREN-MPI, several extra options must beset in the Makefile. These options are

• MPIF90

• MPI

• MPI LIBRARY

The default values to compile with MPI should beMPIF90= mpif90,MPI = 1 andMPI LIBRARY = mpich2.
If the user wishes to compile also with OpenMP, then this flag should also be switched on. In this mode, the
code will run on each local node parallelised with OpenMP, but parallelised using MPI to communicate between
nodes. This mode could potentially have scaling advantages, although this will be determined with more testing
of the code.

make or make seren

To run the code

mpiexec -n N ./seren-mpi

whereN is the number of tasks that the MPI job will run on.

2.3.2 Combining data snapshots with MPI

Since MPI runs segments of the simulation on different CPU tasks (often on different nodes), it is more efficient
during runtime for each task to write its own contribution tothe overall simulation to a separate file. In order for
these files to be meaningfully analysed with SPLASH or some other data analysis tool, they must be combined
together to a single file per output. A python script has been written to easily accomplish this with minimal
effort, calledjoinlots.py which is located in thejoinsim sub-directory. It may be required to add the pathname
of both the main SEREN directory and thejoinsim sub-directory to yourPATH environment variable. To join
all snapshots for a simulation, we simply type :

joinlots.py runid

whererunid is the run id of the simulation as chosen in the parameters file. (N.B. this currently only works with
double precision simulations).

7

2.4 Makefile

The head of the Makefile contains the complete list of compilation variables that are available. Most variables
have two or more possible values which must be entered in the Makefile. If an illegal value is entered, thenmake
will halt during compilation, or the program will stop during runtime (see the routine/main/sanitycheck.F90).
The Makefile is technically split into two separate files;Makefile, which contains the user options, andmake-
filetail.mk, which processes all the selected options to compile the code. The full list of all Makefile variables
and possible options is given in the table below.

Table 2: List of all available Makefile options in SEREN

Variable Options
F90 f95 : NAG f95 compiler (Linux)

g95 : free (not gnu) f95 compiler (Linux, Mac OS
X)

gfortran : gnu f95 compiler (Linux, Mac OS X)
pgf90 : Portland Group compiler (Coma cluster)
mpif90 : Portland Group compiler (Coma cluster)
ifort : Intel Fortran compiler (Merlin cluster)

MPIF90 mpif90 : MPI Fortran compiler
VERSION NO Version no. string
SRCDIR Absolute path of main SEREN directory (de-

fault $(PWD)/src)
EXEDIR Absolute path of location for SEREN exe-

cutable (default $(PWD))
OPENMP 0 : Compile as serial code

1 : Compile using OpenMP directives
MPI 0 : Compile as serial code

1 : Compile with MPI directives
MPI LIBRARY mpich2 Name of MPI library used
COMPILER MODE 0 : No optimisation or debugging flags

STANDARD : Use standard optimisation flags (-O3 plus in-
line functions)

FAST : Use fast optimisation flags for increased
speed. (Note that fast math optimisations are
potentially unsafe and can lead to floating
point errors, even in apparently bug-less code,
and therefore should not be used without test-
ing with the required compilation flags.)

DEBUG : Use all available debug flags (e.g. bounds-
testing, floating point erros, etc..). Should be
selected when debugging the code using gdb,
or another debugger.

OUTPUT LEVEL 0 : Output/debug flags switched off
1 : Output/debug flags switched on to level 1
2 : Output/debug flags switched on to level 2
3 : Output/debug flags switched on to level 3

DIAGNOSTIC OUTPUT 1 : Print diagnostic information of conserved
quantities (e.g. total mass, momentum, en-
ergy) to screen (if OUTPUTLEVEL ¿ 0) and
file (’run id.diag’)

8

Variable Options
0 : Do not compute diagnostic information

NDIM 1 : One-dimensional
2 : Two-dimensional
3 : Three-dimensional

PRECISION SINGLE : Single precision for main real variables
DOUBLE : Double precision for main real variables

INFILE FORMAT ALL : Include routines to read all possible file for-
mats

DRAGON : Only include DRAGON-format reading rou-
tines

SEREN : Only include SEREN-format reading routines
ASCII : Only include column-ASCII format reading

routine
OUTFILE FORMAT ALL : Include routines to write all possible file for-

mats
DRAGON : Only include DRAGON-format writing rou-

tines
SEREN : Only include SEREN-format writing routines
ASCII : Only include column-ASCII format writing

routine
PERIODIC 1 : Periodic boundary conditions (Note : must

be set to 1 if any of XBOUNDARY,
Y BOUNDARY, Z BOUNDARY or SPHER-
ICAL MIRROR are set to any value other
than 0)

0 : No periodic boundary conditions
X BOUNDARY PERIODIC : Periodic box in x-dimension

WALL : Walls in LHS and RHS directions of x-
dimension

0 : No periodicity in x-dimension
Y BOUNDARY PERIODIC : Periodic box in y-dimension

WALL : Walls in LHS and RHS directions of y-
dimension

0 : No periodicity in y-dimension
Z BOUNDARY PERIODIC : Periodic box in z-dimension

WALL : Walls in LHS and RHS directions of z-
dimension

0 : No periodicity in z-dimension
GHOSTPARTICLES 1 : Use ghost particles for periodic boundaries

(experimental; advise not to use for now)
0 : No ghost particles; use relative position peri-

odic wrapping
SPH SIMULATION 1 : Perform SPH simulation

0 : No SPH simulation
NBODY SIMULATION 1 : Perform N-body simulation

0 : No N-body simulation
SPH STANDARD : Use traditional SPH formulation (Monaghan

1992)
GRAD H SPH : Use ’grad-h’ SPH formulation (Springel &

Hernquist 2002; Price & Monaghan 2004)

9

Variable Options
RTSPH : Use Ritchie & Thomas (2001) SPH formula-

tion
SPH INTEGRATION RK2 : 2nd order Runge-Kutta integration scheme

LFKDK : 2nd order Leapfrog kick-drift-kick scheme
LFDKD : 2nd order Leapfrog drift-kick-drift scheme

KERNEL M4 : M4 kernel (Monaghan & Lattanzio 1985)
M4TC : M4 kernel with modifed 1st derivative

(Thomas & Couchman 1992)
QUINTIC : Quitic kernel (Morris 1996)
QUINTICTC : Quintic kernel with modified 1st derivative

(c.f. Thomas & Couchman 1992)
GAUSSIAN 3H : Gaussian kernel truncated at 3h

HFIND NUMBER : Determineh by number of neighbours
MASS : Determineh by total mass of neighbours
H RHO : Determineh by iterating h-rho relation (as in

‘grad-h’ SPH’)
CONSTANT : Use contant smoothing length

MINIMUM H 1 : Set a minimum smoothing length
0 : Allow any smoothing length

HYDRO 1 : Hydro forces switched on
0 : No hydro forces

ENERGY EQN 1 : Activate energy equation
0 : Do not include energy equation in complia-

tion
ENTROPY EQN 1 : Activate entropy equation

0 : Do not include entropy equation in complia-
tion

ARTIFICIAL VISCOSITY MON97 : Monaghan (1997) artificial viscosity
AB : Standardα-β viscosity (Monaghan & Gingold

1983)
0 : No artificial viscosity

VISC TD 1 : Use time-dependent value ofα (Morris &
Monaghan 1997)

0 : Constant value forα
BALSARA 1 : Use Balsara switch (Balsara 1995)

0 : No Balsara switch
ARTIFICIAL CONDUCTIVITY 0 : No artificial conductivity

PRICE2008 : Artificial conductivity with constantαCOND

(Price 2008)
WADSLEY2008 : Wadsley et al. (2008) conductivity

EXTERNAL PRESSURE 0 : No external pressure
1 : Simple external pressure formulation

RAD WS 1 : Activate radiative cooling scheme (Stamatel-
los et al. 2007)

0 : Do not include radiative cooling in compila-
tion

FLUX LIMITED DIFFUSION 1 : Switch on flux-limited diffusion for hybrid ra-
diation scheme (Forgan et al. 2009). Only ac-
tivated when RADWS= 1.

