From 78ba601bd3508f7136b42e54f4cadd2f105ec3af Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 10:46:06 -0500 Subject: [PATCH 01/14] initial commit --- .codecov.yml | 14 + .codespell/ignore_lines.txt | 2 + .codespell/ignore_words.txt | 8 + .flake8 | 13 + .github/ISSUE_TEMPLATE/bug_feature.md | 16 + .github/ISSUE_TEMPLATE/release_checklist.md | 46 ++ .../pull_request_template.md | 15 + .../workflows/build-wheel-release-upload.yml | 18 + .github/workflows/check-news-item.yml | 12 + .../matrix-and-codecov-on-merge-to-main.yml | 21 + .github/workflows/publish-docs-on-release.yml | 12 + .github/workflows/tests-on-pr.yml | 15 + .gitignore | 93 ++++ .isort.cfg | 5 + .pre-commit-config.yaml | 66 +++ .readthedocs.yaml | 13 + AUTHORS.rst | 10 + CHANGELOG.rst | 5 + CODE-OF-CONDUCT.rst | 133 +++++ LICENSE.rst | 29 ++ MANIFEST.in | 12 + README.rst | 137 +++++ cookiecutter.json | 18 + docs/Makefile | 194 +++++++ docs/make.bat | 36 ++ docs/source/_static/.placeholder | 0 .../api/diffpy.cmipdf.example_package.rst | 31 ++ docs/source/api/diffpy.cmipdf.rst | 30 ++ docs/source/conf.py | 322 ++++++++++++ docs/source/getting-started.rst | 79 +++ docs/source/img/scikit-package-logo-text.png | Bin 0 -> 187608 bytes docs/source/index.rst | 56 ++ docs/source/license.rst | 38 ++ docs/source/release.rst | 5 + docs/source/snippets/example-table.rst | 28 + news/TEMPLATE.rst | 23 + pyproject.toml | 88 ++++ requirements/build.txt | 0 requirements/conda.txt | 1 + requirements/docs.txt | 5 + requirements/pip.txt | 1 + requirements/tests.txt | 6 + src/diffpy/__init__.py | 14 + src/diffpy/cmipdf/__init__.py | 24 + src/diffpy/cmipdf/basepdfgenerator.py | 332 ++++++++++++ src/diffpy/cmipdf/characteristicfunctions.py | 479 ++++++++++++++++++ src/diffpy/cmipdf/cmipdf_app.py | 33 ++ src/diffpy/cmipdf/debyepdfgenerator.py | 144 ++++++ src/diffpy/cmipdf/functions.py | 31 ++ src/diffpy/cmipdf/pdfcontribution.py | 352 +++++++++++++ src/diffpy/cmipdf/pdfgenerator.py | 95 ++++ src/diffpy/cmipdf/pdfparser.py | 258 ++++++++++ src/diffpy/cmipdf/version.py | 26 + tests/conftest.py | 19 + tests/test_functions.py | 40 ++ tests/test_version.py | 10 + 56 files changed, 3513 insertions(+) create mode 100644 .codecov.yml create mode 100644 .codespell/ignore_lines.txt create mode 100644 .codespell/ignore_words.txt create mode 100644 .flake8 create mode 100644 .github/ISSUE_TEMPLATE/bug_feature.md create mode 100644 .github/ISSUE_TEMPLATE/release_checklist.md create mode 100644 .github/PULL_REQUEST_TEMPLATE/pull_request_template.md create mode 100644 .github/workflows/build-wheel-release-upload.yml create mode 100644 .github/workflows/check-news-item.yml create mode 100644 .github/workflows/matrix-and-codecov-on-merge-to-main.yml create mode 100644 .github/workflows/publish-docs-on-release.yml create mode 100644 .github/workflows/tests-on-pr.yml create mode 100644 .gitignore create mode 100644 .isort.cfg create mode 100644 .pre-commit-config.yaml create mode 100644 .readthedocs.yaml create mode 100644 AUTHORS.rst create mode 100644 CHANGELOG.rst create mode 100644 CODE-OF-CONDUCT.rst create mode 100644 LICENSE.rst create mode 100644 MANIFEST.in create mode 100644 README.rst create mode 100644 cookiecutter.json create mode 100644 docs/Makefile create mode 100644 docs/make.bat create mode 100644 docs/source/_static/.placeholder create mode 100644 docs/source/api/diffpy.cmipdf.example_package.rst create mode 100644 docs/source/api/diffpy.cmipdf.rst create mode 100644 docs/source/conf.py create mode 100644 docs/source/getting-started.rst create mode 100644 docs/source/img/scikit-package-logo-text.png create mode 100644 docs/source/index.rst create mode 100644 docs/source/license.rst create mode 100644 docs/source/release.rst create mode 100644 docs/source/snippets/example-table.rst create mode 100644 news/TEMPLATE.rst create mode 100644 pyproject.toml create mode 100644 requirements/build.txt create mode 100644 requirements/conda.txt create mode 100644 requirements/docs.txt create mode 100644 requirements/pip.txt create mode 100644 requirements/tests.txt create mode 100644 src/diffpy/__init__.py create mode 100644 src/diffpy/cmipdf/__init__.py create mode 100644 src/diffpy/cmipdf/basepdfgenerator.py create mode 100644 src/diffpy/cmipdf/characteristicfunctions.py create mode 100644 src/diffpy/cmipdf/cmipdf_app.py create mode 100644 src/diffpy/cmipdf/debyepdfgenerator.py create mode 100644 src/diffpy/cmipdf/functions.py create mode 100644 src/diffpy/cmipdf/pdfcontribution.py create mode 100644 src/diffpy/cmipdf/pdfgenerator.py create mode 100644 src/diffpy/cmipdf/pdfparser.py create mode 100644 src/diffpy/cmipdf/version.py create mode 100644 tests/conftest.py create mode 100644 tests/test_functions.py create mode 100644 tests/test_version.py diff --git a/.codecov.yml b/.codecov.yml new file mode 100644 index 0000000..4af5eb2 --- /dev/null +++ b/.codecov.yml @@ -0,0 +1,14 @@ +coverage: + status: + project: # more options at https://docs.codecov.com/docs/commit-status + default: + target: auto # use the coverage from the base commit, fail if coverage is lower + threshold: 0% # allow the coverage to drop by + +comment: + layout: " diff, flags, files" + behavior: default + require_changes: false + require_base: false # [true :: must have a base report to post] + require_head: false # [true :: must have a head report to post] + hide_project_coverage: false # [true :: only show coverage on the git diff aka patch coverage] diff --git a/.codespell/ignore_lines.txt b/.codespell/ignore_lines.txt new file mode 100644 index 0000000..07fa7c8 --- /dev/null +++ b/.codespell/ignore_lines.txt @@ -0,0 +1,2 @@ +;; Please include filenames and explanations for each ignored line. +;; See https://docs.openverse.org/meta/codespell.html for docs. diff --git a/.codespell/ignore_words.txt b/.codespell/ignore_words.txt new file mode 100644 index 0000000..04b4fcf --- /dev/null +++ b/.codespell/ignore_words.txt @@ -0,0 +1,8 @@ +;; Please include explanations for each ignored word (lowercase). +;; See https://docs.openverse.org/meta/codespell.html for docs. + +;; abbreviation for "materials" often used in a journal title +mater + +;; Frobenius norm used in np.linalg.norm +fro diff --git a/.flake8 b/.flake8 new file mode 100644 index 0000000..88077af --- /dev/null +++ b/.flake8 @@ -0,0 +1,13 @@ +# As of now, flake8 does not natively support configuration via pyproject.toml +# https://github.com/microsoft/vscode-flake8/issues/135 +[flake8] +exclude = + .git, + __pycache__, + build, + dist, + docs/source/conf.py +max-line-length = 79 +# Ignore some style 'errors' produced while formatting by 'black' +# https://black.readthedocs.io/en/stable/guides/using_black_with_other_tools.html#labels-why-pycodestyle-warnings +extend-ignore = E203 diff --git a/.github/ISSUE_TEMPLATE/bug_feature.md b/.github/ISSUE_TEMPLATE/bug_feature.md new file mode 100644 index 0000000..b3454de --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_feature.md @@ -0,0 +1,16 @@ +--- +name: Bug Report or Feature Request +about: Report a bug or suggest a new feature! +title: "" +labels: "" +assignees: "" +--- + +### Problem + + + +### Proposed solution diff --git a/.github/ISSUE_TEMPLATE/release_checklist.md b/.github/ISSUE_TEMPLATE/release_checklist.md new file mode 100644 index 0000000..56bcd01 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/release_checklist.md @@ -0,0 +1,46 @@ +--- +name: Release +about: Checklist and communication channel for PyPI and GitHub release +title: "Ready for PyPI/GitHub release" +labels: "release" +assignees: "" +--- + +### PyPI/GitHub rc-release preparation checklist: + +- [ ] All PRs/issues attached to the release are merged. +- [ ] All the badges on the README are passing. +- [ ] License information is verified as correct. If you are unsure, please comment below. +- [ ] Locally rendered documentation contains all appropriate pages, including API references (check no modules are + missing), tutorials, and other human-written text is up-to-date with any changes in the code. +- [ ] Installation instructions in the README, documentation, and the website are updated. +- [ ] Successfully run any tutorial examples or do functional testing with the latest Python version. +- [ ] Grammar and writing quality are checked (no typos). +- [ ] Install `pip install build twine`, run `python -m build` and `twine check dist/*` to ensure that the package can be built and is correctly formatted for PyPI release. + +Please tag the maintainer (e.g., @username) in the comment here when you are ready for the PyPI/GitHub release. Include any additional comments necessary, such as version information and details about the pre-release here: + +### PyPI/GitHub full-release preparation checklist: + +- [ ] Create a new conda environment and install the rc from PyPI (`pip install ==??`) +- [ ] License information on PyPI is correct. +- [ ] Docs are deployed successfully to `https:///`. +- [ ] Successfully run all tests, tutorial examples or do functional testing. + +Please let the maintainer know that all checks are done and the package is ready for full release. + +### conda-forge release preparation checklist: + + + +- [ ] Ensure that the full release has appeared on PyPI successfully. +- [ ] New package dependencies listed in `conda.txt` and `tests.txt` are added to `meta.yaml` in the feedstock. +- [ ] Close any open issues on the feedstock. Reach out to the maintainer if you have questions. +- [ ] Tag the maintainer for conda-forge release. + +### Post-release checklist + + + +- [ ] Run tutorial examples and conduct functional testing using the installation guide in the README. Attach screenshots/results as comments. +- [ ] Documentation (README, tutorials, API references, and websites) is deployed without broken links or missing figures. diff --git a/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md b/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md new file mode 100644 index 0000000..1099d86 --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md @@ -0,0 +1,15 @@ +### What problem does this PR address? + + + +### What should the reviewer(s) do? + + + + diff --git a/.github/workflows/build-wheel-release-upload.yml b/.github/workflows/build-wheel-release-upload.yml new file mode 100644 index 0000000..29400b5 --- /dev/null +++ b/.github/workflows/build-wheel-release-upload.yml @@ -0,0 +1,18 @@ +name: Release (GitHub/PyPI) and Deploy Docs + +on: + workflow_dispatch: + push: + tags: + - "*" # Trigger on all tags initially, but tag and release privilege are verified in _build-wheel-release-upload.yml + +jobs: + build-release: + uses: scikit-package/release-scripts/.github/workflows/_build-wheel-release-upload.yml@v0 + with: + project: diffpy.cmipdf + c_extension: false + maintainer_GITHUB_username: sbillinge + secrets: + PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }} + PAT_TOKEN: ${{ secrets.PAT_TOKEN }} diff --git a/.github/workflows/check-news-item.yml b/.github/workflows/check-news-item.yml new file mode 100644 index 0000000..8d4f575 --- /dev/null +++ b/.github/workflows/check-news-item.yml @@ -0,0 +1,12 @@ +name: Check for News + +on: + pull_request_target: + branches: + - main + +jobs: + check-news-item: + uses: scikit-package/release-scripts/.github/workflows/_check-news-item.yml@v0 + with: + project: diffpy.cmipdf diff --git a/.github/workflows/matrix-and-codecov-on-merge-to-main.yml b/.github/workflows/matrix-and-codecov-on-merge-to-main.yml new file mode 100644 index 0000000..d9d7476 --- /dev/null +++ b/.github/workflows/matrix-and-codecov-on-merge-to-main.yml @@ -0,0 +1,21 @@ +name: CI + +on: + push: + branches: + - main + release: + types: + - prereleased + - published + workflow_dispatch: + +jobs: + matrix-coverage: + uses: scikit-package/release-scripts/.github/workflows/_matrix-and-codecov-on-merge-to-main.yml@v0 + with: + project: diffpy.cmipdf + c_extension: false + headless: false + secrets: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/.github/workflows/publish-docs-on-release.yml b/.github/workflows/publish-docs-on-release.yml new file mode 100644 index 0000000..67f009a --- /dev/null +++ b/.github/workflows/publish-docs-on-release.yml @@ -0,0 +1,12 @@ +name: Deploy Documentation on Release + +on: + workflow_dispatch: + +jobs: + docs: + uses: scikit-package/release-scripts/.github/workflows/_publish-docs-on-release.yml@v0 + with: + project: diffpy.cmipdf + c_extension: false + headless: false diff --git a/.github/workflows/tests-on-pr.yml b/.github/workflows/tests-on-pr.yml new file mode 100644 index 0000000..3ecbc4c --- /dev/null +++ b/.github/workflows/tests-on-pr.yml @@ -0,0 +1,15 @@ +name: Tests on PR + +on: + pull_request: + workflow_dispatch: + +jobs: + tests-on-pr: + uses: scikit-package/release-scripts/.github/workflows/_tests-on-pr.yml@v0 + with: + project: diffpy.cmipdf + c_extension: false + headless: false + secrets: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..099e294 --- /dev/null +++ b/.gitignore @@ -0,0 +1,93 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +_build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +venv/ +*.egg-info/ +.installed.cfg +*.egg +bin/ +temp/ +tags/ +errors.err + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt +MANIFEST + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*,cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Mr Developer +.mr.developer.cfg +.project +.pydevproject + +# Django stuff: +*.log + +# Sphinx documentation +docs/build/ +docs/source/generated/ + +# pytest +.pytest_cache/ + +# PyBuilder +target/ + +# Editor files +# mac +.DS_Store +*~ + +# vim +*.swp +*.swo + +# pycharm +.idea/ + +# VSCode +.vscode/ + +# Ipython Notebook +.ipynb_checkpoints diff --git a/.isort.cfg b/.isort.cfg new file mode 100644 index 0000000..86f162b --- /dev/null +++ b/.isort.cfg @@ -0,0 +1,5 @@ +[settings] +# Keep import statement below line_length character limit +line_length = 79 +multi_line_output = 3 +include_trailing_comma = True diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..0e4a84d --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,66 @@ +default_language_version: + python: python3 +ci: + autofix_commit_msg: | + [pre-commit.ci] auto fixes from pre-commit hooks + autofix_prs: true + autoupdate_branch: "pre-commit-autoupdate" + autoupdate_commit_msg: "[pre-commit.ci] pre-commit autoupdate" + autoupdate_schedule: monthly + skip: [no-commit-to-branch] + submodules: false +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.6.0 + hooks: + - id: check-yaml + - id: end-of-file-fixer + - id: trailing-whitespace + - id: check-case-conflict + - id: check-merge-conflict + - id: check-toml + - id: check-added-large-files + - repo: https://github.com/psf/black + rev: 24.4.2 + hooks: + - id: black + - repo: https://github.com/pycqa/flake8 + rev: 7.0.0 + hooks: + - id: flake8 + - repo: https://github.com/pycqa/isort + rev: 5.13.2 + hooks: + - id: isort + args: ["--profile", "black"] + - repo: https://github.com/kynan/nbstripout + rev: 0.7.1 + hooks: + - id: nbstripout + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.4.0 + hooks: + - id: no-commit-to-branch + name: Prevent Commit to Main Branch + args: ["--branch", "main"] + stages: [pre-commit] + - repo: https://github.com/codespell-project/codespell + rev: v2.3.0 + hooks: + - id: codespell + additional_dependencies: + - tomli + # prettier - multi formatter for .json, .yml, and .md files + - repo: https://github.com/pre-commit/mirrors-prettier + rev: f12edd9c7be1c20cfa42420fd0e6df71e42b51ea # frozen: v4.0.0-alpha.8 + hooks: + - id: prettier + additional_dependencies: + - "prettier@^3.2.4" + # docformatter - PEP 257 compliant docstring formatter + - repo: https://github.com/s-weigand/docformatter + rev: 5757c5190d95e5449f102ace83df92e7d3b06c6c + hooks: + - id: docformatter + additional_dependencies: [tomli] + args: [--in-place, --config, ./pyproject.toml] diff --git a/.readthedocs.yaml b/.readthedocs.yaml new file mode 100644 index 0000000..aaa8889 --- /dev/null +++ b/.readthedocs.yaml @@ -0,0 +1,13 @@ +version: 2 + +build: + os: "ubuntu-22.04" + tools: + python: "latest" + +python: + install: + - requirements: requirements/docs.txt + +sphinx: + configuration: docs/source/conf.py diff --git a/AUTHORS.rst b/AUTHORS.rst new file mode 100644 index 0000000..96fc0a9 --- /dev/null +++ b/AUTHORS.rst @@ -0,0 +1,10 @@ +Authors +======= + +Simon Billinge, Caden Myers, Billinge Group members + +Contributors +------------ + +For a list of contributors, visit +https://github.com/diffpy/diffpy.cmipdf/graphs/contributors diff --git a/CHANGELOG.rst b/CHANGELOG.rst new file mode 100644 index 0000000..f29d3b5 --- /dev/null +++ b/CHANGELOG.rst @@ -0,0 +1,5 @@ +============= +Release notes +============= + +.. current developments diff --git a/CODE-OF-CONDUCT.rst b/CODE-OF-CONDUCT.rst new file mode 100644 index 0000000..e8199ca --- /dev/null +++ b/CODE-OF-CONDUCT.rst @@ -0,0 +1,133 @@ +===================================== + Contributor Covenant Code of Conduct +===================================== + +Our Pledge +---------- + +We as members, contributors, and leaders pledge to make participation in our +community a harassment-free experience for everyone, regardless of age, body +size, visible or invisible disability, ethnicity, sex characteristics, gender +identity and expression, level of experience, education, socioeconomic status, +nationality, personal appearance, race, caste, color, religion, or sexual +identity and orientation. + +We pledge to act and interact in ways that contribute to an open, welcoming, +diverse, inclusive, and healthy community. + +Our Standards +------------- + +Examples of behavior that contributes to a positive environment for our +community include: + +* Demonstrating empathy and kindness toward other people +* Being respectful of differing opinions, viewpoints, and experiences +* Giving and gracefully accepting constructive feedback +* Accepting responsibility and apologizing to those affected by our mistakes, + and learning from the experience +* Focusing on what is best not just for us as individuals, but for the overall + community + +Examples of unacceptable behavior include: + +* The use of sexualized language or imagery, and sexual attention or advances of + any kind +* Trolling, insulting or derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or email address, + without their explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +Enforcement Responsibilities +---------------------------- + +Community leaders are responsible for clarifying and enforcing our standards of +acceptable behavior and will take appropriate and fair corrective action in +response to any behavior that they deem inappropriate, threatening, offensive, +or harmful. + +Community leaders have the right and responsibility to remove, edit, or reject +comments, commits, code, wiki edits, issues, and other contributions that are +not aligned to this Code of Conduct, and will communicate reasons for moderation +decisions when appropriate. + +Scope +----- + +This Code of Conduct applies within all community spaces, and also applies when +an individual is officially representing the community in public spaces. +Examples of representing our community include using an official email address, +posting via an official social media account, or acting as an appointed +representative at an online or offline event. + +Enforcement +----------- + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to the community leaders responsible for enforcement at +sb2896@columbia.edu. All complaints will be reviewed and investigated promptly and fairly. + +All community leaders are obligated to respect the privacy and security of the +reporter of any incident. + +Enforcement Guidelines +---------------------- + +Community leaders will follow these Community Impact Guidelines in determining +the consequences for any action they deem in violation of this Code of Conduct: + +1. Correction +**************** + +**Community Impact**: Use of inappropriate language or other behavior deemed +unprofessional or unwelcome in the community. + +**Consequence**: A private, written warning from community leaders, providing +clarity around the nature of the violation and an explanation of why the +behavior was inappropriate. A public apology may be requested. + +2. Warning +************* + +**Community Impact**: A violation through a single incident or series of +actions. + +**Consequence**: A warning with consequences for continued behavior. No +interaction with the people involved, including unsolicited interaction with +those enforcing the Code of Conduct, for a specified period of time. This +includes avoiding interactions in community spaces as well as external channels +like social media. Violating these terms may lead to a temporary or permanent +ban. + +3. Temporary Ban +****************** + +**Community Impact**: A serious violation of community standards, including +sustained inappropriate behavior. + +**Consequence**: A temporary ban from any sort of interaction or public +communication with the community for a specified period of time. No public or +private interaction with the people involved, including unsolicited interaction +with those enforcing the Code of Conduct, is allowed during this period. +Violating these terms may lead to a permanent ban. + +4. Permanent Ban +****************** + +**Community Impact**: Demonstrating a pattern of violation of community +standards, including sustained inappropriate behavior, harassment of an +individual, or aggression toward or disparagement of classes of individuals. + +**Consequence**: A permanent ban from any sort of public interaction within the +community. + +Attribution +----------- + +This Code of Conduct is adapted from the `Contributor Covenant `_. + +Community Impact Guidelines were inspired by `Mozilla's code of conduct enforcement ladder `_. + +For answers to common questions about this code of conduct, see the `FAQ `_. `Translations are available `_ diff --git a/LICENSE.rst b/LICENSE.rst new file mode 100644 index 0000000..9cc6a9d --- /dev/null +++ b/LICENSE.rst @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2025, The Trustees of Columbia University in the City of New York. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000..f1a78ee --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,12 @@ +graft src +graft tests +graft requirements + +include AUTHORS.rst LICENSE*.rst README.rst + +# Exclude all bytecode files and __pycache__ directories +global-exclude *.py[cod] # Exclude all .pyc, .pyo, and .pyd files. +global-exclude .DS_Store # Exclude Mac filesystem artifacts. +global-exclude __pycache__ # Exclude Python cache directories. +global-exclude .git* # Exclude git files and directories. +global-exclude .idea # Exclude PyCharm project settings. diff --git a/README.rst b/README.rst new file mode 100644 index 0000000..1b92b84 --- /dev/null +++ b/README.rst @@ -0,0 +1,137 @@ +|Icon| |title|_ +=============== + +.. |title| replace:: diffpy.cmipdf +.. _title: https://diffpy.github.io/diffpy.cmipdf + +.. |Icon| image:: https://avatars.githubusercontent.com/diffpy + :target: https://diffpy.github.io/diffpy.cmipdf + :height: 100px + +|PyPI| |Forge| |PythonVersion| |PR| + +|CI| |Codecov| |Black| |Tracking| + +.. |Black| image:: https://img.shields.io/badge/code_style-black-black + :target: https://github.com/psf/black + +.. |CI| image:: https://github.com/diffpy/diffpy.cmipdf/actions/workflows/matrix-and-codecov-on-merge-to-main.yml/badge.svg + :target: https://github.com/diffpy/diffpy.cmipdf/actions/workflows/matrix-and-codecov-on-merge-to-main.yml + +.. |Codecov| image:: https://codecov.io/gh/diffpy/diffpy.cmipdf/branch/main/graph/badge.svg + :target: https://codecov.io/gh/diffpy/diffpy.cmipdf + +.. |Forge| image:: https://img.shields.io/conda/vn/conda-forge/diffpy.cmipdf + :target: https://anaconda.org/conda-forge/diffpy.cmipdf + +.. |PR| image:: https://img.shields.io/badge/PR-Welcome-29ab47ff + :target: https://github.com/diffpy/diffpy.cmipdf/pulls + +.. |PyPI| image:: https://img.shields.io/pypi/v/diffpy.cmipdf + :target: https://pypi.org/project/diffpy.cmipdf/ + +.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/diffpy.cmipdf + :target: https://pypi.org/project/diffpy.cmipdf/ + +.. |Tracking| image:: https://img.shields.io/badge/issue_tracking-github-blue + :target: https://github.com/diffpy/diffpy.cmipdf/issues + +Python package for doing science. + +* LONGER DESCRIPTION HERE + +For more information about the diffpy.cmipdf library, please consult our `online documentation `_. + +Citation +-------- + +If you use diffpy.cmipdf in a scientific publication, we would like you to cite this package as + + diffpy.cmipdf Package, https://github.com/diffpy/diffpy.cmipdf + +Installation +------------ + +The preferred method is to use `Miniconda Python +`_ +and install from the "conda-forge" channel of Conda packages. + +To add "conda-forge" to the conda channels, run the following in a terminal. :: + + conda config --add channels conda-forge + +We want to install our packages in a suitable conda environment. +The following creates and activates a new environment named ``diffpy.cmipdf_env`` :: + + conda create -n diffpy.cmipdf_env diffpy.cmipdf + conda activate diffpy.cmipdf_env + +The output should print the latest version displayed on the badges above. + +If the above does not work, you can use ``pip`` to download and install the latest release from +`Python Package Index `_. +To install using ``pip`` into your ``diffpy.cmipdf_env`` environment, type :: + + pip install diffpy.cmipdf + +If you prefer to install from sources, after installing the dependencies, obtain the source archive from +`GitHub `_. Once installed, ``cd`` into your ``diffpy.cmipdf`` directory +and run the following :: + + pip install . + +This package also provides command-line utilities. To check the software has been installed correctly, type :: + + diffpy.cmipdf --version + +You can also type the following command to verify the installation. :: + + python -c "import diffpy.cmipdf; print(diffpy.cmipdf.__version__)" + + +To view the basic usage and available commands, type :: + + diffpy.cmipdf -h + +Getting Started +--------------- + +You may consult our `online documentation `_ for tutorials and API references. + +Support and Contribute +---------------------- + +If you see a bug or want to request a feature, please `report it as an issue `_ and/or `submit a fix as a PR `_. + +Feel free to fork the project and contribute. To install diffpy.cmipdf +in a development mode, with its sources being directly used by Python +rather than copied to a package directory, use the following in the root +directory :: + + pip install -e . + +To ensure code quality and to prevent accidental commits into the default branch, please set up the use of our pre-commit +hooks. + +1. Install pre-commit in your working environment by running ``conda install pre-commit``. + +2. Initialize pre-commit (one time only) ``pre-commit install``. + +Thereafter your code will be linted by black and isort and checked against flake8 before you can commit. +If it fails by black or isort, just rerun and it should pass (black and isort will modify the files so should +pass after they are modified). If the flake8 test fails please see the error messages and fix them manually before +trying to commit again. + +Improvements and fixes are always appreciated. + +Before contributing, please read our `Code of Conduct `_. + +Contact +------- + +For more information on diffpy.cmipdf please visit the project `web-page `_ or email Simon Billinge at sb2896@columbia.edu. + +Acknowledgements +---------------- + +``diffpy.cmipdf`` is built and maintained with `scikit-package `_. diff --git a/cookiecutter.json b/cookiecutter.json new file mode 100644 index 0000000..513c298 --- /dev/null +++ b/cookiecutter.json @@ -0,0 +1,18 @@ +{ + "maintainer_name": "Simon Billinge", + "maintainer_email": "sb2896@columbia.edu", + "maintainer_github_username": "sbillinge", + "contributors": "Simon Billinge, Caden Myers, Billinge Group members", + "license_holders": "The Trustees of Columbia University in the City of New York", + "project_name": "diffpy.cmipdf", + "github_username_or_orgname": "diffpy", + "github_repo_name": "diffpy.cmipdf", + "conda_pypi_package_dist_name": "diffpy.cmipdf", + "package_dir_name": "diffpy.cmipdf", + "project_short_description": "Python package for doing science.", + "project_keywords": "diffraction, PDF, X-ray, neutron", + "minimum_supported_python_version": "3.11", + "maximum_supported_python_version": "3.13", + "project_needs_c_code_compiled": "No", + "project_has_gui_tests": "No" +} diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 0000000..0bd70bc --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,194 @@ +# Makefile for Sphinx documentation +# + +# You can set these variables from the command line. +SPHINXOPTS = +SPHINXBUILD = sphinx-build +PAPER = +BUILDDIR = build +BASENAME = $(subst .,,$(subst $() $(),,diffpy.cmipdf)) + +# User-friendly check for sphinx-build +ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1) +$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/) +endif + +# Internal variables. +PAPEROPT_a4 = -D latex_paper_size=a4 +PAPEROPT_letter = -D latex_paper_size=letter +ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source +# the i18n builder cannot share the environment and doctrees with the others +I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source + +.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext + +help: + @echo "Please use \`make ' where is one of" + @echo " html to make standalone HTML files" + @echo " dirhtml to make HTML files named index.html in directories" + @echo " singlehtml to make a single large HTML file" + @echo " pickle to make pickle files" + @echo " json to make JSON files" + @echo " htmlhelp to make HTML files and a HTML help project" + @echo " qthelp to make HTML files and a qthelp project" + @echo " devhelp to make HTML files and a Devhelp project" + @echo " epub to make an epub" + @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" + @echo " latexpdf to make LaTeX files and run them through pdflatex" + @echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx" + @echo " text to make text files" + @echo " man to make manual pages" + @echo " texinfo to make Texinfo files" + @echo " info to make Texinfo files and run them through makeinfo" + @echo " gettext to make PO message catalogs" + @echo " changes to make an overview of all changed/added/deprecated items" + @echo " xml to make Docutils-native XML files" + @echo " pseudoxml to make pseudoxml-XML files for display purposes" + @echo " linkcheck to check all external links for integrity" + @echo " doctest to run all doctests embedded in the documentation (if enabled)" + +clean: + rm -rf $(BUILDDIR)/* + +html: + $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html + @echo + @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." + +dirhtml: + $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml + @echo + @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." + +singlehtml: + $(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml + @echo + @echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml." + +pickle: + $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle + @echo + @echo "Build finished; now you can process the pickle files." + +json: + $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json + @echo + @echo "Build finished; now you can process the JSON files." + +htmlhelp: + $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp + @echo + @echo "Build finished; now you can run HTML Help Workshop with the" \ + ".hhp project file in $(BUILDDIR)/htmlhelp." + +qthelp: + $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp + @echo + @echo "Build finished; now you can run "qcollectiongenerator" with the" \ + ".qhcp project file in $(BUILDDIR)/qthelp, like this:" + @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/$(BASENAME).qhcp" + @echo "To view the help file:" + @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/$(BASENAME).qhc" + +devhelp: + $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp + @echo + @echo "Build finished." + @echo "To view the help file:" + @echo "# mkdir -p $$HOME/.local/share/devhelp/$(BASENAME)" + @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/$(BASENAME)" + @echo "# devhelp" + +epub: + $(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub + @echo + @echo "Build finished. The epub file is in $(BUILDDIR)/epub." + +latex: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo + @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." + @echo "Run \`make' in that directory to run these through (pdf)latex" \ + "(use \`make latexpdf' here to do that automatically)." + +latexpdf: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo "Running LaTeX files through pdflatex..." + $(MAKE) -C $(BUILDDIR)/latex all-pdf + @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." + +latexpdfja: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo "Running LaTeX files through platex and dvipdfmx..." + $(MAKE) -C $(BUILDDIR)/latex all-pdf-ja + @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." + +text: + $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text + @echo + @echo "Build finished. The text files are in $(BUILDDIR)/text." + +man: + $(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man + @echo + @echo "Build finished. The manual pages are in $(BUILDDIR)/man." + +texinfo: + $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo + @echo + @echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo." + @echo "Run \`make' in that directory to run these through makeinfo" \ + "(use \`make info' here to do that automatically)." + +info: + $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo + @echo "Running Texinfo files through makeinfo..." + make -C $(BUILDDIR)/texinfo info + @echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo." + +gettext: + $(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale + @echo + @echo "Build finished. The message catalogs are in $(BUILDDIR)/locale." + +changes: + $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes + @echo + @echo "The overview file is in $(BUILDDIR)/changes." + +linkcheck: + $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck + @echo + @echo "Link check complete; look for any errors in the above output " \ + "or in $(BUILDDIR)/linkcheck/output.txt." + +doctest: + $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest + @echo "Testing of doctests in the sources finished, look at the " \ + "results in $(BUILDDIR)/doctest/output.txt." + +# Manual publishing to the gh-pages branch + +GITREPOPATH = $(shell cd $(CURDIR) && git rev-parse --git-dir) +GITREMOTE = origin +GITREMOTEURL = $(shell git config --get remote.$(GITREMOTE).url) +GITLASTCOMMIT = $(shell git rev-parse --short HEAD) + +publish: + @test -d build/html || \ + ( echo >&2 "Run 'make html' first!"; false ) + git show-ref --verify --quiet refs/heads/gh-pages || \ + git branch --track gh-pages $(GITREMOTE)/gh-pages + test -d build/gh-pages || \ + git clone -s -b gh-pages $(GITREPOPATH) build/gh-pages + cd build/gh-pages && \ + git pull $(GITREMOTEURL) gh-pages + rsync -acv --delete --exclude=.git --exclude=.rsync-exclude \ + --exclude-from=build/gh-pages/.rsync-exclude \ + --link-dest=$(CURDIR)/build/html build/html/ build/gh-pages/ + cd build/gh-pages && \ + git add --all . && \ + git diff --cached --quiet || \ + git commit -m "Sync with the source at $(GITLASTCOMMIT)." + cd build/gh-pages && \ + git push origin gh-pages diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 0000000..2be8306 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,36 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=source +set BUILDDIR=build +set SPHINXPROJ=PackagingScientificPython + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% + +:end +popd diff --git a/docs/source/_static/.placeholder b/docs/source/_static/.placeholder new file mode 100644 index 0000000..e69de29 diff --git a/docs/source/api/diffpy.cmipdf.example_package.rst b/docs/source/api/diffpy.cmipdf.example_package.rst new file mode 100644 index 0000000..ccf746c --- /dev/null +++ b/docs/source/api/diffpy.cmipdf.example_package.rst @@ -0,0 +1,31 @@ +.. _example_package documentation: + +|title| +======= + +.. |title| replace:: diffpy.cmipdf.example_package package + +.. automodule:: diffpy.cmipdf.example_package + :members: + :undoc-members: + :show-inheritance: + +|foo| +----- + +.. |foo| replace:: diffpy.cmipdf.example_package.foo module + +.. automodule:: diffpy.cmipdf.example_package.foo + :members: + :undoc-members: + :show-inheritance: + +|bar| +----- + +.. |bar| replace:: diffpy.cmipdf.example_package.bar module + +.. automodule:: diffpy.cmipdf.example_package.foo + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/source/api/diffpy.cmipdf.rst b/docs/source/api/diffpy.cmipdf.rst new file mode 100644 index 0000000..8ce62e5 --- /dev/null +++ b/docs/source/api/diffpy.cmipdf.rst @@ -0,0 +1,30 @@ +:tocdepth: -1 + +|title| +======= + +.. |title| replace:: diffpy.cmipdf package + +.. automodule:: diffpy.cmipdf + :members: + :undoc-members: + :show-inheritance: + +Subpackages +----------- + +.. toctree:: + diffpy.cmipdf.example_package + +Submodules +---------- + +|module| +-------- + +.. |module| replace:: diffpy.cmipdf.example_submodule module + +.. automodule:: diffpy.cmipdf.example_submodule + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/source/conf.py b/docs/source/conf.py new file mode 100644 index 0000000..949207b --- /dev/null +++ b/docs/source/conf.py @@ -0,0 +1,322 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# +# diffpy.cmipdf documentation build configuration file, created by # noqa: E501 +# sphinx-quickstart on Thu Jan 30 15:49:41 2014. +# +# This file is execfile()d with the current directory set to its +# containing dir. +# +# Note that not all possible configuration values are present in this +# autogenerated file. +# +# All configuration values have a default; values that are commented out +# serve to show the default. + +import sys +import time +from importlib.metadata import version +from pathlib import Path + +# Attempt to import the version dynamically from GitHub tag. +try: + fullversion = version("diffpy.cmipdf") +except Exception: + fullversion = "No version found. The correct version will appear in the released version." # noqa: E501 + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use Path().resolve() to make it absolute, like shown here. # noqa: E501 +# sys.path.insert(0, str(Path(".").resolve())) +sys.path.insert(0, str(Path("../..").resolve())) +sys.path.insert(0, str(Path("../../src").resolve())) + +# abbreviations +ab_authors = "Simon Billinge, Caden Myers, Billinge Group members" + +# -- General configuration ------------------------------------------------ + +# If your documentation needs a minimal Sphinx version, state it here. +# needs_sphinx = '1.0' + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ + "sphinx.ext.autodoc", + "sphinx.ext.napoleon", + "sphinx.ext.todo", + "sphinx.ext.viewcode", + "sphinx.ext.intersphinx", + "sphinx_rtd_theme", + "sphinx_copybutton", + "m2r", +] + +# Add any paths that contain templates here, relative to this directory. +templates_path = ["_templates"] + +# The suffix(es) of source filenames. +# You can specify multiple suffix as a list of string: +# +source_suffix = [".rst", ".md"] + +# The encoding of source files. +# source_encoding = 'utf-8-sig' + +# The master toctree document. +master_doc = "index" + +# General information about the project. +project = "diffpy.cmipdf" +copyright = "%Y, The Trustees of Columbia University in the City of New York" + +# The version info for the project you're documenting, acts as replacement for +# |version| and |release|, also used in various other places throughout the +# built documents. + +# The short X.Y version. +version = "".join(fullversion.split(".post")[:1]) +# The full version, including alpha/beta/rc tags. +release = fullversion + +# The language for content autogenerated by Sphinx. Refer to documentation +# for a list of supported languages. +# language = None + +# There are two options for replacing |today|: either, you set today to some +# non-false value, then it is used: +# today = '' +today = time.strftime("%B %d, %Y", time.localtime()) +year = today.split()[-1] +# Else, today_fmt is used as the format for a strftime call. +# today_fmt = '%B %d, %Y' +# substitute YEAR in the copyright string +copyright = copyright.replace("%Y", year) + +# For sphinx_copybutton extension. +# Do not copy "$" for shell commands in code-blocks. +copybutton_prompt_text = r"^\$ " +copybutton_prompt_is_regexp = True + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +exclude_patterns = ["build"] + +# The reST default role (used for this markup: `text`) to use for all +# documents. +# default_role = None + +# If true, '()' will be appended to :func: etc. cross-reference text. +# add_function_parentheses = True + +# If true, the current module name will be prepended to all description +# unit titles (such as .. function::). +# add_module_names = True + +# If true, sectionauthor and moduleauthor directives will be shown in the +# output. They are ignored by default. +# show_authors = False + +# The name of the Pygments (syntax highlighting) style to use. +pygments_style = "sphinx" + +# A list of ignored prefixes for module index sorting. +modindex_common_prefix = ["diffpy.cmipdf"] + +# Display all warnings for missing links. +nitpicky = True + +# -- Options for HTML output ---------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +html_theme = "sphinx_rtd_theme" + +html_context = { + "display_github": True, + "github_user": "diffpy", + "github_repo": "diffpy.cmipdf", + "github_version": "main", + "conf_py_path": "/docs/source/", +} + +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +html_theme_options = { + "navigation_with_keys": "true", +} + +# Add any paths that contain custom themes here, relative to this directory. +# html_theme_path = [] + +# The name for this set of Sphinx documents. If None, it defaults to +# " v documentation". +# html_title = None + +# A shorter title for the navigation bar. Default is the same as html_title. +# html_short_title = None + +# The name of an image file (relative to this directory) to place at the top +# of the sidebar. +# html_logo = None + +# The name of an image file (within the static path) to use as favicon of the +# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 +# pixels large. +# html_favicon = None + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +# html_static_path = ['_static'] + +# Add any extra paths that contain custom files (such as robots.txt or +# .htaccess) here, relative to this directory. These files are copied +# directly to the root of the documentation. +# html_extra_path = [] + +# If not '', a 'Last updated on:' timestamp is inserted at every page bottom, +# using the given strftime format. +# html_last_updated_fmt = '%b %d, %Y' + +# If true, SmartyPants will be used to convert quotes and dashes to +# typographically correct entities. +# html_use_smartypants = True + +# Custom sidebar templates, maps document names to template names. +# html_sidebars = {} + +# Additional templates that should be rendered to pages, maps page names to +# template names. +# html_additional_pages = {} + +# If false, no module index is generated. +# html_domain_indices = True + +# If false, no index is generated. +# html_use_index = True + +# If true, the index is split into individual pages for each letter. +# html_split_index = False + +# If true, links to the reST sources are added to the pages. +# html_show_sourcelink = True + +# If true, "Created using Sphinx" is shown in the HTML footer. Default is True. +# html_show_sphinx = True + +# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. +# html_show_copyright = True + +# If true, an OpenSearch description file will be output, and all pages will +# contain a tag referring to it. The value of this option must be the +# base URL from which the finished HTML is served. +# html_use_opensearch = '' + +# This is the file name suffix for HTML files (e.g. ".xhtml"). +# html_file_suffix = None + +# Output file base name for HTML help builder. +basename = "diffpy.cmipdf".replace(" ", "").replace(".", "") +htmlhelp_basename = basename + "doc" + + +# -- Options for LaTeX output --------------------------------------------- + +latex_elements = { + # The paper size ('letterpaper' or 'a4paper'). + # 'papersize': 'letterpaper', + # The font size ('10pt', '11pt' or '12pt'). + # 'pointsize': '10pt', + # Additional stuff for the LaTeX preamble. + # 'preamble': '', +} + +# Grouping the document tree into LaTeX files. List of tuples +# (source start file, target name, title, +# author, documentclass [howto, manual, or own class]). +latex_documents = [ + ( + "index", + "diffpy.cmipdf.tex", + "diffpy.cmipdf Documentation", + ab_authors, + "manual", + ), +] + +# The name of an image file (relative to this directory) to place at the top of +# the title page. +# latex_logo = None + +# For "manual" documents, if this is true, then toplevel headings are parts, +# not chapters. +# latex_use_parts = False + +# If true, show page references after internal links. +# latex_show_pagerefs = False + +# If true, show URL addresses after external links. +# latex_show_urls = False + +# Documents to append as an appendix to all manuals. +# latex_appendices = [] + +# If false, no module index is generated. +# latex_domain_indices = True + + +# -- Options for manual page output --------------------------------------- + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [ + ( + "index", + "diffpy.cmipdf", + "diffpy.cmipdf Documentation", + ab_authors, + 1, + ) +] + +# If true, show URL addresses after external links. +# man_show_urls = False + + +# -- Options for Texinfo output ------------------------------------------- + +# Grouping the document tree into Texinfo files. List of tuples +# (source start file, target name, title, author, +# dir menu entry, description, category) +texinfo_documents = [ + ( + "index", + "diffpy.cmipdf", + "diffpy.cmipdf Documentation", + ab_authors, + "diffpy.cmipdf", + "One line description of project.", + "Miscellaneous", + ), +] + +# Documents to append as an appendix to all manuals. +# texinfo_appendices = [] + +# If false, no module index is generated. +# texinfo_domain_indices = True + +# How to display URL addresses: 'footnote', 'no', or 'inline'. +# texinfo_show_urls = 'footnote' + +# If true, do not generate a @detailmenu in the "Top" node's menu. +# texinfo_no_detailmenu = False + + +# Example configuration for intersphinx: refer to the Python standard library. +# intersphinx_mapping = {'http://docs.python.org/': None} diff --git a/docs/source/getting-started.rst b/docs/source/getting-started.rst new file mode 100644 index 0000000..3f47908 --- /dev/null +++ b/docs/source/getting-started.rst @@ -0,0 +1,79 @@ +:tocdepth: -1 + +.. index:: getting-started + +.. _getting-started: + +================ +Getting started +================ + +Here are some example templates provided to help you get started with writing your documentation. You can use these templates to create your own documentation. + +Reuse ``.rst`` files across multiple pages +------------------------------------------ + +Here is how you can reuse a reusable block of ``.rst`` files across multiple pages: + +.. include:: snippets/example-table.rst + +.. warning:: + + Ensure that the ``.rst`` file you are including is not too long. If it is too long, it may be better to split it into multiple files and include them separately. + +Refer to a specific section in the documentation +------------------------------------------------ + +You can use the ``ref`` tag to refer to a specific section in the documentation. For example, you can refer to the section below using the ``:ref:`` tag as shown :ref:`here `. + +.. note:: + + Please check the raw ``.rst`` file of this page to see the exact use of the ``:ref:`` tag. + +Embed your code snippets in the documentation +--------------------------------------------- + +Here is how you can write a block of code in the documentation. You can use the ``code-block`` directive to write a block of code in the documentation. For example, you can write a block of code as shown below: + +.. code-block:: bash + + # Create a new environment, without build dependencies (pure Python package) + conda create -n -env python=3.13 \ + --file requirements/tests.txt \ + --file requirements/conda.txt + + # Create a new environment, with build dependencies (non-pure Python package) + conda create -n -env python=3.13 \ + --file requirements/tests.txt \ + --file requirements/conda.txt \ + --file requirements/build.txt + + # Activate the environment + conda activate _env + + # Install your package locally + # `--no-deps` to NOT install packages again from `requirements.pip.txt` + pip install -e . --no-deps + + # Run pytest locally + pytest + + # ... run example tutorials + +.. _attach-image: + +Attach an image to the documentation +------------------------------------ + +Here is how you attach an image to the documentation. The ``/docs/source/img/scikit-package-logo-text.png`` example image is provided in the template. + +.. image:: ./img/scikit-package-logo-text.png + :alt: codecov-in-pr-comment + :width: 400px + :align: center + + +Other useful directives +----------------------- + +Here is how you can do menu selection :menuselection:`Admin --> Settings` and display labels for buttons like :guilabel:`Privacy level`. diff --git a/docs/source/img/scikit-package-logo-text.png b/docs/source/img/scikit-package-logo-text.png new file mode 100644 index 0000000000000000000000000000000000000000..823178dcb1316d5cfd09bc43d8210e5c4ce38f28 GIT binary patch literal 187608 zcmeFYXH-*Z)HaNw;EW<;ML=Mb03t;p6zLX~7}soR-3xju6= zrE+z3<+nswBaNTgoATQ^nkOtvGEq_eO{FONK*KF@am+OmXBsEHx)2w)4mtDwlE?jQ zp$iY5U3n=dH+Dt;Y}Kt7-daxjV;^K%Z!c#HMSZxb^6@Ol@1LuuFG61QcAo6M2zmIo zw_w~3nS7=y|IJiV4PF^TKz3ZeIpvd|z#cDZ&YzsA0lNZh>*zA-D_vhddHlc5m|MUj z{k-l|Uq&3iPCfCb=<(}Ls+Y{iuPyw((jC7Ry8nY>h@*=s)t>tJHQkfS6Te>j(fq&V zsi^*+aR7Jt|B>gU=4CPf4^$3q@lZUkOxy)&aiL4IvpbT1iccs~Qw%!M9As{j1C&_f^=XGyXPgSY`)@_xvj&W8z6H0bH6t}&5ET|(`D$j;tOHu$-apRfYusV_me4b_M%A#J6R zsQg`-1<8o1ND!A6OgMA-?$6ack^$7}T!?}i#F#)({jek**Y#CBx5cOE>0|{`Pb;D& zAWTXf|AL24&CwDynVnsQ{{7KV%13jepz<6$wy1XISPaI{#}`*PQtrEr>@k;)F3FFL z#`KtFl;q^>yd@j8?gqr|zH)IDNZf_1uzh(1iHQcvW zlLX5U)as-NDs@t4ukzV8z42}D(b*a8RfNIX^L{Vzh_XN#gquy-(Tp8DVk5%O;6s=_ z$JDv0<%^q0Uy5^@91}xM^h)keA#+M*vMtmceNZc!FlY0zXFmW$w2L_9C*aNS$-P(K8bQ7 zwW^d8i3IHl32vn*)CsRhSQH=#(jw*t9d*QLJ-7B?URy)l5>m4(jq)6pFqo8~>$RVo zXio!j#JYHTWC7<6gdMzB>yePSYsdDO+q8_tz-NhV9Ke2Oyp%bUWp1dwL^AkN3}OI@ zm1k#rE}Z}AT1Fd3TYzwzVspJ*EI(&=^2z%J{n8Ozja(-=jyGV`N6Ch@54opTBJ?`HxAiB4w!XxR-43A5CoZU~lzb=w z4~#ncb|eZ3gO`14mMil?0~}&EFyC5e@BQ>8)^v&qE1@l%ip!AVj_i(e*E^%nhDzPO z)Kp-If1Wdo(sa*-j{wqDiMbg=YP)`92qhg&Ftk2jv=x17At*2Ol6$aS} z0~uPInBny+IxG*#Um~Ga!&V!-E85`;2+zMW4PDfiy=F00lT|3a@Tu+W?EI`>9!=pB zskBkh&Bu;N)QKE%u-R0h-sXXt+2ZVv4ZeQat&aF4FqcaEH|7;pb91dR2Un1o7)A#M z<2#NCBikcGyn?nAg1{)7kI!lbVm?T!{PZn)yN~ zJb9`cgfGapvO10@>$AWk7=`ep*YIHELfUL0QsQbPj0dL3^NRNyLMMUhY04KToBY^m$Vo4nf zt^Ixs48{|^Z5~8))#PwQV#<^+0B$+IT)~el3m}WOF@T>CqG3qeVo9s!4#xL-G8Cc$ z-;maaMOnJapn#KTjhv%5qw_MT=Ekfk@@HjR$sIq2chb>gL_%HEfV1?^5ijZZ{vN$v zozhk*z&;PpjoBMpbQdFJ!ySJJgNsYO-NzilOs0|QfJbh4{az#rSma4H=m_A1<_ zlOR`49aot7ur3_A?CUKgVO#6q{dNOPGSEwWTaXZr%&*~4!@{4qj=liNC^_oEU}62g z;I)&Pf^B8D(n~>TaSSta+}_t8b{z`m$10N3chR9&lF*y|d&s75S?Eds=7rD&h@-xw z=;@;;$bCtPN8Ly$nFCV)aS0%z|Hg!& z5;b9csH%pe1*kmYDUjfl9;w9@7i}`0-4T3U8WaOqVaR^*)9zLH*>>+|Pkq*MMjSg} z6(-~t!_{~1fW*KU*PQI^gEuTki})pf0K8EM#%*eWno}&dHd)?lz8)R0HME8$?*qQ* z?(+pzdS~T(@idE0q1zA}dARTkbx;3re0h0)ZbipxFr%1_^T0|)v}^A7E23i&Df&Lh z<-@Ta=VoV4v>;{;2Gdvn<@lfDGk)G`dJ3c#!*}YJ@cLA>FxIDq_l9Q8hPvKI_=<^OOh{ zlH)c#pmJ><0b5TCWE}^|?nmuSap<=m09dK|@ zk0jQO?H(-Qg>?p@CdaPzMPuuHXhOtPFF-x5434*y127N2GMrLHi4Dr66$GzcZ>B>9 zs|w!6h~GKbRx6O!i8RqcomRZcl~v{VdlWx)3-6@=G`H#1oIetqCzr&k$RpeQpCP1 z4CXp;9Af$a1I~4Za5IC3_QL91)C6m01{)QVm5JIYeC_&1vrMx3MzLX}5_baE&{BGV zcf?|p$z%Hb(xwnr0U?E2>-w6*@d1-@zw%^*Oa*5cEMx58F%VgN>KQVz!mD8mDvF_M zjt($b(s8DwuyVh$huo%npcSt<>#hAATVbg@sYCeZogQdMT2|3JQg_c2_>6C>aQz{Z zx`KgW=~`vi4q>a7J7}?5UDM!Isf(x6=IH)@Hk^_R0B=rPu2d)nD5iQ&cKk83`kW1% zdn*2Rdaw$y3&aK~)~7EhsTwXJ1}2(Ev>l`s$dIvjICY5KSi|*hHeX*P_EoMItM!4* z?(V@Q-2^V3YP^cBoCKoGq0Z~umm%Bgb`Osz10Zpl9#Mf^Q&IDdQ3mTUB}c^n#NB!T zcl~@aBZ>1M1+Ja@sP|Ge=MR**IqZB7I(E8cSQES0_a~z${?M{ci|qesiQdWADQo6H z^JD%{GXq`OMamc`*LVBi+MQWOlyEQ1=y`DmS^SHJ!-}GiByK z-nRDiq0MCQ6oy*2_S$vIPl_|QYqT!aSk64Zc7wccGts`YM6K4#G7vTOhEmJ*|ElHg z>jQ8;8v)_AgE&G^e4ZW*nrcecm|bSN_9l4n_sWn!vsyYWpAbfgdwh8zhT5ec(s*XY233Ju>ctufM#FeBZ z=jHy~8{pU)s7aL9t>m!zh<<(F$09?|WktpuWsm-4l98mQEvqAr zTe)p!ak!7?6OaS8*y-0g8`5^AeVhx^-+Xt1Y|v|iy2#yP!pxmEcP)G}GQWz0#L$a- z>CTT)i`Y-i&K@op{K+W$&jXRU&X^uKhDuB^$w|h&g!K&T7O%~)7w`P@bm;llPr-OI zjllEP3tdUc?p6+n!;K#FFT>=zQLNrjw`U`n&}}u-jjodnOD3<1t({$I|Nf)u zdCtUZ^BKZErsC+UQBDa+@!|k!SN)W2uI1eiYC#hVcuT9(%(CsaGme9Lm*#t`O1t+6eK1v>~B ztm3%zT=%B92P8d`1*NQ9?9M`<2aLDmq9ZD?C?Yah!5H_{n5ORn$=8W@rDdNGZAuxcv?fhVPn zE`n99nK&b5TMDpPu{lHXjcPlYI!p6>y6o(h-fA{XTttQ`0A(dK($%VJjt@~O0Q!9R zg+8fvP~eOQxYMt{n?ixo;yn???V-lSTg;*@k?4to6g>C*R|?pce@AG6?L8 zoh6-`LUtbUcrB`(+Gp%ECSwkd1kFargGVeZL|A2RGKa7wUr3`Bk;=Ifx3$>4PYezs zc1n>FTxI}{vD2T4ivws+7O+1RR^Q#7MCZm*J*TB$UL8%(2evM#9#o<>tgq%5*YK;8 z13=9nJ<`!0^%ix`vOg}*maotH{9xfCa=eML+NURU=|XFav)S5*P|8_zoRuhcd#Z5t z&f<5J9Lt>EQ`4dDCay1IISV`~@+b-k-o7IvJFJIiy zDNSW(I9T^@t4VWbNV>k$ap2fSd){W)-8wBlyQNfkZ?yOSO3bw}0LW1a@mj?WNOylQ zi2`i{)uFMS#Xm9{;vKGk%tpcUQ<4-39T31FB$qb6JlgDtIb0i$gvLAKh8MerkR(zL zqW$!MGPZbgW>kJ%tF5JlkfE9f=uR) zLM>j5ca4&TL%rP$r@Rc8ijFfP%6Xr59oHZ9ch-z$~J@7TQo@Yi+Bp zZPbq52oyuF=LU77pKr*h9UL&bwhl=9Sm*+)FV`u|OfhKTqm}HoZHFZQ-Dt}Q#m2b< z@S%1z%^yG4cc!d=AwAMIVl>fYtWPYntc=%prMZHwuqS!JlDm_g6@B=UViKL=PsU|f zj}`c4n^ve-P6EP8a0O5%wgF{g^Gd~39DxB?|2Ybb@+!#AZl3=o5cTr{wOl_SkHmu1 zBW$Y034n{1Po)`-y3caLb2m?m73$7NRSU`N;iTLF+xJN?7_W@pN!k1CuQK>1rl;rw zcmU_&t6IN5GrBW=38*|c&^P}_{!A+@b@;Vq7>?EDK zo*r(_|9BKsCTz)L5enp@4hd7U<*E&IpLk{@>d>`!#BtEyQ^*o*fI*TNW&kRV9RipQ z!_|DUid@0?5Ga#N3}Dk-$0}638sL?}8IeQ`hzqzy0z%AjEgUe>;O8%SD#L%qQ?kt+ ztlO;$++Fjs4oh20jH2Ow(DlORe>iQMvb8Dd$S9zWcnqnyuNIkG0j%(UN~Wpqz#(h1 zL%2P;;!q|=uGqonUuQWKynHg>Q`3|S*$I4l0OQay+_uP1+1|EF0-JPxPCVFPFK*Ce z7PbU43H-0x$>(`WGIdFhbkNyppHivvY|4O#YHt?ZSrXSC3ap!|YGrNhV>m#Rb!giq zT@X7QVQURERuDGlX4?D)CQ-_Ih4K;YAq78R~Ijw*^q_z6ZSehN@EMb+jug_y!= zg~PpkYFc_rYuxj~K%q3Jl6JF6BFWB2h&}K;q66yGdaSkl5@DU2%ecg3DCKe0?{F0W za#(M6Byk#qUtHdg-Jo&xnvij2zUwvR$B8&?tqF#RQkbgD{=imxdgKhRT*d!YVYu%e ziT;3)b>+CiC;+4fzu`#eW?PHhW!D@&u!%ODkXcs+U#OZ46mk`qJu#q1tkxs7Hft^f zhaDa;6Nh|fH%*`Rju(lM95px~Vln~n<%4iHpp?}F z-%F7A^3r#|Gq~`>ZDp#^Zy(UdufGLOAWF@}vn~>~;=Md3=9a>ePDRwzet^x%o_f)< zj15jmp4()kl*2oCvUWMnN$-+qnod>rZA!US!l}{a8ZF2?GAdiI6X8_gbGz z+{=L@hax3PY}^&b9O$`r98l`n|4JO%BNW!CaYu^7SqsHi4Xz*RXGiwNxTsjeE2_jh zxhVX@5?==n!|HY}fpHt61s%TL#3Yr`H&v4LMh^T{F7iG;eR*-;!A@Kn3@rJ1_ITNHt>qw2YCvbWE(F^4;xV(gf$>}-$R zU#6MG0#Rx42HHXZDtcElQJj~X^cq`rdRd;3JI^e0hO);^t>nYU6$F_BTs?*hU+YV{ z`aA>|3i%4m zvS;5G+fvw?&W9&2^n1art$o(=!pxfUL=Z%?^?y9g+dBY8Xf_eznpsi;`bz zU`oHR){jgP0Qxi`z)^cvgZIkmZIT99K7ptxgtMVwEIjjG#tG}=S%4J1(Y&2JQJp&s zhuCI{92_Bzz}1vzALNJdV>UTT@&yxY!_8-}2?kX+?e&;z4$H#<48vO_65D zG$GuIJ`q#SAsyvqWm90o5vfTL*5UoeRQhVDIju{3UOG5Y|WHK(Zh*b(6MEWe!Qz9FDA-LHs(;u5Atm)q*5$KX?b6^Q<+ zkW}BwRWACeO+%Tnydf>ML0*CviQSSL5ju~h5M4d{_H~L!@@kisE?0^vs#1_^=J%HU zDO-j@7$c|1pafCzYFywWk{W)HJJWzGt8tuQWc5gcfR21zK+M`wyj+{x z)E*TSVKX|r$nP1}D&ys~H*@FoL1zKKm(YMA*{#A%#&Nc82T+F*MEUj8^$AjU2zt&+ z{559s(dBmvB$mS|tzV!Wom}us%-4`tUt6VFW(XHjU7R^m(ATyrPkZE@>KsWP4u;V*Z(23BVKd!V#SC67WSW~78| zuUPs}7QqfK|ilyH{TVw!bCJou3K-b0)I>r+aSlVBBW!)|&<-i^h zzpv4NOpn~3fGe2A*otI5?er!(lLxI0N&H zmh1=eu+s#Y$^v+ax%a`V#hvW-gzCQz9yY(}(DPh45Cb|jqidfhk8p}VIpJtXCzZ`& zZtgVIth)3-(tFWbW27mwwu;0`nL+s|!l}Yct$IpS1s6zu4jkP1Ve_EGJwvv3IlP#7 zP~Eeb(z5=|bweeTC?11r*}5Gp1(pb$i2lIGAj*eD*Ezt>IYoPc?@(OJeyY$efc> zuK(_mwoe2CfYc{2#^}-WK7nWCeuPcw&}xlGiUS=M28&ABCpIyOe2`(1@NkpfNTwE? z?!^*DQhc<^N4x^WC*`?zlu-&0?wA-TPQ(0X>saV5GlI%Zj#4+YDF?{4J2##0V5lpJ zA$&}IJ%iPcUh!Eg&(-eg>(sNhR^mJyPbu#581syNQ#SG&g!sTcLqmfyo?~~}G2DtB zx!G1a#}3Sbs61f=+ecQdSvS?$4apAC#M=O5o)lj{RQLl8^a3c}FKqK|*l261nNVqr zi!e-DAEFeRf>zt_#3x-^TfVlh0HYWD={9=5cI*@c?07o|!u=>hGRZ`i9r-A*Y+4CF zB0)`C(GOG!jaO?cC7XT7(N4T}iy7fJ0%&G-)um&)*aQ1Z8Li)Pv_=zRME6C^RpO%+ z%&~bA`BE4(MbMcK{YB1t$r23_>Lk*nosStY` z%^Gf^$vtfd;WnN>_tVc}fJW=**4ybes3|{rg3Fkvo_s#|Q(%Z69`1T@W9V5}5gk@) zWASX9$3QNV$aC8YfOU}A*rY(}s(W5_+dl$|=XMu*87p*9#u1WFA!6vr;zvn8x4D`L zY;)WCyju5a^^?6i(+DQb6XafIvP%!5JxRvhBSO^wQ26=m`2OU`CZ@n=Rc&WZOFHsk zEA}0fsXoN=3Z06h2Feq{EgB8Q=|k3%ZyZsjGC)HfFW50kqfW39xCsbZHKF=`GDVoH z?8SYXY0Syh%jJ9EmBvP4n^T85>5+>iBu%j$r4?*C{y-LYkTC{!8}}1uH;kFu2W`bb zrQr}ponJm-EehZ;`2(~?8fcF>A-23lKRsg}pROT~H`$@*w7cRcl{4MQXT$QP?G4gK z7+XAkf9mWG@dB-RLs8m%@Q66ZK{1&(JrN3VhyAiaZW86F#OUydp8kH6{-!|zu-llT zr4D03kFf`ISju5(z+esXt3>&8EQt;D?zZ_-JII}`7+i|C3og6A62zwD=*n&C$USYF z-c*ryWCQJLpv+x0H`ooFdLPnZTd`2ZC|=V~c<3kd6jI#0AZp{bOc6jvXj48tV|O#< zOQ)#YQ<;W4Px$vcp1SWXxMKXu`-dk`z}%Cm;xZtK!61yfT0eu?nwDY)R4qzqpJjh+ z3tk@x^V2FOEQme^+>60gdB1&3*oHb}$RQ_$l!PVgBkpaG#Ac{z%>tYi`Wd&fL0nvM zKnt!eve^BX5!MX>)ZOQ>vvxAt{(fS}B~!q8@np>lKovAiU>UGs$^> z%SC(|XgaTZF5$OJpx8UwiCL~P&<2rCZ))1oX_mc}__uXPC;r`zF0pmG>W_J4<%A5~ zh<$w&cY34*FuMb2zgav-eMCPpFwo<7IGIimc0o8Hg2tLfycvx8j?4^n7#fffi1pmd zwFBqjwvom%Bv&*!5<9IP#PZHr{(K%7F#yU0x#va_m!K^f&Vfe)dS?ZYELSsexY^I0 zfPU+<5Dpk1_rsA#=ob7yV|tcbfxau?vh5`}adrv;e8-*XBTXqH1fT8imNjwgJV)uI zN0OAd3v$3ecUh+h>{4cVlIye-B4!}e+Rd!1dvo8c=@D>B?OS_<49Wlw zvO`oF6|gyUBQLM)AlmFc%9RUU6zRC9gjJ!-|Ml2M0;G)F9P{fvVeyKCoPoS&%&AWk zY=s3E@?}2$K=atuWd_=&8UUKBbTbPnSlqn_lJ5r(>@!~(5;j^_AR57L%5-*(IOaoikTeDPCjjhgm_uILd z>3Aw+C~xIn_8#f{LX8Aumnq_;bX1DZ^rIo)us^ud%L(UcO@Z--9s>`={C^O2U7F&d zMSv?^a&f4pTj!hYuh`g3vmT_;W|64RSmSa=#FCAoc}cmK4_dc@ zPIo=aTE)(WrQvsAOzB=iFg&xPG6dztfr&_u1S@e%^fMj}ciqPV()IY(rjlT4xc?7! zT9eVH5d6mzz1D=&QNUC*P+VxsPR*c6xGNW~vOm8*~_XG(Kfc$eRZmeD)}M zPIPsoqcQjNSo&qVJ4fVY9Sn5Bfr%&i2CSkjdTh3L>j0vS1o{eXRVyzgy;k-mB|H^} zW1InHRH-Rf^d1}`BYw$+HR3_QUdL8zGvY1?z+Xuut6^{F=yW}rhtd>Pfj__kN;2)D zzzxb*SVwX~ilMVLf2Em6beU`Km7S`XIFl70Q?ijUm0|O`P=c(3DrblKe zZX!%(lGtz}1!6`G@ggsFotRDGoBai^by z5TBzSgtU2+2Wtgg0&Z;Zo)%7!anJ0Xnd@?Z zAl$MBbU$F6>bqJ!@x9(Yo(=nqb~*e3wUwuT1qUVpr58O#J|dJ2^FIk?>JAV#k5S%C zEQ4MN0Q{UN^8{4wowXuY)3vXmh;~;OO|iq?J>*s%R@l8{W@MvmK~xgiOszHrG_M8< z>DE~&0~uaRvlWD@2$>jTX?vr7HuZ%9_YqDpevEp0#(LWo zUnnhE1E_5i*A6_3ZRXwps%SQfq*^Oe!e-d}v3zGdm4Js zhMx{p55;7jm-stP;anbgxepK~h`@kV1u)yt`!nW0XH%NxKL{Uz)`y8MoY^yj#$)&! z(kwkY-j})E8E7?brYEV$ROq-28`qw@Hn^=&2TXzikUcBY4>y;kFn8iYk93Ni@2);& ziWJD9O2kG`2{7jx17#wY9sSCH-wXgOpOMgYPc_NnyMQkCq;=>mgUeKtp_ESRQ2Skr z$JQ>R-Zl-$qwc=<_-iJS7i3dl!lK6bP#-z8B^`&XTMMT&b}enQmMV0pBWfftD(R6U zO58y)P@3K=NAUHz_2^N2m3&Ho5_%S%VQ`?4N5DHaBsw_@A8sa^4ef<6yIL<#z0DAE zzch_;9E}MA+JtzrCRM84t@Lwh zWEsybMpo0L4Tt@`6jbuNe@x4#nQs@;ElNzWgc8a~}XA0^3OuxM0@O0ardFi#&#VO>e zTbrj}huvTzpP^^=8D8;7vQHdL=kF>qH89&SJnN&~oN0K+^*wude1q{hePprQL=$q` z;wvoC)5`n&s ze3pB2Gc&X3(CB>w%j;fcx*ls%#aUX?bk6{?=Vj)*r(9j_jv@Zlej81(TpvvhTt%BohgBfju*Q#`$9NR?pV^z^ex(ILM1+U}GYX_3!&JZX=g5KKnP%59JF?zEz_ z*nFi$r{~|W{PvXadB~C1YN=J92r0fK&=jKi5R9CsDMv`oYS(QU?!K0ia26p91PjP| zcmsd0j6oi6E^#}8)IQ=BG(M)Fx~VwQ{nMoR6IGO^)3NW`-j$D1jc)d85YJz}HyZwG z|AXnI5Tbfr$V_s_JfCGGW&N@i_MXUe1wivF|LZ7KS@9{!uV1~ov^z{^(fzfLo@_IO zF7v}?+Sm)3D?0eiMGQF1aP%F5n;#d1MaH^WHGjLna6v9u=EXJNQ(ff8`%Q20o>NNf zSD$D@m7iG(?7clZq^13N`O%II7T^578$~=&iTvVUvr1zmDWev9B`Pv{ZY`bTOW}M} z(6`}mCzf|#7}#t|S*npMC&=Q@1jEMMI(+LzZ%))q{iEF!GW+Fprt@@9fsaXdsk_%+ zT1kO>J?irhq&fq$u^AOTwK`v`BSI?n)$#RM_@h7bg>a@>0_nmS;BuBv-Sbtw_WO0U z0-5U)Dgu_N7b3cDb*znE;qE4|v%eSFn2dNF@|x?0p!i2gnpc|&e=UXm%`JZ3M>wEt z>xuLN(WOMhj%)AD?dGeO!?@Pp|7CpcK|+dXOteM_HdBqY|D7GdhJNn)NZU&u_w@}d zn#el>_PqH#0=r=PWT5}t{BS&*rrk4O@5%|ak=>uWL~UPwpH;QA+v@?xr9pD9VyJ70p2+Iog^kxp z?*uq|+MgeX_05~Ga2f<d$3p)k)`KVAU)aO4F|*DjqnSIiufq`o!+q2fJTmsBz~&2;rGVa2{IFyh=hog5MB;$gw6 zK1HX;cCt_n8@Y4&@Nf@G3Cp1Sv#Y*V=ij?~Y-<+DC=YEjCR^yFLKeym~(xAZlu!cnS$ZxJG_GMG- zT2n017s~Maw6kP|?AdQZN$03+@~#We=$5NFWU+X<*hqi(uX#SOkh_aWSrGm@O>(o) z=L&e5C+^@l*>CbKs66kZWUty|Gi?`I$9b~}?q--Gx21rabsZD z0o6ZnM9h=8@~6Yh*KY_&H?=!1`E&U@H^o*53*_ey{@(h9tlXBZ<~ljqkAm0CMN@qu zPF=jnK04c2o)SHcHekQ~6&oG0_eZ3zn|IVyXnz5)rBdbgRA(!ia9lR>>-UAV&KtEC zLN2Mtl{lQP{*yRXFb4)@$QGL`?ASb0R1LWuBTm&tKGQvUG3!#q{iI5_i#Lr|J!{Gx zFGpSlm%0nUeQ%j`>~GxI5ZJ3usodKML(hFxfB1&s0s(MaLYVpHv(Y)JZTk*rvb&u~ zj!0#BQQmobYWom@8L9CTt;I8F*nd)GaTg^k&^-^fq)N0B&4*PF^E+LN?`s`nu6(`9 z=A*;Q%YVYCx&LH0vqor-G8OCOdpU?WSB9x()`Nt@sOv1PS?wc5PJ5hJZQ%-?#d>)I zsfrKL=SF+;FR464RWl;f1z4f1Dt26sC5=i-u0!DVHX*#P=i4i9U(ZZ$ve#Wm?_g;ktr&fN9oIrIS`gk{U z60BclJ3POgS@AtxU0ySawS4C#?IYDOn#AE;me)`7lcnE31H&15A4d1x?kXFlv53}- zdCG^J8>zfPcl}!VPFZQM8z&Aaj=S4ocd#%=AG>wHL|c9F0+*A;&^y`!sR(*5y~fH5 zQjcFbJ73bG9Y1YUD=?GN6x%|gdH6dWe|yGMdEr9VjbH(v@tf5S+|FrP5kHpi|HHDk zc~uP6d~MZTYP*K@jS@smLu0?Xd2!I~d${foz=fwHGsM;ry{PT)L0mL`2_&Lw){_Gb$**T9%-5tC*Dzx_V^O)3Rg;wNwZ-GF$4 zzzQ+w{?YzEApJ4}&2^0F-AI}jku;$`25IB>=bj!WjO?@CL2tz0&6V@)o){fTgfebR z8dUY#K>+l7wJBC#%OxiKh9+ce%<&TAG=~J&P*>sw1GX`6$sGP;$O7EYXRY~cm7vZ2 zoOhF3(`*yn5{72JK8^G_ufK;k$}2d^AL?aDZYw0$PSdYo$T$J`rt)L01p+5XZ0T8UWGYRcvpEr84K*-A5b9RL^_W8 z&5qG81y(=jJ;HSS=}l@J=BwWBIk5ZdUen!#R~nLG0suFgc+HIc(GXNHF{&;BaJ(O8 z7z9A*flNr(bd8X*DEHenT7Kr2z#P9_mw@4^jEh>Wee`&nHMa(4>7v|Xy5ao~rHQnN zo8HnMB5fIl5hCB@WTUN@T5h&5JOFGvt5?r$FgZFBxj8nEdNBI3k9+Do<#x|Bs~u;E>1j>F%))Pvs(6AenfEzQQ>T@gnIpZv3HW|LKFBU zUwUNaBQ&i~j-JjHZIZMM{=+*j`j~ONdVKnbYYUqPE1n`>gxF+C&z*O@#F|pzWmw*V ze58=}?XrC7>|;&n4nim^S2v?~vh?cGZJ*kzXan$hy`?Qf zElpE)Z$Ez^2Xc|!m~l8)$`-mX`OUmAX|JDM3f$q}K{nLOJEO{SiA>w=oG?u*dprwZ zeCZxvwUnhp6k$cLfM2DOuoBSF;;`^7i&D0|50(8`;}-m04IzTX5otN`u8ijESdQCY z%LZ;yuT$d)tLUtp5P=S9owvVjT6v$sj{AU`4s5S;t7weYv%%V$X=fmpGP3p)wj8ZNgjiK*jMIut=gEIo^->a<sxqz2K5607okjF!$6G_QV>YQVH8{~^}Akit72Ag08!2$8-022Y?+;2IA?<1rtSE*Qvj zWHmZ-mqnXQLT3>ZYOef7Rxui59Zk8dzi-|=4{jYQd5R`lS7{^iw`(>e9P_i zs>hn={phppG&7y`G?{47Ce%^pJ6+6t2ry3f-K3(gMz=S*aZ)$ zhY<7w{<z-=(!U#x{)nhtB;oXj~@R)YiWGUq<@9>*yHb1)5|}p7kq#|4psZ{1&x`a5G_T zd~5gB>h8UMy$5$Kit0c5)du}JsQwPS8L&6#zDo6A)ZJUB`Z=2#ZYPNc?VD$tv0n zSijUbn~JbG>CIHZIZWt43s$rnR)#;FH2nCnbny|SUZfJvynIMvJnzbJGfK`uk(;ee zrvf>@=U0SCjx#kdmZG6MSLPO@Y10nI-VEEFSMCD7a%lv8I3d`)zri@lZ$msYhOhCAK{eu6E#>vRAf>k?<4#(6eF9 z@3bXQoO~C>-XmG!%T@neI0qvQ&pBnKylmE3qEm=4F#NXRs!AtDex1c+sS$N-&|+&GkX{XzozP-CDVa|Q0zCqwg!tf z_2fFdiO9Q9_#$_xIwE~UG+fK6GdwXO1&$d2SBRq)9!s(|Y-}aVLLnO8#coPUi}zta zSUQfqo51gxFlvzxq~5# z_!K-s(4-aEFgbc94W9BaGrPpb$O7Hpv<<^wDU|&yuw6RXY z6Dw#lhTiNDu4LK|ZR^E|zYz8;Cyi}}Eb`pGM-I@xxk11_i4jBYh?dB;R zy4(zjA7Oj9YV=*Pb?To|Wyyc)7^fQ*ThYtFuY|mL9ZCd~@{}xk|K^^masl?({cQY{ z%W`|g6$WM&41=8^x1P0`oK%gEzaKh|g9j{@hdHNSk#&xjv zpFVwav02hB^4k2C^7_rEWIXc)vGT*@g!uZz`<)v|^|Ss#{#v}PjzA>*&cVI6_^&(t zb>TuqY(wD5w|=7bMuSb)DpzLITTKUP{{FgrX@8;sQp834X0@qitXz5)aPuWtVMs-Z`)WUUCV;J< z!3EyDC%NA%Bo@*Gclii6LtadKu9vrEeZk-kaEmm6;q|!yH?3B@?YeLJB-Lbo26+Ipf(K6`N*Z z71hboMVH>!biT$)4}9LS_1kchCPM_=q*wuYxEZWf>^?#+^t_eBrWtLk6yAJIvT3zd zQ>wLid#d#cqI~nPOh8CY)mZke9*wAkKR`y-m|St>YsMBRji3vB65StMs(6HNCm`jM zzH`^=243FVk3>%w4Ly{-UDQ@;LJ{#8)%03zW0K_~f-j4k>1Pj>yS9I-5 zq2TLnF=J&{<2GI+@lG6Ov_0V?G0b{bEUr7+W9@a~@S^O*&4+uK%^T*T=`Ldy&AW_u zt1c)4GnpJM3|}xI@E-OOu?xwaG(lu7%c90*Z&N&zvCdV0qrX~<&(QGI8I*nrmu~s+ zQOJI@`I_+=-K$>?#h#%NB-V;y@$9OivRU94({*gcd&+#kg4TUaD|Egk5zW__xH1HD z-6cGPZ5{;Q`Rb3z39Ytcm3^3aP~X5@zVzd*off(?{FR2VgFtvT!ul{{Nv;28IE}Lk}47ho7;-0ax`MArti70XJz<_mc z%l^Ynp3U^X1#So4XdhXdi%(y?eb0zT1W>=&@(~S_uDlbSU%Cr-?*WirwcdJ*G|9}7 z(V6Z8{*WlmXu^V{x%5q(Y#e6P(@z|+kBD>F?}0}xN3>#3G~7m4d~IYwWoeV27*b@@zV%vpi_g2wXM9_WY4sp&dCC;C z?BQ}(W+M`o9%|i$UU3h8Z>@S2(D${gO&JQj)`jhSs@{G5aIpg70w{${#%;1jA53*T z$8P^y?f1PE8>W4B^CnaPIDWqb|EGS|GPr}S9JQI2v(;5mxbkizzaeJLViCK{r9nEG zB?5Y{p5A>nV@WY9(OFTcrf$-=n%&E%%EY7#l%@K(EYutyN>z*X3Fea^J$!Sx6_RQH zLkE4{)!9VCWx5CP`B5azV#?_j%kYl%fjchmb5>91{r%D(`bJ5K`_IUIuNN)j!Zh^* z3Z>Yvfiw>PdQGM?-JaiMHS;RAwnV#ECR@$P4xyF|*J3G^1B*m*#D zp!Gz-NqXJrveBjI|FYJyxt^OB!XaO;^>kkY|Dk;@xT*130zZo&dSag+kxu^_JDKj9 z7VTu$dA+_FXByO&@rT~#mP>E@tFkNR0FOgqVq058Y;#dcWU(_vSb__)F)Cb)D-x&$X^=tQTIs?!?-dgDqL6uCS7Qb;kj? z@JH^dmvpR$SsfiwFGyvyf%1h#cnkd0dVpHc90J(aY-UT+KuIWSi$aJd_*j0o%}C)o z31TG>P|T}Q9FNk4A``|s8pbLT7E)dGhxKHcj`{<>!4tz!lgF@!+7G8vIMCmJ(57Oa zCsFWm4YEvlGTrp+L6dg#_cSgA*|-;INvEyiP1n|xVt(Erp(@W6XaDpVv35g2BxUHBgD^_ z4*f3p%l1FMrz^UgmuUT2?iFbK6cFeek=%p6E8F{AwiDSU)(0OCZOFHQY;V%0ak4j( zMZyIc`CTHz>0E z7d2P*y!WB#jJgtEEb=YV|Ik)*e@Z+Q9CRMe2#x-Nq50l(rotzipR26o_Yc_CL|9R$ z6rlzX9&uU&dRK;rG~!`iQ6hfX2Cmnq38%|-GH!LS@!=xP`VfY@GqMoRDcdo~m_k7( zr4v@JOu&$Wq10NH%eIiMLejgT^{c)l+!D&7v%`QzQPJ=$z@fulXI$&VUO#T%%528s zr9u)g)|hax#DD%@p%m5o4})6kAi%}e9$Y&9w07HLt7$4wG2fIWopCrF-yEUhR#hfs zg-_iI$_Ra;0#piWPl@?4S6!1+sE%DEw^QP}(W|{4t^GhtEzRLS`>AV?Lv9XY; zAr|MP{E9$d#*>WreAjT)yOD&E`6<8A?go!$_5>vZFXqa-2>BU6fN|$CFV&M*m777| z|DyEZfJ(2elF4nlD1s;``}SdR-G?yOyIg^@HUTZx>QM5wL~q)Eh9;`zw7W7M(X<|> zfFJGD5{KzR$=K&Q8P@R^YdG&IK?ikL;^Rg4Mb%eK*Y3}@l+F^r&>k&Xh_qY$9N|+} z?5MgHs9M`Ma%x3Bd-?KN<#$L}$iZcIp-Re2@OBgtu^v`hu(H>_=Lt#z?CrE_KSHGb zX!02CpCRZsr>3~>-S8HwH_!EqL4hpd9fSTy0A!gCM|6Y)^7Ip|pfMv^qOzrSPXmlb zTKWMa!X##Q%GCrNc9wuFU-`+T^OCYhI$uUrQ3vUJyqNCNdq;9UNl%;C0n#CK%uJmi z0ntnM4n(G8h{7vgzNQh23Y@$x02XG$rz;fHG(ll=4s2V5w5z|pM^%7 zHRWGfU$??m2uwo{HR4saL^J-b%;`TX^ZGxm)_6;Fuu6kaTc80Ay!@+nu?qg7_i(=% zi{dr&NRVUx(+E~72}l$PsoHQ+;22LH7-Ru?5w~${iesY}5RbVzRQ~!t&#z%Oe?1Bn zBYE=}!DwLdgZOPo+v3}&@BG^Ww3EiZPE;GiSM8K=bRlNl6(4FnfZHsdks7i97u;HzFrV)M3|@1%u-O!P78S&Q z^jDyyrEh(AX)6&O_3viTf1B0w+Y3%7Z+fksB%aKwMCL-kF3n1_#(+- zH-oXcWMG(Ke@l4i&aAiO-C@S}X3e?@N6Zq4^|Xu52NMNRDszU(8S>|{1!@26fq~r> z`zVj|?{4{SvPIW~nLi_sqW^HOFC{+zC(n|2Jdz{q6cu~hpvK>oJ`yyw(ai>7Qm-0x zEPC%zZZh_&$1xSCeK%<|^f=0{gucM%14h=gsmBDbDDkQ!c1$zS;D>EU{5N<+^Re!u z=Q@}*M<~GSE8_W&ofuXL9K22V$^0&_+mKWTM07fsi4L=LmG+8UJAy14#1B9Vdh3tQ z>IJJR(n%`HaX(q{)CUB-~I76#W)+`DB)}!6AM=G2yA9a*H4-X^BW1={7uW-h#7UuAA!I->T-zK$XyO>q+ z*i;p{wUocLHc>xZxUKQ-yS-s6BFeR!k7Rzjo8&XOV)L6HC#wBH>nq^V4I%H(L-JG7 ziTHcih$L|xWG_*Mi`Q^4J(YfcWc3{9e7c{vlb(w;J z-G_}wgA~PglW4K1o_DRgZPY1*oVV1s2>7kGt!3_$jpA$bnYswPf?ez_-CO~}TbAm$A2+(2Z91avlvxQHY$>x1|Cba!^_Q^A3y7>DqWoeOfBtq}$|BT~^_&!Wbdk8?^UbpPN3&-Wv;*^KO zT6H#(W7b6LR_K}0r(E54vj`ISaH1%ac&#u)5-b2^u2wYHc`j_Z;%n-BxqDn&FkSA^ zyzOv=jd!?QiDmRXwj zc}bbSE77xM?wuR$5od8i8$zURq`-qKhXh|KHhu=E7KaWg)k(Uz?jT&MK%Uno5@3=V z^ffn}@a1UW(jYjIPLJ`YQNX&ki#WNa(Ky2-nP`@256hcnU}GwYxiFlE{T%;(Akk26 z1%;vo0jLhe2}v-mJ0U5)e@cmO^e#&k&-MY$v!^qz?hXPi8IajdDsHGdj&G=eyv^Noueq@;56lSc}1(XVQemDFJr_8cKa-TP$3Y z4JWU%>CS|`#G|3ba%wl;V7f{8Z?%du;68u!vUOD=TcV2dN3qZe`Lkcb*)CVLuZ2o* z>Dr&;LtpTJCU;4)dzi|3NCt>roc4)$ExJ)sg zjJPSq!d>O`VY;V!qo42%+#%UuV(HhHIl_@lCLya%;oK0(&c_eG!;U(x9J$eok@g(& zsQ)eq%|8ng&YDAQO=*qw?CeRh@04-Z)1B__CepwYwe;N1n#4C+5iE@K29xPNKt8M+ zi&Exxxx$#PT0zosTCK2~T+#yy{iSa|zX#M8V3Qw~eWL1+P-I|^?$8__%fprMaRo~j z;6_xVrn9+iB=N@jTN7dfJXm@PTY`aE^$dF1w?4+ck*&X5%$w7D+*2Od zZ9@Pedccj0kNm~UloX&f2fDiiZql@0Gb!8mpeA`iHdUYrtKNcP6mCDUY!W`@4@JIj z1URjqt*WaQO?PsKa95aj%Ey<$27|%;(`E2?>bxGhESq`g`V%t0R7UG6%~b=qinfNz zUFdOe#?4As@l&eyR!-0HXTw7PPBNSr&TOx2)0Eg84}}+1k>ZmQwkCQ9G~<(Ma%GA1 z`7>(O$KmJn8}uf~JVq5sT;%l!%!!)gX>6D4B8^n`-?$(&CkmiRWtfOUk=J562?DYj ztRy}Q1^7n&Q21ZI!F~@P(og~=@*1+5hmYOZXy`|vn~k$}XFp;Bt82w_1hR9-%1JBS z#~t}r^=pRY)>Htia(WW~pqGE4?CYsK($`-%CwtMIarlne9<#}(Hy54378-R!B?q zaL8O;xw5m*s%KMKIdU~I+v8Bb!`%02Uw4LYP2M`8u-qrGa}~r=1V25c{)$)Z$#2Cr=ISI794i691jE_0R~slI*o}9>Pi;-lxkC9HY2~(a>l8&q=?Bs5 z;*a203#G)4Km%?`&A%Ci@IQMEA&BW%3gc2k{-V$Y^pK!Bnf1B&)JG;OJ5-r7>Vks` z_T0u*WkYft5>L;lnH`jCU*Mw=I1jQjYPqZe*{gorU#WI+=WK0A1yRm;aakYMAm~7+ zl*0moHhmAa%##)98me*;L_HleTu?5HhNXHGRPnvi#S9)5|h2X)}oQWjn;8NRBgxk0ldf2crZKne6?c- zwRr4V)KQ$?$BxAU@+vpJL%T(NnY(u{{|iV_Z1*K2WumS`^~H!5%y)`42w*@J9(G-r z`|oe~zT`4E1q25ZUgrj&qwWeSuw1U1ZjH-X=N0s>l;N-2Y~L8nmf`?s4S!!-+EDzI zhrGf@h78(J^-XO-Lw5dF1aD4$iYSYk^@oI={N`lpU~STcM|!a3rc;h*U1~_NN1tOV z>%sK)3NZ0WzvA8ugI2WH#tQ%K1(;4~ZVRm~uz*~8=mM6!iX;@$NuBNf)`%{mkv9f& z_G~JgrQkmtv5}txLa?Gqieob=Oe?hB0XA|J>J%}Rt9J{UZ?6SS&hRRBW&T}>~Q*sy>@b=@tJZjD^~~e zUSfp^n=(qLxL8z#{)BXTB1guf5N<^sy(ZkRnH!_obRuX~S$a^$Uzyi4IInc<;s%%MH{+t*TxB($6iad;0n1z6A)BT5yg(k#X!?3Xd)r5ZHwTE0k(U#-_CdUM9yg{fkF2>ZLrDOYy|FZzD0}x7V%J0`AMS zx$}r<4GgvAiTart@K-|i1FAuOFgv=Ft*#pR?HXc#`EbPW?K2io!*<$IUMZl|B_%%*nu zzERt1IPYO&uK&V@oZ@wdbnVH)zEJ0z6J}aJq=Bfv`3VKq2NwA?WkO+X?urEhKjnjs zTNPhj@-dsi}M2-PpqrCwE6P!fkD;)8DppRWH14Uv+T6U-FGs5S!aT^1cvCoicKgR zTjeoqcB2ad)1Pqw0*v)^bWMQAhD*3`M)zlJa)Z1zq+3#u9} z=<*0=yI?<`SWdMnq!|RU*4krF z|CuHMh|liAeym4+wIC(6rPha^y+%u`fh+=-t{_zK3Y+c7A7WvZu(41<$Rfwn2b{wI zhPzwcZXX;JH!iqe0JJa?Q;ItK{e1eFAhw`j04K3yf)@&>C~zYooELLrKJPVcRi4E5 zx`R~F%@rn(_m9qK11*>HOmgS7G_f5hwiVBcw^o4d*#T~Q?iof-K>=J3au>O7TEX-OnzaHH{`6@(O~hX-mFY zwv!nt=)RXckM%;(B7!nDrHZ0yL)xc9!m_k8efW=pAs zxS~(^(6c7O+X<#>`7EJIb5|RNPS1UK!ggWh|^_Le+dzSE7i! zhW4}Ku^jQzf!iOWhF(yB@9MW#2^No=04;0B{`Oytp{YdNujmzVEIpS6=M$TT9g*BP~rI-&;(Sp{z{a#NKw_N`=43{>y!9Zj5<5J`7wtg6lzL!GG8c2B`{J zNn>?lft9ClmO9Y$HM0UAs;~nE)L#}|`*aH2b#V)@nh5cqEBAksR?dnzvtZwV3B}0o zvh)5l;FAhkvLc&~QEMrW<5#b;<(G-K0<|uO70%X7dWRRJ`_{ZMY~oB0J<$ZNxlCEs zZBwSZIK1yZ6meU(-XD)UuBA2B=+~@?MlXSWo=z?*9`BKrG2B^{Pv!lQsS6R+zBjYG zZdWwSZ&S`t`^xuh{v8aw_rdUmwTt7S=J2M_$Zd=f^C``Qk`>VR&5*FwSE86jkEzT3gm^>m}#MWinBnHHj% zmO@2L%H$i)q)?Yaig{y~JGOl(V_y>3@Go3v-oy2Wuc3L^+Su9;d<6+{|C*F4%OW$u zZx7R0oDo1v4a8xUG@@w&mq7Rz zTAtJ)K!Wq6$h^#6VmDqUrA59PYA-LWWd>9InImT?U=(z`{I9Gz6D0b#tm*Kd({reD zTX;WsIV%c?Cku#>!@i_E@ldZ{F?|I7!e#vSEhp3J1>o%5w*c3zb3LUKBB)GcHR6Oe z9C5P4i)?m9t|)^757=s~Fa`;S!!2n!+qPNPRO=bV^^TtF_3LR3Thtf=HDrOCj8AcU zSC*5NP*45qQ!6E+$Ns4+b#`dhhX;FDjw(%DyHkDa`vdC(n+u9Wk82bu+xAyti;HUA z?X8G%CLOc=B^|22%#!)vZsG**G}5|`l@|)vjmP{+QDXx41elGrs{oTNe?o}(9Mrw5BiTPzD8tz}AZp*v12w9H&>z*N!tzOw?19BwBfjJa~` zT64L)cfGm1XCTyEX#q#3@hXjl>t6W-@bjUVG}!+%hUYF6E0uHSVKgqN7hFY}+11>U zpr-=$PMJ@u0BUyZhgW@Y?F6kHud?9d5*MG5k)Z&KOGoooO775BQ2yB>4hfmH`=$>< zK-hpeAQ)CFu<}oqI)<>jj?yr+#}QGCkNZ_OwZN#WboZ-~nV9x+0J7e`%bNO3b+lR{Uu^@y(yjmK?|is#&}gAlZl3Le>nCFFl1eMz}&k{2g*l zZupjR3WoPwmnel&uNrrGA|MC%oJ6S}6_6(`?m|wSMtX;)k|I(PinP?>CwzxU_bK*f zT|inI#>;8Ps9O^7`bN`s+9l0oGDo*|5*xCK-`t)0XxsDrR4X7{-&p?Y?sh-S&8fn; zo$r3~R@}v)(RsnOscb=b#NgUs3aSc%T@jEFC~B}1X6i5IRY4I!%cu2Sqg0fgt%LLl zKxR@hVp(bhtb?n)8z3_Qx5{kV-QJeUFvxOFy`WmI^gsjFws~T9&QS~u;cqA+-RDvM{F}pweDGQ>!f!#X_CnUwy4kS+8q>b!PeqFp6fbw z2U~J7R9VoSTYR`g;^t&w5h)IzxVJ@aJoPe;;yO?3uQySD3${ z`azXJDEJV>Z*!O!4jAyo8;)(yw^|17X7ro`_qmGU#SuBB7GCKwOz~39mIJkLavx78 z!$Nx3&&vt0np?wOMwqWMrQV{B%(b==WN9gTpO~T2&_GBhu{%fkEOn@iF4Lf|z(r95O(t#63 zJnUlzIdl3^kZ&*)A(YLd?ZeHw}Q1RDAbmbd_b$WIpgka z*3`w6WKOdqYZ!YB>0Z9=bYu0mQ5M%Ia<%>68>-<96}l8^+Cy=y?eeeKM%0FPdA2H# zGvEbc#9rs8{QeoObVUlKX(bCjPUY~$)&-B7;aTx$HS0*0^%8@MsHFVGew=&626|8?A5TLgeD2>X8u)eVXBEf!T05+^KTP6`Ehpzdj^AfH^4P zx;o_hH)k+Z^x23`-nsYoa^icX3N2&`ljge$sTbU0+)+-a*$%ISG}om)SyM{sj#h%1 z&$@&PbCDaaOi-Fn+l2ZAK&>w}2*XK)uOjUHjslb#BwtVmi+{=$w;`HjkONDL9oVg< zPF7gdhqIrg=b6vB^lz)nnZ?6z0*YzhzB1zUNA#8@R=9I`ypDliODi6AlIJ!p?!zVE zIpYMw1-xrAFYKuTBvs3<7H#V0uE@}(deTYUW;NZal{o*jFa~}jvJ|z&1Idags!4#) z#2VTV6tzEunI=ZM`Nee!mmb+hUeEvRWZYO56@;vda884_wS5&*`&CXOj;eKL<c~JE#&j4Bo)`Pera4reG%pbAw5NYl;e$S&&*6}b_ zC2xa^AJa5eqHnm*O$R%S{71plVAHA|QTU{D_GDqL*U{0{v4`5nmnv_)2!v&c#Ov4b z*y~?xO)~cQR$m>Dt}fY|DDgtLXWwmc0RYBM=hcM59o%pVA7OVDlO`L=|B3-zF#R zYfwq~#NN0{wa~A(Vp4(GvTORc9U?092R{u3FK`)&?cl`_+K7$Ol^#X=2ZE_4vPP}( zVa!QJ{m)mIjJg$Ja`jj_+t=IVOus&QTU+kvO+w-fm~g(lcfV8>*1h?RY~|758~eh^ ze+}#DL8jYP{!`+Q2{Yp%M(Xp0%Zivtn@NTCm#|t6@`%TnZ3`@LZWf&)AnxpreMYBC z5s?bZ<3-xZ*yMz=k{^F4EU(dcBi}yVn)>EVy2Wm^N#4NWi4_ozXu@Bt7CyJ$#=s3? z)=4C;=lp3_L3FV;#OV;t-;o-$5_c%<>S`VjJ~N};`a`>L5ZrUD_&wgCtl8cY-%^l- ztycU{(MB@Gn1J*7PF*r`@-)Z_QL8N=P)SLdk@3#`t76?(fwK`3>6d*XDTZqv+By@< zaJK97vv_-Ryn(q0=;xJ*_V9HEU8>-pH`{N28!;WhF&#M6R2?_Hi8m9i?SlMM-k{|K z=u1qr)v$Q3O;>xq-qXI+#l9`-0k662H>03qJvoqSfb|+YB~4Mz6j{md*Jz4TqrL8K zYNz!`H#**H7dRQTpHE|pc&$S;QevU=9p%)Bb{ZOzF}U8bsjd*-@t~St`EMDhTWrjl zGTMg#B#nd(l+|^ex*noE8Y(cbDBk~=5%{slw5L}Ze*mh3qIrCDF}=x`k-BWyfuhH@ z*8YC1L}LUpZXn1>kG}@bqrA8bz-&0W{ouIEzf>`Gd&{iJ!Pplm1U8xdMd4Zd*Z7n>AkWmLbYs9KGUeJ+}d5QBo&rk>y`cot`-`-d` z4v*OJXqi^H)Fi=*21mzuAu2{dcn?k73moaa3tT3%69MkS(M)%gct}rw6KBG?y&j?HsenDaNOmLs_#bm>ISoY#ZP8@XCe|1y#Iw_;goL_uFN@GpRfm4m1b zr}E)Kdl$}+w)fpM8uyR_!c&(H4l7cF!q8qZas&=7B1z-*$<&S@0*gO>6L*ldvl#z% zaaGHPP>YU3Shfx1*_kNR^u)-}!U}b(Gte^9I{gQl(jsl$7UE&UcXjrhVnJ~FIOaBA zBmc7fZmIMu=a(3&R;{}l6|H!k=`x?&`q$i9;c5WncQJWre#}uv&RBnT=!e~`*&TiZ z5#Wt}0Mjp$bNo&9=g>xRqk#+Qp+BC3z z!CGKam$40=&E<`bR=RL()ih+(mblLqMG6=|GG7`cq1Xg(x7c)fR!oh8thCJ3_&@z^ z3hQ3m*u9{b4rHYnB4B?$h1w99Fu>LIZiQ%#;CSj;I?=S;02i-l9tFaACx^MFAyL+b zZJoqJLjLnwa-&e8tSy5c)>h3JaNN3K!`8SNk^NfaEI+>_oL^iQEV$2@1Hl=~8Zr07 zFop4zmHr#(!hB5J3i*=%ASU{g6OV|7SwwNefxUjbggwpz@Rcs)Qwu0mZKMZN2va#9$} z=fKQ7067+2?MLUftTwnT#N^mVAUg@(lA>Xyow#ayGp@W@W!;~_0?O3*|bT(XM^91<2R_dSfqS~M5jbkme||MxBbh=lGlCUqk=pPaMVAMKFr$jQ)E!#MvMi@3V12SLJWgBJm*Y zZs^)_Pn1sW6`0O^-s8=jO`)Hfka|n}u7u0+rlqg{!;4bsp3NORdFtcj<`n`99ts42B=PrgL8PB>(A<*;FT{QGC z(x*ct@TBG8edyc?+H`p7jl`B%}&QnhbGGax)+S(>h{wm+} zO^Gu*J33s|OF|seL`TnsuhT~hM;lr0%2#M!x~1T%FsX&ov4rdIFX0LZuDiV~ncg$O zZO5Yq#=83*+^=2}zV1M8E72UU%%BF#<)w0Rv6^vLNb!#GPALM@{lDiR1u$rDh<8&{ zU;;Nqtf$5HNVS8`gX^37IV8GAeQEFnaKP1p4J{(=h<>6c(GF$}#}6feeS_><%Dww0 zw7xpx&IyFhsKqO{qS#Cj!7;c*lNIFfT9+ANxAw57ZP}Rw~#@4pv+2<8*n{cZ`B4 z>#TvV|9yodCHh|3O4H2C?q4SuN8uheeF#DHC<@3Pk_+N-UV%@rzr3q=J+V{?_xpZ2w+kg65hY9=UuE{*&GHn zTx^;*rJwUl^)!(`IhxIIt2y-xQU>-6M=*J~=@VYWou$kkFj-o0=)nod7CTQ*{=K1%**4m4%Y$b=*HwQRg-*f&~0gXQHV9Ea3zY{)ZF4pYOuJ zdh$c9Zw3H9A)KF@m=v2%TRXgD&Td30PUL4A{itB+qlwYEH%jyw(67>GRmMx6moQ%D z0kaIO#w4On86Ag0mlSTct-c_9LEZc0bv$G75bl5*y>N~zAOJSm#xcA-qSd=A^#*i} zk@Ic51N~8VseCN`ujT+-Rx>70vrb#$CI&Al@xFTc*GI>1E6pe`!Fe*)AHRWIsIGVc z1Pga+Zr`jhQDCa~HJO<4lpp_l+@r|=f59e@H3!LB*c$)YvPA=umoOhkepjibTsJ=9 zx`PJ=(jmH(0Pi|~e9^*EMPlpwTbK<9v_~}I`{R||ME8Js@Rx(4(F>Q(oRH#2Xb<1+ zH%Xu$HD3}R3R}&z_>9u(ojBkAe)}@q~xlW`QWPylckr2(Al<$ zGzeSOx8_)uPmyT1qvjuD;p8x%50yO`a5Tv3(PkpFsUf{mJdmJ^S(Pps5`{8 zRD{-r$*}5Ic^8hn*4*ILh}AvsqRsho8s^M6%jH@PnTg{|xNyaOcPBu)s5y8d=ZnnP z3$<{AUk2JTM(A6FOqzo(*jEGv9qYko9{-k~hvJ6ZFaZpKC+ds%iI!BzXf~~nD4R!jE5OK!s$%HPK>qFI-w{Ag!wv~P*NFzo|mTaLODgm!d&tb1B?r< zQhk%X7wvO*X+2{Zs(SVV2HNg++l{f^+lbywUGk=$;uQ%N*9Nb8R{;k*wFi_iUp&Y4 zzCaH&1y-jXM_>p0f5q`j$@aro)Sj%O8|jxAo>-|x{6Lb6dA`r2)$D^WjA+d*K)oAS zfJO|;6|nwNv+GTGv!PDb@R76W4N?z+7F`}kn_FIlr1)~?tGT*!Cn zOwE`C7@<`YUHZ;nD1bLb9zGE9&h>7ahxmw(_t_|&=K#^uJ!?%trcvdI26ev{EQ3FH zCz@PiJK0lCgY21zMSaH+3S-h3ZL&DzAiSVC43fgvG1IE$V>u;?EUwvSxkxGtf$N+& z&v$=(8R7Bl4hjF$B-Iz~%_n!*0I4sxAGf^6%HV~wasxRo>1KJlSwa%1uS4K>@M=w}Gq*g&LFq7YQc0rCGV$6sVDFYht-K{e5FZ_k1@n zYjzL?;(X#`HMQSj8Wp*SWJ#nRp=D_-*?Rp&D1t@9haWxN)drc|v-a)4_DaC~2k`P{ zeQVQc_v_0D7uo@{mD_W2B0a6}p$|O|#awSs<@z_BQ;vi2 z`rE^Fh(~kfEIxdHz+O+%^T?5uXOJD#Y_wTN%7YLT*_F;F7_J~>+E(r`X3`9=1bCC{ z{2g)+9T{f6OONJN-EMdXHr5f`e;!+d`spifa~xzB zsH{fI%yp{O_Jl%20qJ z(d@&dA?Hb1x=&4!!B8go@zuIuI>{`iGI*kkPxs;EtJ*yj0Tj_I3d1-yF~a#qLI?VUGcg{VjPjRF$@R(Dxh${frZb(g^uXVc zgfAV72M@Nll{htH(rmxSiaPK6j0(@dZp25NzQ+kdXSGrTO0b*V9xm7smdfW;5-#6 z_r=X!cD97c8nRsZ#J;Eoxk$h0?Tci_+?=dpZuQnoiJy~8Zj8=_xbJV46;EhJVE=Vu z^|ShoYidy>-S9ic`7zy*8!U_Fc05!l5{yDkP#PYN0p=`Q=aaXUG9b;daPjkx)CIHU z@V5#PX|40^O?s>jKg|kW7+jp5ZjR>>-6oqyTI>Q>d?RKd){DmdVw1%^dXX$vO~eTa zEbg=6WH}2GR=F+~J1Zi_niT>@yL4QnQ;?Z3G@w<0rMY+-0xlKYL-(b>fQFBCs`k~>w5ZKT#$ROrGMd4WmO zXSAfUGems2*$ng2sXpFJI)CZaedqT>x%y_W9Y%U?1XdH$7I$iB1_ds`zRo=rF4SJ&gGBNyASDK9`+$?g514}Epq)>yW9ECc;$a7{R*>VPL?GH$ybn~^xWmZXi zAf4pNqX0kl<8ZXcC+Fu<#lsk0U+js@vdd$BJ^Hobpu^-^m7i_G6^7zQ8g4gw^5agoWHPj$4X1P83od{1Fh@}x0 zq1Qph=S|z2e7$(@KxRd=Kg<6WO7xkuuvnxfq-6bfb^43Mi=<||ZBM&tr~hl1A6)Jk zDLX$#nHkS?D&Wi8mJ_x8fjN7A+_jo9U3I<;7LtGR_#jiPovqS}Z~&N&V!3+y(*YKf z`t8I0#G|N|kx5W9AB?JIxmpAmvG3Y*N)lJM)3P=5QPxapu z&RC-Wx3190C>??&#djw(P~4H+EsMhXexycY0=_Xy1QIv0?gBC$=vAr)x;Uw&Q6ys9q^;bq}18^U2-F??i>t1t!p8+}byD$3`>v9xrtNeNoW_y^AP_)gvw}snsD-d?@ z_Y%j-bV{*+;V=w#!7SSE*9VNvoJkb&=+x-to-%k5ID${*Z`Vj5E`ZwW`yE~O$U-Pb z2A^jLJ_{TqPspuVddX?IBGnK+KH}1~{)p75IkA3;bsF?|JfFD7Lq0WpZDs%EaeFjo zRt>uqu5WWjh-qB#$7WS2q6ucPMl+d@zu!6MjK^pRoE?#L$!aI9b9yC^FU)z8i&1z8 z2N_Quf=(_EFf$->C4iA+qEhm_Xj|=<>GW5EqLAl^*)6$xm&4KN!iB1ZVF5s(fvj^; z0fMEVgv#zct62mHBOZ2g?j|Zml=8W>j}%38+kqDKTp-a+FMBwn9Q323(Phy;H^NYY06hNz5quO9s3Cd z&#TCWpI>T8{u^eQ69DDZmra`y_cvF%ql zTgOr%Bc*iP@KZTYJ+VCd=u?%wP_Ir*hHdt-Qn@A7Dt-3m+Hrt`nq@zH9lq8xu;;#p;i=g)979R_t#@LE@_!`8 z-;AU8P)7Gi7MaNKD`8MebyjhTW^|B4Abu#Tcgx2`lOLt$hd(}@+CJT%54EL!;z}$} zH91{#{0i5Q2{e7VtN&AhUl$!4L)M}x=*eq(w!{`B;kNegkI}JSy&a199r*ddgX_l_ z=+}_i(xH}+WCy?j15D!El`^|SDIllgl4r=ef8FxJeI65}AW5^QO_2+w%HkSJ6@qM5 zpx4Z4>~o*}<9k%KQI~jC?{TMRoH7N`^(2IimTiFrMjNr2V;n~ZTFUmz5eM%}Oa)6m zHa!LwCxx#w$CWS`@1#ymNwm1_P^k<+b5>kKW?EKW4_t7ue;+~eWL`JvjizFewhiQH zl?%gbwznHjP-IPy%EM^>R z{aXK&<4{&XNu9%3ym?K}#4!i8eRZ>QBU`3u)c;MAFm8reQ`mY>U5KvV)&=DWmwbi( z#7)u(=UJTI^Vn1_S{I9e&`=$8b1SJ=T2w$-S;p-v&R1>fn(r?0paH08ip`pY`Eg9* zyS>@JNp*r3e;`F{Kf{6FSF^UD1 z`he!NSdx5^ zu!Yu2p;)nspuL_mTYhb%=`k%u!ctZIc#0#t+cfISo2EG5tiF<$(K|n_^F-geFapN%lh{Q1f@Yh8U&FLB&4JfX=zZpL%O?>Zjc56r5gdabPGsJ zcXxN!H`{ZL_uTc}KMOrBU3&JsGxI#Znt3D1B%HR5@SYt=?)luiytrFBc(pY9eyF+o z?1zkp4Hf&dSaByy>`v!kiB5OEJ*U}E*QhkI9bC!(C93T$nyA^92{@5vocWS}{J40! zJkB~gdB^py?kg_ZIrzI>>C8VZZx6{wEk>F}qE0uPBgTVwe%U{dnkuZhuenYab)TcAfp3=~g zmQcR?Sk}$x2eJvzmv^e|7+rFVeP~xbozruagA5cUI_Y{e>e4Ey?^>Gmb4hyN7U_@$ zI9dodayYOfZoL2ji2VhYqM4fh7=3jgBDFF4KdL|1t9Yv_u6}|c;&Xzau5Gp36)a{V z=YBOewu;bB^#7gT5iJsrx85J8dvyKXAF3AV&5rydNUsZ|p{fdwr&_U8>p^ zTG9A~?rGb5m*m*OpJpCN*z4)s8%AC|5;gT_MDgDQR08ZRe>`dBzGP?&GQg;WGJqqy z%I*ES9k==st6ju|U7s<~38wSmTquP|d*etwPH$dloiE>)jf6r+Z@2<@XH>Vw;8# z=s$xW@+L~sd_(k5T+{0$8R}?Zgdc-L2+qFt!xwvCms;P7Tdt2s0r0-GW_v-I74&lc zXD2Jexdkc!@GSv5_r-18zI_*ZF&-YSZoTHP1F=@;-0Qmv29N#trA)LC_9t%A{_68L zn9*h$C6uMwzwGT=X~_3Ge7?~<5A(Vd-BfHjT} z{WPt=OIrFF%xd3oMcVhng)Psh4tgr^U;5@i`P)`>gAF`IeC|d|(~nRNE-)Xvf2;vz zW~+M$lcSk#p~?5ouQV^bgA53P-g#ZN1Oe^NsI$gmo8OtY;>|}?u<}`#PUUgKf~YuH ze8d`(x-yErv`(e0ts&v22^nhHEwPMg2_Y*e3Q#>=K##a=w;Afi-23856UZKq<(VUD z?ePRXzJu_qHw0CBCV33lh52ZA2nabFTN7amQ`M>iuC*tf(mx2DBJExJ?=%z$fjC{g zi8(i1S<#-mTe&AUq2~7E%g6s$m8h@%q8-Y!1}ECH(+@U0)(A{9>-*3C+b$KVQ*YL;A_osm=a)eh(v^@|LFs zY1;Z=Xgy7&UH>rhHm~D_bf~ZE$YQn_5B9v*2A#fGWCysf>>h_zqwSEilm5Evfz}O^sBk$fH_>{f&8X9vYyq^Qh`)Nx^ZH~()|xDRm-2%2cjk+I2{dl5 z=84c#oPV>uPKJr^3rI}_iowHpiX$&-r!BCEuTC=JY5_R}WyrZF|n6WR8}hfN4gy@FAd z2OoUl*GI}Z#+>qG{YHa=mL-8{40@UQjGLc@Tjc)8^avHzM)nwvkB=wrPkhm`mS|xS zqzdZ^84xI7bk(Xj9Qc-}l7#=h|M7&!!O78~u>bx+p@*^B9Z}@wOGnCh(V5w`Bp5yAq=tW1KWO~qwEw@Mg zN_tJ_*PJ%;H7925z>V*^tG2QcRPgM@&=itq{{fv;Lk3sBn{2CuMIG`1M|^sEXe{pg zJ9)BkxVrmc6{GDhQyJ)4+i@Yg_jg0*Bs;1SdM|n_<7MC@&{}MfcAaLLU%l z)o4F_xM&3k^n(y$E1kyU4=vz7N{>HLdfjkpr~PW|uj8|%>#ujPVMP`67ZMqFUH)Zg zCz?S26NKUvYlO8Tx1?ok6th>%K5=_&1Q2^abU7;9TMlL`t!F79CnbJ=^2M2Q(d>Ri z`+jFwwp7v)eXt1|+NAY_> zMEAt%6TzBtoP;LJ+mV!)Am5O609^qXh&(OgjclZ|f|=)pT5a=&fod=dHF>@?#~FO| zZ2Qrf-9VX*Lx7`+ln?I$Y&mmvk6Yoh=*Elfb#)Lp?~gvBqORp4#Odf%Joo|7VQ`Gi zCtin$#G$p9#3}1?ZOV_Z9|;>6Fh?)E5*E3KLx?S3yVKD>FnyygNls;=-U|EFwbhv=!Fepo$o;GcAZ_;Y*hmI!)5FCR;vvwdVA|U zUxm6~tFvk^9t(eO+sp~rI>7hukLp7YMmwuX=N$qT%JI#fF~{!9_0F>AP0-QFZYRl* zKRCrek*ffjV4^G6u$D+F#(Nug4mUO9Q1H#5lQk zeIBwN=_M6UN=o|`F~7C;hq|V_-n^f^GgqzYN4ST0UU3|A_wdo;$*2%^XS-hCkAsUM zJon2Rg}(NuFO%sRsDiYLOzVF8S%S< zv)(($VtR)Qf`hR5W#x%kXAbFoLIFEMR(z|+Tx|zhi91aM^H0onBywX6arLDhGvhiF z(QbS28Y|V4wAONFY6O3n4Zw*eG2dH=LA#w(iR|Zd1g}OT86EctDaSYaqI!loQFE0i zwg&i!^GcZv+P3`A77>w?Tl!8dpIM@0x7pcgw%yRCRtI+UHWMR%G?SNV?>aCT$#Axe zOJMHcf8thRb{CTXC#}1m@ubNhUj9(y>G`)}TK<7#3dR@m5v35j+;DPrPs-~YWyufM zkk?c|G!dA|fIF>${@p-#JlF?`@u@6=5~s?nf?+|dpX}e0>%nK)Qey1w>+vAgRtph~P|3n`rF$j>D~{o9y7{ z?pm!5IOD0WD0{rjO*Cb~RPV*5Bv(@|%$%(@-7(Uw9aD?`YD*R%LY66n493)D!6c)% zTk7R%yZjQg+AY=9`?XNHv#?PGl@N#|lEQJa5eZXwUQ!UG4Y6%u+WI4Pz04bL7Ox8HY zwgB*6<-f83UHE#<%A7n(@~4A40S84Yl~)Dn+SNi7)O9oIAKU6?i5@hqBh#PH6$)HZ zy_546c+-B9urF5}_b}Q^QbuCoN@VL|z8i7-)EZIOb+|++1e-6#Mibm!YnMIt$%0gYcvRFt+O4M}%AR#LYUOLlg-5m~0+ zMn}T8MvU{zxXRE?Fx8Prq2;gu{8o^^IMm>FAWHa^_DIdlCzs7|%+>k;+y z{X&02mVu87B8M!%;l8Xa6qECA1VdU*Dq~GLZ$$x}6~bOIc=n&`Y$;{B-u|U;MM|VL zeY6xo6+XE1@W{v0+{`e8Ekw0)AK3==#RHTWdus%{&SeM1_QaefJ3%`jlfR`R_vPWp zvhaO&mq<-TxtM={_V#0(*Y@$cRQ{sNxx;8G#@kpAkeqnk%DDG&vEe#5zDZC(%cG9< zrdD(7h^XOK7on2(7%HoegmhkEFzqYshjhhO611#Q$hl+G!x@^?Xj-vU4R-o_omyA4 zjlrOwUwd3q)fz1X5Xi`0hfHM}b#xR%`~NMz0vfwTWI4YVC*}mlw6qeE?}qf<$T>16 z@eP|lcqv8-az*^nP>3{PnWZV}K0ouQ8u6C>3lQCXGOzkMj%g9EkGvBd#P9MYP8iq~ zw1vxa?T~}*iBHJDvmi^Ybr64@Mlv$`rJx+#v3Krcqg_<9ZHI#QU~P!=5_WPy%(QA} z!Rp*})HSjXFoEdUPqq_lb?#19HSA{|zEMHT=8aaft?L`1DqmeuWxUAo{;j-;zD(W{ zqNB6CymewDc5?kDW5#M-4CMgVvHl05mw(cj_$|JXF(cA0Nq>5G^6X%dlrQ*t3@}|% zE}MXSf#Ss@@^@Hv)UQXSJtQ}4@-=0snA^c|`1_Zalv>So*l5P;k-N`LAA++Ip;45S zFt&9^d{f-9)^M{dz*gjOaIa!|b(Y46c_W2Ap-!t_0lU3%CSA|}32A5g;&&yBgPIOA zA~z5g22xqkxb;S-s0FdoYU=&_uId><%L*W`Vl-VD`a9K@+vLo^+>{;>UTCX67az-* zJU5^L(Qj1kDa7$SUJgQ3Q#V`V`d7MBJU+JYcUipf>G$rN{XwVpID}K|WN9+wDbrP* zUzUNVO1V#Dqh`-2pIDuQ3-Eq{5{|C-US8gteNcPcC= zC{epSfk1Ga_Ij-jsJQ*x{yVps;X~<&M%MUYmOb*QOUy;G$Z?Qm_@At0V|EkVJ1Ajk zwsA6l{}b=dL_oc#rrCa9#SCe|GdH!P4meAqlc!f0X)Od*Rt9!tRZzr)@tk#5*@i<_ za`%RwOx9)}IEK4p3P2ZvWTh6rItG)ZHj?a0N@_q16qqJt&1rchAIxsrW{%=K4vQWDn1$$CW{)w=lf_tZPZ#pWx3*llIR7r;c=EnnsX$zC zkj5YoIHl6+KlV3hwB&T3}wyul7^Cv0*kcRo4h0S66g<0Y-NF@gh9jIA^pjANg+N*g_0jm8#&C1R-gb{uO_-#e0S7=}#< z82|d5%UX-knM^I6JlwwHc-Fhk?cPj)!wLSt4g3LYqN{oDdKe!UmW`6Jw%fOK<0%6A z!+d^VLsp!K0^B?8sTvSs4>a6zVm`@zD^rqU3#aML*q%7&gDGLbhC*>N=E;P$Ve!yQ z0H2gt`8^2g;{L?hwRnjgUHIK#h9k0{t=K6%*`hos9pC)yJd7nEo?ok!lJX-NIA{d3 z8()zU@2@Zw5?=M{$)>3CmV+1xnd^IQD=(IWFPg*yrP7)od`oVp5|st+28J&C;GPVd zgDV3zbi+1KmxK69M<)p$tFuq5m|YR-mmhJ;Y{9Wl|IAk6Y!B<%rgUGX%D)q3g3YyR zB9Z0b{+IwsqhXjTf)sp6HjRv)!i)aMD<5sn-PMaJH;ogNr}}8&X0e$z;kF=`^ua`+ z)Tk@6(UyC(tn3&H-X>?3#X;awZ`BF{K4!`W29ZX%OtE9IVnxPf%@!~ND2aQCW@re8 z(vuAqs{@S4ekDdlKgx^xT|7MOgQQ>cf-tqt+wmk3YJjjOo6?{5nues?Y2FwO_9-wM zG@AaS)-kym?TmUz-PpwC=BJg7y3P{P{aLXeee)JpUlc)6!&umT`h6TX!jFay!_8;x z5-WGf1?^4xslUeqpG4kw%J$9PDooadZHiM5u_5)YIA^{O?F9d#3=Me_!awvw$6Wbm zkUm=+9rBk54?dxr=skqi^74-rSU#P@2e(lpfEssftQy1ETX1xfaRNKR$8$<<$1n#w z&j7rar3Q7Oy-_IPXfZN?Bbvu`vACSF?&qYI{YWF%aCMu7YX1>H%IVpsHGH6_c`P{y z`;YfY<`dFh)?$$4&UuNkcKHIm4h0oC1Gef+6a!bls`Fg6eN;3n^e%Z(3+66tjC=^m zF5e+C#_ptuFFCrFK6{&q3iIUd7hua4Yt$!H*dUXoo4tF3u1NV2dU16zkZCAg1Fecj zEUet$9d@}cyYbe)02@0AM5JTh-%0*+_>jpsJ z0Z;weHB@i&seX^7g0d8zgzP83#&=RT02<5APRB)k7L3%dVpQRTg5!()ce;q$x7WmL z4<8OGew0;WQvS5Smn>hQ*C|!_N_e>rd`Mt2_AlA(KxLkFC)WNva!`<8pirXMp7t>n z7Ip`r3*cm|*3=9zXjZ0HQuiC~#MeixyaDJQ9B4`^vnKsJV@8+A`2j4Qb(6fvBIuh> zdGh5ECPO*?R8OBG66;?VLD!tvMGwbPWHlHQrgj|DFSphtEGw@V1oiY5tG~PsbEYa3w{i-MP+gQqEI>t1YmZA zk)WWLTkfnkz~TmOvmQ86vaP~c3GLB_CV|j24j$Q}$DsRhY$LI;v20#sSXfOzf^py&tgo*z z&30_`dyw^eY$~TbrdMo95h4inBWP%7_PCsOryHW5h?$!HIjds8V_J0(1wH+#O`k({ zw)73PWQ@gtMdA;T(#TWbWDjOa&HUpSB*bpuLLBxPh40HpFhOUlF6WNHvsNBa(0F(=&T{85QuaSmm$j5h(h1xGqAj4y>&8K&0P z$BuIQ(vFUQ@_~9rV~V{eoy?a14f>s14n0q&`1$)VI!s*7_W9dF!U=*HY_ni=x%pCZ zaL4N~QX1-!x|vP2hM&KGw$!JWHUeL}2`ajG9QW=y)@qb!($Ue?4o884`PY|f9H@fL zYANvG#eAy5o8MCG!}Egya5%thFdS*u1SwBW043@Qwptt%VW(&Zx8ov8QYJxatKaKI zC^%mw7$`cjK2yK}!m~Ud-v}?8s-QMn9@j18cyxzcJ1~jAnCM6Sz9iET-qgL_W1Pm!M^m88JP#Z~RYlG8A?Q=%W1 zFSBW%+?cd|;vY^fheB&uY~iWv+oz4rB>`)D)cQS0`aRq__1!CK0y<5QwbQSE5@{NU z?BG^&wX0B;9L9abUsUxr4Vqu$(Wfx?M{jQEw9BJpP3aYjAdwhbKfsxwgOj?s3;XsL z7$gp>==n4<9WPA!P;zd{L#W5%bG=e(l<3rZqBSTf6DmCBup`<&ot$fc<6k6sqJ#Rk zgQR5XblMq@Vb$&;n38frJliZ}zdg@$o6r5@0c!%wUtzQNqI5P*J4w+h5M~@|sl3g# zwXrU>sgU749@M5g*|1JTcu>Q=iAE>4C>-KOz?zkX-|{)}VqYvme(*qLsM1RN{jAMD zlSg^T1eWJVsAD>~U3H&8t0-}@VUPBP>@o;;mI9P9k9XR_#`|+yIiOy)_$76#)>zi| zFKW}$ars{qa-5 z{zC75Z}*L09Q^d3d7L?A`<2i6RaqP;z`-JA&Sa2DsxVojpzc@gbV40_m_FYlFlsfM zT4QN?e2i#s;rP71q)=MPIp|5XuyCLHLEzd}7SRZuh>G!NP-${GEV+83ao&S|29i%; zOJaAbftdB;fNp9PR2G%`=IcMGF?Xos{;V~3a1*|^yZj5VCQDgz?*AGmSW1{+Hxz46 zeEfMqTR>b!#%S?Ja7Pi8zW1)oX-!^!#^m;VE?r#-FQqCpBqJyzugV9N79}IN`6MVRG5nPZ>WCP=$m9p-f6@Sfl4v zEw#UUtK`w(m6w!-gTrXM^{)BK0fT03*?G&QP<*8Rth)cn4}M4+V}hBik&#hx$*X@h zK;B!OR%z6a3aiKzqVuyM`Bke8eF3R~HU)>zZqK)Ju_xv;rdUlj3p);d4(OuZl& z#V2VABo4LSxZHVEiU8rX9Mcog!e&U{eXZB?n3vUot;Nk@BHwGLG|vk&gmAi2 zgr)@>+XXdd!27eHcA|80>frM@g-0eQixwlqR&`&{2$*%sV{M}|Xl3E&6Zy_q;ezmm zejqr{SXPdyGQ?9-{8$qT;&a-YovAb)pyWvYheHiS>a~U=?Up9GzI`BnPX}>#CtkVu z`)q*rtuA^`O+=M#j47YDsls_9k$nX90z?) zgNbz`+4;_*>bZ#8L)%JnKf`W*jRqUB7_~905go9yiqy}ZP`ExGBqI*@q|o3L5$?5{ zA6G7jOd=Bayy7cYvCSn1SDPt+VuKS6e_ft;>nm@m+cV! z{V_c~y~2Y7FEpgr)DV8dc|<=fO*jTzA%;4Eo7JJKUQU<%{QMEuHCX36M0ymuf=uy) zx!#U9gqYLv`e04qu3CDJ1gx>;iE-;p7COUhEK0a0FL>wd>QXx}1-vI)jq`K2mK-^4 z=pdznIaKWd(MrULTr+B42)&{C`ofC|BQ0+@D}H9+JQdunAtov)p9~ET4VwJSieIv@ z*;`u>nZnDj;mbBm(yK~?H%<58#;rm=CP=L^#c5M#q8yX{=xkBO!k0(#HZ|6^mb!bDQUZ?p3v1{P(K`AM8;X?Yi zQkUfI_hvolARN=+{c{7DV6hR4(^)_~Dg4F}=J_D6dRoAt8QgadA0;oIhuq>&S>Lr^O|!MIYEa zXd;38)W#BjSUx5T<1H^Zv;77l#X;keJRypThYn-XY zsPtRST7Rce^N#z(C@h9jR0`CQLMr`?$-|VCdzE|Lb_J1yJmsA52vS5@6i`NunsC;* zP4b87%pd5RgYr(Q?Qb~Zt)_iH^-B)uIIUy9+LRxj0-IY)q00+fh?mKac|A4o+fzU0 zIWJS5mBqHuk%@^3GY@z7c>bdv*1+SwKQE`)Z4Dsij8RB?DD(r~88z~&Uf0v7D3V?B zataahzCs5rpPZ@M(aftq3w*Wt1=eEYF&7%6p3eCqs|Xv7`AJwd(!xTtrkVitlj* zmbAVA>$;`fu=^ST0YMvK|4ay6jd~Qt$c;?#h%2>E1bptowf^+<94GJ=*}uMQF*&B! z1tllE-RN^1;m#p~S7I*pzBE9rOnHR1JBEOo)1fz-wIDbBRc|R}D<>i?zoqNC{wLG5 zLX3l=0(^D{y_{pjSx>rRf$1S*hUfdQ11a-qxOZWnU(Kxq1ET zOR86QAO)pu#gVe*V!f=R{>-VbHOJD86apyu8E*^U^`bp^;H)k=p}fbiOz4N@aoi{P zPg{UJUs4IWF=UDe_@8jh$MV{H;}dV39V8g}$K`_XSAXbVp3@Sbb!FbS_&~A1cQ8s% zcYYO?|JAdGoGU$Hel?X_+Ela76=!dCSLk$AkC%lXMfPc!uy|zzY^n4syB`;A>boM{ z*VS=WMjwn)Q-Bw_|4fOTQ}-TmPSDTVRDLhKJ&$r?7k|UFLF3ob24yO)aObGrgs$%? z{&}91H(wV--z#+C2n7v5N+1tRgU5K^y5Kclq&u8vo}lt_vOYS>`O!3HZXTR)D?h_? ze<6WTasROHp84$2(|6|2T7pX%%@hj3#6z`XDV?rfg^}QfRL5ju6XRiUqMcDtV%pBH z!%8QwPcKp0;_`%9m20NxiOo`ApjlKvkht3lp7K}s*A$123C$aaKShZn(N^e+-kCk~ z&W3Prr27A{NRHbAh%p~$n_~%SK$xqZYFBPfKEJlSc*LMti@Gt?{@CvF~(W;Zmk|?I)Ak^?HJTvSaAtn|JA2mp@v^F z`{N_~RPKp{D8Fz(;Y1!9`m(ume1f4 zp2~F&qMhf>dv`T^r39mt`My`@7j>P|H!I+X7V*16c6s^O*XG~<%y5R)q91X;jmQ?f z1G=NZ3cmiyD1tbd0B-1-46Nv=CETc0%IxeP4h5?mEAevdT|DgO+->eevGAM%Xv%!j zgW$qntjaPZ506JhEB`Wa;EC%K+FwPWmv^sx99J)BFfrYh1FbxIjh;`-N1&Kaa3Gqs z#_++$D7Hytcsq`bJQlo4xsjV9hJI_W2O=UOKR%PzHMr&&=lmwpDOm|Ipd55tTl>YOLZD-*C2Pfr=(lKd1E|Zrbjl6+H*Lt|Iv8~z7Lk)8poFhzG z^a>BfbT_M-nTaooWtVp}6c*(!Tt+&c{;)}n&3);5h+;WgqU=FJY#H=329K1>_f8c` z8Yo-f6=_O`{iQiE1vfljAL+IHuEQrz4iBhV_n!BO(4)|&54;hZ(CRBd$NK9l`n}%R zE8L_iMfa{hQVMMqgU=u%KG5S2UiAsS*Jc3y!e`9^yC0%q;bkB^RzIlh}gi||Z zal6gzymY(x{HO+ADwOm?Zf=;U_1a@;Q|#zdne@gG9_Xf*mJ~_15xT7Wc$kC2E4YRr zw5@?d-Jl>cpV)_p*)#`hpWtIt8}ig6z*&zhS>n(t-8l=!w`E-gy|PthYQ+c;^LxzV zdkp^+9^vKcaqA^6`}(gQ`@&DP+=o6i-?-{DAFK2vvyp@lpD~?a>;`G~rib8zMKHVj ztJa#G`v;v7uL^oKw50|>NiC@Gt#ErN?{-2Sy02CZQ$ zlhsI^01c(m6)XC^wM1}gHci>`(#}iA(~pdVxD?Ec1>}#UB1H`59=SxC4WV!ga2(N#V7ckU!I%H6Wxog{)Yp1hZ{Uq-t;+YOkA5!KloZ{BAoRIdY+pbj*L zx8yjSHB4wIwOhQeGKc&ZeK+qgs%1igczxbTnoqf*S(VLP-u2)tEnP-AbpM8V-XC-61 zu!HRuL9IEyOFE5R`dq4gF_&6zWEA0?){1F&l->AI!T&6;Lq)S^$UC#hjmZLdp`W;T zhyKX|C{j~4enq1{I$b>WH%lHa$iLdH$zT7;5BgNbDv#&x!%Yjvkq&8+?hRT{W```e zD=`J{W;Fpu5I$}t371*Mk6-BLLd>hvD1H-g>f@Oh!~BpAbP?Roo)A=;Y2Ht5da4g} z=pefce-4LdQ0upbCu~krU@-}#1_8`V;neYpp?fBLtJ0LMP}w8*(O%Jn&kFI`mA$i})ewkN#M2HlM~y48Nv% zy^Jg=tCYu|W3~nnKGv@Y$TgN}?Mg{9Ghh z60rrg2i~P~+&r;MF|8_7Vd#f<#{5?~ri>fsn-^&)Ev5Q37lt^bAI<%g2sHb})^L$3 z`hs^8Z%O}4@_4_pc?P6iU2)|NY`nc?pURf>hZS?Mux z%KKN_7Uw#zDbj*MTR#1WUeD2U7l5t%mCY1(>M&#kH+Ej%*rwapYj4Rpjg04DedL%A z{9jbAMCfL(varT1XGfmC2B1RR&72MVBOf9c2Haj53|$#dO0`NmIy#16>2Zylzy7oK zdz%7?`wztNzu)vwGbECQ9-HV#Ro0@xpvHSPwc2~r#D$HZgqu$~-1`q6Hh#CK3qbqj zgd$Fvi!31wI!uI)vFAG+S&{<2MX?t8FpPYb+%6^q8*le^j#XZLOvh>dy!s8`C@;TT zbq9Vi;&M49DzF;K=VzoY2fsl>N<0%bLS6{WqA1Pvzha~4S^lK-MV z*MWE#VV-JzAo8)(Tn(LACJtiu3N7vPjwb%*L_z_Q$Vg&%*p{tsi&n&+H?}X}w{({x zM<0~4V|$;fbR{U@ceX0YOgY%z%j59Xd?FB33-*-cbA8|^NAX)QEC%?S9bP`;$FIB$ zATAu?7L=?e^lqG0{R4e|x|O|d3e6)xz!Z4^0J*SUk02<4O>SGL0I8Sga?j5POV*v| zAo^aNG=118OJp~BiOacXb+KBLUs_<9sMzT%djoP39w%gSi)Ww{y?CiPsVOGlc=}LF^J6F`2kznp z4ULYdJ1&^1-c3HKxwO=S$rgj_#U!fb-Iqa;ho_5+BkIY+H7>cQ>RUOh(!tG9o_y^2 zBEzGkyk9)IyT+sW9%l=Cye8cw-qbl}p#-DyZ19xBJ-c%^eFFwo4CnA2iEVsy-nLrK zb~$5nEI4@CkCM`qi_;QF0kc{FFl9FHTDy5%omNm3Ir1z_vwq^| zjNgP+Z-<2qH4MqPR+1$A>=f}R<2D$Jaxe^V;rGl0UB`U`5B;!q1>}E2vXOD?p#U_D zEuTs)iRL#)52K;g1msrqJ~IPgg@GP?u=!D=uHKa=Erl@DMNx0wjKdV{9Qd1F6=uFi zM=>3`V4=cLoYjPCWl@S`5=nU0K=eKf?Q^ZryyrEFQ{F>srCl5num0i)@)7QrK+%sB@9-qlq zsltT2mW@H6vZnr)&%&)m8gPI_pb!*0Vf>*{rhG8KHSMWe`+f|=*+Tclt)(SAgZe3j znH`Je*s$5V(o31=v#J#c09?P49HhOrKfQO)31zTo787}E0uk1N>HDSHX?QSn+j8pj zYI1sO@&S`jiB`VXoqH8U!1_Q|HvH9{)(jh1+moaW%6Cx;&T|p#(;FQr*IC{ElQl%c zqa#2t@hhFcy!G_lXQ}dfkx*$}tzrCiBy)BYl2ZIdVoMSuKHsW}5PN`Fl)U7YlJW!w zKhO9l!s}XIyiA=eR`N&$bRsbU*O&01b>3|7>?Z5EY?aGWIA`qs{yrvLl~d6lG>i>3 z1)vg0R-w^Xz(&O9i_sWK^va? z*DqKuwcYdXKYu)b?r*;p^sPg5DY%L@QuTSkqDICD`!tYD=K%qha9#T&GGvVUJ7Mqz z?t%{IAr0GiCXtb^Jaq|YH7ilq3QEl0^$)E70Frf?$r!d&SVYsCeB_`_@(k5_^21&S z#g0DB7SO%F+N|lajYBm#q1!QGSG-$tt`lLi|JeDm)}<0Kqx7cfSneXsV7(rbR#gIiOsrv`%`Td`=Q^cmMsMyY~^0rY+PCZ{i5;hQL%#} zpn{@}Q6&Hm9y$ifYRh?qHGkGoQnC&;1pCao^3;oF?mW47pY@{I_(f}lWg$O2@;C|l z*9r5lT;{#WdPmG+vKoQi*}H9^5rhS;kGy~j${XQ!&Un}jR_}+8wwjw_{(+A@CRKi* zqmE^J#(Wz<<^%GkWk(ojJ1>y>~zG7Q_`GBGYA`D?RIllVCsBP&1c*b@T$hzvyX99}S zel9y=a!?z~sPOiC+JN1N7<`-7t5A z^A!7VqmE+}n*j{Bv_{6*{7HfqHLK2qCf3F+tJ;^RAxw} z-;z<}9T$@~^(imyebbZ9R)W^A;{E~$4kq8^{hF%sJe?g~Nsvx4>V^vWe+ z%mipm>#41;HQ?m#=|o~JdSflBsHv%iMzBgtOBZ+4Bfor$dBqMR>v3^$H@G5%41PiP zu)8?;%idQz|F%6GH-d13rW08I%Q9lrEK za|Nok59Beh_pzHgue7(wukV2J zhX}mu0mveRYEcVEM*XJtkAcn9jH;3)34o2T*lBYo=vx4tAEI>6+t;uaIsuythHWa9 ztvc*j^;xVW(cF7QVLJ$>08Z_zp0}~aL<6xHG>?VDaB5jq<(0vcDWF5)^G_@J`K|ki zd%2^vxH=AGJ&MjPwD`Kz0|=qKD27F~gM#Tx5)AM?U0jO_*JRArZ1AGloUPTEt=7Ud zu6yM}<^YCR=F;swVxCWox$34~>6t5l2?yGx;$qLxWDCFAkhnJ7ks;yA_UxU{Jp3;@ zSzX^iY;v|R8(v;sPKhVtBDzPyeU8#3N%2E$V`Jm}3C56;iHV6aWO?SU<#45YDyer> zLZPcuD2Nb(v`!TD50+hb`?}B`Dvs$o&Xys|JnQ-tQNYXS1%KC6=wE8K@w?Lhi+DzE zz^GnNFnDT9`)#*4Fsh0Xr);Xwy=#2kSCb$7zdHn#v(Sm}ybML~+9Ssm}?*_vO*{4-R}NlLvyH_=vt=s%#`8wPxdcpn?{?~?pLGU-d#)h{WgY(xCNFaZdmG_?JuEK91yk~(N7 z!%gPXtaF|nJLu-f%U?qZxwXDL-smlDyscSthZyJhqvFrD-Equc+l~~x^#z$Y2D%j~ z3Skn+?(Cn}rOuQswA(qa`0oI{auL8Kl}|5_3;Aav0co(weRqRCl2g#280s{--E61!>{X2Qy=Be-^ePQT z@cmK~{47(I)lEP9sw<)}-E!zls(?_fTYt?XN>f!vx-yGB7KRIFo<0q^JJw}+L??`v zx-5d8AaW$_7*Cu>>LDSOC```E7rIHgsyAWF$xf-_XY;ITcpBoz~Z5Se1hz! zgX)AP5BygOVI*&PZn1y%R0c;FI_EGY&<&cpWoZ^^Di*(5UcIV2lb|S>sVh{i|Nn5t zMuVk^xU+2Ci6qLcZu8Q)K?j9_1!Mb&sl_c?LCH)@ZFOxFfZh_BPgpqVh&gxDva!Egmjr$>gz$mM5=5y()vI+BkRElHbzzs47$Sv51;3CT8g1H89QU;Z;^OW8K zkn`4?PEJBd8sabYIfH*_>F_An9x2Yv*?SNHRv@0Wu>u8kl}~%|Z*4@C50Fn{N3!-D zO)+K`Zg{3_>c<6MK}ILZ8QnJyiv4{-ZKnt;=hlkY80oyF62;)DaP07h)wQ$|u;*c} z%0!5oE4_5~N>;-G{|->zfmiVCnF=t`1MAbIup}~CJfdRU>fgL`gXesx-wifn99+@Ow1pNKFK3y zC@}+TJX<+`6;ID=ow%%fl99@vkDU>PY8-xqAE0byb6&8g?L{vS$g-xF<^CgQNFf9|Y~%#gm@3M2x+ zW}Q!{XM1P-w|mUMrZHntQfIoD=_20 z6?$AC06?Ky1(~9~xMBCi*pns6^x-H-DEY;rKcW6Uuh{rd; zF-aGR?uiJ-}jWkL`i=E47GgiwBf_er!obgzJz0vHKa zFbje_Fw^#mnSKC>n9PAq`hSSG$r)xHj=u?l>oc;HGxuOj&Rvtyf=@Yl^^KO#8uuTF zVxX+l&>gCE^lK`3^oWO@RU3vdJ(y)_C)h@NM=<25NlaQ{7T z%>l%=wLq&30w`u_jZwcXhY#qgNV$b8V+?%O|3|xKZ}W{)ufP$7EyZ#U{G|$y4t7<} zm5+y84vO`@JbI^D(E#%&?s_4Ca=ZQM5}8wjW<^!z)4N8QXJE%7Nd$?@R_=~cxE=8q zO>2blSXzEN`0s`b{oY}WfMW^zZ40hQ@GqV~qym2|x}>Be^Y11($H&JCkbD@D10C$* zKHUmDgu31?dhKUtCkvQ6Nan!$lJ(2UY7Isa`PfsLTtx!30E{!QBvQfW5b#TN@H;gc zC9Wd!L}8*!saMike^;R409b!^-ig}_1QtZZzcdQ7?{Q75#=}Kg{})})asB0O54~g@ zb$|C^`}vjiRtd*ePM>yl@Kdwz`WNj&0Q7|bLE~4wog0j_`vIBO8cJv;8i2Wx^NPr{ zWL2t)kZ4xXmr6J*5HR1bmJ^XMdB;-ISKZ9Xcr6m>`i~85?Nic|S4=O5@k{x308X>1 zXEk1a{}%!oAcECaDsO!7$UJjtyS5;!2)~@ro|!xYLCRl775)h8PyHSs{X%Wxyd$=~ zYZQfio!WuyN^is|2+7CprS?pXkDnK7zptFiZqutqnkVu$Q|Rgz3Iacyg=Bof7mDQ} ziHJdc#2|OqocK4O;e7;yz++nDo=X478!&+r(A~e4F{6`$z2U`FcAl^9OJrG8;VrW7 zWd*HsANOvuzpa!x84t*?z7tzkVEpu%d=+IC3c>!lL{hSvA%dQxo9va2vw~}DMQvB?@%!%`Hg=@E41h^H|dp4L#!VP zUfkTp(}gH}ijQ}kK_~n>?v>|Xwh+K8ntTr^|*$J`O}YA=UR zi?WyC9KwoMsZ&{)Qd0WB=aomT8Mu7p+dGGyM*uKqT^zUU;fz+G4w8}k{-u;z7Vm5T zb^EIR;+1!q>wRMrg|4xM87~^L=b)S2^L8nGR~+I{t>JZ#S#(e8cxl#o2_2v_y}a&~ z|F1nmU{1-0q27t>~w#Rdrlw{Msr-T+&->2V=`CJ-!Z))}9wcRMTh^SgJ}5d8OB zfuny*C3BqZRqUGt%aIA`GCx{qI`nt&vsD^&F&XEoGXKxcJ`B9$&Fi=nScC~|tqfHh zg_XEXx2+tGo#t=j6wa<)#`l~?y$&&<7GnMR>DD-Soem0VS-{G^Jl#g~(vCqg2@-z; z^P9z7+zt-DKOCQ#Hpamw3ageFNaS{8#_eyMD2U8Smvml{5QCZ9BJ!7;shR$7&o)Q4 z?CM{CLj-NX4KA!gg@F)qi*PoI79FVa-8_lq@#Dv8l7vitiQ|o4cL$6Kg_*O}YUAEl z+DS6GIKbj9f~qjoX2q(*xpRBnUfZS~L96iS-<>B*QQw@o3&3X%IMcARznvLE6rR(+ zI9%Cr_wZ2Pad6EXPytZM)JeIXbJqDaA+wIRawLCAety|=wQqTSsq7Wy+tz7e zTVy8(e6Ih6HWV|Rti`TPZLZkbOU_MP$fV6^1p4Ii8TaDH~CvI3Vl;oU@s%Nm7mR3b%!`Tx9;O3k1mX zr9jcziw6R{K1Yhv8#<4ZzKrOlD$bE^3v^D<(=|02#|)iDhJ*wKo6;e5+kMGMzPiD& zhcvrI8yi`%+8e2_ioLzPS0HI)JomA&<<(mPh!34b$q``atw^G^tm2sJw%m~>;#19M zlivS7f2ga`!97c7+rbCC9F`AyL~q9*pS`qOAR;oy z80kPK%)2vvd8yrz!m?mwt%8aE5lj9JkE#tKD2~Fw9FXP@mD zacWIiBQ&vcuc$}G9!AX)PG-PZ7UDi?Xxm409YSwxZZT8VqIX*m$c91}S4alh7*Av% zGQw9C$?9>-N=}vHQQ7QRE{+t7p_@Hb%0nTr`!_RayVM}X(23Q6Slf4|rkfV^zQ1Kp z6Mv_^dU4_j+7r1DEZ_+R0gy@yLJw!7_!*ytr}Dcx`m|aK-`E~B2MF=rE#K=2iu@4y z>MoGPA1jFXQACyQ0x&qkKlQ%>`w;kdQ=cX371v4^K>%bQ_BXKc{kejl3>540fCkBD zeO(B=FXW9`j8q=i6Q#p53t0TPh}jv9`O{ z7e}&Nq<*kQDE_8SXPK++u;shf-!6AVYQ10NVaQh?kXEtPE!h1ZC@LR>eQ`Y5y`DYF zl@bO5D@+Ig(L@u4t<@QBmCD`LgvY9 zEp(6{C2W#}_}WJdn--}-O+SL>mlS(QN8zWs$E&rywMq;*c@%0`9BX?4#_H7K=9Pv6 zMaBqRs#NI8cU}AS>&?+xKhyuC>$}6@+`9G$i5e{gQG*~NT7pURPSofjI#FZv-b3^n zf)Kq$@4XWxN_3)(F2qD9I=?+m&hI<#_np_}kDN2Pa?O68z1O4`QXvL;3cqwbaDafN@I%`^tyJjs2NH7S7IZ~oE*i=q(6z=uTCXHN!y8pWj~a= zfp%iuAw8`Uln<*xn7Cbq!5zEDwX__zaN?@8m=7Biunf8e^Cy`0-=B zm6esS@~Jo8z?3?|7g>XR$pAmfF|V?t+(O@yx6US6#<-_~8EsznQbCqk2oydvtN>+Y z%(Vrr&wyhU15Ae_e1VewOyB&%++?ZHOfQh>5F9kFA zwp0eor2H_w9T%@{vCM@STnyc=J)G&8hO6u$=O>uh$}>VNI#d!g+#QRL{yhhdjN()1pSqODV zix00RK`uuRLG>2-FnV;p+lUp(NY`8|M7p2&uqIf~%Ixepx5khPQE^)Yur?LWxk0`z z2O93qKF37-dW2a5t6z2M#K{LGW3|jZ!6hO4}pSN+I(OqR@_;0a29<;zEbDCbv-N^$>lV*wQefzS?$*oBpZ+8!_CbOqMUzegfQ4PWJ!y;8 z=f?|EGKYh4`S6WKi|G@{sC?s4wpS!`wfH*Jxk#c~-G)v2V z;`zHn7`~8RbCK)&iaX%^oE~oEgKT}u35Y9@$B@FD)Szlzm6Ny`#}Duvfr02nt(N$c zhk}Q$a80T0xh6CS84z+uvSK@c!E>G+ylOHZhbDWM{I_pWQ*lVyfbaI06p~_ZDA$2f z2nq{p6I0WcQBYB=t);jtTwplSS@1|G#i0ZtPfIZltw~N!&fEka=5_Gk+x?ccwo{KY zGk33bTQ~FT-?R_ArE|v82=2f}-M<4C1hBY%Q_~4N9KA>^PI_2U`*z;5_O9&Y=9kLv z>Czwhv2}QFSSW{T#e+1HFK9C4^Nsv|`VRo9OV~cQeB()ThT@J840qIKeW`Bh2E(~G zK`KssW%)l+inArWT1FzXO16(u%WSeZxdc9U8o-T7dmB^-Cfb!|(M}C^!CEhYNrd0W z*`MGI*}k@bKfx7@i+m7r{BoN^+)Bd9={LJSK~a_FD6M}&d`imJoKEF+wMp#*7(K>> zFu^}Mlk?2z42GiWQYVy^Y_o@i&UnWq0GaZ_5In6(- zegQ?~q@>*T1MW8DG6Rt{$G-YKeyPga$`!As2zm7>9oARZ6 z7XDOKH_v>)$dr9?oT2X8w&QJwYVt*@t=kWV2?*K?uyp~O0xUq1z(<)lwp7n-fgLZq z^yW#xvxDTW@T^Ef$dl&dSD{ICr=p534@^crvv8I^-WLt~rF^7Lk?kV=gMIOt8E5Jhg zvdU42XNxxsJ&A|t7foT38?e-xbm4ca1ZNHj4k^ZHt>`>tn-})efgdFkw6@yl&L7<$ zFt5d00~+qYcdGE0dOI5D&vGI0*0Z*+bc8CfKy;+L*e%m$$*Y*)U(6{h8)oD;dv7fJ zURj~~p4wktU$A78_pPQ0N+Ilo{0YL z(&hyM!P%GovXj=9%80H_t->Cbx2vO`03!OE=0r#W77GZU+cu}?YUADh2WEjzzKlqF zP%>Z1rKzL~=G7)qRpno_T?ptQS+Y3PsTtoK`bJa16fXS7dQikB@aat_5sX;E+-!AJ z`05SlTgcAMogd@F97Y31`O$X-ED#5q4XI!_rDnDP~Y<1G*>Tq_7-)kD5=-Q@R1W0 zfA&dz9+2zHijE%u7ZV3y(0A!ETGMRcs;~CPvnhaBN7;%vPsw>k1Uo$fo)RV5yrP=x zP!4s5!e;YrU%~%rG}!y}+-t0!X_hR!3%vne?0k#$@Po1zh%vucG9*GP?+QI16F!AZU8cW&O_ z(&Pv&!4t+?V!bO$fR!v{7S2j8$u9;X6C#U$PyLDb_#4URo?jrc53(q#qt zrkRa^!(VTaC8)W>eUDpj;tr+dw`+In_ur3=jiHBj(hb*JUkVWt5R|%oeb4Yy=;~z9 z$}KRx+8i*=ZJ_!~g#?WwUn^5zZ!dZNgWfanUW2HFWlT(dJo{6axT1o_8UgXOzepBf z+Q+No!!y*}f@x3gVA=jR&A{^C+Mv=0&{+Sa4NCjj=mxiG`+!er1Tux>H;?<&yE)>z zqDzRplr{~&O<3hM?rdQIFW1|bTx_}X4}M`d(VeO>HH3}4#Im-nss9jieu$S*mdoq7 zp{if@QW>yNZ0l43({@b4bJ9~-lRkbkI%FF&@Bf~51G zDq>^V;6sVg{5NYRN*pttETHCZVIlXQIUG#%6x)KPLi~e0~AS4xzC>L72&)BYbUV0%yi5Aa%+g zX&e=_x&^u>7C}$Saz8NLPVfUa1bef28>l}@_1zws$dhl`Dn?QO9|!248eIxlSpWDC zX*=d2KEJ~wmHDTKDjUs2fimF#i|s33AL0uZ?eflS*Vin?UzU7(LG0V=b8l<{E@7p^ zsy&jeBy-BC7C)|th8Pc52?-hlrq#c@k+@&&9@qS3{7y-x4g^eGLpEbo+5{NbMQD|| zhz^-XbD3GRX#}C`s>pOOr2zEgR-Ww0TcwO!3`8jxLrQ1}2`?T1Q&}X$1d%L8?`jHe zD3WRtyDq+6$#pq)=_qZM@BW)>)0}Vk;vc;=YpI`n?(Ql9C5EeLic+lIeW_*79WNXgwFmGCp0Hlwa?K1A1#fhmfJ%U7}#%h9sD%2xYA5@l32xc$lFVUy@68m-wcL z@8&SuJxt&^7#o{=mpSZ7M6;e^!aaKfH2-~OX47s8MiSM_Ab?tq&7Ri$r>{U(-oo|a zH-^S?BQ+UUC6|{*^%Gk{0xf%>FU$J1scFfLoy+S=IyqDeAFLb|^t})xdk$Rd3kwUs z0t-vh+%qn_e&fdj-WP|HO?&oq*Eu;3X*c_>u>6|%e@QWb*s9CnR#emNL=q9dH#S{h zCXawG(zj%4U%k{}i{Kczaai_3b|&}s0ohzLRc3x$8X_2aDI!NqN_@5U@Ch zi*Hv%qOJ3jG?&enrBf6yR5Wmsic*Bk;8`0XrvXVRI(%kP{+|z#j0VVAhRC)kUbubo z%pa@ZpW0hiek3B~NVvqKfml>~jL$E^4U_hgu+{nziL5Wdl3!wCq9O^amTImu$DXcw z!QmZ<_l;H}7P<_YXh2+nVAl=d-~L%EA*U!W-&EvGaP7HM1g^pi5(26zjNxcc zn_sgG9+i2RNTZj7x$~34e=W5~3w7-;HtX|%k{+#h%s`&}jiiKu0oe`)JUj#=Mf4_e zLG6XdgqR1=8W+|Pg$l-5|EnEi`iiflCNb=v*qAI37D})5(BcEG1hGEX+i4tfYBNh5 zTquBNeTHzhyqsD};;r28{`H(b>hZHgONv*7Q@t88&zT2ns<5E*Vi4(AWkvu$#!O93 zw+Td7Ky&NBApd^92I!UCHmK4{jaM$83JCg)757NfaBD1Y6mU?mU*)kQjQ%bmsr1*? zG<5_nR9D<>t!kU+H6X~Y6L?~LP~kvlVu}0b|7Hw$5a56G04D zg=?fZVA3{&Z4kIiBzhlB+KD$AaG6plE3(WrTs%A^LPxXq0B+wO1g&a6P+frijh4>h zeFPO>Gp>H++_TDi{>PeIY!mfjY&dIK0Y~2mMyk?jE;*@43A@trqZ5dX}j+nGbpm z6iUxT#2~i_MbEp;xTaZ2Wb%4`~*?*>LZ|AqW{n>{8T^#<{HbCbw@r8ZzvSyZ@I;CgS%kO%)zkZTgUfG1SX@T z)I#>y4e>+#;ljC0j=P>n$r@0*$8K;{U4y%yzQwgDE&U~D0;TkXWvr>%j%E`=zE3LR0@35Mey=i=%T2N3jA)GNG+$5pj zge=y2KC;fP37sdY{;Mu<0RSiQ`IXGojyFEOuY24G{0Ln~# zr(quIkjnNW-PRlT)G-NJvd^pFu)t13W>QgNl<)M}v(}G4Mr7yYlvC8E}LABQAbG4>}6De1wosi$XC~@Iuio@Y?LThmHgiFt?tMTtl2aG{{DhcZw0ne)Qe8 zQvqNTkg9NFV@CGF0*m24+PzE;smJ{sRaz3S$o@m_MCO9O6tOram2B_e?ZQb_~dZ;cHwQoub-R{m%s`rxuFj{_7C zUw}(EEk|r3o66utqcxNAtn;-POf1D_$^~(V9R6?FCWSHBxaKF^;-X3f>oh*XSCFU4 z3S%=H;3#1H=AQM*uv~V7VG7lmw!bQOa8y#H+$u zT8Y(6PqONe64TH5maA?EIF*-o^Y5`~KBy=tnjPe*#>rp%&(7%6%+wwm%zgU!^`fp=yQ*l7 zKQh7i+b8?Med9$0eeQ>eS#K`2KAc;CgzgmJF-yASixVW&SWryvzu@YeU+!&I-9Rsi=< z3nL{do_WXeE=6dlB#dZnk7WXE$`AujKBJ|m2Et(<5uXj^53TZ{KgOYVC2~jU??1gk z+eT~Cz|c#X{lGCcyHija}zi<0WM z3PB#-;b{Z?VYuJDAC+iXOkh7YaA{%Vz~2lHFi0O)j`2t;MDb1H+p0A>`#G9hg1T^1 z`_LR)Ka0RHEB1Dk<)o8l(S-JFWk|0+het|60@-mU>ctCS$+b>a=#C;MRAK<1M?)@i z9BCe6(t5?m##TN@2>$hqaM7U69oE)wVw`6&<7P4E-t<0O`RYd)nOyh6CtgLvXo4xp zfO-Olnf^3Q*NpY`A#5_4@NiddPr&7k2c`O(snAL_KAYn&t_)QnGQFi{9k54p#|)3;q_I1 z1=)-@DYqku3mN^;aUa%b6=^~w&Ec}RIZ~Y#84997U_2LYV24s{N=maVW|@5Ms1-(O za>3_H;M3@ExdU4bUF3S5W`nniC|ZNCZQv=y*X+*ZKk*-fd$c8x!0ve{QbZ$b$mK(oj+R1Tfl z4CweN{BhKG&yJ~AN1?X2uW8R+8#08z9YP#(th2Opq5GjoHW9k{iF_R+S6tEi?SZOx zQGaXpg}!ZEL+N98nz<^|#V=Fm7I}Av)7TjAf6-s@fq5inq^^oY%*@X_72X7|Jg1s~ z4o~>g*(vuKIATff2q^psC}Q5f|7JdIfV*Pz^b#lS-GnCr;fWu<;PE{$&PqAwar5_XK}t~ zG(bu=SAvrh9w~+}!Tm74A3(8~MP#~fpqJ_wIl0-cCV|Ll7I3A$lF+5_gS}UNP zuFlRy<|yVz?3m>P2}36eL%HmA|7mvz75d3W%&R!7ALZA?fDxCzf=Oss`80>gsX$FDHUq-0#j49irXaa-2R95OI4M5FtqgJZD; z+6d4I0wJG5L{wF>a&v`f{Y%Z@fvBc%*wOlzFJDB9D6YFK_DoSOzq6N0NLpH2a&T}kTM@;9X@t zAKc{NVPIJGp9qiI20Ib0_E+crJ51X1^%y&$0*Ke|%k@((K~Nj#OL{#1#dp5Z9$u-^ zpiaOTxgPqwrH-PY+AG|7Q}d}UkDmDe97A!TOrvmpEQcBSxsokBeSa}>6yY!YrbhaU zQ|P$?d~BLMRvw+#VTtncLo*2onagwEi^(XwNy#TmGPBgv9@hRiac`46v}8d(x9q-@ z5_FuBZtwUNJ?zlFQvHFogr@tirXF@A{qz@3Ew;$@8f z#76PAfaAcM5iI=mShSZLHc#2KiYCSmDL|cK*@03zH~bX_wERq5fT_{{ICRZW%%v4!< z1pByWy9P|4+=u*tB*a8V+vfJI%AoIX`0z|SNs2?k{Ik2DGof2F$VBTXqqWbZVk+N} z2w4b-`@Z$15NZ!sKCr*#CeU?j!*|#g9{s@{bK4ZwrBTQ9VS?Xdi9aPd)&B|3-(G-^ z!8MP0^m{!$ISr(5z4h}rYqm0zJ}gSIi))Db5EEMXNn5-stkn~(-pDNV8}K)bvFFPy z^$=r%Ua_0n@IPfLXH*7oGhAL&iQ z9ARj@J$w({JL%DkBa48QqXs}p^yW2OV@61(KS3s7R=JY~s>yr?%(#lzrt_{|S4;(9 z(*{_=rMP(?`MZFK2Ap2edQZ$pvSJ{*A32S>ETf~N=|SW}kshjN&q&HYh3om{N`C?G^CCtLvUL{8nC6TVqWc zMll?u{x?`kq_{&JCJSpQzNLk=_) z)K*z7sFHjyN+ZIl;VKSXf_74@5-yi22uIqeUIX9j`VXguR16O4J6BslpUD9pErVQw zt%dEe>eRrbcjft43!!d%uC_SJgL)%bapyO|e)Gwlv#(#38TJX*&Th;puIaJ1&)`7m zz}F6wT@McIK9CZ3(RqE?n5|ZU?gHDe;paBzAhABbO;hweVss5BcC6l`YF!GE!+0xL zWR1u7>Bm|N>|)z?`Fj9*9vvs>$5<`yRR((hwnRUU?r&QvN^pG+#lqqw zdzMDw%_x0Wv(Cd?Siol(aahs-hdnuNt=03iV}qSg4|$AoWBTRN?V1^Z3Bxj*4T@`)8r7qBl@E2}2hT|yAN|I1 zU0%oT%ozq9z>&vhole>;Y-;L*np^E7^6sS``?|NnV3FNK80nTXKYBM@L$`9Ow7b7) z`)`g80)VNK&Hd~{wEH=wZb}1o1&LMrXJ5Fjw})b?-q-Bjak{}4nhvts-Dh~YYl9_n zlDZ*LzwuI^M&if6Q4%EF3it=gLEWsVSgCk;cMiYy=suV-Jjk28B?xJ>`8-vRP5TBf z&?sQs!gJjCaW*oBPB9~lz*E7541@jf{nbDsx4X$un#e}?h?4H~H@WCzZuKxJiRCkyzs$3rP?Nrg=)!*CjX{1I-4=qMO~Au!~&Y=68> zbW}Of2<5QuM~5}}=sbr6iIvT|~dZtVO5x`hhR=-ici+q90viKW4VN`=gp zIMU1k#`>#a*`uL)d?Z<)A>7p(zKyxgr@!(F)P4)W!Mh2(^)!Mfk1+CNYnFax7syy{ z3A&(0HW^Cf^2l?#itB}iAn=lD_>-^dz>Lh_)Jn>IV4F-+&FgPQSU2lI)l??Jp5~Ws z6sogkzExOv3VK*rhrfd%ypq}6D-aAyk22=9sJ(5GWPNnXZFQQOxv#4@HB>+pozQ|?tw}SDw z?yZPH0zkPikLGe$cz`lmW<>%Rqy0by+J}VtOePg|k{1!z(`iOT7lb+)GW3XVziD3~ z^eo$g3oVT^ZA&Hn!2K}!H+Qq1JKy%cu;j(oUL=0(+)L;O-U}4tO9ZD}EfabhqoZ#m z1&Dd)ho1d9&380HWn#zoZmMZY5F3vm@m8S1n(IOiZ%zmSJj#CIX-<=2XI9IA41!FhtYeFO30k#ja%p-hc$lF zf@ZdE`#ij#aRK^(#efP`IpJw0uJtJH3bM}X|1`_-iTLFs;CNC%HsuL7v_+|?svba4 z52hoK1Vm3fht0C$F-b5nC;0){lg}9H=SR;Qk2G-Vs~W^y2RfL(El+*?cs#It)p`D5 zMoH_3s_y73-YQrKX>NGCX+=ucldnf<<{fUm7CMg}d}+KhV{?@{-yyVC+&(-?8aqCs ztj0K-AV)d!!!rMNt!>@$ub8pEXEv1h%^dh~Yisu`HHt^Hs@}?xL2H>FU!FWjakqJ@ zCGO8sB&Dj!?b?nDNf`KX2$>tJ$KTWJn1vn11DT2DiRrgnBlUN!k>+VM{qhOV2jz8| z6(*6iKHjEk0brCRQ+6Xot6`Bl?Vc3!?}EN@Ct7j(BKO_$Ct#xO0g}jq1@a?<9HD2V zB8#U~c(amt^I{iq{BgpA70Ra(Q?lhBgcA7e(;@7+#a)GpJRSUnq{@;9B26!@5<=i< zx>o#;ogmbdcR~;O@C_I1b;iqK`Ig4^VTwUrJ`K}1`|I=e9{RI|1qh!(60ZvG{5l!S z&3OO#W-@`=_v$0e%LaY4-;}(0jp{Fx3BrOAzPnh%pNVc4Hd05gS#0?yQS9ySr{dt_ zD?*0Ekcav%3O@}swIB~5($fL>OV)xq@X0ZbzJxd;;mp2Ulb|_>Ybi{>(V{@}3%35J z0h6~evaZFNT{hV^&m}ETOEBepi;YtVNw(?JxW8k2u4WnGy3U98k8k-KB|7w{LBuW zrex+_wx(WsA-2k^heq?!qu-rZxDvTTquqvc?Gv-SAAX@uDeQli_29CpIc>;m*)n1+0+4H`sI@WlAzxJ4D@ zyKn0)x+rIdiJuOyiqsJ;@{FVVphCkdqR7t()`F(_fQjTxV36h$E$EU_*3=uX0h0=< z56a(ezIcTQ2=YiCFiApPsL?uFe0{r>*c(6Wy1CcGtc(r z>2^0KZ!zD2TU85Bh%6N{hl^3W6M4H@5=JD~eXdNYag2BqfZYE92t-aI*9%f|Ui&f# z5=hs!s1_#e)d&^P?DN}pG=^_u;o|N+<##L!@}=0rtBL(y%R;(*$%O-gr5bg$IlPee z^7n$xBbT3qVCR^85AaAS)Lvp-n74WPDDFbJ7YlN3n#yc0g1?{$Qkx18&%mo+&O6y( zgA$0&W+G#Cw#O3&hSz?ef`3>s^=1-rhz9vIR8LB$7YB-i_}D$2qO%{>U;Hz%v5&5$vl%;3~@x1gM8+Q-NWTlZVISA|cK{1=NspOP4CKEAUsHbd_JZYjD9 ztrQssg$Cum=qRzqj@v!$D|70GCOkG`OL2h*fI^@aetFnf_>c%T3zLL-go~8yyA-L` z^}SQZNOe^nugm_DJJa0OGe7vnsN`kY)ytF-x6N1L`dyis97o&uhM;^vshEyL)nh<| zaxZmqKYMnf!n|s&goY~VFmoCkAHN3ZhBGynPJNCrvCfb}VY_MIMELAT)C?QRdak$O zP_GNA2DNB3d-=@fA~@oNkgM;nb-|?Nm>APPM52=X7p5EHE72z5?MVLSI|ss?pOco_ zQEYrJ(?&M9P^V7%yzh)d=!lkQ3y{-;GhqQCjw(31USy%VsR5u^G8jU97@q-qJIA~9 zR$PlW=1gL8t-5x8VI1^lepIdPhshw*w_drrRD+XAIxKsU+bVmk-|R@^j6L7Er+VOc zyDS?~3KTi@YE1V0a9Q0w<20yO!IO%3f9) zKn1nmhwqM5)Viyvufs zd{2XmggNW~&h=U38ZsB`6;u2j7FFmd#|0BjQG=th%z9N*Z{+c51kVo+evW$boCw(e z=uZQ~ZA6ggngYCSQVY1hkn7%8rap*Vl~z&TJA!bpt!+>^H00N@(#cm@%{cM;xFchs z0>Ytw7z7XoEvP8+38|`Z+K7qQWIGkzlcOFcMdI$)zXkiXDzWC1>#{0;TxPl=#fl$~ z2D-#D&x`=UAd}nW@~Wfs1wSVzb>y57grd2pb9Qy6bZzK4Ame4JUN*nRS2x}k8N_4d z^s?bPbqYVI`+AF3gfTMGV4({-UPQFA%L!<`51@GT@$^)vy1^fgF0f?8d+)UiO=S?K zhF0k3dez5`dYPzD2yk0nf@=Po4D%IQYj<%}&!jZ7_k6Y0j3kZ6PFt)LjprB>yCh<= zM2JAx3Y>XH+Ala-M++r@GXaV4-rh|hK;QRSyUqgs1V@UATtCAm!mow+abv)oL~8)L zBJA!MTIN!{kqQXQO*Zt+&oX`sTrCoMH&I?f6H}-G03~Dwgu2w$;5$43q2|c6gLhpo%t|s}+>|y&a;2=5~+k%f5|2Hf>u9 z1`M!FKvt+JfPG$@SJAjzo35v%z0t~)y1L-k&szKP#pg=(qI*OEM+nsYp*b@$lKe^% zrNd?aBt1i(r1^5KA_mAD+JX=>Y$W6vpvL=QHIediat>zjenl+W01LQZycM7elB!^D zgU;gzOf1p#1tH1cR74Yt@&lb;XtJL08rmkZMa`KVH^>ym=0_j3d>vf(7xs`NCTSAH z%^Rg@MTWY`zcIjq`Bm2pjrErgqE|^-?x3+@;%sms7;E>l9#mYjXmpKz`J#UyVP{hF zSmRXd)6=AqLiN{b3^ppNzw8I0n8I-0HfkFC-y>=_lcQQ#9U>3TH3LOb3)u!q zrM$EWj~|o#*6 z@wv=N$bz|BA0hB(+=;@F)|q2hoU{DW(d;Cf`?<>fdX z@)aw`TXoj@r?|Mtd5il`s;Mi!lRQLtfZMFcCrUV-r_@)dg>tjhhYx}4sN!g;7>|`p z2dY+p&5|7=0}3_?dGhhy zeA@JbY#ZRd4yjDI=S||`YQ|Ms-Wc~J5Q2@r_5l%{x3DdV+^%$~gwjyMpq_3Cz`7xW zaZC*Qa^{^G1HE`ZpVaC;_5)*QP*!mz6DOELO+IsRs z9iQgFg$QsaJbWY7-*i_QI$DbTONA}YT#zfXyaSR@(zGpvtp*Sapww=wZju_Jqod4RMpED~OdeNfxGJc?v{_V1M>6t(G*bT|224r# zy~GM0P0h&RTVC3sTuTam4muJlEp8?Cz#hF?mLpwJIDU5Oy8l>6Vo!~#GTLB@vb znf9I=hz2PFV~QRt6TUQa1D24x^}eh>!CkE*Vev~Q7M4Ds_6eddcrS;0e~eXD06%ko zml_8x0Cmz0ybHKtuou)UO?ev^C|UhF)wr&ttHNA!CUlD(GHg0|F1KZrH;6+2)TBSs$Q z?j=5)y{kkscz@n6d|Sv5lp3Nld=xANYO2Zs5)@8GBla{4CELbyYpuI8f~GD_(;&C( zmQR~Yt8xR0f3z#b`&ejuN$n;)ioFLg(#Xn1Qs{y$4mO?n=nWAdHfq}hqIUa2g3X4Ga zB8icEnQQEJo>Xy6>4|Y29m})gGX;tQ`w)kzjk;tP$lGRd{xHp5mk5BvU*#i zp5#fP0%q5j!`5SevoS0zb?}1c)%J3uwx2$1Gc5B!(N7zd-Q7sBN`xuv-NvaWJWE92KBG7QrQpcl{V+j? zedCkOvf~I?-xq@#Q%Ds5wnu=wEl`x;6b8tzS zMKZ`X5)gixs*MH(5V1H_a^#fki2|=*Y-4~g1>GLbpZxkuC@wHE&blLn^(?lC0mWxY z8Dm6!OBj>}9F2OUauhUyARRs|$W;zyTy$YPp_Ze75T2-219%GgbYDmFcq0ILCo zN7`36Pmjz3mC)+x>y7$eQIqOU?zavAB=Nwx&R__mcjdfwcq8HzZ16B&ik5i5m(6J= zyt8tTd{8v{$1OnH#4B2|JSe2}+O|EM9LWhl@}8LVCrmbbo)N-o+iq7b)o-<#; zYG&3L7#ZVKHRNfVI5J>k}aH zQ`Iy-A-M+~41!7JPRQ?0t1Ryv`@3WnP5VYpZoTc$1VVqs?7Qrw-})y%n#joD)R9bh zqLbAFAI4SkkQD{s1((5|?rzRZXtBfKS*27i-^iX_l~h+?E4Q;F9Dj^@gu5P*?#bJ6 zfP=^Z$XZnF?TeS%>OaY0%(g%6IO)jUnj=ESEN1e3ySr`L!>^|QK_gWvsPCutk$A%NVaxwm1BK z^y}<*<%pIJeG=f}poR?+4~xWz*8u{V?g8oaH6#vX;hLK}r36c~kjrNeqhZ~8n@(qe zZ~3N%YPj5WnPJob{cY)8;=1&)}4SiOCyh zL9+oa*zwarAy!!sJFR5GQ>n^aOI@AkZtL0j3t7m{Am=9`+U(g}M||;>Gr;##K^_yl zJgQ~~vooQ8$8UZjX=|CF&*%ku&>MMdaM}rLkR7;XbE{$DVj=nRX#U2?Jx7&qc9W44^5MWF2E06UjWDao!4J-tiIZoU zGo;FWK{VqUbe-U$F}05? zjrX~27SO!kD>I_3XIYtMB`V~)lZ_M9euP@<3V`_|vX03c0EOULAdfXa5rogD3owGO zac`k_2tm%D|2fp3_mCWz&+WfR{%EdBQgxH;LVWky8Tj&Soh|N2CO*g;}$sMxXN;SCtu!q&H|S-ADi%z=B}kT&E>qnO31-jjM2p;o~a;RTFxu3`jgw+ zqeCeis5TmqX4IWEVEb@zs?!b@4T^@iWf)2j+=MW%`ax3EHN{FM12K9pP=TGY6_;?_ z*bTD3>EwQNZ8}Q2HXUWW0!3L6YT~~-O`m|TI;UGpnAcZrs4c3<&!6M{A*bdz1cjzFT)B(HMt}#{IZi;E zPgWbkQj-M#LaIlc-&AOY?cyHyYey}pWl&an6GxVY)Vd?@Ysa8?XHW)WgnACw#y5*6`T!2+T0j@3)Iz(9)qoFoDRZ zUQm?;x)?5#SpT9O%#pQf_;~Z{8%P#CB{3FRKejcqVPxawmbkrroqp!@F{aw&n>HmdnaVB&20|Z1sqPtg2=kYfJVydB5}%7x z(jNm!q;I&$-66FU!X=2SDQa!8>?*PbI5n_YCzLF$DEA6uY39{E1#PD)K(n{vnK7)G zYLr3fUW3;4HO{}nV8~HRaID3@c@gzg{(DYC0E?aOCm!q;MH%5A0dOR_RS`cXFDz(x zUS4jmGX6}~as7KvUbk1mf4iQE|ZZL+x(Ya207y|B1PgXFcfyhuNVAIN> zJYJOC%%u(rItNpd!~l~dp=K6yy*?N|2o~Z(O8;gRRNwRr|0CZb(Ssb-IR5f&H@fdD z^E9ef;7L&5<%6hfg?0jEMr1ml>bv`K>?DHnnG*`Eh5~?p#9B^1GdsJKfh`tYrW`d* zL#i)D2`^AY?c=RG+N&B~{CK3HOn?8oKd4Vy`75EwBbX;5UK7cZZBd-3lBbxMX#Y)41f|EpeQIhle^=oSs>50F{ zS-MlbYdoe{ySQncVe$GgIme$$vTEjNdGj5`?&jBh8Os#F+jx7_-rj!H|JL;-J5tDU zOTWCB?Jyf!ZuW)S%(udj?6gNCj5N-~bG0h)${jyNa<20U$6Yzh$2Z%Iu|=aeG20_G z98TzK95S;iZ!lzcKCoAPgJw3**1x>}si#j01Wv$O2Rg1}wn1CQ z!hamAEuoegDSUujf_%kCs&-n8^R{CIk%Fh6iCUqPEkDqJJ2WaPO5ro++ySBJ!ObBo zAMZ%L11k8P6ux_x;EK8N?Mw!`Juy+t&;gS^uB3sFT1VHCgt$-_$acf5>;A2PWG9=h zAu6}STLe7w@x!C6kwjo5+4fsLVO<#%<%DBsO1l85z& z>(P0RD}3r}X>wFK!`Evk)%&ryMJ>N*!|Rh_NdO7!3V|p@F_Vc%6174ij-IEDDZPC^ zq8uB0XF0dvme#x`ewzq-Y@C{)_G;Yiy6(ZH;?E>=Th)@szgJxQbsKM9Q~q`=dBgux zf_e!Bhkj;^-jaE3K6buzuf;~dzhdolQX4t3F@1G)RUj+&0{o&JpbWj};JKL6!5%DP z)Oj`FPavla##x|(SPT4W-xEP6iNfFK7z4RQ)ZYIugC0ea9o~gvPixX2nf9(_bL)R)k#P`gHsRzpYi^ zS%|h8bE)}T%ZYH@b!BhKhn-Kw#ge3FW!-?C^bMLg^7{6u8yqtpWk_-3QG)EI5*U%% z0h)M_K2vQN_h8?vf8^7;_VAu<)jf-MM6h)!Bt^R0!J9t`2?C4~o@fvSkqu0)Z4sxV zsOmXjyOZC)SI%0P#k;vShAQ;~bWxWFDEB%;!v4qNHtQo15d*AZk`Jwpo`ubj7d1{C z7L(YbKt9@-#1*NKG%%yo#TcM?m+rV9U^d!FJ83dBxG|KEb)B>mo{}LA{MX^E@cfig zv2GSt*gqGj_NoQx<3K9kHqN=~;7R6E(B@op@9hkQ(kud}Z)5~Ji~SRj_GqhIOmNV#(CQyJOg$t$VUO) zDXqXgPJ<-KH_svrw-;6ZA6s7?7KOKUJ#>e3cOxa;4T69Yf=V;eE#2KIAt()slpxZL zq=0mH3Me^r^PTbD-y8S+p2z<{ALqAZKr;4I@+p; z+*o59@36NollEg19S5Uvv6fxtFBJ*uersTq4i+?Cfpa)t>UCa9vNH=ENW}sa1E!T1 z!d;I_-EI-w5UJU@VmIxN_v`d(UZynM2CbW;mADaDU=BZag%oYV#Y}$%6Ng7?LGwqd zZf0V_J2yGBg3(AiZ6`(iUXzl?TPPxR^Kn|r?5e6Unt#|%`=Qe%$PV$@je#9&kM81c z$%Ut8i!tYbRtKEvyymYT=D)hSC*nGy1@X`c?CQ=G(SML41vq1k>|te7P4;Mq#zHJ1 za?Q`~ydQ)yFJNIvqSr?w2CieC9`9O9N4&Q+D&4iN(>yU}D zTERUP_6$xj$M@04y29+{arZRz3?-pXz?qE@`1T*r1o9NY(n2{RxS+r~1E&f;aXwzq z^1p{z-EN^lbR<%C!G*gzwThY9e;c_!g2=)c@X@C6-&8-aiYi@|WIZ-+0VK6V#>86j zt@809P+Z~UUxdg#3vq4D)ekD}?D0|0 z9bbOBa`=5WipfEb45s7<$AalhEM#%ABRj6o#p-z8LZ~#*`ukNiH`#(Zf1h~A;o4KS zTaA2wX>^Gp>c9>=eLD{9c5&0!Fg>`CpifSD_0>US zGNC2pbO%AbW&(Dx&u9la8=mNKy4e+XMrlP5l5!h&>P7fpcv(&HV*54Ke0TKrP>RsS zj=9ZL#cf;hAvj`r54^f4bikV~$^6L|wVf6+F;&Z@etSjM!$BZNgxnEINw4q>4vhec z@IFHgj4awD2R_};z|yAkZ`GvacRDUzTaCrF@Wny!F!bisfpB~}?53Q_I z;sXy4n=t=HM!uDD_sHggw=8~d9nnh(gW;}+Jic2K(DpR(N#D6P36HS!&;PI7KU$uA zZ2v*H>xNt#)_&3;l6EkgW9ZdD8Q^ctXmoQ7!KU@S-f{Yv;v~|);&gMkYT9Cimz-yY z@>~(U7d`6`h98d%`p4icnwxBjpwDjX%h_sd-$&*7sZ-~bL*|6|d6#XSIJ||&?0eB7j`m;K>R+Z;^&at&4G%#3bU&dj?`q6Kt9JOMtU8c6 zbM(v9?(&G&DC?XZE|bdgX_8IV@#l-{+V`VgwgF%N|8P(MBL1b<w(dDRwaHf?TJ+c2MCMNSaYVQ3EQK<>r|rN8FvNi7iB z$q1*B)(P`9S(#p_;FQb)61rz=nW__1DPSqZ0U%uc<~3RennH!kZ22r-3bEiF#Ed#i znv7g~(tQKeJI-Y=yLMqF%3&99&n}PcoVp-%*(_?iC255hi8$t})i;#0!-as7*hbJa zOWZEGB1rYuN^S9%LiU9c$q0{>ba64mo51e5X9ANRMNI82jP<#sfs)}bgFY`#VG6{( zSegkW;I^xAh!ZgRAKXnetL{SL|MBH5^R(T=E4CX_+AgH=t+fr&VR_;4`x+F$9WP7T z6T4l6yh$Vc#jKIC5+P_NmKXBf1T+eV$~xZMRh)`R(lzS=aklfN5w2we;V%s|s$aM% zY2tos<@#y3abKM-WfS6OT^N&8O&qJPXSy6nZ?LJ}98;C4G@?!XE!$PkIlI!ugqp%_51l3@h>)G#{Uq zFbwGZd_F2d-`tCDA(sDQR{pa;a_XcOSjBknyQ5FF0M_tvEt}_pb+pyyR##I+ox44o zSgn{ya}deI70Hyw#l)n~ou)Jy*@3q@PLl)v5&mcTH|WU57n9M=L@G+xSaDD5{N)b+ zv&W%)dCF6VnrzEa`b2qHZ`Tm?#(;K-k!I)g;CSCBz&A&%e`Y$BuYR!~YndF#QR-F| z{+MD8OWxZp)Tmd5c0&?a>$^4=BfkC~knayRtJ~>n@V(hv?2gFL{uyo)w9{wVF3il#)y4581ChKr_mcp443i9eUS!|8p7gvab|a*+wu z4hlijKronQVr9MFQrG?qz@!1~cG(P;hObuelQQ1hyq)^8AXJy~V=grY80WSZKM5Ab z??(iA)P&#*{zA%ftpd~)Xg+3!_g#U8C{rMcsD4I(GlGrQc<&sSVuD8ZV4iDquJ-c= zpy|(c?kkPd2N+#pGcR86u>=mR+aIq|+1Z3`1WCu8B z1PF6x2#!u>8<@4=w{DgdiP*OT_6$=)%5+P~+n>cwbY0LBrN4Y4m-#vA^8u=87J0lpX$(dfTDrp-AB4)#cAnsw z_G29%f|{6ynv?nPs!4q19f1l|jQvlde>}d-=QEs2ziDfbb9^p{fDI9-&(nYUSMSt+oO&aq(QT8v)PxN3Ly^R>5(fx@7zi7gSBJo$lHNkO5m3k&r~<&(LF#HBatCilFz zz9}Vw3@bz~F@S=dl{0`n+agv9((Sp-}p^Es)(?6m7}ZGXOg+2b3qJd~puFSw_U0wUavOebU}{p*H(7KT z>zC_iYQL;HwK0bcvl_uxu$C!xa9ko*kKQLaW?wx5jY|g~Q-*D4Q#inw-oj6xP?lJA zBL#Fyb-ARZ!DgL&{WX-3gZk6Z42n1RO<(J=wJm;jhV$U+{`Pd1G=Pri`7ToBUrIeb z#xfR;aKWA)Hl4V~?`d#u#w5kUgcaILqDo$&8hxn3WF0ot)sFNv0<{vnhs!SgR3JMY zKcO*Cm1X$;$G?4#z(0TstgN40JK}`}(6PFkNof>->X?v_N^mh=XnZxJ%Ay+wKf4eLHXGf)4joMssH0r4h<6d{M=Qize<$?aNE-^y8_%X;5?>q$> zB7*m~KQ}4}hT>;`QGV#r@OA5u{bV0#pioR=15S9+0K{bRauP4;GJFENtNYzWuNOMz z*Jy_aE*7%R%jyrG@YcLhnJ`e59bBx&4kM?VkQ=COG4MVm;VVAXGs6~V@X7RgWfXM4KwI}VCk_HCo% zVV9zO_XiKR?W}$n_ZosG$%pO*pD#q^_fzV=NIgAdd8z_V>-VciA|!qMgF?c-cKG zFkM$_F$@=72l@EHbLBGpbMh0h6HM#aPs!nCb58u(IAwVkeEbfUru|_59d2eIpYs!E z(e>K3URS+YE#|{x(ow6ElXXRJ|C`JfqDENaR*p-+gk~ciibMJG&o1Nvj!@hiaMpzk z$K}nk8GlmyO&{mDr}GPu+3-1D}NfDlT2E^nh{EjPAP>X%`+FcQ}>NXbm+Fn z4|CTs4#}MUYx6O$M~}J+f%4HG*Y}(-jaPe4$M~@>QlN3}3%EwE0jSKH#L(R~o9SHq zZUXWgmwEwXD?rK`8!mhp2HzYN}w@WG^21BPKokP+IZKAWBjC)M(M|I*{&a-njQi|cfx2B8m_J*m}{7u0u>E_@os z&D`VtUDMSzWRYE!j&e6|AaWn3P_#vYEIdRit@a#TDaFV`dZK20cAN8iT_OT77%gH2 z*2A`;(g>| z?xdV#!hbrT_U>pT70X{d)onP#sU7xD$)I*MY|-niPqTMFyYqc?GBq`=gJeEy!foK| zDQByfK>KR^{ZvvFKUBkJS_U1)&I;^iJC&7{4vV+o*}~8Q*)bsH^OmY8*@X^JakwW8^xUtIegMFE{23q!Ak@>sO}_M_JX zOVl}$)Dc5Js(4|d-%o8#ublWvG(6EH=Y@hbRuw*UiH_CMD$Q8(n^0U5YSq!|o_Lm* zJP1Sm#|yym+p;V6!CR}@T=%!xJcYZxGb$Nut_6vKz5Tg1<^gp%b$fvxaj9bN`y5gk z0<_dC7tI9jx50HN=KTxO7xOP6> za~hp9{1C9`0XrT)(vyW8T6aei*8!uy1URxTX4Xk=8HZrHOszM5Ju@WC)8|Y>UZHb> z_;S8I)GA3vpnIE5i_@rJRD>YV<93W4PjX8_N=ho*;sK$S>%?j}$P4sg`RzEG&n?`! z3y0L*E@5I>9`T89dUMtbUoWI2iS!=m<8=rev7S&%VR7Eg9O(AahxtDDHBE1$XsbBmZ^9^>o&_b+k9AeDL&E*qZ=+CaWk^q`l zlNT?~n-+FOwyCG35;9w3hgk-DIce3p^J|*u`!2*ddBb&akoa5_CURscH6n5-xG46^%J> z%?ja`XOT6iMe%U4KjPBxRT?ZI=KU6+SC)N-u(U@Q{q0jqTi);Xs2DOKQ4~q(%;+%d zrWL3D`O{8n_&G@}#JUegyT?hH|9;?mdCP*i$d;>ubdDta8*R8~?$_Q(@e@zS4yu!z zZRObzA=DOJYJG{A*#b0^g_Y@Nb-He|Q!L#HU7|vJqVaeE=`nS^F)yla6Uz_`J`EYB zY}$O;@t}ELi=WzXk*#Y$FwYF}wXK@1Wo2R#c-};IB*P3Yk;Uxj=qPE51O#eVm9*pY zfk_37pFyJU+VOLE^qxfW4+9t>F@W&mbx|*+Ut)Utj4r?-Fh%c{?Een;hcw*|dU|VA zYmcVIj0Qx*`{oyX(&{ra^enl}SML2^1&;(RucGbP7__}-Uta67)Zs9uI5@-U{_vaD zRN!jA)ikl?TQAuB3O*@o)oeeP4Z6*!osE$FsrCJrP&bN+_4->ALlcO6#_=JlcB#r4xr~WEH3x z-#24D38OE;cDBiDTN>`T1bTLg%d7mnzBZU+=KGkR6g;G!zNy*7X{x5KcZLa;)!%B2 zy}%Du&u5E&qMmjL}KEbI}z zwgkg|&BApvSxC9+JDDPr}8LqmA9l2*8$%m83Y@2U;2Q#xWY9t^a0u`dx)>!?FT`f zAf=K{R8NaF8(n`}fp{J2N!v5y4nh;;QFaq3b`91u+jyqEmqPhS*w8zsZKh=-D@5{h|UsA-Fvn&D8 zyI^=gz4A}*Iczd<8vjLAG(Z#Jny|ZQKM-?5?CIj_{uMh94$KI=Cu!daG|4%EhhxWj z<&sek)~7mFb4TK+kb6cB-EvVx|;hxGIp)$dajgh13%f+Un0Mr4X?Wuq?y^3{$J_QHsUE+7ASBaeO=K?#<6 z>%Dl9zUy(Sprpitc%i=U*3vbf&sM9~gf8ccvDI7#5B=!$UDv-SxdVxw)>XavYCQ~- zqwP&USk}B{3%%Kw%0$w->n&KzWVF9F{b(;8d-e2rFXf_sUhfl}ym8IDa*@#;*KOi4 zvWjZ^(3;=Mync6LyHam-N1+y5Gl^ec^C#)r$xlxWgAP!8m`+@OG)+~Y2L2&9VLIM$ zMO%-i+neV*8uYBwQI4(XVWTp_brK~j;ggmAF+R(V`sZ1pU82bEmx)BS9zT%|j*2RE z-kxB7IgJ`PhwvPKsghhwpaL&TrlRWOww*hgu7fC8VmI!5)FC)K%_Fik^2aN!G-o=y zU~A;Fyta9aW>n1V?HW}*`-o!FN8Efijhgwr0;rjpLy6%t=hs!U9}o`pnsDFSA9u-u zjwudcn9IxhxuJb&=-{v0giqTASS(7&zW8`5Uo9I0!&+j5ErSB?R(?UjFlS9Yuu}H^ zcCAIot%-9-rPCnlMg=X0RUUE=)(SE;SO@P}{tKdkI!ShhdPt5|kE&^Y0T1eBjD--$ z)JNEi5E#PBV>+`zq^9~RBvNB=qz=lT!lh_P8ci6)7b^562B6)y{)YkK<=k58*Yo9hhY~1$ip%hIE>azbRt`cLI z1C8Ri(&VE55P19|u15sf#kc7X1s`WZ?XMpA+P;ihx2)*@w%I~~jM_eNiBfHcUo;Cr zg2jTe0Q_^T{)TOoAm9wNwzflL<+JQ)luW{M1Y+#uHYEsV_L0A_$sMu+ouz#Om> zQf`CvKGB2o++L@lrwF<2IP~}UG&KIYMBNV{g++!jh}n=s$v^}fQn^STli24vO{j1T z=P8Z3;E6}7r0SKAJ^TXJdnZTRnL9Wbulzkxcu6**8He$+8gRUUDYY2yfa}ym^2*&V zyr`V(S&bRF7YVBrW4%8Y@^nQQ_yXwtVM;f({ydpUZ=fk3eHyt0i_ejlyib|IH&8kQ z3v81U4sK8UX7PD`c=_uol@wJA#d4g@)4UAjXFNp&{qKa<+zSW4Y}wCxti44NCfIs$ z*^A)I?}IXAoZ4nBD?3v7yi;a&nx%W7vP$o((;j!(Of#)ell)W-`H`GZdHl;U%${f4 z3O(Jfv54~bvy@=fE*`uQ&Js81<*=*5J&{Sf93$F$C@}rT4yc`Sjj8Vy<#Q+V5 zEju&hpo~0QL6zZ>#cxGE44MnO2o4Pm)rzfbh^;KQnU;&J5Od$1scr}BMtWvqY^L)A z?*OI1{OHk}D3EdNp|O3!*Doa9Cb$FPfnh1Zf)YPrphoU(MY(5Ov+>MIV^YYWHQ z5Qa4mDbL}d7V*-YmDA}k^l|*uK6v{ajknmWJ6c&mlM3jm23mW;)jz@96O&lU3Q&tB zFm#aDt)#gzm zwBJ9&f@0_3ZATY5a7CZoNRJIe4&vqmBqrHx6A?9`0+r zYuUo=zP#z5e0qD*y%Rl^M?yNhu^oD_nhoLYwy4S?P;~w{Y4au5UG`OSW~SXnWkk;4i0;WZwCFD74?L#r`3yEE6yZ~Oi za9ecfM#S&(k<@LVf*;$&Z`##GsXR8lSC_U6%EJcV;m0Q8$zZ{Ai6q)^gr-jhB^#~4 zTG}?MrZo51Z3(4k)T57)6IL8+uDlM)C~In%@z@Q1l29{C{grz;niS19ZdIFPZ!@wtmId9UXPzI~$7T+wTF7#J8&iwzTXL7N~9LQ(uTk7s~% zBDo}%!dKYMEj$cw(0P$zgq#|npz1(*vS$`+ zP47g=6m6yshf3h`d4Qe}myr-z?<6sg4AFmg096L1{^5^_lG+q3MrZiW;VH1o=& zm-Z;5C&>SWsEvxt)_R+rPFZ?-xa6B;mreUKbr$-YId`sN`QYQ`LcHs^#*RJqn_}r1 zbs0D_?+wo(DOWDNTZiSmZ0oy{{123jx)#QLxOo|^v<$GdRZ{b_{t&viR{) z`4<^%(S}M1H0o_o(zo4ak;ilp5k%JRe@K_hejY^R4O*~V?^T;eO zp`d-RK-;EsZ|rpb!s1Ldv`eEsz5dg;cuV@$?`@$EMi*b1O(xK;!1>K$id150i=MrQ zYVR`ubL6$`k;d;Z(0F%Uc;?Ca@Z;m*#hQCeRR2b*x_zrR)lFt(oO3UV7Uc)xi?iF`u zW?wXTNoOYc&W1~iFZNN@Pg3X&@m0KDP%2-{^W~%2G+PN5TOf*qTs&so^ZHR1>Q{p}s84&FqUJ7Oo@@s0XUT^} zjRTt@bo2@cz@APSNIOw3j}cqR5lp8Ba8kZH2$T#?NGpOhSpVEOfVq7?rl4{M(2Dwz z3y})(S`|DtQjJad(U=hv%A5f^5|>_Cr`=o)#FFL6=K?soMUDd6_mLi6_`}f)E&Tp~ zUmRWCJAlo8ycF@0ZLOr0@0?#P_>mTKvVf#qzPdN8yE0{uxmaId&3NwEu?V=kZ!UHL zch`gBvt*QY*j(3fy$U-v3oTpsk|h8p^5z@sy=e0#tf<3N!YGi1Up{BR72h>&;GK|5 zAwdIPMi*FC{Al$5?$eyzqtwuq%JX2WU68zY#0!fwAa$hOk*WmCEY@$3OdQ-TEwD?S zhL-lJ${<=~LPCW<*kJ+&Drh#5gguOnifZ_{2CHd|>W91lBoip%in`4zCEUU9OhTkk z1gjYpoPls+4Ds}AdcJ&GGHD}N3eXUZEdGYQ_7{R7uj#HXgKK#k4uD}JCkYn1UCX?dsoDih){IBUsPlaeAvYbw&ZK4TUvIS`pp|phkrKAh_@Xe-8p7d|0~Rzn=%4=G(6N zm45b|HHAm{+NRuUsy=*vxKccGrtyG@LduXZIa!O((M@a@*Q?1#7#%yX_!!G-mM#$y z`{R!xqt+l4Yw@qIJB>DGHfY6JHxd$=9Nxezul@|GA?tj}wd2ZGqIQr_N6W?9YL5AC zQV(`&Zu0kRQpWX60@QN!N!~9VjGh}b;r$88oyEacNz%b-1{<-=!88ViTQxgMYDxJKdfbJ?oCMU|n64w}ngoN~ox?ey_bH6`H%RKH=QBf&gU0o#w zKedWrQb`kd<2S>mGDZnu0jw)LvosT;H~`9z+QIk!>ijK#*z)9;xMQb-9ZePKFZo&N`0aQFhetStG%5!I( zkLUd_hTHY5#v2o=H}xx8k!4Nbk)tlh=fV>e)vp$DyvIWh1#^+8M0fC8kx>m1w_)F# z9WUcyqabb43i+g+ZcgKW!NZr+%-v{P?eX%T`5e{7?q+-p&h|rNZ;7*+71#fy?Q^)* z(;smRlTkuU0tYRcn4{OsAnZy7&R(F_W7)rPQiC-ibqjED)6&Jb-j2-X}2goTD$Inu01CM6}=h-3}1LyVq-)EvzSS^-`WbsIxY zK&D2~aT1}bg1Dk(;Ss!d8sf2H0^_Aw{Sb4$P#u%37kZgNO*{vWU zY?PpiX{q<&fbOD`?9ez5%;s6EN*_}EGvT_SfQsr{Pc;2#+rvq(8r!{%e>CcN`Zd-( zdTbtm)IX^ngt6y*V6&5tW@4R=53?43Aoz#X_oCClZjRA$M#;pBvET$T%zk5~Kke{} z>pVEHwY?ki(Ecl11y$f<2s^lIjcm~apvHSvI{8X@uOmeWEMbz-B>IdM{1t5uZywSv z;`x182W)(#f_QC_d*_&L4P`x1S5@^k*pnmbP|)-R9Y6bMVfN^7Jp>A|iO1BzhL)9r zG?nX4tsqVY4XbNBr=EP0$|0x&SLMJ)>nuRoOZ=G#>p&9jIwm^`7DhE(%6YT*%do{6 zZ8@rq@%0L_FW;@+)iqCecKLIh^@y{ce)a=KfT~k?DS)O1$WA`HH<;f3BE(qZ?%!7* z&eiAnOTIFl&|i!pY7})lBQcXUiZ7jJchycOQD30tWJU`yiiqdR?%o|m;&nK*Ez&P- z8MbaB!TxtZp$dR4W_&(pyUIDKzfnMj<^of=(iAi^cbr6Uk;o#~My<~k zWMpKL<`f}b&}SlBgp=j+KqVs0(%1sma!h~k)dm>dAs(4ukJ7FN`88P{k+?SW`q83E zthM`i7M~E9OE{$kk`7L90&N?%4FBSm$kshrdZ<289`ZMPe-<&=J|c!IZwkbiAdA;~ z?&*Roe#_*BfsOAP5ceTz9rqSM+|Ba2c(1n41@M~rY6=Gg7AKceYkErI>Np7?B}EBN5% zw8nbbj#XOB%Zg+smD%z`5Z%6ME>edr7fi@fJ2X>6AL7f3$=*-t8ugzvFXT(PA_~rPaC4+`hIw3v=Pz@9;SCtX zy{UFWDu2D8d6G_AzSK2SZ=NpYNUfHY@%N&08jk(iI`{0Ee93HTJR7^JoRJ0T_x2iq$G>R2k>lfo_*1 zyOP`imUcaN-UrP6W^BIafnp2zj?eJh5%4?7LfYB_%GsiQARqaA&Oj{e1e;=>d3s); z)YyPfR~P`c6y}Wnc8wF+!a)!~8j0mA^l*-Szv(n|4ziVJ%}zaF+h({*C&j{D?y}}; zJRkc%C&yUDKm0l?C2qSFJ$u(aCwJwMT{1HK*#qUjuZIo}{U^bpXo#CD{lXoI=c z3?>(mQ<0O40xM1=OJ;-;qVVOPZP&&L(6E^XtSj85hS+~o7!ry@WN)U6=}*KxJ}=rH zh@byqVeU>G6lrh4&9^c7sS{ao56m^$m-e^vn47#vV%T zP@=|$9Fp&XL|6+t6*{=4dm*C*>WtoT^ono9InmneXW~*Ovg*C%?*dI^e}p6UE;09R zo~kP>^b~i-4G*-H){+NWWV)aSLq3mVXc9Rhh+wY>KzGZSR4mD$mP{&*zykP)3Rk(O zFPYU5)Y|>OlG8UfUav1Ud6a^qF46d0CAQU!2`$46>^+jsMm*Fh*7{U}1VKT%V?ggv z2Dwf#!@49FjP$yHQEAql2g%lHBEcI)AnOth7y!e6Q<$vHUccV(u8Fz&JX)ZP6%-U? zPX^_Kcq8SK#D-o3g0W~=z%Z#jbcqc>G9q-B6TFU&*N><{YFwKqgQAIUaRD%Ffg`fD z1N?2B!02~Y^jrbVt-<*`E{fmY1mRdZZd(K0xscR;1^_ssndiKYXu^#1PGB+V(+(CS zcXV@hN3UWL#8A;8Oe(D_gCLh3cApsY@i_|uPDDoG^JdYrDdX(!sA+zRlYa=-)BvjX zl!jsv_p|8yf23|EFmhHR7S%)P@2u#EfNcHkijIjH%oZ(- zupqN^knIjZY0Kq<{6Zj0teZ6^kip2(K>N(kBizA8yiL$EBL{XtHqE&$3@6gdzfshr z!jOS~L*vdvKKwo2VE&6_FddV4)=-$Hrsnkoht=lK_u*QfRKpNGx!Bl>SOfpqOahCF zSaP4h6QXW(2tAz0(#kwG2E(o9y`hmQ7q~;08jxG?9XVtke`Z#h;44iBJbcwe z88f{no3ZklPvjvoPB0?PRi*=vP#_(z?@_0(Nap@6x8HA7lBSp7kRZ*JjsLC}-yWD$g&AZ}d90y0`v;^`|}w04}*`cv=@>o%lf zCvEHzbH%rsGrpTxVb00@jb6C$=ru#_Djzz9{_p%;fT0as0a2W_W<&k<@Hz!}h-84~ zozTh)!-)M)0vwLKskP~x;{g*6&odt;d=MR5t_b8Zruw}n$UDhXJ1uPBMSNm87zJs3tL9N(Db}b+#cGW!RMidN2 zBgz6R7OII(6PX}i4PSk_|P(%t>)~UoaJ?tgwHVBP^*}} z*J3tcA+pO*n^qGEGjGowWAqw9)vT`!$R3Vnv3p8O2V}4A>@V0iP#obu^B%gik;R{S zZDFw=6&L4LYUltqpoxOMSVS4Dp-U{tD@akU!YGJX=x>3Ks98Br&(Qa_F}7m*DNWgm zgWu3S=CVYIk39Y`>XeMmG|4thOMcr`fTFM-z1$cJ9NH?7o-ck)$6eUp8i_EQi{tJB zdDSt25T>@*i@*4V*~oexy~EG_hj@)IiN6xk(lrZ4gL{O2Z@vFIH>&?P?D1X?r4jAc zdvSgwlOK3fWY|g<EixN#F$D2dTRo%X145Jo*PpJZ3m)t4 zBqZgFVW1Fo<~%On-5H-@TmIDdRtxT0VE!WTUabnSLd3u^7onheL(#rvGrgux27L~3 z?YqC=C(}OsoRdSVpotvV1fi;b8bP6w)J}Gtvqd0R{RLnk!l4}LWi%N=@Ni@>fPZOx zZ0uEdXlT6$ECe3{rd`znkoK0=by6$!iE@ z-~+3LBA|oOckpAA{JXEhf0}(-N}lBNw{mQrucL;un=X0|9^xBoas2_YdGOE|q%X^tjvecS6;A8tb$Ag}wSpXu4sTl&2H z$DLuN#Z`o7-BY&yi!?y0{~vZZ-~f5PP=#8J+CmPa;QL;U<3j&;eOjK*yUyti4n19v zH7x@JqO{nI3ne)8%AzTrBR>0NCYZvbjqpkJT`&y6lrm#5sv+ilrQ2v6U(hw)&Xn?h z8woJy@xinz=y>+}#bHE4BsG{yR!5a6XxI5-$tTBX^IR$)Hw*Qiz!1A_oL!uL|EE?-Vvo0&~?= z+3s&(AcK~mgzguXlIP{&n7=r3Qv$5PGY(sFPJVCR`Oum3gIiWCeGX3tY<$|hxYCzA zpv%=UtYID1%xd`z?(2BCle9*^RNl{u}K0m=b5DXwHpIVVLY1EY^NMr%qTW zN)>Mo5txxnftQU;37c~U1UyP<2Qh*{2*KQrKU2C8M33} zQ4ZG-h_Cx17j;dll7iA~51 zZ+iDO%y`qT_vzG^dN2J}%1@=hKJfMI`}SzzgBxtuez^s>Q}L&Ma=dxQ8NGNf%k`C< zzcQtqFACs>6x?;e^k3k(q3Ny!W3%uuF>Ua2W9DjrDo}xih1FzR`NE7GYD>2)X=xO~ zH#GuAz#{T$!4n1;0M-CB1hGI1AQi$HihSg`7Jyql>S3^fWe`dsm)|Mho!=VZw|ePF z1gQNel1 z5Jc)a^7|AVQ^1}0>ue0avkvv2k7t5IFU1p+cM|Ov|Cb*?y0=TxCn2k|Sy23||CXi* zvzKE&6oUNcwYCJ&^6`|}brj)RAs1L-0r9=Dw3sN;OafHwlcef6K9VALNx;kOFfcNX zgL#z?dtQ{y)vyJ*+*!-XbyNT_st*rPBtw^4J!B{je@{q-sGgo?eO!+rYL^Vj^`T>V z*1xoTBvu}HBv#9=LS3cK$aCzqVAC%Nm53p%uo&4H;rz%4PldMQ2_|#RH8U>mUr^o&hoD zjE)x}m`=vTt7^_wOcMEhrvRSI;Wn{a+&vP&j3J%u#<_X_jT+xrhD7$vQft^P_+h)~ z+II#elbRdnRJI`&eDq8dAgj;A6%PHe8Ayk|2y77>wmY90fN4pds9O)=1|c_P?i7B5 zj*pM8CoHPm(4NTyt{|5bnO;g%v_S=Mk3OW5k1JWwJIsbI*=lzF6^9VvIPX~mgGyVdbjEX=Ow4#skIzTnH7rj23s+y?Oj_!dW%-gmdipU~}eypa8~w z)(j~%&J3oJ61Kl`kdFnv6 z+_2Tz0tNXUDJpY!nvnQH{TXlA0IN;j8|I20M8!E2Ss1uO9&Pwcd9@WFsvCy%lv zk+kFO0MPXh&qN+n_)FmYqKBSvI%BdwvSWd{?i?@>%j=G@>mT-QvE1ptCUS3J zw8GBF3{ITENPomiT*rU#_wxysr1btzEcK4N*j?q^yiOc8#d`ep^(lRKLhAp{@lpIo z3z2&NyI}*a0>5*MIx}ob4KpTjRLEK7Km20OtYO&9y>q4Ns?FH?J+;k|OQ=5YtrnGC2vbxxs_c-g0 zUg_i@7-a7f!?F9X;!Mq_Fo~bW-}K&|R+ztD&9Jr|{Wz}Rdv}Uy(CDrF&JCWM;nu$W z`k?LU0zrT;6U`0t{UV+k_kd0m2D=&8uKQXHV6J(W(dSU-0nkf*p*t7H3QO{DKL{bbB}dMe$}$!QIq{P_J*H`FWe(__7$`PG zhv5K+ZLi3dGcZ2>eSNGgb0~>x@*&qG3W|tG$kcSOW<1f>wr~5J44@%`iF-L5muEu$ zUhh?bY1RjLP3`?j^@{#~Bpe_m#!ThIP0 z*>WxqD%K#C&^1H(U9F60#e&|nbO|PP!J8o>2kK0goi8)cdEec)%3@^55hL5|-yWM{ zw$@_L{UQ3;mn#C$N!N3#_IpJor8~;*8_Nzmp@4_cYs3)apf@F;eTE5qZqWO18O&EW ziNC(?-gN5&xt-(=y+Bn-x+@s}tp+JVc?ADj1wfn9Qo$jXmz4kNa(9yrhVzr}s2p2? z+J!4|Kp#C)zlPgu1pcvZAxq;Fe#%mKWBf18c|El@?yJx(I_M_q1|`-6HqPz~uWkKPM69**~`UWDxBw(vfenxrIWDQQyF^n#~sarC(pW z8w}NRU0Kix}>c1M6C>hAxHw4aXSJFc zMps%J`WaY7JLMBHsDF@(M+B-(S)gGN&1{MZf{#1 zSd*$X>&8(C`ilhI`636h{QH9+75Uz1)fWKJPDW!Z7>DfioKMh*fQEle;z6pT<@4Q(p&LD(;DD8>EL2J|oX$c?EE| z+4P96I9;6;=a7i=H;S-4@qwqBbqI_3>(|w}Uk5|p4{pXO6;#p(E>HeVq?!r}T{IA5 zVAu_&Aw)Kf2ELtTd;)^CmCSRL#A0_Yc;QB$5IrY=pO9C2-Zk!um@9v0c#|Zt95U@_ zVFtRux^5fcC4J;wMRiZIAV=TVM=*Cly3hmnB9)XMxpR!rN*#{RYKk*cvbYGEQoJ#4 zluNU@&7JhUagqr5eu!Epd>0+f{We?$jG6QW{c)wG-NjqyoH z+y%L~z6^i`JH3z#OgsY>ifU4Qd^d?WdSLZhmH08H`kkrC> zOcf5?)e{9+NEol(K7GY;?u(m$d0`GyI=Qo>=(+o*bM{sJyKPeis#r=7?A$@f#`y=4 z=cxc!d`gnQ+-f-Ay8?HdE>@M;N_Gf^)=ZBiJv}{c)$9#d>*k1Tl3;q>z18<@d| zBmz`#HZ$+RpuHFBdt#A}yzkXuv6Tn^Rx39&0VF>AWLxGLoG*2M8XciISbDh+ zC%CK_FPC-2>5CSb%W+L66>o3?Z7g#}4$NyvNt;4GBmiOUJ zgLFu38j+HcZUh7bk&qHeK|s2@yEce|NJ)u+G$M`kCIkfO?(S}Q*Y+IGdCvF!eXi%? zA0IClYt5Ru=bn4bsDnZW(DWYN2i5ZUJ4_+t98Z2X<>lpZghE8Q|M*b=bb)8; zw0QPsAfsJS&|%}vxiR^{&XD;7$?#T|w~T^+3S4pv2R4ef(|$xRPt#?MdfCF)2kszV zUJXcbebd#>*JG`p6eQsh*QIB2!7$?(^Dhuw!fvQus7u;3)i3ePam2Kuji#}oY>xdA z7J-d;!MBTr$f1vda{r`3((jjU>Uk`l`>)1U{61G*gO3L7oaPMR2|^IhJ~5j5&(6+N zU~(pQedj5ViNI&sU9uO5#%4&ik81Dja zaHXgnsG-2aqI#`2et)Wd!-En{e&`K>9c+ou>+V$z{vJpeyo`M-8ii z)v1{8%SJLu4xLz&)#9)EBQpGj&xu$1xaLC4t%AN}5^C#JyAp$@bn8$IvK8z26F zWmrs>T?fYdI;BZT%_3Fw<8)6P6-hN*{sJwj;mFr&Kb}5;NP*XI2o+S(rOK=0%Aiuw zRL&w+2dPy?zx?*)`eO;c!w7jfIU1C`UC_gh>sPwu?L(6XVz)8l<(8vzVsP}i#^^Gh z`|qFJoLDW{fyZS#$Y-Zpx@JB3*hArFt$W~g-ZnQ_uqJ|OG^DUT<4c8sB+Yd(;xYfUMBluv5I^^@e z9j%81Yn&loU&aGVMCVHQO4SSnswX{{OmEm~)du{4K*!j&dm8DkEUgzd;o*oUYyh}?bEg8v$ zPQ)tA{>b%{r_IT|orx#WCldP@nAq4qQR$FDUa|NSXb<~R4{0E^5ceZmoP{TK6eg0C zIHAE;WpZs%fJ^4YD4nwWUOAr{D`n6Go4FBRCH0quyaxhAB=AZt_zKKdvnG5z5M1v> zz`?fYEV2kRPt(SLN;GgpOE?R>xxSo5B4CPqCFXC3#HaP`k4Jxtk=X=0wa;vYF?Xxt zjm{l=?L0P4@w#i>r?w|2f#d(IbMl^ZH+j9V&%Oxanf86AqDQj1X520wND18u@5~(* zzEh&286D&j3i&X^*4@uj{qUnoVLm3UE)b~bN*xb< zmnNvoOMsYb^!b53(JySzZjTd}Fv3`LSW@baj^%yx_7$LFGfiP44iU?C^jNyF1)P|(h(74J+J+9cC4@KW z=_aHQbf9#(_k^;EJPIvjGCsbKJZ0Tkq#Zzo2Z*f`OTG6b2x!?cGNJ*sdavSHn#eBl z$IpOvIR(7}hO^~k@rs}4J_9kf3i3&{?mpsnzV$-rjH2&pOE)XoL-4q8CZ`JM+@JU7 zgais6uwc$~)=(rnh+;o~Kgex0j}A=Y!Hj1SZlLAwYT6>~!WU?ZGd_2LikN<96sB+^ zP7R#ji;-egI4!^q@XhU@D8BolBwR$RV;*ZbD@9K_XuV>8(j4TJsTDtGusHOdW=6o| zogO4xn)7!;BBCCa6mMfai;*gZ@dN-4muEML{Szwz&oFr^dw#I*EXJ^Oe>0|GUpHIiVBPJsH0OmL9Jb4F*NaW$- zC`A5%ig+^h_`W>v9Z-D&CvVR-bwA9h=}|Kjz-a>KgP6lCe2HR!b%ZOLV_1B&+?>!jD0nuTq@4*C(dX8g`F>qqw#baQ4z|2Zl>vZq; z`O_kdxOx%lTrPt|A0N+Ihcu!`DXYjR{f+Wgs9tM6OGy*_s=&;IJWsl1XjidKa`dPg zm!9iwO=LHyToD2WfCk;3yr~MjVq^jh>8<)aydc{U)Yi+!G@oe>2s_e)9{ll6$;G#M z41Q1Ba3H)uQcd0Gac_0%X^Oe6D3XzciS?&0(+PA>YUVa`YH?3zMO9T*p$e$<5$Mz1 z2wY=T7rqejLgiJl&1@`% zg=%TZ7PIv zU7qjBQK0EVg>Kos5Ay)5G@GO^9CyXU-5inyxP5V%^!WDb6a9onnKf%Y*#Hefrm#}< zOukRS4D+uRU@8k%?R;JN(kj}cj%-8n_@ne)qM~Y7UVuh+FI zi!~=!VCF;Fj6?+~P35V)$II&^1GI!<+qdDP-MgN=cbZt#NTBw8UOaG5B#SJ^H!~Y_ z{v>J71SQ49ymKeo38a^JEQeU0kldy>T;jzph@4{Fh<_^xl%hk*3PKuqXip zkv9Bkd^+jc_mliDWm`GpikN}0Q*<3k$gH0?1%%kYC|k676rQhj4)TI_NND)V0S zt^aNz4!BI)H81|YtxVmew3@&WD_7&=lUDn6%jY!6J8yB*1L4&qKb{Sd_g^E49rnM~ z-4*T;s8C_P+Ll2HfTFt5{WKCJS27NR9)rxl3A?Fd*ifg`=n-%3U=m9X)x8`l93yW3 zF{u#?Bu>`lNAztXtjo0^-8u$+C`Xa?Nzk5odS3WKE|Ka}laj{eF!wWxH}UV#%b{2h z&K)2#(KcB^3W5m=z@#6C`~7IFj(3KUxs2&FtXU0@QgvizyyzSZg(LOSXi(jjn znXTX>J;ie7xKH^hA>sHWnu7PB_X0`1`;N}l1+rV%7k9t*W?l$c&)&PLAS8$+;?TAuH9m*?=)C)e;bC6P@`BiC5B}85 zI#0k-6@Rb;x1})Ri3R1L)b;{Nyk2cg?8p|JYvychvCQt;nY8vh{%`|kZ6aG@49qKr z-s_l?O32~S`Gxe<`qAU>?^U6ls8gBK^VhXTD{c3jZ6}{jw@A1jtlBLue1G{J7|W@T zAszWT8wt%y+p6DXvEQA8_vVH-%rWUDK2v1=iJ#*ekL1Par9s)irQfAN&>xjv7TJFW zvOt(j>pPGWpBqe2BOSgCsSFDVS$2F%LUDX^xqCX~B910?$NwHgpK$8Dx0Vf3s;pR} zhPm$n6sLGGhM@cKL0`ScVHPEy1-GiAFzSw1m?=aVS?@ztBobAKsK1M>qK7P|gOHfm z6~QhpIQ&3)mLFYYg<^IMI%3e*Vb+P9uv>~xzAR{lDoUCchbjCq@WJPybL*@!_JG_s zEgXwnhMr{Cmv`s7jPJw6@Nn%jJcl%><>IE59yw6V=vL6|a!yBwg&u>yrryu0An>A# z3QxIp?ki3aSeIJcsVQv8?irmSYXmvQ0VPa zxZ2IOn9SWDv%}s#%R~*Dez<+wgrWqR{Vm?}e-HUEbS3%i+qYIQO+pltUId$7WV3eW z1?B*u)Jq6HB#$=3QhR`D;~fjWym=W+@DdRSsy#K(fwE#)?bv7a zVuNe$8TpSWf~=JIa_|$|pVNLe3?mS4?%|YvM<0?9{#-QygUVnhS2z8f7-RODldlrMV@CxJX5tT_ew3$&dU%v1ivFxcpL0Pito|8E59B zJhA^u9^Q-sKT<^`=ufTtJ}MRn4EB7}_K)I8?lCzZ`550(luPFovs=F!_V%t2Ap0q} z-LZY3xV(u`&Kog26rHI-QGw+o!tH1zD8|o9VUvuu`Z@VbptsbsBThFK>ts?|-^Htz z&S=lgwh@CS7(AwCo4bkM5SK>-cG<4TI;p@qiDbbLY=Lu{>i|_^h0Y$&ra&xkGBVQ@ zxlrt%D|*OaIuJKKrf+-Ax-1NS>W^}*)%rRD+_5p4PdF{3t2?1wEgyR2Wv%e+SP}CwN?!(cWa{0Ez0Z^wN6mC+1+GuWu#>4h{~o0l85_oskSIRJv>0 z_$$O5L-H5?VZNe}_=k8>&*^1Ti#O-_c63moC zhh)6bWz-+F%8Dz4WNg;<^KpE+xLuVx{t^(cu4RXuanY!aMIY&`&jq%JO3GJLQ`4it z^Vk-&GCV(t#bJH-``}~Y7JE?R$ay45{{g%B@@n)@W@4USp=Yt3J-8;`f zbB*Q#5dy!=3oASSpNKB#QO0wjopjmLHaD}p!~>t>ZtI#xOUMFNzu>hVIRw2edj-8Y z?;@RIJJ=Q%XGKaxb+)Zw(;j@R5H!KV7^b2RS24K8^z-rKH&b~AU&P0gy7nZrBxTOZ zc>ZF!B{@xg@5X%6VPnB%dGp(1lAEQ0pr#o=rR?LmfuWm^0-g{`{=8gUW8(HI9-$TP zaAHB%wH_UL`pc%GLJ=eT?-xvTEwHJS%PS!n(Ndq_c zUtcF;5NTr^sn4we<&=UFbw8RZ<@z`#_1Uhm`ULE&nWv0gC`m1?B2Gg z4;Mc@bY&-ckSSx+a<^-u$~y1}>j}Ad9+WEC=QlMBDu-5!n*PFrYNLT1r*U%g5$KZn z?=LA_v~WpKYr2A)$WdW!i1NC&lDCl@ttAytOu~%rOUzbS?8wrqnFZWx`{NHPRuA1x zIO!o_5WZ?bPfawtgFd}xzlIu;5}%JjFW$dH7-x7)q{cTP!r^gH$u6~Sm3S~+iqW34 z+&wxPe5u>3^xeS>)dozz4ejW_Y5UkLo-w``!rPLySi1A&<E*np|(K6y2*ZFM9~sap{6;ax`}0IKdNI$=DDp$1>kjwY9JBT!vBI^^39f zYYj&=6vORc6pO@hsRVYLJJPP?QLn4K?1Ez92Kb1e@o&?U9r0sMeIRqZk|{|(ZXOX6 z**5l>W`)dzD7Q7>P4?yDfZBDb-%bVB^=FTJ( ztLkIQg>uUM_jBCpCqjZWst4!yKN>aiR?HPy72%+VTc6~CwrT(VdRjqqG>&NNil>wx z{1u?l%KgDjXYrrN-w#o<3(z#BM2*b1om)wi{G5Z;SPJ~kLDh>46s(Q!98U^MO#`jo zhmllNC;&4rDl=Ad7bPxznJi&pu=ldeLYcF8mQCx2M2FlkY$F3kAmu16W~Tg9E*6ht zn8O;))%{?+uoc$K0_&yW`)g-}aUSH=STyKzis#ulhYBe_{3IO|N~97q;$;T+`uAo& z@;yLe7o=^2VmsMyZE2>DzTSiDNkjTJ=9HC3p?5(Gi4Yr%XPM7agnE)5qJoQ9+5V9r zOG?<`hO%6Hw~cHPKfAm;$Jr(Z_7#eC8ZMFW2&#+;piJ8!KJKGL*IuwN`nw6A(r24* zG+f3D+hNUK4*zRt4x{l`@Qr}X%Qu4$1p1jiN)sa!haI(m9Xoq9XCf>$08` zVPVMjm{LI#xJ!$xCG)E#T+N2%KbipM|0rQgfCvy~4p{{D7r${$i>E@lDyajD&(Pvb zvNzz-8L+`ju2yMM;ramt7<3I^5~lAx_4Y2S(mMpXU%G@yvEwi>7IeLJ~}Dt2oe zsrd6sO;HuN(%7Zo7@b5f96QrhqmsZm7$?$n`y4C@1g02KXb;=T6+2tO-hOSvnQ5zU z^plMk^Dj7$cKd9+4L|NEP4HD%Xg|)Wiu>*;N?JS~5~=vT83o`xc^>mcYTiHrkmB+< zC~) zR~iML27kq`94mxr!+;ibiXIvRJNVRXWdI93-kcwZyWShiL$c73RG)4Ucoo(Jn--ZO z-zv{Z(Z~4jCD7+aV8T&6@yB-rHHyrnPBFM|bA-prZ|@o0a$|_%rJZ;vgG8Shb&h1C zPJD?*IBNA)lo%^b*JLNVb$@Qo7H39Pp-a>W&96^41lS|{%je;u#=-}Pa6h)jA_j)H z(D>QYZHz{#R+ZvXU`_2YwKU?mDt=qV75(ojun<@A)9h5`+2pL&R=1t$XAR>gYtiww z>EP@Xo~?ybgZ^sATU6G@9Z)3#VC+puO*sYFGh2W{pS@_kT$}vPadS1zR}mSd_KjQZ zEgK7G>r2|AR?rk8p<%?qT4Oq&DqTC<<9(>R_mPwsUp+oUi~FT@u(-%nu<184?3uFv z1|T$aH=Is89N(`ajv6sIWwnpQCl{wbIlc8-dSLLYuNf}h;bU;PGlwgf-n-a8)eO}~ zt}QmJvQe24etO*uJ!`F^Z4JNCCn;1Q@vhvGjF9BiiGZRpDUO(QmhNa6G+I_zQU-O% z9e1=cUNH2mt5%m^CwzD*X>U@sh9!!C>Hq%n+nbd4_Rdx+hf&x^if?YntIr!R+^oXf ze0iWizS{vE7w#N)8CnI{Y#(14k}RVi79P0p(0jWo>8!bs2f&C-%gB3okU^+(Kg@Q~ zsWdM6W#wQUZ`Xr4;cQJEwr+x9+%rehe-^f%%*oWv&W55N`pY?L*2^!cIqd&`?fo89 zzoEzJiD!GTqL6>NK3Ic0b2a`HLEZ?GuFQSo2=m5^;c;K2h- z|6QLm=C>f7HcDV`m@AZ-XR9X>db9HyT)@4p_{_EOvV@5c8ND~97`8a&lMU?u$21Ue zbSr}N16Vyr~vN?p4&oq8x zJtoYrTwN2cKRS81bjdB<-JGGEmX9}KAx+1c$q0r`2HI}F%zOFqrq_P%e&;W&e3ALP zM(7=$6aS0R0-y)bAiIN?&y0c54rzL)2wm+@4(`D!;@q7EL>^3*;&alj2Cx0T2A=kO zgRR^Ev4`*DPGGdoC3QMr#&7ad=I z(Qukb;VtHE{ErodQ-dJ+8BLPg>Yk*1T|H5PCTFm)4}L^&ZDp^?{$`0};A(CT0>GXD z+`?9%CsFiba9<9ysX0dQi=%~q-pm8RSGxmF?i`{RTu*6V+ZxLnIIfHMUY{=Od^=P~ z`;o41Q_sAdw)vecj?nlc-#sK=I8)Y}rzkGi@8w;wrpAg}VP*dpN`S=w#$>T-7dz@_ ze{hONcZDr!kfHA}z4vz6yt{dq+=HuEWZmoq-n!2fGa{RzgKv=i&BUA!N3xE|-;be8 zi&k)d=VZus)?cXFEzWyBCYK@N4&RJ2R!8Q{uOxnpl{{@puKE!RGG-Z5 z*^j@hx;NCGYf|yQrnIZ|s&=Ms^t>dVgl*GVfo!Pcwv5WqT5{|7bR=5KWDHKuTigz# z9BNJNV(q-yEtwBtmgBW1mXZ^h(wWy7(5%$EgARWtkn&Fie+Vv3y8HI zVl#eipNtYTI>y^=6~HU1tt0l(;1y7O4d>((pd9SLX<0IEAf(vw;(qU~t**6mPKTY! z>xvyj>CJcI+5gv>$;#e;HFw{A?55YI&PI2tsI>Y)KT~kkq@65ySHR^843FGEB8v~zM$eg_ngCK#uS#*r$ zU9zAfhY0e-DPrSiVcO2=-#;<&XB&#^&i}sB-Dc5H>vAJVy_Sor|JZ2sCLeFZXf;8;+lpE{HLIB!$v`4k^~3OGYA_R5PXo4haBL49*DBIF&_K&4afEd&Dq ziVK8yDQrFUUE!R{Gx>#%^P{&qF_U)_LL0-3p(c8fK?3@;7BMe~-|>95W47?l!YCR{ zEM{yhZCiBEIwRHPGx{=jr`R($n$K4m~nqd zrmIt@4EOfR6dOdi3q+Q;VbOB!b>xiI$@SpzO70|>*=~Hp8jabskU9;De3A2u)RZL{ zpYre~?zL6HqxT~eo`qM*DliT$ucYxir{2AZS6?O;#w4#NtNLI6h9XD`ns3A919zMI zc4x>)c#y_pv+@p{I=ixeHOKpoILHWN)$REmZ7*9}+ zB*F2s26w(87qU|>UTa}QMCZ*bvY8j1IxmZY4U1k^tH3>`7L(uU5`r>R5D4kK$2S)<4tQE#D8!Q|r zK~ESPOA)>dJw*WH)CTWC1WmUeGr%dBUN{?Or%e0W_Yq0C#H?#)zXKlb+#8?V6xi3R z0D`8xfa$&Ae8&FzCod((U4hG1pU%omhMSajU9#utJ)LO%S{^xh+;fEG|;&lHhu+=J_6xYKAb6?=!A}kFRC1Wjm^W8Q}Hmqz;;kIMZ?PdotOV7kg1@EbJwF?x|*=og;*9o3t8~IsXH97(g0{MN{eLH2HPf zBib6L#+jPw^<4{syT+d4rZmc!;J!tab%~eSj;hsPl<DNu09$5M6w9OCn3Z+!TRL6HAC$={D;A}jrA>86mls0ci@@PZ58r)6K%;w`gQ^cHT7+RA@7J6 zcuc?w7G7TdpnD-_{Di{y^p^^*%QM2#86j4PeZKWIiIG9H>-S&(#K{yWf=hx1^#iot zIQMKp7qXp1br$>o5)g}@7Tv`~F>2)dM&5AfBYV1lDf70{UyV!)HT3-&Wlx<>x|L-* z#*ZuFe^Xx^Cj6T;;<4oxsj%F*3^Zk}id5Whz10to8nvYmnTedXfw<+0*6lHTE1A3V z=szb!LW!_n(r4M^KrAQ*Kw2sQK%a58C$VHMU0YTfnD-7ue{No#x~=;gOmD*_COzTg z9`yjbw7~+2_}*yD9(l6xrPgf;+nZ#IpWJ3Bo$_~(%^N>^N;3fks7w0rKJGAy+y}=U zMG4=N33+&{RZDHNdM-?Nz~M8=e-Fj;k2{$~8s$i>CPXI^lz*mwqQpU>hfqN*0+0%_ zs92E8fwIKUP5#fQU!_YYVR4{PM06QzD7E3wxk4sOKVKNv1f$*96Eu`p2oa|K2qu-A zJyVb#{D{7Bhf%4ktGAW*riO^AiXF!=o$y= zPVvHS{IiQZuABDHb4D9}>h-SWUTA=#6Icl%EFWTLWenxp@S5JNyzt%|$GZ|tx1(c8(4|bx zXicb2_QM8cWkeJV?i7pDTK)OcMij%(YI}a#!w=R{eZ}=6K7QO`HqoC*)#3=hjLfV2 z59pvl+!!st)0xh-6d7i&`7*Ve{II~6hj85eDq6{iUscrbpS#|H1%gra7dNU{)8tqJ zsXyEYk3_bDYf>+Na`BB!!|{{@^;|F~gMod3yYid)9z8>JRe0vtBUdz1pfK1P76nKC zb&wK|qw^PI(5hUJ=Ly!7y8~mNHsRm%VPFWVP9gf^)rRYM$=BN))|QwWhonb%?w5(a zBNCbWMPWE+Sl}vkx*+!Ucf%W+9(`o**QPR+h4skbQW6qV0~}y#C5RmbcG?hRrbBLhEiG69r;c}QB)as1LnQaiPorgC38h~*O1_Vd1TFX(B3E5e1fSY>$NpPLxC#?x{{zmw_PZwLOiPJ726(j*ZuM}J{^$B^5jAP! zflJTJdL%p35}AabV|jRqc$iVvuSP-wR@AD!8z4Z7a3nAM!Tj8+DB=KHNsQKX|F9>e z6m}o=Q~HO<4q7S;gGVG4pHT(2MPvLPOotO2pg!7t9KOM$9%+e<4oF`@3L4V2heJG{ zyjP~N_VL*6bQ1Cklrz!%-2 zY#=lyanJW@v?e*05V-Xz1{mYBMOo!iiAHSM#!z~H+CIvkrOM&?j_aM{31KBSr^r`J zc2VAVlbF@=3NJXUO*9VS0@zdJ_}edU|7k!fWApdj_j+xx3D89xw#2;A)fF-8`fll8 zgGds2&ei+q;@54=%f~r1v7<~GPcCCVd{utJiXs@gKfLrK@~16EE$VZM-tQ9ptZ2mQ zL_Hj#fpRZA&_39Vg>7-UE?D};z2h$$8(y)MdzL_|3{5f!lk|x5S}pi9cNp<|6UIII za~LUYV?b&gm)Z(@*)9ZXHh@Gk0~pF@-)3QNlvXUj-0zs?s~%@;$D~6=e4G-B=+xUg zfZ7+MFS$!~(>CpSDV8_HT|;7ud94 zd>jM65ZwAt2$c100V7XgxCa8Ef*(hAdQ9d*ag;!5OVYpTJ8&wXr0}{p4&h zJTxVJ)f4sX{YkYkm>2i&?*Ike_5r-xBQtQI>j}to(T{OL>T) z&$jVamuMK^$!TK0DvmW-p{s`~PAIewe1*DagC&!W`GnZcL?_;kr z%Srlp7Mg}!EVnVZZS+*ETxeLPeiVF#Y*F5ze(E40=|7oUCmo`2RY*lzn-V7n1tpb> z=??DK?zD&443ieW^CW!t6S@%M#RK=kwA!h+uTH9mKvNroHx}8`Uxfu2V~gBY1y;zU zzZ4WY8td<W`pV3aT%+!0qM-$NFd28;)*A5A^1c~ORF&cph#-eSYEx`8v@3i zu`Y8!`uTd%GDSR}iuD|)od+o#&s=rM!A!PwUabpJV0 z5+ek2w$i(O87JTwp1gPU#5l2daWPf=Y{R7W`Z>wCoOJF8ATOy4DrvqR3$ad<#i)+m z;{a(2cbzlw^P=wMJI+{Ncn-*7F`cr6Q8GTLdDbBpxKY8g_-haqa#l$hV*ggN=kLXM zCYIY{K-*EHMP~*yBxOuO3_3h1LHf3}W?4(bt$mny6oYExR(P!K9lXDSGfND z>?I4h>{hkxZ{I%%J_{}0?Cj~OM>Fy|9<2oJkW#_Rss(>i#lKDn72P&`G8sw_9k4kY;uT6L8Gdg z+I)9U&lFp*4*Faa1+Ups;4l5ZPT~#(QNP`urL&&mz5{ICQd}<4zm*|{N>0!OQFa5F z(p1I*-1Mrj-f)cl$M+7C!lOOZXd5GH(84`RYc<&bfBaYfk2G9r^X1Jz zHNYMPa0Wc+8%guS(L;Hao!wIsgo7xKHhQ?B(cG@5AmGh17&{E=LdJNfx8Dz+&q6^D zQ?#uzgef~Jk#@P}Y2Bh4vX_?Z-Uo~FemCUo& z$a8b7q3wm|qcHmIe_ZnfM|lc-T>t{lBDhMA`D9kfplR!!Uu&{8gx7Tp4;gxu@dhiT#8L*PJT|v>M0Z#tAVlnJ zY`%#}N$16_^Jmvb>w{eAwO|&}zrJ$(nD}x^Y&TAzgNCF{z&*tJEb-NN-ASp%90+GG z)2-1lI@w)mQ5cOL7-_3@9fo={T2sn%U%Y#BYW0MBAg8Uk)qHPoRHCKl))V7Jy3KQ% zO2P#tlkE6nTP`^fLS(6q5r?(ud{|98DuL*fYIqd-p0uXsa92-H&uMvid33K0)8C~W z_=ECUL8gz0hZuY<_ia#!;39NnODNFpdLIQS(UM-0jE9;fxT;8S6X}|$_6kMmOJBn) zvnz2V3gvKx)VrJy?|wbognIrsPtp$v5K(JUClUC=uUjXC+4q8U#-JPt zFtBX;hW^vm8!gL^$G+$v!WFh>ho=IOp9=co;%rATh1_BGf06u!x~sF({S9dS9~Z#+ zAD3Pj5de)UyAYj2sgv|aKNhpQcv18dMlj>^+Z#boT;%vI==#QaJdWcCmR4x$%xBCY zYvq>KV-YjoXo>1Idl`x8gkFpK5^(?Y=Grtr_QM|ZTyJ}U`au3HIl%XAlf-AE8> zr@1~ett27IF?>S3Twjg4asR_366*~tdIKD6Y*BF0ctrc#|JLE-juFi3-4$oL9F_Wx z#lmWijsED^56J%09_BpT@^;3%Wrr(wADbe{{c`Ia`6kh6?TX7l;iK^^w{=KF8qqvu z51vIOc9A{0zfhkeWWNx2knV6g#$s?%&p1C#&I$qhbCn&hvB1~*@;j1#K3F5GH0>on1kiW})K>1we;A}=`@P7c-f~j+EzpLhQ{L76`ra)Y zD|-hJw!Q^wK|tFYcmL}DDzAP(v2ZLMW-mIi;$`LQB3o=tiR9T<{~0WuaXt>8;z**4-;sle;w61JJYQa5mti z1Grqi%`X@AeRd8@ZNQzxM7nZ6aR-a(AUOeAsxe~m|q2(dpn=%bCq3XJe ztUz+03>bbQsyyfjyv!GjT7tj3a_1S&l&TaC?VPYZijJs}#%Mn*o+xT`2i|6P%k^Pt zYyQ4NxYba`rw$Y8d5RW1L3r8wu7>gNt+>B%X7w61qd{`nQjuOCLAJ`#4t!tyEsk=v zjKDM4Bj{br+KK9V^4S+Mm~&RKF+lf-p3l`IvE@;A?`z$KdUqk{JCum5|DT)-jn+H^ zJHrn&Z@A^btTFwgt9mtbQFyOK_3o}i%8F7sbOT^Se3mAqAiJ^DsBS!gJ(5ycOk{kn^w5)AU@2dVq?d3%Pji? zXMm#i^e#3O2)R{epJ9)e;?528`)gxoU0!PCK1;i~`Du9bZa4d{Q4vC1t1}^#i9;yh z1W(*k<9AddU#7{R1Q$+XqOvl5D4vZ{5u}xx2twgr%_OPdC1|7Dw3-wnO(vk}nAfRs z3yDi>Sj$rw+@$kbbpO%s0!kwfUI30)fLiK>N65i3+SDm4o^2yrE-23UDET}4WC$C0 z+TPJ^Z)Yj^896o|s*og{CgSoN$s0|~@UO>~28ly6<=nPm55E1f2m_*H@86X-R?NVwvh z$J*0Uf2QfEffr}~3q0ny+Y27gi2ix%_OFE^MhK_3k}| zN6?0+EU&`|Lzc#STZjs$93hBHHGIYJ+&2^elyApOf<_w76-ZO`y}P-w?VSPo2}7?j zKvwwqL;S%cu)5sA!NFUiHQm44$YMWs^$FQh&rt<1><-yOnfVlw4ogR`ueQFolb;W3 z?`>dM*;F5gi$UM^!LWMP3Ux)lg(u3H}r^3Kv?2DPH z#>Z?=+0Va+Wm1AggZ0+GdSNux;qHth?cR)1h1&dRi&CQF`XCE$cn99B*=I!kA*z7u z$Z9ecjh-WXXJ?DQJ&JX_`8eZqVg1PB)5ah>)Xhb#<)` zWacDGvt|H!+Uh+502`Z#}q?>Q}?Kuo^j zehcSjmc!eM1a;klW1%`&!o|ZdbPFQ;C$qP0fHOh7gHv)mF;e|?0^TxEfJaCnGA1(Y z1sjt&xP0^(Uha--zZ-b0`Q<(x6s5F(Gzha9+j5b1^=T!^=j-AsM6(`p|Ft~1ZyV2R+c z0j~0Ky8KtZ0@)13iUvB}JEx1z>y{%^4tspARAMlo2||=|2j%dkP-0ffQbTb!=zrKy z#iTXpZaRDrm&eh&p5U{yMtD8ft-S@@0!dGOMKD8@6hZrZxMqIZm4M}tn~j?fZmu@> z!wp;g3I2|%+*rAivynU6-%8ik^@~L<=7pD@uuWWA=K^5`4yR(L5Px8lLR}ONc(syMM;voAnb?JZ+8@EwUGHS)6*{sSrcYb@b6uA%}u(x1>bl2?soK*-Sr!fHn7Iy^A%?cz;6(%NX7@Q zz@T6C#bn+0nX&c@nBr7)H8nJ@(3=EN{u_hOG2BKuxzY8nW#Qssy7GTfKQP$>q||7u1Wv(ke%KD z%JhRH8U<8Isn#hT?~u2M;c;~+APf;YIXkZL@CX@C5xVmM5RFx5Gg6?R$5ZJ{%4=>`|iE}`0qc);hf<)a%4ZT)?9PW^(@O@o0&h}f80d8 zzMg(qCg9QnxclrKxEFr>tKUY%R@jS9?2ig%2OqfosbMp?O+CHU}?sdvgWjO@C{sT6s;C}#~^nWz9;cOXRiL4ol+oX?Ftkxfcn@lF>vrT2Q ziFXeSsm5J=bhLFXo($0e|3oP87+ZpK97{ERhfqc92(5HzOD=5n+@5*A{Im4Ig+FM8 z@Rn3?5L-mATMZ4Xy>1VhpGh~xo6gNPvkKo2-~nU0aTSJ5k$nZ%TH}FaWT_V2#n<|E zE<`+w?0mm%0oZTU#tPa?0Y+C4YC86VOy2Qx6eUxn3yGWYL|<83fmJ_C7qG3u_hkG} z1he8n^0vkFKd>OUg50yMZ$ZHG^zrAaLz9;qeUA#{X1A+hRHh)dBjQ6PPM9MPI=>Zj zUq|)IpDK827v@jA=b@t)fR0j~d%y^sKtqMpvr|$zbi1qML>%c1VoE?7>g`;KE#ukC zi!mtLtw^IGPMKKuFHdz>DszWkjxFCp)(h$Pk@Xu=p89;B^KG@6fRG1ypv8Z@0IyCl z*EA$Y>*PUZXABfu2Azge2E%aEtLYv8T9(7=MbtBViIV@EBBwa+`|PD4l3@>a#J4BL zU8oo0fCfe^H*HL|A(Ot|y|rri)|}pcW^l#6=*}a=x~Ir~X0|o2k!mAx!DxGP7k)C50ZIchu2|E(1mFO^^}Y3I53l3oEU$Uqj}ma)PGP?5 zy4VG9;M+)NK@^dPr;hYpLTf)*)pf3C-W@h-wVR^TQBTnC-Cl@ZJ>MmZa8_RH)|b2l zb>NjE_6Vh3M?2(LsyOqoJV|!vxFJ%$bSUF?Gq4yuu0^ z&|53F_R3k2cIu9rimLpxYC_OW*oArQlmH}~n8iWi5~V#o!!|3smi*72+Y`Ksewr>RKL`4(U~qc|pi0>so1*6kB>aHQDTc?5pj+I7y4M0`eB zd#x^Bb?5>z=*q}=P?|)AFjH68_$_q!HV{CIpnFB&={KDhRiXdc0MP#v*FELiRnxQc z~9HDt6OH*B8@CZ}@%nQ9HYQo*bl# z5*2k6ZJ&+39Bw@yZ<;J@A$3FBqU(6y&;I7(m}y_p!OZnLYZI^i(U6@ynlM!3cFdF2 zm}?=TE!~hP=L<6KM)bgO=1}? zQMd-gDox^D9SYp4L0H}|g->T>-by*m6{{)23owtjP6pv-&p>xeM>gN9kt65HM1i#H z6<{%bMsknfPuxY~vgz%>RVN9UCqacIWj}?Ms2dyZ9#hGWhdEJ>@+EBfha&4B0GT4# zdI@C#SLHy#R_$}}`QvH#=nP?DNy&W`Ch+!_^gRg)<9A|d1^+bQKIE{DC6Hz@pZ4DpT*a{RPQyj=kE~#cdlcwAr8|l|>0<9w{M$&iv zii+!X!*)~Qe(xuz8SG)@CmNs4v2nsDqnm1Pd3*9un)=TU!db0-xc#|r+B})xkc#EI zu78RG`Ss`EGuRzi{I@7R?M6=!36~v$7^{9$ERPMyBVLhLhPY7bxW zwc*mV4R&SaCmogr7Xo3_EG-*v>~CXOuV=wjD;J&H-T>EjVE_W$eSLjh8NZq{eht<9 zo(H8R-;gkV{kyZXvsY47bO)=6{NL-q1Pm3_xKD`)cO&R%jaGj2DbXb$Hbau)Mq70S zT%Lyde^AlcFV3&SMdDKs{_(d)=m7Ar7+-R6vvZQON-6#3rVJj>7z1GxRK&;@67EY? z^P@IWWW(b+#!F>jw>G_fBKC|du89#9nvcCJ`siDpue8*@moF<26uS)3R%r%xk7m9y zRQj@vx9u)gIv?pvJjkcNN3Z zcLqykc$@_H@82&$Nu&SoEUYLAD0-~LIq)6;s&tklp<27(;%Y64%v(Z{^z~9wlvB(~ zv@Pk)w$&f@$aCnN(fw@gD_laTNgDW7?^LRulFahqB1?v^jI9s^gog^k#VlldtA@HU z`4X-p#a+4x>0n_3U^mD1eLths<7w{Dx2gNvdxgx#?&p zh(6rAhm;w?xi$RgI70cyP_PFyem+Vi!HPHQxR|p9t!88ZT>afX<4~LVXcv2Xz3l1f zI1HXhrM%V(AKeZUmfifEk0XQYA(mFk@->@3(u!`Pdh;Q&#eimtK%j>}K2ld@f=Bhc z@4<|DZ37)f!T9(%CzOkNCMYg0Ue(fa1vIifR6EM0QB>Kd=jJvxHeG-J{_T{R{4b`? z0ay(m{pnSU>n)aKQ`h#JU9D|G@Awf%@{szS=E8KT*8ewABnUG8X!fA~yE})u81Rh6 zg)G^;Yu8f$^ESKCAIbPmlHv7qgL?!j9ZF__QM9kW3FbY}EQ@%IWCcD^2Z4+F$Y+A#zLJtsGv-nexHglV_wNVu76pj?czB*k z%p{A=59`2sQ5F85WHFAk#)HV}Z#P{J3p$u%x!S0X!KbZOl2HsYG`$0QejC7bnusDX zd0H{;j_&A1^XUJo+prp|lw8qG*UEn1Rgjva9y*A{EiCbt@u2n`|=46+9VyUo-n zo+7p5N3;GLGi@x_96<3K-zy4G!iG_7WL!C+{*RbQ+h(Nt$o2ca6mkJmT<2Ujd{PNz zEH~sIf_RA3kfi;c`Az%ukuZ3a7siZ6mvgSmnz*pZhX`H9<6K^GtqcxV8}vLFn) z@b-tskmvWuxA#tgJZxQ%R4nGB7=O49@mrlSxZK6-Sn$SeUFJiR?HUWO94E zGw&Nfc6^StKP-@>g1U@Z=8WsO%zz;^|oZLekrz8nek`HH68cnYOm)R9|}n zaj%wv!88wupSkI?Fb%x^x(vsR6s^-+(h-=Al#_vOWwCv(QHlFGwK8q^RsNsIpHC9hq-aK zT-vXaBM!;ZS2V@hl9WYbJ?7?nJSR@Zg8D(_63XKKe8_(d?eFfY?H?M6*Pd5q`jLWg@Mk_&bBIJe#9DV{dLH{L-Qz}O!)yeE(GsB4zKrrI`4~{OSa`#%nY6pG_)Cwz& zl#3z%I50R!3%wH;@K)l+^aKO%WQ1*YlfeYBFLiHRF+ELgdvb59Z$B5?o89E3C#I%i zb@36Rp79+YzyyNfaR0P(TF6yD7 zFogVJMn0Z^w<34i&%oEktVV~LTS31ktMRr3i$k9?CCY%mL};oQ^P9G#o6Js$NBki# z7Lw>wPm^G2@|adLU0ttV4b*p5D1jG(0tyvWp++}n5Xi-SML2Scnwd zlT+aIqle7lRm&-)q0&fvg_JIyxMWRuM` zM9$4g#gh+uxb4NEkj?K?1f0lS<8~Bn^cWykiv?LIE_XOvq9^awR9vufl?UP25=vkc zjmcY%e!KbcF#U1?cNvs<%a|f99&pRBP`#)f0yFs<&|y+2cSRg+<3w_ z<7L(MI`nPhW#-}Gb2As0-S=P+IYx?gwmiH9h24A&m4%}7`4)L|d|RWL!a2%v382Zx`7+2W@j&0W}x z546fIWnNTmV?el2R?k2Q%0_l->Ld)BxU(LVjn>W62l};f4y$T>!p0>ItW?{ zgurP>{w!!yE2o#AA1}1yKqGeA3B9Y~;6tgvEumP(e3y_vljve0JnxBUS_Av*%qe?% zAybrn2?6QAjURavqj%IAyfaC**T&EPr1%l! z26}23Z$12!lRjym@hLw2mKGbGFw5LOKU(oiTyMitca`$+(D_-HnvLaxGvims?MVY> z3l!y$iUaY;*H<@NHMdVLkE>f_kYBsBvrHlgG8@5p=b0wE*f}S9(8?ZdaqU+Y z&jfF^Iy^txZrjn0uo@Xmr9Zy%6DzBc$92kxpU?gsulu8bnMZUTKTG<;^X?JbFLREJ z0q{Z?;oS&+ybdas+T_P|nkR-yQ1=E~cKzew<5kxc7NaJ8^#`rG5LDK<=*XdZW5gF(@t+8YM2mw7< z2~sn$7)pn0YoDGz#9#G*j36h*{8ZBDuf^aUE~hL$3)#xfiu`DJ!3g1jPXMMsE|K|z zkN^r}ih3+Qln!*JCVpOCUUI_7N!SRd%2-PK`C2CLoZoh($`5}dZ1XQKF%0(>S|c4Z zym(+L7Hb;tj6wD(bjg%Q=^MV{U3>F@z=#X7bW?W1U!IwJ}agTC$ zX?NxuhAAbLTnFy{_YP?YOaD1kXfhc4gtsI_otf{V!ye z@Fy6v%rk6UZGuqxG8OD&z^TK>?0r9EQPSi>-Bd;NY^?y#>DROR8!nrmyD}fEw$*Gw zq5+SF{!QOf&)?+MuaOb|Q$H2~Q4SBRLa}H+p14;O@AHS;8E7${JZ2knrupaOSD7@g zlz9khvJhjR=|t9Ov6G4EOdi(<#$0w&n6*f|E=UYt&rQU2Fy@a%Z~PsPN_YVoa>TE( z<_a8nWE4wgE3%Y%czBp`adMU|CiQn7=a1M$W@Kbc!v#tEw$ZESyXVlBU`&2f>qn9% z+S+8|(*z&~<}_9LA4b>0nGP(TJn4HhAv&rdNad`dr6q8uqX_QF6XI1S@US)zqQlxx z04TZ_fQBt$9{H)xB&Ccc)9Sy=l4qOsjps zuAu}FU!F}c#BiDX9|ZcDMn-3Dg;d=pjt;7D6#j5wxS3NNy2m}CUE zzwSmuQ}ZxqD;$-GnBad z%jP~g&we<}8THMPV6cAB_)|H9KZxDIk$Wy+ug=dbL;&rhZrxa11*;H2Nso%bfc^(x z>Yq*v5n9ck6b>+KR}MWC7=&m0Co^TS+4|14eB?TNWG4!KfBxPTd+?awLzB_)xAmd_ z@W5BqD|H-;0&_lnTEfU+CAe_u(8@dAJoSxaFi7%GStyN~i911vtPLH?yBhEw+T%1) z1;i)(JTwu~zFOEMSnmKz!pPe^d&3DM*Vg0MIrif=JHZ)7@)#4srROG-!?IKqR5|FV zd^82uKIM65A9>LRSC8ItI>KvR6$7{ zAInv{*gwtEJ%3_yIs%n)x(E8YU=40$VxN;#3z)zpmtSe4`*H6TnFq|W>Hqu$_+uc$ zII7QJt>rH1-IyAZ!y?0C@2UPvQYLxL~g8p0W#KcOY)QT#D`@&8~i+L zX=zCunA_PHPK?igieSq39gwJg_s%@hKI1LKiM&c>q0tvc4Q>{yK|wdlHiX0@zOOH9 zk0)Rq4>O8Qn7f7ZYi0A)6;#IZp*kH~_iw5;ZTiP&QR59&AG8V%hA{bLtmzKu*>(O3 zzD#!&Q28)ZSJA%y>la+-b}p(q48#@qUoDf#en?RKOG!z%HrtQp^mDxkiz^V(7KhRW z)~{VJ0#wHC^#v{rBvakhDYl;pu-PpaONji7xo?y^{JDcK_I1^^H}bcdOyrHmwR|~B z^IPB=reqzHUsdFaU%Y#tx<1Wta#KF(GD1bQ;8)~)Ow1)A&DU!p>Bv_Kljbwip&DY& z_?RcV&xU)#iF4SPi^8aA7Heaf&y!?ZwNdljT_k;n>^Qd%QLQsonNATfyRoiDU z;w|UA<3D0y${>sB4x#{80=&|gTeKY~R&0M#$F+S=W$gRww(u8hqck0-AWuJxum}VH z$Sx`>at*ppO7pFI=>&F(eOznucsuRf2tIB&B*4Z^)bTJHzG4J|rRG@u>~F&vDNQ$K ziM=wV-aM85wX<_GI=RlW+t5ZFJoBgI3sJ=i=o{#Eit!nB<@@(cGdt?GQjtJ9OLU(s zS(Q5O3G?OS$zSw_QOfryRytL7Xg>JV|2s_cNPDCEd42!vyWQEpWl+zH^)%0zk22sJ zU+g3pDUscc1NVHjh2P7t>eQl8PE7<#1ts`jy!ORgzF#7{RK@nHR%_Hy7FN2$ZrCp5 zVzHK~G8OnrTeTqJ)bl`JNUw-!UL9 zgx|%GZ+3Bg^I1FcI~hP)&(<=dHpH0ToG(6^hSs*4Ol>ITi>kJThk@E848fTaPaw?l zIJS(Z>||T-?PuaLiU+ONl)2#^FB78Lx(AAi?H9I>&TpzqOYL&E)J@qigm)Q*<*D-Q zo-)pSwtqptaLf?@b>;X*EC%J%8|LCLsxYgOB*IGyhROC5o}b{W$=fMrdOfb=_jF=Xbmeq4lYrl^H12qic|XLe)V3JM|^>E>d1?oGWh!@Rs?g?jkzThjCGW0++rY1 z{AAhbV#{}=*~Rw>YG5SBmdF!RFE*?(f8jM_Ut;oxv;OXTF|`N=n;dlWH^b|*u1Kz6 zH-(U3#SVnAd$4Obg0O^mWEk~DhvtMR-0&N!8-@TDK^Hb!11mB1jy5f490+S3D08ZC zTAfID4gwhiro=RB%ARWQW@~Wo0I60mnfoSbd$us3+A)g!Ty7R>ZZNUx6Re#W}& zcJ>og7SjDwKa<$7?jCP@+-XF|8Ykl^=2%dfr4(4y+Sr9vnOy3P!IeH+yfX`Z%}Jq94aW=7rM0L1Ex z9%2<4(f?4z$dR(Ay=!@2aN2ir~(@TJIL(gx+=8s^xHx4APNGAUE(v zb}i$Sbrs^^Ms`V$BCf3=Qt;8ln+-zuOZyBjVLP-a*z&AH7cmHylaHJCbSKS;m=BJue*Qv^(o;o5=-q zD}!mvf40X5wTk8a&F62hn?