Skip to content
Slides for a presentation at University of Melbourne
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
figure
img
index_files
lib
LICENSE
README.md
cluster_average.html
cluster_ward.html
code.R
dend_util.R
index.Rmd
index.html
multiDA.html
myremark.css
remark-latest.min.js
s5.html

README.md

University of Melbourne, Economics

This repo contains slides for a talk in the Economics Department, University of Melbourne, Sep 12, 2018.

Title: Visualising high-dimensional spaces with application to econometric models

Abstract: The grand tour, guided tour and manual tour are used to sample projections of high-dimensional space. These are excellent for understanding the overall shape of structures, and differences between groups, in the space. The grand tour algorithm consists of a sequence of projections of the object space R^p onto a viewing space R^d. Often d=2, i.e., the object is mapped onto planes, but technically d might be 1, 2, 3, or larger. To be precise, denote G(d, p) to be the Grassmann manifold of d-dimensional planes in R^p. Defining it as G(d, p), ensures that within-plane rotation is removed from the sequence of views. There is new software to conduct tours in R.

This talk discusses using the tour to examine multivariate distributions, dimension reductions, and cognostics describing high-dimensional time series.

You can’t perform that action at this time.