10

Variable Options
0 : No flux-limited diffusion

SINK POTENTIAL WS 1 : Use gravitational potential from sink in radia-
tive cooling calculations

0 : Ignore gravitational potential from sinks for
cooling

AMBIENT HEATING WS 1 : External ambient heating source (e.g. CMB)
0 : No ambient heating

SINK HEATING WS STAR HEATING :
STAR SIMPLE HEATING :
HDISC HEATING :
0 :

COOLING HEATING 0 : No cooling or heating terms added
EXPLICIT : Explicit cooling/heating terms added to en-

ergy equation (Experimental)
EXPONENTIAL : Exponential cooling integration

IONIZING RADIATION 0 : No ionizing sources
SINGLE STATIC SOURCE : Single static source of ionizing radiation (Bis-

bas et al. 2009)
STELLAR WIND 0 : No wind sources

SINGLE STATIC SOURCE : Single static source of wind
EXTERNAL FORCE 0 : No external forces

PLUMMER : Plummer sphere potential
UDS : Uniform density sphere potential
NFW1996 : Navarro, Frenk & White (1996) potential

SELF GRAVITY 0 : No gravitational forces computed
KS : Kernel-softened gravity for 2-body forces
NBODY : Newton’s gravitational law for all 2-body

forces
MEANH GRAVITY 1 : Use mean-h gravity (cf. Price & Monaghan

2007)
0 : Use default gravity

EWALD 1 : Ewald periodic gravity switched on
0 : No Ewald corrections

SINKS 0 : No sinks
SIMPLE : Simple (i.e. only gravitating) sinks (Bate,

Bonnell & Price 1995)
NO ACC : Simple sinks with no accretion
SMOOTH ACC : Sinks with smooth accretion (Hubber et al.

2013)
SINK RADIUS FIXED ABSOLUTE : Absolute value (in AU in params.dat file;

same for all sinks)
FIXED HMULT : Multiple of mean h at sink density (same for

all sinks)
HMULT : Multiple of h at sink density (individual val-

ues for sinks)
SINK REMOVE ANGMOM 1 : Deposit sink ang. mom. on nearby particles

0 : Sink particle retain ang. mom. of accreted
particles

SINK GRAVITY ONLY 0 : Consider all physical sources of gravity
KS : Sinks only source of gravity using Kernel-

softened gravity for 2-body forces

11

Variable Options
NBODY : Sinks only source of gravity using Newton’s

gravitational law for all 2-body forces
NBODY INTEGRATION HERMITE4 : 4th-order Hermite integration scheme

(Makino & Aarseth 1992)
LFKDK : 2nd-order Leapfrog KDK integration scheme

BINARY STATS 1 : Calculate binary statistics and output to file
0 : No binary calculations

TREE 0 : No tree (all quantities calculated by direct
summation)

BH : Use Barnes-Hut tree (octal-spatial; Barnes &
Hut 1985)

MULTIPOLE 0 : No higher-order multipole terms
QUADRUPOLE : Include quadrupole moment terms in gravity

calculations
OCTUPOLE : Include both octupole and quadrupole mo-

ment terms
MAC GEOMETRIC : Use standard Barnes-Hut geometric opening

angle criterion (Barnes & Hut 1985)
GADGET : Use Gadget-style higher-order moment crite-

rion (Springel et al. 2002)
GADGET2 : Use Gadget 2.0 moment (Springel 2005)
EIGEN : Use Eigenvalues of Q tensor to compute ap-

propriate MAC (Hubber et al. 2010)
REORDER PARTICLES : Re-order particles in arrays according to tree-

walk order
0 : No re-ordering

SORT INSERTION : Use insertion sort for sorting lists
HEAP : Use heapsort for sorting lists

TIMESTEP ADAPTIVE : Block timestep levels adjusted at resync
FIXED : Fixed block timestep levels, with maximum

level set by thedt fixed parameter
RESTRICTED : Timestep levels can only take certain values

(dt fixed parameter times integer power of 2),
but are readjusted at resync

CHECK NEIB TIMESTEP 2 : Ensure neighbours have similar timesteps
1 : As option 2, but doesn’t change timestep in

middle of current step
0 : No neighbour timestep comparison

NEIGHBOURLISTS 1 : Store neighbour lists in memory
0 : Do not store neighbour lists in memory

KERNEL TABLES 1 : Tabulate kernels in arrays for quick lookup
0 : Use inline function calls for kernel functions

REMOVE OUTLIERS 1 : Remove outlying particles from the simula-
tion (Experimental)

0 : No removal of outliers
TURBULENT FORCING 1 :

0 : No turbulent forcing
TIMING CODE 1 : Use custom subroutines to produce timing

statistics

12

Variable Options
0 : No timing output

TEST FREEFALL : Freefall collapse test
SPIEGEL : Spiegel (ref??) test
BINARY : Orbitting binary stars test
PLUMMER : Plummer sphere stability test
ENTROPY : Entropy core test
0 : No test flags

13

2.5 Debug flags

The SEREN Makefile contains a number of debug flags below the main options which can be switched on or off
by uncommenting them or commenting them out. Most of the debug flags produce verbose output of each rou-
tine, and in some cases produce extra files with more important information. The full list of debugging options
with additional output is shown in the table below.

Table 3: List of special debugging options available in SEREN

Variable Options
IEEE EXCEPTIONHANDLING
DEBUG DIV A
DEBUG ACCRETE
DEBUG ALLOCATE MEMORY
DEBUG BHTREEBUILD
DEBUG BHTREESTOCK
DEBUG BHTREEWALK
DEBUG BHTREEGRAVITY
DEBUG BINARY PROPERTIES Ouput binary properties to screen when calculated
DEBUG BINARY SEARCH
DEBUG BLOCK TIMESTEPS Outputs occcupation of timestep levels
DEBUG COPY PARTICLE DATA
DEBUG CREATE SINK
DEBUG CREATE HP SOURCE
DEBUG DENSITY
DEBUG DIV V
DEBUG DUDTRAD
DEBUG ENERGY EQN
DEBUG FOLIATE
DEBUG FORCES Records individual grav, hydro, magnetic forces
DEBUG FREEFALL
DEBUG GATHER NEIB
DEBUG GET NEIB
DEBUG GHOSTPARTICLES
DEBUG GRAD H SPH
DEBUG GRID RESULTS
DEBUG HEAPSORT
DEBUG HERMITE4
DEBUG H GATHER
DEBUG H GATHER DENSITY
DEBUG H GUESS
DEBUG HP IF
DEBUG HP OUTPUT Outputs various ionization properties to files
DEBUG HP SPLIT ACTIVE RAYS
DEBUG HP WALK ALL RAYS
DEBUG HP WALK RAY
DEBUG INTEGRATE
DEBUG KERNEL Outputs file ’kernel.dat’
DEBUG MHD
DEBUG NBODYSETUP
DEBUG OUTPUT STAR DATA
DEBUG PARAMETERS

14

Variable Options
DEBUG PLOT DATA Outputs regular debug files with snapshot files. Files are

simple column-data files where the information of each
column is written to therun id.params file.