$QdhKunOls_7@?DJt=%RKPEju1+r>w2uG z8#(NnKBQM03#JnPtageC+MGGqzV?v_dIC5z*u*2aJUc_aPK3o=W_I?qG}z|Nndngs z@WQJJKvN9)9y+$LP8H3`32(HtBC!|Fn8$vcFEsLDT3D%-~8^=3?U~%pE0cF?l;Q!pA-FMD9nD{e12VCJpynQ0W7nceKUf z<-MHSl`Qt79sBLirb@C}UaNtV8ROhk?;2OmOP#PmJGpfEflaA4PUOkxvb+x-tWr1o z3*$N1{eegD$AT(GAZJwTX0w{W3p6BY2ydgJOtFZ=T0)6C-{NAmT%Lf^ zFY}3EZicORJl2hW)2s@U-B3%KsweL4&?`+>>#@yw{??{!KNGrIPmqmS6Fu3Lu_8l8 zzn=A@R!oLsu}HM%I#|SaOYXwvZ7CxRG&C5cgX4&!;i?JU&m5yRcpyy_?l7ey`NgZJ zARh3AxDEn@AP4rbhYH`^M1-adjv%h)Q}M_tw(m!&*UOf}{v0J=P)X3mhjK+AV>IFW zRoH=O$$d=FRh{-LUg1)YpcDO zTvtBgAbBNTF}>9PcmYzchjaOlE-sO&lBMwQDfVy@p?jw)ViN0PN^7{#zpk-=)oH<1 zu_lrt*vK%his>o09m%6%4|gQHbEg|BwA_C7K8LJ~>@uK@4d6)Y3IjA9Jw4m-uH{UU z=&$k+v(7q9HsAwbkX+!}7!2IDfCu1yA!A;iE8#bajCK#MA7L|$orn?ab!ZtT} zQ0|t5Y(qGJt(LV@8FRzBTY_|cowfSMo>$K?` zjE5HVvUU4w{q9;qE|(L|%?D%QM9Wuu*DxZ9Cd^#=HzVImc)@PW^^KsR$_N?aK>fSE`@ z&i5`QWQ4!!8EEInUsauWG{;Vc`}@z#N5{J%jb$IOm+uwZ4_U6gh5Sl~n5cHdYxM_S zU*28h;x2EMe5#8|izI6Dy-nk8uaBhn&$jfau8wi;H{#|^OMF+HQec)DOTx=1pZ!eP z0TX{ zS$N{PLc00luKw+emv*Iof=cz?+2MuU7&d9dY1gT(n(VBuZ`^ETW$r!r7(;&Gras?n zg~10W$Q`8S9;(-hEV>}rsAPctT^F!9Tr`Ag%=x(Au(25>7@G&f)dL@n zUw$SH!^g$;YiHLt^reI=eihCgQ|r*ReKwSBQ_ws=e&i=dnB1w8CQ2(l zx3s_9b!bRhcC5rg(ht;x8St?*ttfj?nfyR9XAWbdjDVrH0%FU|5mkjb+AgeQ7Gv-%c`{eY@@{gG(B` z*LdTVkTfv*P?>!vQhJfNBe&|*Qr1G+Zu9{!Gwu6m%RVh?je!2^2Imn=AOH1*)u5Z* z1nKU19kquJxyKUd-(P4p;KC+KhnB+H0xx^CZHZAk%yWlNzjcP=6>XiegFQ^QpoBrv zp{=Cl;lzYEkzJ2buH-;$3-~f1faH!r*p6Cd%r^o#e4@;wv>wR}fPx zvxSk`HM6yL_3>Q5@B`(h3!XWXkGS-~7vX`_6kr~URTgLApkqoXxaZ7={l4H8L`+al zIV|>sm+ahL5tBG%32W{tr!l;} z=;ZGC=sbJkGQl{xB}?veH=Gk2?`$;FfLLa2KH2Tvi@lQ;xN5e4+MCn+B9vec z)0Ka<@>EJ<6CatJwZ+KizKLKjbHW9O1qWT<59Jwxn@waBM1H8Tp?EPL_mu)vO~&e%`+frAoFoT%@dcRrz`Tdqsm!$#uO z$m6$(8h3Y(y`^P-nQiay#JJ9A{+&!4@j1SFDyokA`AP4~%;uHWmBN@{E)Z(K zr_Fz9pV69r&H&PWE){q&hrfgbASAfxsOFSO7r zops_)Zl=UQh9g^ORrzeTO+d^{EeZH0ga_#cDT-E#Je=^IN6^k}v^M8h7TrCz!>;j7h^X*bT(rlian$j4N3s8fsr$-BaxaqbEu;T_-95zxJ9e=mb zu$dEiu=Q#Flhfq0j;Acm^LEKQRZMfpJk`GCXRh}+7Km1>Rr|PepZ^*d3)xdXEsmE5 zng>u+u{C%fXmWlq$l9^7IaPajEze zFtcYGa{2Fau(oi}x=w*>=R9Yo}N4p+6BgQuFR2;h^USJM^`Ea#_yqNfmj*a-mkGC6^m}dNibl0@w!wC_PF=fd zyywQhbUnnD{6yZf%4`02X@Namh>8^V@?{~a(v%{uK!S?=Q){~Bgk^>8g<5W&Y(9L7 zIO>;kPPy0O#5wK__acIC{PFVd3omsAV$n=1fHgVjTIq=ktzH-51c!N&{onejW_Fj$ zK#LLrlQDkv7Mw`n3s_0e!E!eQG(oBT3@#)IDgoJXGmvsp6j@SG6?;pj+I|Q+%ZpL4 zN5zhQud6UaY0yLvvuSH<*8@#hqi`MDn2`#Qy1RgzM|l^w#U-2WF7CbCg3&Py&bAz` z%iLoZw`P2p#m;LfO7TLXPcFC6orJ0$%iAD~k3fX^Jc!RiSp$sBWD5;C^9>xdCteCQ zX|*;-LKV|31SMY12`hL*Uw>=KGYBh?JBPbHm88g&qbe2e6+2LqYETnC41m5EyY_L*zj7HX>&i%J4 zm}tN>I6%>8W7TF3uiwXVE8C)xZFp1${lO`;jWisA;GRkL8U3INS1S8Z%77tE$Gjcx zfG_e<08|&sSB1YMxNasfwWZp~vD!rDHvT*a3BzD{y;YXa8Y2;QDe}<8;c_>@{W71; zZSjpQzsI2)IuA|w(4WHX91-8=86rZW!Nt zidD_|t90&cY(|5JiRSjJW~BNvjA>n%yieI*cTsFfp{O#ppqKq9inQT7U#uAx>I+Y9 z!UCYUM*lUgp6xV$`?ox9l@YT&2Dm&z9lBNk$25vLtc&+5_z7!*yt5P8*WK%}pH z_pSq-PZ2@Bj4Rb&M-Bjb!ob%NO-;8|y62&@Xkzuw(R+hAQTJ_QyGM00)ekm~rmjay zJ~_>TJ0I|Hh@D`MwE;_)JtAK=CAnlis&uz0UyEfV}aH%tfPV z*|gu{e}1y|0M#;|jVe|AiL>EU3u5`9Yim0NQPo_?+ila(-(RyHKvXb!qTRUr#c^`C zT4J+JfBfjse#>wehepW*e1dKhqyUb;Dg#A_8cKi~ILc|ojZjBXnFlr_Rgd6cB6L$K z7Ww#w4jVnF5`1)3hWr?ijsIR=Q|s8)J_fzV90LKV$PJeR!TlDcK^;N3Oa~WqS|7@m zM&GBNFv!RtoAZg~qHKC>`hf;ei=j*7BR)2(nGLR+AAHVL{ONQn?yoRhlr=nVAcDOk zeaG1N!*O!Ps72_-Z%5Pa!-v%?f2B+`9v}pZ6R1&5)OzDDWCdyOa=bOAJfZVX_*tN3 zWc+-HPnlktOjN2-d&tvhVFBl;4*^7uOv_8Vl%%-#wgjC!9>egG0NbXyiK8MWtf$NO z>eg>X#(BUZ zbw2t!APuR50*rt?QE`q)Cg&RoYKR48Dr&*#c|0nuFQR=cfZ= zU{mR*Qo@rqZu`95xefTW_B?hjG8&{d;_GGB?2lhmMoBah&Uy#$Oa%ejE?#L!6itAQ zK%rd1c6bj7XMQMxdX0E{=Hs^41S7Dov;g(*KFXCTg1DK>w55S4r2SE`58g5dQt0n~ z24kV97#(a*u{IF`-cG8CM`3Ox0u(@Bq)$yw-qFb};#VHa!ZUw`JRUCqP=L5({mhKo z3Cvkx&WbD~yz6UgZHBwHspH~Jen;n9t+tw3^_zrk4kcgDQ( z?Gr#UO~&pclz%rDzU0Kk2qq6rImt3r1x+2Ud= z2TWvk)ppJxZ&-HzNa@hPTWAKzYat&8ocN9`Sy@>>NpK}KVeLC?bwMFWY5bijpsg}iWc7~btU*+=e2bMG6xev0Z}jNc2RGmB}xl=^Hv zOOB??q%)P*SJz|&Lou+r{g(7^l9J1y5mtb8D&JQ>0$>vbOC@EP2;<$p4HcZo9{G>X zZzE%RiMp*xBbCwWch+rD9Q+u|bX!`2^`3YbCd9L6JV4cwCk&~2=#GK7HdT23 zj;zYu;3sRDfXIue9KCEtl|YmweYK`~**e&J5z%YeydP0OJtQa#71ZS-Z>H@?|5xPU zi&cu=@B=u~9AzJbWbU%isM}5`{-LTyB$>0&D{F%wpN1v*$>Uk5UMu@Cws2JUvq>~c z0J`GZ%-1ft`;DcGPgwxh6c6+p`VI;yb+Fo&Ynp|VmwJPB6}c#&7E#nfViKA+ zi=0GyCSrto#)6m$)j=4+foGyEtw+p8pG@?89s{A|Zs4+}YFuXB|DK823gjQXa%Ji- z>ebGDNiCY(gm$Dy>%61;qm`K_-3@byK2WSK@cG@WO|Rg;94QquQNdE5?>=;2&rltY zyH71%m|%G+0z(3_uyo!hV=td`G`w$r41JmmDy097siXJLc5c|AKDvAc7@X9RnJ^{_@_NB*yy$ zKy+ys)BePZm#Qp+Mv*H(Htgz)^){hW?l?l&Xy=2YpLh*!3=*cXUT>ilWUXydTEE>6EzJPD^1Xhi=1V(lL}8wZeH+7=B+c@N738patR zUf77A%|ge(cIcO-%$nsifclc58tG$q&!PY~AN3my z#}X2a_*Y9zt#Sn;vo-N=D|OhH7}xmqUoC%88v^Y3Lgi4!!C#r zO=Ow$V+=XBLwaVWct>4@1>6%e!~%+74vq0oKPQ25j67AqJ}|U4sbafpl5^?5yF*5n z%Ge7(h2uW@dhgm?%Ck zMfzCUQLJj`#n5)?Cd`EE%RA%uNa7Z}=9!AZf0c4@w76F{b+R{$i|mNI5uXAZC?}ms zXdmi11c{(4s;z^_Tj$+OXB2AIwD4-uLx9DzbjBwrepBDRymr0~eK*b-BywGB;4 z*ZFJ4;4ICo+J`JBWl2Y3n_T~UV!xYh<79xxvzj5F{vQx?!%mFdQYjXxM1#Ih7Q&Y9 zi#Xk#H&Yq>sK@zs`Omn5;BhZmG#rzSBsv<{TLjelYEVP9KuGz%YyUU(rl zfL{7K3$Kqzza=ntmY@qRuc)Zd@DS9Ja|nd+QTg=8>fHw<$YrW%Ux4PP?q|UmZcU&D z^ch+|GAR&)Q_Tzw^hevtF(vA!QjO&qm*FiojblL!fVbRi3K9}fgWOZ7n#W3A3+49t zE;MNozhpm{gbN?cpr=&(-szugc{O(FDc3hX0*3uydzw@k$=M{mq&|Hz<+CGh2rRt= zl+tAXAc+>6lRX)qr_P<7THBwQ4u6R`Ene4JUfR#riSkIT;}2wMN9p?R8rhbu^Z$4b zfOD@Fz>uL)JbFmNGjUqZ*(mM&36o(C5N3=uG&GbE@BENe*&rl@c2;0PS^3(S;XWqc zox3$6@3t>6APGIUBnR){Rxsaz|4napRMoc9`at@J*S0hx?X0KiG76T5Akwt$BDj-EsPpOiNF*#U!zhP%fYBgNuM-G`B+t0XjM%+ zYl^g4T%P<<19$HFp$hfT0CSozIt)=`dD%$^2tc$DaqV?Ge4C)2x{44ZP}7!x^nDEY zFTxI7pLXnNtR->CMU(ccJ+gdA4>;nsMA*%eEM`i=^oA&7ipqtSUnu-EAMVYau5*q- zxqqOeaOZB`vMK>lm|I^k@yGjhMATg~#sm)Y&Sk@-hcIG0q+01J?}&Aq*= z3$lL#HzU{;q*P&b`HMt&j8=@KYqk8d`N6B>speac-jlJ9fz$(8f;52nmWz)G-re%W zPDU$I=LFa{TG07J?u*sJ6}UFRl7&r>ph=Dm9y%%(lm-oeM4$!KjE~S7id}(FdO;7` zS?d-tfwjR;6UDLBz5~7^g^c2PG=^WNmy7mW*CkDB6;A`_h;hR)0n2bVgao?I5KGu6 z9~0~qII2c&6pG4NF~yxb*>3oWXY&3iSD{fU=K*acS_Rn>ygFQ-;vwS7V-gAJ>&yl} zGON4~j`g{O$UCHUu-+4O@!jjXoR^?lNm$^XkJK-`6MD`&#LM=HL`nsp< z|Clcv(P1j+d;}dFsyk-mY7%s}cU!J=*xn>1X{{A?PMY&IfC!>o!?o?p()`GGx&;`W zc@$e0#!~$EaAPdr9C!XjGVOrVVGuzG=1ia6+ci4GHx25~@qdHB%Y>WVS;Y1p#s2ZP zT0U(0*l)4XTY49_x+6DLBJ{ugjhZYx4`Nu^)Qh%;(iGj2De0yKv;K;KbTldtOww=a^) z1O#6^hEmXc(xT{&F0U_ju%3^C-m?V^x5t81tpemR^XN;>id`CF0}}Fxh=>O&9-JY{ z)VDR6Q9+Idx{Zr_(xqa`+2bO0W~gV@EF^b9e*YfD4l$^?3obuEDyQkb{G+awOpoAT zu6lPhka!-=ru*Ivi3BYJKY{SYs*UxW_!3ZjC=&LRJ$8^clfiyQyo44g!-TCiy8Qhi zu7RPUn;0N^0XG&_2(6;m$fcgot$+{p&b+3oJW&0C8+VUqLNw!t1(V@E zz-d=s{;0*0Q&30~E%^dv5O>LF;L7CN*cPf;n+rYq4+8{wGyl;sFth^gNx}**Bobj_ zmeMn++It5Z{U@qOFJEjUL=L!kkvH@5<%H_=#rEV6jv9d_we~c6!&WMH*wd2YwK?C} zgAjV)6d-_Gl?^35@ib{iTlhoMIJI{gOi$Og2>xHD0xCzd16S|1xZ<=ik=}-{A9#J1 zV>?k=)kWS>EL@t?%O+IId3MXwM0X?Wwa!drz2-NgmVL_ezuOWym|thEPHf*}R8`(` z&d}}bdG@8?qhogD=4!;VwL;nY?@G;)-@2dpSoTIDS6#QtpCE-)+7qhtBuE;ff&N|1 z#qV_4gVMHvvU~LaxA34eaeQog(~1qoZMkMW--PhD=?ude(h>Dj1eHQ2cxlNJRAM)9 z_@ZWZuT3b5PySLdu<#cR%$b4e{!mb07(_VNa>7yK_q%%Sz~O&uxwW`$1C^8wv5r5v z)0bT&7CE1G?)nAH00wzI3j^4+d5_Kmhz4^c{WG^@TwvJf9;fSE^i6c4=ntH(sJi#Wf&DYc*^>T13v zhunfd7+VKFEs-{s`#&|GL|(41pVv_DphwBdjKRA3rdB4%@`eHRw;o2HocYaJHECVz z|I!j?5^nXVOiQL%|F6Va%UrhVH-nWapyD5;wTsD5SGoiY{}RArP~wympcB}?N^wRm zH=rq&r-CwmTUl-ygz~MoByLQ7Dgucf_h0&#V56Hz05fb*JG;w*sGQI|R1Jbhvmb)n zdOaKSry)}o>BNBa0J}yBGXWMr6Rv(S+CB_vJtainKTHZS+J2V|!@jN0*_Li#3Ex_zYf@dhe{`qp-qprrxMtq z93w20t=1fv4)tRuT*rBU62-~GbEA%U?Fw8h;t+6nD3JQ%$S?o|Su7Ui#%9xovtTTA zHCI>BKlUE&zCbXTx(DrV5qz)M*-3p(vHl+~z>X41p|iIoM}s@jaN84d73Ovwx~e8m znyLmnd^)phTqJqtG<%-NJzI6Zg%Q>B=?y2STWHee@n-+0W%2OaO~dmGeegVeS56$> zGOA|H7ELoA%J%;g_%#6~rbBHS*?5J~(!5RzQZthM3mCd{ZRH{idDzQ!`0gQ_cN18z{1>l6Bi_x5d&v>oYsisfLjW-FStZq zZ&JM>IFwe`U=|EK3byQI8R+I{Fob$`FX4a$afl;jxH;OVMXEqRG< zQLV@_N*}^TAJ3Ri4J_9WQL}vitF)ufZHAJ)mg+7iswHYlvyXN7f%5_ z31ATYa+*{S`}2Ui=R!~7lk@w4$%q~{;<`Lo@_Q>TijISm^J(djJF42U^d12%wD0ES zby5eAAupNrp%|tcLCA<=sD|i2Zb&w8)DTQhPj`ikz(&{%{9|x^l%;NHc!3k*SYB54 z-OI z4{we;9Ti!q7UwhXD!LtRDUB8G_Y7i(RI$?E*7+a!cm1TDszG2OqYr4)_%iUMD=~BR zgZ;LwAor%5B~e7HT#&-{T-8G!DO+|xmknQvhoK4XHR16Nqz(%yT*0g3h& z8vXMy6H?FWn>PZ56fSgMdtFfhgm2iG;QjPQZA3~B6Vs%r9%TeS`Q|+L@Ut~ntk5r5 zKm*$)kCQ)I9&yQr|7}+syEFp+++4~C4V1n3)xRhr^fG|9RDBIWWOo=Qzcnq3|9 z&mEaRtjgjiFQSO+8)v%>k2KJ98)NrMs1-LfsqF$7&nOYoltB*d8qZoa+TYj3IIT;0I1nVAfsEYeF4ju=)D+p`R6U$jbLKctC*NvAT_gw zaDe}yIcXpXz%OTgh_VsRaa5wyry8-xp* zfPjEx5P)elOwkb!I$J(?DA`|UY~ym%eCCvNo{lqVx2T%V#SJM$XsMmI1F)gEb5}XRT$=0d$2yVVMpFHfjYIAdb z2{pQuY}ps;i-JG)U2>Jf#zOr%gW5Uq_Q!{o;&DfO|36j3qzUA|^wIxfz@Tb~uM1or z>8^c3wnhcy)(pfZg|Fv$Ax+-n`(KF0mYthVb$v{%#epUH*`oFd^6T8(Tn)rnf`yGF z`UG3R0EFNsTZ5_8|K?{6b1*TW5zQDFAcEu-YZdk_{XV|V+!Q)S2N0)g5EBuwH4w2h zgY@q8d|bGB>32kwWYMrI4^U3E08u|6)U)Lk#Q;P82B3IXC~pxrCubc108$<+dX)^X z2!q~VQ=Bd^DJr6P_|2oJ-kpQ^)}$s4Vix@G{R3UK{1UX*<2@@!lNBo=D!P_CaKHVL z3GyW(G)cA~@_p@d7i}@;{)pF>kYE!(*{<^-t?=pyij_2%7eht&o~@dI^CkdKEGiwB z5~HO|pbwkX8dfZXmjSEoAxkW^Lv0g=`#;tKzHKEcYc<567K8jh=YTk!d7Q zzLoV43ze91GwWd_lJ`0!(5U!G-h1g4G~j@C-CiyuNr& zBs48>JP7cab8TCVIDojh0A++Piy+*=@`Tc_Hb}83^-hA_t;0WEwEv> zjo%Z4%#{$h@&IY;I@*^VwSBh0*1PEv1*pr`eC>hw0J2H^%hu}X~E&8`Zs^)(~mm+Tu-gn-G;s%_5M8VcF~4L_No?>T0V$%%(mnCnIEw8>z~~M zwcVIh&n-Q41Z7T}qvf|$b0big*$TDAifanTaFDGTCK7tlIB-VJsqhivGh3hLGxE&R}-lG0b2TN#TD=fzmQ0 zo(1jC1U3NO&Hy_e%BPgHmr^SQ>U?phqqVL8P;)4<{KXKDjC%CX1WoAJ1ib(AN*)IZ zVxNW;_9WGBFLPG);d^r;_y5cuJs^Q%?(5KZIDxt+;U%X>TEXl05I(IOm5JPu%|>jw z&)amOSA)o})F8qSOG`8Tn0}rv@Oergt`OqwbE5Ha8`9G;IIeB$DhFm1NPxKlp8FfI zs@wn@80;Gv$<3GS>0@G1@Qf%(&dO>8b|;^ji{vO}v?5R%JHI(Mh{78$eFj^Q@_JaF z;X}YOFx{?yi+;u^ZZ%M|)2;Rz)6S6Q%tM_O<$0bNAF~*kZ*={Wco)Zbuke%Aw%t3P zuk(Crxk$T5e{WzlVHosIp#1?-iPgVctfLirwtixKQVu|^d(i{3Y+p(I#oEhw%PW-X z-bVf5k9t;Y`IIxiS12w^8Gup>YHDghERs1HBkTxwh{uPWR(@$}Jgir`^zwC))&@o% ziC!3N2**k4gz%`1FRPxn*q}3+E+JUe1r!xF+TbI+^-ahv<(r+pQ?LpLr_Fd$!cq5` zVl~QhUjj}UA+eK<4L{{V-F{|=@X!+E66o54WyvThUBGwnR%wLq6$rZ1f|jS_BdGmj zwu#j8i;6e_DJuz~EE;~33_8>mOi*zrerr@+{N76@B9w- zl~mzuKa(!Ks?~4JJRVT=pd45Q)61O|End`b-2Fw_$xqohQY=%FH1Eo$khRAzOr1sf zs9@0Q5oyw#zecmQ=Buw!P6mY+E**IzPRcx{JH0Yd!GKk5`=4x*6yR+l{c7jUr$JZn z1c9l~q4>2SuFbxkfvydBZK4hnl#-k}Vs(~- z2u*IG3aMl5xJmd2>`n20XHV1x=G<7z4Ur?IrqtsA5{R;Wf$TH`xNi7 zTvja~1ZjE_BxQiR*fmhWWdk>9kGD41^#12}i4WIL`~5pfNFL1wsG}oNzL8MFU&Ka< z3RdgkI%Dx0*9q8y$=JivNyWi{F2u8)5>yZlaePIABCKq(g~(7keQXAU(0C&+5ZG-# zrKRASd*;Q3`GEs@sb|@t4rdNTiOjC@MqEemyS7Ga@|&5%#SPwEUX!>ZtK&_UlY!M5 z70ZmpZQha1Me{rP_;Cz!Ot1dqou{MyvoY{f&`mK2laDG~tKplw4aaN5#{=eHs(+jV z@H+L~l3!)r`}AAv+Dm=={FUxg!?b%Vr52gOP5*YksDNuK2{H$FGd3aR0`P0`{ROIE zvEjTID-18bFCU2ML>}U_E;HgscFsrHQ3o@C$ae?O|2YhOc|{4(*X;6xi~v-LipqX3 zJcGNLSf)+1>@r3979}?TQc_&*DnIcI$iC2wizIuV_&)UvF0e6}VkcZKJpyvZ8rk4) z+ju+xK}|BX^;nglAufoc3+7_QUin=MUqdC=uDLSRFV1yh$|h)$|HFldfl`G=&$}9o zx!`PA<*z&MhG2c1>$-g>FZ|A(}OB7BuRlxxquoi>wWJa6(Liio61TFW{yv%rl z&?+3~e}h(g(`LP+D)goQk}B8kSB^ifDHMi~bf8BOFE<=OI%|L{I)yfgM$?JpnKs!q zNb_uoba})W3m{kj-hXwEL2+9EI5~Eq#Jh+Wv&&yXz)T`UjA(AmC}Ow8pq#>HmF5IZv%yAuDPm+jNSCzcqx zrA-Uim6;0Zp`XxG`(VMMD|)cbFHETMlaX7nyTpRzuQ~Y zBHg4x8{4zS+Xa{_d`SuFpqztv&Vkmz9W_4M&xvBRxXJ+Jv&N_q*vT zN+jdLxy9t~R)lshE-Rg`UQdaWi^XqYFBgT_r6cCzk!~S`sc}l1znhw*rU&C~iPyUX zV~LZrjEe5wiT$I}lm(r|6&j}Xrr9zyTs|nmH@w5B$+UuBR<`vioM^*YK8iGkJo~AR zrshu?xrkjlT^2+S$BU1SV|(yHrScT|PcmUd?`?;(XCJ^+z5=*NVLZFB?O|A*DjciS ztsUQT7u(Zr5|8lif@UGthukKxjz(+Q;B5t=fzZfXl@?*crLyyE}nW?JfK>)ko7K(J&-%T%gjq*~lB0~kdaIr$8!LNAWl(bgS zh#*?Cn5E{aX$HPOHl%`pO2bolFwjTDJM%;g4Gh5c&aVhbG@i{GY(J^*l5eq~m%Tt2 zi#5X6N)}jcFz=;-Q5^&r#vr^tn62ww@yymR+ustQG4M4-JJ6v0D&B*WwiB0vSNcl& zM$+`cL{#}?Q(f#if!OrCqL$-$u^Nqk9+t)6sHv)YT%+Lp^JG>I_4U2PskQjx9$XPXW4I~S^}Jt9`b%egc03X z*;XbKfw`GUto1ChN)M>;L@`HS!4octMe?vNmNX)SVtzw{(f#_<3~D=V6}qk62mr?%7km!(Y!zDXlhfSnw_9iY2lr+Qri)k(XkHVOWjeA^d9(U~7x<2eJ zn5WqesD8B%^lv3z05UQkLg(`VLcEuh^O%A~a%1J-Gi5JSTS z6(McwTx2tL;_7p2a&^5h*KLn`c+8`9<`@syy+@h)V!w44+r6KHIvEN-&f16{Yq1sr z0wQ!UHyO;d6{Q-j7Q#B&jpKz8nr%163htz6hLs@rKT@DWV>6Auio^r+(R*dc>+g%s z&u^bA72(KU89^%Uco}o%zRYGORvo-K?6Yl-_9dHtz~Or&H*6P2KR5sJ z_<7ohu|9z~zRUto68UeG^4~ZRqL4XTE30ql?}!M3v=kqPT`Zwf@_To&y~lAra|FvTacwuBs>M6icR1h>n40^T$>v8_^y&eBG@8dYq` zG2pgLiZLXZHzIX4QA&@1&s3XQq zphKhah?zia{>bOA6~j(1-O$1L z-P@=~)|-_x*97#E3;Zz5*!a19;YGlD5y^omR+8ZVrIy>AJB|hFjhpF_x+BSyw@|r; zT_Rm(1j#IQy3l=Qtp4GbujHXue1_evq(}_KJOEFyLcq~}limcIbW=~$TcN)5Z;}aO z>p0B_aAPpB;I;fmTB>_f{*IW*gdM5Qe4RzXPZBPiv>#K5f?gV zlNW!SSOwfyX`W|&Cxe|ExPKMKGz)8`7U`N+UGJGC)-uoAIOszi`jsTgrH<-W1{Vj> z?v^3f+3J*@x{djW}N zFJ}vxt5s3@TOWQ2PBx)j2Clh$R6SBiz?MYbcx}Rxfmpg^=d!|j^WEpO0@7K*?K1c; z#G|^Eh$rX2rp|vP*6K|ILIJ>5#fex? zqI>IYpvZ3g?zbbNATB(s^j%kfR^t?vDXX|lwp@9!0<_dGJ&tda`2`R`VheA6v(;=^ z?DB|B&Sy*OW_lX5;$3syDSMMjorPPt9e5}~5BT|%`WAkRd+eqsT%WGc0RcB9!Hft#2k&P2%JM8Xkq?|$m%I*N@S)q35N4# z&1DWaEokeL+!yhJXs26<%0zHV579*eHu?5B!M=YJ81#TnRxX>MX_+2U35aH2v0oi2iA zI4-K3NZwdk@$U7Xg93LkiYikihCb+``-a=}1IQ^Te6=(+O|eIH;S{(!q+=KNN!cCK z=);sY{%z*IupdKoeFD;uw^4ipy}fm0a+VBSeZxHhc-Gxd?lV*L4!31L8UOZ-?4gw9 za0k6}y3|7xcS-+Uvi%@?Wn;4W?18i#>`Lp+kh^QY;{trQp~G0$8|#44gAM|J1Vcz5 zCH%+T?FjwM_dCvlA;XvqT)jM?e>;WWv!_VwEaGZ7a+OZ?NFrOz=Ba4QyYnUFmrk|x zlHncCIFxKb*GdlZ> zqW}dPLCD$M)7E3l{BCzz>7@-4406AAB6PA2&!5yz@6-$XV0!d~Bv)-^|Mivm}RK5FZB zch@oSl_bXd)YKDTuCt7`dk*#yT1S{aIR1wji%I-lE5A1@iUK_Q>?hFAKkG%@iCFBJ zVWIEqR@eiJj`|ov`uJO8J4F+CD(6-$3s-WR@or}a-i=j}2YTEHEJ*#eFfED$%eaOP zuX2rJuMX-+#y88tg3cb%iNE=o>_m$$(D6O5;M?5C_2)Q=SkO-6kQK!Htjcd5v=OI& z?1Kb0oY_qi9~yrUoHs8~D7Eq4wG}&7Wu$z_J0IVc{afF#VX{Wv+2t*^9>H!%lS2eT zD@)i9j)*GR7T5@=VF2H&Eun%i_q?jGpZn;Fa#`N3{l%yN8yDinHIlX)!4Xz8A-tCc zwmXR+tHqzVxw*XnFf|(@E1c*iI?5%*Ohdy?i1`&y;fDE7o&x?!|#HhSa{! zoFaX>X^54=4JvB1PyK5%_COlkuTkP^Qup~f8E}Whq3b22|l^$SM1*A zco5b*JTw&W4F1lW0*aY=pBahvi+GG^)+ap^G=7rynKWw2VML`?wq`teFW`vv9JXJ1Mo~{ zJN`{_5bIz5(;ZJ_E1@RzILlqmB7b1tn5pWIwaIIgcshS(Vc4FtHCmF<#6+N^NVUXI z-+7g9d7N;Qez{LFcxgpnQqrm6VgzO4vDbYk49aMWKaN!?8Rr|RUTLoF_|@+}%O!38 zgPNCzDn)|Ec3uZ#m+;3INfY9ZtJr56kGy;o7qwU>zXv?CN}vwY2=!%Y&+A_MU;^Kl zeM{}GXEu!F&y#7D&@m-G8cD~Y>mvAHEr1kONx&zouYvv1Tc|lH63EaWrE*NJg27i| zL=un-0x}zJP@we>n~}3z%EPg`Sroyup_ynPy@e7l3b?KPutbJdf^{_@#MKgyjYQkk z?Me-jYiESqWh;45SnOWlndhVIC|~R2F^Y?o3(y~P?l|zU` zg9YqiOLof@ixyMIcEJLIhW0}RIT!xNd?$@BGj zCw1(C8_?g6^!HzC!{3Q3Hk7}@Ua5ufeV~u1e~LYe_LU`!^Lcb)2P-ZwPgmba6<>&0;4K{}nna)yw z{c%r>XJhH#h5NHw%7jphtZMi^?CsS@sM+PZS7)ATmZgEAs6!a`oAU1F+QhcOa0daW zDb3vl+aYm01&H!RmWEc7z8$}s(78;Gj29b#80U*jT`f0ipQ)+;Ait@9RuogSFBA3W zSl6umFFtf$JNzrLxm|8~Z=(&TujlWB^-WgH%H3Ee&WvMfnPues-@R93t$xz-1{a*& z3+9pLRMTK&mMeCQ3l}HnXoKgDs44V_DL4>$EO5?@NGQpkcF64Rq1>PXGB{yk>4&h$ zuBWvCcT|N##kl$SobzAL@i&_u1ibum7$T8CQUPT2XZ@%=HvSD>l5Hfk$;<-k`5M5@(?u#G-ASz@3n;DFia zY^+sgRCUc|FF1e^xQdfhupoR|KWtXDKw&v7r=7WiZS{U&ak15 zYP*z`BOX??R)E4kq04JRFauScletW?5gY2&&_*Wa);Ri|8pwg5!*;T_7UME)kiGbY zdHc>omR3Kws?#^`bzbVFQ*c0{%D8}y9e*749Ik`dUPr1Ig=PES__T#Se$1D=_NLgG zx>`&fU#$xUhW-e>Pd}fJ687D?||tu_rvYRPts9e?-YfOk+;x_Zkb5 zGqa=II{D?#W|-~9wBI|tJQLTV?r6;Ys^EJ2luq0iz)yJl0cf`#=lG-B8qAJ=#Xs+d zBnzfQZ4GG^s;l*mjPQTRVKW6B$~j2-1`x~WgO_H1MN;V7Sp2L&ql5mTpTLZg`Nuj6 zX~HIDe?G$li+%QP`C#Oknp(hf=$I*-YQvcx27lfa#E&aM4KSKh#7jY#I}>x5rpUvm zH;;I3c}*Kd5IwmEaU4G_XcN!Ws^T*ONYEx%d(Ygas#3sMi4_&^i=OET7mVE|zWpWQ zy9+gT)TMh}oo2DoAp$;7465N)Vm6;>G6e@ql4eq>!ZYLMH5a&DMn%Tpb{)SQhu$=J zR?6am)dl}aS&B!y`7_^_TWAqRVlHu66?If%@pV+i_{om*i8u)#d3v&N^;XN29Ndsi z9sh;scHI;Nnp}LFYuo9asY@qoQ+dgq5dGVq|{Eu{~Z{q>D5u<}BxS3L)anbZ-BEOp0H}QIw8wLlidkD9&`jR6n1Jb`{oL}ZPd2JF zPxE`dlm@7AWCd*kt8ro9H`eY)N(OG@Eg3ZtxbWy(zy8p6@bqAm#4C>BKgsH|42L@3 z-_y_QP(JV2a7`V0`P&5m>hUQdkH#c3|3udN?+R> zUxDS{EwJG9pHW58yLfTMZ*iUJy8Cv*KbP41*AHE*NqKrw3LYCz)XsF{aH#8na2a2> zkCb_XUZ8E{?&jY;fiyojVL3}i-)wvE@$sl4Xn5@t}vG+QY7amU3 z-FSQCSuY2r>8}47aFDjnE9vsgRHx5*U5K0Jwvrt1@+m3hODoa0i7jeHoIcqcsgq3I zlMJRl*0TUHIxX&-6y^U^)4NrnZjT!&(wwG$<@h~hfAE4hl^!`8t^yooK ziisF2INlVAshoAh@~Db>EsAJu3?)SXa7jyQjuIOXEtG*H5+BvwKio0nb)Px4{#gSO znT+eK-%O-Isv{{a$WBYSP?w9|C!Y{y`Rdy&DpZ&p zc>e(f##;6@lzE@-b?G-aXR+m3;b|O4Ze^{}Qe;%KE^c4W>wmK+rCd-99Z4GL+oN}W zB>C-|G^?@i;K&k!;J=;L()Z5MowqeLy9#WeQ6)~VrhE3Rc24(tiHVDN+SHf$ zQ4gMSsZBi3a!cRLHUlU16&SI@1~l64?z#6`&(I*CetW`6_Lp?*6j?0*XTZ0{uIy!= zMWeD@WKy48Q?arb&+%h?I2&jy zpuZA4&FMn52HH9*vIz#Dj)P!`+%qxuCZ$F+G-{Py{4GtlGT%pxe%QLRIGf&{YkA-N zSbxGoW5TV*@9ENag|TAKOlg=#7&B(td*{w?=V>TL0MHoK%3O7SVq)Du#WyN0GFx+# z?yokhwc4eBZLoLby+7FBZ^!{tZGvK=n}ib`ps$p8Q5=fDf5hr+YqJc2xVMb}b}(>~O?10u&T$KZ=DkT=XDN zS~;rkK&xBl-Pa{8WSI}&la0AiQUBy=xIPnRQT_>pndlxOw4C`jZc0*;MiWPKe$T2_ zODmk_U)YB}h@+jNl~|8J_@rphpXI#;O(RA5Le$#qvnq!>jrp_jawV+=xK7Z50D>{O z=`4tCJxMbT4Wf>bz5s^R+|f(C`SNe7GzORiI-|FoAX7tCmV+`+$rkJ~yHQVrnfV7R zz|IyI78WK!cS-iA;g%{G8(EfRr^`d+xGlcbesHoW67r%$L zdSs~o6y{B5)Xa6~rpd2t^4=83VNM_%R@RlFPwx5c^%5ok1W|BCQudFEkYkDei;v*| z$(gUob*49J_d1n}V_3j7#GC(xqR-NQA9=G|+t>uM!BnM=u5MVP?IRZ}Kx4-z8^XJ`gMb9QFy;qJRvQJ}Y`Pn3h>!%5nrs~?$?`E-{``F%>S#BBt zC;?)Fa7?UAZ1-v~?)}!C2lNJwE1Tbj3_f zZ)kqK6;kKx`oddysOF{!Kx6CP0bqk-Z5JaVK^CTHz5J4&e{;W00U0U|y!;_kWk$6h z&=%NWxRy4kGx3O5E#7&wB%4u?3sg^nv7nuby{`ZTfCqB8C!<-TZ+AWH-Llh~F|>>EVgR)>Ow#wF~#E-NhFh1ExA z!4?j^MgO(Pc+j=q<33s{%rAn@zM2sH`l8|FIM=(@^ZfDi+*)+7cT8?Z!0~^$C5yGw z&aq~9TB9>_8c?_FS4T!MoccCbT>8t1_;wkAH}=`su`{~>;F170d%1=OATtJs9)16- z`0^bWP=@oQ(Eqsq=+UE(6!NZB`0lCTRRgyeWl_EMo*f8fh&B=QID@d|=SK>Ea2Gh# za|FMq6Zg%=XDD5Hi(AeCyi8ta640Xayr!oIWA{;n7=X)B?ZlvQ9TuQn|MxPBD2XvR zKZ1PPs4pr#GvC<{6^A3~)M$@ro$eP?DX*XD~qqe9krmqNd zM{Hkl3u0#pS}IEh*S2?w4w|zAYI&={8RB{^=D@6&403hV@n0zOHArJOfB*jVem>x{ z)o|+oX-&-ut@0(3k0K(LxD}cez}wgC*p78kHy>m%Mq3f+_{?3bqMmBhq9$bd8V_Ss zD(yg$WwkOS=PH3I&yu_Tv3`!^_a~i<`wavs`zT1PJUHmg7KJ{u&5Hsmp#Bg`VA}I3 zG{h4GLB%`gGi-};Go|yAI;*v5``I{LXA52mC3=8;l+(>%ke1U&B$Q>%R+B3IPsI$V zmYv$Y?@qF6wD~I=+f2?im}s6$HA&=M3~Z93=8hPZj?Fww>Z0o3bD{Bi(fCfj}sV znykeF0>Mxmwb0M#A}Edrz2&~n{HiiMuIN5<<^X6WqoYc)=YEA$d3W9u17|-kvzS1P z_~X2tRr#`k@I5hI081=*%^-NI^q-!vuhf)Yu1|6Ew--7L2%P4yfsK%*Z1V)P!Dw>s zuUF$Ul3cUAb`zDzHb|ZZ^-eK=M@xKDlf{hr@!`kNbBYghHHmQEObb+4v$;@mGnydg z2Yl+`?V4ulpoz0VVS{_$)+o-p3gM5*P`{46t}9O)P{O7nY2~T_1_vhHIi=EfbAdG` zkTzbVdtKXoh+jC-RkR&{@C~E|>yQIt%thP0Wh>i*#*B&LpQ(jeGD+~Tu0V{qYS9;e z4os%V>74+2Inr4JGD<90NLwKD4^tLNh#6t<8HBwbuKhS4?hf5+ zXaIwW)2euz^~Y6<(Wb!)%G^3IL_m8`Vsi%SnZPGvs4vHBd&Yv6YN~3=ppcU7EoTII z5pNT7o5F@NZ*j--$PzW!S=R$xcWi5wrx`?d;gI3;?zcKMe=1%jAcr$?GLkMESD8CWd7_WNjpP9sp~apD+WFm&J6a73B)D!{rjO@DIX*= z>|F|Q27s~J>AQ3U951!Rt1;U6n186V%-uJuC9-G*4*6fdeg%MKHQBgg4dt?Ue05dw z;kyuBCYC^6fekuJFwMIVat)vw@6}UZ4vZ~+SY)RT(b(|ZakL2pP8Ct5HU8};!h9Fa z)of>~>}tewc<21eg%uGk_~I)&saG@%9bA~pHMcGi zN(=E}S&q!;x*uUfEGjxDfaXmDDjI#5V=s$&WSJ+O(XWI{;Q0`P`@4x9GgAtn05Jb-x$?=}hwZI#J5+7V#F$K30TDGmNOKjl=)>%d}uv3|#ry zQ?KKXb{59!&d<0HH{MPjw%$?0{plB%t3mN(tmTpCONt@1bEh+D?l>O+rGz^>1u#b;qejHF{6U~vJ5Rix%)u=HyL zg7-d$RUJCP<6Xvq;74;LlXn~!c50m7S=>ARw_7}CrK@SJAs3Ed?p_FkG=Ui~6SiwV zqD$x^S#*IY#B*nAkNhz6rvbTq6u#m&v^GjbZLoo)7MHo^MY=!;B}TS+>wk`_OoiF0 zr!gGTt=-O{LcnU=WOkt-Tvm`?z$ZT;HSCB@T>avEhV@`Tr1~dh3C$DW#4TnA)tJvT zzS8h_g~Pr~Ud})lYKov1k&<)!8Aupz!(uvD+B|Xxf~ttv%4@5pqyKJk&_3Ysaa+s} z5V+kAu^VrSzE?b94Gpo*pZ^qeNZm5i&;w9)QPqw*^X4QWXUE;a}-E0+SpkPnZxwe6}g*C4}1a9 z@DwgU@jeeg6hD0S{!&@egFki$!H9t68F;*4s$K}vUG)u3+jjLPct$!;o;;ba*PlMp z{v$l028V3uKO{?XMz4GZhwAbhfgTR573?9*=Xag2pDH9adsmN6tpIs2=t(Fj6cEYP)Tp}2xxA!r$Q$Jij-6n9^eyy z*kAs*{6~1krd6Hym(+sY#}8z_sXG`SBq5>R^e)>~sa0+>h>xnP1 z$GlQuxl@4pzAg%>yG6FBs{fs<$<-J7H@32b!4?}KH>A|C4pE=Fm3XX(9Y%x-4B*ihfM+Cw3kPTZ~+fvQ!_Lk56%UsLR!`ih9(6NZ9 zWGn2dnM9D)2SKOeWrZF69r!reh%`cW=>*BJD#0p1u*YNYiK?ppaF@taO++VtFyNxo zg^0%l?`2A10+ABKd-}J6Ah*->FkbDhGJl%;w&cOg(UVCK#j7?N4**tCdTNA=2TT22OtGSXrlE~Qh7RUD`R^< z(7#uYJptf5sr&*<*hTfOfG#WI1CV5=Sy@}tC+D!G!4H;lR1}@J5LFCq!eE2b$l%}t zHw>@(1IQFCo8MbWDoBZl5V<{P}+j{Wd%mV=z#>?p*E=0XhA9%e2q7!;)m2J zz~512J%9!0gb`IoZ;gOxH(+IJUIk|Kp3z2-oD>7p7I+N$C37l&BFtHjr9@wEBu{t^42T? zf)T8ZJY>mb>n$y@K+*KQUK$}P(2pdij!K*{NJWTIl>Y})-hz$f>j<;p?TwTBOyen4 zlFmo*q?6DTfBo~z(^(&VN3e5i;7=^Ntxxk(3k39j z#T!XrE{Yc#6H3iGecA}&xwn!;JMd=xCh#r`2pcN~2uN^&nxr#oi)2>9@oyE;+GlVF z*#N~gBZQ}rF=Ea_g9$haVnFcwm6Yz)pHXlt{z}00kMB%(#Afv3RAxhGc%i28 z*1%TfEPL-A#stNh;^-olfS!2eUGIIznHIw4h8hvZcU;zTBg35kc1%#xLn$38N|hI> zDksP2A{7T=?qtyt$JlyM=u@wrh#+of1oyccbVe5X#L8mNJHPe0B;4Hn3_#9`|467EX%Kf zfV$e?xgznBkt8RSI&X055`7)7C3tkX>V0#RyLJmxt_MnLbpJ}L=lGZ_HnYq;WF+!& zn-;WK5D+E&AlYd-ojCGQXh1S%lhn+RxM>3t{D$$JAhbQJTARRVQr^HKZW=aOyznB*2FG zgMSP_s8u)Iv&UEcx1|ZlgU95I6Ttd2eKDWjTypI;~*7NIDl@ z!%%>{Z6s-vyLd(+!QCsEUHj~>hpv3Z7z+A=~EGoJg^SuCKdQX4= z$25=$A&3;x{}tS`UM~oiNmqhLxSxvl^0#LoZg4Po)do>^Dd=LQrtC0?C4p&yPQrSk z-RAh$s%Qc+(b3*Zi?CzQVL^8j_xX$@t62AY31s18akE$ftfKpXfK57VjPCL|0CxE~Vx=jrbn1y@>0MrKMBvti)+i7lm zwfI!zed2d3RT~6%n0wcxuEUf6HjGXET)1ooMLaQ}?iuP%KVSZxF#*z##gh@Lj{5bD z!6tq}dYE+((R=aJE;H7Y9QxEQ@L{KFb|r&b)pOz(WSe5dD9e?tb-w?;I%M|-46e)b z9Dfdm)&pJR)bjolvf_mRaCgz#%|hh!3pDR#kkOaQ^|K5Ll=A-{o{Zm5&+#R}!7LY_P8{gBgY$`y#V|%iR?1 z)92}(<|lCI29Ifl*LM&aN5Q6|S?2UcH&7V7yhQhUlMFDNB}qox=}gYg1^V4uD(!)>xejIR0l%ly1kNH&VK`o-oJ(&#`2xq2hKmUq$piE%Njr0 z@CK3-N;Es*Gx-)}XRfQ8_B57pP#!cCs89292enQIrFlBB221ENq0~(@#TjsNu@S$Ukj%kJY>ea)jdH25K(Mp z|0Ky*QxYi#sjFbZyvP&bQ}2*Wb+Ly4FsIq+Y9Nsy95op*}5d@6VRWAZCEFsS(sh)%jH=9EI5fZW;+ z0h({66#?SKi*?4kx~1w?At9l2lB8sl!Kkg6xH!D`6pcFK6&IHi#af`sXwv z;VvBo4VaLN1^$T67ASVcfDe*}fxF8J^+O7oz`hk73sz-be%4Uy$*S%WqnU&k7T*-A zTosIV@1_^IxWJOX4+S-!av_869s=H+WHurFFX|Kj8<-zE=twAFa8Y1I1LKrR0gB@6 zNASMR-}k4)kt)~h{q&fJ4@(dCIdWMK5-Zj|Q`%Ud_^#O(jcICvudj8|kH9BCj(9f4 z8QzmL9VwvqY<)kJ%@T(R!2oU}leVd;47jco%V9(hJwfI6-}Dlf@lr{#1%$04+$AtS z;T2jX=cTIKAHmk;WfM3wR{XZ;k2~F^K9t+MH5M{dMI1 z7g(S6!8JTm_=med`K`2Zg?$RT%vCvd+XyLaks@xX1{?@(?e$1(`sJ_%u#4=pS{7vg zQsf8z9EzVbg;W3Zbs84{_e#N=lBb;tURnD4gj~tc;sd^jgU=t1QiJ&5jNnIN0V6C3bMfX4!rSQ}`A} z)FjZo{UGdR8SYOPZ@1tsA?6>kKm@^WSU&__D6gWn*>BPH-cc}qlXjLFk(8c3L%uW_g~^tQ@wjHSgrIwLtdy9p~;+H0aq_bLLPHUXGq>H!a3nf}MV zU`6@!z_ntMR|8sb#Ti3)bK(xwof$Jl*_>m5z=o=2pRvo=?=&ayWrBUDiy;$LAma?u;vN5`V<1oJ(*T zU=O=UDc=dO+AQK{vF8QvOjvE63x*LJ1pIc!Xma1jESt}FXN3$vgvOJ}<;PP}md0Ve z1(4K_<1K?hw{S24;1<1hHc1m5Cv{}{Co~usbb#sJlcqy0p+)Mx4Iw zE-fgBFJB~GxV3)+;hgG}`z%H;Vjz}H|75|mTB+Z^1gZc3R`|Z%0+Ro_v!Ai9JzJ0M za;9cJ<_JIva0yKUzgZ0)LFKqXCHbi%=RFTr7?FGQ76%AWTdQUQ;;4lZR@iPdCex8P z%+4~?L97UAP-u?yNTyhbZf`Afx3b<&vJ2kRL767`0Q#%Ed-Y(&Hc)~gVjg>0SYtmyW8mbZ_qv?n-_M-j%jpm zplfek481y_>go~|H2W*ApGe}?t=|O23LSzx=pQELWszh7*#t{%d;_S$s`!9Z#TKa` zt_G$y;zKBi#tw#0vD*~;hz;n0`(_%-{1MdD>^DGS&yYlqkiqMG`PpGfL)=#+ylX~k z7R^x(QUJhOG-RlL6zs#ykM*M_T&08z#gmnjKjZTt%q@hYFznN&Pfj_B8g3@Sa|l`p zN-ock^;bsuZdc-Zr|gA>X}g$o{n%dK<@7%)G^OD<`}$`6w@M>>70he@uEcXMfbwJyNE`75q_C-FDy!Q5xN)Q;&V7U6{?j|y6VYpnnr@{p*9KvFxr0_Fr_ zyDEcD=q4YG0YaZ;&h7vMe88Zm=Mc~3#hx`oO-)U-U_gD$ghVmG*DS<{ML-{k?yuhd zoK$}BeNH=jd>9cfKzqvHfxrd?9;iLviYGzH>Y|6BET;@62j}Wbk~x(U5Xu>2Fax>x z5s}ICG#FX>3l?uH)pCot6mSXZh#EiK!N2Z>}7o2AtBVBZ$1e+KH;qzZ{(hoGsa}W$0a= zY`YpOpE5$P*!d{I?61HUDmxK?c}6L~)~H$nT0ClhnPo1>0q8QSze9by003_ zm-%3-(m?yx%1ee5aDOFng+L6hWpkZQWZ|K#+6!(cXGJ@guY}dE$mAFyL&HZZ zPf)(ej@4xt*4ZNsSJF^ABvCMCS-}OnA;22esRLw`7q56seUDkQA8vNgih)aU55srj zM&=RSU*$)~x> zvRT;%TI1SXqN9gYc)kGf9FUKa?Hlg+`X0=iP=y}F0AS)zPFmVo(JoOE6H8C79+dea z`)x*AZtg23#S(ZuS}+#mZ9{o086FmGFM(x5`OY*50&k<1AZ_#z%iyS`R8Y<(ZZ`yi z-qRT@HU23^hQo_}2>pMEdJ}jk_xFALL6+=;Q1(eN_GBkYBW2&RWD7|oOR|(KB@Dt* zLw1rOdno&sy<{nbEZK?dWnX^xob&nq|MPmyd7a~wndf=#_q|=$eccwOEZvZ4XYG0| z-drfWoy|hi_e#AqYnTp!JSA$5ltx1G2&1%=7RsDmX`Z!E$k|uh)%MmnEn~2#$@V$G z5HVzV!?Q$?H0sJTU@WYC3wr3YemG2|hH92AQk-}#RCDn4hF1K(5Vy~==a=|$(g@>w zsyDkFws(G#Z68Fq!t~{V0wZKXtrmRxKnP|J`50mMMXE{SHi?|5VrW0?!wUtvgP5Xv z4Qv^r1I6DYEM8oZrc@oS!j=_F%0J9S;c2&LJunVGBRNvvItr&`uJbV?%Z1d zgI%vGjE>=&wqO;#fd|Fxw#BMCmIh}eisRGVEeNgVhzR%=)#J$6H_zHvzj=j{B<(d$ zTMqERwn}m$t+%}q(x9djY!xq=Ybyk6EmNXBntsd=5tH6TtB=`TMw7%TiM)VK5i2UO z#!vUfYV`ZBlP!u>kn{;zK)=lE*zC>EURNb|?z#tYu+jiLPK=O~>H$yNR;o{2sCpm6 z_30cvmtwHV*zU19O6$h+PacAAnwRI<`t(DTc$Wt9a6QxRdSBseEi=-G#%?zcNEPHj zRwEDKzYYyw7Mw0=v<5mO0HoHdhKH+~!R;xAsJ><(8R3VU6%ARg*s}^!6Mo+ixxedIv$&cDlR|JU)GQH6^<&=-iX4e*He z%&Ko9L0`L^BM%e&l1dFAH*Ex12j+l;_gDZZH} zVg=ZqI(Y407p6C3E{Z5*RbRl|cm*c;<#~kU4`_CJvU#NTm#H!Dqdi!x0`|GJYW(FA zr5-d>x&5N$Tm3a>zunT?>%L`e-89nu{Y|a{=T{kJi(@aYst)Wo zqU4e=N&btJCVFh22^Dd-{I$D7X14@^=MG*e4XKGvtbUoG3DQlY4C6TPN;{w{%Y#wG zS{lh0QH3@=w)%*MF@U&~OHWZ)sngQZfA7}+Tp92@h|0)7cT`{Q_b=Q6gDMAM)MIWq zT-I^ED`cytwJOFcfMeqs(Y%VGbdt{)J3#dD=Fp|&d=O%eFI+5z@Ha8Jra$+BR}qPL zPVN1RVR@7s2sB1U#wlCwA&8Qg#pyn(9wq7edcF+tL^<~=(xb-*mx)uXfE2bgFNVH8 zCmt?8hC3WxT^LSF-8$E$a^vykw^BSEF8fA)(bQ=vUwfc0o{)~3cpWw{&ISok!e^f4 z^kkS9gZ?P7nKJRU!s}=L`B=W1`e~Y)VmIkcPPwgi!O~66=lgTo|E0HICX~3lf4Rw( zkk-ld-z82HomP*^hao`u&qpLa*S)Bc{+y?sdU=soLIF0FhyIo*2H~PA`&+QzlO3Z- z6H!ZK&I4`l=rT4p@&kfI;<9uSBnd0g0sB)gOPZ2HnaE|~!4RJmJQ-IIgR?_M9wETLUNJor9!k;j5QHbYiI58JE0Nfkucu=|DGxp?Ku zl>h{2auM(5eUwriU<#RIVKnu}6{=#OT^)yf)U};{iXTM!ocNlXkU~6g)PZ^zQAx~s z^Q|dn#eceuwViAnwJ$i;zmFoNGS~C*D5)VmVzYQQ(8W47(%}6@(X8HuYg~J^@1aQz zpOclkP8*ktsg%XhuKqZCgY6sNIhpM_*OJw(N%_I|c0U6S1JLOK(OpF3Bj}N53|r3= zdhQEhvOu9DP8fc=f4B8*ndgb+dV(xZ3l~oyU5MQA^r}stuZ$O| z1Nr+{gi)wVR3B5yxderU@4hKqTp_8j@?zzXLRKH~GWzhry7Kr}ud=aEa94mIjzXr7px^@U7_6mr=>g%;AUyrfJ{|0+I&wdS0U^;wIIUj5rDgTWwR;^Ke{QcOe(!&aHKt|%)jE2gr7yBZr~#dTg%(uH)@b?8zC z%rL9pO=Lx)2TN1hrXIq2_v+g5*~c&L9!Zh;;A?ZAG3o+~AGG8ys^Ze_CVCb8Tsa~F zJLsV&lVOF6ktEY3+b2|<=}+grs`Kajj+~X<5d~`eYv8fYM06&x z{$EexvFoeto`h5}DpfGr|BXl%#h-cL!x}xLNvJuWb}6OaL%6bbJfwcRWOx2Y-I-SU zrAU}Qb1RO#7Q(l>me{$y^YTo^+?uV3Y4OK(+oTZ8wThka_JMStOcuLBUc~t&S0j1= zLdoK-P#hfNHz1*O=GnMy68kj`4I$W~4Uzi{;-ds~mIH{&-Z5OQLcQ6#D;bNscU5sS znT<<|9DdZa0(UXuY2&D^~U^)Ba5JNwJv&}C&)$t5Uzo<9w+xDW|Wrf}Sf~RpHSYnDE4NW!3Hb2Y6c! zSi>IdBs~u{QS0p6KVL%Eo|9N14QAF3EFOgZW}KV+`{=qt_IzSuq5?VnZxSmD3nhLQ z>H>;YUxa(;;m9-GA$ZuNGzAIkorjHJH=3YLq?Eda~ zVAv#~Ou1@^L>>6^F$cti@f21!_zhn_(7qt{yUL-JGmpj>$jqci>@%Ow8@DzZgbL-Qox z@rNand&{BtS}N37W?s0J^_|D+$XiKcYGfI>_1%qpY27e~bYlb5-IB8$BS`+lrL;u? zxn&r^%a`BIR|fc9`Go41xRleZIKkr${6z!iS&O@xKwBIkEh8f;?Le~h4BUadsOUX$ zgsXv2;vsMO6#7AuLXp=`{wNnFGElqx=2X1dGH$=epHMp^geFxwcIQL4;rqyoa67jL z%+pi@0^~twp;6bRincQe>n|W(YF*ljxig$`90+IhztGM6rrTv8*)va|?OKQ$j!V^O2);a^hgt3od?E`r|Y z^46mh?k#kVFG;UA(-~PHL$c&7_SUz4stLaT^kwDXbO9U5y&qbSUL?%z?Mw&pXz6m> zDO{UX^3a)QLUc*oeqS4U5CfGR6MZOUczaS+X9`FlfO|LZhNvWixf{&qMSc%=%^IxGcL zLziI|(aYoL@IcdZPCowW)2CG$IV6B-lAtEWx=sNh?mUDZKJ?0bmult^NQ(sf8V}{t zjNc~obxyeXl;LP2vFH}Ry-n?|>t52gKsn;%-S7GG<`~cGKqD+d#k`SsxGB!+a+TvU zX2h-EjD35zEp}|61Zfft-EbuPGI9@m4$%a}>3LF9lJY1TuUbXG1MgBHi}d&!=|G z28gHLO@6|pQWUFLDzoZchu4uXV7AP3be@qEg2ns;un z?B4KH7;JX8bek>R7j+)^fKuNm+pDc{*E_NC8Vy7P<*}k=7uV9=BHm|rt zL!+(McgreE(Ol`ub9Q&UVs@!Au7qZn3zI?cAYOow_}~@Y~Q`y=dcW=2yPWXM|_5Y8h3KFPm`lZZW$$HeVBd zJ=8Me$Kire!w0^owP#nfCkd}l45BlCS)E~#^d@mUcSEOz;E?)EtEkqxchaARFXMfg zLw9N=(ELWp=awq17#eVTf_=kNYqayd+1=t*Pa%X1z-si4yS-VR2+HOOFL|tWjDHeN zD^O8fy&ZAOF<3A_iohBZG;)eWI}&4KV$PN7rYSGJSW5>T2t_Ffbhik7W=NL{=oFbC zbR<^DrOo-D^#P7x*V=LR+Q-J5&o|e>t%iaB=pL@jrv^?LxRFdnb*2YQG2~#WH$fOR z6c`M56)SI;nhvryAOs_B+dLsX>Q7x=QQ#;qA=D2X_`YFa@mka3-%ZjUBX3si8uWdV zK$?uN^BeFhig8+G5{B3;o`=&h8=iHqkm3{0GR}i;_oYrPW#Si(ja$4EF@0lNaqYa$ zUR2_*PO#;)$n3F`CcpedNm$C`!jnc@l1i?!ylL%jRcD@iy>%vgsx_~>b%M^U=Bp@^ zw5R%86st+a>toH;1iax-D^4GRqW-sggS*1Y$#M)l0g4RuvA?x{OtEWBe0dq&#UXv2QR9OXFo_faL9?2M(3 zPS-S`6GDN*o(|V2P!Dt7y>rVbjLq2;Kr?$fT+O(QomK&lQF(!d`T{IAqu$+IN~#g} z-xCxOQBuY9a};-Tn zf#o}hH$b8<${2Gd#6|=ab4DYFkmXqTrL%MN)|?#!k8%z180n+$i`eEJro6=~T*B&* z>LqO;yYJjyDp>fIo$V=LzVcX^M)>>nI_&~SlF#G)%DH8){*Mc=dwtD!jiR`ql4(iw zw`j!psBRYD{*cxmr6bphS`(Q>nOs**g&i+G4}tX zmM1e=TQoPGm!R_TeSYQzouzy&i@qGLN0tv1qFmx6g{!KFev1(;sgIfIYotT^NZqO( z6U#%ICXOSGVCM7`K@m1n?)mBI>5%4rVvTV|*xYxP{xC;gS=sVYG9i`I@{VKa&Dh^m zyqngoly$QDZFYV>Ei%65L%*$j-5qU>nb}>rVYC5s9G@{+Xt4jGbcLIj>UAT$3!L^(`zc6q&-3G3X)m z{U-*wG)T1Nl;O898+LEAIBD`Ixegtp3;y->uq?}xW?X30%s}rRl7cr#5mM%eprUPp zXDLbIO#aS3ZI~VvMk+z_`xqR^Fax2clKe00=N5$t3w&j^x8AI)m_JfVB@;UwpIhr| zXww9CRn`b6p5YguQ3 zoQ6k-2Mr5oZl6n;ANN`jZK}Y~NG#+H4OVzM81O7^ze$>`qEVb|JpY5Q$&UYTG5y)D z*h!#m@ZZO^M6h+=8Lj&3gs4LpY&s=G=%R4jtP3!6Z!DSINVj2UjQLq4H?l>Iy`Ku` znGh$vH(QJn#LsqRkooV03p>WE?j3iFF@_DoIS+hk3I?VbkCh7 z@4bLHB=C;Z?q2=y*7>$N=B#8TPl{ftl}#U|SIC`QMVc5f0ML`*S$85=7Q0mOPELo; z;s+-O(nfdYIxkF$IZ*|^{UjiYI?<9u%W$)8l9CW3NQ|zN!>MgS;&sv1GA_E0^>#I5 z-kux?vk`b)zbj~$q1H|R=vxaEINJ#Z7iPb2gq2*u z&`NHC2%AZ8CgUAr=qxm43TppFLC<-Igz8tMx`u zv^Tgi8!)v5%~$@%c`G{tnFvonY`y?l?nw!{S`I1t69cDr%beJpkl-Y#scHG9-M>y# zY2_9tycer&2^<0{0@5Ghsq#BbHid2U_%$%np4vVB-E~KL?b5IG&*){-QHpVD+3O$k zJQ$`o=bo8spjt$3d_d{eoM-*mHm170adPmwK_b2_$55ErB(;}hg?=G4+ohg@YxslK z=P4t##2bG#a7L`L*9fL zR$A?2$QqV0zmZU}UBI`1-VB5L zuRsjc$RE;o5OFh%J~nDEj2~aVU%pr3ZZ_~T_s{vP6V>{Yzs1I|orB@BuYSruYvD+W zt;}_MqewzH-!UW3yUeEJ^4{0=(@m%4YG~DapzS{DpCI%T9m{W=`Z3nz|C`@C5^o4(Iu}87Fdz$2Xj|nJVLK`rC$nq z-!%b`;>(-{1@_#*?%%!6skJ{8@BVca#B7+*7wfj{E1@3?5%czlTWp;HweHv$GuIDJ zGeTPFGXjU=nNpvP=mF*CAKHpcJbg20{ViuqY<@pgI~T}C?UE(-K*SU7dH5Pp7$L%otSg)8Ku-jhdPecJmd?U zsq$bXyZ{R6AyW4>B?$L>YHQB~L*VXDIUUw@kCe?OHY3GWwBQR~=+~T-_NN!CwUgj} zyylmGqaN(v^7D1!k$L)yj-5GvNj^uVw5%@e( z-yHN6nbQ=hyofMX=eC+jn_)HF)chVUJ4#veOx>D0=s!pF3KLP`5X@l{A?BhZ`ij4C zNq8jCkK_K^t9{MSOreq_JJ1YhK7g$Gz_Ee?rS*T#5 zUy3mOG@*k|Yglr2X6CddlJ|gk2BBGRg8D^qlR%7R(ND-IZy+u#F$NIGGRy4En$Bv) z|MObD?a0ypaRz=8R@5H984rh`3a&|(gcj)*j)^EHnv#seAXFrR+x7l(YlEkA_e(97 z&dS5XczCo}S&@HqQ)&MjrD?5=`D9QP)-iKEZ!1Nz+of`8T)pi6-eRcm$UnWm#|*=_ z>JrJ0j%uF3b7^cmvG{V+^q#p)%jp5@sGg%ysv|;*evuBG2;qcDCE9;a#KoPR9TcI@ zj%Zbhuo2J-D+c-Qzn225c6uae1&V%ue+Y{dwiao@3AKi`V^hF)J->DP_88So{4y_G z3F#9)^nF<$moSU);3O8l!utKgZs}ZWwk8V8Xz=N|-@B7o8Kp-}j5TDcBV@B2CxTq- zE|)7>H($Pd#Un3AuEH@m=~jX1#pUtYDV1uOX{i?L&X3Xzb>Vz(>RPjw>d(xalT@M* zQ<^$fbLb`(qWmIMvs>vn_vzYtnSV2s^}Pdfjhwary96UlEL|a~+BCaW(G~_#S?G$v z9+|^l?(i-o&VGh$Fz-B>z7R0^W|v2+gAnC!DZy9EA(EP6JlT+C71hF*V-8W4f?Y3X zq73U@L~GVe#da+{jX(HXA=rY!&Q9i{Pyalh?2JGDb84OB@@mgNUrj5cT9Q=2=NkJ9 zgld(QzGPP^uhZQ>Aq%M%hwL=3Yk(5Dc;xOWUrk}_i2{X%{!gl1gcQ9$Smi_asaUy* z_}kYWa*9?o(!~sqlBQ$5sWObWE(4){SxBrYZV{N>lGCu zfKNrJJu}xtEuB_TQ7M6T|00$@6GFEO2pXuNj*|-ZrUbt|TkLk(vB{3zhj+z5$-A84 zL#bq*bO=?1?57v`liFKw1r6g{#kQky&6J+;FKWBCzc6)ov@m6-3cpSqpB05t?1uOB zBjNA&E`7}IeIe-;ahC2}dUvqT$}e-b4(Ykq*P1TBSeH|1dB{1PBpP!WcD~FYhp!bW z^@SFQRTpTq#~C=4fkELb0P3;CNMpUD_!T}_)jqmW9wCCk?7YH#8Ax~{*gp+XAx_jh zE*t;onl~$D68Si4l#j{YEN-g179bmRM@bdQV2&bQr#Ct&7#Y@ zKmnIy=eyQgviddiVTEmjW<|iNuW4OeOA@t<5Z~ICl>g&G`svvdF0_jD%~;IMkv<-0 z@$QsI`}#in-}CghyE)uCce1Zn_oUEID$!SMK@~!pkdPoQNT~as(nR?F#Kb4-J;+J8 zNNAro$0~nM3C1x&iFZWVpaJn(4a+SiC@5z+Fa>lab!3`kus}Gdqo9u~kltmy;Yr-j zm6am=DTFtQ@C&1pfj^a;knpe!m*25QW=|ln zP{KmLEQ4HGxod{KtsoD5V13ADgJ9wbR2UQF4c3O+Q_{^`?D27ci<95+@roFHMD0d!4a zfY`VGeb!0P9H0pL=nFZ@s|Ep$yKtO52z_qE%nS?Vpl%8YeEqA)(YJ(;YH`T?DOw83 zMS9gWP>``Ujq?-=#6VGA>x1;oht}m$`WyrwU>pEVVAuh$n9PKygHR5tR+w8tn!^x@rO<870Yw@ z7E#lR*Vu}kzi&7Vt526N`fp<1#-2P1*2+$ClS-{RI7Q3zfUHnq#i;MI#$H4^6Vsf2 zPc0bzE9f?=Aryi2Tc0F=IJN;Rr&J8R88x)5ti~pnhReNGo&Qo;MQY+hfK*Z@M4*_5 zFv5+j&~hofk19l9?HF_eYILw?7e9~RtX9jkmSCsdTpU=D9kqG;2x!J{X4HbZkh*~s z0lMc>v{TJce#p?TTdHBd)w!KUM-86JQ-E~x87vOGguMdYQ3Ro=QE@X1~b9BNgl?y)j2T?Im;#*Ubgbx%eNr zJ>j??-b7yz>KpW`VLO8DgKSd}F;u!9bpKr2AFciR7jHabTtEu8l5qgM7CvP8E3B2< zMB2gnYyFge7F9LXd^udG@ARmEajpsUCj6YV*7HA4p4oPIYPkhJb{ zSSSAbK4R!O>&ApiaAj}(1@$M_s98HV7={ZhZtr4@p=`J(%rHxdyaFbUGJxm-kJLUe z8&{mu?(HY90)M&;-a{V!jk)2}=tJD^#zs2%Z#&uLE!jbPQ!)OdJy3)Ux6XJOezI{` zyMmRl*+g4xjW5n06`{5t&V)2mYM--@5j-1E|Nh&aykq#+&fw!3$uqO|pG{?WDJwHK z!nOxe1||k)Lk}iaIQoksMmoBi+XY-(iRsXHb?L8o2~T4Fpb!rahcs~S!JJzl4_%Yo zX;_{4T9N9Ex&-_F_mX@=M2V)sa~NSHC=&YaxosZX;sVH4objMLm>0 z73tOW=~K?Wlct6+?PF)tD2)VQ%CkzCO*lnVS>!(9c+25us16rl~eaV ziw@W2Wi$mw5f4+0$peRLOu+9P1}}oY$eUhZ%0hL_iwI}3hGDNn;J%aUCH^>z-T~wB z8@=@JuahOIu-{&tI9l^jibkj!>^(l9OHMX050|?J6a*X{#_B%68)|SF@6;M3wN1I- zCwZ^&xg(Jbv=V<_*Ery4*r_^?y3W?E^>V8J^E$f7m+g7LjM%>GVXR!qwade;g@Z0a zPG_wcU&E%ymZY`w{*BUG_2I*5$L%K8|AsN-4&k~TT0B(*I!nzhCeFH8&_NLO*GYcB z$@^mtPLH=$h-a?sDAFD?>kGdb6UifXjeA9e33gF53R`ZWyYMd?6h5U$4J?D zH&Y(GURJ`hd|ek+-kYa?A)=(HT^RGL^CA&gVk;U6HsPU9U&ItRbC@#RkfY;6HXC83+OPUI_i(Ujea#*CT$e zSi?ZdGUCQ>TQ93}C+e20zD6Xp?Z9m_XaxHQGhsTO3;A7VcSduu8pT{>6-45~nlyG-#S)g}y zsE-FFy)<;z?dMXKQg|NC;K#0lEac|GzI}YzP5G`xAEo8_*vQR-8~n<5=#EDwp$449 z9j{k}1v$FY|HCvfwxt6VFBailml&l{po{Mqse?MyyN)w zkuji{2>?lAsj7+S%7MnHB1{M&yOX7;OTEj>6gKj`-1R42Rgj*O;7=wOszBnO;KCb_ zAhjf%1+r!zMA>3&quUJsdHHhVjkcZ42S-lJ?LDh7n5z&B^roacWz>_Uon(bx7Yy92 z^3ad{jYu?>$)8Fd?zytd`+E_#4Bf20 zMp!m&ujMHG6Tw#DKK3yXmm3UyHvJm7_%dXkn?BT)DP|7o>rKIsV^PDWrefB^7&BB> zcOF+G`@WEnio;a5Ke9~jmON|f!bC1%jJ2Yp2uce|bDS6dJyyFn1PZmg$b+7gGuLk5 z+9Qzro|GhkQ2f=seLH`vqr{42yf;NaEuY-Y^!yJxY=s z#gaO3A_hPLTNDON)MJU$w>BG`)$^Y(oRFN|$-(Hf5+t-HWj)k&aVhML z+sx({R4Ly741F-GyZyP>WeI&;h!}|g#fupM)I)(&k*sdPRN*EtVUd}hK7Iux6i<6u zrZJO)w)(u$P}%F6FT;87-bn!B&IBO)dB+m?H`iXNv}-pNx$g5pqIn^3g+vKRCKlp= zo{*1QpnlPgOCfZg_J$gwtTB#gNocoemARiuB75)HJ1dCFd6~a`_c?{KRu)^H zlgAXxd*5K2D`Ue?W9q&#q9$FwRX|~gr3A9oD~3~2g4NndGP2?AM~#-|GhdKZ1{WT+ zetmznl+}k@<83*%qug>lgjyUl>_gZ!Z9qHZ*efAUtLa zz|^I{-s8H?svslCh}7VuG6UB;8)v~V$C|onLNTrlH}OkHhk2eNEunn<`d?-7dJ=@1 znmX#bhNqqe7el&qpbT;&{Hh1RD2|TdE~%+7S{QF2j2aeN*n?i7qx8e)sF*V8zowti zXozYgL?oSJd<+25(9Z+C@^Yl`!HHkQ0KSK;l}8rC+Rl{z<`T>s&_f@AGe zIg^sa_CbY)fR3N2nV8k<%v@6)g@2MvuG&t7;1HsR>^HIEWWS-O#|WK#D`cywa#-tl z;F?CxN6?GTUzV7rg=7*Fs1E+~(3_|cCry^xGe3T;b26Q4FPU-mE)96q^f`1xMnMenG zSCfvCP1y6Qj`f$OebXn^`2iFn^42#tgsr_)c69o<8Yu2Qpmck>-u;w^blVNGnMk^( z`QzyVfi(Ao629^rAUBik&C=kA-IY{{;32j$3G1Q+AMTn~uKxFY+zY-Zcej*zcph(X zQMYzA;e?@3q_C8)M@?xSi3F%R0IL%2Sot5gGj3 z8b?(WPQXJrEk!k40LIi2P+2?3+$aOR678r*@t3ZjVTt`+ZCzV?V2L!i}<{M9f&j@|mfP zFxO9Or$z-t9w5a25QVDU#? z2$Q~j++oS_CY6+^=(C+oV+Ot^{dt2<;nh$0y9y^e>!Mt~Q@u)lh!&IIz$TAW1w;JI zw6w{p~t*eyqjp937PyySCklM>z%?#fJslUx?6{b}hZrrN!6 zWK0(Jt!?k;mzIdrb-NvVg2+k7O+}XO;w4Wgz3^%xYmX%>-F;85$VIZy<9ds|(tHvPF~>klp@1O(zY3Ar`4-8UuNdW|1Co;LP11w9w-IBF~9KKe`cF`c=W_4w<-3pgQ-aTrPsgb`eImUVZq&nw!gw4w-v@n}9v{zS&;_u@3 z+|7!l@}m%M<<#(1hx2(xllOOXuZ|dmGoiZU40H&|)ypSP*DocjU)tgp2@^yCicx=T z)gH1{QOH(BI!X#sYdZ%EJa zrYaYbEQE%CkfzfKRo)Q~hCEKyh9dA6S`t`&iy&Y6q$n5&W9V;|7|#zl z3#xIw$giJ~FDGIgLu|A*9@R3#u-xs)hd7HCsm_iE4p;F8PUIajyZC_RWD|ei69~lA zMNk9yz!pQVkz+`bOf~LAu?=mZUyiH9+8e+I3464?haVBc8`Dh2>o}uQ+;`n zNsm&4{4aDhvYltO-4^Iw8_no1doD_f?TC;)kvFFIm;a3q83K3tU+`bfOF=2*$#-?G zD5wR-o2Q~0+|{|Gh#fdoBu9hCKgM6WMtzI#kFr8-#rhKx-~^RItl5l7`q2{(E4H`@ z8s_U~lEp6sCefI~4aXtP)#SOIizG}j!}zp{BqRT72V(31rniE5T>mvp|H+1&t6iTu z3J_z`ZIT93RKm)d&+IGL05$w3aEGc%8Yqx7lYL8f_u{sad^@0Stsy^1<%}_&Qh}${ zGRbZ0?@I63HynFshK(aN&BWgjfh~)-^b2l$i0f}CyN8{YfMBQ?*tniV+=6*G@pg*? zz$Q9~-oR{VB&lh{`ZW!NMx-OrHF1`K$U?fiVTaP+f3!${Gl;y3tcM4H3QHvG)lYvm z>fi-o!Vl!mX>=Ru9X_kB@FTSde?Vj@kets+N-mr1)uLXb3`De3q*+Br6n7Z|e^4n#tf z2FB=`Ax&O890=I={=3+JrS^x}Dm!(|+ptmJ&#UIwY=8E%B-dBbF>Yb`NXlGYul$NE zqCk^Q`t!^riK2#tU@M1kVDSvl<6*hb668kQZ}3jX(+LI(R}nMxw+4ylH_!$g4SdKZ zugouUL=nMb2xVdIGN_>}{0}g8&{BAQeMUed%z{ueUY5Tv<8l;WZDEn@m^f>LzHcgZ z>cW?)H7SxF#*2QaoNRoqotg0k5qXh*KeA@_qjExs`Zxf69N=7-)NNcKaH z{C|#$qV17%ybvnp+j{rNFyhP>vveZhQSI10SOZ!O6o;4jNB+6otS$zcoaP#9)px7z z{LCd!<#H2U?yf#I(S6&tnXUAlpTo7rDQep@DCU_KR1kA+f9#jZ&X2!GK2R!p5A7+> zuNnFC2#miL_kWxwN6a53O&ieY<^$ygVolQ@zs?+_68jS;cnCyQQf2p?H3Q$C6pnC8iG&IQZ|CbF2LyJ~OoBMQ?gVc!Vnt9C$OPZ6?lk?r%iu_PF*`o4$KcuqAHA!G z10Kb`x{gGX7}iR_#hy2<$>Am-(WFY-u4`B3RE1p*13rlo^n%YsZd)vg7ru(V98eC- z3N-I>xAloUL`|;r=y12eGoDtXTVB7)n0Ez%L~H-qiHpzQ=0>+dSd& zxO>DBCd_>!SB2=ia~p`j!hbJ~562iGi;FK+iRg!l%VST<9|oc zM|fWvpf7L(O0@fr9GU`79#4{MzE<@<6M8-(n95bf0 zQ_5)#=R_~R0-oop!E2bmF+}TmEHaYGjxwVemn0aO zAPi&`=&$FpMNOlKcj-NIRIB!d?vKz#)Rq(IuOX&pQ{|SC)nsgM=1UW({A9?6p>d~F zNOe=gIiy9xwB{PCXM>8~bvMl%V#|w)O$8Gk$$=i2iZl4%Q7)qqB1CP!4A?RfWJ%1z zpQ`g-8O!*WE&1ltw=X!<>BOY09ZaC1r$h13_u0;*fILNr5oxa#5w2vM)`=Klk_Y6g zVO(}y2M?uP{Dh7jy>XpP8jASM{zB@`NV?eayr1$}`dS9vt$GS*`;WxAlLtDIpw4d! z=nDbH&NMN5;zb341?8@Z`Om5|PT3=Jnpi7Xd-a2nI`|436m}=r*kr$PiS)CuvTjOf zd&nf4lsz$6AQm;v<$1gr__h-+2JmIb+#s52!3my^IyOM`YWoFCU)$?LgvT=Tv|K3) zyOd8{0COw4efYdwCHd(JYeAX4vnJ9Z^3&<_c!o%3S`uVRZF5cmh5kG5+%99+JT|`m z&!_}XE+F$c_ysd#V^+G*rkB`TTEKE19IN#e@8!~Yg*tsjs$67IjnMZ2IK2@D3zk5> zdwUze$Fta53brjt^tcnQg_oaRz^$;hgv(}^U7(h=_7IDZb^NSH&F1YA8lhO;l$>Tf z(RuFWIh!t9bK_$+Yas@~ZR1a!jr`(f#^i4m!Wa7ge4pT%Tex;|L=1Q3jW`soGe~Ph zyHAru-R9oGuqUNfnN3rOG^DR&$OuJx-LlfP_ewCV@&XR0(Rm_y9xcgmQJm0+K@KTp zSX}F@|Iombdq&^J6Kr01fepy0p_9ifZ!8QJo>3^f8`jTJ_WI`U2hVqHWi(EQ6`7jo z*XUEP3W~*F+zfZ{D$*(Vk~!x_ZBjJ5F3{ZK(XM2{9OD}u_&@W)EXg6V!UPvq)Oi-_ zP6`QFnCuFfW)`3l_o~Q#5TGl-51i01?d{u&fg+<1of@jgF(=Uja9*{;+8+-R(RVrH z8hIeFRLuO?aC3acY*us4P+j)!Gxa^oD2_q}jun4NIwIkJ`2yj1v@j_)xP>G4A+Q$F zzfISKEiplqPU!L}h++S|Fx_P7=L5Uq>_@GQjc>z5Z!mhjz`&`*z^MulfI`Jv*J*i_ z_qQS2vO<5OY4{|T==vP-G54lI=gPy$tn>?)6(FnNxd>y9zD4^r_sNzYx$sBG()Z-M z`zdX2X~NuxbIs9TiyG+^LE{SPhYYP|L*prFb z!~Yg-8YHreJBF@{-l$#?VgJv+>F?g59hXE^=1(SDgG@I+S_MP!H`Wj>5n0TJ8<}>2 zyIUO4Y^^IeFwA}kmew7q#&rFIxq+n>r78V02;IpzQzwPr)>Gznq zaSGoE5k>j;rJ<{hH_%3s1<-mLAEmV8vmD`=MQY@D#@QE`XcQP~6i~inYtTUeX;FkO z>VZWdjxz)Q`J%Hia|eG!bo~8k;B2Ww+TIkdSNSy8vnDjoCdP=N}N=YV9Rfnqc?bk@s*J}1?>#DCKaL!n=N*m zazmFe7Eg8_q01($5_>-zlO-h!B2o9~2--uYpz#QdyH$`!xQOW&Bs2uv+e z!eBYy{kXS|6A>qA+?$SSBYdp|Tl0g<@b{4MlPJsw`~MjO8tsijqJPm}!ajQEHYK^o z;u;ld*^(rkM0{rR`ua83oH4%N@^>aeCxKD0x|Fo_FS7usmSxY)^=razjI4(o3a1XJ zR@+5i^=G^<<-QST;0&Cp#$_1(lJ{r5&&?GsFm}kIIpAF4v2B7V-JAPA|A`edV5g;+ zTln9H8=y-vYJ7SrWKOuo#j?4IEvm4C>$|;nwzEI)WpK^1f5g;q0db-DC$>Gl-gzV{pk@;l z5_QPBGmso~S6q&co1xnBSFUju+Y^_R7!NZ6t>jYn%UAp(gF6NUAU|P@9lZ5U-~Y6C zn8R0;YY3$PXRpYPP5W1iS^|rY+ZhdYpqsT)GS@ZD^#)+g_$RFP>oiE7ldi(Kxi#1D zKjX!^oJL0ji>g_m6DN2Nm`(_SG9$kkXt1CH@phf0Pvh1X=_ClhFb2@rIgs2jsh#*A z4y)z`Qs#g2)!27GmdBTGzk1eof<%i%gw@qTAeA1Q^d^b7x1(H0<9Sj!UI-)F%k>18 zd-LNrX{rEaW+*F4ea|$ALLRxAfy*!Ty!D^U04qt1iH-f63t={s&EecHhE2?v66Ltn zpk9qxwPV{#OH#e{S8_iw`5@+bM=eY+jbch5@hz`X(8vL&W-__upJNWe{^DbZ1TCxU z2yf~uEkH-ks8GpUDXC{aP?{DD);OAyao+iGr3A=RX6X33oAMz63UqLQ4xYZ9L9C9g zhT!mn7v%nTjAArnc|FX66=mvPUhV{b{r{RkkdU;qndiT}RP~RzwR&HgmJd)Bo4rmxn{$e*arSWlLqrTDFq4 z#AI(FhLAnG60(lnWS3$}l3m79*0d0^HkcwpXql`NW8WG3&hLIJ@q9kd_xtznkMDCm zuBYd^rrZ5K_c^cgI24~a-=f;fPcrW8rAr`l3S7%Eehor;w62(ZgO6c_0^mwC$rL5%$#*_@ zROaON8adajtmEPrkvrm7f9&(k8U8oPxR+99m@0aGM0?2H{2yn=!a7cc^GcTJXkpHf zBClgyl8~$PhTSwt-MLn?)#t-~-tz@CxQ@hW&#*HIs}aX@Ua1Cp2{7T>d*S9sDxS9I)btUAx;{-(K7mt{9X zfmze^<6ywSXYd$s>1@4Ru(!m4yWqoY5qf6&qv+T1$mcAJ^|~^Rl9?n2N!~F>3K|yg zRG6xXsbKgak4n^!FU{3N|K3YQMM+YmiogOF$r8y3{WA@2OZ}q=Gp-HcRkLptWxrY! z-(1xw$S(Xnq{W|wds}R7cHXseso2u{z(j%|MQSOwc1WMyLFY+CsP@aymfyY0Rn!!ghd)0mqVUQOoZ%ClM!pBmW8eroby&Y~1by}pVz_GlmYu>f`$q4> z1yA}aGOPs&0;TfcSMZTPoBBq&cser|jA^U6Q=Le|fjKWeU?(1Z%nB?}h6GRh%%9uR zX~ScQD-0H&TJLD}-Q-uNA(U(*+bXD`DagDkg#%y&8IHt1WJJ(Vuux)^5Z^D${tDHY zj8OV<gy4IUb1JvKJnUq$ z=^RN}s4d>2d~J6@QddAnaTQzzSn_}jQ}dCw!!EV2=}=AaQ`J&rp`#6mxkY82L#409 zSIs&Y7shUNFvOpmVWG@DKYY|(VeQt{ghH0QN*Kdj{A)PUgbAUYYNhAT1vU!`m-uxt zy1~VtCUjT&kiVo1aqcTeF2pF>OFGtp9rg7ihSR@vyBZ4wYLTQcMc((MySjtiE&@j) z@nG&j74jfc;6d7`&-&~6NO2PEbASYXHV4dD7ice~HeDbTG%v5knmVf_8+q370a|u` zYrYuzNjT?qz|1FrduS6Q-RrV-4Wku!bB>?y`rXpjV`T$hj(mG&HkmPeV(G1k*`--; znqLekcAH%c4{i!gFek-OgG_H|GyZvJUq|x}le7V2xs(SV(y{|X!%>j20!Z)&2`Ach zF#_x`@()fz-RD1*Wfy&bejah@6N;AjLAVSah_HoE)b^>{p}b^r#(mt?oesHjlpq8K zn+SDs+%ng<@%mt`Mm4xK0U(kh@B>Nr(a2w(^cp+A-Nl&tnGLw=lqs{HAyd8?doBD> zWHL#LmTCnVL6U@?>~_NE1Q~zOE$5$pDDuJ_IEH&$*+%{de)GDJNj~Rg;4#BLnD{YD z8cH))1hCb8;Y@MIa~Vmblih{D_mW4hU$8|PE9s@ybS=8Rctitg${3Vfrq#0hEZL(~ zJ4s2WU$#p`HwMAZdrCE}ayftUKk7w8mLhlLI3)gGgwBf|oLBha$R1){UlTbAE8kgb zr5S4=mOyzPkDFs>La-BREF-YgON+JOS;4y&k3j7Fa5vMHeW(JYPXE3@+fQCS{wBXd zqOg<3sy`d%#~xpZiTf{a7ABFW5WB8e`OeK^C&|8KA{FBWvtXMSj$g}?p<&3R2VZ>< z2C6bq@={W4HAy1>*`ZvyOk{sBf??BvA2h8$s)I}7;2vHVaBFFB?}ga6;rG_P$r^LU z`>^~|42d;nGF%}aF_Q)6UsO|&TV5Pp>tab=Gs^=ZE)-tzYILV~3!14O^k10a+K$7&-^ z=wt5ezfh=Hi?1-B83NbSuaE31ruW zx_Q+x#&A+>Q(Fpka3h`8;q&hhN4$z2g4%2uw0(9E+mj3CPeBw3v{AbC<_*sdHfnjm zSJnr}LEGj1l$c^n3K(aOd8;`yqz>+T0DrxWr`cETVLelOVmp!bcuF`;d&qZh-ah!S zuH{2_fyyPz0%SBh_e`GCk4io2`SW>~UCATu%kHSpYxQVcG8MQnv&G^O;DuGSk5UB$MF04d8>29R?mrM2CHN`*IE0E+^NaMOk zf~qwvJ`?j1yDnH-9%VxT{|DDMAMnqNRlnS$utTePXmsQ~o}`XV!AskrGjASG;}1JX^TL6ynmb+S;Hl4*=f%Xx z#jEkDJzPuIEJT8rB-X}Pkj`T_`h9W>dM)Pq%5kg5@Gq1)`7tZx&Jsk9XKE+VdT9I7 zfSRKrkDoU4*(?rphBaH5SEKb2J#t?C?+sF#B$!j0d#+p^3W{tgd~WA<5q)vfnyDJS z#2;ABft(zF=%&$^P)+CXZce4lr0ew)*28#rIp>~Q1r+XKjDhZKySVr*!vsa zz3OBv)Obz?%?$Q9UU(EQT>HaI?!F~(Kdy?natba0?JW#-dbYRe7d944FCd2L(5>)8 zx;5R;o(rn*)O0bCNUvCIzt5IC(h@IvK3w@>w%hdE;p>G?mKV_>uxWKu(@llj&%e@Y`O*EZ>0O4{H_E(?2e;eJ$ET>6=cUte)NH?V00!8-RhYDJR(R)*`sV~gUlb`rDG{Gfios}Q`M`#g=U*k-wgCm+bdg|Wv zls`(A_He+7!@p6AXM~t_{;2Ls$2G?`nSXqit(ss`e0(9=hY{s4oa z+o+Me+?TCsg*~ZhJ(6I%K9hey$h@%fnR+$atC+9t?MbKN@|DE75&zHr;a+wWvv)_of~}k`S?=`Aqei4twzuPQSI?%W zMJOGIH|TZ>#y2KEvFdQauA$dV98F9WuZo;L?ahw##Rih*om&dxEiwmQq5~AN{U#ST zb8@P+9Xx%_spLJzzWMfxZ!CZH_sLAqrG64d$f*~dSqrV3Yv|Lf_Y5mok9f`K+h2K& zVFm5zS@Z1|-9Vl~0OqB{XdXt2n zo69$PZxGlg)L3h6C^_{|F!%ZoJXI7g5iU@4hCz#ZUAVCz^m8aofka;Wv-M=0G-tpN z#T5J5#Ji_dbvezmXXXgi-yP2=f=hRBt6*dfs-uSA+ zcU8pr?d6tZk{2kPxrpPa>xu4$+Xqv`Movj{eZSDY5XTKmdWChOQ&CY-D7i9;GFhl{ zP2_;N;|NZO%CW2=C_sIRzJv{Se-nQL-OVN$)PY9m6+2h9&tV_Np6e z#aJc%8b8%6J*ZMEs}R~l&(V@(U~m+}wmy#T?~p9%es_O5plxs#7=2_mNN(jvlR?1} z=X=TK=NTpWH+0BT<842fC&_rDbt59!Yi#S7aEYqI8hgU|>Sk3Qh7wPU=U^DuiTI6p zrrx8OY(cgQ3Y(+7pumg%%c9I}sJ?0rJM2!{|{sByVQK-qPuo+}eM zCOhSgWG`eE(JbH~^;if}tz9J5urF8$3FoM|O1Qi>`N=$BU5T!}&Bh*mX@Y3}yx7rF z&m&kqH`8Bg>b66n+pvc3bc1Gbd8&CvNnu%e+&8|$W7`NIq$#IBzRV$ZiaV+jzU^gE zxI+*+ajf*v%(IFuHf^nLEcH|gI*U19h_j-yGW4{FvohuGyNumr$VbFkagi+E{%ARk zI&Gm8XGQH=hWEAb2Y_)`sBy@^z(BNg?By%gWf^|H9ILaXTJOO-c?rEjjhrXAy4UZm z7x_(hpsUe&X5T~Uz0P24Ckuqqx8TZOr)#Q@DNI^Tv7Sv~X3p@@)h1H8%dH-_P6u_8#Bxu0jY7T_I^2oo!{Ci32gC;nT=GPvj}f3AFayg59?}M zEZR$t>FPSEN^uNq)xFw-5bzwo&AHUPeM7h{r14U>526lCkxu?7a~t*x^y9giy2|zb zC?n%!Oyl5ULxF>hh0Scq&;*$~B?|S}FmAHA$wYtaj2^bN=UeH5*CoBSEtf!A?2u4n zE17*@5jHU`Elm%b2wsg<)MnzQ&KQLY0g2nx_6u?7fsKueejZO5cts(5r&Z6H1wwR_>0Z z&4P5)xahQI8#yha^RE0!_w1Gfzm6G5N62iNeVH)$AuF+_A_FQnIy5sBp5PQAB)L7~o{~Isw(OE!OMn3>o@$++`+I!hHj==jGCUgzS0;`8 zkaLQ0Ry+{UQ9c&E^@Er-+3DS{UayunThgm@Dn&Zpyy}<<5^H%T^|rk&9W4% zFjRDGY)+PuoFGT%mmWC2#Ce(Rv%)V)A{+CMoFJD-ob~{Bf_Cu}sw?WfnfDvDTdMv8 z0^m^tUe>(D)QAxBVNwM$Z>EAWN2FWrfnR04vzxy2UpI~<={HSgq|*(8AFKM8u9OO< z4TNu*x(;|8zRu2*L;9#oKjTK(>c=1GwNsNu??O($Ixq_Gz5DCC>a|`THGNnMteW^Ur0#%ayXKZk z5M)mM5FKsaH!~x8O?s_}zic5Zv%{<9SLuRryz6(ZP{}2&j7fKp8y9<)HiS$UntN~& z{6bFL&qNLeY}!MF*sEugW^J-UIWZU>{@V94V?=oBhqo@`FJ4^be5tVyq_iVBzf&66 zrMDm@?7J~Cj5uUXu)Oc!M2kpyx_FjL0c06~S+MX;+qqt`eBB4=9|Rn7d8949y>pwekUb zk+Hv>UMpMd6E6in*URlVELDfZif@Vh7!vYsJLzbI_Uo<^gwdUkR%;O&IeaR!byMWJ zw*l8w0lkiy$?{|HwpnD0Y9@^%NjVpWi#+dr`)74wvyOE>8sU`YLUA*GgU?;ITe)PV z^vmjsLhwJq3TlDN$M7n&M;R;w&n)ydwFE^U#CM5cR%)&M&X;!u!JA*k^SKo& z`WoiE^PMg;>NJ>HxprLQZ!y9Gws>x7rn}H@5g#ttEFCH8Uk-aeg)b|M;Hh|(63X=v zynAjnmn**UVrZIsDvWuhDdy?LJj-&|x%d{F_+)85li2U|N@AG~C+Hs~epI85&rAuR zEoCb`$=#aC8NbaRqj+tVS@0?{BY@Lt2I(BcTl$X5*2Xuddqp_;&K26Yez^hIVN=Tc z>5ozs5q(MB%A{`{7Nq&(g);^|89ZHR&^9x!j8pO0P~vHK9BxkXT)*L4u=H(SW@f*1 zW!_~sF1X!WO9j_M$ugDGrl|$>6h|p;QJA^u#5W=`-vKf{x1yQ+5fl{9UVJ524S(jT z#_=iB?T*F3QKr1BoUzUOHknzDGQfK>cH(2S;%sSTcRI+$KLS%p{HT8=owFy6wibQ{ z_KQFNOhHcG_1cGF-A3FXxsR($RSF>3CrQ{|O6o`k2w3F_WjbtXo0+_gVYC-a9CR>@ zbHP?lXRm$W8d$ET&l*;yA1a;VI$L1NXXIM?)5LQOANeC#cKYE^$xzRZ_{J9LNO4W+sHIHbVO7;z z9b+EAt7}09su-Wtl6gVNLbEQ-ZFY6nsa3&qa4+<#Z>7Y=@FIGNd_ZB^JQUWv!MachZ(5cHU>A& z4<_VNr0O^-ho*5awmaGc25hEh1bBgx*RB6eFx&dfMR`nzT^9+z)$M32=Z0^l$D9}I z<@sJP2{3<%DY!4YJTQkTwXhvqQNnJKE-BWOMd2*!xctRZr59MPXbAae2KbM4IXo*X&o9nEibvLE}7;VetnkDM&%k@q>*B?VX}K%R)le_$UU zVHASR%nN+f2=~i)6xg3lZY#DEgr*UG<0GUx?Yi@s5v;P~dMf!Du znF($fDeqUC?>;t?dDqU+mEo#@@#kPo`Ia#1xU3X&Iz08d$X=+;;R6n7gsR<-cs#jz zqSAHd*u2zp8N;|++S=l0N^RN8OvI31bUE1<>zblzt^ z?)zRQD`s~v%m5SVy-7jPCp<^J0N>sGTS|dztKD?wDH1b`TOjej@R2x_9y--h#O#+; z=)+-)t;^9wa#*`2)#3XO!A^!H~86VanHk-@CJ_q1=cI=<-p zHY1L7U#DqB;AgfTSA{*mUa&we!6}#sJLNb)g2twfnt%prK@)!m4vUcJX zyYQjP;=9z98*5%0=Y!E7fg4*kgi!2BDuP| zYECZ%a$oywA0=F?9ZJlIZ^n@X2lXf_8aCYc^L$Z8fLR4sweZ!+HQ6s?p}8u*l<>J9oaRI+a_p1bF+BZLM%+yKEkl z8@U!Uuy7h4g;TUE!D*RD#{+VEW9A_YkXz7Gk^M(<%#jcW{`C}7Qsf0~c<8AMf|7Ghm?{RKjJj z5W`A#R;6N)`HwmCJbDDD-(yj8WI2e+gDa*kIg`f4-W-?1vd`SSbPR1D1vE!$SxOLK zSy_L?P!M2mpvB5i*Y}&eZ_?4Z9|}{`cl*Iny2(Uw!6~mL?bJ7)(Rift2gpCUyKezl}?JhSbGoUTQzz_z2 zt%_nZOtH5~bW`@>T1vtfyuoaMJo5meq^VNliqg<}^Kt)T@-FT)*PVG=e+d;2pvGZWiTFEsw5TvYL} z*T+mx5pMl_U~rDNK<-D-Awe_R3>WhyL~tDIy8t3@D|jr%s9)AL=PGcnQ(?9 z4ecg6XxDNkBn@EqSJnR#p(xf`!j<8M6!wPm<~Syn+~$KKCF_=CnaTHqPUJ*pLLBOP(%wV%-LRu`fhwEB#+hf7 zL#c)p$O0S#sZURz$J|NpGw*E*1bvN{b3TP#BFQ@J26lz4tGc=bw6?a+zgoQn)t=;S zvcqU9ynxAAdAVB)fYr(0+5oHT>bed;ae-(MNc7QVv+HIPm5mw#j|Jh{=|=y00%_07 zlK-9oppj9YpCx;n-e3)a(5J*O0(md`nosm2EpT(bQ_&!3GUDw2;}E2&9_{mIW#HQd zYHe?@Om{Tu1qr3K;i3=09_tlUaj?Ur0#i2q0B+*a3^(!X9ffwq zA0K9++Hna&s?H>(oM8hnNK&GtcxTMzFCdiCIPvo3t0Uc*i5`dV!PsDWbD_$qmS3a! zXwDDw=2jBU0m3;9oVD{c@gZA|MUnB?DUswxh&`kY+UvB$lX{T_grS;p>UKa``v+hT zF}jKl1K=P7$a=^Z1#cD3g1QZA8ZANbclZ@vx9J63boT2HzCB*gE!6+lQ*e69aAB%!2Y}(2npuhQJ4gos9{#xevU15mcRH2>>*u&t zwg2>vfR%=Q3ZVZ$Os#2;M+Pe{|({yjT6aCSxe5eE?>C%16A zZI>kN?MlRMxeEZfrk=v@asPPy!i}nmB^75QKm-?N`(kBfJy|W)hOWgoW+rv-Uq4nV z!OfKUH!s8AM0^O(V9Eq=V;pA{aFVMVPvb5K3H5U$rN>O#myng7wp@!nfLcX$KHQ%m z@5KPw-M01azuMgc6y`W?$0Oac`+hfM4tBi$rEP=cfjg>zM#e+6VTcUfaa`%d&E=7J zLFLk3b9(^lf=g3U6o!;9sQWQg+}o6`A(xnE-Wngg)FboBCDWSu8^AwS^T8q3E9yf1 z&$HE_Ch6G9HaERzuC;?yqi+DEw`1()#;nMHt$5M|P8*`Tj}nO7!ztFt^x_jd_ES76 z;npjO3$n7sF$_l<+f7W-uG`qc#L$wxYa_>KU?Y7iG;xTOaFdXY?FEuoP8Tp)XQtoz zfj~cPb^}#@Vj69cc^(FQ7pA4^G2^qL@$- ztOA&oF+RU#XXa|QB9Ra&J3(%XRlE{ZdS@6?Yq#X>o1%1zK*6;C^e;fv6}J$sXun!y z0$NQV&%q8nYq#vogi!OC2QSRb1yoAB5|O_>d+>R-D$=7P@n2270YwNuMgSuf4~T}z z33S>1l%)B?nwlw1h82$oLIhXcZpZsU`QcnQBE9vcs~c@Pf85M}fXe#W$Q{q5fX*%p z)Vi9t3?=V^q-RN3z9iYh-fa?aC!n13Ht+#~*Vo^tKwZ$f)MWTz*4S?cpF<@??WVta z@NnpN>PT_+^YqIMUkjf=>WH|;NHcBx(l97xQVH*(aGRLf)zcx51gsqD*~eVVVt%j% zU4$rN>@G!w8$-wcV=R@fLlU!c!ub;Pgh12k@30l!7JD~m{n_t~kb*qL*xcrdyQ_o+ zx&VujY&g7-DI>+4Vx7y`M-dcQe^Z~WF-S3;_dzeqiBeu4%E&`cZAIs1j+8^CwaYDo zYBsoc;lG;xN=?=-sK61Qz%#xtkieYa>Pb4VPIf*Y+XP6+xX5^;*01u6^SQi5cCl!C z7K!{vp(!Fan##j-hEI}_2lXx}l>F{ufdnIQ4A6v0eZ@zlwZP^IR2rw95$}mZZ1D@d zBTiKOQm=5=^r`F)=)X2?>2JYc`&*hbTy;Dyvb+ZG2w*dXD_+!X7-bhbynILT>aI{3 z^^OPfP9Fd-{*+1J&8z)t!)GepIV*hJ`_ZX#(Ux@Lm`L1WQ-B|1a9zyV;#+hcWhM=y z;n?GV#2}@1z5KfmV6pH80KgjL{s-p;+}*yvrns6|6xc0S?$RH)Iluh*;(ZO(>Cf>V zINX1DJlQ6FDGzt+uD${H&I7v|RfjaQ5)gI&)Xdo6Z%lqe%Pi<$V#*!V$5vLb$=C{p ze1Tocsr?*U!V#EiW4s#8MY=)#3k1%*Y@dY_``6Uy$I|bf6QJLkVt8zp0y*&U5A?cWOT1os|MKS_WPI^O~ zTh0Ja{#f)&9gX3@NNfwwP1W5>Hlr4l>Tp_Ju5RBn@L(d&X3x<-hDC-NxQ42MKTInF z9hb>h1FmYjIsS@8HY;X_vKWxjla(meH0~zPC|2}`aNfyht3>NdaaP%6u*g%GmA;6n zbf9w0g}2OS0#OmDT$4KImPm2dF@L5p&e>la8`T54m6u{o=N=bT|3J7B)t!z?*q@YY zWr!g7@B(T(-(U584iyYFK1SE_tEuI)JL6xM(Ld9F^GC5A$vJFhTFk$&?n}@hbfem1 zc7rDeOu(o>vghFy;?PmT8n*0cyWG{(_X&BMvlpw`Hq@LcE({+#CRVR#<*e{^Ki2AMS%5ThA3Y^8*#*_8L z*iC~9cYv#<84_85;*_1#Ov)2vu2?g$2c{tbgjXUOg#=?MbAkkZU^-Dzqk45Ontsg) zO@hK!|G8#`bSjRA2fZs)wFS=v)Ssq|5CQFV_F^31?gr$S15=f2Fnd=7BL}<^g?|MQ zuwtH&*(YelhzNB;BQs0)yOX^Xut^Q5bL0K;UcD8y_SV8S;wvk@RxkfsisKp}r=@0K zaD$qZ+*>$Y{3+t_=t^E&C@ez0E?!jj7tk4a{wM=g3Uaac)eN#z%t`R1|9J=$&>?(O zthq$!bWBM+EsHTM03cyU{!+3{%=P9m&=0iI`yY%h447jE(`jxqKCW&DKfBY0NVm2p zE>IN$^))!8!Ql!20(#ndf5%gZH`KoTlUN&33A@cP-W*}*@R&rn&H6#<01L7YYQFDK zSy_;Tp5CNdqVsudFLD+WY4mbMP5%tiUEq_>FlZCRyOy)Ekgdyd5AC6hcJu&Cb7Ei6 zBb+`LOz0DgdG{mYUN?lomS}w9KQhKSad`bwLn@j4 z3R%@76nqal#0-0B^5ulLgV97OqAHv?sK7uhd)9-U`ikarq0WH{r0{}fuB(hIgMv-3<=84yB}~fH;(l7 zCv~PGhN51m?&>cYB|u+*JDMoI9s>T<7K9-4Ia*NW>Bmdz0XXgK9!^#<9rTQtd?s5l>?_H;_%-jJ|>(}1{4L&1awfsL02lJ=~S>5Eh0 z4^=q>tob93YT8`>IrN(~zCtDJwhVaTGR?r7I)OJ;FZMQtW7j~D_Agq8OapUf;-|ZO zukHX*J0)qIyT}+)D`{y+{XvlL*8jYt6;QBv+5yT>N025^TC@O*zj!eK=@P{H;gt!g zlWg5Dngr2R_bzJ2ij_H#MoM}b(Sqtqm^<#I=}xZ?Oo2k7k{pIA0{X6TP#zgf%L1um zrd4DLe0-&%-7h{F6c5wfn7*uUj{j-%6V5XKY4dYnIXH=;B88Y(V?htOIe8`Zgx)q4 z4bp0vE7ME?vzgG`Z1k`2H0s}bRMowS(d$hRQR@Pk};`RLwPt9HZBSF zxTdVpJC`c`iFoBr0~=#3sF<#D3ZyiLylfK4cEhR=3>eOw*`;|=tnmPAM}N`f<)!I7DA4IsFn`Y0Fn^f zw``^OWe*F@$b#6Tw=zS1WWasc)&XDo_Pi%e4eCGFd%q2{%-?#@8*Y?Tu%gB?uX`Z6 zktu^Np_L?n%qa{txF?6=G9X*gYJ-Y4&Z;97AUKS4ZCl8>;|!Fg#psiBgVY-R8zC?| zO5-uts|hOy0|LBHyP2tVe-zs1M74Q{L2nP~z|BL;$=m`S5rK^lnkJ(N@7$7^pc5)hL5(j5)*Ek@SxL;qi9zz~eKPc)3s8 z-XjieGUy<0O#tn>CmNz3ezXYO{%+uLGd9+<%Z13sR`~4>k8!R|G3!|t$85i^8C-x8_ zp5e^NJ;!Op33!M0VFoQ)Jld+m97x76aw;$%lLK;!`3~LJh(leQx%@@C8;eAFZYm^94ioiK%+vvIN^fS(RqLWM7r7?hxMz_^e>ozq=yDodP5yAbI&XYzxkFm z#(L%IDa+3Z+WM7R0IXP7zFJ>XmH1rgqd6+9ZR%U`vm~CO=PnA1l2@zU#YNJ zAKJ|5k@`;ws6qE6Kl8N-lpdu2+v1RD!keRnLa`H_e*?oZrhb8K+f9ThAbSKvIcw6g7ljM&Wb0{#?|PPDaoH8aiUhRd7#>q24Pgd z_o@LJ!Pk_9g(Y@^W}z;igXTMK(J0Xiz-@92+cH{j59j0I1_2=#E$nfZZ^q@Uv| zPNiuIVEzI2$;J3l>t=@To*cU6WB4zY{ss6LZ_#Zq$#cXoF8nx{iex!o`J@RJ3Imf_ zskv0eZ-`kEzb9_~S7Wb1x!8^o)X0Aa(N>0tL**^=>0KAOfPg1av*Xz9+WNVG@+c(x z-WK08^$AHYfT2bi#iI5@4zxe%+O}eL?4&PCR;d=9(w4 zi~HtY7}?e~GW17yYrl6J79lxvD z*ad#T=5gQj+yh6WZ$Jwy%BX114Awu#!%SP_)5|^JF8C|)TM_A2d;L11gmYPN@60h2 zx876`zDcHU9((@pvs0a|ztLn(S^dW1N2{D+a|$Q&O%{gOJ=mQA4Tiz(+`0iBq&Z)P zl><5uG~(pFG*Syw@Zqmxw?@wCOX{_WW!<8Kl7O0iY<5a2={ns%=Z@e}p7$W9ZUVPV zq-d7~zGi=I0&0<%Z7UhHR5G>~+E- z3dy|(Zs*OQ)9b{b5=iFXfb%1p7j}2+A`XR+Zb%j1zYkM~rVjyz{9_K32$)auu3iQ| z9RqFY7hvP7KLL57TxBc=&5BV-ivXigCpkQBe;9V4-9yJSD)h6VF&PguRrh->Q{y+5W5;;ekyporDT!!?BgN zz#h_oN2rE93W7G&*U9jF1^h=5OnRCUFqdH2Ev8>$6~1f-N(7j5F(OJm*OE!}D%yL$ z0h(?O{%=2rMrq*M?+v)RuY#gO7Zi&3|2a|f;3L{AR_u#F&$UmM{Wf9_c=yw%VcBfW zsjfmm$dirSV=}vgU~jxX!%z>fD_~55vQjyXI1~n+`X_UWMo$EX8BvO@>$~2d>{%!2 z>QuCn$BwsSQAmM3=ZA}dpv5~Hl>lm(Q7{ifFgXsi^HuyO--USk;t^t&!{%Yo9~$l$ z6^&L~3(?yds^7a8I%qEy;i!bG@))Vdpe8>6o}`~%A;Dfmm8-jku2LX&yU#SmC2_xl zI-XCCn#k%5bM{hvt+`9ac_o;Ed7`?N6u;~f0h1Be32UGzv;G1mlj}G(PXGaeW;N++ zvXJ0y*HDMtTr2l_2TGuEjSDvFw6u`;Q_=jRkqzK72sjlSj4X-*-1a6>I1Va(x9)N1 zv1Y$rUK;KUlW*>*cRki|0v0gxbH}r`aljQ3-;X&7T{%K<--Q2TEr@00 zTws{tCf*ln{BK1g&-8n!2p2M-y7|(R?L**Xk+>hvBqBJ#f*6z_I1#2$*Hd@(5x5;~ z0V<=a%M>_%9?+DyNaD$q1SFSwZ0Pl0zd^P|$RMjKa^AeMTuB@d{&J2`g8jOCi3jRi z;5s4r#HoOZn!}|J_QAT(r9Z#|r%NlN=Z4U5``@CYkjF?A2sM^R1=x+Ly?Z>&ZVy56 zcxvO$XW&uqXd#D4Q~_VnQ?DT5K_M)T5ulnP1-*p9CO?+Hi{)fO=FE8jO3PDV#KWi| z9F|AwMGlRzS<8p*X!}vPJ_xCBSHV3aF`_!b=$V^1`wf0#6}W}e{+%Y({O|9zi-khM z&Kjs{WWHfp)Chh^xb79*_jjobj>WC6_m;SqX<`S{*H{i28((G*>5qJN`B1(yCFMRg zVWBtd!8%`0lfPw{*eAo_9~OT)++p_Iv`d@abnja#qDwA;l7z12XBbR0N>;vi$vi0e_J<%BS)5b1S zir>GY>qP1Ag-A#OKPGo^{@EG{Nu8oI`Og1PfSvyN=jcAz&L6KG!tea?!o~ml@c&uk h|9pew|C30$uOMa3u}J+)EaB{~z=&QIY@v literal 0 HcmV?d00001 diff --git a/docs/source/index.rst b/docs/source/index.rst new file mode 100644 index 0000000..58f2be8 --- /dev/null +++ b/docs/source/index.rst @@ -0,0 +1,56 @@ +####### +|title| +####### + +.. |title| replace:: diffpy.cmipdf documentation + +``diffpy.cmipdf`` - Python package for doing science. + +| Software version |release| +| Last updated |today|. + +=============== +Getting started +=============== + +Welcome to the ``diffpy.cmipdf`` documentation! + +To get started, please visit the :ref:`Getting started ` page. + +======= +Authors +======= + +``diffpy.cmipdf`` is developed by Simon Billinge, Caden Myers, Billinge Group members. The maintainer for this project is Simon Billinge. For a detailed list of contributors see +https://github.com/diffpy/diffpy.cmipdf/graphs/contributors. + +============ +Installation +============ + +See the `README `_ +file included with the distribution. + +================ +Acknowledgements +================ + +``diffpy.cmipdf`` is built and maintained with `scikit-package `_. + +================= +Table of contents +================= +.. toctree:: + :maxdepth: 2 + + getting-started + Package API + release + license + +======= +Indices +======= + +* :ref:`genindex` +* :ref:`search` diff --git a/docs/source/license.rst b/docs/source/license.rst new file mode 100644 index 0000000..5e751f7 --- /dev/null +++ b/docs/source/license.rst @@ -0,0 +1,38 @@ +:tocdepth: -1 + +.. index:: license + +License +####### + +OPEN SOURCE LICENSE AGREEMENT +============================= +BSD 3-Clause License + +Copyright (c) 2025, The Trustees of Columbia University in the City of New York. +All Rights Reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/docs/source/release.rst b/docs/source/release.rst new file mode 100644 index 0000000..27cd0cc --- /dev/null +++ b/docs/source/release.rst @@ -0,0 +1,5 @@ +:tocdepth: -1 + +.. index:: release notes + +.. include:: ../../CHANGELOG.rst diff --git a/docs/source/snippets/example-table.rst b/docs/source/snippets/example-table.rst new file mode 100644 index 0000000..7c4c11d --- /dev/null +++ b/docs/source/snippets/example-table.rst @@ -0,0 +1,28 @@ +.. list-table:: 5 levels of reusing/sharing code + :widths: 5 15 40 40 + :header-rows: 1 + + * - Level + - Name + - Scope + - How to setup + * - 1 + - ``function`` + - Reuse code in the single file. + - See Level 1 tutorial + * - 2 + - ``module`` + - Reuse code across files. + - See Level 2 tutorial + * - 3 + - ``workspace`` + - Reuse code across project folders. + - ``package create workspace`` + * - 4 + - ``system`` + - Reuse code across any files in the computer. + - ``package create system`` + * - 5 + - ``public`` + - Share code as publicly installable package. + - ``package create public`` diff --git a/news/TEMPLATE.rst b/news/TEMPLATE.rst new file mode 100644 index 0000000..790d30b --- /dev/null +++ b/news/TEMPLATE.rst @@ -0,0 +1,23 @@ +**Added:** + +* + +**Changed:** + +* + +**Deprecated:** + +* + +**Removed:** + +* + +**Fixed:** + +* + +**Security:** + +* diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..a9bcbb9 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,88 @@ +[build-system] +requires = ["setuptools>=62.0", "setuptools-git-versioning>=2.0"] +build-backend = "setuptools.build_meta" + +[project] +name = "diffpy.cmipdf" +dynamic=['version', 'dependencies'] +authors = [ + { name="Simon Billinge", email="sb2896@columbia.edu" }, +] +maintainers = [ + { name="Simon Billinge", email="sb2896@columbia.edu" }, +] +description = "Python package for doing science." +keywords = ['diffraction', 'PDF', 'X-ray', 'neutron'] +readme = "README.rst" +requires-python = ">=3.11, <3.14" +classifiers = [ + 'Development Status :: 5 - Production/Stable', + 'Environment :: Console', + 'Intended Audience :: Developers', + 'Intended Audience :: Science/Research', + 'License :: OSI Approved :: BSD License', + 'Operating System :: MacOS :: MacOS X', + 'Operating System :: Microsoft :: Windows', + 'Operating System :: POSIX', + 'Operating System :: Unix', + 'Programming Language :: Python :: 3.11', + 'Programming Language :: Python :: 3.12', + 'Programming Language :: Python :: 3.13', + 'Topic :: Scientific/Engineering :: Physics', + 'Topic :: Scientific/Engineering :: Chemistry', +] + +[project.urls] +Homepage = "https://github.com/diffpy/diffpy.cmipdf/" +Issues = "https://github.com/diffpy/diffpy.cmipdf/issues/" + +[tool.setuptools-git-versioning] +enabled = true +template = "{tag}" +dev_template = "{tag}" +dirty_template = "{tag}" + +[tool.setuptools.packages.find] +where = ["src"] # list of folders that contain the packages (["."] by default) +include = ["*"] # package names should match these glob patterns (["*"] by default) +exclude = [] # exclude packages matching these glob patterns (empty by default) +namespaces = false # to disable scanning PEP 420 namespaces (true by default) + +[project.scripts] +diffpy-cmipdf = "diffpy.cmipdf.app:main" + +[tool.setuptools.dynamic] +dependencies = {file = ["requirements/pip.txt"]} + +[tool.codespell] +exclude-file = ".codespell/ignore_lines.txt" +ignore-words = ".codespell/ignore_words.txt" +skip = "*.cif,*.dat" + +[tool.docformatter] +recursive = true +wrap-summaries = 72 +wrap-descriptions = 72 + +[tool.black] +line-length = 79 +include = '\.pyi?$' +exclude = ''' +/( + \.git + | \.hg + | \.mypy_cache + | \.tox + | \.venv + | \.rst + | \.txt + | _build + | buck-out + | build + | dist + + # The following are specific to Black, you probably don't want those. + | blib2to3 + | tests/data +)/ +''' diff --git a/requirements/build.txt b/requirements/build.txt new file mode 100644 index 0000000..e69de29 diff --git a/requirements/conda.txt b/requirements/conda.txt new file mode 100644 index 0000000..24ce15a --- /dev/null +++ b/requirements/conda.txt @@ -0,0 +1 @@ +numpy diff --git a/requirements/docs.txt b/requirements/docs.txt new file mode 100644 index 0000000..5f34c6e --- /dev/null +++ b/requirements/docs.txt @@ -0,0 +1,5 @@ +sphinx +sphinx_rtd_theme +sphinx-copybutton +doctr +m2r diff --git a/requirements/pip.txt b/requirements/pip.txt new file mode 100644 index 0000000..24ce15a --- /dev/null +++ b/requirements/pip.txt @@ -0,0 +1 @@ +numpy diff --git a/requirements/tests.txt b/requirements/tests.txt new file mode 100644 index 0000000..a727786 --- /dev/null +++ b/requirements/tests.txt @@ -0,0 +1,6 @@ +flake8 +pytest +codecov +coverage +pytest-cov +pytest-env diff --git a/src/diffpy/__init__.py b/src/diffpy/__init__.py new file mode 100644 index 0000000..43d76dc --- /dev/null +++ b/src/diffpy/__init__.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python +############################################################################## +# +# (c) 2025 The Trustees of Columbia University in the City of New York. +# All rights reserved. +# +# File coded by: Billinge Group members and community contributors. +# +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. +# +############################################################################## diff --git a/src/diffpy/cmipdf/__init__.py b/src/diffpy/cmipdf/__init__.py new file mode 100644 index 0000000..cde4d16 --- /dev/null +++ b/src/diffpy/cmipdf/__init__.py @@ -0,0 +1,24 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2008 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""PDF calculation tools.""" + +__all__ = ["PDFGenerator", "DebyePDFGenerator", "PDFContribution", "PDFParser"] + +from diffpy.srfit.pdf.debyepdfgenerator import DebyePDFGenerator +from diffpy.srfit.pdf.pdfcontribution import PDFContribution +from diffpy.srfit.pdf.pdfgenerator import PDFGenerator +from diffpy.srfit.pdf.pdfparser import PDFParser + +# End of file diff --git a/src/diffpy/cmipdf/basepdfgenerator.py b/src/diffpy/cmipdf/basepdfgenerator.py new file mode 100644 index 0000000..da867bc --- /dev/null +++ b/src/diffpy/cmipdf/basepdfgenerator.py @@ -0,0 +1,332 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2008 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""PDF profile generator base class. + +The BasePDFGenerator class interfaces with SrReal PDF calculators and is +used as a base for the PDFGenerator and DebyePDFGenerator classes. +""" + +__all__ = ["BasePDFGenerator"] + +import numpy + +from diffpy.srfit.exceptions import SrFitError +from diffpy.srfit.fitbase import ProfileGenerator +from diffpy.srfit.fitbase.parameter import ParameterAdapter +from diffpy.srfit.structure import struToParameterSet + +# FIXME - Parameter creation will have to be smarter once deeper calculator +# configuration is enabled. + + +class BasePDFGenerator(ProfileGenerator): + """Base class for calculating PDF profiles using SrReal. + + This works with diffpy.structure.Structure, pyobjcryst.crystal.Crystal and + pyobjcryst.molecule.Molecule instances. Note that the managed Parameters + are not created until the structure is added. + + Attributes + ---------- + _calc + PDFCalculator or DebyePDFCalculator instance for calculating + the PDF. + _phase + The structure ParameterSet used to calculate the profile. + stru + The structure objected adapted by _phase. + _lastr + The last value of r over which the PDF was calculated. This is + used to configure the calculator when r changes. + _pool + A multiprocessing.Pool for managing parallel computation. + + Managed Parameters + ------------------ + scale + Scale factor + delta1 + Linear peak broadening term + delta2 + Quadratic peak broadening term + qbroad + Resolution peak broadening term + qdamp + Resolution peak dampening term + Managed ParameterSets + The structure ParameterSet (SrRealParSet instance) used to + calculate the profile is named by the user. + + Usable Metadata + --------------- + stype + The scattering type "X" for x-ray, "N" for neutron (see + 'setScatteringType'). + qmax + The maximum scattering vector used to generate the PDF (see + setQmax). + qmin + The minimum scattering vector used to generate the PDF (see + setQmin). + scale + See Managed Parameters. + delta1 + See Managed Parameters. + delta2 + See Managed Parameters. + qbroad + See Managed Parameters. + qdamp + See Managed Parameters. + """ + + def __init__(self, name="pdf"): + """Initialize the generator.""" + ProfileGenerator.__init__(self, name) + + self._phase = None + self.stru = None + self.meta = {} + self._lastr = numpy.empty(0) + self._calc = None + + self._pool = None + + return + + _parnames = ["delta1", "delta2", "qbroad", "scale", "qdamp"] + + def _setCalculator(self, calc): + """Set the SrReal calculator instance. + + Setting the calculator creates Parameters from the variable + attributes of the SrReal calculator. + """ + self._calc = calc + for pname in self.__class__._parnames: + self.addParameter(ParameterAdapter(pname, self._calc, attr=pname)) + self.processMetaData() + return + + def parallel(self, ncpu, mapfunc=None): + """Run calculation in parallel. + + Attributes + ---------- + ncpu + Number of parallel processes. Revert to serial mode when 1. + mapfunc + A mapping function to use. If this is None (default), + multiprocessing.Pool.imap_unordered will be used. + + No return value. + """ + from diffpy.srreal.parallel import createParallelCalculator + + calc_serial = self._calc + if hasattr(calc_serial, "pqobj"): + calc_serial = calc_serial.pqobj + # revert to serial calculator for ncpu <= 1 + if ncpu <= 1: + self._calc = calc_serial + self._pool = None + return + # Why don't we let the user shoot his foot or test on single CPU? + # ncpu = min(ncpu, multiprocessing.cpu_count()) + if mapfunc is None: + import multiprocessing + + self._pool = multiprocessing.Pool(ncpu) + mapfunc = self._pool.imap_unordered + + self._calc = createParallelCalculator(calc_serial, ncpu, mapfunc) + return + + def processMetaData(self): + """Process the metadata once it gets set.""" + ProfileGenerator.processMetaData(self) + + stype = self.meta.get("stype") + if stype is not None: + self.setScatteringType(stype) + + qmax = self.meta.get("qmax") + if qmax is not None: + self.setQmax(qmax) + + qmin = self.meta.get("qmin") + if qmin is not None: + self.setQmin(qmin) + + for name in self.__class__._parnames: + val = self.meta.get(name) + if val is not None: + par = self.get(name) + par.setValue(val) + + return + + def setScatteringType(self, stype="X"): + """Set the scattering type. + + Attributes + ---------- + stype + "X" for x-ray, "N" for neutron, "E" for electrons, + or any registered type from diffpy.srreal from + ScatteringFactorTable.getRegisteredTypes(). + + Raises ValueError for unknown scattering type. + """ + self._calc.setScatteringFactorTableByType(stype) + # update the meta dictionary only if there was no exception + self.meta["stype"] = self.getScatteringType() + return + + def getScatteringType(self): + """Get the scattering type. + + See 'setScatteringType'. + """ + return self._calc.getRadiationType() + + def setQmax(self, qmax): + """Set the qmax value.""" + self._calc.qmax = qmax + self.meta["qmax"] = self.getQmax() + return + + def getQmax(self): + """Get the qmax value.""" + return self._calc.qmax + + def setQmin(self, qmin): + """Set the qmin value.""" + self._calc.qmin = qmin + self.meta["qmin"] = self.getQmin() + return + + def getQmin(self): + """Get the qmin value.""" + return self._calc.qmin + + def setStructure(self, stru, name="phase", periodic=True): + """Set the structure that will be used to calculate the PDF. + + This creates a DiffpyStructureParSet, ObjCrystCrystalParSet or + ObjCrystMoleculeParSet that adapts stru to a ParameterSet interface. + See those classes (located in diffpy.srfit.structure) for how they are + used. The resulting ParameterSet will be managed by this generator. + + Attributes + ---------- + stru + diffpy.structure.Structure, pyobjcryst.crystal.Crystal or + pyobjcryst.molecule.Molecule instance. Default None. + name + A name to give to the managed ParameterSet that adapts stru + (default "phase"). + periodic + The structure should be treated as periodic (default + True). Note that some structures do not support + periodicity, in which case this will have no effect on the + PDF calculation. + """ + + # Create the ParameterSet + parset = struToParameterSet(name, stru) + + # Set the phase + self.setPhase(parset, periodic) + return + + def setPhase(self, parset, periodic=True): + """Set the phase that will be used to calculate the PDF. + + Set the phase directly with a DiffpyStructureParSet, + ObjCrystCrystalParSet or ObjCrystMoleculeParSet that adapts a structure + object (from diffpy or pyobjcryst). The passed ParameterSet will be + managed by this generator. + + Attributes + ---------- + parset + A SrRealParSet that holds the structural information. + This can be used to share the phase between multiple + BasePDFGenerators, and have the changes in one reflect in + another. + periodic + The structure should be treated as periodic (default True). + Note that some structures do not support periodicity, in + which case this will be ignored. + """ + # Store the ParameterSet for easy access + self._phase = parset + self.stru = self._phase.stru + + # Put this ParameterSet in the ProfileGenerator. + self.addParameterSet(parset) + + # Set periodicity + self._phase.useSymmetry(periodic) + return + + def _prepare(self, r): + """Prepare the calculator when a new r-value is passed.""" + self._lastr = r.copy() + lo, hi = r.min(), r.max() + ndiv = max(len(r) - 1, 1) + self._calc.rstep = (hi - lo) / ndiv + self._calc.rmin = lo + self._calc.rmax = hi + 0.5 * self._calc.rstep + return + + def _validate(self): + """Validate my state. + + This validates that the phase is not None. This performs + ProfileGenerator validations. + + Raises SrFitError if validation fails. + """ + if self._calc is None: + raise SrFitError("_calc is None") + if self._phase is None: + raise SrFitError("_phase is None") + ProfileGenerator._validate(self) + return + + def __call__(self, r): + """Calculate the PDF. + + This ProfileGenerator will be used in a fit equation that will + be optimized to fit some data. By the time this function is + evaluated, the crystal has been updated by the optimizer via the + ObjCrystParSet created in setCrystal. Thus, we need only call + pdf with the internal structure object. + """ + if not numpy.array_equal(r, self._lastr): + self._prepare(r) + + rcalc, y = self._calc(self._phase._getSrRealStructure()) + + if numpy.isnan(y).any(): + y = numpy.zeros_like(r) + else: + y = numpy.interp(r, rcalc, y) + return y + + +# End class BasePDFGenerator diff --git a/src/diffpy/cmipdf/characteristicfunctions.py b/src/diffpy/cmipdf/characteristicfunctions.py new file mode 100644 index 0000000..5d2bf15 --- /dev/null +++ b/src/diffpy/cmipdf/characteristicfunctions.py @@ -0,0 +1,479 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2010 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""Form factors (characteristic functions) used in PDF nanoshape fitting. + +These are used to calculate the attenuation of the PDF due to a finite +size. For a crystal-like nanoparticle, one can calculate the PDF via +Gnano(r) = f(r) Gcryst(r), where f(r) is the nanoparticle characteristic +function and Gcryst(f) is the crystal PDF. + +These functions are meant to be imported and added to a FitContribution +using the 'registerFunction' method of that class. +""" + +__all__ = [ + "sphericalCF", + "spheroidalCF", + "spheroidalCF2", + "lognormalSphericalCF", + "sheetCF", + "shellCF", + "shellCF2", + "SASCF", +] + +import numpy +from numpy import arctan as atan +from numpy import arctanh as atanh +from numpy import ceil, exp, log, log2, pi, sign, sqrt +from numpy.fft import fftfreq, ifft +from scipy.special import erf + +from diffpy.srfit.fitbase.calculator import Calculator + + +def sphericalCF(r, psize): + """Spherical nanoparticle characteristic function. + + Attributes + ---------- + r + distance of interaction + psize + The particle diameter + + + From Kodama et al., Acta Cryst. A, 62, 444-453 + (converted from radius to diameter) + """ + f = numpy.zeros(numpy.shape(r), dtype=float) + if psize > 0: + x = numpy.array(r, dtype=float) / psize + inside = x < 1.0 + xin = x[inside] + f[inside] = 1.0 - 1.5 * xin + 0.5 * xin * xin * xin + return f + + +def spheroidalCF(r, erad, prad): + """Spheroidal characteristic function specified using radii. + + Spheroid with radii (erad, erad, prad) + + Attributes + ---------- + prad + polar radius + erad + equatorial radius + + + erad < prad equates to a prolate spheroid + erad > prad equates to a oblate spheroid + erad == prad is a sphere + """ + psize = 2.0 * erad + pelpt = 1.0 * prad / erad + return spheroidalCF2(r, psize, pelpt) + + +def spheroidalCF2(r, psize, axrat): + """Spheroidal nanoparticle characteristic function. + + Form factor for ellipsoid with radii (psize/2, psize/2, axrat*psize/2) + + Attributes + ---------- + r + distance of interaction + psize + The equatorial diameter + axrat + The ratio of axis lengths + + + From Lei et al., Phys. Rev. B, 80, 024118 (2009) + """ + pelpt = 1.0 * axrat + + if psize <= 0 or pelpt <= 0: + return numpy.zeros_like(r) + + # to simplify the equations + v = pelpt + d = 1.0 * psize + d2 = d * d + v2 = v * v + + if v == 1: + return sphericalCF(r, psize) + + rx = r + if v < 1: + + r = rx[rx <= v * psize] + r2 = r * r + f1 = ( + 1 + - 3 * r / (4 * d * v) * (1 - r2 / (4 * d2) * (1 + 2.0 / (3 * v2))) + - 3 + * r + / (4 * d) + * (1 - r2 / (4 * d2)) + * v + / sqrt(1 - v2) + * atanh(sqrt(1 - v2)) + ) + + r = rx[numpy.logical_and(rx > v * psize, rx <= psize)] + r2 = r * r + f2 = ( + ( + 3 * d / (8 * r) * (1 + r2 / (2 * d2)) * sqrt(1 - r2 / d2) + - 3 + * r + / (4 * d) + * (1 - r2 / (4 * d2)) + * atanh(sqrt(1 - r2 / d2)) + ) + * v + / sqrt(1 - v2) + ) + + r = rx[rx > psize] + f3 = numpy.zeros_like(r) + + f = numpy.concatenate((f1, f2, f3)) + + elif v > 1: + + r = rx[rx <= psize] + r2 = r * r + f1 = ( + 1 + - 3 * r / (4 * d * v) * (1 - r2 / (4 * d2) * (1 + 2.0 / (3 * v2))) + - 3 + * r + / (4 * d) + * (1 - r2 / (4 * d2)) + * v + / sqrt(v2 - 1) + * atan(sqrt(v2 - 1)) + ) + + r = rx[numpy.logical_and(rx > psize, rx <= v * psize)] + r2 = r * r + f2 = ( + 1 + - 3 * r / (4 * d * v) * (1 - r2 / (4 * d2) * (1 + 2.0 / (3 * v2))) + - 3.0 + / 8 + * (1 + r2 / (2 * d2)) + * sqrt(1 - d2 / r2) + * v + / sqrt(v2 - 1) + - 3 + * r + / (4 * d) + * (1 - r2 / (4 * d2)) + * v + / sqrt(v2 - 1) + * (atan(sqrt(v2 - 1)) - atan(sqrt(r2 / d2 - 1))) + ) + + r = rx[rx > v * psize] + f3 = numpy.zeros_like(r) + + f = numpy.concatenate((f1, f2, f3)) + + return f + + +def lognormalSphericalCF(r, psize, psig): + """Spherical nanoparticle characteristic function with lognormal size + distribution. + + Attributes + ---------- + r + distance of interaction + psize + The mean particle diameter + psig + The log-normal width of the particle diameter + + + Here, r is the independent variable, mu is the mean of the distribution + (not of the particle size), and s is the width of the distribution. This is + the characteristic function for the lognormal distribution of particle + diameter: + + F(r, mu, s) = 0.5*Erfc((-mu-3*s^2+Log(r))/(sqrt(2)*s)) + + 0.25*r^3*Erfc((-mu+Log(r))/(sqrt(2)*s))*exp(-3*mu-4.5*s^2) + - 0.75*r*Erfc((-mu-2*s^2+Log(r))/(sqrt(2)*s))*exp(-mu-2.5*s^2) + + The expectation value of the distribution gives the average particle + diameter, psize. The variance of the distribution gives psig^2. mu and s + can be expressed in terms of these as: + + s^2 = log((psig/psize)^2 + 1) + mu = log(psize) - s^2/2 + + Source unknown + """ + if psize <= 0: + return numpy.zeros_like(r) + if psig <= 0: + return sphericalCF(r, psize) + + sqrt2 = sqrt(2.0) + s = sqrt(log(psig * psig / (1.0 * psize * psize) + 1)) + mu = log(psize) - s * s / 2 + if mu < 0: + return numpy.zeros_like(r) + + return ( + 0.5 * erfc((-mu - 3 * s * s + log(r)) / (sqrt2 * s)) + + 0.25 + * r + * r + * r + * erfc((-mu + log(r)) / (sqrt2 * s)) + * exp(-3 * mu - 4.5 * s * s) + - 0.75 + * r + * erfc((-mu - 2 * s * s + log(r)) / (sqrt2 * s)) + * exp(-mu - 2.5 * s * s) + ) + + +def sheetCF(r, sthick): + """Nanosheet characteristic function. + + Attributes + ---------- + r + distance of interaction + sthick + Thickness of nanosheet + + + From Kodama et al., Acta Cryst. A, 62, 444-453 + """ + # handle zero or negative sthick. make it work for scalars and arrays. + if sthick <= 0: + return 0 * sthick + # process scalar r + if numpy.isscalar(r): + rv = 1 - 0.5 * r / sthick if r < sthick else 0.5 * sthick / r + return rv + # handle array-type r + ra = numpy.asarray(r) + lo = ra < sthick + hi = ~lo + f = numpy.empty_like(ra, dtype=float) + f[lo] = 1 - 0.5 * ra[lo] / sthick + f[hi] = 0.5 * sthick / ra[hi] + return f + + +def shellCF(r, radius, thickness): + """Spherical shell characteristic function. + + Attributes + ---------- + radius + Inner radius + thickness + Thickness of shell + + + outer radius = radius + thickness + + From Lei et al., Phys. Rev. B, 80, 024118 (2009) + """ + d = 1.0 * thickness + a = 1.0 * radius + d / 2.0 + return shellCF2(r, a, d) + + +def shellCF2(r, a, delta): + """Spherical shell characteristic function. + + Attributes + ---------- + a + Central radius + delta + Thickness of shell + + outer radius = a + thickness/2 + + + From Lei et al., Phys. Rev. B, 80, 024118 (2009) + """ + a = 1.0 * a + d = 1.0 * delta + a2 = a**2 + d2 = d**2 + dmr = d - r + dmr2 = dmr**2 + + f = ( + r + * ( + 16 * a * a2 + + 12 * a * d * dmr + + 36 * a2 * (2 * d - r) + + 3 * dmr2 * (2 * d + r) + ) + + 2 * dmr2 * (r * (2 * d + r) - 12 * a2) * sign(dmr) + - 2 * (2 * a - r) ** 2 * (r * (4 * a + r) - 3 * d2) * sign(2 * a - r) + + r * (4 * a - 2 * d + r) * (2 * a - d - r) ** 2 * sign(2 * a - d - r) + ) + + f[r > 2 * a + d] = 0 + + den = 8.0 * r * d * (12 * a2 + d2) + zmask = den == 0.0 + vmask = ~zmask + f[vmask] /= den[vmask] + f[zmask] = 1 + return f + + +class SASCF(Calculator): + """Calculator class for characteristic functions from sas-models. + + This class wraps a sas.models.BaseModel to calculate I(Q) related to + nanoparticle shape. This I(Q) is inverted to f(r) according to: + f(r) = 1 / (4 pi r) * SINFT(I(Q)), + where "SINFT" represents the sine Fourier transform. + + Attributes + ---------- + _model + BaseModel object this adapts. + Managed Parameters + These depend on the parameters of the BaseModel object held by _model. + They are created from the 'params' attribute of the BaseModel. If a + dispersion is set for the BaseModel, the dispersion "width" will be + accessible under "_width", where is the name a + parameter adjusted by dispersion. + """ + + def __init__(self, name, model): + """Initialize the generator. + + Attributes + ---------- + name + A name for the SASCF + model + SASModel object this adapts. + """ + Calculator.__init__(self, name) + + self._model = model + + from diffpy.srfit.sas.sasparameter import SASParameter + + # Wrap normal parameters + for parname in model.params: + par = SASParameter(parname, model) + self.addParameter(par) + + # Wrap dispersion parameters + for parname in model.dispersion: + name = parname + "_width" + parname += ".width" + par = SASParameter(name, model, parname) + self.addParameter(par) + + return + + def __call__(self, r): + """Calculate the characteristic function from the transform of the + BaseModel.""" + + # Determine q-values. + # We want very fine r-spacing so we can properly normalize f(r). This + # equates to having a large qmax so that the Fourier transform is + # finely spaced. We also want the calculation to be fast, so we pick + # qmax such that the number of q-points is a power of 2. This allows us + # to use the fft. + # + # The initial dr is somewhat arbitrary, but using dr = 0.01 allows for + # the f(r) calculated from a particle of diameter 50, over r = + # arange(1, 60, 0.1) to agree with the sphericalCF with Rw < 1e-4%. + # + # We also have to make a q-spacing small enough to compute out to at + # least the size of the signal. + raise NotImplementedError( + "As of release 3.2.0, SAS characteristic functions are not working" + + " but we hope to have them working again in a future release." + ) + + dr = min(0.01, r[1] - r[0]) + ed = 2 * self._model.calculate_ER() + + # Check for nans. If we find any, then return zeros. + if numpy.isnan(ed).any(): + y = numpy.zeros_like(r) + return y + + rmax = max(ed, 2 * r[-1]) + dq = pi / rmax + qmax = pi / dr + numpoints = int(2 ** (ceil(log2(qmax / dq)))) + qmax = dq * numpoints + + # Calculate F(q) = q * I(q) from model + q = fftfreq(int(qmax / dq)) * qmax + fq = q * self._model.evalDistribution(q) + + # Calculate g(r) and the effective r-points + rp = fftfreq(numpoints) * 2 * pi / dq + # Note sine transform = imaginary part of ifft + gr = ifft(fq).imag + + # Calculate full-fr for normalization + assert rp[0] == 0.0 + frp = numpy.zeros_like(gr) + frp[1:] = gr[1:] / rp[1:] + + # Inerpolate onto requested grid, do not use data after jump in rp + assert numpoints % 2 == 0 + nhalf = numpoints / 2 + fr = numpy.interp(r, rp[:nhalf], gr[:nhalf]) + vmask = r != 0 + fr[vmask] /= r[vmask] + + # Normalize. We approximate fr[0] by using the fact that f(r) is linear + # at low r. By definition, fr[0] should equal 1. + fr0 = 2 * frp[2] - frp[1] + fr /= fr0 + + # Fix potential divide-by-zero issue, fr is 1 at r == 0 + fr[~vmask] = 1 + + return fr + + +def erfc(x): + return 1.0 - erf(x) + + +# End of file diff --git a/src/diffpy/cmipdf/cmipdf_app.py b/src/diffpy/cmipdf/cmipdf_app.py new file mode 100644 index 0000000..992bb05 --- /dev/null +++ b/src/diffpy/cmipdf/cmipdf_app.py @@ -0,0 +1,33 @@ +import argparse + +from diffpy.cmipdf.version import __version__ # noqa + + +def main(): + parser = argparse.ArgumentParser( + prog="diffpy.cmipdf", + description=( + "Python package for doing science.\n\n" + "For more information, visit: " + "https://github.com/diffpy/diffpy.cmipdf/" + ), + formatter_class=argparse.RawDescriptionHelpFormatter, + ) + + parser.add_argument( + "--version", + action="store_true", + help="Show the program's version number and exit", + ) + + args = parser.parse_args() + + if args.version: + print(f"diffpy.cmipdf {__version__}") + else: + # Default behavior when no arguments are given + parser.print_help() + + +if __name__ == "__main__": + main() diff --git a/src/diffpy/cmipdf/debyepdfgenerator.py b/src/diffpy/cmipdf/debyepdfgenerator.py new file mode 100644 index 0000000..8b35977 --- /dev/null +++ b/src/diffpy/cmipdf/debyepdfgenerator.py @@ -0,0 +1,144 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2008 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""PDF profile generator using the Debye equation. + +The DebyePDFGenerator class can take a diffpy.structure, +pyobjcryst.crystal.Crystal or pyobjcryst.molecule.Molecule object and +calculate the PDF from it. This generator is especially appropriate for +isolated scatterers, such as nanoparticles and molecules. +""" + +__all__ = ["DebyePDFGenerator"] + +from diffpy.srfit.pdf.basepdfgenerator import BasePDFGenerator + + +class DebyePDFGenerator(BasePDFGenerator): + """A class for calculating the PDF from an isolated scatterer. + + This works with diffpy.structure.Structure, pyobjcryst.crystal.Crystal and + pyobjcryst.molecule.Molecule instances. Note that the managed Parameters + are not created until the structure is added. + + Attributes + ---------- + _calc + DebyePDFCalculator instance for calculating the PDF + _phase + The structure ParameterSets used to calculate the profile. + stru + The structure objected adapted by _phase. + _lastr + The last value of r over which the PDF was calculated. This is + used to configure the calculator when r changes. + + Managed Parameters + ------------------ + scale + Scale factor + delta1 + Linear peak broadening term + delta2 + Quadratic peak broadening term + qbroad + Resolution peak broadening term + qdamp + Resolution peak dampening term + + Managed ParameterSets + The structure ParameterSet (SrRealStructure instance) used to calculate + the profile is named by the user. + + Usable Metadata + --------------- + stype + The scattering type "X" for x-ray, "N" for neutron (see + 'setScatteringType'). + qmax + The maximum scattering vector used to generate the PDF (see + setQmax). + qmin + The minimum scattering vector used to generate the PDF (see + setQmin). + scale + See Managed Parameters. + delta1 + See Managed Parameters. + delta2 + See Managed Parameters. + qbroad + See Managed Parameters. + qdamp + See Managed Parameters. + """ + + def setStructure(self, stru, name="phase", periodic=False): + """Set the structure that will be used to calculate the PDF. + + This creates a DiffpyStructureParSet, ObjCrystCrystalParSet or + ObjCrystMoleculeParSet that adapts stru to a ParameterSet interface. + See those classes (located in diffpy.srfit.structure) for how they are + used. The resulting ParameterSet will be managed by this generator. + + Attributes + ---------- + stru + diffpy.structure.Structure, pyobjcryst.crystal.Crystal or + pyobjcryst.molecule.Molecule instance. Default None. + name + A name to give to the managed ParameterSet that adapts stru + (default "phase"). + periodic + The structure should be treated as periodic (default + False). Note that some structures do not support + periodicity, in which case this will have no effect on the + PDF calculation. + """ + return BasePDFGenerator.setStructure(self, stru, name, periodic) + + def setPhase(self, parset, periodic=False): + """Set the phase that will be used to calculate the PDF. + + Set the phase directly with a DiffpyStructureParSet, + ObjCrystCrystalParSet or ObjCrystMoleculeParSet that adapts a structure + object (from diffpy or pyobjcryst). The passed ParameterSet will be + managed by this generator. + + Attributes + ---------- + parset + A SrRealParSet that holds the structural information. + This can be used to share the phase between multiple + BasePDFGenerators, and have the changes in one reflect in + another. + periodic + The structure should be treated as periodic (default True). + Note that some structures do not support periodicity, in + which case this will be ignored. + """ + return BasePDFGenerator.setPhase(self, parset, periodic) + + def __init__(self, name="pdf"): + """Initialize the generator.""" + from diffpy.srreal.pdfcalculator import DebyePDFCalculator + + BasePDFGenerator.__init__(self, name) + self._setCalculator(DebyePDFCalculator()) + return + + +# End class DebyePDFGenerator + +# End of file diff --git a/src/diffpy/cmipdf/functions.py b/src/diffpy/cmipdf/functions.py new file mode 100644 index 0000000..e7e2c8e --- /dev/null +++ b/src/diffpy/cmipdf/functions.py @@ -0,0 +1,31 @@ +import numpy as np + + +def dot_product(a, b): + """Compute the dot product of two vectors of any size. + + Ensure that the inputs, a and b, are of the same size. + The supported types are "array_like" objects, which can + be converted to a NumPy array. Examples include lists and tuples. + + Parameters + ---------- + a : array_like + The first input vector. + b : array_like + The second input vector. + + Returns + ------- + float + The dot product of the two vectors. + + Examples + -------- + Compute the dot product of two lists: + >>> a = [1, 2, 3] + >>> b = [4, 5, 6] + >>> dot_product(a, b) + 32.0 + """ + return float(np.dot(a, b)) diff --git a/src/diffpy/cmipdf/pdfcontribution.py b/src/diffpy/cmipdf/pdfcontribution.py new file mode 100644 index 0000000..68bdac8 --- /dev/null +++ b/src/diffpy/cmipdf/pdfcontribution.py @@ -0,0 +1,352 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2010 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""PDFContribution class. + +This is a custom FitContribution that simplifies the creation of PDF +fits. +""" + +__all__ = ["PDFContribution"] + +from diffpy.srfit.fitbase import FitContribution, Profile + + +class PDFContribution(FitContribution): + """PDFContribution class. + + PDFContribution is a FitContribution that is customized for PDF fits. Data + and phases can be added directly to the PDFContribution. Setup of + constraints and restraints requires direct interaction with the generator + attributes (see setPhase). + + Attributes + ---------- + name + A name for this FitContribution. + profile + A Profile that holds the measured (and calculated) + signal. + _meta + Metadata dictionary. This is specific to this object, + and not shared with the profile. This is used to record + configuration options, like qmax. + _calculators + A managed dictionary of Calculators, indexed by name. + _constraints + A set of constrained Parameters. Constraints can be + added using the 'constrain' methods. + _generators + A managed dictionary of ProfileGenerators. + _parameters + A managed OrderedDict of parameters. + _restraints + A set of Restraints. Restraints can be added using the + 'restrain' or 'confine' methods. + _parsets + A managed dictionary of ParameterSets. + _eqfactory + A diffpy.srfit.equation.builder.EquationFactory + instance that is used to create constraints and + restraints from string + _eq + The FitContribution equation that will be optimized. + _reseq + The residual equation. + _xname + Name of the x-variable + _yname + Name of the y-variable + _dyname + Name of the dy-variable + + Managed Parameters + ------------------ + scale + Scale factor + qbroad + Resolution peak broadening term + qdamp + Resolution peak dampening term + """ + + def __init__(self, name): + """Create the PDFContribution. + + Attributes + ---------- + name + The name of the contribution. + """ + FitContribution.__init__(self, name) + self._meta = {} + # Add the profile + profile = Profile() + self.setProfile(profile, xname="r") + + # Need a parameter for the overall scale, in the case that this is a + # multi-phase fit. + self.newParameter("scale", 1.0) + # Profile-related parameters that will be shared between the generators + self.newParameter("qdamp", 0) + self.newParameter("qbroad", 0) + return + + # Data methods + + def loadData(self, data): + """Load the data in various formats. + + This uses the PDFParser to load the data and then passes it to the + built-in profile with loadParsedData. + + Attributes + ---------- + data + An open file-like object, name of a file that contains data + or a string containing the data. + """ + # Get the data into a string + from diffpy.srfit.util.inpututils import inputToString + + datstr = inputToString(data) + + # Load data with a PDFParser + from diffpy.srfit.pdf.pdfparser import PDFParser + + parser = PDFParser() + parser.parseString(datstr) + + # Pass it to the profile + self.profile.loadParsedData(parser) + return + + def setCalculationRange(self, xmin=None, xmax=None, dx=None): + """Set epsilon-inclusive calculation range. + + Adhere to the observed ``xobs`` points when ``dx`` is the same + as in the data. ``xmin`` and ``xmax`` are clipped at the bounds + of the observed data. + + Parameters + ---------- + + xmin : float or "obs", optional + The minimum value of the independent variable. Keep the + current minimum when not specified. If specified as "obs" + reset to the minimum observed value. + xmax : float or "obs", optional + The maximum value of the independent variable. Keep the + current maximum when not specified. If specified as "obs" + reset to the maximum observed value. + dx : float or "obs", optional + The sample spacing in the independent variable. When different + from the data, resample the ``x`` as anchored at ``xmin``. + + Note that xmin is always inclusive (unless clipped). xmax is inclusive + if it is within the bounds of the observed data. + + Raises + ------ + AttributeError + If there is no observed data. + ValueError + When xmin > xmax or if dx <= 0. Also if dx > xmax - xmin. + """ + return self.profile.setCalculationRange(xmin, xmax, dx) + + def savetxt(self, fname, **kwargs): + """Call numpy.savetxt with x, ycalc, y, dy. + + This calls on the built-in Profile. + + Arguments are passed to numpy.savetxt. + """ + return self.profile.savetxt(fname, **kwargs) + + # Phase methods + + def addStructure(self, name, stru, periodic=True): + """Add a phase that goes into the PDF calculation. + + Attributes + ---------- + name + A name to give the generator that will manage the PDF + calculation from the passed structure. The adapted + structure will be accessible via the name "phase" as an + attribute of the generator, e.g. + contribution.name.phase, where 'contribution' is this + contribution and 'name' is passed name. + (default), then the name will be set as "phase". + stru + diffpy.structure.Structure, pyobjcryst.crystal.Crystal or + pyobjcryst.molecule.Molecule instance. Default None. + periodic + The structure should be treated as periodic. If this is + True (default), then a PDFGenerator will be used to + calculate the PDF from the phase. Otherwise, a + DebyePDFGenerator will be used. Note that some structures + do not support periodicity, in which case this may be + ignored. + + + Returns the new phase (ParameterSet appropriate for what was passed in + stru.) + """ + # Based on periodic, create the proper generator. + if periodic: + from diffpy.srfit.pdf.pdfgenerator import PDFGenerator + + gen = PDFGenerator(name) + else: + from diffpy.srfit.pdf.debyepdfgenerator import DebyePDFGenerator + + gen = DebyePDFGenerator(name) + + # Set up the generator + gen.setStructure(stru, "phase", periodic) + self._setupGenerator(gen) + + return gen.phase + + def addPhase(self, name, parset, periodic=True): + """Add a phase that goes into the PDF calculation. + + Attributes + ---------- + name + A name to give the generator that will manage the PDF + calculation from the passed parameter phase. The parset + will be accessible via the name "phase" as an attribute + of the generator, e.g., contribution.name.phase, where + 'contribution' is this contribution and 'name' is passed + name. + parset + A SrRealParSet that holds the structural information. + This can be used to share the phase between multiple + BasePDFGenerators, and have the changes in one reflect in + another. + periodic + The structure should be treated as periodic. If this is + True (default), then a PDFGenerator will be used to + calculate the PDF from the phase. Otherwise, a + DebyePDFGenerator will be used. Note that some structures + do not support periodicity, in which case this may be + ignored. + + + Returns the new phase (ParameterSet appropriate for what was passed in + stru.) + """ + # Based on periodic, create the proper generator. + if periodic: + from diffpy.srfit.pdf.pdfgenerator import PDFGenerator + + gen = PDFGenerator(name) + else: + from diffpy.srfit.pdf.debyepdfgenerator import DebyePDFGenerator + + gen = DebyePDFGenerator(name) + + # Set up the generator + gen.setPhase(parset, periodic) + self._setupGenerator(gen) + + return gen.phase + + def _setupGenerator(self, gen): + """Setup a generator. + + The generator must already have a managed SrRealParSet, added + with setStructure or setPhase. + """ + # Add the generator to this FitContribution + self.addProfileGenerator(gen) + + # Set the proper equation for the fit, depending on the number of + # phases we have. + gnames = self._generators.keys() + eqstr = " + ".join(gnames) + eqstr = "scale * (%s)" % eqstr + self.setEquation(eqstr) + + # Update with our metadata + gen.meta.update(self._meta) + gen.processMetaData() + + # Constrain the shared parameters + self.constrain(gen.qdamp, self.qdamp) + self.constrain(gen.qbroad, self.qbroad) + return + + # Calculation setup methods + + def _getMetaValue(self, kwd): + """Get metadata according to object hierarchy.""" + # Check self, then generators then profile + if kwd in self._meta: + return self._meta[kwd] + for gen in self._generators.values(): + if kwd in gen.meta: + return gen.meta[kwd] + val = self.profile.meta.get(kwd) + return val + + def setScatteringType(self, type="X"): + """Set the scattering type. + + Attributes + ---------- + type + "X" for x-ray or "N" for neutron + + Raises ValueError if type is not "X" or "N" + """ + self._meta["stype"] = type + for gen in self._generators.values(): + gen.setScatteringType(type) + return + + def getScatteringType(self): + """Get the scattering type. + + See 'setScatteringType'. + """ + return self._getMetaValue("stype") + + def setQmax(self, qmax): + """Set the qmax value.""" + self._meta["qmax"] = qmax + for gen in self._generators.values(): + gen.setQmax(qmax) + return + + def getQmax(self): + """Get the qmax value.""" + return self._getMetaValue("qmax") + + def setQmin(self, qmin): + """Set the qmin value.""" + self._meta["qmin"] = qmin + for gen in self._generators.values(): + gen.setQmin(qmin) + return + + def getQmin(self): + """Get the qmin value.""" + return self._getMetaValue("qmin") + + +# End of file diff --git a/src/diffpy/cmipdf/pdfgenerator.py b/src/diffpy/cmipdf/pdfgenerator.py new file mode 100644 index 0000000..3f30cb0 --- /dev/null +++ b/src/diffpy/cmipdf/pdfgenerator.py @@ -0,0 +1,95 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2008 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""PDF profile generator. + +The PDFGenerator class can take a diffpy.structure, +pyobjcryst.crystal.Crystal or pyobjcryst.molecule.Molecule object and +calculate the crystal PDF from it. The passed structure object is +wrapped in a StructureParameter set, which makes its attributes +refinable. See the class definition for more details and the examples +for its use. +""" + +__all__ = ["PDFGenerator"] + +from diffpy.srfit.pdf.basepdfgenerator import BasePDFGenerator + + +class PDFGenerator(BasePDFGenerator): + """A class for calculating the PDF from a single crystal structure. + + This works with diffpy.structure.Structure, pyobjcryst.crystal.Crystal and + pyobjcryst.molecule.Molecule instances. Note that the managed Parameters + are not created until the structure is added. + + Attributes + ---------- + _calc + PDFCalculator instance for calculating the PDF + _phase + The structure ParameterSet used to calculate the profile. + _lastr + The last value of r over which the PDF was calculated. This is + used to configure the calculator when r changes. + + Managed Parameters + ------------------ + scale + Scale factor + delta1 + Linear peak broadening term + delta2 + Quadratic peak broadening term + qbroad + Resolution peak broadening term + qdamp + Resolution peak dampening term + Managed ParameterSets + The structure ParameterSet (SrRealStructure instance) used to + calculate the profile is named by the user. + + Usable Metadata + --------------- + stype + The scattering type "X" for x-ray, "N" for neutron (see + 'setScatteringType'). + qmax + The maximum scattering vector used to generate the PDF (see + setQmax). + qmin + The minimum scattering vector used to generate the PDF (see + setQmin). + scale + See Managed Parameters. + delta1 + See Managed Parameters. + delta2 + See Managed Parameters. + qbroad + See Managed Parameters. + qdamp + See Managed Parameters. + """ + + def __init__(self, name="pdf"): + """Initialize the generator.""" + from diffpy.srreal.pdfcalculator import PDFCalculator + + BasePDFGenerator.__init__(self, name) + self._setCalculator(PDFCalculator()) + return + + +# End class PDFGenerator diff --git a/src/diffpy/cmipdf/pdfparser.py b/src/diffpy/cmipdf/pdfparser.py new file mode 100644 index 0000000..445835f --- /dev/null +++ b/src/diffpy/cmipdf/pdfparser.py @@ -0,0 +1,258 @@ +#!/usr/bin/env python +############################################################################## +# +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2008 The Trustees of Columbia University +# in the City of New York. All rights reserved. +# +# File coded by: Chris Farrow +# +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. +# +############################################################################## +"""This module contains parsers for PDF data. + +PDFParser is suitable for parsing data generated from PDFGetN and +PDFGetX. + +See the class documentation for more information. +""" + +__all__ = ["PDFParser"] + +import re + +import numpy + +from diffpy.srfit.exceptions import ParseError +from diffpy.srfit.fitbase.profileparser import ProfileParser + + +class PDFParser(ProfileParser): + """Class for holding a diffraction pattern. + + Attributes + + Attributes + ---------- + _format + Name of the data format that this parses (string, default + ""). The format string is a unique identifier for the data + format handled by the parser. + _banks + The data from each bank. Each bank contains a + (x, y, dx, dy) tuple: + x + A numpy array containing the independent + variable read from the file. + y + A numpy array containing the profile + from the file. + dx + A numpy array containing the uncertainty in x + read from the file. This is 0 if the + uncertainty cannot be read. + dy + A numpy array containing the uncertainty read + from the file. This is 0 if the uncertainty + cannot be read. + _x + Independent variable from the chosen bank + _y + Profile from the chosen bank + _dx + Uncertainty in independent variable from the chosen bank + _dy + Uncertainty in profile from the chosen bank + _meta + A dictionary containing metadata read from the file. + + General Metadata + + Attributes + ---------- + filename + The name of the file from which data was parsed. This key + will not exist if data was not read from file. + nbanks + The number of banks parsed. + bank + The chosen bank number. + + Metadata + ---------- + stype + The scattering type ("X", "N") + qmin + Minimum scattering vector (float) + qmax + Maximum scattering vector (float) + qdamp + Resolution damping factor (float) + qbroad + Resolution broadening factor (float) + spdiameter + Nanoparticle diameter (float) + scale + Data scale (float) + temperature + Temperature (float) + doping + Doping (float) + + + These may appear in the metadata dictionary. + """ + + _format = "PDF" + + def parseString(self, patstring): + """Parse a string and set the _x, _y, _dx, _dy and _meta variables. + + When _dx or _dy cannot be obtained in the data format it is set to 0. + + This wipes out the currently loaded data and selected bank number. + + Parameters + ---------- + patstring + A string containing the pattern + + Raises ParseError if the string cannot be parsed + """ + # useful regex patterns: + rx = {"f": r"[-+]?(\d+(\.\d*)?|\d*\.\d+)([eE][-+]?\d+)?"} + # find where does the data start + res = re.search(r"^#+ start data\s*(?:#.*\s+)*", patstring, re.M) + # start_data is position where the first data line starts + if res: + start_data = res.end() + else: + # find line that starts with a floating point number + regexp = r"^\s*%(f)s" % rx + res = re.search(regexp, patstring, re.M) + if res: + start_data = res.start() + else: + start_data = 0 + header = patstring[:start_data] + databody = patstring[start_data:].strip() + + # find where the metadata starts + metadata = "" + res = re.search(r"^#+\ +metadata\b\n", header, re.M) + if res: + metadata = header[res.end() :] + header = header[: res.start()] + + # parse header + meta = self._meta + # stype + if re.search("(x-?ray|PDFgetX)", header, re.I): + meta["stype"] = "X" + elif re.search("(neutron|PDFgetN)", header, re.I): + meta["stype"] = "N" + # qmin + regexp = r"\bqmin *= *(%(f)s)\b" % rx + res = re.search(regexp, header, re.I) + if res: + meta["qmin"] = float(res.groups()[0]) + # qmax + regexp = r"\bqmax *= *(%(f)s)\b" % rx + res = re.search(regexp, header, re.I) + if res: + meta["qmax"] = float(res.groups()[0]) + # qdamp + regexp = r"\b(?:qdamp|qsig) *= *(%(f)s)\b" % rx + res = re.search(regexp, header, re.I) + if res: + meta["qdamp"] = float(res.groups()[0]) + # qbroad + regexp = r"\b(?:qbroad|qalp) *= *(%(f)s)\b" % rx + res = re.search(regexp, header, re.I) + if res: + meta["qbroad"] = float(res.groups()[0]) + # spdiameter + regexp = r"\bspdiameter *= *(%(f)s)\b" % rx + res = re.search(regexp, header, re.I) + if res: + meta["spdiameter"] = float(res.groups()[0]) + # dscale + regexp = r"\bdscale *= *(%(f)s)\b" % rx + res = re.search(regexp, header, re.I) + if res: + meta["scale"] = float(res.groups()[0]) + # temperature + regexp = r"\b(?:temp|temperature|T)\ *=\ *(%(f)s)\b" % rx + res = re.search(regexp, header) + if res: + meta["temperature"] = float(res.groups()[0]) + # doping + regexp = r"\b(?:x|doping)\ *=\ *(%(f)s)\b" % rx + res = re.search(regexp, header) + if res: + meta["doping"] = float(res.groups()[0]) + + # parsing general metadata + if metadata: + regexp = r"\b(\w+)\ *=\ *(%(f)s)\b" % rx + while True: + res = re.search(regexp, metadata, re.M) + if res: + meta[res.groups()[0]] = float(res.groups()[1]) + metadata = metadata[res.end() :] + else: + break + + # read actual data - robs, Gobs, drobs, dGobs + inf_or_nan = re.compile("(?i)^[+-]?(NaN|Inf)\\b") + has_drobs = True + has_dGobs = True + # raise ParseError if something goes wrong + robs = [] + Gobs = [] + drobs = [] + dGobs = [] + try: + for line in databody.split("\n"): + v = line.split() + # there should be at least 2 value in the line + robs.append(float(v[0])) + Gobs.append(float(v[1])) + # drobs is valid if all values are defined and positive + has_drobs = ( + has_drobs and len(v) > 2 and not inf_or_nan.match(v[2]) + ) + if has_drobs: + v2 = float(v[2]) + has_drobs = v2 > 0.0 + drobs.append(v2) + # dGobs is valid if all values are defined and positive + has_dGobs = ( + has_dGobs and len(v) > 3 and not inf_or_nan.match(v[3]) + ) + if has_dGobs: + v3 = float(v[3]) + has_dGobs = v3 > 0.0 + dGobs.append(v3) + except (ValueError, IndexError) as err: + raise ParseError(err) + if has_drobs: + drobs = numpy.asarray(drobs) + else: + drobs = None + if has_dGobs: + dGobs = numpy.asarray(dGobs) + else: + dGobs = None + + robs = numpy.asarray(robs) + Gobs = numpy.asarray(Gobs) + + self._banks.append([robs, Gobs, drobs, dGobs]) + return + + +# End of PDFParser diff --git a/src/diffpy/cmipdf/version.py b/src/diffpy/cmipdf/version.py new file mode 100644 index 0000000..9cbdfcd --- /dev/null +++ b/src/diffpy/cmipdf/version.py @@ -0,0 +1,26 @@ +#!/usr/bin/env python +############################################################################## +# +# (c) 2025 The Trustees of Columbia University in the City of New York. +# All rights reserved. +# +# File coded by: Simon Billinge, Caden Myers, Billinge Group members. +# +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors # noqa: E501 +# +# See LICENSE.rst for license information. +# +############################################################################## +"""Definition of __version__.""" + +# We do not use the other three variables, but can be added back if needed. +# __all__ = ["__date__", "__git_commit__", "__timestamp__", "__version__"] + +# obtain version information +from importlib.metadata import PackageNotFoundError, version + +try: + __version__ = version("diffpy.cmipdf") +except PackageNotFoundError: + __version__ = "unknown" diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 0000000..e3b6313 --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,19 @@ +import json +from pathlib import Path + +import pytest + + +@pytest.fixture +def user_filesystem(tmp_path): + base_dir = Path(tmp_path) + home_dir = base_dir / "home_dir" + home_dir.mkdir(parents=True, exist_ok=True) + cwd_dir = base_dir / "cwd_dir" + cwd_dir.mkdir(parents=True, exist_ok=True) + + home_config_data = {"username": "home_username", "email": "home@email.com"} + with open(home_dir / "diffpyconfig.json", "w") as f: + json.dump(home_config_data, f) + + yield tmp_path diff --git a/tests/test_functions.py b/tests/test_functions.py new file mode 100644 index 0000000..767be58 --- /dev/null +++ b/tests/test_functions.py @@ -0,0 +1,40 @@ +import numpy as np +import pytest + +from diffpy.cmipdf import functions # noqa + + +def test_dot_product_2D_list(): + a = [1, 2] + b = [3, 4] + expected = 11.0 + actual = functions.dot_product(a, b) + assert actual == expected + + +def test_dot_product_3D_list(): + a = [1, 2, 3] + b = [4, 5, 6] + expected = 32.0 + actual = functions.dot_product(a, b) + assert actual == expected + + +@pytest.mark.parametrize( + "a, b, expected", + [ + # Test whether the dot product function works with 2D and 3D vectors + # C1: lists, expect correct float output + ([1, 2], [3, 4], 11.0), + ([1, 2, 3], [4, 5, 6], 32.0), + # C2: tuples, expect correct float output + ((1, 2), (3, 4), 11.0), + ((1, 2, 3), (4, 5, 6), 32.0), + # C3: numpy arrays, expect correct float output + (np.array([1, 2]), np.array([3, 4]), 11.0), + (np.array([1, 2, 3]), np.array([4, 5, 6]), 32.0), + ], +) +def test_dot_product(a, b, expected): + actual = functions.dot_product(a, b) + assert actual == expected diff --git a/tests/test_version.py b/tests/test_version.py new file mode 100644 index 0000000..a7df02f --- /dev/null +++ b/tests/test_version.py @@ -0,0 +1,10 @@ +"""Unit tests for __version__.py.""" + +import diffpy.cmipdf # noqa + + +def test_package_version(): + """Ensure the package version is defined and not set to the initial + placeholder.""" + assert hasattr(diffpy.cmipdf, "__version__") + assert diffpy.cmipdf.__version__ != "0.0.0" From b5877a716ba557ef000959c77db74191f0821738 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 20:44:35 -0500 Subject: [PATCH 02/14] pdf code from diffpy.srfit --- src/diffpy/cmipdf/__init__.py | 32 ++++++++++++-------------------- 1 file changed, 12 insertions(+), 20 deletions(-) diff --git a/src/diffpy/cmipdf/__init__.py b/src/diffpy/cmipdf/__init__.py index d8456cd..cde4d16 100644 --- a/src/diffpy/cmipdf/__init__.py +++ b/src/diffpy/cmipdf/__init__.py @@ -1,32 +1,24 @@ #!/usr/bin/env python ############################################################################## # -# (c) 2025 Simon Billinge. -# All rights reserved. +# diffpy.srfit by DANSE Diffraction group +# Simon J. L. Billinge +# (c) 2008 The Trustees of Columbia University +# in the City of New York. All rights reserved. # -# File coded by: Caden Myers, Simon Billinge, and members of the Billinge -# group. +# File coded by: Chris Farrow # -# See GitHub contributions for a more detailed list of contributors. -# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors -# -# See LICENSE.rst for license information. +# See AUTHORS.txt for a list of people who contributed. +# See LICENSE_DANSE.txt for license information. # ############################################################################## -"""The code of the PDF pack of the diffpy.cmi package.""" - -from diffpy.cmipdf.debyepdfgenerator import DebyePDFGenerator -from diffpy.cmipdf.pdfcontribution import PDFContribution -from diffpy.cmipdf.pdfgenerator import PDFGenerator -from diffpy.cmipdf.pdfparser import PDFParser - -# package version -from diffpy.cmipdf.version import __version__ # noqa - -# silence the pyflakes syntax checker -assert __version__ or True +"""PDF calculation tools.""" __all__ = ["PDFGenerator", "DebyePDFGenerator", "PDFContribution", "PDFParser"] +from diffpy.srfit.pdf.debyepdfgenerator import DebyePDFGenerator +from diffpy.srfit.pdf.pdfcontribution import PDFContribution +from diffpy.srfit.pdf.pdfgenerator import PDFGenerator +from diffpy.srfit.pdf.pdfparser import PDFParser # End of file From bb8896174306269957a3aa2ffcdb0e9348dd645b Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 20:49:00 -0500 Subject: [PATCH 03/14] diffpy.srfit.pdf to diffpy.cmipdf changes --- src/diffpy/cmipdf/__init__.py | 8 +++---- src/diffpy/cmipdf/debyepdfgenerator.py | 2 +- src/diffpy/cmipdf/functions.py | 31 -------------------------- src/diffpy/cmipdf/pdfgenerator.py | 2 +- 4 files changed, 6 insertions(+), 37 deletions(-) delete mode 100644 src/diffpy/cmipdf/functions.py diff --git a/src/diffpy/cmipdf/__init__.py b/src/diffpy/cmipdf/__init__.py index cde4d16..8c64ffb 100644 --- a/src/diffpy/cmipdf/__init__.py +++ b/src/diffpy/cmipdf/__init__.py @@ -16,9 +16,9 @@ __all__ = ["PDFGenerator", "DebyePDFGenerator", "PDFContribution", "PDFParser"] -from diffpy.srfit.pdf.debyepdfgenerator import DebyePDFGenerator -from diffpy.srfit.pdf.pdfcontribution import PDFContribution -from diffpy.srfit.pdf.pdfgenerator import PDFGenerator -from diffpy.srfit.pdf.pdfparser import PDFParser +from diffpy.cmipdf.debyepdfgenerator import DebyePDFGenerator +from diffpy.cmipdf.pdfcontribution import PDFContribution +from diffpy.cmipdf.pdfgenerator import PDFGenerator +from diffpy.cmipdf.pdfparser import PDFParser # End of file diff --git a/src/diffpy/cmipdf/debyepdfgenerator.py b/src/diffpy/cmipdf/debyepdfgenerator.py index 8b35977..864da84 100644 --- a/src/diffpy/cmipdf/debyepdfgenerator.py +++ b/src/diffpy/cmipdf/debyepdfgenerator.py @@ -22,7 +22,7 @@ __all__ = ["DebyePDFGenerator"] -from diffpy.srfit.pdf.basepdfgenerator import BasePDFGenerator +from diffpy.cmipdf.basepdfgenerator import BasePDFGenerator class DebyePDFGenerator(BasePDFGenerator): diff --git a/src/diffpy/cmipdf/functions.py b/src/diffpy/cmipdf/functions.py deleted file mode 100644 index e7e2c8e..0000000 --- a/src/diffpy/cmipdf/functions.py +++ /dev/null @@ -1,31 +0,0 @@ -import numpy as np - - -def dot_product(a, b): - """Compute the dot product of two vectors of any size. - - Ensure that the inputs, a and b, are of the same size. - The supported types are "array_like" objects, which can - be converted to a NumPy array. Examples include lists and tuples. - - Parameters - ---------- - a : array_like - The first input vector. - b : array_like - The second input vector. - - Returns - ------- - float - The dot product of the two vectors. - - Examples - -------- - Compute the dot product of two lists: - >>> a = [1, 2, 3] - >>> b = [4, 5, 6] - >>> dot_product(a, b) - 32.0 - """ - return float(np.dot(a, b)) diff --git a/src/diffpy/cmipdf/pdfgenerator.py b/src/diffpy/cmipdf/pdfgenerator.py index 3f30cb0..0baa303 100644 --- a/src/diffpy/cmipdf/pdfgenerator.py +++ b/src/diffpy/cmipdf/pdfgenerator.py @@ -24,7 +24,7 @@ __all__ = ["PDFGenerator"] -from diffpy.srfit.pdf.basepdfgenerator import BasePDFGenerator +from diffpy.cmipdf.basepdfgenerator import BasePDFGenerator class PDFGenerator(BasePDFGenerator): From f574045a7084da8b17929d061693bbf94d73cb42 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 20:57:11 -0500 Subject: [PATCH 04/14] fit Ni example with cmipdf import --- docs/examples/pdf/fitNi/data/Ni.cif | 216 + docs/examples/pdf/fitNi/data/Ni.gr | 6022 +++++++++++++++++ .../pdf/fitNi/data/Pt-nanoparticles.gr | 6022 +++++++++++++++++ docs/examples/pdf/fitNi/data/Pt.cif | 232 + .../exercises/diffpy-cmi/fitBulkNi.ipynb | 692 ++ .../fitNi/exercises/diffpy-cmi/fitNPPt.ipynb | 566 ++ .../solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf | Bin 0 -> 134282 bytes .../solutions/diffpy-cmi/fit/Fit_Ni_Bulk.fit | 4852 +++++++++++++ .../fitNi/solutions/diffpy-cmi/fitBulkNi.py | 412 ++ .../diffpy-cmi/fitBulkNi_NPPt_soln2.ipynb | 1117 +++ .../pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py | 367 + .../solutions/diffpy-cmi/helper_functions.py | 456 ++ .../solutions/diffpy-cmi/res/Fit_Ni_Bulk.res | 32 + 13 files changed, 20986 insertions(+) create mode 100644 docs/examples/pdf/fitNi/data/Ni.cif create mode 100644 docs/examples/pdf/fitNi/data/Ni.gr create mode 100644 docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr create mode 100644 docs/examples/pdf/fitNi/data/Pt.cif create mode 100644 docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb create mode 100644 docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fit/Fit_Ni_Bulk.fit create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitBulkNi.py create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitBulkNi_NPPt_soln2.ipynb create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py create mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res diff --git a/docs/examples/pdf/fitNi/data/Ni.cif b/docs/examples/pdf/fitNi/data/Ni.cif new file mode 100644 index 0000000..cfaa968 --- /dev/null +++ b/docs/examples/pdf/fitNi/data/Ni.cif @@ -0,0 +1,216 @@ +data_New_Crystal +_audit_creation_method 'generated by CrystalMaker 9.0.3' +_cell_length_a 3.5200(0) +_cell_length_b 3.5200(0) +_cell_length_c 3.5200(0) +_cell_angle_alpha 90.0000(0) +_cell_angle_beta 90.0000(0) +_cell_angle_gamma 90.0000(0) + +_symmetry_space_group_name_H-M 'F m3m' +_symmetry_Int_Tables_number 225 +_symmetry_cell_setting cubic +loop_ +_symmetry_equiv_pos_as_xyz +'+x,+y,+z' +'+x,1/2+y,1/2+z' +'1/2+x,1/2+y,+z' +'1/2+x,+y,1/2+z' +'+z,+x,+y' +'+z,1/2+x,1/2+y' +'1/2+z,1/2+x,+y' +'1/2+z,+x,1/2+y' +'+y,+z,+x' +'+y,1/2+z,1/2+x' +'1/2+y,1/2+z,+x' +'1/2+y,+z,1/2+x' +'+x,+y,-z' +'+x,1/2+y,1/2-z' +'1/2+x,1/2+y,-z' +'1/2+x,+y,1/2-z' +'+z,+x,-y' +'+z,1/2+x,1/2-y' +'1/2+z,1/2+x,-y' +'1/2+z,+x,1/2-y' +'+y,+z,-x' +'+y,1/2+z,1/2-x' +'1/2+y,1/2+z,-x' +'1/2+y,+z,1/2-x' +'-x,+y,+z' +'-x,1/2+y,1/2+z' +'1/2-x,1/2+y,+z' +'1/2-x,+y,1/2+z' +'-z,+x,+y' +'-z,1/2+x,1/2+y' +'1/2-z,1/2+x,+y' +'1/2-z,+x,1/2+y' +'-y,+z,+x' +'-y,1/2+z,1/2+x' +'1/2-y,1/2+z,+x' +'1/2-y,+z,1/2+x' +'-x,+y,-z' +'-x,1/2+y,1/2-z' +'1/2-x,1/2+y,-z' +'1/2-x,+y,1/2-z' +'-z,+x,-y' +'-z,1/2+x,1/2-y' +'1/2-z,1/2+x,-y' +'1/2-z,+x,1/2-y' +'-y,+z,-x' +'-y,1/2+z,1/2-x' +'1/2-y,1/2+z,-x' +'1/2-y,+z,1/2-x' +'+y,+x,+z' +'+y,1/2+x,1/2+z' +'1/2+y,1/2+x,+z' +'1/2+y,+x,1/2+z' +'+x,+z,+y' +'+x,1/2+z,1/2+y' +'1/2+x,1/2+z,+y' +'1/2+x,+z,1/2+y' +'+z,+y,+x' +'+z,1/2+y,1/2+x' +'1/2+z,1/2+y,+x' +'1/2+z,+y,1/2+x' +'+y,+x,-z' +'+y,1/2+x,1/2-z' +'1/2+y,1/2+x,-z' +'1/2+y,+x,1/2-z' +'+x,+z,-y' +'+x,1/2+z,1/2-y' +'1/2+x,1/2+z,-y' +'1/2+x,+z,1/2-y' +'+z,+y,-x' +'+z,1/2+y,1/2-x' +'1/2+z,1/2+y,-x' +'1/2+z,+y,1/2-x' +'+y,-x,+z' +'+y,1/2-x,1/2+z' +'1/2+y,1/2-x,+z' +'1/2+y,-x,1/2+z' +'+x,-z,+y' +'+x,1/2-z,1/2+y' +'1/2+x,1/2-z,+y' +'1/2+x,-z,1/2+y' +'+z,-y,+x' +'+z,1/2-y,1/2+x' +'1/2+z,1/2-y,+x' +'1/2+z,-y,1/2+x' +'+y,-x,-z' +'+y,1/2-x,1/2-z' +'1/2+y,1/2-x,-z' +'1/2+y,-x,1/2-z' +'+x,-z,-y' +'+x,1/2-z,1/2-y' +'1/2+x,1/2-z,-y' +'1/2+x,-z,1/2-y' +'+z,-y,-x' +'+z,1/2-y,1/2-x' +'1/2+z,1/2-y,-x' +'1/2+z,-y,1/2-x' +'-x,-y,-z' +'-x,1/2-y,1/2-z' +'1/2-x,1/2-y,-z' +'1/2-x,-y,1/2-z' +'-z,-x,-y' +'-z,1/2-x,1/2-y' +'1/2-z,1/2-x,-y' +'1/2-z,-x,1/2-y' +'-y,-z,-x' +'-y,1/2-z,1/2-x' +'1/2-y,1/2-z,-x' +'1/2-y,-z,1/2-x' +'-x,-y,+z' +'-x,1/2-y,1/2+z' +'1/2-x,1/2-y,+z' +'1/2-x,-y,1/2+z' +'-z,-x,+y' +'-z,1/2-x,1/2+y' +'1/2-z,1/2-x,+y' +'1/2-z,-x,1/2+y' +'-y,-z,+x' +'-y,1/2-z,1/2+x' +'1/2-y,1/2-z,+x' +'1/2-y,-z,1/2+x' +'+x,-y,-z' +'+x,1/2-y,1/2-z' +'1/2+x,1/2-y,-z' +'1/2+x,-y,1/2-z' +'+z,-x,-y' +'+z,1/2-x,1/2-y' +'1/2+z,1/2-x,-y' +'1/2+z,-x,1/2-y' +'+y,-z,-x' +'+y,1/2-z,1/2-x' +'1/2+y,1/2-z,-x' +'1/2+y,-z,1/2-x' +'+x,-y,+z' +'+x,1/2-y,1/2+z' +'1/2+x,1/2-y,+z' +'1/2+x,-y,1/2+z' +'+z,-x,+y' +'+z,1/2-x,1/2+y' +'1/2+z,1/2-x,+y' +'1/2+z,-x,1/2+y' +'+y,-z,+x' +'+y,1/2-z,1/2+x' +'1/2+y,1/2-z,+x' +'1/2+y,-z,1/2+x' +'-y,-x,-z' +'-y,1/2-x,1/2-z' +'1/2-y,1/2-x,-z' +'1/2-y,-x,1/2-z' +'-x,-z,-y' +'-x,1/2-z,1/2-y' +'1/2-x,1/2-z,-y' +'1/2-x,-z,1/2-y' +'-z,-y,-x' +'-z,1/2-y,1/2-x' +'1/2-z,1/2-y,-x' +'1/2-z,-y,1/2-x' +'-y,-x,+z' +'-y,1/2-x,1/2+z' +'1/2-y,1/2-x,+z' +'1/2-y,-x,1/2+z' +'-x,-z,+y' +'-x,1/2-z,1/2+y' +'1/2-x,1/2-z,+y' +'1/2-x,-z,1/2+y' +'-z,-y,+x' +'-z,1/2-y,1/2+x' +'1/2-z,1/2-y,+x' +'1/2-z,-y,1/2+x' +'-y,+x,-z' +'-y,1/2+x,1/2-z' +'1/2-y,1/2+x,-z' +'1/2-y,+x,1/2-z' +'-x,+z,-y' +'-x,1/2+z,1/2-y' +'1/2-x,1/2+z,-y' +'1/2-x,+z,1/2-y' +'-z,+y,-x' +'-z,1/2+y,1/2-x' +'1/2-z,1/2+y,-x' +'1/2-z,+y,1/2-x' +'-y,+x,+z' +'-y,1/2+x,1/2+z' +'1/2-y,1/2+x,+z' +'1/2-y,+x,1/2+z' +'-x,+z,+y' +'-x,1/2+z,1/2+y' +'1/2-x,1/2+z,+y' +'1/2-x,+z,1/2+y' +'-z,+y,+x' +'-z,1/2+y,1/2+x' +'1/2-z,1/2+y,+x' +'1/2-z,+y,1/2+x' + +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_B_iso_or_equiv +_atom_site_occupancy + Ni1 Ni 0.0000 0.0000 0.0000 0.1 1.0 diff --git a/docs/examples/pdf/fitNi/data/Ni.gr b/docs/examples/pdf/fitNi/data/Ni.gr new file mode 100644 index 0000000..a1565fc --- /dev/null +++ b/docs/examples/pdf/fitNi/data/Ni.gr @@ -0,0 +1,6022 @@ +# xPDFsuite Configuration # +[PDF] +wavelength = 0.1836 +dataformat = Qnm +inputfile = Ni.chi +backgroundfile = +mode = xray +bgscale = 1.0 +composition = Ni +outputtype = gr +qmaxinst = 25.0 +qmin = 0.5 +qmax = 25.0 +rmax = 60.0 +rmin = 0.0 +rstep = 0.01 +rpoly = 0.9 + +#### start data +#S 1 +#L r($\AA$) G($\AA^{-2}$) +0 0 +0.01 -0.000497956 +0.02 -0.000963367 +0.03 -0.00136826 +0.04 -0.0016883 +0.05 -0.00190424 +0.06 -0.00200301 +0.07 -0.0019785 +0.08 -0.00183191 +0.09 -0.00157013 +0.1 -0.00120451 +0.11 -0.000765717 +0.12 -0.000279977 +0.13 0.000223969 +0.14 0.000716587 +0.15 0.00116932 +0.16 0.00155625 +0.17 0.00185559 +0.18 0.00204722 +0.19 0.00211684 +0.2 0.00206813 +0.21 0.00190414 +0.22 0.00163274 +0.23 0.00126516 +0.24 0.000814111 +0.25 0.000291589 +0.26 -0.00029348 +0.27 -0.000940567 +0.28 -0.00165528 +0.29 -0.00245064 +0.3 -0.00335283 +0.31 -0.00439854 +0.32 -0.00563399 +0.33 -0.00711292 +0.34 -0.00889334 +0.35 -0.0110333 +0.36 -0.0136142 +0.37 -0.0166653 +0.38 -0.0201915 +0.39 -0.0241829 +0.4 -0.0285954 +0.41 -0.0333445 +0.42 -0.0383002 +0.43 -0.0432836 +0.44 -0.0480648 +0.45 -0.0522996 +0.46 -0.0556565 +0.47 -0.0577668 +0.48 -0.0582263 +0.49 -0.0566146 +0.5 -0.0525102 +0.51 -0.0455077 +0.52 -0.0352366 +0.53 -0.0213724 +0.54 -0.00332425 +0.55 0.0187032 +0.56 0.0447171 +0.57 0.0745951 +0.58 0.108075 +0.59 0.14475 +0.6 0.184067 +0.61 0.225331 +0.62 0.26772 +0.63 0.310199 +0.64 0.35165 +0.65 0.390971 +0.66 0.427043 +0.67 0.458757 +0.68 0.485059 +0.69 0.504986 +0.7 0.517701 +0.71 0.522245 +0.72 0.517905 +0.73 0.504938 +0.74 0.483378 +0.75 0.453504 +0.76 0.415845 +0.77 0.371166 +0.78 0.320449 +0.79 0.264868 +0.8 0.205652 +0.81 0.144454 +0.82 0.0829324 +0.83 0.0226016 +0.84 -0.0350753 +0.85 -0.088739 +0.86 -0.137181 +0.87 -0.17939 +0.88 -0.214582 +0.89 -0.241725 +0.9 -0.260882 +0.91 -0.272364 +0.92 -0.276555 +0.93 -0.274102 +0.94 -0.265883 +0.95 -0.252975 +0.96 -0.236603 +0.97 -0.218096 +0.98 -0.198877 +0.99 -0.180474 +1 -0.164164 +1.01 -0.151087 +1.02 -0.142204 +1.03 -0.138263 +1.04 -0.139767 +1.05 -0.14696 +1.06 -0.159844 +1.07 -0.178527 +1.08 -0.20193 +1.09 -0.229259 +1.1 -0.259548 +1.11 -0.291708 +1.12 -0.324575 +1.13 -0.356963 +1.14 -0.38772 +1.15 -0.415706 +1.16 -0.43972 +1.17 -0.459257 +1.18 -0.473822 +1.19 -0.483157 +1.2 -0.48725 +1.21 -0.486335 +1.22 -0.480876 +1.23 -0.471549 +1.24 -0.459135 +1.25 -0.444714 +1.26 -0.429539 +1.27 -0.41473 +1.28 -0.401381 +1.29 -0.39051 +1.3 -0.383012 +1.31 -0.37962 +1.32 -0.380871 +1.33 -0.387346 +1.34 -0.399048 +1.35 -0.415568 +1.36 -0.436475 +1.37 -0.461135 +1.38 -0.48874 +1.39 -0.518352 +1.4 -0.548938 +1.41 -0.579429 +1.42 -0.608612 +1.43 -0.635447 +1.44 -0.6591 +1.45 -0.678862 +1.46 -0.694217 +1.47 -0.70486 +1.48 -0.710714 +1.49 -0.711934 +1.5 -0.708894 +1.51 -0.701933 +1.52 -0.69217 +1.53 -0.680561 +1.54 -0.668111 +1.55 -0.655862 +1.56 -0.644845 +1.57 -0.636023 +1.58 -0.63025 +1.59 -0.628257 +1.6 -0.630918 +1.61 -0.638149 +1.62 -0.649961 +1.63 -0.666128 +1.64 -0.686201 +1.65 -0.70952 +1.66 -0.735253 +1.67 -0.762427 +1.68 -0.789962 +1.69 -0.816601 +1.7 -0.841254 +1.71 -0.862927 +1.72 -0.880757 +1.73 -0.894063 +1.74 -0.902377 +1.75 -0.905474 +1.76 -0.903389 +1.77 -0.896252 +1.78 -0.884647 +1.79 -0.869669 +1.8 -0.852339 +1.81 -0.833825 +1.82 -0.815378 +1.83 -0.798279 +1.84 -0.783771 +1.85 -0.772998 +1.86 -0.767245 +1.87 -0.767258 +1.88 -0.773295 +1.89 -0.785498 +1.9 -0.80369 +1.91 -0.827379 +1.92 -0.85577 +1.93 -0.887798 +1.94 -0.92217 +1.95 -0.957378 +1.96 -0.991667 +1.97 -1.02346 +1.98 -1.05128 +1.99 -1.07382 +2 -1.09002 +2.01 -1.09912 +2.02 -1.10076 +2.03 -1.09493 +2.04 -1.08157 +2.05 -1.06223 +2.06 -1.03829 +2.07 -1.01142 +2.08 -0.983522 +2.09 -0.956668 +2.1 -0.932953 +2.11 -0.914387 +2.12 -0.902839 +2.13 -0.900459 +2.14 -0.90747 +2.15 -0.924067 +2.16 -0.949727 +2.17 -0.983142 +2.18 -1.02218 +2.19 -1.06388 +2.2 -1.1045 +2.21 -1.13928 +2.22 -1.16208 +2.23 -1.16767 +2.24 -1.15018 +2.25 -1.1037 +2.26 -1.02251 +2.27 -0.901327 +2.28 -0.735538 +2.29 -0.521425 +2.3 -0.254245 +2.31 0.0678304 +2.32 0.441659 +2.33 0.865151 +2.34 1.3346 +2.35 1.84467 +2.36 2.38849 +2.37 2.95777 +2.38 3.54294 +2.39 4.13307 +2.4 4.71536 +2.41 5.27782 +2.42 5.80862 +2.43 6.2962 +2.44 6.7297 +2.45 7.09923 +2.46 7.3962 +2.47 7.61359 +2.48 7.73974 +2.49 7.77584 +2.5 7.72285 +2.51 7.58212 +2.52 7.35706 +2.53 7.05305 +2.54 6.6772 +2.55 6.23821 +2.56 5.74602 +2.57 5.20886 +2.58 4.6428 +2.59 4.05984 +2.6 3.47163 +2.61 2.88933 +2.62 2.3233 +2.63 1.78283 +2.64 1.27592 +2.65 0.809631 +2.66 0.392363 +2.67 0.0237537 +2.68 -0.29486 +2.69 -0.563678 +2.7 -0.784307 +2.71 -0.959595 +2.72 -1.09342 +2.73 -1.19049 +2.74 -1.25534 +2.75 -1.29322 +2.76 -1.31176 +2.77 -1.31638 +2.78 -1.31211 +2.79 -1.30343 +2.8 -1.29412 +2.81 -1.28723 +2.82 -1.28498 +2.83 -1.28908 +2.84 -1.30022 +2.85 -1.3179 +2.86 -1.34136 +2.87 -1.36938 +2.88 -1.40043 +2.89 -1.43278 +2.9 -1.46466 +2.91 -1.4944 +2.92 -1.52019 +2.93 -1.54081 +2.94 -1.55557 +2.95 -1.56407 +2.96 -1.56627 +2.97 -1.56254 +2.98 -1.55357 +2.99 -1.54033 +3 -1.52403 +3.01 -1.50594 +3.02 -1.4877 +3.03 -1.47064 +3.04 -1.45598 +3.05 -1.44472 +3.06 -1.43765 +3.07 -1.43527 +3.08 -1.43781 +3.09 -1.44519 +3.1 -1.45745 +3.11 -1.4735 +3.12 -1.49254 +3.13 -1.51359 +3.14 -1.53561 +3.15 -1.55752 +3.16 -1.57826 +3.17 -1.59681 +3.18 -1.61222 +3.19 -1.62335 +3.2 -1.62982 +3.21 -1.63112 +3.22 -1.62685 +3.23 -1.6167 +3.24 -1.60044 +3.25 -1.57788 +3.26 -1.54884 +3.27 -1.5129 +3.28 -1.46959 +3.29 -1.41901 +3.3 -1.36084 +3.31 -1.2947 +3.32 -1.22019 +3.33 -1.13694 +3.34 -1.04463 +3.35 -0.943077 +3.36 -0.831813 +3.37 -0.711066 +3.38 -0.581781 +3.39 -0.444787 +3.4 -0.301259 +3.41 -0.152727 +3.42 -0.00107986 +3.43 0.151461 +3.44 0.302374 +3.45 0.448447 +3.46 0.586549 +3.47 0.713817 +3.48 0.82728 +3.49 0.924118 +3.5 1.00176 +3.51 1.05797 +3.52 1.09097 +3.53 1.09949 +3.54 1.08087 +3.55 1.03668 +3.56 0.967993 +3.57 0.876091 +3.58 0.762847 +3.59 0.630637 +3.6 0.482269 +3.61 0.320884 +3.62 0.149845 +3.63 -0.0276061 +3.64 -0.207184 +3.65 -0.385584 +3.66 -0.559751 +3.67 -0.726966 +3.68 -0.884918 +3.69 -1.03175 +3.7 -1.16611 +3.71 -1.28687 +3.72 -1.39285 +3.73 -1.48521 +3.74 -1.56449 +3.75 -1.63152 +3.76 -1.68739 +3.77 -1.73335 +3.78 -1.77075 +3.79 -1.80094 +3.8 -1.82507 +3.81 -1.84436 +3.82 -1.8602 +3.83 -1.87344 +3.84 -1.8848 +3.85 -1.8948 +3.86 -1.90384 +3.87 -1.91217 +3.88 -1.91994 +3.89 -1.92722 +3.9 -1.93406 +3.91 -1.94049 +3.92 -1.94652 +3.93 -1.95212 +3.94 -1.95726 +3.95 -1.96182 +3.96 -1.96559 +3.97 -1.96822 +3.98 -1.96898 +3.99 -1.96698 +4 -1.96105 +4.01 -1.94962 +4.02 -1.93071 +4.03 -1.90192 +4.04 -1.8605 +4.05 -1.80332 +4.06 -1.72695 +4.07 -1.62567 +4.08 -1.49698 +4.09 -1.3376 +4.1 -1.14419 +4.11 -0.913878 +4.12 -0.644398 +4.13 -0.334272 +4.14 0.0170227 +4.15 0.409033 +4.16 0.84306 +4.17 1.31213 +4.18 1.81158 +4.19 2.33546 +4.2 2.87661 +4.21 3.42679 +4.22 3.97685 +4.23 4.51697 +4.24 5.03626 +4.25 5.52152 +4.26 5.96415 +4.27 6.35448 +4.28 6.68367 +4.29 6.94404 +4.3 7.12923 +4.31 7.23451 +4.32 7.25691 +4.33 7.19244 +4.34 7.04032 +4.35 6.80856 +4.36 6.50215 +4.37 6.1277 +4.38 5.69331 +4.39 5.20825 +4.4 4.68272 +4.41 4.12752 +4.42 3.55339 +4.43 2.97281 +4.44 2.39701 +4.45 1.83577 +4.46 1.29786 +4.47 0.790855 +4.48 0.320938 +4.49 -0.107167 +4.5 -0.49027 +4.51 -0.823608 +4.52 -1.10901 +4.53 -1.34915 +4.54 -1.54662 +4.55 -1.70496 +4.56 -1.82845 +4.57 -1.92188 +4.58 -1.9903 +4.59 -2.03879 +4.6 -2.07139 +4.61 -2.094 +4.62 -2.11059 +4.63 -2.12426 +4.64 -2.13733 +4.65 -2.15126 +4.66 -2.16672 +4.67 -2.18352 +4.68 -2.20078 +4.69 -2.21664 +4.7 -2.22893 +4.71 -2.23511 +4.72 -2.23247 +4.73 -2.21825 +4.74 -2.18978 +4.75 -2.1446 +4.76 -2.08066 +4.77 -1.99587 +4.78 -1.88805 +4.79 -1.75834 +4.8 -1.6071 +4.81 -1.43531 +4.82 -1.24461 +4.83 -1.03725 +4.84 -0.816019 +4.85 -0.584182 +4.86 -0.345306 +4.87 -0.103802 +4.88 0.135774 +4.89 0.369149 +4.9 0.592084 +4.91 0.800467 +4.92 0.990416 +4.93 1.15836 +4.94 1.30111 +4.95 1.41438 +4.96 1.49614 +4.97 1.54603 +4.98 1.56316 +4.99 1.54728 +5 1.49877 +5.01 1.4186 +5.02 1.30836 +5.03 1.17018 +5.04 1.00516 +5.05 0.817851 +5.06 0.612352 +5.07 0.392403 +5.08 0.161907 +5.09 -0.0751693 +5.1 -0.314891 +5.11 -0.55345 +5.12 -0.787256 +5.13 -1.01209 +5.14 -1.22546 +5.15 -1.42504 +5.16 -1.60891 +5.17 -1.77564 +5.18 -1.92426 +5.19 -2.05429 +5.2 -2.16563 +5.21 -2.25842 +5.22 -2.33191 +5.23 -2.38843 +5.24 -2.42882 +5.25 -2.45391 +5.26 -2.4644 +5.27 -2.46081 +5.28 -2.44338 +5.29 -2.41204 +5.3 -2.36603 +5.31 -2.30376 +5.32 -2.22504 +5.33 -2.12845 +5.34 -2.01235 +5.35 -1.87503 +5.36 -1.7148 +5.37 -1.53013 +5.38 -1.31981 +5.39 -1.08201 +5.4 -0.816202 +5.41 -0.524455 +5.42 -0.208237 +5.43 0.130115 +5.44 0.487367 +5.45 0.859392 +5.46 1.24122 +5.47 1.62712 +5.48 2.01021 +5.49 2.38281 +5.5 2.73786 +5.51 3.06813 +5.52 3.36656 +5.53 3.62652 +5.54 3.84199 +5.55 4.00778 +5.56 4.11972 +5.57 4.17064 +5.58 4.16161 +5.59 4.09378 +5.6 3.96842 +5.61 3.78811 +5.62 3.5567 +5.63 3.27914 +5.64 2.96132 +5.65 2.60992 +5.66 2.23055 +5.67 1.8335 +5.68 1.42656 +5.69 1.01712 +5.7 0.612208 +5.71 0.218242 +5.72 -0.159087 +5.73 -0.514944 +5.74 -0.845144 +5.75 -1.14451 +5.76 -1.41345 +5.77 -1.65113 +5.78 -1.85756 +5.79 -2.03344 +5.8 -2.18011 +5.81 -2.29933 +5.82 -2.3932 +5.83 -2.46343 +5.84 -2.51171 +5.85 -2.54176 +5.86 -2.55556 +5.87 -2.55487 +5.88 -2.54114 +5.89 -2.51554 +5.9 -2.47897 +5.91 -2.43207 +5.92 -2.37493 +5.93 -2.30788 +5.94 -2.23175 +5.95 -2.14698 +5.96 -2.05413 +5.97 -1.95398 +5.98 -1.84756 +5.99 -1.73621 +6 -1.62154 +6.01 -1.5055 +6.02 -1.39056 +6.03 -1.27914 +6.04 -1.17372 +6.05 -1.07681 +6.06 -0.990859 +6.07 -0.918143 +6.08 -0.860692 +6.09 -0.820204 +6.1 -0.799382 +6.11 -0.798102 +6.12 -0.816264 +6.13 -0.853619 +6.14 -0.909433 +6.15 -0.982508 +6.16 -1.07123 +6.17 -1.17362 +6.18 -1.28739 +6.19 -1.41058 +6.2 -1.53951 +6.21 -1.67132 +6.22 -1.80318 +6.23 -1.93222 +6.24 -2.05559 +6.25 -2.17051 +6.26 -2.27419 +6.27 -2.36368 +6.28 -2.43486 +6.29 -2.48611 +6.3 -2.51465 +6.31 -2.51766 +6.32 -2.49226 +6.33 -2.43554 +6.34 -2.3446 +6.35 -2.21661 +6.36 -2.04766 +6.37 -1.83351 +6.38 -1.57472 +6.39 -1.26978 +6.4 -0.917849 +6.41 -0.518873 +6.42 -0.0737468 +6.43 0.415574 +6.44 0.945974 +6.45 1.51446 +6.46 2.1147 +6.47 2.73779 +6.48 3.3754 +6.49 4.01816 +6.5 4.6558 +6.51 5.2774 +6.52 5.8716 +6.53 6.42694 +6.54 6.92847 +6.55 7.36568 +6.56 7.73057 +6.57 8.0147 +6.58 8.21113 +6.59 8.3147 +6.6 8.3222 +6.61 8.23252 +6.62 8.04669 +6.63 7.76132 +6.64 7.38795 +6.65 6.93584 +6.66 6.41434 +6.67 5.83423 +6.68 5.20739 +6.69 4.54642 +6.7 3.86429 +6.71 3.17397 +6.72 2.48952 +6.73 1.82314 +6.74 1.18531 +6.75 0.585146 +6.76 0.0301897 +6.77 -0.473732 +6.78 -0.922568 +6.79 -1.31404 +6.8 -1.64677 +6.81 -1.91846 +6.82 -2.13639 +6.83 -2.30447 +6.84 -2.42752 +6.85 -2.51099 +6.86 -2.5607 +6.87 -2.5826 +6.88 -2.58249 +6.89 -2.56553 +6.9 -2.53682 +6.91 -2.5015 +6.92 -2.46303 +6.93 -2.42408 +6.94 -2.38658 +6.95 -2.35179 +6.96 -2.32036 +6.97 -2.29243 +6.98 -2.26793 +6.99 -2.24637 +7 -2.22708 +7.01 -2.20959 +7.02 -2.1936 +7.03 -2.17904 +7.04 -2.16611 +7.05 -2.1553 +7.06 -2.14736 +7.07 -2.14354 +7.08 -2.14494 +7.09 -2.15254 +7.1 -2.16733 +7.11 -2.19005 +7.12 -2.2211 +7.13 -2.2604 +7.14 -2.30732 +7.15 -2.36061 +7.16 -2.41849 +7.17 -2.47779 +7.18 -2.53512 +7.19 -2.58663 +7.2 -2.62803 +7.21 -2.65478 +7.22 -2.66221 +7.23 -2.64574 +7.24 -2.60098 +7.25 -2.52085 +7.26 -2.4049 +7.27 -2.25086 +7.28 -2.05747 +7.29 -1.82451 +7.3 -1.55292 +7.31 -1.2448 +7.32 -0.903396 +7.33 -0.532685 +7.34 -0.137314 +7.35 0.274162 +7.36 0.694636 +7.37 1.11652 +7.38 1.53194 +7.39 1.93296 +7.4 2.3118 +7.41 2.66101 +7.42 2.97232 +7.43 3.23781 +7.44 3.45467 +7.45 3.61892 +7.46 3.72768 +7.47 3.77925 +7.48 3.77314 +7.49 3.71003 +7.5 3.59178 +7.51 3.419 +7.52 3.19646 +7.53 2.93146 +7.54 2.62976 +7.55 2.2977 +7.56 1.9421 +7.57 1.57006 +7.58 1.18889 +7.59 0.805881 +7.6 0.429034 +7.61 0.0657826 +7.62 -0.277587 +7.63 -0.59513 +7.64 -0.881522 +7.65 -1.13215 +7.66 -1.34318 +7.67 -1.51164 +7.68 -1.63547 +7.69 -1.70984 +7.7 -1.73786 +7.71 -1.7211 +7.72 -1.66157 +7.73 -1.56216 +7.74 -1.42662 +7.75 -1.25952 +7.76 -1.06609 +7.77 -0.852107 +7.78 -0.623278 +7.79 -0.387977 +7.8 -0.152968 +7.81 0.0750366 +7.82 0.289536 +7.83 0.484409 +7.84 0.654075 +7.85 0.79364 +7.86 0.898304 +7.87 0.962703 +7.88 0.987507 +7.89 0.971944 +7.9 0.916357 +7.91 0.822197 +7.92 0.691977 +7.93 0.529202 +7.94 0.338267 +7.95 0.123735 +7.96 -0.108275 +7.97 -0.350204 +7.98 -0.59556 +7.99 -0.837821 +8 -1.07063 +8.01 -1.28795 +8.02 -1.48425 +8.03 -1.65466 +8.04 -1.79335 +8.05 -1.8971 +8.06 -1.96509 +8.07 -1.99623 +8.08 -1.99042 +8.09 -1.94854 +8.1 -1.87236 +8.11 -1.76454 +8.12 -1.62846 +8.13 -1.46685 +8.14 -1.2858 +8.15 -1.09096 +8.16 -0.887554 +8.17 -0.680936 +8.18 -0.476404 +8.19 -0.279102 +8.2 -0.093904 +8.21 0.0746902 +8.22 0.220648 +8.23 0.341757 +8.24 0.435477 +8.25 0.499718 +8.26 0.533084 +8.27 0.534889 +8.28 0.505169 +8.29 0.444673 +8.3 0.354688 +8.31 0.235407 +8.32 0.0922319 +8.33 -0.0713815 +8.34 -0.251477 +8.35 -0.443673 +8.36 -0.64325 +8.37 -0.845246 +8.38 -1.04457 +8.39 -1.23581 +8.4 -1.41282 +8.41 -1.57149 +8.42 -1.70751 +8.43 -1.81708 +8.44 -1.89703 +8.45 -1.94495 +8.46 -1.95924 +8.47 -1.93925 +8.48 -1.88402 +8.49 -1.79456 +8.5 -1.67519 +8.51 -1.52935 +8.52 -1.3613 +8.53 -1.17606 +8.54 -0.979258 +8.55 -0.776963 +8.56 -0.575492 +8.57 -0.381937 +8.58 -0.20307 +8.59 -0.0442459 +8.6 0.0895454 +8.61 0.194186 +8.62 0.266612 +8.63 0.304963 +8.64 0.308696 +8.65 0.278662 +8.66 0.215216 +8.67 0.124035 +8.68 0.0111315 +8.69 -0.117047 +8.7 -0.253067 +8.71 -0.38873 +8.72 -0.515325 +8.73 -0.623901 +8.74 -0.705572 +8.75 -0.748135 +8.76 -0.745952 +8.77 -0.692664 +8.78 -0.582919 +8.79 -0.412861 +8.8 -0.180311 +8.81 0.115113 +8.82 0.471919 +8.83 0.887157 +8.84 1.35893 +8.85 1.87505 +8.86 2.42666 +8.87 3.00356 +8.88 3.59451 +8.89 4.1875 +8.9 4.7701 +8.91 5.32976 +8.92 5.853 +8.93 6.32477 +8.94 6.73694 +8.95 7.08009 +8.96 7.34623 +8.97 7.52906 +8.98 7.62406 +8.99 7.62864 +9 7.54212 +9.01 7.36234 +9.02 7.09192 +9.03 6.74086 +9.04 6.31597 +9.05 5.82542 +9.06 5.27846 +9.07 4.68518 +9.08 4.05624 +9.09 3.40259 +9.1 2.73504 +9.11 2.0657 +9.12 1.40505 +9.13 0.762296 +9.14 0.145684 +9.15 -0.437683 +9.16 -0.981944 +9.17 -1.48255 +9.18 -1.9363 +9.19 -2.33781 +9.2 -2.68907 +9.21 -2.99198 +9.22 -3.24844 +9.23 -3.46125 +9.24 -3.63391 +9.25 -3.77047 +9.26 -3.87529 +9.27 -3.95287 +9.28 -4.00604 +9.29 -4.04116 +9.3 -4.06204 +9.31 -4.07179 +9.32 -4.07286 +9.33 -4.06693 +9.34 -4.05491 +9.35 -4.03691 +9.36 -4.01216 +9.37 -3.97852 +9.38 -3.93442 +9.39 -3.87727 +9.4 -3.80417 +9.41 -3.71204 +9.42 -3.59784 +9.43 -3.4587 +9.44 -3.29211 +9.45 -3.09528 +9.46 -2.86561 +9.47 -2.60475 +9.48 -2.3133 +9.49 -1.99282 +9.5 -1.64587 +9.51 -1.27601 +9.52 -0.887723 +9.53 -0.486338 +9.54 -0.077928 +9.55 0.329972 +9.56 0.72991 +9.57 1.11458 +9.58 1.47669 +9.59 1.80924 +9.6 2.10563 +9.61 2.35994 +9.62 2.56707 +9.63 2.71975 +9.64 2.81602 +9.65 2.85616 +9.66 2.83994 +9.67 2.7684 +9.68 2.64383 +9.69 2.46969 +9.7 2.25051 +9.71 1.99174 +9.72 1.69765 +9.73 1.37756 +9.74 1.03928 +9.75 0.690114 +9.76 0.337239 +9.77 -0.0124705 +9.78 -0.35264 +9.79 -0.677553 +9.8 -0.982296 +9.81 -1.26042 +9.82 -1.51092 +9.83 -1.73208 +9.84 -1.92313 +9.85 -2.08425 +9.86 -2.2165 +9.87 -2.32173 +9.88 -2.40242 +9.89 -2.46129 +9.9 -2.50077 +9.91 -2.52599 +9.92 -2.54035 +9.93 -2.547 +9.94 -2.54873 +9.95 -2.54785 +9.96 -2.54606 +9.97 -2.54439 +9.98 -2.54315 +9.99 -2.54181 +10 -2.53909 +10.01 -2.53312 +10.02 -2.52148 +10.03 -2.50136 +10.04 -2.46968 +10.05 -2.42325 +10.06 -2.3589 +10.07 -2.27266 +10.08 -2.16165 +10.09 -2.02501 +10.1 -1.86157 +10.11 -1.67099 +10.12 -1.45381 +10.13 -1.21152 +10.14 -0.946545 +10.15 -0.662259 +10.16 -0.362306 +10.17 -0.0527748 +10.18 0.260078 +10.19 0.57002 +10.2 0.870564 +10.21 1.15516 +10.22 1.41743 +10.23 1.65135 +10.24 1.85146 +10.25 2.00987 +10.26 2.12496 +10.27 2.19498 +10.28 2.21874 +10.29 2.19635 +10.3 2.12918 +10.31 2.01985 +10.32 1.87217 +10.33 1.69099 +10.34 1.48013 +10.35 1.24916 +10.36 1.00513 +10.37 0.755249 +10.38 0.506676 +10.39 0.266257 +10.4 0.040301 +10.41 -0.165636 +10.42 -0.346499 +10.43 -0.496762 +10.44 -0.61631 +10.45 -0.704313 +10.46 -0.761171 +10.47 -0.788447 +10.48 -0.788759 +10.49 -0.765617 +10.5 -0.723232 +10.51 -0.666002 +10.52 -0.599113 +10.53 -0.528254 +10.54 -0.457916 +10.55 -0.392007 +10.56 -0.333646 +10.57 -0.284995 +10.58 -0.247134 +10.59 -0.219988 +10.6 -0.202639 +10.61 -0.192261 +10.62 -0.184814 +10.63 -0.175856 +10.64 -0.160338 +10.65 -0.13285 +10.66 -0.0879024 +10.67 -0.0202152 +10.68 0.0749905 +10.69 0.203874 +10.7 0.368501 +10.71 0.569294 +10.72 0.806171 +10.73 1.0775 +10.74 1.38006 +10.75 1.7091 +10.76 2.05844 +10.77 2.42064 +10.78 2.78682 +10.79 3.14658 +10.8 3.49019 +10.81 3.80799 +10.82 4.09069 +10.83 4.32973 +10.84 4.5176 +10.85 4.64813 +10.86 4.71659 +10.87 4.71431 +10.88 4.64643 +10.89 4.51435 +10.9 4.32129 +10.91 4.07221 +10.92 3.7736 +10.93 3.43322 +10.94 3.0598 +10.95 2.6625 +10.96 2.25121 +10.97 1.83715 +10.98 1.42938 +10.99 1.03616 +11 0.664703 +11.01 0.320951 +11.02 0.00943022 +11.03 -0.266827 +11.04 -0.505069 +11.05 -0.704434 +11.06 -0.86865 +11.07 -1.00037 +11.08 -1.10311 +11.09 -1.18102 +11.1 -1.23857 +11.11 -1.28031 +11.12 -1.31056 +11.13 -1.333 +11.14 -1.3512 +11.15 -1.36767 +11.16 -1.3837 +11.17 -1.39957 +11.18 -1.41465 +11.19 -1.42747 +11.2 -1.43581 +11.21 -1.43691 +11.22 -1.42683 +11.23 -1.40242 +11.24 -1.36103 +11.25 -1.30011 +11.26 -1.21776 +11.27 -1.11291 +11.28 -0.985439 +11.29 -0.836249 +11.3 -0.667324 +11.31 -0.480665 +11.32 -0.281904 +11.33 -0.0762158 +11.34 0.130819 +11.35 0.33324 +11.36 0.524952 +11.37 0.699977 +11.38 0.852708 +11.39 0.978017 +11.4 1.06878 +11.41 1.12454 +11.42 1.14355 +11.43 1.12526 +11.44 1.07037 +11.45 0.980747 +11.46 0.859388 +11.47 0.710227 +11.48 0.537636 +11.49 0.346565 +11.5 0.144294 +11.51 -0.0634804 +11.52 -0.271254 +11.53 -0.473927 +11.54 -0.66699 +11.55 -0.846668 +11.56 -1.01003 +11.57 -1.15434 +11.58 -1.27806 +11.59 -1.38219 +11.6 -1.46747 +11.61 -1.53526 +11.62 -1.58744 +11.63 -1.62621 +11.64 -1.65391 +11.65 -1.67286 +11.66 -1.68495 +11.67 -1.69218 +11.68 -1.69603 +11.69 -1.69716 +11.7 -1.69566 +11.71 -1.69104 +11.72 -1.68228 +11.73 -1.66795 +11.74 -1.64627 +11.75 -1.61453 +11.76 -1.57096 +11.77 -1.514 +11.78 -1.44222 +11.79 -1.35464 +11.8 -1.25089 +11.81 -1.13127 +11.82 -0.996854 +11.83 -0.849457 +11.84 -0.691054 +11.85 -0.526043 +11.86 -0.358474 +11.87 -0.192727 +11.88 -0.0334482 +11.89 0.11462 +11.9 0.246821 +11.91 0.358758 +11.92 0.446284 +11.93 0.50356 +11.94 0.53022 +11.95 0.524586 +11.96 0.485851 +11.97 0.414095 +11.98 0.310266 +11.99 0.176128 +12 0.0141765 +12.01 -0.172927 +12.02 -0.382129 +12.03 -0.607674 +12.04 -0.845313 +12.05 -1.09073 +12.06 -1.33969 +12.07 -1.58808 +12.08 -1.83209 +12.09 -2.06815 +12.1 -2.29256 +12.11 -2.50192 +12.12 -2.69442 +12.13 -2.86792 +12.14 -3.02053 +12.15 -3.15052 +12.16 -3.25634 +12.17 -3.33648 +12.18 -3.38949 +12.19 -3.41233 +12.2 -3.40383 +12.21 -3.36369 +12.22 -3.29059 +12.23 -3.18331 +12.24 -3.04084 +12.25 -2.86248 +12.26 -2.64791 +12.27 -2.39732 +12.28 -2.10915 +12.29 -1.78679 +12.3 -1.43347 +12.31 -1.05243 +12.32 -0.647742 +12.33 -0.224279 +12.34 0.212328 +12.35 0.655788 +12.36 1.09927 +12.37 1.5343 +12.38 1.95338 +12.39 2.34915 +12.4 2.71444 +12.41 3.04253 +12.42 3.32735 +12.43 3.56366 +12.44 3.74719 +12.45 3.8743 +12.46 3.93868 +12.47 3.94467 +12.48 3.89318 +12.49 3.78637 +12.5 3.62754 +12.51 3.42105 +12.52 3.17215 +12.53 2.88686 +12.54 2.57119 +12.55 2.23188 +12.56 1.87803 +12.57 1.51673 +12.58 1.15487 +12.59 0.798989 +12.6 0.455166 +12.61 0.128913 +12.62 -0.174875 +12.63 -0.450731 +12.64 -0.694374 +12.65 -0.904443 +12.66 -1.07877 +12.67 -1.21572 +12.68 -1.3142 +12.69 -1.37353 +12.7 -1.39342 +12.71 -1.37392 +12.72 -1.31325 +12.73 -1.21293 +12.74 -1.07536 +12.75 -0.901818 +12.76 -0.693866 +12.77 -0.453421 +12.78 -0.182769 +12.79 0.115395 +12.8 0.437933 +12.81 0.78244 +12.82 1.1433 +12.83 1.51546 +12.84 1.89384 +12.85 2.27303 +12.86 2.6473 +12.87 3.01078 +12.88 3.35753 +12.89 3.6817 +12.9 3.97473 +12.91 4.23343 +12.92 4.45343 +12.93 4.63094 +12.94 4.76307 +12.95 4.84785 +12.96 4.88438 +12.97 4.8728 +12.98 4.81384 +12.99 4.70699 +13 4.55948 +13.01 4.3756 +13.02 4.16032 +13.03 3.91913 +13.04 3.65784 +13.05 3.38241 +13.06 3.09873 +13.07 2.81252 +13.08 2.52957 +13.09 2.25445 +13.1 1.99085 +13.11 1.74163 +13.12 1.50876 +13.13 1.29329 +13.14 1.09542 +13.15 0.914543 +13.16 0.749902 +13.17 0.599362 +13.18 0.459691 +13.19 0.328168 +13.2 0.201973 +13.21 0.0783467 +13.22 -0.0452695 +13.23 -0.171105 +13.24 -0.300956 +13.25 -0.436468 +13.26 -0.578251 +13.27 -0.726163 +13.28 -0.87971 +13.29 -1.03792 +13.3 -1.19943 +13.31 -1.36255 +13.32 -1.52544 +13.33 -1.68616 +13.34 -1.84244 +13.35 -1.99268 +13.36 -2.13562 +13.37 -2.27031 +13.38 -2.39624 +13.39 -2.51336 +13.4 -2.6221 +13.41 -2.72332 +13.42 -2.81828 +13.43 -2.90831 +13.44 -2.99575 +13.45 -3.08251 +13.46 -3.17044 +13.47 -3.26119 +13.48 -3.35612 +13.49 -3.45615 +13.5 -3.56173 +13.51 -3.67273 +13.52 -3.7885 +13.53 -3.907 +13.54 -4.02593 +13.55 -4.14239 +13.56 -4.25294 +13.57 -4.35368 +13.58 -4.44039 +13.59 -4.50864 +13.6 -4.55315 +13.61 -4.56813 +13.62 -4.55106 +13.63 -4.49834 +13.64 -4.40699 +13.65 -4.27471 +13.66 -4.10005 +13.67 -3.88242 +13.68 -3.62221 +13.69 -3.31902 +13.7 -2.97553 +13.71 -2.59718 +13.72 -2.18838 +13.73 -1.75433 +13.74 -1.30095 +13.75 -0.834725 +13.76 -0.362615 +13.77 0.108114 +13.78 0.569031 +13.79 1.01215 +13.8 1.43054 +13.81 1.81729 +13.82 2.16596 +13.83 2.47071 +13.84 2.72641 +13.85 2.92876 +13.86 3.07435 +13.87 3.15611 +13.88 3.17632 +13.89 3.13582 +13.9 3.03565 +13.91 2.8779 +13.92 2.66572 +13.93 2.40326 +13.94 2.0956 +13.95 1.74869 +13.96 1.3669 +13.97 0.961201 +13.98 0.539537 +13.99 0.110155 +14 -0.318524 +14.01 -0.738069 +14.02 -1.1402 +14.03 -1.51696 +14.04 -1.86023 +14.05 -2.16012 +14.06 -2.41333 +14.07 -2.61493 +14.08 -2.761 +14.09 -2.84871 +14.1 -2.87646 +14.11 -2.84381 +14.12 -2.75154 +14.13 -2.59993 +14.14 -2.39096 +14.15 -2.13255 +14.16 -1.83004 +14.17 -1.48957 +14.18 -1.11794 +14.19 -0.722473 +14.2 -0.310795 +14.21 0.1093 +14.22 0.529694 +14.23 0.941895 +14.24 1.3388 +14.25 1.71382 +14.26 2.06106 +14.27 2.37536 +14.28 2.65245 +14.29 2.88896 +14.3 3.08249 +14.31 3.22875 +14.32 3.32882 +14.33 3.38463 +14.34 3.39762 +14.35 3.37 +14.36 3.30463 +14.37 3.20492 +14.38 3.07471 +14.39 2.91819 +14.4 2.73836 +14.41 2.54152 +14.42 2.33241 +14.43 2.1153 +14.44 1.89426 +14.45 1.67305 +14.46 1.4551 +14.47 1.24339 +14.48 1.04054 +14.49 0.849793 +14.5 0.671893 +14.51 0.507976 +14.52 0.35876 +14.53 0.224574 +14.54 0.105398 +14.55 0.000894375 +14.56 -0.08954 +14.57 -0.166514 +14.58 -0.230476 +14.59 -0.283573 +14.6 -0.327067 +14.61 -0.362273 +14.62 -0.390528 +14.63 -0.413161 +14.64 -0.431471 +14.65 -0.44671 +14.66 -0.460036 +14.67 -0.472655 +14.68 -0.485663 +14.69 -0.499953 +14.7 -0.516311 +14.71 -0.535405 +14.72 -0.55778 +14.73 -0.583845 +14.74 -0.613868 +14.75 -0.648159 +14.76 -0.686602 +14.77 -0.728742 +14.78 -0.774106 +14.79 -0.822008 +14.8 -0.871552 +14.81 -0.921616 +14.82 -0.970853 +14.83 -1.0177 +14.84 -1.05997 +14.85 -1.09561 +14.86 -1.12258 +14.87 -1.13857 +14.88 -1.1412 +14.89 -1.12806 +14.9 -1.09678 +14.91 -1.0451 +14.92 -0.970903 +14.93 -0.87026 +14.94 -0.743297 +14.95 -0.589292 +14.96 -0.407754 +14.97 -0.198755 +14.98 0.0370128 +14.99 0.298201 +15 0.582777 +15.01 0.888093 +15.02 1.21179 +15.03 1.54789 +15.04 1.89163 +15.05 2.23774 +15.06 2.58054 +15.07 2.91409 +15.08 3.23226 +15.09 3.52896 +15.1 3.7975 +15.11 4.02995 +15.12 4.2232 +15.13 4.37278 +15.14 4.47493 +15.15 4.52678 +15.16 4.52641 +15.17 4.47294 +15.18 4.36653 +15.19 4.20667 +15.2 3.99508 +15.21 3.73822 +15.22 3.44057 +15.23 3.10739 +15.24 2.74465 +15.25 2.35882 +15.26 1.95674 +15.27 1.54542 +15.28 1.13215 +15.29 0.724621 +15.3 0.329302 +15.31 -0.0478994 +15.32 -0.401736 +15.33 -0.727728 +15.34 -1.02224 +15.35 -1.28256 +15.36 -1.5069 +15.37 -1.69192 +15.38 -1.83943 +15.39 -1.95145 +15.4 -2.02988 +15.41 -2.07729 +15.42 -2.09679 +15.43 -2.09196 +15.44 -2.06666 +15.45 -2.02498 +15.46 -1.97035 +15.47 -1.90808 +15.48 -1.84215 +15.49 -1.77612 +15.5 -1.71322 +15.51 -1.65626 +15.52 -1.6076 +15.53 -1.56914 +15.54 -1.54237 +15.55 -1.52924 +15.56 -1.52912 +15.57 -1.54197 +15.58 -1.56737 +15.59 -1.60457 +15.6 -1.65255 +15.61 -1.71005 +15.62 -1.77565 +15.63 -1.8479 +15.64 -1.92518 +15.65 -2.00536 +15.66 -2.08674 +15.67 -2.16766 +15.68 -2.24649 +15.69 -2.32168 +15.7 -2.3918 +15.71 -2.4555 +15.72 -2.51122 +15.73 -2.55764 +15.74 -2.59427 +15.75 -2.62037 +15.76 -2.63537 +15.77 -2.63888 +15.78 -2.6307 +15.79 -2.61082 +15.8 -2.57942 +15.81 -2.53633 +15.82 -2.48242 +15.83 -2.41893 +15.84 -2.34687 +15.85 -2.26742 +15.86 -2.18186 +15.87 -2.09161 +15.88 -1.99816 +15.89 -1.90301 +15.9 -1.80777 +15.91 -1.71404 +15.92 -1.62315 +15.93 -1.53627 +15.94 -1.45439 +15.95 -1.37823 +15.96 -1.30829 +15.97 -1.24474 +15.98 -1.18745 +15.99 -1.13643 +16 -1.09031 +16.01 -1.04794 +16.02 -1.0079 +16.03 -0.968523 +16.04 -0.927958 +16.05 -0.884193 +16.06 -0.835125 +16.07 -0.778526 +16.08 -0.711392 +16.09 -0.632404 +16.1 -0.539779 +16.11 -0.431991 +16.12 -0.307823 +16.13 -0.166426 +16.14 -0.00736698 +16.15 0.169334 +16.16 0.363574 +16.17 0.574853 +16.18 0.800384 +16.19 1.03802 +16.2 1.28515 +16.21 1.53869 +16.22 1.79517 +16.23 2.05077 +16.24 2.30139 +16.25 2.5422 +16.26 2.7681 +16.27 2.97524 +16.28 3.15935 +16.29 3.31641 +16.3 3.44275 +16.31 3.53514 +16.32 3.59089 +16.33 3.60798 +16.34 3.58279 +16.35 3.51573 +16.36 3.4088 +16.37 3.26343 +16.38 3.08199 +16.39 2.86774 +16.4 2.62475 +16.41 2.35793 +16.42 2.07285 +16.43 1.7753 +16.44 1.4732 +16.45 1.17376 +16.46 0.883993 +16.47 0.610836 +16.48 0.360931 +16.49 0.140444 +16.5 -0.0451108 +16.51 -0.191047 +16.52 -0.289598 +16.53 -0.341797 +16.54 -0.346725 +16.55 -0.304571 +16.56 -0.216843 +16.57 -0.0863435 +16.58 0.0828734 +16.59 0.285597 +16.6 0.515811 +16.61 0.767 +16.62 1.02912 +16.63 1.29382 +16.64 1.5526 +16.65 1.79699 +16.66 2.01884 +16.67 2.21053 +16.68 2.36523 +16.69 2.47573 +16.7 2.53513 +16.71 2.54312 +16.72 2.49799 +16.73 2.39944 +16.74 2.2487 +16.75 2.0484 +16.76 1.80254 +16.77 1.51635 +16.78 1.19504 +16.79 0.846691 +16.8 0.481023 +16.81 0.106529 +16.82 -0.268112 +16.83 -0.634282 +16.84 -0.983658 +16.85 -1.30844 +16.86 -1.60153 +16.87 -1.85422 +16.88 -2.06194 +16.89 -2.22233 +16.9 -2.33301 +16.91 -2.39291 +16.92 -2.4023 +16.93 -2.36269 +16.94 -2.27684 +16.95 -2.1486 +16.96 -1.98044 +16.97 -1.78081 +16.98 -1.55683 +16.99 -1.31539 +17 -1.0636 +17.01 -0.808633 +17.02 -0.557517 +17.03 -0.316945 +17.04 -0.0931206 +17.05 0.105948 +17.06 0.277245 +17.07 0.417156 +17.08 0.52302 +17.09 0.593222 +17.1 0.627213 +17.11 0.625508 +17.12 0.589652 +17.13 0.521771 +17.14 0.423897 +17.15 0.302831 +17.16 0.163559 +17.17 0.011546 +17.18 -0.14742 +17.19 -0.307392 +17.2 -0.462434 +17.21 -0.606785 +17.22 -0.73439 +17.23 -0.839154 +17.24 -0.918016 +17.25 -0.967651 +17.26 -0.985622 +17.27 -0.970453 +17.28 -0.921668 +17.29 -0.839812 +17.3 -0.726442 +17.31 -0.582916 +17.32 -0.413166 +17.33 -0.222913 +17.34 -0.0171874 +17.35 0.198484 +17.36 0.418237 +17.37 0.636035 +17.38 0.845851 +17.39 1.04183 +17.4 1.21698 +17.41 1.36642 +17.42 1.4866 +17.43 1.57413 +17.44 1.6265 +17.45 1.64214 +17.46 1.62043 +17.47 1.56175 +17.48 1.46737 +17.49 1.33711 +17.5 1.17638 +17.51 0.989475 +17.52 0.780679 +17.53 0.554676 +17.54 0.316379 +17.55 0.0707917 +17.56 -0.17714 +17.57 -0.422654 +17.58 -0.660307 +17.59 -0.886473 +17.6 -1.09775 +17.61 -1.29132 +17.62 -1.46496 +17.63 -1.61707 +17.64 -1.74664 +17.65 -1.85325 +17.66 -1.93663 +17.67 -1.99609 +17.68 -2.03441 +17.69 -2.05289 +17.7 -2.05304 +17.71 -2.03652 +17.72 -2.00502 +17.73 -1.96025 +17.74 -1.90384 +17.75 -1.83705 +17.76 -1.76121 +17.77 -1.67813 +17.78 -1.5889 +17.79 -1.49445 +17.8 -1.39562 +17.81 -1.29311 +17.82 -1.18759 +17.83 -1.07965 +17.84 -0.96983 +17.85 -0.858813 +17.86 -0.74731 +17.87 -0.635998 +17.88 -0.525601 +17.89 -0.416895 +17.9 -0.31069 +17.91 -0.207829 +17.92 -0.109162 +17.93 -0.015906 +17.94 0.0712245 +17.95 0.151628 +17.96 0.224627 +17.97 0.28963 +17.98 0.346141 +17.99 0.393761 +18 0.432189 +18.01 0.461219 +18.02 0.479968 +18.03 0.489031 +18.04 0.488558 +18.05 0.478627 +18.06 0.459359 +18.07 0.430912 +18.08 0.393485 +18.09 0.347325 +18.1 0.292717 +18.11 0.229405 +18.12 0.158666 +18.13 0.0811761 +18.14 -0.00220943 +18.15 -0.0904257 +18.16 -0.18217 +18.17 -0.27588 +18.18 -0.369721 +18.19 -0.461503 +18.2 -0.548346 +18.21 -0.627775 +18.22 -0.696975 +18.23 -0.753029 +18.24 -0.792994 +18.25 -0.814002 +18.26 -0.813364 +18.27 -0.788681 +18.28 -0.737007 +18.29 -0.656133 +18.3 -0.546896 +18.31 -0.409358 +18.32 -0.244391 +18.33 -0.0537243 +18.34 0.160036 +18.35 0.393418 +18.36 0.642129 +18.37 0.901351 +18.38 1.16456 +18.39 1.42508 +18.4 1.67635 +18.41 1.91171 +18.42 2.1246 +18.43 2.30874 +18.44 2.45839 +18.45 2.56849 +18.46 2.63177 +18.47 2.6467 +18.48 2.61276 +18.49 2.52957 +18.5 2.39805 +18.51 2.22045 +18.52 2.00028 +18.53 1.74222 +18.54 1.45204 +18.55 1.13491 +18.56 0.800718 +18.57 0.457648 +18.58 0.11381 +18.59 -0.222726 +18.6 -0.544163 +18.61 -0.843202 +18.62 -1.11325 +18.63 -1.34837 +18.64 -1.54032 +18.65 -1.68894 +18.66 -1.79219 +18.67 -1.84928 +18.68 -1.86064 +18.69 -1.82789 +18.7 -1.75371 +18.71 -1.64175 +18.72 -1.49589 +18.73 -1.32039 +18.74 -1.12322 +18.75 -0.910244 +18.76 -0.687362 +18.77 -0.46035 +18.78 -0.23469 +18.79 -0.0154361 +18.8 0.192904 +18.81 0.385794 +18.82 0.559452 +18.83 0.712479 +18.84 0.843376 +18.85 0.951372 +18.86 1.03638 +18.87 1.09893 +18.88 1.14008 +18.89 1.16138 +18.9 1.16385 +18.91 1.15015 +18.92 1.12328 +18.93 1.08559 +18.94 1.03939 +18.95 0.986835 +18.96 0.929927 +18.97 0.870425 +18.98 0.80982 +18.99 0.749385 +19 0.69007 +19.01 0.632418 +19.02 0.57671 +19.03 0.522985 +19.04 0.471077 +19.05 0.420661 +19.06 0.371295 +19.07 0.322469 +19.08 0.273614 +19.09 0.224205 +19.1 0.173846 +19.11 0.122273 +19.12 0.0693806 +19.13 0.0152551 +19.14 -0.0398097 +19.15 -0.0952996 +19.16 -0.150468 +19.17 -0.204156 +19.18 -0.255211 +19.19 -0.302283 +19.2 -0.343901 +19.21 -0.378517 +19.22 -0.404566 +19.23 -0.420522 +19.24 -0.424963 +19.25 -0.416317 +19.26 -0.39287 +19.27 -0.35489 +19.28 -0.302132 +19.29 -0.234777 +19.3 -0.153471 +19.31 -0.0593505 +19.32 0.0459534 +19.33 0.160319 +19.34 0.281297 +19.35 0.405531 +19.36 0.529284 +19.37 0.648907 +19.38 0.760615 +19.39 0.860603 +19.4 0.945175 +19.41 1.01087 +19.42 1.0546 +19.43 1.0723 +19.44 1.0623 +19.45 1.02443 +19.46 0.958428 +19.47 0.864912 +19.48 0.745379 +19.49 0.602222 +19.5 0.438687 +19.51 0.258805 +19.52 0.0668483 +19.53 -0.130751 +19.54 -0.328019 +19.55 -0.51904 +19.56 -0.697914 +19.57 -0.858948 +19.58 -0.996855 +19.59 -1.10694 +19.6 -1.18529 +19.61 -1.22571 +19.62 -1.22908 +19.63 -1.19504 +19.64 -1.12426 +19.65 -1.01858 +19.66 -0.881009 +19.67 -0.715634 +19.68 -0.52751 +19.69 -0.322404 +19.7 -0.106756 +19.71 0.111129 +19.72 0.324107 +19.73 0.525114 +19.74 0.707387 +19.75 0.864681 +19.76 0.991464 +19.77 1.08309 +19.78 1.13486 +19.79 1.14246 +19.8 1.10749 +19.81 1.03015 +19.82 0.911849 +19.83 0.755089 +19.84 0.56341 +19.85 0.341232 +19.86 0.0936976 +19.87 -0.174058 +19.88 -0.455357 +19.89 -0.743048 +19.9 -1.03103 +19.91 -1.31348 +19.92 -1.58501 +19.93 -1.84082 +19.94 -2.07678 +19.95 -2.28954 +19.96 -2.475 +19.97 -2.63197 +19.98 -2.76066 +19.99 -2.86114 +20 -2.93415 +20.01 -2.98098 +20.02 -3.0034 +20.03 -3.00349 +20.04 -2.98353 +20.05 -2.94473 +20.06 -2.89053 +20.07 -2.82328 +20.08 -2.74475 +20.09 -2.65632 +20.1 -2.55897 +20.11 -2.45325 +20.12 -2.3393 +20.13 -2.21686 +20.14 -2.08443 +20.15 -1.94181 +20.16 -1.78792 +20.17 -1.62162 +20.18 -1.44177 +20.19 -1.24742 +20.2 -1.03783 +20.21 -0.812622 +20.22 -0.571654 +20.23 -0.314546 +20.24 -0.0437377 +20.25 0.239012 +20.26 0.531387 +20.27 0.830539 +20.28 1.13314 +20.29 1.43544 +20.3 1.73338 +20.31 2.0223 +20.32 2.29682 +20.33 2.55321 +20.34 2.78728 +20.35 2.99517 +20.36 3.17343 +20.37 3.31913 +20.38 3.42997 +20.39 3.50435 +20.4 3.53978 +20.41 3.5361 +20.42 3.49604 +20.43 3.42129 +20.44 3.31423 +20.45 3.17795 +20.46 3.01606 +20.47 2.83268 +20.48 2.63226 +20.49 2.41905 +20.5 2.19865 +20.51 1.97616 +20.52 1.75604 +20.53 1.54244 +20.54 1.33905 +20.55 1.14903 +20.56 0.974922 +20.57 0.818601 +20.58 0.682708 +20.59 0.566533 +20.6 0.469369 +20.61 0.390191 +20.62 0.327393 +20.63 0.278877 +20.64 0.242142 +20.65 0.214394 +20.66 0.192663 +20.67 0.17391 +20.68 0.154678 +20.69 0.1322 +20.7 0.103995 +20.71 0.0679476 +20.72 0.0223701 +20.73 -0.0339523 +20.74 -0.101737 +20.75 -0.181367 +20.76 -0.273215 +20.77 -0.375553 +20.78 -0.487181 +20.79 -0.606581 +20.8 -0.732003 +20.81 -0.861538 +20.82 -0.993213 +20.83 -1.12507 +20.84 -1.25513 +20.85 -1.38139 +20.86 -1.50255 +20.87 -1.6174 +20.88 -1.72504 +20.89 -1.82481 +20.9 -1.91634 +20.91 -1.99945 +20.92 -2.07416 +20.93 -2.14023 +20.94 -2.19786 +20.95 -2.24757 +20.96 -2.28943 +20.97 -2.3233 +20.98 -2.34887 +20.99 -2.36556 +21 -2.3725 +21.01 -2.36858 +21.02 -2.35153 +21.03 -2.31993 +21.04 -2.27233 +21.05 -2.20685 +21.06 -2.12163 +21.07 -2.0149 +21.08 -1.88516 +21.09 -1.73119 +21.1 -1.55227 +21.11 -1.34624 +21.12 -1.11524 +21.13 -0.860893 +21.14 -0.585168 +21.15 -0.290774 +21.16 0.0188713 +21.17 0.339688 +21.18 0.667013 +21.19 0.9957 +21.2 1.31935 +21.21 1.63219 +21.22 1.92851 +21.23 2.20276 +21.24 2.44974 +21.25 2.66475 +21.26 2.84376 +21.27 2.98355 +21.28 3.08107 +21.29 3.13246 +21.3 3.14088 +21.31 3.10735 +21.32 3.03399 +21.33 2.92386 +21.34 2.78092 +21.35 2.60991 +21.36 2.41617 +21.37 2.20517 +21.38 1.98343 +21.39 1.75805 +21.4 1.53504 +21.41 1.32006 +21.42 1.1183 +21.43 0.934299 +21.44 0.771828 +21.45 0.633823 +21.46 0.523647 +21.47 0.44227 +21.48 0.388472 +21.49 0.361323 +21.5 0.359098 +21.51 0.379372 +21.52 0.419139 +21.53 0.474951 +21.54 0.543059 +21.55 0.619842 +21.56 0.700688 +21.57 0.781652 +21.58 0.859293 +21.59 0.930559 +21.6 0.99286 +21.61 1.04412 +21.62 1.08282 +21.63 1.10799 +21.64 1.11808 +21.65 1.11417 +21.66 1.09701 +21.67 1.06751 +21.68 1.02684 +21.69 0.976304 +21.7 0.917291 +21.71 0.851153 +21.72 0.779117 +21.73 0.701927 +21.74 0.620874 +21.75 0.536476 +21.76 0.448974 +21.77 0.358338 +21.78 0.264296 +21.79 0.166375 +21.8 0.063957 +21.81 -0.0437674 +21.82 -0.157879 +21.83 -0.278584 +21.84 -0.406308 +21.85 -0.541238 +21.86 -0.683268 +21.87 -0.831954 +21.88 -0.986488 +21.89 -1.14569 +21.9 -1.30804 +21.91 -1.47143 +21.92 -1.63347 +21.93 -1.7917 +21.94 -1.94358 +21.95 -2.08649 +21.96 -2.21791 +21.97 -2.33545 +21.98 -2.43699 +21.99 -2.51977 +22 -2.5825 +22.01 -2.62518 +22.02 -2.64757 +22.03 -2.65001 +22.04 -2.63338 +22.05 -2.59909 +22.06 -2.54902 +22.07 -2.48547 +22.08 -2.41052 +22.09 -2.32778 +22.1 -2.24051 +22.11 -2.15164 +22.12 -2.06399 +22.13 -1.98013 +22.14 -1.90228 +22.15 -1.83224 +22.16 -1.77129 +22.17 -1.72102 +22.18 -1.68083 +22.19 -1.65009 +22.2 -1.62776 +22.21 -1.6123 +22.22 -1.60176 +22.23 -1.59385 +22.24 -1.58606 +22.25 -1.57574 +22.26 -1.55957 +22.27 -1.53533 +22.28 -1.50077 +22.29 -1.45396 +22.3 -1.39341 +22.31 -1.31807 +22.32 -1.22742 +22.33 -1.12147 +22.34 -1.00045 +22.35 -0.864888 +22.36 -0.717399 +22.37 -0.55994 +22.38 -0.394762 +22.39 -0.224315 +22.4 -0.0511574 +22.41 0.122141 +22.42 0.293091 +22.43 0.459111 +22.44 0.617786 +22.45 0.767683 +22.46 0.907442 +22.47 1.03608 +22.48 1.15296 +22.49 1.25785 +22.5 1.35078 +22.51 1.4321 +22.52 1.50182 +22.53 1.56091 +22.54 1.61061 +22.55 1.65175 +22.56 1.6851 +22.57 1.71133 +22.58 1.73098 +22.59 1.74441 +22.6 1.7518 +22.61 1.75274 +22.62 1.74733 +22.63 1.73541 +22.64 1.71665 +22.65 1.69068 +22.66 1.65718 +22.67 1.61595 +22.68 1.56695 +22.69 1.51035 +22.7 1.446 +22.71 1.37526 +22.72 1.29922 +22.73 1.21918 +22.74 1.13671 +22.75 1.05353 +22.76 0.971537 +22.77 0.892672 +22.78 0.818923 +22.79 0.752801 +22.8 0.695442 +22.81 0.648142 +22.82 0.611842 +22.83 0.587067 +22.84 0.573892 +22.85 0.571921 +22.86 0.580288 +22.87 0.597853 +22.88 0.623002 +22.89 0.653021 +22.9 0.685569 +22.91 0.718178 +22.92 0.748361 +22.93 0.773721 +22.94 0.792059 +22.95 0.801479 +22.96 0.800017 +22.97 0.786426 +22.98 0.760868 +22.99 0.7235 +23 0.675025 +23.01 0.616669 +23.02 0.550122 +23.03 0.477471 +23.04 0.401097 +23.05 0.323665 +23.06 0.24814 +23.07 0.177111 +23.08 0.112927 +23.09 0.0576188 +23.1 0.0128024 +23.11 -0.0204029 +23.12 -0.0414293 +23.13 -0.0502927 +23.14 -0.0468583 +23.15 -0.0330749 +23.16 -0.0109798 +23.17 0.0172099 +23.18 0.0489553 +23.19 0.0815084 +23.2 0.112036 +23.21 0.137745 +23.22 0.156011 +23.23 0.163471 +23.24 0.158897 +23.25 0.140999 +23.26 0.108996 +23.27 0.0627 +23.28 0.00252891 +23.29 -0.0705133 +23.3 -0.154877 +23.31 -0.248602 +23.32 -0.349475 +23.33 -0.453987 +23.34 -0.559205 +23.35 -0.662151 +23.36 -0.759924 +23.37 -0.849798 +23.38 -0.929322 +23.39 -0.9964 +23.4 -1.04895 +23.41 -1.08506 +23.42 -1.10504 +23.43 -1.10876 +23.44 -1.09649 +23.45 -1.06893 +23.46 -1.02711 +23.47 -0.972346 +23.48 -0.906141 +23.49 -0.829779 +23.5 -0.74506 +23.51 -0.654087 +23.52 -0.558369 +23.53 -0.45927 +23.54 -0.357968 +23.55 -0.255446 +23.56 -0.152487 +23.57 -0.049689 +23.58 0.0524593 +23.59 0.153637 +23.6 0.253649 +23.61 0.352303 +23.62 0.449388 +23.63 0.544632 +23.64 0.63767 +23.65 0.728021 +23.66 0.815073 +23.67 0.897725 +23.68 0.975247 +23.69 1.04676 +23.7 1.11125 +23.71 1.16772 +23.72 1.21524 +23.73 1.25295 +23.74 1.28019 +23.75 1.29648 +23.76 1.3006 +23.77 1.29363 +23.78 1.27599 +23.79 1.24839 +23.8 1.21176 +23.81 1.16731 +23.82 1.11641 +23.83 1.06053 +23.84 1.00123 +23.85 0.94004 +23.86 0.878625 +23.87 0.818201 +23.88 0.759731 +23.89 0.703872 +23.9 0.650934 +23.91 0.60085 +23.92 0.553174 +23.93 0.5071 +23.94 0.461315 +23.95 0.414211 +23.96 0.364056 +23.97 0.308981 +23.98 0.24706 +23.99 0.176406 +24 0.095252 +24.01 0.00204348 +24.02 -0.105123 +24.03 -0.227269 +24.04 -0.364156 +24.05 -0.515738 +24.06 -0.681509 +24.07 -0.860504 +24.08 -1.05133 +24.09 -1.25219 +24.1 -1.46095 +24.11 -1.67538 +24.12 -1.89239 +24.13 -2.10906 +24.14 -2.32258 +24.15 -2.53021 +24.16 -2.7293 +24.17 -2.91735 +24.18 -3.09208 +24.19 -3.25144 +24.2 -3.39218 +24.21 -3.51369 +24.22 -3.615 +24.23 -3.69509 +24.24 -3.75315 +24.25 -3.78852 +24.26 -3.80069 +24.27 -3.78925 +24.28 -3.75388 +24.29 -3.6921 +24.3 -3.60592 +24.31 -3.49523 +24.32 -3.36 +24.33 -3.20032 +24.34 -3.01639 +24.35 -2.80862 +24.36 -2.57764 +24.37 -2.32405 +24.38 -2.04795 +24.39 -1.75272 +24.4 -1.44046 +24.41 -1.11368 +24.42 -0.7753 +24.43 -0.428637 +24.44 -0.0773746 +24.45 0.274496 +24.46 0.622488 +24.47 0.961466 +24.48 1.28726 +24.49 1.59552 +24.5 1.88211 +24.51 2.1432 +24.52 2.37539 +24.53 2.57581 +24.54 2.7422 +24.55 2.87129 +24.56 2.96227 +24.57 3.01688 +24.58 3.036 +24.59 3.02124 +24.6 2.97487 +24.61 2.89979 +24.62 2.7994 +24.63 2.67751 +24.64 2.5374 +24.65 2.38435 +24.66 2.22311 +24.67 2.0578 +24.68 1.89226 +24.69 1.73 +24.7 1.57405 +24.71 1.42696 +24.72 1.29067 +24.73 1.16757 +24.74 1.05763 +24.75 0.960713 +24.76 0.876361 +24.77 0.803622 +24.78 0.74115 +24.79 0.687283 +24.8 0.640133 +24.81 0.597683 +24.82 0.557914 +24.83 0.518445 +24.84 0.477437 +24.85 0.433272 +24.86 0.384613 +24.87 0.33044 +24.88 0.270088 +24.89 0.203264 +24.9 0.129942 +24.91 0.050315 +24.92 -0.0342715 +24.93 -0.122636 +24.94 -0.213325 +24.95 -0.304654 +24.96 -0.39476 +24.97 -0.481641 +24.98 -0.563215 +24.99 -0.637043 +25 -0.70054 +25.01 -0.752145 +25.02 -0.789957 +25.03 -0.812239 +25.04 -0.817453 +25.05 -0.804298 +25.06 -0.771743 +25.07 -0.719061 +25.08 -0.644842 +25.09 -0.549211 +25.1 -0.43348 +25.11 -0.298466 +25.12 -0.14539 +25.13 0.0241266 +25.14 0.208066 +25.15 0.40403 +25.16 0.609266 +25.17 0.820882 +25.18 1.03492 +25.19 1.2476 +25.2 1.45521 +25.21 1.65396 +25.22 1.84008 +25.23 2.00993 +25.24 2.16006 +25.25 2.28734 +25.26 2.38673 +25.27 2.45758 +25.28 2.49855 +25.29 2.50859 +25.3 2.48732 +25.31 2.43498 +25.32 2.35252 +25.33 2.2415 +25.34 2.10401 +25.35 1.94113 +25.36 1.75848 +25.37 1.55977 +25.38 1.34896 +25.39 1.1302 +25.4 0.907646 +25.41 0.685412 +25.42 0.467412 +25.43 0.257497 +25.44 0.0597822 +25.45 -0.123683 +25.46 -0.290784 +25.47 -0.439984 +25.48 -0.570342 +25.49 -0.681506 +25.5 -0.773693 +25.51 -0.847644 +25.52 -0.904015 +25.53 -0.944305 +25.54 -0.971422 +25.55 -0.987506 +25.56 -0.994785 +25.57 -0.995485 +25.58 -0.991735 +25.59 -0.985488 +25.6 -0.978452 +25.61 -0.972124 +25.62 -0.967638 +25.63 -0.965573 +25.64 -0.96617 +25.65 -0.969309 +25.66 -0.974549 +25.67 -0.981159 +25.68 -0.988184 +25.69 -0.994496 +25.7 -0.998656 +25.71 -0.999366 +25.72 -0.99549 +25.73 -0.985962 +25.74 -0.969899 +25.75 -0.946651 +25.76 -0.915835 +25.77 -0.877363 +25.78 -0.831459 +25.79 -0.77815 +25.8 -0.718892 +25.81 -0.654911 +25.82 -0.5876 +25.83 -0.518537 +25.84 -0.449432 +25.85 -0.382077 +25.86 -0.318284 +25.87 -0.259875 +25.88 -0.209241 +25.89 -0.167398 +25.9 -0.135642 +25.91 -0.115029 +25.92 -0.106345 +25.93 -0.110084 +25.94 -0.126437 +25.95 -0.155285 +25.96 -0.196457 +25.97 -0.249674 +25.98 -0.313051 +25.99 -0.385309 +26 -0.464964 +26.01 -0.550372 +26.02 -0.639761 +26.03 -0.731282 +26.04 -0.82305 +26.05 -0.913053 +26.06 -0.999202 +26.07 -1.0799 +26.08 -1.15359 +26.09 -1.21888 +26.1 -1.27462 +26.11 -1.31985 +26.12 -1.35389 +26.13 -1.37632 +26.14 -1.38638 +26.15 -1.38443 +26.16 -1.37139 +26.17 -1.348 +26.18 -1.31523 +26.19 -1.27424 +26.2 -1.22643 +26.21 -1.17329 +26.22 -1.11647 +26.23 -1.05764 +26.24 -0.998777 +26.25 -0.941607 +26.26 -0.887722 +26.27 -0.838589 +26.28 -0.795499 +26.29 -0.759537 +26.3 -0.731542 +26.31 -0.712079 +26.32 -0.702175 +26.33 -0.701052 +26.34 -0.708234 +26.35 -0.723002 +26.36 -0.744349 +26.37 -0.771 +26.38 -0.801443 +26.39 -0.83397 +26.4 -0.866702 +26.41 -0.89734 +26.42 -0.923867 +26.43 -0.944272 +26.44 -0.95662 +26.45 -0.959096 +26.46 -0.950064 +26.47 -0.928106 +26.48 -0.892067 +26.49 -0.840707 +26.5 -0.772802 +26.51 -0.689255 +26.52 -0.590303 +26.53 -0.476527 +26.54 -0.348847 +26.55 -0.208495 +26.56 -0.0569951 +26.57 0.10388 +26.58 0.272354 +26.59 0.446063 +26.6 0.622361 +26.61 0.79893 +26.62 0.973463 +26.63 1.14372 +26.64 1.30757 +26.65 1.46307 +26.66 1.60846 +26.67 1.74153 +26.68 1.86119 +26.69 1.96702 +26.7 2.05852 +26.71 2.13549 +26.72 2.19805 +26.73 2.24665 +26.74 2.282 +26.75 2.30508 +26.76 2.31639 +26.77 2.31801 +26.78 2.31167 +26.79 2.29896 +26.8 2.28143 +26.81 2.2606 +26.82 2.23791 +26.83 2.21461 +26.84 2.19178 +26.85 2.17042 +26.86 2.15098 +26.87 2.13369 +26.88 2.11845 +26.89 2.10488 +26.9 2.09233 +26.91 2.07984 +26.92 2.06627 +26.93 2.0502 +26.94 2.02968 +26.95 2.00333 +26.96 1.96951 +26.97 1.92663 +26.98 1.8732 +26.99 1.8079 +27 1.7296 +27.01 1.63744 +27.02 1.53047 +27.03 1.4079 +27.04 1.27088 +27.05 1.11998 +27.06 0.956112 +27.07 0.780516 +27.08 0.594761 +27.09 0.400683 +27.1 0.200351 +27.11 -0.00405243 +27.12 -0.209861 +27.13 -0.414444 +27.14 -0.615367 +27.15 -0.810257 +27.16 -0.996861 +27.17 -1.17309 +27.18 -1.33707 +27.19 -1.48717 +27.2 -1.62105 +27.21 -1.73793 +27.22 -1.83759 +27.23 -1.91961 +27.24 -1.98382 +27.25 -2.03032 +27.26 -2.05943 +27.27 -2.07171 +27.28 -2.06786 +27.29 -2.04769 +27.3 -2.01314 +27.31 -1.96555 +27.32 -1.90605 +27.33 -1.83577 +27.34 -1.75586 +27.35 -1.66745 +27.36 -1.57164 +27.37 -1.46951 +27.38 -1.36169 +27.39 -1.24972 +27.4 -1.13453 +27.41 -1.01704 +27.42 -0.898098 +27.43 -0.778532 +27.44 -0.659133 +27.45 -0.540656 +27.46 -0.423854 +27.47 -0.309621 +27.48 -0.198445 +27.49 -0.0908956 +27.5 0.0125118 +27.51 0.111329 +27.52 0.205177 +27.53 0.293754 +27.54 0.376834 +27.55 0.454102 +27.56 0.52529 +27.57 0.590765 +27.58 0.650594 +27.59 0.704887 +27.6 0.753782 +27.61 0.797429 +27.62 0.835975 +27.63 0.869543 +27.64 0.897997 +27.65 0.921357 +27.66 0.939805 +27.67 0.953225 +27.68 0.96143 +27.69 0.964168 +27.7 0.961132 +27.71 0.951975 +27.72 0.936335 +27.73 0.913417 +27.74 0.883073 +27.75 0.845278 +27.76 0.799897 +27.77 0.746919 +27.78 0.686486 +27.79 0.618914 +27.8 0.544701 +27.81 0.464537 +27.82 0.378991 +27.83 0.289549 +27.84 0.197532 +27.85 0.104299 +27.86 0.0112931 +27.87 -0.0800047 +27.88 -0.168124 +27.89 -0.251653 +27.9 -0.32929 +27.91 -0.399159 +27.92 -0.46094 +27.93 -0.514001 +27.94 -0.557994 +27.95 -0.592864 +27.96 -0.618865 +27.97 -0.636552 +27.98 -0.646762 +27.99 -0.650513 +28 -0.648966 +28.01 -0.644111 +28.02 -0.637563 +28.03 -0.630975 +28.04 -0.625974 +28.05 -0.624097 +28.06 -0.626733 +28.07 -0.635067 +28.08 -0.65026 +28.09 -0.673205 +28.1 -0.703742 +28.11 -0.74179 +28.12 -0.786941 +28.13 -0.838477 +28.14 -0.895393 +28.15 -0.956444 +28.16 -1.02019 +28.17 -1.08501 +28.18 -1.14905 +28.19 -1.21058 +28.2 -1.26803 +28.21 -1.31991 +28.22 -1.36495 +28.23 -1.40207 +28.24 -1.43047 +28.25 -1.44964 +28.26 -1.45876 +28.27 -1.45829 +28.28 -1.44892 +28.29 -1.43132 +28.3 -1.40639 +28.31 -1.37516 +28.32 -1.3388 +28.33 -1.29852 +28.34 -1.25554 +28.35 -1.21097 +28.36 -1.16602 +28.37 -1.12154 +28.38 -1.07814 +28.39 -1.0362 +28.4 -0.995841 +28.41 -0.956908 +28.42 -0.919001 +28.43 -0.881475 +28.44 -0.843336 +28.45 -0.803496 +28.46 -0.760782 +28.47 -0.713957 +28.48 -0.661783 +28.49 -0.603078 +28.5 -0.53677 +28.51 -0.461956 +28.52 -0.377767 +28.53 -0.283215 +28.54 -0.17891 +28.55 -0.0650895 +28.56 0.0576917 +28.57 0.18856 +28.58 0.326339 +28.59 0.469578 +28.6 0.616581 +28.61 0.765448 +28.62 0.913884 +28.63 1.05966 +28.64 1.20061 +28.65 1.33462 +28.66 1.4597 +28.67 1.57399 +28.68 1.67585 +28.69 1.76391 +28.7 1.83627 +28.71 1.89221 +28.72 1.93201 +28.73 1.95564 +28.74 1.96338 +28.75 1.95586 +28.76 1.93399 +28.77 1.89891 +28.78 1.852 +28.79 1.79425 +28.8 1.7279 +28.81 1.65497 +28.82 1.57722 +28.83 1.49634 +28.84 1.41396 +28.85 1.33157 +28.86 1.25052 +28.87 1.17196 +28.88 1.09717 +28.89 1.02668 +28.9 0.960917 +28.91 0.900153 +28.92 0.844457 +28.93 0.793734 +28.94 0.747745 +28.95 0.70614 +28.96 0.668506 +28.97 0.63461 +28.98 0.60363 +28.99 0.575115 +29 0.548668 +29.01 0.523974 +29.02 0.500814 +29.03 0.479076 +29.04 0.458764 +29.05 0.440027 +29.06 0.423206 +29.07 0.408512 +29.08 0.396332 +29.09 0.387089 +29.1 0.38122 +29.11 0.379141 +29.12 0.381223 +29.13 0.387759 +29.14 0.399113 +29.15 0.415436 +29.16 0.436357 +29.17 0.461611 +29.18 0.490767 +29.19 0.523239 +29.2 0.558284 +29.21 0.595023 +29.22 0.632455 +29.23 0.669398 +29.24 0.704545 +29.25 0.736709 +29.26 0.764682 +29.27 0.787288 +29.28 0.803418 +29.29 0.812052 +29.3 0.812287 +29.31 0.803359 +29.32 0.783966 +29.33 0.754069 +29.34 0.713682 +29.35 0.66275 +29.36 0.601388 +29.37 0.529875 +29.38 0.448634 +29.39 0.358225 +29.4 0.259324 +29.41 0.152132 +29.42 0.0381649 +29.43 -0.0815836 +29.44 -0.206146 +29.45 -0.334528 +29.46 -0.465723 +29.47 -0.598724 +29.48 -0.732528 +29.49 -0.866135 +29.5 -0.99839 +29.51 -1.12838 +29.52 -1.25516 +29.53 -1.37785 +29.54 -1.49556 +29.55 -1.60744 +29.56 -1.71267 +29.57 -1.81045 +29.58 -1.89982 +29.59 -1.97959 +29.6 -2.04968 +29.61 -2.10951 +29.62 -2.15855 +29.63 -2.19636 +29.64 -2.2226 +29.65 -2.23699 +29.66 -2.23939 +29.67 -2.22929 +29.68 -2.20657 +29.69 -2.17209 +29.7 -2.12615 +29.71 -2.06916 +29.72 -2.00161 +29.73 -1.9241 +29.74 -1.83729 +29.75 -1.7419 +29.76 -1.63833 +29.77 -1.52762 +29.78 -1.4109 +29.79 -1.28903 +29.8 -1.16284 +29.81 -1.03319 +29.82 -0.900907 +29.83 -0.766794 +29.84 -0.631644 +29.85 -0.496262 +29.86 -0.361482 +29.87 -0.228035 +29.88 -0.0966341 +29.89 0.0320226 +29.9 0.157249 +29.91 0.278373 +29.92 0.394737 +29.93 0.505701 +29.94 0.610085 +29.95 0.707745 +29.96 0.798194 +29.97 0.880964 +29.98 0.955657 +29.99 1.02196 +30 1.07964 +30.01 1.12858 +30.02 1.1687 +30.03 1.19949 +30.04 1.22192 +30.05 1.23637 +30.06 1.24329 +30.07 1.24325 +30.08 1.23687 +30.09 1.22485 +30.1 1.20788 +30.11 1.18661 +30.12 1.16163 +30.13 1.13385 +30.14 1.1038 +30.15 1.07192 +30.16 1.03851 +30.17 1.00375 +30.18 0.96767 +30.19 0.930174 +30.2 0.890938 +30.21 0.84953 +30.22 0.805566 +30.23 0.758512 +30.24 0.707805 +30.25 0.652884 +30.26 0.593229 +30.27 0.528396 +30.28 0.458053 +30.29 0.381683 +30.3 0.299405 +30.31 0.211634 +30.32 0.118777 +30.33 0.0214471 +30.34 -0.079551 +30.35 -0.183232 +30.36 -0.288455 +30.37 -0.393954 +30.38 -0.49819 +30.39 -0.599678 +30.4 -0.697039 +30.41 -0.788918 +30.42 -0.874054 +30.43 -0.951312 +30.44 -1.01972 +30.45 -1.07849 +30.46 -1.12705 +30.47 -1.16409 +30.48 -1.19038 +30.49 -1.20607 +30.5 -1.21145 +30.51 -1.207 +30.52 -1.19329 +30.53 -1.17102 +30.54 -1.14092 +30.55 -1.10371 +30.56 -1.05977 +30.57 -1.01034 +30.58 -0.956058 +30.59 -0.897421 +30.6 -0.834842 +30.61 -0.768613 +30.62 -0.698925 +30.63 -0.625873 +30.64 -0.54939 +30.65 -0.469329 +30.66 -0.385879 +30.67 -0.299045 +30.68 -0.2089 +30.69 -0.115621 +30.7 -0.0195128 +30.71 0.0789599 +30.72 0.179161 +30.73 0.280265 +30.74 0.381124 +30.75 0.480491 +30.76 0.577013 +30.77 0.66923 +30.78 0.755611 +30.79 0.834604 +30.8 0.904689 +30.81 0.964432 +30.82 1.01179 +30.83 1.04589 +30.84 1.06634 +30.85 1.07267 +30.86 1.06477 +30.87 1.04284 +30.88 1.00751 +30.89 0.959743 +30.9 0.900871 +30.91 0.832002 +30.92 0.755861 +30.93 0.674855 +30.94 0.5914 +30.95 0.508006 +30.96 0.427217 +30.97 0.351525 +30.98 0.283303 +30.99 0.224733 +31 0.178933 +31.01 0.146546 +31.02 0.128696 +31.03 0.126118 +31.04 0.139109 +31.05 0.16752 +31.06 0.21076 +31.07 0.267812 +31.08 0.337405 +31.09 0.418228 +31.1 0.507177 +31.11 0.601863 +31.12 0.699723 +31.13 0.79809 +31.14 0.894262 +31.15 0.985571 +31.16 1.06945 +31.17 1.14313 +31.18 1.20383 +31.19 1.25034 +31.2 1.28113 +31.21 1.29503 +31.22 1.29124 +31.23 1.26933 +31.24 1.22926 +31.25 1.17134 +31.26 1.09549 +31.27 1.00286 +31.28 0.895581 +31.29 0.775224 +31.3 0.643563 +31.31 0.50252 +31.32 0.354121 +31.33 0.200449 +31.34 0.0436012 +31.35 -0.114296 +31.36 -0.271002 +31.37 -0.424615 +31.38 -0.573395 +31.39 -0.715754 +31.4 -0.850274 +31.41 -0.975713 +31.42 -1.09101 +31.43 -1.19527 +31.44 -1.28682 +31.45 -1.36582 +31.46 -1.43206 +31.47 -1.48526 +31.48 -1.52529 +31.49 -1.55207 +31.5 -1.56561 +31.51 -1.56599 +31.52 -1.5533 +31.53 -1.52656 +31.54 -1.48717 +31.55 -1.43536 +31.56 -1.37143 +31.57 -1.29571 +31.58 -1.20862 +31.59 -1.11062 +31.6 -1.0023 +31.61 -0.884204 +31.62 -0.756706 +31.63 -0.621518 +31.64 -0.479773 +31.65 -0.332767 +31.66 -0.181948 +31.67 -0.0289203 +31.68 0.124575 +31.69 0.276674 +31.7 0.425239 +31.71 0.567856 +31.72 0.70269 +31.73 0.827716 +31.74 0.940977 +31.75 1.04064 +31.76 1.12503 +31.77 1.1927 +31.78 1.24245 +31.79 1.27244 +31.8 1.28212 +31.81 1.27221 +31.82 1.24291 +31.83 1.19482 +31.84 1.12887 +31.85 1.04637 +31.86 0.948914 +31.87 0.838369 +31.88 0.716291 +31.89 0.585608 +31.9 0.44904 +31.91 0.309043 +31.92 0.16805 +31.93 0.0284178 +31.94 -0.107637 +31.95 -0.23808 +31.96 -0.361112 +31.97 -0.474385 +31.98 -0.577191 +31.99 -0.668785 +32 -0.74862 +32.01 -0.816458 +32.02 -0.872346 +32.03 -0.916603 +32.04 -0.949775 +32.05 -0.972582 +32.06 -0.985205 +32.07 -0.989586 +32.08 -0.986811 +32.09 -0.977977 +32.1 -0.964158 +32.11 -0.946367 +32.12 -0.925528 +32.13 -0.902456 +32.14 -0.877822 +32.15 -0.85217 +32.16 -0.825993 +32.17 -0.799547 +32.18 -0.772971 +32.19 -0.746301 +32.2 -0.719486 +32.21 -0.692411 +32.22 -0.664914 +32.23 -0.636781 +32.24 -0.607778 +32.25 -0.577762 +32.26 -0.546576 +32.27 -0.514097 +32.28 -0.480235 +32.29 -0.444942 +32.3 -0.408199 +32.31 -0.370022 +32.32 -0.330376 +32.33 -0.289332 +32.34 -0.247001 +32.35 -0.203432 +32.36 -0.158666 +32.37 -0.112726 +32.38 -0.0656177 +32.39 -0.0173356 +32.4 0.0321377 +32.41 0.0829017 +32.42 0.134916 +32.43 0.18813 +32.44 0.242485 +32.45 0.297867 +32.46 0.354093 +32.47 0.410901 +32.48 0.467935 +32.49 0.524741 +32.5 0.580645 +32.51 0.634976 +32.52 0.686976 +32.53 0.7358 +32.54 0.780543 +32.55 0.820267 +32.56 0.854021 +32.57 0.880873 +32.58 0.899896 +32.59 0.909521 +32.6 0.909779 +32.61 0.900164 +32.62 0.88034 +32.63 0.850166 +32.64 0.809713 +32.65 0.759268 +32.66 0.699342 +32.67 0.630496 +32.68 0.553392 +32.69 0.469804 +32.7 0.381049 +32.71 0.288567 +32.72 0.193893 +32.73 0.0986113 +32.74 0.004324 +32.75 -0.0873927 +32.76 -0.174819 +32.77 -0.256286 +32.78 -0.330785 +32.79 -0.397235 +32.8 -0.454745 +32.81 -0.502625 +32.82 -0.540401 +32.83 -0.567811 +32.84 -0.584807 +32.85 -0.591022 +32.86 -0.586995 +32.87 -0.57368 +32.88 -0.551761 +32.89 -0.522038 +32.9 -0.485396 +32.91 -0.442777 +32.92 -0.395156 +32.93 -0.343511 +32.94 -0.288658 +32.95 -0.231742 +32.96 -0.173683 +32.97 -0.115262 +32.98 -0.0571777 +32.99 -4.56003e-05 +33 0.0556027 +33.01 0.109318 +33.02 0.160726 +33.03 0.209283 +33.04 0.25493 +33.05 0.297501 +33.06 0.336848 +33.07 0.372849 +33.08 0.405399 +33.09 0.434408 +33.1 0.459792 +33.11 0.481445 +33.12 0.498997 +33.13 0.512701 +33.14 0.522509 +33.15 0.528394 +33.16 0.530358 +33.17 0.528442 +33.18 0.522734 +33.19 0.513376 +33.2 0.5005 +33.21 0.484277 +33.22 0.465307 +33.23 0.444028 +33.24 0.42095 +33.25 0.396646 +33.26 0.371743 +33.27 0.346909 +33.28 0.322837 +33.29 0.300312 +33.3 0.280127 +33.31 0.262834 +33.32 0.249003 +33.33 0.239112 +33.34 0.233533 +33.35 0.232507 +33.36 0.236131 +33.37 0.244343 +33.38 0.257137 +33.39 0.273974 +33.4 0.294097 +33.41 0.316757 +33.42 0.341068 +33.43 0.366021 +33.44 0.390518 +33.45 0.413391 +33.46 0.433439 +33.47 0.44909 +33.48 0.459268 +33.49 0.462985 +33.5 0.459271 +33.51 0.447299 +33.52 0.426403 +33.53 0.396108 +33.54 0.356139 +33.55 0.306434 +33.56 0.246352 +33.57 0.177103 +33.58 0.0993637 +33.59 0.0139454 +33.6 -0.0781746 +33.61 -0.175876 +33.62 -0.277923 +33.63 -0.382995 +33.64 -0.489715 +33.65 -0.596563 +33.66 -0.702027 +33.67 -0.804756 +33.68 -0.903455 +33.69 -0.996911 +33.7 -1.08401 +33.71 -1.16373 +33.72 -1.23517 +33.73 -1.29728 +33.74 -1.34893 +33.75 -1.39017 +33.76 -1.42055 +33.77 -1.43968 +33.78 -1.44728 +33.79 -1.44312 +33.8 -1.42702 +33.81 -1.39889 +33.82 -1.35815 +33.83 -1.30469 +33.84 -1.23919 +33.85 -1.16177 +33.86 -1.07264 +33.87 -0.97208 +33.88 -0.860483 +33.89 -0.738348 +33.9 -0.606304 +33.91 -0.464652 +33.92 -0.314642 +33.93 -0.157704 +33.94 0.00489026 +33.95 0.171712 +33.96 0.341188 +33.97 0.511612 +33.98 0.681168 +33.99 0.847949 +34 1.0095 +34.01 1.16391 +34.02 1.3093 +34.03 1.44378 +34.04 1.56555 +34.05 1.67295 +34.06 1.76449 +34.07 1.83887 +34.08 1.89506 +34.09 1.9305 +34.1 1.94628 +34.11 1.94227 +34.12 1.91855 +34.13 1.87547 +34.14 1.81364 +34.15 1.73389 +34.16 1.6373 +34.17 1.52494 +34.18 1.39742 +34.19 1.25756 +34.2 1.10702 +34.21 0.947524 +34.22 0.780845 +34.23 0.608758 +34.24 0.433025 +34.25 0.255378 +34.26 0.0775409 +34.27 -0.0986404 +34.28 -0.271634 +34.29 -0.439986 +34.3 -0.602327 +34.31 -0.757375 +34.32 -0.903935 +34.33 -1.0409 +34.34 -1.16728 +34.35 -1.28159 +34.36 -1.3829 +34.37 -1.47109 +34.38 -1.5456 +34.39 -1.60599 +34.4 -1.65195 +34.41 -1.68333 +34.42 -1.7001 +34.43 -1.70242 +34.44 -1.68977 +34.45 -1.66307 +34.46 -1.62345 +34.47 -1.57174 +34.48 -1.50891 +34.49 -1.43607 +34.5 -1.35444 +34.51 -1.26533 +34.52 -1.17013 +34.53 -1.07004 +34.54 -0.966912 +34.55 -0.862251 +34.56 -0.757436 +34.57 -0.653768 +34.58 -0.55245 +34.59 -0.454562 +34.6 -0.361049 +34.61 -0.272702 +34.62 -0.190731 +34.63 -0.1151 +34.64 -0.0460907 +34.65 0.0161556 +34.66 0.071627 +34.67 0.120427 +34.68 0.162752 +34.69 0.198877 +34.7 0.229048 +34.71 0.253317 +34.72 0.272513 +34.73 0.287006 +34.74 0.29715 +34.75 0.303273 +34.76 0.305669 +34.77 0.304604 +34.78 0.300311 +34.79 0.292914 +34.8 0.282538 +34.81 0.269558 +34.82 0.254169 +34.83 0.236587 +34.84 0.217055 +34.85 0.195856 +34.86 0.173311 +34.87 0.149791 +34.88 0.125704 +34.89 0.101564 +34.9 0.0778845 +34.91 0.0551749 +34.92 0.0339462 +34.93 0.0146976 +34.94 -0.00210132 +34.95 -0.0160273 +34.96 -0.0267194 +34.97 -0.033663 +34.98 -0.0367669 +34.99 -0.0360636 +35 -0.0315798 +35.01 -0.0234424 +35.02 -0.0118734 +35.03 0.00282019 +35.04 0.0202602 +35.05 0.0400138 +35.06 0.0617195 +35.07 0.0847366 +35.08 0.108573 +35.09 0.1328 +35.1 0.157042 +35.11 0.180998 +35.12 0.20445 +35.13 0.227276 +35.14 0.249451 +35.15 0.271013 +35.16 0.292207 +35.17 0.313298 +35.18 0.334611 +35.19 0.356515 +35.2 0.379397 +35.21 0.403644 +35.22 0.429611 +35.23 0.457646 +35.24 0.488126 +35.25 0.521013 +35.26 0.556311 +35.27 0.593903 +35.28 0.633546 +35.29 0.67487 +35.3 0.717382 +35.31 0.760479 +35.32 0.803429 +35.33 0.845333 +35.34 0.885359 +35.35 0.922637 +35.36 0.956298 +35.37 0.985499 +35.38 1.00945 +35.39 1.02742 +35.4 1.03881 +35.41 1.04272 +35.42 1.03877 +35.43 1.02708 +35.44 1.00755 +35.45 0.980262 +35.46 0.945421 +35.47 0.903366 +35.48 0.854561 +35.49 0.799578 +35.5 0.738779 +35.51 0.673199 +35.52 0.603811 +35.53 0.531476 +35.54 0.45708 +35.55 0.381514 +35.56 0.305664 +35.57 0.230394 +35.58 0.156536 +35.59 0.0851109 +35.6 0.0167536 +35.61 -0.0479131 +35.62 -0.108313 +35.63 -0.16395 +35.64 -0.214414 +35.65 -0.259382 +35.66 -0.298629 +35.67 -0.332002 +35.68 -0.358974 +35.69 -0.380158 +35.7 -0.395741 +35.71 -0.406009 +35.72 -0.41134 +35.73 -0.412199 +35.74 -0.409132 +35.75 -0.402754 +35.76 -0.393704 +35.77 -0.382682 +35.78 -0.370631 +35.79 -0.358319 +35.8 -0.346511 +35.81 -0.335944 +35.82 -0.327318 +35.83 -0.321271 +35.84 -0.318365 +35.85 -0.319216 +35.86 -0.324312 +35.87 -0.333675 +35.88 -0.347416 +35.89 -0.365524 +35.9 -0.387864 +35.91 -0.414182 +35.92 -0.444116 +35.93 -0.477198 +35.94 -0.512972 +35.95 -0.550701 +35.96 -0.589582 +35.97 -0.628881 +35.98 -0.667846 +35.99 -0.705723 +36 -0.741773 +36.01 -0.775284 +36.02 -0.80559 +36.03 -0.83178 +36.04 -0.853411 +36.05 -0.870111 +36.06 -0.881484 +36.07 -0.887205 +36.08 -0.887025 +36.09 -0.880768 +36.1 -0.868326 +36.11 -0.849661 +36.12 -0.824297 +36.13 -0.792789 +36.14 -0.755364 +36.15 -0.712242 +36.16 -0.663705 +36.17 -0.610092 +36.18 -0.551801 +36.19 -0.489292 +36.2 -0.423066 +36.21 -0.353516 +36.22 -0.281613 +36.23 -0.20807 +36.24 -0.13366 +36.25 -0.0592018 +36.26 0.0144469 +36.27 0.0863982 +36.28 0.15575 +36.29 0.221504 +36.3 0.282472 +36.31 0.338081 +36.32 0.387564 +36.33 0.430242 +36.34 0.465541 +36.35 0.493013 +36.36 0.512353 +36.37 0.523409 +36.38 0.525895 +36.39 0.5199 +36.4 0.506276 +36.41 0.485585 +36.42 0.458547 +36.43 0.426017 +36.44 0.38897 +36.45 0.348475 +36.46 0.305665 +36.47 0.261714 +36.48 0.217944 +36.49 0.175526 +36.5 0.135521 +36.51 0.0988886 +36.52 0.0664661 +36.53 0.0389415 +36.54 0.0168372 +36.55 0.000497058 +36.56 -0.00951411 +36.57 -0.0135274 +36.58 -0.0119343 +36.59 -0.00515757 +36.6 0.00622686 +36.61 0.0215103 +36.62 0.039875 +36.63 0.0604208 +36.64 0.0821929 +36.65 0.104148 +36.66 0.125212 +36.67 0.144448 +36.68 0.160982 +36.69 0.174025 +36.7 0.182887 +36.71 0.186996 +36.72 0.185905 +36.73 0.179252 +36.74 0.166422 +36.75 0.147867 +36.76 0.123699 +36.77 0.0941471 +36.78 0.0595497 +36.79 0.0203398 +36.8 -0.0229672 +36.81 -0.0697874 +36.82 -0.119535 +36.83 -0.17155 +36.84 -0.224933 +36.85 -0.278959 +36.86 -0.332903 +36.87 -0.386044 +36.88 -0.437676 +36.89 -0.487112 +36.9 -0.533693 +36.91 -0.576624 +36.92 -0.615191 +36.93 -0.649033 +36.94 -0.677645 +36.95 -0.700566 +36.96 -0.717387 +36.97 -0.72775 +36.98 -0.731356 +36.99 -0.727969 +37 -0.717014 +37.01 -0.69853 +37.02 -0.672777 +37.03 -0.639836 +37.04 -0.599871 +37.05 -0.553136 +37.06 -0.499974 +37.07 -0.440815 +37.08 -0.376177 +37.09 -0.306364 +37.1 -0.232378 +37.11 -0.155087 +37.12 -0.0753114 +37.13 0.00607752 +37.14 0.0881767 +37.15 0.170064 +37.16 0.250811 +37.17 0.329504 +37.18 0.404926 +37.19 0.476416 +37.2 0.543225 +37.21 0.604665 +37.22 0.660142 +37.23 0.709163 +37.24 0.751349 +37.25 0.786438 +37.26 0.814218 +37.27 0.834174 +37.28 0.847046 +37.29 0.853099 +37.3 0.852715 +37.31 0.846382 +37.32 0.834686 +37.33 0.818295 +37.34 0.797944 +37.35 0.774362 +37.36 0.748377 +37.37 0.721036 +37.38 0.693181 +37.39 0.665633 +37.4 0.639173 +37.41 0.61453 +37.42 0.592363 +37.43 0.573249 +37.44 0.557835 +37.45 0.546565 +37.46 0.5395 +37.47 0.536763 +37.48 0.53836 +37.49 0.544176 +37.5 0.553981 +37.51 0.567432 +37.52 0.584083 +37.53 0.603508 +37.54 0.624934 +37.55 0.647557 +37.56 0.670607 +37.57 0.693272 +37.58 0.714716 +37.59 0.734091 +37.6 0.750558 +37.61 0.763299 +37.62 0.771147 +37.63 0.773563 +37.64 0.769986 +37.65 0.759857 +37.66 0.742705 +37.67 0.718167 +37.68 0.685986 +37.69 0.646027 +37.7 0.598273 +37.71 0.542167 +37.72 0.478649 +37.73 0.408129 +37.74 0.331114 +37.75 0.248225 +37.76 0.160192 +37.77 0.0678409 +37.78 -0.0279159 +37.79 -0.126108 +37.8 -0.225668 +37.81 -0.325316 +37.82 -0.42393 +37.83 -0.520377 +37.84 -0.613539 +37.85 -0.702324 +37.86 -0.785687 +37.87 -0.862646 +37.88 -0.932062 +37.89 -0.992765 +37.9 -1.04455 +37.91 -1.08687 +37.92 -1.1193 +37.93 -1.14154 +37.94 -1.15347 +37.95 -1.15505 +37.96 -1.14644 +37.97 -1.12748 +37.98 -1.0986 +37.99 -1.06081 +38 -1.01477 +38.01 -0.961215 +38.02 -0.900973 +38.03 -0.834927 +38.04 -0.76401 +38.05 -0.68919 +38.06 -0.611337 +38.07 -0.53163 +38.08 -0.451136 +38.09 -0.370807 +38.1 -0.29156 +38.11 -0.214273 +38.12 -0.139775 +38.13 -0.0688442 +38.14 -0.00220069 +38.15 0.0590686 +38.16 0.114608 +38.17 0.163967 +38.18 0.206672 +38.19 0.242309 +38.2 0.270521 +38.21 0.29101 +38.22 0.303536 +38.23 0.307922 +38.24 0.303291 +38.25 0.290358 +38.26 0.269167 +38.27 0.239835 +38.28 0.202559 +38.29 0.157624 +38.3 0.1054 +38.31 0.0463531 +38.32 -0.0190451 +38.33 -0.0904117 +38.34 -0.166505 +38.35 -0.246474 +38.36 -0.329386 +38.37 -0.414238 +38.38 -0.499969 +38.39 -0.585471 +38.4 -0.669607 +38.41 -0.751112 +38.42 -0.828602 +38.43 -0.901131 +38.44 -0.967639 +38.45 -1.02713 +38.46 -1.0787 +38.47 -1.12154 +38.48 -1.15495 +38.49 -1.17837 +38.5 -1.19087 +38.51 -1.19215 +38.52 -1.18258 +38.53 -1.16219 +38.54 -1.13116 +38.55 -1.08978 +38.56 -1.03848 +38.57 -0.977824 +38.58 -0.908444 +38.59 -0.830633 +38.6 -0.745565 +38.61 -0.65436 +38.62 -0.557949 +38.63 -0.457294 +38.64 -0.353376 +38.65 -0.247182 +38.66 -0.139696 +38.67 -0.0318891 +38.68 0.075165 +38.69 0.180508 +38.7 0.283273 +38.71 0.382627 +38.72 0.477787 +38.73 0.568023 +38.74 0.652665 +38.75 0.731109 +38.76 0.802805 +38.77 0.866624 +38.78 0.922823 +38.79 0.971133 +38.8 1.01137 +38.81 1.04346 +38.82 1.06742 +38.83 1.08334 +38.84 1.09146 +38.85 1.09194 +38.86 1.08484 +38.87 1.07121 +38.88 1.05163 +38.89 1.02674 +38.9 0.997233 +38.91 0.963815 +38.92 0.927228 +38.93 0.888205 +38.94 0.847427 +38.95 0.80562 +38.96 0.763488 +38.97 0.721569 +38.98 0.680316 +38.99 0.640085 +39 0.601133 +39.01 0.563612 +39.02 0.527569 +39.03 0.493012 +39.04 0.45976 +39.05 0.427505 +39.06 0.39594 +39.07 0.364713 +39.08 0.333442 +39.09 0.30174 +39.1 0.269234 +39.11 0.235582 +39.12 0.20039 +39.13 0.163482 +39.14 0.124789 +39.15 0.0842985 +39.16 0.0421046 +39.17 -0.00158839 +39.18 -0.0464667 +39.19 -0.0921114 +39.2 -0.138007 +39.21 -0.183467 +39.22 -0.227774 +39.23 -0.270198 +39.24 -0.30997 +39.25 -0.346315 +39.26 -0.378468 +39.27 -0.405696 +39.28 -0.42732 +39.29 -0.442701 +39.3 -0.45071 +39.31 -0.451509 +39.32 -0.444819 +39.33 -0.430485 +39.34 -0.408482 +39.35 -0.378915 +39.36 -0.342018 +39.37 -0.298154 +39.38 -0.247688 +39.39 -0.19098 +39.4 -0.129208 +39.41 -0.063178 +39.42 0.00623689 +39.43 0.0781031 +39.44 0.151444 +39.45 0.225256 +39.46 0.298522 +39.47 0.370132 +39.48 0.43892 +39.49 0.504023 +39.5 0.56453 +39.51 0.619589 +39.52 0.66842 +39.53 0.710326 +39.54 0.744698 +39.55 0.771032 +39.56 0.788477 +39.57 0.796822 +39.58 0.796274 +39.59 0.786818 +39.6 0.768563 +39.61 0.741742 +39.62 0.706709 +39.63 0.663937 +39.64 0.614008 +39.65 0.557231 +39.66 0.494755 +39.67 0.427622 +39.68 0.356782 +39.69 0.283233 +39.7 0.208011 +39.71 0.132167 +39.72 0.0567531 +39.73 -0.0171988 +39.74 -0.0884087 +39.75 -0.156046 +39.76 -0.219285 +39.77 -0.277363 +39.78 -0.329623 +39.79 -0.375525 +39.8 -0.414649 +39.81 -0.446709 +39.82 -0.471505 +39.83 -0.488458 +39.84 -0.498337 +39.85 -0.501418 +39.86 -0.4981 +39.87 -0.488889 +39.88 -0.474392 +39.89 -0.455302 +39.9 -0.432377 +39.91 -0.406386 +39.92 -0.378167 +39.93 -0.348791 +39.94 -0.31912 +39.95 -0.289996 +39.96 -0.262219 +39.97 -0.236538 +39.98 -0.213633 +39.99 -0.194106 +40 -0.178632 +40.01 -0.16773 +40.02 -0.161473 +40.03 -0.160036 +40.04 -0.16349 +40.05 -0.171799 +40.06 -0.184823 +40.07 -0.202328 +40.08 -0.22399 +40.09 -0.249581 +40.1 -0.27851 +40.11 -0.310095 +40.12 -0.343756 +40.13 -0.378885 +40.14 -0.41486 +40.15 -0.451057 +40.16 -0.48686 +40.17 -0.521676 +40.18 -0.554797 +40.19 -0.585726 +40.2 -0.614037 +40.21 -0.639319 +40.22 -0.661219 +40.23 -0.679442 +40.24 -0.693753 +40.25 -0.703977 +40.26 -0.709991 +40.27 -0.711358 +40.28 -0.708399 +40.29 -0.701173 +40.3 -0.689745 +40.31 -0.674211 +40.32 -0.654693 +40.33 -0.631333 +40.34 -0.604288 +40.35 -0.573702 +40.36 -0.539527 +40.37 -0.502248 +40.38 -0.462068 +40.39 -0.4192 +40.4 -0.373866 +40.41 -0.326302 +40.42 -0.276755 +40.43 -0.225493 +40.44 -0.17277 +40.45 -0.118879 +40.46 -0.0642436 +40.47 -0.00921512 +40.48 0.0458333 +40.49 0.100509 +40.5 0.154403 +40.51 0.207091 +40.52 0.258143 +40.53 0.30702 +40.54 0.353208 +40.55 0.396397 +40.56 0.436182 +40.57 0.472184 +40.58 0.504054 +40.59 0.531479 +40.6 0.554189 +40.61 0.571963 +40.62 0.584335 +40.63 0.591286 +40.64 0.592952 +40.65 0.589343 +40.66 0.580526 +40.67 0.566623 +40.68 0.54781 +40.69 0.524313 +40.7 0.496408 +40.71 0.464148 +40.72 0.428148 +40.73 0.388897 +40.74 0.346837 +40.75 0.302439 +40.76 0.256197 +40.77 0.208631 +40.78 0.160276 +40.79 0.111682 +40.8 0.0634868 +40.81 0.0162757 +40.82 -0.0293892 +40.83 -0.072951 +40.84 -0.113867 +40.85 -0.151613 +40.86 -0.185696 +40.87 -0.215657 +40.88 -0.241027 +40.89 -0.261072 +40.9 -0.275882 +40.91 -0.285244 +40.92 -0.289024 +40.93 -0.28717 +40.94 -0.279721 +40.95 -0.266807 +40.96 -0.24865 +40.97 -0.22544 +40.98 -0.197459 +40.99 -0.165523 +41 -0.130202 +41.01 -0.0921265 +41.02 -0.0519709 +41.03 -0.0104436 +41.04 0.0317308 +41.05 0.0738271 +41.06 0.115072 +41.07 0.154702 +41.08 0.192145 +41.09 0.226853 +41.1 0.258355 +41.11 0.286268 +41.12 0.310304 +41.13 0.330275 +41.14 0.346092 +41.15 0.357532 +41.16 0.364832 +41.17 0.368349 +41.18 0.368378 +41.19 0.365282 +41.2 0.359479 +41.21 0.351425 +41.22 0.341606 +41.23 0.330518 +41.24 0.318638 +41.25 0.306535 +41.26 0.29467 +41.27 0.283455 +41.28 0.273254 +41.29 0.26438 +41.3 0.257085 +41.31 0.251564 +41.32 0.247946 +41.33 0.246479 +41.34 0.246988 +41.35 0.249406 +41.36 0.253613 +41.37 0.259442 +41.38 0.266679 +41.39 0.27507 +41.4 0.284325 +41.41 0.294125 +41.42 0.304101 +41.43 0.313845 +41.44 0.322978 +41.45 0.331115 +41.46 0.337869 +41.47 0.342864 +41.48 0.345738 +41.49 0.346153 +41.5 0.343711 +41.51 0.338017 +41.52 0.329041 +41.53 0.316634 +41.54 0.300714 +41.55 0.281271 +41.56 0.258377 +41.57 0.232185 +41.58 0.202935 +41.59 0.17085 +41.6 0.136398 +41.61 0.100213 +41.62 0.062876 +41.63 0.0250238 +41.64 -0.0126586 +41.65 -0.0494556 +41.66 -0.0846376 +41.67 -0.117481 +41.68 -0.147059 +41.69 -0.172745 +41.7 -0.194067 +41.71 -0.210544 +41.72 -0.221799 +41.73 -0.227576 +41.74 -0.22775 +41.75 -0.222332 +41.76 -0.211478 +41.77 -0.195122 +41.78 -0.174073 +41.79 -0.149001 +41.8 -0.120608 +41.81 -0.0896913 +41.82 -0.0571235 +41.83 -0.0238307 +41.84 0.00923154 +41.85 0.0411021 +41.86 0.0705603 +41.87 0.0968467 +41.88 0.119149 +41.89 0.136747 +41.9 0.149028 +41.91 0.155499 +41.92 0.155802 +41.93 0.149713 +41.94 0.137047 +41.95 0.11749 +41.96 0.091754 +41.97 0.0601787 +41.98 0.023212 +41.99 -0.0186025 +42 -0.0646416 +42.01 -0.114219 +42.02 -0.166604 +42.03 -0.221074 +42.04 -0.276809 +42.05 -0.332925 +42.06 -0.388684 +42.07 -0.443377 +42.08 -0.496346 +42.09 -0.54698 +42.1 -0.594733 +42.11 -0.639119 +42.12 -0.679525 +42.13 -0.715575 +42.14 -0.747175 +42.15 -0.774122 +42.16 -0.796275 +42.17 -0.81355 +42.18 -0.82592 +42.19 -0.833402 +42.2 -0.836063 +42.21 -0.833717 +42.22 -0.826684 +42.23 -0.815276 +42.24 -0.799696 +42.25 -0.780166 +42.26 -0.756927 +42.27 -0.730232 +42.28 -0.700348 +42.29 -0.667549 +42.3 -0.631927 +42.31 -0.593964 +42.32 -0.553979 +42.33 -0.512255 +42.34 -0.469071 +42.35 -0.424706 +42.36 -0.379434 +42.37 -0.333525 +42.38 -0.287245 +42.39 -0.240872 +42.4 -0.194696 +42.41 -0.148975 +42.42 -0.103966 +42.43 -0.059924 +42.44 -0.0171049 +42.45 0.0242371 +42.46 0.0638493 +42.47 0.101442 +42.48 0.136621 +42.49 0.169303 +42.5 0.19927 +42.51 0.226318 +42.52 0.250271 +42.53 0.270979 +42.54 0.288328 +42.55 0.302247 +42.56 0.312594 +42.57 0.319323 +42.58 0.322735 +42.59 0.322988 +42.6 0.320303 +42.61 0.314965 +42.62 0.307314 +42.63 0.297751 +42.64 0.286721 +42.65 0.274692 +42.66 0.262255 +42.67 0.249991 +42.68 0.238442 +42.69 0.228141 +42.7 0.219595 +42.71 0.21327 +42.72 0.209581 +42.73 0.208875 +42.74 0.211649 +42.75 0.217968 +42.76 0.227815 +42.77 0.241164 +42.78 0.257889 +42.79 0.277772 +42.8 0.300502 +42.81 0.325687 +42.82 0.352862 +42.83 0.381574 +42.84 0.411093 +42.85 0.440798 +42.86 0.470069 +42.87 0.498294 +42.88 0.52488 +42.89 0.549266 +42.9 0.57094 +42.91 0.589431 +42.92 0.604029 +42.93 0.61472 +42.94 0.621289 +42.95 0.623599 +42.96 0.621593 +42.97 0.615287 +42.98 0.60477 +42.99 0.590192 +43 0.571683 +43.01 0.549342 +43.02 0.523734 +43.03 0.495176 +43.04 0.463994 +43.05 0.430522 +43.06 0.395086 +43.07 0.358 +43.08 0.319562 +43.09 0.280014 +43.1 0.239612 +43.11 0.198626 +43.12 0.157237 +43.13 0.115598 +43.14 0.0738367 +43.15 0.0320559 +43.16 -0.00965953 +43.17 -0.0512394 +43.18 -0.0926098 +43.19 -0.133709 +43.2 -0.174485 +43.21 -0.214868 +43.22 -0.254775 +43.23 -0.294102 +43.24 -0.332721 +43.25 -0.370477 +43.26 -0.407185 +43.27 -0.442519 +43.28 -0.476252 +43.29 -0.50812 +43.3 -0.537795 +43.31 -0.564921 +43.32 -0.589116 +43.33 -0.609982 +43.34 -0.627108 +43.35 -0.640078 +43.36 -0.64807 +43.37 -0.651007 +43.38 -0.648575 +43.39 -0.640465 +43.4 -0.626422 +43.41 -0.60626 +43.42 -0.579871 +43.43 -0.547236 +43.44 -0.508391 +43.45 -0.463079 +43.46 -0.412141 +43.47 -0.356008 +43.48 -0.295217 +43.49 -0.230415 +43.5 -0.162344 +43.51 -0.09184 +43.52 -0.0198101 +43.53 0.0527629 +43.54 0.124732 +43.55 0.195029 +43.56 0.262617 +43.57 0.326485 +43.58 0.385664 +43.59 0.439256 +43.6 0.486445 +43.61 0.526522 +43.62 0.558578 +43.63 0.581995 +43.64 0.596909 +43.65 0.603188 +43.66 0.600849 +43.67 0.590062 +43.68 0.57114 +43.69 0.544532 +43.7 0.510814 +43.71 0.470367 +43.72 0.424183 +43.73 0.37338 +43.74 0.318889 +43.75 0.261681 +43.76 0.202744 +43.77 0.143066 +43.78 0.0836188 +43.79 0.0253428 +43.8 -0.0306645 +43.81 -0.0835952 +43.82 -0.132751 +43.83 -0.177464 +43.84 -0.217157 +43.85 -0.251341 +43.86 -0.279624 +43.87 -0.301708 +43.88 -0.317395 +43.89 -0.326022 +43.9 -0.328114 +43.91 -0.323819 +43.92 -0.313335 +43.93 -0.296941 +43.94 -0.275001 +43.95 -0.247953 +43.96 -0.216308 +43.97 -0.180607 +43.98 -0.141299 +43.99 -0.0993988 +44 -0.0556342 +44.01 -0.0107597 +44.02 0.0344534 +44.03 0.0792283 +44.04 0.122795 +44.05 0.164403 +44.06 0.203246 +44.07 0.238442 +44.08 0.269572 +44.09 0.296103 +44.1 0.317578 +44.11 0.333631 +44.12 0.343988 +44.13 0.348471 +44.14 0.347006 +44.15 0.339377 +44.16 0.325672 +44.17 0.306426 +44.18 0.281956 +44.19 0.252652 +44.2 0.218964 +44.21 0.181397 +44.22 0.140492 +44.23 0.096818 +44.24 0.0508647 +44.25 0.00332636 +44.26 -0.0451542 +44.27 -0.0940319 +44.28 -0.142792 +44.29 -0.190957 +44.3 -0.238088 +44.31 -0.283793 +44.32 -0.32772 +44.33 -0.369394 +44.34 -0.408639 +44.35 -0.44528 +44.36 -0.479132 +44.37 -0.510038 +44.38 -0.537869 +44.39 -0.562514 +44.4 -0.583879 +44.41 -0.601888 +44.42 -0.616165 +44.43 -0.626944 +44.44 -0.634197 +44.45 -0.637898 +44.46 -0.638035 +44.47 -0.634612 +44.48 -0.627652 +44.49 -0.617203 +44.5 -0.603297 +44.51 -0.585815 +44.52 -0.565165 +44.53 -0.541507 +44.54 -0.51503 +44.55 -0.485949 +44.56 -0.454502 +44.57 -0.420945 +44.58 -0.385549 +44.59 -0.348563 +44.6 -0.310255 +44.61 -0.271006 +44.62 -0.231089 +44.63 -0.190762 +44.64 -0.150268 +44.65 -0.109825 +44.66 -0.0696294 +44.67 -0.0298511 +44.68 0.00933451 +44.69 0.0477898 +44.7 0.0854478 +44.71 0.12223 +44.72 0.15807 +44.73 0.192912 +44.74 0.226701 +44.75 0.259382 +44.76 0.290893 +44.77 0.321086 +44.78 0.349896 +44.79 0.377264 +44.8 0.403072 +44.81 0.427186 +44.82 0.44946 +44.83 0.469737 +44.84 0.487851 +44.85 0.503636 +44.86 0.516727 +44.87 0.527095 +44.88 0.534642 +44.89 0.539244 +44.9 0.540803 +44.91 0.539246 +44.92 0.534531 +44.93 0.52665 +44.94 0.515629 +44.95 0.50126 +44.96 0.483928 +44.97 0.463776 +44.98 0.440978 +44.99 0.415736 +45 0.388282 +45.01 0.358872 +45.02 0.327785 +45.03 0.295309 +45.04 0.261728 +45.05 0.227483 +45.06 0.192925 +45.07 0.158413 +45.08 0.124316 +45.09 0.0910079 +45.1 0.0588636 +45.11 0.0282578 +45.12 -0.000371337 +45.13 -0.0265513 +45.14 -0.0500643 +45.15 -0.0705927 +45.16 -0.0878486 +45.17 -0.101581 +45.18 -0.111582 +45.19 -0.117696 +45.2 -0.119826 +45.21 -0.117761 +45.22 -0.11155 +45.23 -0.101517 +45.24 -0.0878751 +45.25 -0.0709183 +45.26 -0.0510191 +45.27 -0.0286242 +45.28 -0.0042486 +45.29 0.0215332 +45.3 0.0481047 +45.31 0.0747079 +45.32 0.10064 +45.33 0.125218 +45.34 0.147779 +45.35 0.167692 +45.36 0.184376 +45.37 0.197319 +45.38 0.20609 +45.39 0.209982 +45.4 0.209037 +45.41 0.203228 +45.42 0.192572 +45.43 0.177202 +45.44 0.157363 +45.45 0.133404 +45.46 0.10577 +45.47 0.074985 +45.48 0.0414742 +45.49 0.00617465 +45.5 -0.0302267 +45.51 -0.0670308 +45.52 -0.103545 +45.53 -0.139099 +45.54 -0.173062 +45.55 -0.204857 +45.56 -0.233918 +45.57 -0.259586 +45.58 -0.281734 +45.59 -0.300114 +45.6 -0.314567 +45.61 -0.325019 +45.62 -0.331483 +45.63 -0.334046 +45.64 -0.332869 +45.65 -0.32807 +45.66 -0.319869 +45.67 -0.308801 +45.68 -0.295219 +45.69 -0.279495 +45.7 -0.262012 +45.71 -0.243151 +45.72 -0.223284 +45.73 -0.202769 +45.74 -0.181942 +45.75 -0.161148 +45.76 -0.140667 +45.77 -0.120735 +45.78 -0.101549 +45.79 -0.0832705 +45.8 -0.0660207 +45.81 -0.0498848 +45.82 -0.0349112 +45.83 -0.0211869 +45.84 -0.00864494 +45.85 0.00280404 +45.86 0.0132417 +45.87 0.022772 +45.88 0.0315174 +45.89 0.0396138 +45.9 0.0472066 +45.91 0.0544449 +45.92 0.0614713 +45.93 0.0684516 +45.94 0.0755133 +45.95 0.0827628 +45.96 0.0902828 +45.97 0.0981289 +45.98 0.106325 +45.99 0.114863 +46 0.123699 +46.01 0.132763 +46.02 0.141906 +46.03 0.150979 +46.04 0.159802 +46.05 0.168176 +46.06 0.175886 +46.07 0.182709 +46.08 0.188423 +46.09 0.192782 +46.1 0.195488 +46.11 0.196474 +46.12 0.195606 +46.13 0.192793 +46.14 0.187985 +46.15 0.181185 +46.16 0.172441 +46.17 0.161856 +46.18 0.149526 +46.19 0.135638 +46.2 0.120529 +46.21 0.104469 +46.22 0.0877522 +46.23 0.0706828 +46.24 0.0535697 +46.25 0.0367146 +46.26 0.0204028 +46.27 0.00494678 +46.28 -0.00941104 +46.29 -0.0225293 +46.3 -0.0342781 +46.31 -0.0445772 +46.32 -0.0533972 +46.33 -0.0607596 +46.34 -0.066734 +46.35 -0.0714355 +46.36 -0.0749574 +46.37 -0.0775567 +46.38 -0.0794821 +46.39 -0.08097 +46.4 -0.0822661 +46.41 -0.0836165 +46.42 -0.0852609 +46.43 -0.0874252 +46.44 -0.0903151 +46.45 -0.0941979 +46.46 -0.0991669 +46.47 -0.105321 +46.48 -0.112734 +46.49 -0.121439 +46.5 -0.131435 +46.51 -0.142682 +46.52 -0.155103 +46.53 -0.168593 +46.54 -0.183067 +46.55 -0.198254 +46.56 -0.213948 +46.57 -0.229917 +46.58 -0.245911 +46.59 -0.261659 +46.6 -0.276877 +46.61 -0.291271 +46.62 -0.304509 +46.63 -0.316181 +46.64 -0.326069 +46.65 -0.33388 +46.66 -0.339332 +46.67 -0.342165 +46.68 -0.342141 +46.69 -0.339054 +46.7 -0.332733 +46.71 -0.322922 +46.72 -0.309475 +46.73 -0.292562 +46.74 -0.272223 +46.75 -0.248557 +46.76 -0.221722 +46.77 -0.191937 +46.78 -0.159478 +46.79 -0.124676 +46.8 -0.0878303 +46.81 -0.0494458 +46.82 -0.0100645 +46.83 0.0298228 +46.84 0.0697107 +46.85 0.109089 +46.86 0.147454 +46.87 0.184318 +46.88 0.219217 +46.89 0.251534 +46.9 0.280959 +46.91 0.307226 +46.92 0.330069 +46.93 0.349279 +46.94 0.364705 +46.95 0.37626 +46.96 0.383911 +46.97 0.387685 +46.98 0.387344 +46.99 0.383319 +47 0.37581 +47.01 0.36502 +47.02 0.351181 +47.03 0.334546 +47.04 0.315383 +47.05 0.293973 +47.06 0.270592 +47.07 0.245437 +47.08 0.218965 +47.09 0.191474 +47.1 0.163261 +47.11 0.134623 +47.12 0.105853 +47.13 0.0772445 +47.14 0.0490862 +47.15 0.0216876 +47.16 -0.0045968 +47.17 -0.029552 +47.18 -0.0529221 +47.19 -0.074467 +47.2 -0.0939675 +47.21 -0.11123 +47.22 -0.126091 +47.23 -0.138422 +47.24 -0.14803 +47.25 -0.154837 +47.26 -0.158997 +47.27 -0.160575 +47.28 -0.159685 +47.29 -0.156493 +47.3 -0.151209 +47.31 -0.144085 +47.32 -0.135409 +47.33 -0.125449 +47.34 -0.114604 +47.35 -0.103264 +47.36 -0.0917705 +47.37 -0.0804533 +47.38 -0.0696163 +47.39 -0.0595295 +47.4 -0.0504205 +47.41 -0.0424672 +47.42 -0.0358874 +47.43 -0.0306792 +47.44 -0.0268043 +47.45 -0.0241938 +47.46 -0.0227232 +47.47 -0.0222182 +47.48 -0.0224623 +47.49 -0.0232048 +47.5 -0.0241713 +47.51 -0.0250434 +47.52 -0.0255136 +47.53 -0.0253057 +47.54 -0.0241645 +47.55 -0.0218664 +47.56 -0.0182265 +47.57 -0.0131054 +47.58 -0.00641376 +47.59 0.00190075 +47.6 0.0119286 +47.61 0.0234554 +47.62 0.0363503 +47.63 0.0504381 +47.64 0.0655058 +47.65 0.0813089 +47.66 0.0975795 +47.67 0.114034 +47.68 0.130371 +47.69 0.146254 +47.7 0.161413 +47.71 0.175586 +47.72 0.188534 +47.73 0.200045 +47.74 0.209938 +47.75 0.218066 +47.76 0.224318 +47.77 0.228537 +47.78 0.230665 +47.79 0.230808 +47.8 0.229003 +47.81 0.225322 +47.82 0.219863 +47.83 0.212752 +47.84 0.204136 +47.85 0.194184 +47.86 0.183023 +47.87 0.170899 +47.88 0.15806 +47.89 0.144715 +47.9 0.131077 +47.91 0.117352 +47.92 0.103741 +47.93 0.090434 +47.94 0.0776056 +47.95 0.0654688 +47.96 0.0541331 +47.97 0.0436901 +47.98 0.0342164 +47.99 0.0257592 +48 0.018336 +48.01 0.0119341 +48.02 0.00651163 +48.03 0.00199949 +48.04 -0.00163366 +48.05 -0.0045843 +48.06 -0.00698887 +48.07 -0.00899066 +48.08 -0.0107366 +48.09 -0.0123713 +48.1 -0.0140306 +48.11 -0.0158361 +48.12 -0.0178933 +48.13 -0.020306 +48.14 -0.0230946 +48.15 -0.0262696 +48.16 -0.0298092 +48.17 -0.0336606 +48.18 -0.0377418 +48.19 -0.0419457 +48.2 -0.0461447 +48.21 -0.0501882 +48.22 -0.0538998 +48.23 -0.0571433 +48.24 -0.0597824 +48.25 -0.0616994 +48.26 -0.0628025 +48.27 -0.0630324 +48.28 -0.0623673 +48.29 -0.0608275 +48.3 -0.0584464 +48.31 -0.0553489 +48.32 -0.0517353 +48.33 -0.0478062 +48.34 -0.0437957 +48.35 -0.0399644 +48.36 -0.0365918 +48.37 -0.0339669 +48.38 -0.0323788 +48.39 -0.0322011 +48.4 -0.0336824 +48.41 -0.037001 +48.42 -0.0423397 +48.43 -0.0498356 +48.44 -0.0595741 +48.45 -0.0715861 +48.46 -0.0858455 +48.47 -0.102269 +48.48 -0.120857 +48.49 -0.141274 +48.5 -0.163238 +48.51 -0.186462 +48.52 -0.210625 +48.53 -0.23538 +48.54 -0.260365 +48.55 -0.285206 +48.56 -0.309528 +48.57 -0.332847 +48.58 -0.35486 +48.59 -0.375233 +48.6 -0.393653 +48.61 -0.409834 +48.62 -0.42352 +48.63 -0.434485 +48.64 -0.442538 +48.65 -0.447472 +48.66 -0.448951 +48.67 -0.44713 +48.68 -0.441956 +48.69 -0.433409 +48.7 -0.4215 +48.71 -0.40627 +48.72 -0.387794 +48.73 -0.366173 +48.74 -0.341457 +48.75 -0.313742 +48.76 -0.283414 +48.77 -0.250702 +48.78 -0.215864 +48.79 -0.179184 +48.8 -0.140968 +48.81 -0.101546 +48.82 -0.0612646 +48.83 -0.0204779 +48.84 0.0203966 +48.85 0.0609645 +48.86 0.100855 +48.87 0.139705 +48.88 0.177168 +48.89 0.212915 +48.9 0.246642 +48.91 0.278075 +48.92 0.306802 +48.93 0.332683 +48.94 0.355638 +48.95 0.37555 +48.96 0.392341 +48.97 0.405969 +48.98 0.416433 +48.99 0.423761 +49 0.428013 +49.01 0.429052 +49.02 0.427187 +49.03 0.422593 +49.04 0.415411 +49.05 0.405795 +49.06 0.393902 +49.07 0.379895 +49.08 0.363938 +49.09 0.346195 +49.1 0.326699 +49.11 0.305774 +49.12 0.283586 +49.13 0.2603 +49.14 0.236084 +49.15 0.21111 +49.16 0.185553 +49.17 0.159594 +49.18 0.133421 +49.19 0.107245 +49.2 0.0812782 +49.21 0.0557246 +49.22 0.0307892 +49.23 0.00667768 +49.24 -0.0164064 +49.25 -0.0382643 +49.26 -0.0587051 +49.27 -0.0774903 +49.28 -0.0943889 +49.29 -0.109352 +49.3 -0.122252 +49.31 -0.132984 +49.32 -0.141466 +49.33 -0.14764 +49.34 -0.151472 +49.35 -0.152951 +49.36 -0.151982 +49.37 -0.148622 +49.38 -0.143041 +49.39 -0.135328 +49.4 -0.125592 +49.41 -0.113963 +49.42 -0.10059 +49.43 -0.0856403 +49.44 -0.0692987 +49.45 -0.0517048 +49.46 -0.033146 +49.47 -0.013893 +49.48 0.00580136 +49.49 0.0256704 +49.5 0.0454351 +49.51 0.0648062 +49.52 0.083487 +49.53 0.101176 +49.54 0.117446 +49.55 0.132061 +49.56 0.144755 +49.57 0.155262 +49.58 0.163342 +49.59 0.168784 +49.6 0.171415 +49.61 0.171106 +49.62 0.167766 +49.63 0.161115 +49.64 0.151469 +49.65 0.138938 +49.66 0.123693 +49.67 0.105967 +49.68 0.0860513 +49.69 0.0642896 +49.7 0.0410747 +49.71 0.0168285 +49.72 -0.00796439 +49.73 -0.0327481 +49.74 -0.0570301 +49.75 -0.0803229 +49.76 -0.102156 +49.77 -0.122086 +49.78 -0.13971 +49.79 -0.154669 +49.8 -0.166552 +49.81 -0.175027 +49.82 -0.180112 +49.83 -0.181722 +49.84 -0.179843 +49.85 -0.174528 +49.86 -0.165899 +49.87 -0.154139 +49.88 -0.139485 +49.89 -0.122109 +49.9 -0.102407 +49.91 -0.0808508 +49.92 -0.0578284 +49.93 -0.0337403 +49.94 -0.00899224 +49.95 0.0160118 +49.96 0.0408769 +49.97 0.0652227 +49.98 0.0886073 +49.99 0.1107 +50 0.131223 +50.01 0.149906 +50.02 0.166512 +50.03 0.180839 +50.04 0.19272 +50.05 0.202025 +50.06 0.208662 +50.07 0.21235 +50.08 0.213275 +50.09 0.211496 +50.1 0.207082 +50.11 0.200142 +50.12 0.190822 +50.13 0.179307 +50.14 0.165814 +50.15 0.150588 +50.16 0.133824 +50.17 0.115983 +50.18 0.0973978 +50.19 0.0784172 +50.2 0.0593974 +50.21 0.0406953 +50.22 0.0226603 +50.23 0.00562688 +50.24 -0.0100588 +50.25 -0.0240132 +50.26 -0.0361009 +50.27 -0.0461377 +50.28 -0.0539914 +50.29 -0.0595858 +50.3 -0.0629035 +50.31 -0.0639864 +50.32 -0.0629352 +50.33 -0.0598406 +50.34 -0.0549115 +50.35 -0.0485198 +50.36 -0.0409669 +50.37 -0.0325832 +50.38 -0.0237183 +50.39 -0.0147318 +50.4 -0.00598374 +50.41 0.00217524 +50.42 0.00934647 +50.43 0.015205 +50.44 0.0195245 +50.45 0.0220812 +50.46 0.0226964 +50.47 0.0212381 +50.48 0.0176227 +50.49 0.0118146 +50.5 0.00382467 +50.51 -0.0064327 +50.52 -0.0187498 +50.53 -0.0329386 +50.54 -0.0488307 +50.55 -0.0662324 +50.56 -0.0849301 +50.57 -0.104695 +50.58 -0.125289 +50.59 -0.146464 +50.6 -0.167981 +50.61 -0.189544 +50.62 -0.210907 +50.63 -0.231832 +50.64 -0.252088 +50.65 -0.271454 +50.66 -0.289719 +50.67 -0.306685 +50.68 -0.322154 +50.69 -0.335815 +50.7 -0.347648 +50.71 -0.357524 +50.72 -0.365335 +50.73 -0.370999 +50.74 -0.374455 +50.75 -0.375672 +50.76 -0.374648 +50.77 -0.371354 +50.78 -0.36576 +50.79 -0.358108 +50.8 -0.348516 +50.81 -0.337125 +50.82 -0.324101 +50.83 -0.309626 +50.84 -0.293895 +50.85 -0.277113 +50.86 -0.25946 +50.87 -0.241155 +50.88 -0.222433 +50.89 -0.20347 +50.9 -0.184422 +50.91 -0.165424 +50.92 -0.146582 +50.93 -0.127975 +50.94 -0.109653 +50.95 -0.0916585 +50.96 -0.073979 +50.97 -0.0565752 +50.98 -0.0394017 +50.99 -0.0224016 +51 -0.00551164 +51.01 0.011332 +51.02 0.0281884 +51.03 0.0451066 +51.04 0.0621295 +51.05 0.0792675 +51.06 0.0965096 +51.07 0.113825 +51.08 0.131162 +51.09 0.148449 +51.1 0.165596 +51.11 0.182501 +51.12 0.199053 +51.13 0.215086 +51.14 0.230515 +51.15 0.245241 +51.16 0.25917 +51.17 0.27223 +51.18 0.284365 +51.19 0.295543 +51.2 0.305755 +51.21 0.315001 +51.22 0.323254 +51.23 0.330642 +51.24 0.337227 +51.25 0.343078 +51.26 0.348259 +51.27 0.352832 +51.28 0.356844 +51.29 0.360322 +51.3 0.363258 +51.31 0.365604 +51.32 0.367335 +51.33 0.368364 +51.34 0.368575 +51.35 0.367824 +51.36 0.365948 +51.37 0.362767 +51.38 0.358091 +51.39 0.351652 +51.4 0.343232 +51.41 0.332757 +51.42 0.320095 +51.43 0.305149 +51.44 0.287865 +51.45 0.268235 +51.46 0.246307 +51.47 0.222183 +51.48 0.195914 +51.49 0.167792 +51.5 0.138164 +51.51 0.107352 +51.52 0.0757151 +51.53 0.0436477 +51.54 0.0115646 +51.55 -0.0201056 +51.56 -0.0509313 +51.57 -0.0803628 +51.58 -0.108026 +51.59 -0.133568 +51.6 -0.15665 +51.61 -0.176972 +51.62 -0.194285 +51.63 -0.208392 +51.64 -0.219149 +51.65 -0.226474 +51.66 -0.23003 +51.67 -0.23016 +51.68 -0.226971 +51.69 -0.220612 +51.7 -0.211278 +51.71 -0.199209 +51.72 -0.184682 +51.73 -0.168007 +51.74 -0.149503 +51.75 -0.129469 +51.76 -0.108421 +51.77 -0.0867437 +51.78 -0.0648237 +51.79 -0.0430431 +51.8 -0.0217752 +51.81 -0.0013775 +51.82 0.0178125 +51.83 0.0354312 +51.84 0.0511075 +51.85 0.0647041 +51.86 0.0760248 +51.87 0.0849169 +51.88 0.091274 +51.89 0.0950376 +51.9 0.0961986 +51.91 0.0947965 +51.92 0.0908149 +51.93 0.0844019 +51.94 0.0758606 +51.95 0.0654131 +51.96 0.0533135 +51.97 0.0398412 +51.98 0.0252942 +51.99 0.00998201 +52 -0.00578204 +52.01 -0.021678 +52.02 -0.0373722 +52.03 -0.0525848 +52.04 -0.0670643 +52.05 -0.0805892 +52.06 -0.0929711 +52.07 -0.104058 +52.08 -0.113733 +52.09 -0.12192 +52.1 -0.128459 +52.11 -0.133435 +52.12 -0.136902 +52.13 -0.138912 +52.14 -0.139538 +52.15 -0.138866 +52.16 -0.136995 +52.17 -0.134029 +52.18 -0.130072 +52.19 -0.125155 +52.2 -0.119464 +52.21 -0.113088 +52.22 -0.106109 +52.23 -0.0986005 +52.24 -0.0906307 +52.25 -0.0822619 +52.26 -0.073554 +52.27 -0.0645637 +52.28 -0.055347 +52.29 -0.0459939 +52.3 -0.0365816 +52.31 -0.0271968 +52.32 -0.0179366 +52.33 -0.00890868 +52.34 -0.000230278 +52.35 0.00797325 +52.36 0.0155477 +52.37 0.0223224 +52.38 0.0282047 +52.39 0.0330707 +52.4 0.0368076 +52.41 0.0393182 +52.42 0.040525 +52.43 0.0403735 +52.44 0.0388351 +52.45 0.0358453 +52.46 0.0314415 +52.47 0.0257501 +52.48 0.0188615 +52.49 0.0108908 +52.5 0.00197475 +52.51 -0.0077326 +52.52 -0.018064 +52.53 -0.0288441 +52.54 -0.0398995 +52.55 -0.0510259 +52.56 -0.0620466 +52.57 -0.0728036 +52.58 -0.0831524 +52.59 -0.092965 +52.6 -0.10213 +52.61 -0.110556 +52.62 -0.118167 +52.63 -0.124832 +52.64 -0.130563 +52.65 -0.135343 +52.66 -0.139154 +52.67 -0.141984 +52.68 -0.143827 +52.69 -0.14468 +52.7 -0.144542 +52.71 -0.143409 +52.72 -0.141194 +52.73 -0.137989 +52.74 -0.133798 +52.75 -0.128628 +52.76 -0.122496 +52.77 -0.115426 +52.78 -0.107453 +52.79 -0.0986278 +52.8 -0.089002 +52.81 -0.0786291 +52.82 -0.067672 +52.83 -0.056253 +52.84 -0.0445113 +52.85 -0.0326001 +52.86 -0.0206841 +52.87 -0.00893533 +52.88 0.00247108 +52.89 0.0133392 +52.9 0.0234683 +52.91 0.0327416 +52.92 0.0410298 +52.93 0.0482275 +52.94 0.0542573 +52.95 0.0590727 +52.96 0.0626595 +52.97 0.0650373 +52.98 0.0662058 +52.99 0.0662695 +53 0.0653956 +53.01 0.0637244 +53.02 0.0614144 +53.03 0.0586358 +53.04 0.0555652 +53.05 0.052379 +53.06 0.0492476 +53.07 0.0463526 +53.08 0.0438397 +53.09 0.0418172 +53.1 0.0403752 +53.11 0.0395766 +53.12 0.0394566 +53.13 0.0400234 +53.14 0.0412592 +53.15 0.0431224 +53.16 0.0455908 +53.17 0.0485375 +53.18 0.051863 +53.19 0.0554672 +53.2 0.059247 +53.21 0.0631007 +53.22 0.0669312 +53.23 0.0706489 +53.24 0.0741734 +53.25 0.07741 +53.26 0.0803246 +53.27 0.082878 +53.28 0.0850434 +53.29 0.0868051 +53.3 0.0881577 +53.31 0.0891036 +53.32 0.0896525 +53.33 0.0898113 +53.34 0.0895811 +53.35 0.0890102 +53.36 0.0881202 +53.37 0.0869339 +53.38 0.0854746 +53.39 0.0837669 +53.4 0.0818369 +53.41 0.0797129 +53.42 0.0774224 +53.43 0.0750036 +53.44 0.0725076 +53.45 0.0699823 +53.46 0.0674814 +53.47 0.065064 +53.48 0.0627943 +53.49 0.0607401 +53.5 0.0589716 +53.51 0.0575811 +53.52 0.056641 +53.53 0.0561986 +53.54 0.0563087 +53.55 0.0570156 +53.56 0.0583509 +53.57 0.0603314 +53.58 0.0629574 +53.59 0.0662115 +53.6 0.0700942 +53.61 0.0745177 +53.62 0.0793914 +53.63 0.0846227 +53.64 0.0901047 +53.65 0.0957178 +53.66 0.101333 +53.67 0.106814 +53.68 0.112021 +53.69 0.116767 +53.7 0.120932 +53.71 0.124386 +53.72 0.127005 +53.73 0.128672 +53.74 0.129283 +53.75 0.128746 +53.76 0.126983 +53.77 0.123919 +53.78 0.119396 +53.79 0.113495 +53.8 0.106198 +53.81 0.097505 +53.82 0.0874293 +53.83 0.0760008 +53.84 0.0632649 +53.85 0.0492834 +53.86 0.034111 +53.87 0.017805 +53.88 0.000564626 +53.89 -0.0174734 +53.9 -0.0361534 +53.91 -0.0553011 +53.92 -0.0747241 +53.93 -0.0942128 +53.94 -0.113542 +53.95 -0.132448 +53.96 -0.150641 +53.97 -0.167887 +53.98 -0.183929 +53.99 -0.198511 +54 -0.211388 +54.01 -0.222328 +54.02 -0.23112 +54.03 -0.237576 +54.04 -0.241399 +54.05 -0.242501 +54.06 -0.240906 +54.07 -0.236588 +54.08 -0.229567 +54.09 -0.219912 +54.1 -0.207736 +54.11 -0.1932 +54.12 -0.17651 +54.13 -0.157797 +54.14 -0.137466 +54.15 -0.115877 +54.16 -0.0933716 +54.17 -0.0703059 +54.18 -0.0470461 +54.19 -0.0239597 +54.2 -0.00140926 +54.21 0.020255 +54.22 0.0405708 +54.23 0.0593061 +54.24 0.0762001 +54.25 0.0910187 +54.26 0.103567 +54.27 0.113691 +54.28 0.121279 +54.29 0.126266 +54.3 0.128604 +54.31 0.128126 +54.32 0.125122 +54.33 0.119704 +54.34 0.112018 +54.35 0.102245 +54.36 0.0905931 +54.37 0.0772989 +54.38 0.0626185 +54.39 0.046805 +54.4 0.0301399 +54.41 0.0129882 +54.42 -0.00435681 +54.43 -0.0216069 +54.44 -0.0384832 +54.45 -0.0547218 +54.46 -0.0700777 +54.47 -0.08433 +54.48 -0.097226 +54.49 -0.108572 +54.5 -0.118316 +54.51 -0.126375 +54.52 -0.132706 +54.53 -0.1373 +54.54 -0.140187 +54.55 -0.141434 +54.56 -0.141139 +54.57 -0.139358 +54.58 -0.136293 +54.59 -0.13217 +54.6 -0.127177 +54.61 -0.121508 +54.62 -0.115359 +54.63 -0.108918 +54.64 -0.102361 +54.65 -0.0958507 +54.66 -0.089546 +54.67 -0.0835589 +54.68 -0.0779652 +54.69 -0.0728156 +54.7 -0.0681322 +54.71 -0.063909 +54.72 -0.0601153 +54.73 -0.056698 +54.74 -0.0535865 +54.75 -0.0507088 +54.76 -0.0479472 +54.77 -0.0452078 +54.78 -0.0424022 +54.79 -0.0394512 +54.8 -0.0362893 +54.81 -0.0328677 +54.82 -0.0291574 +54.83 -0.025147 +54.84 -0.0208329 +54.85 -0.0162776 +54.86 -0.0115371 +54.87 -0.00668255 +54.88 -0.00179644 +54.89 0.00303173 +54.9 0.00771005 +54.91 0.0121489 +54.92 0.0162545 +54.93 0.0199338 +54.94 0.0231555 +54.95 0.0258847 +54.96 0.0281066 +54.97 0.0298273 +54.98 0.0310736 +54.99 0.0318921 +55 0.0323467 +55.01 0.0325087 +55.02 0.0324796 +55.03 0.0323729 +55.04 0.0322908 +55.05 0.0323345 +55.06 0.0325997 +55.07 0.0331738 +55.08 0.0341323 +55.09 0.035537 +55.1 0.0374646 +55.11 0.0399335 +55.12 0.042936 +55.13 0.0464652 +55.14 0.0504995 +55.15 0.0550043 +55.16 0.0599338 +55.17 0.0652331 +55.18 0.070841 +55.19 0.0767039 +55.2 0.0827328 +55.21 0.0888535 +55.22 0.0949965 +55.23 0.101094 +55.24 0.107079 +55.25 0.112886 +55.26 0.118453 +55.27 0.123719 +55.28 0.128583 +55.29 0.133012 +55.3 0.136949 +55.31 0.140333 +55.32 0.143106 +55.33 0.145212 +55.34 0.146598 +55.35 0.147215 +55.36 0.147009 +55.37 0.14589 +55.38 0.143901 +55.39 0.141034 +55.4 0.137299 +55.41 0.132719 +55.42 0.127336 +55.43 0.121209 +55.44 0.114414 +55.45 0.10703 +55.46 0.0991616 +55.47 0.0909631 +55.48 0.0825613 +55.49 0.0740859 +55.5 0.0656648 +55.51 0.0574199 +55.52 0.0494629 +55.53 0.0418903 +55.54 0.0348044 +55.55 0.0282673 +55.56 0.0222846 +55.57 0.016859 +55.58 0.0119689 +55.59 0.00756945 +55.6 0.00359489 +55.61 -3.79416e-05 +55.62 -0.00342541 +55.63 -0.00667036 +55.64 -0.00989607 +55.65 -0.0132099 +55.66 -0.0167058 +55.67 -0.0204631 +55.68 -0.0245425 +55.69 -0.0289825 +55.7 -0.0337969 +55.71 -0.0389739 +55.72 -0.0444957 +55.73 -0.0502706 +55.74 -0.0562042 +55.75 -0.0621895 +55.76 -0.0681062 +55.77 -0.073826 +55.78 -0.0792181 +55.79 -0.0841548 +55.8 -0.0885168 +55.81 -0.0921276 +55.82 -0.0949588 +55.83 -0.0969498 +55.84 -0.0980639 +55.85 -0.09829 +55.86 -0.097642 +55.87 -0.096158 +55.88 -0.0938978 +55.89 -0.0909305 +55.9 -0.0873238 +55.91 -0.0832359 +55.92 -0.0787773 +55.93 -0.0740592 +55.94 -0.0691885 +55.95 -0.0642652 +55.96 -0.0593784 +55.97 -0.0546044 +55.98 -0.0500129 +55.99 -0.0456616 +56 -0.0415697 +56.01 -0.0377547 +56.02 -0.0342235 +56.03 -0.0309747 +56.04 -0.0280013 +56.05 -0.0252932 +56.06 -0.0228403 +56.07 -0.0206458 +56.08 -0.0187048 +56.09 -0.0170082 +56.1 -0.0155635 +56.11 -0.0143832 +56.12 -0.0134841 +56.13 -0.0128852 +56.14 -0.0126058 +56.15 -0.0126627 +56.16 -0.0130901 +56.17 -0.0138791 +56.18 -0.0150106 +56.19 -0.0164629 +56.2 -0.0182 +56.21 -0.0201717 +56.22 -0.0223132 +56.23 -0.0245463 +56.24 -0.0267818 +56.25 -0.0289059 +56.26 -0.030812 +56.27 -0.0323975 +56.28 -0.0335624 +56.29 -0.0342152 +56.3 -0.0342767 +56.31 -0.0336842 +56.32 -0.0323943 +56.33 -0.0303835 +56.34 -0.0275936 +56.35 -0.0241206 +56.36 -0.0200192 +56.37 -0.0153654 +56.38 -0.0102539 +56.39 -0.00479492 +56.4 0.000889731 +56.41 0.00667134 +56.42 0.0124155 +56.43 0.0179711 +56.44 0.0232217 +56.45 0.0280579 +56.46 0.032385 +56.47 0.0361245 +56.48 0.0392162 +56.49 0.0416183 +56.5 0.0433073 +56.51 0.0442527 +56.52 0.0444493 +56.53 0.0439641 +56.54 0.042832 +56.55 0.0410953 +56.56 0.0388006 +56.57 0.035997 +56.58 0.0327336 +56.59 0.0290585 +56.6 0.025002 +56.61 0.0206161 +56.62 0.0159584 +56.63 0.0110709 +56.64 0.00599712 +56.65 0.000783695 +56.66 -0.00451772 +56.67 -0.00984868 +56.68 -0.0151425 +56.69 -0.0203101 +56.7 -0.0252601 +56.71 -0.0298993 +56.72 -0.0341242 +56.73 -0.0378259 +56.74 -0.0408942 +56.75 -0.0432209 +56.76 -0.0447042 +56.77 -0.0452535 +56.78 -0.0447082 +56.79 -0.043085 +56.8 -0.0403735 +56.81 -0.0365818 +56.82 -0.0317502 +56.83 -0.0259525 +56.84 -0.0192962 +56.85 -0.0119208 +56.86 -0.00399405 +56.87 0.00429821 +56.88 0.0126916 +56.89 0.0209555 +56.9 0.0288543 +56.91 0.0361555 +56.92 0.0426373 +56.93 0.0480965 +56.94 0.0523552 +56.95 0.0552373 +56.96 0.0565522 +56.97 0.05634 +56.98 0.0545861 +56.99 0.0513199 +57 0.0466134 +57.01 0.0405785 +57.02 0.0333628 +57.03 0.0251439 +57.04 0.016103 +57.05 0.00647475 +57.06 -0.00346831 +57.07 -0.0134965 +57.08 -0.0233869 +57.09 -0.0329295 +57.1 -0.0419329 +57.11 -0.0502284 +57.12 -0.0576738 +57.13 -0.0640999 +57.14 -0.069427 +57.15 -0.0736444 +57.16 -0.0767289 +57.17 -0.0786817 +57.18 -0.0795248 +57.19 -0.079298 +57.2 -0.078055 +57.21 -0.0758595 +57.22 -0.0727276 +57.23 -0.0687801 +57.24 -0.0641141 +57.25 -0.0588049 +57.26 -0.0529258 +57.27 -0.0465483 +57.28 -0.0397419 +57.29 -0.0325751 +57.3 -0.0251161 +57.31 -0.0174213 +57.32 -0.00958519 +57.33 -0.00168438 +57.34 0.006203 +57.35 0.0139955 +57.36 0.0216088 +57.37 0.0289576 +57.38 0.0359564 +57.39 0.042519 +57.4 0.0485217 +57.41 0.053936 +57.42 0.0587076 +57.43 0.0627973 +57.44 0.0661832 +57.45 0.0688631 +57.46 0.0708554 +57.47 0.0721996 +57.48 0.0729441 +57.49 0.073155 +57.5 0.0729715 +57.51 0.0725048 +57.52 0.071874 +57.53 0.0712015 +57.54 0.0706073 +57.55 0.070204 +57.56 0.0700918 +57.57 0.0703708 +57.58 0.0711136 +57.59 0.0723307 +57.6 0.0740262 +57.61 0.0761765 +57.62 0.078731 +57.63 0.0816136 +57.64 0.0847259 +57.65 0.0879508 +57.66 0.0911483 +57.67 0.0941624 +57.68 0.0968525 +57.69 0.0990808 +57.7 0.10072 +57.71 0.101656 +57.72 0.101795 +57.73 0.101066 +57.74 0.0994193 +57.75 0.0967676 +57.76 0.0931621 +57.77 0.088655 +57.78 0.0832986 +57.79 0.0771622 +57.8 0.0703287 +57.81 0.0628903 +57.82 0.0549436 +57.83 0.0465857 +57.84 0.0378904 +57.85 0.0289754 +57.86 0.0199171 +57.87 0.0107784 +57.88 0.00161013 +57.89 -0.0075488 +57.9 -0.0166699 +57.91 -0.0257332 +57.92 -0.034724 +57.93 -0.0436239 +57.94 -0.0524272 +57.95 -0.0611177 +57.96 -0.069672 +57.97 -0.0780576 +57.98 -0.0862309 +57.99 -0.0941366 +58 -0.101708 +58.01 -0.108855 +58.02 -0.115461 +58.03 -0.121461 +58.04 -0.12676 +58.05 -0.131267 +58.06 -0.134896 +58.07 -0.137572 +58.08 -0.139233 +58.09 -0.139837 +58.1 -0.139316 +58.11 -0.137662 +58.12 -0.134958 +58.13 -0.131255 +58.14 -0.126624 +58.15 -0.121157 +58.16 -0.11496 +58.17 -0.10815 +58.18 -0.100855 +58.19 -0.0931865 +58.2 -0.085293 +58.21 -0.0773027 +58.22 -0.0693199 +58.23 -0.061434 +58.24 -0.0537168 +58.25 -0.0462213 +58.26 -0.0389815 +58.27 -0.0320124 +58.28 -0.0253306 +58.29 -0.0189022 +58.3 -0.0126922 +58.31 -0.00666423 +58.32 -0.000779479 +58.33 0.00499952 +58.34 0.010705 +58.35 0.0163606 +58.36 0.0219787 +58.37 0.0275536 +58.38 0.0330692 +58.39 0.0384926 +58.4 0.0437767 +58.41 0.0488633 +58.42 0.0536847 +58.43 0.0581676 +58.44 0.0622361 +58.45 0.0658091 +58.46 0.0687729 +58.47 0.0711096 +58.48 0.0727734 +58.49 0.073733 +58.5 0.0739733 +58.51 0.0734962 +58.52 0.0723201 +58.53 0.070479 +58.54 0.0680056 +58.55 0.0649464 +58.56 0.0614105 +58.57 0.0574718 +58.58 0.0532054 +58.59 0.0486841 +58.6 0.0439758 +58.61 0.0391407 +58.62 0.0342298 +58.63 0.029283 +58.64 0.0243317 +58.65 0.0193937 +58.66 0.0144759 +58.67 0.00957792 +58.68 0.00469444 +58.69 -0.000182309 +58.7 -0.00505962 +58.71 -0.00994158 +58.72 -0.0148261 +58.73 -0.019701 +58.74 -0.0245445 +58.75 -0.029324 +58.76 -0.0339964 +58.77 -0.0385079 +58.78 -0.0427964 +58.79 -0.0467926 +58.8 -0.0504232 +58.81 -0.0535746 +58.82 -0.0561932 +58.83 -0.0582207 +58.84 -0.0596002 +58.85 -0.0602864 +58.86 -0.0602478 +58.87 -0.0594685 +58.88 -0.0579491 +58.89 -0.0557064 +58.9 -0.0527149 +58.91 -0.0490896 +58.92 -0.0448938 +58.93 -0.0401992 +58.94 -0.0350839 +58.95 -0.0296294 +58.96 -0.023917 +58.97 -0.0180257 +58.98 -0.0120288 +58.99 -0.00599584 +59 1.02215e-05 +59.01 0.00594362 +59.02 0.0117681 +59.03 0.0174561 +59.04 0.0229876 +59.05 0.0283483 +59.06 0.0335271 +59.07 0.038508 +59.08 0.0432716 +59.09 0.0478139 +59.1 0.0521126 +59.11 0.0561385 +59.12 0.0598539 +59.13 0.0632132 +59.14 0.0661632 +59.15 0.0686444 +59.16 0.0705661 +59.17 0.0718546 +59.18 0.0724725 +59.19 0.0723628 +59.2 0.0714776 +59.21 0.069781 +59.22 0.0672525 +59.23 0.0638886 +59.24 0.0597052 +59.25 0.0546934 +59.26 0.0489421 +59.27 0.0425549 +59.28 0.0356279 +59.29 0.0282719 +59.3 0.0206085 +59.31 0.0127661 +59.32 0.00487626 +59.33 -0.00293125 +59.34 -0.0105074 +59.35 -0.0177423 +59.36 -0.0245421 +59.37 -0.0308267 +59.38 -0.0365345 +59.39 -0.0416242 +59.4 -0.0460742 +59.41 -0.0498822 +59.42 -0.0530631 +59.43 -0.0555974 +59.44 -0.0575872 +59.45 -0.0590856 +59.46 -0.0601496 +59.47 -0.0608367 +59.48 -0.0612012 +59.49 -0.061291 +59.5 -0.061145 +59.51 -0.0607881 +59.52 -0.0602249 +59.53 -0.0594708 +59.54 -0.0585137 +59.55 -0.0573307 +59.56 -0.0558898 +59.57 -0.0541528 +59.58 -0.0520777 +59.59 -0.0496225 +59.6 -0.0467329 +59.61 -0.0433596 +59.62 -0.0395058 +59.63 -0.0351603 +59.64 -0.0303254 +59.65 -0.0250175 +59.66 -0.0192676 +59.67 -0.0131213 +59.68 -0.00663731 +59.69 0.000122378 +59.7 0.00706512 +59.71 0.0140902 +59.72 0.0211042 +59.73 0.0280125 +59.74 0.0347216 +59.75 0.0411421 +59.76 0.0471906 +59.77 0.0527915 +59.78 0.0578424 +59.79 0.0623013 +59.8 0.0661409 +59.81 0.06933 +59.82 0.0718477 +59.83 0.0736835 +59.84 0.0748357 +59.85 0.0753106 +59.86 0.0751217 +59.87 0.0742395 +59.88 0.0727348 +59.89 0.0706464 +59.9 0.0680087 +59.91 0.0648603 +59.92 0.0612435 +59.93 0.0572046 +59.94 0.0527942 +59.95 0.0480669 +59.96 0.0430663 +59.97 0.037886 +59.98 0.0325963 +59.99 0.0272721 +60 0.0219913 diff --git a/docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr b/docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr new file mode 100644 index 0000000..2378e2e --- /dev/null +++ b/docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr @@ -0,0 +1,6022 @@ +# xPDFsuite Configuration # +[PDF] +wavelength = 0.1863 +dataformat = Qnm +inputfile = Pt-nanoparticles.chi +backgroundfile = sub_20170121-140150_W151005_2_ct_300_fe9969_0001.chi +mode = xray +bgscale = 0.083088 +composition = Pt +outputtype = gr +qmaxinst = 25.0 +qmin = 0.1 +qmax = 25.0 +rmax = 6.0 +rmin = 0.0 +rstep = 0.01 +rpoly = 0.9 + +#### start data +#S 1 +#L r($\AA$) G($\AA^{-2}$) +0 0 +0.01 -0.000504438 +0.02 -0.00097593 +0.03 -0.00138616 +0.04 -0.00171049 +0.05 -0.00192944 +0.06 -0.00202977 +0.07 -0.00200532 +0.08 -0.00185729 +0.09 -0.00159271 +0.1 -0.00122309 +0.11 -0.000779556 +0.12 -0.000288777 +0.13 0.000219985 +0.14 0.000716613 +0.15 0.00117193 +0.16 0.00155942 +0.17 0.00185677 +0.18 0.00204336 +0.19 0.00210472 +0.2 0.00204513 +0.21 0.00186871 +0.22 0.00158522 +0.23 0.0012089 +0.24 0.000756731 +0.25 0.000246563 +0.26 -0.000305107 +0.27 -0.0008863 +0.28 -0.00148968 +0.29 -0.00211613 +0.3 -0.00277676 +0.31 -0.0034922 +0.32 -0.00429234 +0.33 -0.00521523 +0.34 -0.00630502 +0.35 -0.00760912 +0.36 -0.00919359 +0.37 -0.0110949 +0.38 -0.013334 +0.39 -0.0159231 +0.4 -0.0188528 +0.41 -0.0220871 +0.42 -0.0255593 +0.43 -0.029169 +0.44 -0.0327804 +0.45 -0.0361924 +0.46 -0.0391868 +0.47 -0.0415241 +0.48 -0.0429392 +0.49 -0.0431522 +0.5 -0.0418778 +0.51 -0.0388366 +0.52 -0.0337678 +0.53 -0.0264366 +0.54 -0.0164288 +0.55 -0.003838 +0.56 0.0113785 +0.57 0.0291834 +0.58 0.0494524 +0.59 0.0719703 +0.6 0.0964309 +0.61 0.122439 +0.62 0.149528 +0.63 0.177116 +0.64 0.204514 +0.65 0.231072 +0.66 0.256124 +0.67 0.279013 +0.68 0.299114 +0.69 0.315852 +0.7 0.32873 +0.71 0.337194 +0.72 0.340821 +0.73 0.339737 +0.74 0.33395 +0.75 0.323614 +0.76 0.309019 +0.77 0.290588 +0.78 0.268865 +0.79 0.244492 +0.8 0.218137 +0.81 0.190686 +0.82 0.163019 +0.83 0.135922 +0.84 0.110137 +0.85 0.0863333 +0.86 0.065082 +0.87 0.0468331 +0.88 0.0318976 +0.89 0.0206611 +0.9 0.0129755 +0.91 0.00855672 +0.92 0.00707114 +0.93 0.00805504 +0.94 0.0109353 +0.95 0.0150551 +0.96 0.0197034 +0.97 0.0241465 +0.98 0.0275315 +0.99 0.0291931 +1 0.028561 +1.01 0.0251613 +1.02 0.0186504 +1.03 0.00883079 +1.04 -0.0043394 +1.05 -0.0207443 +1.06 -0.0401242 +1.07 -0.0622341 +1.08 -0.0862568 +1.09 -0.111542 +1.1 -0.137376 +1.11 -0.163017 +1.12 -0.187729 +1.13 -0.210813 +1.14 -0.231642 +1.15 -0.249631 +1.16 -0.264182 +1.17 -0.27529 +1.18 -0.282898 +1.19 -0.287118 +1.2 -0.28822 +1.21 -0.286625 +1.22 -0.282887 +1.23 -0.277665 +1.24 -0.271702 +1.25 -0.265878 +1.26 -0.261019 +1.27 -0.257882 +1.28 -0.257151 +1.29 -0.259409 +1.3 -0.265112 +1.31 -0.274564 +1.32 -0.287904 +1.33 -0.305285 +1.34 -0.326414 +1.35 -0.350723 +1.36 -0.377659 +1.37 -0.406546 +1.38 -0.436614 +1.39 -0.467034 +1.4 -0.496953 +1.41 -0.525528 +1.42 -0.551775 +1.43 -0.575014 +1.44 -0.594736 +1.45 -0.610521 +1.46 -0.62211 +1.47 -0.629421 +1.48 -0.632545 +1.49 -0.631748 +1.5 -0.627457 +1.51 -0.620057 +1.52 -0.610519 +1.53 -0.599661 +1.54 -0.588316 +1.55 -0.577328 +1.56 -0.567514 +1.57 -0.559629 +1.58 -0.554337 +1.59 -0.552202 +1.6 -0.553934 +1.61 -0.559459 +1.62 -0.568812 +1.63 -0.581861 +1.64 -0.598315 +1.65 -0.617732 +1.66 -0.639549 +1.67 -0.663099 +1.68 -0.68765 +1.69 -0.712355 +1.7 -0.736375 +1.71 -0.758973 +1.72 -0.779481 +1.73 -0.797326 +1.74 -0.812057 +1.75 -0.823359 +1.76 -0.831065 +1.77 -0.835034 +1.78 -0.835377 +1.79 -0.832605 +1.8 -0.827153 +1.81 -0.819558 +1.82 -0.81043 +1.83 -0.800424 +1.84 -0.79021 +1.85 -0.780442 +1.86 -0.771811 +1.87 -0.764886 +1.88 -0.760029 +1.89 -0.757528 +1.9 -0.757535 +1.91 -0.760069 +1.92 -0.765011 +1.93 -0.772115 +1.94 -0.781024 +1.95 -0.791345 +1.96 -0.802444 +1.97 -0.813731 +1.98 -0.824651 +1.99 -0.834679 +2 -0.843353 +2.01 -0.850299 +2.02 -0.855256 +2.03 -0.858091 +2.04 -0.858645 +2.05 -0.857266 +2.06 -0.854292 +2.07 -0.850171 +2.08 -0.845453 +2.09 -0.840767 +2.1 -0.836786 +2.11 -0.834199 +2.12 -0.833687 +2.13 -0.836104 +2.14 -0.84174 +2.15 -0.850932 +2.16 -0.863856 +2.17 -0.88051 +2.18 -0.900703 +2.19 -0.924063 +2.2 -0.950037 +2.21 -0.977946 +2.22 -1.00691 +2.23 -1.03586 +2.24 -1.06383 +2.25 -1.08988 +2.26 -1.11312 +2.27 -1.13278 +2.28 -1.14823 +2.29 -1.15907 +2.3 -1.16492 +2.31 -1.16579 +2.32 -1.16231 +2.33 -1.15505 +2.34 -1.14481 +2.35 -1.13255 +2.36 -1.11931 +2.37 -1.10618 +2.38 -1.09421 +2.39 -1.08446 +2.4 -1.07764 +2.41 -1.07396 +2.42 -1.07334 +2.43 -1.0752 +2.44 -1.07846 +2.45 -1.08149 +2.46 -1.08207 +2.47 -1.07748 +2.48 -1.0636 +2.49 -1.03674 +2.5 -0.993005 +2.51 -0.928142 +2.52 -0.837842 +2.53 -0.717922 +2.54 -0.564491 +2.55 -0.374126 +2.56 -0.144045 +2.57 0.131407 +2.58 0.449832 +2.59 0.810636 +2.6 1.21229 +2.61 1.652 +2.62 2.12574 +2.63 2.62821 +2.64 3.15297 +2.65 3.69258 +2.66 4.2382 +2.67 4.77946 +2.68 5.3067 +2.69 5.81008 +2.7 6.27987 +2.71 6.70667 +2.72 7.08174 +2.73 7.39722 +2.74 7.64455 +2.75 7.81487 +2.76 7.90915 +2.77 7.92548 +2.78 7.86366 +2.79 7.72519 +2.8 7.51325 +2.81 7.2326 +2.82 6.8894 +2.83 6.48923 +2.84 6.04118 +2.85 5.55743 +2.86 5.04777 +2.87 4.52219 +2.88 3.99051 +2.89 3.46217 +2.9 2.94598 +2.91 2.44988 +2.92 1.98261 +2.93 1.54979 +2.94 1.15455 +2.95 0.799649 +2.96 0.48653 +2.97 0.215355 +2.98 -0.0148958 +2.99 -0.206293 +3 -0.361801 +3.01 -0.483079 +3.02 -0.576463 +3.03 -0.647139 +3.04 -0.69972 +3.05 -0.738703 +3.06 -0.768309 +3.07 -0.792338 +3.08 -0.814061 +3.09 -0.836143 +3.1 -0.860919 +3.11 -0.889532 +3.12 -0.92252 +3.13 -0.959843 +3.14 -1.00096 +3.15 -1.04489 +3.16 -1.09039 +3.17 -1.13599 +3.18 -1.1801 +3.19 -1.22087 +3.2 -1.2571 +3.21 -1.28767 +3.22 -1.31177 +3.23 -1.3289 +3.24 -1.33894 +3.25 -1.34208 +3.26 -1.33887 +3.27 -1.33001 +3.28 -1.3165 +3.29 -1.29995 +3.3 -1.28167 +3.31 -1.26296 +3.32 -1.24508 +3.33 -1.22911 +3.34 -1.21599 +3.35 -1.20638 +3.36 -1.2009 +3.37 -1.19971 +3.38 -1.20245 +3.39 -1.20873 +3.4 -1.21794 +3.41 -1.22933 +3.42 -1.24206 +3.43 -1.25524 +3.44 -1.26799 +3.45 -1.2794 +3.46 -1.28876 +3.47 -1.29567 +3.48 -1.29983 +3.49 -1.30118 +3.5 -1.29987 +3.51 -1.29625 +3.52 -1.29081 +3.53 -1.2842 +3.54 -1.27716 +3.55 -1.27054 +3.56 -1.26505 +3.57 -1.2613 +3.58 -1.25975 +3.59 -1.26066 +3.6 -1.26407 +3.61 -1.26974 +3.62 -1.2772 +3.63 -1.28568 +3.64 -1.29398 +3.65 -1.30085 +3.66 -1.30487 +3.67 -1.30453 +3.68 -1.29826 +3.69 -1.28455 +3.7 -1.26199 +3.71 -1.22916 +3.72 -1.18425 +3.73 -1.12743 +3.74 -1.0584 +3.75 -0.977237 +3.76 -0.884416 +3.77 -0.780813 +3.78 -0.667684 +3.79 -0.546645 +3.8 -0.419521 +3.81 -0.288651 +3.82 -0.156829 +3.83 -0.0266033 +3.84 0.0994417 +3.85 0.218756 +3.86 0.328898 +3.87 0.427606 +3.88 0.512856 +3.89 0.582173 +3.9 0.633986 +3.91 0.668088 +3.92 0.683929 +3.93 0.681349 +3.94 0.660567 +3.95 0.622166 +3.96 0.56706 +3.97 0.496456 +3.98 0.411067 +3.99 0.31315 +4 0.204976 +4.01 0.0884506 +4.02 -0.0344906 +4.03 -0.161933 +4.04 -0.292026 +4.05 -0.423019 +4.06 -0.553297 +4.07 -0.681139 +4.08 -0.805304 +4.09 -0.924782 +4.1 -1.03872 +4.11 -1.14644 +4.12 -1.24747 +4.13 -1.34147 +4.14 -1.42827 +4.15 -1.50782 +4.16 -1.57953 +4.17 -1.64424 +4.18 -1.70216 +4.19 -1.75358 +4.2 -1.79876 +4.21 -1.83802 +4.22 -1.87166 +4.23 -1.89996 +4.24 -1.92314 +4.25 -1.94119 +4.26 -1.95473 +4.27 -1.96402 +4.28 -1.9693 +4.29 -1.97079 +4.3 -1.96877 +4.31 -1.9635 +4.32 -1.95527 +4.33 -1.94435 +4.34 -1.93105 +4.35 -1.9159 +4.36 -1.8993 +4.37 -1.88163 +4.38 -1.86326 +4.39 -1.84452 +4.4 -1.82569 +4.41 -1.80693 +4.42 -1.78831 +4.43 -1.76971 +4.44 -1.75079 +4.45 -1.73104 +4.46 -1.70969 +4.47 -1.68573 +4.48 -1.65788 +4.49 -1.62463 +4.5 -1.5842 +4.51 -1.53391 +4.52 -1.47162 +4.53 -1.39529 +4.54 -1.30253 +4.55 -1.19095 +4.56 -1.0583 +4.57 -0.902454 +4.58 -0.721601 +4.59 -0.514279 +4.6 -0.277308 +4.61 -0.0120249 +4.62 0.280859 +4.63 0.600337 +4.64 0.944669 +4.65 1.31136 +4.66 1.69715 +4.67 2.09807 +4.68 2.50944 +4.69 2.92592 +4.7 3.34073 +4.71 3.74761 +4.72 4.14006 +4.73 4.51154 +4.74 4.85557 +4.75 5.16594 +4.76 5.43687 +4.77 5.66229 +4.78 5.83449 +4.79 5.95349 +4.8 6.01687 +4.81 6.02329 +4.82 5.97251 +4.83 5.86543 +4.84 5.70403 +4.85 5.49138 +4.86 5.23011 +4.87 4.92463 +4.88 4.5835 +4.89 4.21301 +4.9 3.81983 +4.91 3.4108 +4.92 2.99278 +4.93 2.57245 +4.94 2.15618 +4.95 1.75057 +4.96 1.36142 +4.97 0.992615 +4.98 0.647724 +4.99 0.32946 +5 0.0396762 +5.01 -0.220614 +5.02 -0.451197 +5.03 -0.652593 +5.04 -0.824287 +5.05 -0.969245 +5.06 -1.09047 +5.07 -1.19047 +5.08 -1.2719 +5.09 -1.33746 +5.1 -1.38979 +5.11 -1.43136 +5.12 -1.46442 +5.13 -1.49051 +5.14 -1.51174 +5.15 -1.52933 +5.16 -1.54403 +5.17 -1.55625 +5.18 -1.56604 +5.19 -1.57316 +5.2 -1.57715 +5.21 -1.57731 +5.22 -1.57238 +5.23 -1.56183 +5.24 -1.54478 +5.25 -1.5204 +5.26 -1.48795 +5.27 -1.44682 +5.28 -1.39654 +5.29 -1.33682 +5.3 -1.26736 +5.31 -1.18772 +5.32 -1.09887 +5.33 -1.00125 +5.34 -0.895424 +5.35 -0.782112 +5.36 -0.662138 +5.37 -0.536437 +5.38 -0.406032 +5.39 -0.271952 +5.4 -0.135472 +5.41 0.00193805 +5.42 0.13894 +5.43 0.274135 +5.44 0.40606 +5.45 0.533201 +5.46 0.653997 +5.47 0.766853 +5.48 0.86959 +5.49 0.96049 +5.5 1.0384 +5.51 1.10183 +5.52 1.14941 +5.53 1.17992 +5.54 1.19233 +5.55 1.18584 +5.56 1.15995 +5.57 1.11315 +5.58 1.04644 +5.59 0.960901 +5.6 0.85748 +5.61 0.737484 +5.62 0.602569 +5.63 0.454701 +5.64 0.296125 +5.65 0.129307 +5.66 -0.0433631 +5.67 -0.218526 +5.68 -0.393401 +5.69 -0.565344 +5.7 -0.731859 +5.71 -0.890673 +5.72 -1.03979 +5.73 -1.17755 +5.74 -1.30257 +5.75 -1.41278 +5.76 -1.50889 +5.77 -1.59084 +5.78 -1.65894 +5.79 -1.7138 +5.8 -1.7563 +5.81 -1.78749 +5.82 -1.80853 +5.83 -1.82048 +5.84 -1.82423 +5.85 -1.82145 +5.86 -1.81295 +5.87 -1.79935 +5.88 -1.78094 +5.89 -1.75773 +5.9 -1.72942 +5.91 -1.69537 +5.92 -1.65441 +5.93 -1.60509 +5.94 -1.54643 +5.95 -1.47698 +5.96 -1.39528 +5.97 -1.29991 +5.98 -1.18963 +5.99 -1.06343 +6 -0.920593 +6.01 -0.759908 +6.02 -0.581757 +6.03 -0.387513 +6.04 -0.178365 +6.05 0.043993 +6.06 0.277385 +6.07 0.519183 +6.08 0.766357 +6.09 1.01555 +6.1 1.26276 +6.11 1.50387 +6.12 1.73507 +6.13 1.95256 +6.14 2.15267 +6.15 2.33199 +6.16 2.48742 +6.17 2.61629 +6.18 2.71638 +6.19 2.78334 +6.2 2.81833 +6.21 2.82118 +6.22 2.79203 +6.23 2.73161 +6.24 2.64116 +6.25 2.52239 +6.26 2.37748 +6.27 2.20881 +6.28 2.01789 +6.29 1.80981 +6.3 1.58781 +6.31 1.35518 +6.32 1.1152 +6.33 0.871085 +6.34 0.62591 +6.35 0.382557 +6.36 0.143842 +6.37 -0.087292 +6.38 -0.309147 +6.39 -0.51999 +6.4 -0.718391 +6.41 -0.903222 +6.42 -1.07364 +6.43 -1.22909 +6.44 -1.36923 +6.45 -1.49338 +6.46 -1.60141 +6.47 -1.69446 +6.48 -1.77291 +6.49 -1.83728 +6.5 -1.88813 +6.51 -1.9261 +6.52 -1.95183 +6.53 -1.966 +6.54 -1.96871 +6.55 -1.9609 +6.56 -1.94363 +6.57 -1.91757 +6.58 -1.88339 +6.59 -1.84175 +6.6 -1.79335 +6.61 -1.73889 +6.62 -1.67912 +6.63 -1.61458 +6.64 -1.54641 +6.65 -1.4756 +6.66 -1.40311 +6.67 -1.32991 +6.68 -1.25705 +6.69 -1.18558 +6.7 -1.11656 +6.71 -1.05106 +6.72 -0.990592 +6.73 -0.935843 +6.74 -0.887684 +6.75 -0.846907 +6.76 -0.814187 +6.77 -0.790058 +6.78 -0.7749 +6.79 -0.768924 +6.8 -0.772245 +6.81 -0.785367 +6.82 -0.807161 +6.83 -0.837103 +6.84 -0.874514 +6.85 -0.91858 +6.86 -0.96837 +6.87 -1.02286 +6.88 -1.08095 +6.89 -1.14154 +6.9 -1.20337 +6.91 -1.26512 +6.92 -1.32564 +6.93 -1.38378 +6.94 -1.43844 +6.95 -1.48855 +6.96 -1.53306 +6.97 -1.57095 +6.98 -1.60086 +6.99 -1.62152 +7 -1.63229 +7.01 -1.63208 +7.02 -1.61976 +7.03 -1.59412 +7.04 -1.55392 +7.05 -1.49785 +7.06 -1.42457 +7.07 -1.33162 +7.08 -1.21788 +7.09 -1.08279 +7.1 -0.925249 +7.11 -0.744323 +7.12 -0.539346 +7.13 -0.309965 +7.14 -0.0562087 +7.15 0.22145 +7.16 0.523574 +7.17 0.847245 +7.18 1.18977 +7.19 1.54834 +7.2 1.91955 +7.21 2.29946 +7.22 2.6836 +7.23 3.06709 +7.24 3.44465 +7.25 3.80929 +7.26 4.15584 +7.27 4.47873 +7.28 4.77252 +7.29 5.03206 +7.3 5.25266 +7.31 5.43021 +7.32 5.56128 +7.33 5.6427 +7.34 5.66905 +7.35 5.64377 +7.36 5.56726 +7.37 5.44085 +7.38 5.26682 +7.39 5.04834 +7.4 4.78934 +7.41 4.49445 +7.42 4.16822 +7.43 3.81591 +7.44 3.44543 +7.45 3.06277 +7.46 2.67386 +7.47 2.28439 +7.48 1.89974 +7.49 1.5248 +7.5 1.1639 +7.51 0.821631 +7.52 0.501455 +7.53 0.204598 +7.54 -0.067508 +7.55 -0.314113 +7.56 -0.5351 +7.57 -0.730923 +7.58 -0.902526 +7.59 -1.05126 +7.6 -1.17766 +7.61 -1.28435 +7.62 -1.37406 +7.63 -1.44881 +7.64 -1.51059 +7.65 -1.56125 +7.66 -1.60249 +7.67 -1.63578 +7.68 -1.66241 +7.69 -1.68308 +7.7 -1.69898 +7.71 -1.71082 +7.72 -1.71904 +7.73 -1.72398 +7.74 -1.72586 +7.75 -1.72489 +7.76 -1.72125 +7.77 -1.71514 +7.78 -1.70665 +7.79 -1.69633 +7.8 -1.6846 +7.81 -1.67193 +7.82 -1.65887 +7.83 -1.64601 +7.84 -1.63396 +7.85 -1.62332 +7.86 -1.6147 +7.87 -1.60879 +7.88 -1.6058 +7.89 -1.60596 +7.9 -1.60936 +7.91 -1.6159 +7.92 -1.6253 +7.93 -1.63711 +7.94 -1.65068 +7.95 -1.66522 +7.96 -1.67963 +7.97 -1.69275 +7.98 -1.7034 +7.99 -1.71032 +8 -1.71222 +8.01 -1.70782 +8.02 -1.6959 +8.03 -1.67528 +8.04 -1.64442 +8.05 -1.60223 +8.06 -1.5484 +8.07 -1.48232 +8.08 -1.40356 +8.09 -1.31186 +8.1 -1.20715 +8.11 -1.08957 +8.12 -0.959449 +8.13 -0.816635 +8.14 -0.662302 +8.15 -0.497823 +8.16 -0.324379 +8.17 -0.143356 +8.18 0.0436692 +8.19 0.234928 +8.2 0.428472 +8.21 0.622187 +8.22 0.813469 +8.23 0.999816 +8.24 1.17877 +8.25 1.34778 +8.26 1.5043 +8.27 1.64581 +8.28 1.76992 +8.29 1.87437 +8.3 1.9571 +8.31 2.01408 +8.32 2.04593 +8.33 2.05172 +8.34 2.03093 +8.35 1.98352 +8.36 1.90995 +8.37 1.81121 +8.38 1.68878 +8.39 1.54436 +8.4 1.3795 +8.41 1.19881 +8.42 1.0056 +8.43 0.803452 +8.44 0.596113 +8.45 0.387446 +8.46 0.181306 +8.47 -0.0185427 +8.48 -0.208119 +8.49 -0.383366 +8.5 -0.542075 +8.51 -0.681833 +8.52 -0.800718 +8.53 -0.897334 +8.54 -0.970834 +8.55 -1.02092 +8.56 -1.04783 +8.57 -1.05135 +8.58 -1.03291 +8.59 -0.995281 +8.6 -0.940521 +8.61 -0.870976 +8.62 -0.78918 +8.63 -0.697791 +8.64 -0.599518 +8.65 -0.497054 +8.66 -0.393074 +8.67 -0.290361 +8.68 -0.191218 +8.69 -0.0976911 +8.7 -0.0115904 +8.71 0.0655269 +8.72 0.13236 +8.73 0.187862 +8.74 0.231236 +8.75 0.260909 +8.76 0.277336 +8.77 0.280621 +8.78 0.270865 +8.79 0.248347 +8.8 0.213511 +8.81 0.166959 +8.82 0.109444 +8.83 0.0418631 +8.84 -0.0354463 +8.85 -0.120353 +8.86 -0.211496 +8.87 -0.30738 +8.88 -0.406387 +8.89 -0.506789 +8.9 -0.606768 +8.91 -0.70444 +8.92 -0.797782 +8.93 -0.884315 +8.94 -0.962525 +8.95 -1.03065 +8.96 -1.08708 +8.97 -1.1304 +8.98 -1.15944 +8.99 -1.17331 +9 -1.17145 +9.01 -1.15314 +9.02 -1.11816 +9.03 -1.06812 +9.04 -1.00403 +9.05 -0.927267 +9.06 -0.839557 +9.07 -0.742906 +9.08 -0.639568 +9.09 -0.531985 +9.1 -0.422765 +9.11 -0.314848 +9.12 -0.210863 +9.13 -0.113267 +9.14 -0.0243333 +9.15 0.0539038 +9.16 0.119705 +9.17 0.171667 +9.18 0.208756 +9.19 0.229327 +9.2 0.2337 +9.21 0.222558 +9.22 0.196503 +9.23 0.156478 +9.24 0.10373 +9.25 0.0397628 +9.26 -0.0337075 +9.27 -0.114808 +9.28 -0.201842 +9.29 -0.292216 +9.3 -0.383827 +9.31 -0.474692 +9.32 -0.562915 +9.33 -0.646724 +9.34 -0.724489 +9.35 -0.79475 +9.36 -0.856201 +9.37 -0.906812 +9.38 -0.946545 +9.39 -0.974757 +9.4 -0.991007 +9.41 -0.995051 +9.42 -0.986843 +9.43 -0.966532 +9.44 -0.934458 +9.45 -0.89096 +9.46 -0.83627 +9.47 -0.772155 +9.48 -0.699741 +9.49 -0.62032 +9.5 -0.535341 +9.51 -0.446395 +9.52 -0.355193 +9.53 -0.263539 +9.54 -0.173413 +9.55 -0.0869939 +9.56 -0.00603141 +9.57 0.067718 +9.58 0.132639 +9.59 0.187315 +9.6 0.230578 +9.61 0.261569 +9.62 0.279778 +9.63 0.284464 +9.64 0.276126 +9.65 0.256175 +9.66 0.225923 +9.67 0.187124 +9.68 0.141946 +9.69 0.0929318 +9.7 0.0429391 +9.71 -0.00492547 +9.72 -0.0468114 +9.73 -0.0792317 +9.74 -0.0990449 +9.75 -0.10311 +9.76 -0.0885446 +9.77 -0.0528212 +9.78 0.00613966 +9.79 0.08989 +9.8 0.199387 +9.81 0.337026 +9.82 0.50047 +9.83 0.688205 +9.84 0.898327 +9.85 1.12828 +9.86 1.37491 +9.87 1.63455 +9.88 1.90306 +9.89 2.17596 +9.9 2.44805 +9.91 2.71415 +9.92 2.96941 +9.93 3.20913 +9.94 3.42883 +9.95 3.6244 +9.96 3.79214 +9.97 3.92887 +9.98 4.03126 +9.99 4.09532 +10 4.12234 +10.01 4.11179 +10.02 4.06381 +10.03 3.97917 +10.04 3.85925 +10.05 3.70594 +10.06 3.52167 +10.07 3.30835 +10.08 3.06905 +10.09 2.80883 +10.1 2.53136 +10.11 2.24036 +10.12 1.93963 +10.13 1.63288 +10.14 1.3237 +10.15 1.01554 +10.16 0.711955 +10.17 0.416166 +10.18 0.130538 +10.19 -0.142704 +10.2 -0.401687 +10.21 -0.644893 +10.22 -0.871168 +10.23 -1.0797 +10.24 -1.27004 +10.25 -1.44081 +10.26 -1.59299 +10.27 -1.72752 +10.28 -1.84511 +10.29 -1.94665 +10.3 -2.03317 +10.31 -2.10581 +10.32 -2.1658 +10.33 -2.21437 +10.34 -2.25199 +10.35 -2.28066 +10.36 -2.30152 +10.37 -2.31549 +10.38 -2.32334 +10.39 -2.32565 +10.4 -2.32282 +10.41 -2.31505 +10.42 -2.30232 +10.43 -2.28403 +10.44 -2.26019 +10.45 -2.2303 +10.46 -2.1937 +10.47 -2.14969 +10.48 -2.09752 +10.49 -2.03641 +10.5 -1.96568 +10.51 -1.88445 +10.52 -1.7917 +10.53 -1.68787 +10.54 -1.5729 +10.55 -1.44695 +10.56 -1.31047 +10.57 -1.16416 +10.58 -1.00897 +10.59 -0.846149 +10.6 -0.677024 +10.61 -0.503468 +10.62 -0.327764 +10.63 -0.152023 +10.64 0.0215377 +10.65 0.190642 +10.66 0.353005 +10.67 0.506383 +10.68 0.648629 +10.69 0.776933 +10.7 0.889489 +10.71 0.98529 +10.72 1.06309 +10.73 1.12193 +10.74 1.16118 +10.75 1.18055 +10.76 1.18006 +10.77 1.16008 +10.78 1.12005 +10.79 1.06195 +10.8 0.987523 +10.81 0.898299 +10.82 0.796006 +10.83 0.682523 +10.84 0.55984 +10.85 0.430013 +10.86 0.295121 +10.87 0.15714 +10.88 0.0184519 +10.89 -0.119054 +10.9 -0.253654 +10.91 -0.383795 +10.92 -0.508122 +10.93 -0.625495 +10.94 -0.735001 +10.95 -0.835891 +10.96 -0.927023 +10.97 -1.00897 +10.98 -1.08179 +10.99 -1.14576 +11 -1.20129 +11.01 -1.24899 +11.02 -1.28954 +11.03 -1.32375 +11.04 -1.35231 +11.05 -1.37597 +11.06 -1.39589 +11.07 -1.41278 +11.08 -1.42728 +11.09 -1.43986 +11.1 -1.45084 +11.11 -1.46037 +11.12 -1.46841 +11.13 -1.47463 +11.14 -1.47849 +11.15 -1.47945 +11.16 -1.47671 +11.17 -1.46935 +11.18 -1.45635 +11.19 -1.43666 +11.2 -1.40923 +11.21 -1.37303 +11.22 -1.32658 +11.23 -1.26921 +11.24 -1.20075 +11.25 -1.12092 +11.26 -1.0297 +11.27 -0.927376 +11.28 -0.814553 +11.29 -0.692155 +11.3 -0.561425 +11.31 -0.423555 +11.32 -0.280917 +11.33 -0.135749 +11.34 0.00967782 +11.35 0.152977 +11.36 0.291711 +11.37 0.423456 +11.38 0.545875 +11.39 0.656782 +11.4 0.752892 +11.41 0.833525 +11.42 0.897485 +11.43 0.943881 +11.44 0.972237 +11.45 0.9825 +11.46 0.975049 +11.47 0.950683 +11.48 0.910454 +11.49 0.855082 +11.5 0.787773 +11.51 0.710699 +11.52 0.626202 +11.53 0.536729 +11.54 0.444755 +11.55 0.352712 +11.56 0.262919 +11.57 0.177682 +11.58 0.0993352 +11.59 0.0291096 +11.6 -0.0317873 +11.61 -0.0825045 +11.62 -0.122558 +11.63 -0.151831 +11.64 -0.170555 +11.65 -0.179288 +11.66 -0.178543 +11.67 -0.169493 +11.68 -0.153904 +11.69 -0.133199 +11.7 -0.108849 +11.71 -0.0823145 +11.72 -0.0549814 +11.73 -0.0281059 +11.74 -0.00276395 +11.75 0.0200205 +11.76 0.0396777 +11.77 0.0560492 +11.78 0.0691844 +11.79 0.0794243 +11.8 0.0873881 +11.81 0.0939483 +11.82 0.100197 +11.83 0.107402 +11.84 0.117238 +11.85 0.131185 +11.86 0.150659 +11.87 0.177056 +11.88 0.211642 +11.89 0.255501 +11.9 0.309477 +11.91 0.374137 +11.92 0.449726 +11.93 0.537066 +11.94 0.634679 +11.95 0.741616 +11.96 0.856616 +11.97 0.978087 +11.98 1.10414 +11.99 1.23263 +12 1.36121 +12.01 1.48733 +12.02 1.60784 +12.03 1.72041 +12.04 1.82256 +12.05 1.91198 +12.06 1.98657 +12.07 2.04452 +12.08 2.08435 +12.09 2.10494 +12.1 2.10504 +12.11 2.08367 +12.12 2.04238 +12.13 1.98188 +12.14 1.90329 +12.15 1.80809 +12.16 1.6981 +12.17 1.57541 +12.18 1.44233 +12.19 1.30111 +12.2 1.15457 +12.21 1.00563 +12.22 0.856743 +12.23 0.710227 +12.24 0.568196 +12.25 0.432512 +12.26 0.304746 +12.27 0.186146 +12.28 0.0782597 +12.29 -0.0185879 +12.3 -0.104568 +12.31 -0.179823 +12.32 -0.244764 +12.33 -0.300039 +12.34 -0.346475 +12.35 -0.385034 +12.36 -0.416751 +12.37 -0.44233 +12.38 -0.463211 +12.39 -0.48041 +12.4 -0.494709 +12.41 -0.506725 +12.42 -0.516886 +12.43 -0.525423 +12.44 -0.532363 +12.45 -0.537544 +12.46 -0.540397 +12.47 -0.540569 +12.48 -0.537459 +12.49 -0.530403 +12.5 -0.518731 +12.51 -0.50181 +12.52 -0.479088 +12.53 -0.450143 +12.54 -0.414626 +12.55 -0.372068 +12.56 -0.323191 +12.57 -0.268442 +12.58 -0.208502 +12.59 -0.144279 +12.6 -0.0768908 +12.61 -0.0076321 +12.62 0.0620565 +12.63 0.13055 +12.64 0.195982 +12.65 0.256845 +12.66 0.311608 +12.67 0.358853 +12.68 0.397319 +12.69 0.425942 +12.7 0.443888 +12.71 0.450582 +12.72 0.445198 +12.73 0.427732 +12.74 0.399052 +12.75 0.359747 +12.76 0.310646 +12.77 0.25279 +12.78 0.187396 +12.79 0.115817 +12.8 0.0394959 +12.81 -0.0401801 +12.82 -0.121463 +12.83 -0.202823 +12.84 -0.282914 +12.85 -0.360514 +12.86 -0.434552 +12.87 -0.504124 +12.88 -0.56851 +12.89 -0.627175 +12.9 -0.679292 +12.91 -0.725073 +12.92 -0.764638 +12.93 -0.798147 +12.94 -0.825875 +12.95 -0.848176 +12.96 -0.865465 +12.97 -0.87818 +12.98 -0.88676 +12.99 -0.891311 +13 -0.892562 +13.01 -0.890801 +13.02 -0.886236 +13.03 -0.878993 +13.04 -0.869113 +13.05 -0.856556 +13.06 -0.841216 +13.07 -0.822878 +13.08 -0.801128 +13.09 -0.775973 +13.1 -0.747206 +13.11 -0.714653 +13.12 -0.678197 +13.13 -0.6378 +13.14 -0.59352 +13.15 -0.545528 +13.16 -0.494022 +13.17 -0.439404 +13.18 -0.382467 +13.19 -0.323922 +13.2 -0.264601 +13.21 -0.205437 +13.22 -0.147443 +13.23 -0.091695 +13.24 -0.0392998 +13.25 0.00836532 +13.26 0.0500941 +13.27 0.0850813 +13.28 0.112407 +13.29 0.131273 +13.3 0.141021 +13.31 0.141162 +13.32 0.131383 +13.33 0.111564 +13.34 0.0811692 +13.35 0.040861 +13.36 -0.00856575 +13.37 -0.066434 +13.38 -0.13191 +13.39 -0.204023 +13.4 -0.281694 +13.41 -0.363756 +13.42 -0.448987 +13.43 -0.536189 +13.44 -0.623874 +13.45 -0.710804 +13.46 -0.795814 +13.47 -0.877813 +13.48 -0.955796 +13.49 -1.02885 +13.5 -1.09617 +13.51 -1.15702 +13.52 -1.21013 +13.53 -1.25557 +13.54 -1.29294 +13.55 -1.32186 +13.56 -1.34204 +13.57 -1.3532 +13.58 -1.35512 +13.59 -1.34757 +13.6 -1.33018 +13.61 -1.3022 +13.62 -1.26418 +13.63 -1.216 +13.64 -1.15755 +13.65 -1.08879 +13.66 -1.00976 +13.67 -0.920581 +13.68 -0.821502 +13.69 -0.712606 +13.7 -0.594289 +13.71 -0.467867 +13.72 -0.334292 +13.73 -0.194708 +13.74 -0.0504545 +13.75 0.0969456 +13.76 0.245801 +13.77 0.394276 +13.78 0.540209 +13.79 0.681341 +13.8 0.81574 +13.81 0.941396 +13.82 1.05639 +13.83 1.15893 +13.84 1.24743 +13.85 1.32053 +13.86 1.37715 +13.87 1.41535 +13.88 1.43537 +13.89 1.43767 +13.9 1.42261 +13.91 1.3909 +13.92 1.34356 +13.93 1.28193 +13.94 1.20759 +13.95 1.12235 +13.96 1.02761 +13.97 0.926266 +13.98 0.820539 +13.99 0.712533 +14 0.60428 +14.01 0.497695 +14.02 0.394531 +14.03 0.296356 +14.04 0.204553 +14.05 0.120967 +14.06 0.0458674 +14.07 -0.0201185 +14.08 -0.0765646 +14.09 -0.123226 +14.1 -0.16001 +14.11 -0.186948 +14.12 -0.204159 +14.13 -0.211641 +14.14 -0.209133 +14.15 -0.197542 +14.16 -0.177069 +14.17 -0.147889 +14.18 -0.110146 +14.19 -0.0639634 +14.2 -0.00945055 +14.21 0.0532779 +14.22 0.124358 +14.23 0.203732 +14.24 0.290642 +14.25 0.384672 +14.26 0.48527 +14.27 0.591723 +14.28 0.703148 +14.29 0.818485 +14.3 0.936497 +14.31 1.05577 +14.32 1.17454 +14.33 1.2911 +14.34 1.40368 +14.35 1.51054 +14.36 1.60993 +14.37 1.70018 +14.38 1.77978 +14.39 1.84736 +14.4 1.90086 +14.41 1.93989 +14.42 1.9643 +14.43 1.97388 +14.44 1.96876 +14.45 1.94939 +14.46 1.91649 +14.47 1.87108 +14.48 1.81441 +14.49 1.74723 +14.5 1.67199 +14.51 1.59045 +14.52 1.50429 +14.53 1.41515 +14.54 1.32457 +14.55 1.23395 +14.56 1.14451 +14.57 1.05728 +14.58 0.973325 +14.59 0.892911 +14.6 0.816274 +14.61 0.743424 +14.62 0.674162 +14.63 0.608115 +14.64 0.544772 +14.65 0.48352 +14.66 0.423704 +14.67 0.364603 +14.68 0.305475 +14.69 0.245738 +14.7 0.184912 +14.71 0.122639 +14.72 0.0586941 +14.73 -0.00700002 +14.74 -0.0743797 +14.75 -0.143289 +14.76 -0.213377 +14.77 -0.284127 +14.78 -0.355033 +14.79 -0.42555 +14.8 -0.495121 +14.81 -0.563208 +14.82 -0.629315 +14.83 -0.693014 +14.84 -0.753799 +14.85 -0.811444 +14.86 -0.865942 +14.87 -0.91728 +14.88 -0.965547 +14.89 -1.01092 +14.9 -1.05365 +14.91 -1.09405 +14.92 -1.13248 +14.93 -1.1692 +14.94 -1.20469 +14.95 -1.23931 +14.96 -1.27334 +14.97 -1.307 +14.98 -1.34043 +14.99 -1.3737 +15 -1.40679 +15.01 -1.4396 +15.02 -1.47187 +15.03 -1.50336 +15.04 -1.53372 +15.05 -1.56257 +15.06 -1.58947 +15.07 -1.61395 +15.08 -1.63551 +15.09 -1.65367 +15.1 -1.66787 +15.11 -1.67722 +15.12 -1.68156 +15.13 -1.68042 +15.14 -1.67334 +15.15 -1.65987 +15.16 -1.63959 +15.17 -1.61213 +15.18 -1.57713 +15.19 -1.53408 +15.2 -1.48233 +15.21 -1.42224 +15.22 -1.35369 +15.23 -1.27667 +15.24 -1.19124 +15.25 -1.09762 +15.26 -0.996125 +15.27 -0.887235 +15.28 -0.77135 +15.29 -0.649294 +15.3 -0.522424 +15.31 -0.3919 +15.32 -0.25904 +15.33 -0.125305 +15.34 0.00772734 +15.35 0.138379 +15.36 0.264909 +15.37 0.385121 +15.38 0.497152 +15.39 0.599532 +15.4 0.690666 +15.41 0.7691 +15.42 0.833562 +15.43 0.882995 +15.44 0.91659 +15.45 0.933807 +15.46 0.933229 +15.47 0.915765 +15.48 0.8822 +15.49 0.833247 +15.5 0.769898 +15.51 0.693398 +15.52 0.605222 +15.53 0.507036 +15.54 0.400664 +15.55 0.287681 +15.56 0.170775 +15.57 0.052029 +15.58 -0.0665281 +15.59 -0.182922 +15.6 -0.295267 +15.61 -0.401794 +15.62 -0.500879 +15.63 -0.590957 +15.64 -0.66989 +15.65 -0.737379 +15.66 -0.792568 +15.67 -0.834794 +15.68 -0.863591 +15.69 -0.878681 +15.7 -0.879971 +15.71 -0.867546 +15.72 -0.841328 +15.73 -0.801249 +15.74 -0.748806 +15.75 -0.684739 +15.76 -0.609916 +15.77 -0.525329 +15.78 -0.432083 +15.79 -0.331386 +15.8 -0.224536 +15.81 -0.112773 +15.82 0.00231428 +15.83 0.118999 +15.84 0.235767 +15.85 0.351103 +15.86 0.463515 +15.87 0.571557 +15.88 0.673855 +15.89 0.769131 +15.9 0.855703 +15.91 0.932638 +15.92 0.999422 +15.93 1.05543 +15.94 1.10025 +15.95 1.13364 +15.96 1.1556 +15.97 1.16631 +15.98 1.16615 +15.99 1.15501 +16 1.13423 +16.01 1.10491 +16.02 1.06806 +16.03 1.02473 +16.04 0.976043 +16.05 0.923132 +16.06 0.867105 +16.07 0.80903 +16.08 0.749893 +16.09 0.690745 +16.1 0.632365 +16.11 0.575407 +16.12 0.520398 +16.13 0.467742 +16.14 0.417722 +16.15 0.370508 +16.16 0.326204 +16.17 0.284984 +16.18 0.246521 +16.19 0.210671 +16.2 0.177264 +16.21 0.146116 +16.22 0.117042 +16.23 0.0898706 +16.24 0.0644521 +16.25 0.0407034 +16.26 0.01858 +16.27 -0.0020843 +16.28 -0.0213268 +16.29 -0.0391674 +16.3 -0.0556156 +16.31 -0.070679 +16.32 -0.0843712 +16.33 -0.0967195 +16.34 -0.107719 +16.35 -0.117446 +16.36 -0.12607 +16.37 -0.133724 +16.38 -0.140564 +16.39 -0.146764 +16.4 -0.152508 +16.41 -0.157983 +16.42 -0.163362 +16.43 -0.16881 +16.44 -0.174454 +16.45 -0.180355 +16.46 -0.186521 +16.47 -0.192894 +16.48 -0.19935 +16.49 -0.205692 +16.5 -0.211652 +16.51 -0.216894 +16.52 -0.220904 +16.53 -0.223245 +16.54 -0.22344 +16.55 -0.220966 +16.56 -0.215291 +16.57 -0.20589 +16.58 -0.192259 +16.59 -0.173932 +16.6 -0.150495 +16.61 -0.121086 +16.62 -0.0859049 +16.63 -0.0448042 +16.64 0.00227998 +16.65 0.0553096 +16.66 0.114142 +16.67 0.178528 +16.68 0.248115 +16.69 0.322502 +16.7 0.401346 +16.71 0.483612 +16.72 0.56855 +16.73 0.655336 +16.74 0.743079 +16.75 0.830829 +16.76 0.917593 +16.77 1.00234 +16.78 1.0839 +16.79 1.16094 +16.8 1.23262 +16.81 1.29791 +16.82 1.35581 +16.83 1.4054 +16.84 1.44581 +16.85 1.47629 +16.86 1.49616 +16.87 1.50438 +16.88 1.5005 +16.89 1.48485 +16.9 1.4574 +16.91 1.41829 +16.92 1.36784 +16.93 1.30657 +16.94 1.23515 +16.95 1.15442 +16.96 1.06496 +16.97 0.968292 +16.98 0.86594 +16.99 0.759264 +17 0.649676 +17.01 0.538607 +17.02 0.427485 +17.03 0.317693 +17.04 0.210547 +17.05 0.107642 +17.06 0.00991611 +17.07 -0.0817863 +17.08 -0.166725 +17.09 -0.244337 +17.1 -0.314243 +17.11 -0.376246 +17.12 -0.430327 +17.13 -0.476633 +17.14 -0.514815 +17.15 -0.546043 +17.16 -0.570883 +17.17 -0.58998 +17.18 -0.604036 +17.19 -0.613784 +17.2 -0.619963 +17.21 -0.623301 +17.22 -0.624471 +17.23 -0.624087 +17.24 -0.622879 +17.25 -0.621349 +17.26 -0.619926 +17.27 -0.618965 +17.28 -0.61875 +17.29 -0.619501 +17.3 -0.621379 +17.31 -0.624535 +17.32 -0.629082 +17.33 -0.634974 +17.34 -0.642219 +17.35 -0.650809 +17.36 -0.660724 +17.37 -0.671935 +17.38 -0.684408 +17.39 -0.698095 +17.4 -0.712991 +17.41 -0.729014 +17.42 -0.746015 +17.43 -0.763874 +17.44 -0.782441 +17.45 -0.801534 +17.46 -0.820938 +17.47 -0.840402 +17.48 -0.85964 +17.49 -0.878286 +17.5 -0.895982 +17.51 -0.91239 +17.52 -0.927153 +17.53 -0.939922 +17.54 -0.950367 +17.55 -0.958187 +17.56 -0.963126 +17.57 -0.964978 +17.58 -0.963338 +17.59 -0.958336 +17.6 -0.950028 +17.61 -0.93849 +17.62 -0.923869 +17.63 -0.906373 +17.64 -0.886266 +17.65 -0.863856 +17.66 -0.83948 +17.67 -0.813392 +17.68 -0.78613 +17.69 -0.758051 +17.7 -0.729487 +17.71 -0.700737 +17.72 -0.672059 +17.73 -0.643658 +17.74 -0.615687 +17.75 -0.588253 +17.76 -0.561428 +17.77 -0.535149 +17.78 -0.509348 +17.79 -0.48392 +17.8 -0.458728 +17.81 -0.433615 +17.82 -0.408411 +17.83 -0.382943 +17.84 -0.357018 +17.85 -0.330442 +17.86 -0.303099 +17.87 -0.27486 +17.88 -0.245618 +17.89 -0.215281 +17.9 -0.183774 +17.91 -0.151034 +17.92 -0.117011 +17.93 -0.081592 +17.94 -0.0447389 +17.95 -0.00647304 +17.96 0.0332401 +17.97 0.0744309 +17.98 0.117123 +17.99 0.161327 +18 0.207035 +18.01 0.254214 +18.02 0.302875 +18.03 0.352833 +18.04 0.403868 +18.05 0.455733 +18.06 0.508111 +18.07 0.56061 +18.08 0.612765 +18.09 0.664034 +18.1 0.713808 +18.11 0.761188 +18.12 0.805534 +18.13 0.846126 +18.14 0.882207 +18.15 0.913039 +18.16 0.937923 +18.17 0.956225 +18.18 0.967399 +18.19 0.970984 +18.2 0.965989 +18.21 0.952978 +18.22 0.932002 +18.23 0.903288 +18.24 0.867237 +18.25 0.824425 +18.26 0.775595 +18.27 0.72164 +18.28 0.663532 +18.29 0.602377 +18.3 0.5397 +18.31 0.476779 +18.32 0.414908 +18.33 0.35536 +18.34 0.299356 +18.35 0.248038 +18.36 0.202432 +18.37 0.163689 +18.38 0.132776 +18.39 0.109825 +18.4 0.0951643 +18.41 0.0889281 +18.42 0.091055 +18.43 0.101292 +18.44 0.119203 +18.45 0.14418 +18.46 0.175733 +18.47 0.212786 +18.48 0.254044 +18.49 0.298389 +18.5 0.344643 +18.51 0.391593 +18.52 0.438016 +18.53 0.482703 +18.54 0.524483 +18.55 0.56191 +18.56 0.594021 +18.57 0.620019 +18.58 0.639121 +18.59 0.650678 +18.6 0.654187 +18.61 0.649301 +18.62 0.635839 +18.63 0.613784 +18.64 0.582626 +18.65 0.543347 +18.66 0.496558 +18.67 0.442937 +18.68 0.383306 +18.69 0.318616 +18.7 0.249929 +18.71 0.178402 +18.72 0.105257 +18.73 0.0318592 +18.74 -0.0403803 +18.75 -0.110191 +18.76 -0.176347 +18.77 -0.237696 +18.78 -0.293185 +18.79 -0.341888 +18.8 -0.383023 +18.81 -0.415797 +18.82 -0.439317 +18.83 -0.453979 +18.84 -0.459791 +18.85 -0.456953 +18.86 -0.44586 +18.87 -0.427088 +18.88 -0.401374 +18.89 -0.369599 +18.9 -0.33262 +18.91 -0.291592 +18.92 -0.247948 +18.93 -0.202872 +18.94 -0.157538 +18.95 -0.113079 +18.96 -0.0705603 +18.97 -0.0309534 +18.98 0.00488642 +18.99 0.0359726 +19 0.0617424 +19.01 0.082003 +19.02 0.0965422 +19.03 0.105309 +19.04 0.108409 +19.05 0.106094 +19.06 0.0987483 +19.07 0.0868742 +19.08 0.0708536 +19.09 0.0516184 +19.1 0.0300126 +19.11 0.00681984 +19.12 -0.0171634 +19.13 -0.0411465 +19.14 -0.0643621 +19.15 -0.0860822 +19.16 -0.105632 +19.17 -0.122125 +19.18 -0.135204 +19.19 -0.144464 +19.2 -0.149568 +19.21 -0.150271 +19.22 -0.146428 +19.23 -0.137992 +19.24 -0.125012 +19.25 -0.107605 +19.26 -0.0857172 +19.27 -0.0600702 +19.28 -0.0310941 +19.29 0.000705379 +19.3 0.0347549 +19.31 0.0704231 +19.32 0.107031 +19.33 0.143864 +19.34 0.180154 +19.35 0.215015 +19.36 0.247754 +19.37 0.277659 +19.38 0.304058 +19.39 0.326337 +19.4 0.343952 +19.41 0.356441 +19.42 0.36344 +19.43 0.36446 +19.44 0.359259 +19.45 0.348144 +19.46 0.331226 +19.47 0.308732 +19.48 0.280996 +19.49 0.248448 +19.5 0.211609 +19.51 0.171069 +19.52 0.127347 +19.53 0.0812606 +19.54 0.0336275 +19.55 -0.0148506 +19.56 -0.0634936 +19.57 -0.111658 +19.58 -0.158752 +19.59 -0.204245 +19.6 -0.247678 +19.61 -0.288474 +19.62 -0.326426 +19.63 -0.361378 +19.64 -0.393194 +19.65 -0.4218 +19.66 -0.447182 +19.67 -0.469368 +19.68 -0.488426 +19.69 -0.504447 +19.7 -0.517296 +19.71 -0.527322 +19.72 -0.534651 +19.73 -0.539378 +19.74 -0.541584 +19.75 -0.541337 +19.76 -0.538691 +19.77 -0.533688 +19.78 -0.526347 +19.79 -0.516541 +19.8 -0.504512 +19.81 -0.490325 +19.82 -0.474068 +19.83 -0.455857 +19.84 -0.43584 +19.85 -0.414202 +19.86 -0.39116 +19.87 -0.366945 +19.88 -0.341833 +19.89 -0.316209 +19.9 -0.290394 +19.91 -0.264714 +19.92 -0.239488 +19.93 -0.21502 +19.94 -0.191589 +19.95 -0.169438 +19.96 -0.148835 +19.97 -0.129966 +19.98 -0.112845 +19.99 -0.0975121 +20 -0.0839606 +20.01 -0.0721382 +20.02 -0.0619558 +20.03 -0.0532953 +20.04 -0.0460194 +20.05 -0.0400433 +20.06 -0.0351824 +20.07 -0.0312635 +20.08 -0.0281796 +20.09 -0.0258519 +20.1 -0.0242341 +20.11 -0.0233131 +20.12 -0.0231085 +20.13 -0.0236682 +20.14 -0.0251281 +20.15 -0.0275368 +20.16 -0.0309606 +20.17 -0.03547 +20.18 -0.0411105 +20.19 -0.0478902 +20.2 -0.0557692 +20.21 -0.0646499 +20.22 -0.0743708 +20.23 -0.0847294 +20.24 -0.095341 +20.25 -0.105824 +20.26 -0.115744 +20.27 -0.124617 +20.28 -0.131931 +20.29 -0.137156 +20.3 -0.139764 +20.31 -0.139209 +20.32 -0.134735 +20.33 -0.126216 +20.34 -0.113349 +20.35 -0.0959308 +20.36 -0.0738689 +20.37 -0.04719 +20.38 -0.0160459 +20.39 0.0192865 +20.4 0.0584942 +20.41 0.101122 +20.42 0.146284 +20.43 0.193257 +20.44 0.241248 +20.45 0.28942 +20.46 0.336908 +20.47 0.382842 +20.48 0.426369 +20.49 0.466502 +20.5 0.502366 +20.51 0.533459 +20.52 0.559202 +20.53 0.579116 +20.54 0.592832 +20.55 0.600095 +20.56 0.600763 +20.57 0.594811 +20.58 0.581958 +20.59 0.562589 +20.6 0.537245 +20.61 0.506333 +20.62 0.470342 +20.63 0.429833 +20.64 0.385429 +20.65 0.337802 +20.66 0.287667 +20.67 0.235696 +20.68 0.182825 +20.69 0.129858 +20.7 0.0775631 +20.71 0.0266931 +20.72 -0.0220257 +20.73 -0.0679038 +20.74 -0.1103 +20.75 -0.148632 +20.76 -0.181937 +20.77 -0.210157 +20.78 -0.232981 +20.79 -0.250181 +20.8 -0.261633 +20.81 -0.26732 +20.82 -0.267332 +20.83 -0.261868 +20.84 -0.251169 +20.85 -0.235367 +20.86 -0.215375 +20.87 -0.191772 +20.88 -0.165195 +20.89 -0.136324 +20.9 -0.105861 +20.91 -0.0745102 +20.92 -0.0429653 +20.93 -0.0119165 +20.94 0.017929 +20.95 0.0460817 +20.96 0.0720988 +20.97 0.0956284 +20.98 0.116416 +20.99 0.134304 +21 0.149236 +21.01 0.161244 +21.02 0.170331 +21.03 0.176709 +21.04 0.180773 +21.05 0.182822 +21.06 0.183179 +21.07 0.18217 +21.08 0.180116 +21.09 0.177311 +21.1 0.174013 +21.11 0.170426 +21.12 0.166727 +21.13 0.163013 +21.14 0.159316 +21.15 0.155615 +21.16 0.151842 +21.17 0.147893 +21.18 0.143636 +21.19 0.138923 +21.2 0.133548 +21.21 0.127397 +21.22 0.120369 +21.23 0.112388 +21.24 0.103419 +21.25 0.0934753 +21.26 0.0826191 +21.27 0.0709647 +21.28 0.0586737 +21.29 0.0459338 +21.3 0.0330485 +21.31 0.0202909 +21.32 0.00794806 +21.33 -0.00368941 +21.34 -0.014338 +21.35 -0.0237317 +21.36 -0.031631 +21.37 -0.0378034 +21.38 -0.0419553 +21.39 -0.0441129 +21.4 -0.0442155 +21.41 -0.0422503 +21.42 -0.0382501 +21.43 -0.0322906 +21.44 -0.0244858 +21.45 -0.0149835 +21.46 -0.00391982 +21.47 0.00852313 +21.48 0.0220322 +21.49 0.0363739 +21.5 0.0513056 +21.51 0.066577 +21.52 0.0819322 +21.53 0.09711 +21.54 0.111845 +21.55 0.125818 +21.56 0.13872 +21.57 0.150301 +21.58 0.160279 +21.59 0.168367 +21.6 0.174283 +21.61 0.177755 +21.62 0.178524 +21.63 0.176357 +21.64 0.170848 +21.65 0.161928 +21.66 0.149602 +21.67 0.133849 +21.68 0.114721 +21.69 0.0923525 +21.7 0.0669705 +21.71 0.0388918 +21.72 0.00852578 +21.73 -0.0237236 +21.74 -0.0571017 +21.75 -0.0909213 +21.76 -0.124471 +21.77 -0.157006 +21.78 -0.187774 +21.79 -0.21603 +21.8 -0.24107 +21.81 -0.262242 +21.82 -0.278538 +21.83 -0.289888 +21.84 -0.295987 +21.85 -0.29667 +21.86 -0.291919 +21.87 -0.281872 +21.88 -0.26682 +21.89 -0.247197 +21.9 -0.223521 +21.91 -0.196368 +21.92 -0.166841 +21.93 -0.135813 +21.94 -0.104201 +21.95 -0.0729314 +21.96 -0.0429176 +21.97 -0.0150304 +21.98 0.00992653 +21.99 0.0311006 +22 0.0477124 +22.01 0.0595331 +22.02 0.0662436 +22.03 0.0676615 +22.04 0.0637406 +22.05 0.0545645 +22.06 0.0403372 +22.07 0.0213692 +22.08 -0.00212192 +22.09 -0.0295788 +22.1 -0.0602728 +22.11 -0.0936353 +22.12 -0.129085 +22.13 -0.166045 +22.14 -0.203955 +22.15 -0.242287 +22.16 -0.280551 +22.17 -0.31824 +22.18 -0.354941 +22.19 -0.390332 +22.2 -0.42412 +22.21 -0.456056 +22.22 -0.485928 +22.23 -0.513554 +22.24 -0.53878 +22.25 -0.56147 +22.26 -0.581286 +22.27 -0.598288 +22.28 -0.612416 +22.29 -0.623582 +22.3 -0.631708 +22.31 -0.636727 +22.32 -0.638586 +22.33 -0.637248 +22.34 -0.63269 +22.35 -0.624642 +22.36 -0.613432 +22.37 -0.599127 +22.38 -0.581821 +22.39 -0.561635 +22.4 -0.538714 +22.41 -0.513223 +22.42 -0.485342 +22.43 -0.455224 +22.44 -0.422971 +22.45 -0.388931 +22.46 -0.353283 +22.47 -0.316189 +22.48 -0.277795 +22.49 -0.238226 +22.5 -0.197587 +22.51 -0.155966 +22.52 -0.113407 +22.53 -0.0699637 +22.54 -0.0257548 +22.55 0.0191431 +22.56 0.0646341 +22.57 0.110594 +22.58 0.156863 +22.59 0.203237 +22.6 0.249463 +22.61 0.2952 +22.62 0.340046 +22.63 0.383613 +22.64 0.425451 +22.65 0.465081 +22.66 0.502009 +22.67 0.535743 +22.68 0.565802 +22.69 0.591741 +22.7 0.612849 +22.71 0.628952 +22.72 0.639953 +22.73 0.645729 +22.74 0.64627 +22.75 0.641675 +22.76 0.63216 +22.77 0.618051 +22.78 0.599778 +22.79 0.577614 +22.8 0.552472 +22.81 0.525055 +22.82 0.496053 +22.83 0.466163 +22.84 0.436065 +22.85 0.4064 +22.86 0.377746 +22.87 0.350615 +22.88 0.325602 +22.89 0.302842 +22.9 0.2825 +22.91 0.264626 +22.92 0.24916 +22.93 0.23594 +22.94 0.224716 +22.95 0.215163 +22.96 0.206917 +22.97 0.199556 +22.98 0.192557 +22.99 0.18549 +23 0.177954 +23.01 0.169589 +23.02 0.160094 +23.03 0.14923 +23.04 0.136833 +23.05 0.122756 +23.06 0.106957 +23.07 0.0896005 +23.08 0.0708166 +23.09 0.0507863 +23.1 0.0297277 +23.11 0.00788338 +23.12 -0.0144931 +23.13 -0.03715 +23.14 -0.0598397 +23.15 -0.0823253 +23.16 -0.104431 +23.17 -0.12602 +23.18 -0.146993 +23.19 -0.16729 +23.2 -0.186887 +23.21 -0.20579 +23.22 -0.224028 +23.23 -0.241606 +23.24 -0.258606 +23.25 -0.27509 +23.26 -0.291088 +23.27 -0.306614 +23.28 -0.321655 +23.29 -0.336166 +23.3 -0.350072 +23.31 -0.363269 +23.32 -0.375534 +23.33 -0.386751 +23.34 -0.396741 +23.35 -0.405305 +23.36 -0.412236 +23.37 -0.417332 +23.38 -0.420397 +23.39 -0.421253 +23.4 -0.419723 +23.41 -0.415466 +23.42 -0.40859 +23.43 -0.399029 +23.44 -0.386748 +23.45 -0.371742 +23.46 -0.354035 +23.47 -0.333678 +23.48 -0.310747 +23.49 -0.285286 +23.5 -0.257311 +23.51 -0.227133 +23.52 -0.194905 +23.53 -0.160797 +23.54 -0.124994 +23.55 -0.0877018 +23.56 -0.0491456 +23.57 -0.0095734 +23.58 0.0307577 +23.59 0.0715153 +23.6 0.112326 +23.61 0.152827 +23.62 0.192629 +23.63 0.231321 +23.64 0.268474 +23.65 0.303648 +23.66 0.336405 +23.67 0.366138 +23.68 0.39244 +23.69 0.415058 +23.7 0.43368 +23.71 0.448058 +23.72 0.458017 +23.73 0.463469 +23.74 0.464417 +23.75 0.460961 +23.76 0.453028 +23.77 0.441151 +23.78 0.425834 +23.79 0.40756 +23.8 0.38688 +23.81 0.364395 +23.82 0.340737 +23.83 0.316552 +23.84 0.292476 +23.85 0.269227 +23.86 0.247347 +23.87 0.227307 +23.88 0.209498 +23.89 0.194216 +23.9 0.181655 +23.91 0.1719 +23.92 0.164931 +23.93 0.160648 +23.94 0.158991 +23.95 0.159429 +23.96 0.161589 +23.97 0.165055 +23.98 0.169386 +23.99 0.174136 +24 0.178868 +24.01 0.183178 +24.02 0.186677 +24.03 0.188986 +24.04 0.189938 +24.05 0.189382 +24.06 0.187236 +24.07 0.183493 +24.08 0.178206 +24.09 0.171484 +24.1 0.163481 +24.11 0.154346 +24.12 0.144298 +24.13 0.133597 +24.14 0.122437 +24.15 0.110987 +24.16 0.0993816 +24.17 0.0877148 +24.18 0.0760349 +24.19 0.0643426 +24.2 0.0525841 +24.21 0.0406568 +24.22 0.0284317 +24.23 0.015752 +24.24 0.00244569 +24.25 -0.0116633 +24.26 -0.026744 +24.27 -0.0429473 +24.28 -0.0603963 +24.29 -0.0792752 +24.3 -0.0995571 +24.31 -0.121196 +24.32 -0.144125 +24.33 -0.168224 +24.34 -0.193327 +24.35 -0.219225 +24.36 -0.245672 +24.37 -0.272394 +24.38 -0.299067 +24.39 -0.325363 +24.4 -0.350978 +24.41 -0.375616 +24.42 -0.399002 +24.43 -0.420882 +24.44 -0.441037 +24.45 -0.459279 +24.46 -0.475438 +24.47 -0.48924 +24.48 -0.500792 +24.49 -0.510069 +24.5 -0.517077 +24.51 -0.521857 +24.52 -0.524473 +24.53 -0.525017 +24.54 -0.523599 +24.55 -0.520302 +24.56 -0.515215 +24.57 -0.508613 +24.58 -0.500658 +24.59 -0.491515 +24.6 -0.481358 +24.61 -0.47036 +24.62 -0.458695 +24.63 -0.446537 +24.64 -0.434052 +24.65 -0.421422 +24.66 -0.408816 +24.67 -0.396378 +24.68 -0.384233 +24.69 -0.372488 +24.7 -0.361226 +24.71 -0.350504 +24.72 -0.340348 +24.73 -0.330781 +24.74 -0.321741 +24.75 -0.313126 +24.76 -0.304821 +24.77 -0.296679 +24.78 -0.288528 +24.79 -0.280175 +24.8 -0.271414 +24.81 -0.262032 +24.82 -0.251742 +24.83 -0.240376 +24.84 -0.227778 +24.85 -0.213809 +24.86 -0.198366 +24.87 -0.181395 +24.88 -0.162888 +24.89 -0.142892 +24.9 -0.121504 +24.91 -0.0987806 +24.92 -0.0750454 +24.93 -0.0505465 +24.94 -0.0255574 +24.95 -0.000372081 +24.96 0.0247063 +24.97 0.0493764 +24.98 0.0733497 +24.99 0.0963463 +25 0.118034 +25.01 0.138313 +25.02 0.157051 +25.03 0.174167 +25.04 0.18963 +25.05 0.203462 +25.06 0.215729 +25.07 0.226536 +25.08 0.235988 +25.09 0.244219 +25.1 0.251485 +25.11 0.257955 +25.12 0.263786 +25.13 0.269115 +25.14 0.274048 +25.15 0.278658 +25.16 0.282981 +25.17 0.286998 +25.18 0.290653 +25.19 0.293878 +25.2 0.296559 +25.21 0.298568 +25.22 0.299764 +25.23 0.300007 +25.24 0.299169 +25.25 0.29714 +25.26 0.293764 +25.27 0.289033 +25.28 0.283001 +25.29 0.275727 +25.3 0.267314 +25.31 0.257912 +25.32 0.247712 +25.33 0.236934 +25.34 0.225827 +25.35 0.214666 +25.36 0.203741 +25.37 0.193305 +25.38 0.183584 +25.39 0.174772 +25.4 0.167019 +25.41 0.160427 +25.42 0.155045 +25.43 0.150864 +25.44 0.147913 +25.45 0.14596 +25.46 0.144829 +25.47 0.144315 +25.48 0.144182 +25.49 0.144181 +25.5 0.14406 +25.51 0.143575 +25.52 0.142489 +25.53 0.140542 +25.54 0.137637 +25.55 0.133674 +25.56 0.128605 +25.57 0.122433 +25.58 0.115212 +25.59 0.107043 +25.6 0.0980685 +25.61 0.0884547 +25.62 0.0784153 +25.63 0.0682088 +25.64 0.0580588 +25.65 0.0481817 +25.66 0.0387772 +25.67 0.03002 +25.68 0.0220531 +25.69 0.0149825 +25.7 0.00891864 +25.71 0.00388462 +25.72 -0.000191 +25.73 -0.00337171 +25.74 -0.00575393 +25.75 -0.00746125 +25.76 -0.00863781 +25.77 -0.00944111 +25.78 -0.0100347 +25.79 -0.0105878 +25.8 -0.0112717 +25.81 -0.0122242 +25.82 -0.0135631 +25.83 -0.0153834 +25.84 -0.0177557 +25.85 -0.0207255 +25.86 -0.0243134 +25.87 -0.0285164 +25.88 -0.033353 +25.89 -0.0387382 +25.9 -0.0446027 +25.91 -0.0508753 +25.92 -0.0574773 +25.93 -0.0643247 +25.94 -0.0713312 +25.95 -0.0784094 +25.96 -0.0854725 +25.97 -0.0924177 +25.98 -0.0991638 +25.99 -0.105628 +26 -0.111727 +26.01 -0.117379 +26.02 -0.122501 +26.03 -0.127011 +26.04 -0.130824 +26.05 -0.133844 +26.06 -0.13593 +26.07 -0.137065 +26.08 -0.137179 +26.09 -0.13621 +26.1 -0.134106 +26.11 -0.130833 +26.12 -0.126371 +26.13 -0.120718 +26.14 -0.113861 +26.15 -0.105816 +26.16 -0.0967236 +26.17 -0.0866728 +26.18 -0.0757728 +26.19 -0.0641488 +26.2 -0.0519381 +26.21 -0.0392869 +26.22 -0.026345 +26.23 -0.0132614 +26.24 -0.000196208 +26.25 0.0127155 +26.26 0.0253591 +26.27 0.0376384 +26.28 0.0494769 +26.29 0.060819 +26.3 0.0716301 +26.31 0.0818943 +26.32 0.0915797 +26.33 0.100722 +26.34 0.109364 +26.35 0.117535 +26.36 0.125262 +26.37 0.13257 +26.38 0.139472 +26.39 0.14597 +26.4 0.15205 +26.41 0.157643 +26.42 0.162727 +26.43 0.167243 +26.44 0.171116 +26.45 0.174263 +26.46 0.176597 +26.47 0.178033 +26.48 0.178494 +26.49 0.177911 +26.5 0.17614 +26.51 0.173253 +26.52 0.169254 +26.53 0.164174 +26.54 0.15807 +26.55 0.151024 +26.56 0.143139 +26.57 0.134536 +26.58 0.125342 +26.59 0.115685 +26.6 0.105741 +26.61 0.0956349 +26.62 0.0854729 +26.63 0.0753366 +26.64 0.0652777 +26.65 0.0553143 +26.66 0.0454283 +26.67 0.0355627 +26.68 0.0256115 +26.69 0.0154457 +26.7 0.00491199 +26.71 -0.00616053 +26.72 -0.0179524 +26.73 -0.0306443 +26.74 -0.0444079 +26.75 -0.0593958 +26.76 -0.0758042 +26.77 -0.0937187 +26.78 -0.113116 +26.79 -0.133983 +26.8 -0.156254 +26.81 -0.179814 +26.82 -0.204495 +26.83 -0.230086 +26.84 -0.256332 +26.85 -0.282952 +26.86 -0.309583 +26.87 -0.33589 +26.88 -0.36154 +26.89 -0.386209 +26.9 -0.40959 +26.91 -0.431399 +26.92 -0.451381 +26.93 -0.46932 +26.94 -0.484847 +26.95 -0.497973 +26.96 -0.508636 +26.97 -0.516787 +26.98 -0.522408 +26.99 -0.525511 +27 -0.52613 +27.01 -0.524315 +27.02 -0.520118 +27.03 -0.513413 +27.04 -0.50447 +27.05 -0.493345 +27.06 -0.480083 +27.07 -0.464721 +27.08 -0.447285 +27.09 -0.427796 +27.1 -0.40627 +27.11 -0.382684 +27.12 -0.356958 +27.13 -0.329278 +27.14 -0.2997 +27.15 -0.268307 +27.16 -0.23521 +27.17 -0.200556 +27.18 -0.164526 +27.19 -0.127339 +27.2 -0.0892283 +27.21 -0.0505082 +27.22 -0.0115531 +27.23 0.027289 +27.24 0.0656545 +27.25 0.103172 +27.26 0.139473 +27.27 0.174198 +27.28 0.207006 +27.29 0.237456 +27.3 0.265267 +27.31 0.290308 +27.32 0.312403 +27.33 0.33143 +27.34 0.347317 +27.35 0.360046 +27.36 0.369654 +27.37 0.376222 +27.38 0.379693 +27.39 0.380377 +27.4 0.37855 +27.41 0.374442 +27.42 0.368298 +27.43 0.360371 +27.44 0.350921 +27.45 0.340203 +27.46 0.328467 +27.47 0.315901 +27.48 0.302798 +27.49 0.289364 +27.5 0.275775 +27.51 0.262184 +27.52 0.248724 +27.53 0.235505 +27.54 0.222617 +27.55 0.21013 +27.56 0.198133 +27.57 0.186618 +27.58 0.175595 +27.59 0.16506 +27.6 0.154993 +27.61 0.145362 +27.62 0.136124 +27.63 0.127226 +27.64 0.11861 +27.65 0.110211 +27.66 0.101936 +27.67 0.0937115 +27.68 0.0854655 +27.69 0.0771309 +27.7 0.0686487 +27.71 0.0599719 +27.72 0.0510682 +27.73 0.0419146 +27.74 0.0325172 +27.75 0.0229244 +27.76 0.0131959 +27.77 0.00341673 +27.78 -0.00630365 +27.79 -0.0158327 +27.8 -0.0250174 +27.81 -0.0336879 +27.82 -0.0416141 +27.83 -0.0485935 +27.84 -0.0544641 +27.85 -0.0590425 +27.86 -0.0621585 +27.87 -0.0636611 +27.88 -0.0634245 +27.89 -0.0613532 +27.9 -0.057386 +27.91 -0.0513686 +27.92 -0.0434119 +27.93 -0.0336267 +27.94 -0.0221181 +27.95 -0.00902764 +27.96 0.00546959 +27.97 0.0211697 +27.98 0.0378453 +27.99 0.0552511 +28 0.0731477 +28.01 0.0912145 +28.02 0.109188 +28.03 0.126814 +28.04 0.143854 +28.05 0.160083 +28.06 0.175297 +28.07 0.189313 +28.08 0.201959 +28.09 0.212973 +28.1 0.222363 +28.11 0.230043 +28.12 0.235946 +28.13 0.240024 +28.14 0.242249 +28.15 0.242606 +28.16 0.241095 +28.17 0.237689 +28.18 0.232339 +28.19 0.22522 +28.2 0.216392 +28.21 0.205935 +28.22 0.193943 +28.23 0.18053 +28.24 0.165829 +28.25 0.149992 +28.26 0.133163 +28.27 0.115546 +28.28 0.0974052 +28.29 0.078965 +28.3 0.0604619 +28.31 0.042137 +28.32 0.0242316 +28.33 0.00698074 +28.34 -0.00939283 +28.35 -0.0246155 +28.36 -0.0385109 +28.37 -0.0509803 +28.38 -0.0619206 +28.39 -0.0712691 +28.4 -0.0790055 +28.41 -0.0851528 +28.42 -0.0897759 +28.43 -0.0929795 +28.44 -0.0948252 +28.45 -0.0955659 +28.46 -0.0954254 +28.47 -0.0946129 +28.48 -0.0933418 +28.49 -0.0918215 +28.5 -0.0902482 +28.51 -0.088798 +28.52 -0.0876196 +28.53 -0.0868696 +28.54 -0.086596 +28.55 -0.0868278 +28.56 -0.087557 +28.57 -0.0887387 +28.58 -0.0902947 +28.59 -0.0921185 +28.6 -0.0940821 +28.61 -0.0960412 +28.62 -0.0978211 +28.63 -0.0992783 +28.64 -0.100279 +28.65 -0.100708 +28.66 -0.100474 +28.67 -0.0995164 +28.68 -0.0978058 +28.69 -0.0953469 +28.7 -0.0921624 +28.71 -0.0883072 +28.72 -0.0839332 +28.73 -0.0791679 +28.74 -0.0741551 +28.75 -0.0690486 +28.76 -0.0640056 +28.77 -0.05918 +28.78 -0.0547158 +28.79 -0.0507668 +28.8 -0.0474588 +28.81 -0.0448462 +28.82 -0.0429837 +28.83 -0.0419004 +28.84 -0.0416005 +28.85 -0.0420657 +28.86 -0.043258 +28.87 -0.0451236 +28.88 -0.0476277 +28.89 -0.0506767 +28.9 -0.054175 +28.91 -0.0580508 +28.92 -0.0622381 +28.93 -0.0666786 +28.94 -0.0713238 +28.95 -0.0761346 +28.96 -0.081081 +28.97 -0.0861477 +28.98 -0.09131 +28.99 -0.0965512 +29 -0.101855 +29.01 -0.107199 +29.02 -0.112555 +29.03 -0.117885 +29.04 -0.123137 +29.05 -0.128249 +29.06 -0.133121 +29.07 -0.137678 +29.08 -0.141826 +29.09 -0.145469 +29.1 -0.148511 +29.11 -0.150863 +29.12 -0.152446 +29.13 -0.153198 +29.14 -0.153067 +29.15 -0.151975 +29.16 -0.150012 +29.17 -0.147224 +29.18 -0.143689 +29.19 -0.13951 +29.2 -0.134818 +29.21 -0.129764 +29.22 -0.124513 +29.23 -0.119245 +29.24 -0.11416 +29.25 -0.109427 +29.26 -0.105197 +29.27 -0.101599 +29.28 -0.0987351 +29.29 -0.096672 +29.3 -0.0954401 +29.31 -0.0950307 +29.32 -0.0954254 +29.33 -0.0965273 +29.34 -0.0981711 +29.35 -0.100201 +29.36 -0.102438 +29.37 -0.104691 +29.38 -0.106761 +29.39 -0.108448 +29.4 -0.109565 +29.41 -0.109886 +29.42 -0.109267 +29.43 -0.107622 +29.44 -0.104868 +29.45 -0.100961 +29.46 -0.0958884 +29.47 -0.0896737 +29.48 -0.08237 +29.49 -0.074057 +29.5 -0.0647776 +29.51 -0.0547126 +29.52 -0.0440055 +29.53 -0.0327847 +29.54 -0.0211746 +29.55 -0.0092899 +29.56 0.00276847 +29.57 0.0149162 +29.58 0.0270875 +29.59 0.0392308 +29.6 0.0513201 +29.61 0.063346 +29.62 0.0753114 +29.63 0.0872272 +29.64 0.0991082 +29.65 0.110968 +29.66 0.122817 +29.67 0.134653 +29.68 0.14646 +29.69 0.158208 +29.7 0.169851 +29.71 0.181327 +29.72 0.192558 +29.73 0.203458 +29.74 0.213928 +29.75 0.223868 +29.76 0.233155 +29.77 0.241658 +29.78 0.249335 +29.79 0.256118 +29.8 0.261958 +29.81 0.266827 +29.82 0.270723 +29.83 0.273663 +29.84 0.27569 +29.85 0.276834 +29.86 0.277184 +29.87 0.276879 +29.88 0.276021 +29.89 0.274719 +29.9 0.273076 +29.91 0.271185 +29.92 0.269129 +29.93 0.266971 +29.94 0.264751 +29.95 0.262489 +29.96 0.260174 +29.97 0.257773 +29.98 0.255228 +29.99 0.252462 +30 0.249384 +30.01 0.24589 +30.02 0.241872 +30.03 0.237163 +30.04 0.231689 +30.05 0.225366 +30.06 0.21812 +30.07 0.209893 +30.08 0.200649 +30.09 0.190377 +30.1 0.179088 +30.11 0.16682 +30.12 0.153556 +30.13 0.139468 +30.14 0.124659 +30.15 0.109244 +30.16 0.0933487 +30.17 0.0771042 +30.18 0.0606446 +30.19 0.0441033 +30.2 0.0276125 +30.21 0.0113184 +30.22 -0.0046707 +30.23 -0.0202502 +30.24 -0.0353252 +30.25 -0.0498104 +30.26 -0.0636291 +30.27 -0.0767132 +30.28 -0.0890014 +30.29 -0.100411 +30.3 -0.110859 +30.31 -0.120355 +30.32 -0.128859 +30.33 -0.136335 +30.34 -0.142751 +30.35 -0.148083 +30.36 -0.15231 +30.37 -0.155422 +30.38 -0.157363 +30.39 -0.158145 +30.4 -0.157842 +30.41 -0.156486 +30.42 -0.154126 +30.43 -0.15082 +30.44 -0.146641 +30.45 -0.141669 +30.46 -0.135997 +30.47 -0.129688 +30.48 -0.122874 +30.49 -0.115673 +30.5 -0.108181 +30.51 -0.100489 +30.52 -0.0926778 +30.53 -0.0848162 +30.54 -0.0769598 +30.55 -0.0691496 +30.56 -0.061418 +30.57 -0.0537707 +30.58 -0.0462017 +30.59 -0.0386952 +30.6 -0.0312275 +30.61 -0.0237695 +30.62 -0.016291 +30.63 -0.00876358 +30.64 -0.00116418 +30.65 0.00652953 +30.66 0.0143109 +30.67 0.0221664 +30.68 0.0300678 +30.69 0.0379722 +30.7 0.0458226 +30.71 0.0535494 +30.72 0.0610726 +30.73 0.0682985 +30.74 0.0751045 +30.75 0.0814229 +30.76 0.0871677 +30.77 0.0922613 +30.78 0.0966375 +30.79 0.100244 +30.8 0.103045 +30.81 0.105021 +30.82 0.106143 +30.83 0.10641 +30.84 0.105902 +30.85 0.104668 +30.86 0.102763 +30.87 0.100248 +30.88 0.0971898 +30.89 0.0936536 +30.9 0.0897017 +30.91 0.0853756 +30.92 0.080731 +30.93 0.0758209 +30.94 0.0706738 +30.95 0.0653092 +30.96 0.0597393 +30.97 0.0539707 +30.98 0.0480073 +30.99 0.0418523 +31 0.0355009 +31.01 0.028974 +31.02 0.022299 +31.03 0.0155082 +31.04 0.00864596 +31.05 0.00176783 +31.06 -0.00505954 +31.07 -0.0117604 +31.08 -0.0182522 +31.09 -0.0244191 +31.1 -0.0301894 +31.11 -0.0354895 +31.12 -0.0402531 +31.13 -0.0444297 +31.14 -0.0479878 +31.15 -0.050919 +31.16 -0.0532395 +31.17 -0.0549899 +31.18 -0.0562047 +31.19 -0.0570316 +31.2 -0.057589 +31.21 -0.0580114 +31.22 -0.0584441 +31.23 -0.0590362 +31.24 -0.0599348 +31.25 -0.0612772 +31.26 -0.0631971 +31.27 -0.0658357 +31.28 -0.0692127 +31.29 -0.0733564 +31.3 -0.078259 +31.31 -0.0838755 +31.32 -0.0901239 +31.33 -0.0968887 +31.34 -0.104024 +31.35 -0.11136 +31.36 -0.118684 +31.37 -0.12579 +31.38 -0.132478 +31.39 -0.138559 +31.4 -0.143863 +31.41 -0.148241 +31.42 -0.151578 +31.43 -0.153793 +31.44 -0.154784 +31.45 -0.154567 +31.46 -0.153237 +31.47 -0.150879 +31.48 -0.147611 +31.49 -0.143575 +31.5 -0.138935 +31.51 -0.133867 +31.52 -0.12855 +31.53 -0.123164 +31.54 -0.117888 +31.55 -0.11286 +31.56 -0.108191 +31.57 -0.103957 +31.58 -0.100203 +31.59 -0.0969373 +31.6 -0.0941347 +31.61 -0.0917371 +31.62 -0.0896752 +31.63 -0.087804 +31.64 -0.0859907 +31.65 -0.0840965 +31.66 -0.0819808 +31.67 -0.0795082 +31.68 -0.0765539 +31.69 -0.0730102 +31.7 -0.0687861 +31.71 -0.0637557 +31.72 -0.0579491 +31.73 -0.0513633 +31.74 -0.0440211 +31.75 -0.0359685 +31.76 -0.027272 +31.77 -0.0180137 +31.78 -0.008288 +31.79 0.00180966 +31.8 0.0121782 +31.81 0.0226923 +31.82 0.0332584 +31.83 0.0437923 +31.84 0.0542208 +31.85 0.0644828 +31.86 0.0745292 +31.87 0.0843217 +31.88 0.0938201 +31.89 0.102994 +31.9 0.111843 +31.91 0.120349 +31.92 0.128494 +31.93 0.136253 +31.94 0.143596 +31.95 0.150486 +31.96 0.156877 +31.97 0.162683 +31.98 0.167847 +31.99 0.172326 +32 0.176057 +32.01 0.178981 +32.02 0.181044 +32.03 0.182205 +32.04 0.182434 +32.05 0.181721 +32.06 0.180011 +32.07 0.177381 +32.08 0.173907 +32.09 0.169665 +32.1 0.164748 +32.11 0.159267 +32.12 0.153344 +32.13 0.147108 +32.14 0.140694 +32.15 0.13424 +32.16 0.127884 +32.17 0.121739 +32.18 0.115898 +32.19 0.110438 +32.2 0.105415 +32.21 0.10086 +32.22 0.0967845 +32.23 0.0931808 +32.24 0.0900491 +32.25 0.0873017 +32.26 0.0848794 +32.27 0.0827166 +32.28 0.0807461 +32.29 0.0789031 +32.3 0.0771296 +32.31 0.0753785 +32.32 0.0736149 +32.33 0.0718188 +32.34 0.0699931 +32.35 0.0681561 +32.36 0.0663407 +32.37 0.0645925 +32.38 0.0629668 +32.39 0.0615249 +32.4 0.0603299 +32.41 0.059457 +32.42 0.0589716 +32.43 0.0588985 +32.44 0.0592651 +32.45 0.0600825 +32.46 0.061344 +32.47 0.0630246 +32.48 0.0650813 +32.49 0.0674547 +32.5 0.0700796 +32.51 0.0728557 +32.52 0.07568 +32.53 0.0784552 +32.54 0.0810846 +32.55 0.0834756 +32.56 0.0855436 +32.57 0.087214 +32.58 0.0884246 +32.59 0.0890889 +32.6 0.0891956 +32.61 0.0887387 +32.62 0.0877132 +32.63 0.0861246 +32.64 0.0839866 +32.65 0.0813186 +32.66 0.0781428 +32.67 0.0744819 +32.68 0.0703184 +32.69 0.0657068 +32.7 0.0606608 +32.71 0.0551857 +32.72 0.0492814 +32.73 0.0429436 +32.74 0.0361653 +32.75 0.0289391 +32.76 0.0212557 +32.77 0.0130816 +32.78 0.00446379 +32.79 -0.00457785 +32.8 -0.0140107 +32.81 -0.023788 +32.82 -0.0338484 +32.83 -0.0441158 +32.84 -0.0545004 +32.85 -0.0648981 +32.86 -0.0751812 +32.87 -0.0852322 +32.88 -0.0949325 +32.89 -0.104167 +32.9 -0.112827 +32.91 -0.120815 +32.92 -0.128049 +32.93 -0.134466 +32.94 -0.139982 +32.95 -0.144566 +32.96 -0.148265 +32.97 -0.1511 +32.98 -0.153113 +32.99 -0.15436 +33 -0.154907 +33.01 -0.154829 +33.02 -0.154203 +33.03 -0.15308 +33.04 -0.151546 +33.05 -0.149673 +33.06 -0.147501 +33.07 -0.145057 +33.08 -0.142345 +33.09 -0.139358 +33.1 -0.136067 +33.11 -0.132431 +33.12 -0.128367 +33.13 -0.123829 +33.14 -0.118764 +33.15 -0.113113 +33.16 -0.106828 +33.17 -0.0998718 +33.18 -0.092225 +33.19 -0.083889 +33.2 -0.0748876 +33.21 -0.0652209 +33.22 -0.0550223 +33.23 -0.0443945 +33.24 -0.0334574 +33.25 -0.0223472 +33.26 -0.0112114 +33.27 -0.000204123 +33.28 0.0105197 +33.29 0.0208035 +33.3 0.0304549 +33.31 0.0393911 +33.32 0.0475136 +33.33 0.0547479 +33.34 0.0610463 +33.35 0.0663885 +33.36 0.070782 +33.37 0.0742601 +33.38 0.0768593 +33.39 0.0786374 +33.4 0.0797467 +33.41 0.080294 +33.42 0.080391 +33.43 0.080149 +33.44 0.0796746 +33.45 0.0790649 +33.46 0.0784039 +33.47 0.0777621 +33.48 0.0771933 +33.49 0.0767219 +33.5 0.0763544 +33.51 0.0760789 +33.52 0.0758671 +33.53 0.075677 +33.54 0.0754553 +33.55 0.0751414 +33.56 0.0746572 +33.57 0.0739336 +33.58 0.0729139 +33.59 0.0715417 +33.6 0.0697686 +33.61 0.067556 +33.62 0.0648759 +33.63 0.0617117 +33.64 0.0580578 +33.65 0.0538849 +33.66 0.0492377 +33.67 0.0441504 +33.68 0.0386556 +33.69 0.0327912 +33.7 0.0265998 +33.71 0.020127 +33.72 0.0134211 +33.73 0.00653199 +33.74 -0.000495913 +33.75 -0.00759424 +33.76 -0.0147085 +33.77 -0.0217833 +33.78 -0.0287617 +33.79 -0.0355854 +33.8 -0.0421946 +33.81 -0.0485286 +33.82 -0.0545213 +33.83 -0.0600798 +33.84 -0.0651737 +33.85 -0.0697488 +33.86 -0.0737564 +33.87 -0.0771552 +33.88 -0.079913 +33.89 -0.0820084 +33.9 -0.0834323 +33.91 -0.0841705 +33.92 -0.0842219 +33.93 -0.0836641 +33.94 -0.082545 +33.95 -0.0809242 +33.96 -0.0788703 +33.97 -0.0764587 +33.98 -0.0737684 +33.99 -0.0708783 +34 -0.0678618 +34.01 -0.0647945 +34.02 -0.061737 +34.03 -0.0587306 +34.04 -0.0558006 +34.05 -0.0529547 +34.06 -0.0501831 +34.07 -0.0474585 +34.08 -0.0447378 +34.09 -0.0419574 +34.1 -0.0390437 +34.11 -0.0359252 +34.12 -0.0325283 +34.13 -0.0287834 +34.14 -0.0246301 +34.15 -0.0200216 +34.16 -0.0149287 +34.17 -0.00934272 +34.18 -0.00324483 +34.19 0.00329062 +34.2 0.0101875 +34.21 0.0173553 +34.22 0.0246838 +34.23 0.0320473 +34.24 0.0393088 +34.25 0.0463259 +34.26 0.0529564 +34.27 0.0590048 +34.28 0.0643877 +34.29 0.0690042 +34.3 0.0727759 +34.31 0.0756513 +34.32 0.0776079 +34.33 0.0786529 +34.34 0.0788232 +34.35 0.0781731 +34.36 0.0767588 +34.37 0.0747569 +34.38 0.0722972 +34.39 0.069518 +34.4 0.0665609 +34.41 0.0635647 +34.42 0.0606599 +34.43 0.0579637 +34.44 0.0555875 +34.45 0.0536291 +34.46 0.0521196 +34.47 0.0510865 +34.48 0.0505349 +34.49 0.0504493 +34.5 0.050796 +34.51 0.051527 +34.52 0.0525843 +34.53 0.0539126 +34.54 0.0554384 +34.55 0.057088 +34.56 0.0588068 +34.57 0.0605493 +34.58 0.0622813 +34.59 0.0639806 +34.6 0.0656363 +34.61 0.0672476 +34.62 0.0688202 +34.63 0.0703693 +34.64 0.0719094 +34.65 0.0734511 +34.66 0.0749981 +34.67 0.0765444 +34.68 0.0780715 +34.69 0.0795463 +34.7 0.0809207 +34.71 0.0821123 +34.72 0.0830455 +34.73 0.0836321 +34.74 0.0837744 +34.75 0.0833726 +34.76 0.0823288 +34.77 0.0805532 +34.78 0.0779689 +34.79 0.0745159 +34.8 0.0700747 +34.81 0.064721 +34.82 0.0584791 +34.83 0.0514027 +34.84 0.0435743 +34.85 0.0351033 +34.86 0.0261228 +34.87 0.016785 +34.88 0.00725539 +34.89 -0.00227565 +34.9 -0.0116226 +34.91 -0.02062 +34.92 -0.0291168 +34.93 -0.0369813 +34.94 -0.0441063 +34.95 -0.0504126 +34.96 -0.0558508 +34.97 -0.0603741 +34.98 -0.0639745 +34.99 -0.0667499 +35 -0.0687677 +35.01 -0.070113 +35.02 -0.0708829 +35.03 -0.0711799 +35.04 -0.071106 +35.05 -0.0707562 +35.06 -0.0702074 +35.07 -0.0695312 +35.08 -0.0687753 +35.09 -0.0679563 +35.1 -0.0670669 +35.11 -0.0660775 +35.12 -0.0649384 +35.13 -0.0635839 +35.14 -0.0619367 +35.15 -0.0598843 +35.16 -0.0573494 +35.17 -0.0542693 +35.18 -0.0505844 +35.19 -0.0462543 +35.2 -0.0412618 +35.21 -0.0356163 +35.22 -0.0293551 +35.23 -0.0225441 +35.24 -0.015249 +35.25 -0.0076317 +35.26 0.000160745 +35.27 0.00797298 +35.28 0.0156419 +35.29 0.0230032 +35.3 0.0298976 +35.31 0.0361775 +35.32 0.0417099 +35.33 0.0463048 +35.34 0.0499547 +35.35 0.0526123 +35.36 0.05426 +35.37 0.0549086 +35.38 0.0545958 +35.39 0.0533829 +35.4 0.0513504 +35.41 0.0485819 +35.42 0.0451589 +35.43 0.0412413 +35.44 0.0369338 +35.45 0.0323334 +35.46 0.0275259 +35.47 0.0225826 +35.48 0.017559 +35.49 0.0124942 +35.5 0.00741111 +35.51 0.0023184 +35.52 -0.00278726 +35.53 -0.00791693 +35.54 -0.0130845 +35.55 -0.0183026 +35.56 -0.0235785 +35.57 -0.0289108 +35.58 -0.034286 +35.59 -0.0396756 +35.6 -0.0450306 +35.61 -0.0502902 +35.62 -0.0553819 +35.63 -0.0602223 +35.64 -0.0647216 +35.65 -0.0687874 +35.66 -0.0723292 +35.67 -0.0752638 +35.68 -0.0774715 +35.69 -0.0789209 +35.7 -0.0796005 +35.71 -0.0795041 +35.72 -0.0786504 +35.73 -0.0770833 +35.74 -0.0748707 +35.75 -0.0721021 +35.76 -0.0688853 +35.77 -0.0653257 +35.78 -0.0615882 +35.79 -0.0578081 +35.8 -0.0541123 +35.81 -0.0506171 +35.82 -0.0474229 +35.83 -0.0446099 +35.84 -0.0422347 +35.85 -0.0403301 +35.86 -0.0389372 +35.87 -0.0379865 +35.88 -0.0374266 +35.89 -0.0371856 +35.9 -0.0371761 +35.91 -0.0372998 +35.92 -0.0374535 +35.93 -0.0375347 +35.94 -0.0374416 +35.95 -0.037069 +35.96 -0.0363651 +35.97 -0.035285 +35.98 -0.0338055 +35.99 -0.031926 +36 -0.0296676 +36.01 -0.0270712 +36.02 -0.0241948 +36.03 -0.0211049 +36.04 -0.0178883 +36.05 -0.0146392 +36.06 -0.0114376 +36.07 -0.00835592 +36.08 -0.00545496 +36.09 -0.00278035 +36.1 -0.000360381 +36.11 0.00179525 +36.12 0.00368353 +36.13 0.00533881 +36.14 0.00681539 +36.15 0.00816788 +36.16 0.00945719 +36.17 0.0107458 +36.18 0.012093 +36.19 0.0135502 +36.2 0.0151564 +36.21 0.0169472 +36.22 0.0189177 +36.23 0.0210444 +36.24 0.0232877 +36.25 0.0255899 +36.26 0.0278772 +36.27 0.0300632 +36.28 0.032054 +36.29 0.0337526 +36.3 0.0350255 +36.31 0.03581 +36.32 0.0360412 +36.33 0.0356696 +36.34 0.0346684 +36.35 0.0330354 +36.36 0.0307944 +36.37 0.0279946 +36.38 0.0247063 +36.39 0.0210031 +36.4 0.0170386 +36.41 0.0129363 +36.42 0.00882314 +36.43 0.00482439 +36.44 0.00105704 +36.45 -0.00237564 +36.46 -0.00538903 +36.47 -0.00790935 +36.48 -0.0098741 +36.49 -0.0113134 +36.5 -0.0122493 +36.51 -0.0127276 +36.52 -0.0128151 +36.53 -0.0125946 +36.54 -0.01216 +36.55 -0.0116098 +36.56 -0.0110444 +36.57 -0.0105638 +36.58 -0.0102409 +36.59 -0.0101287 +36.6 -0.0102575 +36.61 -0.0106321 +36.62 -0.0112317 +36.63 -0.0120098 +36.64 -0.0128973 +36.65 -0.0138007 +36.66 -0.0146033 +36.67 -0.0151919 +36.68 -0.0154533 +36.69 -0.0152807 +36.7 -0.0145801 +36.71 -0.0132763 +36.72 -0.0113184 +36.73 -0.00868327 +36.74 -0.00533474 +36.75 -0.00135207 +36.76 0.0031722 +36.77 0.00813282 +36.78 0.0134007 +36.79 0.0188283 +36.8 0.0242562 +36.81 0.0295198 +36.82 0.0344572 +36.83 0.0388639 +36.84 0.0426344 +36.85 0.0456667 +36.86 0.0478844 +36.87 0.0492438 +36.88 0.0497356 +36.89 0.049385 +36.9 0.0482499 +36.91 0.0464135 +36.92 0.0439582 +36.93 0.0410775 +36.94 0.0379192 +36.95 0.0346352 +36.96 0.0313741 +36.97 0.028275 +36.98 0.0254607 +36.99 0.0230328 +37 0.0210799 +37.01 0.0196744 +37.02 0.0187962 +37.03 0.0184288 +37.04 0.0185295 +37.05 0.0190327 +37.06 0.0198548 +37.07 0.0208991 +37.08 0.0220622 +37.09 0.0232357 +37.1 0.0243083 +37.11 0.0251938 +37.12 0.0258223 +37.13 0.0261432 +37.14 0.0261273 +37.15 0.0257676 +37.16 0.0250786 +37.17 0.024095 +37.18 0.0228584 +37.19 0.0214467 +37.2 0.0199424 +37.21 0.0184216 +37.22 0.016957 +37.23 0.0156131 +37.24 0.014442 +37.25 0.0134793 +37.26 0.012742 +37.27 0.0122403 +37.28 0.011933 +37.29 0.0117662 +37.3 0.0116736 +37.31 0.0115748 +37.32 0.0113794 +37.33 0.0109922 +37.34 0.0103175 +37.35 0.00926526 +37.36 0.00770957 +37.37 0.00562011 +37.38 0.00295723 +37.39 -0.000299104 +37.4 -0.00414537 +37.41 -0.00855404 +37.42 -0.0134742 +37.43 -0.0188336 +37.44 -0.0245434 +37.45 -0.030503 +37.46 -0.0365663 +37.47 -0.0426095 +37.48 -0.0485093 +37.49 -0.0541467 +37.5 -0.0594122 +37.51 -0.0642091 +37.52 -0.0684569 +37.53 -0.0720759 +37.54 -0.0749946 +37.55 -0.0772358 +37.56 -0.0787995 +37.57 -0.0797034 +37.58 -0.0799795 +37.59 -0.0796716 +37.6 -0.0788319 +37.61 -0.0775174 +37.62 -0.0757716 +37.63 -0.0736544 +37.64 -0.0712371 +37.65 -0.0685624 +37.66 -0.0656646 +37.67 -0.0625679 +37.68 -0.059287 +37.69 -0.0558276 +37.7 -0.0521874 +37.71 -0.0483466 +37.72 -0.0442959 +37.73 -0.0400286 +37.74 -0.0355333 +37.75 -0.0308025 +37.76 -0.0258354 +37.77 -0.0206389 +37.78 -0.0152293 +37.79 -0.00963317 +37.8 -0.00387953 +37.81 0.00197111 +37.82 0.00785884 +37.83 0.0137196 +37.84 0.0194842 +37.85 0.0250807 +37.86 0.0304365 +37.87 0.0354809 +37.88 0.0401468 +37.89 0.0443295 +37.9 0.0480103 +37.91 0.0511483 +37.92 0.0537109 +37.93 0.0556759 +37.94 0.0570306 +37.95 0.0577722 +37.96 0.057906 +37.97 0.0574381 +37.98 0.0563511 +37.99 0.0547173 +38 0.0525648 +38.01 0.0499234 +38.02 0.0468241 +38.03 0.0432979 +38.04 0.0393755 +38.05 0.0350868 +38.06 0.0304527 +38.07 0.0254945 +38.08 0.0202628 +38.09 0.0147879 +38.1 0.00910142 +38.11 0.00323697 +38.12 -0.00276909 +38.13 -0.00887757 +38.14 -0.0150462 +38.15 -0.0212281 +38.16 -0.0273692 +38.17 -0.0334187 +38.18 -0.0393255 +38.19 -0.0450385 +38.2 -0.0505082 +38.21 -0.0556874 +38.22 -0.0605327 +38.23 -0.0650059 +38.24 -0.0690487 +38.25 -0.0726445 +38.26 -0.0757899 +38.27 -0.0784757 +38.28 -0.0806999 +38.29 -0.0824677 +38.3 -0.08379 +38.31 -0.0846832 +38.32 -0.0851676 +38.33 -0.0852393 +38.34 -0.0849477 +38.35 -0.0843243 +38.36 -0.0833927 +38.37 -0.0821748 +38.38 -0.0806895 +38.39 -0.0789531 +38.4 -0.0769785 +38.41 -0.0747758 +38.42 -0.0723334 +38.43 -0.0696773 +38.44 -0.0668132 +38.45 -0.063747 +38.46 -0.0604859 +38.47 -0.0570402 +38.48 -0.0534234 +38.49 -0.0496532 +38.5 -0.0457506 +38.51 -0.0417398 +38.52 -0.0376637 +38.53 -0.0335597 +38.54 -0.0294685 +38.55 -0.025433 +38.56 -0.0214973 +38.57 -0.017705 +38.58 -0.0140978 +38.59 -0.0107221 +38.6 -0.00762289 +38.61 -0.00481227 +38.62 -0.00230925 +38.63 -0.000125019 +38.64 0.00173733 +38.65 0.00328286 +38.66 0.00452436 +38.67 0.00548173 +38.68 0.00617068 +38.69 0.00662633 +38.7 0.00689559 +38.71 0.00701516 +38.72 0.00702184 +38.73 0.00695115 +38.74 0.00683595 +38.75 0.00670535 +38.76 0.00658377 +38.77 0.00649288 +38.78 0.00644587 +38.79 0.00644818 +38.8 0.00650072 +38.81 0.00659951 +38.82 0.00673637 +38.83 0.00689981 +38.84 0.00707597 +38.85 0.00724968 +38.86 0.00740285 +38.87 0.00752051 +38.88 0.00758999 +38.89 0.00760062 +38.9 0.00754454 +38.91 0.00741704 +38.92 0.00721668 +38.93 0.00694531 +38.94 0.00660789 +38.95 0.00620791 +38.96 0.00576226 +38.97 0.00528385 +38.98 0.00478714 +38.99 0.00428774 +39 0.00380201 +39.01 0.00334666 +39.02 0.00293847 +39.03 0.00259531 +39.04 0.00233966 +39.05 0.00218173 +39.06 0.00213587 +39.07 0.00221529 +39.08 0.00243189 +39.09 0.00279597 +39.1 0.00331593 +39.11 0.00399797 +39.12 0.00485098 +39.13 0.00588003 +39.14 0.00707149 +39.15 0.00841799 +39.16 0.00990809 +39.17 0.0115261 +39.18 0.0132522 +39.19 0.0150623 +39.2 0.0169285 +39.21 0.0188192 +39.22 0.0206962 +39.23 0.0225226 +39.24 0.0242627 +39.25 0.025881 +39.26 0.0273447 +39.27 0.0286241 +39.28 0.0296942 +39.29 0.0305356 +39.3 0.0311201 +39.31 0.0314511 +39.32 0.0315398 +39.33 0.031398 +39.34 0.0310445 +39.35 0.0305049 +39.36 0.0298098 +39.37 0.0289939 +39.38 0.0280942 +39.39 0.0271473 +39.4 0.026195 +39.41 0.0252697 +39.42 0.0243977 +39.43 0.0235984 +39.44 0.0228832 +39.45 0.0222551 +39.46 0.0217078 +39.47 0.0212265 +39.48 0.0207891 +39.49 0.0203585 +39.5 0.0198984 +39.51 0.0193695 +39.52 0.0187317 +39.53 0.0179466 +39.54 0.0169796 +39.55 0.015802 +39.56 0.0143889 +39.57 0.0127154 +39.58 0.0108012 +39.59 0.00865972 +39.6 0.00631582 +39.61 0.00380473 +39.62 0.00117093 +39.63 -0.00153359 +39.64 -0.00425157 +39.65 -0.00691923 +39.66 -0.00946711 +39.67 -0.0118422 +39.68 -0.0139943 +39.69 -0.0158818 +39.7 -0.0174736 +39.71 -0.0187508 +39.72 -0.0197071 +39.73 -0.0203498 +39.74 -0.0206862 +39.75 -0.020756 +39.76 -0.0206163 +39.77 -0.0203196 +39.78 -0.0199237 +39.79 -0.0194884 +39.8 -0.0190732 +39.81 -0.0187342 +39.82 -0.0185212 +39.83 -0.0184887 +39.84 -0.0186631 +39.85 -0.0190562 +39.86 -0.0196722 +39.87 -0.0205031 +39.88 -0.0215291 +39.89 -0.0227205 +39.9 -0.0240392 +39.91 -0.0254412 +39.92 -0.0268781 +39.93 -0.0282954 +39.94 -0.0296478 +39.95 -0.0308959 +39.96 -0.0320075 +39.97 -0.0329597 +39.98 -0.0337402 +39.99 -0.0343473 +40 -0.0347897 +40.01 -0.0350775 +40.02 -0.0352552 +40.03 -0.0353595 +40.04 -0.0354311 +40.05 -0.0355125 +40.06 -0.035645 +40.07 -0.035866 +40.08 -0.0362071 +40.09 -0.0366941 +40.1 -0.0373485 +40.11 -0.0381583 +40.12 -0.0391105 +40.13 -0.0401805 +40.14 -0.0413326 +40.15 -0.042522 +40.16 -0.0436962 +40.17 -0.044798 +40.18 -0.0457605 +40.19 -0.0465135 +40.2 -0.0470099 +40.21 -0.0472011 +40.22 -0.0470475 +40.23 -0.04652 +40.24 -0.0456018 +40.25 -0.0442889 +40.26 -0.0425906 +40.27 -0.040512 +40.28 -0.0380963 +40.29 -0.0354047 +40.3 -0.0324916 +40.31 -0.0294169 +40.32 -0.0262439 +40.33 -0.0230366 +40.34 -0.0198573 +40.35 -0.0167645 +40.36 -0.0138232 +40.37 -0.0110761 +40.38 -0.00855389 +40.39 -0.00628153 +40.4 -0.00427451 +40.41 -0.00253915 +40.42 -0.00107332 +40.43 0.000132547 +40.44 0.0010941 +40.45 0.00181516 +40.46 0.00233797 +40.47 0.00269002 +40.48 0.00289668 +40.49 0.00298216 +40.5 0.00296866 +40.51 0.00287571 +40.52 0.00271988 +40.53 0.00251438 +40.54 0.00226742 +40.55 0.00199055 +40.56 0.00168935 +40.57 0.00136809 +40.58 0.00103038 +40.59 0.000679655 +40.6 0.000319703 +40.61 -4.50765e-05 +40.62 -0.000409359 +40.63 -0.000766218 +40.64 -0.0011092 +40.65 -0.0014317 +40.66 -0.00172754 +40.67 -0.00199149 +40.68 -0.00221983 +40.69 -0.00241083 +40.7 -0.00256517 +40.71 -0.00268509 +40.72 -0.0027771 +40.73 -0.002852 +40.74 -0.0029208 +40.75 -0.00299592 +40.76 -0.00309036 +40.77 -0.00321692 +40.78 -0.00338713 +40.79 -0.00361043 +40.8 -0.00389658 +40.81 -0.00424722 +40.82 -0.00465753 +40.83 -0.0051206 +40.84 -0.00562526 +40.85 -0.00615653 +40.86 -0.0066964 +40.87 -0.00722487 +40.88 -0.00772119 +40.89 -0.00816041 +40.9 -0.00852573 +40.91 -0.00880526 +40.92 -0.0089911 +40.93 -0.0090817 +40.94 -0.00908249 +40.95 -0.00900624 +40.96 -0.0088729 +40.97 -0.00870901 +40.98 -0.00854982 +40.99 -0.0084347 +41 -0.00840189 +41.01 -0.00848899 +41.02 -0.00873061 +41.03 -0.00915599 +41.04 -0.00978676 +41.05 -0.010635 +41.06 -0.0117032 +41.07 -0.0129935 +41.08 -0.0144601 +41.09 -0.0160637 +41.1 -0.0177529 +41.11 -0.019467 +41.12 -0.0211375 +41.13 -0.0226912 +41.14 -0.0240535 +41.15 -0.0251433 +41.16 -0.0258715 +41.17 -0.0262003 +41.18 -0.0260855 +41.19 -0.0254977 +41.2 -0.0244243 +41.21 -0.0228702 +41.22 -0.0208583 +41.23 -0.0184288 +41.24 -0.0156266 +41.25 -0.0125271 +41.26 -0.00923144 +41.27 -0.00582787 +41.28 -0.00240697 +41.29 0.000942582 +41.3 0.00413801 +41.31 0.00710612 +41.32 0.00978654 +41.33 0.0121144 +41.34 0.0140673 +41.35 0.0156526 +41.36 0.016883 +41.37 0.0177881 +41.38 0.0184119 +41.39 0.0188105 +41.4 0.0190482 +41.41 0.0191939 +41.42 0.0193199 +41.43 0.0194984 +41.44 0.0197849 +41.45 0.0202232 +41.46 0.0208422 +41.47 0.0216549 +41.48 0.0226569 +41.49 0.023827 +41.5 0.0251281 +41.51 0.0265107 +41.52 0.0278997 +41.53 0.029224 +41.54 0.0304107 +41.55 0.0313882 +41.56 0.0320913 +41.57 0.0324646 +41.58 0.032466 +41.59 0.0320655 +41.6 0.0312271 +41.61 0.0299995 +41.62 0.0284172 +41.63 0.0265323 +41.64 0.0244118 +41.65 0.0221351 +41.66 0.0197895 +41.67 0.0174668 +41.68 0.0152635 +41.69 0.0132824 +41.7 0.0115896 +41.71 0.0102453 +41.72 0.00929314 +41.73 0.0087579 +41.74 0.00864443 +41.75 0.00893766 +41.76 0.00960349 +41.77 0.0106012 +41.78 0.0118584 +41.79 0.0132808 +41.8 0.0147847 +41.81 0.016285 +41.82 0.0176991 +41.83 0.0189516 +41.84 0.0199773 +41.85 0.0207243 +41.86 0.0211367 +41.87 0.0212014 +41.88 0.0209299 +41.89 0.0203382 +41.9 0.019456 +41.91 0.0183239 +41.92 0.0169906 +41.93 0.0155091 +41.94 0.0139332 +41.95 0.0123136 +41.96 0.0107002 +41.97 0.00912657 +41.98 0.00761363 +41.99 0.00616965 +42 0.00478979 +42.01 0.0034569 +42.02 0.00214301 +42.03 0.000811702 +42.04 -0.000588098 +42.05 -0.00209864 +42.06 -0.00376085 +42.07 -0.00560959 +42.08 -0.00767008 +42.09 -0.00995504 +42.1 -0.0124625 +42.11 -0.0151745 +42.12 -0.0180582 +42.13 -0.0210651 +42.14 -0.0241148 +42.15 -0.0271293 +42.16 -0.0300235 +42.17 -0.0327089 +42.18 -0.0350984 +42.19 -0.0371107 +42.2 -0.0386749 +42.21 -0.0397192 +42.22 -0.0401823 +42.23 -0.0400838 +42.24 -0.0394321 +42.25 -0.0382577 +42.26 -0.0366126 +42.27 -0.0345673 +42.28 -0.0322087 +42.29 -0.0296353 +42.3 -0.0269528 +42.31 -0.024282 +42.32 -0.0217301 +42.33 -0.0193897 +42.34 -0.0173393 +42.35 -0.0156386 +42.36 -0.0143263 +42.37 -0.0134179 +42.38 -0.0129052 +42.39 -0.0127753 +42.4 -0.012958 +42.41 -0.0133673 +42.42 -0.0139163 +42.43 -0.0145107 +42.44 -0.0150538 +42.45 -0.015452 +42.46 -0.015621 +42.47 -0.0154903 +42.48 -0.0149791 +42.49 -0.0140778 +42.5 -0.0127924 +42.51 -0.0111478 +42.52 -0.00919299 +42.53 -0.00699975 +42.54 -0.00465889 +42.55 -0.00227624 +42.56 3.26043e-05 +42.57 0.00211976 +42.58 0.00387656 +42.59 0.00519672 +42.6 0.00598869 +42.61 0.0061809 +42.62 0.00572565 +42.63 0.00460191 +42.64 0.0028168 +42.65 0.000398097 +42.66 -0.00261935 +42.67 -0.00609463 +42.68 -0.00991597 +42.69 -0.0139569 +42.7 -0.0180819 +42.71 -0.0221523 +42.72 -0.0260326 +42.73 -0.0295959 +42.74 -0.0327142 +42.75 -0.0352683 +42.76 -0.0372208 +42.77 -0.0385322 +42.78 -0.039189 +42.79 -0.0392043 +42.8 -0.0386153 +42.81 -0.0374814 +42.82 -0.0358802 +42.83 -0.0338909 +42.84 -0.0316261 +42.85 -0.029207 +42.86 -0.0267347 +42.87 -0.0243025 +42.88 -0.021992 +42.89 -0.0198698 +42.9 -0.0179846 +42.91 -0.0163661 +42.92 -0.0150407 +42.93 -0.0139877 +42.94 -0.0131685 +42.95 -0.0125389 +42.96 -0.012044 +42.97 -0.0116215 +42.98 -0.0112059 +42.99 -0.0107322 +43 -0.0101397 +43.01 -0.0093586 +43.02 -0.00835443 +43.03 -0.00710245 +43.04 -0.00558888 +43.05 -0.00381381 +43.06 -0.00179072 +43.07 0.000454847 +43.08 0.0028871 +43.09 0.00546233 +43.1 0.00813546 +43.11 0.0108424 +43.12 0.0135324 +43.13 0.0161581 +43.14 0.0186777 +43.15 0.0210562 +43.16 0.0232669 +43.17 0.0252915 +43.18 0.0271168 +43.19 0.0287292 +43.2 0.0301495 +43.21 0.0313881 +43.22 0.0324582 +43.23 0.0333741 +43.24 0.0341495 +43.25 0.0347956 +43.26 0.0353203 +43.27 0.0357231 +43.28 0.0359984 +43.29 0.0361463 +43.3 0.0361556 +43.31 0.0360124 +43.32 0.0357013 +43.33 0.0352071 +43.34 0.0345166 +43.35 0.0336202 +43.36 0.0325041 +43.37 0.0311722 +43.38 0.029646 +43.39 0.0279454 +43.4 0.0260984 +43.41 0.02414 +43.42 0.0221115 +43.43 0.0200582 +43.44 0.0180282 +43.45 0.0160768 +43.46 0.0142516 +43.47 0.0125897 +43.48 0.0111231 +43.49 0.00987442 +43.5 0.00885581 +43.51 0.00806796 +43.52 0.00750001 +43.53 0.00712996 +43.54 0.00693558 +43.55 0.00686105 +43.56 0.00685658 +43.57 0.00687176 +43.58 0.00685619 +43.59 0.00676239 +43.6 0.00654862 +43.61 0.0061814 +43.62 0.00563736 +43.63 0.00488906 +43.64 0.00395795 +43.65 0.00286245 +43.66 0.0016336 +43.67 0.000313724 +43.68 -0.00104554 +43.69 -0.00238569 +43.7 -0.00364427 +43.71 -0.00475431 +43.72 -0.00563732 +43.73 -0.0062513 +43.74 -0.00655184 +43.75 -0.00650598 +43.76 -0.00609403 +43.77 -0.00531059 +43.78 -0.00416504 +43.79 -0.0026811 +43.8 -0.000887603 +43.81 0.00116644 +43.82 0.00340365 +43.83 0.00575826 +43.84 0.00816161 +43.85 0.0105453 +43.86 0.012844 +43.87 0.0149986 +43.88 0.0169583 +43.89 0.0186694 +43.9 0.0201024 +43.91 0.0212541 +43.92 0.0221228 +43.93 0.0227183 +43.94 0.0230605 +43.95 0.0231776 +43.96 0.0231035 +43.97 0.0228762 +43.98 0.02253 +43.99 0.0221105 +44 0.0216544 +44.01 0.0211898 +44.02 0.0207379 +44.03 0.0203123 +44.04 0.0199189 +44.05 0.019556 +44.06 0.0192153 +44.07 0.0188818 +44.08 0.018535 +44.09 0.0181542 +44.1 0.0177191 +44.11 0.017211 +44.12 0.0166146 +44.13 0.0159196 +44.14 0.0151212 +44.15 0.0142206 +44.16 0.013219 +44.17 0.0121405 +44.18 0.0110052 +44.19 0.00983664 +44.2 0.00866072 +44.21 0.00750368 +44.22 0.00639057 +44.23 0.00534363 +44.24 0.00438268 +44.25 0.00352606 +44.26 0.0027722 +44.27 0.00211923 +44.28 0.00155888 +44.29 0.00107714 +44.3 0.00065529 +44.31 0.000271308 +44.32 -9.85172e-05 +44.33 -0.000478937 +44.34 -0.000894491 +44.35 -0.00136144 +44.36 -0.00189133 +44.37 -0.00248918 +44.38 -0.00315286 +44.39 -0.00387294 +44.4 -0.004633 +44.41 -0.00541046 +44.42 -0.0061757 +44.43 -0.0068942 +44.44 -0.00753464 +44.45 -0.00806655 +44.46 -0.00846305 +44.47 -0.00870283 +44.48 -0.00877185 +44.49 -0.00866476 +44.5 -0.00838567 +44.51 -0.00793969 +44.52 -0.00736053 +44.53 -0.00668625 +44.54 -0.00595763 +44.55 -0.00522014 +44.56 -0.00452156 +44.57 -0.00390933 +44.58 -0.00342784 +44.59 -0.00311577 +44.6 -0.00302185 +44.61 -0.00315203 +44.62 -0.00351012 +44.63 -0.00408929 +44.64 -0.0048701 +44.65 -0.00582112 +44.66 -0.00690039 +44.67 -0.00805741 +44.68 -0.00923544 +44.69 -0.0103662 +44.7 -0.0113898 +44.71 -0.0122521 +44.72 -0.012906 +44.73 -0.0133147 +44.74 -0.0134538 +44.75 -0.0133126 +44.76 -0.0128954 +44.77 -0.0122164 +44.78 -0.0113021 +44.79 -0.0102184 +44.8 -0.00902221 +44.81 -0.00777678 +44.82 -0.006548 +44.83 -0.00540081 +44.84 -0.00439552 +44.85 -0.00358432 +44.86 -0.00301788 +44.87 -0.00272945 +44.88 -0.00271339 +44.89 -0.00296064 +44.9 -0.00344563 +44.91 -0.00412738 +44.92 -0.00495144 +44.93 -0.00585264 +44.94 -0.00675841 +44.95 -0.00758475 +44.96 -0.0082486 +44.97 -0.00868409 +44.98 -0.00883177 +44.99 -0.00864514 +45 -0.0080934 +45.01 -0.00716332 +45.02 -0.00586028 +45.03 -0.00420827 +45.04 -0.00223199 +45.05 -1.03559e-05 +45.06 0.00237654 +45.07 0.00484737 +45.08 0.00731643 +45.09 0.0096979 +45.1 0.0119103 +45.11 0.0138803 +45.12 0.0155468 +45.13 0.0168319 +45.14 0.0177337 +45.15 0.0182495 +45.16 0.018392 +45.17 0.0181919 +45.18 0.0176955 +45.19 0.0169619 +45.2 0.0160598 +45.21 0.0150631 +45.22 0.0140526 +45.23 0.013106 +45.24 0.0122855 +45.25 0.0116418 +45.26 0.0112109 +45.27 0.0110122 +45.28 0.0110478 +45.29 0.0113023 +45.3 0.011747 +45.31 0.0123356 +45.32 0.0129955 +45.33 0.0136599 +45.34 0.0142587 +45.35 0.0147238 +45.36 0.0149926 +45.37 0.0150121 +45.38 0.0147428 +45.39 0.0141486 +45.4 0.0132206 +45.41 0.011993 +45.42 0.0105014 +45.43 0.00879815 +45.44 0.00695015 +45.45 0.0050352 +45.46 0.00313829 +45.47 0.00134714 +45.48 -0.000237435 +45.49 -0.00153137 +45.5 -0.00247682 +45.51 -0.00302366 +45.52 -0.00313986 +45.53 -0.00281331 +45.54 -0.00205258 +45.55 -0.000886608 +45.56 0.00063667 +45.57 0.00246769 +45.58 0.00450524 +45.59 0.00665454 +45.6 0.00882353 +45.61 0.0109214 +45.62 0.012863 +45.63 0.0145737 +45.64 0.0159926 +45.65 0.0170758 +45.66 0.0177671 +45.67 0.0180934 +45.68 0.0180768 +45.69 0.0177557 +45.7 0.0171843 +45.71 0.0164294 +45.72 0.0155665 +45.73 0.0146756 +45.74 0.0138374 +45.75 0.0131422 +45.76 0.0126473 +45.77 0.0124012 +45.78 0.0124361 +45.79 0.0127653 +45.8 0.0133831 +45.81 0.0142648 +45.82 0.0153683 +45.83 0.0166383 +45.84 0.0180007 +45.85 0.0193667 +45.86 0.0206554 +45.87 0.0217881 +45.88 0.0226931 +45.89 0.0233097 +45.9 0.0235918 +45.91 0.0235106 +45.92 0.0230422 +45.93 0.0221974 +45.94 0.0210305 +45.95 0.0195947 +45.96 0.0179585 +45.97 0.0162021 +45.98 0.0144133 +45.99 0.0126831 +46 0.0111006 +46.01 0.00976534 +46.02 0.00875034 +46.03 0.0080994 +46.04 0.00784616 +46.05 0.0080036 +46.06 0.00856318 +46.07 0.00949512 +46.08 0.0107498 +46.09 0.01226 +46.1 0.0139505 +46.11 0.015711 +46.12 0.0174414 +46.13 0.0190453 +46.14 0.0204325 +46.15 0.0215229 +46.16 0.0222508 +46.17 0.0225683 +46.18 0.0224477 +46.19 0.0218452 +46.2 0.0208183 +46.21 0.0194105 +46.22 0.0176816 +46.23 0.0157072 +46.24 0.013574 +46.25 0.0113761 +46.26 0.00921018 +46.27 0.00717289 +46.28 0.00537395 +46.29 0.0038746 +46.3 0.00273169 +46.31 0.00198365 +46.32 0.00164887 +46.33 0.00172507 +46.34 0.00218971 +46.35 0.00300145 +46.36 0.00410826 +46.37 0.00543842 +46.38 0.00689158 +46.39 0.00838174 +46.4 0.00982334 +46.41 0.0111356 +46.42 0.0122465 +46.43 0.0130965 +46.44 0.013641 +46.45 0.0138385 +46.46 0.0136789 +46.47 0.0131927 +46.48 0.0124113 +46.49 0.0113813 +46.5 0.010162 +46.51 0.0088221 +46.52 0.00743613 +46.53 0.00608025 +46.54 0.00483852 +46.55 0.00378248 +46.56 0.00296362 +46.57 0.00242399 +46.58 0.00219034 +46.59 0.00227281 +46.6 0.0026646 +46.61 0.00334228 +46.62 0.00426715 +46.63 0.00539685 +46.64 0.00665055 +46.65 0.00795336 +46.66 0.00923075 +46.67 0.0104087 +46.68 0.0114173 +46.69 0.0121937 +46.7 0.0126857 +46.71 0.0128534 +46.72 0.0126389 +46.73 0.0120645 +46.74 0.0111404 +46.75 0.00989055 +46.76 0.00835277 +46.77 0.00657652 +46.78 0.00462051 +46.79 0.00254999 +46.8 0.00043409 +46.81 -0.00164974 +46.82 -0.00363329 +46.83 -0.00545727 +46.84 -0.00707086 +46.85 -0.00843367 +46.86 -0.00951705 +46.87 -0.0103049 +46.88 -0.0107937 +46.89 -0.0109848 +46.9 -0.0108925 +46.91 -0.0105675 +46.92 -0.0100496 +46.93 -0.00938404 +46.94 -0.00861908 +46.95 -0.00780362 +46.96 -0.00698487 +46.97 -0.00620623 +46.98 -0.00551028 +46.99 -0.0049305 +47 -0.00448285 +47.01 -0.00417795 +47.02 -0.0040171 +47.03 -0.00399253 +47.04 -0.00408811 +47.05 -0.00428051 +47.06 -0.00454049 +47.07 -0.00483439 +47.08 -0.0051212 +47.09 -0.00536354 +47.1 -0.00552668 +47.11 -0.0055792 +47.12 -0.00549453 +47.13 -0.00525215 +47.14 -0.00483856 +47.15 -0.00424789 +47.16 -0.00346969 +47.17 -0.0025264 +47.18 -0.00143984 +47.19 -0.000235431 +47.2 0.00105605 +47.21 0.00239973 +47.22 0.00375813 +47.23 0.00509269 +47.24 0.00636541 +47.25 0.00752843 +47.26 0.00855661 +47.27 0.00942402 +47.28 0.010111 +47.29 0.0106048 +47.3 0.0109007 +47.31 0.0110014 +47.32 0.0109177 +47.33 0.0106654 +47.34 0.0102635 +47.35 0.00975605 +47.36 0.00917844 +47.37 0.00856878 +47.38 0.00796618 +47.39 0.0074092 +47.4 0.00693421 +47.41 0.00657393 +47.42 0.00636103 +47.43 0.00632349 +47.44 0.00646462 +47.45 0.00678877 +47.46 0.00729209 +47.47 0.00796266 +47.48 0.008781 +47.49 0.00972087 +47.5 0.0107503 +47.51 0.0118338 +47.52 0.0129273 +47.53 0.0139888 +47.54 0.0149798 +47.55 0.0158649 +47.56 0.0166133 +47.57 0.0172005 +47.58 0.0176091 +47.59 0.0178298 +47.6 0.0178508 +47.61 0.0176884 +47.62 0.0173666 +47.63 0.016911 +47.64 0.0163533 +47.65 0.0157301 +47.66 0.0150805 +47.67 0.0144448 +47.68 0.0138621 +47.69 0.0133778 +47.7 0.0130194 +47.71 0.0128083 +47.72 0.0127589 +47.73 0.0128768 +47.74 0.013158 +47.75 0.0135889 +47.76 0.0141473 +47.77 0.014803 +47.78 0.0155208 +47.79 0.0162501 +47.8 0.0169468 +47.81 0.0175666 +47.82 0.0180679 +47.83 0.0184137 +47.84 0.0185738 +47.85 0.0185262 +47.86 0.0182549 +47.87 0.0177462 +47.88 0.0170286 +47.89 0.0161242 +47.9 0.0150647 +47.91 0.0138899 +47.92 0.0126459 +47.93 0.0113826 +47.94 0.0101516 +47.95 0.00900757 +47.96 0.00800538 +47.97 0.00717827 +47.98 0.00655581 +47.99 0.00615686 +48 0.00598838 +48.01 0.00604479 +48.02 0.00630796 +48.03 0.00674779 +48.04 0.00732753 +48.05 0.00798977 +48.06 0.00867133 +48.07 0.00931159 +48.08 0.00984972 +48.09 0.0102277 +48.1 0.0103933 +48.11 0.010303 +48.12 0.00992388 +48.13 0.00921617 +48.14 0.00818693 +48.15 0.00685797 +48.16 0.00525723 +48.17 0.00342665 +48.18 0.00142075 +48.19 -0.000695538 +48.2 -0.00284942 +48.21 -0.00496323 +48.22 -0.00694185 +48.23 -0.00870943 +48.24 -0.0101967 +48.25 -0.0113415 +48.26 -0.0120932 +48.27 -0.0124147 +48.28 -0.0122837 +48.29 -0.0116942 +48.3 -0.010655 +48.31 -0.00915918 +48.32 -0.00729024 +48.33 -0.00510416 +48.34 -0.00266704 +48.35 -5.2403e-05 +48.36 0.00266169 +48.37 0.00539563 +48.38 0.00807123 +48.39 0.0106107 +48.4 0.0129297 +48.41 0.014983 +48.42 0.0167257 +48.43 0.018125 +48.44 0.0191607 +48.45 0.0198252 +48.46 0.0201231 +48.47 0.0200698 +48.48 0.019681 +48.49 0.0189884 +48.5 0.0180519 +48.51 0.016917 +48.52 0.0156311 +48.53 0.0142421 +48.54 0.0127965 +48.55 0.0113381 +48.56 0.00990704 +48.57 0.00854317 +48.58 0.00727899 +48.59 0.00613484 +48.6 0.00512834 +48.61 0.00427181 +48.62 0.00357259 +48.63 0.00303361 +48.64 0.00265386 +48.65 0.00242894 +48.66 0.00236064 +48.67 0.00243214 +48.68 0.00262737 +48.69 0.00293247 +48.7 0.00333203 +48.71 0.00380927 +48.72 0.00434611 +48.73 0.00492328 +48.74 0.00552043 +48.75 0.00611444 +48.76 0.0066816 +48.77 0.00719991 +48.78 0.00764774 +48.79 0.00800453 +48.8 0.00825145 +48.81 0.00837222 +48.82 0.00835388 +48.83 0.00818683 +48.84 0.00785469 +48.85 0.00737318 +48.86 0.00675088 +48.87 0.00600229 +48.88 0.00514771 +48.89 0.00421274 +48.9 0.00322757 +48.91 0.00222594 +48.92 0.00124509 +48.93 0.000328601 +48.94 -0.00048973 +48.95 -0.00117723 +48.96 -0.00170574 +48.97 -0.00205312 +48.98 -0.00220449 +48.99 -0.0021532 +49 -0.00190149 +49.01 -0.00145451 +49.02 -0.000832469 +49.03 -7.58491e-05 +49.04 0.000778701 +49.05 0.00168945 +49.06 0.00261149 +49.07 0.00349882 +49.08 0.00430656 +49.09 0.00499319 +49.1 0.00551288 +49.11 0.00583651 +49.12 0.00595303 +49.13 0.00585513 +49.14 0.00554623 +49.15 0.00504042 +49.16 0.00436187 +49.17 0.0035437 +49.18 0.00262634 +49.19 0.00165532 +49.2 0.000686773 +49.21 -0.000229397 +49.22 -0.00104736 +49.23 -0.00172669 +49.24 -0.00223459 +49.25 -0.00254781 +49.26 -0.00265407 +49.27 -0.00255293 +49.28 -0.00224172 +49.29 -0.00176231 +49.3 -0.00115289 +49.31 -0.000458602 +49.32 0.000268928 +49.33 0.000974206 +49.34 0.0016007 +49.35 0.00209377 +49.36 0.00240204 +49.37 0.00246241 +49.38 0.00226161 +49.39 0.00178237 +49.4 0.00102098 +49.41 -1.21746e-05 +49.42 -0.00129274 +49.43 -0.00278321 +49.44 -0.00443444 +49.45 -0.00618834 +49.46 -0.00797317 +49.47 -0.00971206 +49.48 -0.0113345 +49.49 -0.0127733 +49.5 -0.0139671 +49.51 -0.014864 +49.52 -0.0154232 +49.53 -0.0156172 +49.54 -0.0154188 +49.55 -0.0148263 +49.56 -0.0138809 +49.57 -0.0126169 +49.58 -0.0110806 +49.59 -0.00932866 +49.6 -0.00742481 +49.61 -0.00543736 +49.62 -0.00343599 +49.63 -0.00149517 +49.64 0.000316122 +49.65 0.00194638 +49.66 0.00335183 +49.67 0.00450046 +49.68 0.00537298 +49.69 0.00596328 +49.7 0.00627818 +49.71 0.00633667 +49.72 0.00615546 +49.73 0.00578891 +49.74 0.00528868 +49.75 0.00470509 +49.76 0.00408954 +49.77 0.00349209 +49.78 0.00295906 +49.79 0.00253101 +49.8 0.00224103 +49.81 0.00212855 +49.82 0.00219516 +49.83 0.00244226 +49.84 0.00286279 +49.85 0.00344086 +49.86 0.00415285 +49.87 0.00496887 +49.88 0.0058544 +49.89 0.00677199 +49.9 0.00767905 +49.91 0.00853625 +49.92 0.00930923 +49.93 0.0099678 +49.94 0.010487 +49.95 0.010848 +49.96 0.0110384 +49.97 0.0110525 +49.98 0.0108869 +49.99 0.0105427 +50 0.0100452 +50.01 0.00941259 +50.02 0.00866624 +50.03 0.00783026 +50.04 0.00693031 +50.05 0.00599276 +50.06 0.00504382 +50.07 0.00411044 +50.08 0.00321965 +50.09 0.00239207 +50.1 0.00164682 +50.11 0.0010005 +50.12 0.000466953 +50.13 5.72311e-05 +50.14 -0.00022051 +50.15 -0.000361056 +50.16 -0.000354458 +50.17 -0.000204833 +50.18 7.79404e-05 +50.19 0.000485802 +50.2 0.00100736 +50.21 0.00162785 +50.22 0.0023292 +50.23 0.00309019 +50.24 0.00388665 +50.25 0.00469048 +50.26 0.00546966 +50.27 0.00619418 +50.28 0.0068341 +50.29 0.00736054 +50.3 0.00774677 +50.31 0.00796942 +50.32 0.0080097 +50.33 0.00785446 +50.34 0.00747968 +50.35 0.0069043 +50.36 0.00614016 +50.37 0.00520616 +50.38 0.00412907 +50.39 0.00294279 +50.4 0.00168739 +50.41 0.000407674 +50.42 -0.000847709 +50.43 -0.00201993 +50.44 -0.00306434 +50.45 -0.00393764 +50.46 -0.00460254 +50.47 -0.0050298 +50.48 -0.00519984 +50.49 -0.00510408 +50.5 -0.00474578 +50.51 -0.00413457 +50.52 -0.00329336 +50.53 -0.00227894 +50.54 -0.00114112 +50.55 6.32345e-05 +50.56 0.00127268 +50.57 0.00242397 +50.58 0.00345502 +50.59 0.0043079 +50.6 0.00492027 +50.61 0.00524514 +50.62 0.00526821 +50.63 0.00497731 +50.64 0.00437515 +50.65 0.00347948 +50.66 0.00232255 +50.67 0.000949842 +50.68 -0.000581875 +50.69 -0.00220824 +50.7 -0.00384744 +50.71 -0.00542309 +50.72 -0.00686402 +50.73 -0.00810476 +50.74 -0.00908886 +50.75 -0.00977175 +50.76 -0.0101231 +50.77 -0.0101285 +50.78 -0.00976653 +50.79 -0.00907966 +50.8 -0.00811328 +50.81 -0.00692029 +50.82 -0.00556498 +50.83 -0.00411998 +50.84 -0.00266265 +50.85 -0.00127124 +50.86 -2.09751e-05 +50.87 0.000995915 +50.88 0.00173706 +50.89 0.00216228 +50.9 0.00224702 +50.91 0.00198442 +50.92 0.00138579 +50.93 0.000480221 +50.94 -0.000686701 +50.95 -0.0020566 +50.96 -0.00355872 +50.97 -0.00509708 +50.98 -0.00658798 +50.99 -0.00794885 +51 -0.00910233 +51.01 -0.00998014 +51.02 -0.0105265 +51.03 -0.0107011 +51.04 -0.0104695 +51.05 -0.00981491 +51.06 -0.0087818 +51.07 -0.00740723 +51.08 -0.0057445 +51.09 -0.00386064 +51.1 -0.00183321 +51.11 0.000253425 +51.12 0.00231208 +51.13 0.00424819 +51.14 0.00597147 +51.15 0.00741935 +51.16 0.00853636 +51.17 0.00928263 +51.18 0.00963547 +51.19 0.00959019 +51.2 0.00915993 +51.21 0.0083747 +51.22 0.00726464 +51.23 0.00590355 +51.24 0.00436998 +51.25 0.00273749 +51.26 0.00108078 +51.27 -0.000527971 +51.28 -0.00202263 +51.29 -0.00334622 +51.3 -0.0044535 +51.31 -0.00529295 +51.32 -0.00586306 +51.33 -0.00616999 +51.34 -0.00623009 +51.35 -0.00607273 +51.36 -0.00573821 +51.37 -0.00527519 +51.38 -0.0047377 +51.39 -0.00418191 +51.4 -0.0036709 +51.41 -0.00325501 +51.42 -0.00297579 +51.43 -0.00286485 +51.44 -0.00294221 +51.45 -0.00321528 +51.46 -0.00367868 +51.47 -0.00431468 +51.48 -0.00509583 +51.49 -0.00598574 +51.5 -0.00692685 +51.51 -0.00786865 +51.52 -0.00875984 +51.53 -0.00955118 +51.54 -0.0101983 +51.55 -0.0106643 +51.56 -0.0109215 +51.57 -0.0109464 +51.58 -0.010728 +51.59 -0.0102907 +51.6 -0.0096565 +51.61 -0.0088576 +51.62 -0.00793495 +51.63 -0.00693588 +51.64 -0.00591157 +51.65 -0.00491439 +51.66 -0.00400085 +51.67 -0.00322245 +51.68 -0.002613 +51.69 -0.00220094 +51.7 -0.00200403 +51.71 -0.00202852 +51.72 -0.00226895 +51.73 -0.00270851 +51.74 -0.00332004 +51.75 -0.00407324 +51.76 -0.0049158 +51.77 -0.00579586 +51.78 -0.00666441 +51.79 -0.00747385 +51.8 -0.00818055 +51.81 -0.00874708 +51.82 -0.00914421 +51.83 -0.00935235 +51.84 -0.00934741 +51.85 -0.00914568 +51.86 -0.00876546 +51.87 -0.00823177 +51.88 -0.00757793 +51.89 -0.00684368 +51.9 -0.00607298 +51.91 -0.0053116 +51.92 -0.00460473 +51.93 -0.0040065 +51.94 -0.00354619 +51.95 -0.00325084 +51.96 -0.00313817 +51.97 -0.00321553 +51.98 -0.00347955 +51.99 -0.00391619 +52 -0.00450143 +52.01 -0.00520364 +52.02 -0.00598265 +52.03 -0.00678407 +52.04 -0.00755968 +52.05 -0.00826143 +52.06 -0.00884392 +52.07 -0.00926664 +52.08 -0.00949605 +52.09 -0.00950731 +52.1 -0.00927801 +52.11 -0.00879829 +52.12 -0.00809201 +52.13 -0.00717961 +52.14 -0.00609136 +52.15 -0.00486602 +52.16 -0.00354914 +52.17 -0.00219096 +52.18 -0.000844211 +52.19 0.000432656 +52.2 0.00158345 +52.21 0.00256655 +52.22 0.00334411 +52.23 0.00388682 +52.24 0.004175 +52.25 0.00419944 +52.26 0.00396157 +52.27 0.00347327 +52.28 0.0027437 +52.29 0.00181541 +52.3 0.000733859 +52.31 -0.000457127 +52.32 -0.00171076 +52.33 -0.00297937 +52.34 -0.00421646 +52.35 -0.00537863 +52.36 -0.0064273 +52.37 -0.00731669 +52.38 -0.00803069 +52.39 -0.00855669 +52.4 -0.00888872 +52.41 -0.00902923 +52.42 -0.00898856 +52.43 -0.00878405 +52.44 -0.00843886 +52.45 -0.00798032 +52.46 -0.00743457 +52.47 -0.00684289 +52.48 -0.00623594 +52.49 -0.00564196 +52.5 -0.00508548 +52.51 -0.00458623 +52.52 -0.00415834 +52.53 -0.00380993 +52.54 -0.00354438 +52.55 -0.00336106 +52.56 -0.00324352 +52.57 -0.00317716 +52.58 -0.00314431 +52.59 -0.0031256 +52.6 -0.00310133 +52.61 -0.00305294 +52.62 -0.00296434 +52.63 -0.0028211 +52.64 -0.00261392 +52.65 -0.00234525 +52.66 -0.00202042 +52.67 -0.0016508 +52.68 -0.00125347 +52.69 -0.000850532 +52.7 -0.000468117 +52.71 -0.000135118 +52.72 0.000112814 +52.73 0.000243034 +52.74 0.000232174 +52.75 5.74958e-05 +52.76 -0.000298025 +52.77 -0.000844399 +52.78 -0.0015836 +52.79 -0.0025089 +52.8 -0.00360459 +52.81 -0.00485344 +52.82 -0.00621254 +52.83 -0.00763655 +52.84 -0.0090786 +52.85 -0.0104883 +52.86 -0.0118137 +52.87 -0.0130035 +52.88 -0.0140095 +52.89 -0.0147887 +52.9 -0.0152816 +52.91 -0.0154791 +52.92 -0.0153707 +52.93 -0.0149543 +52.94 -0.0142403 +52.95 -0.0132507 +52.96 -0.012019 +52.97 -0.0105886 +52.98 -0.00901096 +52.99 -0.00734272 +53 -0.00565852 +53.01 -0.00402136 +53.02 -0.00249204 +53.03 -0.00112649 +53.04 2.6634e-05 +53.05 0.000928098 +53.06 0.00154983 +53.07 0.00187013 +53.08 0.00187191 +53.09 0.00158999 +53.1 0.0010499 +53.11 0.000288041 +53.12 -0.000650195 +53.13 -0.00171269 +53.14 -0.00284322 +53.15 -0.00398422 +53.16 -0.00507612 +53.17 -0.00605995 +53.18 -0.00689595 +53.19 -0.00755098 +53.2 -0.008003 +53.21 -0.00824215 +53.22 -0.00827098 +53.23 -0.00810419 +53.24 -0.00776764 +53.25 -0.00729216 +53.26 -0.00672801 +53.27 -0.00612902 +53.28 -0.00554509 +53.29 -0.00502453 +53.3 -0.00461122 +53.31 -0.00434194 +53.32 -0.00424411 +53.33 -0.00433407 +53.34 -0.00462814 +53.35 -0.00510677 +53.36 -0.00574117 +53.37 -0.00649627 +53.38 -0.00732774 +53.39 -0.00818437 +53.4 -0.00901095 +53.41 -0.00975144 +53.42 -0.0103522 +53.43 -0.0107466 +53.44 -0.0109075 +53.45 -0.0108121 +53.46 -0.0104495 +53.47 -0.00982404 +53.48 -0.00895516 +53.49 -0.00787736 +53.5 -0.00663876 +53.51 -0.00529878 +53.52 -0.00393025 +53.53 -0.00261529 +53.54 -0.00142861 +53.55 -0.000441416 +53.56 0.000282601 +53.57 0.000690874 +53.58 0.000745174 +53.59 0.000424146 +53.6 -0.000282875 +53.61 -0.00137273 +53.62 -0.00277859 +53.63 -0.00444269 +53.64 -0.00629216 +53.65 -0.00824234 +53.66 -0.0102007 +53.67 -0.0120713 +53.68 -0.0137598 +53.69 -0.0151643 +53.7 -0.0161942 +53.71 -0.0168065 +53.72 -0.0169622 +53.73 -0.016644 +53.74 -0.0158575 +53.75 -0.0146314 +53.76 -0.0130169 +53.77 -0.0110848 +53.78 -0.00891654 +53.79 -0.00662934 +53.8 -0.00434144 +53.81 -0.00216389 +53.82 -0.000203524 +53.83 0.00144231 +53.84 0.00269072 +53.85 0.00347747 +53.86 0.00376037 +53.87 0.00348606 +53.88 0.00269061 +53.89 0.00142466 +53.9 -0.000250243 +53.91 -0.00225241 +53.92 -0.0044841 +53.93 -0.00683637 +53.94 -0.00919449 +53.95 -0.0114438 +53.96 -0.0134485 +53.97 -0.0151223 +53.98 -0.0163905 +53.99 -0.017198 +54 -0.0175139 +54.01 -0.017333 +54.02 -0.0166762 +54.03 -0.0155889 +54.04 -0.0141369 +54.05 -0.0123961 +54.06 -0.0104995 +54.07 -0.00855803 +54.08 -0.00668416 +54.09 -0.00498594 +54.1 -0.0035613 +54.11 -0.00249288 +54.12 -0.00184364 +54.13 -0.00166477 +54.14 -0.00199067 +54.15 -0.00277204 +54.16 -0.00396625 +54.17 -0.00550775 +54.18 -0.00731159 +54.19 -0.00927786 +54.2 -0.011297 +54.21 -0.0132554 +54.22 -0.0150306 +54.23 -0.0165048 +54.24 -0.0176019 +54.25 -0.0182556 +54.26 -0.0184225 +54.27 -0.0180846 +54.28 -0.01725 +54.29 -0.0159527 +54.3 -0.0142508 +54.31 -0.0122113 +54.32 -0.00994924 +54.33 -0.0075864 +54.34 -0.00523754 +54.35 -0.00301615 +54.36 -0.00102849 +54.37 0.00063187 +54.38 0.00188894 +54.39 0.00268824 +54.4 0.00296464 +54.41 0.00274157 +54.42 0.00205704 +54.43 0.000962721 +54.44 -0.000468378 +54.45 -0.00214592 +54.46 -0.00396707 +54.47 -0.00582196 +54.48 -0.00759953 +54.49 -0.0091691 +54.5 -0.0104441 +54.51 -0.0113493 +54.52 -0.0118293 +54.53 -0.0118516 +54.54 -0.011409 +54.55 -0.0105194 +54.56 -0.0092249 +54.57 -0.00758713 +54.58 -0.00567971 +54.59 -0.00362903 +54.6 -0.00154193 +54.61 0.000472759 +54.62 0.0023098 +54.63 0.00387295 +54.64 0.00507987 +54.65 0.00586618 +54.66 0.00617614 +54.67 0.00597049 +54.68 0.00528999 +54.69 0.00416734 +54.7 0.00265646 +54.71 0.000829438 +54.72 -0.00122731 +54.73 -0.00341766 +54.74 -0.00564071 +54.75 -0.00778901 +54.76 -0.00975546 +54.77 -0.0114622 +54.78 -0.0128423 +54.79 -0.0138466 +54.8 -0.0144459 +54.81 -0.0146316 +54.82 -0.0144155 +54.83 -0.0138285 +54.84 -0.0129036 +54.85 -0.011718 +54.86 -0.010356 +54.87 -0.00889562 +54.88 -0.00741546 +54.89 -0.00599042 +54.9 -0.00468805 +54.91 -0.00356531 +54.92 -0.00266601 +54.93 -0.00203854 +54.94 -0.00168171 +54.95 -0.001585 +54.96 -0.00172883 +54.97 -0.00208155 +54.98 -0.00260205 +54.99 -0.00324276 +55 -0.00395295 +55.01 -0.00468196 +55.02 -0.00537623 +55.03 -0.00599492 +55.04 -0.00650755 +55.05 -0.00689387 +55.06 -0.0071447 +55.07 -0.00726189 +55.08 -0.0072576 +55.09 -0.00715286 +55.1 -0.00697519 +55.11 -0.00675782 +55.12 -0.00654054 +55.13 -0.00635614 +55.14 -0.00623327 +55.15 -0.00619423 +55.16 -0.00625326 +55.17 -0.00641534 +55.18 -0.00667569 +55.19 -0.00702154 +55.2 -0.00742855 +55.21 -0.0078597 +55.22 -0.00827867 +55.23 -0.00864706 +55.24 -0.00892711 +55.25 -0.00908445 +55.26 -0.00909067 +55.27 -0.00892561 +55.28 -0.00857134 +55.29 -0.00802965 +55.3 -0.00732517 +55.31 -0.00648491 +55.32 -0.00554615 +55.33 -0.0045545 +55.34 -0.00356162 +55.35 -0.00262231 +55.36 -0.00179142 +55.37 -0.00113288 +55.38 -0.000691738 +55.39 -0.000496072 +55.4 -0.000567355 +55.41 -0.000913354 +55.42 -0.00152727 +55.43 -0.00238767 +55.44 -0.0034593 +55.45 -0.00469459 +55.46 -0.00603896 +55.47 -0.00741488 +55.48 -0.00875196 +55.49 -0.00998238 +55.5 -0.0110428 +55.51 -0.0118779 +55.52 -0.0124432 +55.53 -0.0127077 +55.54 -0.0126557 +55.55 -0.0122606 +55.56 -0.011571 +55.57 -0.0106232 +55.58 -0.00946598 +55.59 -0.00815875 +55.6 -0.00676843 +55.61 -0.00536575 +55.62 -0.00402152 +55.63 -0.00280543 +55.64 -0.00179412 +55.65 -0.00102312 +55.66 -0.000524826 +55.67 -0.000316253 +55.68 -0.000398227 +55.69 -0.000755501 +55.7 -0.00135775 +55.71 -0.0021614 +55.72 -0.00311457 +55.73 -0.00415073 +55.74 -0.00519501 +55.75 -0.00618206 +55.76 -0.00705101 +55.77 -0.00774887 +55.78 -0.00823345 +55.79 -0.0084757 +55.8 -0.00846123 +55.81 -0.00818027 +55.82 -0.00765253 +55.83 -0.00692342 +55.84 -0.00603799 +55.85 -0.00505027 +55.86 -0.00402 +55.87 -0.00300919 +55.88 -0.00207846 +55.89 -0.00128353 +55.9 -0.000685548 +55.91 -0.000318071 +55.92 -0.000195753 +55.93 -0.000324732 +55.94 -0.000696474 +55.95 -0.00128839 +55.96 -0.00206527 +55.97 -0.0029814 +55.98 -0.00398331 +55.99 -0.00501048 +56 -0.00599687 +56.01 -0.00688655 +56.02 -0.00763043 +56.03 -0.00818876 +56.04 -0.0085334 +56.05 -0.00864932 +56.06 -0.00853545 +56.07 -0.00820459 +56.08 -0.0076684 +56.09 -0.00698612 +56.1 -0.00620555 +56.11 -0.00537984 +56.12 -0.00456416 +56.13 -0.00381242 +56.14 -0.00317392 +56.15 -0.00269036 +56.16 -0.00239656 +56.17 -0.00232516 +56.18 -0.00246455 +56.19 -0.00280411 +56.2 -0.00332031 +56.21 -0.00397813 +56.22 -0.00473322 +56.23 -0.00553461 +56.24 -0.00632786 +56.25 -0.00705473 +56.26 -0.00765541 +56.27 -0.00809142 +56.28 -0.00832999 +56.29 -0.00835047 +56.3 -0.0081457 +56.31 -0.00772259 +56.32 -0.00710189 +56.33 -0.00631712 +56.34 -0.00540962 +56.35 -0.00443976 +56.36 -0.00347139 +56.37 -0.00256409 +56.38 -0.00177484 +56.39 -0.00115451 +56.4 -0.000744828 +56.41 -0.000575739 +56.42 -0.000663461 +56.43 -0.00102466 +56.44 -0.00163323 +56.45 -0.00244995 +56.46 -0.00343064 +56.47 -0.00452094 +56.48 -0.00565938 +56.49 -0.00678085 +56.5 -0.00782029 +56.51 -0.00871646 +56.52 -0.00939653 +56.53 -0.00982806 +56.54 -0.00998709 +56.55 -0.00986217 +56.56 -0.00945788 +56.57 -0.00879461 +56.58 -0.00790749 +56.59 -0.00684445 +56.6 -0.00566339 +56.61 -0.00443077 +56.62 -0.0032243 +56.63 -0.00210997 +56.64 -0.00114807 +56.65 -0.000389638 +56.66 0.000126509 +56.67 0.000376029 +56.68 0.000350536 +56.69 5.38788e-05 +56.7 -0.000499513 +56.71 -0.0012479 +56.72 -0.00213768 +56.73 -0.0031067 +56.74 -0.00408796 +56.75 -0.00501357 +56.76 -0.00581879 +56.77 -0.0064459 +56.78 -0.00683904 +56.79 -0.00695582 +56.8 -0.00679568 +56.81 -0.0063614 +56.82 -0.00567273 +56.83 -0.00476531 +56.84 -0.00368872 +56.85 -0.00250367 +56.86 -0.00127854 +56.87 -9.05769e-05 +56.88 0.000980734 +56.89 0.00187246 +56.9 0.00252978 +56.91 0.00291113 +56.92 0.00299083 +56.93 0.0027608 +56.94 0.00223134 +56.95 0.00143074 +56.96 0.000393276 +56.97 -0.000805483 +56.98 -0.00208731 +56.99 -0.00337415 +57 -0.00458649 +57.01 -0.00564795 +57.02 -0.00648982 +57.03 -0.00705514 +57.04 -0.00730221 +57.05 -0.00717947 +57.06 -0.00670918 +57.07 -0.00591628 +57.08 -0.00484091 +57.09 -0.00354046 +57.1 -0.0020866 +57.11 -0.000561342 +57.12 0.000947442 +57.13 0.0023502 +57.14 0.00353902 +57.15 0.00445184 +57.16 0.00503064 +57.17 0.00523562 +57.18 0.00504774 +57.19 0.00447015 +57.2 0.00352841 +57.21 0.00226947 +57.22 0.000756257 +57.23 -0.000928368 +57.24 -0.00267164 +57.25 -0.00437331 +57.26 -0.00593362 +57.27 -0.00725889 +57.28 -0.00826686 +57.29 -0.00889143 +57.3 -0.00908672 +57.31 -0.0088141 +57.32 -0.00806923 +57.33 -0.00691126 +57.34 -0.00539722 +57.35 -0.00360528 +57.36 -0.00163092 +57.37 0.00041785 +57.38 0.00242611 +57.39 0.00427797 +57.4 0.00584393 +57.41 0.00701728 +57.42 0.00773175 +57.43 0.00793196 +57.44 0.00758826 +57.45 0.00669874 +57.46 0.00528978 +57.47 0.00341514 +57.48 0.00115373 +57.49 -0.00140514 +57.5 -0.00411875 +57.51 -0.00685045 +57.52 -0.00946764 +57.53 -0.0118413 +57.54 -0.0138523 +57.55 -0.0153976 +57.56 -0.0163951 +57.57 -0.016788 +57.58 -0.0164957 +57.59 -0.0155701 +57.6 -0.014055 +57.61 -0.0120157 +57.62 -0.00954168 +57.63 -0.00674271 +57.64 -0.00374308 +57.65 -0.000675828 +57.66 0.00232256 +57.67 0.0050933 +57.68 0.00752695 +57.69 0.00952377 +57.7 0.011006 +57.71 0.0119212 +57.72 0.0122444 +57.73 0.0119784 +57.74 0.0111537 +57.75 0.00981717 +57.76 0.00803606 +57.77 0.00594461 +57.78 0.00365335 +57.79 0.00127853 +57.8 -0.00106372 +57.81 -0.00326301 +57.82 -0.00521991 +57.83 -0.00685049 +57.84 -0.0080738 +57.85 -0.00883671 +57.86 -0.00914693 +57.87 -0.00901334 +57.88 -0.00846675 +57.89 -0.00755751 +57.9 -0.00635224 +57.91 -0.00492991 +57.92 -0.00337728 +57.93 -0.00178695 +57.94 -0.000257423 +57.95 0.0011302 +57.96 0.0023071 +57.97 0.00321863 +57.98 0.00382661 +57.99 0.00411065 +58 0.00406848 +58.01 0.00371539 +58.02 0.00306676 +58.03 0.0021865 +58.04 0.00113915 +58.05 -1.0759e-05 +58.06 -0.00119575 +58.07 -0.00234901 +58.08 -0.00340785 +58.09 -0.00431673 +58.1 -0.00502983 +58.11 -0.00549182 +58.12 -0.00569931 +58.13 -0.00564942 +58.14 -0.0053503 +58.15 -0.00482199 +58.16 -0.00409475 +58.17 -0.00320696 +58.18 -0.0022028 +58.19 -0.00112954 +58.2 -3.81737e-05 +58.21 0.00102056 +58.22 0.00200554 +58.23 0.00288176 +58.24 0.00362156 +58.25 0.00420533 +58.26 0.00462179 +58.27 0.00486774 +58.28 0.00494381 +58.29 0.00485535 +58.3 0.00463063 +58.31 0.00428989 +58.32 0.00385529 +58.33 0.0033495 +58.34 0.0027945 +58.35 0.00221055 +58.36 0.00161544 +58.37 0.00102469 +58.38 0.000451404 +58.39 -9.64356e-05 +58.4 -0.000612972 +58.41 -0.00109417 +58.42 -0.00153714 +58.43 -0.00193943 +58.44 -0.00229837 +58.45 -0.00261056 +58.46 -0.00286834 +58.47 -0.003066 +58.48 -0.0031983 +58.49 -0.00325736 +58.5 -0.0032351 +58.51 -0.00312408 +58.52 -0.00291824 +58.53 -0.00261381 +58.54 -0.00221017 +58.55 -0.00170426 +58.56 -0.00110975 +58.57 -0.000442034 +58.58 0.000281004 +58.59 0.0010373 +58.6 0.00180131 +58.61 0.00254503 +58.62 0.00323919 +58.63 0.00385472 +58.64 0.00435299 +58.65 0.00471703 +58.66 0.00492936 +58.67 0.00497804 +58.68 0.00485824 +58.69 0.00457282 +58.7 0.00413247 +58.71 0.00355544 +58.72 0.00286611 +58.73 0.00209296 +58.74 0.00128082 +58.75 0.000467724 +58.76 -0.000308158 +58.77 -0.00101052 +58.78 -0.00160681 +58.79 -0.00207002 +58.8 -0.00238011 +58.81 -0.0025209 +58.82 -0.00248282 +58.83 -0.00228482 +58.84 -0.00194312 +58.85 -0.00148136 +58.86 -0.000929282 +58.87 -0.000320974 +58.88 0.000307118 +58.89 0.000918311 +58.9 0.0014744 +58.91 0.00194068 +58.92 0.00229666 +58.93 0.00252657 +58.94 0.00262314 +58.95 0.002588 +58.96 0.00243157 +58.97 0.00217238 +58.98 0.00183595 +58.99 0.00145257 +59 0.00106174 +59.01 0.000700564 +59.02 0.000403051 +59.03 0.000199511 +59.04 0.000114578 +59.05 0.000165583 +59.06 0.000361355 +59.07 0.000701515 +59.08 0.00118469 +59.09 0.00178214 +59.1 0.00246299 +59.11 0.00319307 +59.12 0.00393423 +59.13 0.00464653 +59.14 0.00529064 +59.15 0.00583022 +59.16 0.00623406 +59.17 0.00646265 +59.18 0.00651421 +59.19 0.00638594 +59.2 0.00608435 +59.21 0.00562563 +59.22 0.00503472 +59.23 0.00434378 +59.24 0.0035903 +59.25 0.00281507 +59.26 0.00206444 +59.27 0.0013779 +59.28 0.000788639 +59.29 0.000322745 +59.3 -2.44405e-06 +59.31 -0.000179424 +59.32 -0.000211004 +59.33 -0.000110135 +59.34 0.000103043 +59.35 0.000397421 +59.36 0.000729136 +59.37 0.00105861 +59.38 0.00134634 +59.39 0.00155572 +59.4 0.00165579 +59.41 0.0016236 +59.42 0.00144627 +59.43 0.00111661 +59.44 0.000647397 +59.45 7.15311e-05 +59.46 -0.000574374 +59.47 -0.00124455 +59.48 -0.00188653 +59.49 -0.00244413 +59.5 -0.00286082 +59.51 -0.00308327 +59.52 -0.00304864 +59.53 -0.00272418 +59.54 -0.00209829 +59.55 -0.00116689 +59.56 5.70446e-05 +59.57 0.00154314 +59.58 0.00324422 +59.59 0.00509785 +59.6 0.00702889 +59.61 0.00894541 +59.62 0.010749 +59.63 0.0123496 +59.64 0.0136619 +59.65 0.0146101 +59.66 0.0151323 +59.67 0.0151841 +59.68 0.0147417 +59.69 0.0138035 +59.7 0.0123527 +59.71 0.0104826 +59.72 0.00826526 +59.73 0.00578911 +59.74 0.00315676 +59.75 0.000480073 +59.76 -0.00212502 +59.77 -0.00454407 +59.78 -0.00666443 +59.79 -0.00835757 +59.8 -0.00957475 +59.81 -0.0102647 +59.82 -0.0104005 +59.83 -0.00998151 +59.84 -0.00903282 +59.85 -0.00760448 +59.86 -0.00576893 +59.87 -0.00361151 +59.88 -0.00124359 +59.89 0.0012 +59.9 0.0036019 +59.91 0.00584894 +59.92 0.0078377 +59.93 0.00947959 +59.94 0.0107052 +59.95 0.0114675 +59.96 0.0117224 +59.97 0.0114751 +59.98 0.0107819 +59.99 0.00969845 +60 0.00829913 diff --git a/docs/examples/pdf/fitNi/data/Pt.cif b/docs/examples/pdf/fitNi/data/Pt.cif new file mode 100644 index 0000000..481fa5d --- /dev/null +++ b/docs/examples/pdf/fitNi/data/Pt.cif @@ -0,0 +1,232 @@ +data_52250-ICSD +_audit_creation_method 'generated by CrystalMaker 9.0.3' +_publ_section_comment +; +ICSD code: 52250 + + +Systematic name: Platinum + +Structural formula: Pt + +Chemical formula (sum): Pt1 + + +Crystal structure data from: Owen, E.A., Yates, E.L. Precision measuremen +ts of crystal parameters. + +; +_cell_length_a 3.9237(3) +_cell_length_b 3.9237(0) +_cell_length_c 3.9237(0) +_cell_angle_alpha 90.0000(0) +_cell_angle_beta 90.0000(0) +_cell_angle_gamma 90.0000(0) + +_symmetry_space_group_name_H-M 'F m -3 m' +_symmetry_Int_Tables_number 225 +_symmetry_cell_setting cubic +loop_ +_symmetry_equiv_pos_as_xyz +'+x,+y,+z' +'+x,1/2+y,1/2+z' +'1/2+x,1/2+y,+z' +'1/2+x,+y,1/2+z' +'+z,+x,+y' +'+z,1/2+x,1/2+y' +'1/2+z,1/2+x,+y' +'1/2+z,+x,1/2+y' +'+y,+z,+x' +'+y,1/2+z,1/2+x' +'1/2+y,1/2+z,+x' +'1/2+y,+z,1/2+x' +'+x,+y,-z' +'+x,1/2+y,1/2-z' +'1/2+x,1/2+y,-z' +'1/2+x,+y,1/2-z' +'+z,+x,-y' +'+z,1/2+x,1/2-y' +'1/2+z,1/2+x,-y' +'1/2+z,+x,1/2-y' +'+y,+z,-x' +'+y,1/2+z,1/2-x' +'1/2+y,1/2+z,-x' +'1/2+y,+z,1/2-x' +'-x,+y,+z' +'-x,1/2+y,1/2+z' +'1/2-x,1/2+y,+z' +'1/2-x,+y,1/2+z' +'-z,+x,+y' +'-z,1/2+x,1/2+y' +'1/2-z,1/2+x,+y' +'1/2-z,+x,1/2+y' +'-y,+z,+x' +'-y,1/2+z,1/2+x' +'1/2-y,1/2+z,+x' +'1/2-y,+z,1/2+x' +'-x,+y,-z' +'-x,1/2+y,1/2-z' +'1/2-x,1/2+y,-z' +'1/2-x,+y,1/2-z' +'-z,+x,-y' +'-z,1/2+x,1/2-y' +'1/2-z,1/2+x,-y' +'1/2-z,+x,1/2-y' +'-y,+z,-x' +'-y,1/2+z,1/2-x' +'1/2-y,1/2+z,-x' +'1/2-y,+z,1/2-x' +'+y,+x,+z' +'+y,1/2+x,1/2+z' +'1/2+y,1/2+x,+z' +'1/2+y,+x,1/2+z' +'+x,+z,+y' +'+x,1/2+z,1/2+y' +'1/2+x,1/2+z,+y' +'1/2+x,+z,1/2+y' +'+z,+y,+x' +'+z,1/2+y,1/2+x' +'1/2+z,1/2+y,+x' +'1/2+z,+y,1/2+x' +'+y,+x,-z' +'+y,1/2+x,1/2-z' +'1/2+y,1/2+x,-z' +'1/2+y,+x,1/2-z' +'+x,+z,-y' +'+x,1/2+z,1/2-y' +'1/2+x,1/2+z,-y' +'1/2+x,+z,1/2-y' +'+z,+y,-x' +'+z,1/2+y,1/2-x' +'1/2+z,1/2+y,-x' +'1/2+z,+y,1/2-x' +'+y,-x,+z' +'+y,1/2-x,1/2+z' +'1/2+y,1/2-x,+z' +'1/2+y,-x,1/2+z' +'+x,-z,+y' +'+x,1/2-z,1/2+y' +'1/2+x,1/2-z,+y' +'1/2+x,-z,1/2+y' +'+z,-y,+x' +'+z,1/2-y,1/2+x' +'1/2+z,1/2-y,+x' +'1/2+z,-y,1/2+x' +'+y,-x,-z' +'+y,1/2-x,1/2-z' +'1/2+y,1/2-x,-z' +'1/2+y,-x,1/2-z' +'+x,-z,-y' +'+x,1/2-z,1/2-y' +'1/2+x,1/2-z,-y' +'1/2+x,-z,1/2-y' +'+z,-y,-x' +'+z,1/2-y,1/2-x' +'1/2+z,1/2-y,-x' +'1/2+z,-y,1/2-x' +'-x,-y,-z' +'-x,1/2-y,1/2-z' +'1/2-x,1/2-y,-z' +'1/2-x,-y,1/2-z' +'-z,-x,-y' +'-z,1/2-x,1/2-y' +'1/2-z,1/2-x,-y' +'1/2-z,-x,1/2-y' +'-y,-z,-x' +'-y,1/2-z,1/2-x' +'1/2-y,1/2-z,-x' +'1/2-y,-z,1/2-x' +'-x,-y,+z' +'-x,1/2-y,1/2+z' +'1/2-x,1/2-y,+z' +'1/2-x,-y,1/2+z' +'-z,-x,+y' +'-z,1/2-x,1/2+y' +'1/2-z,1/2-x,+y' +'1/2-z,-x,1/2+y' +'-y,-z,+x' +'-y,1/2-z,1/2+x' +'1/2-y,1/2-z,+x' +'1/2-y,-z,1/2+x' +'+x,-y,-z' +'+x,1/2-y,1/2-z' +'1/2+x,1/2-y,-z' +'1/2+x,-y,1/2-z' +'+z,-x,-y' +'+z,1/2-x,1/2-y' +'1/2+z,1/2-x,-y' +'1/2+z,-x,1/2-y' +'+y,-z,-x' +'+y,1/2-z,1/2-x' +'1/2+y,1/2-z,-x' +'1/2+y,-z,1/2-x' +'+x,-y,+z' +'+x,1/2-y,1/2+z' +'1/2+x,1/2-y,+z' +'1/2+x,-y,1/2+z' +'+z,-x,+y' +'+z,1/2-x,1/2+y' +'1/2+z,1/2-x,+y' +'1/2+z,-x,1/2+y' +'+y,-z,+x' +'+y,1/2-z,1/2+x' +'1/2+y,1/2-z,+x' +'1/2+y,-z,1/2+x' +'-y,-x,-z' +'-y,1/2-x,1/2-z' +'1/2-y,1/2-x,-z' +'1/2-y,-x,1/2-z' +'-x,-z,-y' +'-x,1/2-z,1/2-y' +'1/2-x,1/2-z,-y' +'1/2-x,-z,1/2-y' +'-z,-y,-x' +'-z,1/2-y,1/2-x' +'1/2-z,1/2-y,-x' +'1/2-z,-y,1/2-x' +'-y,-x,+z' +'-y,1/2-x,1/2+z' +'1/2-y,1/2-x,+z' +'1/2-y,-x,1/2+z' +'-x,-z,+y' +'-x,1/2-z,1/2+y' +'1/2-x,1/2-z,+y' +'1/2-x,-z,1/2+y' +'-z,-y,+x' +'-z,1/2-y,1/2+x' +'1/2-z,1/2-y,+x' +'1/2-z,-y,1/2+x' +'-y,+x,-z' +'-y,1/2+x,1/2-z' +'1/2-y,1/2+x,-z' +'1/2-y,+x,1/2-z' +'-x,+z,-y' +'-x,1/2+z,1/2-y' +'1/2-x,1/2+z,-y' +'1/2-x,+z,1/2-y' +'-z,+y,-x' +'-z,1/2+y,1/2-x' +'1/2-z,1/2+y,-x' +'1/2-z,+y,1/2-x' +'-y,+x,+z' +'-y,1/2+x,1/2+z' +'1/2-y,1/2+x,+z' +'1/2-y,+x,1/2+z' +'-x,+z,+y' +'-x,1/2+z,1/2+y' +'1/2-x,1/2+z,+y' +'1/2-x,+z,1/2+y' +'-z,+y,+x' +'-z,1/2+y,1/2+x' +'1/2-z,1/2+y,+x' +'1/2-z,+y,1/2+x' + +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_occupancy +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv + Pt1 Pt 1.0000 0.0000 0.0000 0.0000 0.1000 diff --git a/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb b/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb new file mode 100644 index 0000000..ccee65e --- /dev/null +++ b/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb @@ -0,0 +1,692 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "\n", + "
\n", + "Please see notes in Chapter 3 of the 'PDF to the People' book for additional
\n", + "explanation of the code.
\n", + "This Diffpy-CMI script will carry out a structural refinement of a measured
\n", + "PDF from nickel. It is the same refinement as is done using PDFgui in this
\n", + "chapter of the book, only this time using Diffpy-CMI
\n", + "
\n", + "1: Import relevant system packages that we will need..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy.optimize import least_squares\n", + "from bg_mpl_stylesheets.styles import all_styles\n", + "\n", + "plt.style.use(all_styles['bg-style'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "... and the relevant CMI packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "from diffpy.srfit.fitbase import FitContribution, FitRecipe\n", + "from diffpy.srfit.fitbase import FitResults\n", + "from diffpy.srfit.fitbase import Profile\n", + "from diffpy.srfit.pdf import PDFParser, PDFGenerator\n", + "from diffpy.structure.parsers import getParser\n", + "from diffpy.srfit.structure import constrainAsSpaceGroup" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "############# Config ##############################
\n", + "2: Give a file path to where your PDF (.gr) and structure (.cif) files are located. In this case it is two directories up, in a folder called 'data'. First we store the absolute directory of this script (`Path(__file__).parent.absolute()`), then we navigate two directories above this in the file tree (`PWD.parent.parent`) and append the name of the data directory `/ \"data\"`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "PWD = Path(__file__).parent.absolute()\n", + "DPATH = PWD.parent.parent / \"data\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "3: Give an identifying name for the refinement, similar to what you would name a fit tree in PDFGui." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "FIT_ID = \"Fit_Ni_Bulk\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "4: Specify the names of the input PDF and CIF file that are sitting in that data directory." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "GR_NAME = \"Ni.gr\"\n", + "CIF_NAME = \"Ni.cif\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "###### Experimental PDF Config ######################
\n", + "5: Specify the min, max, and step r-values of the PDF (that we want to fit over) also, specify the Qmax and Qmin values used to reduce the PDF." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "PDF_RMIN = 1.5\n", + "PDF_RMAX = 50\n", + "PDF_RSTEP = 0.01\n", + "QMAX = 25\n", + "QMIN = 0.1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "###### PDF Initialize refinable variables #############
\n", + "6: We explicitly specify initial values lattice parameter, scale, and isotropic thermal parameters, as well as a correlated motion parameter, in this case delta_2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "CUBICLAT_I = 3.52\n", + "SCALE_I = 0.4\n", + "UISO_I = 0.005\n", + "DELTA2_I = 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "7: We will give initial values for the instrumental parameters, but because
\n", + "this is a calibrant, we will also refine these variables." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "QDAMP_I = 0.04\n", + "QBROAD_I = 0.02" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "If we want to run using multiprocessors, we can switch this to 'True'.
\n", + "This requires that the 'psutil' python package installed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "RUN_PARALLEL = True" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "###### Functions that will carry out the refinement ##################
\n", + "8: We define a function 'make_recipe' to make the recipe that the fit will follow.
\n", + "This Fit Recipe object contains the PDF data, information on all the structure(s)
\n", + "we will use to fit, and all relevant details necessary to run the fit." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def make_recipe(cif_path, dat_path):\n", + " \"\"\"\n", + " Creates and returns a Fit Recipe object\n", + " Parameters\n", + " ----------\n", + " cif_path : string, The full path to the structure CIF file to load.\n", + " dat_path : string, The full path to the PDF data to be fit.\n", + " Returns\n", + " ----------\n", + " recipe : The initialized Fit Recipe object using the dat_path and structure path\n", + " provided.\n", + " \"\"\"\n", + " # 9: Create a CIF file parsing object, and use it to parse out\n", + " # relevant info and load the structure in the CIF file. This\n", + " # includes the space group of the structure. We need this so we\n", + " # can constrain the structure parameters later on.\n", + " p_cif = getParser('cif')\n", + " stru1 = p_cif.parseFile(cif_path)\n", + " sg = p_cif.spacegroup.short_name\n", + "\n", + " # 10: Create a Profile object for the experimental dataset.\n", + " # This handles all details about the dataset.\n", + " # We also tell this profile the range and mesh of points in r-space.\n", + " # The 'PDFParser' function should parse out the appropriate Q_min and\n", + " # Q_max from the *.gr file, if the information is present.\n", + " profile = Profile()\n", + " parser = PDFParser()\n", + " parser.parseFile(dat_path)\n", + " profile.loadParsedData(parser)\n", + " profile.setCalculationRange(xmin=PDF_RMIN, xmax=PDF_RMAX, dx=PDF_RSTEP)\n", + "\n", + " # 11: Create a PDF Generator object for a periodic structure model.\n", + " # Here we name it arbitrarily 'G1' and we give it the structure object.\n", + " # This Generator will later compute the model PDF for the structure\n", + " # object we provide it here.\n", + " generator_crystal1 = PDFGenerator(\"G1\")\n", + " generator_crystal1.setStructure(stru1, periodic=True)\n", + "\n", + " # 12: Create a Fit Contribution object, and arbitrarily name it 'crystal'.\n", + " # We then give the PDF Generator object we created just above\n", + " # to this Fit Contribution object. The Fit Contribution holds\n", + " # the equation used to fit the PDF.\n", + " contribution = FitContribution(\"crystal\")\n", + " contribution.addProfileGenerator(generator_crystal1)\n", + "\n", + " # If you have a multi-core computer (you probably do),\n", + " # run your refinement in parallel!\n", + " # Here we just make sure not to overload your CPUs.\n", + " if RUN_PARALLEL:\n", + " try:\n", + " import psutil\n", + " import multiprocessing\n", + " from multiprocessing import Pool\n", + " except ImportError:\n", + " print(\"\\nYou don't appear to have the necessary packages for parallelization\")\n", + " syst_cores = multiprocessing.cpu_count()\n", + " cpu_percent = psutil.cpu_percent()\n", + " avail_cores = np.floor((100 - cpu_percent) / (100.0 / syst_cores))\n", + " ncpu = int(np.max([1, avail_cores]))\n", + " pool = Pool(processes=ncpu)\n", + " generator_crystal1.parallel(ncpu=ncpu, mapfunc=pool.map)\n", + "\n", + " # 13: Set the experimental profile, within the Fit Contribution object,\n", + " # to the Profile object we created earlier.\n", + " contribution.setProfile(profile, xname=\"r\")\n", + "\n", + " # 14: Set an equation, within the Fit Contribution, based on your PDF\n", + " # Generators. Here we simply have one Generator, 'G1', and a scale variable,\n", + " # 's1'. Using this structure is a very flexible way of adding additional\n", + " # Generators (ie. multiple structural phases), experimental Profiles,\n", + " # PDF characteristic functions (ie. shape envelopes), and more.\n", + " contribution.setEquation(\"s1*G1\")\n", + "\n", + " # 15: Create the Fit Recipe object that holds all the details of the fit,\n", + " # defined in previous lines above. We give the Fit Recipe the Fit\n", + " # Contribution we created earlier.\n", + " recipe = FitRecipe()\n", + " recipe.addContribution(contribution)\n", + "\n", + " # 16: Initialize the instrument parameters, Q_damp and Q_broad, and\n", + " # assign Q_max and Q_min, all part of the PDF Generator object.\n", + " # It's possible that the 'PDFParse' function we used above\n", + " # already parsed out this information, but in case it didn't, we set it\n", + " # explicitly again here.\n", + " # All parameter objects can have their value assigned using the\n", + " # below '.value = ' syntax.\n", + " recipe.crystal.G1.qdamp.value = QDAMP_I\n", + " recipe.crystal.G1.qbroad.value = QBROAD_I\n", + " recipe.crystal.G1.setQmax(QMAX)\n", + " recipe.crystal.G1.setQmin(QMIN)\n", + "\n", + " # 17: Add a variable to the Fit Recipe object, initialize the variables\n", + " # with some value, and tag it with an arbitrary string. Here we add the scale\n", + " # parameter from the Fit Contribution. The '.addVar' method can be\n", + " # used to add variables to the Fit Recipe.\n", + " recipe.addVar(contribution.s1, SCALE_I, tag=\"scale\")\n", + "\n", + " # 18: Configure some additional fit variables pertaining to symmetry.\n", + " # We can use the srfit function 'constrainAsSpaceGroup' to constrain\n", + " # the lattice and ADP parameters according to the Fm-3m space group.\n", + " # First we establish the relevant parameters, then we loop through\n", + " # the parameters and activate and tag them. We must explicitly set the\n", + " # ADP parameters using 'value=' because CIF had no ADP data.\n", + " spacegroupparams = constrainAsSpaceGroup(generator_crystal1.phase,\n", + " sg)\n", + " for par in spacegroupparams.latpars:\n", + " recipe.addVar(par,\n", + " value=CUBICLAT_I,\n", + " fixed=False,\n", + " name=\"fcc_Lat\",\n", + " tag=\"lat\")\n", + " for par in spacegroupparams.adppars:\n", + " recipe.addVar(par,\n", + " value=UISO_I,\n", + " fixed=False,\n", + " name=\"fcc_ADP\",\n", + " tag=\"adp\")\n", + "\n", + " # 19: Add delta and instrumental parameters to Fit Recipe.\n", + " # These parameters are contained as part of the PDF Generator object\n", + " # and initialized with values as defined in the opening of the script.\n", + " # We give them unique names, and tag them with relevant strings.\n", + " recipe.addVar(generator_crystal1.delta2,\n", + " name=\"Ni_Delta2\",\n", + " value=DELTA2_I,\n", + " tag=\"d2\")\n", + " recipe.addVar(generator_crystal1.qdamp,\n", + " fixed=False,\n", + " name=\"Calib_Qdamp\",\n", + " value=QDAMP_I,\n", + " tag=\"inst\")\n", + " recipe.addVar(generator_crystal1.qbroad,\n", + " fixed=False,\n", + " name=\"Calib_Qbroad\",\n", + " value=QBROAD_I,\n", + " tag=\"inst\")\n", + "\n", + " # 20: Return the Fit Recipe object to be optimized.\n", + " return recipe\n", + "\n", + " # End of function" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "21: We create a useful function 'plot_results' for writing a plot of the fit to disk.
\n", + "We won't go into detail here as much of this is non-CMI specific" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def plot_results(recipe, fig_name):\n", + " \"\"\"\n", + " Creates plots of the fitted PDF and residual, and writes them to disk\n", + " as *.pdf files.\n", + " Parameters\n", + " ----------\n", + " recipe : The optimized Fit Recipe object containing the PDF data\n", + " we wish to plot.\n", + " fig_name : Path object, the full path to the figure file to create..\n", + " Returns\n", + " ----------\n", + " None\n", + " \"\"\"\n", + " if not isinstance(fig_name, Path):\n", + " fig_name = Path(fig_name)\n", + " plt.clf()\n", + " plt.close('all')\n", + "\n", + " # Get an array of the r-values we fitted over.\n", + " r = recipe.crystal.profile.x\n", + "\n", + " # Get an array of the observed PDF.\n", + " g = recipe.crystal.profile.y\n", + "\n", + " # Get an array of the calculated PDF.\n", + " gcalc = recipe.crystal.profile.ycalc\n", + "\n", + " # Make an array of identical shape as g which is offset from g.\n", + " diffzero = -0.65 * max(g) * np.ones_like(g)\n", + "\n", + " # Calculate the residual (difference) array and offset it vertically.\n", + " diff = g - gcalc + diffzero\n", + "\n", + " # Create a figure and an axis on which to plot\n", + " fig, ax1 = plt.subplots(1, 1)\n", + "\n", + " # Plot the difference offset line\n", + " ax1.plot(r, diffzero, lw=1.0, ls=\"--\", c=\"black\")\n", + "\n", + " # Plot the measured data\n", + " ax1.plot(r,\n", + " g,\n", + " ls=\"None\",\n", + " marker=\"o\",\n", + " ms=5,\n", + " mew=0.2,\n", + " mfc=\"None\",\n", + " label=\"G(r) Data\")\n", + "\n", + " # Plot the calculated data\n", + " ax1.plot(r, gcalc, lw=1.3, label=\"G(r) Fit\")\n", + "\n", + " # Plot the difference\n", + " ax1.plot(r, diff, lw=1.2, label=\"G(r) diff\")\n", + "\n", + " # Let's label the axes!\n", + " ax1.set_xlabel(r\"r ($\\mathrm{\\AA}$)\")\n", + " ax1.set_ylabel(r\"G ($\\mathrm{\\AA}$$^{-2}$)\")\n", + "\n", + " # Tune the tick markers. We are picky!\n", + " ax1.tick_params(axis=\"both\",\n", + " which=\"major\",\n", + " top=True,\n", + " right=True)\n", + "\n", + " # Set the boundaries on the x-axis\n", + " ax1.set_xlim(r[0], r[-1])\n", + "\n", + " # We definitely want a legend!\n", + " ax1.legend()\n", + "\n", + " # Let's use a tight layout. Shun wasted space!\n", + " plt.tight_layout()\n", + "\n", + " # This is going to make a figure pop up on screen for you to view.\n", + " # The script will pause until you close the figure!\n", + " plt.show()\n", + "\n", + " # Let's save the figure!\n", + " fig.savefig(fig_name.parent / f\"{fig_name.name}.pdf\", format=\"pdf\")\n", + "\n", + " # End of function" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "22: By Convention, this main function is where we do most of our work, and it
\n", + "is the bit of code which will be run when we issue 'python file.py' from a terminal." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def main():\n", + " \"\"\"\n", + " This will run by default when the file is executed using\n", + " 'python file.py' in the command line.\n", + " Parameters\n", + " ----------\n", + " None\n", + " Returns\n", + " ----------\n", + " None\n", + " \"\"\"\n", + " # Make some folders to store our output files.\n", + " resdir = PWD / \"res\"\n", + " fitdir = PWD / \"fit\"\n", + " figdir = PWD / \"fig\"\n", + " folders = [resdir, fitdir, figdir]\n", + " for folder in folders:\n", + " if not folder.exists():\n", + " folder.mkdir()\n", + "\n", + " # Establish the location of the data and a name for our fit.\n", + " gr_path = DPATH / GR_NAME\n", + " basename = FIT_ID\n", + " print(basename)\n", + "\n", + " # Establish the full path of the CIF file with the structure of interest.\n", + " stru_path = DPATH / CIF_NAME\n", + "\n", + " # 23: Now we call our 'make_recipe' function created above, giving\n", + " # strings which points to the relevant CIF file and PDF data file.\n", + " recipe = make_recipe(str(stru_path),\n", + " str(gr_path))\n", + "\n", + " # Tell the Fit Recipe we want to write the maximum amount of\n", + " # information to the terminal during fitting.\n", + " # Passing '2' or '1' prints intermediate info, while '0' prints no info.\n", + " recipe.fithooks[0].verbose = 3\n", + "\n", + " # 24: During the optimization, fix and free parameters sequentially\n", + " # as you would PDFgui. This leads to more stability in the refinement.\n", + " # This can be done with 'recipe.fix' and 'recipe.free' and we can use\n", + " # either a single parameter name or any of the tags we assigned when creating\n", + " # the fit recipe. We first fix all variables. The tag 'all' incorporates every parameter.\n", + " # We then create a list of 'tags' which we want free sequentially, we\n", + " # loop over them freeing each during a loop, and then fit using the\n", + " # SciPy function 'least_squares'. 'least_squares' takes as its arguments\n", + " # the function to be optimized, here 'recipe.residual',\n", + " # as well as initial values for the fitted parameters, provided by\n", + " # 'recipe.values'. The 'x_scale=\"jac\"' argument is optional\n", + " # and provides for a bit more stability.\n", + " recipe.fix(\"all\")\n", + " tags = [\"lat\", \"scale\", \"adp\", \"d2\", \"all\"]\n", + " for tag in tags:\n", + " recipe.free(tag)\n", + " least_squares(recipe.residual, recipe.values, x_scale=\"jac\")\n", + "\n", + " # 25: We use the 'savetxt' method of the profile to write a text file\n", + " # containing the measured and fitted PDF to disk.\n", + " # The file is named based on the basename we created earlier, and\n", + " # written to the 'fitdir' directory.\n", + " profile = recipe.crystal.profile\n", + " profile.savetxt(fitdir / f\"{basename}.fit\")\n", + "\n", + " # 26: We use the 'FitResults' method to parse out the results from\n", + " # the optimized Fit Recipe, and 'printResults' to print them\n", + " # to the terminal.\n", + " res = FitResults(recipe)\n", + " res.printResults()\n", + "\n", + " # 27: We use the 'saveResults' method of 'FitResults' to write a text file\n", + " # containing the fitted parameters and fit quality indices to disk.\n", + " # The file is named based on the basename we created earlier, and\n", + " # written to the 'resdir' directory.\n", + " header = \"crystal_HF.\\n\"\n", + " res.saveResults(resdir / f\"{basename}.res\", header=header)\n", + "\n", + " # 28: We use the 'plot_results' method we created earlier to write a pdf file\n", + " # containing the measured and fitted PDF with residual to disk.\n", + " # The file is named based on the 'basename' we created earlier, and\n", + " # written to the 'figdir' directory.\n", + " plot_results(recipe, figdir / basename)\n", + "\n", + " # End of function" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "This tells python to run the 'main' function we defined above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "if __name__ == \"__main__\":\n", + " main()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "End of file" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cmi", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb b/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb new file mode 100644 index 0000000..88ee1b5 --- /dev/null +++ b/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb @@ -0,0 +1,566 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "Please see notes in Chapter 3 of the 'PDF to the People' book for additional
\n", + "explanation of the code.
\n", + "This Diffpy-CMI script will carry out a structural refinement of a measured
\n", + "PDF from nanocrystalline platinum. It is the same refinement as is done
\n", + "using PDFgui in this chapter of the book, only this time using Diffpy-CMI.
\n", + "It is required that \"fitBulkNi.py\" be run prior to running this example!
\n", + "
\n", + "1: Import relevant system packages that we will need..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "import re\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy.optimize import least_squares\n", + "from bg_mpl_stylesheets.styles import all_styles\n", + "\n", + "plt.style.use(all_styles['bg-style'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "... and the relevant CMI packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from diffpy.srfit.fitbase import FitContribution, FitRecipe, FitResults, Profile\n", + "from diffpy.srfit.pdf import PDFParser, PDFGenerator\n", + "from diffpy.structure.parsers import getParser\n", + "from diffpy.srfit.pdf.characteristicfunctions import sphericalCF\n", + "from diffpy.srfit.structure import constrainAsSpaceGroup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "############# Config ##############################
\n", + "2: Give a file path to where your PDF (.gr) and structure (.cif) files are located." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PWD = Path(__file__).parent.absolute()\n", + "DPATH = PWD.parent.parent / \"data\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3: Give an identifying name for the refinement." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "FIT_ID = \"Fit_Pt_NP\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4: Specify the names of the input PDF and CIF files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "GR_NAME = \"Pt-nanoparticles.gr\"\n", + "CIF_NAME = \"Pt.cif\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###### Experimental PDF Config ######################
\n", + "5: Specify the min, max, and step r-values of the PDF (that we want to fit over)
\n", + "also, specify the Q_max and Q_min values used to reduce the PDF." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PDF_RMIN = 1.5\n", + "PDF_RMAX = 50\n", + "PDF_RSTEP = 0.01\n", + "QMAX = 25\n", + "QMIN = 0.1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "######PDF initialize refinable variables #############
\n", + "6: We explicitly specify the lattice parameters, scale,
\n", + "isotropic thermal parameters, and a correlated motion parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "CUBICLAT_I = 3.9\n", + "SCALE_I = 0.6\n", + "UISO_I = 0.01\n", + "DELTA2_I = 4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7: For the nanoparticle (NP) case, also provide an initial guess
\n", + "for the average crystallite size, in Angstrom." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PSIZE_I = 40" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8: First, let's read the fit results from the Ni fit.
\n", + "We parse out the refined values of Q_damp and Q_broad,
\n", + "instrumental parameters which will be fixed in this fit.
\n", + "This is a bit of python input/output and regular expression
\n", + "parsing, which we won't cover here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "RESDIR = PWD / \"res\"\n", + "NIBASENAME = \"Fit_Ni_Bulk\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "RES_FILE = RESDIR / f\"{NIBASENAME}.res\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if RES_FILE.exists():\n", + " with open(RES_FILE, \"r\") as file:\n", + " for line in file:\n", + " if line.split(\" \")[0] == \"Calib_Qbroad\":\n", + " QBROAD_I = float(re.split(\" +\", line)[1])\n", + " elif line.split(\" \")[0] == \"Calib_Qdamp\":\n", + " QDAMP_I = float(re.split(\" +\", line)[1])\n", + "else:\n", + " print(\"Ni example does not appear to be run\\n\")\n", + " print(\"The Ni example refines instrument parameters\\n\")\n", + " print(\"The instrument parameters are necessary to run this fit\\n\")\n", + " print(\"Please run the Ni example first\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to run using multiprocessors, we can switch this to 'True'.
\n", + "This requires that the 'psutil' python package installed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "RUN_PARALLEL = False" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###### Functions that will carry out the refinement ##################
\n", + "9: We define a function 'make_recipe' to make the recipe that the fit will follow." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def make_recipe(cif_path, dat_path):\n", + " \"\"\"\n", + " Creates and returns a Fit Recipe object\n", + " Parameters\n", + " ----------\n", + " cif_path : string, The full path to the structure CIF file to load.\n", + " dat_path : string, The full path to the PDF data to be fit.\n", + " Returns\n", + " ----------\n", + " recipe : The initialized Fit Recipe object using the datname and structure path\n", + " provided.\n", + " \"\"\"\n", + " # 10: Create a CIF file parsing object, parse and load the structure, and\n", + " # grab the space group name.\n", + " p_cif = getParser('cif')\n", + " stru1 = p_cif.parseFile(cif_path)\n", + " sg = p_cif.spacegroup.short_name\n", + "\n", + " # 11: Create a Profile object for the experimental dataset and\n", + " # tell this profile the range and mesh of points in r-space.\n", + " profile = Profile()\n", + " parser = PDFParser()\n", + " parser.parseFile(dat_path)\n", + " profile.loadParsedData(parser)\n", + " profile.setCalculationRange(xmin=PDF_RMIN, xmax=PDF_RMAX, dx=PDF_RSTEP)\n", + "\n", + " # 12: Create a PDF Generator object for a periodic structure model.\n", + " generator_crystal1 = PDFGenerator(\"G1\")\n", + " generator_crystal1.setStructure(stru1, periodic=True)\n", + "\n", + " # 13: Create a Fit Contribution object.\n", + " contribution = FitContribution(\"crystal\")\n", + " contribution.addProfileGenerator(generator_crystal1)\n", + "\n", + " # If you have a multi-core computer (you probably do), run your refinement in parallel!\n", + " if RUN_PARALLEL:\n", + " try:\n", + " import psutil\n", + " import multiprocessing\n", + " from multiprocessing import Pool\n", + " syst_cores = multiprocessing.cpu_count()\n", + " cpu_percent = psutil.cpu_percent()\n", + " avail_cores = np.floor((100 - cpu_percent) / (100.0 / syst_cores))\n", + " ncpu = int(np.max([1, avail_cores]))\n", + " pool = Pool(processes=ncpu)\n", + " generator_crystal1.parallel(ncpu=ncpu, mapfunc=pool.map)\n", + " except ImportError:\n", + " print(\"\\nYou don't appear to have the necessary packages for parallelization\")\n", + "\n", + " # 14: Set the Fit Contribution profile to the Profile object.\n", + " contribution.setProfile(profile, xname=\"r\")\n", + "\n", + " # 15: Set an equation, based on your PDF generators. Here we add an extra layer\n", + " # of complexity, incorporating 'f' into our equation. This new term\n", + " # incorporates the effect of finite crystallite size damping on our PDF model.\n", + " # In this case we use a function which models a spherical NP 'sphericalCF'.\n", + " contribution.registerFunction(sphericalCF, name=\"f\")\n", + " contribution.setEquation(\"s1*G1*f\")\n", + "\n", + " # 16: Create the Fit Recipe object that holds all the details of the fit.\n", + " recipe = FitRecipe()\n", + " recipe.addContribution(contribution)\n", + "\n", + " # 17: Initialize the instrument parameters, Q_damp and Q_broad, and\n", + " # assign Q_max and Q_min.\n", + " generator_crystal1.qdamp.value = QDAMP_I\n", + " generator_crystal1.qbroad.value = QBROAD_I\n", + " generator_crystal1.setQmax(QMAX)\n", + " generator_crystal1.setQmin(QMIN)\n", + "\n", + " # 18: Add, initialize, and tag variables in the Fit Recipe object.\n", + " # In this case we also add 'psize', which is the NP size.\n", + " recipe.addVar(contribution.s1, SCALE_I, tag=\"scale\")\n", + " recipe.addVar(contribution.psize, PSIZE_I, tag=\"psize\")\n", + "\n", + " # 19: Use the srfit function 'constrainAsSpaceGroup' to constrain\n", + " # the lattice and ADP parameters according to the Fm-3m space group.\n", + " spacegroupparams = constrainAsSpaceGroup(generator_crystal1.phase,\n", + " sg)\n", + " for par in spacegroupparams.latpars:\n", + " recipe.addVar(par, value=CUBICLAT_I, fixed=False,\n", + " name=\"fcc_Lat\", tag=\"lat\")\n", + " for par in spacegroupparams.adppars:\n", + " recipe.addVar(par, value=UISO_I, fixed=False,\n", + " name=\"fcc_Uiso\", tag=\"adp\")\n", + "\n", + " # 20: Add delta, but not instrumental parameters to Fit Recipe.\n", + " # The instrumental parameters will remain fixed at values obtained from\n", + " # the Ni calibrant in our previous example. As we have not added them through\n", + " # recipe.addVar, they cannot be refined.\n", + " recipe.addVar(generator_crystal1.delta2,\n", + " name=\"Pt_Delta2\", value=DELTA2_I, tag=\"d2\")\n", + "\n", + " # 21: Return the Fit Recipe object to be optimized.\n", + " return recipe\n", + "\n", + " # End of function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "22 We create a useful function 'plot_results' for writing a plot of the fit to disk." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_results(recipe, fig_name):\n", + " \"\"\"\n", + " Creates plots of the fitted PDF and residual, and writes them to disk\n", + " as *.pdf files.\n", + " Parameters\n", + " ----------\n", + " recipe : The optimized Fit Recipe object containing the PDF data\n", + " we wish to plot.\n", + " fig_name : Path object, the full path to the figure file to create.\n", + " Returns\n", + " ----------\n", + " None\n", + " \"\"\"\n", + " if not isinstance(fig_name, Path):\n", + " fig_name = Path(fig_name)\n", + " plt.clf()\n", + " plt.close('all')\n", + " # Get an array of the r-values we fitted over.\n", + " r = recipe.crystal.profile.x\n", + "\n", + " # Get an array of the observed PDF.\n", + " g = recipe.crystal.profile.y\n", + "\n", + " # Get an array of the calculated PDF.\n", + " gcalc = recipe.crystal.profile.ycalc\n", + "\n", + " # Make an array of identical shape as g which is offset from g.\n", + " diffzero = -0.65 * max(g) * np.ones_like(g)\n", + "\n", + " # Calculate the residual (difference) array and offset it vertically.\n", + " diff = g - gcalc + diffzero\n", + "\n", + " # Create a figure and an axis on which to plot\n", + " fig, ax1 = plt.subplots(1, 1)\n", + "\n", + " # Plot the difference offset line\n", + " ax1.plot(r, diffzero, lw=1.0, ls=\"--\", c=\"black\")\n", + "\n", + " # Plot the measured data\n", + " ax1.plot(r,\n", + " g,\n", + " ls=\"None\",\n", + " marker=\"o\",\n", + " ms=5,\n", + " mew=0.2,\n", + " mfc=\"None\",\n", + " label=\"G(r) Data\")\n", + "\n", + " # Plot the calculated data\n", + " ax1.plot(r, gcalc, lw=1.3, label=\"G(r) Fit\")\n", + "\n", + " # Plot the difference\n", + " ax1.plot(r, diff, lw=1.2, label=\"G(r) diff\")\n", + "\n", + " # Let's label the axes!\n", + " ax1.set_xlabel(r\"r ($\\mathrm{\\AA}$)\")\n", + " ax1.set_ylabel(r\"G ($\\mathrm{\\AA}$$^{-2}$)\")\n", + "\n", + " # Tune the tick markers. We are picky!\n", + " ax1.tick_params(axis=\"both\",\n", + " which=\"major\",\n", + " top=True,\n", + " right=True)\n", + "\n", + " # Set the boundaries on the x-axis\n", + " ax1.set_xlim(r[0], r[-1])\n", + "\n", + " # We definitely want a legend!\n", + " ax1.legend()\n", + "\n", + " # Let's use a tight layout. Shun wasted space!\n", + " plt.tight_layout()\n", + "\n", + " # This is going to make a figure pop up on screen for you to view.\n", + " # The script will pause until you close the figure!\n", + " plt.show()\n", + "\n", + " # Let's save the figure!\n", + " fig.savefig(fig_name.parent / f\"{fig_name.name}.pdf\", format=\"pdf\")\n", + "\n", + " # End of function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "23: We again create a 'main' function to be run when we execute the script." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def main():\n", + " \"\"\"\n", + " This will run by default when the file is executed using\n", + " 'python file.py' in the command line.\n", + " Parameters\n", + " ----------\n", + " None\n", + " Returns\n", + " ----------\n", + " None\n", + " \"\"\"\n", + "\n", + " # Make some folders to store our output files.\n", + " resdir = PWD / \"res\"\n", + " fitdir = PWD / \"fit\"\n", + " figdir = PWD / \"fig\"\n", + " folders = [resdir, fitdir, figdir]\n", + " for folder in folders:\n", + " if not folder.exists():\n", + " folder.mkdir()\n", + "\n", + " # Establish the location of the data and a name for our fit.\n", + " gr_path = DPATH / GR_NAME\n", + " basename = FIT_ID\n", + " print(basename)\n", + "\n", + " # Establish the full path of the CIF file with the structure of interest.\n", + " stru_path = DPATH / CIF_NAME\n", + "\n", + " # 24: Call 'make_recipe' to create our fit recipe.\n", + " recipe = make_recipe(str(stru_path),\n", + " str(gr_path))\n", + "\n", + " # Tell the Fit Recipe we want to write the maximum amount of\n", + " # information to the terminal during fitting.\n", + " recipe.fithooks[0].verbose = 3\n", + "\n", + " # 25: As before, we fix all parameters, create a list of tags and,\n", + " # loop over them refining sequentially. In this example, we've added\n", + " # 'psize' because we want to refine the nanoparticle size.\n", + " recipe.fix(\"all\")\n", + " tags = [\"lat\", \"scale\", \"psize\", \"adp\", \"d2\", \"all\"]\n", + " for tag in tags:\n", + " recipe.free(tag)\n", + " least_squares(recipe.residual, recipe.values, x_scale=\"jac\")\n", + "\n", + " # 26 Write the fitted data to a file.\n", + " profile = recipe.crystal.profile\n", + " profile.savetxt(fitdir / f\"{basename}.fit\")\n", + "\n", + " # 27 Print the fit results to the terminal.\n", + " res = FitResults(recipe)\n", + " res.printResults()\n", + "\n", + " # 28 Write the fit results to a file.\n", + " header = \"crystal_HF.\\n\"\n", + " res.saveResults(resdir / f\"{basename}.res\", header=header)\n", + "\n", + " # 29 Write a plot of the fit to a (pdf) file.\n", + " plot_results(recipe, figdir / basename)\n", + "\n", + " # End of function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tells python to run the 'main' function we defined above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if __name__ == \"__main__\":\n", + " main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "End of file" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f5508dd9dfcb3d1f116e3ebca15e493c7c855ecb GIT binary patch literal 134282 zcmZUXWl&wg(ysB~?(XjH?(UG_?oM!bcXxM}1a}GU!67)oHn4$>ZMZr2JGbhqy0v~x z^_rgU=j}DMMrhQfWmz~_xe;j^cF5~{5IM-%$z9Ct5ru`x*|dFKt;pG=%skB;U2MqN z)Xi+HJjgl!IcSoLiXvJ$TmHw9|9=gTb#eA2=lZ`6Z2D^E_Er|2ie;4CF-T$w8%2v)c zp0?y1|IH|C=lD-AIh(BGzamImS-4nQ{Ri8_)7{F<3DKvZqF<@mTEVaI%nb~w<{^)I zVX;H?l+xh{1t;9H8UmLk*Rx1VO_T<43Gf$j>#1+6+uTvx!p@)e5WJrOU&r_~Um9Jy ze2fo%27fFBzX3i^_CI%jejb>BANU489$Y>z)gHISPQ^ZN8w1`Z-_HgE>-RrIKVPDY z6@y;Y#1fZ8>4IOAgWt7W-rDcAUQX0LC)LEj(ZwI9EhZn%G=}0eJIld!txa z)fbLzb-ucAK=18l{qye41f(naez89IS-t;$S8QwYIVN^|_i<+cz7lr)kO%^5HJ-Jf zY8CH)l<$N6vKBs8#9mkS13&izz)XW*cP?LrgAJdr2f+{C!OwqPKB`|ElNPvM+Z9P( za>U-F-xFW|mY?uhHRldK3iLlbc0A6y1V4L=fpu7d!PjV?&nutL(Zx4MAKJx_3=U5p z?@t`T;70%%aQ*W%d-DB8@1A4f@)k+JL%XPJkfOYlMT4O|8YYR3}*Xy zNZ1EYh?pB(YMnWjck+J3(p?Suj}*!A3sqNroMH^VJpzjEdOuIq&|bjJJ6camVjgQj ze!Y{x1yYaq8;;K@sn7i0+uq6d_RHJ+@p}%rkJEOqJ?s6)V!2#HKO3_bE-Z@o2etu0;J0e<-2U^8TkxmeJMagun8j>$ zr?B(eS+YQpLx;em3mGVT|6_9{=;y~7JapiToKGDDVv#<3p&CmX(fckym zEAPP%F1iQse?tZR@ht|&b`tbwe>a*kDde-!#=Hg3R*p44(y>}iw;RqNE>GIrZ=nh8~`it3Y>V`Lc7Qc{0iOvM$xw7rdPw z{Vq+aDVj)ptaYFC=Is0OUbm3-i(#H$?19JYAR^J_^PWlTWkKvN$aiTlFiEg0x%bRW zuX+FDI{5X8?^EgJiR}Yml66*mfZ3S0FptLL>@3pzz15SB*Otre^zGXK=-2h^&tQ}7 zZ$*K#%VS%w9hwvK0{+2!ba*|J^|1?y82m!NYnWSqJQyooEeDtwxc^=!wiy%!EL?pW zKjtm~U(vr2Br*4Q^zho|z~aqt*_!`GkRh*whI-0FOf zpOYhsHznKG6dFOX(4x(Hc}KY|lpsLP8#Yr8{c{R75>|(IpdW{~pcf6n-&}xDTIXd- zQxnCFC#&b&>+uhBrv}ftrGUYz1{MBJMgNGv>pL`Gl=>VHx?WmJ<6tq_mFadYL)=!p z@P%V$jv{eP+RP4acOSp~T@nK2;c`ZQ-1hFZ#!sq)8^;kQH#vjgL;Ye4=jB-}HqGxI z>DKdav!A*a&ALeoK;iGXYO2H&xjCms$I{0OO!HI1?(_ao7XxegRCyHBTD-iZ?rYLg zr&eRT)SS~S9MSY%qVt1lz~P-9H_Yf-4>j7)4Sm=3%E9WnX|Z^QHb|0ILf*!30Kg1E{ZA0Q43(F+yh=*X%ESteP}?7PW`%g7uFX@vB4r`w3ONWWZCT-C!!lKhCk79P2Irp zxJ!`fXxwM9liu?h%jI#g5B+(Gr3iIgCv2=X^p;_m0;;TDFHAA-n@r;I$74$`INg2k z&@aZC5qay)v@PCwm1cjXk6g; zjXD+s{OAm{P9!sl)!c*5lR)5N4Q_mNX04@3*S&r!s(A0)IJ2>NixAr=#!7x$-N^Dr z^AfEdOI;xDTJJ=wru?dp3ho8e{H$`LonK-mMPN*8A-RL?u3-sPDfMa)?agde!^`?e zPTsXZmh;~q>q|ZEaZ5?2&r!!{5{V6NV{T;&Owa&f3OITN91HxW$iT5-n6jq)WZ?WP zSbknM+Qz3OBrMiyEq-|i+1!8#&5y?luZt}u=_cCaQCx~EDiLZHs5DCn*W1%s$4mxY zyj5n=2f5lqC*~Xa)p%QKYTD_h1^BUbz6mF4d(~{IG{~wLH&0i!8n<>)>Naz@V-M{+ ziQ+LHET&s-311JTD!&kV4d(yU8HZ};vCgHXMoB`zY>4(bq4YJ z#C-G8$ZRGZy)SUyf}OGf`Cvxmzhy8jrycd-Mb$`+#U4`+(hXL$e;2WsV`a6ci%&@O zXWMJxb$PCmsq5P;Do_E=n+LpheR9Bt8zk^l=EG36XErfPifJ3rQ$Y+A z?$nm--tLn>1+{~c!WEj0vEQH_|2* z?H=jAedDl-!=E0Lk4%e|ce5xt9kS}{Z8TiqDYhi0<+8;~BdG3+tamELvJg3Cz6SGv zBIXgS(=-t>q%ngE+%XL`yw4HpZ8N-9LScI|`NP@<{gD6Emal;%{q`n+)Eh+|*t7Kx z4r|g$W#a`ZrM7}`0^eKlXaJ2GUoqkxNTJZI>pY8r$DS#Av9Bhmn2~l`z6*yE8e%T0 zf$ru%sLM;*R66-2#D*B%q-Ua4*~ysaWz7^J6KcehQlzvtYAhUKvn~W&rzG|)QixvY zkQ7(T226!4&4oB9weCL)-i(r@ z^d2Sg*|krqmaRy@UEgHN8amx}t=)Fie18S59r_%+f6ed%Vre-G|C~-;fR&8Jj~i#= z*eRF@NDZ8{J!YxDW|c0QBG|)F&G2pU;8;YIXmf9^=ASEg4`nk3Tzg9H{`ubLEKy?!o;587VN9TXkTt>4es@G#u8G zy`a$AB>v`@P1%dFL4Ovo|F>|Hg?!7-zRT`A#80&`@*xYRryQU9LT^y7$8U)oD8^uu z-u3x~%6>jZRGcEei5tM_SwIo$a%VQ^8wfb{g?9Y>jYR!9z`V^O%GU$nknX1C$^j2W$a2faspMo3C;KRxgjS22IH317bH7 z*G1eF@gL8oTfVDwsneHhR~;Y2-0%7(8ouR^S8RgM`^YDQC;GRq~vg<@d zMhy4@u{ySkIO|f0n17r&g}9^#EAiQ&KSw3$r+Y?l`d2REuc?bHX%8zjOALm5Mv=u9 zHfdQ469VQK5u{M2sh~y!Jc75QMjNw*iF+2RfscgvVTR~~@_7VdjH3D6KrG{)m@h=z z)k1*s^0FAY1y+8Rcd=^Sj>ml(I8M|>iTg2p+@oB0=Y7IvgM(}3V#l(-o6s{!6 z9dTv}_sHKyUi&kpN#7y`26ON2Vm-7+_Qdh1<1`V39@86ctV`IY&?8Ww3P-RJRC{9; z*i7N4Qqn*2c)ciDMkqsFV%SJG6Y+OI7eOjPqox*L0it|Bs7qDu_;v||b!;R*(+2Q^84@-Cacy^oJrUlvP0fLzY`$uVpAqn`=V zs#UY@o=|=`$iEE(2<}Dk+oaUd5qIgz{&?NRJHDhbih<;ID%gmbvovgIsr5(0rTf7*mt~WdK0cQJt7?U~ zm>R{LLjtN33X)_dR}H^c;&BjwFrK&pdh!f4n_?m9cp5^^ALqVObSbkH6!qq;^wvl| z$VF?NyC~a3{@sHnn-3dQ5v(dAERC^Hu#tfpq8MT)A_ALChYa`SFZ=KojP(KUVNpIz zj31Y%3r$V%EHNfKL=SO)zVr?Be7iAzn*QuB>T(gN1wFAy&0VN`+S!RHT~lg79SV0< z*>@?e(QOFhbcj_D#{GMWsRuO@I~RgL-fV;yu-n5b-y>uH0OFwrpX2;GupTREO@A@h zaI-7ToxQVc$FQ9U0f8+|s;gZEG1pcvBXUw1b#u;#ikpDCT40RQQ%QdMOS3n&oXx!b z0>WSzybHeWDN-EfeG$5^db@w~dM6Bp!0idxUO9zrV{S4dAFK74c40dCpU!rWGoAo>EO=RO+%9xjE*l?KROu_3o7;#7 z4J(oeafH^rU5lrj8*;loenD6W*=@i9PBmx|`x4OkP4hR$muLOaXbe4wex!z~_Q{mUha`Y8iEY#8Ht(rl1kXIctz#_EsLUP4FMrmv zCYey@;qNrC?!(qap@d=3yH5e5Ku3viS3I#n>)U!!I-!jNJiKr|~%*YPj3ApmDi)X+J~M;-x*0 zeApWZ+^qW>iKjC!;p{)JI}kMY$h+iym@u@G_+e8J?%Br-bk0|S(V+_7t~Y0a+ZT}` z^SYD%psO_4Y>fEtdnVGb`Dn9_v6$YtXYWaS^L}VXgQ71x!}lQa8c8Y$PH~u|ma8Qb zfVnw|{t6_F;6B#_(APacuPwuSv|lV*$uo|8#IRVw%zx3-e~^e~zQ8vdbg1)1vY?sv zl%aLg@Qt>KPW^e<&>znk`%SbYl;Z)u&=uDChH{HxC>^4ggk%1hD?|VL#0jF~%*!I= zo&t?D(NQR>i|07>BdllmS37v~%3`L+CXrnBz-EH>yjOAaSE?#T#+zV~-eQ(I&rJFV zN&3=?SH~7K4iMC!E~K~evZhAn#|vTN(rsUvqkE${v4RS+)lhH;mQ7O#y@1HwT6XmJ z*ga2G>@}^6#=0CG=XdJEw-;a9(%XhR1g3_*J zx$Go~fk`!6Q;!o7$)~$R&aw!6C8;34ML4Ff`rr>gKK1Pbd9-yKfKv6wo|v~$!DooQ zdwnr+vPBuFx1u zK;hJ3Ic>{X{WG06mp_*?ehzJYhYj$hxo*ldZiL8#&?3~v8=Ltxr}UiX+7J%~ex-J> zYIBHzdo@?KI7=At?qj8=0hE%;*&AYYNmNk9Q5T>hcF_U5 z)qb(Jfqd_=;nJwLQmVI?S9JURuI6!<$%7P5NN?1`3^k6w8t5|mpit>6-Jj9Nu)3%m zN!a3DGg;jCac@%e)B_el#Gec*(Y5i6yqSMJ)G8ety-xA(+wE>e-Bufqy(iid6{nss z*pchp^$O=^J!tupJ1vvs`UI+a(wc`^EJOv=dfzxIhZ`zAXA?QqG}arDP(uePm;G&Z z<1QDpzbFzpA^e7apY&m6iMEA1lO0#!@?@5z+hTS=flx>6(Or+CR8H+t{S%Rx)Iz^Q zjkl9{5CZC);+zzgO0_BTA)M*oLt9Et^h8xv4<7{vUQf+gG`#imu4@GQEvf{5X*N$; zKcycOiu_RU`tDx^h_t=Uei+MLMR&l12eJCuC2Zg^|18<=6(+^uUht<#-mr&;!$RIz zG_^(Z@l4^?j`YF7vE4lA`0E&EBM3=oHXnSs*jNk zI&pAKmOtokgSzT26Jkn7L%bGn3Zp2pakiZhOJ=_-)EZn|$DD+xOvpL(p$!chu|_RJ zFE_)t=riRhtm}V+6ilP;XWHuH;!|`=F4K18Z+#}>DGT_jR%IU|{N)?xL|vp)XkN50 z2gmO~H~iZef++JUadWsm4auK{h_Ds#ea+Vc758w>JO(0E9E<)nxk$?prxf zWftkkPrIpeSOc^io;xo-$P?Gcd&9}rn7cdWUYS0~E^E%fA%5z4)fplAUo56g54L*I zUq8VFh;>-!jf5}NLRsu3AUx#)x8%ara^3@MM)ZM1(k#Y$?Avy1-n9l?dS-eqWU@sx zeO`M)&?F^0q;GFH$%g~(`_qGLUa)klsK z$dY0IGt!dEIY0aK98#kZ#Nsrh! z;(2M2k`~PfIu=E;0kR__dCAUlf&-f6({RSZW&A_zMyH(7hC7Sb$k~rV^W_UJuEn!* z*PRem77vK?{Gu|?%;j>0YA#8XZ-IEzL={aMM0F*~6W5=y%iB6(0ckLf@ui?;%n-kj+=5VQzrO-m*Y$pCeT%$o1%~j&N))gcxyd< z@sgVo|D98bFCR+P9dPP;j>pCMEQNjYIA4WOM-rA8bun&Xs_r(iV8z9~p>Zxc!whJ@ zLkL;W8kUU9h|eN@zz1X^RiUG0?EhPNY4J8;6-hPVLd>!Zs$X5cxFjv$G3WWwg!rn&ors0Pjr)Kvm}K>Fw;8E>*+2 z1uo`R6bbF>C55Yy%G2t9m6{pzg!3)njJ4QvoVPx>RmsAMsoV(JjfnC{&Qm=i_QkwU z&5pp<6CNDWIqVX50=V1=RVkWw=enJpC7qZ{-pmLH zA!c&oIs>^&H#5TqTNkl8*i*M=X5I}hHSg4e8>*7sVJ1wndgah&;VkQ8E6QG3i9^MN z`k@qs?Nu9frJYHYoT-Axx+R1?8g$>hB@xC|{R$pa7O9xkQ!a27;+md z?kT0a=I|{jLtX}Oc+5ByS>$f7QsQaZNsVrG7blXOl%np9$%gbL1a!wNzYY@fWtu01 zV0m>(q}BI>c*S*1ns6mbM4PK6+TH?N1Vf3+yAnu=u!DpD7zXVBVD1O2ad?D8ESGUo zP)h?l^fDTgLGpYq2NDwx4Im#%4HS10tJpaF+3^e~ZytWiTiH88%806i;tj)Ha{O{eBp(U;!nS}Q79-wh z-Z^BBUCH}zXWh62+o`O|5k^B9rS_2C(uVLwx^XzJ2wFB2I5C|+`?X3?Ji0W>QT>Gc7Qj{!x$3Of0f)uhA&kbx{HxLkN8x7Z4at21FbK+a$e?bB`eeGDVPHe_J{bYR38igscb#>?aQckTJ z3rn%^4qFLCeW4Xm;t&yNx`lX#$M_|_yVp)=q^5P~&v-OMS=&dggHUORfSh+jCo$}k zQ9_Ox)2gK+43w>NZJzO^!liRs(BWKR%a`c1+>k%c$%Y&snL`^p^qZUJn9WWo8f|*V zU&?};*x2RpU*3xMa5isg+$)v#S%MiUG5+Hi zUb4qrg+2LDo0kdOE;v<>4fHZMd`^^pEGpoZJ9<(WJ5>GdiRg4y92^029A{~?oJLt9 zsu#c>`;N(+n!S8FMK}3YYhyjj=Fg%CzI`jf=0;}x84y(ZixX&b`^1rBYcA?wJ;$fgifC^WVD zd!AxgH4FN>qu;QDk^*h5d99A_AK_6}DpX{7ESVfy8!_Q%#4{2%TRRJ#^%}?m#>&AR zzlFeNB6@Veu;96c6|e>%;71IUKT0!4g<|bxv~Ky+AvAG{%dBzW9+Ri6)?mt(AyhpQ zyE8#9DwwZDj5{mrUCL(ZLB9Vr8dE0VL34Hdl2d-Jz8iJC!YWZ>*WCOXGQdza8FOqi zQnH0YdC%HpnmV?M2ZBaP+%N-9K?~FnEZE}O@cqfhW%ykPAEDw!u$1@|>YZ#x$3Y2a zFlqIGy{tdR8#}3HUL$89k(L@3OTP{n zoT2ZYOtOJ4mMczCN~>?p z1~&&DG>*B`$fTJgMnL)-WUqw}A48j1!ck6{v*-_TI}7uYILDcw=pWF^ga`|;VAT`5 zBm4{htPd(r_(X)nhQKeB9n$aEP1Am8&_|-=t36zY00%WPB<)@QMyMtI3k{u!Ti3sf zz(PqUP~4B!4x;au&^XhDTNnT{;fifq`)ddDB5BCii-~cUAs?stIVc>qSN@+QkoUoT zlVvI5HM~BwUC^ zjViEa>gf-jH<9qUceT#(^nCM{7L^ce?Y{S08KUU&F zs#Yg?!{l^U8Sm+)U2tkvq4AqtbcM>Rm7Xq^h`q$H+iqkVPUkU9Pvi)t>|zLpFn_o3 zK$$JT6dQCg3J>z6gtqb1o#ObU&v+hq^0X(25`yirJ7kcW7K&Xds+*uWjlT1t-QPEG zjE~Jh37z%-;!(;Sbc5VI{6R-TDlHba%R~C}VYw=`DfWvKmCbCzFHx}S_kNoYW+Q~l zBy`eEGX8DyZNL2ka5wq5o3w%r)(<-5LMW(~KN9pURD)lRfJqi&&`5U!yllJ&l^Y=t1LVCv7(CpCuyxGjS zu(d8%yJeyAjjr60`GvBEu^kl6>CqAZ=Ip{dF<+g1-I$l@cN|#puX-x8eS%$?w1h=r zc=@mQz5^xwln&)sBgbBb$t6jNpX({&v@&@t&Cl?0lm&X@A3EiE+0Y%K zfopQ?fn(7>fMcoNsql2{dzbERF;fCLhZwW+As;t?@2AMyy*T{mxIm~<$zkVbuI}aa z5P4XloCZ(u6gNs%eP)iF+MkZzNvD2eKBz;b8YSboP>b%N4`*50%C&Hb@zViK3~S7` zUyxeNur|h+488oTlXo~^jfQTv&)R_3_LO`*(b!^g6sa}NSd0n)Pa$Gn@^mH?xQ!wDz3uL< zxnkf#S7#amWs|KF-)evs&eb;|e1;p7H=7UTc27h5S2Z_cyESUEN5qr22$T`*A?ex{ zL(h4LO)Eh^L0g-fN?kWyXpU9&Wjx6`LGq$MnQ9QY^|yfTbX zNu$?+r!m*-Z)1zjVW$PA&vW}q7wSLeB4=+d^(^`jF9W- zYbVu`p%pb#N++DPo-hTyqZwjIwe*ciI8&r{EtQva zQ$z&t9twNvPy4rfYS6HOv(%(ROR40R_88dMhG%*bM9X%#2_7QEx72;Pm_f|t8xWU# zvxZUo2ei0`DofNS@hngj;p?VUxGQ@T*MRD~R;3bl!i=1n@R&F(nu9OSO}a1=l&eq) z!&l|nHyG(bO#x$W3XY4Ke;<%oFO~`eDl+pF(L}KfLNxH42%KJ>K`xd$P3% z8&Zc0=Z1w3pp2+zn8$=x8U8&T!XoUVq&&bSEnlQJo`4JcELrF=P;5c%%(n)mQEncF zp4RevAMj9hK65`;tk(N{fI5CdikxMN(4v34qHZW4Gq6+j{oU8x~DQTEB(+MtF(g7M>$x}yAxV6#<(7s1_icCM^Oa8qKSfh57ZWQ2nas!>4zy!)1l$v79+ z6+93%#7?KwLbd{d)r>ZgFOrI2oenniSm!p%(D)W=CZu{Y$xu#T&uFHu<*7i;y1rXoa33Q5Ds3)O&f!1)~^Pb>C3 zwTdgb)#9F^7O7sN=8~)3^xL8y7V2uRoipABmY(}oIowhR<;jBFQl{jvjz+I;^3nnR z4rRkY^Npq&j*NAS^K7JRjDUP~qj2mpx2^g)llCf&(x z4vp-3fdobQHuA&Khi_kThf-!P{|!dCI#BVI<`PHNOEb(sZuq7Y{X*ahpbB0dr0!sc zNNoso=P72)>H3|ie2w+<_G7N-du=l8m|0liMr-J$$nS7Dv0hi@-$L%oHc+MCmDQ-a zPv>9nQ3K613ot5K=)v$R>s2DpH>oKkJ;$4C=&7QMK&($Dip-H!Zy_jN3F)r+GV|Kk zV%P>rC#ZrVM>by0;Un$ouD3CW(Iazq6X4g3m7nlrbXqzP3CN{TXZVD1)PYs#f<hs+_~tL>KetpKll2R(qg<5xtT!6zTL|w+>+F>8ogi&0!;tfx z`f4C%b}2$4d^}=W;KTzP?tnQ2Nd(^6^gqx>Q6=%XU3?l?Mkd|n_{{mB?jmEH`rQr6 z%xg2Qqv{qhV zYRyi0wGX6+uVB+thG2-i^c2$wpxqdll_%QhR$MGTOZ%vY@k*MZzC~>yFaPTEX}+aN z9d6UP9O3i3GDE0J;X87+iiFE@!5RkbL}}iX#`C5C@6^~(Z4Zg1obb%9KhT6yc7U#N)Mw5 zmp!|U8@f&%A5pBr=%nj`PIiRsSoDh>$7xq2HL_!XLew83TyAa>U4Z7=EL~JPWhCtt zMM9>h>ORNPrZBv4F%|kpL7dD?%RsMZ40lWf^5=Kdzyg0lrCr-6p|erxdfFkTjKn~BmXQ|sF*tw z{atA{x}Vi`9P$lnMv?5lr5R1->T(`OR%WRY1Vm`L5>xF_tUNF@xWymjN>JIv#QG}B ztYM7CC{-{z={qVh=~yJtkow}-PXqu?cG^Nh%HhdogMu|!*{q9%V-64=6TH-M$US3{ zgnuC+@EfUBHU40-<{jWQdt29uTQhAGd~?7PVYW6*b)1Ssr@Td8Y#x4&Guv-K4h_fQ zOUUyVMN12Sx9Uza7X@4)?w*$_=TE+f=El`Av(+;yVtQ zfV{OzD@@0qODzl;#mmm|J*wW{_$urInNA%1NNQo?t5T6NKBPa0{7c*#CG=Y1SRkX% z8rtz00uRHPMwc!0YnZng6`8&pp9M5!*mTvSHEqDZ(~wvc5!stI;v@Vx^wW?&j7T*h zm*O8zGhUwO80u-YfYO7TkR}^;f}L?ZVr)Ti)V#acR98&DVyg){^5YWI->XCPF#NYZ zNIB>4w{q^7IwaTl#fn5b!tP}kIdL@8-;U~Rk86ABzfwVDDhHFl((~RU~gOqPksuaW7T05f_^-U!GD^#cEoXAt28SLkNO0U|5Eye$8A7 zIn~JsCO;SDfH4wxgFN0Jo&n87w}61-cJ_u;=*5aM_kq`bh&w4Oi>8)lWyMQ#h9lEN z`pCkBeklCxn7)0Z5bk@;X?aVk{nQ5}RS({?a^c*LhBEjE+2+vAb*pdQ;rTRK`gYeD zNVH-v8mqO7@=*I|D-FFx>ACbAMH9E)H%luCoP=r7-A+;|2}W>}0c~|K0jcl_jU95Q z(M7*5wr78F#H^r&1It+27Fp*yrJTMp?>&DA%Gd_sB`4K2W2Vz;o9Y_=c}q15dosmO zz?fc1jQ(roY?o9x$wkw6Ro@>@CmzxH z{<-31@k^SaMwuKHw7>3ahBaColFclPPb3w7lr^yRnQb^>lK_A5%}8ij?D-^hBWuYD zA4wxr$0=ew{}qNzcr3GlWI?pp9=GywJvE7FYyDNt9D! z&=_wAd0=oa;)_0Oaw*zCiHCvy-ljWobi)h0OEh%^Uxsf>bL>o$7_9OsauEZjWe7}Fegm?pI&Rlbb!drGMhfR=z@g@gWp$n+r8lkOnRcaP4d^twzG z54Xzb)sOEXTQ;5orqZM+BB$y{j)|F5pjXnHkZvrYRfCoJEJ*dy%2&#nV-foLO6jw5`;fqm$f>xdK9H8MbkKnI4K2sJoA@(4~}8DLBy+ODL%H@ z(QyWr(jRa=X@(E*YC+Y|z#x4KF@ij^R}nz*C+y6XtTS$SgUlz z&CumeTN^GXD3#dkrXBZxX)dWBls(#?VZ8Iq za+Ve22Sq4W z$~b@fMq|Fno5XOsk&%5HZ(+8xw@$kcA#Spth*nwXL(sxPJCu+O>0xy{3@wMd!^J_#0mf-UC2w`i%vH}@j*mJ*h$uhI*O}qA{u8J6hzsY%S zKpLH>VO>zSGALl&pQ?v(>6A<2)gVf6*b4<_#kDn-O{(e6YM0lg6aTUI^@zKsMc}3} zpfXQVmZj{UKEad#ck}%i$S!C7gaT)q3mb5UtVdtB8%KbIGM^>PhD(zk`^tcZerf;*Pry zY;kwy1ClJ7^KdF05*(Om+r>Qo57wrKTkNMyvCuf|1o5vsOjcGL{oXdz>mHeEnU+UT zV*1s#P?%Pz;kgXH9H*^>ku-g`aO?Yyw{UG zL*x5aqF&o2?{H$4flkpwFY=WHmCc+X*vg=k$od82x z9>EmP4pfPnpmkdI3MD)1GB^%PtZ~}`4>kuF#NK@DsOEQcZ*c`iH7rCoura%4yMxu?X*Utda53VcQ~ z^p;B11gTRlNDATl(jbhye&xxvAug46(aYv^gM_S6EDxdC)z4e@@??oo{#Mmw9@o%l zv4>1XsVKlX>>QeHVvoopLy(boN>Y-r)WVFP7uS8D3HK@KUqjI;Ftm8p#k9_8kz=dx z{H9w^=c;|~nu2x6Rc)_QUOh}EM2bxDDU3j{kIIn9qUJ%2=gVnTb)*yZ4dCSsTTabA zWF&#Oz|f106Y^~Hq2+>ArdLd;t_qpy`yNK6*m7k2*Yd*|(Wk7v`}`<&yfHPB2a?_< zfvDbSaT`7U?fTMLBF#^Ygez6*_G!6CLeY)E7M2lfkxGRt$Muf423vdP%rK3Z?*u4o zw%n3$N-q|wAAT<(UERH=whP5Wh7>-q$6}4ZHMzr?Cp7`c68#;*BSUSjutkWKH^RKI z0vC=AFdFwep}(-~ka_ulw!98>O8fD#_>P6k>cz_;)Bg?zI4tQzf83EoCY3pa6FcEU zW)*na?!y}L4o|}oZAKvU2vR~zGDdae;hb{ej)%cJ^TW<31fvsw_;=gtzax-bIj3z2df z6EPGW@s>GC36)S+D%d%_)`Cjj3CH-|P?k_R%_9f()J~+dbJ{AH>_dgVTthucHS=7= z`6r22zt%FO0~(I)#+5%y2?u6E@4sf!#njZa)-p=o>ku;5#ktb=K2d06v35|$YC6fN zi>~N3u}j7fK;U}QpF_~)*f^uyMU_sZvaY)eM7>p;C}i*_v)<W8fxSjXyv}kD`iVk6F*Sn8FRnDO7^Pk9FZpi zv#(`Cqy1F;ombLj!9Bs=QpbkuvnQ+5a%NZ)$E3l?DlnPyRT%0CS(`{z^AF7FTB)5z zGX0zhWC4Q5DJCvn0?T6Vah^5DLx9NFesOO|q$1aSZO8=Z!W|1dE1A2bYmOmDQG%+@ zD@6^i!}IAZ%W8Y+0C7cQ_^Im{w1F9+_ukfG^#(Wj}c^CEVe z)3Lh6%1Y;9DXW37Mmh!NI}#)*6~Cm7If|wT3!v84XiujZr!P#n2geVe3Np)^VQLuV z50V&y(Z0^i=LRR0sPzWKXP=KgRQ!bzO9OK3Ukp*dIJ4VI{@&i_Hv32@C8^>V=O@NV zr{S(|#c{35(->qDgGGy$KXyjCM4nKTG4E(YkZa|n6$q!V|33gRK+eB4VN{azL2OD3 z-N@ng5%2Mc;`^jo(4M*l|NQ*S0qflq5KI`u;-F*b-;0kENxQ{_{d+la(jk11)_%u; zAeRMy+av67zT3l6qrr!$RAb^vRK~^~4==I9?`M4gEji@hX7T~hGrCsq6`_8sloK?% z;VnT%c~E{dmB&dQQq5%eEzR*5hNf>8RIs+fJTb}u*Q`ibDz&jwP?J$&RVcpi#|R`- zsbt>U_*z(}z;nf9J5B@!s0}YAYzzA$ucv4MKh&&5obP=V}iLGWxI1Cj4>>JVdo z_as-M6!kXNZRYi@@^AD@;$&wD(2^<)l1&+p}Yde})jl4~k@xIF>58B+cnvAD2Dz!b2@8=&-j_ce6S z5Lm6%h(0Cl9}N~au@=?ag+PrtzGV@J8s;mCAc>w203j2>)AdgpEhZ{1+~?{(7A4R0 zl!5hmgd>A+Y2CJoYS*F$zJ{TOxtcFnAA=d=XaYP$7gZUnLP0^aDVfl&@gWKN)$BLy zdxyzNrH!7blp3`|2;O+NJc9QC@jn(a-=KGeqLZupd{1xnmP&ZDzm{SX71Ri9Lj| zPbBgL0Ev*}oy5cq2+yR@bBkWt?YA(K_Xu%Y7BgsfC#KBXNPIdTir+3o9S!u9LYk2J z7q~mknImaw%Y4Dy6K)@HMK{=7DefB$SQ-J@5@uZ#ZWHNnv}jdD2w%Ntak^wN`U{N# z!{7G{5<$3OoKzbkc|prPIYv!rs0P@zuoJohG)IjV7LwtV$4!tkSAxw)U})jXDv3Bn z35`!Z^Af%rynTTZtqb+i3bkHdEkgn#d`tB9v?g-;L;%S_8flgh*L)rfeRE-V%($acyD=w$lDBn2+|BjFM(s!@?O5;!b9h~-)%KfSi5w- zVky=s2U76l5YM2$G6iB$Dcn z`d-}5TE+&8hyfWVk2TNXHRJCn>7oN+UK#lp;`Hwak}&3(<0)c>q7jl05IXOU?bas? z-q_F~bN~cIJ>t8e{#Rj55;i?Sei=)IMo{VXQgeOY;X!v&uO%NBgFtaB10WuSB5~jI z20EfrhG_F#4wv`Qd=TZ+$E*fLXk` zO#7%TYMe8>%Shn3C%Rro;Po%vf3GnEs%X_O-Aw+E`GWQIFFh`^**Qb2n3Uj-vR@`k zGv)&_iQEWIO><8M*Xr4d<)CHhuG5_6f^28IEpw$_ov^Ab0WxK1m!UT3Q&q7xA;=kq z3>7H>dPRoWIW`Egpm%K|*7l?veZ6OtSvv|^*J9Pyqu|LR~i}09>ZIGh8du$(CQ?@G6SmIeP*p=yA`8X zFYtXALv)Wp&O^u8E1`l8_wNNpnZ@xT!z#e#GLyd>?z_rx-Fz;)pV*YxlbzVKs&V8b zt#M>s^oy=zzp6@t4Ea)!B6O3tt&mPLDSS^fDPk@DFdsuV%Qaaz>tV_WWFVLNLRglZ z<#ori#M*^u9_NX-e~AS`TxjR5-wH}xa9ED3uPjG>`yjvDyh z*@vSzf-|0dGwyuC9g8}FBg$f!tebgY6zJ#)B37-e(5~P=1p1r$;luolK{3Emu_0tN z2D~zsOxM1O8(pt>U)@> zIc!Ck-0&vR>`|PTSC?Zg6vxEU(Z*ARk>FFGFNt`g41&NEy-xGAOl9=N!cP}5F4dPCOc)TWSC-*^P2VN&J-x1>`W+1{A1kVrZo6WBj^T} ztni+znyGvEpDrVm{E1O#gF2;snk#w)^UhuS5b_(I>&sQzE8(kxanZ_%3333j>y8va zg%Ab22?Eh3ECw6eki;;HC(~Z>2rl3rOq&=bRVMqM#9v3KI(;!xJ|iKU;^xMKfHYJI z^t_|gu1J~iE4!j*w;J4z;LlYNcD97(Lu5-=fe9v*sW38(Z=50OVjy(@0aHa+v%rL{ zIdNjP9Vk+g9{|1vca~T*5s*PITn4$$AZZc9&QQ}K+TD#rJX~F*{j-aj4T6#LGAFBX zbp%byR8&j-GWu@xxD9GQ%VPA0(U@Ue9Y%Q3K0+h@f^YDx8wWlWfH4(g?e0?lMD!0#V9H5RoKFmOocm*rJKLfF z(yN1@nvUxE3Y*-K-4CA5TSu$q@FO z-X>~kVgxU-8+pJnBX|eue;nlN=Pu^4!8DBb@MhsZZav{0y|VyBKUdxM^*v-QeB#@v z)n;u&hYAi!@!eL^=tua*yfPpz%V^w93MGlJ@+(7K)MB8Ppz|6@#~MAZ_ljx`?_}b3 z3;yFDVUhutM1SPGzXVtfP)9@J+f<8~kAwMK6vE(-T2sjH!q5Ru4s@R})X>XKGoO1y zb8O#IEE9bso*4;%Oze8KY!~^JiZSEFw;_%M&XwCnUB$Tj4QonluwuPA)IZ8HojyQ& zw~b&XkqBPn!DIat*#+c|1vryq>YMaSgx%oQrQ2p%!{xoJ)^C$|AlD>)eGHa7Hos`)w~_%eFOlvrW| zZqTpB&XQPhtz7Y@B!zBCY!r<~LYmo^(ZZxG#IRQvT!NjE%|Sva2s$Xp z6ojyaf4azniB7UG8h1Xtw&cgEi#P5p2J+$NG&8ikyAiO1{FdQyp~9>fA|L^| zp7lL6E4wnB(ccSXq-_fWCpi0v8XlfO43c+P4kk1!?@{MX@e=VRKR3~AS&6l_;1q`N zJ~8s#!aXH*jJ+hSc(+&m<_Zt8TZTx#0LY0=QR(aaBGMLV@k~_6(2^0*<5HZ9ayR?- zFzL15M@X4ANCeW0$gdI!!GP8i`YeZNcCQlv_ zV8KCHXviyJDJB{RdWKmEg3*>G5HTwxA?*Jo$nOZMPXY$`d=n&;u|B)ooL|fRp%XM%M%AVPW!B$w!r> z$mnCfN3r=~ZRAyj8_6?Vyx(Z=Su$Py2|2T%Z|8HhMtD-2tHJob&-o!%WrA`wJ6Cde zPOgY@4Ky8+tUPM)DDmq?*j&v>z-N7>_1SIx;a*_`&s(Iu%oiP+x`<^yD zgPA)hNv&2JLJbaIT~I(3Lo4?t4IpC%P7TM?jTj6*nRkX3IInRp&Y17VowYY<6fB58ChC~~ zFEL1*sd;B3*1Cet6MIomj5GWW7blu%Gkf7M^H9x{_mBxbF*FNAJ&GxV3H#7gQlkZ? zn?x!KGSU#cqPnW^>Y!n!qkzr5+~*34n6MlAq2z6<%+;B>?52*Fv-b2H;VO`&U$oe; z(me{yO}1YQ&5a6G!4_Zo4?Sxx$|lRwY7EBG)h*t=m;KZw^gYDxj|R zcoM1fEqrce5UnSScB6(5)I+BWImpQ* z4Gl?$OkZ@<@S}8h&oOK)&^5($HzPK@5&FLD7s8L?m6FE3`!I|}fsSRFS_LEP^%5Y9 zwX>-#la;;4hZX}uF8~NA*qA8;8rKP+je6JN=+fB~Yw1oT9u=^CMm{=>(d#{>Vwx;D zZcSLMn!!nt_7*cZM2tDOQ#o9w0G}l0#ynKo;Y_K^eslw{s`9jc8mg-f3yZ>dUPTer z9fsxLEO`Wd_s_QwUQlyY1Pv3IPc`zW_c0EaW2;2_&O^a$tOP>fmz`BeU9l;2Ymqfk z8nle<9%Ng@iDQD9vb>4gu4>+T%-V&dYo)y_ZhuAYV;(cK(<(4OhGpN^LTQlzL9jkh z+l{g6UC4-_o3{$ooQAQU)(9oB_c}WOMx-rEd(Tk-<5o(EBIa+gnCEHqpA2CU=-OmH z1_GDOy&RtJ?cdH^Nw%4ij#>Ncbsj;#1DZ4rCI|DqNYerC!#FAm#_dCu57K(WLbPKd zdQEmG`dTn-=Wh1*u&!OE)=nEid~T&_m}JJxB=OHL%7mGR#_N#0nz`MogkU zNo9`EK7+F$nMqcgP;p%n^C?Csi2r&?C?OP4fylQ0tXc+pLOOV56i06(GY& zW7Z8CCDpjJOlI+JIqh4__T4ytL62n=ZEm&d0l}aq&XZZ*ij{ea{wJw6v-T38RiVCk zxuu`{DZf)&!ZhNXqNsB@K)&c%)%*+J4y_TBO(hqeF>Ol)Z9n!Du_+1TtJ{(VVVT^& zf!sRuLW<-hNeVg?=4BuWFfp8J<|@Gi+PVt113L_Pm6}dR7P*{U6~%Bp9z^aQ*Hf*7 zex||rpxoQ9HnSTDBK{alQ9y4v(z94m6F=yrCb|+4dYpQmcCKw?+WLpa%bZ6L;W9k5 zJA;8o4b0?2lSXgDMBPymJPa}`b;ku%gMh&_YZpU|#UPECcY>VqF?OyqI}3TC8Lx^++AHQcMcw3`Gx6Vr1TMctagC8c5Y!z}wKmQ0nb6D)|jE<#a#i!`J{&oJSTdoPoPz{NR1TlKVe2T22^S$7Lf!mH-Vd>v$<7aj zHbGecGcLrHIq#x&-!5SKS?_rxw44j}V}baj>WT`;6vyGhZ$_RuwnqV{7WEpVa7;Ry zgt5b3ty1$_yf=c~RKg*;?oR!BZ9vxhQ7?lbJf1{RV?L-(RHb!(c|DS4CPGqN4+UCx z6pzGWFoWyr0h$1i63>Q8J+u+c+U^Yb8(SsJQ7ltKAO@)Mj3!uTWvRE?+=v?MG!N9_brEj zOH`AE-6S-*gIKymHi`j!}w|&yb*ICFj#1T4QCQ_fgwi2Bh%FznIM!PbJk>^v2mYfShKq z?)nl^J3+Q~eMwTVsuFX85r~DmkT1I6mYskIE@E@{65xP?byOX2p~h(|j-diZp{S}p zDSv?+MghM;1w!uQ%9Zr|v);H$#^#fbZNWhdwu2^?XbRnz%)oOM;GMgDgp;N<#lcv2 zrp@&%W;w0Jd@68KEG!Y4Ahq}k&nV>$LoZ$c<&`7o3;EogsBay!w&!94Q8H{Vu%h)G zdINVxk37+@qwQlDe~KwpCK3vxi^Y&BY-S;mXf%Q)4>Q-#ey=-n)QE4I>ger@K0^>t ztYsA8=|bdz3Gp%sD@=uJ19&8OGgv0*&5FZbEfhD3;H772&A)Ht*0I`Pl1bsjR|D8z zft8x$kb8+bn^=1wK2J1epjS^eVP9T9k993T<~pTJeaIEdO=zh`U-B5EcEfg`r|j$Uk^nal(6 z4pYWl@!oqRb~S5bA3MBwMwBcMQI8=82P;C~m9cyA-RJ;AxMwJG@(N%|GizHe8&VtZ zwaIqp5LS!%6-N?h+^)!?IO>Uxa)XAU^l8r>_2TW z(uaOxo|@3~yW?}Hf|w~qka`sg{Guiy7D~mcj(Iyy&$u^Pv3PVwH)4NHd|eOxi%orS z2i8ZS%jE9746K9`QUca@3=j03gGODW8Q#jf_=;61N|P(H4(weGAtd@-VDXgvcSpDn z?r2l?$e+eEw7-|Nn_yqRbXx5qwVdu5os6W! z>b4R~KrJu9Eo&ay32GK;qJ@#b#w0SB7i_0`&pG;Z;{;BW#W%^0O;*5Yj!`VQ%J=(u zvfJ`)^mQ3t1m^JPE1(z4v5taN^|%MBXNmzlevdNVR@ILNi36IaYMge>0rjXbNQKH{ zf$d!s$Eh;q{*57E*I#QnqDI>nyk8=x_eigN5&sTg&tfeK^2>?k_C49Yvvf?Wfzd;b^M>RwLRJbv_qp!$W2beYAu^d1Dh$6*}g%YwHBOrK3Jz=mDW7B}R zay_7Ia}?~!%xf3(06@tS+nmwFU?KQSIPu34VDV&QDAv@vMG}z34;%|R`%8h3>CuO*F>T~fFNx6u(UUyAz%IR0Lexsw|6 zj-Q%np>7z3L^5;}r<$zVVV~;5#N{%$F7!;2giHf=>=|ai~_%hH?eF0PviIAJrfqQRFEa6tjXZV zy!wHnWLpZO|LZ;IZ+Aq06#y@18>jp=I)_=sz<_5&4*ArKuH;2bk0ymnSq zqYxlOISfWMl$sbVyCH^NZ$F26Q8noCm{T}^wh?A!%!*dMVH?{N5OUv4+B|1@E(fC# zowfWOI5%d0`F6rz(L`7(_9Cf*GE0ekQEM1XY!t;-&FFYZ8mLNgfHM!cdsT$;Je$C2 z7}HY~nz*bA6i86ZU-@>ZIiB}!5sRTF8>=f0m{^l@kVH2bCQ&x+dQokMC14`l(Ub@s zG=C7Pslw-GqVG;vsLC$rmu(2P!QjQfUbAT;(UG@7PNVAF3G14zWj+U$mePcv0TVBK zqLirExGP?X7h*oS!2mGksEX%%txF%F=%A1!deD_IkCF4d==!N#VqF=t;yB>pDZ2t< zCb2@RDvqy-@jGJ2IlhRgTz;3spG3?QHWEBOr2dN0^dQuhz)iF@P{LYuts(uff?jgNsm*L34S;z|6(@g7GV&A~O8yq}5eGH#MFCc}9J*@6+_hTxH?%+Ty!VhvJ9p};~cdwU<#5Oy@E zL4mXy98=lxOI7Jl10i|<6o~kL#GRuGVy4M>W%*!1f^@3`51(u*2^TwgF!W+=9$=xg zBfi^)>W?iJ(|VgAYoT%_)@CE1nlhD-QWUMyUI7K_{O>9M)!!-%|G!s*z;M@cNA$(o&iGOOtm=+u#fcBYReRz%m3+_PIsDHjA0tLFoiO&-Vtwm9mdb z2G;eyc7m5HO>xIA>NQ&+n6eadh4v^4q|FTEL48K79WX0)!6?v(#?Dd^7JliVoxa|y zDtTqez;HDN!Vpgf7rtVEjzv3wh75UDzSKa&$-q>yuIwU+P|&7@x#|(!0~oe}a#nH5 z5sLrDg1NzopP#_f7PkbGNA-Pnt| z=TICk%nj9iJ>iUEr{eGj5M~uTayzR*_Mwu8_~jA;7=$SUN!F*TXen1Nabxm3^T;#l z3S`0x0Xv=~3XmR}XlZnMC`G8q-nTIj-%|k5d?tW0Q@_FjpzU1@>u+Tk52&1|!QMFR z$<2-*S2d|S!|3|Ot@gO))zlPRg7eD{DB9MH-Ph-t2DNul3jJbYRBJ2S!BcO?m&~|s z?@sg`8G);M^ls&d`6rY5W~wIM94UDdvL*RwP;MJbo9mARhe|KO1jGPet6;`rZ9+^S0fxgaFAMVe_i==qM#Ljb z!R?Mn=a})4;~km_h^Wzbcuc=_qP13*8Nf+;1ly??l)ccTI<^s6zKkOUwHnjLork&X zN3eol0`Z6WMkR#UF9L0<(XF`=rWTULaAFXq93jF^-UZWL(qTh6f^g(E)(pxKp0_zV z73gRBRvaD&{-EI+OCCK=AFL;?q9-8MLR6FgsL=KDr+0xE0+?J}SN^nT3l$Idm5XeQnG z0aTGF8{Aix`@YrH%(l%t@neo}J~U=W1ms)`AQNXB69o=?PeIp(H5>VVQv{$mi}=iC zW|J8_7Ol{U1UW6ncP~a3iq>k97-l6q;f~>@ z$3!&9IjW;iG;V*Y)asmAR+ z0EMR^`1}!KOO{R%360oNwJJ&F`X09$i0KKqakUbaN!-IKQwO@M0ez~ zlQt?rl8p{y+>UAzp98%{e&fhSsBQy_Q29A1>lgrq8ic)PP_;H$W;-zE8iiBxS1>(Q zj0)3H#!BSytC7F9Y7C1I6}yv%1w>s@l=I*bV!j0d-9<%$B9Eg~qm>}!PkDq^4PDfO z$Z=Pne8~!MsH�DUglgcKeIuR?xlQ{_I*c8J=)uux$ap--Z>C`LT*Dvm+-YC44T{ z*xc8|7KNz+)y+-nm<-Y_PUzYDQ6sGI=q>=FVvvm=2#U69YBYk*Byh&}p(gXJ{6EtO z0&29^G0zbHzpm7YNMs?g7(0Q0qS~3n3Qb8HJ`)l7#|;1N2ffm|4BqK^E-{b5%m8ee zbQ?u;66%_EnSl%?4lF`-0gHZLdj(LT1{2TA$Wp@C`JTx(tR`4FVSyT)Er>1E_fWG# zRzj~&kgIf%3;ERdliqJyxR{_73_ed@LP=cuo{r^>J&1kQZU~Y#6J)a~jAb?#X_IdF z*#|*<$vZPAa^t|Nm|8%$k;eKI-TjNMW)9S}&U*avjA>T|u>v_k6JQ#;<%!xZr>!xP z4SL_H`aosZjnKT)q;Gd(UZuqs6xNRU;CeaxHnYrXhz+jw3Yty(_@Dfb7x~1lNzDn;^y`@S{Y^>BW7iz+kVV&3UcC% z7WFM+iOxkWF#=r-O?2|HBr9czw}B{j3@jin^ZgRK9%2dgGHQ~9HU*BI*IaVopp`Ux zvZ=f!yi*LD3vOAcjTAz3)&#~~%uHTBPTE#SNFe`wRVWsN-U8YOpGh(b=(SDqMvLp| zhUMa`k=IY6ZqDEN{+lM#%#P&=9wXfhJgYyC z82lmLCcA?e<9#gyda;}Wq>!~6_R=aur0ONQEBz6<`K3rotZfwRxXK-(xuwW9^08m8 zT0~eIOym#|VZEI1^x5Czc+LaDprd|r5TorZ-!OB8&S#}@^zT4 z7B$$jJEYdGT@9@yEnox8Buk0|Go3lGK5)Ppq}V|4FZ*Un@>$AgplKvFM%)u@8UR{7 z6;?pei=ur-Z>fvw4|ckNCuvT8wI)2kqN=9HUJPnZB?w*n9sLm&g2lj3U}{tom9R6x z`|2c3b1brZVoK-sYgdokQZwwib+fnW#3+eH*A;>^nGK-q+C)qIra{SGpSGQbOESVS zpD9Y$cQI1)RY;oh7(H)#KB|zPKf;7%NW<@|JBj_v`#9a*lriYdyG?=fxfhd;(M!B? zBuh+f=R7~C(^n(u4O?o`wu3aaxq~x#`b-XDdWrRtwi*zA;!)Zf!uQj5OuWrFznM&l zf$MdNPWP9j4&WKn&Wz`WuSpR0m+MO(;(mkJILNw+O{R%obMX>tn-*n*EFmGW*oxcA zgo97Hv3?lbG=o21)cZ@x-T>V>&EQq z&q?0b1hvZ@yMg0Z5ja8<*WKVTlQfOE)dZvcnUGZ}1l$dPj$v}zs1)p?rWQ7ussy^G zH#E3uO2Beu4@AQkZcO&z978&>3c~{GPEMrO6JndT8`GzNfQ%AFjsV2zV#fE%jlr5c z4eF&(F33ewKKrVZK#ZgU)P zPLlf}G3nxQrXWT&Qna^9mav2#h8oA;9o+p?;#CbA`5|Vje!dE`iMNbq_pJg_{hmgM zl`Q{eGLF0Ohxn)ZKnboGuP3Zfi^A8xR2^Flp3B*gyuqVMtSm9j2pm zLKQ{*^Dw_r1s?eh_P~ykeN==IW$b#D#LcCO@$9kRis^7NnF8v{+$uDOF3LzHt{cJR zWhm0fpAQVnO6q{g^6_jpypcy31%YK(rkE5H1ou4|Qmo>gI1#B#h4~eA4Y79BB>YD7 zyIk>enzYrVNOi8u9cogfhQPrQ%o2Pq>UGO~H@fT0PZ)6zkUEoTC{worzu1R)hBB{w z%W|ctis^jT`zXylYPtF&iJb(WC&M0MME4d2CVtN;e)X1I0_U#609dM;qiu(32+kTO z5Zoc3bK%8&8V#4N&|Yhl9HUrpV}sT$$S=cslEu%&)C;=fYh-gn$}svAd@>AQ-DqR; z%#c=sp;B*y3SKv|>AdG>-4P$9{t5PNoBF`dmlFeJCP6B2XBfzw9-{-oCy1>Lp5k0K&Ylt@W(DT*DfOy20i3 z7tPs5Ob?%$VSGOjKXoyp3u`Z3-z~^JZ>|7#a=gcbtc|bPQ;19R40(bCOX{obd1FEK z%IM}SG4Mq)cBK%^uEjei@^JSufjl&lYS5Kd@-h(u6&NV{p7wrlzG_xSX^k@a41XFZ zVPQsY-@?#S-|&(M*Hjwg331>>W&I$|0A(pCcyg1I1hc93P~Vp>K`?XNY$hHV<#nZ1 zMufSHa_^PdNuWeK*#r`89ox$ zk_@oG8e=lB2Bt4R7%9fmA%)&%{5Q95miDN@G!U|*H}&0;H7}-$4B1*t>!Oux!ibIn z$~Z-hVsFN0nt+<$#xNRU0$<75LFuw8;?hR=_vC*K$?28QJR(Elhdw(EXO-aAhvD(5 zKz|j;2V+<&aBraV*P~Le#3&`sMis0&Ak&;5m4>!+5?eZ6o^^ZgQ%r)~WRZ0LaTJpI zf%u~;V9n{*&MRmEq`I@k2&!6UF9(;PfEEuzh732T!slA2PQzAk7tc%Et}g-C=0nfigng=kTw(PN=HX#2n7kQQ$-GQy?5tOydqFoLS~Z&%(@|n876EH z;ye<}3V}|3R(bA8QVc`B0o1mgKMpa61Sc2s(nEBD0qVk@dV~T3YbOX1apllUiUUFT z!>o;!C$M<0S<~#J{9E7cHr=}?$82^ZzF42jLA8zWVY%Vm|I6CDaZ#hz0d$B>*iOrY7WY-qK0s1bv8KrZf2F>8#$jTy+f$b5<($w5QHC(~Mon50KQoGGe6;WH^DCYD3IvjP8hrkh3eWwsnC4~)4rmRT}> zkA2i~@^k=iA$jW@wANfFk}hP2yF4XtjNR7QgSnQJ2u zI%sXB=HgF{YOWfh3`p0HB6yV`8a;l?Tm|ncrAA%aYQ>i<3*D6DheJh>m+gzMPzREt0AX{bZzR z6*2cr3?Dl)vZPE5kLQb=JdV(u14dYyPFSjM&&U?qWT}$*Y$M{p@Y$(i{9-tx+yqsO z0Niw|Pl|R9ezAoFeF~vYD`ka~$PF))-Xi!&#a4}d)KcnzJ<`A$p<|-AT{RsX$!l&Z zVvvU+pp|*z$++m52_bPV?i7QCBwl3uQ>J-Ej)ZI5l{*Z zS(V8%GLs5-QQbPw0j36KP?!vtk!n$rldc@Wln^fA=Waqbz_SZv{s}&HHLZ{-+?j=h zqw6c4yXHum8?#ZFzA9B4JmSuv#X8|fZ0k%t82IMxz*Z7x4*JMtr&RnRUV^@FWpH~; zA+A;uN;Sgxp|O_fP(I6p>Q8n=OKmj9BC*`;7EGg)-lf%>Z=BRDU0_Oy<4}nnE6u$ye)`@RB6x zK;mB**1kJOS%v@zb*Pk%YonBzqNyT!jYRy`T)QIzs_?2wz}3{$_RWn|%zH{haWr!% zuLv)3RH?!XIbg3n!H*=QEO6GHfMs(rx_{ura)?$KBXZ#kgqE@DGi-#Srf#rP=VBkg ziwFXzri5-}A0-twQmKix-^NOfPKO6TW9=r$#eu<5a)fjwwT>pP=%z$9CN;-7N~$3T z>H>saD!7~TKt!Gp<<-S^mBj={>M?eYI5#s$E|J+?;=|;yT+F60Op>`6-f2j7Q%P)W z5$MEn19GAe$_&*D*N(_QCJACw#S4z?BQ?ebTV_Nz3EmAQ-i)yI9BTkVRV}=8A_=0T z37Km-2~9-qOvCN06k1{fP7XJhQ>%zoPe(lEoOeat`OXwfA>s=pZ*zC18HBV&s&q0= zMAQ@Eqs$q2;E%~b_Y4rA9h?C2aBdIAoytzZRtxG@XCxRGgncGBN;QueR;jHg21#i> zP`bT0(>#uZu+of8l@^y!3L}+19>jOiqEDocw06+a&dg^a4^hj?&|$(R8=r3dy;D}z ze|5^;snN5@Gv`_2xl@`ZLZV0|(~X*ET3&aeY)d`YR`QX>q?fjTM`vAPn}t5jf1Mdd!n)!mkmR0%bSe`x-< z9-85)_Wf9K5=5kuDlyMEo5jSRx-%QPWk>?>Y|OLOTn#0EVK|0oe zQBo^|hV9-xwLovgc&ZX6!^b$oR!wz;b}2-qiOG9~Vm&_LN$}mNYS1?dim5_JFQ~rs zMB5e*vlr$0o+Ai`i!vgi%p66DbOkcI4B2M|q!}ye?;{YgDubZQj7CJb2FxwRJI}mM zo}-jd_5xD#oV z%=3;o^&(zMDBqd%E^@)l5D?1TwMTxQf$cJQHb=?8RsVbFL7=S?Yg6jQYva)fLl|MLhT|0PWhhjXbY*iR8%oHg_zu+>a6Ih_YB64q74+15f`TFU0GsE z#WwUkcg@X{4uFX*L+HoF8;I*k9S18i+=6aTE*|UBH&2~2w?zc96I>yxqjf^w9Nis^ zf{_Ac#DG{Ch#^L}mnx`VN;YvaCBxoYP^w8)9%fuzGVNO7q>(r5i6r_TqRUu@f@j=- z7-w!mr<#K_ay)Y0OeWH9WScib=hI>ZA&d0)fGyl?B&7=)rj++?&`_t?j0w|MNi^`q z1Hx81e-A5#6>G;jW(qfxKLVDTEp@Gst$SyXRhxs6#3@B4yam+Ah+rJ*MR9G4_9g-q z5Vk4o=ZT!O!IqZD`=M8DC(&t-YmqD$Yk%Te;Bawq>KQhzhgvecH=52ujVyKTq+F9= zj^!CnB!aQ$GHgX_jM+1Ya^6{F+jS*Gp7<7hqP~;i%{~N-t*^{%^Jz<*Nf}X;_!8$N z^~8x7X#!>VrQ_vBOp}_znZnGi)V06|g(Ju$229qV;hUK-s@!#q97wYcBrG%FPc*6G zk#m~0oGLxnqG2>Y7H~~Pu7FBTpUDD0Wz35pLFND#xOL}f35QrkR%Yab4;?vZp+1;O z$am-7sX&RP85wr!+Fg)A97$f0+2Wv`i6cfWs4?q_OeIBl5t(oWl$aZ#ii1wbpv=W< z0xHb~y7Y-4#Y@c%N32cFHW$32xT^|b>f*`)y^>QZn_(bii82@W#&mWH;1P~6LeZNW zfeyX~|418%T0j3njy$W%hh%4YYYLPExV)IdFpMX$P6{Zq?YbL~_ad9=0w!Jg) z;G)Ha3Qwj76GskM@yxf_kUd0Nl_}Xsn+DouQzL3? z#5O4kWyWtgMl;t&s?>UdejeWrggQejpleqg8?i@oIQY`tF88BoiU)r=IRpTDLL1~t8 zDkVZ#X74l3iZRa!G*cAVsEov3Nbq#L`y?5q7q%0fZ;z?D&3qzqC z9J$ggF1uxV$-Lh<56;aH8;Bad#C=m(=R64hAL4Ae{hnNUG78YUNMBR2KKPdjwR0wm zXmDturOGGM=XfUdQCpCvXNDj6AL7$FsAlEFRZE2~ zC^H|bu!$#0ZS4ZexbMVJ2WK=wBXKfiSRQVCj5QKU!J?vOuO?iED2?OFlWWEUt#7$h z6e=B5g)^dga{?=4@GEgGoNc|N<|e@o0AI}DBBY($5*=ulfxG^n#I=nYdk$|gb_DV> z4xG$qy98EcXO8I3*ieK^8Ew@_nep){Ce=tm8EDDHffIUzn}T`A54#Jk>y#i;qos6a z3g+F%RhuY9S38!Zk8^;pa8rD^n(`+LHr@#4b0Yxb5a6v;O`I8{1CvFL%6K=$A(`Xj z(#5?!u{gPSLkHJVV;S*9kf_TE2bMUJszxqzca|1s>Se^Wl&+JM*o+H9zMSH4h<}9i zIF)omD+azL6=sEp@9{#CLpX4&kqJ1ffRb+Um6{IL0pRRhU>lZhU&@BP}w%B5cR5Nwt zq;+CdTn;z1cIHGMdvCbRGxw#rEpmaBF7!g{=wt*VmQwDTSeAt70vV=&9|U&;dYB9Y z&;YT&GkyL|8zsDE>RR?DY6gkNrLsNIoJ{rZE8~-y#GjDuo`jkLm)?VJa7GyE#G%;Z z8)phI2g+BFfAJcSxGYaX2#( z8|fk}eZg9%3VaPE1X%T>s0aRJ4baM|4?Qe6Pd{>^jF)S36(jWZ1BjJ#C})tc}|EQbJGE_ zhbeld6g4W1I%Z8W@dKh)2Z6H`p>&B|i2} z@YU0Ok0WkonpKotZZDFgP571Y!jy?pt_>JM&GB#}1WyYi6{Nwq3c*XJjuEj@_@P93 zTZ|$t+!}K0ckYaYBodyj> zYGf22RpvUmitj3ia4k2F(t+pB9KS_JV}%BPioQISdz>6eX~QZ;m7Bueg-0oHho?SD z1S$89lB?O{u}6dzDbO498Vfnt%(ZNhh!Rr2kEoFVIu))^?m+M%b%O1PC?-(S6nGMM z4ALuCyqh#gTau`V2Wc(UXQ0A{dO%`?R;gt;@V-*?7JCe}>~lJ#gWkx^P<->A0XQqSmvTVk*dc{e%!37s@XyX zXVL-6TwG$eM(CCTpgb;!lankUX7mVL1hlsY*=dgb#0o*jY+(Brc7Z{$wDDeNkFo ziMc|8EvTbwg0fk41sK*wrb4<9>Yj0=<;q+q63)bzWAud*9)`cWwmPAXz#&8FPB6ld zS4w6ca?m&@GZJ;Ee{$#7eF_B2u~CAb<%^UZeLThn3ECH zp6Dqzd4)C4^ocKm*RY6Zs;Og)#bA6&<#AVZ(K5644Cblz znkw4EYh6-BQaa_d%rk}UO1?5P^!lnZK|YRpn~+hY08>D$zZk)% zz>67`DConPN4lOVU3=6oE{sqx?co*oFJ9#>@biFm0?{xa8Yj3)p@lo@S8 z6C?uNn;HMzB(U-GGUL@pp>}RA9D6o|%giM(mRC$*F44sXN?I3aA#zJ_6Mv^$2DZaoZWLB~xXpXN8~L zIYOgBHyHM##3@NDD?yS${p`jUPLy|mxlqPGBL&yrnp#NBP)(r*@CD zi(!a|H=)@f20Y}kQjA%PJ^=ln4CaB!%5#!~_E#@BMM%aWRD0$FPsU;CL}%PcBy*83 zCmcF66M&L#YBXlhrMkK2?H3$Zyo^L<(8abmQ>E07{Mb5)#weK#&MCH9;0A;tOy;g^98w#YWl$?36h@gl9v>3N37$pE0$BxBNU>{LyQ zdVM3W%uzD#ieh4FkT8B)U3|V&f00q%y;3b-bee&nq~i0Hp=d+ z$Ne*_E^^^h!gZu@u&6=~Fjc8sX2WF`4k-mNixo;AGgYHNl#wl)8MG+>9U*^>{~O3u zr3fM7o{*fU;Obx#ZwmJq{$fPX(laq>*SKp=yMC0i*UZf|F$z|tr<;mHIvn{KGR`5% zsgg+#A|@stOch^aMS>{SyD)y)=61&0iC%$y1c;Dk7Lb12*1 z&P5wOS8$9(D-Nbqp}n46*nl|_t?(Lq?p${pI!@FtGDVvbN62cK?mel?q%4@wIwEy} zZ}=uE+~Pk2E!Q)89T3{bXHLQ8AjUZ16H}7nl_dG3n9k$apHQS`a6yb0HsHpY(+Q^Y zo+8*bN9a(Xur7V~{m zrK84NC{5DLwa@{d6j2Id%!R^Drdl2$=7?-M1Brlg`Sg>}j90~e$KG5y+Oskva;+(} z2P_`(!ctLr#KTOJq^^a|7U9;+GqgwyM8%o8HWHr#4NT_RaqENtGIQd{q?R|4hsyUtOOX3%;hk>Tsm4K_C;Suh(ur#qP%H)(GS~J68(+rr z#eF;7_mrwRjNTE}WroP=h;V;qj&45Nj&Ix(8k;PKIA9qE%{&7;BI1V>Ipjw5B$Cw> zu?BPpz*7^~Rv4a7f^R?>2U4{)Cp%cCV4yQlK03A5**U1LCvus`pW6y z0qBd6E_ZQ7H+QF?Aq}0PnZXt6)vd|MX9|ru(Y;s+aT5)@j17fp4irVv^R@&<^*=nt zPDq~0zHo6JLE2Q#-)roso6{GFw18Q&kt#5kNQb+0Z!#CJj(l5BVN?o}dUMQFfqTAl}oob_}-ep!2UyQm^46Y((y;abVh9b5}0mZpHa&o>*6|cQhBeLtPD_w~c zP1iuix@YQxh{E1O%QkiG0koSMUntNJ&6KKN{I)q)9H*IUCp^ZPZUWx|Znd3|aiS%D zx~di_&Y6V(MZ#x`XSYn@FcQ}?rwa{zuIfiyzN9K{fDYgUPpN3Gt&!zS4IoXXMGS=0 zKuyM)1t>#LXw-4>j<*m&Q)(2k^4?a@(a-{uzYLV7PJNUR5iv=P^T&yCE>Mt628TTO zO@ed!=@A5#o{E7+Eq7iTvtia{nrRr;yq`|l5v zVwn9V@*m3earEw9GHk3h^5Q|YJhgT@;xdUtPbCxP&Jt|gg))|EJQ>VS6J{jE_zR_1 zXSOdDgp?6^Zg}DxFJ-5aoUCEh9oypM0Ee3CUo$t_2j;Od%bCht<3P`8bVpDM2S~|` zs+9Qupl?iRUP3FjdusS2&e|2ftY%nuaU8ZAZFbXp|ZtenKP5xA~16JfDLbzoIW4K77U+-IaJDYPLHfDOb- zCRak2GBIwz%k2yC#>{aX$#{6`hzW9MOE~IC_cJZfP5 zb2AB$K%xYaYs8{+LLQM*y^M|DXRh_wB6EeECq+>RpD{JIT)Q;<35Cg=Or3-PGa9zK z82whjk-2APN-QUF8gB!##9aO*Nydl}ay^m;Ksr&uQ&W>!$B}G3G7A9PP3q2Z;tqKE zavjj{vjyeS%*8O3j!{!=S|V3Q@ijLCh8`+_shlS$v=dX!wg_AgWcR7JQB=EMCpG^M zYcYMU+z;$E_6qa&sg&`?F$FPO?&1i$cY=E7dE6=nj?~38CwdOajD+f5Bo?WQFBOxK zYSNRmIeSd4jqHfHE~abSa=8M&dBnfw3Ir3h*-j0C#l^@HB_>>4H$`+QC&RlUG>nKo zN6Ih{*--9XK+&lKHnoZXD2MOLC0VqX5<|Ss-ohb;gULiYl?kGjY7`W>3uaFh=_6@c z5v!k6WQ0^)gp(NnAmn4{JY?{zW#e3S3i@2O`mZ$we2WZV5zM8Yw=hgGQ<3L@Pjv27 z1{-!gDbpGBv3cSMAR=%B_SB4viJmAos%CK zo&I@A-Wf{jlAQGcR9LxlYH&7^>JAJ!^%xzs^}bVYjxjCBmQvfKQ`uDcIQ9LIE|@Kq z&h-deVhtr`VTFo`kUa%WcTRHaqRp8~x>lpekn2N6>>Ec;4uo6Ii9{nQT3wJOM7tn! zjxYy`=4Zx#UJz5caS%o}!VlaGM|Tr;B~?IHavjlnW*h|86%<%A#bymMq2HU5C5{E( z5}HZ0@+OJP$<%yM{{XX`gQLWLM&~3$S0lain&{(+_H8XTTu^2mCONmQ&M5NHt zWj>fco=tv6;FV1+8GHk6aHlZL>ZX@%2H3nm@UDxuZ*hqt)52e z7>cwf4#Omk-+W82qE%&&N~#c`M*x>q>L@N0ss%Sc>!s(OxCu|}$mC{8Mx zVS10ANlrs#4CcO5)d6k&h6qwBTw5D0j8st(y1N-qlEVg}XL}K&$y^)`h`w0r)rHfJ zBfsWA%p<->?Ejh)QHNc%-8k@4KM<*BChT)asof-nmV9*$RmD_M5n}8UL1QkIXNKTp z9E=tc(jz^$tElbVnWU`htFF^hL2(3D@o%U7{j8$UJ|OaY5}XI$twttOfjn9aH8IlX z5_z0ZGsi$$YaBZq)w!A*`mPZR{SS}&D>6l^WvDs}WL$^EpUDtzBoj3S%jpLs$jHcs zQ>>s;kWvbXVY!{L+Le=H3vEl%wJp>4Z?_S0Cr&<&k=W07q`KIhNo^#%6Q80h z=La2_iJORUN=d~{9FcM3l!QAan6*=+^vEN{mP^!Ccn{&Xp^3@7hq@*#l^KOnkP10= zZpmT-s2&*>5ad3nTxITCPwa~YG$?Vcz!ED#%fi+~oH!!4l-}l!NN?vDzYAk37mdPP z@e`zD&i#F5_FUh6(^x%;Vzj!pqft0c3Eeb^{AXqi$5CN}r6JWFCtpFkA{P~&J5WK* zRw)PNwp34y+ujlHI#)~Vj0YsBTzxTWCMlG~z-P}S2w{koWQ-ia<}F(cKgn;hX5>Su z$+k#i1#n39R%2H$CRcK4OQom4TwpE&S!BMc5DO}<$o_NOos3lw7UqCG5L#wm1GUMn6e;L^(LU#Lzob*>5nuuWEIOkUX z^?(1DU;q2B|1bprROnZiTfo1d+mL0`F3;bAr^q^y!dYRy z(6BUp@+Dq*W?Z?NhHrcK*eIQjFzc7=11tpcm<0V5e)RX)m$_7#Ib9;6sj+5Z?rN-r z#ecY=Jk%$MN+xaDI(b1U{f|dBV@vLvN}#ubVK3e{IudB7E-Z-RJj#$+X#g zmsWU0(7!>TEgpM&C}$46J&-B)nfd17A;R>VutS@4SBmQ7(zT7>G+R!yd8nBpbKNK^ z+8l104ztW1vL2gbwG13Um>J~WEWdavkgSD!Plohhx|f;hEw*$#3B;FLP+?x%i<0p_ ztEDLk2Rk)jD^G;eJUA{J~qz#;7l|KmS9OlLFP?IxT^wGTW z!VJAE?x~&MbYegyjrRwEtTtJgPeI%|%<O}xtjln?CqART zZIF|&oNg`F&Z#~&!+apWjH}}}ZeF+E$mACgtyP_4L=UnuKcwBu zT#y2WvqVhZ{Z0}2@z;%g5I4iM*7)dg{)_v!csh>$B8QlcrNb+WU3m4Xk3KZ!19qJjjAD^07_ZFKbIJ>><{t0jxN}qN z7#~C2gEmLZUKBevL@%Zs*NLT7DKN`%fl9B{<~tziV%bFa%6q<=9gD*k)9V zeQmssrKsgf`kkCnODsOU7Sn~vBl1c6V1NeY*t{=t-+Jg9n^X%jydz*e9Y6~~H@lpO zR;sv^euakvkpjd-W(X%Eo{2aBT(W`=LYu*_>V=bIQUsJ$(6^>YX%|!kZ6?1PcEOcA zOIH*8w<-TQ;Q*IY2}JoC6(yzD4ksD=X=o?j1tyyJD04V6d4w?I|LfM% zg^jsJnJEAfX4Y6h@fWpk?}kB>BPl|p-x}ucHiH6U<<*9`oY#7oBNFVaFek1W;Mlui!C$>$zzIdo+a}@)&to05>ePNC8bH#Fs zz(e}WUN@Kc6U|G`y9q@H=7{nl8jLVx$UC(T>%p^=eyr*sDxA0W9rg`T+|@}K4z}u` z!G5TnOrMZ(-tO-{5rkHKiU@)5!oE-aEg=dAJ2WTzeD*k%S363&j-ZXQ6Jakxi^v$_ zoi?Zj4MrY_g3_09qj!2$?;i^0$PJTbW(la=% z6?{d?Hs-TOUdoIeo3@czJ!>RX^?EB$#($q3F=xDKe5wv@m+wBPt*`l#g7HG&s=YcX zGspk<8@1iuo*h16mSlXaSl3|nYzL7$j;=rS(dM(S2!1)}BV{_M8~8qiHfJeF|`6tM<=bXGQayUh7ia86$eiBx+e&2hc0ED+rJ^k@vjX#oENd`BH8;5)n~Ik);E&P z4(P*aoH3q#-NW$|&LqCs&`FHT3|AaaaERvM{dm?mv#5r}F}vHh=)*jKn=Q@k-*(b_Z z_7hGy&YF1F`0ZZ&XZbCcas<1RR)jZDoRkHjm#W~r_wTr)Xwakx$dZaED*_VP2^A;v z85EfqY<@rYKxDngwtZIDg0Mr%IIpr=dG7J-C@N~n9+K7}st0Ac>PQPB;Q}61iBTjvT1D zY0gCn*O~}cJo`3DpaQG7)%tG3cr#U@My2&U_tG0h+TqKW&?wIwUW+REH`;Y*0{6+C z&yGlTacHunAR+q@5k1~ib>%hNeD-+5jj|E%yWZ(vJ85K-gc3A`Q)u_I$6t-J_*ZNQ z3v}4J7&z#^v`y%Te&%zi24Y6Y?z>t%vGvy_R#@+QEP`$dvxPE2-ChJL$0F&gP>#&b z(Mp$31&X7hG`)cS>;rXLMdR@cj*t5=@1lc^#2qQgJwE#u(XQ+QM?QOm(UH?D*pDc8 zb^qD;1{83o(lDT+KH0(^F~okKV}=))zRx9GZbYI(@-_9XVd@nsg2o4+W%^m;4IIU% zG(*tWes+|7@W!3YE!O0B_i#yIYj|MV27Z@=?rLw>F&mgZRrj!?OW7QZb6m@c&p<*+ z?g=IzFUhcTC|2B=^86RI(r*z>n(XR--)E=h-G|*DjPWwlc93i16~~e53Kdy4G-ni@ zsLGBz{Os`q?|o?}pWAtaVoXpmzeq3QVIB2^89I&lewzbe!Or>2M~4vAuOeken`1p7 z=}Mt4p2<1c*c1(DbsQQrr}z{JbKeq3Bq|($<$QU#1sI|t7*Z0vpF0eDIQ*@YFH+os zWa+c>3F2$C_(?NdNA=T?W?uO0392G+IQ_Fn^4XMKfY{wr)h>KKvkS_E$x^_LKYNdL z9_ENxZ+qP|nJ;)%*{8`~ZCAR*)(%h507gA~gqxQ`u#%mv7tC?g^ymFs++XaC*c-88 z(^fbr6>K}ouyeR5A&wYjwa+>L{`l$}o8mouBeIN-?>xD}dLlb191s@yD<~Vi_~;!D zFj}f$3d1v=J)*y(5P`DEwwsvlXmaASCdP2xgs>odd0(z)g%`e#s>0r<-EAj;yKb&w z2eYiA`(-TrIF1f`9FvE$h^^j;=bk;Hxusqv4GPh!*&Zk6>F$WKUhTFgjbHlTicBVS zE}wnvIN;(wmtbdpALR&97SUJ4m;^h_zt}#Td~4IbTQ1pR*F@h|#B$em(nNOI zaP`ci5ejt9PrZf6M|m_-+{Sr8&Gy+BQie+*JnV*EBy=sN>O+Yu=ul|&9J=67x6o;qi^~w=zBZ< zqo3-%LLU&a_ol^2%Sl zPn06B^Hj#jKKrKGj~{1sw$B=?m$_y-Y!vSO^mGQp4PJi~<~;nd!hUJ%`=iHyUVUcM z8>E46uiy9U@(9-AXbkZ9Vb7mB-mqZuBJXY?~m^7 zeD+lxkHwP}VFpzGrx&=YTh<6)RGHJYI-fH`v*s!w$GN zJ(}$i|EP&R=+73%X<@!#MvQKtl5fvIv+?LyQL7=+7Y6{Flxsu8%Mk#P&U>57B$HDP z47jKd%dmGa|AdnlDv0wQXA!5(W9$QByI%TX7hm;IyEVhn(sUOa zlz0lW;|aXuHknwss-wbSC$j9%-omx1*&N?_BSZP@%-K*jC0B;O>bp;bWOurO9KPe7 zx-=d^0u1}*aa|54)sJsJjysZS8;@s?EPARCy78RFSxeXtB{+w-P#pSa9dfQShkI?2 z@4VwR?6GsVI-Zl*&P_k{Ij?9laK_{j_ME3tkzDS*aNPJcgqdjZxO{+2w399xe@F8c z@vOgo~x3sllz*>Ehg+jSGlGzVlO$nxU{sp8sN0w zBhR;24m(Ld@m<&>v>M((VJCy7;U$#8UjByk|EkZFE%~qKP9sQ*xRPke3GIG?6YaaE zGX*=HZ>P6mXLnbZP>3}?bF8TQit9{JdIiS1i#%Gr?IVHH=Jb}%-U7QLC;`(q{h85Y zuDbe$Kb+syVEb8syqs7S^Sk^sA2po+@d@qQ>EkVm4ZrAc?0$}uFB*BxYk|fl0jM3~@D6&}H%1gb< zXOH}%s=32BHF7M^esrKr6=kb-dv(JUGZ0kjr(vc^`ksa=qLANI`QwKU)zYztN88tFLDN*p zvqzvgnhTcm6?O2<&|y!v?MNN9?6F5SJ!@A^8NaR%+v!J#pLT+N6^uMPaF)KcL<(Ah z^VzBJOy&6z>CCyFc>;^)%f`~>TiUKJ4R4CWkS?M^Anbsa2>*fA#V2l`ec6SqC6)-K z|7tr$AhUg&4Ks#sPp)>=!^Teo3~0}O;rclC)5VxKHDnmQ>T=Zd%GZ8&+Vh-|i_ZTt z5UW-3p_88}+NRGupB;}=4Lyv41Jy*zHH%BD*JQ1=b-`JX=4d}q`8h~5C5iGeZx}^ZBHsLa2%iU`r)&j z_Uz%^)UR&fRJRej*vSMb7&OJhvwn7{$rX_)Z|FKuuy3Xft`7M#US^FwK2;UabST;N zuLAnqs~RX|Tg^*{$UdSpFgp0}!?@+MqjZ2zqslptLj{&^ymhwWrMfWpyA925fp9pu zL~ih14u|T}

3P0fJTPbQslP1A1*qQ$g8cK~2sn|S9nB|R@e;h@uJ8H_vF)}? z1B&4Lt1P58Hs?ur{JWmL(dF}fNQcXQ_FH~pi}tN#fE;wyS;<2vLRCw#H;&G#6a~6{ z{ne%cP&J?<%Y~v-35bp~O*s)NIE-n4Rp-TnP7VuaX;SMs>m0 zeCM;rs_fm}_HYf=&W=-orhQjw2mIi(gHS%LyVRtqnf2_{d4@|(5fEIZBG@Br1m;2t z#EI$0?~qa!VeCnghHJ*y*98h9C^!AeWjh7r_`F?94cRg8!w5OSY~a1(qgTa~&mJKT zogmrcRkdf10Fqq`WN(h=6@U-+L4WJPc#YOk5k0;Htsk(vusgPAr*w5b zB?#AdwA6cr*y9}M#HqsIw(jrRy9P4UqpPYO`G^!|@`4%C_bbPXrmGV!XFt0!w*A=; z4e#ahCv1{_N-)Dm4Olv)>-$n&sH`)5eIp0m&(3Tro@nrSj#1axH{asA!Q1x~MvEFL zy)~-OfJ~Y+)v?n#l{?0MH2m}IKHod}RvqIRMVVRE`MDN!yg>Z_>;4+>ae6nhg5fp9UM$ZoQ6D=(!ZV+m<9T@R|zge|-_=wlD zH+s!eEA4PV&S&3oybim?!*14lz-v%2oW|KrqbxAfdno;NkAaMQ_S?1t&keM@J@cZU zxP19>IS2D;g74_ipW~gsOi*^#14j4cr&yF&-y3;_KyCZ&@T~*~Ns(0ZuyoSR}qoWxH$SHBY zyT|js7I$N+Mpgj&6ogbV*d8at4uk||aA!TSdis6#OS`tIpE@FFbX>xuTqKRdi9p|@ zcu_Jc$7E0SZ;d?0pKwyJix_U$4mZYm_K42l_vb#l5<1GhAm^UNP34I9{i(c5i8NJ! z4|nPfPDhLR0#?Wd(CQ`w_FJE;r&9IyH=!DU?jv)!)3QH1Ai!h4QZ5RA&pr)?;QAB0 z;k~tRyVMfg5|7XDGTKR@g9Kjd7*&G#*cK(G z47*o@j5}pQKYaWWD0rO+sJ`>rCwzuO+k^ySJ~K@n_Wo5S|0370BQW!J6~~7+vmyZC zAw|Wsm(knS{VyV%GB33gLdY~Zm%y=bIFs{IjfA)BuFE1nVJ#Leb)DK$ZnvMmtCo<9|zEFQOlMl zN?%5MVF#-rA3`p?yTi*xgEivAtLLGq?@W|7SBFB`pf~z#y1%eZ%w@=1Ov2~-?2A^h z=a-J4vo=TY(w66!m?9qEZ6JW!M#NVR!tv}8UgBY~$B%lhZj;8WT|8q|(Nmt!zMzzQ zKqqQXzP=Hn-Q&}WR*dr!2G9BxW<~Xf?Jgj8kSvs(7%^MzZA2PKNM2XvB~oB`W~%tr zLsCdJ+w*REq=iHidwc;mV6Y=lINg|;v%j}P78AR5>SL|KXzR1{mxkL`m-3x&&q|W& z6M^I<6PeFWe*3kjP~P+P0`7KAa|)$-yf!xl`|EkmO(|-u`RuXHit52fC2xmOo6W7+ z6wOSQ_Wmr>kwX2j{ljHkhXfRSRFhPW2k5~sfg}XAPgkv*2Qrx_0n}Gs-M6mi7LEw@ z)KKLQ)#EW&?Cq#eu^B(C!!-6c3HL^5|h1N+8Y09b4`y{5QL9j2a&HBwI0t++;YZSW@XoM zp1l{3nF8rhS;6LrPvHC@d5=`Vz3j%Q9Z2#Aacpl)4SP7Ec?^ny;>3rrdO`OTPvjmD zj_cVYQSiuc{Yx0kJS8L2%lGLKsLp3!ba#C|Y=A3%e85lD{m$Wvs-GV>zw7pEfF#1Z zjiwK0(e(DYiiMs%&N}VF3c~Jq_aBBMm-?E=q8ly=9g>`@DPa&*gNa+&Sw{j!QH2iA z@UoLb9jK`eEr?eC*2rbzpm$HeLviFH%%Sr%hLr7Mv$y_6SE|b9RT}|7+LM6q2$dcD97p1=$~S>^9DH@eH^G3jNWAM-Dl06 zzdd72Cb@+-vUMA^tk%pAYUM}z{;EX2-wK6z>iTz0Y~wJp^Fj2Lx) zc5yR%WVqq{KRZJv#knN&U_W*`GY<+11xl5f`M{|W-cEosiW~;^iHN+jz!{<1T+e>R zz(K$~mMg!^Cm!0ShC!g{s>7LK#@Z!OPUjQxyLF$Pxl!Cj*hxx$u8(UdZc~Vsy6}4T zh=D#T37TKq@0iZaRb?3@2B22kney90n~;Bx;&c*w#6T2xT#av9fta_Ki;DX98m)o- zR(s#D?}dW7><5Ykbr?I{=DzNJ_8Hs!br@r}uVp)Zm)W~P)awx)bj`T5uBFgmAYN)! zbov}LHmg?Vna}B9@A0B&W-Dag#%Ong#^hv|C)nm^hZbvifdl*0(}N{rboqfPiV6(2 z@1xOgB~LGZ>s95T-Ca`UGkD#Hy>7c+f`|w|SATX`PL}KF0YD~wZEv>V&A6V|r}!x@I= zW8N+d>NXU;zuSY<)}bw2K(UKzjwlF*!Q!^@)-fH7I7W_x?FxU}XOD1Mtv(KjDLfZ; z4X2FyMjw{jN?pMIA4k1u!0OdA7>Zt#7woRDW#J{Hr7&wjRD^-{0ucu6%Q zYE}AVkhHb;{E#g4`_65)`FoyCtTP{V1_P|0d2ah~LNDND-)%OnM^{D){F3L{@0zX* zbMh`j>pD|Ed!kk8m9Ji}?GdlI+XpWL2ZQW@idHrD3gF9l)=f*&i5Fs>-^CyV)zc$J zI*tQ-SJ0`ERr0hrJN+`yWoFd0Kl?^mWXK-5#V+;PArvic zgI?;FGLwm{(Hw_FTs!t>-RlMe9;Z&-rsatPvY+qz&PZ8*3=ggLXO6`*-c)e7^ybA!Nz(L^f?IddPGH|K z^&+|>*mG?6_i_M6IyUU$2-?p|*=N39DyP{qYq$7hi~s5EOmQ6e$Y2gIzNC+~F36@R z48~Jxug~7rqX((<*ZZ@QB`Wv6LR#A^GLu8rdWqK<=E`hh|QTxu!UX@^< zDwYTj*j|}L!9A&k_6jtZ4-41lTI{l>Ot_QpfJCph&uerGb_j=YPgEDEHPmNE1xYCg z;a4%UKxe>`mYzY8drhOdurshrjD{V)^YQE(X-A(_5jVRJ(5c&(s$Lv$#)=1dc3jnR z%y=ja`aUeuB?N?)eKC{|d+eP$o#PNG-}dagXgJ9B;Swiy*7WhV;)nS4P~G*YAAP&} zY;%g2iPbcb=<-j!uoI2%5C^2co_)dC)pa1z`+AQ;-@R+Te~JS6=QbCbPJ?(^299v1 zRM9=&&q8P(%;{iICGB$;wYS>ZlRnn~LqEWn^&P3O;z;n@4d3LpKx3)9=q3-$;b{L$?0|m78 z0$X(&?lVJG;iClLCqtvoBNws&&kUx5C1*Arm!C2NjnyI3p`HpQ3&iHU1$PX4?ntHD?rqQKk0m zV%75ox*zdg2VvM1I*5mk2KqA(0BnAhk({;u%n{&#qfo7mfwAv$h_v2qAjq~mCTj~*e|f6`;e7}2zMRQBIZ=7s5ehXV@EK3J;-H$c+?ICa3GKB zj#D?$Q`Z`84*^l)pU!u6q)2_6hlPPq?@a~D_Uc0jil*=ZC9y~RajMq=1ED^8fP~P~8@7`@ zjc4yvmLJv-E>K_J6n|a^2@F}@&t47qWwkbPj%SYZV!oK-#KGwpgt5^GU=%$N)f~^9 z^zAdjK^`Lpc3bM++|%9onXv4wXTS8~410zq$RC{1l`TFqvXZ;6V-^Z|$~M)6GU%*t zk=He1LTYZVFWG+SteNQmDp6lfNPqf^x#R3T=d;HtGewc5RL^Bu>Zh=YnS0sN*q-w6Ze{iqQ3N^~!^0cZ*%q~8I$t3IhV ze0oi&0G2R>%grdCgJPB(ydaR7KhVtHx+w};77R!UwoKZ z06P;E^qz03g$;x>RwZ~-|uJ9#UCR0RGAps<7ba&ho@Lk^M$Eb_6^I=er!VMDNO%d zRt8QN22UiJ`m;v<-5zljr4KI=D*bfO9&y3B{n;tNsjaQ~!81H;jeV9b7=fzCZ%07) z#?XjQs@SB*4|$n9T2p6$pfl#@>lF0E<1|;TI;tb{+2eF8ip3}%FViGqN4V-$xekRP zy`1Z!4wXb2eRUh~hCLGSuRk@<_6Rw4a`)l92aMqT?gP|nx++FgYtPHz2Oxo0OjutP z8aPTsfc2}omFMf2@Mxm4ggm((kMCh-rurD>1XXtVE?;z?3;@u^ozD&uqxyRKnhxop zMj}A+ktzxTKR!I1MTh~-{yru@?BPF))(E81Ah=~0=Au6~rw)YiK07LD$E8q8#$!A? zEkQyxlevaD4E`Q)>Ydr&S465_Q4#h{o6D;qe3B#QAutd$*(Q8J(B(e+ zj0K=Go2CE8@dm~CSTlP26v&5P8}?YKLP6;@KO35M-98Fn?)a`ns$@Elgj_=|KR(QF z2nn`F4f^`U zq~GFr5k}JX>|^|RKyar&_5-@U`a`X5=D@*310^yuK*Oc)AImi05HXJk)f^~b?j&}$ ztEutK;R|nF53C0|Ty`e;yKw6y2$k>s>{CpcE;Ta%_Sr8`|LuyNc*SL><5M-7Mvz^M z*};4uQmzmES)E}I>g{d1aa0tY`?o?31}E98WQE^WCOY5-qmkuz1Nnhm7xr=1iA5FX$4`g(16)di_jo@p0|J+fuZj)@AP zc$RHYDDQSfxW-rt0-9hybef)BodeADSTxEgj{`>GvvXKg@2LjLaz8uezw!1Ct!XVx zjTJBPZ4-;cUf%QB?-Bojvg5~uSPiG4(UvyN9U)QkZUgyh#O2 z1F*lwUmWhm=kd#-#Law%Lxp&m%`XSuELcCU{ah_hxCW)~T3$~EbmB9^B(T5UO9U3q zHL!DFZ^tu{AsdX3oe~|9NZ6Su)nSYM2vz)QhV-{(r|N&!aEUu|knWctoN{$}ja+y= zD>2FQ#SqJTlZ%piyABVAU>b;o9Z%~MuapPr9Bmm0>18jmv-Ru;z?7YW`00H;(F*+>5u2IuxXa48<-B4NW&%6b-@v7es=QJo|3pw)ZV^g{9zhVEk|LuRA zEJKqlL%63S{e>lg328EreD9AS!_tU;vE%{ldV*OK0Ko*TYayjQ0HY`< zEIQz}Lcw(Oxb(LFy+(rw!cS|@s$CklrJ!A$K>d+uU^_9(`m7TWj~*9pg7)MbB9~?8 zj-v4yW?OBVEEd)w)j-A)?(rr(UGzhe~}M%*ZjezLIYCyVUxn(vp%T?4$InIM*gGJ zpq|+9jJvMjFw?cOIt0=hs+=60laOOhTNg{D@p9`~kN01tYKXRZ<+PQTt+$B|MKO`Q zhQu2x;u4eRWy+&`k`6?=jSoRRdp!Mz@Y`K0B!2IcVqjJZMF*{>+C9*@JpRjq7U9cX zPtAc2X?zm^VcRsl07Q^@sX=sjtCrqDTORs`+oc|AHcJS6 zy>RGdp@&%9;6gp28~kWH2wz$}9S%ziR1bC^^B5yUoeO}|;*9}}_8l}r5LvvOAetfi zYd@k4E@NJKazJU&GYlONtP}V_O>pVY`tYvT*1;diUkPn7GRJd!C`QB zg1fuB1b26Lx8Sb9-3jjQ?(Q;Na^Ca3_gi<}AHAxpx~!ksz4q+s+12=azIqII35?@C zBnZM+Qq zM2Z_Mc;&VzXUJYqgRG ze|xMnW8~E(=C?${WBe!5MU;qNJ+-9oU`q~cYT({|rA6?N{>#j;Jrn_#*DH8_s1ih( zkhR3)%^&$0xddMr11gVT+{A)17T|8R$OmMfdlyYO_kKG0 z&4X1qt1ZXH6z=&TO(RmB=I)32-dKCsFqrYHA+bGL*mdom1s|RHEH*x(6>Y~mzQNYZ zQifg7jfYO3ZH7&Qc(r2C#|V|d850gv7XJAQuoK`;%!tCixxL_A0m6z*%yC+>Z8#Py zTwO1WS9f{=ow8Y5W)5Ri5Jz!HqvmdeEr;zAygE#u)xTpVxz33{Cf7;K$cWqv2Ox9* z7&ZHO;0Z%Cb6}<8rd>VfyH5c`XvzciBuE}kZS2f3-?c<;yECSuK1~=fx0TsP%^Y9$ zVgx}|!OMHJedD@dH`hlPnl)=3$UE$TX9Jc*_W=th1#Y|QhmMIfib*nYe zB9*6waQ;qR;u)A|@(R?XMG9P$OPgo@C|YBUAnKcn(kwVF!75ZyV|L_dz!~bJ+%1)J zs*%s^A3deU;6!Uj89v7efH^qr&V4OA-m9zT`SxrG7A+o|Nu;je*>KIrHsX94LHTs<1OKaL$4cI3RgQ2t|Gn z<}X{2%lR9|v0wj|Vdtly)aR)H=R0*unA2h+K>^YN`AhV2 zsTfbNcBJ)}#pb?9QQ_ayf2=n79F&JgLEJij#BQtpZ8oda-PKD|qR$W*Z2Gbx0R+Ce zZ<0G_9%KHVW6w!h^=QGOY`k+ftGK1uZ90p&&BjHtU9D-1spORb?YBpd>vK{(DWU#J zXy{lru0T!4$g!Ps=-Bz)k>TtMMls6$+B?#6mi!gVK-yO({$b4}fsA^Un||H{p?e_Yw&%&?t1 z=?BLcKYIj}^qe*Q=UJEV<86$tq8@$e^{M$TB&ZyPm(t23bFQ4f+OA1`hS#1W0wMVJ z&M+u5X9u`k_tqneOR&J|S8(~Tb+bmp%}yA^M|ELWpO1XCSAl#w&Pn3t9eIph z?&fx+YiA`46Z%WD34kH83gz+zQyG59%NUW{A!AB?q?KEm_=Gi)&&XuX%v0+aRdBZN zU}2ySLd_#3HngI$ee-9<2!nsjg4pwS(2Z-!i$ZIN2MQD+P88{?d-*!6Cssc-rwXf; z=A;FZGf2-TbDK~26iV1}eG-_UqU0sgD$8q5W9rlfi6?qBCa;YOY>qbUW0RRR1pPKP z-4-6axu_H>dt%So5|?g!@2i`DW1K7)N6leMFCGK6{w)MwTRo~e9eQKvsqY&wu9qU0 z<0W@e7(346e;XIuiatT~B%(^Jd|;nR9jIx{j)lLZei))U0@@}YKKAI*wYkV`kQ1V- z0}_07q$)d7#-F@A5jPEZD1%K!C^1e>uJzL5Ly4@kt9Z|!kCxe3c!D{z);zZOSLDX3 zU&XiX%qG`x$ePeiI6=GYZ0B*pqbIEJzjNaSBY(uEA|)_9x<=AUxoN-Ikny1 z5%HTcZC?B|XwOc@fl0;@{Yo$9hD7+s7!#R}%M0nScqfZrZ<#A>q;fnHv9N^*oBG0Y z0dlu-@>rf{-$I+oUN~*l&SF`cwZ{7aZ z7oWwxxHM+y<}_5#=^ghZn|qrAVd`m5pM-hG>dsA_FU5%+uA6`VXhglMvm~_b$k>Vd zh*#zS$cS0zmEmUvuf9+=lm>fxhaw;HJ%#XQPGR`A*-E3f--AFq-gDz~edSMD$`jeU z>ltwQ4Eq%lZ?9el(}5c(z8~`8VZ_d>x;6LxlGZ?nH(q!BSRO!-3qC$okdpXdhw4oq zRF&Dg-w%-BS*0Vc!iy=Pl(DQ&pttwfkqmEj^UI^}VH2MF1a0>0wO6WxkK`qZDAr z-xWG~vS|P(te7D*f}+^Y7ZBm%oSk4CRt<2tKurhxenkJ%uI|z;e)o9cPHm|!?A>mBu5A;|6pMoH$cOPmg1I&5sXpD?07{7;h@)QHZMN#~=oq z)0Ou?6cCCfHQmP%pMZtzF?kIbwDyLnXyhJu(|F_v(8Xfcg5i#W<~~G0Q!kzE43Vxq zKj-|amd{2l^=mG=5=M9I>>IYfm9})0j0r^B&B_;ruj~XTF04TJF zv6uplsL+%r&~~0PZ#!S`iI*LZL&a<$W zx1WXL)gc5*fnK~_+gQ1Lx|`s457-io7#E#?>^oK8g;**j3d^qz;tL-2ni^t%#^K7T zPG7@P-@H;`Y^+kR1HPk80(J2aFGknA_zujWx>qzmPJf*D$hNVZ4pd72d6K;rsU{~ll9r@Y*_D3jJT3{s@SDi z@Nvu&Vetyf$&4>&PE|P|rP`zH`;~<5S9F@`wvOR%Z@ROolQ%dm;vJ$U3Oetz%M>MV6iQ!iD> zglanWketWbuUNK!&LwaoDG&3-v!&A}(db9L5a#*L{tDOO_ioOoaCR*)jyoTo`ZOmf zUz*9r1WbGFMSBe{D``2|1*B6AtPFUS{;-B!0kk;c&eD@W{a3hkq zOXwZdK`3&qokn~uJq2mu7pl86o#tg*!`!ZZdK@6wNzf#YXkK+i6au6U2w{3PtbT5e z@hORKSgmgP^BZ6lDPq2TXX1#iA{rzKEHh~Jc*f>6!g}-4s7l@49?@jCP6DJGk#pR2 zY%%Ce{+u{bsoDiF+_4lx{XV-Fh*ypoBq%7?xgyXs#~!;XOcxTWtO91V~u zg8P9dYKtWMb8;+D$QlDx^3iKYPi=F4?2g?c?e6T|Gd4WW!szj_j(d#XcYO&^jTf90 z+Iy(%xfU~sB|*1s{k4v?9w%n&YeD*Nz=k;nx>wPvP z$jFvYFD%3pw9=1xAG3xaFW)WTe7)uO3Y0B6*M@7~eOm3dLr81X<|_y%=RHvJ;6?rO z@Lmx!luEY4>OT%2wW-?XmZvEVH)+~dBM$5X_{D)(bTPAAdpxXA_zPPweBUl!#!?6_ zGC4Cx4bh=_2P|dw>PrMrpJU|3i8K6w2HV`4$EX1KE z$%nP)poA*VSHx=}2>mwdFg|(@sd)^TeDFn%p+7*LuZ_0QQ(^-4)rK$PrfbH4rEP=Q zdCt(o!X|-zv-{-4{Vn_XeBR7Mt*z>dN{)k(m~BnJdWd;$4a&J5;2%FgdrlCRe4yG6 zR_Qx5T8CeIUk-uj^3SnZJ7Vv}p<&dJ1JQX$?4ECfHCXKhp)b$gCg17TNOMbfzlb1m z^e!%5mux?NF3CCr5wrVe;K+bAry%L!J$(oQYIlp}Ps5n|v@}ci4yLU#?^wU`mWdKJ zrQ4jAMVO9IS({Ld1!?IKA5`;*n7LGpTuTAeGB@h?SiD>O!_okWRZ0>S7|vfxS*F1x z2=UjgKA(YI8vFzsuf1qdya zUn}Z}n7$90(R02Kle<@cJ(Kp5{;Cu`2L2$F*!~vu(1k)~*eNT!Pd_(QR!x_HTB<}d zBbmp*zy>I<3#M6DiHM!SA6rL2>8mo1*5Kpa8-9sa#U&aRn=9Y=a5SPH=!qG?so94= zpH@GceES)LiDoUk!NO=YuR0h2VdK3v2pyvzVhA)+WF3L04ER7C_yeK$}7KYq}g@9Jd*J@N5|7?gh-xBT$xTZjgh zf{GIkJC}rdkNtB}utyKK5SH^jzcxtzu47U=dj)1+y+2;d5o)SF$4&P-yWIYH1|@Du zhcWHe_|jcAguNdlj^mLIRr}SVpY!m|0&J)XE;oK&fFqDuZfNnCGJa} z`j-sjFqP{$K?bf(+J%=VW59Vu-p4cS4QOhj3~c*w!AqXR&cWw{)REz@KeY&+$v-Ks zJ9oGYGR{de3RjzTC3mwR@ppcqq+GjG2TQP2ChrQ;<(3WAhAU>QgWp0UzMu}Vnv2C{ z*p)q+1}z`IV=3W#F`^b>(6~kZBs&#@d|fiygouk%zfjl|x1aFhi~XtaXT!6fcw)pS z9GCUxa=TjOrH1d8G;#nT|5fY`?y?E~W_z`2mfoWH4y>I;PxlEsTlGQ9i2gDNY^`LR zkv2T^fhbYw()>YcisK^Yk5jAw`+b2E=vUWG1=5I~xPwts5G%KLCG7c%6X>@_LyYIE zO~jw_PFl#|IksnFC1aPs%?E7s;^YqcmD!l{MDJ(1=tnc&vl!+E)k~kcjq8UJi5xqa zS36~e+sQ743j2hH9HMCe`MgU%d$N-FolZc>5k7lr!IK*}5eJB>2=)oStIQ&xq4N;* zTUC4B)9N)%pZ-y7$+Bw*w5>9)&OMGcEu2i!X<2z~3$D;o@c^$)g@5@RyJ2=RGRw(z z0oHB2lCo6N&=-vAkt&;k9H`4ns#))Igb}66Tfg)(%W3oAS2>?>zT|vq%!dNOtpRf! zJHHiSa}DSKw`j-_B*;`2sifTH14@!q3K74Ik;e?An=TD#ctKMh303_*;U5@@P0EPj zDQrvu-p$2}H%)sCe2$Gt#0$UM2>F$Zu;8i=nI~*`J$lQthRi~7wN^AaFYs1v>Wz@o zJ2BrR39hhUyI3j4pzeFyZou8m#K)vzE4|DO0X+-*tD?T7=~(Fe3sEkq?ee3a)bv+( z6R6WJD@R-lh|2>jLU@8yXqSN1Bv;pmp4@% zi7!0Apf*ggtn<6{Tll^wpz3>G)eg@Q5|D}*ol^<~1UGPtD1T*|VAJ0in(SHb@^&9u z*BabOjWoPNjB+~)sPIm`Nzua_~Mm4BTVPhFkiWzjB}Ei}q7jBO{*X z+z4qkGqc_f9{jM8v+=aH``N|N)a%3EZl7B2Q}AmHHWXK-=fVmEr9@ujO~;2C*&KGx z&Ol1yoweWr7~epa&Se@Ci=Cm_-JZmGT#xaH0cRIBd-q&z2&TIx{iSeidGUvr(qvk{ z6Ya0dwg0Ls`-x8M(}zbo?{AFF<9lpY-h5cXw2Xo<8xGrp!{nRVqcly~AD}doFVB6I z#aPMEJD_J(Bpxq+_R1k(z42xsVn9bH9vDL=*G9WxqK|BDvA+mVNrT%BqxD78XmZ!L zFT9H_t71UqbBB7JbVSjRRd6y!8Cld(HJ(oH+Go4TFlEBP&voqkZ_$jhq2rA1Lit0t zsQgnE6qDu{!tRoXA!yj?KqbUPDb^-qhMa+;np`bo-kGkLQW<0~&n11H?2O$j+bQC| z2*Ai;G0a-wseP^wl$qn-fT_KZn2CR6ETcw7rCIL^~n2oAEi|%ibqB zz3jdPjcBYyQWeW>*FW!=bATo9fe*gM@ge*ws}r8Pp%=EBBuKB3D6n(jT8Pr?fqY11 z^Eu{hWH$!EBd*O%`NdJChEUe+`+E3j*-LXfPSTFOnu!fpk-~9S%QX{HRQ;s7a1}zT z6?}v7ah+e2U;?X@TpD;Sj|legq_HwlMju|d0>l-_v;WG+tlrk-f0Rqy{26k#3_UJE z4^=zMce|@N`(p~AJqB=R&eE1e25$vEU0guMb7ymuun&1Y>87fGE~N3Wt7Pzq^zAYR zY;COp!#;uPpwfZ~`%y%K?QeW*hZw-+&uN_vXnRyHU(y7d| zMu8Vey7CD!{!wmszNsxsdJ$ z*;Mr0V}iVWFf(oZv76gk;n-dRuFAX)?BWLa4#FWdO~@xlA=S?{H--Aln9>=~=1K^~ zabqj$J8`E0jSM4jd7!DU^&1{9eN)Dl&%IH6!dlFBA1D>X=F1`A!mkrzV4c;eYMH(A zu3mGJjxk$)^M73rNmGSF0$g@@$+_2ZaK{bW*zvL+^M~_Fu4-ZmvWpD!B&XA}L_AwH zc!7?tgt0;+>!x=AUfRmhy2CCM(^9O~s$G^T#zY~V)vC22-GSyiyI&!ieDRfl8JdCY z@lev?D!DL9XRn{d&(BjK81ti}yBA^##^hv4ev`XoMJI!`X(XUyjKH3=hSQK#51L{?0Vol&w#0pLqOoY;;ug z)3*{ekgDY?0A`u%C>BQRD-3I!*>xC5FLpN9lcOEYOrbZ%&S=hzd;LVy9*rn*utbUd z9o1qPoUJS@BDP|Y7{ecpa+TRz6bgt$PTFKzfQWTY;t$I(vjd4=-+|&+%6pTW$dIZY zxZ~l)I@y+1+!-9)45w*X3B`>-esIIhIZi#C~XeTdyGk0E~gNSjS{@3 zjx{u97DT>*^+hkRXW-j`b}862UBgSGL0>Il6u9=daly-agQxCF>5WYhLw*9+d2g+tGDh(H5fD!Gn4;gA3!lv;9+)=( z=sap@6G4ghHs%-B4@m8leh4L;wE91DGvQ%>syw9S+tQU<^xUVBa1XS^#LHtyi8_D5 zlaJ+Xnes*nIz69Ibq==lj7gWH5kRKov1{9U95a;vOAg7;fTua&4^3ps9%9eMTyfafT-_u!u> zEi2;FlOLB{G5yx!=GwKkPQp4_AGXyVW7(NWmr$Y;o`8xO&z$-cTWthTeQ?FqA|=1}iA9=UU5x!gN{77Uoj7o|&h05SKGw+l7|9x6x$&BA{@wgwp?wm*I-YUtMKN#6%_t>LF~!(W4M3kmMGH zNEwgS^QenemcQcC?){T^6k^)&J8_oZJxVi5I-N3DXu9I{t35fqwISU0^{Y zTzYJYs>`|IqLLaAVf^b{c9FH5G9<-vgB}L_EAura2tO4< zt^USA{U&SuF4A6`>UsNBq^hK)H=Kr%@|>#1s`n%p(ZFc-F{iFbc3jKo{G+$2EN$Pz z@Ys@y$KoD>i@UAKyx5+8b2$2fh(3+v_3g&j3mLj zV|wO4Hz5O(4}8u+5H_P&$8g3rMh=el#`@O(dbS1@aEweu3`GArEUc`|!2gvp{8y?; zr2W4#=KqzkFf$Ud1A#X*<9}qIdjIJEH{Smb|G#+W&h|u>SX=;N~WxS8}s6 zCZZR$wQ&?Sb}+Ozw{x_${~umP-}-YzNLo>mk>OKfrEls$#0>WzRY5^pS0YU!+Ru=* zOe_pU92}omvv3e;6VZ!1>RXu`3fP!h8GlBh7jQ5%wsHK=ApO4p|CoO!aP&g@c0Y~H zP0bwtCsTU0|8oCQ{!b85^G_FyY@c2f{wvV8Hn(ykq7<^VwsUecwkMLdH8Qrh`2k0- z=xA)M@;O-|Uf%z`^8XqBTOS*?f57Q^0|K*s77&%xt*#8d;{Fm+j=n*k7 zvN5rK&eYuMUzC4ScQh6@HvEkCFTj7-qHAVk(-)~8Apu9<+4YH4Y1pi@};y)U7-EgI<%d${0CL|nP(Bm>`K zJ3{gcTY`X3Tp#b4{MLeydfVIEc^{Ts{QX!*X66P)FtKd*jbJPOU1kPGkaFN@Y7kjG zAa)4;aog=PtI5&+y@P{6Go#afSbJvdg5NOB>YSQjiGDKtVyd}6wir#iHAywMHftG4 z6u^{dX|h1|xe!ba&Om!8h;Ha_lIXcv=&lhFSwE&w!9d*nA{t1!ddPoXW9rv@@Q=WK zHj#XT;`VcPK^yO`v4!ip8BtPF{EZKy&VuH2~My4-EW=6YE z5SMKBEOmbvnV`AeMAl)6i1VNrAVQv8JY~qElOHBzB4v_UV;Gru2q8O7e{s#S5ov1X zX4RvU?2rmDN{Z!veLCPt1$paOa>Zt3E&9Zz6=sz#8{!wyJxEzNCnM4Eo7Z-Eb(8l~ zWN=L3cK3{pjg5~%gK>iSUXWu+#Q@~)YhXYP!#8HoFx%(G$aOHOe!F1qn(5#@d?+26 zky?IWrefH+O^dfde5fSw@ZEDW{kVDv%uRoUJUI!hpwr)B0)XAqGX%MP2r~RwV7I$n zKHjsChp9h?CkA)_zE`t>Y%4z0L_`EG!04f6u)rXxVSv6NAu!zoJ&;!*hY!BE54Mx8 zig3|npL%!a+&@{ku-&(Sn=Q>(E-w&!Q(#zQ?q%nWOw*_lhT{Ob!eg zz8{9qAKG9(*3VrtpzFks$*~WB1R5PHs}G0V$Iz}1L8KL}H8;o^oT5Gg*vzmeuys@O z3eZK|@;Ol_G_yE1c;y?NnGoGVL#+iiJzqLOq|#)4r&;$a3QwLO$NKo2*M&VtNIf+; zgH!@*U+0NI00s#UyzRp7aWXYPRKcRSs(){QhDw>wL8i7bg<$fk;8Q`8@r}#RkAoq3 zI;GJY2ET&%fJ%Xydas6pVPIVG%k0Sj+oJ3MHz5-1A38LKW)R0)Ucuwh_+Y95OYQe% zosflA0ZSRu}#{C7z z=uJe&Tt3BskF7vunzOP_>OhRG;UAg7W04zvE2aRlgXNnR2b2b63ow|+CPc+03?zIV z(-3|;<^fzj;zHdjKRG~tORY(W=;+urqyrg3DMC{uN5!2de3e@1`Lc%qb^96v^;Qp2 zWOHa>`9?`{Agf>h?)12YLy#k-_wv9mW>@dl_zgcGj&|wfZb=PPd-L|*z{fX$gfv9B zc5`OsYcg3ubpj}SdJe0&W{aY{kT&gAherC4qm0D!z}mssk#R&!m_1j{kdKYWX5 zCOZlv=3-CgvyCUf52Khuy)y!X0naAP4u=`rSUxu=pvjh+z>4lRC5%}{vUh7`j2`lA z@=Vsn*K3v8nz%uRPH=*t*g{vWQDXrAXomef&w^|8P`DXj=&e(@)d;~mxNsv&O>yfp z+l{eimNTZe!4HF-U(C5{wyU$1LED=_82TYXqP)wjA5o(|4T_YW+LK|dwNaO3-gQM-D3>g;i6`T#x-m$!(r zN1|cy1Fz8`VDxV)qS3{#Y`gh+81~1?+Y$e zg8PC@HxOwy;d>poGkx2qCfpr@zxpy?KuqD)XNQ9~AjawKUxzP1PlaxhC^hL62y3$c zP+{n=-ttdI_)m5Sd@8wfE}C?T+^^*WxBf8pz!1Uaav&AM*8E1AV!B4CnOI*KbzJ}G zYNc3|%x@=I>xngM*z}Sk(|1$CDDxmnKH123GTH^5BIft(;HdAGn9LV~oh+vRy!h06 zQ$jZhjgu_qCGQ#C0^;ef;T{?58u}D8xbY6xaKlXi^2hQI*wZ*Z%AIPs!(+0py97Pw za(%{mw9b5xcw-dqJpZ_1*eZYgCxhMxLv_--fj72Y|( zYPm<|bI?&n^G)74AZoec7Q0M{lEt213}Fr25^H>91!!U<9(*D{NxI3MC#xaI5XHc4 zuE9rI@Kf?&h4HDy6m*#S?h{P>&ukOlE3umI<~c@Sy?+3e+k^e{@0gg)iJ*wjn!dQO zjxgy&6Vd@vPrPbg&r_c2WP)3RH5>?SbqjcS`Sa+#+fp0}`^LmDDI^@*L>6Wm(OggB zzZ%)iJYNXF&$stO+ib+rKkW0AihzNxlfg%fLe3xa)kqFRaX(-;JrhqAkDy=VE6|9` zek1)sQf?o-vnEodSalvy+0ZVZZDgG!?8cI_ix!RlxrP5De!3L~w@O5?^ME_IFaj%R zyCh*RkE)W@9R}A1*NJ!q-_K>g_BVPGcg>%OU$e?#q`vq(SYk8Dwa`dELr;dF}49|oQIDce8noC3Q0GjgGeCl7`(>8X>X z2I`YJOXvWuhq`&^Kx|~x*M9L1+dtO`hcHF-04O@WFW{K^``8YUEqZ~X%~#ed(fF&mGz8ylSb z0wAz4Y9IQ&b!vKW(CtP<_Sjl9hOcw6G=F1pDK_aJD-Xh_b)$BM1YT8{fv2Ble8tfZ zed_p?zEdS(MMAN4lY%2+3Y_!u;MEjwglLOCXV}qQWE2>SCb%*?zCj*ba#p|DEg!+? zgZhDWMRFF)WyzDF-A;0Iz^-5f>4#Efwf!}okR$B&UoP`bs#7g#9_sTb-NsiVU*UP?PFFzK z@UF@(atAzIV7}#t7X=Q_tM(Rkdyc%MP^P2KqKc%n_d?pfR;3=5m`-x6h7q4`=sSTE zYE%L*<3QTV&j-1^D7&A-3b)>E25}YI-zJecEyBpD&CGrMU-4QU} za{>mq&*<)288DtKlELGWjYa`YWzu~EQ#IFZuElvK$ogne5W%%pmq+O%jY$2jl@QJ% z=sqZnLxa-a;x=^lTAN)gExwE->6&%PI(s&im|w$Fo)gXmtb#~f)R5#qJj@oo@UV;} z+%4f&#vP^SRd<_ZU$DQ2I?rf~_K%SdfM0j`&q74Dq*Cp_{~?IlJCFx8!1ftDz@sOA zJr&DL9DE4U$7cX_B;|ZRJgP$ib46wwC1c#ydix@xAaS>Oi^!8tx2{uLT3{uWDZZXR zfS8u2QN(qR6pmK%$YeR3yO=GaLz6`|)zvloO=7xbX0FmjPRUQaZOiwhnd2r3OO<7> zlz(4SgPJ~4uY?ujA~1!jy2t%gj)45YqkIcbkKEwr0A18{OsQPd6G43?Gz72kZ}#-q zUV%WUY^K`DaY)q0t$m?&Gm&Lm<)p3QdX6FFz>Ve%vrV7ya9^V5I=3KNf#)-L&l>s( z$2A+B%aqT9R-|xVnjx%EFDWsIkhAEX?I?&za-{e!$IqzVdWF844O|-S-r;(%p~oS* zKc)xClYC$rBJ_n|Uu7-(=>xv8=>K_t!|RATVg=$1-*Vv6b3+CP%+cHWy3(?}t^3!Y zUj9yR1j87aAe(cIUJmioz5w}Euoz*H4YdChzmf6Y$D=?*CVPb3bm8LOKFGo?#d&&H z&~;PPNDdw|^^CICV$pgioY7JDSsEC)s`(!G*36SB%7Q1v)xx!|=|{=M&G!vyC%pJo zWk2g>Fb#`W%&_pKC>e7iyV&P@@HeB~Mf=#~FSoDRAO&&u%?4`gIJ_6I7SoS zCVN=reNXw$7)bAl0?u{{I~+wB(prk%R&RrWjjZJ|ZJS$z_NM(C53Y#`d40&Z6Vtcm zU1!9-y|g-YHU>2xddp~C_IEFABjVH4)N;E>c*V7UT*UdLPV#TG?Q-Fv@<5`99 zh$UFBZ57d@2G~H9WT-$ho&oE|pnh^p)IEwe*hYj0Z7f25f*Hv;$qSOnSds||y;X5% zbVAe3LQ(ObO{!%XCVxv&&-y9=YOiqX(r>Yb*%Y}R2hTg-!|`$$EnvCnBvlaetlNjv zUcTMpGF&4Zh0jfym#NaA8ODdh{Gq+$J%m5~(YR9hSMLOoo1(_6@2CI6P$$*&=j}>c zA914mwJ4r*JcJz=-{9AgbV-j4G6JFZTsNjV)#?cbehalav|L(eu3#t&Pu;UbAPH$) zJbyd03z)YX4P&{NpDp2QRwvjVlH7Vp<*nsGBUJeOo{J5&IU&TA$ zJrgu1to&xFduGQp}#28k{38%WtQ*cWkP$r4Lf_}c}zcKnkSPX_cHjm|1bylo! zs;(q56Mk;ot3>T#d06V?2icROE*+#@A} z#{8x5!1gWEsV`7d%ipiE=@d3373ypBY>=2rsxVuDaLJv}rD7~Pf!KlAK>srF;C=E^ z8zVnTJ0;!@C&tA~^{eFmX4O6`GNC~stvA;a$TKrLDxc^JLDfZy-HD3?DmrPum~GId zKK9Quh9Bpyk?tgFl4p}YqJ&jZ62imo;9&@-$}`XV7qzh;OQX~t(b`&czSTsGt0#L3jqSVZ%c%AHW-SnKa{s3oUXko|ANT>x6YtmrN*&3qa%JI zz`EWU0!^zF%33Cm@%J}#*=*DMhObgFOsrq!aELi6Ut{;ORs}rjW6!-@jH8z$n7jG^ z60)_rHkdea7?}Hyt$o$oSL)vhIK$*o=G?wy2PMig6UsE`zD2Eizy{UTiyLOsEZbE$ zbGR-E&O-XH!1`eud`|(yfF~$k4(wrAmXu2uw#&u%|B^7J7(UwLc%ZCsW#cL%r&_uS zgWbPR?-=pMwN}_3r^d_wJZl450ySgm3o6fBFJCfI4qUHrC2Q+XZ@Ix&@Y#?xm0~8P z^_Jl7jp}g4W}&6Xu=h_?>iITVX(e!LssoNSv@U^P^VGC-p*Xwo$K$N1t4_NTHs*<<0Mo>>m2T)!dXs)m9e(V)JA7LhNa1Nr#!>8{;x83R zCu;An{pepdnZ~T&4`6`Dg0@LZPkV472_|Bnn|VcF$c(03Kqe-;ve)o33Wk1n!E0kp$EmV|C<_lBB;1^Zw2Q{-CbnO|;LS{A zmdKYi>)&y%a6I30VGT}v@J&Y6KpE9uD759RJ3wXNvH?=J|DO5V+`+h=e10fZAI?>Q z3Ty=9E1keydgh9aDdNFc7;}XFFD)@#Q%HvD&d9|@K&nO2cr?XE?-R4eEd$*Ht~1Ua z&aA}WdYMYqi=;mCC7SWM6oe(BgG1CS!~q%eB&v8jT2ab6XIjx?GMQX$eqIcFvbpO> zZEIDcgqm{y@ZSjE64#DLke*A$)(Obz8KLQ-#DC(zs$XxHDb_$YrV3+0HWFY!ssGtb ztDvXbc!H+i_dF+Ha)cW`<6a2zzeN%nv9o`Pl_HDw06_5h`Ww$?zHA*8ObAY+R&_sG(FhDtKVjI^~G4APEWZKK@N*alxR8pi#lUZ&J5C z6{=>_+qReRby^EU1;1KcmGx6FhD%RhTR!S7eQ1s}RY z?O*79Nz<)WcoP3pjyY{t)FyeoG=)0g*YF@I2BZ1Kw!YzAL-FPehyiyn+p4HcJHHaW zrXDvwgvlUBwi*jTOWsnnJTsCS?s4UFzM%Yb&wM1XG1i=3u8wgIczlRIvbmA7E%z`x zTTS8P-%^{%OUjA&Se5yV zM_0|@W^p7_4%dtH(Y)p>_GEE+F$0}20#-B) z7oKfSbluLncvmO4B1fmct@}MP4e#jSd{UtJ7|_6spnch0YO%eE;hCi$VqRYJZBGGW zH0?m$3?oOSwI)KTRp|8UxhuT)lUDI)XuVVk%0YrF63UybjQ z)VI08qA>%eym}>~4WhT=iY>cT^U68#5mSmc*!Oic)(jf2Z1&KG&*82)y^PHFdy&K& zPc@!GPz7uu;XTUg9jp$`&gMu@%u7y*xyMJ-X6P>Vp7~92*`IH)mwI1>tD+jv=PHsh zQ9C_9yk>qS3n7P8qiBt{j4jm(*5pn^r0CAv#q>IXl+p1~)8c87QM7Kis&KlnmFSI0 zW|K4fft8a^Uy#~FN|LiE>))DRcPDx5Vg%pwM03vG0xKM|-HX!>3X(24FqUzRQTJD+ zaj&M6oFf+n<5K*HGTo-5y{`HbkTP*RJ4K&!-%ijAEYI>LeN9)6T>$=S2-4^Mi=!v#lmdPA|VNr%X zuBeq^InThdlgQsaScQk2??>#kdqVtA)T$&r+OFM|_Uu4f>2f#hgz2Dc z*3P|mjaTtjI4c-A)@q1ikQjgo_#7MjT$VKy%#GQ7diGG4~VM&3~$@{WC0`Gg` zEn?@xWR%-aOECl?D7xvdvOnq;tbQA0pM;tDnPn~GmzeM?hRp9d z+044Ows$-GnsU4R5-mp^06aoIWYFGKaaGb4&(hgS-*b9sb9Esb@OG;IE}i$i(V`5m zfn%0!M8O%y5lvb3j3psSV7aS>x6iVuhYWEv&+@9Ph$zmXy8*k#|G@9;kxTCY=;j+P z+_C;N=s_3!Wj(s|Cyww8amwnCAOlkN1!`3Z0)NB!=c2Sa0|`jPXR-iT85#k&*EP6) zW>cAdWF&uorK8C!G&p)>w-$q#m|RwydcCEal`O^GBMU!_*$S3TTB-SSGiIS}4RzmR zTW5+Nz*U{9r$lub2f?~f7VQJF-1YKtue0KIK_k4nqQ$=Nh@mZcwt$82;Vu^mB9=gQ z7;PcTabi7A0AX*q&#Hdm*3a-uwSd6+Jguzc8J~NH7n(iN__u{uLAkv@d3>lpn0D{v zo+<6%lmdyD`(i7{ff!5ca)kpdkCw6O!_aRb(%vNr1#7s|C^DKK5a(j_G*0H+RD9l4 zs7>5&o986)8QTWNuYb;^!y2DM$(yf*1A3#7M!xh3VEgLGP*-1BonIJsrcfMU@{=~< zB+SyC*VMbPXcsbsG*wY-^I7gEvb$Qb1rbqRP~~=L9*-UaUOd13ME-WHYSNF)3QM+o zN5X+xQ>Z&R3lH#OUXdS`AmHL1Tx_sneyK~nWa)D5{|K_G$4vLPUgAs1%~3H>!6_&1 zcM0ag$4eJp5XChqVuiGie1yl;@MQni`u0fX9T4Z_b68KpU1?j~h3kGT1*CrNlqQ66 zLlt_%3ff z!vVG7k??*ynTpq@F{y_H<_E;$Ep41lmQ6hM>YTIT;GtKxnRvzdm@9 zInwtPETVW^7YTYR3%!>6IAehrAS~|z?PC|@eKi%ua5yqID1`3avL`> zVw}#$(KI#RDPZ%*6<#O*Tne>TEEnwl|BEK(?Y$7`%Dmk@2< zz6O2j{F`2$>3v(uDSA>79c4fey{Sy~dq{sE9Ql&0AR1q>CVFS}@JDM>f?d&jMf)mw z+?Bb;P{q3JJDfZKk}Eg=V$XXMc2Bsdv?W?(Q5A&n*? zh`Z-ta5C<0tpJE4s9iG}As(a#J7#f5hGJhC;&+jQ1 zerOC=ofN-wIP)H&5JEyUAlaI(vRN10C9<3sd?OGBQ)BZ_qjpwTQc7Dd)mkQ_#Mmrm z1Wk7z6p|a#6Jm&NZ#nvoy*UiDIA_dX!eFFzei>3SzUsJ@O2FdsS>G#t5=BWd<(#3~ zFLhdf^%${`b*e}6h10q}&4epWK!;GkJE4l-EPu2QD|}8Dns4^lj3a!BqO8oN;v24M zI;@DUkh@sdO~037rz~|(pG6B%uR3E=Vo;$nU*Ed6n2E7%tSFTV9!8s&|4sZXUKS=C zTEU)J5wU}kfSJeqrf}+9Laes7#`v+(GL(HruhKz4!=z;XCI}kGzNb+XzGPz(mi`7k z_Ww|JkI|8RYoq96+qOEkZ6}>{)Uj>bwmP`>dLUH%`!C#S{Bl0cIT>bnc8#1gX=L+Lp7zxaY&JDh&x zQt;^2Qt{CP7Qnuyt5QQ7;1AFenOx9Z~Be|Zl`? zu8c*&kXolVV^w09WGL5J70--tSj2Yls;TWgAlJ9B-B1!372G_wH@6=iXll=h!LYbW z4AOccP#3wo`VEmqM4|HajB(srBK=_VUiGQEd0G9aDUGMir+x#;a;{k5F)eS(@WCE` z7(X57((ukv&68LmlgPSE|jPeB8EzK*tha z>Up*^&V&=T=G&jLsbK0tu5tRWass^Y#sUJWXhmLB)asAnTh{Sd2d4H?lf# zE*rDM=-hLWT%XcNe1t_i+rWtziVGk zLTdzV!9+?1$jg8`U3nG|!MLv-*D-we*u1=!MQ!Ljz` zEfUvq>P4X9yN~pf^J>Z;Ab+T{B7!a%fPl9(q+^e(UaIg~l2S$Y#E0-zSkbdt>E`q+2Pb70;h^5kx*fNhe}3p(`X*1Dt{~%vev3X&XPPUYASloH z6{*HvggpU{^(-ax=&7QJxgT#^HZ8Dj$08_GM(Jk0Up}b1zDE zRWDZkO% zRZL5!GSsBGl^j;v1r>BmrP@=wX48eAmV2qaC{g@U)m=*$bPcl2e#z#6@>LWJ;iUJY z|7rQm!ZW+f(W2yc8=crcSMjZ_{S3NsMM=R$-fA2jbvg&s;gO#+1TuH-E#Y4mtkYL& zYaQS|BjUHn?kNZIvMIlV#rHl$rJmwh7jEg1Z0^J>#2+ah@hH#Oqx*AN&?WW_Wc$I2 z$bSb{bF{R|qsmn%lIB!w%L%0BN00SHR%_Uq#TbV7Bpu7CqPx-LpTk5&d-M6rp?uz^ z;5_hvXzuzOYs>nutBdG7^us|}z9?@4vmK{2w@a_GL6u(YmI$nfC-U-7FUzK^Ag zbiNk>YwtBFs3yCV$>6HqR~mGy{vf`QObz>OQMR4NoBSKCKf)=GgMCjALS*qRBpfN4o-)9)V4yYiwKLNLyc0NsukPy*6Fz-O-q8;J`xVuuFdhO;>;d<3OiUD_4E@{2w^>j@=GojL>F>wkGxw5M z)`&w+I{c5xLELjqTZOtYXUUM3{5T<#>itUT(8@8iKw{@a>)SJdFW!{7j`}Dp3?w}p zZTJb|5@`G0(a@`)cDHz@Fd@GlSQ_Q28*51$>C|g?JlbkbMl6d(B+9^W}ZK{P>)p3L7 zIaWij;1-$(DQL<>RIaH>1E>i#%X1=+M7NiDyGAl=l@ZD}6R>0_74A?x3l(jq|)-%Z9%3z{)yCaYtQhwCRbn(@1oh-C8=&K4TGO7oQb7;Vq^%T8+*-CZs* zaotXDI?dgvLiD;>KYg5MG^7QW83N4g#+SSBwpN5=)^>BCAe=w zu9yxvF?9*K4;nTJW@D{vppSWG+~$?ft0A-;axXDm!98}+O2A_t3#ggq*KsixP7xwm zS}NUQo?Q7Za1o4M0f=H?@Z@2Sfw5|o-k&B!kzbT3pzB6va3&C4f!!RzQy4wNXgYy# zhjFW=!~Iin91kDn0Zb{?X+E;_9GGr)bro#p50OD`v*tP1eLZHh1;L|n!(HU{a**99 z0pDXOmYB&XMjhKzLo(ar?>-=%_@=q_Wjm5r_g=(S!H9Rx*RR*$Uk01dvn@K%M*6FQ zJ7$BNUE0`}Q*2uE)mi;k)9wybX*BrTTGtmy6pKL~*~+bfSYwtq(Vvu37I!N_!9a-s>MBxuA|AM;v?Ip`g$tCiI+&WtZS zOSe>VA~fLI;`}8inst)OqKazuNNx8EPfD@NKI$v`GmW4lYo7t27||r-G}LCFsndBoTd;lV8XTVY!S;hkT`8&{6Wm z*FNRdu+)|laxW%?tyZ=Ab`Y<1N@p2e#2w#yzcgN7enV&e*{U8H<@RDinv&AcCK|Y1 zmwZ4!7|VGwe`SEUE)8YhE!!C(+dsoNB|XE4qEOg8@_-*$x10WDt#Un-%8g=4`rW$Y zgp^C-A**_4S(f<#Rgeycv(Iby{5JXkdJgLq35-*$VO@1kk=$|86oMFhIG#Ev^`{jt z!IRY1IaIn)!bE!kZK;G~#c1jY@a=4wMWC)WpS=aOWZsK_!-Akky^uK%9LEi8(RuW5 z@Q&!!WYrV$HLR;=Hj%d7Unx@@-=5=+5+YWan(Hx(a3GbczxQ>SS9=lH z@0m<2s3;0@t*tz2NT4Xdx*->=D7 zC4*3pM0JqEtx=3 zHr;Y>tDAw7+ZpoZm|DXnAbm)O4+&~vwGvTpTb)?WEQ-FN zg!TH19L!q}U?dj)@f!Rf4o?GJ?H=7dA7a%4tEu`De{!|fqdL1R&+|$p*3VxZzgVhN zfo($H4XvYpp(WYqtA^gMEz)3%KIen=6k1HN*U*jGX1F^G3<{f5wmD6uhxLu?rQ$M7 zcf$A7Gd_#OZPm9oO`WzDR76c*z|fve>m1WsliQ54W;mjG_$OP9`=Zlwe z;6#^H404k|Kt7$UHJLT&>!<~3cc=Ij!@4vdD6`AETSY_TMap!>puKtXGr`iFQWj+% zbTk!McE8ASzgaBDYWU$zFChkVrAkwW$4ditQOZrIS^BsOo&1)0`&efsDCrt_Nqt_V z&TOdVK7dTdS@kzgo5T-E`x$@Un$dVtUgN%g%Oc>& z;2OnYfBi$8z3cgmn)t^KQa$?tQOX%E;R~Mz;;P0QW~5jt=tczf%W~%S-272Ap3bt- zniLaoKMfr?ZE8FUGu^dr;pU+5}{dVG0qLkGP;cziMaD>Jry^^ zGhl1d*lyYSqu(4hc0u<;{!1*QxNlup%%ziHCGk}S(mJa$Vmo)yXG7JK!^Kr3DZy8@ zg3*9)#}G-Up8-AtJHiehs;IV>4IGO~dPI&OMH|V=Pbx zdiRR4W4zEHrV;LRj4oz&fRP11s0Tc(qIG{_)K5F+$#={3M;**t{Y$FOgYs(UwZl_= zc8GlXN?8jv5d()G$;=rx_%mwD-@6}^uE+;DjhC+hPo)gfl-Sp7VV8sXbXupurx7#RLV?lKBRNFAZi}il#sC|lV zMQm~{PZCw_9w|&|3=(g78%-hgB8h~$F&G|Lrxq-81QLF`J&HoR1HYBf)v={c4HK)% z3H6>JZA+noWB#t$e;w)kEe`f$R^5)b&vjW+6`L{&`5B#qMlD{%UIi_H?1ZlAXlITr zjNFI)g5}dd+;$OOeByWjacfNYFy{=3YEGERe}3wW40v{ap!FLxE@V#kwq?)O(i?uy zZ?u-!EzRp(TfFxMoApK~^IbJFIU8LOB-=5(FCy&4t1Vh9v-qsIxt(Rk!sHJ^0dBtg z?u#khtZ_TG3X3^vgED>10faYM@Hj^@i1>XncXaO}&uCgF0aX43e7N4=4j>`z?4q#9 zyZjejv$W2Ily#Cg6k+a_Y}wD9$>v^L*%R3413qV-7ZuC%hlNJR!oJ~hW{^HHHM20% zNa7pmM2jpm&MPR9+Zyrx6W2&$GVQg=W=GOoeJACBOU(`{<*!Wd>`6L>9yWAb%!vu; z3g}AnoC^8=m`dDMZRP+#}O^;)j9Rt!?g1fOU}XLEavc;+HT@<`*NIvB+9=Ei7l> z*YW`Vn++_SH-;OsPkW%voJpEDzjx;1NeP$v)|IDb5`?`Yfvhqtq8$}OzrEn4L6wbI zPie0T4UC2Mz#u&}95{$@anhKVph04`|nc14hxM3<63`dk0oB56L3B7BV35~ssCa=3h z!&}T+JKcR+JmUu+a|GTyztYqOqZeqdTV92^Kb#yJ8>WG= zSn}6}qx1M9K}MdY5cTa#gsmcF!`6HTPivLz%+;(&imd|b!~<4ex3>(5mWLu6mS$*KLJBMDb9`k2bGOR{#Ev2ycR|`opi|D<4>(M%5`Q9aSllr0M zJ5TYw`s*zsZ45Tr*_z};e-iobaZgDV-dL3|lRQU=ReKEDYCskv;Q}6My){H-8UKmZ z$r*j6m%rGonirOr0I~7g^=xvI4o-xzd=M3y`CZtt-%u+nm(Jp!eIB@X`_HKL2+wYu z1?Siu?hy~k1jwtO9BFtE1I@8~;nb;@%TzOk!lEGKGFNGFUoxKGhFG>CoxX$%QAeuY zf1aHe$#v$r%Vuyf;8*zhA6M!=+T%NCrCUA7>R<@&u+81#-(})Xzn{Du5hNLxSpc!( zW$EaaUUEow4q{BW;vKiGU~M#}qss`a;sF2tTr{b~ZhR4`m0mOsT_;_E*I@z9y7(nU zgD@{PxLeq5!?bC<@3^u63xRtuh}8UC%OMy>D{EjX7kGnr1YY+8?G$@YsNvTt2{!^P zFx@z<-x|B9^-$>_2sp|}A@@#J8LOK@RXZ^Yy? zbklY-NRcSgh|Bf>jNX2nC83R%i#Rf6BTcMgWJu0i-v#9yO#LWFt!nwjdBYzpb#bG( zJa|%-e0=1y?>l~;+FE%j^qmGyg3aau`5Lz4Bir#FYb?J816F!EoqxxjW#vq*zc4jq zm5mAb&N;|~KihCgZX9>&>1Id?f3@g`po_{rPMG)fS1U=6gWeRX0`KBvrx$?f#=RtD zw|Mp@6_i;)*ZgS-oZ_=3PDC1=q>ca&kklO5?-s{^8aT3Pwi;S5(*M1P5@^t#Wn z7!$NyX9*NnYM83MK90JN$!fk^!}d^n=HVM=I#frWa-s!WeXF`kMU$@GGx%|;nZ_TE zJNPDqPl}}&=B(a>yEU`&>CLS$|rZzfa#1|-e?r#4~=;H z%x>_0rc6+p?civQDifkRRwEOCxrj)(Y2DGmofRST;9!|llvK7)5wk5_{aPA0txVUz zcpw_W@J|cL-!woD3C9=D(tQZ~oylQq-xF|?H`!p>gu=6B<}O>W%1X^%zO{G4w0LAw zhvoWBx%4oddzg+F2JD9|&iyP6|FJqrWJ$_y@tj`CK#C4TI7YIF#?$hB-eDY%RfkHg zL7P*{_kFcNsEb5Nd!!$PER`aJ2f^`@@|R|?oqF-b=qwL?m#!lHEI}GHyaCdtSFqxo zP{uje>@+W1!B0YWvlEZ$pRlg%Gi#3cq9Dql9;<3SW4{Goflgv<%a(VQ!y}J`+8%9w zVpSwOg@y!|Y%R%!z+|csoJ7d{5PiJh3DHmt=GH!&29w%! zz}~;5H^>juZemG+@T7wcwiexQiy{3LvZ>}VlqD*Kaf}g{5l+IPsTwu8R9MKm97gsj zCorL|nE*2zg}}1lrcqVQoCx`N1Koa_fKm;7t(;xoV_VHeWDjDgjdW%Cv}76tGe&P2 zL=!@kVKBn@p2d8_6Dy8?EztI(tQ|i+n}Jwm9$|fmgv~uDMU2$hfuU&{&+aM1$+!tfQtPju2g zXbAhTI|yx5I))JC{!FH--k*P_EIu4!B?RjOnGRKh5=BJTIKv80r29lL?;dC*_-hpF zKlt57$lVD)A*k_D#f>zq?BQ^U#Dhgl%i9#B$4i2D(m7&ae zT4^=x;p+$O&Mmux?PbU|!(x%@NaEq_^ir0cQY;^I8(4|%M7`LutJ2RtvOxt+trkD_ z#b)`|so*s7f?}P*hBhU|8&<=sZK#p1Ca*4RgjKht(fYeepoVNh|C2Z38&MD#&G5d% zo)Vt|&M|Fe0LFK#?(;i3H3ts&{N>05Kfcoj(UFwrmzI=s3@MYT>^tpbaDn@CrKRSm zQp$v~OG|a}LY>=}0?2$Rc4Y(ZOIWTm$mpu6{Db4v+Sc z^DP&l%}dwp$eJhB7Kvpsb%J=GwK27`o4!^8x~3*3qDTz3f!w1d=47Iv{!mAQBSkiy zRjRkqXB26fF}FWOhE$z><7(C!iO-Z|MW92yaUmA_g`yaODeTfOpfU8bfX^~_g*(NL zbspA5Oyt=Qr073mU|q zLU-)hV$u&E9n#~5yCFhT$xb)9CXdzz!)S8@XET$h4W_?*Vp@E2-9 z<-m{lr@;;{w9=IL zU0%UjcVL>AATn_2j#)+FqS_q?0T}Es?4Qj}D)(2}pw2R^r&e3&Yf>N4>k5C3S2H&} zHn46!ZD#}0dP~-PI<}z+zf18HwcBf$=h4am=egPRHo$hmua0}}nBMHCwiIdXOje}w zIJmIfz|I`Hv#loq}}k@D|pw_QCGZ*Co|(rsxzj^hE*?`mPALj*_PFo%^e<$rrcP_;WyZQJ87EYk0LzaN4Z^cDHTi^9@f1+ zE=pa>VMkQKLTV;*;!yUZC5LKhJa!pv4N7Vl>VA&b5pKR<Lg$nrO_|`M@}cVYBrd zrWYL2ECGc9m8RZqqu5Q3yYx{~9Eb9}9R1J$gtcz>hb%>ZNL0quhdVZT)l8#~d{K$P zM#Vwl7$f9E?jx-gARpvj=^?mPc#pUoIg6rWDw&8g=L0H!ktHK zF`?w})-3*EWtnJi(&^`pPSVSNI!CoVfwJaFt_wgJMs@tOqiR%AvJA;em$bQb2 zFcY~Oe+0`6DTQx-H&*WqXCIUs2J09`6%v=yOrtywlJJ5yu8gZi@%&~Z z2GQ4dy6S82oE;Jl*2A0H1MI^kF14s}-yHH0CS!?M3RE6Am5Zo3T@%|m{U1a|Eso@d zPLt;#?yKIu>v>vVo$}O)`tJ)z+Ir%wHpG}b>Z^elttBX_aZ->9AkIj_Cl5_nFyBu3 z>6$Wi`1}k9juuI%ZaMVT5T5PU3R06rb(PeN7QB%NG$v6+Z7}3ZOHe52tF$L3Cr3Vd zg&y!vBqR!AHmklf8qH~;h; zK@b%jfkPB6erWy$+U4l@uysVLe0pvy$P4%V1??EjZCZZ0@~Qh#TvJo)@wj|WK{_wV zfNQ`7zqmn#v`RX0m9PToa?Y{W!D{DJ}ow~aY zI^~TiUv8~sgHUm3WzF?lyln-p+uLK+H3I~zbwrJWX0grcNs_cC=VUw*_3gI&bYf<% zHnFF8;sNMR+968FdcC1P>V4sP!bJu5EJUjRNm1n`sgL9$SB@?$8^!Luvc{_yz4#g$1yb3U2mXG{X6%G;DNjoW#qHYqrcLKPJM)38%_n$(0+O$b|y1oM2NJBnGdPZb0 zd=ruwh2}=F5HcELv5R-tp)tTe--P7Lz$9o-l}I_oQeluqKe}@`tzjZ%9i;^HA_6-) z#HQU{p~DzG|Hx<=VkYOR2|eC{UU zvALYx$|QU0E{foDTv(E`edFEe>)YKXo}!AgDo%Qf?lq8oRSwE?%CHL|X-r{gA${8< zNawB6?`qnDVjz?~qY^td1B!dW(+CV;;6(d*Y%Lp*q+YLfa+7isC)od?Ylr^>K9ICo zfV17FLS@!KBgKNADCID*_3lI@$Qljmrev!9tj=Cc+~yUGo?AX5i$BK@=oQwX zSJzLe+I(C`@k$T*v0N5aF$^P=xfmC|Oml@@FMTdyO`qTrCvTc?aKknAB`7w<{}|9s z8>`!_(3-0d8@KAe%~K^Kld6xpnC&<^qG9_tP(^0Vi5G>N)kHkYkj>kn>KJyV5kN=( zS>4paQ^H9O8(S~${c~qCcXK*U#)rCXM5b^?&s#A{zB&%&Cbeg?d}MV!VgH=GsX!65 zcfr(XsWyRkOKh2!)5`7QX z;s)zE%9$lB#pLEwuU+5 z4%PIf&ZLrph&TY0M9SU4T|_**B}t%NK;Xp;hEOxO9B|dLKV|dUE5X-yp~c2OUSLcMd!SWg`gW; zH@r;%Tq4-x(E3|^vQh?&+LRVAtDOtM>Oy0NHDMH^Wlr#Zplkc*zBHO6w6UB7u8{iS3O)I4IUlfj|;N47fDUznOsYRo0rQ#SE4_{XMrj9SOu z@U?zWcc4X(wUODGF;n9T4^UY%4Jn?N3XqfP_^Dcu16n^fuLF>vAIzLo(j3Fun}WYx z#Jge&2nn=THPwVwB{ivdBXLCjHbV^e8I?H+;=?2#Vjn=K6s`01KN53BT)9zS1in5J zX87hY#>boK=^VVm5Wr$lItP~NXsGI+ueDyx8!!u&!HDXUw_-$Gz*o0QM?Bb@bQfNI zs<#gvt#yY44v8I!Kc1G%DXCklRZa|D9FdBVy`aIgy^?K8r~(%3O_n*$wS)Q;bV>?Y^yOQhNd-k2p}%h2ZHvYD zD26B*^jKyhiWgErqY+kPo=uICggP!noQ1quAUkx4=`%e@krJT^m)ykC$Oa#SXR{0$ zVR5SvbHwHA%&bJQDEkwq6}ni)qtO^OJ<=#dgjcULbCm$AD z0!0RELvqVBsC`02uk&nJWnbpd;;4A}1{mB_X;5gT%5kyj2~_(*)tpfh-5+(NY3Ipm zV-vP8&B7}~(%MtEg-^+C=a90onDZr3Oj|L@LhSmhiNUk^4ufRJ==8<-8#|7iOX59t z3SFD99Ab|^$Xt;rTG4`OyW|iGhW5)Bw+~7ha|&X5Wr)KF7_@R5c`$Fu-C5) z*lI{zB0PM8WUkhxH9DlUaxoqe!uiqUq{6u$vrnqrd{#AO;xJu)YJRp9Vg(jcg1}bm zD@8jZ$%;W!?2C-9Fma+TE7fp@{shZk=dvFKKRbhX=n&R|_juX8ka%PXIgG`u5RR0| z%fdEZ8mf)2z-W;C-99c&{l-K5gTxSHV{S+}AKGZ`WGyS5U#*OSAwrB79vrJZM3(y| zmc!LjHZh3VjZt17J=An{oW@>Cp>~3H(PyVC<1%w zU64t7Q!?@!-}--(!}eRQ5^Y%kCH}ld&mpbeBcZakvW2T_xxkB<*Fe2_*MF!T`cX55 zRZNWngF(0MK8o!lM?WWLZsg!qozc|eP@Z(P1$TQldGz&rRP&42%NDaIwDWMY3zMQ(~ICcto6S zh+?bz*Pc|3+gyyw z_>r6ZG?4nIC;11ko}Z9`6?P2N+i>cqNW(J#Hf!p*!TFnYx$Z{Kh62uf$5 z|AyvE3Z@xGvNlU4P$;kc-C}!e8!3c^L^dRFNWQ?d*p)MyztvIb6@Ds{F?t)+vvkL; zpv6)E-L?>wVv?LM;_VGgqOg*hKSB(zMOTmv35D}oZwsyokxD?38)LxI7zNnd&h#V0 zwjs&ikPV@FXFK|`oe(1boG+tq%s;-{=y&D2fB%kFimwZS8nRw~bBI>fW3tL<3yKwX zx!h?n!@?%Hniod0=pFtYcth#!R~j=60ZeIwR(UFF^D#1MhaU+_1&UGQk9j4fWo%D2 zW@$Qb{vX#7sBB$gPNPA;a-H0u%^S1=fR`eGFW+2zqbwqZfh7-#S@3P>OLC|xNInf4 zjbBhW^38izx3^K%vi4o}ERBzeibJ(^LHHhlGR#A%qVk)Y_1kvK51VEpLJ@u^`zp#D zU-+0CP#nxA!f}Ovd08>;sI$N!A_R(zq5gxA9>c}IG3}73Ed-WGl&|rge~A9+YLDKcRxGh2 z>s4&z@9BpB@=;rNrckr&P&^rc^7E6s8)xhEmLgbS+h8HTLM6m*x7b%v&>9?EyZ?at z9WUsh?H-yQ!&LA!m^S0Io26CiD{20KmCn-kg#h}E4jIJ|Ld}pMcKo5!<}!6_MYcKt z*$H?3SQd1>w+ z-M{NiY8VZ9KN=*gY>18;fsh})ZCQVcd`*9T`>q2r>wR$|-B^T&4uVo)!^wFfM4^3N z!ewJ7urReu+YV}G=%AXt^O&hUmHQ6JApm-!^4zx1mG4fAwEHm00HA+O+!PBeDj zxix}TA&3|pvR|TB4GFd;>N91)0fi%KYM74Sn4GU_lzlt47;tSjWCFiPhkiBfy>;;fK9(uW4#MHo zu=oa%^g$?%N;CtTT)YgOgN*=DxU}6o-E)+S*+i%fYUkI~JElufaleAr z74Udd2ySG$)S((j)#t$`JrqR=_a?r2W_t}7#!2&IY$IbN9C34rcW=Ax6F2(`X` zhZ+slj|lQR30e;uMif)4I5S0xM`9v_n3#C|6tzPb=t(V3SPfg5U1CG65knt~3yw~G zFHttC2;2aMPKgAw|asi7J7LzbI+}?0U7`IXi z34vS_=IMI(y!LMPG}<)ff=8F0`UxH-BoH(pISSf(L48WGEHl-b!e-?2MR2D8dd@nKj{>04J0(AJAzj}?LBvsKC_b^QGkI>&PxW< zTk$(7O`_rO;yAR}rs6x3xXux8T)5#vrNVX#0RiE_13?Qr5A1QL7VCRgtji!y+C&nO zNi?#&(Ozwz>z?RqFVZNR+Wa}}!qYwf{y+|InE4|}yRC~KVzMn`_Faf+!$1;MjbDPj zz#rhOWdG%hbGlNWo}Bi;PIeqDOuz*$lg!$)_)z%|5jhOYTNu=1DU;a4g*()(wF^HjasfEsEs%YX^hI zsnI2xu6_xq#@o}?W>inecae^VMx#43MtkHSzRokd9fYmoh~@G zBqvnSv?s65S9mq--A(6xEjuFSC)!X}w|2Q3-3d)(Bxgp&7l75#q#9{B^XD4z_0D!8 z{+P^ku%7F`=6Y^N>z=TY_*tN(!&s6-e}B3*ZHD0ed{^FhPmYqyBePME3HmwI_VoxU zi`bK$t2#Ywvm^cqb!!^4n1Sz`*d3QC3i`=h2+=Gw-7e=tPZkvA>4YKzc+xF2P?c>R zURZo_r?DSlWPcW8B0DT9Ys}a@>3R$feK{VZ@p$}#p|y}6`C2vBn+;}V_;eZk-reOO zu)Cx=(4u71^!FHSuG1HP=>)m`$=78CeHzoBz7}Q+HI7ErgdGfV;MnvkX8Oy0UGMC- zfN$X(3WNn{xV8)DJvA1y5mH>qmj3)ayJd{L6&uDm;ty?W+)Qj=%r?vWjriA{daXP{ zS{PdrHo0p7!Np;7??0Sb62d=FLJK!|xq6MA?OGZ~;SCnTfge*Dii40@7!kU4-!SK) z(U`JUI<23&0#G~DpF?Vz@rP#`^-v*p>x6C*aZvGAR|IvpC=U2fd~ZE4$-Y)WNW8q# z`DLZUTWO^!en@vUabq&(Wq)A5t9~4-pUgvZSZ1)aFp)X2w-S^Mq%4X<7i>w6um0%& z%c%Z;&|$X!09F5AHI|4$+1bG9A4K+VkO{!0nmaf;iJ0j-{3ELB|NEGUnS+Qy&D_Yz z%#n!cuS%>0!yv5hX#7{6{SRdpaP}V#Er7fItH1t->dN`=Bs7WGm^lG1F~H{qAhc{; z0NGzJJ#UU>~#pb)Wy%fcs!$WdZob|FVq#-a8i)Ct%*ca|7&Q zfRW403AiR8XF&Z=UjLQT-}PZ*1hfIx>c47cfCc=w@89!(uQ9+>{?