DEBUG RAD Outputs ’runid.rad’ file for RAD WS tests
DEBUG REDUCE TIMESTEP
DEBUG REMOVE OUTLIERS
DEBUG RSPHOUTPUT Outputs files in RSPH format
DEBUG SINK REMOVE ANGMOM
DEBUG SINK SEARCH
DEBUG SINK TIMESTEP
DEBUG SKELETON
DEBUG SMOOTH ACCRETE PARTICLES
DEBUG SPH UPDATE
DEBUG SWAP PARTICLE DATA
DEBUG TIMESTEP SIZE
DEBUG TRACK PARTICLE Outputs single file (’track1.dat’) which contains large

amount of information (same as that ouputted by debug
files including the time) of one single chosen particle (set
by parameterptrack in params.dat file) which is printed
every timestep.

DEBUG TREE BUILD
DEBUG TREE GRAVITY
DEBUG TREESTOCK
DEBUG TREEWALK
DEBUG TYPES
DEBUG VISC BALSARA
DEBUG VISC PATTERN REC
DEBUG WRITE MPI TASK

15

2.6 Parameter file

SEREN contains all simulation information in a single parameter file, calledparams.dat. The information con-
tained in the parameters file in version 1.0 is shown in the following table.

Table 4: List of user parameters in SEREN

Variable Type Description
run id char(256) Run identifier string
run dir char(256) Output directory name
in file char(256) Name of initial conditions file
in file form char(50) Format of initial conditions file
out file form char(50) Format of output snapshot files
restart logical Is this a restart or a new run?
com frame logical Change to centre of mass frame?
rseed int Random number seed
ptrack int i.d. of tracked particle
sph endtime DP End time of SPH simulation
nbody sph endtime DP End time of hybrid N-body/SPH simulation
nbody endtime DP End time of N-body simulation
firstsnap DP Time of first snapshot
snaptime DP Snapshot time interval (in real time)
noutputstep int Screen output interval (in integer steps)
ntempstep int Temporary snapshot interval (in integer steps)
ndiagstep int Integer time interval between diagnostic output
nsinkstep int Sink output time interval (in integer time)
nsnapstep int Snapshot time interval (in integer time)
courant mult DP Courant timestep multiplication factor
accel mult DP Acceleration timestep multiplication factor
sink mult DP Sink accel. timestep multiplication factor
nbody timemult DP Timestep factor for N-body simulations
nlevels int Number of multiple timestep levels
dt fixed DP Fixed ref. time for creating timestep levels
dimensionless int Use dimensionless units?
runit char(256) Length scaling unit
munit char(256) Mass scaling unit
tunit char(256) Time scaling unit
vunit char(256) Velocity scaling unit
aunit char(256) Acceleration scaling unit
rhounit char(256) Density scaling unit
sigmaunit char(256) Column density scaling unit
Punit char(256) Pressure scaling unit
funit char(256) force scaling unit
Eunit char(256) Energy scaling unit
momunit char(256) Momentum scaling unit
angmomunit char(256) Angular momentum scaling unit
angvelunit char(256) Angular velocity scaling unit
dmdtunit char(256) Accretion rate scaling unit
Lunit char(256) Luminosity scaling unit
kappaunit char(256) Opacity scaling unit
Bunit char(256) Magnetic field (B-field) scaling unit
Qunit char(256) Electric charge unit

16

Variable Type Description
Junit char(256) Current density unit
uunit char(256) Specific internal energy unit
dudtunit char(256) Rate of change of specific internal energy unit
tempunit char(256) Temperature unit
rscale DP Length scaling factor
mscale DP Mass scaling factor
periodic min(1) PR Size of periodic box in x-dimension
periodic max(1) PR Size of periodic box in x-dimension
periodic min(2) PR Size of periodic box in y-dimension
periodic max(2) PR Size of periodic box in y-dimension
periodic min(3) PR Size of periodic box in z-dimension
periodic max(3) PR Size of periodic box in z-dimension
rspheremax PR Radius of spherical wall
psphere int Mirror origin id (0 : co-ordinates origin; p : SPH particle;

-s : sink particle)
pp gather int Neighbours required to determineh
hmin PR Minimum allowed smoothing length
h fac PR grad-h density-h iteration factor
boundaryeos char(256) Boundary particle equation-of-state
icmeos char(256) ICM particle equation-of-state
gaseos char(256) Gas particle equation-of-state
isotemp PR Temperature for isothermal, barotropic EOSs (K)
rhobary PR Adiabatic density for barotropic density (cgs units)
gamma PR Ratio of specific heats
mu bar PR Mean gas particle mass (in a.m.u.)
Kpoly PR Polytropic constant
Pext PR External pressure
cooling law char(256) Cooling law used
alpha PR α-viscosity value
beta PR β-viscosity value
alpha min PR Minimum value ofα
abserror PR Absolute error fraction in GADGET MAC
thetamaxsqd PR Maximum opening angle squared (Geometric MAC)
nbuildstep int Frequency of DRAGON tree builds (in integer time units)
rhosink PR Sink formation density (cgs units)
sinkrad PR Sink radius (in units ofh or in AU depending on options)
nsearchstep int No. of integer timesteps between sink search
rho search logical Calculate density for selecting sink candidates
potmin search logical Only consider particles at potential minimum
hill sphere search logical Hill spheres of sinks must not overlap
energy search logical Only create sinks from bound objects
thermal search logical Only create sinks from thermally bound objects
div v search logical Only create sinks from converging objects
div a search logical Do not create sinks if particles are accelerating apart
energy accrete logical Only accrete bound particles
alpha ss PR Sunyaev-Shakura viscosity parameter
smooth accrete frac PR Fraction of mass for instant accretion
smooth accrete dt PR Timestep fraction for instant accretion
f accretion PR Fraction of accretion energy radiated as luminosity

17

Variable Type Description
feedback tdelay PR Time delay between sink formation and feedback
feedback minmass PR
rho remove logical Remove particles below density threshold?
energy remove logical Remove unbound particles from system?
rad remove logical Remove distant particles?
rholost PR Density removal threshold
rad lost PR Distance removal threshold
npec int No. of Predict-correct-evaluate iterations
nbody frac PR Fraction of mass accreted before switching to N-body
ptemp0 PR Disc temperature atr = 1 AU from star (K)
temp inf PR Disc temperature at infinity (K)
ptemp r0 PR Temperature softening radius (≪ 1 AU)
ptemp q PR Temperature power law index
fcolumn PR Column polytrope factor
nionallstep int Integer steps inbetween HEALPix walk
f1 PR Integration step accuracy variable
f2 PR HEALPix resolution factor
f3 PR Temperature smoothing parameter
f4 PR Density interpolation parameter
Tneut PR Temperarure of neutral gas
Tion PR Temperature of ionized gas
Xfrac PR Fraction of hydrogen
mu ion PR Mean gas particle mass for ionisied gas
a star PR Recombination coefficient
N LyC PR No. of ionizing photons per second
rstatic PR(1:3) Location of single static ionizing source
lmax hp PR Maximum allowed number of HEALPix levels
M loss PR Wind mass loss rate from source
v wind PR Wind velocity from star
comp frac PR ..
turb T PR ..
turb Ndt PR ..
turb min PR(1:3) ..
turb max PR(1:3) ..

18

3 Additional physics modules

SEREN contains various additional physics modules which can be activated/deactivated in the Makefile (Section
2.4) and are controlled by various input parameters (Section2.6).

3.1 Sink particles

Sink particles are used to approximate the formation of bound protostars, or proto-binaries, without following the
time-consuming evolution of the protostar to stellar densities. SEREN contains two different implementations
of sink particles; a variation of the original Bate, Bonnell& Price (1995) sinks (described in the SEREN paper;
Hubber et al. 2011), and an improved algorithm as described by Hubber, Walch & Whitworth (2013).

3.1.1 Formation criteria

A number of sink formation criteria are available to select in the parameters file.

• rho search : Form a sink if an SPH particle exceeds the sink density,rhosink.

• potmin search : Form a sink if it lies at a local potential minima

• hill sphere search : Form a sink if an SPH particles’ Hill sphere does not overlapwith existing sinks Hill
spheres.

• energy search : Form a sink if the total mechanical energy (kinetic+ gravitational) of a particle plus its
neighbours is negative

• thermal search : Form a sink if the thermal energy of a particle plus its neighbours is less than the
gravitational potential energy.

• div v search : Form a sink if the velocity divergence of a particle is negative (i.e. local contraction)

• div a search : Form a sink if the acceleration divergene of a particle is negative (i.e. no strong tidal forces).

More details of all sink criteria in SEREN are discussed in Hubber et al. (2011) and Hubber, Walch & Whitworth
(2013).

3.1.2 Basic sink accretion

We have implemented the sink algorithm described by Hubber et al. (2011), which is itself a variation of the
original sink particle algorithm described by Bate, Bonnell & Price (1995). These sinks can be activated by
selecting

SINKS= SIMPLE

in the Makefile. In this algorithm, sink particles readily accrete all SPH particles that enter the sink accretion
radius. If theenergy accrete parameter is.true., then a particle is only accreted if it is gravitationally bound to
the sink particle (i.e. kinetic energy is less than the gravitational potential energy; thermal energy is ignored). If
energy accrete is set to.false., then all particles that enter the sink are accreted.

3.1.3 Sinks with smooth accretion

The improved sink accretion can be activated by selecting

SINKS= SMOOTH ACC

in the Makefile. An extra feature, where angular momentum is ’fed-back’ into the surrounding gas, can be acti-
vated by selecting

19

SINK ANG MOM = 1

SEREN contains a number of parameters that control the smooth accretion.

• alpha ss : Shakura-Sunyaev alpha parameter for disc accretion and controlling the anglar momentum
feedback rate.

• smooth accrete frac : Fraction of original particles mass where the particle is wholly accreted (to prevent
very small mass particles from existing in the simulation).

• smooth accrete dt : If particle timestep falls lower thansmooth accrete dt times the sink orbital period
(the orbital period at the sink boundary), then the particleis wholly accreted (to prevent extremely smooth
timestep particles from existing inside the sink).

3.2 Radiative cooling approximation

To be written

3.3 UV photoionising radiation

To be written

3.4 Stellar wind

To be written

20

4 Generating initial conditions

SEREN contains a large number of small programs which can be used to generate initial conditions to run sim-
ulations. These programs are contained in the sub-directory /seren/ic and can be compiled. To compile any
initial conditions program of some nameic name, simply type

make ic name

Some of the initial conditions programs require their own separate parameters file, a template of which can be
found in theseren/datafiles sub-directory. These parameters files must be copied into the main seren run direc-
tory in order to be accessed by the initial conditions program. To run the initial conditions program, type

./ic name

4.1 ic BB

ic BB sets-up the Boss-Bodenheimer test (Boss & Bodenheimer 1979), i.e. a uniform density sphere with an
azimuthal density perturbation in solid-body rotation. Program reads in a unifrom density sphere of unit radius
(centred at the origin), scales to the required density and radius, and then adds the azimuthal perturbation and a
solid-body velocity field. The original Boss-Bodenheimer test considered simply an isothermal EOS, but many
subsequent studies have used barotropic and other EOSs. Parameters read in from fileBBparams.dat.

Required Makefile options :

• NDIM = 3

• SPH= STANDARD/GRAD H SPH

• HYDRO = 1

• GRAVITY = KS

• DIMENSIONLESS= 0

Variable Type Description
in file char(256) Input filename (file containing uniform density sphere of

unit radius)
in file form char(256) Input file format
out file char(256) Output filename
out file form char(256) Output file format
mass PR Mass of cloud
munit char(256) Mass unit
rcloud PR Radius of cloud
runit char(256) Length unit
tempcloud PR Temperature of cloud
angvel PR Angular velocity of cloud
angvelunit char(256) Angular velocity unit
mpert integer Order of azimuthal perturbation (usually mpert=2)
amp PR Amplitude of density perturbation (usually 0.1 or 0.5)

21

4.2 ic binary

ic binary sets up a binary system from two polytropes (or other self-gravitating structures) read in from files.
Parameters read in from filebinaryparams.dat.

Required Makefile options :

• NDIM = 3

• HYDRO = 1

• DIMENSIONLESS= 1

Variable Type Description
in file1 char(256) Input filename 1
in file2 char(256) Input filename 2
in file form1 char(256) Input file 1 format
in file form2 char(256) Input file 2 format
out file char(256) Output filename
out file form char(256) Output file format
abin PR Separation (semi-major axis) of binary
ecc PR Eccentricity of binary
corot logical Are stars co-rotating with binary orbit?

4.3 ic core

ic core creates a spherically symmetric density distribution for any given density function (as a function of radial
distance). Currently only contains the distribution for a plummer-like density profile and a radial power-law
density function. Requires the params filecore.dat.

Required Makefile options :

• NDIM = 3

• HYDRO = 1

• SELF GRAVITY = KS

• DIMENSIONLESS= 0

22

4.4 ic jeans

ic jeans sets-up the Jeans instability test (Hubber et al. 2006) which tests the ability of SEREN to resolve the
Jeans gravitational instability. Program reads in a relaxed unit cube (with the cube placed in positive octant) and
stretches the particle distribution to produce a 1-D sinusoidal density perurbation. Currently reads in parameters
from the command line rather than via a separate parameters file.

Required Makefile options :

• NDIM = 3

• PERIODIC= 1

• PERIODICX = 1

• PERIODICY = 1

• PERIODICZ = 1

• SPH= STANDARD/GRAD H SPH

• HYDRO = 1

• GRAVITY = KS

• EWALD = 1

• DIMENSIONLESS= 1

Variable Type Description
in file char(256) Input filename (File containing unit-uniform density

sphere)
in file form char(256) Input file format
out file char(256) Output filename
out file form char(256) Output file format
npert int No. of wavelengths
amp PR Amplitude of sinuosoidal perturbation

23

4.5 ic KH

ic KH creates the initial conditions for the Kelvin-Helmholtz instability test. RequiresKHparams.dat file.

4.6 ic lattice cube

ic lattice cube creates a cubic-lattice distribution of particles with side-lengthlength andppd particles in each
dimension. Therefore the total number of particles in the lattice isppdNDIM . In 1-D, the program produces a
uniformly-spaced line of particles, in 2-D a square-grid ofparticles, and in 3-D a cubic lattice. The lattice extends
from 0 tolength in each dimension. Parameters are currently read in from thecommand-line.