~eQ{LSNU|9`au zY-DC478XDOw6n1NHK74*tbg+WtS6xUr!fC@rMUo(^nYKo|HTh|2zc%q-vKsKR16b<+4QC8+ga3mwX8NCU#>`CryrKW)8~@*M#{UfbKXS$Z`uX36 z@qg!x0XFsjkTaHf;+GGEnv-;-I=M``l>as=;#ex;3XqHDBqLepBwaa3wC9L7@q7Bc zuRMRh`7FPFVOj!DXY;X4XRp4cedLiSs~Vy)HL*ZQule^zRm#$O0WpEIv8l2H!NT&O z!ouP*qbIkMuRuKO@-Qb;%*>9?Aq+eXh)f`xfrYFLME4>|fb$>;F0DfJjv?qB>>3^% z8tMbr*418rF3(QIBNEx{8<@i=>Vb@``TNO_{4j8Nyo~vEh@m&a|Mh_>XebP;cW`iE z@@&cdZ_gMEgbK@_&aXKRUoOfD$ijussXqwUr6akWn!v!wM;*dp3WZ3SiAPhD2RnKAV-DF2gv;Iau%~7j$LI*=_ML&b z0W2+@Z$SUlYPu4*-pLMPEbQw7l!;hiZNgs{?))avrL^$ZNwK+u4yU?Q(vjZ?lZ_JdS?Q{vKFNu+=s$W?VG}d3t7>rn; z8i5IP@-vVad&leqV#e5?jEKhX;LlOc*F7roSl%$xr ze(}+X=)L2UpgV{Az;0h$UpXURxDUFj#-!st8g;z%RG`ca0OUB7cYom%0jT%<)>VGy zU7M-VPoNoyk!DTE0UIjUUDlfqLmmTlgkkAx8~l1X>5JxqQ1#_&;{7X+?8M6OE(LVb zm-ln|_sG)R(1$IiBr{JSad4g<!vqF_cgciVel zjGEk1Kih%jlIec`3p0jfC7_-eLIL~H>{#!GgbzeY13TUWN&FWx{*FO8()7Uw5tOu; zgGmF-T*u;FD!?vJ{|{!&!))ZL3bhaBCj2QZ4RZXb766dF1zq$;$biVCZT-@+NN@We z>VZ;=qO7c=2`YWD)qy8=1#zzn0Els=4X~Gi9wg&9?kY|O|4&Y!30vAPp-do?1Bn4} zJ=F$Q-+EvUGGR~2GLeAKns7+w{#|<*1~6_uVO1yza?RWq)EJ}$6O&jZ;o0+WfuP*9 zNz#2cJ0IqW7r&e+5v=qzAsxt)5>JOO!$uEQVYhT1{-iGf3@8;+RLLdYY>c4F@c6yN zofRUZXncPKlRBa2HJr5fKVW~(pY3A5u!t(bZm3H&LO8t&fZh_l<7M0%|eh-8!d3@4P{Xy^=pOdl87w_pNNNp5r3Fu!xh0!;KA% z-pm5xTi9($$;Pzv@6poO;yj-lMGvL`|Y^o(HZ zxcPW#ztr8owl1ctIEntOh-CA|!OxtBCqLMp^<)yqV{`G*{xSM63lcT4-FwHP9_}|@ z;j2PHkmSX?1gTDJ^QWsrx`rW_f+MGT2^4j|hhRSQ#R1pVTKl7~`>J5VO! zMPw4FQj*^aHMXMrYILZ3=YW?bM!YD%?!!IavAS0`jiZEd&=xF#Y1d=2eIl|hNrxB3np#MtBpLJXI~ zFNkEJkPVFSmzPEoJ{@%gIk8VAB#(di^8mucn^Y>s6a4-xwK!1h~ zs&()IA+FTQ7KEZ%revT9N?u2W(m(hF6IOTU^+%LOWcDsMtVFy*oq5!4hWzdXk%r5~ zy}pLUCGh9*TGXG;S~h26xSz$?0y>EI+b;zJ54Wn%qauCp87xXq(nQL6!utc==<&eb z_to}Ve#!BiN!YW%+V=`?eQ(7SN_e=lz-}sm!Hq8)19d{9!)NSzSuC|31Q z$T4%G_sfG@op1os=)DGsko8#C8`v!-Fa0z-z9CZ!_Se@1ceu>_Mpe(=0%pknDV08|f@C z;e*f`P!(hIT}-Nfngyv7I$h{y{f+RM2dfhn%AR~Xe9kfXXBdYB;r>~y*Jr_Z4ttlN zdxD*w?sB4{d)@bCH5Q~}2v(u&>{^yTi1pNn7Ohn1#7@RqxT5On7O&S*9d~?`&x=MO zCBeJ^@k#;myU09A=O@@f+51jBG=p$^S0ph<*Am*7?#H)KmcDwckrk|)BSFP(S91+V6HW``hPHrv0&3>6IPW5iW*AnrK z#n!2e*34t%b~()i9$>`z2CZ>X`(GEwr^3mJ*EI>Gq80pkov) zS9U3d`P3;Qm#dPAQZ>)(a_kgt0oY-ZGKR*oyXDO?-(#?BTBjUO(~9y^3tDexxr(~M z?;5^_=J@S!F6jszRTWgTqBgCq_d?)c-cBagO%p?<_grtt(x%adtmv5xsE8C~4lZ0#XCMyX$YdMGvDz=dyX+Sr6*{Q85JK&%p@EHh_f?xIy&zmAzN0 z3pX^hjr^<|USB=G>6{U)RxQiU%&Q3_lWTK{x4 z-5O;hVnA|YrjhH^Gw)QWs`^2^U7%!4oCajA^V=RZL;yMCba>r~r#Me>ttEo8M z-*Nh`p}eLbt{F(b;D}{j;@pXWFJ6AYU=hvvL+{aUwk;qtu=1J}x<&-vOW&Lq?=)I% z(?_z|a0E8mE%-%uk3|-2@aYH>2UfwPi-6YgMLKyDczW_O-I3xOuj6^qTZ)cNf`4E( zm!2(eZ>E6Gnw@ZEFD73ku|=C{7!0k2^^5@NYB?xb;B-zrtCzC|P@#LxT)j1g{L0nMm;puck~GuA&fFzYbiI%S~@D$Z_1wT^k70 z&j!qZT!(gZs_H~P(-aH45tzJG_%>i95;}i3_HzDJo@n4vADl}wctt{!`AnwJWAeg+ z#35lDb0HOP7C;?l!RN%N!4LP=aMcI38xEDD&G)63Q(%nzc;<`=?PU9o4&#gmyZN}1 z5_^=na@DUCPa^c*-%L<0GCxfd&bo@7>!?lEU$`rf3hsfvc2K{#Cga54p{ohjcL2!D z4R+5XD1~KgsuG>uwk(EPON?&&>e*?{U&V|i$2&4UH)^ZYu_~zeIK$k?WNut|$yb!< zcRv0LTm94B8YM7fqwMfkZL&j?`z&(f48DS2Iwx(cukt&eo3w+D<2uqeWWkckWtHQ6 zflxN}zM$jN{nsDp(6~?;sc1QB+1SD9S5SP_s4pv-#?y3J2}@gw0nzEJ&aLfelOvRf z=oi1Yoqx0L^P$J=Tb1s$^!0CrE&a@6Np{i%(WyMwUJdWpm*EP3ZdW_UgAN@|8-Hve zNBMTc?@jVI^rKPYLNw{Q_k3}4PO)0Jy@1(y+sdMQ@yJn5o~K% zOH~wGc6iyV?4(sXPdbN$Cvp;;UNigwcC#`kapzjD68! zF)dI5d?((CIV-{6Hp3N)^$JSfI$&_C$x_a$D@UW`|7qxm`cvJR(-|7uUp7n7;4M{iL> z#;qT*_Ux8p#P-dYFH2x9MH792jlEvE)zWPPM9gji?YMXHpI&S}o0K^tFTG=sQIq^V z@3oK%@FSgoR@23c#^FCD9?A6%^kVKPBXey z(zyX`HLV2})oh+nc70OcoOPh}WIhXw(vkTOo8nV{YUvLQO!;-(8%;60BxbP+3gIK4 zCCfgzaQAG5OZv=ZP+;5@yA-0hNx+xo#t28!3y_R9>}4PqVhRKW4!xWe66=X6Dsk90 z70D|eR5t9KHIB2cea@tns-1xpIXjhxpS2|J5@dHFtZiQwc;8xySvou@K4nh0jvAsB zUs>F2Kp=8NC}-fBB&T~M8(z%VST3-5?+~Ej=z7q{!nmdgAIOeIea{yAa*y);FCQ_{ zd5$zV{jpq9=P%1^Ckr~hN))=-$uX}p3xqNG{81gyt^5(o=2$rHaHDz4xtY8e#pkLz z>@m8^U=uCo2!t|KZe!gW<2PZ;zZ^~P%~r`y%*U;vAf&#|i7A(pREjkb`Z&sJ18vGC zw^IL1bm3l30hS_M#NnC?p`&bKR71Igv2|cyj=iUcn5W_}wj2SIe~dT0W>9>Gl_p}r zaAS(UcZ1Yx*m}#cSuC8c4>hC%1-8xQY?u4BfTwvEr88=QqY41AVLhx+to|bX2b%Yd zzKy8Qh=|ZpVj*)dE~@%ojG{*0xz$)piy&v7GR@1?Fx+syquaNSx zdNZmQ#hvCchmOBGV_LgYWm&*`NlIetb3R6G z9k|?+ufsrQkP&(_*{@`F?mjddsU}Y}x)4mlFCawi!nuk0V;qrBX~D<$!sL!W=E)7- z?hu>Z4VnxjhSrMPSAc;*eHH5IZhY4^*n?8V0_YS5rp6{%=su}xSemPE9JI47K znbMUUO+L9eeCYX!-l2~x>C2A`@Uskdcj#+*`4L8c5!F~_so0ol)zEd!J~Fql)a-y<}F+fb$u(b@FS< z44xdt2Il~jPW4lVyp&zvSxom|J!yTTZ=&m++)`lcxO1Idnmf}dGIrVuE#QE={hZ%F zn0uGr1?15W&E3oA2<$fS?G4nqKq;XzzVNhynRzQyEd+m`yr0d56O%Np9)WjW*rQ(U zl#Wo#;McoQ=eidFUL1sx?nQN}GeRl!)9o!}xHf}jM`N8gVxXLHl=0S#$-{|7Bs30u z_Fntqqqv0+7Lp@5!H`CGPK+>m!4syv_zH-xmyhUw_u$g-)hrKHL4v>^i}1>rvgZmi%KP^)9{2!EEXcF3Q`kFcy%SOQ@l`DPuzB^D&rUY8H;mSwNp>)U-UxN%R_Z!cP?)U+Er`t{Afx?O6w-gI-ASUsZef-EDYa`>K(paT%jIk znz%zLSp)*$`R2VYUkv4eeyx~h%#x3JHtJL<6vMXVy&Jso3d+3gf36wLfsE7pc`Z^i z&H%&zbL&oZv=n_t(IBEA)}e%?M&ena7P5DF0ps?_s|9J#M9IO)r8)=h+44(03b#}w zW~IsfZ#lKOpu*fL+J&fi;fKS4zzA&Vf#~ue#Xh3JBj&(RtSs>Gh??g8%0RzcL^!B%r1=$({oR2 z*;*H&j`(GUzF5y;;_LMp3u+fJVA0$y6g>*Ir}848DW67^&J2O$D{fv4+6(Pb#KF_a zjXnipsLJ-|uyRJL2w$+@^&om-P1D7L;2otIq#NqQ2#%wwK2ystFQhQ|NPyXpWx`OsW{Ju`HBOt|hurRGCUYX9QgM{)`kEKTzrC9XQ8zH&ie7G1CqF&?Ek4FRe z2NBXJO`!FzyWiVV;RAy=A&NyFL`4p_!T<)3bwj@A9`}-AAy?NeL`{}@7%375s-uMM zX8Kiu_g?4e<%F0?bJc}xS+k_}sl&MzD4aJjJ_ljwd{^|fCrUamMuUV%ubE>R3agq? zz`Z{ZH1$fUyG86W16GY+V35S_q=_3>e5Ey1n*M||4gD^=eCeh&(!z1fzW)|$+HNle ze=6W*qV2Qg`m2rC&o(0c>drOCyu&oTf&6dReTtamG_`W4*Xt;p^9bB zPYO&#y`%>fl}8qcOeUm46dyhGWA)wqq(1z``1&_fN)3>s;F#eK;R2FN$PP>0Da`p` znezLu41=G6gxR06g9KS*ag&Xc8MM~kp9jRT?8V6n7z{r@T_;B!MpykpeEp-mo=Nlz zN27zuCx$x3@ATJcefCclC^sALpFN#Sq$9m)%7FfG#&RI`Pc4)527_p` zj>YU#a?@LpJZsVvPqBZZRegey4rlm`uO++F&b6bX$`iJ-W~A!yS|KLpm6Tb|;hG!q zu5BUmrdgwEO=E$Q(-$8364t>VRRWWFI<%mzi0`KOG~;g^wBO>yZhL9GFq;%cAiPqs zeZ5X7|IK~^nE3r_vF=w7wW!hkB+24CJE{3z0NYFkYrWb193YF|qdLw>=|LgkAzT+$xtQy<;v znXl4~STmk~5%u78H+5z?{B3~tW2WI%DbEZ?(`(xnqd4+5&oWl)lsxI|^9ckgbn>=30PZ?Yiu zhAE}xtg2ulbHM-fB{qq#on}c&+UEv~@T6`0R!dR~eu-b+)+J3PO+Sa>$Sh_xS4ref zk)AzQxX{Qo9W33#e)ncQzk<3(YOgkxOu>j@TPP93vpn|RSEH{aUvthUWNC_;HF}$6 zb!_O3*lt?Cf)ct?qR(9a*M6>gUFpkWF^3{uIc3)wu)Oy3^iqPb#Aia43ZvA7BE*I?cDZqK2d^p&?w#huT1ME~P0mnif*CxE z2VuXar^NKJj&fjMZ9D&>@g2|j1n-U?nY(sX>%6sRTS@eMzf@T~d2d-8(HwU&1v`EH z_&y#*T2h(kiblM|~?{*5$wxZ#terx?pn~BitIw_nD3H4?5ZXOapvi_H+E;Sim z&OM^OEd#LM{5=R!wB?7T+$6$XIzkTCGG2He;1lv0c^$q`X{$+=_g}&b+ao4++Zbl` zYni0l?`wYDUqJT2x$&yz>Y&}C*V9A8q@pc_MsScwOfHqo3IoXB))kw#=b?RRL2 zMKd=-a1rY=C6mzK`6BD|^{cDOd0J_yptfh2Tyz#=xP$?(*LgfR^MXyp#60#z-WDmU z>a|cvGj$tD=QS|Pa>t3bzvoZAZA7H`v9c!8dXs+6a9wT?$vt+w`_pb1YES*Q$@{d< zHQ4o4Zh9=&Et_~p-`Sd)a3@~?OmIf=Rt@$r3(aib?(1HY)AFokg61WC1ohIBJNoY$ z&RzgN`lgS@=E&}A2hgb->PIUE7+JB{{?amIcV0+}JGf@Y$?{aIv}U+A>u;twXckJD3PE z@n$M!>WYXj2So@jKSfUYAlJ|=~ z7vv3-Ilc}rDkn<9e_z-#x4qK5#r z5jwXs+PSF+?WfthUq-*C(xKS23gKm}n&)nU{V=j1#h3-OZ)$1QN}P_i2*V1{byzJ93;jUCTqgz8yX{*ndH0KuPtuy3ay$XZ{t$6kImD&4VA zB2w*x5~f`X5`s-(nDF5)ELh#7Kkj_?OJI))SFM)F^~`tHzRzEhR7FjExoxa%>FwKg z<*4$8aV8>UrI|tg=M#+>U-YlBXF`5C6!GzdFDRb%4_HP;Kp#aDaiAMBAWCt3S>}Fm zZ>ulxp1*NP@VFQrbp9)BxMFPBBWhE$|MYGp<+*M~4+bw<9Hn`VR&Bui#R>_d=f*1if8B=BF$*PTlt_*59%*q2$s zbHtsho$p(&-Ia4IT@(zW`dW%nF#Sr$0A|hQKHuJE>bNf7jsA>io9NyMa5|H4=4>6! z4y%&z#=P*y-}6@;{N8E_FkarLo|m6K0hK<_i7EUH9<>+RcvYYUm3um0WNbFgRwCTJ zo5LWE5Is@36IH{S9@%y*$51onc{A|tUFCvj;W5iS6tmj~k1T2i&GyHaxOmsJw34+A zM_aQdzWdpF)>NO)2#gYc#sQg@Hw{f>R6pUefc=9~WX8;f18=>3^<%HI*%G`>$6)g& z_wnov#tCk|mT`Ii$m2Ll9cC9H#Q%CaOX8u6Z%|^nS|H3FzkELf%gtN@VEF-E=S|@} z4X=18AwzdLxg2g4GK_f2RzH3t>u^V%mbgj$wqN?Jb#8$#g#O} z$elOGZDAg*mAA4r_jMJr0*P0@Gcp_XXR}>7*8sWsO9uBxL}yJ_p16Rv7V3cr{|@4q zkjy9ti-0!4SM6Rg7>=jskzH!RJw&hMcUnX$IUVz2Kd7?ARsL*(CaD|a&$Js>^H*SD z()wwPHAFl1n$2|P{fSib%jVBFJ31zbN6tMT@f`I31p--f(+);ciTXyvG^6eSx>>x>e8%jwz<^xyAl zIg@N<6H)t&&;1jRp@oE`Zu-a~eP|Zy%*p3mlzPH@$iyx!08ZjP;U{FPt~1Vi5^`~C zZsL4_N@Qm^Sx{pQ+56E1um02Tj3%2*zAK(F&Bfw58$Jnrl9+oXck*Xq4xH;piQ60r zq)2a#orxVx%|1dtBU*5{NvmE3p{=-75SN*VmJs^$Tm=6f6|L?8G1z6kMb)Y_Dx&bN z@>J~9^L>SX$hoZ)syn}%#?gr6A1ZJqAw~4Or7hI?u41&W2MbxGeK)Jbj*R#x^6{uF zhbr~^G8)4XjW>HF(K?p#IJXVsx0_endKTz|xKIhnrU-&@F>!kn1`4m4#q`NRgqh=k z+jlkdYYU|{!Ib8^!RA`;HTqejqnQ+B1QZ(jyI+YlSYr^3<)+9ajqFE}9m62~2=R>S z(H~O{|L%TM6d4M&@@f1`XwI&O@K`3_g{aX;hAP_q1x32%3CQTIsor6R%-B=^` zs7p$0BVn#TfzX;mONh~Muz_E?`eV5->4+sW&fpfw)^Q%Jpy*hS$OkuQtWHOXeeRcS zO!QDU-?wk7H(3}bEf^NP^-`B&2)*yt2V#O-^L`CF5{9n&bfz(UiP>`<*#AOW7gAg3 zDe+MUivSBXy8_*IzL-E}a>*iL{Ob8Pc3cr}`A<>n5vbhBH)C7ZcBM@#w_V{Yat*(L z5iWwa`Ef+^gY03u~y%5O8cBK<`pw9VY3e zY?;mcHUZmQT8Y^+f~!3HE}*0l0dC4NyFb^dd=i0p{1{ThuK-@#SSxSMw*ryB$tY`U?Dj@N=fp>59?cpax6_ zoVY0=?eDAD((Udfd8S^%bh7h$w_o5qCx9e8_^TS1`|3!d`X9r2gAo=TCD`vHb$VGoP<3C1)Jwb8>#egLp1!Q23mbpeVy99p&$r;QW<6$*@GfA8{=Ie!9;IXLTf65k z-|~>PWt`t$$tSa4vD#p1+3VicWYvBvFI{gv+cGEjyH)O%cE&O5cT&jOPrlwnv-~yG zwzK%D7WZBA()aqzlBulEg(r!k&uXK^1bf{2Da0%&6SFn^;f)!xSQ_AL9W%?YQyoR z1gBGMsuS!&WyVp#5_OM@ezmZ+BA+5Hs3_DlJ=5PKTpOZ^%w^WH%*mn3>_9j8;UoEl z=LTkvL9Pg{?zC=|xYcl=IyGGFry>rU1 z&9eKXeU-9w9z4moU4-i_T!vX)x~<$o6Xfv5J?b@=PqIAb$ZwHc_C(bg#xpLTp&jCl zLf5v>8)#6uG=!&SLr{7WjA8-?vc(4QuoNh6u0*@n3 zutr7M&yf{)|0Z?6iCAe{vk>}a$!H;pM@6z(3nu*jj1737`ZRT zr_w|uP&#)MHwm~b9=;Fc3gw+r-weX*!(+4WXBoR~AZwV6GqS1wTQCc><(QC)Z*&ya(4 zuSbbiI)Skvy|XqNCkvnNGS!8su9u)^FLLWTVD>tm2~oz?_;c~A#0wxS+PW^0`YGg+ z(`UJ<-9I-Fa4b^D<+ABifKtP+gL}(vx%^tl>cCAsR$4lxo_jOIS6so$)!2}YY+sHY zhMfP(2JwDMh?L9kNFJ!gQ`jPQM3IS!<>4-_K>02)kgI?kzhcGQ(&X6truT3zDTvCr z^Xq_k_1k_6jsjClb-(lFSMX7C7Pv}5#AB*sn5#E5{nV=LC8Rn8A4U^Tn-+y$!WI1N z^leBUtH*#Yx@-9;o&CXeWuEG=#Xqe2PWd;}=VZIL3z%8$pUC}l=F;_@^~|L)ki#kU z?GK?K-=f*2@5WU|c_eq3@9_QSgcwh<0-#u5S9$6f$(Xk&VTrx~l^zyr@6kEQX%?g{ z=**1JM%(Qce1 zi!93<;-svpMG}{0PT^}RBN*nIt1LK2mxz~?g+>A>{KnKRNgpN0zimu+k9;H}BE(+q zf0^t_K9jv3syrSEUTnlJ0IAlM)JI~1UuLYxX?BSjK)<~o1cK?LxDPcwmvqkXDJTZof5Bag)HewfXjqfA%Yj>`L}7 z^a9IoTD)OZ*%>Z>A0*xGZss3XQ)P+sat(r8wa!1A#*#At3GF^2$R{vUqOUn=!l#gu zVxXq3eo@Cbd_DXCE+?&16kc3s$C8ec%!)lZ&(p~3x6rR{j=;mKLj7q$z8Qst_ z<_}ZwA?Y15f@ZX5PgHBZ$mi!J^R07>3t^vu&Ov#zaRRoVS5nV7*{VYKT$5G~KQic} z)C=?y;iTPt<~o|CQIXds;Z4AXrU5JB>5S7baxpQ;`90Oc=Xieakvsm1Kg+ z$n2}3FW~NrINhr`ZB}pjz0AC zcmis#MK)wsMPbGD0@yy}RUgZ+pJMu9yfq^6q=-j#)_}k8oNFP2rZ!oua$sqIm!1zq zXwzr>6iaKgjN^7Ys&y|;HxWASsf|fK%uzaeU5p&Jpq3BizXwoywp!Gb>&=hsePGg+ zbTpqQN|1{~$Z7I>mJ1H1+7ftaPu25X53v{tKC+*?h$JS^ntZas#C?p)q?5AO!}0B_ zB0U}Khz8`4U?gGB=oT0s_9ldn-=yH@_p)d>W$NRj_}D`GFY-_Nd+hcZu@ha(%#TTp z0v!9DAYY0*RjLR-Cjz}AlMD^7`yGEIuNG4@1Zhoq+HgW)!6)QSiIg-6FA3lyE1`Au zpnfs(^tDX?)-`=Y@AU;hMz5}ocLd|#*XA$GTCbYy*9A?C0B0qcOIuAwhQ1Uhwbq<8 z6l_Wke|3eOFcJWLqI~MCf%_)Yq(X&2uN$CYD5x6|8*A817_gj+ZeM^w+-83j7V4jq zFR&Kyt(eAdU2-8PHmN!|*NN{3+!e*4v;{DI)#Z1FIyFJLTkpA`2~Cbd=0&y%gh~D7zlhabU7uDG)>P*C2Nc*;&AS7r`*> z693sCF1>=y0_M-#)mne8S?e6V)Ng`0wN7j_%`}Uw$?Obb8X=_g9pjYK?6K1*K)B}) zdSB%*n-ozQUA1Wjk`D!eJ84Y%5{Tqp`=*v~M#+31G#dyCURHP8f6?bg6JKsT$pefKJA~2bdUtvBFap za?_P(GGY5REUGA(;C;36-Lnd8=BanRw32~v->ibEKm&s7Wcq*u+Nr2f8auO}78pNt z_v*cAUyN#DBjr$Zz#a&X5`MokJNM2PdfC_uOhFn6(}vLese-?47&MI@SjzpGibZg+ ztK99ypiuF7zxjLOPnN@P;-yCzeJksNXVTeoiFM&!k4l;fdc=!h$+zt3WIhOb_1Lgg zA-fGJ!7~`O#K9~DY?W@g8p@(gDT}uMnan9Ef&{HtC1E_EX z)UgQEPs5b9r%@p&B9AosQ%geZ1|scl*{EZE%-x9!;(_73v&)DHWpkK_!R;1 zzX&s^{MeLfy60XaMG*7F(1t_3sbx(6))Q!=c0#aVk`lR#t_c`ar*p_&Z1LtQj!I_& zP)?^2_wBaz5m8x`*E(FNxS%lxQI)*h_Y2|m6OgQ!aHLv!&PMyuhtiT)D71`Ok3bYNNG@ij81A|$k}qrNv(4`B->aepl%+;`qYF?4owdjpFNx+&!_eA)J9V09u_ENMJdN{cXU|EKK z@n(j0>$}Ve+vlco=|lKzPleov8H!=$@2Y+H6BARBh;X>_pgZAAyE6Ag(~q=aID_9n zm9N0Lw93sSir5#vQ){B8i>rXty%x1LQqZ?$EZS>k53bDY>^?(kQfpI=I^O6T~}UmlA`t>tJGhtX{< zs)0M^e-=kkcTcM9i-*#1~X@m4TsQW^STJio*D|UC=|) zazqoWa6tAO$+6aP7naddCq3lQE63|{?1Q<_^hzidX$Dx%SuWNVx11`0g`9gR?^e!C zxve#K+0*qk0<^Z>Otsrz2oTdBu=}H@Xmd6)cFkCjdMA*F3 zr>3@LLn4zn`_Han4YptL$ZboF-LRffp;|}F^*df@pqr}mzBp_+_8j6|OYqrLKQNdG z=d28%4EVimKMOSPgyQ^p<;PABTNPNXgV@R6#ylDd3+unRD6G!y{MuDMcrT*4S3lD= zsZm8}zm=bvo8mZV?ssKOVB}I|J84VEZ*>%ABlVh!>wXmEu>86VREG{EFG|F=JvRG{ zcvJPr)6LZn49sL!p;c?=i0#=wKcm-4Ft+DrM){e$&)Qbf^xIl2NrMYumBA+^d!PN$ za3l8dpw1|M4vnZA2F%s>Oh>l?uF>&va(z6MBo~KJ%@XC_H2oH~GI3BfG1_I|PP+eK zJJsT{cykF?j?2I;lEnYj#dP|9vRfGgkY9zusZ;gcV850}p^ILi{mskN>g~|Ldd9hL zK~j_jcZvsPlg2|K;BdLL-__sS%xiLUMj3m-D7Y}7_XMy=w!!-x^A;e)>&s~p#Ee3J zzgS=k<8uC6x|)kE$-wcfRjXz@n;xYhJ94+a^0e!NJoyu3t~14XcSSSuO6|hk9Z_G} zw(^YdAICQVik9pW`kE&iT4t_mBfFiMra#QpPD5e0SI%*%^+V-)il0-9PGi5e zUU#X)>m3hTBOGL0$=hHAaEJ)NzGSAeRqGP9@I84kj-&9rYO2WshmlWIW7DTY@^E3m zqfV4PKI@Y+OF4tI!h5@wAXroXe%8zIuGDy^>%OS3rBK%Z_m^e|o6okrL9$GiO%|r@ z=RfqmvrC%1vyK{W&a|fAxtzlTJrA?Un{}_R3=3S-*&Kv*8;=ay25dMb0oC|$NBRVk z5~po%fsGWO;>RK##E8f$;y4Wh--ykt2x~KOO(5gk?oFtC9Thtdn+=uqSM0Xnx7XZ5 zkKEOPiD;4oCkWjNuaH#Z8LI(%gX~5_+*f+6h@h9JeJglbC$W*u#QE>e55x+I(0 zX=mn|7VWSNus$tl`Zaa>!2h&f?U%vJ#1+u}u?p6IJz}rH+UkgAUC$w0KZwN=BNYAO zWa>4e$8}W+>?BL{4>?@QLvE8oCvid5yQXv5%M<@y+3~NX6+Gv{oWROV8ygxQS=^cK zck<4cY_tW6MtH|iA8H*#NS?)iS>E6SnS22e;jkjJY9%^RURiWbyg$vQDI8Z5?(_jI zD8VNa1t11|rVyajhkhkqIm}@i-7iJ2GFfQd5x2--9yRQV?vDPwZU}~Qyig5_ICCEg zn)!4bD#9x|EHoqKnzjh_l-DxV36+F1XY$!NA?XdvcuG(?dAU0q2GU+~lgsEQUi~f8 zkk!mn(0+PN7M4&2PbSj)dD98F5T^l33uTY_rAz06WyO}fZJZby4)GvvWd%0?+~ApV zQp!k>NcJ&TMP0AQ4H(NT(C1De&QtlNXXg9olF;#feeTxK#1Tos)VbIB0UGaY68K*_ zdTHs&h+E5HJcGj7u7*ne{`?1Xlyh4{L9jaunlZPdqtswCV`FF%G)B) zkL;|$%0JuDk<+`WK)rQT6w%cfsaUwl4ncDi;M;=RLnO;&ryaR<_7w0(O0hRKUmbh2 zT`i1N-EYi@NgGCah4k%Mk`=;YVteUILhd2=b|6i3US@qD`kaod{o zH`i_879S!jBjOd(0$RrKj3VQ3;4g-q{{CktHmIs_9k{wiVJA^ys!TCpb11v&nZ+x) zOyZSPj6gjWC0bTPAI^TRklzv5jYA0rCst{M1oY6u%ne~zlP^B!>&z|n6^8G%i@H^7 zz3x=S_Ot7_vyP9CaK}Rq_N@y=@-(|d0Y}`(q(SSSpR>1*oyxg53a>4Zm)tyC#Ts+n zs>?<~zB=9&rLWopbaOnrGsF&s4vDu0bdI%s$YJiGICPE?bNGU+P=7^JZ#dqsRAn%d z)D>q=9F3sM%TxF+(N8#D)y@ZM>>T&1=6BRMKI|I~06OVtBPb(1KCMBGm-WTr$+sz!v26HY#sRJt)w8ln zGYS8YkJW9zeyop|TJc zuw`#tGJ)E(y9Bz-Xlw`$_?yEv2;(dXj_h?fDlxPTK>UEAjc)9LH? zCbaPM7x+PBwW1X|bfZkRgWUlJ3$7 zyB6t};2jeR*g8umU3!~;P!%;WLqz~cZJ12{#-B9{Fm|d;Ea5t!}HYu_sFbsd{j%Ue&#kSaefUEV=Tg^F4AgNO3dh zs0&W4QH9$=C6dlVs`O@URxA<*ZFbv|y=Yc@#Z!~}@7+Vbt14+M&|LAARD)Mt$SR#; znt}A9O|aOG2U`jOh{r?Y0jj;WdKbf%bJ8jaG4TPM7c5{xVSKm+Q>e$&ag_|AOMN@(hxSQue;k|JJZa(YtGOzUu zKa{ymIlGqI-TcDX`ytDX7)dYS-m=%z5B22aQH{IW%Hu@mBU&4lqPPEnNRdCv93{)D-^Y2&w+wI-x1YfF4WL0y57eX4o zI|8$1XE{JJ)_pzC-Q;(z8*`xF6Ne(@gnPrlU8ic7r;s0U#)DCe08=I;_H7^Sw}W?8cj(*jfzEwjPhIREp7#v zh8b+O#bUOA<%$~)a1_q-L6GcP*Y+z88OhrXpClK`3NjbosW+kXt-#4wz#ZVY4+M^{ z+&vFwLWTPT=vS&YpfF>6B^2BJTgtZWK7zlo@4~lTl|Hp+gF{MxqJo}&u1T!7`=%O% zR$*bzz0-W;8|RjgFx zNYsLTK&aKgjYefWuM$+s#I4Y$4?C<}a5FFp@5CR5n{xnum45^SBfI@XJ)?3T)(djDSluMtr0 zOffbEVQfnQ8#D?Xz&)GDKD#>fD`U+78 zzk-t8gc`Ze3~GBQ#6Yq${#Kk{7By~0Dt>{0C-*_@RLeqbUIkMAQQ4Yv$a@mEpB}XA zNBw>Xilw~9J#B_40ILPf-5F-bI>50j5^eAC?ypPPc4gTuOYrx0lRzXf5pE5P5!v{y z>n$oOxs_Pmvq!4;(F3QO+}phP`nVcLWY{%#|FsLnBoOZ|n3Q#n_@71-Hxf0DvY&q4*KsyS3`x6o% zRY-Zl2v~Os@?N=v9Rr?Ng++42qI>s|b>7O|KUfuyGay?Wyw+0dzji5|c!5@Pv`^0a z)juAIuP#O34m1YKJG^fCpzhsH(Ef~0usS>jY=F3#(Vy~CH~cSXRNMXW$0UKc=dOk*v_A;MUj3ctbp4YuT zdSU4OJgrlIUT=ZtVyB?Qhg(2tq_ET2rIYRJUl*1wGA`z1o}P8-OhC`8<`+gO7Kfuz zp~*&|e;!*!3n;+nm+I<@Yjow6bSv(BR5y2ku>CA!^K3y*Vw>bgEs?NTa@*?C)O!%k$$e!9t%MrTm)kAZ z4I-$G%M)`B+{t%nK^EvE0|)hXR45@e!zb>Kbu8y-90&4%4>Y|iqaQ(F;^EjGjwtGQ z{1A}3D0D_!iA)2VzPm3l;Ad~CM9C5A0f&nGQI(M-nz=gT3ojcIuO>yr3F${mRy_p+0z z+`q{ySypq=eseOQ(LACN;q-RxZl zd0qVA_3-g?Iok!T4w6zP_Oerzv+g_>wwW!ZnnKykkXvpo4T}IpIhiOy))4dFT5YkZ zZ)ZH<#N(A_k5T!JdY@Bt-7zDA%OxA0NGw`;Q_=?(9*`tJ1i zR=GdTL>NVHeHNxj)tx(txh?DA1tBB#xW6Jw6Spe4(1?mKP@r`5~r@r9w_<(V8dk*{u-vDPhg_ zix7b0nfB>MF#l+Fa8bGQfSN@xYiI|)JBgQ~PL{$lj^*g9-Okpj zO&vXT5T*mcAGN~!Y(S8~CG}hiODw?D0B-p2@8YKO+J9cuGb-JUP+)_cazwFb=w-MQ zTelrNBiwEwB-e;1nO!u_ajHBOVfQ7|IXiU`!*G?4y^zc)s3%uo)r)ZRap1s!7y@hM zm<2b*jkrW03s%tB`w#J>Q{0WV@zq|c-u!X3A68dLqQ@W+;}@GGX*7^0^|^G(T;^e{ zSS)`F^umSCo-$Kt6RVWi#=4H$p7=Jb?mSOS1mR4KjG0ju_WT33cy@=qYQo>8NxKo2 zB0UlYL7z*LuT=tt+L0KWn?*~@@U5;`U*(6kKB_A9?`|r)6ndttPn5!Ok`q^XRo@*< zx$xHz*mjXMOFeyUQACVsW+yiMT(-Rhda`;m+=1KsVjzBjvW+F6htiR+|0YIXm*J8P|{-u7E0`&@$)+UL|1R792hjMN;$%PQd|al??6Ci(cj4HltG-2aAS zmDa0%mP3H9kW!m1_PA$}eJJT<)I@0<(`Qn;VYX&xvE@}U-!IBkp=6hG4^B=;)?lbq zgCFH)^9>I+Z-F$>4SUr`gdv@goy^_H#WaTwP;3#vm)Vj;ZV-~(maR|D~=g z0pGs~D;$F+Kpji&ql0Id`-s@sjfZS+%fN@P7blLNB+D=2307R@C=s0a7AL;qKKQ9n zmYHP(PEA)g_VQ(!%@Z0nC(Mj$of15tK4x$qXZoz`W^2HAi-*b`tn~d?Z$|2|;wCWW z1bJtLB#dqiD1oVO4yCOgVL_3r-(#oO(TvXp(1$w-Xh3Z~8q)IOZVJPcp;{58@of45 z1m|tKY!V8}-E6J6>WV%1ZSt>h+`?ZMjX%pJHABsBcJ!)H7EFXZpsj))5m3W7Srpt& z4IUoz3IybG+-p2*9&eWf#f+!`Dkx)@Az6T3Hh7w%9 zneH-#E*E%rBgXya(YgsP^S0mK@S;~Qx`15cL!EabfYHf4d+{H_iUOZj=fH@8*yxlHQKi(LYJzBG*TjLxpF7JuAc7k4tM=o=IQW^puXq zSMs}H@ZDtZrW^w9yz5_Ur8yOnD`MC8rT8f%Dx!Q*T*j<-rzs43%8UoXo|!xGD{vRS zZ&M5|dop**&^swf56N#MiraKijPxsT&UCB7m!78gdz^|5Bd^5p)CK)7O^nxMp{B*t zif{5!OTP7M3*D!LusD7rUY4Ka9O@9Ldr+<1nMeH{DAK(A$dt%TnpszucE2=013Exo z3aT70QX;ENnq@AUZ4r4jK%aiNQtHS}6My!pHw=(Yu}sz|=+{-lnBO$@_t$h}Z^bz4 z7IT{n7Ck*dm>N{nC=xDT)%+I7sCZ@y-75ueToyR8fbCO&l-2yqTvUMXy$|&hc;KXF zB>)wAF}~{7*Tb#^V~FZC=)#hQliUo_VHuBi>i`u`Xjz$GR)=2|X3HG{B6odf0G73Yg^7{Wt~H7G%VJ?{Lu{3`9cx9Q}{v36Ug`37gi zxoXW#^ySu=^^Chc=hQd5;66hKdL>!SDxKnjB&2+yx%eiZ zb4DK{x~6Y=Bc-jbu(GsC5#-PP4%_CQ=Gk0WRU4r~t1XvBApFBr8-~~S->_0=EP&uywd8`}?uHn|Bf zqllTtZ&hGh(mL8n6Q-7qt7wL{3VTa!$x$vTUh*i-!Q5OpnkDH=%2bjmgSHkRIeE*T zLHQH?_9rA>vYuEAoz`~d7khKSM&(*0DL(fcHE^o2N#Y}^rXkNi@4=<&fBN6o?Q+Od zfsz*zGvAq91Z_HT1PJvm9V<88_&OUpQQXic0vFuLzDBNo@XX36;pdt-C*}0HvjUc; z^;}bb{2UGOlI2ky+6nxQj|2uO*?ZQ?Wr!SlS(o1t;U_u>YY2bVz_xIS1kFn+Ga=3~ zWO>AKHeARQy$CzyM9qr0mJ_oxVGC5-L(+ZYPBU6`Fngk7x+e_rZucY)iSkyd;Y&3z zEr5<3@1^Wd@aXNoldQiOAB1}I9XR}tUF%#R2Hd4__i?ZJK4Co84e2N*l(3bd7{`9`p=0u2A8eFTjbJQ90Mqq1*1c0D|ALI5gPjGZ`f& zaI?3;PGt`TyFE~aSg+^X@~)~|SDPP`(*mp@_oo6uDWlilkD4AdI4`eZJQZrpF`EMp zX(F?Tn-pyo@&$a%H)!-Kp;KXnIiBLEx5QDe!#q^njy#7GyuyAR`Qh|c6bj4~&_YXD z)>y0TbES*V&Ftpj6vC6$vd@;7m5_xbA*4)vukEXCB|8>`iQ(YFYILrKPAr30e9soN zr0z*MA+H`dds=t4io`ONfN21}{O(8$z6;4GK6K(PYA;*zenpIK!C&mJfpT@h79Kxh z`YAKd{C$frAqR>2rFJsA&-JztNa9ED8&9ZTuS2MA2O2k0H}~seFkk9Sx#nA`b?o{L zxUmX6GXs&vo&$66a8#uo?EbV1pW_S}${zMlR;`V`t;O`Fd(L0{mq-ek`&{WkMZVm< zqVkS^F>#9*yhbT3Z+1(pSK{wGQN4{i2; zlElo+|4kBeaBu*qUI0G~NNkLZ|FQj>_rE13MnK@-;D1#B1VR6Af&W|HKPvy@&%a9l zo%7E&q5qxp-+}+mVh5nYf78En{yT^nVD_1;fV}L`oSXna7?A#QyKHO#@E4H& zmi?pSfLZv93ID4bf7|2$z`^VQjF=689&-Q?V>W;Q%>jUg*|=DtIavV^Fd(u2ofQCT z%nks4nV12yzzLXN4lckB0YWn;fPd!vs{u0tcJ?5Sj-8{0nmZ} z*}?zZ{&QfgfO`Kk{cEOK00a4({vNJ>&D7sc|9$*7kCO!;MY93=1K6?x`th%Q{A+;! zv(0}D_CF6V^uKlDzt;7?;NE|;+5ZE%{>Lj!&cMdx9}Knz6XU;hV!-hJQ6?;G=T4{v zpozH%>A2V#37MDx9pV6x$^Rdpn2w2+9)LhI2ss&<08ni}1oXd=;=dIcL=5aDOf1aI zo&W2|GN}La+22wBmq~14Z30lS0bK^X7yiET#r`iyG2lJsY+|Ddn6Lk#bN{2_zs4$K zVr%AX4)ChEI9UFr5(7kN4n`J$5&mC=|A7>9v9JL8D`sKsY~uKj8E`fcH8HX?Hu<}Q ze^TV`S<$WF>OW8afJ?arDT0VYS#UZ_q&mBe0K;#=&2Metfdmp#kr7c5ZN((BN<$7zpZR_rnE{-_1?U zER7D38)?8YeX4~1ovpBiNtq~oy|crIM6(=U z&P)%jQf*AcDJTMp84tM%PHh*9gyO>t=C|Ox@brKzpo_^(T-*ympiz7vM;3N7PxpYx z4!qw8Cj^Ya!7ZiPRd~Iq{h)_%?BGJ5LbuMW&cMJ~xLHEmIX&FIEeigE{!pu{Q2Kx) zyOGDsj|UPY^JOMN-3xpHF>4x%N{HC|esgl2>rBLEYG`G2^ojX7g7-D_Xs4{cx(v5F z*4q!Kzk93?0Tdtz4@5!1)BE-Z@?G|WVcjneI&@cH;q@pYk-elD=<3S^;l0f=5f^ z14;0sC)^JbQ!}V)^9wdWxuF52h{f23=)>T?M%`uh3tJQ27{s;tGgWJT3~`=BnB6p< z+YG3liMiq96o@A>XiJbBTA#w`{%dJI7k(*>zY%1^AJrPK51|m!F*f}rS5D#&mX`2w z6v^S$=S=|N)Z^P_4W0u2RT@^WFEhZrlr^Ns ziykJ8|JW=NGK6bm@Mh`D4kwQP7#M7NLS7Hj6Xf9R`ttB$iy-{y`L8TIznOshnIe2% zzaVWOa--UyI<(&$$!`n~1hi>i!+;f>iUhu#KS)FfCwAbqO2v~O85W=O+x;8_IoE~B z%aDrZ1$%lC3%-I0Nrj%K^)W=m-K=;@!%RIM96pa4K-Mt75@Ca@K}Q#%508IaA3mQC zv=ZRON4+i$fe_h%Q(=tW6Z$-IK<`;S)wU9*zI1^0ufQ{_36TT-Qy*Z@-qciI@A6R! z+P{VbYk?~gCJrmSIy*hxw|q%ZhoE+@{}z964Xe&cfcItG`zQdhJUtvo29j>?hx80* zX5u^fg#`AQ{YnBs1bqsprA8BfdeEV+@g@4jQTG|T_8Ckh@D)?{6_GB;K29=zOJQmJ zCN0$9_!+Uj$}L!eTf~E}qwUv@Ym@zTy8rn$@cD_hmiFb@l(1xX+5k*|*TbT3 z92oP6^ce$*vr%}!L2Z4}qv!zsk;s5EQlsqa_TkYL&l2DFM1xih3Ay@OH@ZgntB*bY z63*50LVom@5s1($IDzX?7Wc*qph0M_K(hi&<(Rc^I`##k zDWOD7$Cu_-Jl#~0@tMB)#o@a|FsQKXogQIu_Rsu<0acfJpH2W%ArQ)9{9Dkq@xDfO z^wvHse(rffKZFs*vyreUn1JpZR)RQ;u+YO?pfUXuX9N*dlz?WuHW@yhL}CpAorG;- z96BjMxj0N>)I%Zo*!SbPz(e9Ub0NnBuSUYQQ2}}&33_Ni2tY;#gv|d9c>#nJ+yO#< z_y9u6_yEl<0$QTS{u?$m(gZs8{d^AO^9OTt9N*B?ox++N!ot+*DF@_vZoc0|v3T0$ zHM6I}tlz+e-#~L*>J*$Lwjv#StQ_L$$A-f0@%zyIoAPdGEmKo{lgsl5(4XAj*L?_v z!DExf)Jm? zdXo9$)9(?0n7e%YT7A=}=zDfIduH18v=I{fzTNfjK!V)}(YNwj6F7}3usE=Pk|ja* z?dqG~g+=;+5j+H5_81X}As%uN4d@X*eJzEj57?b>ebOR|zv&51?@XL>5CornvHvRk zxb6Ub&O`fLulsW3FAMQgrMMBIO~cGc|6sNVK;YiHx7|1!A%A|MT{ z``IwZFk1NV1|B>c{Hs^*aWRPAzLDi!Ho@Uzx1Ieb1BkD%b|1{)FFHE{hI7Z^fw0MU!{}a{4(!f%Wb`3w_mx!7|*rPpXJU02snE^MSuXV_tIr>N0zT#LqG}p zXR&JlLghivA)v(NUHTe?fPF*&oFP8*L*VV$z=79w)viYpn}>%}u>CM@=Y!~OpW!X; zYZEwNQ*fBFL8*DTGXR|cM2o&MI9vy-8;*#!ra5HD(lxA}=ZEZxXT}6!iFEWD3{ILd zqPOIaG%7g!>^tHTzE)h8LlJUTg*L*hk*T3)0B9x!3 z>FxJS=k$at&^{LYs0(^sQ#)KK=|6Gz=I9GsoJ#ONhuM&my4y??obzED4Mp#s9B=%! z)@dNZ_~fCjq1qVjd!KdY&|nhxW{V=MB{lEO8(BAMAIQ4dcr_-4VL7=PdXLwBDvC9l z+gs!|S0F%y2d`nv;a?Z%vJLu1D5cbMmN~j&A`Ir4gv_RXM#2%ZAfb%YMJgQ5X^l=7nhD39t2J9x7n$b0Q*Dc4V zPq2s;V~6v)0U$rMpbUCpUPlM@(3F)t4ue=aN!Pc2*h-GYEa1ittY>;y;Er z)%+79{a$kdEBS+nr`i#vrE+{*ljuNFU%m1qP(2Z9q7cmda0M=h_fcD2ZKkL-AfCE7$C{1PU(qO+d=UBV>v%fPXBg10(I=Ut960w$S_RMRvwuurTLAqEe47} z(REjKgCU00fkNYT9?H@{4Jp1vNk1m$bzb=9)PGz0@Z^oGuL`*~zvNBCg$4MDRz7*U z*c>R3!Mf-6DwH%ld77vdBT2Y4IO)5(wxyBA_9kIJi|FKHU8mMbAlsPfbcv22@UBlvaSt%rdZDv|pRlg` zXKs3WB5A@#_CSnc;Sw>IuAjjzVrUKY@*3q7%SqQ_bc=@LfW?#mi(fHpm6qO^`YWg@ zpDV9mn>=TE{dAbm$!!s-diR3oM+oz@Vyn|zrK*E776^lRuTPfMDmvYdBz<9`lFQNN zS1fxJ+3FL2xf6cJ=yrOEjSm=;#R>2cMTkxyVj9f7-tOg-K>rwF6wouCkB(; z`u4431i0Ui(NtO>*;}KG-rV@5Rs`6|B>$irGaCsW~!QGP36xH?St|BNjlrw z7b$|Hwyx4miiu%0nGlh{H}{C6E+dU6!xdE--eJB0qE!4B@2;XuYyF&-Q zrC17DvlZC(=V}AH+iw@GIdBTp%vF%KS=kd=Nv+z{i8IcpPB05YGN8N>2kQOw`QAr! z8LQ<{A2H^uGZh$#hUn@)(8Lce+%Z{m)pkG!kB_ANpiEIU3Az*Z?flp<%G-Xl-4bWs zE-*^A!_Hte>kD6odUqf8yqK6Lc-*AIy^VKW_PG7jW3@HX)NL-lt(5$NCR%mL1H<1^ zaDmZR2*zDJa5gqV*}YUVAR2*vB|$;vsNY4GZ~{%`F(H=ncMddzYN&gWbZnebsEO)3 z*8LN-qQL28(v0<(qu-uptLNYI4HRo<1*{e$I;4#G`MMHJD@=>8oaPXrgzyk$yYI-e zy$o3yr4zUXH=n93D58A(QU-kP)lQBKeAq*?6B9w1_>ik%zC2_xABdjimm(40N#zGZCX-#HON>L=hor zt~G18loKwuxeny|PAR$zl@fo`B1Gk|1T7a&m=W?kPBo9~#Y$_1R)sh#0DgOyoui|r z=~_~yzHY0E#*2(LaTfjgopF3?BoN(I>{qe#A?wjid35suCBGPbR`uI*!Bb;CK6Ar9 z;e2nvo4kQ2Rm9t#8YscVGGJ|noN}Obs%z+?IX0_w5nUOBbW?#a5LAn8O%0y{0fn4s zbU%ZiUq2-x<2K^xbAJX(!~BF7>N?`rdbxWneZ4n*clnd+>Wjjw{U?ww*J2fVvD>TG zsFWU4`X)x&Z>~6sM0NQ4PnJ+*RB5}-qs@m|Td&fWyOXttHlPu3;FNpks7s;cRNgZe zIyMHoOJqJe4MC=ukT$RG#yMY~ibOAanX7euOUu)@E(kVg7p3{o86q4IxJ%xOnTC)e zU;Ip3z59k6_<|M2i9`vF;bjuGGh`eq|Hc* z^!_sK5u7*7iVMz%mV#GHuvhj#7INS>r!pQ5A!fXqef?-ScKJ?avW805woY!+8A<8w z=3h#o)4o~hOVJ3WRp2AK^g_`!@IS(sZ7nr753rKI@q~)qA-oqC!;`SbJzUdkO`!Ur zGP&GH@IgHVUa=y>dJMnp=}Ky_;vL&Ax4^T0w+o3~C(_7+pxY{nzjI7G%zC;Y4gVOy zux{uhBrQU{S>cF$y53^Y-?4 zxjqjkdNgSi9ac4v$XlS$&v@j`phM47pkOq;>mdY@c*RcUoo`9P{@aOD(0mNO8e(Qb zXyu3skERr5*?IY`-HK!2MQgeXx_-rf%wr_HJ-M~CfwZ~Xe)~$m&vJ_6Dx%UPYP3#n ztg%+?MyF-&XYSqyon%Nomc8&#tKL@txA}PFgog zoozT`zx_-I(TUI>dU9Oa?4(|!ImP$D^%NZe?Yu>q;C|<^fJdU4up2fp@7W6O^_gKl z0%XR7AR?&B#}<4N7-Zy7rGrk3o)=l%r-L7Q+0!k2t_rUKE&INvspMsVv&W^#<46%Z zTqmtYCS=iOFWG#{mR{Lrg=3kDFKY|t7Up}3f(2gt4?~taPn-w^9JFyA6_#%fDSI@z zwFrS=`4zNbuP!Wfk6iS215B3T`rJ4%sr*A1EoJh$w?F#o;?ZzcW5%y>!V`&0O$O1o zR%xWoZ)!omzbk_W(BWii@g4|d!u^>u$zzMIW06FDRE&_5C;8~UuPt0fyH~?PCO;pP z^J9Q$IPuo-JtuoZviIQ5JWcDk2x9xhg0Z$qc`0Z1PZqem>dZdJ-NcjC^oxBVIULDZ zSIQ9CLv3crM^|&dex}5*GcGGc1g17ChSXJ*e- zfc(Klkjd-M;#HX|l#o$9qkzYp<9y{|j##G?5A@A+n*S+f5By+Mx`!}u3~P}@g*}Rm zBS^7BUVR;dm>}!M#hFhp^cz>qgQI*^_kzvpbLTyO4p-LQ!J9{2UW>#LNG*$prvKYx zV=-KY@6<%bk%>Tpn()B2u;|u($CxAa1UU|WEu)_daZf(0yl*AiOS?`Nn2+>@a9fIh z=_GsYlMWX%`8gq9d~XIRZfKrpETi!-a}sDtgqSJqi9Wy?J6%G!&=PHWK6BkEc*pRS zHE|@HT{!cWc$Z<921nuQ`16pfsHET0R>tAALZv)lhr7~dsK7+4`1GeKF&RVSBr{X) zrg+hO1smqPMeN1snx#{Sv6n#&vgYI@pL#|0ivN3h8=hG+YrA?LtSPLLMLV)yDXdrb z5IyD9n)z5twaliBj) ze)9{0b7GYOG7T1sp_oT2i^xEa zp~IhMsvZ;VC8srv9bG)WtmN65OXYip^NV0B=5G9aHqBWRR;-ghM)&jnbIp-2Q|Uc8lIF2lCF3zFFA(D?)C_t z6MYf&(5arTi?Y!J#V)7Azb1|1=6LHpz){HCYugvF`bI^*z!EAk!yustAA=;(UAL+zPxjMDx)7iRJLY<3oEDOm*j6&_=QEZ zY#1VaJu4&X9@xbqj(z#{L9tbbchK3T3Q4qvSzOhdmgl@B2b;lcHJU_h9 z&CsDiU?+f?Ni8=^itWX7CepAg?nepXu3=}V#E^TU=9vMe-DxI^%~zieWT%GDFF$8S zIi~}91$&>O0AP(!l}bAI*$!xBgR44{QMGBtuXecXRY$>gQZgQX9D9uSn z#UVx8w_#%Bu{`izfO|W#gU>`oDX_rABbVzWQG{2{cmrR=e$XZ)(;NVc{SKwzj+uY# z7YN{HWWs?yyub)8j$EX5HXL9> zb+X^!K38yz80SJO8FOzt?Pd&2zrCftBg(n2{eFLZ0%!BGYZK5mwQ>OGzj?15Qs-Zk z#>jReCpg6;<5iGciG6vOn3qH_it#%>zH43u*7xGD?v?6J}?EJryP?hkj( zmJvuP#Apb=`lQru&yr{Onk84iWL7lU#dVc*|i+SA&H7bSC?)ZaR}4!Pd#AR2U%Xj*uOuz_Sbeqt3K`;(DS zVRolc=ODWqm(XD7NbYmLMCdrLbH~c5&kk(5scp%`uu=hMi#m{+Fi@~ycWvDw11%-r zgTpt%QQTELUMS(N(nYLNjXQI11>_vK6Z#w&tjAJN6wW*lYBc zLnkH=yO6Dv-LN>YVsg1M;2v*LEOpTU5Y;T++_&Y1woC^aI>x(;vw2}%$k&)KVwu^C z-seP<>eEX}{OyjU3+zdWzZ)y;!VS z4oWue;7pOWy9c=&_u7qYat!%Hv=UkDFbL2mE`e@oDk_{!F}pnYhTLhRPhAmZzJXtd z@;(*I&Vwwvmc$Msj65YC5H%7}j{!ArJ0Rq+Fx9l&6rjsl8&ds9@J{A9bjF-o*N3e$8Fu*_Jxj^Yfy-8L{*`W+n}zZvXB+22$m<2#T@HKpSA`r6=( zAXm6VG^z8+c|rpL%A3d}PD{2Oha^B`%Aii5BX;Z=YPP3I|4A1iN^QvE0az(oxtN@q zs+)pp%v)e?az3O&TeDKh7bT1S6Dpmo?T_qDcZS#s@yv)E95@Npk&_Gl&~_wl!Zon} z5lB4;HciV4*Gb_0dIbl!zDZ_gM|dPk*%pX*u_*0!oyDH3g1MIw+k&AAu{+ zWM4%!W4(PivI%_GH-{f;Xu)b#jcc75fpgZh{W7m0_gmU-Q1s&t_|t?cHS6u7juC!K z5_5h%TBn#-nS+>x2_TXw+8$oW_DYirg|Cl3N_L$jeI{D#S1oR9=o{+3R=8lgu-b~Z ziS?OP#xPrC5v>qhecTYHJ8;+@l5=Du5d0xIln(8olrWB}DH7oGxrpWa+1;{X+?2aA zX@=;VMuWi3Fp6yScCY$*kw!O9)`sh;0zm?j+#`SD)NE`sBI}>#xO>wx4H)Do*?&op z*g-tL`iLr`;4*-C0%Hw(4?mcT?t{mBp5~M5>hY-AFM* zVFbYT&g$P6!<)aoOHfL3zin%bQ+mcvuCBFY3d!fMx%#W27DDSRoy$YKSzGWl=yy+x`5>rYsSKCsQmIvS zV6xFB>v$0NH3jFHQb!W;)7-yo-OtG2!ZMh&?++TajJ6C@ZH^#{1yASW&41kOA$Y4wL1L5@V+3_^8|YGrYV9KDHZ;kr7{ zdEbbsWm3AXPRzqSF5tz2&V;XYw;uK{qDpco8G$rZ%RK(lywtMgU(bgzh#;wzi`+P* z-Xxq_c0G5~ejajk^o~)@FJ9zO^loIbQWxn~ZIaoS6pf@XR5rr_sodiqBvzK19dW0? z)~lcXUVvyktUP*!h(p$HBh!(eJz)3dB?{S8LtHgijD8d{gl@X7NuDGh!!XpKIpM3{ zL56}aS(9{Wj!z*i_cr`3Ri(lPp5h^QIU3#rDZT0)cD=I92QO=ASjsy)J(hIUo}*nb zj5u7Plr#faM^3K<{)`rU1tm2C7o2`8NlXuAe53I@f6^?1?3qT^6mEC|-CcJGl|P#h zE6D*3(I)vM0n0th#t^|WjzTL5-7KvmJ4)^j>qQSQOO(CA`jhc*gdNpw?6IOLn)nl? zAdfA)z&u{Ej;gqB^#=_@j;`kW4QdOYzDkrnIec4x)aV{RnrG2`HQCFx4Zx zjufQ501e+h|Dwj050d?6>C)iX18KMo%+oY!eIUsypp7E$SqE-BX@(}HbeGrCc>7GP zCeyY;6=!lvfeb`Vbydm!qih;R&?=`w9U=h(OzvfBJ%<#aTgqb)sa4>6UredR2}6Lmeeq5w|)B8YGQwW?n=0^w-c{?jhk3v`Nqd!xRLU6($dG z>fFaP>!VU<-E!ViMx?k%r6wN-KtGI}WzM{$ye*EN&o2yJc}Z)!&jiyUx`yPfwaIda zF@?-ifcDBU2({iwCx`h=%HBzl3SRtUlYv(ojFhQQvb{>}_AQENohduCQv<(|Tds;u z);FC>T&q6Ka_f&OlVZMs!? z=ZnaiKWd13PbqWv_j^gg8I+EPxEzPaXS7K}7l{#8my+@j!jvmj2#wH8M!d2^al!Mv za4-AV!t&j`Twjl=nellUuqB7+*5-%WKRG=HdDJ>tLd4;>ZU~n-a;Qu-m2davaWAS+ zTod6J{|S-PhNV!p3mNa-I;g#ZN2>;RFRLpWz=!BixytloNBH9hH8o=GUGkA@WCw3L z{MocerMSd`7;Pxx2!9+uw$~ElUG-?4;fNB>ZU__n7fg#! z>?rZbhN4~(GHN<+%ZI77LUzoH*!;!r0?(6S#Lh>7Ea&VPP@!oFbMqmH zP)g!^zVZ3mFcqv^-8J~ZJr!bYQ+rClSaavZUzJ+WdOj-fLR5qjdZ@`SHwOJ67re!i zUe$Iwlx`XSweH_rI`cyD?S8IA$7kMeH_gv(;1guSkEh;wgu_V?8=it^ba*7hcx2v@ zvuP>hGH9LjE#^eg0SF?0S@VRhso2QBFAnoCC}^5yIvj`oSD~EoN<*v-0~Ow}Oql#a zrexGz{^D;VhK46~!<-{|S|GBg=#|@qprZ}9;RBDfLJBklD`3ZGZqmR}3{x6tl~o#v zM>>rVJ4N|F^k*{fL6@r70^zDUaU3t5SH?!6T=RK(?nhJkuhGqC)^|7bO-vLumUua% zbWDtYmaIpjO=H~S8CL%^EXbc_mTv7XX?ZGJaN%%G*E-y~k4NkUx_x}a{&q?6Xm@w5 zEWAwXnj9k>S(Pp@c=vvmp4d3>fA{(N@gWqz#itU@GG^Q_ANtJ8L3L6-q{2coaPjOh zNjjy1LLi1J8Z1O=kaMV0PRLslAwt;nnX&9dpcLOdnD|GM$Zln_`XCEzVoHT;VuDV) zi^`|q?$`ZMui<8zqLBb;g>P>{qu`|izove6;Y9(JFAyWqMOCdx@YYY>*`BMdyrK%i zkM%T-E}&0NEYK*(;dcnryjEeWD=J;6_5EI3F-lvL8n55tz4O?-5hI(KZ-H#DHpI;- zKnFw>He++4kC^?PI+@Y(zZ_&;2*xwqb>Qt1o1|&H)CUqf0-(def_O%x(O z?mcR5WS{pGE30Re7WBCnw{Nf*56a;dCe;xs6{ed#{c37`PWusKPzh3B3+ZPJyDa=w z8t53@|3r*swO2Wby16vB)j4SI?zyjL*R*fV1yZQf+s26Y^k>jxh?VQPf%6^Jb1;Xzr{B`%^s8=Z_*Y4>v5j9ae|VWLrkK!JQM4Old_MV1JoA+ESBfCRe;zji z&e@u;kqIz@m&6fmfz!TLiq*BJEUcVA2QG|R(1zHikY(6dqRQ&67Ut5QIl&K)29e2s^#?cuq5mvNpo}+BK^~FDM?| z0E&ti<36zCndLJXvrty5R6G_4ez0Am#FXw^`3IwIOU`$ltjFa&1hA}lx3 z%Wv8&blUojoaRlUhdSl0pMl0%><9u4O^-S`sMEgI{@r}#l+;4Y4ctZ-gg;?ZpQUhl z0MAF>MuK0Z^WC*A9%5HsgI$4})xb_DX`apEmJ2Sa!Tov;xLT}eG0Kd7gr6Vw*fo~{ zn}|SjYTOX)33+#_vruiFOTU19?26rIB2F<2W%uRGh^gYOWnk=(JIu| zB?U3fWYJ2CH?fh^n9Gp&*peClm}vw>jr5N!7>!#Au$T#2=U@H;$4|Fu>|1keVHp-l zFieHby)I=5sJ1n)xbRq%OG-Z%4`U_xGgmpHpWGa<)s?!5Idt$E(QuQ3Ev5YM7;hSf zo@S}3%41eUH@_N+D+4X8&^>#*bquQ@A;>8d`gF0|=icG`wtb5&$+KcPfq!3^iD~m^ zTzd>$pn$Bb$g_waDX}AI-v5A*QNj*7Cl5ERr+Nm6Xv}A1PVw=4j2bhA(W4%^;xl6R zvH_%q!^lVG(sU9j96fI>@B%J}113uo`wx5!CysDPY(G7*dAc+W#CHD8I57TTqy>2P&5WL_AfzvR9!v3pGmsz5$l$=WZ>_3l7%RPccw; z8nsR(-x>9s<8X~)4s&F2LT&oJx7UKUHB+_C)GmW>*OOXmk|oUdX6;JDFuCN?z@LoP zgZIbwF{;X$TAcG2`}+Rrv~rJ`#qCW1TFew90sFmh5Zlp)lwlI<$zjv``Hn*tW`X<3 zWa{+0b&9Y}VeEt2?63skhxL0t3V+2$WRAB?57v0q2F2wXqCpnUql1_WtdyY}&VGi% zwGzRH@++=v#;bV>XlWVoTrRa|4MdO>7loH}PWQ*JSJr(P_BM>))K2nlDiH;Z+|;us zV{BmJ6M2d9#@~5u-IkUk#QD+vr1uvO#$xTs8wNRjO^uJEmNJyGk^(;;zpEkb^ihhl zbb_daosONhAL^JI;6VAXMGjjgEuaPO1zn-af&?I=z7-vlxu+JNMXG%>N)bEO0`dVb{bMje!0j0IZH0!T*>AVzHK`4 zn`&ACbIL6Jib@1l07E2Ut^I^*6%57XkA<}7kFty`)7-N)NG_S5zf(~d+QD4T#M*xD z!ekw$_`b5Sl$N>qb+yMS;*BfWWC-XhVix?^GA^qSPx4>*%sEnNd}#hr-=8?Gp;R)3 za*1`!f>z4#wm}C4{HeQ)vBK#g7BS(Y`%QY0-ZtN;NGR28B=LFK1ao$J>N_ic1j(rg z=-*&|v3oQ|mux5lTGI$Ke-V;J#h+2{^dGW|wFP^yAx+lP<8@j$v{%GL_2 z@(_2^MXYIzTwP0E9`3GtJ+(ObdAqb5D|^SdBR#XrU_sb{#-FXAYGcv?8=v#tuwzAv zsIb*s6e``j)Zpxxl2@UsdHA`$sm*``%}Y zYAS6`3|VY#i+Oj;qoE5zXn3-?A{8U9s?2t?1P-TRu?52=53#?rowYQXLo>c`wr!T69Q;BahTkB6OG424r zmbtTwIM=qNx+KQOTa;Id>VGTc|I!p45z_MNjxft+(D;GN6wv8qI~IPMH6Gy}+_`Qx z;TV)c@soMfyJu+ye;HEVyzoSqnF1!v0ofPUS6S|}kd8dIHtt&^{zz^l4pu172@}rF%kaO;~ z!UC{sgC@&(jD&@YU{8D7mxKDN0n?C6Nt!_#VFBGwN{wkc<}uYHMY0@@;#&KRJ;~ps zdZYP&MzG@K<7Ko^upcl7IxN2m>DDR?799|Y0!8rthwyBbP~}p z1gm(#XbeSBo6E*OM!{y)X?6BotUi5=+CCQjgfqhI>7U1m;71q++f#EWv+groce<|% zPN+4mH@RZ7fe%jg#%{Qw0t(+&~Sf;DV6&WJ8jT zJy;KlFITK_@Sb0`TYb8TY+R9VlEr|l33kWqyG)W`C@_CO+M03nFF7MPM}#&6ABo#~ zB)J_?204debDq0$Q_=9q^eO+6?W1|GOLpqnTTFQvuj9`3$ft^=mn#V*un?>Qy8t&U zoZ4=8W`zJ3?Dy>m(i}r|>{5-HeZ^Z6ZIgn{C7DT4m5Qeu4EEgqp<%Aa5)RxcA}{l_ zL~pCsPu{rtP^Q7Zb7j=AJWDm^jyf!xV`nTnNPnFAGxHw7Kb-Bi7w(DLK(jSqIXRd{ zkBQn6IL=ig4H{+GlNW;AZ3x1LHv7W@42kO+$#v3b1_jIV1z$`A`Kf?dQJeVmLXvCI znKff{f3Gp3UN*ZyqhEj$ncdVqR$=;0dDfwF{QT~*IM|Gn3~a4X*2zCzAhkartomLN zLDPtIi&sen{nh}ul+9KTr`rU^QerSulBx%e5?lh1dkan(ndYYGsilz*CXLo=lz1<03)fV*c`H;wnmnc{{!OeC~RwHITsgOXu1gc2;Q)3aS}doeUqtEyG`thTjmC4{!)s^n zX@?Je>4_tRm5yv~%(_o0x(FmcU)zpV>u%FbvZoUG%#oaRmbZYmfX4M!0@w~+!4%Z! z4?mEJ^F3a5PJE=8$RXgoEFCi4Z@o_==8iXAId)4hUS<=5#{@cw2Uc69OoZ>*A6m)W6w=0XW$tSuh%mYyCX4$`vy%J&w( zuF@G;m*3yaeTHkMYxCa?Aa2Q^Qo7iEt=N@nLIr!rX-W;(lGxD;;D+()W|S6vRKn;cU)ewUVvyIH0r6-RJe}Fcll>_qZ#m0E-`<+NWFFk=|Txf z7YZYjODIC64aaQ_H{2GrtGW2s-Vk;LwPWIs8&9g!yTJ4?M=9YF>3{*-BFuBjPNxX3;4+ zd;QMLY%?`qPN5FUwj3Te*BQ*YT<{x_v2Px$)(3YwWJvx`@>c%O_;B9hTQuZc6(cXX zz$o>nTuFKf-TNasHm2*&3Ob_xH~%;uw=vc?Y9FJ-FpH$dwCah>N+saJe0smaCl~A_ z`(!8Y=cDZ`74Fhv8ej1Y3a=GwXs8HdEwM(rxYA5H(|8T z+0uOPZ7t=THNtM^jWyly2f3Yt?aB?feZ?(5`TlCzaqci$ffM$OZ1g(~wfC%7Q8L5R z|7q+Tpd;J5MV+LRj&0kvZQD*dwrv|7+vwPK$F^Gm?#;B@YbI+wY zXRX>}V}7Zyx)IgRonj-QVhw{*;S&YQRmcZO&bNv3l`z-ZVWu-z1>6 z6)ek|{bFV;-)*10fon#yB&__;fp_w|JNJ9ijT$@3@x5AXK2|Y`Pqg{Ds`_FD0~i4A zGHpc1>S--jgnuhSLjK4%XJRpJ(ZOTae(6*@@%)^&6aupPmTG%QHc6TUpdUZGwL+UH zJD~+6d!>kUJ)N$f1>1Sb8!<9%!yOctR)$eI)x?7H83k z>wLcY5hsR-s9fT;y}PPSkygMnGv$`~TdSYvHfLo~53w~;4&+lRo8h`q^iA*9Sa&Y# zIS{Qvh=S7K+b=NJy#`Go7sDnz>!Y}GyLx7| z{&XpRaSr)mYtP#?n$!h*&-bbCbo9dR7~S?bsxXrzPeny~YcI(7pOSr=YUsC-c9}XV73klf zT$srK8{TjGPTiB5VO${d;-JHynw7Qx?;KU;9TWpZE;vsH+OPM!8j0S&gpYQfiaC`l&R;4;nC^S=J|18bY zMb;;1S0m?s3?)L2sFDAx>y}pI;fS}zOTbIK*)M-2HaWx=WM(}9vo#n-GM8W@;%^MgTOb!xudF#IQD+p zY*L@Lq3oShrvlY%TSf7Ha#CtT$GOk?8$k1usFzvNCuOHQHPB`Tuwh8X#c4`g=Fks; z+?~>1i|?}t7~WOc5c*TpKUvH1PjEwGEovPcNlHfJlrOx*=Y!R|nB%(w?$?2x(F;#5 zLVFDkwjewrPu+r-j;+ue?KKBbsp~b%?WE3AT#wqkq2GmPD7vHiiSnIv=aH>*)M#a2o92&I!={zqF~+H2 zDMezP0f0bo%0Pp;_wmBjxvD9yE$oyKVx&!Kclt93Z>VXAkXU&}Ht?3mbll;M{GS>)&Pz4nQhB zT08vMdcDbyxyQy0?KVK;yUoF6Jaik(L-<}Ie{yZU@(=gHU31dR#yF+WNW@!F2GzQ)gx+Nn10ueGP5Z>@#3u)14r z_-Vjs@!@oK510!vQ|A}xKMyw?M}S0Pvd>^hhNRKk_5{J?C|>MA%ACCOKl}c_rhb|3g1tV%gojPOXwek)!h}#Bge|cW zil#&oTsT6x0+$BWdYv)7xP2nnVWUE<_w!)NsN*ZYOihu)I+2HAjw`TfugGInhlCt` zpYe7$O0b6Mk%~hX@)6y#`D7x_fxClMuo+G65#Of%k#4cv-b#>d* zRQE~Vgq8ZRM3X9TxI+eKB@Zo^gh|{8G3^|E5b>3DWn~t;zb1)UB=0VC%$o01RaIh+B28CS0%b-ii z7+b^JUVHLz;(NH$z0Kl{z@Ti~>a*%K)eu5*zVxs^*$KGt)52z<%58()t~qO1J?K>E z#+acxAyJIpsE$wKY-T0xv2iHm@1Ksu2{=F5?I2ZOKX&VRJ3$l0M;Ni*irz9;OlagA z4eOPp;@zws3+;w;8pv75cbuc~gPs=#jLC}jn((WW;0srQ!EakMnjp00P%1QJK2Xm2 zxs$^WC`$v@2W{AzuljxLAF3ItuY)M*cG2l7TgLD6xYlKHUKZXe!&rhchIQbW1rAh1 z5`2}#Lho$e&3YP#K{OiQ?4fPMcS zMWBUH_Bg1T1~$RA>?W~2{8AV*G>CC_t#H@;+Ks@bf}@VM1iM|0K@JyYjv)f^_;P2t zRBIZ#Z9UnqE3laOXD|y{_|ZOS!T^zs)eVfh z0&zhUhp0)>NC^{H7LF?IIyx?I#8-_K&cpSNO5zdc5p}yH zr&e95y#Yx?uvmoVQpLl4k$S_}`-o445J^ft$xf*bw{}LXEbn9OaH{}6+v$R2Z(q)g zn2ZYrm1DL|i_x5H%lI2pB?Z_j41eF)`~5NLZ*T=C zat`$#JKf8YFc@Qw_%h4&_F|_Ahr&rW9iu=Lv|bfa80vb@Ztj}ZoT5YIwHGm^-#VMv z{8{WBLUzMIhV%rOwVQ*AG`*mj#$ypw%9BEmjhPah=^jYeK|Y)ynH*o)#x)Oz2}m1~ z^Yb2JEf^~jY{?#jo++1y08q$z@5LoQJ^E8B)t4mK%^B0bYZXFk8t_lm_22?+TmuL- zz0Hc?mr|-ek{r$V+k_RaV`>PsucS9$pxG(Gw2Pm%DY>KQHK;AS3yv|-E+Uh>p1ns- zl4%xcZ!~3M2ob4>w7P`3vaCT8qyZwz!oaXi{~VH%pXyzvNO|5ckU}?;3e`+$uCves zmi;*y4}0Cn&94kiE5-NfDyPY&vPT}Xx0jMFzw0ldV^$KSj2g;lsctHTs>*x5W__X) z_PalDY{4>&#sRM?^QF?nUEwWNxUmbg5l~lWD%gP66OWXVY9r#1e@%I^(Q`cjQ+kqF zTZ~79g=A)*xX{OO&tJOTH>#=xwj~0#fhBy(HgK^ec~C)PNU&6O@+V#>K62#)^P;mJ z$OKev*WO@~$=3mj?g|7KV@{ewHI^jUeq9D@$`ENJ%qfv;YiAI*9p{2P$G(=pT0nVK z0-{vQ`(C_V0j!YX9nKiq#?FnrEmMTS2_cyIdgI|IxFT)&l)?N@pC3JTSlA>QRI%$S zUbsq16K3d$a$vpabs(o%RaEZQ7ZWqKzmB>|^Oqhb9w7lE#EQML|MmPiF z`UfS7WD)XRnH&TsC#Lsdyp$1Si?{~|AI3P6I)u`#bTMV(XJBz z8W-Kjy#HxTXvrnnsVyg>-FnS_cb7$Nt<{<>IPz~R{z&`9`6G>N9(JF6H5EUaA``fH!`|^oL1yS5HYO%vZooiPJN(9IUM878F zQ8$AV%0HEm{+rT%>9>~@k)G57kR*t12l&t-!+O02+;)U|(0gb;l3%AiGf0j(aT@iM zEa5k;4{EX0oMhXA1GP2V^+;{(Sr7T?8lyB-f|1>IG4--orS+)dBn?4bI%GZ(0#4zb z3C^W^OD!$4{Ju!F(|JKq26GP7ctmp~v||D%zg9S7N7%Pm9Lv##xHPrIEhPdNWc^9v zn+ZD!vSTr-$0(j71*^B|-4=f0V&p|d_0~*UN`R~DQ3URnVS_krZrbjOmKL#P6+2il zbHga87n@qhg}MgR4VM#ALbr0CXj!Pw(|O?OVtDB+qfXZ49UtiVcJ0?$-Ydq|BiywL#r#x&rRHzz8&{B*jzs7fGn?xN)MPTKWdsoM4@d>d zHgGF}i)E@^Dy$m2uAanW4d+KQM2h;zd~9enK>x_WUoMBM6?juFA+MIZ;2Rvm=R(yD zrFw{o-YkKtDe45_WK6TI8H-29M(&;6wjS3-(l~i<=9&l!`kQR`%-e;|%4`w-kL(en%!L)!HHxEZ>nJ zuLtr-VA{i(L}qds;l{pQ?Lx%l`ou2(oY*{&EEk>39+sRotiF^h< z6GEZahsyHYmk?lA0};#pK#|?2_mfrR1`NEnJI(><1A^Vh*#92uq5=Fa$5zSGkzmtC z0Mi%yd)=sw7ud$`J_r7aCcm*ODyZ3c+>R#`KjcJb%;&NswFSXZ%&f~ATq^;W51p2k z=jwQ#RAKE>PBXV*>e+>8rx1Rrjz!g}w_;`y_asBK@*QE;%7@P(LAwPdmF!XyArM#e zZiOjzy-HF5!{i~7mP7mlc=bWUsw|I6{B1J~D9D(O9Wm%avks$up*TFF`5J0%fKL6M zt$Pj78>O=b&DGY)ZBnf#@R~mVp_!;0_`R#dlX%pd?J=+Jv2_89By-Rv=?97yv1vx+ z(^C0un8Fwmb^eW`OD>bDxUK;8NJpeVvkVV4*+hEygq*M?w8>(dC{Q6b0!Mu8q9O|X`QjA8 zLoBxiZ=z$LqNPPugCu}0ZD!BuT&EUI1Uzp%7#4>Q%`*+~RUwZ_PtGRkx=}}@?+pM6 z#IH<~uV=AszNg6bTOCvGyve>D+d%NgA0BmGJ0f0hb>p_sJll$T2wfr8byuthSw9>u zufI}+nvv>lcXU=@c{LsiYgn z{NURB?Ne{wdbnV3vc3sHpY@~_7c=s3pem_?j~@m6f%fB3X@|NJ58wh(Gg*g)?mM4r z@#a>@nP0P^DnJal1KgahCtRLlDYPAj8>|H+_rl9$X>46 zgg<&IOmTU>rHLYrc%|oV#ZB4^U9He4o*)u#(a9ZP*{?qh$lvwx)#>K*H~Tvm^T$GE zzI8u-23x)|#guinm!Wy^hF9VdsLGN#5KYE?T^6N76HCeRbut;~%*!+%%~*oAP>PR< zETH4Ekk9nyNxq0b%YKvi+*=YDc3X>Qa;t@BsX$m-LGXM<0O5fo=U|>frUu17Nm>k{ zESL~-bM3@ht9>trM))LQH{T+$675BW5EAyi>{5-}7KcaNz+>v&2}^v3sutxPC;J&jfZjfsn#Z_- z27WO>`hKWkJSeK!?+We1iAcAX1gef$XEqWk7Z<|PPLECy^>e3}-uyRz_$;L(iqRA9 zfyuO)SB$#4n7@E5AOYE`vX{;3aB@nA-*4!!{(x5B4fzcY;V5Rv&rW7hN@TmoD0Lu| zA%u$&GA;9ZkTe#SX2PkfcIuxv-myE4c&vP>1)PyT*A~jNhJ%kJXw3+JXT)!z+(#P)x!~jpiRi7zOiFZlpF}~Fn6P5?a4OZdfcxnb7d;o51 z5KAegz{zx&QVbLyHt?H!n-p!}=p3=2CFHjRZmp)-Hhvp3g4!@bT+MFg`2}6$6{^4S$c3xv4kGy0-EZQ+nIjzQf=8KKhAj@SpHTh=R}nD zQQUkoiL7KUB_ukKqzftQ*9KnJ#(bM;)Q0s$pHUvG9VY6yZgTp z@ERk1puG-aYl?4jM5*EXq&^L9XO&-R2wm7*xO;x!g_tX5r2$WB)v{$yE&$)C(K|Wp z-x(OSNyjD`{uFMqZlBpA2gPTi*mU|-`Rs^v6A!ig>FU+k^46s$bluMN>AKDQ1p1=?2<7H^I}p(CbJlr zSBPSJ*{(FzsIBoN;pKLiiCm^EuT>v?j4Nq3#&p7sCf*uFCfHs`)WGioa-a$1nN66u zIhVCI&72vURZ(0}Z_IGuJ9wNE;O*M@Zvh$T`cO!*XBM#$YH%wrH|5^zO^ z0P>YlGJ$**0xEpxBSKb>MzTe>8HA0U<9-cz4wRsbTSn@-i2Knoi5m*PvfJlKlD;_S2D#Va?*U=Xc<-mzyCwK5!d zvTE?W8q93Bx8gX%N7O5hN-W?6E|RTCyhl_Y_S4qZ?u<(qzy>||i*~NAr$;Ietr)O_ z8U<*ULD|@w;PNR*3#AJy+4D?~EW{+{ zVZZzvW%v|vc%9gCG9^0ubF7Cxb0=K&{OikOSC9+*x|-uKu#ybIf_gaJ9?4vX#)|)S zcwuq0#*H_5Z*^c{=FEH4TPPcXwsUa`h2tAIY(dkTzr+zC#?78k7Ch0nV<=ZJAN5AO~2+0(PGl88>f;>=55xG zL`_9B)U3QqHN%Pb1Q#D;m1y3M+sg%xbW%)9t{An5_JBTf$F%i800};iptS@?Su}wg z##7QQptpY57~&E38~9b_|8#z0yI>8U9#|x|x~p{CT4tzT1G4*ZNs%8pFZk-WBDNHG zrNXP27onb4nxkY2a<8FRyHcrD3LYvKlMyWs{=sV*@zg}26BQqP;DB$Ov;^C+H%{?M zU+A>%vG69WY)uD9O7Atb2`WjfF053ZS&P)5# zb9KvL5->i~90?Vz0VW?Nm$HmcL#eef_plB2Kk@sOUYZbD`)NxutGTF1fIiAZ62W{f zs&0r%Ud|1ebIXkuHm&Nqp5NrU7}v#Uhu612=fpnhmeb=1<+=A2idYPM-|=B&b{qv?%MyIR3YTM<2Y(0(a9<_##4 z#a<@TUpG1aqPMOL>fGWOUZ{qydb1Sx{p)N5Xza;aUROZKTRelaRm>q}YdXUZVLv*B z+9=FqSp$3~D@?sU71un@j7!K61p>woRV^&>`zt*wXGx%jlhC%l=*OmI3;xp`s{={x zHnWP`cB&>0U<E##a;hM;GwIcsw)9;7zcb|x0I^#g_0Xs3&m$6c0Jcvl z?Dx}D2ba|(MN*NGZeA;5h1>#MEH8V&C|6iekHL7jER+g7cGcY&l9jJ)&uwgASqH!= zLFGq7OQg>Xuj;Ruh@#xKSM?Qe-XCzv*mK<}62XCQ9|dvW+cY=gBqits{fDY6tHc=;&#N@?Us zjJo#X8nUJQWX6M0B|P0}#KrhvWtE&J!*29$V;lFdxl5D_S;lVM2O%wIo(bE43+BwI zqD9M-6nCcy@QB}z8YPcTEL23MNXW@qq4;``(WW-{GczOSNQ{LXYQr7{+6FSm%8#}h!Hd!2FO(N_nB8wddVajJ5M&U zjX5LE^%a)Q9Yl;Gr+|*cMKJs6II3Xg{^`(q>KR?+eVeJKp%rmJRR9kwfByW>{Gr_% zkR8T{7u*6C2$j8}=?$+g|M889(2{+11{2JK=m}UuirBwLB zkvwYNoV^|oBVV^3K00ia`|}ePd?mKq4a?Dy04=H%h9-M+!t;cf>gDA|-$?z#HMn=b zw=VSxBfbm34-g(%eo0)-tTqX+vkUMY9IMNZXfsBTXK@=>|J91;wV5$8GA(UM_w>|H z^_GV{Gx_S03%C-_o@O6Z&84}R)??2F?Z5>i-J5* zw0D0+Qw)&bnuAn{W=oCp(}L<4x@aY?(N9`U1OWM<=wW@f1lV4O?f1b^;SwCE_5jk$ zz4Vq;>L@r3YyC&R#xtr1HAA88brg(lzshdcs;Bp}+_zKW9$(%`zGZDvgH_1_vX!|f z$E#>Eh0WvA8Je}`k`jzl>1qJD?+H0BS`4NxyRCuW9H@Rk`hT*EqF&Agep8091t|3| z*lXat!h&tge{`~b5uthczOP?QT?q@t$`k4rxa*>=3CC4%_zl$@8vEAIOfGJ1ypSzDS2IrX31{ z372q)R|g}1rf76z$uda^LNpZU(!Gd71#(o)7ExXi(erN1SdW2L$hGz>c&2z06B3TW zf;}29`h1nA(^pD+SkaqKcIGKR2e6)9r?*iPd3T`%$SB+(I`t zOqg)!jM&D_18m_Dp&O}7JX!_d$3hnL#kUu=V3SK4IG1s)X29_G!oRaVXUWC zT@@=T6BiH0{go(?60q=mk`smrWTM{Ym^RLF1P{BLEvsxFD@_;*ZTx$AMv7~ZIrae&2i z#4C0)jAwPSES1-{y~y#_^RAmWa5Q<))vnK&;~kjGFQcj8ez4`~)aMz0e~|P{C$A1a zRij=ZeilOUV)0Q=ZU$ohq3hO6UJhlj~qTOW%o83#pR(ybN7nyO`mzt_sjpTaD zQJ-|ZxD8r$KsxBzn;_j1y%U$d?};Sj%Llv9Zp+6j3;p(xQRL731;I<(U^K#FcHy^lU`3&$J+F*@(G>sW-dZ>cUKS z+d+CF4D)gcF*v;UoHZvcgS-=o3*?K%zT!)z`4gK#ryjs3S6SlO>LA~L?0K9|(X~?5tiv zO`j|Sb?`b65KjE^p{6OWa!P?tosfkK!T2K}Z(%l`^aaXmkeBCt7^t{1TrTBN`BZJs zRnq1JV4y~i^x8~Jb>$&OHp53m!eG_{3eIqq&UDU5{N*v=?U2r@^FkYX<~6BnHk0$; zlC_GqMz52W{q-i+9A4k(8(E<2$uYRI5(9Jgh!AF^78GWtiZHfcR?B;xe1X{%(Fk`D z18%#VDyUqFGeZWV4PQArkG(uO!#2tBW%N1yk4>w9_i|9!V>bGAd9^3+dG?0xA(FEb z+!Ml5iL~+|zyYLP2KIHR;Di8FtPIC06Z4xaF*mkt+19C3fo?RgxHSP?LJ;G|?8ewa$8&jGhSg#BR!Rfq?;lr8^MO7fJM6Wnamd zOb!Uvd=QyjSJj!{ub#b4G1dmP&P{*v?Gq&C3=e)G2LCaqU9bXTKEb-kGrZi-1*1Qa zv=V8F(9Xfx&bKa^=!PShXVBW|cK}ENYU$3D_Er{01r5!~YFD`|t62(}`lCshbFh)@ zm!K~w5nIt=xhLOze-#ZVP4kaB*we>km;hB-X58lM?}-)0B7#PVYzG9!3MwvLt6Ay* z+-^Y{W$}j!U_OY^Zv8VPL>N%6T7e#u>0+-|SjyCTptKv)^Q@#!sF$U} z#_1?u2&vko`T&xswZeKj>7)l0D+zY4$1ikty<1_1p1nXEkx zIlc8Z6Wcy3%L@jLj=aeJn9l}hEjXaY1Y;~7?=eD|sGYc$s{pHVO2lc6=|&^${6$De z3YMM9@F~jgxyM zV!y}3$Vg0<lx#2x9M8sA z0S`ABT1-0+Il|hnSB$9+BSx0u>@_Tflys$x=_YsF7v(;25PLe!&2T)PUH5I0C@2*^ zL}@$_Nhu3|gBLTVonQv9OvqNGV zBk^v(d>+QVecNjd+OWEW#u#CDodS>Gi}@lYS-!jfOIZpFz~lqfs047F_HNv%hF!p? zjx3L~TB+V%8f7M-Io0TU! zV3K?yeFQFHNF;YaFfa#s>;jp@4JV7O17thrGQp1h(nH}m<}Jgu`JAFhmyAOm@Vr=x zuM~6Z23ysP#dUMxSbdRZGw5$ZN6`8`>jS&@iYQ@-DKImiY-*jBY*d=>IQ~p@YEj#c z*`D}dNUXVWh0-m)Q)Cr%3mff43QSnA){^+RyF@-C=#0L|T8W5kHWwguPmG3}c-mfY ziQfRR`pxbSXoXt6a3-kd6nQc4kbUYzmb%z-9D_m~QGdM29iH^oDfWK_Z z_e261($zJ7B1|h(%FS@0`-otl@JQaDJoH`K!j5%3vQ=TyNRibPBDJIE|I*m#@fBH= zi|;+j9E7q;nK>gK2Vy2>^8Kjj;@4v!H%q)f7WXf4yZ~2l5ZlFhlEo*G)dit{QVK5i zId2~TVb61aKp!b1+%Zd5Q%Fbl^r8IagusENadVqS{u|TVr2?{gnj8dh{7P9lQH>jT zPxMd@F-}W3!SskVT2o)7LP@^7`xxkC=sd(L=b%&VJgoDMBLoHuSr_bSl02n8VSgzk zcdHmot0&Io^l|{tik0LSyx1|F4U43`#N#{(XZa^gvKM>CsM?tk*Ap&+df1uY4S@s; zo2YG;d5iAlB?v1DHp>JpE(;Pb^g<1LI(;|I+v$=SbE00yfd{_sP~>}CXC-Lg_T--H&t$V&EJGqtEk+ydw ziZJCTcDf8cPIl+K$#5VwF7mfCCl?REyN^{_^o*+Qes$3rFEICxNf-|`<|Hb)C`z1@hZCHsP3Eh)_4saF=Y7b)A-4-@czFmQ_?|SE z9a9*Y+G7WKp5`WJVfjzQG&nL6&sU=FjGWiQ(+t6bC$Ti7D)`nlg7RUrZ{SK}Z^^)X zF1l85M*3$=wN4P@`*hsID{?#8BiT=Yn9x{+mA)2##dh?RPnGrN{0;dOiL&A=)So6i&R)UwC@}d5rOo-&Q9Tm zH=;69+!L=0MU*hO8|cl<Hq&tsG&t=aHGiHgHLZ6P zKljGdk)};-X%pMZ5JClbg5P)PzZO@WMF>SYm+<&*+$Nz*E=~YB_A%)ZZl=40Qn*mvz(S!0`q1g%s`_3SU8*fH*OD*aON(iboP zj+j;R2+|v;`gC6;h_&C~;Mir_GjHh7Y=>k|Q<*~Rox<8r{jS+ziU?oR7#{5k0+G~# zlgEo?Qc7)U3tW~J#VS>HHNUkhmnY*ezSenh-prh zBD8N8Oj8bC982!@d|+FqA-V_WQ`KhyNj#(pmyr_a;|iYy%>xWpx>+BI-@A9ucZ)PY zAZK#bQpqdlW$4KZ!jr3{kg70z;RbP8wy2c`dj*(-pP!)?YxU`nNKr}VXO)_&{9EKg z(_dIex?Dj;rHsEs6)`Tp2~U+Q8))5{P~dh0NBi__2$^B~d&l?68lTjs%cL+0X^ zA6{(D^pa$b6j7G%mfzeEM|k0yJOCL7Jmcs_LKr@8jW5Gy?>z~)$VLq)hE;^=?3%T{ zM*;HK2J917bsE=&Wr~EBZBBht<#I zgKk=4IA)1zpa)(f+V?o)EGzPq;QWo4H%agLUhIxP{L(im zdy;9g+!jncLtHs|!7^mlIy>96RWDZr!$1^q4hfoe(v`6wz#|ry#gQ|R!?(y4YSh=( zX`A=ow#=g8M^eR9x<4dO!GUKO)JNUBC_ZdD7ewjw=tD@>^|0fLki?|J5V zDbP(4nTWbpFfGyvDG9K+59i=RR*3|f8U?N$#w_{5;P92PuwZj~jO+~s)d%TU^b<2w zpX$#o9GCZAvm~~h8MCvJQ~Y6R5JMVH!8gWA)%z!~Zjfw(>(};@z{|Krp?!&{#(A95 ztAM365WD`vCG8f;5@j&5Lk;~TM^eV`Y|%|^r!i)ocsv=gq$kY7krJFL1i83^0>G^~ zV7Hw?M1g}v*j`6istQK~07I)`)_M^`9ToY`UXvW=D-6H=n@6`j_)P-J0R08uFEvL4 z^T@@OHnnlZS#zCJtJz!3B=8Kq-oh*5^&OU(jc5&wlgb;pBbUlpMry^gh4Md&!&BQh zuWbrx@=Q#qOI;?ZHQsQdvkGy2+)-rnImdL9R`q zGVAegGqg^b%}zC54Wd))1S%Umb{*`!(~f~IR=UTk6P6$zz3`WvNcNv{X&y5Pw5j9j z^z`|$&9NV{2X5t(JdXr83tnxd5wa~}N8EJEl_iKgX{lF-duT%DX`Ei&UPU|!Lrri} z4gEy38hiR?5rZPGMkyp?$XfhD6|ZaJA#p@bQUrUNN%yR?qTX!zT@6i^$iMU|vp}&q zirAdU?ep8xHx@rU2sv%Rn$iP|CIo{EF7HwK7lQ?0^K52ya}dFeAsQkDxftjYOPz;b zaN2P1xTI!s7_yV%!C0L|W)`E)CA&w`wRhY_xweYOuT=HwW!|M2zB}LyY*yJE>v`NX z5?J>Otq%1r{t}%it-=TVxBS4ie&kC@9NNiv@w0mEmMDeXZ_da*1m1RM2AIR!!z-ZT zfWLb~ZHbKwhYT~=kz{s7kV8-w#}gcq1zLoXHn5wC865;3#}_tCI~qj6%Cf}G?q;rYcvNJM`o^h|=n!EPe~w8-}Acus&s3T(7g(CRgpPsDVE(19EG;N5N8!_GxKJ`q%M**-^=bEvNDUZQV`|2f-lILCI&E?!oW5 zpPMxUz}{{qste|fE}Ya56}2O~Z#)@Tg||G!L82YY>Bor-353{j$?}*p!WU0NAm1iA z!wNoh^$0ymK{JR9J@0;WOeB4?F#k=j7c@RVSe?|>1w0oo7})gVgJ~v1N8cc`A<-h7*OS4@BZ>;}wACs^S+#YVsh*%P?$yx7 zrj8gj4Owgrjdxh8GhTAntr5PkLa|wG5m|4Q{n=(y-2*iw~ ze)jUWyVuH=RSrha}=Go1_^-E6;5pMQj3AWRW6dk05BQ+@j{ zeOf8~|J@3sEUE9Ixh`!`xw*ws-~(NW*=52uv>&u|U(@#z1+IcfPB{;z6Z zQ~b9YnPJo;y9|7q^80U25U`16J3e-pC)TSzPY z#Zvv}^#2n4ch9NG8kidyI{wXhA~yC`c(niGvNF;z<5B;4``7D>%laRH)34_LKbWRg zvE$Ibcu+x?nf@R+rFguRTl4VkXo!zp5P8ahfeDRwUiH{>GUdh+-$gi`;4Chw9jLBz z#*s*qzZrH!7>)qr&d9^r5WDpg4jF(^ih9l$zDh&XngT!JceS@Y4URb%zK}8z+)bHc z@Xh09Rm#H#IBPgI`8#_&&B}jY3Ps@nbQ_Xn`(I-CZ=78l{EX|@WrG3 zqUHXHoUh3W+BkjjX8($X|1|v<^7p?SLMv!*r0-~Bk4Gl0?`Ugj<7jDSfalCeL;vMP zDm+t1M_UIDT3W0B+DBt!Z$b`1D`#)>!^!ZA1^f4Ewm*#V4D<~xzPkBW6JM%-bzo*= zE%YZi$%Hr<=opyk=^2<9=$KiU=&0$KNa^TE$^RBEuJ%U85Pv|w5MT7=|14juVrE8W zJY&57l6_Hj|JsLV{U0)VMn)#4FWU2;@^2Xf8_QQr{X@pi@MWC;E@Pyp`yX`~>Hqxv z{;BtcEdFn@KVMkBBK%MJSHEAIU!(bljG2}03)=ioJqEfjX7iu&UvNDd zbYFVx|7`CI&dmOg`F`oKd@Wf2?1Sx#{rul$UqooeFM9N!@~^Rc8HJJcA7i0oqhnye90Kt{xP>N|1$sGM~?RTUpQoYh(Al9 zqM7>_82M{eR\n", - "pip install --user ipykernel\n", - "python -m ipykernel install --user --name=" - ] - }, - { - "cell_type": "markdown", - "id": "2", - "metadata": {}, - "source": [ - "You will now be able to select the new kernel and run the notebook. " - ] - }, - { - "cell_type": "markdown", - "id": "3", - "metadata": {}, - "source": [ - "## Import the relevant packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4", - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import matplotlib as mpl\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy.optimize import least_squares\n", - "import typing\n", - "\n", - "from diffpy.utils.parsers.loaddata import loadData\n", - "from diffpy.srfit.fitbase import FitRecipe, FitContribution, Profile, FitResults\n", - "from diffpy.srfit.pdf import PDFGenerator, PDFParser\n", - "from diffpy.srfit.fitbase.parameterset import ParameterSet\n", - "from pyobjcryst import loadCrystal\n", - "from pyobjcryst.crystal import Crystal\n", - "\n", - "#We import the form factors. We will use this to fit the Pt nanoparticles as spherical particles.\n", - "import diffpy.srfit.pdf.characteristicfunctions\n", - "F = diffpy.srfit.pdf.characteristicfunctions" - ] - }, - { - "cell_type": "markdown", - "id": "5", - "metadata": {}, - "source": [ - "## Define helper functions\n", - "\n", - "\"Songsheng's helper functions are used, in the tutorial it is mentioned that the helper functions would be published soon - How should these be cited/referenced currently?\"\\\n", - "\"Where can the original code be found? We should write this\"\n", - "\n", - "\n", - "Normally these helper functions will not need to be modified and you can use them as is, but to solve some of the specific problems in the PDFttp book we will make small changes and additions to the recipe functions. The changes we have made will be highlighted in the code. \n", - "\n", - "\n", - "### Create Recipe\n", - "\n", - "Here a helper function is defined that creates a FitContribution and FitRecipe, taking the data and structure files as input. \\\n", - "Because we want to refine the calibrant and determine instrumental parameters, qdamp and qbroad are added as parameters to our recipe under _add_params_in_pg." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6", - "metadata": {}, - "outputs": [], - "source": [ - "def _create_recipe(\n", - " equation: str,\n", - " crystals: typing.Dict[str, Crystal],\n", - " functions: typing.Dict[str, typing.Tuple[typing.Callable, typing.List[str]]],\n", - " profile: Profile,\n", - " fc_name: str = \"PDF\"\n", - ") -> FitRecipe:\n", - " \"\"\"Create the FitRecipe object.\n", - "\n", - " Parameters\n", - " ----------\n", - " equation :\n", - " The equation of G(r).\n", - " crystals :\n", - " A mapping from the name of variable in the equation to the crystal structure for PDF calculation.\n", - " functions :\n", - " A mapping from the name of variable in the equation to the python function for PDF calculation.\n", - " The first argument of the function is the array of r, the other arguments are the parameters.\n", - " profile :\n", - " The data profile that contains both the metadata and the data.\n", - " fc_name :\n", - " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", - "\n", - " Returns\n", - " -------\n", - " A FitRecipe object.\n", - " \"\"\"\n", - " fr = FitRecipe()\n", - " fc = FitContribution(fc_name)\n", - " for name, crystal in crystals.items():\n", - " pg = PDFGenerator(name)\n", - " pg.setStructure(crystal, periodic=True)\n", - " fc.addProfileGenerator(pg)\n", - " for name, (f, argnames) in functions.items():\n", - " fc.registerFunction(f, name=name, argnames=argnames)\n", - " fc.setEquation(equation)\n", - " fc.setProfile(profile, xname=\"r\", yname=\"G\", dyname=\"dG\")\n", - " fr.addContribution(fc)\n", - " return fr\n", - "\n", - "\n", - "def _get_tags(phase: str, param: str) -> typing.List[str]:\n", - " \"\"\"Get the tag names.\n", - "\n", - " Parameters\n", - " ----------\n", - " phase\n", - " param\n", - "\n", - " Returns\n", - " -------\n", - "\n", - " \"\"\"\n", - " return [param, phase, \"{}_{}\".format(phase, param)]\n", - "\n", - "\n", - "def _get_name(*args: str) -> str:\n", - " \"\"\"Get the name of the variable.\n", - "\n", - " Parameters\n", - " ----------\n", - " args\n", - "\n", - " Returns\n", - " -------\n", - "\n", - " \"\"\"\n", - " return \"_\".join(args)\n", - "\n", - "\n", - "def _rename_par(name: str, atoms: list) -> str:\n", - " \"\"\"Rename of the name of a parameter by replacing the index of the atom in the name by the label of\n", - " the atom and revert the order of coordinates and atom name.\n", - "\n", - " Used for the space group constrained parameters. For example, \"x_0\" where atom index 0 is Ni will become\n", - " \"Ni0_x\" after renamed. If the name can not renamed, return the original name.\n", - "\n", - " Parameters\n", - " ----------\n", - " name\n", - " atoms\n", - "\n", - " Returns\n", - " -------\n", - "\n", - " \"\"\"\n", - " parts = name.split(\"_\")\n", - " np = len(parts)\n", - " na = len(atoms)\n", - " if np > 1 and parts[1].isdigit() and -1 < int(parts[1]) < na:\n", - " parts[1] = atoms[int(parts[1])].name\n", - " parts = parts[::-1]\n", - " return \"_\".join(parts)\n", - "\n", - "\n", - "def _add_params_in_pg(recipe: FitRecipe, pg: PDFGenerator) -> None:\n", - " \"\"\"Add parameters in the PDFGenerator.\n", - "\n", - " Parameters\n", - " ----------\n", - " recipe\n", - " pg\n", - "\n", - " Returns\n", - " -------\n", - "\n", - " \"\"\"\n", - " name: str = pg.name\n", - " recipe.addVar(\n", - " pg.scale,\n", - " name=_get_name(name, \"scale\"),\n", - " value=SCALE_I,\n", - " fixed=True,\n", - " tags=_get_tags(name, \"scale\")\n", - " ).boundRange(0.)\n", - " recipe.addVar( #Here we add Qdamp as a variable\n", - " pg.qdamp,\n", - " name=_get_name(name, \"qdamp\"), \n", - " value=QDAMP_I, \n", - " fixed=True,\n", - " tags=_get_tags(name, \"qdamp\")\n", - " ).boundRange(0.)\n", - " recipe.addVar( #Here we add Qbroad as a variable\n", - " pg.qbroad,\n", - " name=_get_name(name, \"qbroad\"), \n", - " value=QBROAD_I, \n", - " fixed=True,\n", - " tags=_get_tags(name, \"qbroad\")\n", - " ).boundRange(0.) \n", - " recipe.addVar(\n", - " pg.delta2,\n", - " name=_get_name(name, \"delta2\"),\n", - " value=DELTA2_I,\n", - " fixed=True,\n", - " tags=_get_tags(name, \"delta2\")\n", - " ).boundRange(0.)\n", - " latpars = pg.phase.sgpars.latpars\n", - " for par in latpars:\n", - " recipe.addVar(\n", - " par,\n", - " name=_get_name(name, par.name),\n", - " fixed=True,\n", - " tags=_get_tags(name, \"lat\")\n", - " ).boundRange(0.)\n", - " atoms: typing.List[ParameterSet] = pg.phase.getScatterers()\n", - " for atom in atoms:\n", - " par = atom.Biso\n", - " recipe.addVar(\n", - " par,\n", - " name=_get_name(name, atom.name, \"Biso\"),\n", - " value=BISO_I,\n", - " fixed=True,\n", - " tags=_get_tags(name, \"adp\")\n", - " ).boundRange(0.)\n", - " xyzpars = pg.phase.sgpars.xyzpars\n", - " for par in xyzpars:\n", - " par_name = _rename_par(par.name, atoms)\n", - " recipe.addVar(\n", - " par,\n", - " name=_get_name(name, par_name),\n", - " fixed=True,\n", - " tags=_get_tags(name, \"xyz\")\n", - " )\n", - " return\n", - "\n", - "\n", - "def _add_params_in_fc(\n", - " recipe: FitRecipe,\n", - " fc: FitContribution,\n", - " names: typing.List[str],\n", - " tags: typing.List[str]\n", - ") -> None:\n", - " \"\"\"Add parameters in the FitContribution.\n", - "\n", - " Parameters\n", - " ----------\n", - " recipe\n", - " fc\n", - " names\n", - " tags\n", - "\n", - " Returns\n", - " -------\n", - "\n", - " \"\"\"\n", - " for name in names:\n", - " par = getattr(fc, name)\n", - " recipe.addVar(\n", - " par,\n", - " value=100.,\n", - " fixed=True,\n", - " tags=tags\n", - " )\n", - " return\n", - "\n", - "\n", - "def _initialize_recipe(\n", - " recipe: FitRecipe,\n", - " functions: typing.Dict[str, typing.Tuple[typing.Callable, typing.List[str]]],\n", - " crystals: typing.Dict[str, Crystal],\n", - " fc_name: str = \"PDF\"\n", - ") -> None:\n", - " \"\"\"Initialize the FitRecipe object with variables.\n", - "\n", - " The parameters are the scale of the PDF, the delta2 parameter in the correction of correlated motions,\n", - " the atomic displacement parameters (ADPs) of the symmetric unique atoms, the x, y, z positions of the\n", - " symmetric unique atoms under the constraint of the symmetry and the parameters in the functions registered\n", - " in the FitContribution.\n", - "\n", - " Parameters\n", - " ----------\n", - " recipe\n", - " functions\n", - " crystals\n", - " fc_name\n", - "\n", - " Returns\n", - " -------\n", - "\n", - " \"\"\"\n", - " fc: FitContribution = getattr(recipe, fc_name)\n", - " for name, (_, argnames) in functions.items():\n", - " _add_params_in_fc(recipe, fc, argnames[1:], tags=[name])\n", - " for name in crystals.keys():\n", - " pg: PDFGenerator = getattr(fc, name)\n", - " _add_params_in_pg(recipe, pg)\n", - " recipe.clearFitHooks()\n", - " return\n", - "\n", - "\n", - "def create_recipe_from_files(\n", - " equation: str,\n", - " cif_files: typing.Dict[str, str],\n", - " functions: typing.Dict[str, typing.Tuple[typing.Callable, typing.List[str]]],\n", - " data_file: typing.Dict[str, str],\n", - " meta_data: typing.Dict[str, typing.Union[str, int, float]] = None,\n", - " fc_name: str = \"PDF\"\n", - ") -> FitRecipe:\n", - " \"\"\"Create the FitRecipe object.\n", - "\n", - " Parameters\n", - " ----------\n", - " equation :\n", - " The equation of G(r).\n", - " cif_files :\n", - " A mapping from the name of variable in the equation to cif files of the crystal structure for PDF\n", - " calculation.\n", - " functions :\n", - " A mapping from the name of variable in the equation to the python function for PDF calculation.\n", - " The first argument of the function is the array of r, the other arguments are the parameters.\n", - " data_file :\n", - " The data file that be loaded into the data profile that contains both the metadata and the data.\n", - " meta_data :\n", - " Additional metadata to add into the data profile.\n", - " fc_name :\n", - " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", - "\n", - " Returns\n", - " -------\n", - " A FitRecipe object.\n", - " \"\"\"\n", - " if meta_data is None:\n", - " meta_data = {}\n", - " crystals = {n: loadCrystal(f) for n, f in cif_files.items()}\n", - " pp = PDFParser()\n", - " pp.parseFile(data_file)\n", - " profile = Profile()\n", - " profile.loadParsedData(pp)\n", - " profile.meta.update(meta_data)\n", - " recipe = _create_recipe(equation, crystals, functions, profile, fc_name=fc_name)\n", - " _initialize_recipe(recipe, functions, crystals, fc_name=fc_name)\n", - " return recipe" - ] - }, - { - "cell_type": "markdown", - "id": "7", - "metadata": {}, - "source": [ - "### Define Optimize function\n", - "\n", - "Here, the parameters in the FitRecipe are optimized with a least square regression. This helper function is not modified and you do not need to go through it." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8", - "metadata": {}, - "outputs": [], - "source": [ - "def optimize_params(\n", - " recipe: FitRecipe,\n", - " steps: typing.List[typing.List[str]],\n", - " rmin: float = None,\n", - " rmax: float = None,\n", - " rstep: float = None,\n", - " print_step: bool = True,\n", - " fc_name: str = \"PDF\",\n", - " **kwargs\n", - ") -> None:\n", - " \"\"\"Optimize the parameters in the FitRecipe object using least square regression.\n", - "\n", - " Parameters\n", - " ----------\n", - " recipe :\n", - " The FitRecipe object.\n", - " steps :\n", - " A list of lists of parameter names in the recipe. They will be free and refined one batch after another.\n", - " Usually, the scale, lattice should be refined before the APD and XYZ.\n", - " rmin :\n", - " The minimum r in the range for refinement. If None, use the minimum r in the data.\n", - " rmax :\n", - " The maximum r in the range for refinement. If None, use the maximum r in the data.\n", - " rstep :\n", - " The step of r in the range for refinement. If None, use the step of r in the data.\n", - " print_step :\n", - " If True, print out the refinement step. Default True.\n", - " fc_name :\n", - " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", - " kwargs :\n", - " The kwargs for the `scipy.optimize.least_square`.\n", - "\n", - " Returns\n", - " -------\n", - " None.\n", - " \"\"\"\n", - " n = len(steps)\n", - " fc: FitContribution = getattr(recipe, fc_name)\n", - " p: Profile = fc.profile\n", - " p.setCalculationRange(xmin=rmin, xmax=rmax, dx=rstep)\n", - " for step in steps:\n", - " recipe.fix(*step)\n", - " for i, step in enumerate(steps):\n", - " recipe.free(*step)\n", - " if print_step:\n", - " print(\n", - " \"Step {} / {}: refine {}\".format(\n", - " i + 1, n, \", \".join(recipe.getNames())\n", - " ),\n", - " end=\"\\r\"\n", - " )\n", - " least_squares(recipe.residual, recipe.getValues(), bounds=recipe.getBounds2(), **kwargs)\n", - " return\n" - ] - }, - { - "cell_type": "markdown", - "id": "9", - "metadata": {}, - "source": [ - "### Define visualize fits\n", - "This function will plot the data, the fit, and the difference curve. This is realized using the matplotlib.pyplot package. As this helper function is not modified, you do not need to go through it." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "10", - "metadata": {}, - "outputs": [], - "source": [ - "def visualize_fits(recipe: FitRecipe, xlim: typing.Tuple = None, fc_name: str = \"PDF\") -> None:\n", - " \"\"\"Visualize the fits in the FitRecipe object.\n", - "\n", - " Parameters\n", - " ----------\n", - " recipe :\n", - " The FitRecipe object.\n", - " xlim :\n", - " The boundary of the x to show in the plot.\n", - " fc_name :\n", - " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", - "\n", - " Returns\n", - " -------\n", - " None.\n", - " \"\"\"\n", - " # get data\n", - " fc = getattr(recipe, fc_name)\n", - " r = fc.profile.x\n", - " g = fc.profile.y\n", - " gcalc = fc.profile.ycalc\n", - " if xlim is not None:\n", - " sel = np.logical_and(r >= xlim[0], r <= xlim[1])\n", - " r = r[sel]\n", - " g = g[sel]\n", - " gcalc = gcalc[sel]\n", - " gdiff = g - gcalc\n", - " diffzero = -0.8 * np.max(g) * np.ones_like(g)\n", - " # plot figure\n", - " _, ax = plt.subplots()\n", - " ax.plot(r, g, 'bo', label=\"G(r) Data\")\n", - " ax.plot(r, gcalc, 'r-', label=\"G(r) Fit\")\n", - " ax.plot(r, gdiff + diffzero, 'g-', label=\"G(r) Diff\")\n", - " ax.plot(r, diffzero, 'k-')\n", - " ax.set_xlabel(r\"$r (\\AA)$\")\n", - " ax.set_ylabel(r\"$G (\\AA^{-2})$\")\n", - " ax.legend(loc=1)\n", - " plt.show()\n", - " return" - ] - }, - { - "cell_type": "markdown", - "id": "11", - "metadata": {}, - "source": [ - "### Save results in files\n", - "This helper function will save optimized FitRecipe to a specified path. This function is not modified and you do not need to go through it." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "12", - "metadata": {}, - "outputs": [], - "source": [ - "def save_results(\n", - " recipe: FitRecipe,\n", - " directory: str,\n", - " file_stem: str,\n", - " pg_names: typing.List[str] = None,\n", - " fc_name: str = \"PDF\"\n", - ") -> None:\n", - " \"\"\"Save the parameters, fits and structures in the FitRecipe object.\n", - "\n", - " Parameters\n", - " ----------\n", - " recipe :\n", - " The FitRecipe object.\n", - " directory :\n", - " The directory to output the files.\n", - " file_stem :\n", - " The stem of the filename.\n", - " pg_names :\n", - " The name of the PDFGenerators (it will also be the name of the structures) to save. If None, not to save.\n", - " fc_name\n", - " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", - " Returns\n", - " -------\n", - " None.\n", - " \"\"\"\n", - " d_path = Path(directory)\n", - " d_path.mkdir(parents=True, exist_ok=True)\n", - " f_path = d_path.joinpath(file_stem)\n", - " fr = FitResults(recipe)\n", - " fr.saveResults(str(f_path.with_suffix(\".res\")))\n", - " fc: FitContribution = getattr(recipe, fc_name)\n", - " profile: Profile = fc.profile\n", - " profile.savetxt(str(f_path.with_suffix(\".fgr\")))\n", - " if pg_names is not None:\n", - " for pg_name in pg_names:\n", - " pg: PDFGenerator = getattr(fc, pg_name)\n", - " stru: Crystal = pg.stru\n", - " cif_path = f_path.with_name(\n", - " \"{}_{}\".format(f_path.stem, pg_name)\n", - " ).with_suffix(\".cif\")\n", - " with cif_path.open(\"w\") as f:\n", - " stru.CIFOutput(f)\n", - " return" - ] - }, - { - "cell_type": "markdown", - "id": "13", - "metadata": {}, - "source": [ - "## Determine Q$_{damp}$ and Q$_{broad}$ from Ni standard\n", - "### Import data\n", - "We specify the path for our data files. If your directory structure follows the one from the pdfttp_data, this will be two directories up in a folder called data. The PDF file will have the .gr extension while the structure file will have a .cif extension. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "14", - "metadata": {}, - "outputs": [], - "source": [ - "DPATH = '../../data/'\n", - "\n", - "GR_FILE = DPATH + 'Ni.gr'\n", - "CIF_FILE = DPATH + 'Ni.cif'" - ] - }, - { - "cell_type": "markdown", - "id": "15", - "metadata": {}, - "source": [ - "### Initial values\n", - "\n", - "We define initial guess values to use in our recipe." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "16", - "metadata": {}, - "outputs": [], - "source": [ - "SCALE_I = 0.4\n", - "BISO_I = 0.02\n", - "DELTA2_I = 2\n", - "QDAMP_I = 0.04\n", - "QBROAD_I = 0.02" - ] - }, - { - "cell_type": "markdown", - "id": "17", - "metadata": {}, - "source": [ - "### Fit Ni - short range\n", - "We create our recipe, which is easily done with the helper function we defined. The function needs a model, the structure files, functions used in the model if any, and the data file.\\\n", - "Here, our model is \"Ni\", which is the crystal structure we imported above. For the Ni calibrant we have no additional functions, and we just need to input the PDF data file to finish our recipe.\\\n", - "When our recipe is made, we can show its parameters by typing recipe.show(). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "18", - "metadata": {}, - "outputs": [], - "source": [ - "recipe = create_recipe_from_files(\n", - " \"Ni\",\n", - " cif_files={\"Ni\": CIF_FILE},\n", - " functions={},\n", - " data_file=GR_FILE,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "19", - "metadata": {}, - "outputs": [], - "source": [ - "recipe.show()" - ] - }, - { - "cell_type": "markdown", - "id": "20", - "metadata": {}, - "source": [ - "We optimize our recipe with the optimize_params helper function. This is done in two steps, first the scale and lattice parameters are refined, next the ADPs, Qdamp, and delta2. We will first do the optimization in the local r-range, i.e. from 1.5 Ã… to 20 Ã…." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "21", - "metadata": {}, - "outputs": [], - "source": [ - "optimize_params(\n", - " recipe,\n", - " [\n", - " [\"Ni_scale\", \"Ni_lat\"], \n", - " [\"Ni_adp\", 'Ni_qdamp',\"Ni_delta2\"]\n", - " ],\n", - " rmin=1.5,\n", - " rmax=20.0,\n", - " ftol=1e-4\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "22", - "metadata": {}, - "source": [ - "We can look at our fits by using the visualize_fits helper functions. This will plot our refinement. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "23", - "metadata": {}, - "outputs": [], - "source": [ - "visualize_fits(recipe)" - ] - }, - { - "cell_type": "markdown", - "id": "24", - "metadata": {}, - "source": [ - "Finally, when we are satisfied with the fit, we can save the results from our refined recipe with the save_results helper function. We will save this in a folder Results/Ni and name our fit \"Ni_short_r\". This function will save a .fgr, .res, and .cif file." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "25", - "metadata": {}, - "outputs": [], - "source": [ - "save_results(recipe, \"Results/Ni\", \"Ni_short_r\", [\"Ni\"])" - ] - }, - { - "cell_type": "markdown", - "id": "26", - "metadata": {}, - "source": [ - "We can open the .res file, which contain the residuals of the fit and the optimized parameters. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "27", - "metadata": {}, - "outputs": [], - "source": [ - "!cat \"./Results/Ni/Ni_short_r.res\"" - ] - }, - { - "cell_type": "markdown", - "id": "28", - "metadata": {}, - "source": [ - "### Fit Ni - full range\n", - "When we have a good fit for our data in a small range, we can increase the fit to the whole range. We will use the initializeRecipe function from diffpy to load the refined parameter values from the short range fit. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "29", - "metadata": {}, - "outputs": [], - "source": [ - "recipe = create_recipe_from_files(\n", - " \"Ni\",\n", - " cif_files={\"Ni\": CIF_FILE},\n", - " functions={},\n", - " data_file=GR_FILE,\n", - ")\n", - "\n", - "from diffpy.srfit.fitbase.fitresults import initializeRecipe\n", - "\n", - "initializeRecipe(recipe, \"./Results/Ni/Ni_short_r.res\")" - ] - }, - { - "cell_type": "markdown", - "id": "30", - "metadata": {}, - "source": [ - "We do the optimization as above, but now we include the Q$_{broad}$ parameter." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "31", - "metadata": {}, - "outputs": [], - "source": [ - "optimize_params(\n", - " recipe,\n", - " [\n", - " [\"Ni_scale\", \"Ni_lat\"], \n", - " [\"Ni_adp\", 'Ni_qdamp',\"Ni_delta2\"],\n", - " ['Ni_qbroad']\n", - " ],\n", - " rmin=1.6,\n", - " rmax=50.0,\n", - " ftol=1e-4\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "32", - "metadata": {}, - "outputs": [], - "source": [ - "visualize_fits(recipe)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "33", - "metadata": {}, - "outputs": [], - "source": [ - "save_results(recipe, \"Results/Ni\", \"Ni_full_r\", [\"Ni\"])" - ] - }, - { - "cell_type": "markdown", - "id": "34", - "metadata": {}, - "source": [ - "We want to save the refined values of the instrumental parameters, 'qdamp' and 'qbroad' so we can use them in our Pt fit." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "35", - "metadata": {}, - "outputs": [], - "source": [ - "for index,name in enumerate(recipe.names):\n", - " if 'qdamp' in name:\n", - " QDAMP_Ni = recipe.values[index]\n", - " if 'qbroad' in name:\n", - " QBROAD_Ni = recipe.values[index]\n", - "\n", - "print(f\" From the refinement of the Ni calibrant qdamp = {QDAMP_Ni:.4f}, and qbroad = {QBROAD_Ni:.4f}\")" - ] - }, - { - "cell_type": "markdown", - "id": "36", - "metadata": {}, - "source": [ - "## Pt NPs\n", - "\n", - "We import the data and structure files." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "37", - "metadata": {}, - "outputs": [], - "source": [ - "GR_FILE_Pt = DPATH + 'Pt-nanoparticles.gr'\n", - "CIF_FILE_Pt = DPATH + 'Pt.cif'" - ] - }, - { - "cell_type": "markdown", - "id": "38", - "metadata": {}, - "source": [ - "We create our recipe. Because we now have nanoparticles, the model will be the crystal structure of Pt multiplied with a spherical characteristic function that will damp the PDF. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "39", - "metadata": {}, - "outputs": [], - "source": [ - "recipe = create_recipe_from_files(\n", - " \"sphere * Pt\",\n", - " cif_files={\"Pt\": CIF_FILE_Pt},\n", - " functions={\"sphere\": (F.sphericalCF, [\"r\", \"Pt_size\"])},\n", - " data_file=GR_FILE_Pt,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "40", - "metadata": {}, - "source": [ - "We define the values of QDAMP and QBROAD to the refined ones from the Ni calibrant. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "41", - "metadata": {}, - "outputs": [], - "source": [ - "recipe.Pt_qdamp.setValue(QDAMP_Ni)\n", - "recipe.Pt_qbroad.setValue(QBROAD_Ni)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "42", - "metadata": {}, - "outputs": [], - "source": [ - "recipe.show()" - ] - }, - { - "cell_type": "markdown", - "id": "43", - "metadata": {}, - "source": [ - "We perform the refinement by optimizing as for Ni, but now we will also refine the new parameter \"Pt_size\", the size of the nanoparticles." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "44", - "metadata": {}, - "outputs": [], - "source": [ - "optimize_params(\n", - " recipe,\n", - " [\n", - " [\"Pt_scale\", \"Pt_lat\"], \n", - " [\"Pt_adp\", \"Pt_delta2\"], \n", - " [\"Pt_size\"]\n", - " ],\n", - " rmin=1.6,\n", - " rmax=20.0,\n", - " ftol=1e-4\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "45", - "metadata": {}, - "outputs": [], - "source": [ - "visualize_fits(recipe)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "46", - "metadata": {}, - "outputs": [], - "source": [ - "save_results(recipe, \"Results/Pt\", \"Pt_short_r\", [\"Pt\"])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "47", - "metadata": {}, - "outputs": [], - "source": [ - "!cat \"./Results/Pt/Pt_short_r.res\"" - ] - }, - { - "cell_type": "markdown", - "id": "48", - "metadata": {}, - "source": [ - "### Pt Full range fit\n", - "We extend the fitting range and repeat the procedure of creating our recipe, optimizing, visualizing and saving the results." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "49", - "metadata": {}, - "outputs": [], - "source": [ - "recipe = create_recipe_from_files(\n", - " \"sphere * Pt\",\n", - " cif_files={\"Pt\": CIF_FILE_Pt},\n", - " functions={\"sphere\": (F.sphericalCF, [\"r\", \"Pt_size\"])},\n", - " data_file=GR_FILE_Pt\n", - ")\n", - "\n", - "\n", - "initializeRecipe(recipe, \"./Results/Pt/Pt_short_r.res\")\n", - "\n", - "optimize_params(\n", - " recipe,\n", - " [\n", - " [\"Pt_scale\", \"Pt_lat\"], \n", - " [\"Pt_adp\", \"Pt_delta2\"], \n", - " [\"Pt_size\"]\n", - " ],\n", - " rmin=1.6,\n", - " rmax=50,\n", - " ftol=1e-4\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "50", - "metadata": {}, - "outputs": [], - "source": [ - "visualize_fits(recipe)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "51", - "metadata": {}, - "outputs": [], - "source": [ - "save_results(recipe, \"Results/Pt\", \"Pt_full_r\", [\"Pt\"])" - ] - }, - { - "cell_type": "markdown", - "id": "52", - "metadata": {}, - "source": [ - "We print the results of the fitting:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "53", - "metadata": {}, - "outputs": [], - "source": [ - "!cat \"./Results/Pt/Pt_full_r.res\"" - ] - }, - { - "cell_type": "markdown", - "id": "54", - "metadata": {}, - "source": [ - "# Import the helper functions from python module\n", - "\n", - "Instead of having to copy the helper functions into our jupyter notebook as we did in the beginning, we can load them in from a python module and just call them when we need. We have saved all the helper functions in the python module \"helper_functions.py\", located in the same folder as this notebook. This module is imported." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "55", - "metadata": {}, - "outputs": [], - "source": [ - "import helper_functions" - ] - }, - { - "cell_type": "markdown", - "id": "56", - "metadata": {}, - "source": [ - "To run any of the helper functions we have to write \"helper_functions.\" in front of the function we want to import. This makes it possible to run all the same functions as before, e.g. the create_recipe_from_files, the optimize_params, and the visualize_fits." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "57", - "metadata": {}, - "outputs": [], - "source": [ - "recipe = helper_functions.create_recipe_from_files(\n", - " \"Ni\",\n", - " cif_files={\"Ni\": CIF_FILE},\n", - " functions={},\n", - " data_file=GR_FILE,\n", - ")\n", - "\n", - "helper_functions.optimize_params(\n", - " recipe,\n", - " [\n", - " [\"Ni_scale\", \"Ni_lat\"], \n", - " [\"Ni_adp\", 'Ni_qdamp',\"Ni_delta2\"]\n", - " ],\n", - " rmin=1.5,\n", - " rmax=20.0,\n", - " ftol=1e-4\n", - ")\n", - "\n", - "helper_functions.visualize_fits(recipe)" - ] - }, - { - "cell_type": "markdown", - "id": "58", - "metadata": {}, - "source": [ - "If you need to make changes to one of the helper functions it has to be copied into the notebook, but for the helper functions that are not modified, importing them this way saves lines in the code and make it cleaner." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "py37", - "language": "python", - "name": "py37" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.13" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py deleted file mode 100644 index f00afb4..0000000 --- a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py +++ /dev/null @@ -1,367 +0,0 @@ -"""Please see notes in Chapter 3 of the 'PDF to the People' book for -additional explanation of the code. - -This Diffpy-CMI script will carry out a structural refinement of a -measured PDF from nanocrystalline platinum. It is the same refinement -as is done using PDFgui in this chapter of the book, only this time -using Diffpy-CMI. It is required that "fitBulkNi.py" be run prior to -running this example! -""" - -import re - -# 1: Import relevant system packages that we will need... -from pathlib import Path - -import matplotlib.pyplot as plt -import numpy as np -from bg_mpl_stylesheets.styles import all_styles -from scipy.optimize import least_squares - -# ... and the relevant CMI packages -from diffpy.srfit.fitbase import ( - FitContribution, - FitRecipe, - FitResults, - Profile, -) -from diffpy.srfit.pdf import PDFGenerator, PDFParser -from diffpy.srfit.pdf.characteristicfunctions import sphericalCF -from diffpy.srfit.structure import constrainAsSpaceGroup -from diffpy.structure.parsers import getParser - -plt.style.use(all_styles["bg-style"]) -# Config ############################## -# 2: Give a file path to where your PDF (.gr) and structure (.cif) files -# are located. -PWD = Path(__file__).parent.absolute() -DPATH = PWD.parent.parent / "data" - -# 3: Give an identifying name for the refinement. -FIT_ID = "Fit_Pt_NP" - -# 4: Specify the names of the input PDF and CIF files. -GR_NAME = "Pt-nanoparticles.gr" -CIF_NAME = "Pt.cif" - -# Experimental PDF Config ###################### -# 5: Specify the min, max, and step r-values of -# the PDF (that we want to fit over) -# also, specify the Q_max and Q_min values used to reduce the PDF. -PDF_RMIN = 1.5 -PDF_RMAX = 50 -PDF_RSTEP = 0.01 -QMAX = 25 -QMIN = 0.1 - -# PDF initialize refinable variables ############# -# 6: We explicitly specify the lattice parameters, scale, -# isotropic thermal parameters, and a correlated motion parameter. -CUBICLAT_I = 3.9 -SCALE_I = 0.6 -UISO_I = 0.01 -DELTA2_I = 4 - -# 7: For the nanoparticle (NP) case, also provide an initial guess -# for the average crystallite size, in Angstrom. -PSIZE_I = 40 - -# 8: First, let's read the fit results from the Ni fit. -# We parse out the refined values of Q_damp and Q_broad, -# instrumental parameters which will be fixed in this fit. -# This is a bit of python input/output and regular expression -# parsing, which we won't cover here. -RESDIR = PWD / "res" -NIBASENAME = "Fit_Ni_Bulk" - -RES_FILE = RESDIR / f"{NIBASENAME}.res" - -if RES_FILE.exists(): - with open(RES_FILE, "r") as file: - for line in file: - if line.split(" ")[0] == "Calib_Qbroad": - QBROAD_I = float(re.split(" +", line)[1]) - elif line.split(" ")[0] == "Calib_Qdamp": - QDAMP_I = float(re.split(" +", line)[1]) -else: - print("Ni example does not appear to be run\n") - print("The Ni example refines instrument parameters\n") - print("The instrument parameters are necessary to run this fit\n") - print("Please run the Ni example first\n") - -# If we want to run using multiprocessors, we can switch this to 'True'. -# This requires that the 'psutil' python package installed. -RUN_PARALLEL = False - - -# Functions that will carry out the refinement ################## -# 9: We define a function 'make_recipe' to make the recipe that -# the fit will follow. -def make_recipe(cif_path, dat_path): - """Creates and returns a Fit Recipe object. - - Parameters - ---------- - cif_path : string, The full path to the structure CIF file to load. - dat_path : string, The full path to the PDF data to be fit. - - Returns - ---------- - recipe : The initialized Fit Recipe object using the datname and - structure path provided. - """ - # 10: Create a CIF file parsing object, parse and load the structure, and - # grab the space group name. - p_cif = getParser("cif") - stru1 = p_cif.parseFile(cif_path) - sg = p_cif.spacegroup.short_name - - # 11: Create a Profile object for the experimental dataset and - # tell this profile the range and mesh of points in r-space. - profile = Profile() - parser = PDFParser() - parser.parseFile(dat_path) - profile.loadParsedData(parser) - profile.setCalculationRange(xmin=PDF_RMIN, xmax=PDF_RMAX, dx=PDF_RSTEP) - - # 12: Create a PDF Generator object for a periodic structure model. - generator_crystal1 = PDFGenerator("G1") - generator_crystal1.setStructure(stru1, periodic=True) - - # 13: Create a Fit Contribution object. - contribution = FitContribution("crystal") - contribution.addProfileGenerator(generator_crystal1) - - # If you have a multi-core computer (you probably do), run your - # refinement in parallel! - if RUN_PARALLEL: - try: - import multiprocessing - from multiprocessing import Pool - - import psutil - - syst_cores = multiprocessing.cpu_count() - cpu_percent = psutil.cpu_percent() - avail_cores = np.floor((100 - cpu_percent) / (100.0 / syst_cores)) - ncpu = int(np.max([1, avail_cores])) - pool = Pool(processes=ncpu) - generator_crystal1.parallel(ncpu=ncpu, mapfunc=pool.map) - except ImportError: - print( - "\nYou don't appear to have the necessary packages for " - "parallelization" - ) - - # 14: Set the Fit Contribution profile to the Profile object. - contribution.setProfile(profile, xname="r") - - # 15: Set an equation, based on your PDF generators. Here we add an extra - # layer of complexity, incorporating 'f' into our equation. This new term - # incorporates the effect of finite crystallite size damping on our PDF - # model. In this case we use a function which models a - # spherical NP 'sphericalCF'. - contribution.registerFunction(sphericalCF, name="f") - contribution.setEquation("s1*G1*f") - - # 16: Create the Fit Recipe object that holds all the details of the fit. - recipe = FitRecipe() - recipe.addContribution(contribution) - - # 17: Initialize the instrument parameters, Q_damp and Q_broad, and - # assign Q_max and Q_min. - generator_crystal1.qdamp.value = QDAMP_I - generator_crystal1.qbroad.value = QBROAD_I - generator_crystal1.setQmax(QMAX) - generator_crystal1.setQmin(QMIN) - - # 18: Add, initialize, and tag variables in the Fit Recipe object. - # In this case we also add 'psize', which is the NP size. - recipe.addVar(contribution.s1, SCALE_I, tag="scale") - recipe.addVar(contribution.psize, PSIZE_I, tag="psize") - - # 19: Use the srfit function 'constrainAsSpaceGroup' to constrain - # the lattice and ADP parameters according to the Fm-3m space group. - spacegroupparams = constrainAsSpaceGroup(generator_crystal1.phase, sg) - for par in spacegroupparams.latpars: - recipe.addVar( - par, value=CUBICLAT_I, fixed=False, name="fcc_Lat", tag="lat" - ) - for par in spacegroupparams.adppars: - recipe.addVar( - par, value=UISO_I, fixed=False, name="fcc_Uiso", tag="adp" - ) - - # 20: Add delta, but not instrumental parameters to Fit Recipe. - # The instrumental parameters will remain fixed at values obtained from - # the Ni calibrant in our previous example. As we have not added them - # through recipe.addVar, they cannot be refined. - recipe.addVar( - generator_crystal1.delta2, name="Pt_Delta2", value=DELTA2_I, tag="d2" - ) - - # 21: Return the Fit Recipe object to be optimized. - return recipe - - # End of function - - -# 22 We create a useful function 'plot_results' for writing a plot of the fit -# to disk. -def plot_results(recipe, fig_name): - """Creates plots of the fitted PDF and residual, and writes them to - disk as *.pdf files. - - Parameters - ---------- - recipe : The optimized Fit Recipe object containing the PDF data - we wish to plot. - fig_name : Path object, the full path to the figure file to create. - - Returns - ---------- - None - """ - if not isinstance(fig_name, Path): - fig_name = Path(fig_name) - - plt.clf() - plt.close("all") - # Get an array of the r-values we fitted over. - r = recipe.crystal.profile.x - - # Get an array of the observed PDF. - g = recipe.crystal.profile.y - - # Get an array of the calculated PDF. - gcalc = recipe.crystal.profile.ycalc - - # Make an array of identical shape as g which is offset from g. - diffzero = -0.65 * max(g) * np.ones_like(g) - - # Calculate the residual (difference) array and offset it vertically. - diff = g - gcalc + diffzero - - # Create a figure and an axis on which to plot - fig, ax1 = plt.subplots(1, 1) - - # Plot the difference offset line - ax1.plot(r, diffzero, lw=1.0, ls="--", c="black") - - # Plot the measured data - ax1.plot( - r, - g, - ls="None", - marker="o", - ms=5, - mew=0.2, - mfc="None", - label="G(r) Data", - ) - - # Plot the calculated data - ax1.plot(r, gcalc, lw=1.3, label="G(r) Fit") - - # Plot the difference - ax1.plot(r, diff, lw=1.2, label="G(r) diff") - - # Let's label the axes! - ax1.set_xlabel(r"r ($\mathrm{\AA}$)") - ax1.set_ylabel(r"G ($\mathrm{\AA}$$^{-2}$)") - - # Tune the tick markers. We are picky! - ax1.tick_params(axis="both", which="major", top=True, right=True) - - # Set the boundaries on the x-axis - ax1.set_xlim(r[0], r[-1]) - - # We definitely want a legend! - ax1.legend() - - # Let's use a tight layout. Shun wasted space! - plt.tight_layout() - - # This is going to make a figure pop up on screen for you to view. - # The script will pause until you close the figure! - plt.show() - - # Let's save the figure! - fig.savefig(fig_name.parent / f"{fig_name.name}.pdf", format="pdf") - - # End of function - - -# 23: We again create a 'main' function to be run when we execute the script. -def main(): - """This will run by default when the file is executed using 'python - file.py' in the command line. - - Parameters - ---------- - None - - Returns - ---------- - None - """ - - # Make some folders to store our output files. - resdir = PWD / "res" - fitdir = PWD / "fit" - figdir = PWD / "fig" - - folders = [resdir, fitdir, figdir] - - for folder in folders: - if not folder.exists(): - folder.mkdir() - - # Establish the location of the data and a name for our fit. - gr_path = DPATH / GR_NAME - basename = FIT_ID - print(basename) - - # Establish the full path of the CIF file with the structure of interest. - stru_path = DPATH / CIF_NAME - - # 24: Call 'make_recipe' to create our fit recipe. - recipe = make_recipe(str(stru_path), str(gr_path)) - - # Tell the Fit Recipe we want to write the maximum amount of - # information to the terminal during fitting. - recipe.fithooks[0].verbose = 3 - - # 25: As before, we fix all parameters, create a list of tags and, - # loop over them refining sequentially. In this example, we've added - # 'psize' because we want to refine the nanoparticle size. - recipe.fix("all") - - tags = ["lat", "scale", "psize", "adp", "d2", "all"] - for tag in tags: - recipe.free(tag) - least_squares(recipe.residual, recipe.values, x_scale="jac") - - # 26 Write the fitted data to a file. - profile = recipe.crystal.profile - profile.savetxt(fitdir / f"{basename}.fit") - - # 27 Print the fit results to the terminal. - res = FitResults(recipe) - res.printResults() - - # 28 Write the fit results to a file. - header = "crystal_HF.\n" - res.saveResults(resdir / f"{basename}.res", header=header) - - # 29 Write a plot of the fit to a (pdf) file. - plot_results(recipe, figdir / basename) - - # End of function - - -# This tells python to run the 'main' function we defined above. -if __name__ == "__main__": - main() - -# End of file diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py deleted file mode 100644 index ea2759d..0000000 --- a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py +++ /dev/null @@ -1,456 +0,0 @@ -import typing -from pathlib import Path - -import matplotlib.pyplot as plt -import numpy as np -from pyobjcryst import loadCrystal -from pyobjcryst.crystal import Crystal -from scipy.optimize import least_squares - -from diffpy.srfit.fitbase import ( - FitContribution, - FitRecipe, - FitResults, - Profile, -) -from diffpy.srfit.fitbase.parameterset import ParameterSet -from diffpy.srfit.pdf import PDFGenerator, PDFParser - - -# Recipe functions -def _create_recipe( - equation: str, - crystals: typing.Dict[str, Crystal], - functions: typing.Dict[ - str, typing.Tuple[typing.Callable, typing.List[str]] - ], - profile: Profile, - fc_name: str = "PDF", -) -> FitRecipe: - """Create the FitRecipe object. - - Parameters - ---------- - equation : - The equation of G(r). - crystals : - A mapping from the name of variable in the equation to the crystal - structure for PDF calculation. - functions : - A mapping from the name of variable in the equation to the python - function for PDF calculation. The first argument of the function - is the array of r, the other arguments are the parameters. - profile : - The data profile that contains both the metadata and the data. - fc_name : - The name of the FitContribution in the FitRecipe. Default "PDF". - - Returns - ------- - A FitRecipe object. - """ - fr = FitRecipe() - fc = FitContribution(fc_name) - for name, crystal in crystals.items(): - pg = PDFGenerator(name) - pg.setStructure(crystal, periodic=True) - fc.addProfileGenerator(pg) - for name, (f, argnames) in functions.items(): - fc.registerFunction(f, name=name, argnames=argnames) - fc.setEquation(equation) - fc.setProfile(profile, xname="r", yname="G", dyname="dG") - fr.addContribution(fc) - return fr - - -def _get_tags(phase: str, param: str) -> typing.List[str]: - """Get the tag names. - - Parameters - ---------- - phase - param - - Returns - ------- - """ - return [param, phase, "{}_{}".format(phase, param)] - - -def _get_name(*args: str) -> str: - """Get the name of the variable. - - Parameters - ---------- - args - - Returns - ------- - """ - return "_".join(args) - - -def _rename_par(name: str, atoms: list) -> str: - """Rename of the name of a parameter by replacing the index of the - atom in the name by the label of the atom and revert the order of - coordinates and atom name. - - Used for the space group constrained parameters. For example, "x_0" - where atom index 0 is Ni will become "Ni0_x" after renamed. - If the name can not renamed, return the original name. - - Parameters - ---------- - name - atoms - - Returns - ------- - """ - parts = name.split("_") - np = len(parts) - na = len(atoms) - if np > 1 and parts[1].isdigit() and -1 < int(parts[1]) < na: - parts[1] = atoms[int(parts[1])].name - parts = parts[::-1] - return "_".join(parts) - - -def _add_params_in_pg(recipe: FitRecipe, pg: PDFGenerator) -> None: - """Add parameters in the PDFGenerator. - - Parameters - ---------- - recipe - pg - - Returns - ------- - """ - name: str = pg.name - recipe.addVar( - pg.scale, - name=_get_name(name, "scale"), - value=0.4, - fixed=True, - tags=_get_tags(name, "scale"), - ).boundRange(0.0) - recipe.addVar( # Here we add Qdamp as a variable - pg.qdamp, - name=_get_name(name, "qdamp"), - value=0.04, - fixed=True, - tags=_get_tags(name, "qdamp"), - ).boundRange(0.0) - recipe.addVar( # Here we add Qbroad as a variable - pg.qbroad, - name=_get_name(name, "qbroad"), - value=0.02, - fixed=True, - tags=_get_tags(name, "qbroad"), - ).boundRange(0.0) - recipe.addVar( - pg.delta2, - name=_get_name(name, "delta2"), - value=2, - fixed=True, - tags=_get_tags(name, "delta2"), - ).boundRange(0.0) - latpars = pg.phase.sgpars.latpars - for par in latpars: - recipe.addVar( - par, - name=_get_name(name, par.name), - fixed=True, - tags=_get_tags(name, "lat"), - ).boundRange(0.0) - atoms: typing.List[ParameterSet] = pg.phase.getScatterers() - for atom in atoms: - par = atom.Biso - recipe.addVar( - par, - name=_get_name(name, atom.name, "Biso"), - value=0.02, - fixed=True, - tags=_get_tags(name, "adp"), - ).boundRange(0.0) - xyzpars = pg.phase.sgpars.xyzpars - for par in xyzpars: - par_name = _rename_par(par.name, atoms) - recipe.addVar( - par, - name=_get_name(name, par_name), - fixed=True, - tags=_get_tags(name, "xyz"), - ) - return - - -def _add_params_in_fc( - recipe: FitRecipe, - fc: FitContribution, - names: typing.List[str], - tags: typing.List[str], -) -> None: - """Add parameters in the FitContribution. - - Parameters - ---------- - recipe - fc - names - tags - - Returns - ------- - """ - for name in names: - par = getattr(fc, name) - recipe.addVar(par, value=100.0, fixed=True, tags=tags) - return - - -def _initialize_recipe( - recipe: FitRecipe, - functions: typing.Dict[ - str, typing.Tuple[typing.Callable, typing.List[str]] - ], - crystals: typing.Dict[str, Crystal], - fc_name: str = "PDF", -) -> None: - """Initialize the FitRecipe object with variables. - - The parameters are the scale of the PDF, the delta2 parameter in the - correction of correlated motions, the atomic displacement parameters (ADPs) - of the symmetric unique atoms, the x, y, z positions of the symmetric - unique atoms under the constraint of the symmetry and the parameters - in the functions registered in the FitContribution. - - Parameters - ---------- - recipe - functions - crystals - fc_name - - Returns - ------- - """ - fc: FitContribution = getattr(recipe, fc_name) - for name, (_, argnames) in functions.items(): - _add_params_in_fc(recipe, fc, argnames[1:], tags=[name]) - for name in crystals.keys(): - pg: PDFGenerator = getattr(fc, name) - _add_params_in_pg(recipe, pg) - recipe.clearFitHooks() - return - - -def create_recipe_from_files( - equation: str, - cif_files: typing.Dict[str, str], - functions: typing.Dict[ - str, typing.Tuple[typing.Callable, typing.List[str]] - ], - data_file: typing.Dict[str, str], - meta_data: typing.Dict[str, typing.Union[str, int, float]] = None, - fc_name: str = "PDF", -) -> FitRecipe: - """Create the FitRecipe object. - - Parameters - ---------- - equation : - The equation of G(r). - cif_files : - A mapping from the name of variable in the equation to cif files of the - crystal structure for PDF calculation. - functions : - A mapping from the name of variable in the equation to the python - function for PDF calculation. The first argument of the function is the - array of r, the other arguments are the parameters. - data_file : - The data file that be loaded into the data profile that contains both - the metadata and the data. - meta_data : - Additional metadata to add into the data profile. - fc_name : - The name of the FitContribution in the FitRecipe. Default "PDF". - - Returns - ------- - A FitRecipe object. - """ - if meta_data is None: - meta_data = {} - crystals = {n: loadCrystal(f) for n, f in cif_files.items()} - pp = PDFParser() - pp.parseFile(data_file) - profile = Profile() - profile.loadParsedData(pp) - profile.meta.update(meta_data) - recipe = _create_recipe( - equation, crystals, functions, profile, fc_name=fc_name - ) - _initialize_recipe(recipe, functions, crystals, fc_name=fc_name) - return recipe - - -# Optimize - - -def optimize_params( - recipe: FitRecipe, - steps: typing.List[typing.List[str]], - rmin: float = None, - rmax: float = None, - rstep: float = None, - print_step: bool = True, - fc_name: str = "PDF", - **kwargs, -) -> None: - """Optimize the parameters in the FitRecipe object using least - square regression. - - Parameters - ---------- - recipe : - The FitRecipe object. - steps : - A list of lists of parameter names in the recipe. They will be - free and refined one batch after another. Usually, the scale, lattice - should be refined before the APD and XYZ. - rmin : - The minimum r in the range for refinement. - If None, use the minimum r in the data. - rmax : - The maximum r in the range for refinement. - If None, use the maximum r in the data. - rstep : - The step of r in the range for refinement. - If None, use the step of r in the data. - print_step : - If True, print out the refinement step. Default True. - fc_name : - The name of the FitContribution in the FitRecipe. Default "PDF". - kwargs : - The kwargs for the `scipy.optimize.least_square`. - - Returns - ------- - None. - """ - n = len(steps) - fc: FitContribution = getattr(recipe, fc_name) - p: Profile = fc.profile - p.setCalculationRange(xmin=rmin, xmax=rmax, dx=rstep) - for step in steps: - recipe.fix(*step) - for i, step in enumerate(steps): - recipe.free(*step) - if print_step: - print( - "Step {} / {}: refine {}".format( - i + 1, n, ", ".join(recipe.getNames()) - ), - end="\r", - ) - least_squares( - recipe.residual, - recipe.getValues(), - bounds=recipe.getBounds2(), - **kwargs, - ) - return - - -# Visualize fits -def visualize_fits( - recipe: FitRecipe, xlim: typing.Tuple = None, fc_name: str = "PDF" -) -> None: - """Visualize the fits in the FitRecipe object. - - Parameters - ---------- - recipe : - The FitRecipe object. - xlim : - The boundary of the x to show in the plot. - fc_name : - The name of the FitContribution in the FitRecipe. Default "PDF". - - Returns - ------- - None. - """ - # get data - fc = getattr(recipe, fc_name) - r = fc.profile.x - g = fc.profile.y - gcalc = fc.profile.ycalc - if xlim is not None: - sel = np.logical_and(r >= xlim[0], r <= xlim[1]) - r = r[sel] - g = g[sel] - gcalc = gcalc[sel] - gdiff = g - gcalc - diffzero = -0.8 * np.max(g) * np.ones_like(g) - # plot figure - _, ax = plt.subplots() - ax.plot(r, g, "bo", label="G(r) Data") - ax.plot(r, gcalc, "r-", label="G(r) Fit") - ax.plot(r, gdiff + diffzero, "g-", label="G(r) Diff") - ax.plot(r, diffzero, "k-") - ax.set_xlabel(r"$r (\AA)$") - ax.set_ylabel(r"$G (\AA^{-2})$") - ax.legend(loc=1) - plt.show() - return - - -# Save results in files -def save_results( - recipe: FitRecipe, - directory: str, - file_stem: str, - pg_names: typing.List[str] = None, - fc_name: str = "PDF", - adp_iso=True, -) -> None: - """Save the parameters, fits and structures in the FitRecipe object. - - Parameters - ---------- - recipe : - The FitRecipe object. - directory : - The directory to output the files. - file_stem : - The stem of the filename. - pg_names : - The name of the PDFGenerators (it will also be the - name of the structures) to save. If None, not to save. - fc_name - The name of the FitContribution in the FitRecipe. Default "PDF". - Returns - ------- - None. - """ - d_path = Path(directory) - d_path.mkdir(parents=True, exist_ok=True) - f_path = d_path.joinpath(file_stem) - fr = FitResults(recipe) - fr.saveResults(str(f_path.with_suffix(".res"))) - fc: FitContribution = getattr(recipe, fc_name) - profile: Profile = fc.profile - profile.savetxt(str(f_path.with_suffix(".fgr"))) - if pg_names is not None: - for pg_name in pg_names: - pg: PDFGenerator = getattr(fc, pg_name) - stru: Crystal = pg.stru - cif_path = f_path.with_name( - "{}_{}".format(f_path.stem, pg_name) - ).with_suffix(".cif") - with cif_path.open("w") as f: - stru.CIFOutput(f) - return diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res deleted file mode 100644 index 0297506..0000000 --- a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res +++ /dev/null @@ -1,32 +0,0 @@ -Results written: Mon Nov 24 20:56:33 2025 -produced by cadenmyers -crystal_HF. - -Some quantities invalid due to missing profile uncertainty -Overall (Chi2 and Reduced Chi2 invalid) ------------------------------------------------------------------------------- -Residual 10.57852943 -Contributions 10.57852943 -Restraints 0.00000000 -Chi2 10.57852943 -Reduced Chi2 0.00218339 -Rw 0.02942970 - -Variables (Uncertainties invalid) ------------------------------------------------------------------------------- -Calib_Qbroad 1.68086175e-02 +/- 2.59401198e-03 -Calib_Qdamp 4.52977362e-02 +/- 9.58279254e-04 -Ni_Delta2 1.95751704e+00 +/- 3.00262551e-01 -fcc_ADP 5.87580800e-03 +/- 1.65380444e-04 -fcc_Lat 3.52458308e+00 +/- 2.30476044e-04 -s1 4.36675971e-01 +/- 7.47793282e-03 - -Variable Correlations greater than 25% (Correlations invalid) ------------------------------------------------------------------------------- -corr(fcc_ADP, Calib_Qbroad) -0.7338 -corr(Calib_Qdamp, Calib_Qbroad) -0.7333 -corr(s1, fcc_ADP) 0.6691 -corr(s1, Calib_Qdamp) 0.6286 -corr(fcc_ADP, Calib_Qdamp) 0.4992 -corr(s1, Calib_Qbroad) -0.4562 -corr(fcc_ADP, Ni_Delta2) 0.3226 From d91fa7a5c6b63d993ea154c527d229f8fbec40b4 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:00:13 -0500 Subject: [PATCH 06/14] adjust comments --- src/diffpy/cmipdf/__init__.py | 15 ++++++++------- src/diffpy/cmipdf/basepdfgenerator.py | 15 ++++++++------- src/diffpy/cmipdf/characteristicfunctions.py | 15 ++++++++------- src/diffpy/cmipdf/debyepdfgenerator.py | 15 ++++++++------- src/diffpy/cmipdf/pdfcontribution.py | 15 ++++++++------- src/diffpy/cmipdf/pdfgenerator.py | 15 ++++++++------- src/diffpy/cmipdf/pdfparser.py | 15 ++++++++------- 7 files changed, 56 insertions(+), 49 deletions(-) diff --git a/src/diffpy/cmipdf/__init__.py b/src/diffpy/cmipdf/__init__.py index 8c64ffb..d73ef6d 100644 --- a/src/diffpy/cmipdf/__init__.py +++ b/src/diffpy/cmipdf/__init__.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2008 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """PDF calculation tools.""" diff --git a/src/diffpy/cmipdf/basepdfgenerator.py b/src/diffpy/cmipdf/basepdfgenerator.py index da867bc..e3ab3e8 100644 --- a/src/diffpy/cmipdf/basepdfgenerator.py +++ b/src/diffpy/cmipdf/basepdfgenerator.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2008 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """PDF profile generator base class. diff --git a/src/diffpy/cmipdf/characteristicfunctions.py b/src/diffpy/cmipdf/characteristicfunctions.py index 9846e13..8ad43b4 100644 --- a/src/diffpy/cmipdf/characteristicfunctions.py +++ b/src/diffpy/cmipdf/characteristicfunctions.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2010 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """Form factors (characteristic functions) used in PDF nanoshape diff --git a/src/diffpy/cmipdf/debyepdfgenerator.py b/src/diffpy/cmipdf/debyepdfgenerator.py index 864da84..e5cdf63 100644 --- a/src/diffpy/cmipdf/debyepdfgenerator.py +++ b/src/diffpy/cmipdf/debyepdfgenerator.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2008 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """PDF profile generator using the Debye equation. diff --git a/src/diffpy/cmipdf/pdfcontribution.py b/src/diffpy/cmipdf/pdfcontribution.py index 68bdac8..6cb273b 100644 --- a/src/diffpy/cmipdf/pdfcontribution.py +++ b/src/diffpy/cmipdf/pdfcontribution.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2010 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """PDFContribution class. diff --git a/src/diffpy/cmipdf/pdfgenerator.py b/src/diffpy/cmipdf/pdfgenerator.py index 0baa303..eb9054b 100644 --- a/src/diffpy/cmipdf/pdfgenerator.py +++ b/src/diffpy/cmipdf/pdfgenerator.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2008 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """PDF profile generator. diff --git a/src/diffpy/cmipdf/pdfparser.py b/src/diffpy/cmipdf/pdfparser.py index f2d32cc..e1eceff 100644 --- a/src/diffpy/cmipdf/pdfparser.py +++ b/src/diffpy/cmipdf/pdfparser.py @@ -1,15 +1,16 @@ #!/usr/bin/env python ############################################################################## # -# diffpy.srfit by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2008 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 Simon Billinge. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. # ############################################################################## """This module contains parsers for PDF data. From e6565a55e00e9317eca6e325b37cac023037943f Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:05:30 -0500 Subject: [PATCH 07/14] add diffpy.srfit as requirement in conda.txt --- requirements/conda.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/requirements/conda.txt b/requirements/conda.txt index 24ce15a..eacb3e1 100644 --- a/requirements/conda.txt +++ b/requirements/conda.txt @@ -1 +1,2 @@ numpy +diffpy.srfit From e8485b99432ce596fb5dd34a4c18aa39ae7bbe9a Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:05:58 -0500 Subject: [PATCH 08/14] rm placeholder test --- tests/test_functions.py | 40 ---------------------------------------- 1 file changed, 40 deletions(-) delete mode 100644 tests/test_functions.py diff --git a/tests/test_functions.py b/tests/test_functions.py deleted file mode 100644 index 767be58..0000000 --- a/tests/test_functions.py +++ /dev/null @@ -1,40 +0,0 @@ -import numpy as np -import pytest - -from diffpy.cmipdf import functions # noqa - - -def test_dot_product_2D_list(): - a = [1, 2] - b = [3, 4] - expected = 11.0 - actual = functions.dot_product(a, b) - assert actual == expected - - -def test_dot_product_3D_list(): - a = [1, 2, 3] - b = [4, 5, 6] - expected = 32.0 - actual = functions.dot_product(a, b) - assert actual == expected - - -@pytest.mark.parametrize( - "a, b, expected", - [ - # Test whether the dot product function works with 2D and 3D vectors - # C1: lists, expect correct float output - ([1, 2], [3, 4], 11.0), - ([1, 2, 3], [4, 5, 6], 32.0), - # C2: tuples, expect correct float output - ((1, 2), (3, 4), 11.0), - ((1, 2, 3), (4, 5, 6), 32.0), - # C3: numpy arrays, expect correct float output - (np.array([1, 2]), np.array([3, 4]), 11.0), - (np.array([1, 2, 3]), np.array([4, 5, 6]), 32.0), - ], -) -def test_dot_product(a, b, expected): - actual = functions.dot_product(a, b) - assert actual == expected From 169ac1e7a0b5a88c1c80dd38555576d06ecad605 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:18:41 -0500 Subject: [PATCH 09/14] copy over pdf test --- tests/__init__.py | 0 tests/conftest.py | 65 +- tests/test_pdf.py | 321 + tests/testdata/ni-q27r100-neutron.gr | 10052 +++++++++++++++++++++++++ tests/testdata/ni.cif | 236 + tests/testdata/si-q27r60-xray.gr | 6133 +++++++++++++++ 6 files changed, 16794 insertions(+), 13 deletions(-) create mode 100644 tests/__init__.py create mode 100644 tests/test_pdf.py create mode 100644 tests/testdata/ni-q27r100-neutron.gr create mode 100644 tests/testdata/ni.cif create mode 100644 tests/testdata/si-q27r60-xray.gr diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/conftest.py b/tests/conftest.py index e3b6313..ea09502 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -1,19 +1,58 @@ -import json -from pathlib import Path +import importlib.resources +import logging +from functools import lru_cache import pytest +logger = logging.getLogger(__name__) -@pytest.fixture -def user_filesystem(tmp_path): - base_dir = Path(tmp_path) - home_dir = base_dir / "home_dir" - home_dir.mkdir(parents=True, exist_ok=True) - cwd_dir = base_dir / "cwd_dir" - cwd_dir.mkdir(parents=True, exist_ok=True) - home_config_data = {"username": "home_username", "email": "home@email.com"} - with open(home_dir / "diffpyconfig.json", "w") as f: - json.dump(home_config_data, f) +# diffpy.structure +@lru_cache() +def has_diffpy_structure(): + try: + import diffpy.structure as m - yield tmp_path + del m + return True + except ImportError: + logger.warning( + "Cannot import diffpy.structure, Structure tests skipped." + ) + return False + + +# diffpy.srreal + + +@lru_cache() +def has_diffpy_srreal(): + try: + import diffpy.srreal.pdfcalculator as m + + del m + return True + except ImportError: + logger.warning("Cannot import diffpy.srreal, PDF tests skipped.") + return False + + +@pytest.fixture(scope="session") +def diffpy_structure_available(): + return has_diffpy_structure() + + +@pytest.fixture(scope="session") +def diffpy_srreal_available(): + return has_diffpy_srreal() + + +@pytest.fixture(scope="session") +def datafile(): + """Fixture to load a test data file from the testdata package + directory.""" + + def _datafile(filename): + return importlib.resources.files("tests.testdata").joinpath(filename) + + return _datafile diff --git a/tests/test_pdf.py b/tests/test_pdf.py new file mode 100644 index 0000000..b64071d --- /dev/null +++ b/tests/test_pdf.py @@ -0,0 +1,321 @@ +#!/usr/bin/env python +############################################################################## +# +# (c) 2025 Simon Billinge. +# All rights reserved. +# +# File coded by: Caden Myers, Simon Billinge, and members of the Billinge +# group. +# +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/diffpy.cmipdf/graphs/contributors +# +# See LICENSE.rst for license information. +# +############################################################################## +"""Tests for pdf package.""" + +import io +import pickle +import unittest +from itertools import chain + +import numpy +import pytest + +from diffpy.cmipdf import PDFContribution, PDFGenerator, PDFParser +from diffpy.srfit.exceptions import SrFitError + +# ---------------------------------------------------------------------------- + + +def testParser1(datafile): + data = datafile("ni-q27r100-neutron.gr") + parser = PDFParser() + parser.parseFile(data) + + meta = parser._meta + + assert data == meta["filename"] + assert 1 == meta["nbanks"] + assert "N" == meta["stype"] + assert 27 == meta["qmax"] + assert 300 == meta.get("temperature") + assert meta.get("qdamp") is None + assert meta.get("qbroad") is None + assert meta.get("spdiameter") is None + assert meta.get("scale") is None + assert meta.get("doping") is None + + x, y, dx, dy = parser.getData() + assert dx is None + assert dy is None + + testx = numpy.linspace(0.01, 100, 10000) + diff = testx - x + res = numpy.dot(diff, diff) + assert 0 == pytest.approx(res) + + testy = numpy.array( + [ + 1.144, + 2.258, + 3.312, + 4.279, + 5.135, + 5.862, + 6.445, + 6.875, + 7.150, + 7.272, + ] + ) + diff = testy - y[:10] + res = numpy.dot(diff, diff) + assert 0 == pytest.approx(res) + + return + + +def testParser2(datafile): + data = datafile("si-q27r60-xray.gr") + parser = PDFParser() + parser.parseFile(data) + + meta = parser._meta + + assert data == meta["filename"] + assert 1 == meta["nbanks"] + assert "X" == meta["stype"] + assert 27 == meta["qmax"] + assert 300 == meta.get("temperature") + assert meta.get("qdamp") is None + assert meta.get("qbroad") is None + assert meta.get("spdiameter") is None + assert meta.get("scale") is None + assert meta.get("doping") is None + + x, y, dx, dy = parser.getData() + testx = numpy.linspace(0.01, 60, 5999, endpoint=False) + diff = testx - x + res = numpy.dot(diff, diff) + assert 0 == pytest.approx(res) + + testy = numpy.array( + [ + 0.1105784, + 0.2199684, + 0.3270088, + 0.4305913, + 0.5296853, + 0.6233606, + 0.7108060, + 0.7913456, + 0.8644501, + 0.9297440, + ] + ) + diff = testy - y[:10] + res = numpy.dot(diff, diff) + assert 0 == pytest.approx(res) + + testdy = numpy.array( + [ + 0.001802192, + 0.003521449, + 0.005079115, + 0.006404892, + 0.007440527, + 0.008142955, + 0.008486813, + 0.008466340, + 0.008096858, + 0.007416456, + ] + ) + diff = testdy - dy[:10] + res = numpy.dot(diff, diff) + assert 0 == pytest.approx(res) + + assert dx is None + return + + +def testGenerator( + diffpy_srreal_available, diffpy_structure_available, datafile +): + if not diffpy_structure_available: + pytest.skip("diffpy.structure package not available") + if not diffpy_srreal_available: + pytest.skip("diffpy.srreal package not available") + + from diffpy.srreal.pdfcalculator import PDFCalculator + from diffpy.structure import PDFFitStructure + + qmax = 27.0 + gen = PDFGenerator() + gen.setScatteringType("N") + assert "N" == gen.getScatteringType() + gen.setQmax(qmax) + assert qmax == pytest.approx(gen.getQmax()) + + stru = PDFFitStructure() + ciffile = datafile("ni.cif") + cif_path = str(ciffile) + stru.read(cif_path) + for i in range(4): + stru[i].Bisoequiv = 1 + gen.setStructure(stru) + + calc = gen._calc + # Test parameters + for par in gen.iterPars(recurse=False): + pname = par.name + defval = calc._getDoubleAttr(pname) + assert defval == par.getValue() + # Test setting values + par.setValue(1.0) + assert 1.0 == par.getValue() + par.setValue(defval) + assert defval == par.getValue() + + r = numpy.arange(0, 10, 0.1) + y = gen(r) + + # Now create a reference PDF. Since the calculator is testing its + # output, we just have to make sure we can calculate from the + # PDFGenerator interface. + + calc = PDFCalculator() + calc.rstep = r[1] - r[0] + calc.rmin = r[0] + calc.rmax = r[-1] + 0.5 * calc.rstep + calc.qmax = qmax + calc.setScatteringFactorTableByType("N") + calc.eval(stru) + yref = calc.pdf + + diff = y - yref + res = numpy.dot(diff, diff) + assert 0 == pytest.approx(res) + return + + +def test_setQmin(diffpy_structure_available, diffpy_srreal_available): + """Verify qmin is propagated to the calculator object.""" + if not diffpy_srreal_available: + pytest.skip("diffpy.srreal package not available") + + gen = PDFGenerator() + assert 0 == gen.getQmin() + assert 0 == gen._calc.qmin + gen.setQmin(0.93) + assert 0.93 == gen.getQmin() + assert 0.93 == gen._calc.qmin + return + + +def test_setQmax(diffpy_structure_available, diffpy_srreal_available): + """Check PDFContribution.setQmax()""" + if not diffpy_structure_available: + pytest.skip("diffpy.structure package not available") + from diffpy.structure import Structure + + if not diffpy_srreal_available: + pytest.skip("diffpy.srreal package not available") + + pc = PDFContribution("pdf") + pc.setQmax(21) + pc.addStructure("empty", Structure()) + assert 21 == pc.empty.getQmax() + pc.setQmax(22) + assert 22 == pc.getQmax() + assert 22 == pc.empty.getQmax() + return + + +def test_getQmax(diffpy_structure_available, diffpy_srreal_available): + """Check PDFContribution.getQmax()""" + if not diffpy_structure_available: + pytest.skip("diffpy.structure package not available") + from diffpy.structure import Structure + + if not diffpy_srreal_available: + pytest.skip("diffpy.srreal package not available") + + # cover all code branches in PDFContribution._getMetaValue + # (1) contribution metadata + pc1 = PDFContribution("pdf") + assert pc1.getQmax() is None + pc1.setQmax(17) + assert 17 == pc1.getQmax() + # (2) contribution metadata + pc2 = PDFContribution("pdf") + pc2.addStructure("empty", Structure()) + pc2.empty.setQmax(18) + assert 18 == pc2.getQmax() + # (3) profile metadata + pc3 = PDFContribution("pdf") + pc3.profile.meta["qmax"] = 19 + assert 19 == pc3.getQmax() + return + + +def test_savetxt( + diffpy_structure_available, diffpy_srreal_available, datafile +): + "check PDFContribution.savetxt()" + if not diffpy_structure_available: + pytest.skip("diffpy.structure package not available") + from diffpy.structure import Structure + + if not diffpy_srreal_available: + pytest.skip("diffpy.srreal package not available") + + pc = PDFContribution("pdf") + pc.loadData(datafile("si-q27r60-xray.gr")) + pc.setCalculationRange(0, 10) + pc.addStructure("empty", Structure()) + fp = io.BytesIO() + with pytest.raises(SrFitError): + pc.savetxt(fp) + pc.evaluate() + pc.savetxt(fp) + txt = fp.getvalue().decode() + nlines = len(txt.strip().split("\n")) + assert 1001 == nlines + return + + +def test_pickling( + diffpy_structure_available, diffpy_srreal_available, datafile +): + "validate PDFContribution.residual() after pickling." + if not diffpy_structure_available: + pytest.skip("diffpy.structure package not available") + from diffpy.structure import loadStructure + + if not diffpy_srreal_available: + pytest.skip("diffpy.srreal package not available") + + pc = PDFContribution("pdf") + pc.loadData(datafile("ni-q27r100-neutron.gr")) + ciffile = datafile("ni.cif") + cif_path = str(ciffile) + ni = loadStructure(cif_path) + ni.Uisoequiv = 0.003 + pc.addStructure("ni", ni) + pc.setCalculationRange(0, 10) + pc2 = pickle.loads(pickle.dumps(pc)) + res0 = pc.residual() + assert numpy.array_equal(res0, pc2.residual()) + for p in chain(pc.iterPars("Uiso"), pc2.iterPars("Uiso")): + p.value = 0.004 + res1 = pc.residual() + assert not numpy.allclose(res0, res1) + assert numpy.array_equal(res1, pc2.residual()) + return + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/testdata/ni-q27r100-neutron.gr b/tests/testdata/ni-q27r100-neutron.gr new file mode 100644 index 0000000..1b18d9a --- /dev/null +++ b/tests/testdata/ni-q27r100-neutron.gr @@ -0,0 +1,10052 @@ +# History written: Tue May 6 11:04:33 2008 +# produced by bozin +# ##### Run Information runCorrection=T +# prep=gsas machine=npdf +# run=npdf_03315 background=npdf_03001 +# smooth=2 smoothParam=32 32 0 backKillThresh=-1.0 +# in beam: radius=0.45325 height=4.5 +# temp=300 runTitle=Run 3315: Ni commercial, RT_stick +# +# ##### Vanadium runCorrection=T +# run=npdf_03000 background=npdf_03001 +# smooth=2 smoothParam=32 32 0 vanKillThresh=-1.0 vBackKillThresh=-1.0 +# in beam: radius=0.47625 height=4.5 +# +# ##### Container runCorrection=T +# run=npdf_03002 background=npdf_03001 +# smooth=2 smoothParam=32 32 0 cBackKillThresh=-1.0 +# wallThick=0.023 atomDensity=0.072110 +# atomic information: scattCS=5.100 absorpCS=5.080 +# +# ##### Sample Material numElements=1 NormLaue=0.00000 +# Element relAtomNum atomMass atomCoherCS atomIncoherCS atomAbsorpCS +# Ni 1.0000 58.693 13.3000 5.2000 4.49000 +# density=7.0 effDensity=2.8777 +# +# ##### Banks=4 deltaQ=0.01 matchRef=0 matchScal=T matchOffset=T +# bank angle blendQmin blendQmax (0.0 means no info) +# 1 46.6 0.87 21.63 +# 2 90.0 1.51 37.66 +# 3 119.0 1.84 45.96 +# 4 148.0 2.05 51.25 +# +# ##### Program Specific Information +# ## Ft calcError=1 (1 for true, 0 for false) +# numRpoints=10000 maxR=100.0 numDensity=0.0 intMaxR=1.5 +# ## Damp Qmin=0.87 Qmax=27.0 startDampQ=27.0 QAveMin=0.6 +# dampFuncType=0 modEqn=1.0000*S(Q) +0.0000 +0.0000*Q dampExtraToZero=0 +# ## Blend numBanks=4 banks=1,2,3,4 +# soqCorrFile= +# ## Soqd minProcOut=0 +# samPlazcek=1 vanPlazcek=1 smoothData=0 modifyData=1 +# ## Corps minProcOut=0 numBanksMiss=0 +# +# ##### prepgsas prepOutput=1 numBanksMiss=0 fileExt=gsa +# instParamFile=npdf_TL-displex_2018.iparm +# numBanksAdd=0 +# numBanksMult=0 +##### start data +#O0 rg_int sig_rg_int low_int sig_low_int rmax rhofit +#S 1 - PDF from PDFgetN +#P0 -68.04163 47.30471 0.14884 0.13136 1.50 0.1091 +#L r G(r) dr dG(r) + 0.010 1.144 + 0.020 2.258 + 0.030 3.312 + 0.040 4.279 + 0.050 5.135 + 0.060 5.862 + 0.070 6.445 + 0.080 6.875 + 0.090 7.150 + 0.100 7.272 + 0.110 7.249 + 0.120 7.093 + 0.130 6.820 + 0.140 6.449 + 0.150 6.002 + 0.160 5.500 + 0.170 4.965 + 0.180 4.416 + 0.190 3.874 + 0.200 3.354 + 0.210 2.868 + 0.220 2.426 + 0.230 2.034 + 0.240 1.694 + 0.250 1.405 + 0.260 1.163 + 0.270 0.964 + 0.280 0.800 + 0.290 0.662 + 0.300 0.542 + 0.310 0.433 + 0.320 0.326 + 0.330 0.217 + 0.340 0.101 + 0.350 -0.024 + 0.360 -0.160 + 0.370 -0.305 + 0.380 -0.459 + 0.390 -0.616 + 0.400 -0.775 + 0.410 -0.930 + 0.420 -1.077 + 0.430 -1.214 + 0.440 -1.337 + 0.450 -1.445 + 0.460 -1.536 + 0.470 -1.612 + 0.480 -1.672 + 0.490 -1.721 + 0.500 -1.759 + 0.510 -1.792 + 0.520 -1.821 + 0.530 -1.851 + 0.540 -1.883 + 0.550 -1.921 + 0.560 -1.964 + 0.570 -2.013 + 0.580 -2.068 + 0.590 -2.126 + 0.600 -2.184 + 0.610 -2.241 + 0.620 -2.293 + 0.630 -2.336 + 0.640 -2.367 + 0.650 -2.383 + 0.660 -2.384 + 0.670 -2.368 + 0.680 -2.334 + 0.690 -2.285 + 0.700 -2.223 + 0.710 -2.151 + 0.720 -2.072 + 0.730 -1.991 + 0.740 -1.912 + 0.750 -1.839 + 0.760 -1.776 + 0.770 -1.726 + 0.780 -1.691 + 0.790 -1.672 + 0.800 -1.669 + 0.810 -1.680 + 0.820 -1.704 + 0.830 -1.736 + 0.840 -1.773 + 0.850 -1.811 + 0.860 -1.846 + 0.870 -1.873 + 0.880 -1.888 + 0.890 -1.889 + 0.900 -1.874 + 0.910 -1.842 + 0.920 -1.794 + 0.930 -1.732 + 0.940 -1.658 + 0.950 -1.576 + 0.960 -1.490 + 0.970 -1.405 + 0.980 -1.326 + 0.990 -1.257 + 1.000 -1.202 + 1.010 -1.164 + 1.020 -1.145 + 1.030 -1.146 + 1.040 -1.165 + 1.050 -1.202 + 1.060 -1.254 + 1.070 -1.316 + 1.080 -1.386 + 1.090 -1.457 + 1.100 -1.525 + 1.110 -1.586 + 1.120 -1.636 + 1.130 -1.671 + 1.140 -1.690 + 1.150 -1.692 + 1.160 -1.677 + 1.170 -1.647 + 1.180 -1.604 + 1.190 -1.552 + 1.200 -1.495 + 1.210 -1.437 + 1.220 -1.382 + 1.230 -1.335 + 1.240 -1.300 + 1.250 -1.278 + 1.260 -1.273 + 1.270 -1.284 + 1.280 -1.311 + 1.290 -1.352 + 1.300 -1.406 + 1.310 -1.467 + 1.320 -1.533 + 1.330 -1.600 + 1.340 -1.662 + 1.350 -1.717 + 1.360 -1.760 + 1.370 -1.790 + 1.380 -1.805 + 1.390 -1.804 + 1.400 -1.789 + 1.410 -1.760 + 1.420 -1.720 + 1.430 -1.673 + 1.440 -1.622 + 1.450 -1.571 + 1.460 -1.524 + 1.470 -1.485 + 1.480 -1.455 + 1.490 -1.437 + 1.500 -1.431 + 1.510 -1.439 + 1.520 -1.458 + 1.530 -1.486 + 1.540 -1.522 + 1.550 -1.561 + 1.560 -1.600 + 1.570 -1.636 + 1.580 -1.665 + 1.590 -1.684 + 1.600 -1.692 + 1.610 -1.688 + 1.620 -1.671 + 1.630 -1.643 + 1.640 -1.606 + 1.650 -1.562 + 1.660 -1.516 + 1.670 -1.471 + 1.680 -1.433 + 1.690 -1.404 + 1.700 -1.388 + 1.710 -1.388 + 1.720 -1.405 + 1.730 -1.441 + 1.740 -1.494 + 1.750 -1.563 + 1.760 -1.644 + 1.770 -1.733 + 1.780 -1.826 + 1.790 -1.918 + 1.800 -2.003 + 1.810 -2.077 + 1.820 -2.135 + 1.830 -2.174 + 1.840 -2.192 + 1.850 -2.189 + 1.860 -2.165 + 1.870 -2.123 + 1.880 -2.066 + 1.890 -1.999 + 1.900 -1.927 + 1.910 -1.856 + 1.920 -1.792 + 1.930 -1.740 + 1.940 -1.704 + 1.950 -1.689 + 1.960 -1.695 + 1.970 -1.725 + 1.980 -1.775 + 1.990 -1.844 + 2.000 -1.927 + 2.010 -2.018 + 2.020 -2.112 + 2.030 -2.202 + 2.040 -2.281 + 2.050 -2.344 + 2.060 -2.385 + 2.070 -2.402 + 2.080 -2.394 + 2.090 -2.359 + 2.100 -2.302 + 2.110 -2.226 + 2.120 -2.137 + 2.130 -2.044 + 2.140 -1.953 + 2.150 -1.873 + 2.160 -1.812 + 2.170 -1.775 + 2.180 -1.767 + 2.190 -1.789 + 2.200 -1.839 + 2.210 -1.914 + 2.220 -2.004 + 2.230 -2.097 + 2.240 -2.178 + 2.250 -2.228 + 2.260 -2.228 + 2.270 -2.157 + 2.280 -1.993 + 2.290 -1.717 + 2.300 -1.309 + 2.310 -0.757 + 2.320 -0.048 + 2.330 0.820 + 2.340 1.848 + 2.350 3.028 + 2.360 4.345 + 2.370 5.779 + 2.380 7.303 + 2.390 8.885 + 2.400 10.488 + 2.410 12.073 + 2.420 13.599 + 2.430 15.023 + 2.440 16.307 + 2.450 17.414 + 2.460 18.310 + 2.470 18.970 + 2.480 19.373 + 2.490 19.508 + 2.500 19.371 + 2.510 18.966 + 2.520 18.306 + 2.530 17.411 + 2.540 16.307 + 2.550 15.027 + 2.560 13.609 + 2.570 12.090 + 2.580 10.513 + 2.590 8.918 + 2.600 7.343 + 2.610 5.824 + 2.620 4.393 + 2.630 3.075 + 2.640 1.889 + 2.650 0.850 + 2.660 -0.036 + 2.670 -0.768 + 2.680 -1.351 + 2.690 -1.796 + 2.700 -2.116 + 2.710 -2.330 + 2.720 -2.457 + 2.730 -2.517 + 2.740 -2.531 + 2.750 -2.518 + 2.760 -2.495 + 2.770 -2.477 + 2.780 -2.476 + 2.790 -2.498 + 2.800 -2.548 + 2.810 -2.628 + 2.820 -2.736 + 2.830 -2.866 + 2.840 -3.014 + 2.850 -3.170 + 2.860 -3.327 + 2.870 -3.477 + 2.880 -3.613 + 2.890 -3.727 + 2.900 -3.817 + 2.910 -3.878 + 2.920 -3.910 + 2.930 -3.916 + 2.940 -3.897 + 2.950 -3.859 + 2.960 -3.808 + 2.970 -3.750 + 2.980 -3.691 + 2.990 -3.640 + 3.000 -3.600 + 3.010 -3.577 + 3.020 -3.575 + 3.030 -3.594 + 3.040 -3.635 + 3.050 -3.696 + 3.060 -3.774 + 3.070 -3.864 + 3.080 -3.960 + 3.090 -4.058 + 3.100 -4.151 + 3.110 -4.233 + 3.120 -4.299 + 3.130 -4.344 + 3.140 -4.367 + 3.150 -4.366 + 3.160 -4.340 + 3.170 -4.292 + 3.180 -4.224 + 3.190 -4.141 + 3.200 -4.046 + 3.210 -3.946 + 3.220 -3.844 + 3.230 -3.746 + 3.240 -3.655 + 3.250 -3.574 + 3.260 -3.503 + 3.270 -3.442 + 3.280 -3.388 + 3.290 -3.339 + 3.300 -3.287 + 3.310 -3.228 + 3.320 -3.153 + 3.330 -3.056 + 3.340 -2.928 + 3.350 -2.764 + 3.360 -2.558 + 3.370 -2.306 + 3.380 -2.006 + 3.390 -1.659 + 3.400 -1.268 + 3.410 -0.838 + 3.420 -0.377 + 3.430 0.105 + 3.440 0.596 + 3.450 1.083 + 3.460 1.552 + 3.470 1.988 + 3.480 2.380 + 3.490 2.713 + 3.500 2.976 + 3.510 3.162 + 3.520 3.262 + 3.530 3.275 + 3.540 3.199 + 3.550 3.036 + 3.560 2.791 + 3.570 2.473 + 3.580 2.091 + 3.590 1.657 + 3.600 1.184 + 3.610 0.685 + 3.620 0.173 + 3.630 -0.338 + 3.640 -0.837 + 3.650 -1.313 + 3.660 -1.758 + 3.670 -2.165 + 3.680 -2.531 + 3.690 -2.852 + 3.700 -3.129 + 3.710 -3.364 + 3.720 -3.561 + 3.730 -3.722 + 3.740 -3.855 + 3.750 -3.963 + 3.760 -4.054 + 3.770 -4.130 + 3.780 -4.198 + 3.790 -4.260 + 3.800 -4.318 + 3.810 -4.373 + 3.820 -4.426 + 3.830 -4.475 + 3.840 -4.519 + 3.850 -4.556 + 3.860 -4.584 + 3.870 -4.600 + 3.880 -4.602 + 3.890 -4.591 + 3.900 -4.566 + 3.910 -4.528 + 3.920 -4.479 + 3.930 -4.421 + 3.940 -4.358 + 3.950 -4.294 + 3.960 -4.234 + 3.970 -4.181 + 3.980 -4.138 + 3.990 -4.107 + 4.000 -4.090 + 4.010 -4.084 + 4.020 -4.086 + 4.030 -4.091 + 4.040 -4.092 + 4.050 -4.077 + 4.060 -4.035 + 4.070 -3.953 + 4.080 -3.815 + 4.090 -3.607 + 4.100 -3.314 + 4.110 -2.922 + 4.120 -2.419 + 4.130 -1.796 + 4.140 -1.045 + 4.150 -0.165 + 4.160 0.844 + 4.170 1.975 + 4.180 3.216 + 4.190 4.553 + 4.200 5.965 + 4.210 7.428 + 4.220 8.914 + 4.230 10.393 + 4.240 11.834 + 4.250 13.204 + 4.260 14.469 + 4.270 15.600 + 4.280 16.568 + 4.290 17.349 + 4.300 17.921 + 4.310 18.269 + 4.320 18.384 + 4.330 18.263 + 4.340 17.906 + 4.350 17.324 + 4.360 16.531 + 4.370 15.546 + 4.380 14.393 + 4.390 13.102 + 4.400 11.702 + 4.410 10.227 + 4.420 8.710 + 4.430 7.183 + 4.440 5.678 + 4.450 4.225 + 4.460 2.848 + 4.470 1.569 + 4.480 0.407 + 4.490 -0.628 + 4.500 -1.527 + 4.510 -2.289 + 4.520 -2.914 + 4.530 -3.410 + 4.540 -3.787 + 4.550 -4.057 + 4.560 -4.237 + 4.570 -4.343 + 4.580 -4.393 + 4.590 -4.404 + 4.600 -4.394 + 4.610 -4.376 + 4.620 -4.364 + 4.630 -4.367 + 4.640 -4.395 + 4.650 -4.450 + 4.660 -4.535 + 4.670 -4.647 + 4.680 -4.781 + 4.690 -4.933 + 4.700 -5.091 + 4.710 -5.248 + 4.720 -5.390 + 4.730 -5.507 + 4.740 -5.588 + 4.750 -5.622 + 4.760 -5.601 + 4.770 -5.515 + 4.780 -5.361 + 4.790 -5.133 + 4.800 -4.832 + 4.810 -4.459 + 4.820 -4.017 + 4.830 -3.512 + 4.840 -2.953 + 4.850 -2.348 + 4.860 -1.711 + 4.870 -1.053 + 4.880 -0.388 + 4.890 0.271 + 4.900 0.909 + 4.910 1.512 + 4.920 2.069 + 4.930 2.567 + 4.940 2.996 + 4.950 3.346 + 4.960 3.611 + 4.970 3.785 + 4.980 3.866 + 4.990 3.852 + 5.000 3.745 + 5.010 3.547 + 5.020 3.264 + 5.030 2.903 + 5.040 2.473 + 5.050 1.984 + 5.060 1.447 + 5.070 0.875 + 5.080 0.281 + 5.090 -0.324 + 5.100 -0.927 + 5.110 -1.515 + 5.120 -2.078 + 5.130 -2.606 + 5.140 -3.091 + 5.150 -3.526 + 5.160 -3.908 + 5.170 -4.234 + 5.180 -4.503 + 5.190 -4.717 + 5.200 -4.880 + 5.210 -4.996 + 5.220 -5.070 + 5.230 -5.110 + 5.240 -5.122 + 5.250 -5.112 + 5.260 -5.087 + 5.270 -5.051 + 5.280 -5.007 + 5.290 -4.958 + 5.300 -4.901 + 5.310 -4.835 + 5.320 -4.754 + 5.330 -4.652 + 5.340 -4.519 + 5.350 -4.346 + 5.360 -4.123 + 5.370 -3.839 + 5.380 -3.483 + 5.390 -3.046 + 5.400 -2.523 + 5.410 -1.907 + 5.420 -1.199 + 5.430 -0.401 + 5.440 0.483 + 5.450 1.440 + 5.460 2.457 + 5.470 3.516 + 5.480 4.597 + 5.490 5.675 + 5.500 6.726 + 5.510 7.722 + 5.520 8.639 + 5.530 9.450 + 5.540 10.134 + 5.550 10.669 + 5.560 11.042 + 5.570 11.239 + 5.580 11.255 + 5.590 11.089 + 5.600 10.745 + 5.610 10.234 + 5.620 9.569 + 5.630 8.771 + 5.640 7.860 + 5.650 6.862 + 5.660 5.803 + 5.670 4.710 + 5.680 3.607 + 5.690 2.521 + 5.700 1.471 + 5.710 0.478 + 5.720 -0.445 + 5.730 -1.287 + 5.740 -2.042 + 5.750 -2.706 + 5.760 -3.282 + 5.770 -3.774 + 5.780 -4.190 + 5.790 -4.539 + 5.800 -4.830 + 5.810 -5.075 + 5.820 -5.284 + 5.830 -5.465 + 5.840 -5.625 + 5.850 -5.771 + 5.860 -5.904 + 5.870 -6.025 + 5.880 -6.133 + 5.890 -6.223 + 5.900 -6.291 + 5.910 -6.331 + 5.920 -6.336 + 5.930 -6.301 + 5.940 -6.221 + 5.950 -6.092 + 5.960 -5.913 + 5.970 -5.685 + 5.980 -5.411 + 5.990 -5.097 + 6.000 -4.750 + 6.010 -4.382 + 6.020 -4.003 + 6.030 -3.625 + 6.040 -3.261 + 6.050 -2.924 + 6.060 -2.625 + 6.070 -2.374 + 6.080 -2.178 + 6.090 -2.042 + 6.100 -1.970 + 6.110 -1.961 + 6.120 -2.013 + 6.130 -2.121 + 6.140 -2.278 + 6.150 -2.475 + 6.160 -2.704 + 6.170 -2.955 + 6.180 -3.218 + 6.190 -3.485 + 6.200 -3.748 + 6.210 -4.001 + 6.220 -4.240 + 6.230 -4.460 + 6.240 -4.662 + 6.250 -4.844 + 6.260 -5.006 + 6.270 -5.149 + 6.280 -5.274 + 6.290 -5.378 + 6.300 -5.461 + 6.310 -5.519 + 6.320 -5.545 + 6.330 -5.530 + 6.340 -5.466 + 6.350 -5.338 + 6.360 -5.133 + 6.370 -4.836 + 6.380 -4.432 + 6.390 -3.905 + 6.400 -3.244 + 6.410 -2.437 + 6.420 -1.478 + 6.430 -0.365 + 6.440 0.901 + 6.450 2.310 + 6.460 3.849 + 6.470 5.498 + 6.480 7.232 + 6.490 9.020 + 6.500 10.827 + 6.510 12.615 + 6.520 14.345 + 6.530 15.977 + 6.540 17.470 + 6.550 18.788 + 6.560 19.897 + 6.570 20.768 + 6.580 21.380 + 6.590 21.715 + 6.600 21.767 + 6.610 21.533 + 6.620 21.022 + 6.630 20.247 + 6.640 19.229 + 6.650 17.996 + 6.660 16.578 + 6.670 15.012 + 6.680 13.334 + 6.690 11.583 + 6.700 9.796 + 6.710 8.010 + 6.720 6.259 + 6.730 4.571 + 6.740 2.973 + 6.750 1.485 + 6.760 0.123 + 6.770 -1.103 + 6.780 -2.187 + 6.790 -3.128 + 6.800 -3.929 + 6.810 -4.598 + 6.820 -5.142 + 6.830 -5.573 + 6.840 -5.904 + 6.850 -6.147 + 6.860 -6.315 + 6.870 -6.421 + 6.880 -6.475 + 6.890 -6.489 + 6.900 -6.471 + 6.910 -6.429 + 6.920 -6.368 + 6.930 -6.294 + 6.940 -6.210 + 6.950 -6.120 + 6.960 -6.026 + 6.970 -5.930 + 6.980 -5.834 + 6.990 -5.740 + 7.000 -5.651 + 7.010 -5.568 + 7.020 -5.494 + 7.030 -5.431 + 7.040 -5.383 + 7.050 -5.351 + 7.060 -5.339 + 7.070 -5.348 + 7.080 -5.380 + 7.090 -5.435 + 7.100 -5.513 + 7.110 -5.614 + 7.120 -5.735 + 7.130 -5.874 + 7.140 -6.027 + 7.150 -6.189 + 7.160 -6.353 + 7.170 -6.513 + 7.180 -6.662 + 7.190 -6.792 + 7.200 -6.894 + 7.210 -6.959 + 7.220 -6.979 + 7.230 -6.944 + 7.240 -6.847 + 7.250 -6.679 + 7.260 -6.434 + 7.270 -6.105 + 7.280 -5.687 + 7.290 -5.178 + 7.300 -4.576 + 7.310 -3.883 + 7.320 -3.101 + 7.330 -2.235 + 7.340 -1.294 + 7.350 -0.288 + 7.360 0.768 + 7.370 1.861 + 7.380 2.972 + 7.390 4.081 + 7.400 5.167 + 7.410 6.209 + 7.420 7.183 + 7.430 8.068 + 7.440 8.844 + 7.450 9.490 + 7.460 9.990 + 7.470 10.330 + 7.480 10.501 + 7.490 10.496 + 7.500 10.313 + 7.510 9.956 + 7.520 9.433 + 7.530 8.755 + 7.540 7.940 + 7.550 7.007 + 7.560 5.980 + 7.570 4.885 + 7.580 3.749 + 7.590 2.600 + 7.600 1.465 + 7.610 0.372 + 7.620 -0.655 + 7.630 -1.594 + 7.640 -2.425 + 7.650 -3.134 + 7.660 -3.709 + 7.670 -4.144 + 7.680 -4.437 + 7.690 -4.588 + 7.700 -4.603 + 7.710 -4.492 + 7.720 -4.264 + 7.730 -3.936 + 7.740 -3.522 + 7.750 -3.039 + 7.760 -2.505 + 7.770 -1.937 + 7.780 -1.353 + 7.790 -0.768 + 7.800 -0.199 + 7.810 0.340 + 7.820 0.838 + 7.830 1.284 + 7.840 1.667 + 7.850 1.981 + 7.860 2.219 + 7.870 2.376 + 7.880 2.448 + 7.890 2.435 + 7.900 2.335 + 7.910 2.150 + 7.920 1.882 + 7.930 1.535 + 7.940 1.115 + 7.950 0.629 + 7.960 0.088 + 7.970 -0.500 + 7.980 -1.120 + 7.990 -1.759 + 8.000 -2.402 + 8.010 -3.033 + 8.020 -3.636 + 8.030 -4.193 + 8.040 -4.689 + 8.050 -5.110 + 8.060 -5.440 + 8.070 -5.670 + 8.080 -5.791 + 8.090 -5.798 + 8.100 -5.688 + 8.110 -5.464 + 8.120 -5.131 + 8.130 -4.699 + 8.140 -4.179 + 8.150 -3.588 + 8.160 -2.944 + 8.170 -2.268 + 8.180 -1.580 + 8.190 -0.904 + 8.200 -0.260 + 8.210 0.331 + 8.220 0.850 + 8.230 1.281 + 8.240 1.610 + 8.250 1.828 + 8.260 1.930 + 8.270 1.913 + 8.280 1.779 + 8.290 1.534 + 8.300 1.187 + 8.310 0.750 + 8.320 0.238 + 8.330 -0.334 + 8.340 -0.947 + 8.350 -1.582 + 8.360 -2.223 + 8.370 -2.850 + 8.380 -3.446 + 8.390 -3.996 + 8.400 -4.487 + 8.410 -4.907 + 8.420 -5.245 + 8.430 -5.496 + 8.440 -5.654 + 8.450 -5.717 + 8.460 -5.684 + 8.470 -5.558 + 8.480 -5.343 + 8.490 -5.045 + 8.500 -4.671 + 8.510 -4.232 + 8.520 -3.737 + 8.530 -3.200 + 8.540 -2.634 + 8.550 -2.052 + 8.560 -1.471 + 8.570 -0.905 + 8.580 -0.368 + 8.590 0.123 + 8.600 0.555 + 8.610 0.916 + 8.620 1.195 + 8.630 1.383 + 8.640 1.475 + 8.650 1.469 + 8.660 1.365 + 8.670 1.169 + 8.680 0.890 + 8.690 0.541 + 8.700 0.138 + 8.710 -0.299 + 8.720 -0.745 + 8.730 -1.175 + 8.740 -1.562 + 8.750 -1.879 + 8.760 -2.098 + 8.770 -2.193 + 8.780 -2.142 + 8.790 -1.924 + 8.800 -1.525 + 8.810 -0.935 + 8.820 -0.150 + 8.830 0.826 + 8.840 1.983 + 8.850 3.306 + 8.860 4.771 + 8.870 6.351 + 8.880 8.011 + 8.890 9.716 + 8.900 11.424 + 8.910 13.094 + 8.920 14.684 + 8.930 16.154 + 8.940 17.466 + 8.950 18.586 + 8.960 19.486 + 8.970 20.140 + 8.980 20.534 + 8.990 20.657 + 9.000 20.505 + 9.010 20.085 + 9.020 19.406 + 9.030 18.486 + 9.040 17.347 + 9.050 16.018 + 9.060 14.528 + 9.070 12.911 + 9.080 11.202 + 9.090 9.434 + 9.100 7.643 + 9.110 5.859 + 9.120 4.112 + 9.130 2.428 + 9.140 0.830 + 9.150 -0.666 + 9.160 -2.045 + 9.170 -3.298 + 9.180 -4.420 + 9.190 -5.411 + 9.200 -6.273 + 9.210 -7.012 + 9.220 -7.636 + 9.230 -8.155 + 9.240 -8.581 + 9.250 -8.926 + 9.260 -9.202 + 9.270 -9.423 + 9.280 -9.599 + 9.290 -9.740 + 9.300 -9.856 + 9.310 -9.954 + 9.320 -10.038 + 9.330 -10.112 + 9.340 -10.176 + 9.350 -10.230 + 9.360 -10.270 + 9.370 -10.292 + 9.380 -10.290 + 9.390 -10.255 + 9.400 -10.181 + 9.410 -10.057 + 9.420 -9.875 + 9.430 -9.626 + 9.440 -9.303 + 9.450 -8.897 + 9.460 -8.405 + 9.470 -7.823 + 9.480 -7.149 + 9.490 -6.385 + 9.500 -5.536 + 9.510 -4.608 + 9.520 -3.610 + 9.530 -2.556 + 9.540 -1.461 + 9.550 -0.343 + 9.560 0.781 + 9.570 1.888 + 9.580 2.957 + 9.590 3.966 + 9.600 4.895 + 9.610 5.722 + 9.620 6.430 + 9.630 7.002 + 9.640 7.425 + 9.650 7.690 + 9.660 7.791 + 9.670 7.726 + 9.680 7.497 + 9.690 7.113 + 9.700 6.583 + 9.710 5.921 + 9.720 5.146 + 9.730 4.277 + 9.740 3.338 + 9.750 2.351 + 9.760 1.341 + 9.770 0.331 + 9.780 -0.656 + 9.790 -1.598 + 9.800 -2.478 + 9.810 -3.280 + 9.820 -3.992 + 9.830 -4.606 + 9.840 -5.117 + 9.850 -5.524 + 9.860 -5.830 + 9.870 -6.043 + 9.880 -6.170 + 9.890 -6.225 + 9.900 -6.221 + 9.910 -6.171 + 9.920 -6.092 + 9.930 -5.999 + 9.940 -5.904 + 9.950 -5.821 + 9.960 -5.758 + 9.970 -5.724 + 9.980 -5.722 + 9.990 -5.753 + 10.000 -5.815 + 10.010 -5.903 + 10.020 -6.007 + 10.030 -6.117 + 10.040 -6.220 + 10.050 -6.300 + 10.060 -6.343 + 10.070 -6.334 + 10.080 -6.257 + 10.090 -6.100 + 10.100 -5.852 + 10.110 -5.505 + 10.120 -5.054 + 10.130 -4.498 + 10.140 -3.841 + 10.150 -3.091 + 10.160 -2.259 + 10.170 -1.361 + 10.180 -0.415 + 10.190 0.555 + 10.200 1.527 + 10.210 2.475 + 10.220 3.374 + 10.230 4.198 + 10.240 4.924 + 10.250 5.532 + 10.260 6.004 + 10.270 6.327 + 10.280 6.492 + 10.290 6.497 + 10.300 6.344 + 10.310 6.041 + 10.320 5.600 + 10.330 5.040 + 10.340 4.381 + 10.350 3.648 + 10.360 2.869 + 10.370 2.072 + 10.380 1.284 + 10.390 0.533 + 10.400 -0.157 + 10.410 -0.765 + 10.420 -1.273 + 10.430 -1.669 + 10.440 -1.946 + 10.450 -2.103 + 10.460 -2.143 + 10.470 -2.076 + 10.480 -1.915 + 10.490 -1.678 + 10.500 -1.386 + 10.510 -1.059 + 10.520 -0.722 + 10.530 -0.397 + 10.540 -0.103 + 10.550 0.142 + 10.560 0.324 + 10.570 0.434 + 10.580 0.468 + 10.590 0.427 + 10.600 0.320 + 10.610 0.157 + 10.620 -0.045 + 10.630 -0.264 + 10.640 -0.479 + 10.650 -0.664 + 10.660 -0.793 + 10.670 -0.843 + 10.680 -0.792 + 10.690 -0.620 + 10.700 -0.315 + 10.710 0.134 + 10.720 0.727 + 10.730 1.463 + 10.740 2.329 + 10.750 3.311 + 10.760 4.385 + 10.770 5.524 + 10.780 6.697 + 10.790 7.870 + 10.800 9.009 + 10.810 10.076 + 10.820 11.040 + 10.830 11.868 + 10.840 12.535 + 10.850 13.017 + 10.860 13.300 + 10.870 13.374 + 10.880 13.237 + 10.890 12.895 + 10.900 12.357 + 10.910 11.643 + 10.920 10.774 + 10.930 9.778 + 10.940 8.686 + 10.950 7.529 + 10.960 6.340 + 10.970 5.151 + 10.980 3.991 + 10.990 2.888 + 11.000 1.864 + 11.010 0.937 + 11.020 0.119 + 11.030 -0.583 + 11.040 -1.167 + 11.050 -1.637 + 11.060 -2.001 + 11.070 -2.270 + 11.080 -2.460 + 11.090 -2.588 + 11.100 -2.671 + 11.110 -2.727 + 11.120 -2.772 + 11.130 -2.821 + 11.140 -2.883 + 11.150 -2.968 + 11.160 -3.079 + 11.170 -3.216 + 11.180 -3.375 + 11.190 -3.548 + 11.200 -3.724 + 11.210 -3.892 + 11.220 -4.036 + 11.230 -4.140 + 11.240 -4.192 + 11.250 -4.176 + 11.260 -4.083 + 11.270 -3.904 + 11.280 -3.635 + 11.290 -3.276 + 11.300 -2.831 + 11.310 -2.309 + 11.320 -1.722 + 11.330 -1.086 + 11.340 -0.422 + 11.350 0.250 + 11.360 0.907 + 11.370 1.526 + 11.380 2.085 + 11.390 2.563 + 11.400 2.944 + 11.410 3.213 + 11.420 3.361 + 11.430 3.384 + 11.440 3.280 + 11.450 3.057 + 11.460 2.722 + 11.470 2.290 + 11.480 1.778 + 11.490 1.205 + 11.500 0.593 + 11.510 -0.036 + 11.520 -0.662 + 11.530 -1.264 + 11.540 -1.824 + 11.550 -2.330 + 11.560 -2.769 + 11.570 -3.135 + 11.580 -3.427 + 11.590 -3.645 + 11.600 -3.795 + 11.610 -3.885 + 11.620 -3.928 + 11.630 -3.934 + 11.640 -3.919 + 11.650 -3.894 + 11.660 -3.872 + 11.670 -3.864 + 11.680 -3.876 + 11.690 -3.914 + 11.700 -3.978 + 11.710 -4.066 + 11.720 -4.172 + 11.730 -4.288 + 11.740 -4.402 + 11.750 -4.502 + 11.760 -4.573 + 11.770 -4.603 + 11.780 -4.578 + 11.790 -4.489 + 11.800 -4.326 + 11.810 -4.087 + 11.820 -3.770 + 11.830 -3.378 + 11.840 -2.919 + 11.850 -2.405 + 11.860 -1.851 + 11.870 -1.274 + 11.880 -0.694 + 11.890 -0.133 + 11.900 0.388 + 11.910 0.849 + 11.920 1.232 + 11.930 1.521 + 11.940 1.704 + 11.950 1.771 + 11.960 1.720 + 11.970 1.550 + 11.980 1.266 + 11.990 0.877 + 12.000 0.395 + 12.010 -0.166 + 12.020 -0.789 + 12.030 -1.456 + 12.040 -2.149 + 12.050 -2.852 + 12.060 -3.547 + 12.070 -4.223 + 12.080 -4.866 + 12.090 -5.470 + 12.100 -6.027 + 12.110 -6.534 + 12.120 -6.991 + 12.130 -7.397 + 12.140 -7.756 + 12.150 -8.069 + 12.160 -8.338 + 12.170 -8.565 + 12.180 -8.750 + 12.190 -8.891 + 12.200 -8.985 + 12.210 -9.026 + 12.220 -9.006 + 12.230 -8.917 + 12.240 -8.747 + 12.250 -8.486 + 12.260 -8.123 + 12.270 -7.650 + 12.280 -7.058 + 12.290 -6.344 + 12.300 -5.506 + 12.310 -4.548 + 12.320 -3.477 + 12.330 -2.305 + 12.340 -1.049 + 12.350 0.269 + 12.360 1.625 + 12.370 2.993 + 12.380 4.342 + 12.390 5.643 + 12.400 6.865 + 12.410 7.981 + 12.420 8.965 + 12.430 9.794 + 12.440 10.452 + 12.450 10.926 + 12.460 11.209 + 12.470 11.300 + 12.480 11.204 + 12.490 10.930 + 12.500 10.493 + 12.510 9.912 + 12.520 9.208 + 12.530 8.404 + 12.540 7.526 + 12.550 6.597 + 12.560 5.642 + 12.570 4.683 + 12.580 3.739 + 12.590 2.826 + 12.600 1.959 + 12.610 1.149 + 12.620 0.402 + 12.630 -0.276 + 12.640 -0.883 + 12.650 -1.417 + 12.660 -1.878 + 12.670 -2.267 + 12.680 -2.583 + 12.690 -2.827 + 12.700 -2.996 + 12.710 -3.089 + 12.720 -3.102 + 12.730 -3.030 + 12.740 -2.868 + 12.750 -2.611 + 12.760 -2.254 + 12.770 -1.792 + 12.780 -1.223 + 12.790 -0.546 + 12.800 0.235 + 12.810 1.116 + 12.820 2.086 + 12.830 3.134 + 12.840 4.243 + 12.850 5.393 + 12.860 6.561 + 12.870 7.725 + 12.880 8.859 + 12.890 9.936 + 12.900 10.931 + 12.910 11.822 + 12.920 12.587 + 12.930 13.208 + 12.940 13.674 + 12.950 13.974 + 12.960 14.107 + 12.970 14.073 + 12.980 13.879 + 12.990 13.536 + 13.000 13.060 + 13.010 12.469 + 13.020 11.785 + 13.030 11.031 + 13.040 10.229 + 13.050 9.402 + 13.060 8.571 + 13.070 7.757 + 13.080 6.974 + 13.090 6.235 + 13.100 5.550 + 13.110 4.923 + 13.120 4.356 + 13.130 3.847 + 13.140 3.390 + 13.150 2.977 + 13.160 2.599 + 13.170 2.245 + 13.180 1.903 + 13.190 1.563 + 13.200 1.214 + 13.210 0.849 + 13.220 0.460 + 13.230 0.044 + 13.240 -0.402 + 13.250 -0.877 + 13.260 -1.378 + 13.270 -1.900 + 13.280 -2.437 + 13.290 -2.981 + 13.300 -3.524 + 13.310 -4.058 + 13.320 -4.573 + 13.330 -5.064 + 13.340 -5.522 + 13.350 -5.945 + 13.360 -6.330 + 13.370 -6.674 + 13.380 -6.980 + 13.390 -7.250 + 13.400 -7.488 + 13.410 -7.701 + 13.420 -7.896 + 13.430 -8.079 + 13.440 -8.259 + 13.450 -8.443 + 13.460 -8.639 + 13.470 -8.853 + 13.480 -9.089 + 13.490 -9.352 + 13.500 -9.641 + 13.510 -9.958 + 13.520 -10.300 + 13.530 -10.662 + 13.540 -11.038 + 13.550 -11.420 + 13.560 -11.797 + 13.570 -12.160 + 13.580 -12.495 + 13.590 -12.789 + 13.600 -13.030 + 13.610 -13.204 + 13.620 -13.297 + 13.630 -13.298 + 13.640 -13.196 + 13.650 -12.980 + 13.660 -12.644 + 13.670 -12.181 + 13.680 -11.589 + 13.690 -10.868 + 13.700 -10.020 + 13.710 -9.050 + 13.720 -7.968 + 13.730 -6.784 + 13.740 -5.514 + 13.750 -4.174 + 13.760 -2.785 + 13.770 -1.366 + 13.780 0.058 + 13.790 1.464 + 13.800 2.826 + 13.810 4.121 + 13.820 5.324 + 13.830 6.414 + 13.840 7.368 + 13.850 8.170 + 13.860 8.803 + 13.870 9.257 + 13.880 9.522 + 13.890 9.594 + 13.900 9.474 + 13.910 9.165 + 13.920 8.676 + 13.930 8.018 + 13.940 7.207 + 13.950 6.262 + 13.960 5.204 + 13.970 4.057 + 13.980 2.847 + 13.990 1.598 + 14.000 0.339 + 14.010 -0.904 + 14.020 -2.105 + 14.030 -3.240 + 14.040 -4.287 + 14.050 -5.223 + 14.060 -6.033 + 14.070 -6.700 + 14.080 -7.212 + 14.090 -7.561 + 14.100 -7.742 + 14.110 -7.753 + 14.120 -7.595 + 14.130 -7.272 + 14.140 -6.792 + 14.150 -6.166 + 14.160 -5.407 + 14.170 -4.530 + 14.180 -3.553 + 14.190 -2.494 + 14.200 -1.374 + 14.210 -0.214 + 14.220 0.965 + 14.230 2.140 + 14.240 3.291 + 14.250 4.397 + 14.260 5.439 + 14.270 6.400 + 14.280 7.264 + 14.290 8.019 + 14.300 8.653 + 14.310 9.160 + 14.320 9.534 + 14.330 9.774 + 14.340 9.881 + 14.350 9.859 + 14.360 9.716 + 14.370 9.460 + 14.380 9.104 + 14.390 8.660 + 14.400 8.144 + 14.410 7.569 + 14.420 6.952 + 14.430 6.309 + 14.440 5.654 + 14.450 5.002 + 14.460 4.363 + 14.470 3.750 + 14.480 3.171 + 14.490 2.633 + 14.500 2.141 + 14.510 1.696 + 14.520 1.300 + 14.530 0.952 + 14.540 0.649 + 14.550 0.388 + 14.560 0.163 + 14.570 -0.031 + 14.580 -0.198 + 14.590 -0.345 + 14.600 -0.476 + 14.610 -0.596 + 14.620 -0.709 + 14.630 -0.817 + 14.640 -0.923 + 14.650 -1.027 + 14.660 -1.131 + 14.670 -1.234 + 14.680 -1.336 + 14.690 -1.436 + 14.700 -1.533 + 14.710 -1.627 + 14.720 -1.717 + 14.730 -1.802 + 14.740 -1.885 + 14.750 -1.965 + 14.760 -2.043 + 14.770 -2.122 + 14.780 -2.202 + 14.790 -2.287 + 14.800 -2.376 + 14.810 -2.472 + 14.820 -2.575 + 14.830 -2.683 + 14.840 -2.795 + 14.850 -2.909 + 14.860 -3.018 + 14.870 -3.119 + 14.880 -3.203 + 14.890 -3.262 + 14.900 -3.287 + 14.910 -3.267 + 14.920 -3.193 + 14.930 -3.054 + 14.940 -2.840 + 14.950 -2.544 + 14.960 -2.157 + 14.970 -1.675 + 14.980 -1.094 + 14.990 -0.416 + 15.000 0.359 + 15.010 1.222 + 15.020 2.166 + 15.030 3.179 + 15.040 4.245 + 15.050 5.347 + 15.060 6.465 + 15.070 7.579 + 15.080 8.665 + 15.090 9.701 + 15.100 10.665 + 15.110 11.535 + 15.120 12.290 + 15.130 12.913 + 15.140 13.389 + 15.150 13.705 + 15.160 13.854 + 15.170 13.829 + 15.180 13.632 + 15.190 13.264 + 15.200 12.733 + 15.210 12.050 + 15.220 11.228 + 15.230 10.285 + 15.240 9.239 + 15.250 8.111 + 15.260 6.923 + 15.270 5.699 + 15.280 4.459 + 15.290 3.226 + 15.300 2.021 + 15.310 0.862 + 15.320 -0.234 + 15.330 -1.252 + 15.340 -2.183 + 15.350 -3.015 + 15.360 -3.745 + 15.370 -4.368 + 15.380 -4.885 + 15.390 -5.297 + 15.400 -5.610 + 15.410 -5.830 + 15.420 -5.966 + 15.430 -6.026 + 15.440 -6.022 + 15.450 -5.966 + 15.460 -5.867 + 15.470 -5.739 + 15.480 -5.593 + 15.490 -5.439 + 15.500 -5.286 + 15.510 -5.145 + 15.520 -5.022 + 15.530 -4.925 + 15.540 -4.859 + 15.550 -4.828 + 15.560 -4.834 + 15.570 -4.879 + 15.580 -4.963 + 15.590 -5.086 + 15.600 -5.243 + 15.610 -5.434 + 15.620 -5.652 + 15.630 -5.894 + 15.640 -6.153 + 15.650 -6.425 + 15.660 -6.701 + 15.670 -6.976 + 15.680 -7.243 + 15.690 -7.496 + 15.700 -7.728 + 15.710 -7.935 + 15.720 -8.110 + 15.730 -8.251 + 15.740 -8.353 + 15.750 -8.414 + 15.760 -8.433 + 15.770 -8.409 + 15.780 -8.343 + 15.790 -8.237 + 15.800 -8.092 + 15.810 -7.912 + 15.820 -7.700 + 15.830 -7.462 + 15.840 -7.201 + 15.850 -6.923 + 15.860 -6.633 + 15.870 -6.336 + 15.880 -6.036 + 15.890 -5.737 + 15.900 -5.444 + 15.910 -5.161 + 15.920 -4.889 + 15.930 -4.631 + 15.940 -4.389 + 15.950 -4.163 + 15.960 -3.954 + 15.970 -3.763 + 15.980 -3.587 + 15.990 -3.425 + 16.000 -3.277 + 16.010 -3.139 + 16.020 -3.009 + 16.030 -2.883 + 16.040 -2.758 + 16.050 -2.629 + 16.060 -2.493 + 16.070 -2.344 + 16.080 -2.178 + 16.090 -1.988 + 16.100 -1.769 + 16.110 -1.516 + 16.120 -1.223 + 16.130 -0.885 + 16.140 -0.497 + 16.150 -0.056 + 16.160 0.441 + 16.170 0.997 + 16.180 1.610 + 16.190 2.278 + 16.200 2.999 + 16.210 3.766 + 16.220 4.571 + 16.230 5.403 + 16.240 6.250 + 16.250 7.098 + 16.260 7.932 + 16.270 8.733 + 16.280 9.483 + 16.290 10.166 + 16.300 10.761 + 16.310 11.254 + 16.320 11.628 + 16.330 11.871 + 16.340 11.971 + 16.350 11.922 + 16.360 11.721 + 16.370 11.369 + 16.380 10.869 + 16.390 10.232 + 16.400 9.471 + 16.410 8.603 + 16.420 7.649 + 16.430 6.632 + 16.440 5.578 + 16.450 4.514 + 16.460 3.469 + 16.470 2.469 + 16.480 1.542 + 16.490 0.711 + 16.500 -0.001 + 16.510 -0.577 + 16.520 -1.001 + 16.530 -1.265 + 16.540 -1.363 + 16.550 -1.297 + 16.560 -1.070 + 16.570 -0.693 + 16.580 -0.181 + 16.590 0.448 + 16.600 1.173 + 16.610 1.967 + 16.620 2.805 + 16.630 3.659 + 16.640 4.501 + 16.650 5.302 + 16.660 6.036 + 16.670 6.679 + 16.680 7.209 + 16.690 7.607 + 16.700 7.858 + 16.710 7.951 + 16.720 7.881 + 16.730 7.644 + 16.740 7.244 + 16.750 6.686 + 16.760 5.983 + 16.770 5.147 + 16.780 4.198 + 16.790 3.157 + 16.800 2.046 + 16.810 0.891 + 16.820 -0.283 + 16.830 -1.448 + 16.840 -2.579 + 16.850 -3.650 + 16.860 -4.638 + 16.870 -5.520 + 16.880 -6.279 + 16.890 -6.898 + 16.900 -7.366 + 16.910 -7.674 + 16.920 -7.820 + 16.930 -7.803 + 16.940 -7.628 + 16.950 -7.304 + 16.960 -6.844 + 16.970 -6.264 + 16.980 -5.584 + 16.990 -4.825 + 17.000 -4.012 + 17.010 -3.170 + 17.020 -2.323 + 17.030 -1.497 + 17.040 -0.716 + 17.050 -0.001 + 17.060 0.628 + 17.070 1.154 + 17.080 1.564 + 17.090 1.850 + 17.100 2.008 + 17.110 2.035 + 17.120 1.938 + 17.130 1.723 + 17.140 1.402 + 17.150 0.991 + 17.160 0.508 + 17.170 -0.028 + 17.180 -0.594 + 17.190 -1.169 + 17.200 -1.730 + 17.210 -2.255 + 17.220 -2.724 + 17.230 -3.119 + 17.240 -3.425 + 17.250 -3.628 + 17.260 -3.721 + 17.270 -3.698 + 