Required Makefile options :

• NDIM = 1/2/3

• DIMENSIONLESS= 1

Variable Type Description
ppd integer Particles per dimension in lattice (Must be a positive in-

teger)
length PR Total length of lattice edge (For a unit cube, length= 1)
out file char(256) Output filename
out file form char(256) Output file format

4.7 ic NTSI

ic NTSI generates the initial conditions for the non-linear thin-shell instability (NTSI) test. Requires the param-
eters fileNTSIparams.dat.

4.8 ic plummer

ic plummer generates the a Plummer sphere, either with stars, gas, cdm particles, or a mixture of the three.
Requires the parameters fileplummer.dat.

24

4.9 ic polytrope

Creates a finite polytrope/infinite polytrope with surrounding medium from a uniform-density sphere of unit
radius centred at the origin. For an isothermal polytrope (e.g. a Bonner-Ebert sphere), the inputted sphere is
divided into 4 regions; the polytrope (self-gravitating gas), the gas envelope (self-gravitating gas), the surround-
ing inter-cloud medium (non-self gravitating gas) and a static outer-wall (boundary particles). The outer-three
regions are optional depending on the parameters selected in polytrope.dat.

Required Makefile options :

• NDIM = 3

• THERMAL = ISOTHERMAL/POLYTROPIC/BAROTROPIC

• HYDRO = 1

• SELF GRAVITY = KS

• DIMENSIONLESS= 0

Variable Type Description
in file char(256) Input filename (File containing unit-uniform density

sphere)
in file form char(256) Input file format
out file char(256) Output filename
out file form char(256) Output file format
isocloud logical Flag true if isothermal polytrope (if true, gaseos must

equal isothermal)
etapoly PR Polytropic index
xi bound PR Dimensionless cloud boundary (6.35 for a mariginally

stable Bonner-Ebert sphere)
mpoly PR Mass of cloud
munit char(256) Mass unit (e.g.m sun)
rho0 PR Central density of cloud (Only ifmflag = rho0)
rhounit char(256) Density unit
mflag char(20) Set the total mass (mass) or central density (rho0) of the

polytrope
Kpoly PR Polytropic constant, ora2

0 for isothermal polytrope
vunit char(256) Velocity unit (unit of isothermal speed of gas if isother-

mal polytrope is selected)
menvelope PR Mass of gas envelope around polytrope (distributed uni-

formly around the polytrope with the same density and
pressure as the polytrope at its surface)

micm PR Mass of IcM envelope which surrounds gas (distributed
uniformly around the polytrope/gas envelope with the
same density and pressure as the polytrope at its surface)

hboundary PR Size of static boundary zone (in units of the mean
smoothing length; should be 3 or 4 to ensure no edge
effects occur for interior gas particles)

25

4.10 ic radtest

ic radtest creates the initial conditions to perform the Masunaga-Inutsuka test (Masunaga & Inutsuka ????)
using the radiative cooling method of Stamatellos et al. (2007; RAD WS option).

4.11 ic random cube

ic random cube creates a line, sheet or cube (depending on the dimensionality) of randomlly-placed parti-
cles. Distributes particles between 0 andlength in each dimension. Parameters are currently read in from the
command-line rather than a separate parameters file.

Required Makefile options :

• NDIM = 1/2/3

• DIMENSIONLESS= 1

Variable Type Description
ptot int Total number of particles
length PR Total length of lattice edge
out file char(256) Output filename
out file form char(256) Output file format

4.12 ic replicate cubes

Loads in a unit cube (from 0 to 1 in each dimension) and createsnrepeat periodic replicas in each dimension.
The larger cube is then scaled to a unit cube itself. Used to create large-relaxed uniform density fields from
smaller files. Parameters are read in from the command-line rather than a separate parameters file.

Required Makefile options :

• NDIM = 1/2/3

• DIMENSIONLESS= 1

Variable Type Description
in file char(256) Input filename (File containing unit cube)
in file form char(256) Input file format
nrepeat int No. of replicas in each dimension (must be a positive

integer)
out file char(256) Output filename
out file form char(256) Output file format

26

4.13 ic RT

Generates initial conditions for Rayleigh-Taylor instability test. Prepares two layers of gas with different densities
in hydrostatuc balance on top of each other with a sinusoidaldensity perturbation to seed the instability. A cubic
grid of particles is generated rather than reading in a file. Parameters are read in from the fileRTparams.dat.

Required Makefile options :

• NDIM = 2

• PERIODIC= 1

• PERIODICX = 1

• PERIODICY = 1

• ENERGY EQN= 1

• HYDRO = 1

• SELF GRAVITY = 0

• DIMENSIONLESS= 1

Variable Type Description
out file char(256) Output filename
out file form char(256) Output file format
pertmode char(20) Perturbation mode (1=velocity, 2=boundary)
ppd1,ppd2 int Particles per dimension
nlayers1,nlayers2 int No. of layers of particles (in y-direction)
rho1,rho2 PR Densities
Press1 PR Pressure
accgrav PR External y-gravitational acceleration
gamma PR Ratio of specific heats
xsize PR x..
amp PR Amplitude of y-velocity perturbation
lambda PR Wavelength of perturbation
pp gather PR Required no. of SPH neighbours
hmin PR Minimum smoothing length
h fac PR ’grad-h’ SPH factor

27

4.14 ic sedov

Creates initial conditions for Sedov blast-wave test from inputted unit-uniform density sphere. Requires in-
putting a unit-sphere. A ’point-explosion’ is added by giving the central particle and its neighbours a total energy
of unity (weighted by the kernel from the centre, while the rest of the particles equally share an energy of total
10−6. Parameters are read in from the filesedovparams.dat.

Required Makefile options :

• NDIM = 3

• PERIODIC= 0

• PERIODICX = 0

• PERIODICY = 0

• PERIODICZ = 0

• HYDRO = 1

• ENERGY EQN= 1

• SELF GRAVITY = 0

• DIMENSIONLESS= 1

Variable Type Description
in file char(256) Input filename (File contains unit sphere)
in file form char(256) Input file format
out file char(256) Output filename
out file form char(256) Output file format
rho0 PR Density of sphere
radius char(20) Radius of sphere after rescaling

28

4.15 ic shocktube

Generates initial conditions for general 2-part shocktubetests (e.g. Sod 1978). Reads in two relaxed cubic den-
sity distribution, creates periodic replicas in the x-direction to elongate the shocktube and sets particle properties
to create the desired test problem. Parameters are read in from the filesodparams.dat.

Required Makefile options :

• NDIM = 1/2/3

• PERIODIC= 1

• PERIODICX = 1

• PERIODICY = 1

• PERIODICZ = 1

• HYDRO = 1

• ARTIFICIAL VISCOSITY= AB/MON97

• SELF GRAVITY = 0

• DIMENSIONLESS= 1

Variable Type Description
out file char(256) Output filename
out file form char(256) Output file format
file1 char(256) Input filename
file1 form char(256) Input file format
file2 char(256) Input filename
file2 form char(256) Input file format
p1, p2 int, int No. of particles in file 1, 2
n1, n2 int, int No. of replicas for LHS/RHS
rho1, rho2 PR, PR Density of LHS/RHS layers
Press1, Press2 PR, PR Pressure for LHS/RHS
x1, x2 PR, PR x
y1, y2 PR, PR y
z1, z2 PR, PR z
v1(1), v2(1) PR, PR vx
v1(2), v2(2) PR, PR vy
v1(3), v2(3) PR, PR vz
B1(1), B2(1) PR, PR Bx
B1(2), B2(2) PR, PR By
B1(3), B2(3) PR, PR Bz

29

4.16 ic sphere

Creates a spherical distribution of particles of unit radius and centred on the origin containing an exact number of
particles. First, loads in a unit cube and then iterates to find the radius that contains the correct number of parti-
cles. Finally the spherical cut is rescaled and placed at theorigin. Will fail to find the required number of particles
if the inputted unit cube has too few particles. Sphere parameters are read in from the filesphereparams.dat.

Required Makefile options :

• NDIM = 3

• PERIODIC= 0

• PERIODICX = 0

• PERIODICY = 0

• PERIODICZ = 0

• DIMENSIONLESS= 1

Variable Type Description
in file char(256) Input filename
in file form char(256) Input file format
out file char(256) Output filename
out file form char(256) Output file format
rcloud PR Required radius of sphere
nwant int Required number of particles in sphere

30

4.17 ic vel pert.F90

Adds a variety of perturbations to any inputted (spherical)density distribution. Requires parameters filevelpert.dat.

Required Makefile options :

• NDIM = 3

• DIMENSIONLESS= 0

Variable Type Description
in file char(256) Input filename
in file form char(256) Input file format
out file char(256) Output filename
out file form char(256) Output file format
densmode char(20) Mode of density perturbation (not used yet)
amp PR Amplitude of azimuthal perturbation (not used yet)
mpert integer Azimuthal perturbation mode (not used yet)
fenhance PR Density enhancement factor (increase all particle masses

by fenhance; used to make stable polytropes unstable)
vpower PR Turbulent velocity power spectrum index
eturb PR Ratio of turbulent to gravitational energy
ngrid integer No. of grid points for vel field (determines resolution of

velocity field; must be a multiple of 2)
iseed1 integer Random No. seed 1
iseed2 integer Random No. seed 2
velradmode char(20) Radial velocity mode (energy, dvdr or none)
dvdr PR Radial velocity gradient
erad PR Ratio of radial kinetic to gravitational energy
velrotmode char(20) Rotational mode (energy, angmom, angvel or none)
angmom PR Total angular momentum (if velrotmode= angmom)
angmomunit char(256) angular momentum unit
angpower PR Angular velocity power law (angular velocity is a func-

tion of axial distance,ω ∝ rangpower)
angvel PR Angular velocity
angvelunit char(256) Angular velocity unit
erot PR Ratio of rotational kinetic energy to gravitational energy

31

5 Running the SEREN bash test script

SEREN contains a bash script designed to run batches of testsof SEREN for development and debugging pur-
poses. The script, and all related files for running the tests, is located in the/seren/testsuite sub-directory. In
thetestsuite directory, there is thetest-seren.sh bash script and further sub-directories which contain filesused
by test-seren.sh when performing batch tests.

A test is launched from the command line as in the following example :

./test-seren.sh -gfortran -openmp -debug1 -test POLYRAD1-AB

The current list of command line options for the script are (TBD) :
The list of tests currently set-up for use with the test script are (TBD) :

Table 5: List of automated tests in SEREN

Test name Description
ADSOD-3D Classic SOD test of two initially static columns of gas in contact which

then interact forming a shock. Gas is non-radiative so the energy equa-
tion is solved and no energy escapes the system (i.e. it is adiabatic).

BURRAU1 Burrau 3-body problem (Burrau 19??); also known as the Pythagorean
problem. Three stars with masses 3, 4 and 5 placed on the corners of a
right-angled triangle all with zero-velocity and allowed to evolve until
the system dissolves into a single star and a binary star.

COL-3D Two columns of uniform density gas collide supersonically to produce
a dense shocked layer.

EIGEN1 Gravitational force accuracy using eigenvalue MAC
FIGURE8 Figure-8 3-body test for N-body integrator (????).
FREEFALL1 Free-fall collapse test.
GEO1 Gravitational force accuracy using geometric MAC
ISOFREEFALL1 Isothermal free-fall collapse test
KH-2D 2D Kelvin-Helmholtz instability test
NTSI-2D 2D Non-linear thin shell instability test
POLYRAD1 Masunaga & Inutsuka (????) collapse test
SEDOV-3D Sedov blast wave test (Sedov 19??).
SHEAR-2D 2-D shearing layer test.
SIT1-AB A variation of the Boss-Bodenheimer (1979) test. A uniform-density

spherical cloud is given a sinusoidal azimuthal density perturbation and
a solid-body rotationaal velocity field such that it collapses to form a
dense filament with a star on each end and eventually bound binary
system.

STATPOLY1 Relax a polytropic gas to hydrostatic balance.

32

6 Coding style of SEREN

6.1 Design philosophy of SEREN

SEREN is a highly modular code written in Fortran 90 which comprises of several layers of subroutine calls
in performing basic simulations. Each subroutine is designed to perform one single task. If a long procedure
consists of a number of independent steps (i.e. not using thesame local variables), then it is broken down into
a sequence of smaller subroutines. Also, each.F90 file contains one single subroutine (with the exception of
sanitycheck.F90 which has two extra smaller subroutines for clarity).

For the benefit of anyone reading through the source code, or for those wishing to develop new routines, we
discuss here in detail some of the more important coding conventions that are used in SEREN. We do not discuss
the particular features of any one subroutine (since each routine is extensively commented), but focus on the style
used in most subroutines of SEREN.

6.2 Macros

SEREN uses C-like macros throughout the source code, both for the clarity (by reducing the number of lines)
and the efficiency and runtime speed of the code. Macros are strings (conventionally in upper case as in C) which
are substituted for some user-defined value or expression bythepre-processor, i.e. before the compiler generates
machine code from the source code. This can improve the runtime performance somewhat by removing common
variable references.

Macros are defined in two separate locations in SEREN. Some are defined in the Makefile (e.g.NDIM).
Most macros however are defined in the header file/headers/macros.h. In order to make use of the macros,
we must import the file/headers/macros.h into the subroutine by way of the pre-processor command#in-
clude “macros.h”. The majority of macros in SEREN are straight-forward numerical substitutions of important
information, such as array sizes or physical constants.

6.2.1 Function-like macros

Function-like macros are macros that look like functions/subroutines by their syntax, but work by the substitution
of a string of commands, rather than calling a subroutine elsewhere in memory (thereby eliminating the extra
cost associated with a subroutine call). In SEREN, we use function-like macros as a compact and concise way
of writing debugging information to the screen when in debugmode. For example, we define thedebug1 macro
in the following way.

#ifdef DEBUG1
#define debug1(x) write (6,*) x

#else
#define debug1(x)

#endif

If we wished to write debug information to screen (e.g. in order to indicate the current location in the code),
we could write in long-hand:

#ifdef DEBUG1
write(6,*) “Calculating smoothing lengths”

#endif

In SEREN, we can instead write the short-hand form

debug1(“Calculating smoothing lengths”)

If the DEBUG1 compiler flag is defined in the Makefile, then thedebug1() macro is replaced withwrite(6,*)
“Calculating smoothing lengths”. If DEBUG1 is not defined in the Makefile, thendebug1() macro is replaced
with nothing. For subroutines (particularly those in development) that contain many debugging statements, these

33

macros allow us to write code with more clarity and fewer lines. We use four levels of debug macros, which are
all defined in/headers/macros.h.

6.3 Real variable types

Rather than hard-wiring in the precision of real variables in the source code, SEREN allows the user to specify
the precision through one of the options in the Makefile (PRECISION). The precision is controlled by several
lines in the moduledefinitions (in modules.F90) :

integer, parameter :: DP = selected real kind(p=15)
integer, parameter :: SP = selected real kind(p=6)

#if defined(DOUBLE PRECISION)
integer, parameter :: PR = DP

#else
integer, parameter :: PR = SP

#endif

The first two lines use the intrinsicselected real kind function to define the precision independent of the pro-
cessor type (i.e. whether it is 32-bit or 64-bit). The conditional compilation section then defines the precision
used in the code (i.e.PR) depending on the option selected in the Makefile. Any real variable in the code must
be defined in the following way, e.g.

real(kind=PR) :: drmag

If we wish to declare a double or single precision variable irrespective of the general precision (e.g. any sum-
mation variables in/main/diagnostics.F90 always use double precision), then we useDP or SP in place of
PR.

If we wish to convert a variable to a real variable of requiredprecision, we must specify the kind (i.e.PR,
DP or SP) as a second parameter in thereal function, e.g. to convert the integer variablei to a real variable of
precisionPR, we write

ireal = real(i,PR)

6.4 Particle data arrays

SEREN mainly uses simple arrays to store particle data. However, data which are important in gravity calcula-
tions are stored differently. The position, mass and smoothing length information are grouped together in a sin-
gle array,parray(1:NDIM+2,1:ptot). The position of particlep is stored in the elementsparray(1:NDIM,p),
the mass is stored in the elementparray(MASS,p), and the smoothing length is stored in the elementpar-
ray(SMOO,p) (See/seren/headers/macros.h for macro definitions).

6.5 Particle types

SEREN accomodates the following particle types:

• Static boundary particles (pboundary)

• Non-gravitating inter-cloud medium (IcM) particles (picm)

• Self-gravitating gas particles (pgas)

• Dark-matter particles (pcdm)

• Dust particles (pdust)

• Ion particles (pion)

34

• Sink particles (stot)

where the variable names indicate the number of each particle type present in the simulation. All data for the
first three (boundary, IcM and self-gravitating gas particles) are stored in the main arrays, which containptot
elements whereptot = pboundary + picm + pgas + pcdm + pdust + pdust. The data is stored such that the
first pboundary elements contain the information for boundary particles, the nextpicm elements contain the
information for the IcM particles, and the nextpgas elements contain the information for the gas particles, and
the finalpcdm elements contain the information for the cdm particles. Although provision has been made for
their use in future versions of SEREN, dust and ion particlesare not currently active.

The sink particles are stored in separate data structures, since they can have many additional properties that
are not possessed by normal SPH particles and thus require their own data structures. We use Fortrantypes
(equivalent to C structures) to hold sink data. The main array that contains each sink structure is calledsinkdata
and elements can be accessed using the Fortran % notation (e.g. the mass element of sinks is sinkdata(s)%m).

35

7 Units

Dimensionless units are used in numerical simulations so that all values are as close to unity as possible, to avoid
having very large or very small values that may result in significant rounding errors. SEREN contains a flexible
system of units which allows the user to select from a wide range of commonly used astrophysical units, or
easily construct their own set of units. All variables related to units and scaling are determined inunits.F90.
Each quantity,X, has four scaling variables associated with it:Xunit, Xscale, X SI andXcgs.

• Xunit is a string which contains the name of the unit that the quantity X is measured in; e.g. for length
units, runit may take the valuespc, au, r sun, etc. All Xunit strings are defined in the parameters file.
The available options in version 1.0 of the code are given in the following table:

• Xscale is a real variable that allows us to convert between physicaland code units. In order to convert any
variable from physical to code units (where the physical variable is measured in units specified byXunit),
then we divide the physical unit byXscale. Conversely, to convert any code variable to physical units, we
multiply the code value byXscale

• X SI is a real variable that allows us to convert between the unit specified byXunit and S.I. units. In order
to convert fromXunit to S.I. units, we multiply the variable (in units ofXunit) by X SI.

• Xcgs is a real variable that allows us to convert between the unit specified byXunit and cgs units. In a
similar way to converting to S.I. units, in order to convert fromXunit to cgs units, we multiply the variable
(in units ofXunit) by Xcgs.

In a self-gravitating code like SEREN, we choose a set of units so as to make the gravitational constantG
equal to unity. We are free to choose the values ofrscale andmscale. The value oftscale is then set to ensureG
= 1 in the new system of units. Therefore, the value oftscale can be obtained using

tscale × t S I =
(rscale × r S I)3/2

√
G × mscale × m S I

(1)

whereG is the gravitational constant in c.g.s. units, i.e.G = 6.67× 10−8 cm3 g−1 s−2. All other scaling factors
can be determined in a similar way using:

vscale × v S I =
rscale × r S I
tscale × t S I

(2)

ascale × a S I =
rscale × r S I

(tscale × t S I)2
(3)

rhoscale × rho S I =
mscale × m S I

(rscale × r S I)3
(4)

sigmascale × sigma S I =
mscale × m S I

(rscale × r S I)2
(5)

Pscale × P S I =
mscale × m S I

rscale × r S I × (tscale × t S I)2
(6)

f scale × f S I =
mscale × m S I × rscale × r S I

(tscale × t S I)2
(7)

Escale × E S I =
mscale × m S I × rscale × r S I

(tscale × t S I)2
(8)

momscale × mom S I =
mscale × m S I × rscale × r S I

tscale × t S I
(9)

angmomscale × angmom S I =
mscale × m S I × rscale2 × r S I2

tscale × t S I
(10)

36

dmdtscale × dmdt S I =
mscale × m S I
tscale × t S I

(11)

Lscale × L S I =
Escale × E S I
tscale × t S I

(12)

kappascale × kappa S I =
(rscale × r S I)2

mscale × m S I
(13)

In MHD, we must also introduce the unit of charge and associated units such as magnetic field and current
density. As with gravitational problems, we can scale the units of the magnetic field such that the permiability of
free space,µ0, is equal to unity.to be completed.

Jscale × J S I =
Qscale × Q S I

tscale × t S I × rscale2 × r S I2
(14)

Table 6: List of unit options in SEREN

Xunit Options Description
runit mpc megaparsecs

kpc kiloparsecs
pc parsecs
au astronomical units
r sun solar radii
r earth Earth radii
km kilometres
m metres
cm centimetres

munit m sun solar masses
m jup Jupiter masses
m earth Earth masses
kg kilograms
g grams

tunit gyr gigayears
myr megayears
yr years
day days
sec seconds

vunit km s kilometres per second
au yr astronomical units per year
m s metres per second
cm s centimetres per second

aunit km s2 kilometres per second squared
au yr2 astronomical units per year squared
m s2 metres per second squared
cm s2 centimetres per second squared

rhounit m sun pc3 solar masses per cubic parsec
g cm3 grams per cubic centimetre

sigmaunit m sun pc2 solar masses per parsec squared
g cm2 grams per centimetre squared

Punit Pa pascals
bar bars

37

Xunit Options Description
g cms2 grams per centimetre per second squared

funit N newtons
dyn dynes

Eunit J joules
erg ergs
GJ gigajoules

momunit m sunkm s solar masses kilometres per second
m sunau yr solar masses astronomical units per year
kgm s kilomgram metres per second

angmomunit kgm2 s kilogram metres squared per second
gcm2 s gram centimetres squared per second

angvelunit rad s radians per second
dmdtunit m sun myr solar masses per megayear

m sun yr solar masses per year
kg s kilograms per second
g s grams per second

Lunit L sun solar luminosities
kappaunit m2 kg metre squared per kilogram

cm g centimetre per gram
Bunit tesla tesla

gauss gauss
Qunit C coulombs
Junit C m2 s coulombs per second per metre squared
uunit J kg Joules per kilogram

erg g ergs per gramme
dudtunit J kg s Joules per kilogram per second
tempunit K kelvin

38

8 File formats

SEREN 1.5.1 uses both the DRAGON file format and the native SEREN file format for reading in initial con-
ditions and writing out snapshots. Unlike in DRAGON, the format of the initial conditions file need not be the
same as the format of the output snapshots. This is controlled by the two input parameters in the parameters file,
in file form andout file form. The possible values for these parameters are :

• ascii - Simple (ASCII) column format

• dragon form - Formatted (ASCII) DRAGON snapshot files

• dragon unform - Unformatted (binary) DRAGON snapshot files

• seren form - Formatted (ASCII) SEREN snapshot files

• seren unform - Unformatted (binary) SEREN snapshot files (Not yet working)

As well as standard snapshot files, SEREN can also produce a simple ASCII output which is useful for
debugging purposes. This can be enabled by using the -DDEBUGPLOT DATA compiler flag.

8.1 ASCII format

Seren can use a simple flexible ASCII column-format. The datais stored in columns with widthNCOLUMNS and
lengthN (whereN is the total number of particles of all types). The data descriptor of each column is contained in
a file labelledasciicolumns.dat (a template copy should be stored in the/datafiles sub-directory). The possible
data descriptors currently enabled in SEREN are

• ptype - Particle type. The following particle types are availablein SEREN :

– -1 : sink/star

– 0 : dead particle

– 1 : gas

– 6 : boundary particle

– 9 : ICM particle

– 10 : cold-dark matter particle

• x or y or z - Cartesian position coordinates

• vx or vy or vz - Cartesian velocity components

• h - Smoothing length

• m - Mass

• u - Specific internal energy

• temp - Temperature (in K)

The only constraint on the column order is that the first column must beptype. Thereafter, the remaining
columns can be arranged in any order. In the file containing the data, the data must match up to the chosen
columns correctly, or the particle data will be read-in incorrectly. All physical quantities are measured in the
units defined in theparams.dat file. Due to the simplicity of this format, it contains no extra information (e.g.
time, gamma, etc.), and therefore is perhaps not of long-term practical use, but should be suitable for those who
wish to generate their own initial conditions from other programmes without learning all the complications of
the other available formats.

8.2 Dragon format

To be written

39

8.3 Seren format

To be written

9 Structure of code

9.1 Basic directory structure

Subroutines in SEREN are not all contained in a single sourcedirectory, but are grouped in several sub-directories
depending on their purpose. In version 1.0, the following sub-directories exist :

• /seren/src/advance - integration routines

• /seren/src/analyse - analysis routines

• /seren/src/BHtree - Barnes-Hut octal tree subroutines

• /seren/src/binarytree - Binary-number tree subroutines

• /seren/datafiles - Contains initial conditions parameters files

• /seren/docs - Contains latest version of the userguide

• /seren/src/gravity - subroutines that calculate gravitational forces

• /seren/src/headers - macro and modules files

• /seren/src/healpix - HEALPix ioniaztion routines

• /seren/src/ic - programs to generate initial conditions for regularly used configurations (e.g. relaxed
rectangular cubes, spheres)

• /seren/src/io - subroutines that read and write files

• /seren/src/main - contains important and commonly used subroutines

• /seren/src/mhd - contains magneto-hydrodynamics routines

• /seren/src/nbody - N-body routines

• /seren/src/nbody sim - N-body simulation subroutines

• /seren/src/nbody sph sim - Hybrid N-body/SPH simulation routines

• /seren/src/radiation - contains radiation transfer subroutines

• /seren/src/setup - contains subroutines called during initialization of SEREN .

• /seren/src/sinks - subroutines that search for, create and advance sink particles.

• /seren/src/sorts - subroutines for sorting lists

• /seren/src/sph - subroutines that perform important SPH functions

• /seren/src/sph sim - SPH simulation routines (e.g. h-finding, neighbour searching)

• /seren/src/tests - test programs

• /seren/src/timestep - timestepping routines

• /seren/testsuite - bash script for running batch tests of seren

40

10 Variable conventions

In SEREN, the names of all commonly used local variables are kept as consistent as possible between different
subroutines. Here we list the names of all common local integer and real variables.

10.1 Integer variables

c Cell identifier
cc Child cell identifier
i Auxiliary counter (often used when looping over neighbour lists)
k Dimension counter
l Level counter (for BH tree and HEALPix)
p Particle identifier
pp Neighbour identifier
pp pot No. of potential neighbours (e.g. after a tree walk)
pp templist(1:pp limit) Temporary list of neighbour identifiers
pp tot Total number of neighbours for particle p
s Sink particle identifier
ss Secondary sink counter

10.2 Real variables
dr(1:NDIM) Relative position vector
drmag Distance
drsqd Distance squared
dr unit(1:NDIM) Unit position vector
hp Smoothing length of particle p
hpp Smoothing length of neighbouring particle pp
mp Mass of particle p
mpp Mass of neighbouring particle pp
ms Mass of sink particle s
invdrmag Reciprocal of distance, i.e. 1/ drmag
invdrsqd Reciprocal of distance squared, i.e. 1/ drsqd
invhp Reciprical of smoothing length of p, i.e. 1/ hp
invhpp Reciprical of smoothing length of pp, i.e. 1/ hpp
qc(1:NQUAD) Quadrupole moment tensor for cell c
rp(1:NDIM) Position of particle p
rpp(1:NDIM) Position of neighbouring particle pp
rs(1:NDIM) Position of sink particle s
sound p Sound speed of particle p
sound pp Sound speed of neighbouring particle pp
up Specific internal energy of particle p
upp Specific internal energy of neighbouring particle pp
vp(1:NDIM) Velocity of particle p
vpp(1:NDIM) Velocity of neighbouring particle pp
vs(1:NDIM) Velocity of sink particle s

41

	Overview
	Using SEREN
	Obtaining SEREN via github
	Updating Seren and managing conflicts on the command line
	Other important commands

	Compiling and running SEREN
	Command-line arguments
	Restarting simulations

	SEREN-MPI
	Compiling and running SEREN-MPI
	Combining data snapshots with MPI

	Makefile
	Debug flags
	Parameter file

	Additional physics modules
	Sink particles
	Formation criteria
	Basic sink accretion
	Sinks with smooth accretion

	Radiative cooling approximation
	UV photoionising radiation
	Stellar wind

	Generating initial conditions
	ic_BB
	ic_binary
	ic_core
	ic_jeans
	ic_KH
	ic_lattice_cube
	ic_NTSI
	ic_plummer
	ic_polytrope
	ic_radtest
	ic_random_cube
	ic_replicate_cubes
	ic_RT
	ic_sedov
	ic_shocktube
	ic_sphere
	ic_vel_pert.F90

	Running the SEREN bash test script
	Coding style of SEREN
	Design philosophy of SEREN
	Macros
	Function-like macros

	Real variable types
	Particle data arrays
	Particle types

	Units
	File formats
	ASCII format
	Dragon format
	Seren format

	Structure of code
	Basic directory structure

	Variable conventions
	Integer variables
	Real variables