17.280 -3.556 + 17.290 -3.300 + 17.300 -2.934 + 17.310 -2.468 + 17.320 -1.914 + 17.330 -1.287 + 17.340 -0.605 + 17.350 0.114 + 17.360 0.850 + 17.370 1.583 + 17.380 2.293 + 17.390 2.961 + 17.400 3.569 + 17.410 4.101 + 17.420 4.542 + 17.430 4.882 + 17.440 5.112 + 17.450 5.226 + 17.460 5.222 + 17.470 5.100 + 17.480 4.863 + 17.490 4.519 + 17.500 4.075 + 17.510 3.543 + 17.520 2.936 + 17.530 2.268 + 17.540 1.554 + 17.550 0.810 + 17.560 0.052 + 17.570 -0.704 + 17.580 -1.445 + 17.590 -2.156 + 17.600 -2.826 + 17.610 -3.444 + 17.620 -4.003 + 17.630 -4.496 + 17.640 -4.920 + 17.650 -5.273 + 17.660 -5.555 + 17.670 -5.768 + 17.680 -5.916 + 17.690 -6.003 + 17.700 -6.034 + 17.710 -6.016 + 17.720 -5.956 + 17.730 -5.859 + 17.740 -5.732 + 17.750 -5.580 + 17.760 -5.407 + 17.770 -5.218 + 17.780 -5.015 + 17.790 -4.800 + 17.800 -4.575 + 17.810 -4.338 + 17.820 -4.091 + 17.830 -3.832 + 17.840 -3.562 + 17.850 -3.278 + 17.860 -2.982 + 17.870 -2.673 + 17.880 -2.352 + 17.890 -2.021 + 17.900 -1.682 + 17.910 -1.338 + 17.920 -0.992 + 17.930 -0.649 + 17.940 -0.313 + 17.950 0.010 + 17.960 0.317 + 17.970 0.602 + 17.980 0.862 + 17.990 1.093 + 18.000 1.291 + 18.010 1.456 + 18.020 1.585 + 18.030 1.679 + 18.040 1.736 + 18.050 1.759 + 18.060 1.748 + 18.070 1.705 + 18.080 1.632 + 18.090 1.530 + 18.100 1.401 + 18.110 1.248 + 18.120 1.071 + 18.130 0.872 + 18.140 0.652 + 18.150 0.412 + 18.160 0.155 + 18.170 -0.117 + 18.180 -0.402 + 18.190 -0.696 + 18.200 -0.994 + 18.210 -1.289 + 18.220 -1.575 + 18.230 -1.841 + 18.240 -2.079 + 18.250 -2.278 + 18.260 -2.425 + 18.270 -2.510 + 18.280 -2.520 + 18.290 -2.445 + 18.300 -2.276 + 18.310 -2.006 + 18.320 -1.630 + 18.330 -1.148 + 18.340 -0.561 + 18.350 0.123 + 18.360 0.894 + 18.370 1.738 + 18.380 2.636 + 18.390 3.566 + 18.400 4.505 + 18.410 5.424 + 18.420 6.297 + 18.430 7.096 + 18.440 7.793 + 18.450 8.363 + 18.460 8.784 + 18.470 9.039 + 18.480 9.114 + 18.490 9.000 + 18.500 8.697 + 18.510 8.209 + 18.520 7.545 + 18.530 6.722 + 18.540 5.761 + 18.550 4.688 + 18.560 3.532 + 18.570 2.326 + 18.580 1.102 + 18.590 -0.106 + 18.600 -1.266 + 18.610 -2.348 + 18.620 -3.324 + 18.630 -4.172 + 18.640 -4.875 + 18.650 -5.419 + 18.660 -5.798 + 18.670 -6.010 + 18.680 -6.059 + 18.690 -5.953 + 18.700 -5.705 + 18.710 -5.333 + 18.720 -4.855 + 18.730 -4.292 + 18.740 -3.666 + 18.750 -2.999 + 18.760 -2.313 + 18.770 -1.626 + 18.780 -0.957 + 18.790 -0.319 + 18.800 0.274 + 18.810 0.814 + 18.820 1.295 + 18.830 1.713 + 18.840 2.068 + 18.850 2.361 + 18.860 2.594 + 18.870 2.773 + 18.880 2.903 + 18.890 2.990 + 18.900 3.039 + 18.910 3.056 + 18.920 3.047 + 18.930 3.016 + 18.940 2.967 + 18.950 2.903 + 18.960 2.826 + 18.970 2.739 + 18.980 2.642 + 18.990 2.537 + 19.000 2.424 + 19.010 2.303 + 19.020 2.175 + 19.030 2.041 + 19.040 1.900 + 19.050 1.754 + 19.060 1.602 + 19.070 1.446 + 19.080 1.286 + 19.090 1.122 + 19.100 0.956 + 19.110 0.787 + 19.120 0.615 + 19.130 0.441 + 19.140 0.266 + 19.150 0.088 + 19.160 -0.090 + 19.170 -0.269 + 19.180 -0.445 + 19.190 -0.619 + 19.200 -0.785 + 19.210 -0.941 + 19.220 -1.083 + 19.230 -1.205 + 19.240 -1.301 + 19.250 -1.365 + 19.260 -1.392 + 19.270 -1.374 + 19.280 -1.308 + 19.290 -1.189 + 19.300 -1.013 + 19.310 -0.779 + 19.320 -0.488 + 19.330 -0.144 + 19.340 0.247 + 19.350 0.679 + 19.360 1.140 + 19.370 1.617 + 19.380 2.095 + 19.390 2.559 + 19.400 2.991 + 19.410 3.374 + 19.420 3.690 + 19.430 3.925 + 19.440 4.064 + 19.450 4.097 + 19.460 4.015 + 19.470 3.815 + 19.480 3.497 + 19.490 3.066 + 19.500 2.530 + 19.510 1.902 + 19.520 1.201 + 19.530 0.447 + 19.540 -0.337 + 19.550 -1.126 + 19.560 -1.894 + 19.570 -2.615 + 19.580 -3.262 + 19.590 -3.814 + 19.600 -4.250 + 19.610 -4.554 + 19.620 -4.714 + 19.630 -4.723 + 19.640 -4.580 + 19.650 -4.289 + 19.660 -3.859 + 19.670 -3.305 + 19.680 -2.645 + 19.690 -1.904 + 19.700 -1.106 + 19.710 -0.282 + 19.720 0.542 + 19.730 1.334 + 19.740 2.066 + 19.750 2.712 + 19.760 3.249 + 19.770 3.656 + 19.780 3.919 + 19.790 4.026 + 19.800 3.972 + 19.810 3.757 + 19.820 3.387 + 19.830 2.869 + 19.840 2.220 + 19.850 1.456 + 19.860 0.599 + 19.870 -0.329 + 19.880 -1.303 + 19.890 -2.300 + 19.900 -3.293 + 19.910 -4.262 + 19.920 -5.185 + 19.930 -6.044 + 19.940 -6.823 + 19.950 -7.512 + 19.960 -8.103 + 19.970 -8.592 + 19.980 -8.979 + 19.990 -9.265 + 20.000 -9.457 + 20.010 -9.564 + 20.020 -9.594 + 20.030 -9.560 + 20.040 -9.472 + 20.050 -9.342 + 20.060 -9.180 + 20.070 -8.996 + 20.080 -8.797 + 20.090 -8.588 + 20.100 -8.372 + 20.110 -8.149 + 20.120 -7.917 + 20.130 -7.671 + 20.140 -7.406 + 20.150 -7.112 + 20.160 -6.782 + 20.170 -6.405 + 20.180 -5.972 + 20.190 -5.475 + 20.200 -4.905 + 20.210 -4.257 + 20.220 -3.527 + 20.230 -2.715 + 20.240 -1.822 + 20.250 -0.855 + 20.260 0.180 + 20.270 1.269 + 20.280 2.401 + 20.290 3.558 + 20.300 4.721 + 20.310 5.872 + 20.320 6.991 + 20.330 8.057 + 20.340 9.050 + 20.350 9.952 + 20.360 10.747 + 20.370 11.420 + 20.380 11.960 + 20.390 12.359 + 20.400 12.613 + 20.410 12.720 + 20.420 12.684 + 20.430 12.510 + 20.440 12.207 + 20.450 11.787 + 20.460 11.266 + 20.470 10.658 + 20.480 9.983 + 20.490 9.257 + 20.500 8.500 + 20.510 7.730 + 20.520 6.964 + 20.530 6.218 + 20.540 5.505 + 20.550 4.838 + 20.560 4.224 + 20.570 3.672 + 20.580 3.183 + 20.590 2.761 + 20.600 2.403 + 20.610 2.105 + 20.620 1.861 + 20.630 1.665 + 20.640 1.506 + 20.650 1.375 + 20.660 1.262 + 20.670 1.156 + 20.680 1.046 + 20.690 0.923 + 20.700 0.778 + 20.710 0.604 + 20.720 0.396 + 20.730 0.148 + 20.740 -0.139 + 20.750 -0.468 + 20.760 -0.836 + 20.770 -1.241 + 20.780 -1.677 + 20.790 -2.138 + 20.800 -2.618 + 20.810 -3.110 + 20.820 -3.605 + 20.830 -4.095 + 20.840 -4.574 + 20.850 -5.034 + 20.860 -5.470 + 20.870 -5.877 + 20.880 -6.252 + 20.890 -6.594 + 20.900 -6.900 + 20.910 -7.173 + 20.920 -7.413 + 20.930 -7.623 + 20.940 -7.807 + 20.950 -7.967 + 20.960 -8.106 + 20.970 -8.228 + 20.980 -8.333 + 20.990 -8.422 + 21.000 -8.494 + 21.010 -8.546 + 21.020 -8.574 + 21.030 -8.571 + 21.040 -8.530 + 21.050 -8.442 + 21.060 -8.297 + 21.070 -8.084 + 21.080 -7.793 + 21.090 -7.414 + 21.100 -6.938 + 21.110 -6.360 + 21.120 -5.675 + 21.130 -4.881 + 21.140 -3.980 + 21.150 -2.978 + 21.160 -1.884 + 21.170 -0.712 + 21.180 0.523 + 21.190 1.799 + 21.200 3.095 + 21.210 4.385 + 21.220 5.644 + 21.230 6.847 + 21.240 7.966 + 21.250 8.978 + 21.260 9.861 + 21.270 10.596 + 21.280 11.169 + 21.290 11.570 + 21.300 11.794 + 21.310 11.841 + 21.320 11.716 + 21.330 11.429 + 21.340 10.997 + 21.350 10.438 + 21.360 9.775 + 21.370 9.033 + 21.380 8.239 + 21.390 7.419 + 21.400 6.600 + 21.410 5.808 + 21.420 5.065 + 21.430 4.390 + 21.440 3.800 + 21.450 3.306 + 21.460 2.916 + 21.470 2.632 + 21.480 2.452 + 21.490 2.371 + 21.500 2.379 + 21.510 2.465 + 21.520 2.612 + 21.530 2.807 + 21.540 3.031 + 21.550 3.269 + 21.560 3.504 + 21.570 3.723 + 21.580 3.914 + 21.590 4.066 + 21.600 4.174 + 21.610 4.232 + 21.620 4.239 + 21.630 4.197 + 21.640 4.109 + 21.650 3.979 + 21.660 3.815 + 21.670 3.624 + 21.680 3.412 + 21.690 3.188 + 21.700 2.957 + 21.710 2.725 + 21.720 2.495 + 21.730 2.270 + 21.740 2.049 + 21.750 1.831 + 21.760 1.612 + 21.770 1.389 + 21.780 1.153 + 21.790 0.900 + 21.800 0.622 + 21.810 0.313 + 21.820 -0.034 + 21.830 -0.424 + 21.840 -0.859 + 21.850 -1.342 + 21.860 -1.873 + 21.870 -2.448 + 21.880 -3.063 + 21.890 -3.711 + 21.900 -4.383 + 21.910 -5.070 + 21.920 -5.758 + 21.930 -6.437 + 21.940 -7.092 + 21.950 -7.710 + 21.960 -8.280 + 21.970 -8.790 + 21.980 -9.231 + 21.990 -9.595 + 22.000 -9.876 + 22.010 -10.072 + 22.020 -10.182 + 22.030 -10.209 + 22.040 -10.156 + 22.050 -10.032 + 22.060 -9.846 + 22.070 -9.607 + 22.080 -9.328 + 22.090 -9.022 + 22.100 -8.701 + 22.110 -8.378 + 22.120 -8.065 + 22.130 -7.772 + 22.140 -7.506 + 22.150 -7.276 + 22.160 -7.084 + 22.170 -6.932 + 22.180 -6.821 + 22.190 -6.745 + 22.200 -6.700 + 22.210 -6.677 + 22.220 -6.669 + 22.230 -6.663 + 22.240 -6.650 + 22.250 -6.618 + 22.260 -6.557 + 22.270 -6.455 + 22.280 -6.306 + 22.290 -6.101 + 22.300 -5.836 + 22.310 -5.508 + 22.320 -5.118 + 22.330 -4.667 + 22.340 -4.160 + 22.350 -3.603 + 22.360 -3.005 + 22.370 -2.375 + 22.380 -1.724 + 22.390 -1.061 + 22.400 -0.399 + 22.410 0.253 + 22.420 0.885 + 22.430 1.490 + 22.440 2.061 + 22.450 2.593 + 22.460 3.084 + 22.470 3.534 + 22.480 3.942 + 22.490 4.311 + 22.500 4.644 + 22.510 4.946 + 22.520 5.222 + 22.530 5.475 + 22.540 5.711 + 22.550 5.931 + 22.560 6.140 + 22.570 6.337 + 22.580 6.523 + 22.590 6.695 + 22.600 6.850 + 22.610 6.984 + 22.620 7.092 + 22.630 7.169 + 22.640 7.207 + 22.650 7.203 + 22.660 7.152 + 22.670 7.050 + 22.680 6.895 + 22.690 6.688 + 22.700 6.431 + 22.710 6.129 + 22.720 5.788 + 22.730 5.416 + 22.740 5.024 + 22.750 4.623 + 22.760 4.226 + 22.770 3.843 + 22.780 3.488 + 22.790 3.172 + 22.800 2.903 + 22.810 2.690 + 22.820 2.537 + 22.830 2.446 + 22.840 2.417 + 22.850 2.446 + 22.860 2.527 + 22.870 2.651 + 22.880 2.806 + 22.890 2.980 + 22.900 3.160 + 22.910 3.332 + 22.920 3.481 + 22.930 3.596 + 22.940 3.665 + 22.950 3.680 + 22.960 3.634 + 22.970 3.526 + 22.980 3.353 + 22.990 3.121 + 23.000 2.834 + 23.010 2.502 + 23.020 2.137 + 23.030 1.750 + 23.040 1.356 + 23.050 0.968 + 23.060 0.602 + 23.070 0.270 + 23.080 -0.017 + 23.090 -0.250 + 23.100 -0.421 + 23.110 -0.528 + 23.120 -0.571 + 23.130 -0.551 + 23.140 -0.475 + 23.150 -0.351 + 23.160 -0.189 + 23.170 -0.003 + 23.180 0.194 + 23.190 0.388 + 23.200 0.565 + 23.210 0.712 + 23.220 0.816 + 23.230 0.868 + 23.240 0.861 + 23.250 0.789 + 23.260 0.652 + 23.270 0.449 + 23.280 0.184 + 23.290 -0.135 + 23.300 -0.500 + 23.310 -0.900 + 23.320 -1.324 + 23.330 -1.757 + 23.340 -2.188 + 23.350 -2.603 + 23.360 -2.991 + 23.370 -3.340 + 23.380 -3.641 + 23.390 -3.888 + 23.400 -4.076 + 23.410 -4.201 + 23.420 -4.263 + 23.430 -4.263 + 23.440 -4.205 + 23.450 -4.093 + 23.460 -3.934 + 23.470 -3.733 + 23.480 -3.497 + 23.490 -3.234 + 23.500 -2.949 + 23.510 -2.648 + 23.520 -2.335 + 23.530 -2.015 + 23.540 -1.689 + 23.550 -1.359 + 23.560 -1.025 + 23.570 -0.687 + 23.580 -0.343 + 23.590 0.008 + 23.600 0.368 + 23.610 0.737 + 23.620 1.117 + 23.630 1.506 + 23.640 1.903 + 23.650 2.305 + 23.660 2.708 + 23.670 3.108 + 23.680 3.497 + 23.690 3.870 + 23.700 4.217 + 23.710 4.532 + 23.720 4.806 + 23.730 5.033 + 23.740 5.208 + 23.750 5.325 + 23.760 5.381 + 23.770 5.376 + 23.780 5.311 + 23.790 5.190 + 23.800 5.016 + 23.810 4.798 + 23.820 4.545 + 23.830 4.265 + 23.840 3.969 + 23.850 3.667 + 23.860 3.370 + 23.870 3.087 + 23.880 2.824 + 23.890 2.588 + 23.900 2.382 + 23.910 2.207 + 23.920 2.060 + 23.930 1.937 + 23.940 1.832 + 23.950 1.735 + 23.960 1.636 + 23.970 1.523 + 23.980 1.383 + 23.990 1.203 + 24.000 0.973 + 24.010 0.682 + 24.020 0.321 + 24.030 -0.115 + 24.040 -0.629 + 24.050 -1.222 + 24.060 -1.891 + 24.070 -2.630 + 24.080 -3.430 + 24.090 -4.280 + 24.100 -5.168 + 24.110 -6.079 + 24.120 -6.997 + 24.130 -7.909 + 24.140 -8.799 + 24.150 -9.654 + 24.160 -10.463 + 24.170 -11.214 + 24.180 -11.901 + 24.190 -12.518 + 24.200 -13.062 + 24.210 -13.531 + 24.220 -13.926 + 24.230 -14.248 + 24.240 -14.501 + 24.250 -14.686 + 24.260 -14.807 + 24.270 -14.864 + 24.280 -14.858 + 24.290 -14.788 + 24.300 -14.653 + 24.310 -14.447 + 24.320 -14.165 + 24.330 -13.801 + 24.340 -13.347 + 24.350 -12.796 + 24.360 -12.141 + 24.370 -11.376 + 24.380 -10.498 + 24.390 -9.505 + 24.400 -8.399 + 24.410 -7.185 + 24.420 -5.872 + 24.430 -4.474 + 24.440 -3.005 + 24.450 -1.487 + 24.460 0.057 + 24.470 1.604 + 24.480 3.127 + 24.490 4.599 + 24.500 5.994 + 24.510 7.288 + 24.520 8.458 + 24.530 9.487 + 24.540 10.360 + 24.550 11.066 + 24.560 11.600 + 24.570 11.964 + 24.580 12.162 + 24.590 12.203 + 24.600 12.102 + 24.610 11.875 + 24.620 11.542 + 24.630 11.123 + 24.640 10.642 + 24.650 10.118 + 24.660 9.572 + 24.670 9.024 + 24.680 8.487 + 24.690 7.975 + 24.700 7.496 + 24.710 7.058 + 24.720 6.661 + 24.730 6.305 + 24.740 5.988 + 24.750 5.703 + 24.760 5.444 + 24.770 5.202 + 24.780 4.971 + 24.790 4.741 + 24.800 4.506 + 24.810 4.260 + 24.820 3.999 + 24.830 3.720 + 24.840 3.422 + 24.850 3.104 + 24.860 2.770 + 24.870 2.421 + 24.880 2.061 + 24.890 1.693 + 24.900 1.321 + 24.910 0.949 + 24.920 0.580 + 24.930 0.215 + 24.940 -0.142 + 24.950 -0.491 + 24.960 -0.831 + 24.970 -1.161 + 24.980 -1.480 + 24.990 -1.786 + 25.000 -2.076 + 25.010 -2.348 + 25.020 -2.597 + 25.030 -2.817 + 25.040 -3.001 + 25.050 -3.139 + 25.060 -3.223 + 25.070 -3.242 + 25.080 -3.187 + 25.090 -3.047 + 25.100 -2.814 + 25.110 -2.483 + 25.120 -2.047 + 25.130 -1.507 + 25.140 -0.863 + 25.150 -0.122 + 25.160 0.707 + 25.170 1.610 + 25.180 2.572 + 25.190 3.571 + 25.200 4.587 + 25.210 5.594 + 25.220 6.568 + 25.230 7.483 + 25.240 8.317 + 25.250 9.047 + 25.260 9.654 + 25.270 10.123 + 25.280 10.442 + 25.290 10.604 + 25.300 10.608 + 25.310 10.456 + 25.320 10.157 + 25.330 9.720 + 25.340 9.163 + 25.350 8.502 + 25.360 7.759 + 25.370 6.954 + 25.380 6.109 + 25.390 5.244 + 25.400 4.380 + 25.410 3.534 + 25.420 2.722 + 25.430 1.954 + 25.440 1.241 + 25.450 0.588 + 25.460 -0.002 + 25.470 -0.530 + 25.480 -0.997 + 25.490 -1.408 + 25.500 -1.768 + 25.510 -2.084 + 25.520 -2.363 + 25.530 -2.611 + 25.540 -2.835 + 25.550 -3.039 + 25.560 -3.229 + 25.570 -3.407 + 25.580 -3.577 + 25.590 -3.737 + 25.600 -3.890 + 25.610 -4.034 + 25.620 -4.169 + 25.630 -4.292 + 25.640 -4.403 + 25.650 -4.500 + 25.660 -4.581 + 25.670 -4.647 + 25.680 -4.697 + 25.690 -4.730 + 25.700 -4.747 + 25.710 -4.747 + 25.720 -4.731 + 25.730 -4.698 + 25.740 -4.649 + 25.750 -4.583 + 25.760 -4.498 + 25.770 -4.395 + 25.780 -4.271 + 25.790 -4.125 + 25.800 -3.957 + 25.810 -3.766 + 25.820 -3.551 + 25.830 -3.315 + 25.840 -3.058 + 25.850 -2.784 + 25.860 -2.498 + 25.870 -2.207 + 25.880 -1.917 + 25.890 -1.637 + 25.900 -1.376 + 25.910 -1.145 + 25.920 -0.952 + 25.930 -0.808 + 25.940 -0.722 + 25.950 -0.699 + 25.960 -0.746 + 25.970 -0.865 + 25.980 -1.057 + 25.990 -1.319 + 26.000 -1.646 + 26.010 -2.031 + 26.020 -2.462 + 26.030 -2.928 + 26.040 -3.415 + 26.050 -3.908 + 26.060 -4.391 + 26.070 -4.850 + 26.080 -5.270 + 26.090 -5.640 + 26.100 -5.949 + 26.110 -6.190 + 26.120 -6.357 + 26.130 -6.448 + 26.140 -6.465 + 26.150 -6.412 + 26.160 -6.296 + 26.170 -6.124 + 26.180 -5.908 + 26.190 -5.660 + 26.200 -5.390 + 26.210 -5.112 + 26.220 -4.836 + 26.230 -4.572 + 26.240 -4.330 + 26.250 -4.115 + 26.260 -3.933 + 26.270 -3.786 + 26.280 -3.675 + 26.290 -3.599 + 26.300 -3.555 + 26.310 -3.540 + 26.320 -3.548 + 26.330 -3.576 + 26.340 -3.617 + 26.350 -3.666 + 26.360 -3.719 + 26.370 -3.772 + 26.380 -3.820 + 26.390 -3.861 + 26.400 -3.893 + 26.410 -3.914 + 26.420 -3.921 + 26.430 -3.912 + 26.440 -3.885 + 26.450 -3.838 + 26.460 -3.767 + 26.470 -3.668 + 26.480 -3.536 + 26.490 -3.366 + 26.500 -3.153 + 26.510 -2.890 + 26.520 -2.572 + 26.530 -2.194 + 26.540 -1.754 + 26.550 -1.247 + 26.560 -0.675 + 26.570 -0.038 + 26.580 0.660 + 26.590 1.411 + 26.600 2.208 + 26.610 3.038 + 26.620 3.890 + 26.630 4.748 + 26.640 5.597 + 26.650 6.421 + 26.660 7.205 + 26.670 7.935 + 26.680 8.597 + 26.690 9.181 + 26.700 9.679 + 26.710 10.086 + 26.720 10.401 + 26.730 10.625 + 26.740 10.763 + 26.750 10.825 + 26.760 10.819 + 26.770 10.758 + 26.780 10.657 + 26.790 10.528 + 26.800 10.388 + 26.810 10.247 + 26.820 10.119 + 26.830 10.013 + 26.840 9.935 + 26.850 9.890 + 26.860 9.879 + 26.870 9.898 + 26.880 9.944 + 26.890 10.009 + 26.900 10.084 + 26.910 10.156 + 26.920 10.215 + 26.930 10.247 + 26.940 10.241 + 26.950 10.185 + 26.960 10.070 + 26.970 9.887 + 26.980 9.632 + 26.990 9.300 + 27.000 8.890 + 27.010 8.405 + 27.020 7.847 + 27.030 7.221 + 27.040 6.535 + 27.050 5.796 + 27.060 5.013 + 27.070 4.195 + 27.080 3.352 + 27.090 2.490 + 27.100 1.620 + 27.110 0.747 + 27.120 -0.121 + 27.130 -0.978 + 27.140 -1.821 + 27.150 -2.644 + 27.160 -3.443 + 27.170 -4.216 + 27.180 -4.958 + 27.190 -5.666 + 27.200 -6.335 + 27.210 -6.963 + 27.220 -7.544 + 27.230 -8.073 + 27.240 -8.546 + 27.250 -8.958 + 27.260 -9.303 + 27.270 -9.578 + 27.280 -9.778 + 27.290 -9.900 + 27.300 -9.943 + 27.310 -9.906 + 27.320 -9.791 + 27.330 -9.599 + 27.340 -9.334 + 27.350 -9.003 + 27.360 -8.611 + 27.370 -8.167 + 27.380 -7.679 + 27.390 -7.156 + 27.400 -6.607 + 27.410 -6.042 + 27.420 -5.469 + 27.430 -4.895 + 27.440 -4.329 + 27.450 -3.775 + 27.460 -3.238 + 27.470 -2.720 + 27.480 -2.224 + 27.490 -1.750 + 27.500 -1.297 + 27.510 -0.864 + 27.520 -0.449 + 27.530 -0.049 + 27.540 0.339 + 27.550 0.716 + 27.560 1.085 + 27.570 1.448 + 27.580 1.806 + 27.590 2.158 + 27.600 2.504 + 27.610 2.843 + 27.620 3.172 + 27.630 3.488 + 27.640 3.788 + 27.650 4.068 + 27.660 4.324 + 27.670 4.551 + 27.680 4.746 + 27.690 4.904 + 27.700 5.021 + 27.710 5.096 + 27.720 5.124 + 27.730 5.104 + 27.740 5.035 + 27.750 4.917 + 27.760 4.748 + 27.770 4.532 + 27.780 4.269 + 27.790 3.962 + 27.800 3.614 + 27.810 3.230 + 27.820 2.815 + 27.830 2.373 + 27.840 1.912 + 27.850 1.438 + 27.860 0.958 + 27.870 0.479 + 27.880 0.009 + 27.890 -0.445 + 27.900 -0.875 + 27.910 -1.275 + 27.920 -1.640 + 27.930 -1.965 + 27.940 -2.245 + 27.950 -2.480 + 27.960 -2.667 + 27.970 -2.810 + 27.980 -2.909 + 27.990 -2.970 + 28.000 -2.999 + 28.010 -3.003 + 28.020 -2.990 + 28.030 -2.970 + 28.040 -2.952 + 28.050 -2.946 + 28.060 -2.961 + 28.070 -3.005 + 28.080 -3.085 + 28.090 -3.206 + 28.100 -3.371 + 28.110 -3.583 + 28.120 -3.839 + 28.130 -4.136 + 28.140 -4.469 + 28.150 -4.830 + 28.160 -5.210 + 28.170 -5.598 + 28.180 -5.984 + 28.190 -6.355 + 28.200 -6.700 + 28.210 -7.008 + 28.220 -7.271 + 28.230 -7.480 + 28.240 -7.630 + 28.250 -7.718 + 28.260 -7.741 + 28.270 -7.703 + 28.280 -7.605 + 28.290 -7.455 + 28.300 -7.260 + 28.310 -7.029 + 28.320 -6.771 + 28.330 -6.496 + 28.340 -6.216 + 28.350 -5.938 + 28.360 -5.672 + 28.370 -5.424 + 28.380 -5.199 + 28.390 -4.998 + 28.400 -4.824 + 28.410 -4.673 + 28.420 -4.543 + 28.430 -4.427 + 28.440 -4.317 + 28.450 -4.206 + 28.460 -4.084 + 28.470 -3.941 + 28.480 -3.767 + 28.490 -3.554 + 28.500 -3.294 + 28.510 -2.981 + 28.520 -2.609 + 28.530 -2.178 + 28.540 -1.684 + 28.550 -1.132 + 28.560 -0.524 + 28.570 0.135 + 28.580 0.836 + 28.590 1.571 + 28.600 2.330 + 28.610 3.102 + 28.620 3.875 + 28.630 4.638 + 28.640 5.380 + 28.650 6.090 + 28.660 6.758 + 28.670 7.376 + 28.680 7.935 + 28.690 8.431 + 28.700 8.858 + 28.710 9.212 + 28.720 9.494 + 28.730 9.702 + 28.740 9.838 + 28.750 9.904 + 28.760 9.904 + 28.770 9.843 + 28.780 9.726 + 28.790 9.559 + 28.800 9.349 + 28.810 9.102 + 28.820 8.824 + 28.830 8.524 + 28.840 8.207 + 28.850 7.880 + 28.860 7.547 + 28.870 7.214 + 28.880 6.886 + 28.890 6.565 + 28.900 6.255 + 28.910 5.957 + 28.920 5.672 + 28.930 5.402 + 28.940 5.146 + 28.950 4.903 + 28.960 4.672 + 28.970 4.452 + 28.980 4.241 + 28.990 4.039 + 29.000 3.843 + 29.010 3.653 + 29.020 3.467 + 29.030 3.287 + 29.040 3.112 + 29.050 2.943 + 29.060 2.781 + 29.070 2.629 + 29.080 2.489 + 29.090 2.363 + 29.100 2.253 + 29.110 2.163 + 29.120 2.095 + 29.130 2.050 + 29.140 2.030 + 29.150 2.035 + 29.160 2.066 + 29.170 2.122 + 29.180 2.201 + 29.190 2.299 + 29.200 2.415 + 29.210 2.543 + 29.220 2.679 + 29.230 2.816 + 29.240 2.951 + 29.250 3.077 + 29.260 3.188 + 29.270 3.279 + 29.280 3.345 + 29.290 3.381 + 29.300 3.384 + 29.310 3.349 + 29.320 3.275 + 29.330 3.160 + 29.340 3.003 + 29.350 2.802 + 29.360 2.558 + 29.370 2.272 + 29.380 1.944 + 29.390 1.575 + 29.400 1.168 + 29.410 0.723 + 29.420 0.242 + 29.430 -0.271 + 29.440 -0.816 + 29.450 -1.389 + 29.460 -1.988 + 29.470 -2.609 + 29.480 -3.249 + 29.490 -3.903 + 29.500 -4.567 + 29.510 -5.237 + 29.520 -5.905 + 29.530 -6.567 + 29.540 -7.216 + 29.550 -7.845 + 29.560 -8.448 + 29.570 -9.018 + 29.580 -9.548 + 29.590 -10.032 + 29.600 -10.465 + 29.610 -10.843 + 29.620 -11.161 + 29.630 -11.416 + 29.640 -11.608 + 29.650 -11.734 + 29.660 -11.797 + 29.670 -11.797 + 29.680 -11.736 + 29.690 -11.618 + 29.700 -11.445 + 29.710 -11.223 + 29.720 -10.954 + 29.730 -10.643 + 29.740 -10.293 + 29.750 -9.908 + 29.760 -9.489 + 29.770 -9.040 + 29.780 -8.561 + 29.790 -8.054 + 29.800 -7.519 + 29.810 -6.957 + 29.820 -6.367 + 29.830 -5.749 + 29.840 -5.105 + 29.850 -4.435 + 29.860 -3.741 + 29.870 -3.025 + 29.880 -2.292 + 29.890 -1.545 + 29.900 -0.790 + 29.910 -0.033 + 29.920 0.719 + 29.930 1.457 + 29.940 2.174 + 29.950 2.861 + 29.960 3.511 + 29.970 4.115 + 29.980 4.668 + 29.990 5.165 + 30.000 5.599 + 30.010 5.971 + 30.020 6.277 + 30.030 6.519 + 30.040 6.699 + 30.050 6.822 + 30.060 6.891 + 30.070 6.914 + 30.080 6.897 + 30.090 6.848 + 30.100 6.774 + 30.110 6.682 + 30.120 6.579 + 30.130 6.471 + 30.140 6.361 + 30.150 6.253 + 30.160 6.149 + 30.170 6.048 + 30.180 5.948 + 30.190 5.848 + 30.200 5.742 + 30.210 5.625 + 30.220 5.492 + 30.230 5.337 + 30.240 5.153 + 30.250 4.934 + 30.260 4.675 + 30.270 4.372 + 30.280 4.023 + 30.290 3.625 + 30.300 3.179 + 30.310 2.687 + 30.320 2.152 + 30.330 1.579 + 30.340 0.975 + 30.350 0.348 + 30.360 -0.295 + 30.370 -0.943 + 30.380 -1.587 + 30.390 -2.218 + 30.400 -2.826 + 30.410 -3.402 + 30.420 -3.939 + 30.430 -4.430 + 30.440 -4.870 + 30.450 -5.255 + 30.460 -5.583 + 30.470 -5.851 + 30.480 -6.063 + 30.490 -6.217 + 30.500 -6.319 + 30.510 -6.371 + 30.520 -6.378 + 30.530 -6.344 + 30.540 -6.274 + 30.550 -6.173 + 30.560 -6.045 + 30.570 -5.893 + 30.580 -5.720 + 30.590 -5.527 + 30.600 -5.316 + 30.610 -5.086 + 30.620 -4.836 + 30.630 -4.564 + 30.640 -4.268 + 30.650 -3.944 + 30.660 -3.590 + 30.670 -3.203 + 30.680 -2.780 + 30.690 -2.320 + 30.700 -1.823 + 30.710 -1.289 + 30.720 -0.720 + 30.730 -0.122 + 30.740 0.502 + 30.750 1.143 + 30.760 1.793 + 30.770 2.441 + 30.780 3.077 + 30.790 3.689 + 30.800 4.263 + 30.810 4.789 + 30.820 5.255 + 30.830 5.650 + 30.840 5.964 + 30.850 6.191 + 30.860 6.326 + 30.870 6.366 + 30.880 6.311 + 30.890 6.165 + 30.900 5.933 + 30.910 5.625 + 30.920 5.250 + 30.930 4.824 + 30.940 4.359 + 30.950 3.874 + 30.960 3.384 + 30.970 2.908 + 30.980 2.461 + 30.990 2.059 + 31.000 1.716 + 31.010 1.445 + 31.020 1.253 + 31.030 1.149 + 31.040 1.136 + 31.050 1.213 + 31.060 1.380 + 31.070 1.629 + 31.080 1.952 + 31.090 2.340 + 31.100 2.778 + 31.110 3.254 + 31.120 3.751 + 31.130 4.254 + 31.140 4.748 + 31.150 5.216 + 31.160 5.645 + 31.170 6.022 + 31.180 6.336 + 31.190 6.577 + 31.200 6.738 + 31.210 6.815 + 31.220 6.804 + 31.230 6.705 + 31.240 6.518 + 31.250 6.248 + 31.260 5.898 + 31.270 5.475 + 31.280 4.985 + 31.290 4.436 + 31.300 3.836 + 31.310 3.192 + 31.320 2.515 + 31.330 1.811 + 31.340 1.088 + 31.350 0.354 + 31.360 -0.384 + 31.370 -1.120 + 31.380 -1.847 + 31.390 -2.561 + 31.400 -3.256 + 31.410 -3.927 + 31.420 -4.569 + 31.430 -5.179 + 31.440 -5.751 + 31.450 -6.283 + 31.460 -6.770 + 31.470 -7.208 + 31.480 -7.593 + 31.490 -7.922 + 31.500 -8.191 + 31.510 -8.396 + 31.520 -8.535 + 31.530 -8.605 + 31.540 -8.603 + 31.550 -8.526 + 31.560 -8.375 + 31.570 -8.148 + 31.580 -7.846 + 31.590 -7.468 + 31.600 -7.018 + 31.610 -6.497 + 31.620 -5.911 + 31.630 -5.264 + 31.640 -4.561 + 31.650 -3.810 + 31.660 -3.019 + 31.670 -2.197 + 31.680 -1.354 + 31.690 -0.500 + 31.700 0.353 + 31.710 1.194 + 31.720 2.010 + 31.730 2.792 + 31.740 3.526 + 31.750 4.202 + 31.760 4.809 + 31.770 5.339 + 31.780 5.783 + 31.790 6.136 + 31.800 6.391 + 31.810 6.545 + 31.820 6.598 + 31.830 6.550 + 31.840 6.403 + 31.850 6.162 + 31.860 5.831 + 31.870 5.420 + 31.880 4.936 + 31.890 4.390 + 31.900 3.792 + 31.910 3.153 + 31.920 2.486 + 31.930 1.802 + 31.940 1.111 + 31.950 0.426 + 31.960 -0.245 + 31.970 -0.891 + 31.980 -1.507 + 31.990 -2.084 + 32.000 -2.618 + 32.010 -3.104 + 32.020 -3.540 + 32.030 -3.925 + 32.040 -4.259 + 32.050 -4.541 + 32.060 -4.773 + 32.070 -4.958 + 32.080 -5.099 + 32.090 -5.199 + 32.100 -5.262 + 32.110 -5.291 + 32.120 -5.289 + 32.130 -5.262 + 32.140 -5.212 + 32.150 -5.142 + 32.160 -5.057 + 32.170 -4.958 + 32.180 -4.848 + 32.190 -4.729 + 32.200 -4.603 + 32.210 -4.473 + 32.220 -4.337 + 32.230 -4.199 + 32.240 -4.057 + 32.250 -3.913 + 32.260 -3.765 + 32.270 -3.615 + 32.280 -3.460 + 32.290 -3.299 + 32.300 -3.133 + 32.310 -2.958 + 32.320 -2.774 + 32.330 -2.578 + 32.340 -2.370 + 32.350 -2.148 + 32.360 -1.909 + 32.370 -1.654 + 32.380 -1.381 + 32.390 -1.090 + 32.400 -0.780 + 32.410 -0.452 + 32.420 -0.107 + 32.430 0.253 + 32.440 0.627 + 32.450 1.013 + 32.460 1.406 + 32.470 1.805 + 32.480 2.205 + 32.490 2.603 + 32.500 2.993 + 32.510 3.372 + 32.520 3.735 + 32.530 4.077 + 32.540 4.394 + 32.550 4.681 + 32.560 4.935 + 32.570 5.151 + 32.580 5.326 + 32.590 5.455 + 32.600 5.536 + 32.610 5.567 + 32.620 5.545 + 32.630 5.469 + 32.640 5.338 + 32.650 5.152 + 32.660 4.912 + 32.670 4.620 + 32.680 4.278 + 32.690 3.890 + 32.700 3.459 + 32.710 2.993 + 32.720 2.497 + 32.730 1.979 + 32.740 1.445 + 32.750 0.906 + 32.760 0.370 + 32.770 -0.155 + 32.780 -0.658 + 32.790 -1.132 + 32.800 -1.568 + 32.810 -1.958 + 32.820 -2.297 + 32.830 -2.580 + 32.840 -2.803 + 32.850 -2.964 + 32.860 -3.062 + 32.870 -3.100 + 32.880 -3.078 + 32.890 -3.002 + 32.900 -2.877 + 32.910 -2.709 + 32.920 -2.504 + 32.930 -2.270 + 32.940 -2.014 + 32.950 -1.743 + 32.960 -1.464 + 32.970 -1.181 + 32.980 -0.901 + 32.990 -0.626 + 33.000 -0.359 + 33.010 -0.101 + 33.020 0.147 + 33.030 0.386 + 33.040 0.618 + 33.050 0.843 + 33.060 1.064 + 33.070 1.282 + 33.080 1.500 + 33.090 1.718 + 33.100 1.936 + 33.110 2.153 + 33.120 2.367 + 33.130 2.576 + 33.140 2.775 + 33.150 2.962 + 33.160 3.130 + 33.170 3.274 + 33.180 3.390 + 33.190 3.474 + 33.200 3.520 + 33.210 3.527 + 33.220 3.493 + 33.230 3.419 + 33.240 3.306 + 33.250 3.157 + 33.260 2.978 + 33.270 2.775 + 33.280 2.556 + 33.290 2.329 + 33.300 2.104 + 33.310 1.890 + 33.320 1.696 + 33.330 1.530 + 33.340 1.399 + 33.350 1.308 + 33.360 1.261 + 33.370 1.260 + 33.380 1.303 + 33.390 1.388 + 33.400 1.511 + 33.410 1.663 + 33.420 1.837 + 33.430 2.024 + 33.440 2.212 + 33.450 2.391 + 33.460 2.550 + 33.470 2.678 + 33.480 2.768 + 33.490 2.810 + 33.500 2.799 + 33.510 2.729 + 33.520 2.599 + 33.530 2.408 + 33.540 2.156 + 33.550 1.847 + 33.560 1.485 + 33.570 1.076 + 33.580 0.626 + 33.590 0.143 + 33.600 -0.367 + 33.610 -0.896 + 33.620 -1.437 + 33.630 -1.984 + 33.640 -2.531 + 33.650 -3.073 + 33.660 -3.606 + 33.670 -4.127 + 33.680 -4.632 + 33.690 -5.119 + 33.700 -5.586 + 33.710 -6.032 + 33.720 -6.454 + 33.730 -6.850 + 33.740 -7.218 + 33.750 -7.553 + 33.760 -7.852 + 33.770 -8.111 + 33.780 -8.325 + 33.790 -8.487 + 33.800 -8.592 + 33.810 -8.634 + 33.820 -8.607 + 33.830 -8.505 + 33.840 -8.324 + 33.850 -8.059 + 33.860 -7.707 + 33.870 -7.267 + 33.880 -6.738 + 33.890 -6.123 + 33.900 -5.422 + 33.910 -4.642 + 33.920 -3.789 + 33.930 -2.870 + 33.940 -1.895 + 33.950 -0.874 + 33.960 0.182 + 33.970 1.261 + 33.980 2.349 + 33.990 3.434 + 34.000 4.503 + 34.010 5.543 + 34.020 6.543 + 34.030 7.488 + 34.040 8.370 + 34.050 9.178 + 34.060 9.902 + 34.070 10.535 + 34.080 11.069 + 34.090 11.499 + 34.100 11.821 + 34.110 12.031 + 34.120 12.128 + 34.130 12.111 + 34.140 11.981 + 34.150 11.739 + 34.160 11.388 + 34.170 10.934 + 34.180 10.380 + 34.190 9.733 + 34.200 9.000 + 34.210 8.189 + 34.220 7.309 + 34.230 6.368 + 34.240 5.375 + 34.250 4.342 + 34.260 3.277 + 34.270 2.191 + 34.280 1.094 + 34.290 -0.004 + 34.300 -1.093 + 34.310 -2.164 + 34.320 -3.207 + 34.330 -4.215 + 34.340 -5.178 + 34.350 -6.089 + 34.360 -6.942 + 34.370 -7.729 + 34.380 -8.445 + 34.390 -9.085 + 34.400 -9.644 + 34.410 -10.118 + 34.420 -10.505 + 34.430 -10.803 + 34.440 -11.010 + 34.450 -11.127 + 34.460 -11.155 + 34.470 -11.095 + 34.480 -10.950 + 34.490 -10.725 + 34.500 -10.424 + 34.510 -10.054 + 34.520 -9.622 + 34.530 -9.135 + 34.540 -8.601 + 34.550 -8.031 + 34.560 -7.432 + 34.570 -6.814 + 34.580 -6.186 + 34.590 -5.556 + 34.600 -4.933 + 34.610 -4.323 + 34.620 -3.734 + 34.630 -3.170 + 34.640 -2.636 + 34.650 -2.134 + 34.660 -1.668 + 34.670 -1.238 + 34.680 -0.843 + 34.690 -0.484 + 34.700 -0.158 + 34.710 0.136 + 34.720 0.399 + 34.730 0.634 + 34.740 0.844 + 34.750 1.029 + 34.760 1.191 + 34.770 1.332 + 34.780 1.451 + 34.790 1.549 + 34.800 1.625 + 34.810 1.680 + 34.820 1.712 + 34.830 1.723 + 34.840 1.710 + 34.850 1.675 + 34.860 1.619 + 34.870 1.543 + 34.880 1.449 + 34.890 1.341 + 34.900 1.221 + 34.910 1.095 + 34.920 0.966 + 34.930 0.841 + 34.940 0.723 + 34.950 0.619 + 34.960 0.533 + 34.970 0.469 + 34.980 0.431 + 34.990 0.421 + 35.000 0.439 + 35.010 0.487 + 35.020 0.563 + 35.030 0.666 + 35.040 0.791 + 35.050 0.934 + 35.060 1.092 + 35.070 1.259 + 35.080 1.430 + 35.090 1.599 + 35.100 1.763 + 35.110 1.918 + 35.120 2.061 + 35.130 2.190 + 35.140 2.305 + 35.150 2.407 + 35.160 2.498 + 35.170 2.581 + 35.180 2.659 + 35.190 2.739 + 35.200 2.824 + 35.210 2.919 + 35.220 3.031 + 35.230 3.163 + 35.240 3.320 + 35.250 3.503 + 35.260 3.714 + 35.270 3.955 + 35.280 4.222 + 35.290 4.514 + 35.300 4.827 + 35.310 5.155 + 35.320 5.493 + 35.330 5.834 + 35.340 6.169 + 35.350 6.492 + 35.360 6.796 + 35.370 7.072 + 35.380 7.314 + 35.390 7.515 + 35.400 7.672 + 35.410 7.779 + 35.420 7.834 + 35.430 7.834 + 35.440 7.779 + 35.450 7.670 + 35.460 7.506 + 35.470 7.290 + 35.480 7.025 + 35.490 6.714 + 35.500 6.360 + 35.510 5.967 + 35.520 5.541 + 35.530 5.084 + 35.540 4.602 + 35.550 4.100 + 35.560 3.582 + 35.570 3.053 + 35.580 2.519 + 35.590 1.984 + 35.600 1.454 + 35.610 0.933 + 35.620 0.427 + 35.630 -0.059 + 35.640 -0.520 + 35.650 -0.953 + 35.660 -1.352 + 35.670 -1.715 + 35.680 -2.038 + 35.690 -2.320 + 35.700 -2.560 + 35.710 -2.757 + 35.720 -2.912 + 35.730 -3.028 + 35.740 -3.107 + 35.750 -3.153 + 35.760 -3.172 + 35.770 -3.169 + 35.780 -3.150 + 35.790 -3.121 + 35.800 -3.089 + 35.810 -3.060 + 35.820 -3.040 + 35.830 -3.035 + 35.840 -3.050 + 35.850 -3.086 + 35.860 -3.149 + 35.870 -3.238 + 35.880 -3.355 + 35.890 -3.499 + 35.900 -3.667 + 35.910 -3.858 + 35.920 -4.069 + 35.930 -4.294 + 35.940 -4.531 + 35.950 -4.773 + 35.960 -5.018 + 35.970 -5.259 + 35.980 -5.494 + 35.990 -5.717 + 36.000 -5.926 + 36.010 -6.117 + 36.020 -6.288 + 36.030 -6.437 + 36.040 -6.561 + 36.050 -6.660 + 36.060 -6.732 + 36.070 -6.775 + 36.080 -6.790 + 36.090 -6.773 + 36.100 -6.725 + 36.110 -6.645 + 36.120 -6.530 + 36.130 -6.380 + 36.140 -6.192 + 36.150 -5.967 + 36.160 -5.703 + 36.170 -5.400 + 36.180 -5.056 + 36.190 -4.674 + 36.200 -4.254 + 36.210 -3.797 + 36.220 -3.308 + 36.230 -2.789 + 36.240 -2.246 + 36.250 -1.685 + 36.260 -1.111 + 36.270 -0.532 + 36.280 0.043 + 36.290 0.608 + 36.300 1.154 + 36.310 1.672 + 36.320 2.154 + 36.330 2.593 + 36.340 2.983 + 36.350 3.317 + 36.360 3.591 + 36.370 3.802 + 36.380 3.948 + 36.390 4.028 + 36.400 4.044 + 36.410 3.999 + 36.420 3.896 + 36.430 3.741 + 36.440 3.541 + 36.450 3.303 + 36.460 3.036 + 36.470 2.748 + 36.480 2.448 + 36.490 2.146 + 36.500 1.851 + 36.510 1.570 + 36.520 1.311 + 36.530 1.081 + 36.540 0.885 + 36.550 0.726 + 36.560 0.606 + 36.570 0.528 + 36.580 0.490 + 36.590 0.490 + 36.600 0.524 + 36.610 0.589 + 36.620 0.678 + 36.630 0.784 + 36.640 0.901 + 36.650 1.022 + 36.660 1.137 + 36.670 1.242 + 36.680 1.327 + 36.690 1.389 + 36.700 1.420 + 36.710 1.417 + 36.720 1.378 + 36.730 1.299 + 36.740 1.181 + 36.750 1.024 + 36.760 0.830 + 36.770 0.600 + 36.780 0.340 + 36.790 0.052 + 36.800 -0.259 + 36.810 -0.588 + 36.820 -0.930 + 36.830 -1.281 + 36.840 -1.637 + 36.850 -1.993 + 36.860 -2.345 + 36.870 -2.692 + 36.880 -3.029 + 36.890 -3.354 + 36.900 -3.666 + 36.910 -3.963 + 36.920 -4.241 + 36.930 -4.501 + 36.940 -4.739 + 36.950 -4.952 + 36.960 -5.139 + 36.970 -5.296 + 36.980 -5.420 + 36.990 -5.506 + 37.000 -5.550 + 37.010 -5.549 + 37.020 -5.498 + 37.030 -5.394 + 37.040 -5.233 + 37.050 -5.013 + 37.060 -4.732 + 37.070 -4.391 + 37.080 -3.989 + 37.090 -3.530 + 37.100 -3.018 + 37.110 -2.456 + 37.120 -1.853 + 37.130 -1.216 + 37.140 -0.553 + 37.150 0.126 + 37.160 0.810 + 37.170 1.491 + 37.180 2.157 + 37.190 2.801 + 37.200 3.413 + 37.210 3.985 + 37.220 4.513 + 37.230 4.990 + 37.240 5.415 + 37.250 5.785 + 37.260 6.100 + 37.270 6.361 + 37.280 6.572 + 37.290 6.734 + 37.300 6.853 + 37.310 6.934 + 37.320 6.980 + 37.330 6.997 + 37.340 6.990 + 37.350 6.963 + 37.360 6.920 + 37.370 6.865 + 37.380 6.799 + 37.390 6.726 + 37.400 6.647 + 37.410 6.564 + 37.420 6.478 + 37.430 6.389 + 37.440 6.299 + 37.450 6.210 + 37.460 6.123 + 37.470 6.039 + 37.480 5.961 + 37.490 5.890 + 37.500 5.830 + 37.510 5.782 + 37.520 5.749 + 37.530 5.732 + 37.540 5.733 + 37.550 5.752 + 37.560 5.790 + 37.570 5.843 + 37.580 5.910 + 37.590 5.986 + 37.600 6.067 + 37.610 6.147 + 37.620 6.217 + 37.630 6.271 + 37.640 6.299 + 37.650 6.294 + 37.660 6.247 + 37.670 6.150 + 37.680 5.996 + 37.690 5.779 + 37.700 5.496 + 37.710 5.142 + 37.720 4.718 + 37.730 4.225 + 37.740 3.664 + 37.750 3.041 + 37.760 2.363 + 37.770 1.637 + 37.780 0.871 + 37.790 0.077 + 37.800 -0.736 + 37.810 -1.556 + 37.820 -2.374 + 37.830 -3.178 + 37.840 -3.959 + 37.850 -4.708 + 37.860 -5.417 + 37.870 -6.079 + 37.880 -6.690 + 37.890 -7.243 + 37.900 -7.736 + 37.910 -8.167 + 37.920 -8.533 + 37.930 -8.834 + 37.940 -9.070 + 37.950 -9.241 + 37.960 -9.348 + 37.970 -9.392 + 37.980 -9.374 + 37.990 -9.295 + 38.000 -9.157 + 38.010 -8.963 + 38.020 -8.713 + 38.030 -8.410 + 38.040 -8.058 + 38.050 -7.660 + 38.060 -7.220 + 38.070 -6.742 + 38.080 -6.231 + 38.090 -5.694 + 38.100 -5.136 + 38.110 -4.565 + 38.120 -3.987 + 38.130 -3.409 + 38.140 -2.841 + 38.150 -2.288 + 38.160 -1.759 + 38.170 -1.261 + 38.180 -0.799 + 38.190 -0.381 + 38.200 -0.011 + 38.210 0.305 + 38.220 0.566 + 38.230 0.766 + 38.240 0.905 + 38.250 0.981 + 38.260 0.994 + 38.270 0.944 + 38.280 0.831 + 38.290 0.657 + 38.300 0.424 + 38.310 0.134 + 38.320 -0.209 + 38.330 -0.603 + 38.340 -1.044 + 38.350 -1.526 + 38.360 -2.046 + 38.370 -2.598 + 38.380 -3.175 + 38.390 -3.770 + 38.400 -4.378 + 38.410 -4.989 + 38.420 -5.595 + 38.430 -6.188 + 38.440 -6.758 + 38.450 -7.298 + 38.460 -7.796 + 38.470 -8.246 + 38.480 -8.639 + 38.490 -8.966 + 38.500 -9.222 + 38.510 -9.401 + 38.520 -9.499 + 38.530 -9.512 + 38.540 -9.439 + 38.550 -9.281 + 38.560 -9.037 + 38.570 -8.711 + 38.580 -8.305 + 38.590 -7.827 + 38.600 -7.279 + 38.610 -6.670 + 38.620 -6.006 + 38.630 -5.293 + 38.640 -4.540 + 38.650 -3.752 + 38.660 -2.939 + 38.670 -2.105 + 38.680 -1.257 + 38.690 -0.401 + 38.700 0.456 + 38.710 1.310 + 38.720 2.154 + 38.730 2.984 + 38.740 3.794 + 38.750 4.580 + 38.760 5.335 + 38.770 6.054 + 38.780 6.732 + 38.790 7.364 + 38.800 7.943 + 38.810 8.465 + 38.820 8.924 + 38.830 9.318 + 38.840 9.642 + 38.850 9.894 + 38.860 10.073 + 38.870 10.178 + 38.880 10.211 + 38.890 10.176 + 38.900 10.075 + 38.910 9.914 + 38.920 9.701 + 38.930 9.442 + 38.940 9.146 + 38.950 8.821 + 38.960 8.477 + 38.970 8.122 + 38.980 7.763 + 38.990 7.408 + 39.000 7.062 + 39.010 6.731 + 39.020 6.416 + 39.030 6.118 + 39.040 5.839 + 39.050 5.574 + 39.060 5.322 + 39.070 5.078 + 39.080 4.835 + 39.090 4.589 + 39.100 4.333 + 39.110 4.062 + 39.120 3.769 + 39.130 3.451 + 39.140 3.105 + 39.150 2.728 + 39.160 2.320 + 39.170 1.883 + 39.180 1.419 + 39.190 0.934 + 39.200 0.432 + 39.210 -0.078 + 39.220 -0.590 + 39.230 -1.093 + 39.240 -1.580 + 39.250 -2.041 + 39.260 -2.467 + 39.270 -2.851 + 39.280 -3.185 + 39.290 -3.462 + 39.300 -3.678 + 39.310 -3.829 + 39.320 -3.912 + 39.330 -3.926 + 39.340 -3.871 + 39.350 -3.749 + 39.360 -3.561 + 39.370 -3.311 + 39.380 -3.002 + 39.390 -2.640 + 39.400 -2.229 + 39.410 -1.775 + 39.420 -1.283 + 39.430 -0.759 + 39.440 -0.209 + 39.450 0.361 + 39.460 0.945 + 39.470 1.535 + 39.480 2.126 + 39.490 2.711 + 39.500 3.283 + 39.510 3.835 + 39.520 4.360 + 39.530 4.850 + 39.540 5.301 + 39.550 5.703 + 39.560 6.051 + 39.570 6.340 + 39.580 6.563 + 39.590 6.716 + 39.600 6.796 + 39.610 6.799 + 39.620 6.726 + 39.630 6.576 + 39.640 6.349 + 39.650 6.049 + 39.660 5.680 + 39.670 5.246 + 39.680 4.755 + 39.690 4.213 + 39.700 3.630 + 39.710 3.013 + 39.720 2.372 + 39.730 1.717 + 39.740 1.058 + 39.750 0.403 + 39.760 -0.237 + 39.770 -0.854 + 39.780 -1.441 + 39.790 -1.990 + 39.800 -2.496 + 39.810 -2.953 + 39.820 -3.357 + 39.830 -3.706 + 39.840 -3.998 + 39.850 -4.232 + 39.860 -4.409 + 39.870 -4.531 + 39.880 -4.599 + 39.890 -4.619 + 39.900 -4.593 + 39.910 -4.527 + 39.920 -4.426 + 39.930 -4.298 + 39.940 -4.148 + 39.950 -3.983 + 39.960 -3.811 + 39.970 -3.637 + 39.980 -3.470 + 39.990 -3.316 + 40.000 -3.180 + 40.010 -3.068 + 40.020 -2.985 + 40.030 -2.935 + 40.040 -2.921 + 40.050 -2.944 + 40.060 -3.006 + 40.070 -3.106 + 40.080 -3.243 + 40.090 -3.414 + 40.100 -3.616 + 40.110 -3.846 + 40.120 -4.098 + 40.130 -4.366 + 40.140 -4.647 + 40.150 -4.932 + 40.160 -5.217 + 40.170 -5.496 + 40.180 -5.763 + 40.190 -6.014 + 40.200 -6.243 + 40.210 -6.448 + 40.220 -6.626 + 40.230 -6.773 + 40.240 -6.888 + 40.250 -6.970 + 40.260 -7.019 + 40.270 -7.034 + 40.280 -7.016 + 40.290 -6.965 + 40.300 -6.883 + 40.310 -6.770 + 40.320 -6.626 + 40.330 -6.453 + 40.340 -6.251 + 40.350 -6.022 + 40.360 -5.764 + 40.370 -5.479 + 40.380 -5.167 + 40.390 -4.829 + 40.400 -4.464 + 40.410 -4.075 + 40.420 -3.661 + 40.430 -3.225 + 40.440 -2.767 + 40.450 -2.291 + 40.460 -1.798 + 40.470 -1.292 + 40.480 -0.776 + 40.490 -0.254 + 40.500 0.271 + 40.510 0.794 + 40.520 1.311 + 40.530 1.817 + 40.540 2.310 + 40.550 2.783 + 40.560 3.235 + 40.570 3.661 + 40.580 4.058 + 40.590 4.424 + 40.600 4.756 + 40.610 5.051 + 40.620 5.308 + 40.630 5.526 + 40.640 5.703 + 40.650 5.838 + 40.660 5.929 + 40.670 5.977 + 40.680 5.981 + 40.690 5.940 + 40.700 5.855 + 40.710 5.724 + 40.720 5.550 + 40.730 5.332 + 40.740 5.072 + 40.750 4.772 + 40.760 4.434 + 40.770 4.061 + 40.780 3.657 + 40.790 3.227 + 40.800 2.776 + 40.810 2.309 + 40.820 1.834 + 40.830 1.357 + 40.840 0.884 + 40.850 0.425 + 40.860 -0.015 + 40.870 -0.428 + 40.880 -0.807 + 40.890 -1.146 + 40.900 -1.440 + 40.910 -1.683 + 40.920 -1.873 + 40.930 -2.007 + 40.940 -2.084 + 40.950 -2.103 + 40.960 -2.066 + 40.970 -1.976 + 40.980 -1.835 + 40.990 -1.647 + 41.000 -1.419 + 41.010 -1.155 + 41.020 -0.861 + 41.030 -0.545 + 41.040 -0.212 + 41.050 0.131 + 41.060 0.478 + 41.070 0.823 + 41.080 1.160 + 41.090 1.484 + 41.100 1.792 + 41.110 2.079 + 41.120 2.343 + 41.130 2.581 + 41.140 2.791 + 41.150 2.974 + 41.160 3.127 + 41.170 3.251 + 41.180 3.348 + 41.190 3.418 + 41.200 3.463 + 41.210 3.484 + 41.220 3.485 + 41.230 3.468 + 41.240 3.436 + 41.250 3.392 + 41.260 3.340 + 41.270 3.282 + 41.280 3.223 + 41.290 3.165 + 41.300 3.112 + 41.310 3.067 + 41.320 3.033 + 41.330 3.011 + 41.340 3.005 + 41.350 3.015 + 41.360 3.042 + 41.370 3.087 + 41.380 3.148 + 41.390 3.225 + 41.400 3.317 + 41.410 3.419 + 41.420 3.530 + 41.430 3.645 + 41.440 3.761 + 41.450 3.873 + 41.460 3.976 + 41.470 4.066 + 41.480 4.138 + 41.490 4.187 + 41.500 4.210 + 41.510 4.202 + 41.520 4.161 + 41.530 4.084 + 41.540 3.969 + 41.550 3.815 + 41.560 3.623 + 41.570 3.393 + 41.580 3.127 + 41.590 2.827 + 41.600 2.497 + 41.610 2.141 + 41.620 1.764 + 41.630 1.371 + 41.640 0.969 + 41.650 0.564 + 41.660 0.161 + 41.670 -0.231 + 41.680 -0.607 + 41.690 -0.960 + 41.700 -1.284 + 41.710 -1.572 + 41.720 -1.821 + 41.730 -2.025 + 41.740 -2.182 + 41.750 -2.288 + 41.760 -2.342 + 41.770 -2.345 + 41.780 -2.297 + 41.790 -2.200 + 41.800 -2.059 + 41.810 -1.877 + 41.820 -1.661 + 41.830 -1.419 + 41.840 -1.157 + 41.850 -0.885 + 41.860 -0.612 + 41.870 -0.347 + 41.880 -0.101 + 41.890 0.118 + 41.900 0.300 + 41.910 0.437 + 41.920 0.521 + 41.930 0.548 + 41.940 0.512 + 41.950 0.409 + 41.960 0.240 + 41.970 0.003 + 41.980 -0.299 + 41.990 -0.662 + 42.000 -1.081 + 42.010 -1.550 + 42.020 -2.061 + 42.030 -2.604 + 42.040 -3.172 + 42.050 -3.754 + 42.060 -4.340 + 42.070 -4.921 + 42.080 -5.488 + 42.090 -6.033 + 42.100 -6.548 + 42.110 -7.028 + 42.120 -7.467 + 42.130 -7.862 + 42.140 -8.210 + 42.150 -8.510 + 42.160 -8.763 + 42.170 -8.969 + 42.180 -9.130 + 42.190 -9.248 + 42.200 -9.326 + 42.210 -9.368 + 42.220 -9.375 + 42.230 -9.351 + 42.240 -9.299 + 42.250 -9.219 + 42.260 -9.114 + 42.270 -8.984 + 42.280 -8.830 + 42.290 -8.651 + 42.300 -8.445 + 42.310 -8.213 + 42.320 -7.952 + 42.330 -7.661 + 42.340 -7.339 + 42.350 -6.984 + 42.360 -6.595 + 42.370 -6.173 + 42.380 -5.718 + 42.390 -5.231 + 42.400 -4.714 + 42.410 -4.171 + 42.420 -3.604 + 42.430 -3.018 + 42.440 -2.418 + 42.450 -1.810 + 42.460 -1.199 + 42.470 -0.593 + 42.480 0.003 + 42.490 0.582 + 42.500 1.138 + 42.510 1.666 + 42.520 2.160 + 42.530 2.616 + 42.540 3.031 + 42.550 3.401 + 42.560 3.724 + 42.570 4.001 + 42.580 4.230 + 42.590 4.413 + 42.600 4.551 + 42.610 4.648 + 42.620 4.706 + 42.630 4.730 + 42.640 4.725 + 42.650 4.696 + 42.660 4.649 + 42.670 4.588 + 42.680 4.521 + 42.690 4.453 + 42.700 4.390 + 42.710 4.336 + 42.720 4.298 + 42.730 4.280 + 42.740 4.285 + 42.750 4.317 + 42.760 4.378 + 42.770 4.469 + 42.780 4.591 + 42.790 4.744 + 42.800 4.925 + 42.810 5.134 + 42.820 5.365 + 42.830 5.616 + 42.840 5.881 + 42.850 6.154 + 42.860 6.430 + 42.870 6.702 + 42.880 6.964 + 42.890 7.208 + 42.900 7.429 + 42.910 7.619 + 42.920 7.775 + 42.930 7.890 + 42.940 7.962 + 42.950 7.986 + 42.960 7.962 + 42.970 7.888 + 42.980 7.764 + 42.990 7.592 + 43.000 7.374 + 43.010 7.113 + 43.020 6.813 + 43.030 6.478 + 43.040 6.114 + 43.050 5.725 + 43.060 5.317 + 43.070 4.893 + 43.080 4.459 + 43.090 4.019 + 43.100 3.576 + 43.110 3.132 + 43.120 2.689 + 43.130 2.248 + 43.140 1.809 + 43.150 1.372 + 43.160 0.935 + 43.170 0.497 + 43.180 0.056 + 43.190 -0.391 + 43.200 -0.844 + 43.210 -1.306 + 43.220 -1.778 + 43.230 -2.260 + 43.240 -2.753 + 43.250 -3.254 + 43.260 -3.763 + 43.270 -4.275 + 43.280 -4.788 + 43.290 -5.296 + 43.300 -5.794 + 43.310 -6.274 + 43.320 -6.731 + 43.330 -7.157 + 43.340 -7.544 + 43.350 -7.885 + 43.360 -8.173 + 43.370 -8.401 + 43.380 -8.562 + 43.390 -8.653 + 43.400 -8.668 + 43.410 -8.605 + 43.420 -8.461 + 43.430 -8.236 + 43.440 -7.930 + 43.450 -7.544 + 43.460 -7.084 + 43.470 -6.551 + 43.480 -5.953 + 43.490 -5.295 + 43.500 -4.584 + 43.510 -3.829 + 43.520 -3.039 + 43.530 -2.223 + 43.540 -1.390 + 43.550 -0.551 + 43.560 0.284 + 43.570 1.104 + 43.580 1.901 + 43.590 2.663 + 43.600 3.382 + 43.610 4.048 + 43.620 4.653 + 43.630 5.190 + 43.640 5.652 + 43.650 6.033 + 43.660 6.328 + 43.670 6.536 + 43.680 6.653 + 43.690 6.679 + 43.700 6.614 + 43.710 6.462 + 43.720 6.226 + 43.730 5.912 + 43.740 5.525 + 43.750 5.073 + 43.760 4.567 + 43.770 4.014 + 43.780 3.426 + 43.790 2.815 + 43.800 2.191 + 43.810 1.566 + 43.820 0.952 + 43.830 0.359 + 43.840 -0.202 + 43.850 -0.723 + 43.860 -1.193 + 43.870 -1.608 + 43.880 -1.960 + 43.890 -2.245 + 43.900 -2.460 + 43.910 -2.605 + 43.920 -2.679 + 43.930 -2.683 + 43.940 -2.621 + 43.950 -2.496 + 43.960 -2.313 + 43.970 -2.078 + 43.980 -1.798 + 43.990 -1.479 + 44.000 -1.129 + 44.010 -0.756 + 44.020 -0.367 + 44.030 0.031 + 44.040 0.429 + 44.050 0.820 + 44.060 1.198 + 44.070 1.556 + 44.080 1.889 + 44.090 2.191 + 44.100 2.458 + 44.110 2.684 + 44.120 2.866 + 44.130 3.001 + 44.140 3.086 + 44.150 3.119 + 44.160 3.100 + 44.170 3.027 + 44.180 2.900 + 44.190 2.719 + 44.200 2.487 + 44.210 2.204 + 44.220 1.874 + 44.230 1.498 + 44.240 1.082 + 44.250 0.629 + 44.260 0.144 + 44.270 -0.368 + 44.280 -0.902 + 44.290 -1.452 + 44.300 -2.012 + 44.310 -2.577 + 44.320 -3.141 + 44.330 -3.699 + 44.340 -4.245 + 44.350 -4.774 + 44.360 -5.282 + 44.370 -5.765 + 44.380 -6.219 + 44.390 -6.640 + 44.400 -7.027 + 44.410 -7.377 + 44.420 -7.687 + 44.430 -7.957 + 44.440 -8.185 + 44.450 -8.370 + 44.460 -8.512 + 44.470 -8.609 + 44.480 -8.662 + 44.490 -8.670 + 44.500 -8.634 + 44.510 -8.553 + 44.520 -8.428 + 44.530 -8.259 + 44.540 -8.047 + 44.550 -7.793 + 44.560 -7.497 + 44.570 -7.163 + 44.580 -6.792 + 44.590 -6.385 + 44.600 -5.946 + 44.610 -5.478 + 44.620 -4.984 + 44.630 -4.468 + 44.640 -3.932 + 44.650 -3.382 + 44.660 -2.822 + 44.670 -2.254 + 44.680 -1.684 + 44.690 -1.114 + 44.700 -0.547 + 44.710 0.013 + 44.720 0.563 + 44.730 1.102 + 44.740 1.629 + 44.750 2.141 + 44.760 2.638 + 44.770 3.119 + 44.780 3.585 + 44.790 4.035 + 44.800 4.469 + 44.810 4.886 + 44.820 5.288 + 44.830 5.673 + 44.840 6.040 + 44.850 6.389 + 44.860 6.719 + 44.870 7.026 + 44.880 7.310 + 44.890 7.568 + 44.900 7.797 + 44.910 7.993 + 44.920 8.154 + 44.930 8.277 + 44.940 8.359 + 44.950 8.396 + 44.960 8.387 + 44.970 8.329 + 44.980 8.222 + 44.990 8.065 + 45.000 7.857 + 45.010 7.600 + 45.020 7.296 + 45.030 6.947 + 45.040 6.557 + 45.050 6.130 + 45.060 5.670 + 45.070 5.184 + 45.080 4.677 + 45.090 4.156 + 45.100 3.628 + 45.110 3.100 + 45.120 2.579 + 45.130 2.072 + 45.140 1.586 + 45.150 1.127 + 45.160 0.702 + 45.170 0.316 + 45.180 -0.026 + 45.190 -0.321 + 45.200 -0.564 + 45.210 -0.753 + 45.220 -0.887 + 45.230 -0.967 + 45.240 -0.992 + 45.250 -0.964 + 45.260 -0.887 + 45.270 -0.765 + 45.280 -0.603 + 45.290 -0.407 + 45.300 -0.183 + 45.310 0.060 + 45.320 0.316 + 45.330 0.574 + 45.340 0.827 + 45.350 1.067 + 45.360 1.284 + 45.370 1.472 + 45.380 1.623 + 45.390 1.730 + 45.400 1.790 + 45.410 1.797 + 45.420 1.749 + 45.430 1.645 + 45.440 1.485 + 45.450 1.271 + 45.460 1.005 + 45.470 0.693 + 45.480 0.341 + 45.490 -0.047 + 45.500 -0.461 + 45.510 -0.894 + 45.520 -1.338 + 45.530 -1.783 + 45.540 -2.221 + 45.550 -2.644 + 45.560 -3.045 + 45.570 -3.416 + 45.580 -3.752 + 45.590 -4.047 + 45.600 -4.298 + 45.610 -4.502 + 45.620 -4.658 + 45.630 -4.765 + 45.640 -4.823 + 45.650 -4.835 + 45.660 -4.804 + 45.670 -4.731 + 45.680 -4.622 + 45.690 -4.481 + 45.700 -4.311 + 45.710 -4.119 + 45.720 -3.907 + 45.730 -3.681 + 45.740 -3.444 + 45.750 -3.202 + 45.760 -2.955 + 45.770 -2.709 + 45.780 -2.465 + 45.790 -2.225 + 45.800 -1.990 + 45.810 -1.762 + 45.820 -1.541 + 45.830 -1.328 + 45.840 -1.121 + 45.850 -0.921 + 45.860 -0.728 + 45.870 -0.540 + 45.880 -0.356 + 45.890 -0.176 + 45.900 0.002 + 45.910 0.178 + 45.920 0.354 + 45.930 0.530 + 45.940 0.708 + 45.950 0.887 + 45.960 1.068 + 45.970 1.252 + 45.980 1.438 + 45.990 1.625 + 46.000 1.814 + 46.010 2.002 + 46.020 2.190 + 46.030 2.374 + 46.040 2.554 + 46.050 2.726 + 46.060 2.889 + 46.070 3.040 + 46.080 3.175 + 46.090 3.293 + 46.100 3.390 + 46.110 3.464 + 46.120 3.512 + 46.130 3.532 + 46.140 3.523 + 46.150 3.484 + 46.160 3.413 + 46.170 3.311 + 46.180 3.178 + 46.190 3.017 + 46.200 2.827 + 46.210 2.613 + 46.220 2.377 + 46.230 2.123 + 46.240 1.854 + 46.250 1.576 + 46.260 1.291 + 46.270 1.005 + 46.280 0.722 + 46.290 0.446 + 46.300 0.181 + 46.310 -0.071 + 46.320 -0.305 + 46.330 -0.522 + 46.340 -0.718 + 46.350 -0.894 + 46.360 -1.049 + 46.370 -1.184 + 46.380 -1.301 + 46.390 -1.402 + 46.400 -1.489 + 46.410 -1.566 + 46.420 -1.635 + 46.430 -1.700 + 46.440 -1.765 + 46.450 -1.833 + 46.460 -1.908 + 46.470 -1.992 + 46.480 -2.089 + 46.490 -2.200 + 46.500 -2.327 + 46.510 -2.472 + 46.520 -2.634 + 46.530 -2.813 + 46.540 -3.009 + 46.550 -3.219 + 46.560 -3.442 + 46.570 -3.675 + 46.580 -3.914 + 46.590 -4.155 + 46.600 -4.395 + 46.610 -4.630 + 46.620 -4.853 + 46.630 -5.061 + 46.640 -5.249 + 46.650 -5.412 + 46.660 -5.545 + 46.670 -5.645 + 46.680 -5.707 + 46.690 -5.729 + 46.700 -5.706 + 46.710 -5.637 + 46.720 -5.520 + 46.730 -5.355 + 46.740 -5.139 + 46.750 -4.874 + 46.760 -4.561 + 46.770 -4.201 + 46.780 -3.797 + 46.790 -3.352 + 46.800 -2.869 + 46.810 -2.353 + 46.820 -1.809 + 46.830 -1.241 + 46.840 -0.656 + 46.850 -0.060 + 46.860 0.542 + 46.870 1.143 + 46.880 1.737 + 46.890 2.317 + 46.900 2.878 + 46.910 3.414 + 46.920 3.918 + 46.930 4.386 + 46.940 4.813 + 46.950 5.195 + 46.960 5.528 + 46.970 5.809 + 46.980 6.035 + 46.990 6.206 + 47.000 6.319 + 47.010 6.375 + 47.020 6.373 + 47.030 6.315 + 47.040 6.202 + 47.050 6.036 + 47.060 5.820 + 47.070 5.558 + 47.080 5.253 + 47.090 4.909 + 47.100 4.531 + 47.110 4.125 + 47.120 3.694 + 47.130 3.245 + 47.140 2.784 + 47.150 2.315 + 47.160 1.845 + 47.170 1.379 + 47.180 0.923 + 47.190 0.481 + 47.200 0.060 + 47.210 -0.336 + 47.220 -0.704 + 47.230 -1.040 + 47.240 -1.340 + 47.250 -1.601 + 47.260 -1.823 + 47.270 -2.004 + 47.280 -2.143 + 47.290 -2.242 + 47.300 -2.301 + 47.310 -2.323 + 47.320 -2.309 + 47.330 -2.264 + 47.340 -2.192 + 47.350 -2.096 + 47.360 -1.981 + 47.370 -1.852 + 47.380 -1.715 + 47.390 -1.573 + 47.400 -1.433 + 47.410 -1.297 + 47.420 -1.171 + 47.430 -1.057 + 47.440 -0.957 + 47.450 -0.874 + 47.460 -0.807 + 47.470 -0.758 + 47.480 -0.723 + 47.490 -0.703 + 47.500 -0.693 + 47.510 -0.690 + 47.520 -0.690 + 47.530 -0.689 + 47.540 -0.682 + 47.550 -0.664 + 47.560 -0.630 + 47.570 -0.576 + 47.580 -0.498 + 47.590 -0.394 + 47.600 -0.260 + 47.610 -0.095 + 47.620 0.100 + 47.630 0.325 + 47.640 0.579 + 47.650 0.858 + 47.660 1.159 + 47.670 1.477 + 47.680 1.807 + 47.690 2.144 + 47.700 2.480 + 47.710 2.809 + 47.720 3.127 + 47.730 3.425 + 47.740 3.700 + 47.750 3.946 + 47.760 4.159 + 47.770 4.336 + 47.780 4.474 + 47.790 4.572 + 47.800 4.630 + 47.810 4.648 + 47.820 4.627 + 47.830 4.570 + 47.840 4.479 + 47.850 4.359 + 47.860 4.212 + 47.870 4.044 + 47.880 3.857 + 47.890 3.658 + 47.900 3.449 + 47.910 3.235 + 47.920 3.019 + 47.930 2.806 + 47.940 2.597 + 47.950 2.394 + 47.960 2.201 + 47.970 2.018 + 47.980 1.847 + 47.990 1.687 + 48.000 1.538 + 48.010 1.402 + 48.020 1.276 + 48.030 1.159 + 48.040 1.052 + 48.050 0.951 + 48.060 0.856 + 48.070 0.764 + 48.080 0.674 + 48.090 0.585 + 48.100 0.493 + 48.110 0.399 + 48.120 0.299 + 48.130 0.193 + 48.140 0.080 + 48.150 -0.042 + 48.160 -0.171 + 48.170 -0.310 + 48.180 -0.455 + 48.190 -0.608 + 48.200 -0.767 + 48.210 -0.928 + 48.220 -1.092 + 48.230 -1.254 + 48.240 -1.411 + 48.250 -1.562 + 48.260 -1.702 + 48.270 -1.830 + 48.280 -1.942 + 48.290 -2.035 + 48.300 -2.110 + 48.310 -2.164 + 48.320 -2.197 + 48.330 -2.210 + 48.340 -2.205 + 48.350 -2.185 + 48.360 -2.153 + 48.370 -2.113 + 48.380 -2.071 + 48.390 -2.033 + 48.400 -2.004 + 48.410 -1.991 + 48.420 -2.001 + 48.430 -2.039 + 48.440 -2.110 + 48.450 -2.220 + 48.460 -2.372 + 48.470 -2.567 + 48.480 -2.808 + 48.490 -3.093 + 48.500 -3.421 + 48.510 -3.787 + 48.520 -4.188 + 48.530 -4.617 + 48.540 -5.066 + 48.550 -5.529 + 48.560 -5.995 + 48.570 -6.457 + 48.580 -6.904 + 48.590 -7.328 + 48.600 -7.722 + 48.610 -8.076 + 48.620 -8.385 + 48.630 -8.643 + 48.640 -8.845 + 48.650 -8.989 + 48.660 -9.072 + 48.670 -9.093 + 48.680 -9.054 + 48.690 -8.954 + 48.700 -8.796 + 48.710 -8.582 + 48.720 -8.317 + 48.730 -8.002 + 48.740 -7.641 + 48.750 -7.237 + 48.760 -6.794 + 48.770 -6.314 + 48.780 -5.799 + 48.790 -5.253 + 48.800 -4.676 + 48.810 -4.072 + 48.820 -3.441 + 48.830 -2.787 + 48.840 -2.110 + 48.850 -1.414 + 48.860 -0.701 + 48.870 0.025 + 48.880 0.760 + 48.890 1.499 + 48.900 2.238 + 48.910 2.969 + 48.920 3.688 + 48.930 4.387 + 48.940 5.060 + 48.950 5.699 + 48.960 6.299 + 48.970 6.854 + 48.980 7.356 + 48.990 7.803 + 49.000 8.189 + 49.010 8.512 + 49.020 8.769 + 49.030 8.961 + 49.040 9.088 + 49.050 9.151 + 49.060 9.151 + 49.070 9.093 + 49.080 8.981 + 49.090 8.818 + 49.100 8.609 + 49.110 8.360 + 49.120 8.074 + 49.130 7.757 + 49.140 7.412 + 49.150 7.044 + 49.160 6.657 + 49.170 6.253 + 49.180 5.834 + 49.190 5.404 + 49.200 4.964 + 49.210 4.515 + 49.220 4.058 + 49.230 3.596 + 49.240 3.130 + 49.250 2.662 + 49.260 2.193 + 49.270 1.725 + 49.280 1.263 + 49.290 0.808 + 49.300 0.365 + 49.310 -0.063 + 49.320 -0.471 + 49.330 -0.855 + 49.340 -1.210 + 49.350 -1.532 + 49.360 -1.817 + 49.370 -2.060 + 49.380 -2.259 + 49.390 -2.410 + 49.400 -2.512 + 49.410 -2.563 + 49.420 -2.562 + 49.430 -2.511 + 49.440 -2.409 + 49.450 -2.260 + 49.460 -2.067 + 49.470 -1.834 + 49.480 -1.564 + 49.490 -1.264 + 49.500 -0.940 + 49.510 -0.597 + 49.520 -0.242 + 49.530 0.117 + 49.540 0.474 + 49.550 0.822 + 49.560 1.155 + 49.570 1.465 + 49.580 1.747 + 49.590 1.994 + 49.600 2.203 + 49.610 2.368 + 49.620 2.485 + 49.630 2.553 + 49.640 2.569 + 49.650 2.532 + 49.660 2.442 + 49.670 2.301 + 49.680 2.110 + 49.690 1.874 + 49.700 1.596 + 49.710 1.281 + 49.720 0.936 + 49.730 0.568 + 49.740 0.183 + 49.750 -0.209 + 49.760 -0.601 + 49.770 -0.985 + 49.780 -1.353 + 49.790 -1.696 + 49.800 -2.006 + 49.810 -2.278 + 49.820 -2.506 + 49.830 -2.683 + 49.840 -2.807 + 49.850 -2.874 + 49.860 -2.883 + 49.870 -2.834 + 49.880 -2.728 + 49.890 -2.566 + 49.900 -2.351 + 49.910 -2.088 + 49.920 -1.782 + 49.930 -1.438 + 49.940 -1.062 + 49.950 -0.660 + 49.960 -0.240 + 49.970 0.191 + 49.980 0.628 + 49.990 1.063 + 50.000 1.489 + 50.010 1.901 + 50.020 2.294 + 50.030 2.661 + 50.040 2.999 + 50.050 3.302 + 50.060 3.568 + 50.070 3.794 + 50.080 3.976 + 50.090 4.114 + 50.100 4.206 + 50.110 4.251 + 50.120 4.249 + 50.130 4.202 + 50.140 4.110 + 50.150 3.975 + 50.160 3.801 + 50.170 3.590 + 50.180 3.346 + 50.190 3.075 + 50.200 2.780 + 50.210 2.468 + 50.220 2.145 + 50.230 1.815 + 50.240 1.486 + 50.250 1.164 + 50.260 0.853 + 50.270 0.559 + 50.280 0.287 + 50.290 0.042 + 50.300 -0.175 + 50.310 -0.360 + 50.320 -0.513 + 50.330 -0.633 + 50.340 -0.721 + 50.350 -0.779 + 50.360 -0.810 + 50.370 -0.817 + 50.380 -0.804 + 50.390 -0.778 + 50.400 -0.742 + 50.410 -0.703 + 50.420 -0.667 + 50.430 -0.639 + 50.440 -0.624 + 50.450 -0.627 + 50.460 -0.653 + 50.470 -0.706 + 50.480 -0.788 + 50.490 -0.902 + 50.500 -1.050 + 50.510 -1.232 + 50.520 -1.449 + 50.530 -1.700 + 50.540 -1.984 + 50.550 -2.300 + 50.560 -2.644 + 50.570 -3.016 + 50.580 -3.411 + 50.590 -3.827 + 50.600 -4.259 + 50.610 -4.705 + 50.620 -5.160 + 50.630 -5.620 + 50.640 -6.081 + 50.650 -6.538 + 50.660 -6.987 + 50.670 -7.423 + 50.680 -7.841 + 50.690 -8.236 + 50.700 -8.604 + 50.710 -8.939 + 50.720 -9.239 + 50.730 -9.498 + 50.740 -9.712 + 50.750 -9.880 + 50.760 -9.997 + 50.770 -10.063 + 50.780 -10.077 + 50.790 -10.038 + 50.800 -9.946 + 50.810 -9.804 + 50.820 -9.614 + 50.830 -9.378 + 50.840 -9.100 + 50.850 -8.785 + 50.860 -8.437 + 50.870 -8.061 + 50.880 -7.660 + 50.890 -7.241 + 50.900 -6.806 + 50.910 -6.360 + 50.920 -5.906 + 50.930 -5.446 + 50.940 -4.982 + 50.950 -4.515 + 50.960 -4.045 + 50.970 -3.571 + 50.980 -3.094 + 50.990 -2.611 + 51.000 -2.120 + 51.010 -1.621 + 51.020 -1.111 + 51.030 -0.588 + 51.040 -0.053 + 51.050 0.496 + 51.060 1.059 + 51.070 1.634 + 51.080 2.220 + 51.090 2.814 + 51.100 3.413 + 51.110 4.014 + 51.120 4.612 + 51.130 5.203 + 51.140 5.781 + 51.150 6.342 + 51.160 6.882 + 51.170 7.396 + 51.180 7.880 + 51.190 8.332 + 51.200 8.750 + 51.210 9.131 + 51.220 9.476 + 51.230 9.783 + 51.240 10.056 + 51.250 10.294 + 51.260 10.500 + 51.270 10.678 + 51.280 10.828 + 51.290 10.955 + 51.300 11.061 + 51.310 11.147 + 51.320 11.216 + 51.330 11.269 + 51.340 11.306 + 51.350 11.327 + 51.360 11.330 + 51.370 11.314 + 51.380 11.275 + 51.390 11.210 + 51.400 11.116 + 51.410 10.987 + 51.420 10.820 + 51.430 10.610 + 51.440 10.353 + 51.450 10.045 + 51.460 9.683 + 51.470 9.265 + 51.480 8.789 + 51.490 8.256 + 51.500 7.667 + 51.510 7.023 + 51.520 6.329 + 51.530 5.590 + 51.540 4.812 + 51.550 4.003 + 51.560 3.170 + 51.570 2.324 + 51.580 1.474 + 51.590 0.630 + 51.600 -0.195 + 51.610 -0.993 + 51.620 -1.752 + 51.630 -2.463 + 51.640 -3.117 + 51.650 -3.705 + 51.660 -4.220 + 51.670 -4.657 + 51.680 -5.012 + 51.690 -5.282 + 51.700 -5.467 + 51.710 -5.567 + 51.720 -5.584 + 51.730 -5.524 + 51.740 -5.391 + 51.750 -5.192 + 51.760 -4.934 + 51.770 -4.628 + 51.780 -4.281 + 51.790 -3.905 + 51.800 -3.508 + 51.810 -3.101 + 51.820 -2.693 + 51.830 -2.293 + 51.840 -1.909 + 51.850 -1.549 + 51.860 -1.218 + 51.870 -0.922 + 51.880 -0.664 + 51.890 -0.448 + 51.900 -0.274 + 51.910 -0.144 + 51.920 -0.056 + 51.930 -0.010 + 51.940 -0.003 + 51.950 -0.032 + 51.960 -0.095 + 51.970 -0.188 + 51.980 -0.308 + 51.990 -0.450 + 52.000 -0.612 + 52.010 -0.790 + 52.020 -0.981 + 52.030 -1.181 + 52.040 -1.389 + 52.050 -1.600 + 52.060 -1.813 + 52.070 -2.026 + 52.080 -2.235 + 52.090 -2.439 + 52.100 -2.635 + 52.110 -2.822 + 52.120 -2.996 + 52.130 -3.156 + 52.140 -3.299 + 52.150 -3.423 + 52.160 -3.526 + 52.170 -3.606 + 52.180 -3.661 + 52.190 -3.690 + 52.200 -3.692 + 52.210 -3.666 + 52.220 -3.613 + 52.230 -3.532 + 52.240 -3.425 + 52.250 -3.294 + 52.260 -3.140 + 52.270 -2.967 + 52.280 -2.776 + 52.290 -2.572 + 52.300 -2.358 + 52.310 -2.137 + 52.320 -1.913 + 52.330 -1.690 + 52.340 -1.472 + 52.350 -1.261 + 52.360 -1.060 + 52.370 -0.873 + 52.380 -0.700 + 52.390 -0.546 + 52.400 -0.410 + 52.410 -0.294 + 52.420 -0.199 + 52.430 -0.126 + 52.440 -0.075 + 52.450 -0.048 + 52.460 -0.043 + 52.470 -0.061 + 52.480 -0.103 + 52.490 -0.168 + 52.500 -0.256 + 52.510 -0.367 + 52.520 -0.500 + 52.530 -0.655 + 52.540 -0.831 + 52.550 -1.026 + 52.560 -1.239 + 52.570 -1.468 + 52.580 -1.710 + 52.590 -1.963 + 52.600 -2.223 + 52.610 -2.486 + 52.620 -2.750 + 52.630 -3.009 + 52.640 -3.259 + 52.650 -3.496 + 52.660 -3.716 + 52.670 -3.914 + 52.680 -4.089 + 52.690 -4.235 + 52.700 -4.350 + 52.710 -4.433 + 52.720 -4.481 + 52.730 -4.495 + 52.740 -4.473 + 52.750 -4.416 + 52.760 -4.326 + 52.770 -4.203 + 52.780 -4.050 + 52.790 -3.869 + 52.800 -3.663 + 52.810 -3.434 + 52.820 -3.185 + 52.830 -2.920 + 52.840 -2.640 + 52.850 -2.350 + 52.860 -2.050 + 52.870 -1.745 + 52.880 -1.436 + 52.890 -1.127 + 52.900 -0.819 + 52.910 -0.514 + 52.920 -0.216 + 52.930 0.075 + 52.940 0.355 + 52.950 0.622 + 52.960 0.875 + 52.970 1.111 + 52.980 1.328 + 52.990 1.526 + 53.000 1.702 + 53.010 1.855 + 53.020 1.986 + 53.030 2.094 + 53.040 2.180 + 53.050 2.245 + 53.060 2.291 + 53.070 2.320 + 53.080 2.335 + 53.090 2.340 + 53.100 2.338 + 53.110 2.333 + 53.120 2.328 + 53.130 2.329 + 53.140 2.337 + 53.150 2.357 + 53.160 2.390 + 53.170 2.439 + 53.180 2.504 + 53.190 2.587 + 53.200 2.685 + 53.210 2.797 + 53.220 2.922 + 53.230 3.056 + 53.240 3.197 + 53.250 3.339 + 53.260 3.479 + 53.270 3.613 + 53.280 3.738 + 53.290 3.849 + 53.300 3.944 + 53.310 4.020 + 53.320 4.075 + 53.330 4.110 + 53.340 4.123 + 53.350 4.116 + 53.360 4.090 + 53.370 4.048 + 53.380 3.991 + 53.390 3.923 + 53.400 3.848 + 53.410 3.768 + 53.420 3.687 + 53.430 3.607 + 53.440 3.532 + 53.450 3.463 + 53.460 3.401 + 53.470 3.349 + 53.480 3.306 + 53.490 3.273 + 53.500 3.249 + 53.510 3.233 + 53.520 3.224 + 53.530 3.222 + 53.540 3.224 + 53.550 3.230 + 53.560 3.239 + 53.570 3.250 + 53.580 3.263 + 53.590 3.276 + 53.600 3.292 + 53.610 3.309 + 53.620 3.328 + 53.630 3.350 + 53.640 3.376 + 53.650 3.406 + 53.660 3.440 + 53.670 3.478 + 53.680 3.520 + 53.690 3.566 + 53.700 3.613 + 53.710 3.660 + 53.720 3.705 + 53.730 3.744 + 53.740 3.775 + 53.750 3.793 + 53.760 3.795 + 53.770 3.776 + 53.780 3.734 + 53.790 3.663 + 53.800 3.560 + 53.810 3.422 + 53.820 3.246 + 53.830 3.029 + 53.840 2.772 + 53.850 2.471 + 53.860 2.129 + 53.870 1.745 + 53.880 1.321 + 53.890 0.860 + 53.900 0.364 + 53.910 -0.161 + 53.920 -0.713 + 53.930 -1.286 + 53.940 -1.874 + 53.950 -2.471 + 53.960 -3.071 + 53.970 -3.668 + 53.980 -4.254 + 53.990 -4.822 + 54.000 -5.366 + 54.010 -5.879 + 54.020 -6.354 + 54.030 -6.785 + 54.040 -7.166 + 54.050 -7.491 + 54.060 -7.755 + 54.070 -7.954 + 54.080 -8.085 + 54.090 -8.146 + 54.100 -8.133 + 54.110 -8.048 + 54.120 -7.890 + 54.130 -7.661 + 54.140 -7.364 + 54.150 -7.002 + 54.160 -6.582 + 54.170 -6.108 + 54.180 -5.588 + 54.190 -5.029 + 54.200 -4.440 + 54.210 -3.831 + 54.220 -3.209 + 54.230 -2.586 + 54.240 -1.969 + 54.250 -1.369 + 54.260 -0.795 + 54.270 -0.255 + 54.280 0.243 + 54.290 0.693 + 54.300 1.087 + 54.310 1.422 + 54.320 1.692 + 54.330 1.896 + 54.340 2.032 + 54.350 2.099 + 54.360 2.098 + 54.370 2.031 + 54.380 1.900 + 54.390 1.711 + 54.400 1.467 + 54.410 1.174 + 54.420 0.840 + 54.430 0.470 + 54.440 0.072 + 54.450 -0.346 + 54.460 -0.777 + 54.470 -1.211 + 54.480 -1.642 + 54.490 -2.062 + 54.500 -2.464 + 54.510 -2.842 + 54.520 -3.189 + 54.530 -3.502 + 54.540 -3.776 + 54.550 -4.008 + 54.560 -4.197 + 54.570 -4.342 + 54.580 -4.444 + 54.590 -4.503 + 54.600 -4.524 + 54.610 -4.509 + 54.620 -4.462 + 54.630 -4.388 + 54.640 -4.292 + 54.650 -4.180 + 54.660 -4.057 + 54.670 -3.928 + 54.680 -3.797 + 54.690 -3.669 + 54.700 -3.546 + 54.710 -3.432 + 54.720 -3.326 + 54.730 -3.231 + 54.740 -3.145 + 54.750 -3.066 + 54.760 -2.993 + 54.770 -2.923 + 54.780 -2.852 + 54.790 -2.776 + 54.800 -2.692 + 54.810 -2.596 + 54.820 -2.484 + 54.830 -2.355 + 54.840 -2.205 + 54.850 -2.033 + 54.860 -1.840 + 54.870 -1.625 + 54.880 -1.391 + 54.890 -1.139 + 54.900 -0.873 + 54.910 -0.596 + 54.920 -0.314 + 54.930 -0.030 + 54.940 0.250 + 54.950 0.522 + 54.960 0.781 + 54.970 1.024 + 54.980 1.248 + 54.990 1.450 + 55.000 1.629 + 55.010 1.785 + 55.020 1.917 + 55.030 2.029 + 55.040 2.121 + 55.050 2.197 + 55.060 2.261 + 55.070 2.317 + 55.080 2.370 + 55.090 2.423 + 55.100 2.482 + 55.110 2.550 + 55.120 2.632 + 55.130 2.730 + 55.140 2.847 + 55.150 2.985 + 55.160 3.144 + 55.170 3.325 + 55.180 3.527 + 55.190 3.749 + 55.200 3.988 + 55.210 4.243 + 55.220 4.508 + 55.230 4.782 + 55.240 5.060 + 55.250 5.338 + 55.260 5.612 + 55.270 5.878 + 55.280 6.132 + 55.290 6.370 + 55.300 6.588 + 55.310 6.784 + 55.320 6.955 + 55.330 7.097 + 55.340 7.210 + 55.350 7.292 + 55.360 7.342 + 55.370 7.358 + 55.380 7.342 + 55.390 7.293 + 55.400 7.212 + 55.410 7.100 + 55.420 6.959 + 55.430 6.790 + 55.440 6.596 + 55.450 6.378 + 55.460 6.140 + 55.470 5.884 + 55.480 5.613 + 55.490 5.328 + 55.500 5.034 + 55.510 4.731 + 55.520 4.424 + 55.530 4.113 + 55.540 3.800 + 55.550 3.487 + 55.560 3.176 + 55.570 2.866 + 55.580 2.559 + 55.590 2.255 + 55.600 1.954 + 55.610 1.656 + 55.620 1.360 + 55.630 1.067 + 55.640 0.775 + 55.650 0.485 + 55.660 0.196 + 55.670 -0.092 + 55.680 -0.380 + 55.690 -0.668 + 55.700 -0.954 + 55.710 -1.240 + 55.720 -1.524 + 55.730 -1.806 + 55.740 -2.085 + 55.750 -2.361 + 55.760 -2.631 + 55.770 -2.896 + 55.780 -3.154 + 55.790 -3.404 + 55.800 -3.645 + 55.810 -3.875 + 55.820 -4.094 + 55.830 -4.301 + 55.840 -4.493 + 55.850 -4.670 + 55.860 -4.830 + 55.870 -4.972 + 55.880 -5.095 + 55.890 -5.197 + 55.900 -5.277 + 55.910 -5.332 + 55.920 -5.363 + 55.930 -5.368 + 55.940 -5.347 + 55.950 -5.298 + 55.960 -5.222 + 55.970 -5.119 + 55.980 -4.991 + 55.990 -4.838 + 56.000 -4.663 + 56.010 -4.469 + 56.020 -4.258 + 56.030 -4.035 + 56.040 -3.803 + 56.050 -3.567 + 56.060 -3.331 + 56.070 -3.101 + 56.080 -2.880 + 56.090 -2.672 + 56.100 -2.482 + 56.110 -2.312 + 56.120 -2.165 + 56.130 -2.041 + 56.140 -1.943 + 56.150 -1.868 + 56.160 -1.817 + 56.170 -1.786 + 56.180 -1.774 + 56.190 -1.776 + 56.200 -1.789 + 56.210 -1.808 + 56.220 -1.829 + 56.230 -1.847 + 56.240 -1.859 + 56.250 -1.860 + 56.260 -1.849 + 56.270 -1.821 + 56.280 -1.776 + 56.290 -1.713 + 56.300 -1.632 + 56.310 -1.533 + 56.320 -1.418 + 56.330 -1.288 + 56.340 -1.147 + 56.350 -0.995 + 56.360 -0.838 + 56.370 -0.675 + 56.380 -0.511 + 56.390 -0.347 + 56.400 -0.186 + 56.410 -0.027 + 56.420 0.128 + 56.430 0.278 + 56.440 0.424 + 56.450 0.565 + 56.460 0.703 + 56.470 0.838 + 56.480 0.970 + 56.490 1.100 + 56.500 1.228 + 56.510 1.353 + 56.520 1.474 + 56.530 1.589 + 56.540 1.697 + 56.550 1.795 + 56.560 1.881 + 56.570 1.951 + 56.580 2.002 + 56.590 2.030 + 56.600 2.034 + 56.610 2.010 + 56.620 1.957 + 56.630 1.873 + 56.640 1.758 + 56.650 1.613 + 56.660 1.440 + 56.670 1.241 + 56.680 1.020 + 56.690 0.782 + 56.700 0.533 + 56.710 0.277 + 56.720 0.022 + 56.730 -0.225 + 56.740 -0.459 + 56.750 -0.673 + 56.760 -0.862 + 56.770 -1.021 + 56.780 -1.146 + 56.790 -1.233 + 56.800 -1.282 + 56.810 -1.291 + 56.820 -1.260 + 56.830 -1.193 + 56.840 -1.090 + 56.850 -0.957 + 56.860 -0.796 + 56.870 -0.614 + 56.880 -0.416 + 56.890 -0.207 + 56.900 0.006 + 56.910 0.218 + 56.920 0.423 + 56.930 0.616 + 56.940 0.792 + 56.950 0.946 + 56.960 1.074 + 56.970 1.174 + 56.980 1.241 + 56.990 1.275 + 57.000 1.275 + 57.010 1.238 + 57.020 1.165 + 57.030 1.056 + 57.040 0.913 + 57.050 0.737 + 57.060 0.529 + 57.070 0.294 + 57.080 0.034 + 57.090 -0.248 + 57.100 -0.546 + 57.110 -0.856 + 57.120 -1.173 + 57.130 -1.491 + 57.140 -1.804 + 57.150 -2.107 + 57.160 -2.393 + 57.170 -2.657 + 57.180 -2.893 + 57.190 -3.095 + 57.200 -3.260 + 57.210 -3.383 + 57.220 -3.461 + 57.230 -3.491 + 57.240 -3.473 + 57.250 -3.406 + 57.260 -3.291 + 57.270 -3.130 + 57.280 -2.925 + 57.290 -2.680 + 57.300 -2.399 + 57.310 -2.088 + 57.320 -1.751 + 57.330 -1.394 + 57.340 -1.023 + 57.350 -0.644 + 57.360 -0.261 + 57.370 0.120 + 57.380 0.496 + 57.390 0.862 + 57.400 1.216 + 57.410 1.555 + 57.420 1.879 + 57.430 2.185 + 57.440 2.474 + 57.450 2.747 + 57.460 3.004 + 57.470 3.245 + 57.480 3.474 + 57.490 3.690 + 57.500 3.896 + 57.510 4.092 + 57.520 4.281 + 57.530 4.463 + 57.540 4.639 + 57.550 4.810 + 57.560 4.976 + 57.570 5.136 + 57.580 5.292 + 57.590 5.443 + 57.600 5.588 + 57.610 5.728 + 57.620 5.860 + 57.630 5.986 + 57.640 6.104 + 57.650 6.213 + 57.660 6.312 + 57.670 6.401 + 57.680 6.479 + 57.690 6.543 + 57.700 6.593 + 57.710 6.627 + 57.720 6.643 + 57.730 6.639 + 57.740 6.613 + 57.750 6.562 + 57.760 6.484 + 57.770 6.376 + 57.780 6.237 + 57.790 6.062 + 57.800 5.852 + 57.810 5.604 + 57.820 5.317 + 57.830 4.991 + 57.840 4.625 + 57.850 4.220 + 57.860 3.778 + 57.870 3.301 + 57.880 2.791 + 57.890 2.253 + 57.900 1.689 + 57.910 1.105 + 57.920 0.504 + 57.930 -0.108 + 57.940 -0.726 + 57.950 -1.346 + 57.960 -1.962 + 57.970 -2.571 + 57.980 -3.168 + 57.990 -3.750 + 58.000 -4.313 + 58.010 -4.854 + 58.020 -5.372 + 58.030 -5.864 + 58.040 -6.328 + 58.050 -6.762 + 58.060 -7.166 + 58.070 -7.537 + 58.080 -7.875 + 58.090 -8.178 + 58.100 -8.445 + 58.110 -8.674 + 58.120 -8.863 + 58.130 -9.012 + 58.140 -9.117 + 58.150 -9.178 + 58.160 -9.193 + 58.170 -9.161 + 58.180 -9.081 + 58.190 -8.953 + 58.200 -8.778 + 58.210 -8.556 + 58.220 -8.288 + 58.230 -7.978 + 58.240 -7.628 + 58.250 -7.241 + 58.260 -6.823 + 58.270 -6.377 + 58.280 -5.908 + 58.290 -5.423 + 58.300 -4.925 + 58.310 -4.420 + 58.320 -3.913 + 58.330 -3.408 + 58.340 -2.910 + 58.350 -2.420 + 58.360 -1.943 + 58.370 -1.479 + 58.380 -1.030 + 58.390 -0.598 + 58.400 -0.180 + 58.410 0.222 + 58.420 0.609 + 58.430 0.982 + 58.440 1.341 + 58.450 1.688 + 58.460 2.022 + 58.470 2.344 + 58.480 2.652 + 58.490 2.947 + 58.500 3.225 + 58.510 3.485 + 58.520 3.725 + 58.530 3.941 + 58.540 4.130 + 58.550 4.290 + 58.560 4.417 + 58.570 4.508 + 58.580 4.561 + 58.590 4.573 + 58.600 4.544 + 58.610 4.473 + 58.620 4.361 + 58.630 4.208 + 58.640 4.017 + 58.650 3.791 + 58.660 3.532 + 58.670 3.246 + 58.680 2.938 + 58.690 2.611 + 58.700 2.272 + 58.710 1.925 + 58.720 1.575 + 58.730 1.228 + 58.740 0.887 + 58.750 0.556 + 58.760 0.238 + 58.770 -0.063 + 58.780 -0.348 + 58.790 -0.613 + 58.800 -0.859 + 58.810 -1.085 + 58.820 -1.291 + 58.830 -1.478 + 58.840 -1.647 + 58.850 -1.797 + 58.860 -1.930 + 58.870 -2.046 + 58.880 -2.145 + 58.890 -2.227 + 58.900 -2.291 + 58.910 -2.338 + 58.920 -2.366 + 58.930 -2.374 + 58.940 -2.361 + 58.950 -2.324 + 58.960 -2.264 + 58.970 -2.178 + 58.980 -2.066 + 58.990 -1.926 + 59.000 -1.758 + 59.010 -1.562 + 59.020 -1.339 + 59.030 -1.089 + 59.040 -0.815 + 59.050 -0.518 + 59.060 -0.201 + 59.070 0.132 + 59.080 0.479 + 59.090 0.834 + 59.100 1.193 + 59.110 1.552 + 59.120 1.905 + 59.130 2.248 + 59.140 2.576 + 59.150 2.883 + 59.160 3.166 + 59.170 3.420 + 59.180 3.640 + 59.190 3.825 + 59.200 3.969 + 59.210 4.072 + 59.220 4.131 + 59.230 4.146 + 59.240 4.114 + 59.250 4.038 + 59.260 3.917 + 59.270 3.752 + 59.280 3.547 + 59.290 3.304 + 59.300 3.025 + 59.310 2.715 + 59.320 2.378 + 59.330 2.018 + 59.340 1.639 + 59.350 1.247 + 59.360 0.847 + 59.370 0.442 + 59.380 0.037 + 59.390 -0.362 + 59.400 -0.753 + 59.410 -1.131 + 59.420 -1.494 + 59.430 -1.838 + 59.440 -2.161 + 59.450 -2.462 + 59.460 -2.740 + 59.470 -2.993 + 59.480 -3.221 + 59.490 -3.424 + 59.500 -3.602 + 59.510 -3.756 + 59.520 -3.886 + 59.530 -3.992 + 59.540 -4.075 + 59.550 -4.136 + 59.560 -4.174 + 59.570 -4.189 + 59.580 -4.182 + 59.590 -4.151 + 59.600 -4.097 + 59.610 -4.018 + 59.620 -3.913 + 59.630 -3.782 + 59.640 -3.623 + 59.650 -3.435 + 59.660 -3.218 + 59.670 -2.972 + 59.680 -2.696 + 59.690 -2.390 + 59.700 -2.055 + 59.710 -1.693 + 59.720 -1.304 + 59.730 -0.891 + 59.740 -0.458 + 59.750 -0.006 + 59.760 0.459 + 59.770 0.935 + 59.780 1.416 + 59.790 1.897 + 59.800 2.374 + 59.810 2.842 + 59.820 3.296 + 59.830 3.730 + 59.840 4.139 + 59.850 4.520 + 59.860 4.868 + 59.870 5.179 + 59.880 5.451 + 59.890 5.679 + 59.900 5.864 + 59.910 6.002 + 59.920 6.095 + 59.930 6.140 + 59.940 6.140 + 59.950 6.096 + 59.960 6.010 + 59.970 5.884 + 59.980 5.722 + 59.990 5.528 + 60.000 5.306 + 60.010 5.060 + 60.020 4.795 + 60.030 4.516 + 60.040 4.229 + 60.050 3.937 + 60.060 3.645 + 60.070 3.359 + 60.080 3.081 + 60.090 2.815 + 60.100 2.564 + 60.110 2.330 + 60.120 2.114 + 60.130 1.917 + 60.140 1.740 + 60.150 1.581 + 60.160 1.439 + 60.170 1.312 + 60.180 1.198 + 60.190 1.094 + 60.200 0.997 + 60.210 0.902 + 60.220 0.808 + 60.230 0.710 + 60.240 0.604 + 60.250 0.489 + 60.260 0.362 + 60.270 0.219 + 60.280 0.060 + 60.290 -0.118 + 60.300 -0.314 + 60.310 -0.529 + 60.320 -0.763 + 60.330 -1.014 + 60.340 -1.282 + 60.350 -1.565 + 60.360 -1.861 + 60.370 -2.167 + 60.380 -2.481 + 60.390 -2.801 + 60.400 -3.123 + 60.410 -3.444 + 60.420 -3.761 + 60.430 -4.071 + 60.440 -4.371 + 60.450 -4.658 + 60.460 -4.929 + 60.470 -5.179 + 60.480 -5.407 + 60.490 -5.608 + 60.500 -5.780 + 60.510 -5.920 + 60.520 -6.025 + 60.530 -6.092 + 60.540 -6.119 + 60.550 -6.104 + 60.560 -6.045 + 60.570 -5.942 + 60.580 -5.793 + 60.590 -5.600 + 60.600 -5.363 + 60.610 -5.083 + 60.620 -4.764 + 60.630 -4.409 + 60.640 -4.021 + 60.650 -3.606 + 60.660 -3.170 + 60.670 -2.717 + 60.680 -2.256 + 60.690 -1.792 + 60.700 -1.332 + 60.710 -0.885 + 60.720 -0.456 + 60.730 -0.051 + 60.740 0.323 + 60.750 0.661 + 60.760 0.958 + 60.770 1.212 + 60.780 1.420 + 60.790 1.580 + 60.800 1.692 + 60.810 1.755 + 60.820 1.773 + 60.830 1.745 + 60.840 1.677 + 60.850 1.571 + 60.860 1.431 + 60.870 1.263 + 60.880 1.071 + 60.890 0.861 + 60.900 0.636 + 60.910 0.403 + 60.920 0.167 + 60.930 -0.070 + 60.940 -0.301 + 60.950 -0.523 + 60.960 -0.733 + 60.970 -0.927 + 60.980 -1.103 + 60.990 -1.259 + 61.000 -1.392 + 61.010 -1.501 + 61.020 -1.586 + 61.030 -1.644 + 61.040 -1.677 + 61.050 -1.685 + 61.060 -1.667 + 61.070 -1.625 + 61.080 -1.560 + 61.090 -1.474 + 61.100 -1.369 + 61.110 -1.248 + 61.120 -1.112 + 61.130 -0.966 + 61.140 -0.813 + 61.150 -0.655 + 61.160 -0.496 + 61.170 -0.341 + 61.180 -0.192 + 61.190 -0.053 + 61.200 0.074 + 61.210 0.186 + 61.220 0.281 + 61.230 0.357 + 61.240 0.414 + 61.250 0.451 + 61.260 0.468 + 61.270 0.467 + 61.280 0.449 + 61.290 0.416 + 61.300 0.371 + 61.310 0.316 + 61.320 0.254 + 61.330 0.189 + 61.340 0.125 + 61.350 0.063 + 61.360 0.007 + 61.370 -0.041 + 61.380 -0.078 + 61.390 -0.103 + 61.400 -0.114 + 61.410 -0.110 + 61.420 -0.092 + 61.430 -0.060 + 61.440 -0.012 + 61.450 0.049 + 61.460 0.122 + 61.470 0.208 + 61.480 0.304 + 61.490 0.410 + 61.500 0.525 + 61.510 0.649 + 61.520 0.779 + 61.530 0.917 + 61.540 1.061 + 61.550 1.211 + 61.560 1.366 + 61.570 1.528 + 61.580 1.695 + 61.590 1.866 + 61.600 2.041 + 61.610 2.219 + 61.620 2.398 + 61.630 2.578 + 61.640 2.756 + 61.650 2.930 + 61.660 3.097 + 61.670 3.256 + 61.680 3.404 + 61.690 3.539 + 61.700 3.658 + 61.710 3.760 + 61.720 3.843 + 61.730 3.907 + 61.740 3.951 + 61.750 3.976 + 61.760 3.983 + 61.770 3.973 + 61.780 3.949 + 61.790 3.913 + 61.800 3.868 + 61.810 3.818 + 61.820 3.765 + 61.830 3.714 + 61.840 3.665 + 61.850 3.623 + 61.860 3.588 + 61.870 3.562 + 61.880 3.543 + 61.890 3.532 + 61.900 3.526 + 61.910 3.523 + 61.920 3.519 + 61.930 3.509 + 61.940 3.490 + 61.950 3.457 + 61.960 3.404 + 61.970 3.326 + 61.980 3.221 + 61.990 3.082 + 62.000 2.909 + 62.010 2.700 + 62.020 2.453 + 62.030 2.170 + 62.040 1.852 + 62.050 1.504 + 62.060 1.128 + 62.070 0.731 + 62.080 0.319 + 62.090 -0.101 + 62.100 -0.522 + 62.110 -0.937 + 62.120 -1.338 + 62.130 -1.719 + 62.140 -2.073 + 62.150 -2.395 + 62.160 -2.681 + 62.170 -2.927 + 62.180 -3.132 + 62.190 -3.294 + 62.200 -3.414 + 62.210 -3.493 + 62.220 -3.533 + 62.230 -3.539 + 62.240 -3.512 + 62.250 -3.458 + 62.260 -3.381 + 62.270 -3.284 + 62.280 -3.173 + 62.290 -3.052 + 62.300 -2.923 + 62.310 -2.790 + 62.320 -2.654 + 62.330 -2.519 + 62.340 -2.385 + 62.350 -2.253 + 62.360 -2.123 + 62.370 -1.995 + 62.380 -1.870 + 62.390 -1.746 + 62.400 -1.623 + 62.410 -1.502 + 62.420 -1.383 + 62.430 -1.265 + 62.440 -1.149 + 62.450 -1.035 + 62.460 -0.926 + 62.470 -0.822 + 62.480 -0.725 + 62.490 -0.635 + 62.500 -0.556 + 62.510 -0.487 + 62.520 -0.430 + 62.530 -0.385 + 62.540 -0.354 + 62.550 -0.337 + 62.560 -0.332 + 62.570 -0.339 + 62.580 -0.358 + 62.590 -0.386 + 62.600 -0.422 + 62.610 -0.464 + 62.620 -0.511 + 62.630 -0.560 + 62.640 -0.610 + 62.650 -0.660 + 62.660 -0.708 + 62.670 -0.754 + 62.680 -0.798 + 62.690 -0.839 + 62.700 -0.879 + 62.710 -0.919 + 62.720 -0.960 + 62.730 -1.004 + 62.740 -1.052 + 62.750 -1.108 + 62.760 -1.172 + 62.770 -1.248 + 62.780 -1.335 + 62.790 -1.435 + 62.800 -1.550 + 62.810 -1.680 + 62.820 -1.823 + 62.830 -1.980 + 62.840 -2.149 + 62.850 -2.328 + 62.860 -2.514 + 62.870 -2.705 + 62.880 -2.897 + 62.890 -3.087 + 62.900 -3.272 + 62.910 -3.446 + 62.920 -3.606 + 62.930 -3.748 + 62.940 -3.869 + 62.950 -3.965 + 62.960 -4.033 + 62.970 -4.070 + 62.980 -4.073 + 62.990 -4.042 + 63.000 -3.974 + 63.010 -3.869 + 63.020 -3.727 + 63.030 -3.548 + 63.040 -3.333 + 63.050 -3.085 + 63.060 -2.806 + 63.070 -2.499 + 63.080 -2.168 + 63.090 -1.817 + 63.100 -1.452 + 63.110 -1.076 + 63.120 -0.696 + 63.130 -0.318 + 63.140 0.053 + 63.150 0.410 + 63.160 0.749 + 63.170 1.063 + 63.180 1.349 + 63.190 1.602 + 63.200 1.819 + 63.210 1.998 + 63.220 2.137 + 63.230 2.236 + 63.240 2.295 + 63.250 2.317 + 63.260 2.303 + 63.270 2.257 + 63.280 2.184 + 63.290 2.088 + 63.300 1.974 + 63.310 1.847 + 63.320 1.712 + 63.330 1.575 + 63.340 1.439 + 63.350 1.310 + 63.360 1.189 + 63.370 1.079 + 63.380 0.982 + 63.390 0.898 + 63.400 0.826 + 63.410 0.766 + 63.420 0.715 + 63.430 0.671 + 63.440 0.631 + 63.450 0.593 + 63.460 0.552 + 63.470 0.506 + 63.480 0.453 + 63.490 0.391 + 63.500 0.319 + 63.510 0.236 + 63.520 0.143 + 63.530 0.042 + 63.540 -0.066 + 63.550 -0.178 + 63.560 -0.289 + 63.570 -0.397 + 63.580 -0.496 + 63.590 -0.581 + 63.600 -0.650 + 63.610 -0.697 + 63.620 -0.718 + 63.630 -0.711 + 63.640 -0.672 + 63.650 -0.601 + 63.660 -0.496 + 63.670 -0.358 + 63.680 -0.186 + 63.690 0.017 + 63.700 0.249 + 63.710 0.508 + 63.720 0.789 + 63.730 1.090 + 63.740 1.406 + 63.750 1.734 + 63.760 2.069 + 63.770 2.409 + 63.780 2.750 + 63.790 3.088 + 63.800 3.420 + 63.810 3.745 + 63.820 4.060 + 63.830 4.363 + 63.840 4.653 + 63.850 4.928 + 63.860 5.187 + 63.870 5.429 + 63.880 5.654 + 63.890 5.860 + 63.900 6.047 + 63.910 6.214 + 63.920 6.362 + 63.930 6.488 + 63.940 6.594 + 63.950 6.679 + 63.960 6.743 + 63.970 6.786 + 63.980 6.809 + 63.990 6.811 + 64.000 6.795 + 64.010 6.760 + 64.020 6.708 + 64.030 6.640 + 64.040 6.556 + 64.050 6.459 + 64.060 6.349 + 64.070 6.227 + 64.080 6.093 + 64.090 5.949 + 64.100 5.793 + 64.110 5.625 + 64.120 5.446 + 64.130 5.253 + 64.140 5.047 + 64.150 4.825 + 64.160 4.587 + 64.170 4.330 + 64.180 4.053 + 64.190 3.756 + 64.200 3.436 + 64.210 3.094 + 64.220 2.728 + 64.230 2.339 + 64.240 1.928 + 64.250 1.494 + 64.260 1.041 + 64.270 0.569 + 64.280 0.080 + 64.290 -0.424 + 64.300 -0.938 + 64.310 -1.461 + 64.320 -1.990 + 64.330 -2.523 + 64.340 -3.055 + 64.350 -3.586 + 64.360 -4.111 + 64.370 -4.630 + 64.380 -5.138 + 64.390 -5.635 + 64.400 -6.119 + 64.410 -6.586 + 64.420 -7.035 + 64.430 -7.465 + 64.440 -7.873 + 64.450 -8.255 + 64.460 -8.611 + 64.470 -8.938 + 64.480 -9.232 + 64.490 -9.492 + 64.500 -9.714 + 64.510 -9.896 + 64.520 -10.036 + 64.530 -10.132 + 64.540 -10.182 + 64.550 -10.185 + 64.560 -10.140 + 64.570 -10.047 + 64.580 -9.908 + 64.590 -9.724 + 64.600 -9.497 + 64.610 -9.230 + 64.620 -8.928 + 64.630 -8.593 + 64.640 -8.231 + 64.650 -7.848 + 64.660 -7.447 + 64.670 -7.035 + 64.680 -6.617 + 64.690 -6.197 + 64.700 -5.781 + 64.710 -5.372 + 64.720 -4.974 + 64.730 -4.591 + 64.740 -4.224 + 64.750 -3.875 + 64.760 -3.546 + 64.770 -3.237 + 64.780 -2.948 + 64.790 -2.679 + 64.800 -2.429 + 64.810 -2.196 + 64.820 -1.980 + 64.830 -1.778 + 64.840 -1.589 + 64.850 -1.411 + 64.860 -1.242 + 64.870 -1.080 + 64.880 -0.923 + 64.890 -0.770 + 64.900 -0.618 + 64.910 -0.465 + 64.920 -0.310 + 64.930 -0.152 + 64.940 0.012 + 64.950 0.182 + 64.960 0.360 + 64.970 0.548 + 64.980 0.744 + 64.990 0.950 + 65.000 1.167 + 65.010 1.392 + 65.020 1.626 + 65.030 1.866 + 65.040 2.111 + 65.050 2.358 + 65.060 2.605 + 65.070 2.848 + 65.080 3.083 + 65.090 3.307 + 65.100 3.516 + 65.110 3.706 + 65.120 3.875 + 65.130 4.018 + 65.140 4.133 + 65.150 4.219 + 65.160 4.274 + 65.170 4.297 + 65.180 4.288 + 65.190 4.250 + 65.200 4.183 + 65.210 4.089 + 65.220 3.973 + 65.230 3.837 + 65.240 3.685 + 65.250 3.522 + 65.260 3.350 + 65.270 3.176 + 65.280 3.001 + 65.290 2.830 + 65.300 2.665 + 65.310 2.510 + 65.320 2.365 + 65.330 2.234 + 65.340 2.116 + 65.350 2.012 + 65.360 1.923 + 65.370 1.849 + 65.380 1.789 + 65.390 1.742 + 65.400 1.709 + 65.410 1.688 + 65.420 1.679 + 65.430 1.682 + 65.440 1.696 + 65.450 1.720 + 65.460 1.755 + 65.470 1.799 + 65.480 1.853 + 65.490 1.915 + 65.500 1.984 + 65.510 2.060 + 65.520 2.140 + 65.530 2.224 + 65.540 2.309 + 65.550 2.393 + 65.560 2.474 + 65.570 2.548 + 65.580 2.615 + 65.590 2.670 + 65.600 2.712 + 65.610 2.740 + 65.620 2.751 + 65.630 2.744 + 65.640 2.720 + 65.650 2.679 + 65.660 2.620 + 65.670 2.546 + 65.680 2.458 + 65.690 2.358 + 65.700 2.249 + 65.710 2.132 + 65.720 2.011 + 65.730 1.887 + 65.740 1.763 + 65.750 1.640 + 65.760 1.520 + 65.770 1.402 + 65.780 1.287 + 65.790 1.174 + 65.800 1.063 + 65.810 0.952 + 65.820 0.839 + 65.830 0.723 + 65.840 0.601 + 65.850 0.473 + 65.860 0.337 + 65.870 0.193 + 65.880 0.041 + 65.890 -0.119 + 65.900 -0.285 + 65.910 -0.456 + 65.920 -0.627 + 65.930 -0.796 + 65.940 -0.958 + 65.950 -1.111 + 65.960 -1.248 + 65.970 -1.367 + 65.980 -1.462 + 65.990 -1.531 + 66.000 -1.571 + 66.010 -1.579 + 66.020 -1.554 + 66.030 -1.497 + 66.040 -1.407 + 66.050 -1.286 + 66.060 -1.138 + 66.070 -0.964 + 66.080 -0.768 + 66.090 -0.556 + 66.100 -0.331 + 66.110 -0.097 + 66.120 0.140 + 66.130 0.377 + 66.140 0.610 + 66.150 0.836 + 66.160 1.052 + 66.170 1.257 + 66.180 1.448 + 66.190 1.626 + 66.200 1.789 + 66.210 1.938 + 66.220 2.073 + 66.230 2.194 + 66.240 2.302 + 66.250 2.398 + 66.260 2.481 + 66.270 2.552 + 66.280 2.610 + 66.290 2.655 + 66.300 2.686 + 66.310 2.703 + 66.320 2.704 + 66.330 2.688 + 66.340 2.655 + 66.350 2.603 + 66.360 2.532 + 66.370 2.442 + 66.380 2.332 + 66.390 2.203 + 66.400 2.055 + 66.410 1.890 + 66.420 1.709 + 66.430 1.513 + 66.440 1.304 + 66.450 1.083 + 66.460 0.853 + 66.470 0.615 + 66.480 0.370 + 66.490 0.120 + 66.500 -0.136 + 66.510 -0.398 + 66.520 -0.664 + 66.530 -0.936 + 66.540 -1.215 + 66.550 -1.502 + 66.560 -1.796 + 66.570 -2.101 + 66.580 -2.415 + 66.590 -2.741 + 66.600 -3.078 + 66.610 -3.426 + 66.620 -3.785 + 66.630 -4.153 + 66.640 -4.528 + 66.650 -4.908 + 66.660 -5.291 + 66.670 -5.673 + 66.680 -6.051 + 66.690 -6.422 + 66.700 -6.781 + 66.710 -7.125 + 66.720 -7.451 + 66.730 -7.755 + 66.740 -8.035 + 66.750 -8.288 + 66.760 -8.512 + 66.770 -8.705 + 66.780 -8.867 + 66.790 -8.996 + 66.800 -9.091 + 66.810 -9.154 + 66.820 -9.183 + 66.830 -9.179 + 66.840 -9.142 + 66.850 -9.072 + 66.860 -8.969 + 66.870 -8.834 + 66.880 -8.666 + 66.890 -8.466 + 66.900 -8.234 + 66.910 -7.969 + 66.920 -7.672 + 66.930 -7.344 + 66.940 -6.985 + 66.950 -6.596 + 66.960 -6.179 + 66.970 -5.735 + 66.980 -5.267 + 66.990 -4.776 + 67.000 -4.267 + 67.010 -3.741 + 67.020 -3.202 + 67.030 -2.655 + 67.040 -2.101 + 67.050 -1.546 + 67.060 -0.993 + 67.070 -0.443 + 67.080 0.098 + 67.090 0.630 + 67.100 1.149 + 67.110 1.653 + 67.120 2.142 + 67.130 2.614 + 67.140 3.068 + 67.150 3.505 + 67.160 3.922 + 67.170 4.321 + 67.180 4.701 + 67.190 5.062 + 67.200 5.403 + 67.210 5.725 + 67.220 6.027 + 67.230 6.309 + 67.240 6.569 + 67.250 6.808 + 67.260 7.024 + 67.270 7.217 + 67.280 7.385 + 67.290 7.529 + 67.300 7.648 + 67.310 7.742 + 67.320 7.810 + 67.330 7.854 + 67.340 7.872 + 67.350 7.866 + 67.360 7.836 + 67.370 7.784 + 67.380 7.710 + 67.390 7.616 + 67.400 7.501 + 67.410 7.368 + 67.420 7.217 + 67.430 7.048 + 67.440 6.862 + 67.450 6.660 + 67.460 6.442 + 67.470 6.208 + 67.480 5.958 + 67.490 5.694 + 67.500 5.416 + 67.510 5.124 + 67.520 4.821 + 67.530 4.506 + 67.540 4.183 + 67.550 3.854 + 67.560 3.521 + 67.570 3.187 + 67.580 2.854 + 67.590 2.526 + 67.600 2.206 + 67.610 1.897 + 67.620 1.601 + 67.630 1.321 + 67.640 1.058 + 67.650 0.813 + 67.660 0.587 + 67.670 0.381 + 67.680 0.194 + 67.690 0.023 + 67.700 -0.131 + 67.710 -0.272 + 67.720 -0.400 + 67.730 -0.519 + 67.740 -0.630 + 67.750 -0.734 + 67.760 -0.834 + 67.770 -0.930 + 67.780 -1.022 + 67.790 -1.109 + 67.800 -1.191 + 67.810 -1.265 + 67.820 -1.328 + 67.830 -1.378 + 67.840 -1.412 + 67.850 -1.426 + 67.860 -1.417 + 67.870 -1.382 + 67.880 -1.318 + 67.890 -1.224 + 67.900 -1.099 + 67.910 -0.943 + 67.920 -0.757 + 67.930 -0.542 + 67.940 -0.304 + 67.950 -0.045 + 67.960 0.230 + 67.970 0.514 + 67.980 0.802 + 67.990 1.086 + 68.000 1.360 + 68.010 1.617 + 68.020 1.852 + 68.030 2.059 + 68.040 2.234 + 68.050 2.371 + 68.060 2.468 + 68.070 2.524 + 68.080 2.537 + 68.090 2.507 + 68.100 2.435 + 68.110 2.322 + 68.120 2.171 + 68.130 1.985 + 68.140 1.766 + 68.150 1.518 + 68.160 1.245 + 68.170 0.950 + 68.180 0.636 + 68.190 0.307 + 68.200 -0.034 + 68.210 -0.383 + 68.220 -0.738 + 68.230 -1.096 + 68.240 -1.453 + 68.250 -1.806 + 68.260 -2.153 + 68.270 -2.490 + 68.280 -2.814 + 68.290 -3.122 + 68.300 -3.411 + 68.310 -3.676 + 68.320 -3.916 + 68.330 -4.128 + 68.340 -4.308 + 68.350 -4.456 + 68.360 -4.569 + 68.370 -4.647 + 68.380 -4.690 + 68.390 -4.700 + 68.400 -4.676 + 68.410 -4.623 + 68.420 -4.544 + 68.430 -4.441 + 68.440 -4.320 + 68.450 -4.185 + 68.460 -4.041 + 68.470 -3.893 + 68.480 -3.745 + 68.490 -3.602 + 68.500 -3.468 + 68.510 -3.344 + 68.520 -3.234 + 68.530 -3.139 + 68.540 -3.058 + 68.550 -2.992 + 68.560 -2.938 + 68.570 -2.895 + 68.580 -2.859 + 68.590 -2.828 + 68.600 -2.797 + 68.610 -2.764 + 68.620 -2.724 + 68.630 -2.675 + 68.640 -2.613 + 68.650 -2.538 + 68.660 -2.447 + 68.670 -2.340 + 68.680 -2.217 + 68.690 -2.080 + 68.700 -1.930 + 68.710 -1.770 + 68.720 -1.602 + 68.730 -1.430 + 68.740 -1.258 + 68.750 -1.090 + 68.760 -0.929 + 68.770 -0.779 + 68.780 -0.642 + 68.790 -0.523 + 68.800 -0.422 + 68.810 -0.343 + 68.820 -0.285 + 68.830 -0.249 + 68.840 -0.236 + 68.850 -0.244 + 68.860 -0.273 + 68.870 -0.320 + 68.880 -0.384 + 68.890 -0.462 + 68.900 -0.553 + 68.910 -0.652 + 68.920 -0.758 + 68.930 -0.868 + 68.940 -0.978 + 68.950 -1.087 + 68.960 -1.190 + 68.970 -1.287 + 68.980 -1.373 + 68.990 -1.448 + 69.000 -1.507 + 69.010 -1.550 + 69.020 -1.574 + 69.030 -1.578 + 69.040 -1.560 + 69.050 -1.518 + 69.060 -1.452 + 69.070 -1.361 + 69.080 -1.244 + 69.090 -1.102 + 69.100 -0.934 + 69.110 -0.741 + 69.120 -0.525 + 69.130 -0.287 + 69.140 -0.028 + 69.150 0.249 + 69.160 0.542 + 69.170 0.848 + 69.180 1.164 + 69.190 1.488 + 69.200 1.815 + 69.210 2.142 + 69.220 2.468 + 69.230 2.787 + 69.240 3.097 + 69.250 3.396 + 69.260 3.680 + 69.270 3.945 + 69.280 4.191 + 69.290 4.415 + 69.300 4.614 + 69.310 4.787 + 69.320 4.932 + 69.330 5.048 + 69.340 5.134 + 69.350 5.188 + 69.360 5.211 + 69.370 5.203 + 69.380 5.163 + 69.390 5.091 + 69.400 4.990 + 69.410 4.859 + 69.420 4.701 + 69.430 4.517 + 69.440 4.310 + 69.450 4.082 + 69.460 3.837 + 69.470 3.577 + 69.480 3.305 + 69.490 3.027 + 69.500 2.743 + 69.510 2.460 + 69.520 2.179 + 69.530 1.905 + 69.540 1.640 + 69.550 1.387 + 69.560 1.150 + 69.570 0.930 + 69.580 0.729 + 69.590 0.548 + 69.600 0.389 + 69.610 0.252 + 69.620 0.137 + 69.630 0.044 + 69.640 -0.027 + 69.650 -0.078 + 69.660 -0.110 + 69.670 -0.124 + 69.680 -0.121 + 69.690 -0.105 + 69.700 -0.075 + 69.710 -0.035 + 69.720 0.014 + 69.730 0.069 + 69.740 0.128 + 69.750 0.189 + 69.760 0.251 + 69.770 0.310 + 69.780 0.366 + 69.790 0.415 + 69.800 0.456 + 69.810 0.488 + 69.820 0.509 + 69.830 0.518 + 69.840 0.513 + 69.850 0.494 + 69.860 0.460 + 69.870 0.411 + 69.880 0.347 + 69.890 0.269 + 69.900 0.178 + 69.910 0.074 + 69.920 -0.040 + 69.930 -0.163 + 69.940 -0.293 + 69.950 -0.427 + 69.960 -0.564 + 69.970 -0.700 + 69.980 -0.834 + 69.990 -0.963 + 70.000 -1.085 + 70.010 -1.197 + 70.020 -1.299 + 70.030 -1.388 + 70.040 -1.463 + 70.050 -1.523 + 70.060 -1.569 + 70.070 -1.598 + 70.080 -1.612 + 70.090 -1.610 + 70.100 -1.593 + 70.110 -1.562 + 70.120 -1.517 + 70.130 -1.459 + 70.140 -1.390 + 70.150 -1.311 + 70.160 -1.222 + 70.170 -1.126 + 70.180 -1.024 + 70.190 -0.916 + 70.200 -0.804 + 70.210 -0.689 + 70.220 -0.574 + 70.230 -0.457 + 70.240 -0.342 + 70.250 -0.229 + 70.260 -0.119 + 70.270 -0.013 + 70.280 0.089 + 70.290 0.186 + 70.300 0.277 + 70.310 0.363 + 70.320 0.443 + 70.330 0.518 + 70.340 0.588 + 70.350 0.653 + 70.360 0.714 + 70.370 0.772 + 70.380 0.828 + 70.390 0.882 + 70.400 0.935 + 70.410 0.987 + 70.420 1.040 + 70.430 1.092 + 70.440 1.144 + 70.450 1.195 + 70.460 1.245 + 70.470 1.292 + 70.480 1.334 + 70.490 1.371 + 70.500 1.400 + 70.510 1.419 + 70.520 1.427 + 70.530 1.420 + 70.540 1.398 + 70.550 1.358 + 70.560 1.299 + 70.570 1.220 + 70.580 1.121 + 70.590 1.000 + 70.600 0.859 + 70.610 0.698 + 70.620 0.517 + 70.630 0.319 + 70.640 0.104 + 70.650 -0.125 + 70.660 -0.366 + 70.670 -0.617 + 70.680 -0.877 + 70.690 -1.143 + 70.700 -1.414 + 70.710 -1.688 + 70.720 -1.964 + 70.730 -2.241 + 70.740 -2.517 + 70.750 -2.792 + 70.760 -3.067 + 70.770 -3.338 + 70.780 -3.608 + 70.790 -3.874 + 70.800 -4.137 + 70.810 -4.394 + 70.820 -4.646 + 70.830 -4.890 + 70.840 -5.125 + 70.850 -5.349 + 70.860 -5.560 + 70.870 -5.756 + 70.880 -5.934 + 70.890 -6.091 + 70.900 -6.226 + 70.910 -6.336 + 70.920 -6.419 + 70.930 -6.473 + 70.940 -6.497 + 70.950 -6.489 + 70.960 -6.448 + 70.970 -6.374 + 70.980 -6.267 + 70.990 -6.128 + 71.000 -5.955 + 71.010 -5.751 + 71.020 -5.517 + 71.030 -5.252 + 71.040 -4.959 + 71.050 -4.638 + 71.060 -4.291 + 71.070 -3.918 + 71.080 -3.522 + 71.090 -3.104 + 71.100 -2.664 + 71.110 -2.205 + 71.120 -1.729 + 71.130 -1.237 + 71.140 -0.732 + 71.150 -0.218 + 71.160 0.304 + 71.170 0.829 + 71.180 1.353 + 71.190 1.872 + 71.200 2.381 + 71.210 2.877 + 71.220 3.353 + 71.230 3.807 + 71.240 4.232 + 71.250 4.626 + 71.260 4.985 + 71.270 5.307 + 71.280 5.589 + 71.290 5.831 + 71.300 6.032 + 71.310 6.194 + 71.320 6.317 + 71.330 6.405 + 71.340 6.459 + 71.350 6.485 + 71.360 6.486 + 71.370 6.466 + 71.380 6.429 + 71.390 6.379 + 71.400 6.321 + 71.410 6.257 + 71.420 6.190 + 71.430 6.122 + 71.440 6.054 + 71.450 5.988 + 71.460 5.922 + 71.470 5.856 + 71.480 5.789 + 71.490 5.718 + 71.500 5.643 + 71.510 5.560 + 71.520 5.467 + 71.530 5.363 + 71.540 5.245 + 71.550 5.112 + 71.560 4.962 + 71.570 4.795 + 71.580 4.609 + 71.590 4.406 + 71.600 4.184 + 71.610 3.945 + 71.620 3.689 + 71.630 3.418 + 71.640 3.132 + 71.650 2.831 + 71.660 2.518 + 71.670 2.193 + 71.680 1.856 + 71.690 1.510 + 71.700 1.154 + 71.710 0.789 + 71.720 0.417 + 71.730 0.039 + 71.740 -0.344 + 71.750 -0.730 + 71.760 -1.116 + 71.770 -1.501 + 71.780 -1.882 + 71.790 -2.255 + 71.800 -2.616 + 71.810 -2.962 + 71.820 -3.289 + 71.830 -3.592 + 71.840 -3.868 + 71.850 -4.114 + 71.860 -4.326 + 71.870 -4.502 + 71.880 -4.639 + 71.890 -4.737 + 71.900 -4.794 + 71.910 -4.813 + 71.920 -4.793 + 71.930 -4.737 + 71.940 -4.647 + 71.950 -4.528 + 71.960 -4.382 + 71.970 -4.215 + 71.980 -4.030 + 71.990 -3.832 + 72.000 -3.626 + 72.010 -3.414 + 72.020 -3.200 + 72.030 -2.989 + 72.040 -2.781 + 72.050 -2.579 + 72.060 -2.385 + 72.070 -2.199 + 72.080 -2.022 + 72.090 -1.853 + 72.100 -1.693 + 72.110 -1.540 + 72.120 -1.394 + 72.130 -1.255 + 72.140 -1.122 + 72.150 -0.994 + 72.160 -0.872 + 72.170 -0.753 + 72.180 -0.640 + 72.190 -0.531 + 72.200 -0.427 + 72.210 -0.328 + 72.220 -0.234 + 72.230 -0.146 + 72.240 -0.063 + 72.250 0.015 + 72.260 0.088 + 72.270 0.156 + 72.280 0.219 + 72.290 0.280 + 72.300 0.337 + 72.310 0.393 + 72.320 0.447 + 72.330 0.501 + 72.340 0.556 + 72.350 0.611 + 72.360 0.668 + 72.370 0.725 + 72.380 0.784 + 72.390 0.844 + 72.400 0.905 + 72.410 0.966 + 72.420 1.027 + 72.430 1.087 + 72.440 1.147 + 72.450 1.205 + 72.460 1.263 + 72.470 1.320 + 72.480 1.378 + 72.490 1.437 + 72.500 1.497 + 72.510 1.562 + 72.520 1.631 + 72.530 1.706 + 72.540 1.789 + 72.550 1.879 + 72.560 1.978 + 72.570 2.086 + 72.580 2.203 + 72.590 2.326 + 72.600 2.456 + 72.610 2.589 + 72.620 2.723 + 72.630 2.854 + 72.640 2.979 + 72.650 3.094 + 72.660 3.195 + 72.670 3.278 + 72.680 3.340 + 72.690 3.378 + 72.700 3.388 + 72.710 3.369 + 72.720 3.320 + 72.730 3.240 + 72.740 3.129 + 72.750 2.989 + 72.760 2.821 + 72.770 2.628 + 72.780 2.413 + 72.790 2.179 + 72.800 1.929 + 72.810 1.666 + 72.820 1.395 + 72.830 1.117 + 72.840 0.836 + 72.850 0.552 + 72.860 0.269 + 72.870 -0.014 + 72.880 -0.295 + 72.890 -0.576 + 72.900 -0.856 + 72.910 -1.136 + 72.920 -1.416 + 72.930 -1.698 + 72.940 -1.983 + 72.950 -2.270 + 72.960 -2.560 + 72.970 -2.853 + 72.980 -3.148 + 72.990 -3.443 + 73.000 -3.739 + 73.010 -4.032 + 73.020 -4.320 + 73.030 -4.601 + 73.040 -4.874 + 73.050 -5.134 + 73.060 -5.380 + 73.070 -5.609 + 73.080 -5.821 + 73.090 -6.011 + 73.100 -6.181 + 73.110 -6.327 + 73.120 -6.451 + 73.130 -6.551 + 73.140 -6.626 + 73.150 -6.678 + 73.160 -6.706 + 73.170 -6.711 + 73.180 -6.691 + 73.190 -6.647 + 73.200 -6.580 + 73.210 -6.487 + 73.220 -6.370 + 73.230 -6.227 + 73.240 -6.058 + 73.250 -5.861 + 73.260 -5.637 + 73.270 -5.386 + 73.280 -5.106 + 73.290 -4.799 + 73.300 -4.464 + 73.310 -4.104 + 73.320 -3.720 + 73.330 -3.313 + 73.340 -2.887 + 73.350 -2.443 + 73.360 -1.985 + 73.370 -1.517 + 73.380 -1.043 + 73.390 -0.564 + 73.400 -0.085 + 73.410 0.392 + 73.420 0.862 + 73.430 1.325 + 73.440 1.778 + 73.450 2.219 + 73.460 2.646 + 73.470 3.060 + 73.480 3.458 + 73.490 3.841 + 73.500 4.207 + 73.510 4.556 + 73.520 4.887 + 73.530 5.199 + 73.540 5.490 + 73.550 5.759 + 73.560 6.004 + 73.570 6.223 + 73.580 6.412 + 73.590 6.570 + 73.600 6.694 + 73.610 6.782 + 73.620 6.830 + 73.630 6.837 + 73.640 6.802 + 73.650 6.724 + 73.660 6.604 + 73.670 6.441 + 73.680 6.238 + 73.690 5.997 + 73.700 5.723 + 73.710 5.418 + 73.720 5.087 + 73.730 4.737 + 73.740 4.372 + 73.750 3.998 + 73.760 3.621 + 73.770 3.247 + 73.780 2.881 + 73.790 2.528 + 73.800 2.191 + 73.810 1.875 + 73.820 1.583 + 73.830 1.316 + 73.840 1.076 + 73.850 0.864 + 73.860 0.679 + 73.870 0.523 + 73.880 0.393 + 73.890 0.288 + 73.900 0.207 + 73.910 0.148 + 73.920 0.108 + 73.930 0.086 + 73.940 0.080 + 73.950 0.087 + 73.960 0.104 + 73.970 0.130 + 73.980 0.162 + 73.990 0.197 + 74.000 0.234 + 74.010 0.269 + 74.020 0.301 + 74.030 0.326 + 74.040 0.344 + 74.050 0.351 + 74.060 0.346 + 74.070 0.328 + 74.080 0.296 + 74.090 0.248 + 74.100 0.186 + 74.110 0.109 + 74.120 0.019 + 74.130 -0.083 + 74.140 -0.195 + 74.150 -0.314 + 74.160 -0.436 + 74.170 -0.560 + 74.180 -0.681 + 74.190 -0.795 + 74.200 -0.900 + 74.210 -0.993 + 74.220 -1.071 + 74.230 -1.131 + 74.240 -1.173 + 74.250 -1.196 + 74.260 -1.199 + 74.270 -1.184 + 74.280 -1.151 + 74.290 -1.103 + 74.300 -1.041 + 74.310 -0.969 + 74.320 -0.889 + 74.330 -0.804 + 74.340 -0.717 + 74.350 -0.631 + 74.360 -0.547 + 74.370 -0.469 + 74.380 -0.396 + 74.390 -0.331 + 74.400 -0.273 + 74.410 -0.222 + 74.420 -0.178 + 74.430 -0.141 + 74.440 -0.108 + 74.450 -0.079 + 74.460 -0.054 + 74.470 -0.030 + 74.480 -0.008 + 74.490 0.014 + 74.500 0.035 + 74.510 0.056 + 74.520 0.076 + 74.530 0.094 + 74.540 0.111 + 74.550 0.123 + 74.560 0.132 + 74.570 0.136 + 74.580 0.135 + 74.590 0.127 + 74.600 0.113 + 74.610 0.093 + 74.620 0.067 + 74.630 0.037 + 74.640 0.003 + 74.650 -0.033 + 74.660 -0.071 + 74.670 -0.108 + 74.680 -0.142 + 74.690 -0.174 + 74.700 -0.201 + 74.710 -0.224 + 74.720 -0.241 + 74.730 -0.254 + 74.740 -0.262 + 74.750 -0.267 + 74.760 -0.269 + 74.770 -0.271 + 74.780 -0.274 + 74.790 -0.279 + 74.800 -0.289 + 74.810 -0.306 + 74.820 -0.330 + 74.830 -0.362 + 74.840 -0.404 + 74.850 -0.455 + 74.860 -0.516 + 74.870 -0.586 + 74.880 -0.664 + 74.890 -0.750 + 74.900 -0.842 + 74.910 -0.939 + 74.920 -1.041 + 74.930 -1.146 + 74.940 -1.253 + 74.950 -1.363 + 74.960 -1.474 + 74.970 -1.587 + 74.980 -1.702 + 74.990 -1.820 + 75.000 -1.941 + 75.010 -2.065 + 75.020 -2.193 + 75.030 -2.325 + 75.040 -2.460 + 75.050 -2.599 + 75.060 -2.740 + 75.070 -2.881 + 75.080 -3.021 + 75.090 -3.155 + 75.100 -3.283 + 75.110 -3.400 + 75.120 -3.503 + 75.130 -3.588 + 75.140 -3.652 + 75.150 -3.693 + 75.160 -3.709 + 75.170 -3.696 + 75.180 -3.655 + 75.190 -3.585 + 75.200 -3.487 + 75.210 -3.363 + 75.220 -3.215 + 75.230 -3.046 + 75.240 -2.860 + 75.250 -2.660 + 75.260 -2.452 + 75.270 -2.239 + 75.280 -2.026 + 75.290 -1.816 + 75.300 -1.612 + 75.310 -1.418 + 75.320 -1.235 + 75.330 -1.065 + 75.340 -0.908 + 75.350 -0.764 + 75.360 -0.632 + 75.370 -0.513 + 75.380 -0.403 + 75.390 -0.302 + 75.400 -0.208 + 75.410 -0.120 + 75.420 -0.037 + 75.430 0.043 + 75.440 0.120 + 75.450 0.193 + 75.460 0.263 + 75.470 0.329 + 75.480 0.390 + 75.490 0.446 + 75.500 0.495 + 75.510 0.537 + 75.520 0.572 + 75.530 0.600 + 75.540 0.622 + 75.550 0.639 + 75.560 0.652 + 75.570 0.664 + 75.580 0.677 + 75.590 0.695 + 75.600 0.722 + 75.610 0.759 + 75.620 0.811 + 75.630 0.879 + 75.640 0.967 + 75.650 1.074 + 75.660 1.203 + 75.670 1.352 + 75.680 1.520 + 75.690 1.706 + 75.700 1.905 + 75.710 2.114 + 75.720 2.329 + 75.730 2.544 + 75.740 2.756 + 75.750 2.959 + 75.760 3.148 + 75.770 3.320 + 75.780 3.471 + 75.790 3.599 + 75.800 3.701 + 75.810 3.777 + 75.820 3.828 + 75.830 3.854 + 75.840 3.856 + 75.850 3.838 + 75.860 3.801 + 75.870 3.750 + 75.880 3.687 + 75.890 3.614 + 75.900 3.535 + 75.910 3.451 + 75.920 3.365 + 75.930 3.277 + 75.940 3.187 + 75.950 3.096 + 75.960 3.004 + 75.970 2.908 + 75.980 2.808 + 75.990 2.704 + 76.000 2.594 + 76.010 2.476 + 76.020 2.352 + 76.030 2.221 + 76.040 2.083 + 76.050 1.939 + 76.060 1.792 + 76.070 1.643 + 76.080 1.494 + 76.090 1.350 + 76.100 1.211 + 76.110 1.081 + 76.120 0.962 + 76.130 0.857 + 76.140 0.767 + 76.150 0.694 + 76.160 0.636 + 76.170 0.595 + 76.180 0.569 + 76.190 0.557 + 76.200 0.556 + 76.210 0.565 + 76.220 0.580 + 76.230 0.599 + 76.240 0.620 + 76.250 0.640 + 76.260 0.657 + 76.270 0.670 + 76.280 0.677 + 76.290 0.678 + 76.300 0.674 + 76.310 0.664 + 76.320 0.650 + 76.330 0.633 + 76.340 0.615 + 76.350 0.597 + 76.360 0.580 + 76.370 0.567 + 76.380 0.557 + 76.390 0.553 + 76.400 0.553 + 76.410 0.558 + 76.420 0.567 + 76.430 0.580 + 76.440 0.594 + 76.450 0.608 + 76.460 0.621 + 76.470 0.631 + 76.480 0.637 + 76.490 0.636 + 76.500 0.627 + 76.510 0.611 + 76.520 0.586 + 76.530 0.551 + 76.540 0.509 + 76.550 0.458 + 76.560 0.399 + 76.570 0.333 + 76.580 0.261 + 76.590 0.184 + 76.600 0.102 + 76.610 0.016 + 76.620 -0.074 + 76.630 -0.167 + 76.640 -0.266 + 76.650 -0.368 + 76.660 -0.476 + 76.670 -0.590 + 76.680 -0.710 + 76.690 -0.837 + 76.700 -0.970 + 76.710 -1.110 + 76.720 -1.257 + 76.730 -1.408 + 76.740 -1.563 + 76.750 -1.720 + 76.760 -1.877 + 76.770 -2.031 + 76.780 -2.179 + 76.790 -2.319 + 76.800 -2.448 + 76.810 -2.563 + 76.820 -2.664 + 76.830 -2.747 + 76.840 -2.812 + 76.850 -2.860 + 76.860 -2.891 + 76.870 -2.906 + 76.880 -2.907 + 76.890 -2.897 + 76.900 -2.879 + 76.910 -2.856 + 76.920 -2.834 + 76.930 -2.814 + 76.940 -2.802 + 76.950 -2.799 + 76.960 -2.810 + 76.970 -2.835 + 76.980 -2.877 + 76.990 -2.937 + 77.000 -3.013 + 77.010 -3.107 + 77.020 -3.215 + 77.030 -3.336 + 77.040 -3.468 + 77.050 -3.608 + 77.060 -3.753 + 77.070 -3.901 + 77.080 -4.048 + 77.090 -4.192 + 77.100 -4.332 + 77.110 -4.464 + 77.120 -4.588 + 77.130 -4.703 + 77.140 -4.809 + 77.150 -4.904 + 77.160 -4.988 + 77.170 -5.061 + 77.180 -5.124 + 77.190 -5.175 + 77.200 -5.215 + 77.210 -5.242 + 77.220 -5.255 + 77.230 -5.254 + 77.240 -5.237 + 77.250 -5.201 + 77.260 -5.146 + 77.270 -5.070 + 77.280 -4.970 + 77.290 -4.846 + 77.300 -4.696 + 77.310 -4.521 + 77.320 -4.319 + 77.330 -4.091 + 77.340 -3.839 + 77.350 -3.564 + 77.360 -3.268 + 77.370 -2.954 + 77.380 -2.624 + 77.390 -2.281 + 77.400 -1.928 + 77.410 -1.569 + 77.420 -1.206 + 77.430 -0.840 + 77.440 -0.474 + 77.450 -0.110 + 77.460 0.253 + 77.470 0.613 + 77.480 0.972 + 77.490 1.328 + 77.500 1.683 + 77.510 2.039 + 77.520 2.395 + 77.530 2.752 + 77.540 3.111 + 77.550 3.471 + 77.560 3.831 + 77.570 4.190 + 77.580 4.546 + 77.590 4.896 + 77.600 5.238 + 77.610 5.567 + 77.620 5.880 + 77.630 6.173 + 77.640 6.441 + 77.650 6.682 + 77.660 6.891 + 77.670 7.067 + 77.680 7.207 + 77.690 7.309 + 77.700 7.375 + 77.710 7.404 + 77.720 7.398 + 77.730 7.359 + 77.740 7.289 + 77.750 7.193 + 77.760 7.074 + 77.770 6.936 + 77.780 6.783 + 77.790 6.619 + 77.800 6.447 + 77.810 6.270 + 77.820 6.092 + 77.830 5.913 + 77.840 5.736 + 77.850 5.562 + 77.860 5.389 + 77.870 5.220 + 77.880 5.053 + 77.890 4.888 + 77.900 4.723 + 77.910 4.560 + 77.920 4.396 + 77.930 4.232 + 77.940 4.067 + 77.950 3.903 + 77.960 3.739 + 77.970 3.577 + 77.980 3.416 + 77.990 3.260 + 78.000 3.107 + 78.010 2.961 + 78.020 2.820 + 78.030 2.686 + 78.040 2.559 + 78.050 2.438 + 78.060 2.323 + 78.070 2.212 + 78.080 2.104 + 78.090 1.996 + 78.100 1.885 + 78.110 1.770 + 78.120 1.647 + 78.130 1.514 + 78.140 1.368 + 78.150 1.207 + 78.160 1.030 + 78.170 0.835 + 78.180 0.621 + 78.190 0.389 + 78.200 0.140 + 78.210 -0.126 + 78.220 -0.407 + 78.230 -0.701 + 78.240 -1.005 + 78.250 -1.316 + 78.260 -1.632 + 78.270 -1.948 + 78.280 -2.263 + 78.290 -2.573 + 78.300 -2.875 + 78.310 -3.167 + 78.320 -3.446 + 78.330 -3.711 + 78.340 -3.959 + 78.350 -4.189 + 78.360 -4.400 + 78.370 -4.589 + 78.380 -4.756 + 78.390 -4.900 + 78.400 -5.018 + 78.410 -5.111 + 78.420 -5.176 + 78.430 -5.212 + 78.440 -5.220 + 78.450 -5.197 + 78.460 -5.143 + 78.470 -5.057 + 78.480 -4.940 + 78.490 -4.792 + 78.500 -4.613 + 78.510 -4.406 + 78.520 -4.172 + 78.530 -3.913 + 78.540 -3.632 + 78.550 -3.334 + 78.560 -3.021 + 78.570 -2.699 + 78.580 -2.370 + 78.590 -2.040 + 78.600 -1.713 + 78.610 -1.394 + 78.620 -1.085 + 78.630 -0.791 + 78.640 -0.514 + 78.650 -0.257 + 78.660 -0.021 + 78.670 0.191 + 78.680 0.381 + 78.690 0.548 + 78.700 0.693 + 78.710 0.816 + 78.720 0.918 + 78.730 1.002 + 78.740 1.069 + 78.750 1.121 + 78.760 1.158 + 78.770 1.183 + 78.780 1.197 + 78.790 1.199 + 78.800 1.192 + 78.810 1.174 + 78.820 1.146 + 78.830 1.107 + 78.840 1.056 + 78.850 0.994 + 78.860 0.919 + 78.870 0.830 + 78.880 0.726 + 78.890 0.607 + 78.900 0.473 + 78.910 0.323 + 78.920 0.158 + 78.930 -0.021 + 78.940 -0.215 + 78.950 -0.420 + 78.960 -0.637 + 78.970 -0.862 + 78.980 -1.094 + 78.990 -1.331 + 79.000 -1.569 + 79.010 -1.806 + 79.020 -2.040 + 79.030 -2.268 + 79.040 -2.487 + 79.050 -2.695 + 79.060 -2.891 + 79.070 -3.071 + 79.080 -3.235 + 79.090 -3.381 + 79.100 -3.509 + 79.110 -3.617 + 79.120 -3.705 + 79.130 -3.773 + 79.140 -3.822 + 79.150 -3.852 + 79.160 -3.863 + 79.170 -3.857 + 79.180 -3.835 + 79.190 -3.798 + 79.200 -3.747 + 79.210 -3.683 + 79.220 -3.608 + 79.230 -3.523 + 79.240 -3.429 + 79.250 -3.327 + 79.260 -3.217 + 79.270 -3.100 + 79.280 -2.977 + 79.290 -2.847 + 79.300 -2.712 + 79.310 -2.571 + 79.320 -2.425 + 79.330 -2.273 + 79.340 -2.116 + 79.350 -1.954 + 79.360 -1.788 + 79.370 -1.619 + 79.380 -1.447 + 79.390 -1.274 + 79.400 -1.100 + 79.410 -0.928 + 79.420 -0.758 + 79.430 -0.594 + 79.440 -0.435 + 79.450 -0.285 + 79.460 -0.144 + 79.470 -0.013 + 79.480 0.106 + 79.490 0.213 + 79.500 0.308 + 79.510 0.391 + 79.520 0.464 + 79.530 0.527 + 79.540 0.583 + 79.550 0.634 + 79.560 0.681 + 79.570 0.728 + 79.580 0.778 + 79.590 0.833 + 79.600 0.895 + 79.610 0.968 + 79.620 1.052 + 79.630 1.150 + 79.640 1.263 + 79.650 1.391 + 79.660 1.533 + 79.670 1.690 + 79.680 1.861 + 79.690 2.043 + 79.700 2.234 + 79.710 2.434 + 79.720 2.639 + 79.730 2.847 + 79.740 3.057 + 79.750 3.265 + 79.760 3.470 + 79.770 3.671 + 79.780 3.867 + 79.790 4.056 + 79.800 4.238 + 79.810 4.413 + 79.820 4.581 + 79.830 4.741 + 79.840 4.895 + 79.850 5.042 + 79.860 5.183 + 79.870 5.317 + 79.880 5.445 + 79.890 5.566 + 79.900 5.679 + 79.910 5.784 + 79.920 5.880 + 79.930 5.966 + 79.940 6.041 + 79.950 6.102 + 79.960 6.151 + 79.970 6.184 + 79.980 6.203 + 79.990 6.205 + 80.000 6.191 + 80.010 6.160 + 80.020 6.114 + 80.030 6.051 + 80.040 5.974 + 80.050 5.882 + 80.060 5.777 + 80.070 5.659 + 80.080 5.530 + 80.090 5.388 + 80.100 5.235 + 80.110 5.071 + 80.120 4.894 + 80.130 4.706 + 80.140 4.503 + 80.150 4.287 + 80.160 4.055 + 80.170 3.807 + 80.180 3.542 + 80.190 3.259 + 80.200 2.958 + 80.210 2.639 + 80.220 2.304 + 80.230 1.954 + 80.240 1.590 + 80.250 1.217 + 80.260 0.836 + 80.270 0.453 + 80.280 0.070 + 80.290 -0.308 + 80.300 -0.676 + 80.310 -1.030 + 80.320 -1.367 + 80.330 -1.683 + 80.340 -1.975 + 80.350 -2.243 + 80.360 -2.484 + 80.370 -2.699 + 80.380 -2.889 + 80.390 -3.055 + 80.400 -3.199 + 80.410 -3.326 + 80.420 -3.436 + 80.430 -3.536 + 80.440 -3.627 + 80.450 -3.714 + 80.460 -3.800 + 80.470 -3.887 + 80.480 -3.978 + 80.490 -4.074 + 80.500 -4.175 + 80.510 -4.282 + 80.520 -4.393 + 80.530 -4.507 + 80.540 -4.623 + 80.550 -4.738 + 80.560 -4.848 + 80.570 -4.953 + 80.580 -5.049 + 80.590 -5.133 + 80.600 -5.206 + 80.610 -5.264 + 80.620 -5.307 + 80.630 -5.334 + 80.640 -5.347 + 80.650 -5.346 + 80.660 -5.332 + 80.670 -5.306 + 80.680 -5.271 + 80.690 -5.227 + 80.700 -5.177 + 80.710 -5.122 + 80.720 -5.063 + 80.730 -5.001 + 80.740 -4.936 + 80.750 -4.869 + 80.760 -4.799 + 80.770 -4.725 + 80.780 -4.646 + 80.790 -4.562 + 80.800 -4.470 + 80.810 -4.371 + 80.820 -4.262 + 80.830 -4.143 + 80.840 -4.015 + 80.850 -3.876 + 80.860 -3.727 + 80.870 -3.569 + 80.880 -3.404 + 80.890 -3.232 + 80.900 -3.056 + 80.910 -2.876 + 80.920 -2.696 + 80.930 -2.516 + 80.940 -2.337 + 80.950 -2.162 + 80.960 -1.990 + 80.970 -1.822 + 80.980 -1.658 + 80.990 -1.498 + 81.000 -1.339 + 81.010 -1.182 + 81.020 -1.026 + 81.030 -0.868 + 81.040 -0.707 + 81.050 -0.543 + 81.060 -0.374 + 81.070 -0.201 + 81.080 -0.023 + 81.090 0.159 + 81.100 0.345 + 81.110 0.532 + 81.120 0.720 + 81.130 0.905 + 81.140 1.086 + 81.150 1.259 + 81.160 1.424 + 81.170 1.577 + 81.180 1.716 + 81.190 1.841 + 81.200 1.949 + 81.210 2.042 + 81.220 2.117 + 81.230 2.177 + 81.240 2.222 + 81.250 2.253 + 81.260 2.273 + 81.270 2.282 + 81.280 2.284 + 81.290 2.279 + 81.300 2.270 + 81.310 2.258 + 81.320 2.244 + 81.330 2.230 + 81.340 2.214 + 81.350 2.198 + 81.360 2.182 + 81.370 2.164 + 81.380 2.143 + 81.390 2.120 + 81.400 2.092 + 81.410 2.060 + 81.420 2.023 + 81.430 1.980 + 81.440 1.932 + 81.450 1.878 + 81.460 1.821 + 81.470 1.760 + 81.480 1.698 + 81.490 1.636 + 81.500 1.576 + 81.510 1.519 + 81.520 1.468 + 81.530 1.423 + 81.540 1.386 + 81.550 1.358 + 81.560 1.339 + 81.570 1.329 + 81.580 1.327 + 81.590 1.332 + 81.600 1.344 + 81.610 1.360 + 81.620 1.378 + 81.630 1.397 + 81.640 1.415 + 81.650 1.430 + 81.660 1.440 + 81.670 1.444 + 81.680 1.442 + 81.690 1.433 + 81.700 1.417 + 81.710 1.394 + 81.720 1.366 + 81.730 1.334 + 81.740 1.298 + 81.750 1.261 + 81.760 1.224 + 81.770 1.189 + 81.780 1.156 + 81.790 1.128 + 81.800 1.104 + 81.810 1.086 + 81.820 1.074 + 81.830 1.068 + 81.840 1.066 + 81.850 1.070 + 81.860 1.078 + 81.870 1.089 + 81.880 1.103 + 81.890 1.118 + 81.900 1.135 + 81.910 1.151 + 81.920 1.169 + 81.930 1.186 + 81.940 1.204 + 81.950 1.222 + 81.960 1.241 + 81.970 1.262 + 81.980 1.285 + 81.990 1.312 + 82.000 1.341 + 82.010 1.374 + 82.020 1.411 + 82.030 1.452 + 82.040 1.496 + 82.050 1.543 + 82.060 1.592 + 82.070 1.642 + 82.080 1.692 + 82.090 1.740 + 82.100 1.785 + 82.110 1.827 + 82.120 1.863 + 82.130 1.893 + 82.140 1.917 + 82.150 1.933 + 82.160 1.941 + 82.170 1.942 + 82.180 1.935 + 82.190 1.920 + 82.200 1.899 + 82.210 1.870 + 82.220 1.835 + 82.230 1.793 + 82.240 1.745 + 82.250 1.690 + 82.260 1.628 + 82.270 1.559 + 82.280 1.481 + 82.290 1.394 + 82.300 1.297 + 82.310 1.189 + 82.320 1.069 + 82.330 0.936 + 82.340 0.789 + 82.350 0.629 + 82.360 0.455 + 82.370 0.268 + 82.380 0.069 + 82.390 -0.142 + 82.400 -0.361 + 82.410 -0.588 + 82.420 -0.819 + 82.430 -1.053 + 82.440 -1.287 + 82.450 -1.518 + 82.460 -1.745 + 82.470 -1.964 + 82.480 -2.173 + 82.490 -2.373 + 82.500 -2.560 + 82.510 -2.736 + 82.520 -2.898 + 82.530 -3.048 + 82.540 -3.186 + 82.550 -3.312 + 82.560 -3.427 + 82.570 -3.533 + 82.580 -3.628 + 82.590 -3.715 + 82.600 -3.793 + 82.610 -3.862 + 82.620 -3.922 + 82.630 -3.973 + 82.640 -4.012 + 82.650 -4.040 + 82.660 -4.053 + 82.670 -4.052 + 82.680 -4.033 + 82.690 -3.996 + 82.700 -3.938 + 82.710 -3.860 + 82.720 -3.759 + 82.730 -3.636 + 82.740 -3.492 + 82.750 -3.326 + 82.760 -3.140 + 82.770 -2.936 + 82.780 -2.717 + 82.790 -2.484 + 82.800 -2.241 + 82.810 -1.992 + 82.820 -1.738 + 82.830 -1.484 + 82.840 -1.233 + 82.850 -0.986 + 82.860 -0.748 + 82.870 -0.520 + 82.880 -0.303 + 82.890 -0.100 + 82.900 0.088 + 82.910 0.261 + 82.920 0.418 + 82.930 0.559 + 82.940 0.684 + 82.950 0.792 + 82.960 0.883 + 82.970 0.957 + 82.980 1.014 + 82.990 1.054 + 83.000 1.075 + 83.010 1.079 + 83.020 1.063 + 83.030 1.029 + 83.040 0.974 + 83.050 0.900 + 83.060 0.806 + 83.070 0.692 + 83.080 0.559 + 83.090 0.407 + 83.100 0.238 + 83.110 0.053 + 83.120 -0.146 + 83.130 -0.356 + 83.140 -0.576 + 83.150 -0.802 + 83.160 -1.032 + 83.170 -1.261 + 83.180 -1.489 + 83.190 -1.711 + 83.200 -1.924 + 83.210 -2.126 + 83.220 -2.314 + 83.230 -2.485 + 83.240 -2.638 + 83.250 -2.769 + 83.260 -2.879 + 83.270 -2.964 + 83.280 -3.023 + 83.290 -3.055 + 83.300 -3.060 + 83.310 -3.035 + 83.320 -2.980 + 83.330 -2.895 + 83.340 -2.779 + 83.350 -2.631 + 83.360 -2.453 + 83.370 -2.244 + 83.380 -2.006 + 83.390 -1.739 + 83.400 -1.446 + 83.410 -1.129 + 83.420 -0.790 + 83.430 -0.432 + 83.440 -0.060 + 83.450 0.322 + 83.460 0.710 + 83.470 1.100 + 83.480 1.485 + 83.490 1.862 + 83.500 2.225 + 83.510 2.570 + 83.520 2.892 + 83.530 3.188 + 83.540 3.454 + 83.550 3.688 + 83.560 3.887 + 83.570 4.051 + 83.580 4.178 + 83.590 4.270 + 83.600 4.327 + 83.610 4.349 + 83.620 4.340 + 83.630 4.301 + 83.640 4.234 + 83.650 4.143 + 83.660 4.030 + 83.670 3.898 + 83.680 3.749 + 83.690 3.587 + 83.700 3.413 + 83.710 3.230 + 83.720 3.039 + 83.730 2.843 + 83.740 2.644 + 83.750 2.442 + 83.760 2.240 + 83.770 2.040 + 83.780 1.842 + 83.790 1.648 + 83.800 1.461 + 83.810 1.282 + 83.820 1.112 + 83.830 0.954 + 83.840 0.808 + 83.850 0.678 + 83.860 0.564 + 83.870 0.467 + 83.880 0.388 + 83.890 0.329 + 83.900 0.288 + 83.910 0.267 + 83.920 0.264 + 83.930 0.278 + 83.940 0.309 + 83.950 0.353 + 83.960 0.410 + 83.970 0.476 + 83.980 0.550 + 83.990 0.629 + 84.000 0.710 + 84.010 0.792 + 84.020 0.872 + 84.030 0.949 + 84.040 1.020 + 84.050 1.086 + 84.060 1.144 + 84.070 1.195 + 84.080 1.239 + 84.090 1.275 + 84.100 1.305 + 84.110 1.328 + 84.120 1.346 + 84.130 1.360 + 84.140 1.370 + 84.150 1.377 + 84.160 1.382 + 84.170 1.385 + 84.180 1.386 + 84.190 1.387 + 84.200 1.385 + 84.210 1.382 + 84.220 1.377 + 84.230 1.368 + 84.240 1.356 + 84.250 1.339 + 84.260 1.317 + 84.270 1.289 + 84.280 1.253 + 84.290 1.209 + 84.300 1.156 + 84.310 1.093 + 84.320 1.020 + 84.330 0.936 + 84.340 0.842 + 84.350 0.737 + 84.360 0.620 + 84.370 0.493 + 84.380 0.356 + 84.390 0.208 + 84.400 0.052 + 84.410 -0.113 + 84.420 -0.284 + 84.430 -0.462 + 84.440 -0.644 + 84.450 -0.829 + 84.460 -1.016 + 84.470 -1.203 + 84.480 -1.389 + 84.490 -1.571 + 84.500 -1.749 + 84.510 -1.920 + 84.520 -2.084 + 84.530 -2.240 + 84.540 -2.386 + 84.550 -2.522 + 84.560 -2.647 + 84.570 -2.761 + 84.580 -2.865 + 84.590 -2.959 + 84.600 -3.043 + 84.610 -3.117 + 84.620 -3.183 + 84.630 -3.242 + 84.640 -3.293 + 84.650 -3.338 + 84.660 -3.378 + 84.670 -3.411 + 84.680 -3.440 + 84.690 -3.462 + 84.700 -3.479 + 84.710 -3.489 + 84.720 -3.492 + 84.730 -3.485 + 84.740 -3.469 + 84.750 -3.443 + 84.760 -3.403 + 84.770 -3.351 + 84.780 -3.285 + 84.790 -3.204 + 84.800 -3.109 + 84.810 -2.998 + 84.820 -2.873 + 84.830 -2.735 + 84.840 -2.583 + 84.850 -2.421 + 84.860 -2.249 + 84.870 -2.069 + 84.880 -1.882 + 84.890 -1.692 + 84.900 -1.499 + 84.910 -1.305 + 84.920 -1.112 + 84.930 -0.921 + 84.940 -0.732 + 84.950 -0.546 + 84.960 -0.364 + 84.970 -0.185 + 84.980 -0.009 + 84.990 0.163 + 85.000 0.333 + 85.010 0.500 + 85.020 0.665 + 85.030 0.828 + 85.040 0.987 + 85.050 1.144 + 85.060 1.296 + 85.070 1.443 + 85.080 1.584 + 85.090 1.717 + 85.100 1.840 + 85.110 1.951 + 85.120 2.050 + 85.130 2.134 + 85.140 2.203 + 85.150 2.255 + 85.160 2.291 + 85.170 2.310 + 85.180 2.313 + 85.190 2.301 + 85.200 2.275 + 85.210 2.238 + 85.220 2.191 + 85.230 2.136 + 85.240 2.077 + 85.250 2.014 + 85.260 1.952 + 85.270 1.890 + 85.280 1.831 + 85.290 1.776 + 85.300 1.725 + 85.310 1.678 + 85.320 1.633 + 85.330 1.591 + 85.340 1.549 + 85.350 1.506 + 85.360 1.459 + 85.370 1.407 + 85.380 1.346 + 85.390 1.276 + 85.400 1.194 + 85.410 1.099 + 85.420 0.990 + 85.430 0.868 + 85.440 0.731 + 85.450 0.582 + 85.460 0.420 + 85.470 0.248 + 85.480 0.068 + 85.490 -0.118 + 85.500 -0.308 + 85.510 -0.499 + 85.520 -0.689 + 85.530 -0.876 + 85.540 -1.058 + 85.550 -1.233 + 85.560 -1.399 + 85.570 -1.557 + 85.580 -1.704 + 85.590 -1.840 + 85.600 -1.965 + 85.610 -2.079 + 85.620 -2.182 + 85.630 -2.272 + 85.640 -2.351 + 85.650 -2.418 + 85.660 -2.472 + 85.670 -2.513 + 85.680 -2.541 + 85.690 -2.554 + 85.700 -2.552 + 85.710 -2.534 + 85.720 -2.500 + 85.730 -2.450 + 85.740 -2.383 + 85.750 -2.299 + 85.760 -2.199 + 85.770 -2.084 + 85.780 -1.955 + 85.790 -1.814 + 85.800 -1.662 + 85.810 -1.501 + 85.820 -1.335 + 85.830 -1.164 + 85.840 -0.992 + 85.850 -0.821 + 85.860 -0.653 + 85.870 -0.489 + 85.880 -0.331 + 85.890 -0.180 + 85.900 -0.036 + 85.910 0.100 + 85.920 0.229 + 85.930 0.351 + 85.940 0.467 + 85.950 0.578 + 85.960 0.683 + 85.970 0.786 + 85.980 0.885 + 85.990 0.981 + 86.000 1.074 + 86.010 1.165 + 86.020 1.252 + 86.030 1.336 + 86.040 1.414 + 86.050 1.486 + 86.060 1.551 + 86.070 1.607 + 86.080 1.653 + 86.090 1.689 + 86.100 1.714 + 86.110 1.729 + 86.120 1.733 + 86.130 1.729 + 86.140 1.717 + 86.150 1.700 + 86.160 1.681 + 86.170 1.661 + 86.180 1.645 + 86.190 1.634 + 86.200 1.632 + 86.210 1.641 + 86.220 1.663 + 86.230 1.701 + 86.240 1.753 + 86.250 1.822 + 86.260 1.906 + 86.270 2.003 + 86.280 2.113 + 86.290 2.232 + 86.300 2.358 + 86.310 2.487 + 86.320 2.615 + 86.330 2.740 + 86.340 2.858 + 86.350 2.966 + 86.360 3.062 + 86.370 3.143 + 86.380 3.208 + 86.390 3.257 + 86.400 3.289 + 86.410 3.304 + 86.420 3.304 + 86.430 3.289 + 86.440 3.261 + 86.450 3.222 + 86.460 3.173 + 86.470 3.115 + 86.480 3.051 + 86.490 2.980 + 86.500 2.903 + 86.510 2.820 + 86.520 2.732 + 86.530 2.637 + 86.540 2.534 + 86.550 2.423 + 86.560 2.302 + 86.570 2.170 + 86.580 2.026 + 86.590 1.871 + 86.600 1.702 + 86.610 1.521 + 86.620 1.328 + 86.630 1.124 + 86.640 0.910 + 86.650 0.689 + 86.660 0.462 + 86.670 0.231 + 86.680 0.000 + 86.690 -0.231 + 86.700 -0.458 + 86.710 -0.680 + 86.720 -0.896 + 86.730 -1.104 + 86.740 -1.304 + 86.750 -1.496 + 86.760 -1.680 + 86.770 -1.857 + 86.780 -2.028 + 86.790 -2.194 + 86.800 -2.357 + 86.810 -2.517 + 86.820 -2.676 + 86.830 -2.835 + 86.840 -2.993 + 86.850 -3.151 + 86.860 -3.308 + 86.870 -3.463 + 86.880 -3.614 + 86.890 -3.760 + 86.900 -3.897 + 86.910 -4.025 + 86.920 -4.139 + 86.930 -4.238 + 86.940 -4.320 + 86.950 -4.383 + 86.960 -4.425 + 86.970 -4.445 + 86.980 -4.443 + 86.990 -4.421 + 87.000 -4.377 + 87.010 -4.316 + 87.020 -4.237 + 87.030 -4.144 + 87.040 -4.040 + 87.050 -3.927 + 87.060 -3.808 + 87.070 -3.685 + 87.080 -3.562 + 87.090 -3.441 + 87.100 -3.322 + 87.110 -3.207 + 87.120 -3.098 + 87.130 -2.993 + 87.140 -2.893 + 87.150 -2.797 + 87.160 -2.704 + 87.170 -2.614 + 87.180 -2.525 + 87.190 -2.436 + 87.200 -2.346 + 87.210 -2.254 + 87.220 -2.160 + 87.230 -2.064 + 87.240 -1.965 + 87.250 -1.863 + 87.260 -1.759 + 87.270 -1.654 + 87.280 -1.548 + 87.290 -1.443 + 87.300 -1.337 + 87.310 -1.232 + 87.320 -1.128 + 87.330 -1.025 + 87.340 -0.922 + 87.350 -0.818 + 87.360 -0.712 + 87.370 -0.602 + 87.380 -0.488 + 87.390 -0.367 + 87.400 -0.237 + 87.410 -0.097 + 87.420 0.054 + 87.430 0.218 + 87.440 0.395 + 87.450 0.586 + 87.460 0.790 + 87.470 1.005 + 87.480 1.232 + 87.490 1.466 + 87.500 1.707 + 87.510 1.951 + 87.520 2.195 + 87.530 2.436 + 87.540 2.670 + 87.550 2.895 + 87.560 3.106 + 87.570 3.301 + 87.580 3.478 + 87.590 3.635 + 87.600 3.769 + 87.610 3.881 + 87.620 3.968 + 87.630 4.031 + 87.640 4.070 + 87.650 4.085 + 87.660 4.077 + 87.670 4.045 + 87.680 3.992 + 87.690 3.918 + 87.700 3.823 + 87.710 3.708 + 87.720 3.574 + 87.730 3.421 + 87.740 3.250 + 87.750 3.061 + 87.760 2.853 + 87.770 2.628 + 87.780 2.387 + 87.790 2.128 + 87.800 1.855 + 87.810 1.567 + 87.820 1.266 + 87.830 0.955 + 87.840 0.635 + 87.850 0.309 + 87.860 -0.021 + 87.870 -0.351 + 87.880 -0.678 + 87.890 -0.999 + 87.900 -1.311 + 87.910 -1.609 + 87.920 -1.891 + 87.930 -2.154 + 87.940 -2.394 + 87.950 -2.610 + 87.960 -2.800 + 87.970 -2.961 + 87.980 -3.093 + 87.990 -3.195 + 88.000 -3.266 + 88.010 -3.306 + 88.020 -3.315 + 88.030 -3.295 + 88.040 -3.246 + 88.050 -3.169 + 88.060 -3.066 + 88.070 -2.939 + 88.080 -2.789 + 88.090 -2.617 + 88.100 -2.427 + 88.110 -2.219 + 88.120 -1.996 + 88.130 -1.760 + 88.140 -1.512 + 88.150 -1.255 + 88.160 -0.990 + 88.170 -0.721 + 88.180 -0.447 + 88.190 -0.172 + 88.200 0.104 + 88.210 0.378 + 88.220 0.649 + 88.230 0.916 + 88.240 1.177 + 88.250 1.431 + 88.260 1.677 + 88.270 1.915 + 88.280 2.143 + 88.290 2.360 + 88.300 2.567 + 88.310 2.762 + 88.320 2.945 + 88.330 3.116 + 88.340 3.274 + 88.350 3.419 + 88.360 3.550 + 88.370 3.667 + 88.380 3.770 + 88.390 3.859 + 88.400 3.932 + 88.410 3.991 + 88.420 4.036 + 88.430 4.065 + 88.440 4.080 + 88.450 4.080 + 88.460 4.067 + 88.470 4.041 + 88.480 4.002 + 88.490 3.952 + 88.500 3.892 + 88.510 3.822 + 88.520 3.744 + 88.530 3.659 + 88.540 3.568 + 88.550 3.472 + 88.560 3.372 + 88.570 3.268 + 88.580 3.161 + 88.590 3.051 + 88.600 2.938 + 88.610 2.821 + 88.620 2.701 + 88.630 2.576 + 88.640 2.446 + 88.650 2.309 + 88.660 2.166 + 88.670 2.015 + 88.680 1.856 + 88.690 1.689 + 88.700 1.513 + 88.710 1.328 + 88.720 1.135 + 88.730 0.936 + 88.740 0.730 + 88.750 0.520 + 88.760 0.307 + 88.770 0.092 + 88.780 -0.122 + 88.790 -0.333 + 88.800 -0.541 + 88.810 -0.742 + 88.820 -0.937 + 88.830 -1.124 + 88.840 -1.301 + 88.850 -1.469 + 88.860 -1.629 + 88.870 -1.779 + 88.880 -1.920 + 88.890 -2.054 + 88.900 -2.181 + 88.910 -2.303 + 88.920 -2.420 + 88.930 -2.534 + 88.940 -2.645 + 88.950 -2.755 + 88.960 -2.863 + 88.970 -2.970 + 88.980 -3.076 + 88.990 -3.180 + 89.000 -3.283 + 89.010 -3.382 + 89.020 -3.477 + 89.030 -3.568 + 89.040 -3.652 + 89.050 -3.730 + 89.060 -3.799 + 89.070 -3.860 + 89.080 -3.911 + 89.090 -3.953 + 89.100 -3.986 + 89.110 -4.009 + 89.120 -4.023 + 89.130 -4.030 + 89.140 -4.029 + 89.150 -4.022 + 89.160 -4.009 + 89.170 -3.992 + 89.180 -3.970 + 89.190 -3.945 + 89.200 -3.916 + 89.210 -3.883 + 89.220 -3.846 + 89.230 -3.805 + 89.240 -3.759 + 89.250 -3.706 + 89.260 -3.645 + 89.270 -3.577 + 89.280 -3.499 + 89.290 -3.411 + 89.300 -3.313 + 89.310 -3.204 + 89.320 -3.084 + 89.330 -2.955 + 89.340 -2.817 + 89.350 -2.671 + 89.360 -2.520 + 89.370 -2.365 + 89.380 -2.210 + 89.390 -2.055 + 89.400 -1.904 + 89.410 -1.760 + 89.420 -1.623 + 89.430 -1.497 + 89.440 -1.384 + 89.450 -1.283 + 89.460 -1.195 + 89.470 -1.122 + 89.480 -1.062 + 89.490 -1.015 + 89.500 -0.980 + 89.510 -0.955 + 89.520 -0.937 + 89.530 -0.926 + 89.540 -0.919 + 89.550 -0.914 + 89.560 -0.909 + 89.570 -0.903 + 89.580 -0.892 + 89.590 -0.877 + 89.600 -0.856 + 89.610 -0.829 + 89.620 -0.794 + 89.630 -0.752 + 89.640 -0.703 + 89.650 -0.646 + 89.660 -0.581 + 89.670 -0.510 + 89.680 -0.431 + 89.690 -0.344 + 89.700 -0.250 + 89.710 -0.148 + 89.720 -0.037 + 89.730 0.083 + 89.740 0.212 + 89.750 0.352 + 89.760 0.503 + 89.770 0.665 + 89.780 0.840 + 89.790 1.026 + 89.800 1.225 + 89.810 1.436 + 89.820 1.657 + 89.830 1.888 + 89.840 2.126 + 89.850 2.371 + 89.860 2.619 + 89.870 2.869 + 89.880 3.116 + 89.890 3.360 + 89.900 3.595 + 89.910 3.821 + 89.920 4.033 + 89.930 4.231 + 89.940 4.410 + 89.950 4.570 + 89.960 4.709 + 89.970 4.826 + 89.980 4.921 + 89.990 4.992 + 90.000 5.041 + 90.010 5.067 + 90.020 5.071 + 90.030 5.055 + 90.040 5.018 + 90.050 4.963 + 90.060 4.890 + 90.070 4.801 + 90.080 4.697 + 90.090 4.579 + 90.100 4.448 + 90.110 4.306 + 90.120 4.154 + 90.130 3.993 + 90.140 3.823 + 90.150 3.647 + 90.160 3.465 + 90.170 3.279 + 90.180 3.089 + 90.190 2.897 + 90.200 2.705 + 90.210 2.514 + 90.220 2.325 + 90.230 2.140 + 90.240 1.960 + 90.250 1.786 + 90.260 1.619 + 90.270 1.461 + 90.280 1.312 + 90.290 1.173 + 90.300 1.045 + 90.310 0.927 + 90.320 0.819 + 90.330 0.723 + 90.340 0.637 + 90.350 0.560 + 90.360 0.494 + 90.370 0.436 + 90.380 0.387 + 90.390 0.346 + 90.400 0.312 + 90.410 0.286 + 90.420 0.266 + 90.430 0.252 + 90.440 0.245 + 90.450 0.243 + 90.460 0.246 + 90.470 0.255 + 90.480 0.268 + 90.490 0.286 + 90.500 0.307 + 90.510 0.331 + 90.520 0.357 + 90.530 0.385 + 90.540 0.412 + 90.550 0.438 + 90.560 0.461 + 90.570 0.480 + 90.580 0.494 + 90.590 0.502 + 90.600 0.502 + 90.610 0.493 + 90.620 0.475 + 90.630 0.448 + 90.640 0.412 + 90.650 0.366 + 90.660 0.312 + 90.670 0.250 + 90.680 0.181 + 90.690 0.108 + 90.700 0.030 + 90.710 -0.049 + 90.720 -0.128 + 90.730 -0.207 + 90.740 -0.283 + 90.750 -0.355 + 90.760 -0.423 + 90.770 -0.486 + 90.780 -0.544 + 90.790 -0.598 + 90.800 -0.647 + 90.810 -0.694 + 90.820 -0.739 + 90.830 -0.784 + 90.840 -0.831 + 90.850 -0.881 + 90.860 -0.937 + 90.870 -1.000 + 90.880 -1.071 + 90.890 -1.153 + 90.900 -1.246 + 90.910 -1.350 + 90.920 -1.467 + 90.930 -1.596 + 90.940 -1.737 + 90.950 -1.889 + 90.960 -2.051 + 90.970 -2.221 + 90.980 -2.400 + 90.990 -2.584 + 91.000 -2.772 + 91.010 -2.964 + 91.020 -3.157 + 91.030 -3.350 + 91.040 -3.541 + 91.050 -3.731 + 91.060 -3.917 + 91.070 -4.100 + 91.080 -4.277 + 91.090 -4.450 + 91.100 -4.616 + 91.110 -4.776 + 91.120 -4.929 + 91.130 -5.074 + 91.140 -5.211 + 91.150 -5.337 + 91.160 -5.451 + 91.170 -5.553 + 91.180 -5.641 + 91.190 -5.712 + 91.200 -5.765 + 91.210 -5.798 + 91.220 -5.809 + 91.230 -5.797 + 91.240 -5.759 + 91.250 -5.696 + 91.260 -5.605 + 91.270 -5.486 + 91.280 -5.340 + 91.290 -5.166 + 91.300 -4.966 + 91.310 -4.741 + 91.320 -4.493 + 91.330 -4.223 + 91.340 -3.935 + 91.350 -3.632 + 91.360 -3.316 + 91.370 -2.990 + 91.380 -2.659 + 91.390 -2.324 + 91.400 -1.988 + 91.410 -1.655 + 91.420 -1.327 + 91.430 -1.005 + 91.440 -0.692 + 91.450 -0.389 + 91.460 -0.097 + 91.470 0.185 + 91.480 0.455 + 91.490 0.714 + 91.500 0.961 + 91.510 1.199 + 91.520 1.426 + 91.530 1.644 + 91.540 1.854 + 91.550 2.056 + 91.560 2.250 + 91.570 2.438 + 91.580 2.618 + 91.590 2.792 + 91.600 2.959 + 91.610 3.119 + 91.620 3.271 + 91.630 3.415 + 91.640 3.549 + 91.650 3.674 + 91.660 3.789 + 91.670 3.892 + 91.680 3.983 + 91.690 4.061 + 91.700 4.125 + 91.710 4.176 + 91.720 4.213 + 91.730 4.235 + 91.740 4.242 + 91.750 4.235 + 91.760 4.213 + 91.770 4.177 + 91.780 4.128 + 91.790 4.065 + 91.800 3.989 + 91.810 3.901 + 91.820 3.801 + 91.830 3.689 + 91.840 3.567 + 91.850 3.435 + 91.860 3.293 + 91.870 3.141 + 91.880 2.981 + 91.890 2.813 + 91.900 2.637 + 91.910 2.453 + 91.920 2.264 + 91.930 2.068 + 91.940 1.868 + 91.950 1.663 + 91.960 1.456 + 91.970 1.246 + 91.980 1.035 + 91.990 0.825 + 92.000 0.616 + 92.010 0.412 + 92.020 0.212 + 92.030 0.020 + 92.040 -0.163 + 92.050 -0.336 + 92.060 -0.496 + 92.070 -0.641 + 92.080 -0.770 + 92.090 -0.881 + 92.100 -0.971 + 92.110 -1.041 + 92.120 -1.088 + 92.130 -1.111 + 92.140 -1.110 + 92.150 -1.084 + 92.160 -1.032 + 92.170 -0.956 + 92.180 -0.855 + 92.190 -0.731 + 92.200 -0.584 + 92.210 -0.415 + 92.220 -0.228 + 92.230 -0.022 + 92.240 0.199 + 92.250 0.432 + 92.260 0.677 + 92.270 0.928 + 92.280 1.185 + 92.290 1.444 + 92.300 1.702 + 92.310 1.957 + 92.320 2.206 + 92.330 2.446 + 92.340 2.676 + 92.350 2.892 + 92.360 3.094 + 92.370 3.279 + 92.380 3.445 + 92.390 3.592 + 92.400 3.719 + 92.410 3.823 + 92.420 3.906 + 92.430 3.965 + 92.440 4.002 + 92.450 4.016 + 92.460 4.006 + 92.470 3.974 + 92.480 3.920 + 92.490 3.843 + 92.500 3.746 + 92.510 3.628 + 92.520 3.491 + 92.530 3.336 + 92.540 3.164 + 92.550 2.977 + 92.560 2.776 + 92.570 2.563 + 92.580 2.339 + 92.590 2.107 + 92.600 1.868 + 92.610 1.624 + 92.620 1.377 + 92.630 1.130 + 92.640 0.883 + 92.650 0.639 + 92.660 0.399 + 92.670 0.166 + 92.680 -0.060 + 92.690 -0.278 + 92.700 -0.486 + 92.710 -0.685 + 92.720 -0.872 + 92.730 -1.049 + 92.740 -1.214 + 92.750 -1.368 + 92.760 -1.512 + 92.770 -1.645 + 92.780 -1.768 + 92.790 -1.882 + 92.800 -1.988 + 92.810 -2.085 + 92.820 -2.175 + 92.830 -2.259 + 92.840 -2.336 + 92.850 -2.408 + 92.860 -2.474 + 92.870 -2.535 + 92.880 -2.592 + 92.890 -2.644 + 92.900 -2.692 + 92.910 -2.735 + 92.920 -2.775 + 92.930 -2.810 + 92.940 -2.842 + 92.950 -2.871 + 92.960 -2.897 + 92.970 -2.922 + 92.980 -2.944 + 92.990 -2.966 + 93.000 -2.988 + 93.010 -3.012 + 93.020 -3.037 + 93.030 -3.066 + 93.040 -3.100 + 93.050 -3.138 + 93.060 -3.183 + 93.070 -3.235 + 93.080 -3.295 + 93.090 -3.362 + 93.100 -3.437 + 93.110 -3.520 + 93.120 -3.611 + 93.130 -3.708 + 93.140 -3.811 + 93.150 -3.919 + 93.160 -4.031 + 93.170 -4.145 + 93.180 -4.260 + 93.190 -4.374 + 93.200 -4.486 + 93.210 -4.594 + 93.220 -4.698 + 93.230 -4.795 + 93.240 -4.884 + 93.250 -4.966 + 93.260 -5.038 + 93.270 -5.100 + 93.280 -5.152 + 93.290 -5.194 + 93.300 -5.224 + 93.310 -5.243 + 93.320 -5.251 + 93.330 -5.246 + 93.340 -5.229 + 93.350 -5.199 + 93.360 -5.154 + 93.370 -5.096 + 93.380 -5.021 + 93.390 -4.930 + 93.400 -4.821 + 93.410 -4.692 + 93.420 -4.544 + 93.430 -4.373 + 93.440 -4.179 + 93.450 -3.963 + 93.460 -3.722 + 93.470 -3.456 + 93.480 -3.166 + 93.490 -2.853 + 93.500 -2.517 + 93.510 -2.160 + 93.520 -1.783 + 93.530 -1.389 + 93.540 -0.981 + 93.550 -0.562 + 93.560 -0.135 + 93.570 0.298 + 93.580 0.732 + 93.590 1.164 + 93.600 1.591 + 93.610 2.011 + 93.620 2.420 + 93.630 2.815 + 93.640 3.196 + 93.650 3.561 + 93.660 3.909 + 93.670 4.239 + 93.680 4.550 + 93.690 4.843 + 93.700 5.118 + 93.710 5.375 + 93.720 5.614 + 93.730 5.837 + 93.740 6.042 + 93.750 6.232 + 93.760 6.405 + 93.770 6.561 + 93.780 6.700 + 93.790 6.821 + 93.800 6.924 + 93.810 7.008 + 93.820 7.071 + 93.830 7.113 + 93.840 7.133 + 93.850 7.130 + 93.860 7.104 + 93.870 7.054 + 93.880 6.982 + 93.890 6.887 + 93.900 6.772 + 93.910 6.636 + 93.920 6.483 + 93.930 6.314 + 93.940 6.132 + 93.950 5.940 + 93.960 5.739 + 93.970 5.533 + 93.980 5.325 + 93.990 5.115 + 94.000 4.906 + 94.010 4.700 + 94.020 4.497 + 94.030 4.297 + 94.040 4.101 + 94.050 3.907 + 94.060 3.715 + 94.070 3.523 + 94.080 3.330 + 94.090 3.135 + 94.100 2.935 + 94.110 2.729 + 94.120 2.516 + 94.130 2.295 + 94.140 2.065 + 94.150 1.827 + 94.160 1.581 + 94.170 1.329 + 94.180 1.071 + 94.190 0.809 + 94.200 0.546 + 94.210 0.284 + 94.220 0.025 + 94.230 -0.227 + 94.240 -0.472 + 94.250 -0.707 + 94.260 -0.931 + 94.270 -1.142 + 94.280 -1.341 + 94.290 -1.527 + 94.300 -1.701 + 94.310 -1.864 + 94.320 -2.017 + 94.330 -2.162 + 94.340 -2.301 + 94.350 -2.436 + 94.360 -2.568 + 94.370 -2.699 + 94.380 -2.829 + 94.390 -2.960 + 94.400 -3.091 + 94.410 -3.222 + 94.420 -3.350 + 94.430 -3.475 + 94.440 -3.594 + 94.450 -3.703 + 94.460 -3.800 + 94.470 -3.882 + 94.480 -3.944 + 94.490 -3.984 + 94.500 -4.000 + 94.510 -3.989 + 94.520 -3.948 + 94.530 -3.879 + 94.540 -3.780 + 94.550 -3.652 + 94.560 -3.497 + 94.570 -3.317 + 94.580 -3.115 + 94.590 -2.895 + 94.600 -2.660 + 94.610 -2.414 + 94.620 -2.161 + 94.630 -1.906 + 94.640 -1.651 + 94.650 -1.401 + 94.660 -1.158 + 94.670 -0.923 + 94.680 -0.699 + 94.690 -0.486 + 94.700 -0.285 + 94.710 -0.096 + 94.720 0.083 + 94.730 0.252 + 94.740 0.411 + 94.750 0.562 + 94.760 0.705 + 94.770 0.841 + 94.780 0.971 + 94.790 1.094 + 94.800 1.209 + 94.810 1.316 + 94.820 1.413 + 94.830 1.498 + 94.840 1.570 + 94.850 1.626 + 94.860 1.665 + 94.870 1.684 + 94.880 1.682 + 94.890 1.658 + 94.900 1.612 + 94.910 1.543 + 94.920 1.452 + 94.930 1.340 + 94.940 1.209 + 94.950 1.062 + 94.960 0.900 + 94.970 0.728 + 94.980 0.548 + 94.990 0.363 + 95.000 0.177 + 95.010 -0.007 + 95.020 -0.188 + 95.030 -0.363 + 95.040 -0.531 + 95.050 -0.692 + 95.060 -0.844 + 95.070 -0.988 + 95.080 -1.125 + 95.090 -1.255 + 95.100 -1.382 + 95.110 -1.504 + 95.120 -1.625 + 95.130 -1.745 + 95.140 -1.864 + 95.150 -1.985 + 95.160 -2.106 + 95.170 -2.227 + 95.180 -2.347 + 95.190 -2.465 + 95.200 -2.579 + 95.210 -2.688 + 95.220 -2.788 + 95.230 -2.879 + 95.240 -2.957 + 95.250 -3.021 + 95.260 -3.070 + 95.270 -3.102 + 95.280 -3.118 + 95.290 -3.117 + 95.300 -3.100 + 95.310 -3.070 + 95.320 -3.027 + 95.330 -2.974 + 95.340 -2.915 + 95.350 -2.850 + 95.360 -2.785 + 95.370 -2.720 + 95.380 -2.658 + 95.390 -2.602 + 95.400 -2.552 + 95.410 -2.509 + 95.420 -2.473 + 95.430 -2.443 + 95.440 -2.417 + 95.450 -2.395 + 95.460 -2.372 + 95.470 -2.347 + 95.480 -2.316 + 95.490 -2.277 + 95.500 -2.225 + 95.510 -2.160 + 95.520 -2.079 + 95.530 -1.980 + 95.540 -1.862 + 95.550 -1.725 + 95.560 -1.570 + 95.570 -1.398 + 95.580 -1.211 + 95.590 -1.011 + 95.600 -0.800 + 95.610 -0.582 + 95.620 -0.359 + 95.630 -0.136 + 95.640 0.087 + 95.650 0.305 + 95.660 0.518 + 95.670 0.723 + 95.680 0.920 + 95.690 1.108 + 95.700 1.288 + 95.710 1.460 + 95.720 1.624 + 95.730 1.783 + 95.740 1.937 + 95.750 2.087 + 95.760 2.236 + 95.770 2.384 + 95.780 2.532 + 95.790 2.680 + 95.800 2.828 + 95.810 2.975 + 95.820 3.121 + 95.830 3.264 + 95.840 3.402 + 95.850 3.532 + 95.860 3.654 + 95.870 3.765 + 95.880 3.862 + 95.890 3.943 + 95.900 4.008 + 95.910 4.054 + 95.920 4.081 + 95.930 4.089 + 95.940 4.078 + 95.950 4.048 + 95.960 4.001 + 95.970 3.939 + 95.980 3.863 + 95.990 3.776 + 96.000 3.679 + 96.010 3.576 + 96.020 3.468 + 96.030 3.357 + 96.040 3.245 + 96.050 3.134 + 96.060 3.025 + 96.070 2.918 + 96.080 2.814 + 96.090 2.713 + 96.100 2.614 + 96.110 2.518 + 96.120 2.424 + 96.130 2.331 + 96.140 2.238 + 96.150 2.146 + 96.160 2.053 + 96.170 1.959 + 96.180 1.865 + 96.190 1.770 + 96.200 1.675 + 96.210 1.581 + 96.220 1.487 + 96.230 1.396 + 96.240 1.309 + 96.250 1.225 + 96.260 1.147 + 96.270 1.075 + 96.280 1.010 + 96.290 0.953 + 96.300 0.902 + 96.310 0.860 + 96.320 0.824 + 96.330 0.794 + 96.340 0.770 + 96.350 0.750 + 96.360 0.733 + 96.370 0.717 + 96.380 0.700 + 96.390 0.680 + 96.400 0.657 + 96.410 0.629 + 96.420 0.593 + 96.430 0.549 + 96.440 0.496 + 96.450 0.433 + 96.460 0.360 + 96.470 0.277 + 96.480 0.183 + 96.490 0.080 + 96.500 -0.033 + 96.510 -0.154 + 96.520 -0.282 + 96.530 -0.417 + 96.540 -0.556 + 96.550 -0.699 + 96.560 -0.845 + 96.570 -0.991 + 96.580 -1.138 + 96.590 -1.284 + 96.600 -1.428 + 96.610 -1.570 + 96.620 -1.709 + 96.630 -1.844 + 96.640 -1.976 + 96.650 -2.103 + 96.660 -2.226 + 96.670 -2.344 + 96.680 -2.458 + 96.690 -2.567 + 96.700 -2.671 + 96.710 -2.769 + 96.720 -2.863 + 96.730 -2.950 + 96.740 -3.031 + 96.750 -3.105 + 96.760 -3.171 + 96.770 -3.229 + 96.780 -3.277 + 96.790 -3.314 + 96.800 -3.341 + 96.810 -3.355 + 96.820 -3.355 + 96.830 -3.342 + 96.840 -3.315 + 96.850 -3.273 + 96.860 -3.216 + 96.870 -3.144 + 96.880 -3.058 + 96.890 -2.958 + 96.900 -2.845 + 96.910 -2.719 + 96.920 -2.583 + 96.930 -2.438 + 96.940 -2.284 + 96.950 -2.124 + 96.960 -1.960 + 96.970 -1.792 + 96.980 -1.622 + 96.990 -1.452 + 97.000 -1.282 + 97.010 -1.113 + 97.020 -0.947 + 97.030 -0.784 + 97.040 -0.623 + 97.050 -0.465 + 97.060 -0.310 + 97.070 -0.158 + 97.080 -0.009 + 97.090 0.138 + 97.100 0.283 + 97.110 0.426 + 97.120 0.566 + 97.130 0.703 + 97.140 0.836 + 97.150 0.966 + 97.160 1.089 + 97.170 1.205 + 97.180 1.312 + 97.190 1.408 + 97.200 1.492 + 97.210 1.561 + 97.220 1.614 + 97.230 1.649 + 97.240 1.663 + 97.250 1.658 + 97.260 1.630 + 97.270 1.581 + 97.280 1.509 + 97.290 1.416 + 97.300 1.303 + 97.310 1.171 + 97.320 1.021 + 97.330 0.857 + 97.340 0.680 + 97.350 0.492 + 97.360 0.297 + 97.370 0.098 + 97.380 -0.104 + 97.390 -0.307 + 97.400 -0.507 + 97.410 -0.703 + 97.420 -0.894 + 97.430 -1.078 + 97.440 -1.254 + 97.450 -1.423 + 97.460 -1.583 + 97.470 -1.734 + 97.480 -1.876 + 97.490 -2.009 + 97.500 -2.132 + 97.510 -2.246 + 97.520 -2.350 + 97.530 -2.443 + 97.540 -2.524 + 97.550 -2.593 + 97.560 -2.647 + 97.570 -2.685 + 97.580 -2.706 + 97.590 -2.706 + 97.600 -2.686 + 97.610 -2.643 + 97.620 -2.575 + 97.630 -2.481 + 97.640 -2.361 + 97.650 -2.215 + 97.660 -2.041 + 97.670 -1.842 + 97.680 -1.617 + 97.690 -1.370 + 97.700 -1.103 + 97.710 -0.817 + 97.720 -0.517 + 97.730 -0.206 + 97.740 0.112 + 97.750 0.433 + 97.760 0.755 + 97.770 1.071 + 97.780 1.380 + 97.790 1.679 + 97.800 1.964 + 97.810 2.232 + 97.820 2.482 + 97.830 2.714 + 97.840 2.924 + 97.850 3.114 + 97.860 3.283 + 97.870 3.431 + 97.880 3.559 + 97.890 3.667 + 97.900 3.757 + 97.910 3.828 + 97.920 3.883 + 97.930 3.921 + 97.940 3.944 + 97.950 3.952 + 97.960 3.945 + 97.970 3.923 + 97.980 3.887 + 97.990 3.838 + 98.000 3.773 + 98.010 3.695 + 98.020 3.602 + 98.030 3.495 + 98.040 3.374 + 98.050 3.240 + 98.060 3.093 + 98.070 2.934 + 98.080 2.764 + 98.090 2.585 + 98.100 2.397 + 98.110 2.204 + 98.120 2.006 + 98.130 1.806 + 98.140 1.605 + 98.150 1.405 + 98.160 1.207 + 98.170 1.014 + 98.180 0.825 + 98.190 0.643 + 98.200 0.467 + 98.210 0.298 + 98.220 0.136 + 98.230 -0.020 + 98.240 -0.170 + 98.250 -0.314 + 98.260 -0.454 + 98.270 -0.590 + 98.280 -0.724 + 98.290 -0.855 + 98.300 -0.985 + 98.310 -1.114 + 98.320 -1.241 + 98.330 -1.368 + 98.340 -1.492 + 98.350 -1.613 + 98.360 -1.731 + 98.370 -1.843 + 98.380 -1.948 + 98.390 -2.044 + 98.400 -2.130 + 98.410 -2.205 + 98.420 -2.265 + 98.430 -2.311 + 98.440 -2.341 + 98.450 -2.354 + 98.460 -2.351 + 98.470 -2.331 + 98.480 -2.295 + 98.490 -2.243 + 98.500 -2.178 + 98.510 -2.100 + 98.520 -2.011 + 98.530 -1.914 + 98.540 -1.810 + 98.550 -1.700 + 98.560 -1.588 + 98.570 -1.473 + 98.580 -1.358 + 98.590 -1.243 + 98.600 -1.127 + 98.610 -1.012 + 98.620 -0.897 + 98.630 -0.780 + 98.640 -0.662 + 98.650 -0.539 + 98.660 -0.412 + 98.670 -0.279 + 98.680 -0.138 + 98.690 0.012 + 98.700 0.170 + 98.710 0.338 + 98.720 0.516 + 98.730 0.701 + 98.740 0.893 + 98.750 1.090 + 98.760 1.290 + 98.770 1.490 + 98.780 1.686 + 98.790 1.875 + 98.800 2.054 + 98.810 2.219 + 98.820 2.368 + 98.830 2.496 + 98.840 2.603 + 98.850 2.686 + 98.860 2.743 + 98.870 2.775 + 98.880 2.782 + 98.890 2.764 + 98.900 2.723 + 98.910 2.662 + 98.920 2.582 + 98.930 2.486 + 98.940 2.377 + 98.950 2.259 + 98.960 2.134 + 98.970 2.005 + 98.980 1.874 + 98.990 1.744 + 99.000 1.615 + 99.010 1.489 + 99.020 1.365 + 99.030 1.245 + 99.040 1.127 + 99.050 1.010 + 99.060 0.894 + 99.070 0.776 + 99.080 0.656 + 99.090 0.532 + 99.100 0.403 + 99.110 0.267 + 99.120 0.125 + 99.130 -0.023 + 99.140 -0.179 + 99.150 -0.340 + 99.160 -0.507 + 99.170 -0.677 + 99.180 -0.849 + 99.190 -1.022 + 99.200 -1.192 + 99.210 -1.360 + 99.220 -1.522 + 99.230 -1.677 + 99.240 -1.824 + 99.250 -1.961 + 99.260 -2.088 + 99.270 -2.204 + 99.280 -2.309 + 99.290 -2.404 + 99.300 -2.489 + 99.310 -2.564 + 99.320 -2.630 + 99.330 -2.689 + 99.340 -2.741 + 99.350 -2.786 + 99.360 -2.827 + 99.370 -2.862 + 99.380 -2.894 + 99.390 -2.921 + 99.400 -2.945 + 99.410 -2.965 + 99.420 -2.981 + 99.430 -2.992 + 99.440 -2.999 + 99.450 -3.001 + 99.460 -2.997 + 99.470 -2.989 + 99.480 -2.975 + 99.490 -2.956 + 99.500 -2.931 + 99.510 -2.902 + 99.520 -2.868 + 99.530 -2.830 + 99.540 -2.789 + 99.550 -2.744 + 99.560 -2.697 + 99.570 -2.646 + 99.580 -2.594 + 99.590 -2.539 + 99.600 -2.482 + 99.610 -2.422 + 99.620 -2.359 + 99.630 -2.292 + 99.640 -2.220 + 99.650 -2.144 + 99.660 -2.062 + 99.670 -1.974 + 99.680 -1.880 + 99.690 -1.780 + 99.700 -1.673 + 99.710 -1.561 + 99.720 -1.443 + 99.730 -1.320 + 99.740 -1.194 + 99.750 -1.066 + 99.760 -0.936 + 99.770 -0.806 + 99.780 -0.677 + 99.790 -0.549 + 99.800 -0.425 + 99.810 -0.304 + 99.820 -0.185 + 99.830 -0.071 + 99.840 0.041 + 99.850 0.151 + 99.860 0.259 + 99.870 0.367 + 99.880 0.476 + 99.890 0.588 + 99.900 0.703 + 99.910 0.823 + 99.920 0.949 + 99.930 1.081 + 99.940 1.219 + 99.950 1.363 + 99.960 1.513 + 99.970 1.668 + 99.980 1.826 + 99.990 1.986 +100.000 2.146 diff --git a/tests/testdata/ni.cif b/tests/testdata/ni.cif new file mode 100644 index 0000000..c455635 --- /dev/null +++ b/tests/testdata/ni.cif @@ -0,0 +1,236 @@ +#------------------------------------------------------------------------------ +#$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ +#$Revision: 255 $ +#$URL: svn://cod.ibt.lt/cod/cif/9/9008476.cif $ +#------------------------------------------------------------------------------ +# +# This file is available in the Crystallography Open Database (COD), +# http://www.crystallography.net/ +# +# All data on this site have been placed in the public domain by the +# contributors. +# +data_9008476 +loop_ +_publ_author_name +'Wyckoff R W G' +_publ_section_title +; + Second edition. Interscience Publishers, New York, New York + Cubic closest packed, ccp, structure +; +_journal_name_full 'Crystal Structures' +_journal_page_first 7 +_journal_page_last 83 +_journal_volume 1 +_journal_year 1963 +_chemical_formula_sum Ni +_chemical_name_mineral Nickel +_symmetry_space_group_name_H-M 'F m 3 m' +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 90 +_cell_length_a 3.52387 +_cell_length_b 3.52387 +_cell_length_c 3.52387 +_cell_volume 43.758 +loop_ +_symmetry_equiv_pos_as_xyz +x,y,z +x,1/2+y,1/2+z +1/2+x,y,1/2+z +1/2+x,1/2+y,z +z,-x,y +z,1/2-x,1/2+y +1/2+z,-x,1/2+y +1/2+z,1/2-x,y +-y,z,-x +-y,1/2+z,1/2-x +1/2-y,z,1/2-x +1/2-y,1/2+z,-x +x,-y,z +x,1/2-y,1/2+z +1/2+x,-y,1/2+z +1/2+x,1/2-y,z +-z,x,-y +-z,1/2+x,1/2-y +1/2-z,x,1/2-y +1/2-z,1/2+x,-y +y,-z,x +y,1/2-z,1/2+x +1/2+y,-z,1/2+x +1/2+y,1/2-z,x +-x,y,-z +-x,1/2+y,1/2-z +1/2-x,y,1/2-z +1/2-x,1/2+y,-z +x,-z,-y +x,1/2-z,1/2-y +1/2+x,-z,1/2-y +1/2+x,1/2-z,-y +-z,y,x +-z,1/2+y,1/2+x +1/2-z,y,1/2+x +1/2-z,1/2+y,x +y,-x,-z +y,1/2-x,1/2-z +1/2+y,-x,1/2-z +1/2+y,1/2-x,-z +-x,z,y +-x,1/2+z,1/2+y +1/2-x,z,1/2+y +1/2-x,1/2+z,y +z,-y,-x +z,1/2-y,1/2-x +1/2+z,-y,1/2-x +1/2+z,1/2-y,-x +-y,x,z +-y,1/2+x,1/2+z +1/2-y,x,1/2+z +1/2-y,1/2+x,z +x,z,y +x,1/2+z,1/2+y +1/2+x,z,1/2+y +1/2+x,1/2+z,y +-z,-y,-x +-z,1/2-y,1/2-x +1/2-z,-y,1/2-x +1/2-z,1/2-y,-x +y,x,z +y,1/2+x,1/2+z +1/2+y,x,1/2+z +1/2+y,1/2+x,z +-x,-z,-y +-x,1/2-z,1/2-y +1/2-x,-z,1/2-y +1/2-x,1/2-z,-y +z,y,x +z,1/2+y,1/2+x +1/2+z,y,1/2+x +1/2+z,1/2+y,x +-y,-x,-z +-y,1/2-x,1/2-z +1/2-y,-x,1/2-z +1/2-y,1/2-x,-z +z,x,-y +z,1/2+x,1/2-y +1/2+z,x,1/2-y +1/2+z,1/2+x,-y +-y,-z,x +-y,1/2-z,1/2+x +1/2-y,-z,1/2+x +1/2-y,1/2-z,x +x,y,-z +x,1/2+y,1/2-z +1/2+x,y,1/2-z +1/2+x,1/2+y,-z +-z,-x,y +-z,1/2-x,1/2+y +1/2-z,-x,1/2+y +1/2-z,1/2-x,y +y,z,-x +y,1/2+z,1/2-x +1/2+y,z,1/2-x +1/2+y,1/2+z,-x +-x,-y,z +-x,1/2-y,1/2+z +1/2-x,-y,1/2+z +1/2-x,1/2-y,z +-z,x,y +-z,1/2+x,1/2+y +1/2-z,x,1/2+y +1/2-z,1/2+x,y +y,-z,-x +y,1/2-z,1/2-x +1/2+y,-z,1/2-x +1/2+y,1/2-z,-x +-x,y,z +-x,1/2+y,1/2+z +1/2-x,y,1/2+z +1/2-x,1/2+y,z +z,-x,-y +z,1/2-x,1/2-y +1/2+z,-x,1/2-y +1/2+z,1/2-x,-y +-y,z,x +-y,1/2+z,1/2+x +1/2-y,z,1/2+x +1/2-y,1/2+z,x +x,-y,-z +x,1/2-y,1/2-z +1/2+x,-y,1/2-z +1/2+x,1/2-y,-z +-x,z,-y +-x,1/2+z,1/2-y +1/2-x,z,1/2-y +1/2-x,1/2+z,-y +z,-y,x +z,1/2-y,1/2+x +1/2+z,-y,1/2+x +1/2+z,1/2-y,x +-y,x,-z +-y,1/2+x,1/2-z +1/2-y,x,1/2-z +1/2-y,1/2+x,-z +x,-z,y +x,1/2-z,1/2+y +1/2+x,-z,1/2+y +1/2+x,1/2-z,y +-z,y,-x +-z,1/2+y,1/2-x +1/2-z,y,1/2-x +1/2-z,1/2+y,-x +y,-x,z +y,1/2-x,1/2+z +1/2+y,-x,1/2+z +1/2+y,1/2-x,z +-x,-z,y +-x,1/2-z,1/2+y +1/2-x,-z,1/2+y +1/2-x,1/2-z,y +z,y,-x +z,1/2+y,1/2-x +1/2+z,y,1/2-x +1/2+z,1/2+y,-x +-y,-x,z +-y,1/2-x,1/2+z +1/2-y,-x,1/2+z +1/2-y,1/2-x,z +x,z,-y +x,1/2+z,1/2-y +1/2+x,z,1/2-y +1/2+x,1/2+z,-y +-z,-y,x +-z,1/2-y,1/2+x +1/2-z,-y,1/2+x +1/2-z,1/2-y,x +y,x,-z +y,1/2+x,1/2-z +1/2+y,x,1/2-z +1/2+y,1/2+x,-z +-z,-x,-y +-z,1/2-x,1/2-y +1/2-z,-x,1/2-y +1/2-z,1/2-x,-y +y,z,x +y,1/2+z,1/2+x +1/2+y,z,1/2+x +1/2+y,1/2+z,x +-x,-y,-z +-x,1/2-y,1/2-z +1/2-x,-y,1/2-z +1/2-x,1/2-y,-z +z,x,y +z,1/2+x,1/2+y +1/2+z,x,1/2+y +1/2+z,1/2+x,y +-y,-z,-x +-y,1/2-z,1/2-x +1/2-y,-z,1/2-x +1/2-y,1/2-z,-x +loop_ +_atom_site_label +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +Ni 0.00000 0.00000 0.00000 diff --git a/tests/testdata/si-q27r60-xray.gr b/tests/testdata/si-q27r60-xray.gr new file mode 100644 index 0000000..e25d579 --- /dev/null +++ b/tests/testdata/si-q27r60-xray.gr @@ -0,0 +1,6133 @@ +History written: Mon Apr 21 20:48:28 2008 +Produced by +####### Get_XPDF ####### + +##### General_Setting +title=X-ray PDF +workingdirectory=e:\Ahmad\MUCAT0804\standards\pdfgetx2 +sourcedir=C:\Program Files\PDFgetX2\ +logfile=.pdfgetx2.log +quiet=0 debug=0 autosave_isa=1 savefilenamebase=si325_mesh_300k_nor_4-8 +iqfilesurfix=.iq sqfilesurfix=.sq fqfilesurfix=.fq grfilesurfix=.gr + +##### DataFileFormat +datatype=1 (0:SPEC, 1:CHI, 2:nxm column, 3:unknown) +num_skiplines=3 comment_id=# delimiter= +### SPEC Format scan_id=#S scan_delimiter= +columnname_id=#L columnname_delimiter= +data_id= data_delimiter= +### CHI Format +### nxm column Format +### End of file format + +##### Data&Background +samfile=si325_mesh_300k_nor_4-8.chi num_sams=1 +sambkgfile=kapton_bgrd_300k_nor_2-3.chi num_sambkgs=1 +confile= num_cons=1 +conbkgfile= num_conbkgs=1 +det# used xcol detcol deterrcol xmin xmax add_det mul_det add_bkg mul_bkg add_con mul_con add_conbkg mul_conbkg + 0 1 0 1 3 0.600000 32.0000 0.000000 1.00000 0.000000 1.00000 0.000000 1.00000 0.000000 1.00000 + +##### Experiment_Setup +title=PDF analysis +user=me +facility=In house +temperature=300.000 containermut=0.000500000 filtermut=0.0200000 +## X-Ray radiationtype=3 + (0: Ag K_alpha, 1:Cu K_alpha, 2:Mo K_alpha, 3:Customize) +lambda=0.142773 energy=86.8406 polartype=0 polardegree=1.00000 +## MonoChromator crystaltype=0 (0:Perfect, 1:Mosaic, 2:None) +position=0 (0:Primary beam, 1:Diffracted beam) +dspacetype=0 (0:Si{111}, 1:Ge{111}, 2:Customize) dspacing=3.13200 + +##### Sample_Setup information num_atoms=1 +#L symbol valence fractions z user_f1 user_f2 user_macoef + Si 0.00 1.000000 14 0.000000 0.000000 0.001000 +geometry=2 mut=0.50000000 numberdensity=0.00600000 +thickness=2.00000 packingFraction=0.500000 theory_mut=0.00579218 + +##### GetIQ_Setup +xformat=1 +smoothcorr_isa=0 selfnormalize_isa=0 +#L par_name sample sample_bkg container container_bkg +smooth_degree 2 2 2 2 +smooth_width 6 6 6 6 +selfnormalize 0 0 0 0 +filtercorr_isa=0 samfiltercorr_isa=0 sambkgfiltercorr_isa=0 +confiltercorr_isa=0 conbkgfiltercorr_isa=0 +scatveffcorr_isa=1 samconveffcorr_isa=1 sambkgveffcorr_isa=0 +conbkgveffcorr_isa=0 +nonegative_isa=1 negativevalue=-1.00000 + +##### Calibration_Data +## Detection efficiency energy dependence detedepxaxis=0 +detedepfunctype=0 detedep_elastic=1.00000 detedep_fluores=1.80000 +detedep_quadra=0.000000 detedep_spline=0.000000 detedep_file= +## Detector transmission energy dependence dettcoefxaxis=0 +dettcoeffunctype=0 dettcoef_elastic=0.950000 dettcoef_fluores=0.600000 +dettcoef_quadra=0.000000 dettcoef_spline=0.000000 dettcoef_file= + +##### IQ_Simulation +### Elastic used_isa=1 mymethod=1 +do_samabsorp=1 do_multscat=1 do_conabsorp=0 do_airabsorp=0 +do_polarization=1 do_oblincident=0 do_energydep=0 +do_breitdirac=0 breitdiracexpo=2.00000 +do_rulandwin=0 rulandwinwidth=0.00100000 +do_useredit=0 add_user=0.000000 mul_user=1.00000 +### Compton used_isa=1 mymethod=1 +do_samabsorp=1 do_multscat=1 do_conabsorp=0 do_airabsorp=0 +do_polarization=1 do_oblincident=0 do_energydep=0 +do_breitdirac=0 breitdiracexpo=2.00000 +do_rulandwin=0 rulandwinwidth=0.00100000 +do_useredit=0 add_user=0.000000 mul_user=1.00000 +### Fluores used_isa=1 mymethod=1 +do_samabsorp=1 do_multscat=1 do_conabsorp=0 do_airabsorp=0 +do_polarization=1 do_oblincident=0 do_energydep=0 +do_breitdirac=0 breitdiracexpo=2.00000 +do_rulandwin=0 rulandwinwidth=0.00100000 +do_useredit=0 add_user=0.000000 mul_user=1.00000 + +##### Correction_Setup corrmethod=0 +oblincident_isa=1 dettranscoef=0.980000 samfluore_isa=1 +samfluoretype=0 samfluorescale=15.000000 +multiscat_isa=1 xraypolar_isa=1 samabsorp_isa=1 +highqscale_isa=1 highqratio=0.600000 scaleconst=0.039181914 +scaleconst_theory=0.039181914 +comptonscat_isa=1 rulandwin_isa=0 rulandintewidth=0.0100000 +comptonmethod=0 breitdirac_isa=1 breitdiracexponent=3 +detefficiency_isa=1 detefficiencytype=2 (0-1: linear, 2-3: quadratic) +detefficiency_a=-0.054826792 detefficiency_b=0.028062565 +lauediffuse_isa=1 +weight_isa=1 weighttype=0 (0: ^2, 1: , 2: Data Smoothed) +weightsmoothrmin=3.00000 weightsmoothwidth=100 weightsmoothcycles=600 +editsq_isa=0 editsqtype=0 add_sq=0.000000 mul_sq=1.00000 +editsqsmoothrmin=3.00000 editsqsmoothwidth=100 editsqsmoothcycles=600 +smoothdata_isa=0 smoothfunctype=0 smoothqmin=12.0000 smoothboxwidth=9 +interpolateqmin_isa=0 qmininterpolationtype=0 +dampfq_isa=0 dampfqtype=0 dampfqwidth=23.0000 + +##### SqGr_Optimization Setup +ftmethod=0 +## S(q) qmin=0.010000 qmax=27.000000 qgrid=0.000000 +## G(r) rmin=0.010000 rmax=60.000000 rgrid=0.010000 +## SqOptimization sqoptfunction=1 +optqmin=15.0000 optqmax=40.0000 optqgrid=0.000000 +optrmin=0.000000 optrmax=2.20000 optrgrid=0.0200000 +maxiter=20 relstep=0.000000 weighttype=0 weightfunc=0 +fitbkgmult_isa=0 fitsampmut_isa=1 fitpolariz_isa=1 +fitoblique_isa=0 fitfluores_isa=0 +fitrulandw_isa=0 fitenergya_isa=1 fitenergyb_isa=1 +fitsimurulandw_isa=1 fitDetEdepfluores_isa=0 fitDetEdepquadra_isa=0 +fitDetEdepspline_isa=0 fitDetTCoefElastic_isa=0 fitDetTCoefFluores_isa=0 +fitDetTcoefquadra_isa=0 fitDetTcoefspline_isa=0 + +##### Save&Plot Settings +datatype=GrData iqcorrtype=Int iqsimutype=SimuIq +sqcorrtype=Oblin sqtofqtype=DampFq +gropttype=OptFq miscdatatype=AtomASF +##### start data +#F si325_mesh_300k_nor_4-8.gr +#D Mon Apr 21 21:17:23 2008 +#C +#S 1 G(r) +#D +#L r(A) G(r) d_r d_Gr + 1.000000e-002 1.105784e-001 -7.539822e-004 1.802192e-003 + 2.000000e-002 2.199684e-001 -1.507964e-003 3.521449e-003 + 3.000000e-002 3.270088e-001 -2.261947e-003 5.079115e-003 + 4.000000e-002 4.305913e-001 -3.015929e-003 6.404892e-003 + 5.000000e-002 5.296853e-001 -3.769911e-003 7.440527e-003 + 6.000000e-002 6.233606e-001 -4.523893e-003 8.142955e-003 + 7.000000e-002 7.108060e-001 -5.277876e-003 8.486813e-003 + 8.000000e-002 7.913456e-001 -6.031858e-003 8.466340e-003 + 9.000000e-002 8.644501e-001 -6.785840e-003 8.096858e-003 + 1.000000e-001 9.297440e-001 -7.539822e-003 7.416456e-003 + 1.100000e-001 9.870074e-001 -8.293804e-003 6.489448e-003 + 1.200000e-001 1.036173e+000 -9.047787e-003 5.415684e-003 + 1.300000e-001 1.077320e+000 -9.801769e-003 4.355248e-003 + 1.400000e-001 1.110658e+000 -1.055575e-002 3.575199e-003 + 1.500000e-001 1.136512e+000 -1.130973e-002 3.413945e-003 + 1.600000e-001 1.155303e+000 -1.206372e-002 3.933423e-003 + 1.700000e-001 1.167523e+000 -1.281770e-002 4.815308e-003 + 1.800000e-001 1.173706e+000 -1.357168e-002 5.750912e-003 + 1.900000e-001 1.174409e+000 -1.432566e-002 6.564132e-003 + 2.000000e-001 1.170178e+000 -1.507964e-002 7.161793e-003 + 2.100000e-001 1.161530e+000 -1.583363e-002 7.497930e-003 + 2.200000e-001 1.148926e+000 -1.658761e-002 7.559422e-003 + 2.300000e-001 1.132758e+000 -1.734159e-002 7.360973e-003 + 2.400000e-001 1.113332e+000 -1.809557e-002 6.944106e-003 + 2.500000e-001 1.090867e+000 -1.884956e-002 6.378589e-003 + 2.600000e-001 1.065491e+000 -1.960354e-002 5.765230e-003 + 2.700000e-001 1.037248e+000 -2.035752e-002 5.235051e-003 + 2.800000e-001 1.006114e+000 -2.111150e-002 4.928301e-003 + 2.900000e-001 9.720130e-001 -2.186548e-002 4.934465e-003 + 3.000000e-001 9.348463e-001 -2.261947e-002 5.230497e-003 + 3.100000e-001 8.945173e-001 -2.337345e-002 5.699069e-003 + 3.200000e-001 8.509643e-001 -2.412743e-002 6.203244e-003 + 3.300000e-001 8.041928e-001 -2.488141e-002 6.634315e-003 + 3.400000e-001 7.543052e-001 -2.563540e-002 6.921889e-003 + 3.500000e-001 7.015281e-001 -2.638938e-002 7.030258e-003 + 3.600000e-001 6.462341e-001 -2.714336e-002 6.953808e-003 + 3.700000e-001 5.889563e-001 -2.789734e-002 6.714182e-003 + 3.800000e-001 5.303932e-001 -2.865132e-002 6.358755e-003 + 3.900000e-001 4.714050e-001 -2.940531e-002 5.958818e-003 + 4.000000e-001 4.129979e-001 -3.015929e-002 5.603599e-003 + 4.100000e-001 3.562986e-001 -3.091327e-002 5.383204e-003 + 4.200000e-001 3.025178e-001 -3.166725e-002 5.357170e-003 + 4.300000e-001 2.529049e-001 -3.242124e-002 5.525004e-003 + 4.400000e-001 2.086951e-001 -3.317522e-002 5.827505e-003 + 4.500000e-001 1.710513e-001 -3.392920e-002 6.178212e-003 + 4.600000e-001 1.410036e-001 -3.468318e-002 6.495339e-003 + 4.700000e-001 1.193896e-001 -3.543716e-002 6.718036e-003 + 4.800000e-001 1.067979e-001 -3.619115e-002 6.810827e-003 + 4.900000e-001 1.035199e-001 -3.694513e-002 6.763386e-003 + 5.000000e-001 1.095111e-001 -3.769911e-002 6.589230e-003 + 5.100000e-001 1.243654e-001 -3.845309e-002 6.324106e-003 + 5.200000e-001 1.473058e-001 -3.920708e-002 6.023134e-003 + 5.300000e-001 1.771912e-001 -3.996106e-002 5.754161e-003 + 5.400000e-001 2.125414e-001 -4.071504e-002 5.583831e-003 + 5.500000e-001 2.515800e-001 -4.146902e-002 5.556275e-003 + 5.600000e-001 2.922938e-001 -4.222300e-002 5.674577e-003 + 5.700000e-001 3.325075e-001 -4.297699e-002 5.900045e-003 + 5.800000e-001 3.699698e-001 -4.373097e-002 6.170277e-003 + 5.900000e-001 4.024484e-001 -4.448495e-002 6.421243e-003 + 6.000000e-001 4.278290e-001 -4.523893e-002 6.601852e-003 + 6.100000e-001 4.442137e-001 -4.599292e-002 6.680300e-003 + 6.200000e-001 4.500142e-001 -4.674690e-002 6.645748e-003 + 6.300000e-001 4.440342e-001 -4.750088e-002 6.508004e-003 + 6.400000e-001 4.255377e-001 -4.825486e-002 6.296085e-003 + 6.500000e-001 3.942979e-001 -4.900884e-002 6.055106e-003 + 6.600000e-001 3.506241e-001 -4.976283e-002 5.839825e-003 + 6.700000e-001 2.953646e-001 -5.051681e-002 5.702920e-003 + 6.800000e-001 2.298832e-001 -5.127079e-002 5.679014e-003 + 6.900000e-001 1.560117e-001 -5.202477e-002 5.771555e-003 + 7.000000e-001 7.597746e-002 -5.277876e-002 5.951898e-003 + 7.100000e-001 -7.689663e-003 -5.353274e-002 6.171453e-003 + 7.200000e-001 -9.226787e-002 -5.428672e-002 6.378052e-003 + 7.300000e-001 -1.749662e-001 -5.504070e-002 6.528334e-003 + 7.400000e-001 -2.530538e-001 -5.579468e-002 6.594295e-003 + 7.500000e-001 -3.239902e-001 -5.654867e-002 6.565757e-003 + 7.600000e-001 -3.855483e-001 -5.730265e-002 6.450587e-003 + 7.700000e-001 -4.359263e-001 -5.805663e-002 6.273433e-003 + 7.800000e-001 -4.738401e-001 -5.881061e-002 6.072606e-003 + 7.900000e-001 -4.985928e-001 -5.956460e-002 5.893988e-003 + 8.000000e-001 -5.101162e-001 -6.031858e-002 5.780941e-003 + 8.100000e-001 -5.089818e-001 -6.107256e-002 5.761594e-003 + 8.200000e-001 -4.963805e-001 -6.182654e-002 5.838919e-003 + 8.300000e-001 -4.740701e-001 -6.258052e-002 5.989978e-003 + 8.400000e-001 -4.442934e-001 -6.333451e-002 6.174951e-003 + 8.500000e-001 -4.096707e-001 -6.408849e-002 6.349969e-003 + 8.600000e-001 -3.730710e-001 -6.484247e-002 6.477655e-003 + 8.700000e-001 -3.374671e-001 -6.559645e-002 6.533361e-003 + 8.800000e-001 -3.057848e-001 -6.635044e-002 6.507902e-003 + 8.900000e-001 -2.807502e-001 -6.710442e-002 6.408064e-003 + 9.000000e-001 -2.647453e-001 -6.785840e-002 6.255446e-003 + 9.100000e-001 -2.596788e-001 -6.861238e-002 6.083424e-003 + 9.200000e-001 -2.668793e-001 -6.936636e-002 5.931448e-003 + 9.300000e-001 -2.870165e-001 -7.012035e-002 5.836197e-003 + 9.400000e-001 -3.200559e-001 -7.087433e-002 5.821081e-003 + 9.500000e-001 -3.652491e-001 -7.162831e-002 5.888409e-003 + 9.600000e-001 -4.211612e-001 -7.238229e-002 6.018856e-003 + 9.700000e-001 -4.857356e-001 -7.313628e-002 6.178633e-003 + 9.800000e-001 -5.563918e-001 -7.389026e-002 6.329966e-003 + 9.900000e-001 -6.301529e-001 -7.464424e-002 6.440191e-003 + 1.000000e+000 -7.037970e-001 -7.539822e-002 6.487525e-003 + 1.010000e+000 -7.740236e-001 -7.615220e-002 6.463841e-003 + 1.020000e+000 -8.376278e-001 -7.690619e-002 6.375286e-003 + 1.030000e+000 -8.916727e-001 -7.766017e-002 6.241211e-003 + 1.040000e+000 -9.336516e-001 -7.841415e-002 6.091214e-003 + 1.050000e+000 -9.616294e-001 -7.916813e-002 5.959806e-003 + 1.060000e+000 -9.743579e-001 -7.992212e-002 5.878559e-003 + 1.070000e+000 -9.713566e-001 -8.067610e-002 5.867219e-003 + 1.080000e+000 -9.529540e-001 -8.143008e-002 5.927372e-003 + 1.090000e+000 -9.202882e-001 -8.218406e-002 6.042140e-003 + 1.100000e+000 -8.752634e-001 -8.293804e-002 6.182140e-003 + 1.110000e+000 -8.204662e-001 -8.369203e-002 6.314303e-003 + 1.120000e+000 -7.590436e-001 -8.444601e-002 6.409810e-003 + 1.130000e+000 -6.945489e-001 -8.519999e-002 6.449393e-003 + 1.140000e+000 -6.307639e-001 -8.595397e-002 6.426019e-003 + 1.150000e+000 -5.715048e-001 -8.670796e-002 6.345560e-003 + 1.160000e+000 -5.204225e-001 -8.746194e-002 6.225748e-003 + 1.170000e+000 -4.808080e-001 -8.821592e-002 6.093310e-003 + 1.180000e+000 -4.554131e-001 -8.896990e-002 5.978935e-003 + 1.190000e+000 -4.462949e-001 -8.972388e-002 5.910177e-003 + 1.200000e+000 -4.546953e-001 -9.047787e-002 5.903784e-003 + 1.210000e+000 -4.809597e-001 -9.123185e-002 5.960464e-003 + 1.220000e+000 -5.245015e-001 -9.198583e-002 6.064856e-003 + 1.230000e+000 -5.838154e-001 -9.273981e-002 6.190699e-003 + 1.240000e+000 -6.565378e-001 -9.349380e-002 6.308476e-003 + 1.250000e+000 -7.395547e-001 -9.424778e-002 6.392427e-003 + 1.260000e+000 -8.291489e-001 -9.500176e-002 6.425383e-003 + 1.270000e+000 -9.211832e-001 -9.575574e-002 6.401314e-003 + 1.280000e+000 -1.011307e+000 -9.650973e-002 6.325974e-003 + 1.290000e+000 -1.095180e+000 -9.726371e-002 6.215888e-003 + 1.300000e+000 -1.168696e+000 -9.801769e-002 6.095581e-003 + 1.310000e+000 -1.228198e+000 -9.877167e-002 5.992836e-003 + 1.320000e+000 -1.270680e+000 -9.952565e-002 5.932217e-003 + 1.330000e+000 -1.293949e+000 -1.002796e-001 5.928311e-003 + 1.340000e+000 -1.296753e+000 -1.010336e-001 5.981279e-003 + 1.350000e+000 -1.278861e+000 -1.017876e-001 6.076977e-003 + 1.360000e+000 -1.241088e+000 -1.025416e-001 6.191562e-003 + 1.370000e+000 -1.185270e+000 -1.032956e-001 6.298272e-003 + 1.380000e+000 -1.114183e+000 -1.040495e-001 6.373738e-003 + 1.390000e+000 -1.031413e+000 -1.048035e-001 6.402445e-003 + 1.400000e+000 -9.411808e-001 -1.055575e-001 6.379124e-003 + 1.410000e+000 -8.481324e-001 -1.063115e-001 6.309362e-003 + 1.420000e+000 -7.571032e-001 -1.070655e-001 6.208593e-003 + 1.430000e+000 -6.728701e-001 -1.078195e-001 6.099410e-003 + 1.440000e+000 -5.999032e-001 -1.085734e-001 6.007094e-003 + 1.450000e+000 -5.421301e-001 -1.093274e-001 5.953678e-003 + 1.460000e+000 -5.027256e-001 -1.100814e-001 5.951944e-003 + 1.470000e+000 -4.839381e-001 -1.108354e-001 6.001616e-003 + 1.480000e+000 -4.869629e-001 -1.115894e-001 6.089599e-003 + 1.490000e+000 -5.118681e-001 -1.123434e-001 6.194121e-003 + 1.500000e+000 -5.575799e-001 -1.130973e-001 6.290802e-003 + 1.510000e+000 -6.219268e-001 -1.138513e-001 6.358379e-003 + 1.520000e+000 -7.017428e-001 -1.146053e-001 6.382824e-003 + 1.530000e+000 -7.930236e-001 -1.153593e-001 6.359590e-003 + 1.540000e+000 -8.911297e-001 -1.161133e-001 6.294168e-003 + 1.550000e+000 -9.910247e-001 -1.168672e-001 6.201089e-003 + 1.560000e+000 -1.087538e+000 -1.176212e-001 6.101313e-003 + 1.570000e+000 -1.175640e+000 -1.183752e-001 6.017986e-003 + 1.580000e+000 -1.250708e+000 -1.191292e-001 5.970977e-003 + 1.590000e+000 -1.308781e+000 -1.198832e-001 5.971498e-003 + 1.600000e+000 -1.346777e+000 -1.206372e-001 6.018826e-003 + 1.610000e+000 -1.362671e+000 -1.213911e-001 6.100655e-003 + 1.620000e+000 -1.355618e+000 -1.221451e-001 6.196887e-003 + 1.630000e+000 -1.326016e+000 -1.228991e-001 6.285131e-003 + 1.640000e+000 -1.275498e+000 -1.236531e-001 6.345933e-003 + 1.650000e+000 -1.206870e+000 -1.244071e-001 6.366574e-003 + 1.660000e+000 -1.123978e+000 -1.251610e-001 6.343177e-003 + 1.670000e+000 -1.031516e+000 -1.259150e-001 6.281203e-003 + 1.680000e+000 -9.347922e-001 -1.266690e-001 6.194445e-003 + 1.690000e+000 -8.394571e-001 -1.274230e-001 6.102498e-003 + 1.700000e+000 -7.512059e-001 -1.281770e-001 6.026720e-003 + 1.710000e+000 -6.754769e-001 -1.289310e-001 5.985162e-003 + 1.720000e+000 -6.171570e-001 -1.296849e-001 5.987713e-003 + 1.730000e+000 -5.803118e-001 -1.304389e-001 6.033256e-003 + 1.740000e+000 -5.679542e-001 -1.311929e-001 6.110105e-003 + 1.750000e+000 -5.818638e-001 -1.319469e-001 6.199534e-003 + 1.760000e+000 -6.224687e-001 -1.327009e-001 6.280808e-003 + 1.770000e+000 -6.887963e-001 -1.334549e-001 6.335992e-003 + 1.780000e+000 -7.784959e-001 -1.342088e-001 6.353482e-003 + 1.790000e+000 -8.879351e-001 -1.349628e-001 6.329965e-003 + 1.800000e+000 -1.012364e+000 -1.357168e-001 6.270855e-003 + 1.810000e+000 -1.146144e+000 -1.364708e-001 6.189290e-003 + 1.820000e+000 -1.283020e+000 -1.372248e-001 6.103669e-003 + 1.830000e+000 -1.416443e+000 -1.379787e-001 6.033819e-003 + 1.840000e+000 -1.539898e+000 -1.387327e-001 5.996275e-003 + 1.850000e+000 -1.647254e+000 -1.394867e-001 5.999867e-003 + 1.860000e+000 -1.733083e+000 -1.402407e-001 6.043224e-003 + 1.870000e+000 -1.792967e+000 -1.409947e-001 6.115280e-003 + 1.880000e+000 -1.823741e+000 -1.417487e-001 6.198552e-003 + 1.890000e+000 -1.823692e+000 -1.425026e-001 6.273785e-003 + 1.900000e+000 -1.792673e+000 -1.432566e-001 6.324403e-003 + 1.910000e+000 -1.732148e+000 -1.440106e-001 6.339796e-003 + 1.920000e+000 -1.645147e+000 -1.447646e-001 6.317144e-003 + 1.930000e+000 -1.536145e+000 -1.455186e-001 6.261789e-003 + 1.940000e+000 -1.410854e+000 -1.462726e-001 6.186223e-003 + 1.950000e+000 -1.275953e+000 -1.470265e-001 6.107683e-003 + 1.960000e+000 -1.138758e+000 -1.477805e-001 6.044501e-003 + 1.970000e+000 -1.006850e+000 -1.485345e-001 6.011710e-003 + 1.980000e+000 -8.876726e-001 -1.492885e-001 6.017055e-003 + 1.990000e+000 -7.881353e-001 -1.500425e-001 6.058822e-003 + 2.000000e+000 -7.142202e-001 -1.507964e-001 6.126437e-003 + 2.010000e+000 -6.706287e-001 -1.515504e-001 6.203528e-003 + 2.020000e+000 -6.604786e-001 -1.523044e-001 6.272219e-003 + 2.030000e+000 -6.850697e-001 -1.530584e-001 6.317250e-003 + 2.040000e+000 -7.437301e-001 -1.538124e-001 6.329023e-003 + 2.050000e+000 -8.337544e-001 -1.545664e-001 6.305295e-003 + 2.060000e+000 -9.504371e-001 -1.553203e-001 6.251487e-003 + 2.070000e+000 -1.087203e+000 -1.560743e-001 6.179652e-003 + 2.080000e+000 -1.235831e+000 -1.568283e-001 6.106132e-003 + 2.090000e+000 -1.386763e+000 -1.575823e-001 6.048045e-003 + 2.100000e+000 -1.529484e+000 -1.583363e-001 6.019170e-003 + 2.110000e+000 -1.652962e+000 -1.590902e-001 6.026293e-003 + 2.120000e+000 -1.746122e+000 -1.598442e-001 6.067328e-003 + 2.130000e+000 -1.798339e+000 -1.605982e-001 6.131987e-003 + 2.140000e+000 -1.799929e+000 -1.613522e-001 6.204715e-003 + 2.150000e+000 -1.742611e+000 -1.621062e-001 6.268712e-003 + 2.160000e+000 -1.619919e+000 -1.628602e-001 6.309771e-003 + 2.170000e+000 -1.427555e+000 -1.636141e-001 6.319129e-003 + 2.180000e+000 -1.163652e+000 -1.643681e-001 6.295027e-003 + 2.190000e+000 -8.289467e-001 -1.651221e-001 6.242954e-003 + 2.200000e+000 -4.268475e-001 -1.658761e-001 6.174596e-003 + 2.210000e+000 3.660895e-002 -1.666301e-001 6.105538e-003 + 2.220000e+000 5.529041e-001 -1.673841e-001 6.051890e-003 + 2.230000e+000 1.111288e+000 -1.681380e-001 6.026395e-003 + 2.240000e+000 1.699122e+000 -1.688920e-001 6.035072e-003 + 2.250000e+000 2.302301e+000 -1.696460e-001 6.075557e-003 + 2.260000e+000 2.905732e+000 -1.704000e-001 6.137845e-003 + 2.270000e+000 3.493867e+000 -1.711540e-001 6.207095e-003 + 2.280000e+000 4.051238e+000 -1.719079e-001 6.267424e-003 + 2.290000e+000 4.563012e+000 -1.726619e-001 6.305512e-003 + 2.300000e+000 5.015499e+000 -1.734159e-001 6.313279e-003 + 2.310000e+000 5.396640e+000 -1.741699e-001 6.289327e-003 + 2.320000e+000 5.696412e+000 -1.749239e-001 6.239128e-003 + 2.330000e+000 5.907163e+000 -1.756779e-001 6.173968e-003 + 2.340000e+000 6.023859e+000 -1.764318e-001 6.108695e-003 + 2.350000e+000 6.044223e+000 -1.771858e-001 6.058485e-003 + 2.360000e+000 5.968777e+000 -1.779398e-001 6.035180e-003 + 2.370000e+000 5.800777e+000 -1.786938e-001 6.044177e-003 + 2.380000e+000 5.546051e+000 -1.794478e-001 6.082973e-003 + 2.390000e+000 5.212743e+000 -1.802018e-001 6.141931e-003 + 2.400000e+000 4.810984e+000 -1.809557e-001 6.206958e-003 + 2.410000e+000 4.352496e+000 -1.817097e-001 6.263080e-003 + 2.420000e+000 3.850149e+000 -1.824637e-001 6.297839e-003 + 2.430000e+000 3.317497e+000 -1.832177e-001 6.303804e-003 + 2.440000e+000 2.768292e+000 -1.839717e-001 6.279921e-003 + 2.450000e+000 2.216027e+000 -1.847256e-001 6.231642e-003 + 2.460000e+000 1.673492e+000 -1.854796e-001 6.169863e-003 + 2.470000e+000 1.152381e+000 -1.862336e-001 6.108720e-003 + 2.480000e+000 6.629607e-001 -1.869876e-001 6.062477e-003 + 2.490000e+000 2.138015e-001 -1.877416e-001 6.042074e-003 + 2.500000e+000 -1.884112e-001 -1.884956e-001 6.052262e-003 + 2.510000e+000 -5.389853e-001 -1.892495e-001 6.090326e-003 + 2.520000e+000 -8.352506e-001 -1.900035e-001 6.146899e-003 + 2.530000e+000 -1.076508e+000 -1.907575e-001 6.208532e-003 + 2.540000e+000 -1.263910e+000 -1.915115e-001 6.261071e-003 + 2.550000e+000 -1.400272e+000 -1.922655e-001 6.292855e-003 + 2.560000e+000 -1.489839e+000 -1.930195e-001 6.297077e-003 + 2.570000e+000 -1.538008e+000 -1.937734e-001 6.273027e-003 + 2.580000e+000 -1.551027e+000 -1.945274e-001 6.226174e-003 + 2.590000e+000 -1.535680e+000 -1.952814e-001 6.167088e-003 + 2.600000e+000 -1.498977e+000 -1.960354e-001 6.109283e-003 + 2.610000e+000 -1.447860e+000 -1.967894e-001 6.066226e-003 + 2.620000e+000 -1.388926e+000 -1.975433e-001 6.048068e-003 + 2.630000e+000 -1.328199e+000 -1.982973e-001 6.058997e-003 + 2.640000e+000 -1.270938e+000 -1.990513e-001 6.096127e-003 + 2.650000e+000 -1.221494e+000 -1.998053e-001 6.150344e-003 + 2.660000e+000 -1.183216e+000 -2.005593e-001 6.208784e-003 + 2.670000e+000 -1.158418e+000 -2.013133e-001 6.258037e-003 + 2.680000e+000 -1.148379e+000 -2.020672e-001 6.287168e-003 + 2.690000e+000 -1.153406e+000 -2.028212e-001 6.289939e-003 + 2.700000e+000 -1.172919e+000 -2.035752e-001 6.265957e-003 + 2.710000e+000 -1.205579e+000 -2.043292e-001 6.220702e-003 + 2.720000e+000 -1.249439e+000 -2.050832e-001 6.164438e-003 + 2.730000e+000 -1.302100e+000 -2.058371e-001 6.110095e-003 + 2.740000e+000 -1.360883e+000 -2.065911e-001 6.070384e-003 + 2.750000e+000 -1.422997e+000 -2.073451e-001 6.054705e-003 + 2.760000e+000 -1.485693e+000 -2.080991e-001 6.066698e-003 + 2.770000e+000 -1.546401e+000 -2.088531e-001 6.103284e-003 + 2.780000e+000 -1.602855e+000 -2.096071e-001 6.155550e-003 + 2.790000e+000 -1.653175e+000 -2.103610e-001 6.211142e-003 + 2.800000e+000 -1.695938e+000 -2.111150e-001 6.257319e-003 + 2.810000e+000 -1.730213e+000 -2.118690e-001 6.283810e-003 + 2.820000e+000 -1.755559e+000 -2.126230e-001 6.284900e-003 + 2.830000e+000 -1.772018e+000 -2.133770e-001 6.260497e-003 + 2.840000e+000 -1.780060e+000 -2.141310e-001 6.216109e-003 + 2.850000e+000 -1.780531e+000 -2.148849e-001 6.161744e-003 + 2.860000e+000 -1.774572e+000 -2.156389e-001 6.109836e-003 + 2.870000e+000 -1.763535e+000 -2.163929e-001 6.072456e-003 + 2.880000e+000 -1.748895e+000 -2.171469e-001 6.058383e-003 + 2.890000e+000 -1.732161e+000 -2.179009e-001 6.070819e-003 + 2.900000e+000 -1.714793e+000 -2.186548e-001 6.106563e-003 + 2.910000e+000 -1.698127e+000 -2.194088e-001 6.156923e-003 + 2.920000e+000 -1.683317e+000 -2.201628e-001 6.210026e-003 + 2.930000e+000 -1.671284e+000 -2.209168e-001 6.253740e-003 + 2.940000e+000 -1.662691e+000 -2.216708e-001 6.278387e-003 + 2.950000e+000 -1.657923e+000 -2.224248e-001 6.278710e-003 + 2.960000e+000 -1.657092e+000 -2.231787e-001 6.254857e-003 + 2.970000e+000 -1.660054e+000 -2.239327e-001 6.212308e-003 + 2.980000e+000 -1.666438e+000 -2.246867e-001 6.160768e-003 + 2.990000e+000 -1.675686e+000 -2.254407e-001 6.112127e-003 + 3.000000e+000 -1.687101e+000 -2.261947e-001 6.077779e-003 + 3.010000e+000 -1.699901e+000 -2.269487e-001 6.065836e-003 + 3.020000e+000 -1.713270e+000 -2.277026e-001 6.079035e-003 + 3.030000e+000 -1.726413e+000 -2.284566e-001 6.114026e-003 + 3.040000e+000 -1.738604e+000 -2.292106e-001 6.162317e-003 + 3.050000e+000 -1.749228e+000 -2.299646e-001 6.212515e-003 + 3.060000e+000 -1.757815e+000 -2.307186e-001 6.253107e-003 + 3.070000e+000 -1.764064e+000 -2.314725e-001 6.275032e-003 + 3.080000e+000 -1.767855e+000 -2.322265e-001 6.273536e-003 + 3.090000e+000 -1.769253e+000 -2.329805e-001 6.249072e-003 + 3.100000e+000 -1.768500e+000 -2.337345e-001 6.207179e-003 + 3.110000e+000 -1.765995e+000 -2.344885e-001 6.157362e-003 + 3.120000e+000 -1.762269e+000 -2.352425e-001 6.111085e-003 + 3.130000e+000 -1.757951e+000 -2.359964e-001 6.079170e-003 + 3.140000e+000 -1.753729e+000 -2.367504e-001 6.069145e-003 + 3.150000e+000 -1.750304e+000 -2.375044e-001 6.083302e-003 + 3.160000e+000 -1.748356e+000 -2.382584e-001 6.118105e-003 + 3.170000e+000 -1.748490e+000 -2.390124e-001 6.165164e-003 + 3.180000e+000 -1.751207e+000 -2.397663e-001 6.213429e-003 + 3.190000e+000 -1.756865e+000 -2.405203e-001 6.251861e-003 + 3.200000e+000 -1.765652e+000 -2.412743e-001 6.271891e-003 + 3.210000e+000 -1.777570e+000 -2.420283e-001 6.269162e-003 + 3.220000e+000 -1.792422e+000 -2.427823e-001 6.244366e-003 + 3.230000e+000 -1.809814e+000 -2.435363e-001 6.203076e-003 + 3.240000e+000 -1.829164e+000 -2.442902e-001 6.154619e-003 + 3.250000e+000 -1.849721e+000 -2.450442e-001 6.110101e-003 + 3.260000e+000 -1.870596e+000 -2.457982e-001 6.079886e-003 + 3.270000e+000 -1.890796e+000 -2.465522e-001 6.071061e-003 + 3.280000e+000 -1.909271e+000 -2.473062e-001 6.085618e-003 + 3.290000e+000 -1.924961e+000 -2.480602e-001 6.119949e-003 + 3.300000e+000 -1.936846e+000 -2.488141e-001 6.165839e-003 + 3.310000e+000 -1.944001e+000 -2.495681e-001 6.212596e-003 + 3.320000e+000 -1.945645e+000 -2.503221e-001 6.249629e-003 + 3.330000e+000 -1.941185e+000 -2.510761e-001 6.268791e-003 + 3.340000e+000 -1.930261e+000 -2.518301e-001 6.266038e-003 + 3.350000e+000 -1.912772e+000 -2.525840e-001 6.242194e-003 + 3.360000e+000 -1.888895e+000 -2.533380e-001 6.202747e-003 + 3.370000e+000 -1.859097e+000 -2.540920e-001 6.156722e-003 + 3.380000e+000 -1.824120e+000 -2.548460e-001 6.114748e-003 + 3.390000e+000 -1.784964e+000 -2.556000e-001 6.086627e-003 + 3.400000e+000 -1.742850e+000 -2.563540e-001 6.078938e-003 + 3.410000e+000 -1.699161e+000 -2.571079e-001 6.093356e-003 + 3.420000e+000 -1.655384e+000 -2.578619e-001 6.126232e-003 + 3.430000e+000 -1.613028e+000 -2.586159e-001 6.169598e-003 + 3.440000e+000 -1.573537e+000 -2.593699e-001 6.213225e-003 + 3.450000e+000 -1.538198e+000 -2.601239e-001 6.247084e-003 + 3.460000e+000 -1.508047e+000 -2.608779e-001 6.263578e-003 + 3.470000e+000 -1.483770e+000 -2.616318e-001 6.259102e-003 + 3.480000e+000 -1.465618e+000 -2.623858e-001 6.234740e-003 + 3.490000e+000 -1.453329e+000 -2.631398e-001 6.196024e-003 + 3.500000e+000 -1.446066e+000 -2.638938e-001 6.151792e-003 + 3.510000e+000 -1.442371e+000 -2.646478e-001 6.112283e-003 + 3.520000e+000 -1.440145e+000 -2.654017e-001 6.086780e-003 + 3.530000e+000 -1.436652e+000 -2.661557e-001 6.081330e-003 + 3.540000e+000 -1.428552e+000 -2.669097e-001 6.097190e-003 + 3.550000e+000 -1.411965e+000 -2.676637e-001 6.130510e-003 + 3.560000e+000 -1.382560e+000 -2.684177e-001 6.173373e-003 + 3.570000e+000 -1.335674e+000 -2.691717e-001 6.215809e-003 + 3.580000e+000 -1.266456e+000 -2.699256e-001 6.248177e-003 + 3.590000e+000 -1.170037e+000 -2.706796e-001 6.263290e-003 + 3.600000e+000 -1.041710e+000 -2.714336e-001 6.257888e-003 + 3.610000e+000 -8.771255e-001 -2.721876e-001 6.233267e-003 + 3.620000e+000 -6.724891e-001 -2.729416e-001 6.194997e-003 + 3.630000e+000 -4.247576e-001 -2.736955e-001 6.151776e-003 + 3.640000e+000 -1.318216e-001 -2.744495e-001 6.113550e-003 + 3.650000e+000 2.073298e-001 -2.752035e-001 6.089223e-003 + 3.660000e+000 5.924716e-001 -2.759575e-001 6.084477e-003 + 3.670000e+000 1.022039e+000 -2.767115e-001 6.100320e-003 + 3.680000e+000 1.493063e+000 -2.774655e-001 6.132843e-003 + 3.690000e+000 2.001153e+000 -2.782194e-001 6.174266e-003 + 3.700000e+000 2.540524e+000 -2.789734e-001 6.214918e-003 + 3.710000e+000 3.104075e+000 -2.797274e-001 6.245530e-003 + 3.720000e+000 3.683516e+000 -2.804814e-001 6.259278e-003 + 3.730000e+000 4.269547e+000 -2.812354e-001 6.253185e-003 + 3.740000e+000 4.852071e+000 -2.819894e-001 6.228691e-003 + 3.750000e+000 5.420449e+000 -2.827433e-001 6.191344e-003 + 3.760000e+000 5.963786e+000 -2.834973e-001 6.149650e-003 + 3.770000e+000 6.471236e+000 -2.842513e-001 6.113221e-003 + 3.780000e+000 6.932311e+000 -2.850053e-001 6.090561e-003 + 3.790000e+000 7.337199e+000 -2.857593e-001 6.086983e-003 + 3.800000e+000 7.677062e+000 -2.865132e-001 6.103248e-003 + 3.810000e+000 7.944315e+000 -2.872672e-001 6.135398e-003 + 3.820000e+000 8.132870e+000 -2.880212e-001 6.175801e-003 + 3.830000e+000 8.238336e+000 -2.887752e-001 6.215086e-003 + 3.840000e+000 8.258170e+000 -2.895292e-001 6.244352e-003 + 3.850000e+000 8.191770e+000 -2.902832e-001 6.257127e-003 + 3.860000e+000 8.040505e+000 -2.910371e-001 6.250694e-003 + 3.870000e+000 7.807685e+000 -2.917911e-001 6.226607e-003 + 3.880000e+000 7.498465e+000 -2.925451e-001 6.190355e-003 + 3.890000e+000 7.119692e+000 -2.932991e-001 6.150213e-003 + 3.900000e+000 6.679695e+000 -2.940531e-001 6.115433e-003 + 3.910000e+000 6.188032e+000 -2.948071e-001 6.094103e-003 + 3.920000e+000 5.655192e+000 -2.955610e-001 6.091167e-003 + 3.930000e+000 5.092280e+000 -2.963150e-001 6.107173e-003 + 3.940000e+000 4.510673e+000 -2.970690e-001 6.138158e-003 + 3.950000e+000 3.921689e+000 -2.978230e-001 6.176699e-003 + 3.960000e+000 3.336249e+000 -2.985770e-001 6.213790e-003 + 3.970000e+000 2.764574e+000 -2.993309e-001 6.240966e-003 + 3.980000e+000 2.215902e+000 -3.000849e-001 6.252173e-003 + 3.990000e+000 1.698258e+000 -3.008389e-001 6.245012e-003 + 4.000000e+000 1.218266e+000 -3.015929e-001 6.221207e-003 + 4.010000e+000 7.810202e-001 -3.023469e-001 6.186226e-003 + 4.020000e+000 3.900163e-001 -3.031009e-001 6.148134e-003 + 4.030000e+000 4.714116e-002 -3.038548e-001 6.115808e-003 + 4.040000e+000 -2.472755e-001 -3.046088e-001 6.096872e-003 + 4.050000e+000 -4.943550e-001 -3.053628e-001 6.095816e-003 + 4.060000e+000 -6.965118e-001 -3.061168e-001 6.112855e-003 + 4.070000e+000 -8.572547e-001 -3.068708e-001 6.143889e-003 + 4.080000e+000 -9.809528e-001 -3.076247e-001 6.181580e-003 + 4.090000e+000 -1.072579e+000 -3.083787e-001 6.217181e-003 + 4.100000e+000 -1.137443e+000 -3.091327e-001 6.242590e-003 + 4.110000e+000 -1.180920e+000 -3.098867e-001 6.252130e-003 + 4.120000e+000 -1.208194e+000 -3.106407e-001 6.243721e-003 + 4.130000e+000 -1.224017e+000 -3.113947e-001 6.219283e-003 + 4.140000e+000 -1.232505e+000 -3.121486e-001 6.184334e-003 + 4.150000e+000 -1.236965e+000 -3.129026e-001 6.146821e-003 + 4.160000e+000 -1.239771e+000 -3.136566e-001 6.115377e-003 + 4.170000e+000 -1.242284e+000 -3.144106e-001 6.097303e-003 + 4.180000e+000 -1.244826e+000 -3.151646e-001 6.096776e-003 + 4.190000e+000 -1.246701e+000 -3.159186e-001 6.113796e-003 + 4.200000e+000 -1.246265e+000 -3.166725e-001 6.144203e-003 + 4.210000e+000 -1.241037e+000 -3.174265e-001 6.180766e-003 + 4.220000e+000 -1.227854e+000 -3.181805e-001 6.214985e-003 + 4.230000e+000 -1.203045e+000 -3.189345e-001 6.239074e-003 + 4.240000e+000 -1.162642e+000 -3.196885e-001 6.247673e-003 + 4.250000e+000 -1.102590e+000 -3.204424e-001 6.238956e-003 + 4.260000e+000 -1.018967e+000 -3.211964e-001 6.214976e-003 + 4.270000e+000 -9.082017e-001 -3.219504e-001 6.181238e-003 + 4.280000e+000 -7.672686e-001 -3.227044e-001 6.145515e-003 + 4.290000e+000 -5.938690e-001 -3.234584e-001 6.116136e-003 + 4.300000e+000 -3.865776e-001 -3.242124e-001 6.100020e-003 + 4.310000e+000 -1.449573e-001 -3.249663e-001 6.100979e-003 + 4.320000e+000 1.303658e-001 -3.257203e-001 6.118748e-003 + 4.330000e+000 4.376674e-001 -3.264743e-001 6.149068e-003 + 4.340000e+000 7.741317e-001 -3.272283e-001 6.184790e-003 + 4.350000e+000 1.135899e+000 -3.279823e-001 6.217639e-003 + 4.360000e+000 1.518149e+000 -3.287363e-001 6.240143e-003 + 4.370000e+000 1.915223e+000 -3.294902e-001 6.247268e-003 + 4.380000e+000 2.320771e+000 -3.302442e-001 6.237458e-003 + 4.390000e+000 2.727923e+000 -3.309982e-001 6.212943e-003 + 4.400000e+000 3.129478e+000 -3.317522e-001 6.179268e-003 + 4.410000e+000 3.518103e+000 -3.325062e-001 6.144118e-003 + 4.420000e+000 3.886536e+000 -3.332601e-001 6.115613e-003 + 4.430000e+000 4.227778e+000 -3.340141e-001 6.100402e-003 + 4.440000e+000 4.535288e+000 -3.347681e-001 6.102033e-003 + 4.450000e+000 4.803148e+000 -3.355221e-001 6.120053e-003 + 4.460000e+000 5.026215e+000 -3.362761e-001 6.150143e-003 + 4.470000e+000 5.200248e+000 -3.370301e-001 6.185227e-003 + 4.480000e+000 5.322002e+000 -3.377840e-001 6.217217e-003 + 4.490000e+000 5.389295e+000 -3.385380e-001 6.238881e-003 + 4.500000e+000 5.401048e+000 -3.392920e-001 6.245421e-003 + 4.510000e+000 5.357283e+000 -3.400460e-001 6.235462e-003 + 4.520000e+000 5.259105e+000 -3.408000e-001 6.211312e-003 + 4.530000e+000 5.108643e+000 -3.415539e-001 6.178473e-003 + 4.540000e+000 4.908978e+000 -3.423079e-001 6.144467e-003 + 4.550000e+000 4.664038e+000 -3.430619e-001 6.117155e-003 + 4.560000e+000 4.378484e+000 -3.438159e-001 6.102897e-003 + 4.570000e+000 4.057575e+000 -3.445699e-001 6.104988e-003 + 4.580000e+000 3.707026e+000 -3.453239e-001 6.122831e-003 + 4.590000e+000 3.332860e+000 -3.460778e-001 6.152111e-003 + 4.600000e+000 2.941264e+000 -3.468318e-001 6.185903e-003 + 4.610000e+000 2.538432e+000 -3.475858e-001 6.216376e-003 + 4.620000e+000 2.130434e+000 -3.483398e-001 6.236605e-003 + 4.630000e+000 1.723080e+000 -3.490938e-001 6.242081e-003 + 4.640000e+000 1.321805e+000 -3.498478e-001 6.231646e-003 + 4.650000e+000 9.315629e-001 -3.506017e-001 6.207713e-003 + 4.660000e+000 5.567417e-001 -3.513557e-001 6.175751e-003 + 4.670000e+000 2.010969e-001 -3.521097e-001 6.143110e-003 + 4.680000e+000 -1.322974e-001 -3.528637e-001 6.117374e-003 + 4.690000e+000 -4.410765e-001 -3.536177e-001 6.104572e-003 + 4.700000e+000 -7.235930e-001 -3.543716e-001 6.107692e-003 + 4.710000e+000 -9.789064e-001 -3.551256e-001 6.125930e-003 + 4.720000e+000 -1.206754e+000 -3.558796e-001 6.154912e-003 + 4.730000e+000 -1.407504e+000 -3.566336e-001 6.187809e-003 + 4.740000e+000 -1.582099e+000 -3.573876e-001 6.217007e-003 + 4.750000e+000 -1.731979e+000 -3.581416e-001 6.235859e-003 + 4.760000e+000 -1.859002e+000 -3.588955e-001 6.240144e-003 + 4.770000e+000 -1.965353e+000 -3.596495e-001 6.228933e-003 + 4.780000e+000 -2.053453e+000 -3.604035e-001 6.204774e-003 + 4.790000e+000 -2.125863e+000 -3.611575e-001 6.173156e-003 + 4.800000e+000 -2.185191e+000 -3.619115e-001 6.141323e-003 + 4.810000e+000 -2.234004e+000 -3.626655e-001 6.116657e-003 + 4.820000e+000 -2.274749e+000 -3.634194e-001 6.104934e-003 + 4.830000e+000 -2.309685e+000 -3.641734e-001 6.108901e-003 + 4.840000e+000 -2.340817e+000 -3.649274e-001 6.127591e-003 + 4.850000e+000 -2.369859e+000 -3.656814e-001 6.156582e-003 + 4.860000e+000 -2.398197e+000 -3.664354e-001 6.189119e-003 + 4.870000e+000 -2.426877e+000 -3.671893e-001 6.217754e-003 + 4.880000e+000 -2.456603e+000 -3.679433e-001 6.236052e-003 + 4.890000e+000 -2.487749e+000 -3.686973e-001 6.239990e-003 + 4.900000e+000 -2.520384e+000 -3.694513e-001 6.228780e-003 + 4.910000e+000 -2.554314e+000 -3.702053e-001 6.205015e-003 + 4.920000e+000 -2.589123e+000 -3.709593e-001 6.174114e-003 + 4.930000e+000 -2.624230e+000 -3.717132e-001 6.143151e-003 + 4.940000e+000 -2.658941e+000 -3.724672e-001 6.119260e-003 + 4.950000e+000 -2.692513e+000 -3.732212e-001 6.107960e-003 + 4.960000e+000 -2.724201e+000 -3.739752e-001 6.111795e-003 + 4.970000e+000 -2.753316e+000 -3.747292e-001 6.129711e-003 + 4.980000e+000 -2.779263e+000 -3.754831e-001 6.157344e-003 + 4.990000e+000 -2.801579e+000 -3.762371e-001 6.188130e-003 + 5.000000e+000 -2.819952e+000 -3.769911e-001 6.214907e-003 + 5.010000e+000 -2.834236e+000 -3.777451e-001 6.231565e-003 + 5.020000e+000 -2.844447e+000 -3.784991e-001 6.234376e-003 + 5.030000e+000 -2.850750e+000 -3.792531e-001 6.222771e-003 + 5.040000e+000 -2.853437e+000 -3.800070e-001 6.199443e-003 + 5.050000e+000 -2.852889e+000 -3.807610e-001 6.169771e-003 + 5.060000e+000 -2.849541e+000 -3.815150e-001 6.140643e-003 + 5.070000e+000 -2.843830e+000 -3.822690e-001 6.118892e-003 + 5.080000e+000 -2.836153e+000 -3.830230e-001 6.109674e-003 + 5.090000e+000 -2.826813e+000 -3.837770e-001 6.115191e-003 + 5.100000e+000 -2.815985e+000 -3.845309e-001 6.134136e-003 + 5.110000e+000 -2.803671e+000 -3.852849e-001 6.162036e-003 + 5.120000e+000 -2.789681e+000 -3.860389e-001 6.192381e-003 + 5.130000e+000 -2.773614e+000 -3.867929e-001 6.218186e-003 + 5.140000e+000 -2.754854e+000 -3.875469e-001 6.233598e-003 + 5.150000e+000 -2.732588e+000 -3.883008e-001 6.235168e-003 + 5.160000e+000 -2.705823e+000 -3.890548e-001 6.222566e-003 + 5.170000e+000 -2.673433e+000 -3.898088e-001 6.198652e-003 + 5.180000e+000 -2.634201e+000 -3.905628e-001 6.168863e-003 + 5.190000e+000 -2.586888e+000 -3.913168e-001 6.140036e-003 + 5.200000e+000 -2.530290e+000 -3.920708e-001 6.118863e-003 + 5.210000e+000 -2.463318e+000 -3.928247e-001 6.110299e-003 + 5.220000e+000 -2.385061e+000 -3.935787e-001 6.116346e-003 + 5.230000e+000 -2.294863e+000 -3.943327e-001 6.135549e-003 + 5.240000e+000 -2.192374e+000 -3.950867e-001 6.163378e-003 + 5.250000e+000 -2.077610e+000 -3.958407e-001 6.193358e-003 + 5.260000e+000 -1.950987e+000 -3.965947e-001 6.218627e-003 + 5.270000e+000 -1.813344e+000 -3.973486e-001 6.233490e-003 + 5.280000e+000 -1.665952e+000 -3.981026e-001 6.234658e-003 + 5.290000e+000 -1.510499e+000 -3.988566e-001 6.221922e-003 + 5.300000e+000 -1.349061e+000 -3.996106e-001 6.198189e-003 + 5.310000e+000 -1.184058e+000 -4.003646e-001 6.168856e-003 + 5.320000e+000 -1.018189e+000 -4.011185e-001 6.140642e-003 + 5.330000e+000 -8.543563e-001 -4.018725e-001 6.120061e-003 + 5.340000e+000 -6.955838e-001 -4.026265e-001 6.111879e-003 + 5.350000e+000 -5.449206e-001 -4.033805e-001 6.117946e-003 + 5.360000e+000 -4.053484e-001 -4.041345e-001 6.136743e-003 + 5.370000e+000 -2.796867e-001 -4.048885e-001 6.163776e-003 + 5.380000e+000 -1.705042e-001 -4.056424e-001 6.192709e-003 + 5.390000e+000 -8.003744e-002 -4.063964e-001 6.216879e-003 + 5.400000e+000 -1.012246e-002 -4.071504e-001 6.230815e-003 + 5.410000e+000 3.786032e-002 -4.079044e-001 6.231423e-003 + 5.420000e+000 6.302458e-002 -4.086584e-001 6.218623e-003 + 5.430000e+000 6.499957e-002 -4.094123e-001 6.195355e-003 + 5.440000e+000 4.393390e-002 -4.101663e-001 6.166945e-003 + 5.450000e+000 4.825130e-004 -4.109203e-001 6.139937e-003 + 5.460000e+000 -6.422218e-002 -4.116743e-001 6.120603e-003 + 5.470000e+000 -1.486127e-001 -4.124283e-001 6.113451e-003 + 5.480000e+000 -2.507403e-001 -4.131823e-001 6.120118e-003 + 5.490000e+000 -3.683363e-001 -4.139362e-001 6.138969e-003 + 5.500000e+000 -4.988795e-001 -4.146902e-001 6.165522e-003 + 5.510000e+000 -6.396640e-001 -4.154442e-001 6.193571e-003 + 5.520000e+000 -7.878669e-001 -4.161982e-001 6.216669e-003 + 5.530000e+000 -9.406112e-001 -4.169522e-001 6.229593e-003 + 5.540000e+000 -1.095022e+000 -4.177062e-001 6.229482e-003 + 5.550000e+000 -1.248274e+000 -4.184601e-001 6.216427e-003 + 5.560000e+000 -1.397634e+000 -4.192141e-001 6.193437e-003 + 5.570000e+000 -1.540483e+000 -4.199681e-001 6.165795e-003 + 5.580000e+000 -1.674344e+000 -4.207221e-001 6.139890e-003 + 5.590000e+000 -1.796886e+000 -4.214761e-001 6.121758e-003 + 5.600000e+000 -1.905934e+000 -4.222300e-001 6.115638e-003 + 5.610000e+000 -1.999463e+000 -4.229840e-001 6.122931e-003 + 5.620000e+000 -2.075599e+000 -4.237380e-001 6.141856e-003 + 5.630000e+000 -2.132613e+000 -4.244920e-001 6.167907e-003 + 5.640000e+000 -2.168920e+000 -4.252460e-001 6.194974e-003 + 5.650000e+000 -2.183082e+000 -4.260000e-001 6.216801e-003 + 5.660000e+000 -2.173820e+000 -4.267539e-001 6.228409e-003 + 5.670000e+000 -2.140026e+000 -4.275079e-001 6.227177e-003 + 5.680000e+000 -2.080793e+000 -4.282619e-001 6.213389e-003 + 5.690000e+000 -1.995444e+000 -4.290159e-001 6.190169e-003 + 5.700000e+000 -1.883575e+000 -4.297699e-001 6.162812e-003 + 5.710000e+000 -1.745098e+000 -4.305239e-001 6.137618e-003 + 5.720000e+000 -1.580294e+000 -4.312778e-001 6.120448e-003 + 5.730000e+000 -1.389856e+000 -4.320318e-001 6.115325e-003 + 5.740000e+000 -1.174941e+000 -4.327858e-001 6.123444e-003 + 5.750000e+000 -9.372060e-001 -4.335398e-001 6.142874e-003 + 5.760000e+000 -6.788413e-001 -4.342938e-001 6.169053e-003 + 5.770000e+000 -4.025839e-001 -4.350477e-001 6.195914e-003 + 5.780000e+000 -1.117195e-001 -4.358017e-001 6.217323e-003 + 5.790000e+000 1.899369e-001 -4.365557e-001 6.228462e-003 + 5.800000e+000 4.980797e-001 -4.373097e-001 6.226875e-003 + 5.810000e+000 8.079733e-001 -4.380637e-001 6.212974e-003 + 5.820000e+000 1.114533e+000 -4.388177e-001 6.189942e-003 + 5.830000e+000 1.412428e+000 -4.395716e-001 6.163056e-003 + 5.840000e+000 1.696194e+000 -4.403256e-001 6.138516e-003 + 5.850000e+000 1.960375e+000 -4.410796e-001 6.122029e-003 + 5.860000e+000 2.199656e+000 -4.418336e-001 6.117445e-003 + 5.870000e+000 2.409017e+000 -4.425876e-001 6.125813e-003 + 5.880000e+000 2.583876e+000 -4.433415e-001 6.145128e-003 + 5.890000e+000 2.720232e+000 -4.440955e-001 6.170839e-003 + 5.900000e+000 2.814793e+000 -4.448495e-001 6.196972e-003 + 5.910000e+000 2.865088e+000 -4.456035e-001 6.217547e-003 + 5.920000e+000 2.869557e+000 -4.463575e-001 6.227920e-003 + 5.930000e+000 2.827616e+000 -4.471115e-001 6.225791e-003 + 5.940000e+000 2.739689e+000 -4.478654e-001 6.211677e-003 + 5.950000e+000 2.607214e+000 -4.486194e-001 6.188794e-003 + 5.960000e+000 2.432609e+000 -4.493734e-001 6.162362e-003 + 5.970000e+000 2.219216e+000 -4.501274e-001 6.138453e-003 + 5.980000e+000 1.971206e+000 -4.508814e-001 6.122596e-003 + 5.990000e+000 1.693462e+000 -4.516354e-001 6.118458e-003 + 6.000000e+000 1.391438e+000 -4.523893e-001 6.126947e-003 + 6.010000e+000 1.070997e+000 -4.531433e-001 6.145994e-003 + 6.020000e+000 7.382436e-001 -4.538973e-001 6.171081e-003 + 6.030000e+000 3.993431e-001 -4.546513e-001 6.196356e-003 + 6.040000e+000 6.034626e-002 -4.554053e-001 6.216016e-003 + 6.050000e+000 -2.729810e-001 -4.561592e-001 6.225612e-003 + 6.060000e+000 -5.953141e-001 -4.569132e-001 6.223015e-003 + 6.070000e+000 -9.019075e-001 -4.576672e-001 6.208852e-003 + 6.080000e+000 -1.188710e+000 -4.584212e-001 6.186368e-003 + 6.090000e+000 -1.452451e+000 -4.591752e-001 6.160719e-003 + 6.100000e+000 -1.690700e+000 -4.599292e-001 6.137827e-003 + 6.110000e+000 -1.901892e+000 -4.606831e-001 6.123020e-003 + 6.120000e+000 -2.085324e+000 -4.614371e-001 6.119755e-003 + 6.130000e+000 -2.241119e+000 -4.621911e-001 6.128771e-003 + 6.140000e+000 -2.370165e+000 -4.629451e-001 6.147917e-003 + 6.150000e+000 -2.474029e+000 -4.636991e-001 6.172696e-003 + 6.160000e+000 -2.554846e+000 -4.644531e-001 6.197368e-003 + 6.170000e+000 -2.615197e+000 -4.652070e-001 6.216307e-003 + 6.180000e+000 -2.657978e+000 -4.659610e-001 6.225263e-003 + 6.190000e+000 -2.686256e+000 -4.667150e-001 6.222282e-003 + 6.200000e+000 -2.703130e+000 -4.674690e-001 6.208104e-003 + 6.210000e+000 -2.711598e+000 -4.682230e-001 6.186001e-003 + 6.220000e+000 -2.714430e+000 -4.689769e-001 6.161060e-003 + 6.230000e+000 -2.714060e+000 -4.697309e-001 6.139050e-003 + 6.240000e+000 -2.712485e+000 -4.704849e-001 6.125086e-003 + 6.250000e+000 -2.711195e+000 -4.712389e-001 6.122411e-003 + 6.260000e+000 -2.711116e+000 -4.719929e-001 6.131595e-003 + 6.270000e+000 -2.712579e+000 -4.727469e-001 6.150408e-003 + 6.280000e+000 -2.715307e+000 -4.735008e-001 6.174381e-003 + 6.290000e+000 -2.718431e+000 -4.742548e-001 6.197909e-003 + 6.300000e+000 -2.720516e+000 -4.750088e-001 6.215564e-003 + 6.310000e+000 -2.719612e+000 -4.757628e-001 6.223325e-003 + 6.320000e+000 -2.713316e+000 -4.765168e-001 6.219445e-003 + 6.330000e+000 -2.698856e+000 -4.772707e-001 6.204820e-003 + 6.340000e+000 -2.673174e+000 -4.780247e-001 6.182786e-003 + 6.350000e+000 -2.633027e+000 -4.787787e-001 6.158398e-003 + 6.360000e+000 -2.575085e+000 -4.795327e-001 6.137295e-003 + 6.370000e+000 -2.496039e+000 -4.802867e-001 6.124399e-003 + 6.380000e+000 -2.392708e+000 -4.810407e-001 6.122728e-003 + 6.390000e+000 -2.262137e+000 -4.817946e-001 6.132657e-003 + 6.400000e+000 -2.101704e+000 -4.825486e-001 6.151833e-003 + 6.410000e+000 -1.909209e+000 -4.833026e-001 6.175761e-003 + 6.420000e+000 -1.682966e+000 -4.840566e-001 6.198906e-003 + 6.430000e+000 -1.421877e+000 -4.848106e-001 6.215985e-003 + 6.440000e+000 -1.125507e+000 -4.855646e-001 6.223154e-003 + 6.450000e+000 -7.941368e-001 -4.863185e-001 6.218838e-003 + 6.460000e+000 -4.288090e-001 -4.870725e-001 6.204061e-003 + 6.470000e+000 -3.135871e-002 -4.878265e-001 6.182215e-003 + 6.480000e+000 3.955719e-001 -4.885805e-001 6.158325e-003 + 6.490000e+000 8.485353e-001 -4.893345e-001 6.137921e-003 + 6.500000e+000 1.323299e+000 -4.900884e-001 6.125756e-003 + 6.510000e+000 1.814882e+000 -4.908424e-001 6.124663e-003 + 6.520000e+000 2.317618e+000 -4.915964e-001 6.134864e-003 + 6.530000e+000 2.825229e+000 -4.923504e-001 6.153919e-003 + 6.540000e+000 3.330925e+000 -4.931044e-001 6.177338e-003 + 6.550000e+000 3.827525e+000 -4.938584e-001 6.199676e-003 + 6.560000e+000 4.307586e+000 -4.946123e-001 6.215800e-003 + 6.570000e+000 4.763562e+000 -4.953663e-001 6.222047e-003 + 6.580000e+000 5.187964e+000 -4.961203e-001 6.217011e-003 + 6.590000e+000 5.573535e+000 -4.968743e-001 6.201840e-003 + 6.600000e+000 5.913435e+000 -4.976283e-001 6.179980e-003 + 6.610000e+000 6.201417e+000 -4.983823e-001 6.156431e-003 + 6.620000e+000 6.432009e+000 -4.991362e-001 6.136619e-003 + 6.630000e+000 6.600681e+000 -4.998902e-001 6.125141e-003 + 6.640000e+000 6.703996e+000 -5.006442e-001 6.124660e-003 + 6.650000e+000 6.739740e+000 -5.013982e-001 6.135252e-003 + 6.660000e+000 6.707032e+000 -5.021522e-001 6.154397e-003 + 6.670000e+000 6.606392e+000 -5.029061e-001 6.177608e-003 + 6.680000e+000 6.439779e+000 -5.036601e-001 6.199521e-003 + 6.690000e+000 6.210592e+000 -5.044141e-001 6.215142e-003 + 6.700000e+000 5.923629e+000 -5.051681e-001 6.220969e-003 + 6.710000e+000 5.585000e+000 -5.059221e-001 6.215742e-003 + 6.720000e+000 5.202007e+000 -5.066761e-001 6.200705e-003 + 6.730000e+000 4.782980e+000 -5.074300e-001 6.179334e-003 + 6.740000e+000 4.337083e+000 -5.081840e-001 6.156568e-003 + 6.750000e+000 3.874085e+000 -5.089380e-001 6.137702e-003 + 6.760000e+000 3.404116e+000 -5.096920e-001 6.127148e-003 + 6.770000e+000 2.937399e+000 -5.104460e-001 6.127374e-003 + 6.780000e+000 2.483977e+000 -5.111999e-001 6.138296e-003 + 6.790000e+000 2.053449e+000 -5.119539e-001 6.157309e-003 + 6.800000e+000 1.654701e+000 -5.127079e-001 6.179933e-003 + 6.810000e+000 1.295673e+000 -5.134619e-001 6.200894e-003 + 6.820000e+000 9.831380e-001 -5.142159e-001 6.215358e-003 + 6.830000e+000 7.225244e-001 -5.149699e-001 6.220010e-003 + 6.840000e+000 5.177757e-001 -5.157238e-001 6.213772e-003 + 6.850000e+000 3.712560e-001 -5.164778e-001 6.198035e-003 + 6.860000e+000 2.837033e-001 -5.172318e-001 6.176355e-003 + 6.870000e+000 2.542334e-001 -5.179858e-001 6.153680e-003 + 6.880000e+000 2.803929e-001 -5.187398e-001 6.135238e-003 + 6.890000e+000 3.582598e-001 -5.194938e-001 6.125319e-003 + 6.900000e+000 4.825872e-001 -5.202477e-001 6.126244e-003 + 6.910000e+000 6.469854e-001 -5.210017e-001 6.137794e-003 + 6.920000e+000 8.441353e-001 -5.217557e-001 6.157273e-003 + 6.930000e+000 1.066025e+000 -5.225097e-001 6.180171e-003 + 6.940000e+000 1.304203e+000 -5.232637e-001 6.201252e-003 + 6.950000e+000 1.550036e+000 -5.240176e-001 6.215760e-003 + 6.960000e+000 1.794962e+000 -5.247716e-001 6.220480e-003 + 6.970000e+000 2.030740e+000 -5.255256e-001 6.214424e-003 + 6.980000e+000 2.249670e+000 -5.262796e-001 6.199033e-003 + 6.990000e+000 2.444795e+000 -5.270336e-001 6.177862e-003 + 7.000000e+000 2.610065e+000 -5.277876e-001 6.155797e-003 + 7.010000e+000 2.740471e+000 -5.285415e-001 6.137953e-003 + 7.020000e+000 2.832135e+000 -5.292955e-001 6.128485e-003 + 7.030000e+000 2.882361e+000 -5.300495e-001 6.129587e-003 + 7.040000e+000 2.889643e+000 -5.308035e-001 6.140960e-003 + 7.050000e+000 2.853643e+000 -5.315575e-001 6.159896e-003 + 7.060000e+000 2.775125e+000 -5.323115e-001 6.181949e-003 + 7.070000e+000 2.655861e+000 -5.330654e-001 6.202006e-003 + 7.080000e+000 2.498514e+000 -5.338194e-001 6.215475e-003 + 7.090000e+000 2.306495e+000 -5.345734e-001 6.219305e-003 + 7.100000e+000 2.083819e+000 -5.353274e-001 6.212644e-003 + 7.110000e+000 1.834935e+000 -5.360814e-001 6.197013e-003 + 7.120000e+000 1.564575e+000 -5.368353e-001 6.175974e-003 + 7.130000e+000 1.277594e+000 -5.375893e-001 6.154345e-003 + 7.140000e+000 9.788285e-001 -5.383433e-001 6.137111e-003 + 7.150000e+000 6.729621e-001 -5.390973e-001 6.128256e-003 + 7.160000e+000 3.644169e-001 -5.398513e-001 6.129810e-003 + 7.170000e+000 5.725944e-002 -5.406053e-001 6.141353e-003 + 7.180000e+000 -2.448687e-001 -5.413592e-001 6.160127e-003 + 7.190000e+000 -5.387993e-001 -5.421132e-001 6.181719e-003 + 7.200000e+000 -8.218641e-001 -5.428672e-001 6.201126e-003 + 7.210000e+000 -1.091901e+000 -5.436212e-001 6.213909e-003 + 7.220000e+000 -1.347241e+000 -5.443752e-001 6.217184e-003 + 7.230000e+000 -1.586684e+000 -5.451291e-001 6.210243e-003 + 7.240000e+000 -1.809453e+000 -5.458831e-001 6.194700e-003 + 7.250000e+000 -2.015147e+000 -5.466371e-001 6.174133e-003 + 7.260000e+000 -2.203686e+000 -5.473911e-001 6.153296e-003 + 7.270000e+000 -2.375247e+000 -5.481451e-001 6.137035e-003 + 7.280000e+000 -2.530203e+000 -5.488991e-001 6.129155e-003 + 7.290000e+000 -2.669065e+000 -5.496530e-001 6.131498e-003 + 7.300000e+000 -2.792425e+000 -5.504070e-001 6.143495e-003 + 7.310000e+000 -2.900902e+000 -5.511610e-001 6.162309e-003 + 7.320000e+000 -2.995103e+000 -5.519150e-001 6.183535e-003 + 7.330000e+000 -3.075580e+000 -5.526690e-001 6.202258e-003 + 7.340000e+000 -3.142801e+000 -5.534230e-001 6.214181e-003 + 7.350000e+000 -3.197130e+000 -5.541769e-001 6.216590e-003 + 7.360000e+000 -3.238812e+000 -5.549309e-001 6.208934e-003 + 7.370000e+000 -3.267962e+000 -5.556849e-001 6.192946e-003 + 7.380000e+000 -3.284570e+000 -5.564389e-001 6.172262e-003 + 7.390000e+000 -3.288507e+000 -5.571929e-001 6.151623e-003 + 7.400000e+000 -3.279534e+000 -5.579468e-001 6.135801e-003 + 7.410000e+000 -3.257326e+000 -5.587008e-001 6.128477e-003 + 7.420000e+000 -3.221494e+000 -5.594548e-001 6.131357e-003 + 7.430000e+000 -3.171615e+000 -5.602088e-001 6.143757e-003 + 7.440000e+000 -3.107264e+000 -5.609628e-001 6.162773e-003 + 7.450000e+000 -3.028055e+000 -5.617168e-001 6.183998e-003 + 7.460000e+000 -2.933678e+000 -5.624707e-001 6.202569e-003 + 7.470000e+000 -2.823945e+000 -5.632247e-001 6.214286e-003 + 7.480000e+000 -2.698833e+000 -5.639787e-001 6.216542e-003 + 7.490000e+000 -2.558527e+000 -5.647327e-001 6.208881e-003 + 7.500000e+000 -2.403466e+000 -5.654867e-001 6.193090e-003 + 7.510000e+000 -2.234373e+000 -5.662407e-001 6.172806e-003 + 7.520000e+000 -2.052296e+000 -5.669946e-001 6.152709e-003 + 7.530000e+000 -1.858629e+000 -5.677486e-001 6.137463e-003 + 7.540000e+000 -1.655127e+000 -5.685026e-001 6.130616e-003 + 7.550000e+000 -1.443910e+000 -5.692566e-001 6.133750e-003 + 7.560000e+000 -1.227451e+000 -5.700106e-001 6.146095e-003 + 7.570000e+000 -1.008550e+000 -5.707645e-001 6.164726e-003 + 7.580000e+000 -7.902942e-001 -5.715185e-001 6.185282e-003 + 7.590000e+000 -5.759941e-001 -5.722725e-001 6.203004e-003 + 7.600000e+000 -3.691133e-001 -5.730265e-001 6.213832e-003 + 7.610000e+000 -1.731754e-001 -5.737805e-001 6.215300e-003 + 7.620000e+000 8.339132e-003 -5.745345e-001 6.207073e-003 + 7.630000e+000 1.721064e-001 -5.752884e-001 6.191009e-003 + 7.640000e+000 3.150803e-001 -5.760424e-001 6.170755e-003 + 7.650000e+000 4.346155e-001 -5.767964e-001 6.150941e-003 + 7.660000e+000 5.285883e-001 -5.775504e-001 6.136125e-003 + 7.670000e+000 5.955096e-001 -5.783044e-001 6.129724e-003 + 7.680000e+000 6.346248e-001 -5.790584e-001 6.133194e-003 + 7.690000e+000 6.459958e-001 -5.798123e-001 6.145680e-003 + 7.700000e+000 6.305582e-001 -5.805663e-001 6.164230e-003 + 7.710000e+000 5.901524e-001 -5.813203e-001 6.184524e-003 + 7.720000e+000 5.275215e-001 -5.820743e-001 6.201902e-003 + 7.730000e+000 4.462768e-001 -5.828283e-001 6.212428e-003 + 7.740000e+000 3.508278e-001 -5.835822e-001 6.213768e-003 + 7.750000e+000 2.462770e-001 -5.843362e-001 6.205683e-003 + 7.760000e+000 1.382830e-001 -5.850902e-001 6.190076e-003 + 7.770000e+000 3.289347e-002 -5.858442e-001 6.170570e-003 + 7.780000e+000 -6.364660e-002 -5.865982e-001 6.151694e-003 + 7.790000e+000 -1.451046e-001 -5.873522e-001 6.137856e-003 + 7.800000e+000 -2.054812e-001 -5.881061e-001 6.132292e-003 + 7.810000e+000 -2.392345e-001 -5.888601e-001 6.136296e-003 + 7.820000e+000 -2.414980e-001 -5.896141e-001 6.148896e-003 + 7.830000e+000 -2.082837e-001 -5.903681e-001 6.167108e-003 + 7.840000e+000 -1.366624e-001 -5.911221e-001 6.186664e-003 + 7.850000e+000 -2.491182e-002 -5.918760e-001 6.203025e-003 + 7.860000e+000 1.273730e-001 -5.926300e-001 6.212427e-003 + 7.870000e+000 3.192146e-001 -5.933840e-001 6.212717e-003 + 7.880000e+000 5.482349e-001 -5.941380e-001 6.203822e-003 + 7.890000e+000 8.106889e-001 -5.948920e-001 6.187758e-003 + 7.900000e+000 1.101548e+000 -5.956460e-001 6.168193e-003 + 7.910000e+000 1.414631e+000 -5.963999e-001 6.149632e-003 + 7.920000e+000 1.742785e+000 -5.971539e-001 6.136386e-003 + 7.930000e+000 2.078094e+000 -5.979079e-001 6.131553e-003 + 7.940000e+000 2.412130e+000 -5.986619e-001 6.136273e-003 + 7.950000e+000 2.736223e+000 -5.994159e-001 6.149448e-003 + 7.960000e+000 3.041732e+000 -6.001699e-001 6.168015e-003 + 7.970000e+000 3.320335e+000 -6.009238e-001 6.187689e-003 + 7.980000e+000 3.564293e+000 -6.016778e-001 6.203978e-003 + 7.990000e+000 3.766702e+000 -6.024318e-001 6.213203e-003 + 8.000000e+000 3.921712e+000 -6.031858e-001 6.213311e-003 + 8.010000e+000 4.024710e+000 -6.039398e-001 6.204315e-003 + 8.020000e+000 4.072449e+000 -6.046937e-001 6.188283e-003 + 8.030000e+000 4.063140e+000 -6.054477e-001 6.168888e-003 + 8.040000e+000 3.996477e+000 -6.062017e-001 6.150584e-003 + 8.050000e+000 3.873618e+000 -6.069557e-001 6.137593e-003 + 8.060000e+000 3.697112e+000 -6.077097e-001 6.132906e-003 + 8.070000e+000 3.470771e+000 -6.084637e-001 6.137570e-003 + 8.080000e+000 3.199516e+000 -6.092176e-001 6.150433e-003 + 8.090000e+000 2.889169e+000 -6.099716e-001 6.168438e-003 + 8.100000e+000 2.546242e+000 -6.107256e-001 6.187369e-003 + 8.110000e+000 2.177692e+000 -6.114796e-001 6.202848e-003 + 8.120000e+000 1.790687e+000 -6.122336e-001 6.211339e-003 + 8.130000e+000 1.392368e+000 -6.129876e-001 6.210927e-003 + 8.140000e+000 9.896326e-001 -6.137415e-001 6.201734e-003 + 8.150000e+000 5.889436e-001 -6.144955e-001 6.185883e-003 + 8.160000e+000 1.961669e-001 -6.152495e-001 6.167034e-003 + 8.170000e+000 -1.835499e-001 -6.160035e-001 6.149557e-003 + 8.180000e+000 -5.458586e-001 -6.167575e-001 6.137535e-003 + 8.190000e+000 -8.872482e-001 -6.175114e-001 6.133789e-003 + 8.200000e+000 -1.205040e+000 -6.182654e-001 6.139201e-003 + 8.210000e+000 -1.497346e+000 -6.190194e-001 6.152497e-003 + 8.220000e+000 -1.762988e+000 -6.197734e-001 6.170562e-003 + 8.230000e+000 -2.001392e+000 -6.205274e-001 6.189198e-003 + 8.240000e+000 -2.212464e+000 -6.212814e-001 6.204108e-003 + 8.250000e+000 -2.396448e+000 -6.220353e-001 6.211880e-003 + 8.260000e+000 -2.553791e+000 -6.227893e-001 6.210740e-003 + 8.270000e+000 -2.684999e+000 -6.235433e-001 6.200933e-003 + 8.280000e+000 -2.790526e+000 -6.242973e-001 6.184673e-003 + 8.290000e+000 -2.870670e+000 -6.250513e-001 6.165651e-003 + 8.300000e+000 -2.925501e+000 -6.258052e-001 6.148219e-003 + 8.310000e+000 -2.954827e+000 -6.265592e-001 6.136391e-003 + 8.320000e+000 -2.958183e+000 -6.273132e-001 6.132893e-003 + 8.330000e+000 -2.934865e+000 -6.280672e-001 6.138511e-003 + 8.340000e+000 -2.883990e+000 -6.288212e-001 6.151904e-003 + 8.350000e+000 -2.804586e+000 -6.295752e-001 6.169937e-003 + 8.360000e+000 -2.695707e+000 -6.303291e-001 6.188439e-003 + 8.370000e+000 -2.556564e+000 -6.310831e-001 6.203189e-003 + 8.380000e+000 -2.386664e+000 -6.318371e-001 6.210868e-003 + 8.390000e+000 -2.185949e+000 -6.325911e-001 6.209796e-003 + 8.400000e+000 -1.954925e+000 -6.333451e-001 6.200284e-003 + 8.410000e+000 -1.694774e+000 -6.340991e-001 6.184564e-003 + 8.420000e+000 -1.407445e+000 -6.348530e-001 6.166290e-003 + 8.430000e+000 -1.095706e+000 -6.356070e-001 6.149718e-003 + 8.440000e+000 -7.631612e-001 -6.363610e-001 6.138723e-003 + 8.450000e+000 -4.142358e-001 -6.371150e-001 6.135882e-003 + 8.460000e+000 -5.410817e-002 -6.378690e-001 6.141852e-003 + 8.470000e+000 3.113906e-001 -6.386229e-001 6.155214e-003 + 8.480000e+000 6.759163e-001 -6.393769e-001 6.172823e-003 + 8.490000e+000 1.032784e+000 -6.401309e-001 6.190574e-003 + 8.500000e+000 1.375164e+000 -6.408849e-001 6.204363e-003 + 8.510000e+000 1.696298e+000 -6.416389e-001 6.211027e-003 + 8.520000e+000 1.989722e+000 -6.423929e-001 6.209041e-003 + 8.530000e+000 2.249484e+000 -6.431468e-001 6.198848e-003 + 8.540000e+000 2.470356e+000 -6.439008e-001 6.182762e-003 + 8.550000e+000 2.648024e+000 -6.446548e-001 6.164458e-003 + 8.560000e+000 2.779244e+000 -6.454088e-001 6.148148e-003 + 8.570000e+000 2.861967e+000 -6.461628e-001 6.137609e-003 + 8.580000e+000 2.895414e+000 -6.469168e-001 6.135289e-003 + 8.590000e+000 2.880114e+000 -6.476707e-001 6.141718e-003 + 8.600000e+000 2.817884e+000 -6.484247e-001 6.155378e-003 + 8.610000e+000 2.711768e+000 -6.491787e-001 6.173078e-003 + 8.620000e+000 2.565926e+000 -6.499327e-001 6.190724e-003 + 8.630000e+000 2.385483e+000 -6.506867e-001 6.204274e-003 + 8.640000e+000 2.176343e+000 -6.514406e-001 6.210659e-003 + 8.650000e+000 1.944980e+000 -6.521946e-001 6.208452e-003 + 8.660000e+000 1.698204e+000 -6.529486e-001 6.198175e-003 + 8.670000e+000 1.442921e+000 -6.537026e-001 6.182184e-003 + 8.680000e+000 1.185896e+000 -6.544566e-001 6.164142e-003 + 8.690000e+000 9.335277e-001 -6.552106e-001 6.148200e-003 + 8.700000e+000 6.916384e-001 -6.559645e-001 6.138036e-003 + 8.710000e+000 4.652952e-001 -6.567185e-001 6.135987e-003 + 8.720000e+000 2.586653e-001 -6.574725e-001 6.142483e-003 + 8.730000e+000 7.490966e-002 -6.582265e-001 6.155953e-003 + 8.740000e+000 -8.388014e-002 -6.589805e-001 6.173210e-003 + 8.750000e+000 -2.167023e-001 -6.597344e-001 6.190221e-003 + 8.760000e+000 -3.236219e-001 -6.604884e-001 6.203056e-003 + 8.770000e+000 -4.057082e-001 -6.612424e-001 6.208780e-003 + 8.780000e+000 -4.649358e-001 -6.619964e-001 6.206099e-003 + 8.790000e+000 -5.040563e-001 -6.627504e-001 6.195642e-003 + 8.800000e+000 -5.264458e-001 -6.635044e-001 6.179819e-003 + 8.810000e+000 -5.359370e-001 -6.642583e-001 6.162288e-003 + 8.820000e+000 -5.366426e-001 -6.650123e-001 6.147131e-003 + 8.830000e+000 -5.327799e-001 -6.657663e-001 6.137906e-003 + 8.840000e+000 -5.285003e-001 -6.665203e-001 6.136800e-003 + 8.850000e+000 -5.277349e-001 -6.672743e-001 6.144101e-003 + 8.860000e+000 -5.340581e-001 -6.680283e-001 6.158128e-003 + 8.870000e+000 -5.505757e-001 -6.687822e-001 6.175640e-003 + 8.880000e+000 -5.798402e-001 -6.695362e-001 6.192611e-003 + 8.890000e+000 -6.237945e-001 -6.702902e-001 6.205174e-003 + 8.900000e+000 -6.837443e-001 -6.710442e-001 6.210485e-003 + 8.910000e+000 -7.603587e-001 -6.717982e-001 6.207355e-003 + 8.920000e+000 -8.536953e-001 -6.725521e-001 6.196503e-003 + 8.930000e+000 -9.632474e-001 -6.733061e-001 6.180394e-003 + 8.940000e+000 -1.088009e+000 -6.740601e-001 6.162701e-003 + 8.950000e+000 -1.226551e+000 -6.748141e-001 6.147475e-003 + 8.960000e+000 -1.377109e+000 -6.755681e-001 6.138210e-003 + 8.970000e+000 -1.537670e+000 -6.763221e-001 6.137020e-003 + 8.980000e+000 -1.706057e+000 -6.770760e-001 6.144132e-003 + 8.990000e+000 -1.880014e+000 -6.778300e-001 6.157832e-003 + 9.000000e+000 -2.057274e+000 -6.785840e-001 6.174896e-003 + 9.010000e+000 -2.235624e+000 -6.793380e-001 6.191359e-003 + 9.020000e+000 -2.412949e+000 -6.800920e-001 6.203442e-003 + 9.030000e+000 -2.587266e+000 -6.808460e-001 6.208407e-003 + 9.040000e+000 -2.756749e+000 -6.815999e-001 6.205156e-003 + 9.050000e+000 -2.919735e+000 -6.823539e-001 6.194467e-003 + 9.060000e+000 -3.074727e+000 -6.831079e-001 6.178816e-003 + 9.070000e+000 -3.220384e+000 -6.838619e-001 6.161827e-003 + 9.080000e+000 -3.355507e+000 -6.846159e-001 6.147447e-003 + 9.090000e+000 -3.479029e+000 -6.853698e-001 6.139037e-003 + 9.100000e+000 -3.589997e+000 -6.861238e-001 6.138562e-003 + 9.110000e+000 -3.687562e+000 -6.868778e-001 6.146125e-003 + 9.120000e+000 -3.770974e+000 -6.876318e-001 6.159942e-003 + 9.130000e+000 -3.839580e+000 -6.883858e-001 6.176780e-003 + 9.140000e+000 -3.892832e+000 -6.891398e-001 6.192733e-003 + 9.150000e+000 -3.930299e+000 -6.898937e-001 6.204132e-003 + 9.160000e+000 -3.951688e+000 -6.906477e-001 6.208375e-003 + 9.170000e+000 -3.956866e+000 -6.914017e-001 6.204501e-003 + 9.180000e+000 -3.945884e+000 -6.921557e-001 6.193399e-003 + 9.190000e+000 -3.919007e+000 -6.929097e-001 6.177608e-003 + 9.200000e+000 -3.876730e+000 -6.936636e-001 6.160758e-003 + 9.210000e+000 -3.819805e+000 -6.944176e-001 6.146748e-003 + 9.220000e+000 -3.749242e+000 -6.951716e-001 6.138838e-003 + 9.230000e+000 -3.666317e+000 -6.959256e-001 6.138876e-003 + 9.240000e+000 -3.572553e+000 -6.966796e-001 6.146852e-003 + 9.250000e+000 -3.469705e+000 -6.974336e-001 6.160901e-003 + 9.260000e+000 -3.359714e+000 -6.981875e-001 6.177759e-003 + 9.270000e+000 -3.244666e+000 -6.989415e-001 6.193542e-003 + 9.280000e+000 -3.126727e+000 -6.996955e-001 6.204645e-003 + 9.290000e+000 -3.008078e+000 -7.004495e-001 6.208555e-003 + 9.300000e+000 -2.890836e+000 -7.012035e-001 6.204404e-003 + 9.310000e+000 -2.776976e+000 -7.019575e-001 6.193149e-003 + 9.320000e+000 -2.668257e+000 -7.027114e-001 6.177363e-003 + 9.330000e+000 -2.566142e+000 -7.034654e-001 6.160663e-003 + 9.340000e+000 -2.471735e+000 -7.042194e-001 6.146891e-003 + 9.350000e+000 -2.385729e+000 -7.049734e-001 6.139221e-003 + 9.360000e+000 -2.308360e+000 -7.057274e-001 6.139408e-003 + 9.370000e+000 -2.239388e+000 -7.064813e-001 6.147368e-003 + 9.380000e+000 -2.178095e+000 -7.072353e-001 6.161200e-003 + 9.390000e+000 -2.123294e+000 -7.079893e-001 6.177655e-003 + 9.400000e+000 -2.073373e+000 -7.087433e-001 6.192913e-003 + 9.410000e+000 -2.026343e+000 -7.094973e-001 6.203467e-003 + 9.420000e+000 -1.979918e+000 -7.102513e-001 6.206918e-003 + 9.430000e+000 -1.931595e+000 -7.110052e-001 6.202497e-003 + 9.440000e+000 -1.878758e+000 -7.117592e-001 6.191230e-003 + 9.450000e+000 -1.818784e+000 -7.125132e-001 6.175711e-003 + 9.460000e+000 -1.749153e+000 -7.132672e-001 6.159517e-003 + 9.470000e+000 -1.667559e+000 -7.140212e-001 6.146401e-003 + 9.480000e+000 -1.572012e+000 -7.147752e-001 6.139411e-003 + 9.490000e+000 -1.460935e+000 -7.155291e-001 6.140167e-003 + 9.500000e+000 -1.333246e+000 -7.162831e-001 6.148471e-003 + 9.510000e+000 -1.188424e+000 -7.170371e-001 6.162357e-003 + 9.520000e+000 -1.026555e+000 -7.177911e-001 6.178572e-003 + 9.530000e+000 -8.483554e-001 -7.185451e-001 6.193352e-003 + 9.540000e+000 -6.551817e-001 -7.192990e-001 6.203298e-003 + 9.550000e+000 -4.490082e-001 -7.200530e-001 6.206139e-003 + 9.560000e+000 -2.323906e-001 -7.208070e-001 6.201238e-003 + 9.570000e+000 -8.407650e-003 -7.215610e-001 6.189724e-003 + 9.580000e+000 2.194138e-001 -7.223150e-001 6.174248e-003 + 9.590000e+000 4.471888e-001 -7.230690e-001 6.158389e-003 + 9.600000e+000 6.707751e-001 -7.238229e-001 6.145841e-003 + 9.610000e+000 8.858821e-001 -7.245769e-001 6.139552e-003 + 9.620000e+000 1.088185e+000 -7.253309e-001 6.141016e-003 + 9.630000e+000 1.273437e+000 -7.260849e-001 6.149915e-003 + 9.640000e+000 1.437586e+000 -7.268389e-001 6.164194e-003 + 9.650000e+000 1.576877e+000 -7.275928e-001 6.180560e-003 + 9.660000e+000 1.687955e+000 -7.283468e-001 6.195263e-003 + 9.670000e+000 1.767951e+000 -7.291008e-001 6.204957e-003 + 9.680000e+000 1.814562e+000 -7.298548e-001 6.207453e-003 + 9.690000e+000 1.826117e+000 -7.306088e-001 6.202201e-003 + 9.700000e+000 1.801624e+000 -7.313628e-001 6.190402e-003 + 9.710000e+000 1.740813e+000 -7.321167e-001 6.174747e-003 + 9.720000e+000 1.644153e+000 -7.328707e-001 6.158819e-003 + 9.730000e+000 1.512866e+000 -7.336247e-001 6.146277e-003 + 9.740000e+000 1.348919e+000 -7.343787e-001 6.140008e-003 + 9.750000e+000 1.155011e+000 -7.351327e-001 6.141440e-003 + 9.760000e+000 9.345374e-001 -7.358867e-001 6.150201e-003 + 9.770000e+000 6.915529e-001 -7.366406e-001 6.164215e-003 + 9.780000e+000 4.307146e-001 -7.373946e-001 6.180207e-003 + 9.790000e+000 1.572181e-001 -7.381486e-001 6.194476e-003 + 9.800000e+000 -1.232785e-001 -7.389026e-001 6.203757e-003 + 9.810000e+000 -4.047403e-001 -7.396566e-001 6.205946e-003 + 9.820000e+000 -6.808524e-001 -7.404105e-001 6.200562e-003 + 9.830000e+000 -9.451244e-001 -7.411645e-001 6.188847e-003 + 9.840000e+000 -1.191005e+000 -7.419185e-001 6.173488e-003 + 9.850000e+000 -1.412003e+000 -7.426725e-001 6.158015e-003 + 9.860000e+000 -1.601815e+000 -7.434265e-001 6.145998e-003 + 9.870000e+000 -1.754455e+000 -7.441805e-001 6.140212e-003 + 9.880000e+000 -1.864389e+000 -7.449344e-001 6.141976e-003 + 9.890000e+000 -1.926667e+000 -7.456884e-001 6.150839e-003 + 9.900000e+000 -1.937052e+000 -7.464424e-001 6.164696e-003 + 9.910000e+000 -1.892140e+000 -7.471964e-001 6.180300e-003 + 9.920000e+000 -1.789469e+000 -7.479504e-001 6.194033e-003 + 9.930000e+000 -1.627616e+000 -7.487044e-001 6.202745e-003 + 9.940000e+000 -1.406270e+000 -7.494583e-001 6.204461e-003 + 9.950000e+000 -1.126289e+000 -7.502123e-001 6.198817e-003 + 9.960000e+000 -7.897233e-001 -7.509663e-001 6.187134e-003 + 9.970000e+000 -3.998180e-001 -7.517203e-001 6.172125e-003 + 9.980000e+000 3.902139e-002 -7.524743e-001 6.157288e-003 + 9.990000e+000 5.212914e-001 -7.532282e-001 6.146098e-003 + 1.000000e+001 1.040487e+000 -7.539822e-001 6.141200e-003 + 1.001000e+001 1.589226e+000 -7.547362e-001 6.143768e-003 + 1.002000e+001 2.159410e+000 -7.554902e-001 6.153223e-003 + 1.003000e+001 2.742399e+000 -7.562442e-001 6.167375e-003 + 1.004000e+001 3.329218e+000 -7.569982e-001 6.182947e-003 + 1.005000e+001 3.910773e+000 -7.577521e-001 6.196355e-003 + 1.006000e+001 4.478077e+000 -7.585061e-001 6.204526e-003 + 1.007000e+001 5.022484e+000 -7.592601e-001 6.205590e-003 + 1.008000e+001 5.535905e+000 -7.600141e-001 6.199294e-003 + 1.009000e+001 6.011028e+000 -7.607681e-001 6.187054e-003 + 1.010000e+001 6.441501e+000 -7.615220e-001 6.171644e-003 + 1.011000e+001 6.822104e+000 -7.622760e-001 6.156579e-003 + 1.012000e+001 7.148873e+000 -7.630300e-001 6.145315e-003 + 1.013000e+001 7.419194e+000 -7.637840e-001 6.140441e-003 + 1.014000e+001 7.631855e+000 -7.645380e-001 6.143067e-003 + 1.015000e+001 7.787053e+000 -7.652920e-001 6.152555e-003 + 1.016000e+001 7.886348e+000 -7.660459e-001 6.166679e-003 + 1.017000e+001 7.932585e+000 -7.667999e-001 6.182163e-003 + 1.018000e+001 7.929764e+000 -7.675539e-001 6.195454e-003 + 1.019000e+001 7.882880e+000 -7.683079e-001 6.203535e-003 + 1.020000e+001 7.797725e+000 -7.690619e-001 6.204600e-003 + 1.021000e+001 7.680671e+000 -7.698159e-001 6.198447e-003 + 1.022000e+001 7.538429e+000 -7.705698e-001 6.186518e-003 + 1.023000e+001 7.377810e+000 -7.713238e-001 6.171571e-003 + 1.024000e+001 7.205475e+000 -7.720778e-001 6.157069e-003 + 1.025000e+001 7.027707e+000 -7.728318e-001 6.146379e-003 + 1.026000e+001 6.850190e+000 -7.735858e-001 6.141988e-003 + 1.027000e+001 6.677827e+000 -7.743397e-001 6.144908e-003 + 1.028000e+001 6.514578e+000 -7.750937e-001 6.154435e-003 + 1.029000e+001 6.363347e+000 -7.758477e-001 6.168326e-003 + 1.030000e+001 6.225910e+000 -7.766017e-001 6.183339e-003 + 1.031000e+001 6.102881e+000 -7.773557e-001 6.196000e-003 + 1.032000e+001 5.993737e+000 -7.781097e-001 6.203404e-003 + 1.033000e+001 5.896870e+000 -7.788636e-001 6.203862e-003 + 1.034000e+001 5.809698e+000 -7.796176e-001 6.197275e-003 + 1.035000e+001 5.728799e+000 -7.803716e-001 6.185154e-003 + 1.036000e+001 5.650079e+000 -7.811256e-001 6.170279e-003 + 1.037000e+001 5.568969e+000 -7.818796e-001 6.156080e-003 + 1.038000e+001 5.480630e+000 -7.826336e-001 6.145845e-003 + 1.039000e+001 5.380168e+000 -7.833875e-001 6.141954e-003 + 1.040000e+001 5.262845e+000 -7.841415e-001 6.145307e-003 + 1.041000e+001 5.124286e+000 -7.848955e-001 6.155107e-003 + 1.042000e+001 4.960659e+000 -7.856495e-001 6.169060e-003 + 1.043000e+001 4.768842e+000 -7.864035e-001 6.183922e-003 + 1.044000e+001 4.546545e+000 -7.871574e-001 6.196267e-003 + 1.045000e+001 4.292412e+000 -7.879114e-001 6.203271e-003 + 1.046000e+001 4.006078e+000 -7.886654e-001 6.203341e-003 + 1.047000e+001 3.688187e+000 -7.894194e-001 6.196470e-003 + 1.048000e+001 3.340376e+000 -7.901734e-001 6.184228e-003 + 1.049000e+001 2.965216e+000 -7.909274e-001 6.169417e-003 + 1.050000e+001 2.566126e+000 -7.916813e-001 6.155445e-003 + 1.051000e+001 2.147259e+000 -7.924353e-001 6.145535e-003 + 1.052000e+001 1.713353e+000 -7.931893e-001 6.141979e-003 + 1.053000e+001 1.269582e+000 -7.939433e-001 6.145582e-003 + 1.054000e+001 8.213822e-001 -7.946973e-001 6.155476e-003 + 1.055000e+001 3.742809e-001 -7.954512e-001 6.169330e-003 + 1.056000e+001 -6.627129e-002 -7.962052e-001 6.183914e-003 + 1.057000e+001 -4.950625e-001 -7.969592e-001 6.195852e-003 + 1.058000e+001 -9.072646e-001 -7.977132e-001 6.202405e-003 + 1.059000e+001 -1.298560e+000 -7.984672e-001 6.202073e-003 + 1.060000e+001 -1.665244e+000 -7.992212e-001 6.194933e-003 + 1.061000e+001 -2.004305e+000 -7.999751e-001 6.182612e-003 + 1.062000e+001 -2.313471e+000 -8.007291e-001 6.167932e-003 + 1.063000e+001 -2.591233e+000 -8.014831e-001 6.154271e-003 + 1.064000e+001 -2.836845e+000 -8.022371e-001 6.144791e-003 + 1.065000e+001 -3.050290e+000 -8.029911e-001 6.141694e-003 + 1.066000e+001 -3.232229e+000 -8.037451e-001 6.145699e-003 + 1.067000e+001 -3.383934e+000 -8.044990e-001 6.155869e-003 + 1.068000e+001 -3.507196e+000 -8.052530e-001 6.169844e-003 + 1.069000e+001 -3.604234e+000 -8.060070e-001 6.184404e-003 + 1.070000e+001 -3.677587e+000 -8.067610e-001 6.196228e-003 + 1.071000e+001 -3.730010e+000 -8.075150e-001 6.202651e-003 + 1.072000e+001 -3.764369e+000 -8.082689e-001 6.202258e-003 + 1.073000e+001 -3.783542e+000 -8.090229e-001 6.195192e-003 + 1.074000e+001 -3.790329e+000 -8.097769e-001 6.183116e-003 + 1.075000e+001 -3.787368e+000 -8.105309e-001 6.168843e-003 + 1.076000e+001 -3.777074e+000 -8.112849e-001 6.155698e-003 + 1.077000e+001 -3.761585e+000 -8.120389e-001 6.146751e-003 + 1.078000e+001 -3.742722e+000 -8.127928e-001 6.144096e-003 + 1.079000e+001 -3.721966e+000 -8.135468e-001 6.148350e-003 + 1.080000e+001 -3.700453e+000 -8.143008e-001 6.158505e-003 + 1.081000e+001 -3.678978e+000 -8.150548e-001 6.172175e-003 + 1.082000e+001 -3.658008e+000 -8.158088e-001 6.186170e-003 + 1.083000e+001 -3.637717e+000 -8.165628e-001 6.197243e-003 + 1.084000e+001 -3.618012e+000 -8.173167e-001 6.202838e-003 + 1.085000e+001 -3.598583e+000 -8.180707e-001 6.201654e-003 + 1.086000e+001 -3.578946e+000 -8.188247e-001 6.193941e-003 + 1.087000e+001 -3.558493e+000 -8.195787e-001 6.181436e-003 + 1.088000e+001 -3.536543e+000 -8.203327e-001 6.166982e-003 + 1.089000e+001 -3.512390e+000 -8.210866e-001 6.153884e-003 + 1.090000e+001 -3.485353e+000 -8.218406e-001 6.145153e-003 + 1.091000e+001 -3.454817e+000 -8.225946e-001 6.142796e-003 + 1.092000e+001 -3.420275e+000 -8.233486e-001 6.147335e-003 + 1.093000e+001 -3.381364e+000 -8.241026e-001 6.157687e-003 + 1.094000e+001 -3.337887e+000 -8.248566e-001 6.171426e-003 + 1.095000e+001 -3.289845e+000 -8.256105e-001 6.185367e-003 + 1.096000e+001 -3.237444e+000 -8.263645e-001 6.196306e-003 + 1.097000e+001 -3.181108e+000 -8.271185e-001 6.201758e-003 + 1.098000e+001 -3.121480e+000 -8.278725e-001 6.200506e-003 + 1.099000e+001 -3.059410e+000 -8.286265e-001 6.192867e-003 + 1.100000e+001 -2.995951e+000 -8.293804e-001 6.180622e-003 + 1.101000e+001 -2.932326e+000 -8.301344e-001 6.166613e-003 + 1.102000e+001 -2.869908e+000 -8.308884e-001 6.154101e-003 + 1.103000e+001 -2.810181e+000 -8.316424e-001 6.146016e-003 + 1.104000e+001 -2.754698e+000 -8.323964e-001 6.144258e-003 + 1.105000e+001 -2.705032e+000 -8.331504e-001 6.149251e-003 + 1.106000e+001 -2.662728e+000 -8.339043e-001 6.159831e-003 + 1.107000e+001 -2.629241e+000 -8.346583e-001 6.173538e-003 + 1.108000e+001 -2.605884e+000 -8.354123e-001 6.187198e-003 + 1.109000e+001 -2.593764e+000 -8.361663e-001 6.197665e-003 + 1.110000e+001 -2.593730e+000 -8.369203e-001 6.202540e-003 + 1.111000e+001 -2.606314e+000 -8.376743e-001 6.200704e-003 + 1.112000e+001 -2.631685e+000 -8.384282e-001 6.192568e-003 + 1.113000e+001 -2.669608e+000 -8.391822e-001 6.179975e-003 + 1.114000e+001 -2.719413e+000 -8.399362e-001 6.165800e-003 + 1.115000e+001 -2.779973e+000 -8.406902e-001 6.153291e-003 + 1.116000e+001 -2.849698e+000 -8.414442e-001 6.145330e-003 + 1.117000e+001 -2.926545e+000 -8.421981e-001 6.143751e-003 + 1.118000e+001 -3.008037e+000 -8.429521e-001 6.148901e-003 + 1.119000e+001 -3.091306e+000 -8.437061e-001 6.159562e-003 + 1.120000e+001 -3.173147e+000 -8.444601e-001 6.173247e-003 + 1.121000e+001 -3.250085e+000 -8.452141e-001 6.186790e-003 + 1.122000e+001 -3.318461e+000 -8.459681e-001 6.197087e-003 + 1.123000e+001 -3.374528e+000 -8.467220e-001 6.201800e-003 + 1.124000e+001 -3.414551e+000 -8.474760e-001 6.199879e-003 + 1.125000e+001 -3.434923e+000 -8.482300e-001 6.191786e-003 + 1.126000e+001 -3.432269e+000 -8.489840e-001 6.179391e-003 + 1.127000e+001 -3.403567e+000 -8.497380e-001 6.165556e-003 + 1.128000e+001 -3.346246e+000 -8.504920e-001 6.153484e-003 + 1.129000e+001 -3.258284e+000 -8.512459e-001 6.145979e-003 + 1.130000e+001 -3.138294e+000 -8.519999e-001 6.144786e-003 + 1.131000e+001 -2.985589e+000 -8.527539e-001 6.150174e-003 + 1.132000e+001 -2.800230e+000 -8.535079e-001 6.160874e-003 + 1.133000e+001 -2.583049e+000 -8.542619e-001 6.174387e-003 + 1.134000e+001 -2.335654e+000 -8.550158e-001 6.187581e-003 + 1.135000e+001 -2.060402e+000 -8.557698e-001 6.197421e-003 + 1.136000e+001 -1.760358e+000 -8.565238e-001 6.201660e-003 + 1.137000e+001 -1.439219e+000 -8.572778e-001 6.199339e-003 + 1.138000e+001 -1.101225e+000 -8.580318e-001 6.190996e-003 + 1.139000e+001 -7.510473e-001 -8.587858e-001 6.178545e-003 + 1.140000e+001 -3.936655e-001 -8.595397e-001 6.164848e-003 + 1.141000e+001 -3.422951e-002 -8.602937e-001 6.153069e-003 + 1.142000e+001 3.220817e-001 -8.610477e-001 6.145938e-003 + 1.143000e+001 6.702033e-001 -8.618017e-001 6.145109e-003 + 1.144000e+001 1.005324e+000 -8.625557e-001 6.150765e-003 + 1.145000e+001 1.323015e+000 -8.633096e-001 6.161578e-003 + 1.146000e+001 1.619349e+000 -8.640636e-001 6.175025e-003 + 1.147000e+001 1.890994e+000 -8.648176e-001 6.187995e-003 + 1.148000e+001 2.135293e+000 -8.655716e-001 6.197509e-003 + 1.149000e+001 2.350315e+000 -8.663256e-001 6.201398e-003 + 1.150000e+001 2.534883e+000 -8.670796e-001 6.198783e-003 + 1.151000e+001 2.688569e+000 -8.678335e-001 6.190268e-003 + 1.152000e+001 2.811670e+000 -8.685875e-001 6.177802e-003 + 1.153000e+001 2.905156e+000 -8.693415e-001 6.164244e-003 + 1.154000e+001 2.970590e+000 -8.700955e-001 6.152712e-003 + 1.155000e+001 3.010038e+000 -8.708495e-001 6.145863e-003 + 1.156000e+001 3.025954e+000 -8.716035e-001 6.145268e-003 + 1.157000e+001 3.021062e+000 -8.723574e-001 6.151032e-003 + 1.158000e+001 2.998226e+000 -8.731114e-001 6.161779e-003 + 1.159000e+001 2.960322e+000 -8.738654e-001 6.174981e-003 + 1.160000e+001 2.910117e+000 -8.746194e-001 6.187565e-003 + 1.161000e+001 2.850153e+000 -8.753734e-001 6.196625e-003 + 1.162000e+001 2.782653e+000 -8.761273e-001 6.200086e-003 + 1.163000e+001 2.709433e+000 -8.768813e-001 6.197166e-003 + 1.164000e+001 2.631851e+000 -8.776353e-001 6.188546e-003 + 1.165000e+001 2.550766e+000 -8.783893e-001 6.176218e-003 + 1.166000e+001 2.466533e+000 -8.791433e-001 6.163037e-003 + 1.167000e+001 2.379014e+000 -8.798973e-001 6.152076e-003 + 1.168000e+001 2.287624e+000 -8.806512e-001 6.145906e-003 + 1.169000e+001 2.191385e+000 -8.814052e-001 6.145993e-003 + 1.170000e+001 2.089014e+000 -8.821592e-001 6.152341e-003 + 1.171000e+001 1.979020e+000 -8.829132e-001 6.163495e-003 + 1.172000e+001 1.859806e+000 -8.836672e-001 6.176893e-003 + 1.173000e+001 1.729794e+000 -8.844212e-001 6.189466e-003 + 1.174000e+001 1.587532e+000 -8.851751e-001 6.198356e-003 + 1.175000e+001 1.431812e+000 -8.859291e-001 6.201560e-003 + 1.176000e+001 1.261770e+000 -8.866831e-001 6.198375e-003 + 1.177000e+001 1.076979e+000 -8.874371e-001 6.189547e-003 + 1.178000e+001 8.775154e-001 -8.881911e-001 6.177110e-003 + 1.179000e+001 6.640163e-001 -8.889450e-001 6.163925e-003 + 1.180000e+001 4.377022e-001 -8.896990e-001 6.153033e-003 + 1.181000e+001 2.003813e-001 -8.904530e-001 6.146948e-003 + 1.182000e+001 -4.557363e-002 -8.912070e-001 6.147064e-003 + 1.183000e+001 -2.972729e-001 -8.919610e-001 6.153323e-003 + 1.184000e+001 -5.513800e-001 -8.927150e-001 6.164233e-003 + 1.185000e+001 -8.042022e-001 -8.934689e-001 6.177228e-003 + 1.186000e+001 -1.051798e+000 -8.942229e-001 6.189279e-003 + 1.187000e+001 -1.290095e+000 -8.949769e-001 6.197594e-003 + 1.188000e+001 -1.515021e+000 -8.957309e-001 6.200257e-003 + 1.189000e+001 -1.722629e+000 -8.964849e-001 6.196647e-003 + 1.190000e+001 -1.909229e+000 -8.972388e-001 6.187582e-003 + 1.191000e+001 -2.071505e+000 -8.979928e-001 6.175129e-003 + 1.192000e+001 -2.206621e+000 -8.987468e-001 6.162146e-003 + 1.193000e+001 -2.312315e+000 -8.995008e-001 6.151629e-003 + 1.194000e+001 -2.386965e+000 -9.002548e-001 6.146014e-003 + 1.195000e+001 -2.429639e+000 -9.010088e-001 6.146605e-003 + 1.196000e+001 -2.440115e+000 -9.017627e-001 6.153259e-003 + 1.197000e+001 -2.418881e+000 -9.025167e-001 6.164422e-003 + 1.198000e+001 -2.367103e+000 -9.032707e-001 6.177506e-003 + 1.199000e+001 -2.286574e+000 -9.040247e-001 6.189498e-003 + 1.200000e+001 -2.179644e+000 -9.047787e-001 6.197659e-003 + 1.201000e+001 -2.049122e+000 -9.055327e-001 6.200141e-003 + 1.202000e+001 -1.898174e+000 -9.062866e-001 6.196402e-003 + 1.203000e+001 -1.730207e+000 -9.070406e-001 6.187317e-003 + 1.204000e+001 -1.548748e+000 -9.077946e-001 6.174983e-003 + 1.205000e+001 -1.357321e+000 -9.085486e-001 6.162251e-003 + 1.206000e+001 -1.159335e+000 -9.093026e-001 6.152074e-003 + 1.207000e+001 -9.579806e-001 -9.100565e-001 6.146819e-003 + 1.208000e+001 -7.561326e-001 -9.108105e-001 6.147708e-003 + 1.209000e+001 -5.562825e-001 -9.115645e-001 6.154525e-003 + 1.210000e+001 -3.604846e-001 -9.123185e-001 6.165672e-003 + 1.211000e+001 -1.703258e-001 -9.130725e-001 6.178552e-003 + 1.212000e+001 1.308033e-002 -9.138265e-001 6.190182e-003 + 1.213000e+001 1.890768e-001 -9.145804e-001 6.197888e-003 + 1.214000e+001 3.574242e-001 -9.153344e-001 6.199904e-003 + 1.215000e+001 5.182423e-001 -9.160884e-001 6.195767e-003 + 1.216000e+001 6.719349e-001 -9.168424e-001 6.186420e-003 + 1.217000e+001 8.191017e-001 -9.175964e-001 6.173997e-003 + 1.218000e+001 9.604427e-001 -9.183504e-001 6.161349e-003 + 1.219000e+001 1.096658e+000 -9.191043e-001 6.151392e-003 + 1.220000e+001 1.228352e+000 -9.198583e-001 6.146429e-003 + 1.221000e+001 1.355939e+000 -9.206123e-001 6.147606e-003 + 1.222000e+001 1.479566e+000 -9.213663e-001 6.154638e-003 + 1.223000e+001 1.599050e+000 -9.221203e-001 6.165879e-003 + 1.224000e+001 1.713829e+000 -9.228742e-001 6.178721e-003 + 1.225000e+001 1.822941e+000 -9.236282e-001 6.190203e-003 + 1.226000e+001 1.925026e+000 -9.243822e-001 6.197702e-003 + 1.227000e+001 2.018347e+000 -9.251362e-001 6.199516e-003 + 1.228000e+001 2.100838e+000 -9.258902e-001 6.195248e-003 + 1.229000e+001 2.170178e+000 -9.266442e-001 6.185886e-003 + 1.230000e+001 2.223874e+000 -9.273981e-001 6.173585e-003 + 1.231000e+001 2.259369e+000 -9.281521e-001 6.161179e-003 + 1.232000e+001 2.274155e+000 -9.289061e-001 6.151536e-003 + 1.233000e+001 2.265898e+000 -9.296601e-001 6.146889e-003 + 1.234000e+001 2.232557e+000 -9.304141e-001 6.148309e-003 + 1.235000e+001 2.172505e+000 -9.311680e-001 6.155450e-003 + 1.236000e+001 2.084631e+000 -9.319220e-001 6.166635e-003 + 1.237000e+001 1.968436e+000 -9.326760e-001 6.179257e-003 + 1.238000e+001 1.824105e+000 -9.334300e-001 6.190398e-003 + 1.239000e+001 1.652551e+000 -9.341840e-001 6.197500e-003 + 1.240000e+001 1.455438e+000 -9.349380e-001 6.198942e-003 + 1.241000e+001 1.235175e+000 -9.356919e-001 6.194402e-003 + 1.242000e+001 9.948783e-001 -9.364459e-001 6.184919e-003 + 1.243000e+001 7.383079e-001 -9.371999e-001 6.172667e-003 + 1.244000e+001 4.697757e-001 -9.379539e-001 6.160462e-003 + 1.245000e+001 1.940325e-001 -9.387079e-001 6.151119e-003 + 1.246000e+001 -8.386563e-002 -9.394619e-001 6.146796e-003 + 1.247000e+001 -3.587042e-001 -9.402158e-001 6.148483e-003 + 1.248000e+001 -6.252667e-001 -9.409698e-001 6.155765e-003 + 1.249000e+001 -8.784928e-001 -9.417238e-001 6.166931e-003 + 1.250000e+001 -1.113633e+000 -9.424778e-001 6.179379e-003 + 1.251000e+001 -1.326395e+000 -9.432318e-001 6.190232e-003 + 1.252000e+001 -1.513072e+000 -9.439857e-001 6.197005e-003 + 1.253000e+001 -1.670652e+000 -9.447397e-001 6.198160e-003 + 1.254000e+001 -1.796904e+000 -9.454937e-001 6.193454e-003 + 1.255000e+001 -1.890436e+000 -9.462477e-001 6.183982e-003 + 1.256000e+001 -1.950715e+000 -9.470017e-001 6.171939e-003 + 1.257000e+001 -1.978073e+000 -9.477557e-001 6.160120e-003 + 1.258000e+001 -1.973666e+000 -9.485096e-001 6.151282e-003 + 1.259000e+001 -1.939413e+000 -9.492636e-001 6.147497e-003 + 1.260000e+001 -1.877910e+000 -9.500176e-001 6.149661e-003 + 1.261000e+001 -1.792318e+000 -9.507716e-001 6.157282e-003 + 1.262000e+001 -1.686240e+000 -9.515256e-001 6.168598e-003 + 1.263000e+001 -1.563581e+000 -9.522796e-001 6.180997e-003 + 1.264000e+001 -1.428406e+000 -9.530335e-001 6.191634e-003 + 1.265000e+001 -1.284801e+000 -9.537875e-001 6.198085e-003 + 1.266000e+001 -1.136735e+000 -9.545415e-001 6.198891e-003 + 1.267000e+001 -9.879366e-001 -9.552955e-001 6.193882e-003 + 1.268000e+001 -8.417910e-001 -9.560495e-001 6.184209e-003 + 1.269000e+001 -7.012516e-001 -9.568034e-001 6.172092e-003 + 1.270000e+001 -5.687793e-001 -9.575574e-001 6.160313e-003 + 1.271000e+001 -4.463055e-001 -9.583114e-001 6.151581e-003 + 1.272000e+001 -3.352215e-001 -9.590654e-001 6.147901e-003 + 1.273000e+001 -2.363931e-001 -9.598194e-001 6.150098e-003 + 1.274000e+001 -1.501978e-001 -9.605734e-001 6.157619e-003 + 1.275000e+001 -7.658301e-002 -9.613273e-001 6.168678e-003 + 1.276000e+001 -1.514006e-002 -9.620813e-001 6.180674e-003 + 1.277000e+001 3.480927e-002 -9.628353e-001 6.190813e-003 + 1.278000e+001 7.411989e-002 -9.635893e-001 6.196750e-003 + 1.279000e+001 1.037286e-001 -9.643433e-001 6.197114e-003 + 1.280000e+001 1.245630e-001 -9.650973e-001 6.191821e-003 + 1.281000e+001 1.374589e-001 -9.658512e-001 6.182085e-003 + 1.282000e+001 1.430901e-001 -9.666052e-001 6.170149e-003 + 1.283000e+001 1.419150e-001 -9.673592e-001 6.158777e-003 + 1.284000e+001 1.341421e-001 -9.681132e-001 6.150621e-003 + 1.285000e+001 1.197158e-001 -9.688672e-001 6.147595e-003 + 1.286000e+001 9.832367e-002 -9.696211e-001 6.150426e-003 + 1.287000e+001 6.942362e-002 -9.703751e-001 6.158472e-003 + 1.288000e+001 3.229017e-002 -9.711291e-001 6.169884e-003 + 1.289000e+001 -1.392372e-002 -9.718831e-001 6.182041e-003 + 1.290000e+001 -7.011249e-002 -9.726371e-001 6.192166e-003 + 1.291000e+001 -1.371358e-001 -9.733911e-001 6.197962e-003 + 1.292000e+001 -2.157332e-001 -9.741450e-001 6.198128e-003 + 1.293000e+001 -3.064400e-001 -9.748990e-001 6.192647e-003 + 1.294000e+001 -4.095099e-001 -9.756530e-001 6.182785e-003 + 1.295000e+001 -5.248484e-001 -9.764070e-001 6.170809e-003 + 1.296000e+001 -6.519607e-001 -9.771610e-001 6.159477e-003 + 1.297000e+001 -7.899181e-001 -9.779149e-001 6.151398e-003 + 1.298000e+001 -9.373441e-001 -9.786689e-001 6.148431e-003 + 1.299000e+001 -1.092422e+000 -9.794229e-001 6.151236e-003 + 1.300000e+001 -1.252926e+000 -9.801769e-001 6.159127e-003 + 1.301000e+001 -1.416268e+000 -9.809309e-001 6.170232e-003 + 1.302000e+001 -1.579569e+000 -9.816849e-001 6.181948e-003 + 1.303000e+001 -1.739742e+000 -9.824388e-001 6.191546e-003 + 1.304000e+001 -1.893590e+000 -9.831928e-001 6.196807e-003 + 1.305000e+001 -2.037907e+000 -9.839468e-001 6.196516e-003 + 1.306000e+001 -2.169585e+000 -9.847008e-001 6.190733e-003 + 1.307000e+001 -2.285720e+000 -9.854548e-001 6.180783e-003 + 1.308000e+001 -2.383707e+000 -9.862088e-001 6.168955e-003 + 1.309000e+001 -2.461328e+000 -9.869627e-001 6.157984e-003 + 1.310000e+001 -2.516818e+000 -9.877167e-001 6.150426e-003 + 1.311000e+001 -2.548924e+000 -9.884707e-001 6.148051e-003 + 1.312000e+001 -2.556931e+000 -9.892247e-001 6.151429e-003 + 1.313000e+001 -2.540673e+000 -9.899787e-001 6.159787e-003 + 1.314000e+001 -2.500525e+000 -9.907326e-001 6.171199e-003 + 1.315000e+001 -2.437367e+000 -9.914866e-001 6.183042e-003 + 1.316000e+001 -2.352532e+000 -9.922406e-001 6.192607e-003 + 1.317000e+001 -2.247746e+000 -9.929946e-001 6.197724e-003 + 1.318000e+001 -2.125041e+000 -9.937486e-001 6.197245e-003 + 1.319000e+001 -1.986674e+000 -9.945026e-001 6.191296e-003 + 1.320000e+001 -1.835035e+000 -9.952565e-001 6.181252e-003 + 1.321000e+001 -1.672562e+000 -9.960105e-001 6.169426e-003 + 1.322000e+001 -1.501650e+000 -9.967645e-001 6.158546e-003 + 1.323000e+001 -1.324588e+000 -9.975185e-001 6.151128e-003 + 1.324000e+001 -1.143492e+000 -9.982725e-001 6.148886e-003 + 1.325000e+001 -9.602607e-001 -9.990265e-001 6.152326e-003 + 1.326000e+001 -7.765529e-001 -9.997804e-001 6.160625e-003 + 1.327000e+001 -5.937736e-001 -1.000534e+000 6.171832e-003 + 1.328000e+001 -4.130841e-001 -1.001288e+000 6.183331e-003 + 1.329000e+001 -2.354258e-001 -1.002042e+000 6.192455e-003 + 1.330000e+001 -6.155785e-002 -1.002796e+000 6.197096e-003 + 1.331000e+001 1.078941e-001 -1.003550e+000 6.196178e-003 + 1.332000e+001 2.723832e-001 -1.004304e+000 6.189897e-003 + 1.333000e+001 4.313839e-001 -1.005058e+000 6.179678e-003 + 1.334000e+001 5.843364e-001 -1.005812e+000 6.167852e-003 + 1.335000e+001 7.305971e-001 -1.006566e+000 6.157135e-003 + 1.336000e+001 8.693996e-001 -1.007320e+000 6.149998e-003 + 1.337000e+001 9.998292e-001 -1.008074e+000 6.148091e-003 + 1.338000e+001 1.120813e+000 -1.008828e+000 6.151850e-003 + 1.339000e+001 1.231130e+000 -1.009582e+000 6.160394e-003 + 1.340000e+001 1.329436e+000 -1.010336e+000 6.171739e-003 + 1.341000e+001 1.414313e+000 -1.011090e+000 6.183269e-003 + 1.342000e+001 1.484327e+000 -1.011844e+000 6.192346e-003 + 1.343000e+001 1.538108e+000 -1.012598e+000 6.196913e-003 + 1.344000e+001 1.574437e+000 -1.013352e+000 6.195955e-003 + 1.345000e+001 1.592339e+000 -1.014106e+000 6.189721e-003 + 1.346000e+001 1.591176e+000 -1.014860e+000 6.179668e-003 + 1.347000e+001 1.570742e+000 -1.015614e+000 6.168133e-003 + 1.348000e+001 1.531342e+000 -1.016368e+000 6.157800e-003 + 1.349000e+001 1.473862e+000 -1.017122e+000 6.151084e-003 + 1.350000e+001 1.399816e+000 -1.017876e+000 6.149560e-003 + 1.351000e+001 1.311374e+000 -1.018630e+000 6.153591e-003 + 1.352000e+001 1.211364e+000 -1.019384e+000 6.162241e-003 + 1.353000e+001 1.103241e+000 -1.020138e+000 6.173498e-003 + 1.354000e+001 9.910354e-001 -1.020892e+000 6.184758e-003 + 1.355000e+001 8.792686e-001 -1.021646e+000 6.193425e-003 + 1.356000e+001 7.728453e-001 -1.022400e+000 6.197509e-003 + 1.357000e+001 6.769222e-001 -1.023154e+000 6.196070e-003 + 1.358000e+001 5.967591e-001 -1.023908e+000 6.189429e-003 + 1.359000e+001 5.375572e-001 -1.024662e+000 6.179094e-003 + 1.360000e+001 5.042901e-001 -1.025416e+000 6.167422e-003 + 1.361000e+001 5.015345e-001 -1.026170e+000 6.157088e-003 + 1.362000e+001 5.333066e-001 -1.026924e+000 6.150466e-003 + 1.363000e+001 6.029123e-001 -1.027678e+000 6.149076e-003 + 1.364000e+001 7.128144e-001 -1.028432e+000 6.153218e-003 + 1.365000e+001 8.645254e-001 -1.029186e+000 6.161909e-003 + 1.366000e+001 1.058528e+000 -1.029940e+000 6.173115e-003 + 1.367000e+001 1.294229e+000 -1.030694e+000 6.184236e-003 + 1.368000e+001 1.569944e+000 -1.031448e+000 6.192711e-003 + 1.369000e+001 1.882924e+000 -1.032202e+000 6.196602e-003 + 1.370000e+001 2.229408e+000 -1.032956e+000 6.195026e-003 + 1.371000e+001 2.604712e+000 -1.033710e+000 6.188354e-003 + 1.372000e+001 3.003350e+000 -1.034464e+000 6.178121e-003 + 1.373000e+001 3.419175e+000 -1.035218e+000 6.166682e-003 + 1.374000e+001 3.845542e+000 -1.035972e+000 6.156680e-003 + 1.375000e+001 4.275483e+000 -1.036726e+000 6.150431e-003 + 1.376000e+001 4.701893e+000 -1.037480e+000 6.149385e-003 + 1.377000e+001 5.117709e+000 -1.038234e+000 6.153775e-003 + 1.378000e+001 5.516094e+000 -1.038988e+000 6.162571e-003 + 1.379000e+001 5.890598e+000 -1.039741e+000 6.173722e-003 + 1.380000e+001 6.235309e+000 -1.040495e+000 6.184647e-003 + 1.381000e+001 6.544981e+000 -1.041249e+000 6.192832e-003 + 1.382000e+001 6.815132e+000 -1.042003e+000 6.196409e-003 + 1.383000e+001 7.042122e+000 -1.042757e+000 6.194567e-003 + 1.384000e+001 7.223196e+000 -1.043511e+000 6.187740e-003 + 1.385000e+001 7.356497e+000 -1.044265e+000 6.177500e-003 + 1.386000e+001 7.441057e+000 -1.045019e+000 6.166211e-003 + 1.387000e+001 7.476757e+000 -1.045773e+000 6.156488e-003 + 1.388000e+001 7.464266e+000 -1.046527e+000 6.150590e-003 + 1.389000e+001 7.404960e+000 -1.047281e+000 6.149896e-003 + 1.390000e+001 7.300828e+000 -1.048035e+000 6.154569e-003 + 1.391000e+001 7.154366e+000 -1.048789e+000 6.163524e-003 + 1.392000e+001 6.968469e+000 -1.049543e+000 6.174689e-003 + 1.393000e+001 6.746316e+000 -1.050297e+000 6.185491e-003 + 1.394000e+001 6.491268e+000 -1.051051e+000 6.193457e-003 + 1.395000e+001 6.206765e+000 -1.051805e+000 6.196778e-003 + 1.396000e+001 5.896238e+000 -1.052559e+000 6.194710e-003 + 1.397000e+001 5.563035e+000 -1.053313e+000 6.187742e-003 + 1.398000e+001 5.210357e+000 -1.054067e+000 6.177481e-003 + 1.399000e+001 4.841215e+000 -1.054821e+000 6.166293e-003 + 1.400000e+001 4.458403e+000 -1.055575e+000 6.156763e-003 + 1.401000e+001 4.064479e+000 -1.056329e+000 6.151099e-003 + 1.402000e+001 3.661767e+000 -1.057083e+000 6.150608e-003 + 1.403000e+001 3.252370e+000 -1.057837e+000 6.155390e-003 + 1.404000e+001 2.838185e+000 -1.058591e+000 6.164315e-003 + 1.405000e+001 2.420939e+000 -1.059345e+000 6.175293e-003 + 1.406000e+001 2.002213e+000 -1.060099e+000 6.185769e-003 + 1.407000e+001 1.583482e+000 -1.060853e+000 6.193320e-003 + 1.408000e+001 1.166145e+000 -1.061607e+000 6.196201e-003 + 1.409000e+001 7.515578e-001 -1.062361e+000 6.193742e-003 + 1.410000e+001 3.410584e-001 -1.063115e+000 6.186491e-003 + 1.411000e+001 -6.401222e-002 -1.063869e+000 6.176098e-003 + 1.412000e+001 -4.622955e-001 -1.064623e+000 6.164936e-003 + 1.413000e+001 -8.524075e-001 -1.065377e+000 6.155567e-003 + 1.414000e+001 -1.232939e+000 -1.066131e+000 6.150151e-003 + 1.415000e+001 -1.602459e+000 -1.066885e+000 6.149931e-003 + 1.416000e+001 -1.959528e+000 -1.067639e+000 6.154947e-003 + 1.417000e+001 -2.302712e+000 -1.068393e+000 6.164022e-003 + 1.418000e+001 -2.630600e+000 -1.069147e+000 6.175051e-003 + 1.419000e+001 -2.941829e+000 -1.069901e+000 6.185491e-003 + 1.420000e+001 -3.235097e+000 -1.070655e+000 6.192960e-003 + 1.421000e+001 -3.509193e+000 -1.071409e+000 6.195768e-003 + 1.422000e+001 -3.763009e+000 -1.072163e+000 6.193304e-003 + 1.423000e+001 -3.995564e+000 -1.072917e+000 6.186163e-003 + 1.424000e+001 -4.206015e+000 -1.073671e+000 6.176012e-003 + 1.425000e+001 -4.393671e+000 -1.074425e+000 6.165215e-003 + 1.426000e+001 -4.558004e+000 -1.075179e+000 6.156291e-003 + 1.427000e+001 -4.698654e+000 -1.075933e+000 6.151328e-003 + 1.428000e+001 -4.815436e+000 -1.076687e+000 6.151492e-003 + 1.429000e+001 -4.908346e+000 -1.077441e+000 6.156751e-003 + 1.430000e+001 -4.977559e+000 -1.078195e+000 6.165880e-003 + 1.431000e+001 -5.023432e+000 -1.078949e+000 6.176755e-003 + 1.432000e+001 -5.046506e+000 -1.079703e+000 6.186857e-003 + 1.433000e+001 -5.047508e+000 -1.080457e+000 6.193855e-003 + 1.434000e+001 -5.027348e+000 -1.081211e+000 6.196135e-003 + 1.435000e+001 -4.987121e+000 -1.081964e+000 6.193163e-003 + 1.436000e+001 -4.928105e+000 -1.082718e+000 6.185603e-003 + 1.437000e+001 -4.851757e+000 -1.083472e+000 6.175170e-003 + 1.438000e+001 -4.759711e+000 -1.084226e+000 6.164243e-003 + 1.439000e+001 -4.653764e+000 -1.084980e+000 6.155325e-003 + 1.440000e+001 -4.535869e+000 -1.085734e+000 6.150462e-003 + 1.441000e+001 -4.408111e+000 -1.086488e+000 6.150764e-003 + 1.442000e+001 -4.272689e+000 -1.087242e+000 6.156141e-003 + 1.443000e+001 -4.131883e+000 -1.087996e+000 6.165325e-003 + 1.444000e+001 -3.988020e+000 -1.088750e+000 6.176178e-003 + 1.445000e+001 -3.843429e+000 -1.089504e+000 6.186193e-003 + 1.446000e+001 -3.700398e+000 -1.090258e+000 6.193073e-003 + 1.447000e+001 -3.561114e+000 -1.091012e+000 6.195257e-003 + 1.448000e+001 -3.427617e+000 -1.091766e+000 6.192264e-003 + 1.449000e+001 -3.301734e+000 -1.092520e+000 6.184799e-003 + 1.450000e+001 -3.185025e+000 -1.093274e+000 6.174592e-003 + 1.451000e+001 -3.078730e+000 -1.094028e+000 6.164010e-003 + 1.452000e+001 -2.983720e+000 -1.094782e+000 6.155513e-003 + 1.453000e+001 -2.900452e+000 -1.095536e+000 6.151083e-003 + 1.454000e+001 -2.828944e+000 -1.096290e+000 6.151758e-003 + 1.455000e+001 -2.768749e+000 -1.097044e+000 6.157383e-003 + 1.456000e+001 -2.718957e+000 -1.097798e+000 6.166649e-003 + 1.457000e+001 -2.678201e+000 -1.098552e+000 6.177408e-003 + 1.458000e+001 -2.644686e+000 -1.099306e+000 6.187177e-003 + 1.459000e+001 -2.616231e+000 -1.100060e+000 6.193714e-003 + 1.460000e+001 -2.590330e+000 -1.100814e+000 6.195527e-003 + 1.461000e+001 -2.564225e+000 -1.101568e+000 6.192204e-003 + 1.462000e+001 -2.534992e+000 -1.102322e+000 6.184510e-003 + 1.463000e+001 -2.499641e+000 -1.103076e+000 6.174209e-003 + 1.464000e+001 -2.455214e+000 -1.103830e+000 6.163670e-003 + 1.465000e+001 -2.398898e+000 -1.104584e+000 6.155326e-003 + 1.466000e+001 -2.328128e+000 -1.105338e+000 6.151106e-003 + 1.467000e+001 -2.240691e+000 -1.106092e+000 6.151984e-003 + 1.468000e+001 -2.134817e+000 -1.106846e+000 6.157747e-003 + 1.469000e+001 -2.009266e+000 -1.107600e+000 6.167046e-003 + 1.470000e+001 -1.863385e+000 -1.108354e+000 6.177722e-003 + 1.471000e+001 -1.697162e+000 -1.109108e+000 6.187312e-003 + 1.472000e+001 -1.511248e+000 -1.109862e+000 6.193619e-003 + 1.473000e+001 -1.306960e+000 -1.110616e+000 6.195209e-003 + 1.474000e+001 -1.086263e+000 -1.111370e+000 6.191733e-003 + 1.475000e+001 -8.517296e-001 -1.112124e+000 6.183998e-003 + 1.476000e+001 -6.064720e-001 -1.112878e+000 6.173792e-003 + 1.477000e+001 -3.540628e-001 -1.113632e+000 6.163474e-003 + 1.478000e+001 -9.843494e-002 -1.114386e+000 6.155435e-003 + 1.479000e+001 1.562296e-001 -1.115140e+000 6.151543e-003 + 1.480000e+001 4.056201e-001 -1.115894e+000 6.152700e-003 + 1.481000e+001 6.454214e-001 -1.116648e+000 6.158629e-003 + 1.482000e+001 8.714376e-001 -1.117402e+000 6.167941e-003 + 1.483000e+001 1.079711e+000 -1.118156e+000 6.178468e-003 + 1.484000e+001 1.266630e+000 -1.118910e+000 6.187768e-003 + 1.485000e+001 1.429028e+000 -1.119664e+000 6.193695e-003 + 1.486000e+001 1.564260e+000 -1.120418e+000 6.194882e-003 + 1.487000e+001 1.670262e+000 -1.121172e+000 6.191048e-003 + 1.488000e+001 1.745592e+000 -1.121926e+000 6.183059e-003 + 1.489000e+001 1.789447e+000 -1.122680e+000 6.172734e-003 + 1.490000e+001 1.801656e+000 -1.123434e+000 6.162438e-003 + 1.491000e+001 1.782655e+000 -1.124187e+000 6.154537e-003 + 1.492000e+001 1.733440e+000 -1.124941e+000 6.150853e-003 + 1.493000e+001 1.655512e+000 -1.125695e+000 6.152230e-003 + 1.494000e+001 1.550794e+000 -1.126449e+000 6.158340e-003 + 1.495000e+001 1.421551e+000 -1.127203e+000 6.167760e-003 + 1.496000e+001 1.270301e+000 -1.127957e+000 6.178313e-003 + 1.497000e+001 1.099721e+000 -1.128711e+000 6.187576e-003 + 1.498000e+001 9.125585e-001 -1.129465e+000 6.193445e-003 + 1.499000e+001 7.115526e-001 -1.130219e+000 6.194603e-003 + 1.500000e+001 4.993569e-001 -1.130973e+000 6.190816e-003 + 1.501000e+001 2.784817e-001 -1.131727e+000 6.182983e-003 + 1.502000e+001 5.124769e-002 -1.132481e+000 6.172929e-003 + 1.503000e+001 -1.802440e-001 -1.133235e+000 6.162993e-003 + 1.504000e+001 -4.141255e-001 -1.133989e+000 6.155490e-003 + 1.505000e+001 -6.487601e-001 -1.134743e+000 6.152169e-003 + 1.506000e+001 -8.827252e-001 -1.135497e+000 6.153803e-003 + 1.507000e+001 -1.114783e+000 -1.136251e+000 6.160003e-003 + 1.508000e+001 -1.343839e+000 -1.137005e+000 6.169315e-003 + 1.509000e+001 -1.568897e+000 -1.137759e+000 6.179564e-003 + 1.510000e+001 -1.789004e+000 -1.138513e+000 6.188369e-003 + 1.511000e+001 -2.003201e+000 -1.139267e+000 6.193689e-003 + 1.512000e+001 -2.210470e+000 -1.140021e+000 6.194289e-003 + 1.513000e+001 -2.409695e+000 -1.140775e+000 6.190016e-003 + 1.514000e+001 -2.599619e+000 -1.141529e+000 6.181833e-003 + 1.515000e+001 -2.778829e+000 -1.142283e+000 6.171603e-003 + 1.516000e+001 -2.945739e+000 -1.143037e+000 6.161668e-003 + 1.517000e+001 -3.098595e+000 -1.143791e+000 6.154316e-003 + 1.518000e+001 -3.235495e+000 -1.144545e+000 6.151241e-003 + 1.519000e+001 -3.354419e+000 -1.145299e+000 6.153151e-003 + 1.520000e+001 -3.453274e+000 -1.146053e+000 6.159594e-003 + 1.521000e+001 -3.529954e+000 -1.146807e+000 6.169073e-003 + 1.522000e+001 -3.582404e+000 -1.147561e+000 6.179397e-003 + 1.523000e+001 -3.608695e+000 -1.148315e+000 6.188196e-003 + 1.524000e+001 -3.607099e+000 -1.149069e+000 6.193468e-003 + 1.525000e+001 -3.576164e+000 -1.149823e+000 6.194027e-003 + 1.526000e+001 -3.514791e+000 -1.150577e+000 6.189769e-003 + 1.527000e+001 -3.422299e+000 -1.151331e+000 6.181691e-003 + 1.528000e+001 -3.298481e+000 -1.152085e+000 6.171669e-003 + 1.529000e+001 -3.143651e+000 -1.152839e+000 6.162027e-003 + 1.530000e+001 -2.958672e+000 -1.153593e+000 6.155007e-003 + 1.531000e+001 -2.744974e+000 -1.154347e+000 6.152242e-003 + 1.532000e+001 -2.504550e+000 -1.155101e+000 6.154373e-003 + 1.533000e+001 -2.239935e+000 -1.155855e+000 6.160895e-003 + 1.534000e+001 -1.954172e+000 -1.156609e+000 6.170280e-003 + 1.535000e+001 -1.650755e+000 -1.157363e+000 6.180343e-003 + 1.536000e+001 -1.333567e+000 -1.158117e+000 6.188749e-003 + 1.537000e+001 -1.006796e+000 -1.158871e+000 6.193558e-003 + 1.538000e+001 -6.748457e-001 -1.159625e+000 6.193658e-003 + 1.539000e+001 -3.422420e-001 -1.160379e+000 6.189019e-003 + 1.540000e+001 -1.352757e-002 -1.161133e+000 6.180696e-003 + 1.541000e+001 3.068381e-001 -1.161887e+000 6.170595e-003 + 1.542000e+001 6.145791e-001 -1.162641e+000 6.161040e-003 + 1.543000e+001 9.056987e-001 -1.163395e+000 6.154238e-003 + 1.544000e+001 1.176567e+000 -1.164149e+000 6.151767e-003 + 1.545000e+001 1.423997e+000 -1.164903e+000 6.154200e-003 + 1.546000e+001 1.645315e+000 -1.165657e+000 6.160969e-003 + 1.547000e+001 1.838405e+000 -1.166411e+000 6.170502e-003 + 1.548000e+001 2.001757e+000 -1.167164e+000 6.180597e-003 + 1.549000e+001 2.134477e+000 -1.167918e+000 6.188933e-003 + 1.550000e+001 2.236306e+000 -1.168672e+000 6.193602e-003 + 1.551000e+001 2.307605e+000 -1.169426e+000 6.193544e-003 + 1.552000e+001 2.349334e+000 -1.170180e+000 6.188777e-003 + 1.553000e+001 2.363019e+000 -1.170934e+000 6.180395e-003 + 1.554000e+001 2.350700e+000 -1.171688e+000 6.170320e-003 + 1.555000e+001 2.314880e+000 -1.172442e+000 6.160866e-003 + 1.556000e+001 2.258452e+000 -1.173196e+000 6.154210e-003 + 1.557000e+001 2.184629e+000 -1.173950e+000 6.151881e-003 + 1.558000e+001 2.096864e+000 -1.174704e+000 6.154400e-003 + 1.559000e+001 1.998773e+000 -1.175458e+000 6.161162e-003 + 1.560000e+001 1.894046e+000 -1.176212e+000 6.170576e-003 + 1.561000e+001 1.786371e+000 -1.176966e+000 6.180450e-003 + 1.562000e+001 1.679351e+000 -1.177720e+000 6.188499e-003 + 1.563000e+001 1.576428e+000 -1.178474e+000 6.192873e-003 + 1.564000e+001 1.480814e+000 -1.179228e+000 6.192575e-003 + 1.565000e+001 1.395425e+000 -1.179982e+000 6.187684e-003 + 1.566000e+001 1.322822e+000 -1.180736e+000 6.179333e-003 + 1.567000e+001 1.265165e+000 -1.181490e+000 6.169456e-003 + 1.568000e+001 1.224169e+000 -1.182244e+000 6.160349e-003 + 1.569000e+001 1.201077e+000 -1.182998e+000 6.154139e-003 + 1.570000e+001 1.196634e+000 -1.183752e+000 6.152287e-003 + 1.571000e+001 1.211081e+000 -1.184506e+000 6.155241e-003 + 1.572000e+001 1.244149e+000 -1.185260e+000 6.162329e-003 + 1.573000e+001 1.295076e+000 -1.186014e+000 6.171922e-003 + 1.574000e+001 1.362619e+000 -1.186768e+000 6.181815e-003 + 1.575000e+001 1.445088e+000 -1.187522e+000 6.189745e-003 + 1.576000e+001 1.540386e+000 -1.188276e+000 6.193907e-003 + 1.577000e+001 1.646053e+000 -1.189030e+000 6.193360e-003 + 1.578000e+001 1.759322e+000 -1.189784e+000 6.188240e-003 + 1.579000e+001 1.877185e+000 -1.190538e+000 6.179724e-003 + 1.580000e+001 1.996454e+000 -1.191292e+000 6.169768e-003 + 1.581000e+001 2.113838e+000 -1.192046e+000 6.160664e-003 + 1.582000e+001 2.226016e+000 -1.192800e+000 6.154511e-003 + 1.583000e+001 2.329712e+000 -1.193554e+000 6.152725e-003 + 1.584000e+001 2.421771e+000 -1.194308e+000 6.155706e-003 + 1.585000e+001 2.499231e+000 -1.195062e+000 6.162744e-003 + 1.586000e+001 2.559392e+000 -1.195816e+000 6.172190e-003 + 1.587000e+001 2.599881e+000 -1.196570e+000 6.181848e-003 + 1.588000e+001 2.618705e+000 -1.197324e+000 6.189485e-003 + 1.589000e+001 2.614302e+000 -1.198078e+000 6.193345e-003 + 1.590000e+001 2.585577e+000 -1.198832e+000 6.192542e-003 + 1.591000e+001 2.531928e+000 -1.199586e+000 6.187262e-003 + 1.592000e+001 2.453260e+000 -1.200340e+000 6.178714e-003 + 1.593000e+001 2.349992e+000 -1.201094e+000 6.168862e-003 + 1.594000e+001 2.223046e+000 -1.201848e+000 6.159977e-003 + 1.595000e+001 2.073824e+000 -1.202602e+000 6.154113e-003 + 1.596000e+001 1.904177e+000 -1.203356e+000 6.152626e-003 + 1.597000e+001 1.716364e+000 -1.204110e+000 6.155856e-003 + 1.598000e+001 1.512996e+000 -1.204864e+000 6.163046e-003 + 1.599000e+001 1.296979e+000 -1.205618e+000 6.172521e-003 + 1.600000e+001 1.071443e+000 -1.206372e+000 6.182090e-003 + 1.601000e+001 8.396777e-001 -1.207126e+000 6.189551e-003 + 1.602000e+001 6.050512e-001 -1.207880e+000 6.193198e-003 + 1.603000e+001 3.709404e-001 -1.208634e+000 6.192204e-003 + 1.604000e+001 1.406559e-001 -1.209387e+000 6.186805e-003 + 1.605000e+001 -8.262796e-002 -1.210141e+000 6.178247e-003 + 1.606000e+001 -2.959387e-001 -1.210895e+000 6.168500e-003 + 1.607000e+001 -4.965646e-001 -1.211649e+000 6.159818e-003 + 1.608000e+001 -6.821068e-001 -1.212403e+000 6.154210e-003 + 1.609000e+001 -8.505215e-001 -1.213157e+000 6.152978e-003 + 1.610000e+001 -1.000154e+000 -1.213911e+000 6.156403e-003 + 1.611000e+001 -1.129762e+000 -1.214665e+000 6.163684e-003 + 1.612000e+001 -1.238528e+000 -1.215419e+000 6.173129e-003 + 1.613000e+001 -1.326065e+000 -1.216173e+000 6.182555e-003 + 1.614000e+001 -1.392409e+000 -1.216927e+000 6.189795e-003 + 1.615000e+001 -1.438001e+000 -1.217681e+000 6.193197e-003 + 1.616000e+001 -1.463668e+000 -1.218435e+000 6.191992e-003 + 1.617000e+001 -1.470587e+000 -1.219189e+000 6.186467e-003 + 1.618000e+001 -1.460252e+000 -1.219943e+000 6.177898e-003 + 1.619000e+001 -1.434426e+000 -1.220697e+000 6.168261e-003 + 1.620000e+001 -1.395098e+000 -1.221451e+000 6.159780e-003 + 1.621000e+001 -1.344430e+000 -1.222205e+000 6.154418e-003 + 1.622000e+001 -1.284708e+000 -1.222959e+000 6.153409e-003 + 1.623000e+001 -1.218287e+000 -1.223713e+000 6.156974e-003 + 1.624000e+001 -1.147541e+000 -1.224467e+000 6.164265e-003 + 1.625000e+001 -1.074810e+000 -1.225221e+000 6.173571e-003 + 1.626000e+001 -1.002352e+000 -1.225975e+000 6.182719e-003 + 1.627000e+001 -9.322957e-001 -1.226729e+000 6.189588e-003 + 1.628000e+001 -8.665985e-001 -1.227483e+000 6.192587e-003 + 1.629000e+001 -8.070073e-001 -1.228237e+000 6.191019e-003 + 1.630000e+001 -7.550235e-001 -1.228991e+000 6.185236e-003 + 1.631000e+001 -7.118727e-001 -1.229745e+000 6.176561e-003 + 1.632000e+001 -6.784800e-001 -1.230499e+000 6.166986e-003 + 1.633000e+001 -6.554502e-001 -1.231253e+000 6.158723e-003 + 1.634000e+001 -6.430537e-001 -1.232007e+000 6.153692e-003 + 1.635000e+001 -6.412186e-001 -1.232761e+000 6.153069e-003 + 1.636000e+001 -6.495278e-001 -1.233515e+000 6.157006e-003 + 1.637000e+001 -6.672234e-001 -1.234269e+000 6.164600e-003 + 1.638000e+001 -6.932166e-001 -1.235023e+000 6.174104e-003 + 1.639000e+001 -7.261043e-001 -1.235777e+000 6.183341e-003 + 1.640000e+001 -7.641915e-001 -1.236531e+000 6.190206e-003 + 1.641000e+001 -8.055206e-001 -1.237285e+000 6.193147e-003 + 1.642000e+001 -8.479059e-001 -1.238039e+000 6.191515e-003 + 1.643000e+001 -8.889744e-001 -1.238793e+000 6.185704e-003 + 1.644000e+001 -9.262115e-001 -1.239547e+000 6.177063e-003 + 1.645000e+001 -9.570114e-001 -1.240301e+000 6.167591e-003 + 1.646000e+001 -9.787312e-001 -1.241055e+000 6.159481e-003 + 1.647000e+001 -9.887481e-001 -1.241809e+000 6.154611e-003 + 1.648000e+001 -9.845191e-001 -1.242563e+000 6.154106e-003 + 1.649000e+001 -9.636405e-001 -1.243317e+000 6.158072e-003 + 1.650000e+001 -9.239080e-001 -1.244071e+000 6.165573e-003 + 1.651000e+001 -8.633744e-001 -1.244825e+000 6.174853e-003 + 1.652000e+001 -7.804041e-001 -1.245579e+000 6.183754e-003 + 1.653000e+001 -6.737238e-001 -1.246333e+000 6.190214e-003 + 1.654000e+001 -5.424667e-001 -1.247087e+000 6.192743e-003 + 1.655000e+001 -3.862095e-001 -1.247841e+000 6.190754e-003 + 1.656000e+001 -2.050011e-001 -1.248595e+000 6.184696e-003 + 1.657000e+001 6.171994e-004 -1.249349e+000 6.175955e-003 + 1.658000e+001 2.296032e-001 -1.250103e+000 6.166535e-003 + 1.659000e+001 4.804147e-001 -1.250857e+000 6.158608e-003 + 1.660000e+001 7.510219e-001 -1.251610e+000 6.154005e-003 + 1.661000e+001 1.038931e+000 -1.252364e+000 6.153792e-003 + 1.662000e+001 1.341219e+000 -1.253118e+000 6.158011e-003 + 1.663000e+001 1.654576e+000 -1.253872e+000 6.165679e-003 + 1.664000e+001 1.975363e+000 -1.254626e+000 6.175016e-003 + 1.665000e+001 2.299670e+000 -1.255380e+000 6.183865e-003 + 1.666000e+001 2.623389e+000 -1.256134e+000 6.190195e-003 + 1.667000e+001 2.942284e+000 -1.256888e+000 6.192560e-003 + 1.668000e+001 3.252076e+000 -1.257642e+000 6.190428e-003 + 1.669000e+001 3.548516e+000 -1.258396e+000 6.184293e-003 + 1.670000e+001 3.827471e+000 -1.259150e+000 6.175569e-003 + 1.671000e+001 4.084998e+000 -1.259904e+000 6.166266e-003 + 1.672000e+001 4.317423e+000 -1.260658e+000 6.158533e-003 + 1.673000e+001 4.521407e+000 -1.261412e+000 6.154161e-003 + 1.674000e+001 4.694010e+000 -1.262166e+000 6.154162e-003 + 1.675000e+001 4.832744e+000 -1.262920e+000 6.158530e-003 + 1.676000e+001 4.935617e+000 -1.263674e+000 6.166245e-003 + 1.677000e+001 5.001169e+000 -1.264428e+000 6.175516e-003 + 1.678000e+001 5.028491e+000 -1.265182e+000 6.184205e-003 + 1.679000e+001 5.017236e+000 -1.265936e+000 6.190318e-003 + 1.680000e+001 4.967623e+000 -1.266690e+000 6.192465e-003 + 1.681000e+001 4.880418e+000 -1.267444e+000 6.190167e-003 + 1.682000e+001 4.756917e+000 -1.268198e+000 6.183967e-003 + 1.683000e+001 4.598909e+000 -1.268952e+000 6.175302e-003 + 1.684000e+001 4.408633e+000 -1.269706e+000 6.166178e-003 + 1.685000e+001 4.188732e+000 -1.270460e+000 6.158715e-003 + 1.686000e+001 3.942188e+000 -1.271214e+000 6.154648e-003 + 1.687000e+001 3.672269e+000 -1.271968e+000 6.154924e-003 + 1.688000e+001 3.382455e+000 -1.272722e+000 6.159477e-003 + 1.689000e+001 3.076372e+000 -1.273476e+000 6.167240e-003 + 1.690000e+001 2.757722e+000 -1.274230e+000 6.176407e-003 + 1.691000e+001 2.430217e+000 -1.274984e+000 6.184851e-003 + 1.692000e+001 2.097511e+000 -1.275738e+000 6.190618e-003 + 1.693000e+001 1.763135e+000 -1.276492e+000 6.192376e-003 + 1.694000e+001 1.430446e+000 -1.277246e+000 6.189712e-003 + 1.695000e+001 1.102566e+000 -1.278000e+000 6.183223e-003 + 1.696000e+001 7.823441e-001 -1.278754e+000 6.174387e-003 + 1.697000e+001 4.723164e-001 -1.279508e+000 6.165224e-003 + 1.698000e+001 1.746749e-001 -1.280262e+000 6.157839e-003 + 1.699000e+001 -1.087529e-001 -1.281016e+000 6.153930e-003 + 1.700000e+001 -3.765172e-001 -1.281770e+000 6.154397e-003 + 1.701000e+001 -6.275513e-001 -1.282524e+000 6.159120e-003 + 1.702000e+001 -8.611678e-001 -1.283278e+000 6.166997e-003 + 1.703000e+001 -1.077048e+000 -1.284032e+000 6.176203e-003 + 1.704000e+001 -1.275224e+000 -1.284786e+000 6.184616e-003 + 1.705000e+001 -1.456052e+000 -1.285540e+000 6.190314e-003 + 1.706000e+001 -1.620185e+000 -1.286294e+000 6.192003e-003 + 1.707000e+001 -1.768536e+000 -1.287048e+000 6.189314e-003 + 1.708000e+001 -1.902235e+000 -1.287802e+000 6.182881e-003 + 1.709000e+001 -2.022593e+000 -1.288556e+000 6.174195e-003 + 1.710000e+001 -2.131054e+000 -1.289310e+000 6.165268e-003 + 1.711000e+001 -2.229146e+000 -1.290064e+000 6.158172e-003 + 1.712000e+001 -2.318443e+000 -1.290818e+000 6.154556e-003 + 1.713000e+001 -2.400514e+000 -1.291572e+000 6.155260e-003 + 1.714000e+001 -2.476884e+000 -1.292326e+000 6.160116e-003 + 1.715000e+001 -2.548990e+000 -1.293080e+000 6.167989e-003 + 1.716000e+001 -2.618148e+000 -1.293834e+000 6.177048e-003 + 1.717000e+001 -2.685516e+000 -1.294587e+000 6.185195e-003 + 1.718000e+001 -2.752072e+000 -1.295341e+000 6.190553e-003 + 1.719000e+001 -2.818584e+000 -1.296095e+000 6.191889e-003 + 1.720000e+001 -2.885595e+000 -1.296849e+000 6.188897e-003 + 1.721000e+001 -2.953413e+000 -1.297603e+000 6.182257e-003 + 1.722000e+001 -3.022099e+000 -1.298357e+000 6.173491e-003 + 1.723000e+001 -3.091473e+000 -1.299111e+000 6.164611e-003 + 1.724000e+001 -3.161110e+000 -1.299865e+000 6.157663e-003 + 1.725000e+001 -3.230358e+000 -1.300619e+000 6.154249e-003 + 1.726000e+001 -3.298346e+000 -1.301373e+000 6.155150e-003 + 1.727000e+001 -3.364006e+000 -1.302127e+000 6.160146e-003 + 1.728000e+001 -3.426095e+000 -1.302881e+000 6.168065e-003 + 1.729000e+001 -3.483225e+000 -1.303635e+000 6.177063e-003 + 1.730000e+001 -3.533887e+000 -1.304389e+000 6.185061e-003 + 1.731000e+001 -3.576485e+000 -1.305143e+000 6.190219e-003 + 1.732000e+001 -3.609374e+000 -1.305897e+000 6.191360e-003 + 1.733000e+001 -3.630887e+000 -1.306651e+000 6.188230e-003 + 1.734000e+001 -3.639380e+000 -1.307405e+000 6.181556e-003 + 1.735000e+001 -3.633257e+000 -1.308159e+000 6.172882e-003 + 1.736000e+001 -3.611017e+000 -1.308913e+000 6.164218e-003 + 1.737000e+001 -3.571277e+000 -1.309667e+000 6.157576e-003 + 1.738000e+001 -3.512813e+000 -1.310421e+000 6.154507e-003 + 1.739000e+001 -3.434588e+000 -1.311175e+000 6.155730e-003 + 1.740000e+001 -3.335779e+000 -1.311929e+000 6.160967e-003 + 1.741000e+001 -3.215807e+000 -1.312683e+000 6.169006e-003 + 1.742000e+001 -3.074353e+000 -1.313437e+000 6.177990e-003 + 1.743000e+001 -2.911384e+000 -1.314191e+000 6.185851e-003 + 1.744000e+001 -2.727167e+000 -1.314945e+000 6.190789e-003 + 1.745000e+001 -2.522275e+000 -1.315699e+000 6.191680e-003 + 1.746000e+001 -2.297601e+000 -1.316453e+000 6.188326e-003 + 1.747000e+001 -2.054355e+000 -1.317207e+000 6.181501e-003 + 1.748000e+001 -1.794065e+000 -1.317961e+000 6.172777e-003 + 1.749000e+001 -1.518565e+000 -1.318715e+000 6.164163e-003 + 1.750000e+001 -1.229984e+000 -1.319469e+000 6.157650e-003 + 1.751000e+001 -9.307306e-001 -1.320223e+000 6.154743e-003 + 1.752000e+001 -6.234625e-001 -1.320977e+000 6.156110e-003 + 1.753000e+001 -3.110624e-001 -1.321731e+000 6.161423e-003 + 1.754000e+001 3.398549e-003 -1.322485e+000 6.169437e-003 + 1.755000e+001 3.166996e-001 -1.323239e+000 6.178287e-003 + 1.756000e+001 6.255144e-001 -1.323993e+000 6.185922e-003 + 1.757000e+001 9.264590e-001 -1.324747e+000 6.190583e-003 + 1.758000e+001 1.216143e+000 -1.325501e+000 6.191197e-003 + 1.759000e+001 1.491225e+000 -1.326255e+000 6.187622e-003 + 1.760000e+001 1.748465e+000 -1.327009e+000 6.180677e-003 + 1.761000e+001 1.984786e+000 -1.327763e+000 6.171957e-003 + 1.762000e+001 2.197326e+000 -1.328517e+000 6.163473e-003 + 1.763000e+001 2.383498e+000 -1.329271e+000 6.157187e-003 + 1.764000e+001 2.541037e+000 -1.330025e+000 6.154562e-003 + 1.765000e+001 2.668052e+000 -1.330779e+000 6.156209e-003 + 1.766000e+001 2.763070e+000 -1.331533e+000 6.161750e-003 + 1.767000e+001 2.825071e+000 -1.332287e+000 6.169903e-003 + 1.768000e+001 2.853520e+000 -1.333041e+000 6.178789e-003 + 1.769000e+001 2.848385e+000 -1.333795e+000 6.186370e-003 + 1.770000e+001 2.810156e+000 -1.334549e+000 6.190915e-003 + 1.771000e+001 2.739838e+000 -1.335303e+000 6.191394e-003 + 1.772000e+001 2.638952e+000 -1.336057e+000 6.187709e-003 + 1.773000e+001 2.509508e+000 -1.336810e+000 6.180712e-003 + 1.774000e+001 2.353982e+000 -1.337564e+000 6.172014e-003 + 1.775000e+001 2.175276e+000 -1.338318e+000 6.163617e-003 + 1.776000e+001 1.976663e+000 -1.339072e+000 6.157458e-003 + 1.777000e+001 1.761737e+000 -1.339826e+000 6.154954e-003 + 1.778000e+001 1.534342e+000 -1.340580e+000 6.156673e-003 + 1.779000e+001 1.298503e+000 -1.341334e+000 6.162197e-003 + 1.780000e+001 1.058349e+000 -1.342088e+000 6.170228e-003 + 1.781000e+001 8.180312e-001 -1.342842e+000 6.178893e-003 + 1.782000e+001 5.816465e-001 -1.343596e+000 6.186183e-003 + 1.783000e+001 3.531534e-001 -1.344350e+000 6.190417e-003 + 1.784000e+001 1.362967e-001 -1.345104e+000 6.190625e-003 + 1.785000e+001 -6.546645e-002 -1.345858e+000 6.186760e-003 + 1.786000e+001 -2.490327e-001 -1.346612e+000 6.179713e-003 + 1.787000e+001 -4.117120e-001 -1.347366e+000 6.171110e-003 + 1.788000e+001 -5.512765e-001 -1.348120e+000 6.162939e-003 + 1.789000e+001 -6.660002e-001 -1.348874e+000 6.157098e-003 + 1.790000e+001 -7.546858e-001 -1.349628e+000 6.154945e-003 + 1.791000e+001 -8.166806e-001 -1.350382e+000 6.156984e-003 + 1.792000e+001 -8.518791e-001 -1.351136e+000 6.162743e-003 + 1.793000e+001 -8.607136e-001 -1.351890e+000 6.170886e-003 + 1.794000e+001 -8.441323e-001 -1.352644e+000 6.179533e-003 + 1.795000e+001 -8.035666e-001 -1.353398e+000 6.186695e-003 + 1.796000e+001 -7.408871e-001 -1.354152e+000 6.190731e-003 + 1.797000e+001 -6.583510e-001 -1.354906e+000 6.190726e-003 + 1.798000e+001 -5.585410e-001 -1.355660e+000 6.186687e-003 + 1.799000e+001 -4.442988e-001 -1.356414e+000 6.179547e-003 + 1.800000e+001 -3.186532e-001 -1.357168e+000 6.170953e-003 + 1.801000e+001 -1.847467e-001 -1.357922e+000 6.162888e-003 + 1.802000e+001 -4.576084e-002 -1.358676e+000 6.157219e-003 + 1.803000e+001 9.515745e-002 -1.359430e+000 6.155259e-003 + 1.804000e+001 2.349656e-001 -1.360184e+000 6.157457e-003 + 1.805000e+001 3.707912e-001 -1.360938e+000 6.163296e-003 + 1.806000e+001 4.999909e-001 -1.361692e+000 6.171413e-003 + 1.807000e+001 6.202022e-001 -1.362446e+000 6.179924e-003 + 1.808000e+001 7.293860e-001 -1.363200e+000 6.186863e-003 + 1.809000e+001 8.258603e-001 -1.363954e+000 6.190633e-003 + 1.810000e+001 9.083228e-001 -1.364708e+000 6.190371e-003 + 1.811000e+001 9.758642e-001 -1.365462e+000 6.186138e-003 + 1.812000e+001 1.027970e+000 -1.366216e+000 6.178905e-003 + 1.813000e+001 1.064513e+000 -1.366970e+000 6.170335e-003 + 1.814000e+001 1.085737e+000 -1.367724e+000 6.162404e-003 + 1.815000e+001 1.092229e+000 -1.368478e+000 6.156943e-003 + 1.816000e+001 1.084884e+000 -1.369232e+000 6.155215e-003 + 1.817000e+001 1.064868e+000 -1.369986e+000 6.157614e-003 + 1.818000e+001 1.033570e+000 -1.370740e+000 6.163575e-003 + 1.819000e+001 9.925501e-001 -1.371494e+000 6.171704e-003 + 1.820000e+001 9.434876e-001 -1.372248e+000 6.180116e-003 + 1.821000e+001 8.881282e-001 -1.373002e+000 6.186867e-003 + 1.822000e+001 8.282283e-001 -1.373756e+000 6.190404e-003 + 1.823000e+001 7.655034e-001 -1.374510e+000 6.189918e-003 + 1.824000e+001 7.015789e-001 -1.375264e+000 6.185522e-003 + 1.825000e+001 6.379442e-001 -1.376018e+000 6.178228e-003 + 1.826000e+001 5.759133e-001 -1.376772e+000 6.169718e-003 + 1.827000e+001 5.165901e-001 -1.377526e+000 6.161958e-003 + 1.828000e+001 4.608410e-001 -1.378280e+000 6.156747e-003 + 1.829000e+001 4.092750e-001 -1.379033e+000 6.155297e-003 + 1.830000e+001 3.622309e-001 -1.379787e+000 6.157947e-003 + 1.831000e+001 3.197722e-001 -1.380541e+000 6.164079e-003 + 1.832000e+001 2.816901e-001 -1.381295e+000 6.172273e-003 + 1.833000e+001 2.475135e-001 -1.382049e+000 6.180634e-003 + 1.834000e+001 2.165263e-001 -1.382803e+000 6.187239e-003 + 1.835000e+001 1.877910e-001 -1.383557e+000 6.190575e-003 + 1.836000e+001 1.601784e-001 -1.384311e+000 6.189885e-003 + 1.837000e+001 1.324018e-001 -1.385065e+000 6.185332e-003 + 1.838000e+001 1.030560e-001 -1.385819e+000 6.177968e-003 + 1.839000e+001 7.065888e-002 -1.386573e+000 6.169489e-003 + 1.840000e+001 3.369519e-002 -1.387327e+000 6.161857e-003 + 1.841000e+001 -9.338432e-003 -1.388081e+000 6.156839e-003 + 1.842000e+001 -5.988869e-002 -1.388835e+000 6.155601e-003 + 1.843000e+001 -1.193019e-001 -1.389589e+000 6.158428e-003 + 1.844000e+001 -1.887826e-001 -1.390343e+000 6.164659e-003 + 1.845000e+001 -2.693549e-001 -1.391097e+000 6.172845e-003 + 1.846000e+001 -3.618283e-001 -1.391851e+000 6.181087e-003 + 1.847000e+001 -4.667682e-001 -1.392605e+000 6.187485e-003 + 1.848000e+001 -5.844719e-001 -1.393359e+000 6.190566e-003 + 1.849000e+001 -7.149510e-001 -1.394113e+000 6.189621e-003 + 1.850000e+001 -8.579202e-001 -1.394867e+000 6.184867e-003 + 1.851000e+001 -1.012793e+000 -1.395621e+000 6.177390e-003 + 1.852000e+001 -1.178686e+000 -1.396375e+000 6.168909e-003 + 1.853000e+001 -1.354427e+000 -1.397129e+000 6.161378e-003 + 1.854000e+001 -1.538571e+000 -1.397883e+000 6.156539e-003 + 1.855000e+001 -1.729428e+000 -1.398637e+000 6.155514e-003 + 1.856000e+001 -1.925090e+000 -1.399391e+000 6.158541e-003 + 1.857000e+001 -2.123464e+000 -1.400145e+000 6.164916e-003 + 1.858000e+001 -2.322316e+000 -1.400899e+000 6.173164e-003 + 1.859000e+001 -2.519312e+000 -1.401653e+000 6.181384e-003 + 1.860000e+001 -2.712064e+000 -1.402407e+000 6.187690e-003 + 1.861000e+001 -2.898180e+000 -1.403161e+000 6.190646e-003 + 1.862000e+001 -3.075311e+000 -1.403915e+000 6.189585e-003 + 1.863000e+001 -3.241202e+000 -1.404669e+000 6.184761e-003 + 1.864000e+001 -3.393732e+000 -1.405423e+000 6.177289e-003 + 1.865000e+001 -3.530964e+000 -1.406177e+000 6.168894e-003 + 1.866000e+001 -3.651180e+000 -1.406931e+000 6.161517e-003 + 1.867000e+001 -3.752917e+000 -1.407685e+000 6.156866e-003 + 1.868000e+001 -3.834993e+000 -1.408439e+000 6.156018e-003 + 1.869000e+001 -3.896531e+000 -1.409193e+000 6.159162e-003 + 1.870000e+001 -3.936970e+000 -1.409947e+000 6.165561e-003 + 1.871000e+001 -3.956074e+000 -1.410701e+000 6.173721e-003 + 1.872000e+001 -3.953928e+000 -1.411455e+000 6.181747e-003 + 1.873000e+001 -3.930928e+000 -1.412209e+000 6.187782e-003 + 1.874000e+001 -3.887765e+000 -1.412963e+000 6.190435e-003 + 1.875000e+001 -3.825400e+000 -1.413717e+000 6.189089e-003 + 1.876000e+001 -3.745032e+000 -1.414471e+000 6.184045e-003 + 1.877000e+001 -3.648059e+000 -1.415225e+000 6.176454e-003 + 1.878000e+001 -3.536039e+000 -1.415979e+000 6.168052e-003 + 1.879000e+001 -3.410644e+000 -1.416733e+000 6.160770e-003 + 1.880000e+001 -3.273611e+000 -1.417487e+000 6.156284e-003 + 1.881000e+001 -3.126692e+000 -1.418241e+000 6.155626e-003 + 1.882000e+001 -2.971609e+000 -1.418995e+000 6.158940e-003 + 1.883000e+001 -2.810007e+000 -1.419749e+000 6.165448e-003 + 1.884000e+001 -2.643412e+000 -1.420503e+000 6.173640e-003 + 1.885000e+001 -2.473189e+000 -1.421256e+000 6.181620e-003 + 1.886000e+001 -2.300515e+000 -1.422010e+000 6.187557e-003 + 1.887000e+001 -2.126351e+000 -1.422764e+000 6.190094e-003 + 1.888000e+001 -1.951425e+000 -1.423518e+000 6.188662e-003 + 1.889000e+001 -1.776223e+000 -1.424272e+000 6.183599e-003 + 1.890000e+001 -1.600989e+000 -1.425026e+000 6.176079e-003 + 1.891000e+001 -1.425729e+000 -1.425780e+000 6.167843e-003 + 1.892000e+001 -1.250234e+000 -1.426534e+000 6.160803e-003 + 1.893000e+001 -1.074100e+000 -1.427288e+000 6.156597e-003 + 1.894000e+001 -8.967605e-001 -1.428042e+000 6.156207e-003 + 1.895000e+001 -7.175272e-001 -1.428796e+000 6.159731e-003 + 1.896000e+001 -5.356301e-001 -1.429550e+000 6.166354e-003 + 1.897000e+001 -3.502665e-001 -1.430304e+000 6.174546e-003 + 1.898000e+001 -1.606509e-001 -1.431058e+000 6.182422e-003 + 1.899000e+001 3.393572e-002 -1.431812e+000 6.188175e-003 + 1.900000e+001 2.340955e-001 -1.432566e+000 6.190494e-003 + 1.901000e+001 4.402670e-001 -1.433320e+000 6.188854e-003 + 1.902000e+001 6.526823e-001 -1.434074e+000 6.183636e-003 + 1.903000e+001 8.713297e-001 -1.434828e+000 6.176041e-003 + 1.904000e+001 1.095923e+000 -1.435582e+000 6.167814e-003 + 1.905000e+001 1.325877e+000 -1.436336e+000 6.160849e-003 + 1.906000e+001 1.560298e+000 -1.437090e+000 6.156749e-003 + 1.907000e+001 1.797976e+000 -1.437844e+000 6.156453e-003 + 1.908000e+001 2.037389e+000 -1.438598e+000 6.160013e-003 + 1.909000e+001 2.276722e+000 -1.439352e+000 6.166588e-003 + 1.910000e+001 2.513891e+000 -1.440106e+000 6.174640e-003 + 1.911000e+001 2.746573e+000 -1.440860e+000 6.182296e-003 + 1.912000e+001 2.972255e+000 -1.441614e+000 6.187790e-003 + 1.913000e+001 3.188278e+000 -1.442368e+000 6.189857e-003 + 1.914000e+001 3.391897e+000 -1.443122e+000 6.188027e-003 + 1.915000e+001 3.580338e+000 -1.443876e+000 6.182724e-003 + 1.916000e+001 3.750862e+000 -1.444630e+000 6.175174e-003 + 1.917000e+001 3.900832e+000 -1.445384e+000 6.167123e-003 + 1.918000e+001 4.027771e+000 -1.446138e+000 6.160439e-003 + 1.919000e+001 4.129431e+000 -1.446892e+000 6.156677e-003 + 1.920000e+001 4.203846e+000 -1.447646e+000 6.156718e-003 + 1.921000e+001 4.249385e+000 -1.448400e+000 6.160555e-003 + 1.922000e+001 4.264798e+000 -1.449154e+000 6.167301e-003 + 1.923000e+001 4.249252e+000 -1.449908e+000 6.175395e-003 + 1.924000e+001 4.202361e+000 -1.450662e+000 6.182970e-003 + 1.925000e+001 4.124201e+000 -1.451416e+000 6.188284e-003 + 1.926000e+001 4.015320e+000 -1.452170e+000 6.190119e-003 + 1.927000e+001 3.876731e+000 -1.452924e+000 6.188057e-003 + 1.928000e+001 3.709902e+000 -1.453678e+000 6.182570e-003 + 1.929000e+001 3.516728e+000 -1.454432e+000 6.174915e-003 + 1.930000e+001 3.299498e+000 -1.455186e+000 6.166850e-003 + 1.931000e+001 3.060852e+000 -1.455940e+000 6.160230e-003 + 1.932000e+001 2.803727e+000 -1.456694e+000 6.156580e-003 + 1.933000e+001 2.531304e+000 -1.457448e+000 6.156738e-003 + 1.934000e+001 2.246943e+000 -1.458202e+000 6.160654e-003 + 1.935000e+001 1.954113e+000 -1.458956e+000 6.167410e-003 + 1.936000e+001 1.656332e+000 -1.459710e+000 6.175432e-003 + 1.937000e+001 1.357092e+000 -1.460464e+000 6.182864e-003 + 1.938000e+001 1.059794e+000 -1.461218e+000 6.187992e-003 + 1.939000e+001 7.676895e-001 -1.461972e+000 6.189644e-003 + 1.940000e+001 4.838150e-001 -1.462726e+000 6.187446e-003 + 1.941000e+001 2.109452e-001 -1.463480e+000 6.181909e-003 + 1.942000e+001 -4.845350e-002 -1.464233e+000 6.174311e-003 + 1.943000e+001 -2.922588e-001 -1.464987e+000 6.166410e-003 + 1.944000e+001 -5.187186e-001 -1.465741e+000 6.160037e-003 + 1.945000e+001 -7.264679e-001 -1.466495e+000 6.156674e-003 + 1.946000e+001 -9.145348e-001 -1.467249e+000 6.157107e-003 + 1.947000e+001 -1.082337e+000 -1.468003e+000 6.161236e-003 + 1.948000e+001 -1.229665e+000 -1.468757e+000 6.168106e-003 + 1.949000e+001 -1.356665e+000 -1.469511e+000 6.176130e-003 + 1.950000e+001 -1.463798e+000 -1.470265e+000 6.183461e-003 + 1.951000e+001 -1.551807e+000 -1.471019e+000 6.188418e-003 + 1.952000e+001 -1.621665e+000 -1.471773e+000 6.189873e-003 + 1.953000e+001 -1.674529e+000 -1.472527e+000 6.187502e-003 + 1.954000e+001 -1.711680e+000 -1.473281e+000 6.181857e-003 + 1.955000e+001 -1.734473e+000 -1.474035e+000 6.174242e-003 + 1.956000e+001 -1.744272e+000 -1.474789e+000 6.166415e-003 + 1.957000e+001 -1.742404e+000 -1.475543e+000 6.160185e-003 + 1.958000e+001 -1.730102e+000 -1.476297e+000 6.156994e-003 + 1.959000e+001 -1.708462e+000 -1.477051e+000 6.157578e-003 + 1.960000e+001 -1.678403e+000 -1.477805e+000 6.161792e-003 + 1.961000e+001 -1.640637e+000 -1.478559e+000 6.168647e-003 + 1.962000e+001 -1.595644e+000 -1.479313e+000 6.176546e-003 + 1.963000e+001 -1.543662e+000 -1.480067e+000 6.183655e-003 + 1.964000e+001 -1.484684e+000 -1.480821e+000 6.188330e-003 + 1.965000e+001 -1.418463e+000 -1.481575e+000 6.189494e-003 + 1.966000e+001 -1.344539e+000 -1.482329e+000 6.186874e-003 + 1.967000e+001 -1.262256e+000 -1.483083e+000 6.181069e-003 + 1.968000e+001 -1.170809e+000 -1.483837e+000 6.173411e-003 + 1.969000e+001 -1.069282e+000 -1.484591e+000 6.165662e-003 + 1.970000e+001 -9.567037e-001 -1.485345e+000 6.159613e-003 + 1.971000e+001 -8.321033e-001 -1.486099e+000 6.156664e-003 + 1.972000e+001 -6.945670e-001 -1.486853e+000 6.157500e-003 + 1.973000e+001 -5.433007e-001 -1.487607e+000 6.161926e-003 + 1.974000e+001 -3.776874e-001 -1.488361e+000 6.168916e-003 + 1.975000e+001 -1.973438e-001 -1.489115e+000 6.176853e-003 + 1.976000e+001 -2.170108e-003 -1.489869e+000 6.183908e-003 + 1.977000e+001 2.076065e-001 -1.490623e+000 6.188466e-003 + 1.978000e+001 4.313975e-001 -1.491377e+000 6.189487e-003 + 1.979000e+001 6.682293e-001 -1.492131e+000 6.186745e-003 + 1.980000e+001 9.167305e-001 -1.492885e+000 6.180874e-003 + 1.981000e+001 1.175132e+000 -1.493639e+000 6.173227e-003 + 1.982000e+001 1.441279e+000 -1.494393e+000 6.165569e-003 + 1.983000e+001 1.712658e+000 -1.495147e+000 6.159668e-003 + 1.984000e+001 1.986434e+000 -1.495901e+000 6.156889e-003 + 1.985000e+001 2.259500e+000 -1.496655e+000 6.157871e-003 + 1.986000e+001 2.528535e+000 -1.497409e+000 6.162377e-003 + 1.987000e+001 2.790079e+000 -1.498163e+000 6.169353e-003 + 1.988000e+001 3.040601e+000 -1.498917e+000 6.177176e-003 + 1.989000e+001 3.276590e+000 -1.499671e+000 6.184035e-003 + 1.990000e+001 3.494627e+000 -1.500425e+000 6.188349e-003 + 1.991000e+001 3.691479e+000 -1.501179e+000 6.189127e-003 + 1.992000e+001 3.864176e+000 -1.501933e+000 6.186193e-003 + 1.993000e+001 4.010089e+000 -1.502687e+000 6.180220e-003 + 1.994000e+001 4.126998e+000 -1.503441e+000 6.172586e-003 + 1.995000e+001 4.213156e+000 -1.504195e+000 6.165052e-003 + 1.996000e+001 4.267337e+000 -1.504949e+000 6.159364e-003 + 1.997000e+001 4.288874e+000 -1.505703e+000 6.156843e-003 + 1.998000e+001 4.277679e+000 -1.506456e+000 6.158075e-003 + 1.999000e+001 4.234257e+000 -1.507210e+000 6.162775e-003 + 2.000000e+001 4.159698e+000 -1.507964e+000 6.169854e-003 + 2.001000e+001 4.055655e+000 -1.508718e+000 6.177674e-003 + 2.002000e+001 3.924309e+000 -1.509472e+000 6.184434e-003 + 2.003000e+001 3.768324e+000 -1.510226e+000 6.188582e-003 + 2.004000e+001 3.590783e+000 -1.510980e+000 6.189172e-003 + 2.005000e+001 3.395123e+000 -1.511734e+000 6.186072e-003 + 2.006000e+001 3.185049e+000 -1.512488e+000 6.179997e-003 + 2.007000e+001 2.964458e+000 -1.513242e+000 6.172345e-003 + 2.008000e+001 2.737345e+000 -1.513996e+000 6.164882e-003 + 2.009000e+001 2.507717e+000 -1.514750e+000 6.159332e-003 + 2.010000e+001 2.279502e+000 -1.515504e+000 6.156980e-003 + 2.011000e+001 2.056468e+000 -1.516258e+000 6.158369e-003 + 2.012000e+001 1.842139e+000 -1.517012e+000 6.163171e-003 + 2.013000e+001 1.639727e+000 -1.517766e+000 6.170269e-003 + 2.014000e+001 1.452064e+000 -1.518520e+000 6.178016e-003 + 2.015000e+001 1.281558e+000 -1.519274e+000 6.184623e-003 + 2.016000e+001 1.130145e+000 -1.520028e+000 6.188569e-003 + 2.017000e+001 9.992621e-001 -1.520782e+000 6.188948e-003 + 2.018000e+001 8.898332e-001 -1.521536e+000 6.185672e-003 + 2.019000e+001 8.022643e-001 -1.522290e+000 6.179490e-003 + 2.020000e+001 7.364521e-001 -1.523044e+000 6.171818e-003 + 2.021000e+001 6.918038e-001 -1.523798e+000 6.164420e-003 + 2.022000e+001 6.672678e-001 -1.524552e+000 6.158999e-003 + 2.023000e+001 6.613735e-001 -1.525306e+000 6.156804e-003 + 2.024000e+001 6.722789e-001 -1.526060e+000 6.158336e-003 + 2.025000e+001 6.978245e-001 -1.526814e+000 6.163233e-003 + 2.026000e+001 7.355928e-001 -1.527568e+000 6.170355e-003 + 2.027000e+001 7.829700e-001 -1.528322e+000 6.178053e-003 + 2.028000e+001 8.372106e-001 -1.529076e+000 6.184557e-003 + 2.029000e+001 8.955005e-001 -1.529830e+000 6.188381e-003 + 2.030000e+001 9.550209e-001 -1.530584e+000 6.188661e-003 + 2.031000e+001 1.013007e+000 -1.531338e+000 6.185349e-003 + 2.032000e+001 1.066806e+000 -1.532092e+000 6.179220e-003 + 2.033000e+001 1.113926e+000 -1.532846e+000 6.171697e-003 + 2.034000e+001 1.152085e+000 -1.533600e+000 6.164528e-003 + 2.035000e+001 1.179246e+000 -1.534354e+000 6.159377e-003 + 2.036000e+001 1.193653e+000 -1.535108e+000 6.157442e-003 + 2.037000e+001 1.193855e+000 -1.535862e+000 6.159170e-003 + 2.038000e+001 1.178724e+000 -1.536616e+000 6.164152e-003 + 2.039000e+001 1.147464e+000 -1.537370e+000 6.171223e-003 + 2.040000e+001 1.099616e+000 -1.538124e+000 6.178736e-003 + 2.041000e+001 1.035055e+000 -1.538878e+000 6.184947e-003 + 2.042000e+001 9.539776e-001 -1.539632e+000 6.188418e-003 + 2.043000e+001 8.568864e-001 -1.540386e+000 6.188345e-003 + 2.044000e+001 7.445678e-001 -1.541140e+000 6.184738e-003 + 2.045000e+001 6.180649e-001 -1.541894e+000 6.178422e-003 + 2.046000e+001 4.786458e-001 -1.542648e+000 6.170847e-003 + 2.047000e+001 3.277682e-001 -1.543402e+000 6.163759e-003 + 2.048000e+001 1.670415e-001 -1.544156e+000 6.158798e-003 + 2.049000e+001 -1.813365e-003 -1.544910e+000 6.157116e-003 + 2.050000e+001 -1.770053e-001 -1.545664e+000 6.159105e-003 + 2.051000e+001 -3.567147e-001 -1.546418e+000 6.164302e-003 + 2.052000e+001 -5.391349e-001 -1.547172e+000 6.171504e-003 + 2.053000e+001 -7.225113e-001 -1.547926e+000 6.179045e-003 + 2.054000e+001 -9.051797e-001 -1.548679e+000 6.185189e-003 + 2.055000e+001 -1.085600e+000 -1.549433e+000 6.188526e-003 + 2.056000e+001 -1.262387e+000 -1.550187e+000 6.188293e-003 + 2.057000e+001 -1.434337e+000 -1.550941e+000 6.184547e-003 + 2.058000e+001 -1.600448e+000 -1.551695e+000 6.178149e-003 + 2.059000e+001 -1.759933e+000 -1.552449e+000 6.170573e-003 + 2.060000e+001 -1.912234e+000 -1.553203e+000 6.163567e-003 + 2.061000e+001 -2.057018e+000 -1.553957e+000 6.158754e-003 + 2.062000e+001 -2.194182e+000 -1.554711e+000 6.157251e-003 + 2.063000e+001 -2.323832e+000 -1.555465e+000 6.159406e-003 + 2.064000e+001 -2.446277e+000 -1.556219e+000 6.164721e-003 + 2.065000e+001 -2.562002e+000 -1.556973e+000 6.171964e-003 + 2.066000e+001 -2.671644e+000 -1.557727e+000 6.179462e-003 + 2.067000e+001 -2.775958e+000 -1.558481e+000 6.185492e-003 + 2.068000e+001 -2.875788e+000 -1.559235e+000 6.188671e-003 + 2.069000e+001 -2.972024e+000 -1.559989e+000 6.188276e-003 + 2.070000e+001 -3.065574e+000 -1.560743e+000 6.184401e-003 + 2.071000e+001 -3.157316e+000 -1.561497e+000 6.177938e-003 + 2.072000e+001 -3.248072e+000 -1.562251e+000 6.170372e-003 + 2.073000e+001 -3.338566e+000 -1.563005e+000 6.163449e-003 + 2.074000e+001 -3.429400e+000 -1.563759e+000 6.158764e-003 + 2.075000e+001 -3.521025e+000 -1.564513e+000 6.157401e-003 + 2.076000e+001 -3.613720e+000 -1.565267e+000 6.159667e-003 + 2.077000e+001 -3.707581e+000 -1.566021e+000 6.165032e-003 + 2.078000e+001 -3.802508e+000 -1.566775e+000 6.172246e-003 + 2.079000e+001 -3.898209e+000 -1.567529e+000 6.179638e-003 + 2.080000e+001 -3.994197e+000 -1.568283e+000 6.185508e-003 + 2.081000e+001 -4.089810e+000 -1.569037e+000 6.188509e-003 + 2.082000e+001 -4.184223e+000 -1.569791e+000 6.187962e-003 + 2.083000e+001 -4.276469e+000 -1.570545e+000 6.184001e-003 + 2.084000e+001 -4.365468e+000 -1.571299e+000 6.177546e-003 + 2.085000e+001 -4.450059e+000 -1.572053e+000 6.170091e-003 + 2.086000e+001 -4.529025e+000 -1.572807e+000 6.163364e-003 + 2.087000e+001 -4.601132e+000 -1.573561e+000 6.158929e-003 + 2.088000e+001 -4.665159e+000 -1.574315e+000 6.157818e-003 + 2.089000e+001 -4.719930e+000 -1.575069e+000 6.160288e-003 + 2.090000e+001 -4.764339e+000 -1.575823e+000 6.165764e-003 + 2.091000e+001 -4.797382e+000 -1.576577e+000 6.172971e-003 + 2.092000e+001 -4.818169e+000 -1.577331e+000 6.180236e-003 + 2.093000e+001 -4.825947e+000 -1.578085e+000 6.185881e-003 + 2.094000e+001 -4.820108e+000 -1.578839e+000 6.188599e-003 + 2.095000e+001 -4.800189e+000 -1.579593e+000 6.187762e-003 + 2.096000e+001 -4.765878e+000 -1.580347e+000 6.183554e-003 + 2.097000e+001 -4.717005e+000 -1.581101e+000 6.176935e-003 + 2.098000e+001 -4.653530e+000 -1.581855e+000 6.169422e-003 + 2.099000e+001 -4.575529e+000 -1.582609e+000 6.162741e-003 + 2.100000e+001 -4.483177e+000 -1.583363e+000 6.158433e-003 + 2.101000e+001 -4.376726e+000 -1.584117e+000 6.157493e-003 + 2.102000e+001 -4.256484e+000 -1.584871e+000 6.160135e-003 + 2.103000e+001 -4.122796e+000 -1.585625e+000 6.165742e-003 + 2.104000e+001 -3.976019e+000 -1.586379e+000 6.173013e-003 + 2.105000e+001 -3.816508e+000 -1.587133e+000 6.180267e-003 + 2.106000e+001 -3.644599e+000 -1.587887e+000 6.185835e-003 + 2.107000e+001 -3.460595e+000 -1.588641e+000 6.188441e-003 + 2.108000e+001 -3.264765e+000 -1.589395e+000 6.187492e-003 + 2.109000e+001 -3.057334e+000 -1.590149e+000 6.183209e-003 + 2.110000e+001 -2.838493e+000 -1.590902e+000 6.176577e-003 + 2.111000e+001 -2.608399e+000 -1.591656e+000 6.169126e-003 + 2.112000e+001 -2.367196e+000 -1.592410e+000 6.162574e-003 + 2.113000e+001 -2.115023e+000 -1.593164e+000 6.158438e-003 + 2.114000e+001 -1.852041e+000 -1.593918e+000 6.157677e-003 + 2.115000e+001 -1.578453e+000 -1.594672e+000 6.160465e-003 + 2.116000e+001 -1.294528e+000 -1.595426e+000 6.166157e-003 + 2.117000e+001 -1.000630e+000 -1.596180e+000 6.173432e-003 + 2.118000e+001 -6.972428e-001 -1.596934e+000 6.180615e-003 + 2.119000e+001 -3.849936e-001 -1.597688e+000 6.186055e-003 + 2.120000e+001 -6.467643e-002 -1.598442e+000 6.188510e-003 + 2.121000e+001 2.627294e-001 -1.599196e+000 6.187424e-003 + 2.122000e+001 5.960437e-001 -1.599950e+000 6.183053e-003 + 2.123000e+001 9.338762e-001 -1.600704e+000 6.176407e-003 + 2.124000e+001 1.274622e+000 -1.601458e+000 6.169016e-003 + 2.125000e+001 1.616461e+000 -1.602212e+000 6.162586e-003 + 2.126000e+001 1.957371e+000 -1.602966e+000 6.158602e-003 + 2.127000e+001 2.295136e+000 -1.603720e+000 6.157982e-003 + 2.128000e+001 2.627369e+000 -1.604474e+000 6.160863e-003 + 2.129000e+001 2.951540e+000 -1.605228e+000 6.166567e-003 + 2.130000e+001 3.265003e+000 -1.605982e+000 6.173765e-003 + 2.131000e+001 3.565038e+000 -1.606736e+000 6.180790e-003 + 2.132000e+001 3.848887e+000 -1.607490e+000 6.186022e-003 + 2.133000e+001 4.113799e+000 -1.608244e+000 6.188262e-003 + 2.134000e+001 4.357075e+000 -1.608998e+000 6.187001e-003 + 2.135000e+001 4.576117e+000 -1.609752e+000 6.182536e-003 + 2.136000e+001 4.768473e+000 -1.610506e+000 6.175900e-003 + 2.137000e+001 4.931885e+000 -1.611260e+000 6.168630e-003 + 2.138000e+001 5.064331e+000 -1.612014e+000 6.162410e-003 + 2.139000e+001 5.164066e+000 -1.612768e+000 6.158686e-003 + 2.140000e+001 5.229664e+000 -1.613522e+000 6.158325e-003 + 2.141000e+001 5.260047e+000 -1.614276e+000 6.161409e-003 + 2.142000e+001 5.254512e+000 -1.615030e+000 6.167221e-003 + 2.143000e+001 5.212756e+000 -1.615784e+000 6.174409e-003 + 2.144000e+001 5.134888e+000 -1.616538e+000 6.181308e-003 + 2.145000e+001 5.021437e+000 -1.617292e+000 6.186323e-003 + 2.146000e+001 4.873356e+000 -1.618046e+000 6.188298e-003 + 2.147000e+001 4.692013e+000 -1.618800e+000 6.186774e-003 + 2.148000e+001 4.479176e+000 -1.619554e+000 6.182097e-003 + 2.149000e+001 4.236998e+000 -1.620308e+000 6.175336e-003 + 2.150000e+001 3.967985e+000 -1.621062e+000 6.168045e-003 + 2.151000e+001 3.674962e+000 -1.621816e+000 6.161904e-003 + 2.152000e+001 3.361039e+000 -1.622570e+000 6.158331e-003 + 2.153000e+001 3.029562e+000 -1.623324e+000 6.158153e-003 + 2.154000e+001 2.684068e+000 -1.624078e+000 6.161410e-003 + 2.155000e+001 2.328232e+000 -1.624832e+000 6.167345e-003 + 2.156000e+001 1.965815e+000 -1.625586e+000 6.174585e-003 + 2.157000e+001 1.600609e+000 -1.626340e+000 6.181459e-003 + 2.158000e+001 1.236382e+000 -1.627094e+000 6.186390e-003 + 2.159000e+001 8.768262e-001 -1.627848e+000 6.188249e-003 + 2.160000e+001 5.255049e-001 -1.628602e+000 6.186617e-003 + 2.161000e+001 1.858055e-001 -1.629356e+000 6.181873e-003 + 2.162000e+001 -1.391047e-001 -1.630110e+000 6.175109e-003 + 2.163000e+001 -4.463182e-001 -1.630864e+000 6.167887e-003 + 2.164000e+001 -7.332199e-001 -1.631618e+000 6.161873e-003 + 2.165000e+001 -9.975153e-001 -1.632372e+000 6.158460e-003 + 2.166000e+001 -1.237250e+000 -1.633126e+000 6.158438e-003 + 2.167000e+001 -1.450826e+000 -1.633879e+000 6.161810e-003 + 2.168000e+001 -1.637005e+000 -1.634633e+000 6.167790e-003 + 2.169000e+001 -1.794911e+000 -1.635387e+000 6.174992e-003 + 2.170000e+001 -1.924025e+000 -1.636141e+000 6.181755e-003 + 2.171000e+001 -2.024172e+000 -1.636895e+000 6.186524e-003 + 2.172000e+001 -2.095504e+000 -1.637649e+000 6.188208e-003 + 2.173000e+001 -2.138479e+000 -1.638403e+000 6.186425e-003 + 2.174000e+001 -2.153835e+000 -1.639157e+000 6.181589e-003 + 2.175000e+001 -2.142564e+000 -1.639911e+000 6.174812e-003 + 2.176000e+001 -2.105883e+000 -1.640665e+000 6.167656e-003 + 2.177000e+001 -2.045205e+000 -1.641419e+000 6.161770e-003 + 2.178000e+001 -1.962105e+000 -1.642173e+000 6.158513e-003 + 2.179000e+001 -1.858300e+000 -1.642927e+000 6.158633e-003 + 2.180000e+001 -1.735617e+000 -1.643681e+000 6.162093e-003 + 2.181000e+001 -1.595969e+000 -1.644435e+000 6.168081e-003 + 2.182000e+001 -1.441338e+000 -1.645189e+000 6.175204e-003 + 2.183000e+001 -1.273755e+000 -1.645943e+000 6.181811e-003 + 2.184000e+001 -1.095281e+000 -1.646697e+000 6.186380e-003 + 2.185000e+001 -9.080009e-001 -1.647451e+000 6.187863e-003 + 2.186000e+001 -7.140110e-001 -1.648205e+000 6.185925e-003 + 2.187000e+001 -5.154098e-001 -1.648959e+000 6.181018e-003 + 2.188000e+001 -3.142930e-001 -1.649713e+000 6.174276e-003 + 2.189000e+001 -1.127471e-001 -1.650467e+000 6.167260e-003 + 2.190000e+001 8.715642e-002 -1.651221e+000 6.161596e-003 + 2.191000e+001 2.833686e-001 -1.651975e+000 6.158602e-003 + 2.192000e+001 4.738708e-001 -1.652729e+000 6.158975e-003 + 2.193000e+001 6.566857e-001 -1.653483e+000 6.162626e-003 + 2.194000e+001 8.298903e-001 -1.654237e+000 6.168706e-003 + 2.195000e+001 9.916318e-001 -1.654991e+000 6.175804e-003 + 2.196000e+001 1.140147e+000 -1.655745e+000 6.182275e-003 + 2.197000e+001 1.273783e+000 -1.656499e+000 6.186626e-003 + 2.198000e+001 1.391025e+000 -1.657253e+000 6.187852e-003 + 2.199000e+001 1.490516e+000 -1.658007e+000 6.185669e-003 + 2.200000e+001 1.571093e+000 -1.658761e+000 6.180575e-003 + 2.201000e+001 1.631807e+000 -1.659515e+000 6.173735e-003 + 2.202000e+001 1.671954e+000 -1.660269e+000 6.166724e-003 + 2.203000e+001 1.691101e+000 -1.661023e+000 6.161159e-003 + 2.204000e+001 1.689105e+000 -1.661777e+000 6.158327e-003 + 2.205000e+001 1.666133e+000 -1.662531e+000 6.158883e-003 + 2.206000e+001 1.622671e+000 -1.663285e+000 6.162697e-003 + 2.207000e+001 1.559535e+000 -1.664039e+000 6.168883e-003 + 2.208000e+001 1.477865e+000 -1.664793e+000 6.176010e-003 + 2.209000e+001 1.379115e+000 -1.665547e+000 6.182435e-003 + 2.210000e+001 1.265040e+000 -1.666301e+000 6.186682e-003 + 2.211000e+001 1.137665e+000 -1.667055e+000 6.187781e-003 + 2.212000e+001 9.992537e-001 -1.667809e+000 6.185484e-003 + 2.213000e+001 8.522665e-001 -1.668563e+000 6.180323e-003 + 2.214000e+001 6.993130e-001 -1.669317e+000 6.173488e-003 + 2.215000e+001 5.430985e-001 -1.670071e+000 6.166556e-003 + 2.216000e+001 3.863668e-001 -1.670825e+000 6.161132e-003 + 2.217000e+001 2.318412e-001 -1.671579e+000 6.158473e-003 + 2.218000e+001 8.216383e-002 -1.672333e+000 6.159198e-003 + 2.219000e+001 -6.016272e-002 -1.673087e+000 6.163138e-003 + 2.220000e+001 -1.928315e-001 -1.673841e+000 6.169379e-003 + 2.221000e+001 -3.137825e-001 -1.674595e+000 6.176479e-003 + 2.222000e+001 -4.212468e-001 -1.675349e+000 6.182801e-003 + 2.223000e+001 -5.137846e-001 -1.676102e+000 6.186893e-003 + 2.224000e+001 -5.903124e-001 -1.676856e+000 6.187819e-003 + 2.225000e+001 -6.501221e-001 -1.677610e+000 6.185368e-003 + 2.226000e+001 -6.928887e-001 -1.678364e+000 6.180104e-003 + 2.227000e+001 -7.186678e-001 -1.679118e+000 6.173235e-003 + 2.228000e+001 -7.278836e-001 -1.679872e+000 6.166343e-003 + 2.229000e+001 -7.213060e-001 -1.680626e+000 6.161013e-003 + 2.230000e+001 -7.000196e-001 -1.681380e+000 6.158476e-003 + 2.231000e+001 -6.653849e-001 -1.682134e+000 6.159313e-003 + 2.232000e+001 -6.189931e-001 -1.682888e+000 6.163322e-003 + 2.233000e+001 -5.626160e-001 -1.683642e+000 6.169569e-003 + 2.234000e+001 -4.981538e-001 -1.684396e+000 6.176604e-003 + 2.235000e+001 -4.275802e-001 -1.685150e+000 6.182804e-003 + 2.236000e+001 -3.528897e-001 -1.685904e+000 6.186745e-003 + 2.237000e+001 -2.760463e-001 -1.686658e+000 6.187529e-003 + 2.238000e+001 -1.989356e-001 -1.687412e+000 6.184983e-003 + 2.239000e+001 -1.233233e-001 -1.688166e+000 6.179699e-003 + 2.240000e+001 -5.081841e-002 -1.688920e+000 6.172897e-003 + 2.241000e+001 1.715478e-002 -1.689674e+000 6.166152e-003 + 2.242000e+001 7.937855e-002 -1.690428e+000 6.161024e-003 + 2.243000e+001 1.348549e-001 -1.691182e+000 6.158702e-003 + 2.244000e+001 1.828113e-001 -1.691936e+000 6.159723e-003 + 2.245000e+001 2.226986e-001 -1.692690e+000 6.163846e-003 + 2.246000e+001 2.541826e-001 -1.693444e+000 6.170110e-003 + 2.247000e+001 2.771296e-001 -1.694198e+000 6.177061e-003 + 2.248000e+001 2.915863e-001 -1.694952e+000 6.183093e-003 + 2.249000e+001 2.977572e-001 -1.695706e+000 6.186817e-003 + 2.250000e+001 2.959776e-001 -1.696460e+000 6.187378e-003 + 2.251000e+001 2.866873e-001 -1.697214e+000 6.184651e-003 + 2.252000e+001 2.704019e-001 -1.697968e+000 6.179263e-003 + 2.253000e+001 2.476871e-001 -1.698722e+000 6.172458e-003 + 2.254000e+001 2.191331e-001 -1.699476e+000 6.165805e-003 + 2.255000e+001 1.853326e-001 -1.700230e+000 6.160845e-003 + 2.256000e+001 1.468625e-001 -1.700984e+000 6.158727e-003 + 2.257000e+001 1.042680e-001 -1.701738e+000 6.159941e-003 + 2.258000e+001 5.805193e-002 -1.702492e+000 6.164204e-003 + 2.259000e+001 8.667602e-003 -1.703246e+000 6.170524e-003 + 2.260000e+001 -4.348464e-002 -1.704000e+000 6.177437e-003 + 2.261000e+001 -9.805719e-002 -1.704754e+000 6.183347e-003 + 2.262000e+001 -1.547519e-001 -1.705508e+000 6.186896e-003 + 2.263000e+001 -2.133146e-001 -1.706262e+000 6.187271e-003 + 2.264000e+001 -2.735272e-001 -1.707016e+000 6.184389e-003 + 2.265000e+001 -3.351996e-001 -1.707770e+000 6.178916e-003 + 2.266000e+001 -3.981599e-001 -1.708524e+000 6.172113e-003 + 2.267000e+001 -4.622460e-001 -1.709278e+000 6.165553e-003 + 2.268000e+001 -5.272968e-001 -1.710032e+000 6.160755e-003 + 2.269000e+001 -5.931453e-001 -1.710786e+000 6.158831e-003 + 2.270000e+001 -6.596128e-001 -1.711540e+000 6.160228e-003 + 2.271000e+001 -7.265053e-001 -1.712294e+000 6.164620e-003 + 2.272000e+001 -7.936108e-001 -1.713048e+000 6.170985e-003 + 2.273000e+001 -8.606997e-001 -1.713802e+000 6.177848e-003 + 2.274000e+001 -9.275259e-001 -1.714556e+000 6.183625e-003 + 2.275000e+001 -9.938298e-001 -1.715310e+000 6.186983e-003 + 2.276000e+001 -1.059342e+000 -1.716064e+000 6.187150e-003 + 2.277000e+001 -1.123789e+000 -1.716818e+000 6.184086e-003 + 2.278000e+001 -1.186897e+000 -1.717572e+000 6.178493e-003 + 2.279000e+001 -1.248397e+000 -1.718325e+000 6.171654e-003 + 2.280000e+001 -1.308032e+000 -1.719079e+000 6.165144e-003 + 2.281000e+001 -1.365557e+000 -1.719833e+000 6.160466e-003 + 2.282000e+001 -1.420742e+000 -1.720587e+000 6.158701e-003 + 2.283000e+001 -1.473377e+000 -1.721341e+000 6.160257e-003 + 2.284000e+001 -1.523265e+000 -1.722095e+000 6.164769e-003 + 2.285000e+001 -1.570225e+000 -1.722849e+000 6.171192e-003 + 2.286000e+001 -1.614086e+000 -1.723603e+000 6.178039e-003 + 2.287000e+001 -1.654681e+000 -1.724357e+000 6.183734e-003 + 2.288000e+001 -1.691839e+000 -1.725111e+000 6.186970e-003 + 2.289000e+001 -1.725381e+000 -1.725865e+000 6.187008e-003 + 2.290000e+001 -1.755107e+000 -1.726619e+000 6.183843e-003 + 2.291000e+001 -1.780789e+000 -1.727373e+000 6.178205e-003 + 2.292000e+001 -1.802160e+000 -1.728127e+000 6.171391e-003 + 2.293000e+001 -1.818908e+000 -1.728881e+000 6.164972e-003 + 2.294000e+001 -1.830668e+000 -1.729635e+000 6.160431e-003 + 2.295000e+001 -1.837011e+000 -1.730389e+000 6.158816e-003 + 2.296000e+001 -1.837448e+000 -1.731143e+000 6.160499e-003 + 2.297000e+001 -1.831419e+000 -1.731897e+000 6.165083e-003 + 2.298000e+001 -1.818298e+000 -1.732651e+000 6.171503e-003 + 2.299000e+001 -1.797396e+000 -1.733405e+000 6.178271e-003 + 2.300000e+001 -1.767965e+000 -1.734159e+000 6.183829e-003 + 2.301000e+001 -1.729204e+000 -1.734913e+000 6.186900e-003 + 2.302000e+001 -1.680276e+000 -1.735667e+000 6.186785e-003 + 2.303000e+001 -1.620320e+000 -1.736421e+000 6.183515e-003 + 2.304000e+001 -1.548464e+000 -1.737175e+000 6.177847e-003 + 2.305000e+001 -1.463851e+000 -1.737929e+000 6.171088e-003 + 2.306000e+001 -1.365657e+000 -1.738683e+000 6.164801e-003 + 2.307000e+001 -1.253112e+000 -1.739437e+000 6.160440e-003 + 2.308000e+001 -1.125529e+000 -1.740191e+000 6.159014e-003 + 2.309000e+001 -9.823273e-001 -1.740945e+000 6.160851e-003 + 2.310000e+001 -8.230574e-001 -1.741699e+000 6.165519e-003 + 2.311000e+001 -6.474260e-001 -1.742453e+000 6.171930e-003 + 2.312000e+001 -4.553200e-001 -1.743207e+000 6.178597e-003 + 2.313000e+001 -2.468286e-001 -1.743961e+000 6.183979e-003 + 2.314000e+001 -2.226300e-002 -1.744715e+000 6.186835e-003 + 2.315000e+001 2.178277e-001 -1.745469e+000 6.186512e-003 + 2.316000e+001 4.726432e-001 -1.746223e+000 6.183082e-003 + 2.317000e+001 7.411237e-001 -1.746977e+000 6.177337e-003 + 2.318000e+001 1.021946e+000 -1.747731e+000 6.170601e-003 + 2.319000e+001 1.313526e+000 -1.748485e+000 6.164428e-003 + 2.320000e+001 1.614023e+000 -1.749239e+000 6.160250e-003 + 2.321000e+001 1.921355e+000 -1.749993e+000 6.159035e-003 + 2.322000e+001 2.233217e+000 -1.750747e+000 6.161066e-003 + 2.323000e+001 2.547102e+000 -1.751501e+000 6.165871e-003 + 2.324000e+001 2.860334e+000 -1.752255e+000 6.172334e-003 + 2.325000e+001 3.170101e+000 -1.753009e+000 6.178962e-003 + 2.326000e+001 3.473491e+000 -1.753763e+000 6.184227e-003 + 2.327000e+001 3.767539e+000 -1.754517e+000 6.186920e-003 + 2.328000e+001 4.049270e+000 -1.755271e+000 6.186425e-003 + 2.329000e+001 4.315745e+000 -1.756025e+000 6.182857e-003 + 2.330000e+001 4.564111e+000 -1.756779e+000 6.177038e-003 + 2.331000e+001 4.791647e+000 -1.757533e+000 6.170309e-003 + 2.332000e+001 4.995811e+000 -1.758287e+000 6.164223e-003 + 2.333000e+001 5.174285e+000 -1.759041e+000 6.160189e-003 + 2.334000e+001 5.325012e+000 -1.759795e+000 6.159142e-003 + 2.335000e+001 5.446235e+000 -1.760548e+000 6.161325e-003 + 2.336000e+001 5.536523e+000 -1.761302e+000 6.166230e-003 + 2.337000e+001 5.594796e+000 -1.762056e+000 6.172721e-003 + 2.338000e+001 5.620345e+000 -1.762810e+000 6.179298e-003 + 2.339000e+001 5.612834e+000 -1.763564e+000 6.184447e-003 + 2.340000e+001 5.572308e+000 -1.764318e+000 6.186989e-003 + 2.341000e+001 5.499185e+000 -1.765072e+000 6.186342e-003 + 2.342000e+001 5.394246e+000 -1.765826e+000 6.182659e-003 + 2.343000e+001 5.258610e+000 -1.766580e+000 6.176787e-003 + 2.344000e+001 5.093715e+000 -1.767334e+000 6.170079e-003 + 2.345000e+001 4.901287e+000 -1.768088e+000 6.164082e-003 + 2.346000e+001 4.683302e+000 -1.768842e+000 6.160180e-003 + 2.347000e+001 4.441953e+000 -1.769596e+000 6.159274e-003 + 2.348000e+001 4.179612e+000 -1.770350e+000 6.161569e-003 + 2.349000e+001 3.898785e+000 -1.771104e+000 6.166526e-003 + 2.350000e+001 3.602079e+000 -1.771858e+000 6.172991e-003 + 2.351000e+001 3.292160e+000 -1.772612e+000 6.179466e-003 + 2.352000e+001 2.971720e+000 -1.773366e+000 6.184457e-003 + 2.353000e+001 2.643444e+000 -1.774120e+000 6.186815e-003 + 2.354000e+001 2.309980e+000 -1.774874e+000 6.186002e-003 + 2.355000e+001 1.973915e+000 -1.775628e+000 6.182206e-003 + 2.356000e+001 1.637754e+000 -1.776382e+000 6.176302e-003 + 2.357000e+001 1.303905e+000 -1.777136e+000 6.169651e-003 + 2.358000e+001 9.746602e-001 -1.777890e+000 6.163791e-003 + 2.359000e+001 6.521935e-001 -1.778644e+000 6.160079e-003 + 2.360000e+001 3.385483e-001 -1.779398e+000 6.159373e-003 + 2.361000e+001 3.563481e-002 -1.780152e+000 6.161838e-003 + 2.362000e+001 -2.547734e-001 -1.780906e+000 6.166898e-003 + 2.363000e+001 -5.310418e-001 -1.781660e+000 6.173378e-003 + 2.364000e+001 -7.916767e-001 -1.782414e+000 6.179779e-003 + 2.365000e+001 -1.035328e+000 -1.783168e+000 6.184626e-003 + 2.366000e+001 -1.260793e+000 -1.783922e+000 6.186803e-003 + 2.367000e+001 -1.467020e+000 -1.784676e+000 6.185813e-003 + 2.368000e+001 -1.653114e+000 -1.785430e+000 6.181884e-003 + 2.369000e+001 -1.818345e+000 -1.786184e+000 6.175920e-003 + 2.370000e+001 -1.962155e+000 -1.786938e+000 6.169296e-003 + 2.371000e+001 -2.084168e+000 -1.787692e+000 6.163542e-003 + 2.372000e+001 -2.184195e+000 -1.788446e+000 6.159992e-003 + 2.373000e+001 -2.262251e+000 -1.789200e+000 6.159468e-003 + 2.374000e+001 -2.318551e+000 -1.789954e+000 6.162093e-003 + 2.375000e+001 -2.353526e+000 -1.790708e+000 6.167258e-003 + 2.376000e+001 -2.367819e+000 -1.791462e+000 6.173769e-003 + 2.377000e+001 -2.362286e+000 -1.792216e+000 6.180121e-003 + 2.378000e+001 -2.337992e+000 -1.792970e+000 6.184856e-003 + 2.379000e+001 -2.296201e+000 -1.793724e+000 6.186888e-003 + 2.380000e+001 -2.238362e+000 -1.794478e+000 6.185754e-003 + 2.381000e+001 -2.166090e+000 -1.795232e+000 6.181717e-003 + 2.382000e+001 -2.081143e+000 -1.795986e+000 6.175707e-003 + 2.383000e+001 -1.985394e+000 -1.796740e+000 6.169107e-003 + 2.384000e+001 -1.880799e+000 -1.797494e+000 6.163439e-003 + 2.385000e+001 -1.769365e+000 -1.798248e+000 6.160010e-003 + 2.386000e+001 -1.653110e+000 -1.799002e+000 6.159611e-003 + 2.387000e+001 -1.534031e+000 -1.799756e+000 6.162328e-003 + 2.388000e+001 -1.414064e+000 -1.800510e+000 6.167524e-003 + 2.389000e+001 -1.295053e+000 -1.801264e+000 6.173989e-003 + 2.390000e+001 -1.178713e+000 -1.802018e+000 6.180226e-003 + 2.391000e+001 -1.066610e+000 -1.802772e+000 6.184797e-003 + 2.392000e+001 -9.601340e-001 -1.803525e+000 6.186651e-003 + 2.393000e+001 -8.604816e-001 -1.804279e+000 6.185363e-003 + 2.394000e+001 -7.686489e-001 -1.805033e+000 6.181234e-003 + 2.395000e+001 -6.854262e-001 -1.805787e+000 6.175214e-003 + 2.396000e+001 -6.114007e-001 -1.806541e+000 6.168693e-003 + 2.397000e+001 -5.469660e-001 -1.807295e+000 6.163179e-003 + 2.398000e+001 -4.923367e-001 -1.808049e+000 6.159950e-003 + 2.399000e+001 -4.475674e-001 -1.808803e+000 6.159754e-003 + 2.400000e+001 -4.125762e-001 -1.809557e+000 6.162636e-003 + 2.401000e+001 -3.871700e-001 -1.810311e+000 6.167926e-003 + 2.402000e+001 -3.710712e-001 -1.811065e+000 6.174397e-003 + 2.403000e+001 -3.639440e-001 -1.811819e+000 6.180554e-003 + 2.404000e+001 -3.654188e-001 -1.812573e+000 6.184980e-003 + 2.405000e+001 -3.751147e-001 -1.813327e+000 6.186659e-003 + 2.406000e+001 -3.926569e-001 -1.814081e+000 6.185209e-003 + 2.407000e+001 -4.176898e-001 -1.814835e+000 6.180967e-003 + 2.408000e+001 -4.498854e-001 -1.815589e+000 6.174912e-003 + 2.409000e+001 -4.889450e-001 -1.816343e+000 6.168444e-003 + 2.410000e+001 -5.345956e-001 -1.817097e+000 6.163059e-003 + 2.411000e+001 -5.865820e-001 -1.817851e+000 6.160008e-003 + 2.412000e+001 -6.446530e-001 -1.818605e+000 6.160001e-003 + 2.413000e+001 -7.085450e-001 -1.819359e+000 6.163042e-003 + 2.414000e+001 -7.779630e-001 -1.820113e+000 6.168425e-003 + 2.415000e+001 -8.525599e-001 -1.820867e+000 6.174905e-003 + 2.416000e+001 -9.319176e-001 -1.821621e+000 6.180986e-003 + 2.417000e+001 -1.015528e+000 -1.822375e+000 6.185269e-003 + 2.418000e+001 -1.102780e+000 -1.823129e+000 6.186769e-003 + 2.419000e+001 -1.192949e+000 -1.823883e+000 6.185142e-003 + 2.420000e+001 -1.285189e+000 -1.824637e+000 6.180761e-003 + 2.421000e+001 -1.378543e+000 -1.825391e+000 6.174630e-003 + 2.422000e+001 -1.471944e+000 -1.826145e+000 6.168159e-003 + 2.423000e+001 -1.564234e+000 -1.826899e+000 6.162839e-003 + 2.424000e+001 -1.654188e+000 -1.827653e+000 6.159895e-003 + 2.425000e+001 -1.740544e+000 -1.828407e+000 6.160007e-003 + 2.426000e+001 -1.822033e+000 -1.829161e+000 6.163144e-003 + 2.427000e+001 -1.897421e+000 -1.829915e+000 6.168573e-003 + 2.428000e+001 -1.965549e+000 -1.830669e+000 6.175035e-003 + 2.429000e+001 -2.025374e+000 -1.831423e+000 6.181038e-003 + 2.430000e+001 -2.076005e+000 -1.832177e+000 6.185201e-003 + 2.431000e+001 -2.116747e+000 -1.832931e+000 6.186568e-003 + 2.432000e+001 -2.147124e+000 -1.833685e+000 6.184831e-003 + 2.433000e+001 -2.166913e+000 -1.834439e+000 6.180390e-003 + 2.434000e+001 -2.176149e+000 -1.835193e+000 6.174270e-003 + 2.435000e+001 -2.175144e+000 -1.835947e+000 6.167880e-003 + 2.436000e+001 -2.164476e+000 -1.836701e+000 6.162696e-003 + 2.437000e+001 -2.144982e+000 -1.837455e+000 6.159917e-003 + 2.438000e+001 -2.117728e+000 -1.838209e+000 6.160183e-003 + 2.439000e+001 -2.083986e+000 -1.838963e+000 6.163429e-003 + 2.440000e+001 -2.045186e+000 -1.839717e+000 6.168898e-003 + 2.441000e+001 -2.002871e+000 -1.840471e+000 6.175321e-003 + 2.442000e+001 -1.958645e+000 -1.841225e+000 6.181214e-003 + 2.443000e+001 -1.914116e+000 -1.841979e+000 6.185220e-003 + 2.444000e+001 -1.870843e+000 -1.842733e+000 6.186422e-003 + 2.445000e+001 -1.830277e+000 -1.843487e+000 6.184548e-003 + 2.446000e+001 -1.793711e+000 -1.844241e+000 6.180032e-003 + 2.447000e+001 -1.762236e+000 -1.844995e+000 6.173918e-003 + 2.448000e+001 -1.736707e+000 -1.845748e+000 6.167617e-003 + 2.449000e+001 -1.717706e+000 -1.846502e+000 6.162589e-003 + 2.450000e+001 -1.705534e+000 -1.847256e+000 6.159999e-003 + 2.451000e+001 -1.700201e+000 -1.848010e+000 6.160447e-003 + 2.452000e+001 -1.701430e+000 -1.848764e+000 6.163828e-003 + 2.453000e+001 -1.708678e+000 -1.849518e+000 6.169356e-003 + 2.454000e+001 -1.721158e+000 -1.850272e+000 6.175749e-003 + 2.455000e+001 -1.737879e+000 -1.851026e+000 6.181530e-003 + 2.456000e+001 -1.757688e+000 -1.851780e+000 6.185369e-003 + 2.457000e+001 -1.779319e+000 -1.852534e+000 6.186383e-003 + 2.458000e+001 -1.801447e+000 -1.853288e+000 6.184343e-003 + 2.459000e+001 -1.822738e+000 -1.854042e+000 6.179719e-003 + 2.460000e+001 -1.841907e+000 -1.854796e+000 6.173575e-003 + 2.461000e+001 -1.857758e+000 -1.855550e+000 6.167330e-003 + 2.462000e+001 -1.869234e+000 -1.856304e+000 6.162427e-003 + 2.463000e+001 -1.875444e+000 -1.857058e+000 6.160001e-003 + 2.464000e+001 -1.875695e+000 -1.857812e+000 6.160613e-003 + 2.465000e+001 -1.869503e+000 -1.858566e+000 6.164120e-003 + 2.466000e+001 -1.856599e+000 -1.859320e+000 6.169704e-003 + 2.467000e+001 -1.836920e+000 -1.860074e+000 6.176070e-003 + 2.468000e+001 -1.810597e+000 -1.860828e+000 6.181747e-003 + 2.469000e+001 -1.777923e+000 -1.861582e+000 6.185426e-003 + 2.470000e+001 -1.739327e+000 -1.862336e+000 6.186261e-003 + 2.471000e+001 -1.695326e+000 -1.863090e+000 6.184060e-003 + 2.472000e+001 -1.646488e+000 -1.863844e+000 6.179329e-003 + 2.473000e+001 -1.593383e+000 -1.864598e+000 6.173154e-003 + 2.474000e+001 -1.536540e+000 -1.865352e+000 6.166960e-003 + 2.475000e+001 -1.476407e+000 -1.866106e+000 6.162177e-003 + 2.476000e+001 -1.413311e+000 -1.866860e+000 6.159912e-003 + 2.477000e+001 -1.347433e+000 -1.867614e+000 6.160689e-003 + 2.478000e+001 -1.278784e+000 -1.868368e+000 6.164327e-003 + 2.479000e+001 -1.207197e+000 -1.869122e+000 6.169982e-003 + 2.480000e+001 -1.132325e+000 -1.869876e+000 6.176344e-003 + 2.481000e+001 -1.053655e+000 -1.870630e+000 6.181947e-003 + 2.482000e+001 -9.705253e-001 -1.871384e+000 6.185502e-003 + 2.483000e+001 -8.821560e-001 -1.872138e+000 6.186196e-003 + 2.484000e+001 -7.876907e-001 -1.872892e+000 6.183871e-003 + 2.485000e+001 -6.862392e-001 -1.873646e+000 6.179065e-003 + 2.486000e+001 -5.769278e-001 -1.874400e+000 6.172883e-003 + 2.487000e+001 -4.589509e-001 -1.875154e+000 6.166753e-003 + 2.488000e+001 -3.316228e-001 -1.875908e+000 6.162090e-003 + 2.489000e+001 -1.944260e-001 -1.876662e+000 6.159974e-003 + 2.490000e+001 -4.705614e-002 -1.877416e+000 6.160894e-003 + 2.491000e+001 1.105414e-001 -1.878170e+000 6.164635e-003 + 2.492000e+001 2.781428e-001 -1.878924e+000 6.170327e-003 + 2.493000e+001 4.552279e-001 -1.879678e+000 6.176652e-003 + 2.494000e+001 6.409724e-001 -1.880432e+000 6.182150e-003 + 2.495000e+001 8.342523e-001 -1.881186e+000 6.185555e-003 + 2.496000e+001 1.033660e+000 -1.881940e+000 6.186085e-003 + 2.497000e+001 1.237529e+000 -1.882694e+000 6.183620e-003 + 2.498000e+001 1.443973e+000 -1.883448e+000 6.178724e-003 + 2.499000e+001 1.650929e+000 -1.884202e+000 6.172522e-003 + 2.500000e+001 1.856208e+000 -1.884956e+000 6.166442e-003 + 2.501000e+001 2.057550e+000 -1.885710e+000 6.161886e-003 + 2.502000e+001 2.252684e+000 -1.886464e+000 6.159906e-003 + 2.503000e+001 2.439384e+000 -1.887218e+000 6.160957e-003 + 2.504000e+001 2.615523e+000 -1.887971e+000 6.164793e-003 + 2.505000e+001 2.779126e+000 -1.888725e+000 6.170523e-003 + 2.506000e+001 2.928409e+000 -1.889479e+000 6.176821e-003 + 2.507000e+001 3.061822e+000 -1.890233e+000 6.182236e-003 + 2.508000e+001 3.178068e+000 -1.890987e+000 6.185527e-003 + 2.509000e+001 3.276125e+000 -1.891741e+000 6.185944e-003 + 2.510000e+001 3.355249e+000 -1.892495e+000 6.183397e-003 + 2.511000e+001 3.414975e+000 -1.893249e+000 6.178477e-003 + 2.512000e+001 3.455097e+000 -1.894003e+000 6.172320e-003 + 2.513000e+001 3.475655e+000 -1.894757e+000 6.166350e-003 + 2.514000e+001 3.476903e+000 -1.895511e+000 6.161947e-003 + 2.515000e+001 3.459278e+000 -1.896265e+000 6.160130e-003 + 2.516000e+001 3.423367e+000 -1.897019e+000 6.161319e-003 + 2.517000e+001 3.369866e+000 -1.897773e+000 6.165233e-003 + 2.518000e+001 3.299553e+000 -1.898527e+000 6.170963e-003 + 2.519000e+001 3.213249e+000 -1.899281e+000 6.177178e-003 + 2.520000e+001 3.111795e+000 -1.900035e+000 6.182445e-003 + 2.521000e+001 2.996031e+000 -1.900789e+000 6.185550e-003 + 2.522000e+001 2.866782e+000 -1.901543e+000 6.185783e-003 + 2.523000e+001 2.724851e+000 -1.902297e+000 6.183092e-003 + 2.524000e+001 2.571024e+000 -1.903051e+000 6.178098e-003 + 2.525000e+001 2.406075e+000 -1.903805e+000 6.171953e-003 + 2.526000e+001 2.230786e+000 -1.904559e+000 6.166076e-003 + 2.527000e+001 2.045968e+000 -1.905313e+000 6.161827e-003 + 2.528000e+001 1.852487e+000 -1.906067e+000 6.160190e-003 + 2.529000e+001 1.651288e+000 -1.906821e+000 6.161544e-003 + 2.530000e+001 1.443431e+000 -1.907575e+000 6.165572e-003 + 2.531000e+001 1.230112e+000 -1.908329e+000 6.171339e-003 + 2.532000e+001 1.012685e+000 -1.909083e+000 6.177509e-003 + 2.533000e+001 7.926852e-001 -1.909837e+000 6.182658e-003 + 2.534000e+001 5.718310e-001 -1.910591e+000 6.185600e-003 + 2.535000e+001 3.520299e-001 -1.911345e+000 6.185662e-003 + 2.536000e+001 1.353680e-001 -1.912099e+000 6.182829e-003 + 2.537000e+001 -7.590975e-002 -1.912853e+000 6.177753e-003 + 2.538000e+001 -2.794287e-001 -1.913607e+000 6.171603e-003 + 2.539000e+001 -4.727239e-001 -1.914361e+000 6.165795e-003 + 2.540000e+001 -6.532890e-001 -1.915115e+000 6.161672e-003 + 2.541000e+001 -8.186313e-001 -1.915869e+000 6.160187e-003 + 2.542000e+001 -9.663340e-001 -1.916623e+000 6.161681e-003 + 2.543000e+001 -1.094121e+000 -1.917377e+000 6.165804e-003 + 2.544000e+001 -1.199922e+000 -1.918131e+000 6.171599e-003 + 2.545000e+001 -1.281939e+000 -1.918885e+000 6.177724e-003 + 2.546000e+001 -1.338706e+000 -1.919639e+000 6.182768e-003 + 2.547000e+001 -1.369142e+000 -1.920393e+000 6.185572e-003 + 2.548000e+001 -1.372597e+000 -1.921147e+000 6.185498e-003 + 2.549000e+001 -1.348887e+000 -1.921901e+000 6.182565e-003 + 2.550000e+001 -1.298316e+000 -1.922655e+000 6.177454e-003 + 2.551000e+001 -1.221685e+000 -1.923409e+000 6.171344e-003 + 2.552000e+001 -1.120283e+000 -1.924163e+000 6.165648e-003 + 2.553000e+001 -9.958714e-001 -1.924917e+000 6.161685e-003 + 2.554000e+001 -8.506483e-001 -1.925671e+000 6.160372e-003 + 2.555000e+001 -6.872016e-001 -1.926425e+000 6.162013e-003 + 2.556000e+001 -5.084521e-001 -1.927179e+000 6.166222e-003 + 2.557000e+001 -3.175859e-001 -1.927933e+000 6.172022e-003 + 2.558000e+001 -1.179804e-001 -1.928687e+000 6.178068e-003 + 2.559000e+001 8.687449e-002 -1.929441e+000 6.182961e-003 + 2.560000e+001 2.934568e-001 -1.930195e+000 6.185577e-003 + 2.561000e+001 4.982920e-001 -1.930948e+000 6.185313e-003 + 2.562000e+001 6.980295e-001 -1.931702e+000 6.182232e-003 + 2.563000e+001 8.895122e-001 -1.932456e+000 6.177042e-003 + 2.564000e+001 1.069839e+000 -1.933210e+000 6.170942e-003 + 2.565000e+001 1.236416e+000 -1.933964e+000 6.165340e-003 + 2.566000e+001 1.386999e+000 -1.934718e+000 6.161534e-003 + 2.567000e+001 1.519719e+000 -1.935472e+000 6.160408e-003 + 2.568000e+001 1.633103e+000 -1.936226e+000 6.162222e-003 + 2.569000e+001 1.726073e+000 -1.936980e+000 6.166557e-003 + 2.570000e+001 1.797943e+000 -1.937734e+000 6.172407e-003 + 2.571000e+001 1.848399e+000 -1.938488e+000 6.178419e-003 + 2.572000e+001 1.877471e+000 -1.939242e+000 6.183206e-003 + 2.573000e+001 1.885502e+000 -1.939996e+000 6.185667e-003 + 2.574000e+001 1.873107e+000 -1.940750e+000 6.185236e-003 + 2.575000e+001 1.841134e+000 -1.941504e+000 6.182013e-003 + 2.576000e+001 1.790619e+000 -1.942258e+000 6.176738e-003 + 2.577000e+001 1.722746e+000 -1.943012e+000 6.170623e-003 + 2.578000e+001 1.638808e+000 -1.943766e+000 6.165080e-003 + 2.579000e+001 1.540178e+000 -1.944520e+000 6.161388e-003 + 2.580000e+001 1.428276e+000 -1.945274e+000 6.160403e-003 + 2.581000e+001 1.304551e+000 -1.946028e+000 6.162350e-003 + 2.582000e+001 1.170467e+000 -1.946782e+000 6.166778e-003 + 2.583000e+001 1.027495e+000 -1.947536e+000 6.172658e-003 + 2.584000e+001 8.771106e-001 -1.948290e+000 6.178632e-003 + 2.585000e+001 7.208018e-001 -1.949044e+000 6.183324e-003 + 2.586000e+001 5.600728e-001 -1.949798e+000 6.185657e-003 + 2.587000e+001 3.964560e-001 -1.950552e+000 6.185097e-003 + 2.588000e+001 2.315232e-001 -1.951306e+000 6.181775e-003 + 2.589000e+001 6.689470e-002 -1.952060e+000 6.176456e-003 + 2.590000e+001 -9.575315e-002 -1.952814e+000 6.170367e-003 + 2.591000e+001 -2.546855e-001 -1.953568e+000 6.164914e-003 + 2.592000e+001 -4.081121e-001 -1.954322e+000 6.161358e-003 + 2.593000e+001 -5.541968e-001 -1.955076e+000 6.160524e-003 + 2.594000e+001 -6.910747e-001 -1.955830e+000 6.162604e-003 + 2.595000e+001 -8.168769e-001 -1.956584e+000 6.167116e-003 + 2.596000e+001 -9.297620e-001 -1.957338e+000 6.173014e-003 + 2.597000e+001 -1.027954e+000 -1.958092e+000 6.178936e-003 + 2.598000e+001 -1.109788e+000 -1.958846e+000 6.183519e-003 + 2.599000e+001 -1.173755e+000 -1.959600e+000 6.185709e-003 + 2.600000e+001 -1.218550e+000 -1.960354e+000 6.185006e-003 + 2.601000e+001 -1.243127e+000 -1.961108e+000 6.181571e-003 + 2.602000e+001 -1.246737e+000 -1.961862e+000 6.176194e-003 + 2.603000e+001 -1.228978e+000 -1.962616e+000 6.170110e-003 + 2.604000e+001 -1.189823e+000 -1.963370e+000 6.164721e-003 + 2.605000e+001 -1.129650e+000 -1.964124e+000 6.161268e-003 + 2.606000e+001 -1.049252e+000 -1.964878e+000 6.160548e-003 + 2.607000e+001 -9.498456e-001 -1.965632e+000 6.162721e-003 + 2.608000e+001 -8.330583e-001 -1.966386e+000 6.167280e-003 + 2.609000e+001 -7.009047e-001 -1.967140e+000 6.173164e-003 + 2.610000e+001 -5.557515e-001 -1.967894e+000 6.179014e-003 + 2.611000e+001 -4.002695e-001 -1.968648e+000 6.183481e-003 + 2.612000e+001 -2.373747e-001 -1.969402e+000 6.185540e-003 + 2.613000e+001 -7.016027e-002 -1.970156e+000 6.184723e-003 + 2.614000e+001 9.817711e-002 -1.970910e+000 6.181220e-003 + 2.615000e+001 2.644163e-001 -1.971664e+000 6.175842e-003 + 2.616000e+001 4.253914e-001 -1.972418e+000 6.169827e-003 + 2.617000e+001 5.780697e-001 -1.973171e+000 6.164566e-003 + 2.618000e+001 7.196262e-001 -1.973925e+000 6.161276e-003 + 2.619000e+001 8.475102e-001 -1.974679e+000 6.160718e-003 + 2.620000e+001 9.595028e-001 -1.975433e+000 6.163017e-003 + 2.621000e+001 1.053763e+000 -1.976187e+000 6.167638e-003 + 2.622000e+001 1.128863e+000 -1.976941e+000 6.173508e-003 + 2.623000e+001 1.183803e+000 -1.977695e+000 6.179268e-003 + 2.624000e+001 1.218022e+000 -1.978449e+000 6.183593e-003 + 2.625000e+001 1.231386e+000 -1.979203e+000 6.185488e-003 + 2.626000e+001 1.224164e+000 -1.979957e+000 6.184523e-003 + 2.627000e+001 1.197001e+000 -1.980711e+000 6.180921e-003 + 2.628000e+001 1.150866e+000 -1.981465e+000 6.175516e-003 + 2.629000e+001 1.087006e+000 -1.982219e+000 6.169554e-003 + 2.630000e+001 1.006887e+000 -1.982973e+000 6.164414e-003 + 2.631000e+001 9.121351e-001 -1.983727e+000 6.161288e-003 + 2.632000e+001 8.044771e-001 -1.984481e+000 6.160900e-003 + 2.633000e+001 6.856837e-001 -1.985235e+000 6.163339e-003 + 2.634000e+001 5.575184e-001 -1.985989e+000 6.168039e-003 + 2.635000e+001 4.216929e-001 -1.986743e+000 6.173910e-003 + 2.636000e+001 2.798324e-001 -1.987497e+000 6.179596e-003 + 2.637000e+001 1.334494e-001 -1.988251e+000 6.183788e-003 + 2.638000e+001 -1.607043e-002 -1.989005e+000 6.185524e-003 + 2.639000e+001 -1.674729e-001 -1.989759e+000 6.184408e-003 + 2.640000e+001 -3.196293e-001 -1.990513e+000 6.180698e-003 + 2.641000e+001 -4.715217e-001 -1.991267e+000 6.175249e-003 + 2.642000e+001 -6.222208e-001 -1.992021e+000 6.169316e-003 + 2.643000e+001 -7.708582e-001 -1.992775e+000 6.164269e-003 + 2.644000e+001 -9.165953e-001 -1.993529e+000 6.161273e-003 + 2.645000e+001 -1.058592e+000 -1.994283e+000 6.161019e-003 + 2.646000e+001 -1.195974e+000 -1.995037e+000 6.163560e-003 + 2.647000e+001 -1.327810e+000 -1.995791e+000 6.168302e-003 + 2.648000e+001 -1.453086e+000 -1.996545e+000 6.174141e-003 + 2.649000e+001 -1.570695e+000 -1.997299e+000 6.179726e-003 + 2.650000e+001 -1.679431e+000 -1.998053e+000 6.183767e-003 + 2.651000e+001 -1.777994e+000 -1.998807e+000 6.185333e-003 + 2.652000e+001 -1.865005e+000 -1.999561e+000 6.184068e-003 + 2.653000e+001 -1.939031e+000 -2.000315e+000 6.180263e-003 + 2.654000e+001 -1.998616e+000 -2.001069e+000 6.174795e-003 + 2.655000e+001 -2.042324e+000 -2.001823e+000 6.168927e-003 + 2.656000e+001 -2.068786e+000 -2.002577e+000 6.164016e-003 + 2.657000e+001 -2.076747e+000 -2.003331e+000 6.161200e-003 + 2.658000e+001 -2.065121e+000 -2.004085e+000 6.161132e-003 + 2.659000e+001 -2.033038e+000 -2.004839e+000 6.163828e-003 + 2.660000e+001 -1.979892e+000 -2.005593e+000 6.168662e-003 + 2.661000e+001 -1.905380e+000 -2.006347e+000 6.174514e-003 + 2.662000e+001 -1.809535e+000 -2.007101e+000 6.180031e-003 + 2.663000e+001 -1.692748e+000 -2.007855e+000 6.183942e-003 + 2.664000e+001 -1.555776e+000 -2.008609e+000 6.185350e-003 + 2.665000e+001 -1.399745e+000 -2.009363e+000 6.183931e-003 + 2.666000e+001 -1.226132e+000 -2.010117e+000 6.180014e-003 + 2.667000e+001 -1.036743e+000 -2.010871e+000 6.174498e-003 + 2.668000e+001 -8.336742e-001 -2.011625e+000 6.168657e-003 + 2.669000e+001 -6.192652e-001 -2.012379e+000 6.163837e-003 + 2.670000e+001 -3.960471e-001 -2.013133e+000 6.161156e-003 + 2.671000e+001 -1.666822e-001 -2.013887e+000 6.161232e-003 + 2.672000e+001 6.609890e-002 -2.014641e+000 6.164047e-003 + 2.673000e+001 2.995593e-001 -2.015394e+000 6.168947e-003 + 2.674000e+001 5.310173e-001 -2.016148e+000 6.174797e-003 + 2.675000e+001 7.579021e-001 -2.016902e+000 6.180246e-003 + 2.676000e+001 9.778035e-001 -2.017656e+000 6.184042e-003 + 2.677000e+001 1.188513e+000 -2.018410e+000 6.185314e-003 + 2.678000e+001 1.388056e+000 -2.019164e+000 6.183773e-003 + 2.679000e+001 1.574709e+000 -2.019918e+000 6.179776e-003 + 2.680000e+001 1.747013e+000 -2.020672e+000 6.174244e-003 + 2.681000e+001 1.903771e+000 -2.021426e+000 6.168453e-003 + 2.682000e+001 2.044037e+000 -2.022180e+000 6.163740e-003 + 2.683000e+001 2.167096e+000 -2.022934e+000 6.161194e-003 + 2.684000e+001 2.272439e+000 -2.023688e+000 6.161402e-003 + 2.685000e+001 2.359732e+000 -2.024442e+000 6.164313e-003 + 2.686000e+001 2.428778e+000 -2.025196e+000 6.169247e-003 + 2.687000e+001 2.479493e+000 -2.025950e+000 6.175059e-003 + 2.688000e+001 2.511863e+000 -2.026704e+000 6.180405e-003 + 2.689000e+001 2.525922e+000 -2.027458e+000 6.184052e-003 + 2.690000e+001 2.521732e+000 -2.028212e+000 6.185163e-003 + 2.691000e+001 2.499363e+000 -2.028966e+000 6.183485e-003 + 2.692000e+001 2.458887e+000 -2.029720e+000 6.179406e-003 + 2.693000e+001 2.400386e+000 -2.030474e+000 6.173867e-003 + 2.694000e+001 2.323954e+000 -2.031228e+000 6.168147e-003 + 2.695000e+001 2.229719e+000 -2.031982e+000 6.163571e-003 + 2.696000e+001 2.117869e+000 -2.032736e+000 6.161197e-003 + 2.697000e+001 1.988679e+000 -2.033490e+000 6.161578e-003 + 2.698000e+001 1.842543e+000 -2.034244e+000 6.164623e-003 + 2.699000e+001 1.680008e+000 -2.034998e+000 6.169626e-003 + 2.700000e+001 1.501808e+000 -2.035752e+000 6.175428e-003 + 2.701000e+001 1.308886e+000 -2.036506e+000 6.180689e-003 + 2.702000e+001 1.102422e+000 -2.037260e+000 6.184198e-003 + 2.703000e+001 8.838414e-001 -2.038014e+000 6.185148e-003 + 2.704000e+001 6.548224e-001 -2.038768e+000 6.183324e-003 + 2.705000e+001 4.172880e-001 -2.039522e+000 6.179145e-003 + 2.706000e+001 1.733885e-001 -2.040276e+000 6.173574e-003 + 2.707000e+001 -7.452746e-002 -2.041030e+000 6.167895e-003 + 2.708000e+001 -3.239518e-001 -2.041784e+000 6.163420e-003 + 2.709000e+001 -5.722664e-001 -2.042538e+000 6.161184e-003 + 2.710000e+001 -8.167989e-001 -2.043292e+000 6.161704e-003 + 2.711000e+001 -1.054885e+000 -2.044046e+000 6.164855e-003 + 2.712000e+001 -1.283934e+000 -2.044800e+000 6.169906e-003 + 2.713000e+001 -1.501492e+000 -2.045554e+000 6.175685e-003 + 2.714000e+001 -1.705308e+000 -2.046308e+000 6.180857e-003 + 2.715000e+001 -1.893388e+000 -2.047062e+000 6.184232e-003 + 2.716000e+001 -2.064048e+000 -2.047816e+000 6.185036e-003 + 2.717000e+001 -2.215952e+000 -2.048570e+000 6.183085e-003 + 2.718000e+001 -2.348143e+000 -2.049324e+000 6.178831e-003 + 2.719000e+001 -2.460055e+000 -2.050078e+000 6.173255e-003 + 2.720000e+001 -2.551516e+000 -2.050832e+000 6.167644e-003 + 2.721000e+001 -2.622735e+000 -2.051586e+000 6.163296e-003 + 2.722000e+001 -2.674280e+000 -2.052340e+000 6.161219e-003 + 2.723000e+001 -2.707035e+000 -2.053094e+000 6.161894e-003 + 2.724000e+001 -2.722157e+000 -2.053848e+000 6.165162e-003 + 2.725000e+001 -2.721016e+000 -2.054602e+000 6.170265e-003 + 2.726000e+001 -2.705138e+000 -2.055356e+000 6.176021e-003 + 2.727000e+001 -2.676134e+000 -2.056110e+000 6.181101e-003 + 2.728000e+001 -2.635642e+000 -2.056864e+000 6.184334e-003 + 2.729000e+001 -2.585262e+000 -2.057617e+000 6.184978e-003 + 2.730000e+001 -2.526500e+000 -2.058371e+000 6.182887e-003 + 2.731000e+001 -2.460720e+000 -2.059125e+000 6.178543e-003 + 2.732000e+001 -2.389107e+000 -2.059879e+000 6.172946e-003 + 2.733000e+001 -2.312635e+000 -2.060633e+000 6.167388e-003 + 2.734000e+001 -2.232057e+000 -2.061387e+000 6.163153e-003 + 2.735000e+001 -2.147899e+000 -2.062141e+000 6.161224e-003 + 2.736000e+001 -2.060470e+000 -2.062895e+000 6.162047e-003 + 2.737000e+001 -1.969881e+000 -2.063649e+000 6.165430e-003 + 2.738000e+001 -1.876075e+000 -2.064403e+000 6.170590e-003 + 2.739000e+001 -1.778862e+000 -2.065157e+000 6.176332e-003 + 2.740000e+001 -1.677965e+000 -2.065911e+000 6.181333e-003 + 2.741000e+001 -1.573064e+000 -2.066665e+000 6.184443e-003 + 2.742000e+001 -1.463841e+000 -2.067419e+000 6.184947e-003 + 2.743000e+001 -1.350022e+000 -2.068173e+000 6.182734e-003 + 2.744000e+001 -1.231423e+000 -2.068927e+000 6.178312e-003 + 2.745000e+001 -1.107977e+000 -2.069681e+000 6.172699e-003 + 2.746000e+001 -9.797614e-001 -2.070435e+000 6.167189e-003 + 2.747000e+001 -8.470144e-001 -2.071189e+000 6.163053e-003 + 2.748000e+001 -7.101420e-001 -2.071943e+000 6.161247e-003 + 2.749000e+001 -5.697144e-001 -2.072697e+000 6.162186e-003 + 2.750000e+001 -4.264533e-001 -2.073451e+000 6.165647e-003 + 2.751000e+001 -2.812114e-001 -2.074205e+000 6.170826e-003 + 2.752000e+001 -1.349447e-001 -2.074959e+000 6.176521e-003 + 2.753000e+001 1.132108e-002 -2.075713e+000 6.181417e-003 + 2.754000e+001 1.565259e-001 -2.076467e+000 6.184387e-003 + 2.755000e+001 2.996134e-001 -2.077221e+000 6.184750e-003 + 2.756000e+001 4.395665e-001 -2.077975e+000 6.182425e-003 + 2.757000e+001 5.754410e-001 -2.078729e+000 6.177949e-003 + 2.758000e+001 7.063932e-001 -2.079483e+000 6.172354e-003 + 2.759000e+001 8.317023e-001 -2.080237e+000 6.166934e-003 + 2.760000e+001 9.507837e-001 -2.080991e+000 6.162942e-003 + 2.761000e+001 1.063195e+000 -2.081745e+000 6.161303e-003 + 2.762000e+001 1.168635e+000 -2.082499e+000 6.162397e-003 + 2.763000e+001 1.266930e+000 -2.083253e+000 6.165968e-003 + 2.764000e+001 1.358018e+000 -2.084007e+000 6.171187e-003 + 2.765000e+001 1.441925e+000 -2.084761e+000 6.176846e-003 + 2.766000e+001 1.518734e+000 -2.085515e+000 6.181637e-003 + 2.767000e+001 1.588555e+000 -2.086269e+000 6.184458e-003 + 2.768000e+001 1.651496e+000 -2.087023e+000 6.184660e-003 + 2.769000e+001 1.707624e+000 -2.087777e+000 6.182199e-003 + 2.770000e+001 1.756944e+000 -2.088531e+000 6.177641e-003 + 2.771000e+001 1.799375e+000 -2.089285e+000 6.172036e-003 + 2.772000e+001 1.834732e+000 -2.090039e+000 6.166677e-003 + 2.773000e+001 1.862716e+000 -2.090793e+000 6.162803e-003 + 2.774000e+001 1.882915e+000 -2.091547e+000 6.161311e-003 + 2.775000e+001 1.894812e+000 -2.092301e+000 6.162546e-003 + 2.776000e+001 1.897800e+000 -2.093055e+000 6.166219e-003 + 2.777000e+001 1.891205e+000 -2.093809e+000 6.171478e-003 + 2.778000e+001 1.874316e+000 -2.094563e+000 6.177105e-003 + 2.779000e+001 1.846419e+000 -2.095317e+000 6.181802e-003 + 2.780000e+001 1.806838e+000 -2.096071e+000 6.184487e-003 + 2.781000e+001 1.754969e+000 -2.096825e+000 6.184544e-003 + 2.782000e+001 1.690322e+000 -2.097579e+000 6.181962e-003 + 2.783000e+001 1.612556e+000 -2.098333e+000 6.177334e-003 + 2.784000e+001 1.521509e+000 -2.099087e+000 6.171727e-003 + 2.785000e+001 1.417222e+000 -2.099841e+000 6.166434e-003 + 2.786000e+001 1.299958e+000 -2.100594e+000 6.162678e-003 + 2.787000e+001 1.170211e+000 -2.101348e+000 6.161329e-003 + 2.788000e+001 1.028702e+000 -2.102102e+000 6.162697e-003 + 2.789000e+001 8.763765e-001 -2.102856e+000 6.166463e-003 + 2.790000e+001 7.143826e-001 -2.103610e+000 6.171753e-003 + 2.791000e+001 5.440480e-001 -2.104364e+000 6.177341e-003 + 2.792000e+001 3.668492e-001 -2.105118e+000 6.181939e-003 + 2.793000e+001 1.843758e-001 -2.105872e+000 6.184489e-003 + 2.794000e+001 -1.708212e-003 -2.106626e+000 6.184405e-003 + 2.795000e+001 -1.897032e-001 -2.107380e+000 6.181708e-003 + 2.796000e+001 -3.779134e-001 -2.108134e+000 6.177021e-003 + 2.797000e+001 -5.646821e-001 -2.108888e+000 6.171424e-003 + 2.798000e+001 -7.484242e-001 -2.109642e+000 6.166209e-003 + 2.799000e+001 -9.276519e-001 -2.110396e+000 6.162583e-003 + 2.800000e+001 -1.100995e+000 -2.111150e+000 6.161388e-003 + 2.801000e+001 -1.267213e+000 -2.111904e+000 6.162901e-003 + 2.802000e+001 -1.425202e+000 -2.112658e+000 6.166771e-003 + 2.803000e+001 -1.573990e+000 -2.113412e+000 6.172102e-003 + 2.804000e+001 -1.712734e+000 -2.114166e+000 6.177661e-003 + 2.805000e+001 -1.840703e+000 -2.114920e+000 6.182168e-003 + 2.806000e+001 -1.957261e+000 -2.115674e+000 6.184586e-003 + 2.807000e+001 -2.061853e+000 -2.116428e+000 6.184361e-003 + 2.808000e+001 -2.153976e+000 -2.117182e+000 6.181546e-003 + 2.809000e+001 -2.233169e+000 -2.117936e+000 6.176786e-003 + 2.810000e+001 -2.298989e+000 -2.118690e+000 6.171178e-003 + 2.811000e+001 -2.351005e+000 -2.119444e+000 6.166014e-003 + 2.812000e+001 -2.388783e+000 -2.120198e+000 6.162485e-003 + 2.813000e+001 -2.411890e+000 -2.120952e+000 6.161407e-003 + 2.814000e+001 -2.419897e+000 -2.121706e+000 6.163028e-003 + 2.815000e+001 -2.412389e+000 -2.122460e+000 6.166968e-003 + 2.816000e+001 -2.388985e+000 -2.123214e+000 6.172314e-003 + 2.817000e+001 -2.349355e+000 -2.123968e+000 6.177831e-003 + 2.818000e+001 -2.293255e+000 -2.124722e+000 6.182247e-003 + 2.819000e+001 -2.220549e+000 -2.125476e+000 6.184549e-003 + 2.820000e+001 -2.131243e+000 -2.126230e+000 6.184210e-003 + 2.821000e+001 -2.025515e+000 -2.126984e+000 6.181313e-003 + 2.822000e+001 -1.903743e+000 -2.127738e+000 6.176526e-003 + 2.823000e+001 -1.766527e+000 -2.128492e+000 6.170952e-003 + 2.824000e+001 -1.614709e+000 -2.129246e+000 6.165878e-003 + 2.825000e+001 -1.449382e+000 -2.130000e+000 6.162476e-003 + 2.826000e+001 -1.271894e+000 -2.130754e+000 6.161532e-003 + 2.827000e+001 -1.083841e+000 -2.131508e+000 6.163261e-003 + 2.828000e+001 -8.870519e-001 -2.132262e+000 6.167259e-003 + 2.829000e+001 -6.835686e-001 -2.133016e+000 6.172596e-003 + 2.830000e+001 -4.756102e-001 -2.133770e+000 6.178035e-003 + 2.831000e+001 -2.655366e-001 -2.134524e+000 6.182322e-003 + 2.832000e+001 -5.580395e-002 -2.135278e+000 6.184471e-003 + 2.833000e+001 1.510839e-001 -2.136032e+000 6.183990e-003 + 2.834000e+001 3.526257e-001 -2.136786e+000 6.180993e-003 + 2.835000e+001 5.463743e-001 -2.137540e+000 6.176172e-003 + 2.836000e+001 7.299861e-001 -2.138294e+000 6.170641e-003 + 2.837000e+001 9.012675e-001 -2.139048e+000 6.165680e-003 + 2.838000e+001 1.058217e+000 -2.139802e+000 6.162438e-003 + 2.839000e+001 1.199060e+000 -2.140556e+000 6.161668e-003 + 2.840000e+001 1.322279e+000 -2.141310e+000 6.163549e-003 + 2.841000e+001 1.426631e+000 -2.142064e+000 6.167644e-003 + 2.842000e+001 1.511163e+000 -2.142817e+000 6.173003e-003 + 2.843000e+001 1.575218e+000 -2.143571e+000 6.178387e-003 + 2.844000e+001 1.618428e+000 -2.144325e+000 6.182552e-003 + 2.845000e+001 1.640706e+000 -2.145079e+000 6.184541e-003 + 2.846000e+001 1.642233e+000 -2.145833e+000 6.183895e-003 + 2.847000e+001 1.623438e+000 -2.146587e+000 6.180762e-003 + 2.848000e+001 1.584973e+000 -2.147341e+000 6.175861e-003 + 2.849000e+001 1.527691e+000 -2.148095e+000 6.170321e-003 + 2.850000e+001 1.452621e+000 -2.148849e+000 6.165419e-003 + 2.851000e+001 1.360943e+000 -2.149603e+000 6.162288e-003 + 2.852000e+001 1.253968e+000 -2.150357e+000 6.161652e-003 + 2.853000e+001 1.133116e+000 -2.151111e+000 6.163657e-003 + 2.854000e+001 9.999017e-001 -2.151865e+000 6.167839e-003 + 2.855000e+001 8.559209e-001 -2.152619e+000 6.173228e-003 + 2.856000e+001 7.028380e-001 -2.153373e+000 6.178581e-003 + 2.857000e+001 5.423796e-001 -2.154127e+000 6.182665e-003 + 2.858000e+001 3.763282e-001 -2.154881e+000 6.184544e-003 + 2.859000e+001 2.065165e-001 -2.155635e+000 6.183789e-003 + 2.860000e+001 3.482278e-002 -2.156389e+000 6.180576e-003 + 2.861000e+001 -1.368356e-001 -2.157143e+000 6.175645e-003 + 2.862000e+001 -3.065103e-001 -2.157897e+000 6.170134e-003 + 2.863000e+001 -4.722329e-001 -2.158651e+000 6.165312e-003 + 2.864000e+001 -6.320294e-001 -2.159405e+000 6.162294e-003 + 2.865000e+001 -7.839388e-001 -2.160159e+000 6.161777e-003 + 2.866000e+001 -9.260351e-001 -2.160913e+000 6.163876e-003 + 2.867000e+001 -1.056454e+000 -2.161667e+000 6.168101e-003 + 2.868000e+001 -1.173424e+000 -2.162421e+000 6.173472e-003 + 2.869000e+001 -1.275296e+000 -2.163175e+000 6.178745e-003 + 2.870000e+001 -1.360579e+000 -2.163929e+000 6.182705e-003 + 2.871000e+001 -1.427976e+000 -2.164683e+000 6.184443e-003 + 2.872000e+001 -1.476416e+000 -2.165437e+000 6.183562e-003 + 2.873000e+001 -1.505081e+000 -2.166191e+000 6.180267e-003 + 2.874000e+001 -1.513440e+000 -2.166945e+000 6.175320e-003 + 2.875000e+001 -1.501261e+000 -2.167699e+000 6.169862e-003 + 2.876000e+001 -1.468633e+000 -2.168453e+000 6.165157e-003 + 2.877000e+001 -1.415966e+000 -2.169207e+000 6.162293e-003 + 2.878000e+001 -1.343989e+000 -2.169961e+000 6.161933e-003 + 2.879000e+001 -1.253743e+000 -2.170715e+000 6.164161e-003 + 2.880000e+001 -1.146554e+000 -2.171469e+000 6.168456e-003 + 2.881000e+001 -1.024009e+000 -2.172223e+000 6.173823e-003 + 2.882000e+001 -8.879147e-001 -2.172977e+000 6.179019e-003 + 2.883000e+001 -7.402594e-001 -2.173731e+000 6.182846e-003 + 2.884000e+001 -5.831615e-001 -2.174485e+000 6.184423e-003 + 2.885000e+001 -4.188196e-001 -2.175239e+000 6.183389e-003 + 2.886000e+001 -2.494598e-001 -2.175993e+000 6.179980e-003 + 2.887000e+001 -7.728392e-002 -2.176747e+000 6.174983e-003 + 2.888000e+001 9.557958e-002 -2.177501e+000 6.169550e-003 + 2.889000e+001 2.671206e-001 -2.178255e+000 6.164935e-003 + 2.890000e+001 4.354864e-001 -2.179009e+000 6.162206e-003 + 2.891000e+001 5.990129e-001 -2.179763e+000 6.161996e-003 + 2.892000e+001 7.562487e-001 -2.180517e+000 6.164352e-003 + 2.893000e+001 9.059696e-001 -2.181271e+000 6.168728e-003 + 2.894000e+001 1.047185e+000 -2.182025e+000 6.174111e-003 + 2.895000e+001 1.179134e+000 -2.182779e+000 6.179256e-003 + 2.896000e+001 1.301278e+000 -2.183533e+000 6.182979e-003 + 2.897000e+001 1.413281e+000 -2.184287e+000 6.184427e-003 + 2.898000e+001 1.514986e+000 -2.185040e+000 6.183267e-003 + 2.899000e+001 1.606393e+000 -2.185794e+000 6.179770e-003 + 2.900000e+001 1.687625e+000 -2.186548e+000 6.174741e-003 + 2.901000e+001 1.758902e+000 -2.187302e+000 6.169339e-003 + 2.902000e+001 1.820509e+000 -2.188056e+000 6.164814e-003 + 2.903000e+001 1.872774e+000 -2.188810e+000 6.162211e-003 + 2.904000e+001 1.916042e+000 -2.189564e+000 6.162132e-003 + 2.905000e+001 1.950658e+000 -2.190318e+000 6.164594e-003 + 2.906000e+001 1.976957e+000 -2.191072e+000 6.169023e-003 + 2.907000e+001 1.995255e+000 -2.191826e+000 6.174393e-003 + 2.908000e+001 2.005847e+000 -2.192580e+000 6.179461e-003 + 2.909000e+001 2.009013e+000 -2.193334e+000 6.183061e-003 + 2.910000e+001 2.005023e+000 -2.194088e+000 6.184363e-003 + 2.911000e+001 1.994151e+000 -2.194842e+000 6.183071e-003 + 2.912000e+001 1.976688e+000 -2.195596e+000 6.179482e-003 + 2.913000e+001 1.952952e+000 -2.196350e+000 6.174425e-003 + 2.914000e+001 1.923307e+000 -2.197104e+000 6.169065e-003 + 2.915000e+001 1.888169e+000 -2.197858e+000 6.164642e-003 + 2.916000e+001 1.848017e+000 -2.198612e+000 6.162179e-003 + 2.917000e+001 1.803395e+000 -2.199366e+000 6.162247e-003 + 2.918000e+001 1.754913e+000 -2.200120e+000 6.164829e-003 + 2.919000e+001 1.703240e+000 -2.200874e+000 6.169326e-003 + 2.920000e+001 1.649092e+000 -2.201628e+000 6.174695e-003 + 2.921000e+001 1.593216e+000 -2.202382e+000 6.179696e-003 + 2.922000e+001 1.536371e+000 -2.203136e+000 6.183175e-003 + 2.923000e+001 1.479302e+000 -2.203890e+000 6.184334e-003 + 2.924000e+001 1.422718e+000 -2.204644e+000 6.182906e-003 + 2.925000e+001 1.367262e+000 -2.205398e+000 6.179219e-003 + 2.926000e+001 1.313487e+000 -2.206152e+000 6.174122e-003 + 2.927000e+001 1.261835e+000 -2.206906e+000 6.168788e-003 + 2.928000e+001 1.212613e+000 -2.207660e+000 6.164448e-003 + 2.929000e+001 1.165981e+000 -2.208414e+000 6.162107e-003 + 2.930000e+001 1.121946e+000 -2.209168e+000 6.162304e-003 + 2.931000e+001 1.080353e+000 -2.209922e+000 6.164994e-003 + 2.932000e+001 1.040896e+000 -2.210676e+000 6.169550e-003 + 2.933000e+001 1.003126e+000 -2.211430e+000 6.174919e-003 + 2.934000e+001 9.664717e-001 -2.212184e+000 6.179861e-003 + 2.935000e+001 9.302606e-001 -2.212938e+000 6.183240e-003 + 2.936000e+001 8.937505e-001 -2.213692e+000 6.184280e-003 + 2.937000e+001 8.561602e-001 -2.214446e+000 6.182745e-003 + 2.938000e+001 8.167036e-001 -2.215200e+000 6.178990e-003 + 2.939000e+001 7.746250e-001 -2.215954e+000 6.173880e-003 + 2.940000e+001 7.292314e-001 -2.216708e+000 6.168593e-003 + 2.941000e+001 6.799235e-001 -2.217462e+000 6.164350e-003 + 2.942000e+001 6.262212e-001 -2.218216e+000 6.162131e-003 + 2.943000e+001 5.677851e-001 -2.218970e+000 6.162448e-003 + 2.944000e+001 5.044303e-001 -2.219724e+000 6.165224e-003 + 2.945000e+001 4.361341e-001 -2.220478e+000 6.169812e-003 + 2.946000e+001 3.630371e-001 -2.221232e+000 6.175148e-003 + 2.947000e+001 2.854367e-001 -2.221986e+000 6.180000e-003 + 2.948000e+001 2.037746e-001 -2.222740e+000 6.183250e-003 + 2.949000e+001 1.186197e-001 -2.223494e+000 6.184153e-003 + 2.950000e+001 3.064601e-002 -2.224248e+000 6.182504e-003 + 2.951000e+001 -5.939204e-002 -2.225002e+000 6.178685e-003 + 2.952000e+001 -1.506854e-001 -2.225756e+000 6.173580e-003 + 2.953000e+001 -2.423961e-001 -2.226510e+000 6.168367e-003 + 2.954000e+001 -3.336816e-001 -2.227263e+000 6.164254e-003 + 2.955000e+001 -4.237159e-001 -2.228017e+000 6.162193e-003 + 2.956000e+001 -5.117070e-001 -2.228771e+000 6.162662e-003 + 2.957000e+001 -5.969094e-001 -2.229525e+000 6.165550e-003 + 2.958000e+001 -6.786313e-001 -2.230279e+000 6.170186e-003 + 2.959000e+001 -7.562371e-001 -2.231033e+000 6.175494e-003 + 2.960000e+001 -8.291443e-001 -2.231787e+000 6.180247e-003 + 2.961000e+001 -8.968163e-001 -2.232541e+000 6.183347e-003 + 2.962000e+001 -9.587519e-001 -2.233295e+000 6.184080e-003 + 2.963000e+001 -1.014472e+000 -2.234049e+000 6.182277e-003 + 2.964000e+001 -1.063508e+000 -2.234803e+000 6.178353e-003 + 2.965000e+001 -1.105384e+000 -2.235557e+000 6.173211e-003 + 2.966000e+001 -1.139611e+000 -2.236311e+000 6.168037e-003 + 2.967000e+001 -1.165677e+000 -2.237065e+000 6.164028e-003 + 2.968000e+001 -1.183044e+000 -2.237819e+000 6.162113e-003 + 2.969000e+001 -1.191149e+000 -2.238573e+000 6.162736e-003 + 2.970000e+001 -1.189419e+000 -2.239327e+000 6.165754e-003 + 2.971000e+001 -1.177276e+000 -2.240081e+000 6.170467e-003 + 2.972000e+001 -1.154167e+000 -2.240835e+000 6.175785e-003 + 2.973000e+001 -1.119587e+000 -2.241589e+000 6.180480e-003 + 2.974000e+001 -1.073108e+000 -2.242343e+000 6.183472e-003 + 2.975000e+001 -1.014418e+000 -2.243097e+000 6.184071e-003 + 2.976000e+001 -9.433497e-001 -2.243851e+000 6.182139e-003 + 2.977000e+001 -8.599224e-001 -2.244605e+000 6.178120e-003 + 2.978000e+001 -7.643693e-001 -2.245359e+000 6.172938e-003 + 2.979000e+001 -6.571678e-001 -2.246113e+000 6.167785e-003 + 2.980000e+001 -5.390603e-001 -2.246867e+000 6.163850e-003 + 2.981000e+001 -4.110680e-001 -2.247621e+000 6.162045e-003 + 2.982000e+001 -2.744954e-001 -2.248375e+000 6.162785e-003 + 2.983000e+001 -1.309237e-001 -2.249129e+000 6.165900e-003 + 2.984000e+001 1.780548e-002 -2.249883e+000 6.170668e-003 + 2.985000e+001 1.696184e-001 -2.250637e+000 6.175988e-003 + 2.986000e+001 3.222470e-001 -2.251391e+000 6.180635e-003 + 2.987000e+001 4.732762e-001 -2.252145e+000 6.183541e-003 + 2.988000e+001 6.201993e-001 -2.252899e+000 6.184043e-003 + 2.989000e+001 7.604794e-001 -2.253653e+000 6.182027e-003 + 2.990000e+001 8.916143e-001 -2.254407e+000 6.177959e-003 + 2.991000e+001 1.011203e+000 -2.255161e+000 6.172776e-003 + 2.992000e+001 1.117010e+000 -2.255915e+000 6.167673e-003 + 2.993000e+001 1.207030e+000 -2.256669e+000 6.163827e-003 + 2.994000e+001 1.279539e+000 -2.257423e+000 6.162126e-003 + 2.995000e+001 1.333145e+000 -2.258177e+000 6.162961e-003 + 2.996000e+001 1.366823e+000 -2.258931e+000 6.166135e-003 + 2.997000e+001 1.379943e+000 -2.259685e+000 6.170910e-003 + 2.998000e+001 1.372282e+000 -2.260439e+000 6.176181e-003 + 2.999000e+001 1.344025e+000 -2.261193e+000 6.180730e-003 + 3.000000e+001 1.295752e+000 -2.261947e+000 6.183512e-003 + 3.001000e+001 1.228418e+000 -2.262701e+000 6.183890e-003 + 3.002000e+001 1.143315e+000 -2.263455e+000 6.181780e-003 + 3.003000e+001 1.042031e+000 -2.264209e+000 6.177670e-003 + 3.004000e+001 9.264006e-001 -2.264963e+000 6.172507e-003 + 3.005000e+001 7.984480e-001 -2.265717e+000 6.167484e-003 + 3.006000e+001 6.603313e-001 -2.266471e+000 6.163763e-003 + 3.007000e+001 5.142849e-001 -2.267225e+000 6.162203e-003 + 3.008000e+001 3.625635e-001 -2.267979e+000 6.163165e-003 + 3.009000e+001 2.073920e-001 -2.268733e+000 6.166423e-003 + 3.010000e+001 5.091922e-002 -2.269487e+000 6.171220e-003 + 3.011000e+001 -1.048194e-001 -2.270240e+000 6.176446e-003 + 3.012000e+001 -2.579323e-001 -2.270994e+000 6.180893e-003 + 3.013000e+001 -4.066930e-001 -2.271748e+000 6.183539e-003 + 3.014000e+001 -5.495531e-001 -2.272502e+000 6.183776e-003 + 3.015000e+001 -6.851474e-001 -2.273256e+000 6.181553e-003 + 3.016000e+001 -8.122913e-001 -2.274010e+000 6.177382e-003 + 3.017000e+001 -9.299728e-001 -2.274764e+000 6.172225e-003 + 3.018000e+001 -1.037340e+000 -2.275518e+000 6.167272e-003 + 3.019000e+001 -1.133685e+000 -2.276272e+000 6.163670e-003 + 3.020000e+001 -1.218430e+000 -2.277026e+000 6.162250e-003 + 3.021000e+001 -1.291104e+000 -2.277780e+000 6.163342e-003 + 3.022000e+001 -1.351339e+000 -2.278534e+000 6.166690e-003 + 3.023000e+001 -1.398850e+000 -2.279288e+000 6.171516e-003 + 3.024000e+001 -1.433432e+000 -2.280042e+000 6.176706e-003 + 3.025000e+001 -1.454957e+000 -2.280796e+000 6.181060e-003 + 3.026000e+001 -1.463376e+000 -2.281550e+000 6.183578e-003 + 3.027000e+001 -1.458729e+000 -2.282304e+000 6.183683e-003 + 3.028000e+001 -1.441152e+000 -2.283058e+000 6.181354e-003 + 3.029000e+001 -1.410895e+000 -2.283812e+000 6.177127e-003 + 3.030000e+001 -1.368338e+000 -2.284566e+000 6.171979e-003 + 3.031000e+001 -1.314005e+000 -2.285320e+000 6.167098e-003 + 3.032000e+001 -1.248583e+000 -2.286074e+000 6.163611e-003 + 3.033000e+001 -1.172933e+000 -2.286828e+000 6.162326e-003 + 3.034000e+001 -1.088102e+000 -2.287582e+000 6.163536e-003 + 3.035000e+001 -9.953203e-001 -2.288336e+000 6.166960e-003 + 3.036000e+001 -8.960058e-001 -2.289090e+000 6.171799e-003 + 3.037000e+001 -7.917478e-001 -2.289844e+000 6.176933e-003 + 3.038000e+001 -6.842910e-001 -2.290598e+000 6.181176e-003 + 3.039000e+001 -5.755089e-001 -2.291352e+000 6.183549e-003 + 3.040000e+001 -4.673705e-001 -2.292106e+000 6.183509e-003 + 3.041000e+001 -3.619009e-001 -2.292860e+000 6.181065e-003 + 3.042000e+001 -2.611357e-001 -2.293614e+000 6.176783e-003 + 3.043000e+001 -1.670731e-001 -2.294368e+000 6.171650e-003 + 3.044000e+001 -8.162318e-002 -2.295122e+000 6.166852e-003 + 3.045000e+001 -6.557686e-003 -2.295876e+000 6.163501e-003 + 3.046000e+001 5.653798e-002 -2.296630e+000 6.162374e-003 + 3.047000e+001 1.063088e-001 -2.297384e+000 6.163732e-003 + 3.048000e+001 1.416684e-001 -2.298138e+000 6.167260e-003 + 3.049000e+001 1.618291e-001 -2.298892e+000 6.172138e-003 + 3.050000e+001 1.663240e-001 -2.299646e+000 6.177239e-003 + 3.051000e+001 1.550188e-001 -2.300400e+000 6.181385e-003 + 3.052000e+001 1.281132e-001 -2.301154e+000 6.183621e-003 + 3.053000e+001 8.613244e-002 -2.301908e+000 6.183432e-003 + 3.054000e+001 2.990824e-002 -2.302662e+000 6.180863e-003 + 3.055000e+001 -3.944878e-002 -2.303416e+000 6.176504e-003 + 3.056000e+001 -1.205852e-001 -2.304170e+000 6.171359e-003 + 3.057000e+001 -2.119473e-001 -2.304924e+000 6.166617e-003 + 3.058000e+001 -3.118283e-001 -2.305678e+000 6.163373e-003 + 3.059000e+001 -4.184185e-001 -2.306432e+000 6.162380e-003 + 3.060000e+001 -5.298565e-001 -2.307186e+000 6.163867e-003 + 3.061000e+001 -6.442797e-001 -2.307940e+000 6.167489e-003 + 3.062000e+001 -7.598714e-001 -2.308694e+000 6.172407e-003 + 3.063000e+001 -8.749042e-001 -2.309448e+000 6.177485e-003 + 3.064000e+001 -9.877772e-001 -2.310202e+000 6.181552e-003 + 3.065000e+001 -1.097047e+000 -2.310956e+000 6.183672e-003 + 3.066000e+001 -1.201451e+000 -2.311710e+000 6.183359e-003 + 3.067000e+001 -1.299923e+000 -2.312463e+000 6.180686e-003 + 3.068000e+001 -1.391599e+000 -2.313217e+000 6.176268e-003 + 3.069000e+001 -1.475823e+000 -2.313971e+000 6.171122e-003 + 3.070000e+001 -1.552134e+000 -2.314725e+000 6.166434e-003 + 3.071000e+001 -1.620260e+000 -2.315479e+000 6.163288e-003 + 3.072000e+001 -1.680100e+000 -2.316233e+000 6.162410e-003 + 3.073000e+001 -1.731703e+000 -2.316987e+000 6.164003e-003 + 3.074000e+001 -1.775246e+000 -2.317741e+000 6.167695e-003 + 3.075000e+001 -1.811015e+000 -2.318495e+000 6.172630e-003 + 3.076000e+001 -1.839376e+000 -2.319249e+000 6.177667e-003 + 3.077000e+001 -1.860763e+000 -2.320003e+000 6.181646e-003 + 3.078000e+001 -1.875648e+000 -2.320757e+000 6.183651e-003 + 3.079000e+001 -1.884531e+000 -2.321511e+000 6.183223e-003 + 3.080000e+001 -1.887927e+000 -2.322265e+000 6.180463e-003 + 3.081000e+001 -1.886348e+000 -2.323019e+000 6.176007e-003 + 3.082000e+001 -1.880300e+000 -2.323773e+000 6.170882e-003 + 3.083000e+001 -1.870275e+000 -2.324527e+000 6.166270e-003 + 3.084000e+001 -1.856748e+000 -2.325281e+000 6.163240e-003 + 3.085000e+001 -1.840171e+000 -2.326035e+000 6.162490e-003 + 3.086000e+001 -1.820972e+000 -2.326789e+000 6.164194e-003 + 3.087000e+001 -1.799553e+000 -2.327543e+000 6.167955e-003 + 3.088000e+001 -1.776290e+000 -2.328297e+000 6.172901e-003 + 3.089000e+001 -1.751520e+000 -2.329051e+000 6.177889e-003 + 3.090000e+001 -1.725548e+000 -2.329805e+000 6.181768e-003 + 3.091000e+001 -1.698629e+000 -2.330559e+000 6.183647e-003 + 3.092000e+001 -1.670969e+000 -2.331313e+000 6.183095e-003 + 3.093000e+001 -1.642713e+000 -2.332067e+000 6.180240e-003 + 3.094000e+001 -1.613933e+000 -2.332821e+000 6.175741e-003 + 3.095000e+001 -1.584623e+000 -2.333575e+000 6.170633e-003 + 3.096000e+001 -1.554687e+000 -2.334329e+000 6.166096e-003 + 3.097000e+001 -1.523935e+000 -2.335083e+000 6.163178e-003 + 3.098000e+001 -1.492074e+000 -2.335837e+000 6.162554e-003 + 3.099000e+001 -1.458708e+000 -2.336591e+000 6.164367e-003 + 3.100000e+001 -1.423339e+000 -2.337345e+000 6.168195e-003 + 3.101000e+001 -1.385371e+000 -2.338099e+000 6.173151e-003 + 3.102000e+001 -1.344119e+000 -2.338853e+000 6.178090e-003 + 3.103000e+001 -1.298826e+000 -2.339607e+000 6.181874e-003 + 3.104000e+001 -1.248676e+000 -2.340361e+000 6.183633e-003 + 3.105000e+001 -1.192816e+000 -2.341115e+000 6.182965e-003 + 3.106000e+001 -1.130386e+000 -2.341869e+000 6.180025e-003 + 3.107000e+001 -1.060538e+000 -2.342623e+000 6.175490e-003 + 3.108000e+001 -9.824705e-001 -2.343377e+000 6.170406e-003 + 3.109000e+001 -8.954551e-001 -2.344131e+000 6.165946e-003 + 3.110000e+001 -7.988646e-001 -2.344885e+000 6.163139e-003 + 3.111000e+001 -6.921999e-001 -2.345639e+000 6.162633e-003 + 3.112000e+001 -5.751129e-001 -2.346393e+000 6.164544e-003 + 3.113000e+001 -4.474270e-001 -2.347147e+000 6.168426e-003 + 3.114000e+001 -3.091515e-001 -2.347901e+000 6.173379e-003 + 3.115000e+001 -1.604920e-001 -2.348655e+000 6.178257e-003 + 3.116000e+001 -1.854315e-003 -2.349409e+000 6.181938e-003 + 3.117000e+001 1.661561e-001 -2.350163e+000 6.183576e-003 + 3.118000e+001 3.427416e-001 -2.350917e+000 6.182799e-003 + 3.119000e+001 5.269238e-001 -2.351671e+000 6.179787e-003 + 3.120000e+001 7.175604e-001 -2.352425e+000 6.175237e-003 + 3.121000e+001 9.133652e-001 -2.353179e+000 6.170198e-003 + 3.122000e+001 1.112932e+000 -2.353933e+000 6.165835e-003 + 3.123000e+001 1.314758e+000 -2.354686e+000 6.163157e-003 + 3.124000e+001 1.517275e+000 -2.355440e+000 6.162781e-003 + 3.125000e+001 1.718867e+000 -2.356194e+000 6.164791e-003 + 3.126000e+001 1.917906e+000 -2.356948e+000 6.168719e-003 + 3.127000e+001 2.112767e+000 -2.357702e+000 6.173651e-003 + 3.128000e+001 2.301856e+000 -2.358456e+000 6.178445e-003 + 3.129000e+001 2.483625e+000 -2.359210e+000 6.181996e-003 + 3.130000e+001 2.656589e+000 -2.359964e+000 6.183486e-003 + 3.131000e+001 2.819343e+000 -2.360718e+000 6.182575e-003 + 3.132000e+001 2.970569e+000 -2.361472e+000 6.179475e-003 + 3.133000e+001 3.109044e+000 -2.362226e+000 6.174902e-003 + 3.134000e+001 3.233651e+000 -2.362980e+000 6.169913e-003 + 3.135000e+001 3.343380e+000 -2.363734e+000 6.165662e-003 + 3.136000e+001 3.437335e+000 -2.364488e+000 6.163134e-003 + 3.137000e+001 3.514738e+000 -2.365242e+000 6.162916e-003 + 3.138000e+001 3.574933e+000 -2.365996e+000 6.165056e-003 + 3.139000e+001 3.617391e+000 -2.366750e+000 6.169057e-003 + 3.140000e+001 3.641716e+000 -2.367504e+000 6.173991e-003 + 3.141000e+001 3.647655e+000 -2.368258e+000 6.178716e-003 + 3.142000e+001 3.635098e+000 -2.369012e+000 6.182142e-003 + 3.143000e+001 3.604095e+000 -2.369766e+000 6.183478e-003 + 3.144000e+001 3.554856e+000 -2.370520e+000 6.182419e-003 + 3.145000e+001 3.487764e+000 -2.371274e+000 6.179208e-003 + 3.146000e+001 3.403375e+000 -2.372028e+000 6.174586e-003 + 3.147000e+001 3.302426e+000 -2.372782e+000 6.169618e-003 + 3.148000e+001 3.185834e+000 -2.373536e+000 6.165454e-003 + 3.149000e+001 3.054691e+000 -2.374290e+000 6.163057e-003 + 3.150000e+001 2.910260e+000 -2.375044e+000 6.162983e-003 + 3.151000e+001 2.753957e+000 -2.375798e+000 6.165248e-003 + 3.152000e+001 2.587341e+000 -2.376552e+000 6.169327e-003 + 3.153000e+001 2.412086e+000 -2.377306e+000 6.174274e-003 + 3.154000e+001 2.229957e+000 -2.378060e+000 6.178945e-003 + 3.155000e+001 2.042779e+000 -2.378814e+000 6.182263e-003 + 3.156000e+001 1.852405e+000 -2.379568e+000 6.183465e-003 + 3.157000e+001 1.660675e+000 -2.380322e+000 6.182274e-003 + 3.158000e+001 1.469384e+000 -2.381076e+000 6.178964e-003 + 3.159000e+001 1.280247e+000 -2.381830e+000 6.174300e-003 + 3.160000e+001 1.094857e+000 -2.382584e+000 6.169356e-003 + 3.161000e+001 9.146610e-001 -2.383338e+000 6.165275e-003 + 3.162000e+001 7.409304e-001 -2.384092e+000 6.163004e-003 + 3.163000e+001 5.747406e-001 -2.384846e+000 6.163069e-003 + 3.164000e+001 4.169564e-001 -2.385600e+000 6.165454e-003 + 3.165000e+001 2.682257e-001 -2.386354e+000 6.169607e-003 + 3.166000e+001 1.289803e-001 -2.387108e+000 6.174566e-003 + 3.167000e+001 -5.562476e-004 -2.387862e+000 6.179184e-003 + 3.168000e+001 -1.203527e-001 -2.388616e+000 6.182397e-003 + 3.169000e+001 -2.305479e-001 -2.389370e+000 6.183465e-003 + 3.170000e+001 -3.314239e-001 -2.390124e+000 6.182143e-003 + 3.171000e+001 -4.233739e-001 -2.390878e+000 6.178733e-003 + 3.172000e+001 -5.068687e-001 -2.391632e+000 6.174020e-003 + 3.173000e+001 -5.824220e-001 -2.392386e+000 6.169092e-003 + 3.174000e+001 -6.505563e-001 -2.393140e+000 6.165086e-003 + 3.175000e+001 -7.117720e-001 -2.393894e+000 6.162931e-003 + 3.176000e+001 -7.665204e-001 -2.394648e+000 6.163126e-003 + 3.177000e+001 -8.151819e-001 -2.395402e+000 6.165628e-003 + 3.178000e+001 -8.580513e-001 -2.396156e+000 6.169857e-003 + 3.179000e+001 -8.953301e-001 -2.396909e+000 6.174836e-003 + 3.180000e+001 -9.271258e-001 -2.397663e+000 6.179415e-003 + 3.181000e+001 -9.534597e-001 -2.398417e+000 6.182541e-003 + 3.182000e+001 -9.742802e-001 -2.399171e+000 6.183494e-003 + 3.183000e+001 -9.894834e-001 -2.399925e+000 6.182055e-003 + 3.184000e+001 -9.989374e-001 -2.400679e+000 6.178555e-003 + 3.185000e+001 -1.002510e+000 -2.401433e+000 6.173796e-003 + 3.186000e+001 -1.000100e+000 -2.402187e+000 6.168876e-003 + 3.187000e+001 -9.916621e-001 -2.402941e+000 6.164928e-003 + 3.188000e+001 -9.772384e-001 -2.403695e+000 6.162864e-003 + 3.189000e+001 -9.569787e-001 -2.404449e+000 6.163163e-003 + 3.190000e+001 -9.311591e-001 -2.405203e+000 6.165754e-003 + 3.191000e+001 -9.001927e-001 -2.405957e+000 6.170038e-003 + 3.192000e+001 -8.646337e-001 -2.406711e+000 6.175026e-003 + 3.193000e+001 -8.251723e-001 -2.407465e+000 6.179567e-003 + 3.194000e+001 -7.826229e-001 -2.408219e+000 6.182619e-003 + 3.195000e+001 -7.379040e-001 -2.408973e+000 6.183483e-003 + 3.196000e+001 -6.920111e-001 -2.409727e+000 6.181961e-003 + 3.197000e+001 -6.459850e-001 -2.410481e+000 6.178406e-003 + 3.198000e+001 -6.008752e-001 -2.411235e+000 6.173635e-003 + 3.199000e+001 -5.577019e-001 -2.411989e+000 6.168746e-003 + 3.200000e+001 -5.174177e-001 -2.412743e+000 6.164866e-003 + 3.201000e+001 -4.808710e-001 -2.413497e+000 6.162891e-003 + 3.202000e+001 -4.487734e-001 -2.414251e+000 6.163275e-003 + 3.203000e+001 -4.216726e-001 -2.415005e+000 6.165925e-003 + 3.204000e+001 -3.999333e-001 -2.415759e+000 6.170227e-003 + 3.205000e+001 -3.837250e-001 -2.416513e+000 6.175185e-003 + 3.206000e+001 -3.730205e-001 -2.417267e+000 6.179655e-003 + 3.207000e+001 -3.676026e-001 -2.418021e+000 6.182611e-003 + 3.208000e+001 -3.670808e-001 -2.418775e+000 6.183376e-003 + 3.209000e+001 -3.709159e-001 -2.419529e+000 6.181778e-003 + 3.210000e+001 -3.784523e-001 -2.420283e+000 6.178189e-003 + 3.211000e+001 -3.889562e-001 -2.421037e+000 6.173435e-003 + 3.212000e+001 -4.016572e-001 -2.421791e+000 6.168613e-003 + 3.213000e+001 -4.157917e-001 -2.422545e+000 6.164837e-003 + 3.214000e+001 -4.306464e-001 -2.423299e+000 6.162978e-003 + 3.215000e+001 -4.455986e-001 -2.424053e+000 6.163462e-003 + 3.216000e+001 -4.601511e-001 -2.424807e+000 6.166174e-003 + 3.217000e+001 -4.739616e-001 -2.425561e+000 6.170482e-003 + 3.218000e+001 -4.868619e-001 -2.426315e+000 6.175385e-003 + 3.219000e+001 -4.988693e-001 -2.427069e+000 6.179753e-003 + 3.220000e+001 -5.101861e-001 -2.427823e+000 6.182579e-003 + 3.221000e+001 -5.211898e-001 -2.428577e+000 6.183215e-003 + 3.222000e+001 -5.324119e-001 -2.429331e+000 6.181520e-003 + 3.223000e+001 -5.445087e-001 -2.430085e+000 6.177887e-003 + 3.224000e+001 -5.582229e-001 -2.430839e+000 6.173156e-003 + 3.225000e+001 -5.743396e-001 -2.431593e+000 6.168420e-003 + 3.226000e+001 -5.936382e-001 -2.432347e+000 6.164776e-003 + 3.227000e+001 -6.168419e-001 -2.433101e+000 6.163065e-003 + 3.228000e+001 -6.445688e-001 -2.433855e+000 6.163683e-003 + 3.229000e+001 -6.772848e-001 -2.434609e+000 6.166483e-003 + 3.230000e+001 -7.152628e-001 -2.435363e+000 6.170813e-003 + 3.231000e+001 -7.585489e-001 -2.436117e+000 6.175667e-003 + 3.232000e+001 -8.069377e-001 -2.436871e+000 6.179923e-003 + 3.233000e+001 -8.599582e-001 -2.437625e+000 6.182597e-003 + 3.234000e+001 -9.168704e-001 -2.438379e+000 6.183076e-003 + 3.235000e+001 -9.766744e-001 -2.439133e+000 6.181250e-003 + 3.236000e+001 -1.038130e+000 -2.439886e+000 6.177542e-003 + 3.237000e+001 -1.099785e+000 -2.440640e+000 6.172807e-003 + 3.238000e+001 -1.160019e+000 -2.441394e+000 6.168141e-003 + 3.239000e+001 -1.217087e+000 -2.442148e+000 6.164624e-003 + 3.240000e+001 -1.269171e+000 -2.442902e+000 6.163072e-003 + 3.241000e+001 -1.314440e+000 -2.443656e+000 6.163845e-003 + 3.242000e+001 -1.351104e+000 -2.444410e+000 6.166763e-003 + 3.243000e+001 -1.377473e+000 -2.445164e+000 6.171148e-003 + 3.244000e+001 -1.392004e+000 -2.445918e+000 6.175985e-003 + 3.245000e+001 -1.393355e+000 -2.446672e+000 6.180155e-003 + 3.246000e+001 -1.380419e+000 -2.447426e+000 6.182696e-003 + 3.247000e+001 -1.352357e+000 -2.448180e+000 6.183022e-003 + 3.248000e+001 -1.308621e+000 -2.448934e+000 6.181059e-003 + 3.249000e+001 -1.248964e+000 -2.449688e+000 6.177257e-003 + 3.250000e+001 -1.173446e+000 -2.450442e+000 6.172492e-003 + 3.251000e+001 -1.082419e+000 -2.451196e+000 6.167865e-003 + 3.252000e+001 -9.765187e-001 -2.451950e+000 6.164445e-003 + 3.253000e+001 -8.566366e-001 -2.452704e+000 6.163026e-003 + 3.254000e+001 -7.238921e-001 -2.453458e+000 6.163937e-003 + 3.255000e+001 -5.795980e-001 -2.454212e+000 6.166966e-003 + 3.256000e+001 -4.252248e-001 -2.454966e+000 6.171413e-003 + 3.257000e+001 -2.623628e-001 -2.455720e+000 6.176248e-003 + 3.258000e+001 -9.268557e-002 -2.456474e+000 6.180355e-003 + 3.259000e+001 8.208455e-002 -2.457228e+000 6.182788e-003 + 3.260000e+001 2.602080e-001 -2.457982e+000 6.182987e-003 + 3.261000e+001 4.399554e-001 -2.458736e+000 6.180905e-003 + 3.262000e+001 6.196299e-001 -2.459490e+000 6.177022e-003 + 3.263000e+001 7.975852e-001 -2.460244e+000 6.172230e-003 + 3.264000e+001 9.722382e-001 -2.460998e+000 6.167635e-003 + 3.265000e+001 1.142078e+000 -2.461752e+000 6.164298e-003 + 3.266000e+001 1.305671e+000 -2.462506e+000 6.162993e-003 + 3.267000e+001 1.461664e+000 -2.463260e+000 6.164021e-003 + 3.268000e+001 1.608780e+000 -2.464014e+000 6.167145e-003 + 3.269000e+001 1.745825e+000 -2.464768e+000 6.171642e-003 + 3.270000e+001 1.871682e+000 -2.465522e+000 6.176473e-003 + 3.271000e+001 1.985314e+000 -2.466276e+000 6.180525e-003 + 3.272000e+001 2.085766e+000 -2.467030e+000 6.182866e-003 + 3.273000e+001 2.172171e+000 -2.467784e+000 6.182958e-003 + 3.274000e+001 2.243754e+000 -2.468538e+000 6.180781e-003 + 3.275000e+001 2.299849e+000 -2.469292e+000 6.176835e-003 + 3.276000e+001 2.339903e+000 -2.470046e+000 6.172027e-003 + 3.277000e+001 2.363495e+000 -2.470800e+000 6.167466e-003 + 3.278000e+001 2.370350e+000 -2.471554e+000 6.164203e-003 + 3.279000e+001 2.360355e+000 -2.472308e+000 6.162993e-003 + 3.280000e+001 2.333571e+000 -2.473062e+000 6.164112e-003 + 3.281000e+001 2.290248e+000 -2.473816e+000 6.167302e-003 + 3.282000e+001 2.230830e+000 -2.474570e+000 6.171823e-003 + 3.283000e+001 2.155964e+000 -2.475324e+000 6.176630e-003 + 3.284000e+001 2.066499e+000 -2.476078e+000 6.180616e-003 + 3.285000e+001 1.963477e+000 -2.476832e+000 6.182867e-003 + 3.286000e+001 1.848127e+000 -2.477586e+000 6.182866e-003 + 3.287000e+001 1.721846e+000 -2.478340e+000 6.180618e-003 + 3.288000e+001 1.586174e+000 -2.479094e+000 6.176641e-003 + 3.289000e+001 1.442771e+000 -2.479848e+000 6.171851e-003 + 3.290000e+001 1.293382e+000 -2.480602e+000 6.167353e-003 + 3.291000e+001 1.139801e+000 -2.481356e+000 6.164185e-003 + 3.292000e+001 9.838403e-001 -2.482109e+000 6.163078e-003 + 3.293000e+001 8.272871e-001 -2.482863e+000 6.164286e-003 + 3.294000e+001 6.718713e-001 -2.483617e+000 6.167525e-003 + 3.295000e+001 5.192304e-001 -2.484371e+000 6.172044e-003 + 3.296000e+001 3.708799e-001 -2.485125e+000 6.176796e-003 + 3.297000e+001 2.281878e-001 -2.485879e+000 6.180686e-003 + 3.298000e+001 9.235511e-002 -2.486633e+000 6.182819e-003 + 3.299000e+001 -3.559780e-002 -2.487387e+000 6.182709e-003 + 3.300000e+001 -1.548379e-001 -2.488141e+000 6.180384e-003 + 3.301000e+001 -2.647200e-001 -2.488895e+000 6.176381e-003 + 3.302000e+001 -3.647810e-001 -2.489649e+000 6.171625e-003 + 3.303000e+001 -4.547287e-001 -2.490403e+000 6.167215e-003 + 3.304000e+001 -5.344255e-001 -2.491157e+000 6.164171e-003 + 3.305000e+001 -6.038692e-001 -2.491911e+000 6.163196e-003 + 3.306000e+001 -6.631709e-001 -2.492665e+000 6.164514e-003 + 3.307000e+001 -7.125322e-001 -2.493419e+000 6.167817e-003 + 3.308000e+001 -7.522224e-001 -2.494173e+000 6.172338e-003 + 3.309000e+001 -7.825569e-001 -2.494927e+000 6.177028e-003 + 3.310000e+001 -8.038789e-001 -2.495681e+000 6.180806e-003 + 3.311000e+001 -8.165437e-001 -2.496435e+000 6.182800e-003 + 3.312000e+001 -8.209069e-001 -2.497189e+000 6.182554e-003 + 3.313000e+001 -8.173180e-001 -2.497943e+000 6.180125e-003 + 3.314000e+001 -8.061169e-001 -2.498697e+000 6.176075e-003 + 3.315000e+001 -7.876356e-001 -2.499451e+000 6.171338e-003 + 3.316000e+001 -7.622032e-001 -2.500205e+000 6.167009e-003 + 3.317000e+001 -7.301537e-001 -2.500959e+000 6.164090e-003 + 3.318000e+001 -6.918357e-001 -2.501713e+000 6.163258e-003 + 3.319000e+001 -6.476232e-001 -2.502467e+000 6.164703e-003 + 3.320000e+001 -5.979264e-001 -2.503221e+000 6.168091e-003 + 3.321000e+001 -5.432007e-001 -2.503975e+000 6.172635e-003 + 3.322000e+001 -4.839542e-001 -2.504729e+000 6.177284e-003 + 3.323000e+001 -4.207511e-001 -2.505483e+000 6.180965e-003 + 3.324000e+001 -3.542129e-001 -2.506237e+000 6.182831e-003 + 3.325000e+001 -2.850137e-001 -2.506991e+000 6.182452e-003 + 3.326000e+001 -2.138730e-001 -2.507745e+000 6.179918e-003 + 3.327000e+001 -1.415436e-001 -2.508499e+000 6.175812e-003 + 3.328000e+001 -6.879549e-002 -2.509253e+000 6.171081e-003 + 3.329000e+001 3.601615e-003 -2.510007e+000 6.166817e-003 + 3.330000e+001 7.489920e-002 -2.510761e+000 6.164006e-003 + 3.331000e+001 1.443908e-001 -2.511515e+000 6.163300e-003 + 3.332000e+001 2.114326e-001 -2.512269e+000 6.164860e-003 + 3.333000e+001 2.754628e-001 -2.513023e+000 6.168324e-003 + 3.334000e+001 3.360178e-001 -2.513777e+000 6.172889e-003 + 3.335000e+001 3.927444e-001 -2.514531e+000 6.177499e-003 + 3.336000e+001 4.454081e-001 -2.515285e+000 6.181091e-003 + 3.337000e+001 4.938945e-001 -2.516039e+000 6.182839e-003 + 3.338000e+001 5.382069e-001 -2.516793e+000 6.182342e-003 + 3.339000e+001 5.784560e-001 -2.517547e+000 6.179716e-003 + 3.340000e+001 6.148457e-001 -2.518301e+000 6.175566e-003 + 3.341000e+001 6.476530e-001 -2.519055e+000 6.170850e-003 + 3.342000e+001 6.772041e-001 -2.519809e+000 6.166657e-003 + 3.343000e+001 7.038472e-001 -2.520563e+000 6.163956e-003 + 3.344000e+001 7.279240e-001 -2.521317e+000 6.163372e-003 + 3.345000e+001 7.497409e-001 -2.522071e+000 6.165040e-003 + 3.346000e+001 7.695410e-001 -2.522825e+000 6.168571e-003 + 3.347000e+001 7.874792e-001 -2.523579e+000 6.173146e-003 + 3.348000e+001 8.036014e-001 -2.524332e+000 6.177708e-003 + 3.349000e+001 8.178288e-001 -2.525086e+000 6.181202e-003 + 3.350000e+001 8.299483e-001 -2.525840e+000 6.182827e-003 + 3.351000e+001 8.396101e-001 -2.526594e+000 6.182208e-003 + 3.352000e+001 8.463323e-001 -2.527348e+000 6.179490e-003 + 3.353000e+001 8.495126e-001 -2.528102e+000 6.175299e-003 + 3.354000e+001 8.484466e-001 -2.528856e+000 6.170603e-003 + 3.355000e+001 8.423533e-001 -2.529610e+000 6.166487e-003 + 3.356000e+001 8.304039e-001 -2.530364e+000 6.163902e-003 + 3.357000e+001 8.117560e-001 -2.531118e+000 6.163448e-003 + 3.358000e+001 7.855893e-001 -2.531872e+000 6.165229e-003 + 3.359000e+001 7.511426e-001 -2.532626e+000 6.168831e-003 + 3.360000e+001 7.077493e-001 -2.533380e+000 6.173419e-003 + 3.361000e+001 6.548717e-001 -2.534134e+000 6.177932e-003 + 3.362000e+001 5.921302e-001 -2.534888e+000 6.181329e-003 + 3.363000e+001 5.193281e-001 -2.535642e+000 6.182828e-003 + 3.364000e+001 4.364704e-001 -2.536396e+000 6.182085e-003 + 3.365000e+001 3.437750e-001 -2.537150e+000 6.179271e-003 + 3.366000e+001 2.416776e-001 -2.537904e+000 6.175035e-003 + 3.367000e+001 1.308281e-001 -2.538658e+000 6.170353e-003 + 3.368000e+001 1.208076e-002 -2.539412e+000 6.166307e-003 + 3.369000e+001 -1.135231e-001 -2.540166e+000 6.163833e-003 + 3.370000e+001 -2.447775e-001 -2.540920e+000 6.163504e-003 + 3.371000e+001 -3.803398e-001 -2.541674e+000 6.165394e-003 + 3.372000e+001 -5.187617e-001 -2.542428e+000 6.169066e-003 + 3.373000e+001 -6.585228e-001 -2.543182e+000 6.173668e-003 + 3.374000e+001 -7.980654e-001 -2.543936e+000 6.178136e-003 + 3.375000e+001 -9.358284e-001 -2.544690e+000 6.181441e-003 + 3.376000e+001 -1.070281e+000 -2.545444e+000 6.182821e-003 + 3.377000e+001 -1.199951e+000 -2.546198e+000 6.181961e-003 + 3.378000e+001 -1.323454e+000 -2.546952e+000 6.179058e-003 + 3.379000e+001 -1.439516e+000 -2.547706e+000 6.174783e-003 + 3.380000e+001 -1.546990e+000 -2.548460e+000 6.170119e-003 + 3.381000e+001 -1.644871e+000 -2.549214e+000 6.166146e-003 + 3.382000e+001 -1.732304e+000 -2.549968e+000 6.163782e-003 + 3.383000e+001 -1.808593e+000 -2.550722e+000 6.163575e-003 + 3.384000e+001 -1.873196e+000 -2.551476e+000 6.165571e-003 + 3.385000e+001 -1.925730e+000 -2.552230e+000 6.169309e-003 + 3.386000e+001 -1.965960e+000 -2.552984e+000 6.173921e-003 + 3.387000e+001 -1.993797e+000 -2.553738e+000 6.178343e-003 + 3.388000e+001 -2.009291e+000 -2.554492e+000 6.181556e-003 + 3.389000e+001 -2.012617e+000 -2.555246e+000 6.182819e-003 + 3.390000e+001 -2.004076e+000 -2.556000e+000 6.181844e-003 + 3.391000e+001 -1.984082e+000 -2.556754e+000 6.178855e-003 + 3.392000e+001 -1.953153e+000 -2.557508e+000 6.174541e-003 + 3.393000e+001 -1.911910e+000 -2.558262e+000 6.169896e-003 + 3.394000e+001 -1.861069e+000 -2.559016e+000 6.165993e-003 + 3.395000e+001 -1.801435e+000 -2.559770e+000 6.163734e-003 + 3.396000e+001 -1.733895e+000 -2.560524e+000 6.163642e-003 + 3.397000e+001 -1.659417e+000 -2.561278e+000 6.165737e-003 + 3.398000e+001 -1.579038e+000 -2.562032e+000 6.169533e-003 + 3.399000e+001 -1.493860e+000 -2.562786e+000 6.174151e-003 + 3.400000e+001 -1.405040e+000 -2.563540e+000 6.178524e-003 + 3.401000e+001 -1.313774e+000 -2.564294e+000 6.181645e-003 + 3.402000e+001 -1.221291e+000 -2.565048e+000 6.182794e-003 + 3.403000e+001 -1.128829e+000 -2.565802e+000 6.181710e-003 + 3.404000e+001 -1.037623e+000 -2.566555e+000 6.178641e-003 + 3.405000e+001 -9.488845e-001 -2.567309e+000 6.174295e-003 + 3.406000e+001 -8.637763e-001 -2.568063e+000 6.169673e-003 + 3.407000e+001 -7.833959e-001 -2.568817e+000 6.165843e-003 + 3.408000e+001 -7.087518e-001 -2.569571e+000 6.163689e-003 + 3.409000e+001 -6.407427e-001 -2.570325e+000 6.163711e-003 + 3.410000e+001 -5.801393e-001 -2.571079e+000 6.165902e-003 + 3.411000e+001 -5.275673e-001 -2.571833e+000 6.169753e-003 + 3.412000e+001 -4.834944e-001 -2.572587e+000 6.174375e-003 + 3.413000e+001 -4.482213e-001 -2.573341e+000 6.178699e-003 + 3.414000e+001 -4.218766e-001 -2.574095e+000 6.181730e-003 + 3.415000e+001 -4.044170e-001 -2.574849e+000 6.182772e-003 + 3.416000e+001 -3.956323e-001 -2.575603e+000 6.181587e-003 + 3.417000e+001 -3.951543e-001 -2.576357e+000 6.178449e-003 + 3.418000e+001 -4.024716e-001 -2.577111e+000 6.174079e-003 + 3.419000e+001 -4.169464e-001 -2.577865e+000 6.169487e-003 + 3.420000e+001 -4.378361e-001 -2.578619e+000 6.165731e-003 + 3.421000e+001 -4.643160e-001 -2.579373e+000 6.163679e-003 + 3.422000e+001 -4.955035e-001 -2.580127e+000 6.163804e-003 + 3.423000e+001 -5.304825e-001 -2.580881e+000 6.166076e-003 + 3.424000e+001 -5.683273e-001 -2.581635e+000 6.169966e-003 + 3.425000e+001 -6.081237e-001 -2.582389e+000 6.174574e-003 + 3.426000e+001 -6.489884e-001 -2.583143e+000 6.178833e-003 + 3.427000e+001 -6.900843e-001 -2.583897e+000 6.181764e-003 + 3.428000e+001 -7.306324e-001 -2.584651e+000 6.182694e-003 + 3.429000e+001 -7.699191e-001 -2.585405e+000 6.181411e-003 + 3.430000e+001 -8.072993e-001 -2.586159e+000 6.178211e-003 + 3.431000e+001 -8.421956e-001 -2.586913e+000 6.173834e-003 + 3.432000e+001 -8.740942e-001 -2.587667e+000 6.169289e-003 + 3.433000e+001 -9.025368e-001 -2.588421e+000 6.165628e-003 + 3.434000e+001 -9.271115e-001 -2.589175e+000 6.163697e-003 + 3.435000e+001 -9.474418e-001 -2.589929e+000 6.163942e-003 + 3.436000e+001 -9.631753e-001 -2.590683e+000 6.166305e-003 + 3.437000e+001 -9.739732e-001 -2.591437e+000 6.170237e-003 + 3.438000e+001 -9.795014e-001 -2.592191e+000 6.174826e-003 + 3.439000e+001 -9.794242e-001 -2.592945e+000 6.179011e-003 + 3.440000e+001 -9.734006e-001 -2.593699e+000 6.181829e-003 + 3.441000e+001 -9.610847e-001 -2.594453e+000 6.182630e-003 + 3.442000e+001 -9.421291e-001 -2.595207e+000 6.181232e-003 + 3.443000e+001 -9.161930e-001 -2.595961e+000 6.177957e-003 + 3.444000e+001 -8.829527e-001 -2.596715e+000 6.173561e-003 + 3.445000e+001 -8.421161e-001 -2.597469e+000 6.169058e-003 + 3.446000e+001 -7.934383e-001 -2.598223e+000 6.165489e-003 + 3.447000e+001 -7.367392e-001 -2.598977e+000 6.163682e-003 + 3.448000e+001 -6.719217e-001 -2.599731e+000 6.164053e-003 + 3.449000e+001 -5.989884e-001 -2.600485e+000 6.166516e-003 + 3.450000e+001 -5.180569e-001 -2.601239e+000 6.170501e-003 + 3.451000e+001 -4.293723e-001 -2.601993e+000 6.175083e-003 + 3.452000e+001 -3.333159e-001 -2.602747e+000 6.179204e-003 + 3.453000e+001 -2.304094e-001 -2.603501e+000 6.181914e-003 + 3.454000e+001 -1.213145e-001 -2.604255e+000 6.182590e-003 + 3.455000e+001 -6.826554e-003 -2.605009e+000 6.181077e-003 + 3.456000e+001 1.121360e-001 -2.605763e+000 6.177722e-003 + 3.457000e+001 2.345479e-001 -2.606517e+000 6.173299e-003 + 3.458000e+001 3.592975e-001 -2.607271e+000 6.168828e-003 + 3.459000e+001 4.852106e-001 -2.608025e+000 6.165342e-003 + 3.460000e+001 6.110773e-001 -2.608779e+000 6.163647e-003 + 3.461000e+001 7.356798e-001 -2.609532e+000 6.164137e-003 + 3.462000e+001 8.578219e-001 -2.610286e+000 6.166696e-003 + 3.463000e+001 9.763556e-001 -2.611040e+000 6.170733e-003 + 3.464000e+001 1.090208e+000 -2.611794e+000 6.175313e-003 + 3.465000e+001 1.198403e+000 -2.612548e+000 6.179378e-003 + 3.466000e+001 1.300081e+000 -2.613302e+000 6.181994e-003 + 3.467000e+001 1.394513e+000 -2.614056e+000 6.182559e-003 + 3.468000e+001 1.481107e+000 -2.614810e+000 6.180944e-003 + 3.469000e+001 1.559416e+000 -2.615564e+000 6.177521e-003 + 3.470000e+001 1.629131e+000 -2.616318e+000 6.173079e-003 + 3.471000e+001 1.690081e+000 -2.617072e+000 6.168641e-003 + 3.472000e+001 1.742214e+000 -2.617826e+000 6.165234e-003 + 3.473000e+001 1.785590e+000 -2.618580e+000 6.163643e-003 + 3.474000e+001 1.820357e+000 -2.619334e+000 6.164238e-003 + 3.475000e+001 1.846739e+000 -2.620088e+000 6.166879e-003 + 3.476000e+001 1.865012e+000 -2.620842e+000 6.170953e-003 + 3.477000e+001 1.875484e+000 -2.621596e+000 6.175518e-003 + 3.478000e+001 1.878485e+000 -2.622350e+000 6.179521e-003 + 3.479000e+001 1.874346e+000 -2.623104e+000 6.182040e-003 + 3.480000e+001 1.863389e+000 -2.623858e+000 6.182498e-003 + 3.481000e+001 1.845922e+000 -2.624612e+000 6.180790e-003 + 3.482000e+001 1.822231e+000 -2.625366e+000 6.177311e-003 + 3.483000e+001 1.792584e+000 -2.626120e+000 6.172863e-003 + 3.484000e+001 1.757235e+000 -2.626874e+000 6.168472e-003 + 3.485000e+001 1.716426e+000 -2.627628e+000 6.165154e-003 + 3.486000e+001 1.670403e+000 -2.628382e+000 6.163674e-003 + 3.487000e+001 1.619423e+000 -2.629136e+000 6.164375e-003 + 3.488000e+001 1.563769e+000 -2.629890e+000 6.167094e-003 + 3.489000e+001 1.503760e+000 -2.630644e+000 6.171198e-003 + 3.490000e+001 1.439763e+000 -2.631398e+000 6.175738e-003 + 3.491000e+001 1.372201e+000 -2.632152e+000 6.179667e-003 + 3.492000e+001 1.301560e+000 -2.632906e+000 6.182079e-003 + 3.493000e+001 1.228395e+000 -2.633660e+000 6.182422e-003 + 3.494000e+001 1.153323e+000 -2.634414e+000 6.180617e-003 + 3.495000e+001 1.077022e+000 -2.635168e+000 6.177081e-003 + 3.496000e+001 1.000225e+000 -2.635922e+000 6.172630e-003 + 3.497000e+001 9.237037e-001 -2.636676e+000 6.168292e-003 + 3.498000e+001 8.482559e-001 -2.637430e+000 6.165068e-003 + 3.499000e+001 7.746881e-001 -2.638184e+000 6.163705e-003 + 3.500000e+001 7.037963e-001 -2.638938e+000 6.164518e-003 + 3.501000e+001 6.363470e-001 -2.639692e+000 6.167316e-003 + 3.502000e+001 5.730573e-001 -2.640446e+000 6.171451e-003 + 3.503000e+001 5.145770e-001 -2.641200e+000 6.175964e-003 + 3.504000e+001 4.614726e-001 -2.641954e+000 6.179814e-003 + 3.505000e+001 4.142134e-001 -2.642708e+000 6.182114e-003 + 3.506000e+001 3.731616e-001 -2.643462e+000 6.182335e-003 + 3.507000e+001 3.385649e-001 -2.644216e+000 6.180427e-003 + 3.508000e+001 3.105544e-001 -2.644970e+000 6.176830e-003 + 3.509000e+001 2.891445e-001 -2.645724e+000 6.172374e-003 + 3.510000e+001 2.742375e-001 -2.646478e+000 6.168086e-003 + 3.511000e+001 2.656308e-001 -2.647232e+000 6.164960e-003 + 3.512000e+001 2.630263e-001 -2.647986e+000 6.163718e-003 + 3.513000e+001 2.660425e-001 -2.648740e+000 6.164647e-003 + 3.514000e+001 2.742263e-001 -2.649494e+000 6.167533e-003 + 3.515000e+001 2.870665e-001 -2.650248e+000 6.171706e-003 + 3.516000e+001 3.040062e-001 -2.651002e+000 6.176201e-003 + 3.517000e+001 3.244540e-001 -2.651755e+000 6.179981e-003 + 3.518000e+001 3.477946e-001 -2.652509e+000 6.182174e-003 + 3.519000e+001 3.733970e-001 -2.653263e+000 6.182278e-003 + 3.520000e+001 4.006202e-001 -2.654017e+000 6.180269e-003 + 3.521000e+001 4.288183e-001 -2.654771e+000 6.176608e-003 + 3.522000e+001 4.573428e-001 -2.655525e+000 6.172140e-003 + 3.523000e+001 4.855439e-001 -2.656279e+000 6.167894e-003 + 3.524000e+001 5.127711e-001 -2.657033e+000 6.164853e-003 + 3.525000e+001 5.383730e-001 -2.657787e+000 6.163718e-003 + 3.526000e+001 5.616988e-001 -2.658541e+000 6.164754e-003 + 3.527000e+001 5.820992e-001 -2.659295e+000 6.167717e-003 + 3.528000e+001 5.989303e-001 -2.660049e+000 6.171924e-003 + 3.529000e+001 6.115592e-001 -2.660803e+000 6.176400e-003 + 3.530000e+001 6.193720e-001 -2.661557e+000 6.180114e-003 + 3.531000e+001 6.217848e-001 -2.662311e+000 6.182212e-003 + 3.532000e+001 6.182569e-001 -2.663065e+000 6.182212e-003 + 3.533000e+001 6.083073e-001 -2.663819e+000 6.180116e-003 + 3.534000e+001 5.915317e-001 -2.664573e+000 6.176406e-003 + 3.535000e+001 5.676215e-001 -2.665327e+000 6.171937e-003 + 3.536000e+001 5.363833e-001 -2.666081e+000 6.167740e-003 + 3.537000e+001 4.977568e-001 -2.666835e+000 6.164784e-003 + 3.538000e+001 4.518316e-001 -2.667589e+000 6.163752e-003 + 3.539000e+001 3.988604e-001 -2.668343e+000 6.164881e-003 + 3.540000e+001 3.392688e-001 -2.669097e+000 6.167908e-003 + 3.541000e+001 2.736594e-001 -2.669851e+000 6.172131e-003 + 3.542000e+001 2.028108e-001 -2.670605e+000 6.176573e-003 + 3.543000e+001 1.276698e-001 -2.671359e+000 6.180210e-003 + 3.544000e+001 4.933699e-002 -2.672113e+000 6.182205e-003 + 3.545000e+001 -3.095373e-002 -2.672867e+000 6.182100e-003 + 3.546000e+001 -1.118623e-001 -2.673621e+000 6.179922e-003 + 3.547000e+001 -1.919747e-001 -2.674375e+000 6.176173e-003 + 3.548000e+001 -2.698404e-001 -2.675129e+000 6.171718e-003 + 3.549000e+001 -3.440116e-001 -2.675883e+000 6.167585e-003 + 3.550000e+001 -4.130860e-001 -2.676637e+000 6.164729e-003 + 3.551000e+001 -4.757480e-001 -2.677391e+000 6.163811e-003 + 3.552000e+001 -5.308094e-001 -2.678145e+000 6.165042e-003 + 3.553000e+001 -5.772463e-001 -2.678899e+000 6.168136e-003 + 3.554000e+001 -6.142312e-001 -2.679653e+000 6.172374e-003 + 3.555000e+001 -6.411590e-001 -2.680407e+000 6.176778e-003 + 3.556000e+001 -6.576649e-001 -2.681161e+000 6.180330e-003 + 3.557000e+001 -6.636349e-001 -2.681915e+000 6.182213e-003 + 3.558000e+001 -6.592065e-001 -2.682669e+000 6.181997e-003 + 3.559000e+001 -6.447612e-001 -2.683423e+000 6.179730e-003 + 3.560000e+001 -6.209079e-001 -2.684177e+000 6.175937e-003 + 3.561000e+001 -5.884587e-001 -2.684931e+000 6.171491e-003 + 3.562000e+001 -5.483976e-001 -2.685685e+000 6.167420e-003 + 3.563000e+001 -5.018437e-001 -2.686439e+000 6.164662e-003 + 3.564000e+001 -4.500110e-001 -2.687193e+000 6.163857e-003 + 3.565000e+001 -3.941651e-001 -2.687947e+000 6.165189e-003 + 3.566000e+001 -3.355814e-001 -2.688701e+000 6.168347e-003 + 3.567000e+001 -2.755033e-001 -2.689455e+000 6.172599e-003 + 3.568000e+001 -2.151047e-001 -2.690209e+000 6.176962e-003 + 3.569000e+001 -1.554579e-001 -2.690963e+000 6.180428e-003 + 3.570000e+001 -9.750696e-002 -2.691717e+000 6.182201e-003 + 3.571000e+001 -4.204920e-002 -2.692471e+000 6.181873e-003 + 3.572000e+001 1.027577e-002 -2.693225e+000 6.179522e-003 + 3.573000e+001 5.898878e-002 -2.693978e+000 6.175689e-003 + 3.574000e+001 1.037660e-001 -2.694732e+000 6.171259e-003 + 3.575000e+001 1.444263e-001 -2.695486e+000 6.167256e-003 + 3.576000e+001 1.809131e-001 -2.696240e+000 6.164603e-003 + 3.577000e+001 2.132699e-001 -2.696994e+000 6.163916e-003 + 3.578000e+001 2.416141e-001 -2.697748e+000 6.165353e-003 + 3.579000e+001 2.661074e-001 -2.698502e+000 6.168579e-003 + 3.580000e+001 2.869273e-001 -2.699256e+000 6.172846e-003 + 3.581000e+001 3.042401e-001 -2.700010e+000 6.177168e-003 + 3.582000e+001 3.181762e-001 -2.700764e+000 6.180548e-003 + 3.583000e+001 3.288120e-001 -2.701518e+000 6.182208e-003 + 3.584000e+001 3.361553e-001 -2.702272e+000 6.181767e-003 + 3.585000e+001 3.401386e-001 -2.703026e+000 6.179328e-003 + 3.586000e+001 3.406189e-001 -2.703780e+000 6.175453e-003 + 3.587000e+001 3.373836e-001 -2.704534e+000 6.171035e-003 + 3.588000e+001 3.301640e-001 -2.705288e+000 6.167096e-003 + 3.589000e+001 3.186527e-001 -2.706042e+000 6.164544e-003 + 3.590000e+001 3.025267e-001 -2.706796e+000 6.163971e-003 + 3.591000e+001 2.814729e-001 -2.707550e+000 6.165508e-003 + 3.592000e+001 2.552154e-001 -2.708304e+000 6.168797e-003 + 3.593000e+001 2.235418e-001 -2.709058e+000 6.173076e-003 + 3.594000e+001 1.863286e-001 -2.709812e+000 6.177356e-003 + 3.595000e+001 1.435629e-001 -2.710566e+000 6.180649e-003 + 3.596000e+001 9.535886e-002 -2.711320e+000 6.182199e-003 + 3.597000e+001 4.196891e-002 -2.712074e+000 6.181649e-003 + 3.598000e+001 -1.621201e-002 -2.712828e+000 6.179128e-003 + 3.599000e+001 -7.864935e-002 -2.713582e+000 6.175218e-003 + 3.600000e+001 -1.446788e-001 -2.714336e+000 6.170820e-003 + 3.601000e+001 -2.135229e-001 -2.715090e+000 6.166950e-003 + 3.602000e+001 -2.843140e-001 -2.715844e+000 6.164505e-003 + 3.603000e+001 -3.561216e-001 -2.716598e+000 6.164049e-003 + 3.604000e+001 -4.279838e-001 -2.717352e+000 6.165688e-003 + 3.605000e+001 -4.989401e-001 -2.718106e+000 6.169040e-003 + 3.606000e+001 -5.680656e-001 -2.718860e+000 6.173329e-003 + 3.607000e+001 -6.345023e-001 -2.719614e+000 6.177563e-003 + 3.608000e+001 -6.974889e-001 -2.720368e+000 6.180765e-003 + 3.609000e+001 -7.563850e-001 -2.721122e+000 6.182200e-003 + 3.610000e+001 -8.106899e-001 -2.721876e+000 6.181536e-003 + 3.611000e+001 -8.600544e-001 -2.722630e+000 6.178928e-003 + 3.612000e+001 -9.042857e-001 -2.723384e+000 6.174978e-003 + 3.613000e+001 -9.433442e-001 -2.724138e+000 6.170594e-003 + 3.614000e+001 -9.773332e-001 -2.724892e+000 6.166791e-003 + 3.615000e+001 -1.006481e+000 -2.725646e+000 6.164448e-003 + 3.616000e+001 -1.031120e+000 -2.726400e+000 6.164105e-003 + 3.617000e+001 -1.051655e+000 -2.727154e+000 6.165843e-003 + 3.618000e+001 -1.068537e+000 -2.727908e+000 6.169256e-003 + 3.619000e+001 -1.082228e+000 -2.728662e+000 6.173555e-003 + 3.620000e+001 -1.093167e+000 -2.729416e+000 6.177745e-003 + 3.621000e+001 -1.101748e+000 -2.730170e+000 6.180860e-003 + 3.622000e+001 -1.108282e+000 -2.730924e+000 6.182184e-003 + 3.623000e+001 -1.112985e+000 -2.731678e+000 6.181412e-003 + 3.624000e+001 -1.115959e+000 -2.732432e+000 6.178724e-003 + 3.625000e+001 -1.117184e+000 -2.733186e+000 6.174738e-003 + 3.626000e+001 -1.116517e+000 -2.733940e+000 6.170374e-003 + 3.627000e+001 -1.113697e+000 -2.734694e+000 6.166639e-003 + 3.628000e+001 -1.108362e+000 -2.735448e+000 6.164398e-003 + 3.629000e+001 -1.100068e+000 -2.736202e+000 6.164169e-003 + 3.630000e+001 -1.088313e+000 -2.736955e+000 6.166004e-003 + 3.631000e+001 -1.072566e+000 -2.737709e+000 6.169477e-003 + 3.632000e+001 -1.052301e+000 -2.738463e+000 6.173784e-003 + 3.633000e+001 -1.027028e+000 -2.739217e+000 6.177930e-003 + 3.634000e+001 -9.963267e-001 -2.739971e+000 6.180959e-003 + 3.635000e+001 -9.598711e-001 -2.740725e+000 6.182175e-003 + 3.636000e+001 -9.174586e-001 -2.741479e+000 6.181299e-003 + 3.637000e+001 -8.690270e-001 -2.742233e+000 6.178533e-003 + 3.638000e+001 -8.146683e-001 -2.742987e+000 6.174515e-003 + 3.639000e+001 -7.546342e-001 -2.743741e+000 6.170172e-003 + 3.640000e+001 -6.893346e-001 -2.744495e+000 6.166506e-003 + 3.641000e+001 -6.193285e-001 -2.745249e+000 6.164364e-003 + 3.642000e+001 -5.453080e-001 -2.746003e+000 6.164242e-003 + 3.643000e+001 -4.680766e-001 -2.746757e+000 6.166167e-003 + 3.644000e+001 -3.885221e-001 -2.747511e+000 6.169692e-003 + 3.645000e+001 -3.075861e-001 -2.748265e+000 6.174001e-003 + 3.646000e+001 -2.262312e-001 -2.749019e+000 6.178098e-003 + 3.647000e+001 -1.454078e-001 -2.749773e+000 6.181039e-003 + 3.648000e+001 -6.602205e-002 -2.750527e+000 6.182149e-003 + 3.649000e+001 1.109357e-002 -2.751281e+000 6.181173e-003 + 3.650000e+001 8.520582e-002 -2.752035e+000 6.178338e-003 + 3.651000e+001 1.557010e-001 -2.752789e+000 6.174297e-003 + 3.652000e+001 2.220990e-001 -2.753543e+000 6.169982e-003 + 3.653000e+001 2.840615e-001 -2.754297e+000 6.166390e-003 + 3.654000e+001 3.413925e-001 -2.755051e+000 6.164353e-003 + 3.655000e+001 3.940327e-001 -2.755805e+000 6.164339e-003 + 3.656000e+001 4.420481e-001 -2.756559e+000 6.166352e-003 + 3.657000e+001 4.856127e-001 -2.757313e+000 6.169924e-003 + 3.658000e+001 5.249871e-001 -2.758067e+000 6.174227e-003 + 3.659000e+001 5.604943e-001 -2.758821e+000 6.178267e-003 + 3.660000e+001 5.924936e-001 -2.759575e+000 6.181113e-003 + 3.661000e+001 6.213544e-001 -2.760329e+000 6.182110e-003 + 3.662000e+001 6.474313e-001 -2.761083e+000 6.181030e-003 + 3.663000e+001 6.710415e-001 -2.761837e+000 6.178123e-003 + 3.664000e+001 6.924455e-001 -2.762591e+000 6.174060e-003 + 3.665000e+001 7.118334e-001 -2.763345e+000 6.169777e-003 + 3.666000e+001 7.293153e-001 -2.764099e+000 6.166266e-003 + 3.667000e+001 7.449177e-001 -2.764853e+000 6.164337e-003 + 3.668000e+001 7.585856e-001 -2.765607e+000 6.164437e-003 + 3.669000e+001 7.701903e-001 -2.766361e+000 6.166543e-003 + 3.670000e+001 7.795408e-001 -2.767115e+000 6.170165e-003 + 3.671000e+001 7.864011e-001 -2.767869e+000 6.174465e-003 + 3.672000e+001 7.905090e-001 -2.768623e+000 6.178449e-003 + 3.673000e+001 7.915976e-001 -2.769377e+000 6.181199e-003 + 3.674000e+001 7.894176e-001 -2.770131e+000 6.182083e-003 + 3.675000e+001 7.837589e-001 -2.770885e+000 6.180898e-003 + 3.676000e+001 7.744706e-001 -2.771639e+000 6.177917e-003 + 3.677000e+001 7.614782e-001 -2.772393e+000 6.173827e-003 + 3.678000e+001 7.447972e-001 -2.773147e+000 6.169572e-003 + 3.679000e+001 7.245427e-001 -2.773901e+000 6.166133e-003 + 3.680000e+001 7.009331e-001 -2.774655e+000 6.164307e-003 + 3.681000e+001 6.742903e-001 -2.775409e+000 6.164516e-003 + 3.682000e+001 6.450331e-001 -2.776163e+000 6.166709e-003 + 3.683000e+001 6.136678e-001 -2.776917e+000 6.170377e-003 + 3.684000e+001 5.807726e-001 -2.777671e+000 6.174673e-003 + 3.685000e+001 5.469802e-001 -2.778425e+000 6.178603e-003 + 3.686000e+001 5.129566e-001 -2.779178e+000 6.181262e-003 + 3.687000e+001 4.793789e-001 -2.779932e+000 6.182040e-003 + 3.688000e+001 4.469121e-001 -2.780686e+000 6.180759e-003 + 3.689000e+001 4.161864e-001 -2.781440e+000 6.177715e-003 + 3.690000e+001 3.877760e-001 -2.782194e+000 6.173609e-003 + 3.691000e+001 3.621796e-001 -2.782948e+000 6.169390e-003 + 3.692000e+001 3.398047e-001 -2.783702e+000 6.166032e-003 + 3.693000e+001 3.209547e-001 -2.784456e+000 6.164311e-003 + 3.694000e+001 3.058202e-001 -2.785210e+000 6.164624e-003 + 3.695000e+001 2.944745e-001 -2.785964e+000 6.166899e-003 + 3.696000e+001 2.868728e-001 -2.786718e+000 6.170606e-003 + 3.697000e+001 2.828559e-001 -2.787472e+000 6.174886e-003 + 3.698000e+001 2.821570e-001 -2.788226e+000 6.178752e-003 + 3.699000e+001 2.844117e-001 -2.788980e+000 6.181312e-003 + 3.700000e+001 2.891705e-001 -2.789734e+000 6.181977e-003 + 3.701000e+001 2.959130e-001 -2.790488e+000 6.180596e-003 + 3.702000e+001 3.040637e-001 -2.791242e+000 6.177487e-003 + 3.703000e+001 3.130076e-001 -2.791996e+000 6.173368e-003 + 3.704000e+001 3.221062e-001 -2.792750e+000 6.169190e-003 + 3.705000e+001 3.307126e-001 -2.793504e+000 6.165917e-003 + 3.706000e+001 3.381855e-001 -2.794258e+000 6.164308e-003 + 3.707000e+001 3.439016e-001 -2.795012e+000 6.164735e-003 + 3.708000e+001 3.472669e-001 -2.795766e+000 6.167097e-003 + 3.709000e+001 3.477249e-001 -2.796520e+000 6.170847e-003 + 3.710000e+001 3.447646e-001 -2.797274e+000 6.175116e-003 + 3.711000e+001 3.379253e-001 -2.798028e+000 6.178919e-003 + 3.712000e+001 3.268011e-001 -2.798782e+000 6.181378e-003 + 3.713000e+001 3.110431e-001 -2.799536e+000 6.181929e-003 + 3.714000e+001 2.903611e-001 -2.800290e+000 6.180445e-003 + 3.715000e+001 2.645247e-001 -2.801044e+000 6.177269e-003 + 3.716000e+001 2.333631e-001 -2.801798e+000 6.173132e-003 + 3.717000e+001 1.967656e-001 -2.802552e+000 6.168988e-003 + 3.718000e+001 1.546814e-001 -2.803306e+000 6.165796e-003 + 3.719000e+001 1.071193e-001 -2.804060e+000 6.164293e-003 + 3.720000e+001 5.414833e-002 -2.804814e+000 6.164826e-003 + 3.721000e+001 -4.102545e-003 -2.805568e+000 6.167272e-003 + 3.722000e+001 -6.744406e-002 -2.806322e+000 6.171062e-003 + 3.723000e+001 -1.356265e-001 -2.807076e+000 6.175320e-003 + 3.724000e+001 -2.083400e-001 -2.807830e+000 6.179062e-003 + 3.725000e+001 -2.852147e-001 -2.808584e+000 6.181426e-003 + 3.726000e+001 -3.658220e-001 -2.809338e+000 6.181870e-003 + 3.727000e+001 -4.496764e-001 -2.810092e+000 6.180292e-003 + 3.728000e+001 -5.362380e-001 -2.810846e+000 6.177056e-003 + 3.729000e+001 -6.249158e-001 -2.811600e+000 6.172909e-003 + 3.730000e+001 -7.150724e-001 -2.812354e+000 6.168808e-003 + 3.731000e+001 -8.060294e-001 -2.813108e+000 6.165700e-003 + 3.732000e+001 -8.970738e-001 -2.813862e+000 6.164305e-003 + 3.733000e+001 -9.874647e-001 -2.814616e+000 6.164944e-003 + 3.734000e+001 -1.076441e+000 -2.815370e+000 6.167469e-003 + 3.735000e+001 -1.163232e+000 -2.816124e+000 6.171294e-003 + 3.736000e+001 -1.247059e+000 -2.816878e+000 6.175534e-003 + 3.737000e+001 -1.327152e+000 -2.817632e+000 6.179208e-003 + 3.738000e+001 -1.402753e+000 -2.818386e+000 6.181471e-003 + 3.739000e+001 -1.473123e+000 -2.819140e+000 6.181803e-003 + 3.740000e+001 -1.537555e+000 -2.819894e+000 6.180127e-003 + 3.741000e+001 -1.595372e+000 -2.820648e+000 6.176830e-003 + 3.742000e+001 -1.645940e+000 -2.821401e+000 6.172672e-003 + 3.743000e+001 -1.688673e+000 -2.822155e+000 6.168613e-003 + 3.744000e+001 -1.723032e+000 -2.822909e+000 6.165590e-003 + 3.745000e+001 -1.748536e+000 -2.823663e+000 6.164303e-003 + 3.746000e+001 -1.764763e+000 -2.824417e+000 6.165049e-003 + 3.747000e+001 -1.771354e+000 -2.825171e+000 6.167655e-003 + 3.748000e+001 -1.768016e+000 -2.825925e+000 6.171515e-003 + 3.749000e+001 -1.754526e+000 -2.826679e+000 6.175738e-003 + 3.750000e+001 -1.730735e+000 -2.827433e+000 6.179349e-003 + 3.751000e+001 -1.696573e+000 -2.828187e+000 6.181514e-003 + 3.752000e+001 -1.652049e+000 -2.828941e+000 6.181738e-003 + 3.753000e+001 -1.597259e+000 -2.829695e+000 6.179970e-003 + 3.754000e+001 -1.532386e+000 -2.830449e+000 6.176617e-003 + 3.755000e+001 -1.457706e+000 -2.831203e+000 6.172452e-003 + 3.756000e+001 -1.373591e+000 -2.831957e+000 6.168437e-003 + 3.757000e+001 -1.280507e+000 -2.832711e+000 6.165500e-003 + 3.758000e+001 -1.179017e+000 -2.833465e+000 6.164320e-003 + 3.759000e+001 -1.069780e+000 -2.834219e+000 6.165170e-003 + 3.760000e+001 -9.535464e-001 -2.834973e+000 6.167853e-003 + 3.761000e+001 -8.311558e-001 -2.835727e+000 6.171746e-003 + 3.762000e+001 -7.035261e-001 -2.836481e+000 6.175949e-003 + 3.763000e+001 -5.716463e-001 -2.837235e+000 6.179492e-003 + 3.764000e+001 -4.365635e-001 -2.837989e+000 6.181559e-003 + 3.765000e+001 -2.993699e-001 -2.838743e+000 6.181675e-003 + 3.766000e+001 -1.611861e-001 -2.839497e+000 6.179814e-003 + 3.767000e+001 -2.314449e-002 -2.840251e+000 6.176406e-003 + 3.768000e+001 1.136289e-001 -2.841005e+000 6.172235e-003 + 3.769000e+001 2.480332e-001 -2.841759e+000 6.168266e-003 + 3.770000e+001 3.790102e-001 -2.842513e+000 6.165414e-003 + 3.771000e+001 5.055625e-001 -2.843267e+000 6.164341e-003 + 3.772000e+001 6.267682e-001 -2.844021e+000 6.165293e-003 + 3.773000e+001 7.417951e-001 -2.844775e+000 6.168050e-003 + 3.774000e+001 8.499108e-001 -2.845529e+000 6.171973e-003 + 3.775000e+001 9.504905e-001 -2.846283e+000 6.176154e-003 + 3.776000e+001 1.043021e+000 -2.847037e+000 6.179629e-003 + 3.777000e+001 1.127102e+000 -2.847791e+000 6.181598e-003 + 3.778000e+001 1.202440e+000 -2.848545e+000 6.181607e-003 + 3.779000e+001 1.268847e+000 -2.849299e+000 6.179656e-003 + 3.780000e+001 1.326227e+000 -2.850053e+000 6.176193e-003 + 3.781000e+001 1.374565e+000 -2.850807e+000 6.172018e-003 + 3.782000e+001 1.413916e+000 -2.851561e+000 6.168093e-003 + 3.783000e+001 1.444387e+000 -2.852315e+000 6.165325e-003 + 3.784000e+001 1.466126e+000 -2.853069e+000 6.164354e-003 + 3.785000e+001 1.479307e+000 -2.853823e+000 6.165405e-003 + 3.786000e+001 1.484115e+000 -2.854577e+000 6.168233e-003 + 3.787000e+001 1.480742e+000 -2.855331e+000 6.172183e-003 + 3.788000e+001 1.469374e+000 -2.856085e+000 6.176342e-003 + 3.789000e+001 1.450194e+000 -2.856839e+000 6.179751e-003 + 3.790000e+001 1.423374e+000 -2.857593e+000 6.181626e-003 + 3.791000e+001 1.389085e+000 -2.858347e+000 6.181536e-003 + 3.792000e+001 1.347501e+000 -2.859101e+000 6.179503e-003 + 3.793000e+001 1.298811e+000 -2.859855e+000 6.175995e-003 + 3.794000e+001 1.243228e+000 -2.860609e+000 6.171822e-003 + 3.795000e+001 1.181008e+000 -2.861363e+000 6.167945e-003 + 3.796000e+001 1.112463e+000 -2.862117e+000 6.165260e-003 + 3.797000e+001 1.037974e+000 -2.862871e+000 6.164388e-003 + 3.798000e+001 9.580063e-001 -2.863624e+000 6.165529e-003 + 3.799000e+001 8.731202e-001 -2.864378e+000 6.168417e-003 + 3.800000e+001 7.839792e-001 -2.865132e+000 6.172383e-003 + 3.801000e+001 6.913529e-001 -2.865886e+000 6.176510e-003 + 3.802000e+001 5.961166e-001 -2.866640e+000 6.179846e-003 + 3.803000e+001 4.992442e-001 -2.867394e+000 6.181624e-003 + 3.804000e+001 4.017972e-001 -2.868148e+000 6.181436e-003 + 3.805000e+001 3.049073e-001 -2.868902e+000 6.179329e-003 + 3.806000e+001 2.097548e-001 -2.869656e+000 6.175789e-003 + 3.807000e+001 1.175425e-001 -2.870410e+000 6.171632e-003 + 3.808000e+001 2.946598e-002 -2.871164e+000 6.167820e-003 + 3.809000e+001 -5.331750e-002 -2.871918e+000 6.165233e-003 + 3.810000e+001 -1.297221e-001 -2.872672e+000 6.164471e-003 + 3.811000e+001 -1.987653e-001 -2.873426e+000 6.165708e-003 + 3.812000e+001 -2.595986e-001 -2.874180e+000 6.168656e-003 + 3.813000e+001 -3.115348e-001 -2.874934e+000 6.172631e-003 + 3.814000e+001 -3.540710e-001 -2.875688e+000 6.176714e-003 + 3.815000e+001 -3.869060e-001 -2.876442e+000 6.179961e-003 + 3.816000e+001 -4.099515e-001 -2.877196e+000 6.181624e-003 + 3.817000e+001 -4.233369e-001 -2.877950e+000 6.181321e-003 + 3.818000e+001 -4.274055e-001 -2.878704e+000 6.179123e-003 + 3.819000e+001 -4.227052e-001 -2.879458e+000 6.175535e-003 + 3.820000e+001 -4.099711e-001 -2.880212e+000 6.171386e-003 + 3.821000e+001 -3.901025e-001 -2.880966e+000 6.167634e-003 + 3.822000e+001 -3.641342e-001 -2.881720e+000 6.165147e-003 + 3.823000e+001 -3.332042e-001 -2.882474e+000 6.164500e-003 + 3.824000e+001 -2.985180e-001 -2.883228e+000 6.165843e-003 + 3.825000e+001 -2.613116e-001 -2.883982e+000 6.168865e-003 + 3.826000e+001 -2.228149e-001 -2.884736e+000 6.172865e-003 + 3.827000e+001 -1.842162e-001 -2.885490e+000 6.176920e-003 + 3.828000e+001 -1.466301e-001 -2.886244e+000 6.180093e-003 + 3.829000e+001 -1.110684e-001 -2.886998e+000 6.181654e-003 + 3.830000e+001 -7.841722e-002 -2.887752e+000 6.181245e-003 + 3.831000e+001 -4.941927e-002 -2.888506e+000 6.178960e-003 + 3.832000e+001 -2.466195e-002 -2.889260e+000 6.175325e-003 + 3.833000e+001 -4.572234e-003 -2.890014e+000 6.171178e-003 + 3.834000e+001 1.058257e-002 -2.890768e+000 6.167476e-003 + 3.835000e+001 2.068851e-002 -2.891522e+000 6.165074e-003 + 3.836000e+001 2.577369e-002 -2.892276e+000 6.164528e-003 + 3.837000e+001 2.599294e-002 -2.893030e+000 6.165963e-003 + 3.838000e+001 2.160966e-002 -2.893784e+000 6.169045e-003 + 3.839000e+001 1.297573e-002 -2.894538e+000 6.173061e-003 + 3.840000e+001 5.108841e-004 -2.895292e+000 6.177083e-003 + 3.841000e+001 -1.531753e-002 -2.896046e+000 6.180184e-003 + 3.842000e+001 -3.401321e-002 -2.896800e+000 6.181650e-003 + 3.843000e+001 -5.506728e-002 -2.897554e+000 6.181147e-003 + 3.844000e+001 -7.797163e-002 -2.898308e+000 6.178791e-003 + 3.845000e+001 -1.022289e-001 -2.899062e+000 6.175126e-003 + 3.846000e+001 -1.273587e-001 -2.899816e+000 6.170997e-003 + 3.847000e+001 -1.529008e-001 -2.900570e+000 6.167359e-003 + 3.848000e+001 -1.784143e-001 -2.901324e+000 6.165051e-003 + 3.849000e+001 -2.034753e-001 -2.902078e+000 6.164608e-003 + 3.850000e+001 -2.276714e-001 -2.902832e+000 6.166130e-003 + 3.851000e+001 -2.505959e-001 -2.903586e+000 6.169263e-003 + 3.852000e+001 -2.718414e-001 -2.904340e+000 6.173281e-003 + 3.853000e+001 -2.909942e-001 -2.905094e+000 6.177255e-003 + 3.854000e+001 -3.076300e-001 -2.905848e+000 6.180266e-003 + 3.855000e+001 -3.213117e-001 -2.906601e+000 6.181623e-003 + 3.856000e+001 -3.315904e-001 -2.907355e+000 6.181014e-003 + 3.857000e+001 -3.380088e-001 -2.908109e+000 6.178579e-003 + 3.858000e+001 -3.401085e-001 -2.908863e+000 6.174882e-003 + 3.859000e+001 -3.374397e-001 -2.909617e+000 6.170775e-003 + 3.860000e+001 -3.295745e-001 -2.910371e+000 6.167207e-003 + 3.861000e+001 -3.161220e-001 -2.911125e+000 6.165004e-003 + 3.862000e+001 -2.967444e-001 -2.911879e+000 6.164676e-003 + 3.863000e+001 -2.711748e-001 -2.912633e+000 6.166299e-003 + 3.864000e+001 -2.392335e-001 -2.913387e+000 6.169495e-003 + 3.865000e+001 -2.008438e-001 -2.914141e+000 6.173525e-003 + 3.866000e+001 -1.560445e-001 -2.914895e+000 6.177456e-003 + 3.867000e+001 -1.049999e-001 -2.915649e+000 6.180382e-003 + 3.868000e+001 -4.800529e-002 -2.916403e+000 6.181628e-003 + 3.869000e+001 1.451207e-002 -2.917157e+000 6.180908e-003 + 3.870000e+001 8.199707e-002 -2.917911e+000 6.178388e-003 + 3.871000e+001 1.537757e-001 -2.918665e+000 6.174647e-003 + 3.872000e+001 2.290689e-001 -2.919419e+000 6.170550e-003 + 3.873000e+001 3.070110e-001 -2.920173e+000 6.167040e-003 + 3.874000e+001 3.866714e-001 -2.920927e+000 6.164932e-003 + 3.875000e+001 4.670797e-001 -2.921681e+000 6.164711e-003 + 3.876000e+001 5.472515e-001 -2.922435e+000 6.166430e-003 + 3.877000e+001 6.262160e-001 -2.923189e+000 6.169689e-003 + 3.878000e+001 7.030413e-001 -2.923943e+000 6.173736e-003 + 3.879000e+001 7.768596e-001 -2.924697e+000 6.177635e-003 + 3.880000e+001 8.468872e-001 -2.925451e+000 6.180487e-003 + 3.881000e+001 9.124425e-001 -2.926205e+000 6.181638e-003 + 3.882000e+001 9.729578e-001 -2.926959e+000 6.180824e-003 + 3.883000e+001 1.027986e+000 -2.927713e+000 6.178231e-003 + 3.884000e+001 1.077203e+000 -2.928467e+000 6.174459e-003 + 3.885000e+001 1.120403e+000 -2.929221e+000 6.170376e-003 + 3.886000e+001 1.157487e+000 -2.929975e+000 6.166925e-003 + 3.887000e+001 1.188454e+000 -2.930729e+000 6.164903e-003 + 3.888000e+001 1.213380e+000 -2.931483e+000 6.164776e-003 + 3.889000e+001 1.232398e+000 -2.932237e+000 6.166573e-003 + 3.890000e+001 1.245677e+000 -2.932991e+000 6.169875e-003 + 3.891000e+001 1.253403e+000 -2.933745e+000 6.173918e-003 + 3.892000e+001 1.255756e+000 -2.934499e+000 6.177767e-003 + 3.893000e+001 1.252892e+000 -2.935253e+000 6.180534e-003 + 3.894000e+001 1.244931e+000 -2.936007e+000 6.181583e-003 + 3.895000e+001 1.231944e+000 -2.936761e+000 6.180674e-003 + 3.896000e+001 1.213951e+000 -2.937515e+000 6.178018e-003 + 3.897000e+001 1.190919e+000 -2.938269e+000 6.174227e-003 + 3.898000e+001 1.162768e+000 -2.939023e+000 6.170176e-003 + 3.899000e+001 1.129382e+000 -2.939777e+000 6.166803e-003 + 3.900000e+001 1.090622e+000 -2.940531e+000 6.164888e-003 + 3.901000e+001 1.046349e+000 -2.941285e+000 6.164874e-003 + 3.902000e+001 9.964394e-001 -2.942039e+000 6.166764e-003 + 3.903000e+001 9.408133e-001 -2.942793e+000 6.170119e-003 + 3.904000e+001 8.794523e-001 -2.943547e+000 6.174162e-003 + 3.905000e+001 8.124233e-001 -2.944301e+000 6.177959e-003 + 3.906000e+001 7.398965e-001 -2.945055e+000 6.180633e-003 + 3.907000e+001 6.621597e-001 -2.945809e+000 6.181569e-003 + 3.908000e+001 5.796289e-001 -2.946563e+000 6.180550e-003 + 3.909000e+001 4.928524e-001 -2.947317e+000 6.177813e-003 + 3.910000e+001 4.025090e-001 -2.948071e+000 6.173986e-003 + 3.911000e+001 3.094005e-001 -2.948824e+000 6.169952e-003 + 3.912000e+001 2.144376e-001 -2.949578e+000 6.166643e-003 + 3.913000e+001 1.186206e-001 -2.950332e+000 6.164825e-003 + 3.914000e+001 2.301487e-002 -2.951086e+000 6.164919e-003 + 3.915000e+001 -7.127652e-002 -2.951840e+000 6.166903e-003 + 3.916000e+001 -1.631439e-001 -2.952594e+000 6.170317e-003 + 3.917000e+001 -2.515027e-001 -2.953348e+000 6.174372e-003 + 3.918000e+001 -3.353246e-001 -2.954102e+000 6.178133e-003 + 3.919000e+001 -4.136680e-001 -2.954856e+000 6.180733e-003 + 3.920000e+001 -4.857048e-001 -2.955610e+000 6.181574e-003 + 3.921000e+001 -5.507429e-001 -2.956364e+000 6.180464e-003 + 3.922000e+001 -6.082447e-001 -2.957118e+000 6.177659e-003 + 3.923000e+001 -6.578384e-001 -2.957872e+000 6.173804e-003 + 3.924000e+001 -6.993240e-001 -2.958626e+000 6.169789e-003 + 3.925000e+001 -7.326725e-001 -2.959380e+000 6.166541e-003 + 3.926000e+001 -7.580194e-001 -2.960134e+000 6.164809e-003 + 3.927000e+001 -7.756517e-001 -2.960888e+000 6.164994e-003 + 3.928000e+001 -7.859910e-001 -2.961642e+000 6.167052e-003 + 3.929000e+001 -7.895718e-001 -2.962396e+000 6.170506e-003 + 3.930000e+001 -7.870174e-001 -2.963150e+000 6.174556e-003 + 3.931000e+001 -7.790141e-001 -2.963904e+000 6.178266e-003 + 3.932000e+001 -7.662853e-001 -2.964658e+000 6.180782e-003 + 3.933000e+001 -7.495659e-001 -2.965412e+000 6.181526e-003 + 3.934000e+001 -7.295795e-001 -2.966166e+000 6.180326e-003 + 3.935000e+001 -7.070183e-001 -2.966920e+000 6.177461e-003 + 3.936000e+001 -6.825262e-001 -2.967674e+000 6.173590e-003 + 3.937000e+001 -6.566873e-001 -2.968428e+000 6.169606e-003 + 3.938000e+001 -6.300181e-001 -2.969182e+000 6.166429e-003 + 3.939000e+001 -6.029642e-001 -2.969936e+000 6.164795e-003 + 3.940000e+001 -5.759018e-001 -2.970690e+000 6.165081e-003 + 3.941000e+001 -5.491427e-001 -2.971444e+000 6.167221e-003 + 3.942000e+001 -5.229417e-001 -2.972198e+000 6.170718e-003 + 3.943000e+001 -4.975075e-001 -2.972952e+000 6.174764e-003 + 3.944000e+001 -4.730133e-001 -2.973706e+000 6.178425e-003 + 3.945000e+001 -4.496086e-001 -2.974460e+000 6.180859e-003 + 3.946000e+001 -4.274303e-001 -2.975214e+000 6.181506e-003 + 3.947000e+001 -4.066115e-001 -2.975968e+000 6.180217e-003 + 3.948000e+001 -3.872888e-001 -2.976722e+000 6.177290e-003 + 3.949000e+001 -3.696061e-001 -2.977476e+000 6.173400e-003 + 3.950000e+001 -3.537159e-001 -2.978230e+000 6.169442e-003 + 3.951000e+001 -3.397765e-001 -2.978984e+000 6.166330e-003 + 3.952000e+001 -3.279471e-001 -2.979738e+000 6.164783e-003 + 3.953000e+001 -3.183789e-001 -2.980492e+000 6.165157e-003 + 3.954000e+001 -3.112054e-001 -2.981246e+000 6.167365e-003 + 3.955000e+001 -3.065303e-001 -2.982000e+000 6.170894e-003 + 3.956000e+001 -3.044150e-001 -2.982754e+000 6.174928e-003 + 3.957000e+001 -3.048669e-001 -2.983508e+000 6.178536e-003 + 3.958000e+001 -3.078284e-001 -2.984262e+000 6.180888e-003 + 3.959000e+001 -3.131681e-001 -2.985016e+000 6.181444e-003 + 3.960000e+001 -3.206758e-001 -2.985770e+000 6.180079e-003 + 3.961000e+001 -3.300596e-001 -2.986524e+000 6.177108e-003 + 3.962000e+001 -3.409480e-001 -2.987278e+000 6.173216e-003 + 3.963000e+001 -3.528960e-001 -2.988032e+000 6.169302e-003 + 3.964000e+001 -3.653948e-001 -2.988786e+000 6.166270e-003 + 3.965000e+001 -3.778859e-001 -2.989540e+000 6.164819e-003 + 3.966000e+001 -3.897782e-001 -2.990294e+000 6.165285e-003 + 3.967000e+001 -4.004676e-001 -2.991047e+000 6.167556e-003 + 3.968000e+001 -4.093589e-001 -2.991801e+000 6.171106e-003 + 3.969000e+001 -4.158873e-001 -2.992555e+000 6.175111e-003 + 3.970000e+001 -4.195408e-001 -2.993309e+000 6.178647e-003 + 3.971000e+001 -4.198802e-001 -2.994063e+000 6.180899e-003 + 3.972000e+001 -4.165576e-001 -2.994817e+000 6.181350e-003 + 3.973000e+001 -4.093307e-001 -2.995571e+000 6.179897e-003 + 3.974000e+001 -3.980737e-001 -2.996325e+000 6.176877e-003 + 3.975000e+001 -3.827833e-001 -2.997079e+000 6.172987e-003 + 3.976000e+001 -3.635800e-001 -2.997833e+000 6.169126e-003 + 3.977000e+001 -3.407047e-001 -2.998587e+000 6.166187e-003 + 3.978000e+001 -3.145096e-001 -2.999341e+000 6.164849e-003 + 3.979000e+001 -2.854463e-001 -3.000095e+000 6.165424e-003 + 3.980000e+001 -2.540486e-001 -3.000849e+000 6.167775e-003 + 3.981000e+001 -2.209137e-001 -3.001603e+000 6.171358e-003 + 3.982000e+001 -1.866807e-001 -3.002357e+000 6.175343e-003 + 3.983000e+001 -1.520085e-001 -3.003111e+000 6.178809e-003 + 3.984000e+001 -1.175540e-001 -3.003865e+000 6.180958e-003 + 3.985000e+001 -8.395090e-002 -3.004619e+000 6.181295e-003 + 3.986000e+001 -5.179088e-002 -3.005373e+000 6.179743e-003 + 3.987000e+001 -2.160785e-002 -3.006127e+000 6.176661e-003 + 3.988000e+001 6.134786e-003 -3.006881e+000 6.172760e-003 + 3.989000e+001 3.105278e-002 -3.007635e+000 6.168939e-003 + 3.990000e+001 5.284572e-002 -3.008389e+000 6.166084e-003 + 3.991000e+001 7.129775e-002 -3.009143e+000 6.164854e-003 + 3.992000e+001 8.627448e-002 -3.009897e+000 6.165534e-003 + 3.993000e+001 9.771673e-002 -3.010651e+000 6.167966e-003 + 3.994000e+001 1.056316e-001 -3.011405e+000 6.171587e-003 + 3.995000e+001 1.100813e-001 -3.012159e+000 6.175558e-003 + 3.996000e+001 1.111718e-001 -3.012913e+000 6.178962e-003 + 3.997000e+001 1.090396e-001 -3.013667e+000 6.181016e-003 + 3.998000e+001 1.038406e-001 -3.014421e+000 6.181246e-003 + 3.999000e+001 9.573941e-002 -3.015175e+000 6.179600e-003 + 4.000000e+001 8.490034e-002 -3.015929e+000 6.176458e-003 + 4.001000e+001 7.148108e-002 -3.016683e+000 6.172543e-003 + 4.002000e+001 5.562870e-002 -3.017437e+000 6.168759e-003 + 4.003000e+001 3.747831e-002 -3.018191e+000 6.165980e-003 + 4.004000e+001 1.715421e-002 -3.018945e+000 6.164850e-003 + 4.005000e+001 -5.226693e-003 -3.019699e+000 6.165628e-003 + 4.006000e+001 -2.954972e-002 -3.020453e+000 6.168134e-003 + 4.007000e+001 -5.569598e-002 -3.021207e+000 6.171787e-003 + 4.008000e+001 -8.353540e-002 -3.021961e+000 6.175742e-003 + 4.009000e+001 -1.129197e-001 -3.022715e+000 6.179085e-003 + 4.010000e+001 -1.436764e-001 -3.023469e+000 6.181047e-003 + 4.011000e+001 -1.756037e-001 -3.024223e+000 6.181176e-003 + 4.012000e+001 -2.084674e-001 -3.024977e+000 6.179443e-003 + 4.013000e+001 -2.420006e-001 -3.025731e+000 6.176248e-003 + 4.014000e+001 -2.759046e-001 -3.026485e+000 6.172327e-003 + 4.015000e+001 -3.098532e-001 -3.027239e+000 6.168585e-003 + 4.016000e+001 -3.434990e-001 -3.027993e+000 6.165887e-003 + 4.017000e+001 -3.764814e-001 -3.028747e+000 6.164856e-003 + 4.018000e+001 -4.084366e-001 -3.029501e+000 6.165732e-003 + 4.019000e+001 -4.390076e-001 -3.030255e+000 6.168310e-003 + 4.020000e+001 -4.678554e-001 -3.031009e+000 6.171994e-003 + 4.021000e+001 -4.946688e-001 -3.031763e+000 6.175931e-003 + 4.022000e+001 -5.191734e-001 -3.032517e+000 6.179213e-003 + 4.023000e+001 -5.411390e-001 -3.033270e+000 6.181084e-003 + 4.024000e+001 -5.603836e-001 -3.034024e+000 6.181116e-003 + 4.025000e+001 -5.767759e-001 -3.034778e+000 6.179301e-003 + 4.026000e+001 -5.902337e-001 -3.035532e+000 6.176058e-003 + 4.027000e+001 -6.007200e-001 -3.036286e+000 6.172135e-003 + 4.028000e+001 -6.082361e-001 -3.037040e+000 6.168437e-003 + 4.029000e+001 -6.128122e-001 -3.037794e+000 6.165819e-003 + 4.030000e+001 -6.144969e-001 -3.038548e+000 6.164887e-003 + 4.031000e+001 -6.133442e-001 -3.039302e+000 6.165855e-003 + 4.032000e+001 -6.094023e-001 -3.040056e+000 6.168498e-003 + 4.033000e+001 -6.027016e-001 -3.040810e+000 6.172204e-003 + 4.034000e+001 -5.932453e-001 -3.041564e+000 6.176115e-003 + 4.035000e+001 -5.810020e-001 -3.042318e+000 6.179328e-003 + 4.036000e+001 -5.659018e-001 -3.043072e+000 6.181104e-003 + 4.037000e+001 -5.478366e-001 -3.043826e+000 6.181034e-003 + 4.038000e+001 -5.266641e-001 -3.044580e+000 6.179135e-003 + 4.039000e+001 -5.022163e-001 -3.045334e+000 6.175844e-003 + 4.040000e+001 -4.743127e-001 -3.046088e+000 6.171920e-003 + 4.041000e+001 -4.427764e-001 -3.046842e+000 6.168269e-003 + 4.042000e+001 -4.074539e-001 -3.047596e+000 6.165734e-003 + 4.043000e+001 -3.682369e-001 -3.048350e+000 6.164903e-003 + 4.044000e+001 -3.250845e-001 -3.049104e+000 6.165966e-003 + 4.045000e+001 -2.780462e-001 -3.049858e+000 6.168678e-003 + 4.046000e+001 -2.272819e-001 -3.050612e+000 6.172410e-003 + 4.047000e+001 -1.730797e-001 -3.051366e+000 6.176300e-003 + 4.048000e+001 -1.158694e-001 -3.052120e+000 6.179450e-003 + 4.049000e+001 -5.622960e-002 -3.052874e+000 6.181135e-003 + 4.050000e+001 5.110455e-003 -3.053628e+000 6.180969e-003 + 4.051000e+001 6.727705e-002 -3.054382e+000 6.178990e-003 + 4.052000e+001 1.292651e-001 -3.055136e+000 6.175655e-003 + 4.053000e+001 1.899588e-001 -3.055890e+000 6.171730e-003 + 4.054000e+001 2.481591e-001 -3.056644e+000 6.168124e-003 + 4.055000e+001 3.026175e-001 -3.057398e+000 6.165667e-003 + 4.056000e+001 3.520750e-001 -3.058152e+000 6.164927e-003 + 4.057000e+001 3.953040e-001 -3.058906e+000 6.166076e-003 + 4.058000e+001 4.311528e-001 -3.059660e+000 6.168845e-003 + 4.059000e+001 4.585898e-001 -3.060414e+000 6.172593e-003 + 4.060000e+001 4.767462e-001 -3.061168e+000 6.176453e-003 + 4.061000e+001 4.849539e-001 -3.061922e+000 6.179536e-003 + 4.062000e+001 4.827789e-001 -3.062676e+000 6.181132e-003 + 4.063000e+001 4.700465e-001 -3.063430e+000 6.180876e-003 + 4.064000e+001 4.468585e-001 -3.064184e+000 6.178827e-003 + 4.065000e+001 4.136001e-001 -3.064938e+000 6.175459e-003 + 4.066000e+001 3.709371e-001 -3.065692e+000 6.171550e-003 + 4.067000e+001 3.198022e-001 -3.066446e+000 6.168001e-003 + 4.068000e+001 2.613713e-001 -3.067200e+000 6.165633e-003 + 4.069000e+001 1.970308e-001 -3.067954e+000 6.164994e-003 + 4.070000e+001 1.283359e-001 -3.068708e+000 6.166231e-003 + 4.071000e+001 5.696289e-002 -3.069462e+000 6.169055e-003 + 4.072000e+001 -1.534324e-002 -3.070216e+000 6.172812e-003 + 4.073000e+001 -8.682463e-002 -3.070970e+000 6.176632e-003 + 4.074000e+001 -1.557660e-001 -3.071724e+000 6.179635e-003 + 4.075000e+001 -2.205490e-001 -3.072478e+000 6.181129e-003 + 4.076000e+001 -2.797019e-001 -3.073232e+000 6.180770e-003 + 4.077000e+001 -3.319440e-001 -3.073986e+000 6.178642e-003 + 4.078000e+001 -3.762220e-001 -3.074740e+000 6.175236e-003 + 4.079000e+001 -4.117371e-001 -3.075494e+000 6.171338e-003 + 4.080000e+001 -4.379623e-001 -3.076247e+000 6.167848e-003 + 4.081000e+001 -4.546494e-001 -3.077001e+000 6.165573e-003 + 4.082000e+001 -4.618245e-001 -3.077755e+000 6.165040e-003 + 4.083000e+001 -4.597736e-001 -3.078509e+000 6.166372e-003 + 4.084000e+001 -4.490195e-001 -3.079263e+000 6.169260e-003 + 4.085000e+001 -4.302893e-001 -3.080017e+000 6.173035e-003 + 4.086000e+001 -4.044764e-001 -3.080771e+000 6.176823e-003 + 4.087000e+001 -3.725971e-001 -3.081525e+000 6.179752e-003 + 4.088000e+001 -3.357448e-001 -3.082279e+000 6.181146e-003 + 4.089000e+001 -2.950432e-001 -3.083033e+000 6.180686e-003 + 4.090000e+001 -2.516017e-001 -3.083787e+000 6.178477e-003 + 4.091000e+001 -2.064731e-001 -3.084541e+000 6.175027e-003 + 4.092000e+001 -1.606170e-001 -3.085295e+000 6.171134e-003 + 4.093000e+001 -1.148691e-001 -3.086049e+000 6.167694e-003 + 4.094000e+001 -6.991899e-002 -3.086803e+000 6.165503e-003 + 4.095000e+001 -2.629476e-002 -3.087557e+000 6.165068e-003 + 4.096000e+001 1.564289e-002 -3.088311e+000 6.166490e-003 + 4.097000e+001 5.569871e-002 -3.089065e+000 6.169438e-003 + 4.098000e+001 9.383306e-002 -3.089819e+000 6.173232e-003 + 4.099000e+001 1.301452e-001 -3.090573e+000 6.176994e-003 + 4.100000e+001 1.648509e-001 -3.091327e+000 6.179858e-003 + 4.101000e+001 1.982555e-001 -3.092081e+000 6.181166e-003 + 4.102000e+001 2.307248e-001 -3.092835e+000 6.180618e-003 + 4.103000e+001 2.626540e-001 -3.093589e+000 6.178340e-003 + 4.104000e+001 2.944375e-001 -3.094343e+000 6.174858e-003 + 4.105000e+001 3.264411e-001 -3.095097e+000 6.170974e-003 + 4.106000e+001 3.589764e-001 -3.095851e+000 6.167584e-003 + 4.107000e+001 3.922804e-001 -3.096605e+000 6.165471e-003 + 4.108000e+001 4.265005e-001 -3.097359e+000 6.165121e-003 + 4.109000e+001 4.616842e-001 -3.098113e+000 6.166615e-003 + 4.110000e+001 4.977755e-001 -3.098867e+000 6.169604e-003 + 4.111000e+001 5.346173e-001 -3.099621e+000 6.173397e-003 + 4.112000e+001 5.719583e-001 -3.100375e+000 6.177116e-003 + 4.113000e+001 6.094655e-001 -3.101129e+000 6.179905e-003 + 4.114000e+001 6.467401e-001 -3.101883e+000 6.181122e-003 + 4.115000e+001 6.833362e-001 -3.102637e+000 6.180490e-003 + 4.116000e+001 7.187813e-001 -3.103391e+000 6.178155e-003 + 4.117000e+001 7.525972e-001 -3.104145e+000 6.174657e-003 + 4.118000e+001 7.843209e-001 -3.104899e+000 6.170803e-003 + 4.119000e+001 8.135224e-001 -3.105653e+000 6.167483e-003 + 4.120000e+001 8.398221e-001 -3.106407e+000 6.165465e-003 + 4.121000e+001 8.629032e-001 -3.107161e+000 6.165214e-003 + 4.122000e+001 8.825216e-001 -3.107915e+000 6.166786e-003 + 4.123000e+001 8.985114e-001 -3.108669e+000 6.169817e-003 + 4.124000e+001 9.107872e-001 -3.109423e+000 6.173604e-003 + 4.125000e+001 9.193413e-001 -3.110177e+000 6.177270e-003 + 4.126000e+001 9.242399e-001 -3.110931e+000 6.179972e-003 + 4.127000e+001 9.256142e-001 -3.111685e+000 6.181087e-003 + 4.128000e+001 9.236514e-001 -3.112439e+000 6.180361e-003 + 4.129000e+001 9.185830e-001 -3.113193e+000 6.177962e-003 + 4.130000e+001 9.106739e-001 -3.113947e+000 6.174446e-003 + 4.131000e+001 9.002100e-001 -3.114701e+000 6.170624e-003 + 4.132000e+001 8.874883e-001 -3.115455e+000 6.167379e-003 + 4.133000e+001 8.728072e-001 -3.116209e+000 6.165462e-003 + 4.134000e+001 8.564590e-001 -3.116963e+000 6.165316e-003 + 4.135000e+001 8.387240e-001 -3.117717e+000 6.166972e-003 + 4.136000e+001 8.198670e-001 -3.118470e+000 6.170044e-003 + 4.137000e+001 8.001350e-001 -3.119224e+000 6.173820e-003 + 4.138000e+001 7.797577e-001 -3.119978e+000 6.177425e-003 + 4.139000e+001 7.589478e-001 -3.120732e+000 6.180028e-003 + 4.140000e+001 7.379033e-001 -3.121486e+000 6.181027e-003 + 4.141000e+001 7.168091e-001 -3.122240e+000 6.180195e-003 + 4.142000e+001 6.958396e-001 -3.122994e+000 6.177724e-003 + 4.143000e+001 6.751594e-001 -3.123748e+000 6.174185e-003 + 4.144000e+001 6.549233e-001 -3.124502e+000 6.170397e-003 + 4.145000e+001 6.352756e-001 -3.125256e+000 6.167236e-003 + 4.146000e+001 6.163464e-001 -3.126010e+000 6.165434e-003 + 4.147000e+001 5.982476e-001 -3.126764e+000 6.165411e-003 + 4.148000e+001 5.810668e-001 -3.127518e+000 6.167170e-003 + 4.149000e+001 5.648601e-001 -3.128272e+000 6.170304e-003 + 4.150000e+001 5.496442e-001 -3.129026e+000 6.174087e-003 + 4.151000e+001 5.353881e-001 -3.129780e+000 6.177643e-003 + 4.152000e+001 5.220054e-001 -3.130534e+000 6.180150e-003 + 4.153000e+001 5.093475e-001 -3.131288e+000 6.181031e-003 + 4.154000e+001 4.971982e-001 -3.132042e+000 6.180081e-003 + 4.155000e+001 4.852715e-001 -3.132796e+000 6.177519e-003 + 4.156000e+001 4.732110e-001 -3.133550e+000 6.173936e-003 + 4.157000e+001 4.605935e-001 -3.134304e+000 6.170158e-003 + 4.158000e+001 4.469357e-001 -3.135058e+000 6.167059e-003 + 4.159000e+001 4.317043e-001 -3.135812e+000 6.165358e-003 + 4.160000e+001 4.143299e-001 -3.136566e+000 6.165449e-003 + 4.161000e+001 3.942235e-001 -3.137320e+000 6.167312e-003 + 4.162000e+001 3.707964e-001 -3.138074e+000 6.170516e-003 + 4.163000e+001 3.434810e-001 -3.138828e+000 6.174320e-003 + 4.164000e+001 3.117534e-001 -3.139582e+000 6.177846e-003 + 4.165000e+001 2.751560e-001 -3.140336e+000 6.180278e-003 + 4.166000e+001 2.333193e-001 -3.141090e+000 6.181057e-003 + 4.167000e+001 1.859816e-001 -3.141844e+000 6.180003e-003 + 4.168000e+001 1.330067e-001 -3.142598e+000 6.177356e-003 + 4.169000e+001 7.439711e-002 -3.143352e+000 6.173726e-003 + 4.170000e+001 1.030366e-002 -3.144106e+000 6.169948e-003 + 4.171000e+001 -5.897006e-002 -3.144860e+000 6.166896e-003 + 4.172000e+001 -1.329685e-001 -3.145614e+000 6.165276e-003 + 4.173000e+001 -2.110899e-001 -3.146368e+000 6.165464e-003 + 4.174000e+001 -2.925981e-001 -3.147122e+000 6.167416e-003 + 4.175000e+001 -3.766381e-001 -3.147876e+000 6.170684e-003 + 4.176000e+001 -4.622566e-001 -3.148630e+000 6.174512e-003 + 4.177000e+001 -5.484265e-001 -3.149384e+000 6.178018e-003 + 4.178000e+001 -6.340729e-001 -3.150138e+000 6.180396e-003 + 4.179000e+001 -7.181017e-001 -3.150892e+000 6.181098e-003 + 4.180000e+001 -7.994290e-001 -3.151646e+000 6.179964e-003 + 4.181000e+001 -8.770085e-001 -3.152400e+000 6.177253e-003 + 4.182000e+001 -9.498596e-001 -3.153154e+000 6.173590e-003 + 4.183000e+001 -1.017091e+000 -3.153908e+000 6.169816e-003 + 4.184000e+001 -1.077920e+000 -3.154662e+000 6.166802e-003 + 4.185000e+001 -1.131694e+000 -3.155416e+000 6.165242e-003 + 4.186000e+001 -1.177898e+000 -3.156170e+000 6.165496e-003 + 4.187000e+001 -1.216163e+000 -3.156924e+000 6.167504e-003 + 4.188000e+001 -1.246270e+000 -3.157678e+000 6.170801e-003 + 4.189000e+001 -1.268148e+000 -3.158432e+000 6.174623e-003 + 4.190000e+001 -1.281863e+000 -3.159186e+000 6.178090e-003 + 4.191000e+001 -1.287611e+000 -3.159940e+000 6.180405e-003 + 4.192000e+001 -1.285703e+000 -3.160693e+000 6.181036e-003 + 4.193000e+001 -1.276548e+000 -3.161447e+000 6.179840e-003 + 4.194000e+001 -1.260632e+000 -3.162201e+000 6.177094e-003 + 4.195000e+001 -1.238501e+000 -3.162955e+000 6.173430e-003 + 4.196000e+001 -1.210741e+000 -3.163709e+000 6.169693e-003 + 4.197000e+001 -1.177957e+000 -3.164463e+000 6.166745e-003 + 4.198000e+001 -1.140757e+000 -3.165217e+000 6.165266e-003 + 4.199000e+001 -1.099736e+000 -3.165971e+000 6.165596e-003 + 4.200000e+001 -1.055460e+000 -3.166725e+000 6.167657e-003 + 4.201000e+001 -1.008458e+000 -3.167479e+000 6.170969e-003 + 4.202000e+001 -9.592126e-001 -3.168233e+000 6.174767e-003 + 4.203000e+001 -9.081542e-001 -3.168987e+000 6.178173e-003 + 4.204000e+001 -8.556595e-001 -3.169741e+000 6.180405e-003 + 4.205000e+001 -8.020505e-001 -3.170495e+000 6.180950e-003 + 4.206000e+001 -7.475974e-001 -3.171249e+000 6.179687e-003 + 4.207000e+001 -6.925216e-001 -3.172003e+000 6.176909e-003 + 4.208000e+001 -6.370020e-001 -3.172757e+000 6.173258e-003 + 4.209000e+001 -5.811806e-001 -3.173511e+000 6.169577e-003 + 4.210000e+001 -5.251696e-001 -3.174265e+000 6.166719e-003 + 4.211000e+001 -4.690588e-001 -3.175019e+000 6.165343e-003 + 4.212000e+001 -4.129221e-001 -3.175773e+000 6.165766e-003 + 4.213000e+001 -3.568249e-001 -3.176527e+000 6.167887e-003 + 4.214000e+001 -3.008293e-001 -3.177281e+000 6.171214e-003 + 4.215000e+001 -2.450003e-001 -3.178035e+000 6.174973e-003 + 4.216000e+001 -1.894099e-001 -3.178789e+000 6.178296e-003 + 4.217000e+001 -1.341412e-001 -3.179543e+000 6.180415e-003 + 4.218000e+001 -7.929164e-002 -3.180297e+000 6.180842e-003 + 4.219000e+001 -2.497497e-002 -3.181051e+000 6.179480e-003 + 4.220000e+001 2.867656e-002 -3.181805e+000 6.176644e-003 + 4.221000e+001 8.151127e-002 -3.182559e+000 6.172989e-003 + 4.222000e+001 1.333574e-001 -3.183313e+000 6.169359e-003 + 4.223000e+001 1.840231e-001 -3.184067e+000 6.166595e-003 + 4.224000e+001 2.332969e-001 -3.184821e+000 6.165336e-003 + 4.225000e+001 2.809487e-001 -3.185575e+000 6.165874e-003 + 4.226000e+001 3.267318e-001 -3.186329e+000 6.168083e-003 + 4.227000e+001 3.703849e-001 -3.187083e+000 6.171452e-003 + 4.228000e+001 4.116359e-001 -3.187837e+000 6.175198e-003 + 4.229000e+001 4.502059e-001 -3.188591e+000 6.178457e-003 + 4.230000e+001 4.858141e-001 -3.189345e+000 6.180477e-003 + 4.231000e+001 5.181846e-001 -3.190099e+000 6.180791e-003 + 4.232000e+001 5.470529e-001 -3.190853e+000 6.179329e-003 + 4.233000e+001 5.721741e-001 -3.191607e+000 6.176429e-003 + 4.234000e+001 5.933316e-001 -3.192361e+000 6.172759e-003 + 4.235000e+001 6.103459e-001 -3.193115e+000 6.169168e-003 + 4.236000e+001 6.230842e-001 -3.193869e+000 6.166488e-003 + 4.237000e+001 6.314690e-001 -3.194623e+000 6.165341e-003 + 4.238000e+001 6.354864e-001 -3.195377e+000 6.165993e-003 + 4.239000e+001 6.351933e-001 -3.196131e+000 6.168293e-003 + 4.240000e+001 6.307229e-001 -3.196885e+000 6.171710e-003 + 4.241000e+001 6.222877e-001 -3.197639e+000 6.175451e-003 + 4.242000e+001 6.101808e-001 -3.198393e+000 6.178653e-003 + 4.243000e+001 5.947738e-001 -3.199147e+000 6.180576e-003 + 4.244000e+001 5.765117e-001 -3.199901e+000 6.180775e-003 + 4.245000e+001 5.559049e-001 -3.200655e+000 6.179204e-003 + 4.246000e+001 5.335180e-001 -3.201409e+000 6.176222e-003 + 4.247000e+001 5.099553e-001 -3.202163e+000 6.172515e-003 + 4.248000e+001 4.858442e-001 -3.202916e+000 6.168939e-003 + 4.249000e+001 4.618164e-001 -3.203670e+000 6.166319e-003 + 4.250000e+001 4.384874e-001 -3.204424e+000 6.165262e-003 + 4.251000e+001 4.164354e-001 -3.205178e+000 6.166014e-003 + 4.252000e+001 3.961808e-001 -3.205932e+000 6.168401e-003 + 4.253000e+001 3.781658e-001 -3.206686e+000 6.171872e-003 + 4.254000e+001 3.627368e-001 -3.207440e+000 6.175627e-003 + 4.255000e+001 3.501289e-001 -3.208194e+000 6.178799e-003 + 4.256000e+001 3.404547e-001 -3.208948e+000 6.180659e-003 + 4.257000e+001 3.336966e-001 -3.209702e+000 6.180779e-003 + 4.258000e+001 3.297043e-001 -3.210456e+000 6.179132e-003 + 4.259000e+001 3.281968e-001 -3.211210e+000 6.176096e-003 + 4.260000e+001 3.287707e-001 -3.211964e+000 6.172370e-003 + 4.261000e+001 3.309122e-001 -3.212718e+000 6.168813e-003 + 4.262000e+001 3.340145e-001 -3.213472e+000 6.166246e-003 + 4.263000e+001 3.373995e-001 -3.214226e+000 6.165263e-003 + 4.264000e+001 3.403424e-001 -3.214980e+000 6.166090e-003 + 4.265000e+001 3.420989e-001 -3.215734e+000 6.168538e-003 + 4.266000e+001 3.419337e-001 -3.216488e+000 6.172039e-003 + 4.267000e+001 3.391497e-001 -3.217242e+000 6.175786e-003 + 4.268000e+001 3.331158e-001 -3.217996e+000 6.178917e-003 + 4.269000e+001 3.232921e-001 -3.218750e+000 6.180711e-003 + 4.270000e+001 3.092534e-001 -3.219504e+000 6.180757e-003 + 4.271000e+001 2.907070e-001 -3.220258e+000 6.179045e-003 + 4.272000e+001 2.675065e-001 -3.221012e+000 6.175969e-003 + 4.273000e+001 2.396598e-001 -3.221766e+000 6.172236e-003 + 4.274000e+001 2.073315e-001 -3.222520e+000 6.168706e-003 + 4.275000e+001 1.708391e-001 -3.223274e+000 6.166192e-003 + 4.276000e+001 1.306436e-001 -3.224028e+000 6.165272e-003 + 4.277000e+001 8.733505e-002 -3.224782e+000 6.166158e-003 + 4.278000e+001 4.161283e-002 -3.225536e+000 6.168642e-003 + 4.279000e+001 -5.737199e-003 -3.226290e+000 6.172148e-003 + 4.280000e+001 -5.386884e-002 -3.227044e+000 6.175867e-003 + 4.281000e+001 -1.019033e-001 -3.227798e+000 6.178942e-003 + 4.282000e+001 -1.489573e-001 -3.228552e+000 6.180666e-003 + 4.283000e+001 -1.941714e-001 -3.229306e+000 6.180647e-003 + 4.284000e+001 -2.367351e-001 -3.230060e+000 6.178892e-003 + 4.285000e+001 -2.759113e-001 -3.230814e+000 6.175807e-003 + 4.286000e+001 -3.110553e-001 -3.231568e+000 6.172105e-003 + 4.287000e+001 -3.416314e-001 -3.232322e+000 6.168640e-003 + 4.288000e+001 -3.672234e-001 -3.233076e+000 6.166213e-003 + 4.289000e+001 -3.875413e-001 -3.233830e+000 6.165384e-003 + 4.290000e+001 -4.024228e-001 -3.234584e+000 6.166341e-003 + 4.291000e+001 -4.118304e-001 -3.235338e+000 6.168861e-003 + 4.292000e+001 -4.158438e-001 -3.236092e+000 6.172359e-003 + 4.293000e+001 -4.146497e-001 -3.236846e+000 6.176023e-003 + 4.294000e+001 -4.085281e-001 -3.237600e+000 6.179009e-003 + 4.295000e+001 -3.978364e-001 -3.238354e+000 6.180629e-003 + 4.296000e+001 -3.829930e-001 -3.239108e+000 6.180512e-003 + 4.297000e+001 -3.644599e-001 -3.239862e+000 6.178687e-003 + 4.298000e+001 -3.427264e-001 -3.240616e+000 6.175577e-003 + 4.299000e+001 -3.182931e-001 -3.241370e+000 6.171900e-003 + 4.300000e+001 -2.916588e-001 -3.242124e+000 6.168506e-003 + 4.301000e+001 -2.633085e-001 -3.242878e+000 6.166179e-003 + 4.302000e+001 -2.337045e-001 -3.243632e+000 6.165458e-003 + 4.303000e+001 -2.032799e-001 -3.244386e+000 6.166506e-003 + 4.304000e+001 -1.724346e-001 -3.245140e+000 6.169079e-003 + 4.305000e+001 -1.415336e-001 -3.245893e+000 6.172577e-003 + 4.306000e+001 -1.109071e-001 -3.246647e+000 6.176191e-003 + 4.307000e+001 -8.085271e-002 -3.247401e+000 6.179085e-003 + 4.308000e+001 -5.163804e-002 -3.248155e+000 6.180591e-003 + 4.309000e+001 -2.350437e-002 -3.248909e+000 6.180363e-003 + 4.310000e+001 3.329866e-003 -3.249663e+000 6.178456e-003 + 4.311000e+001 2.866583e-002 -3.250417e+000 6.175311e-003 + 4.312000e+001 5.232185e-002 -3.251171e+000 6.171656e-003 + 4.313000e+001 7.413186e-002 -3.251925e+000 6.168337e-003 + 4.314000e+001 9.394513e-002 -3.252679e+000 6.166124e-003 + 4.315000e+001 1.116270e-001 -3.253433e+000 6.165530e-003 + 4.316000e+001 1.270607e-001 -3.254187e+000 6.166694e-003 + 4.317000e+001 1.401503e-001 -3.254941e+000 6.169345e-003 + 4.318000e+001 1.508233e-001 -3.255695e+000 6.172870e-003 + 4.319000e+001 1.590349e-001 -3.256449e+000 6.176451e-003 + 4.320000e+001 1.647700e-001 -3.257203e+000 6.179262e-003 + 4.321000e+001 1.680467e-001 -3.257957e+000 6.180653e-003 + 4.322000e+001 1.689167e-001 -3.258711e+000 6.180303e-003 + 4.323000e+001 1.674661e-001 -3.259465e+000 6.178292e-003 + 4.324000e+001 1.638127e-001 -3.260219e+000 6.175083e-003 + 4.325000e+001 1.581037e-001 -3.260973e+000 6.171415e-003 + 4.326000e+001 1.505095e-001 -3.261727e+000 6.168135e-003 + 4.327000e+001 1.412177e-001 -3.262481e+000 6.166003e-003 + 4.328000e+001 1.304246e-001 -3.263235e+000 6.165511e-003 + 4.329000e+001 1.183265e-001 -3.263989e+000 6.166774e-003 + 4.330000e+001 1.051100e-001 -3.264743e+000 6.169499e-003 + 4.331000e+001 9.094318e-002 -3.265497e+000 6.173055e-003 + 4.332000e+001 7.596691e-002 -3.266251e+000 6.176619e-003 + 4.333000e+001 6.028781e-002 -3.267005e+000 6.179369e-003 + 4.334000e+001 4.397317e-002 -3.267759e+000 6.180672e-003 + 4.335000e+001 2.704820e-002 -3.268513e+000 6.180227e-003 + 4.336000e+001 9.496057e-003 -3.269267e+000 6.178137e-003 + 4.337000e+001 -8.739159e-003 -3.270021e+000 6.174884e-003 + 4.338000e+001 -2.774639e-002 -3.270775e+000 6.171218e-003 + 4.339000e+001 -4.763881e-002 -3.271529e+000 6.167987e-003 + 4.340000e+001 -6.854241e-002 -3.272283e+000 6.165939e-003 + 4.341000e+001 -9.058273e-002 -3.273037e+000 6.165547e-003 + 4.342000e+001 -1.138701e-001 -3.273791e+000 6.166905e-003 + 4.343000e+001 -1.384846e-001 -3.274545e+000 6.169698e-003 + 4.344000e+001 -1.644610e-001 -3.275299e+000 6.173280e-003 + 4.345000e+001 -1.917752e-001 -3.276053e+000 6.176823e-003 + 4.346000e+001 -2.203331e-001 -3.276807e+000 6.179511e-003 + 4.347000e+001 -2.499619e-001 -3.277561e+000 6.180724e-003 + 4.348000e+001 -2.804055e-001 -3.278315e+000 6.180182e-003 + 4.349000e+001 -3.113244e-001 -3.279069e+000 6.178011e-003 + 4.350000e+001 -3.422993e-001 -3.279823e+000 6.174709e-003 + 4.351000e+001 -3.728409e-001 -3.280577e+000 6.171037e-003 + 4.352000e+001 -4.024029e-001 -3.281331e+000 6.167841e-003 + 4.353000e+001 -4.304000e-001 -3.282085e+000 6.165861e-003 + 4.354000e+001 -4.562297e-001 -3.282839e+000 6.165553e-003 + 4.355000e+001 -4.792957e-001 -3.283593e+000 6.166988e-003 + 4.356000e+001 -4.990344e-001 -3.284347e+000 6.169833e-003 + 4.357000e+001 -5.149409e-001 -3.285101e+000 6.173430e-003 + 4.358000e+001 -5.265946e-001 -3.285855e+000 6.176948e-003 + 4.359000e+001 -5.336825e-001 -3.286609e+000 6.179575e-003 + 4.360000e+001 -5.360194e-001 -3.287363e+000 6.180707e-003 + 4.361000e+001 -5.335634e-001 -3.288116e+000 6.180085e-003 + 4.362000e+001 -5.264264e-001 -3.288870e+000 6.177852e-003 + 4.363000e+001 -5.148778e-001 -3.289624e+000 6.174523e-003 + 4.364000e+001 -4.993419e-001 -3.290378e+000 6.170866e-003 + 4.365000e+001 -4.803887e-001 -3.291132e+000 6.167725e-003 + 4.366000e+001 -4.587176e-001 -3.291886e+000 6.165828e-003 + 4.367000e+001 -4.351356e-001 -3.292640e+000 6.165613e-003 + 4.368000e+001 -4.105293e-001 -3.293394e+000 6.167130e-003 + 4.369000e+001 -3.858335e-001 -3.294148e+000 6.170027e-003 + 4.370000e+001 -3.619961e-001 -3.294902e+000 6.173634e-003 + 4.371000e+001 -3.399417e-001 -3.295656e+000 6.177119e-003 + 4.372000e+001 -3.205355e-001 -3.296410e+000 6.179677e-003 + 4.373000e+001 -3.045484e-001 -3.297164e+000 6.180721e-003 + 4.374000e+001 -2.926253e-001 -3.297918e+000 6.180010e-003 + 4.375000e+001 -2.852587e-001 -3.298672e+000 6.177709e-003 + 4.376000e+001 -2.827670e-001 -3.299426e+000 6.174347e-003 + 4.377000e+001 -2.852803e-001 -3.300180e+000 6.170700e-003 + 4.378000e+001 -2.927337e-001 -3.300934e+000 6.167610e-003 + 4.379000e+001 -3.048685e-001 -3.301688e+000 6.165790e-003 + 4.380000e+001 -3.212406e-001 -3.302442e+000 6.165662e-003 + 4.381000e+001 -3.412370e-001 -3.303196e+000 6.167253e-003 + 4.382000e+001 -3.640989e-001 -3.303950e+000 6.170195e-003 + 4.383000e+001 -3.889506e-001 -3.304704e+000 6.173807e-003 + 4.384000e+001 -4.148326e-001 -3.305458e+000 6.177254e-003 + 4.385000e+001 -4.407377e-001 -3.306212e+000 6.179741e-003 + 4.386000e+001 -4.656495e-001 -3.306966e+000 6.180695e-003 + 4.387000e+001 -4.885791e-001 -3.307720e+000 6.179898e-003 + 4.388000e+001 -5.086014e-001 -3.308474e+000 6.177532e-003 + 4.389000e+001 -5.248874e-001 -3.309228e+000 6.174144e-003 + 4.390000e+001 -5.367319e-001 -3.309982e+000 6.170513e-003 + 4.391000e+001 -5.435755e-001 -3.310736e+000 6.167478e-003 + 4.392000e+001 -5.450203e-001 -3.311490e+000 6.165742e-003 + 4.393000e+001 -5.408382e-001 -3.312244e+000 6.165704e-003 + 4.394000e+001 -5.309719e-001 -3.312998e+000 6.167374e-003 + 4.395000e+001 -5.155297e-001 -3.313752e+000 6.170366e-003 + 4.396000e+001 -4.947723e-001 -3.314506e+000 6.173986e-003 + 4.397000e+001 -4.690954e-001 -3.315260e+000 6.177401e-003 + 4.398000e+001 -4.390069e-001 -3.316014e+000 6.179824e-003 + 4.399000e+001 -4.051001e-001 -3.316768e+000 6.180698e-003 + 4.400000e+001 -3.680258e-001 -3.317522e+000 6.179824e-003 + 4.401000e+001 -3.284632e-001 -3.318276e+000 6.177404e-003 + 4.402000e+001 -2.870913e-001 -3.319030e+000 6.173996e-003 + 4.403000e+001 -2.445626e-001 -3.319784e+000 6.170385e-003 + 4.404000e+001 -2.014801e-001 -3.320538e+000 6.167407e-003 + 4.405000e+001 -1.583776e-001 -3.321292e+000 6.165747e-003 + 4.406000e+001 -1.157059e-001 -3.322046e+000 6.165790e-003 + 4.407000e+001 -7.382380e-002 -3.322800e+000 6.167523e-003 + 4.408000e+001 -3.299403e-002 -3.323554e+000 6.170543e-003 + 4.409000e+001 6.614507e-003 -3.324308e+000 6.174151e-003 + 4.410000e+001 4.492034e-002 -3.325062e+000 6.177512e-003 + 4.411000e+001 8.191836e-002 -3.325816e+000 6.179851e-003 + 4.412000e+001 1.176654e-001 -3.326570e+000 6.180630e-003 + 4.413000e+001 1.522633e-001 -3.327324e+000 6.179670e-003 + 4.414000e+001 1.858405e-001 -3.328078e+000 6.177193e-003 + 4.415000e+001 2.185332e-001 -3.328832e+000 6.173771e-003 + 4.416000e+001 2.504676e-001 -3.329586e+000 6.170194e-003 + 4.417000e+001 2.817431e-001 -3.330339e+000 6.167289e-003 + 4.418000e+001 3.124191e-001 -3.331093e+000 6.165727e-003 + 4.419000e+001 3.425042e-001 -3.331847e+000 6.165872e-003 + 4.420000e+001 3.719493e-001 -3.332601e+000 6.167689e-003 + 4.421000e+001 4.006449e-001 -3.333355e+000 6.170757e-003 + 4.422000e+001 4.284225e-001 -3.334109e+000 6.174366e-003 + 4.423000e+001 4.550592e-001 -3.334863e+000 6.177684e-003 + 4.424000e+001 4.802864e-001 -3.335617e+000 6.179945e-003 + 4.425000e+001 5.038013e-001 -3.336371e+000 6.180629e-003 + 4.426000e+001 5.252802e-001 -3.337125e+000 6.179579e-003 + 4.427000e+001 5.443934e-001 -3.337879e+000 6.177038e-003 + 4.428000e+001 5.608210e-001 -3.338633e+000 6.173590e-003 + 4.429000e+001 5.742682e-001 -3.339387e+000 6.170032e-003 + 4.430000e+001 5.844792e-001 -3.340141e+000 6.167184e-003 + 4.431000e+001 5.912502e-001 -3.340895e+000 6.165707e-003 + 4.432000e+001 5.944393e-001 -3.341649e+000 6.165940e-003 + 4.433000e+001 5.939744e-001 -3.342403e+000 6.167830e-003 + 4.434000e+001 5.898576e-001 -3.343157e+000 6.170938e-003 + 4.435000e+001 5.821668e-001 -3.343911e+000 6.174545e-003 + 4.436000e+001 5.710541e-001 -3.344665e+000 6.177818e-003 + 4.437000e+001 5.567418e-001 -3.345419e+000 6.180003e-003 + 4.438000e+001 5.395155e-001 -3.346173e+000 6.180597e-003 + 4.439000e+001 5.197154e-001 -3.346927e+000 6.179463e-003 + 4.440000e+001 4.977263e-001 -3.347681e+000 6.176862e-003 + 4.441000e+001 4.739669e-001 -3.348435e+000 6.173394e-003 + 4.442000e+001 4.488775e-001 -3.349189e+000 6.169859e-003 + 4.443000e+001 4.229100e-001 -3.349943e+000 6.167071e-003 + 4.444000e+001 3.965162e-001 -3.350697e+000 6.165677e-003 + 4.445000e+001 3.701391e-001 -3.351451e+000 6.165997e-003 + 4.446000e+001 3.442040e-001 -3.352205e+000 6.167958e-003 + 4.447000e+001 3.191121e-001 -3.352959e+000 6.171105e-003 + 4.448000e+001 2.952347e-001 -3.353713e+000 6.174711e-003 + 4.449000e+001 2.729095e-001 -3.354467e+000 6.177943e-003 + 4.450000e+001 2.524377e-001 -3.355221e+000 6.180059e-003 + 4.451000e+001 2.340828e-001 -3.355975e+000 6.180572e-003 + 4.452000e+001 2.180693e-001 -3.356729e+000 6.179365e-003 + 4.453000e+001 2.045826e-001 -3.357483e+000 6.176717e-003 + 4.454000e+001 1.937691e-001 -3.358237e+000 6.173239e-003 + 4.455000e+001 1.857361e-001 -3.358991e+000 6.169734e-003 + 4.456000e+001 1.805515e-001 -3.359745e+000 6.167010e-003 + 4.457000e+001 1.782433e-001 -3.360499e+000 6.165697e-003 + 4.458000e+001 1.787989e-001 -3.361253e+000 6.166098e-003 + 4.459000e+001 1.821639e-001 -3.362007e+000 6.168118e-003 + 4.460000e+001 1.882410e-001 -3.362761e+000 6.171289e-003 + 4.461000e+001 1.968886e-001 -3.363515e+000 6.174877e-003 + 4.462000e+001 2.079201e-001 -3.364269e+000 6.178053e-003 + 4.463000e+001 2.211039e-001 -3.365023e+000 6.180086e-003 + 4.464000e+001 2.361639e-001 -3.365777e+000 6.180508e-003 + 4.465000e+001 2.527817e-001 -3.366531e+000 6.179223e-003 + 4.466000e+001 2.706004e-001 -3.367285e+000 6.176528e-003 + 4.467000e+001 2.892294e-001 -3.368039e+000 6.173045e-003 + 4.468000e+001 3.082521e-001 -3.368793e+000 6.169576e-003 + 4.469000e+001 3.272343e-001 -3.369547e+000 6.166924e-003 + 4.470000e+001 3.457349e-001 -3.370301e+000 6.165701e-003 + 4.471000e+001 3.633175e-001 -3.371055e+000 6.166189e-003 + 4.472000e+001 3.795639e-001 -3.371809e+000 6.168274e-003 + 4.473000e+001 3.940867e-001 -3.372562e+000 6.171472e-003 + 4.474000e+001 4.065430e-001 -3.373316e+000 6.175043e-003 + 4.475000e+001 4.166469e-001 -3.374070e+000 6.178162e-003 + 4.476000e+001 4.241807e-001 -3.374824e+000 6.180112e-003 + 4.477000e+001 4.290044e-001 -3.375578e+000 6.180444e-003 + 4.478000e+001 4.310621e-001 -3.376332e+000 6.179083e-003 + 4.479000e+001 4.303862e-001 -3.377086e+000 6.176345e-003 + 4.480000e+001 4.270973e-001 -3.377840e+000 6.172862e-003 + 4.481000e+001 4.214014e-001 -3.378594e+000 6.169438e-003 + 4.482000e+001 4.135828e-001 -3.379348e+000 6.166866e-003 + 4.483000e+001 4.039935e-001 -3.380102e+000 6.165740e-003 + 4.484000e+001 3.930400e-001 -3.380856e+000 6.166320e-003 + 4.485000e+001 3.811672e-001 -3.381610e+000 6.168470e-003 + 4.486000e+001 3.688395e-001 -3.382364e+000 6.171693e-003 + 4.487000e+001 3.565219e-001 -3.383118e+000 6.175240e-003 + 4.488000e+001 3.446598e-001 -3.383872e+000 6.178293e-003 + 4.489000e+001 3.336599e-001 -3.384626e+000 6.180146e-003 + 4.490000e+001 3.238720e-001 -3.385380e+000 6.180374e-003 + 4.491000e+001 3.155738e-001 -3.386134e+000 6.178923e-003 + 4.492000e+001 3.089583e-001 -3.386888e+000 6.176128e-003 + 4.493000e+001 3.041252e-001 -3.387642e+000 6.172634e-003 + 4.494000e+001 3.010769e-001 -3.388396e+000 6.169248e-003 + 4.495000e+001 2.997181e-001 -3.389150e+000 6.166753e-003 + 4.496000e+001 2.998609e-001 -3.389904e+000 6.165725e-003 + 4.497000e+001 3.012341e-001 -3.390658e+000 6.166404e-003 + 4.498000e+001 3.034961e-001 -3.391412e+000 6.168632e-003 + 4.499000e+001 3.062520e-001 -3.392166e+000 6.171893e-003 + 4.500000e+001 3.090720e-001 -3.392920e+000 6.175433e-003 + 4.501000e+001 3.115131e-001 -3.393674e+000 6.178435e-003 + 4.502000e+001 3.131403e-001 -3.394428e+000 6.180208e-003 + 4.503000e+001 3.135477e-001 -3.395182e+000 6.180343e-003 + 4.504000e+001 3.123785e-001 -3.395936e+000 6.178810e-003 + 4.505000e+001 3.093418e-001 -3.396690e+000 6.175962e-003 + 4.506000e+001 3.042268e-001 -3.397444e+000 6.172456e-003 + 4.507000e+001 2.969125e-001 -3.398198e+000 6.169100e-003 + 4.508000e+001 2.873729e-001 -3.398952e+000 6.166670e-003 + 4.509000e+001 2.756772e-001 -3.399706e+000 6.165727e-003 + 4.510000e+001 2.619855e-001 -3.400460e+000 6.166489e-003 + 4.511000e+001 2.465396e-001 -3.401214e+000 6.168779e-003 + 4.512000e+001 2.296492e-001 -3.401968e+000 6.172065e-003 + 4.513000e+001 2.116753e-001 -3.402722e+000 6.175589e-003 + 4.514000e+001 1.930102e-001 -3.403476e+000 6.178536e-003 + 4.515000e+001 1.740562e-001 -3.404230e+000 6.180227e-003 + 4.516000e+001 1.552037e-001 -3.404984e+000 6.180275e-003 + 4.517000e+001 1.368101e-001 -3.405738e+000 6.178668e-003 + 4.518000e+001 1.191792e-001 -3.406492e+000 6.175778e-003 + 4.519000e+001 1.025452e-001 -3.407246e+000 6.172271e-003 + 4.520000e+001 8.705856e-002 -3.408000e+000 6.168957e-003 + 4.521000e+001 7.277724e-002 -3.408754e+000 6.166601e-003 + 4.522000e+001 5.966219e-002 -3.409508e+000 6.165748e-003 + 4.523000e+001 4.757824e-002 -3.410262e+000 6.166595e-003 + 4.524000e+001 3.629989e-002 -3.411016e+000 6.168945e-003 + 4.525000e+001 2.552199e-002 -3.411770e+000 6.172253e-003 + 4.526000e+001 1.487467e-002 -3.412524e+000 6.175753e-003 + 4.527000e+001 3.941931e-003 -3.413278e+000 6.178639e-003 + 4.528000e+001 -7.717133e-003 -3.414032e+000 6.180245e-003 + 4.529000e+001 -2.054544e-002 -3.414786e+000 6.180201e-003 + 4.530000e+001 -3.496449e-002 -3.415539e+000 6.178520e-003 + 4.531000e+001 -5.135158e-002 -3.416293e+000 6.175589e-003 + 4.532000e+001 -7.001876e-002 -3.417047e+000 6.172085e-003 + 4.533000e+001 -9.119450e-002 -3.417801e+000 6.168818e-003 + 4.534000e+001 -1.150091e-001 -3.418555e+000 6.166542e-003 + 4.535000e+001 -1.414845e-001 -3.419309e+000 6.165785e-003 + 4.536000e+001 -1.705286e-001 -3.420063e+000 6.166722e-003 + 4.537000e+001 -2.019355e-001 -3.420817e+000 6.169134e-003 + 4.538000e+001 -2.353896e-001 -3.421571e+000 6.172464e-003 + 4.539000e+001 -2.704763e-001 -3.422325e+000 6.175940e-003 + 4.540000e+001 -3.066950e-001 -3.423079e+000 6.178760e-003 + 4.541000e+001 -3.434779e-001 -3.423833e+000 6.180273e-003 + 4.542000e+001 -3.802103e-001 -3.424587e+000 6.180132e-003 + 4.543000e+001 -4.162534e-001 -3.425341e+000 6.178368e-003 + 4.544000e+001 -4.509676e-001 -3.426095e+000 6.175389e-003 + 4.545000e+001 -4.837364e-001 -3.426849e+000 6.171881e-003 + 4.546000e+001 -5.139879e-001 -3.427603e+000 6.168655e-003 + 4.547000e+001 -5.412149e-001 -3.428357e+000 6.166456e-003 + 4.548000e+001 -5.649922e-001 -3.429111e+000 6.165794e-003 + 4.549000e+001 -5.849892e-001 -3.429865e+000 6.166822e-003 + 4.550000e+001 -6.009798e-001 -3.430619e+000 6.169302e-003 + 4.551000e+001 -6.128462e-001 -3.431373e+000 6.172661e-003 + 4.552000e+001 -6.205797e-001 -3.432127e+000 6.176122e-003 + 4.553000e+001 -6.242767e-001 -3.432881e+000 6.178887e-003 + 4.554000e+001 -6.241302e-001 -3.433635e+000 6.180319e-003 + 4.555000e+001 -6.204184e-001 -3.434389e+000 6.180089e-003 + 4.556000e+001 -6.134910e-001 -3.435143e+000 6.178250e-003 + 4.557000e+001 -6.037523e-001 -3.435897e+000 6.175227e-003 + 4.558000e+001 -5.916441e-001 -3.436651e+000 6.171715e-003 + 4.559000e+001 -5.776279e-001 -3.437405e+000 6.168525e-003 + 4.560000e+001 -5.621674e-001 -3.438159e+000 6.166394e-003 + 4.561000e+001 -5.457126e-001 -3.438913e+000 6.165814e-003 + 4.562000e+001 -5.286850e-001 -3.439667e+000 6.166919e-003 + 4.563000e+001 -5.114661e-001 -3.440421e+000 6.169451e-003 + 4.564000e+001 -4.943876e-001 -3.441175e+000 6.172824e-003 + 4.565000e+001 -4.777249e-001 -3.441929e+000 6.176258e-003 + 4.566000e+001 -4.616939e-001 -3.442683e+000 6.178961e-003 + 4.567000e+001 -4.464496e-001 -3.443437e+000 6.180310e-003 + 4.568000e+001 -4.320885e-001 -3.444191e+000 6.179996e-003 + 4.569000e+001 -4.186523e-001 -3.444945e+000 6.178092e-003 + 4.570000e+001 -4.061335e-001 -3.445699e+000 6.175037e-003 + 4.571000e+001 -3.944832e-001 -3.446453e+000 6.171538e-003 + 4.572000e+001 -3.836184e-001 -3.447207e+000 6.168402e-003 + 4.573000e+001 -3.734307e-001 -3.447961e+000 6.166356e-003 + 4.574000e+001 -3.637943e-001 -3.448715e+000 6.165873e-003 + 4.575000e+001 -3.545735e-001 -3.449469e+000 6.167064e-003 + 4.576000e+001 -3.456300e-001 -3.450223e+000 6.169654e-003 + 4.577000e+001 -3.368280e-001 -3.450977e+000 6.173041e-003 + 4.578000e+001 -3.280395e-001 -3.451731e+000 6.176443e-003 + 4.579000e+001 -3.191473e-001 -3.452485e+000 6.179072e-003 + 4.580000e+001 -3.100473e-001 -3.453239e+000 6.180324e-003 + 4.581000e+001 -3.006500e-001 -3.453993e+000 6.179907e-003 + 4.582000e+001 -2.908812e-001 -3.454747e+000 6.177919e-003 + 4.583000e+001 -2.806815e-001 -3.455501e+000 6.174816e-003 + 4.584000e+001 -2.700063e-001 -3.456255e+000 6.171313e-003 + 4.585000e+001 -2.588256e-001 -3.457009e+000 6.168221e-003 + 4.586000e+001 -2.471232e-001 -3.457762e+000 6.166254e-003 + 4.587000e+001 -2.348970e-001 -3.458516e+000 6.165869e-003 + 4.588000e+001 -2.221595e-001 -3.459270e+000 6.167156e-003 + 4.589000e+001 -2.089381e-001 -3.460024e+000 6.169819e-003 + 4.590000e+001 -1.952766e-001 -3.460778e+000 6.173242e-003 + 4.591000e+001 -1.812361e-001 -3.461532e+000 6.176637e-003 + 4.592000e+001 -1.668964e-001 -3.462286e+000 6.179221e-003 + 4.593000e+001 -1.523572e-001 -3.463040e+000 6.180399e-003 + 4.594000e+001 -1.377383e-001 -3.463794e+000 6.179901e-003 + 4.595000e+001 -1.231801e-001 -3.464548e+000 6.177841e-003 + 4.596000e+001 -1.088420e-001 -3.465302e+000 6.174691e-003 + 4.597000e+001 -9.490039e-002 -3.466056e+000 6.171178e-003 + 4.598000e+001 -8.154544e-002 -3.466810e+000 6.168109e-003 + 4.599000e+001 -6.897597e-002 -3.467564e+000 6.166192e-003 + 4.600000e+001 -5.739357e-002 -3.468318e+000 6.165869e-003 + 4.601000e+001 -4.699531e-002 -3.469072e+000 6.167213e-003 + 4.602000e+001 -3.796563e-002 -3.469826e+000 6.169913e-003 + 4.603000e+001 -3.046753e-002 -3.470580e+000 6.173342e-003 + 4.604000e+001 -2.463358e-002 -3.471334e+000 6.176711e-003 + 4.605000e+001 -2.055720e-002 -3.472088e+000 6.179243e-003 + 4.606000e+001 -1.828457e-002 -3.472842e+000 6.180358e-003 + 4.607000e+001 -1.780780e-002 -3.473596e+000 6.179800e-003 + 4.608000e+001 -1.905982e-002 -3.474350e+000 6.177701e-003 + 4.609000e+001 -2.191122e-002 -3.475104e+000 6.174546e-003 + 4.610000e+001 -2.616971e-002 -3.475858e+000 6.171064e-003 + 4.611000e+001 -3.158205e-002 -3.476612e+000 6.168059e-003 + 4.612000e+001 -3.783890e-002 -3.477366e+000 6.166225e-003 + 4.613000e+001 -4.458230e-002 -3.478120e+000 6.165986e-003 + 4.614000e+001 -5.141582e-002 -3.478874e+000 6.167395e-003 + 4.615000e+001 -5.791689e-002 -3.479628e+000 6.170125e-003 + 4.616000e+001 -6.365097e-002 -3.480382e+000 6.173541e-003 + 4.617000e+001 -6.818703e-002 -3.481136e+000 6.176853e-003 + 4.618000e+001 -7.111357e-002 -3.481890e+000 6.179296e-003 + 4.619000e+001 -7.205462e-002 -3.482644e+000 6.180307e-003 + 4.620000e+001 -7.068487e-002 -3.483398e+000 6.179652e-003 + 4.621000e+001 -6.674330e-002 -3.484152e+000 6.177484e-003 + 4.622000e+001 -6.004466e-002 -3.484906e+000 6.174301e-003 + 4.623000e+001 -5.048803e-002 -3.485660e+000 6.170839e-003 + 4.624000e+001 -3.806233e-002 -3.486414e+000 6.167898e-003 + 4.625000e+001 -2.284810e-002 -3.487168e+000 6.166159e-003 + 4.626000e+001 -5.015648e-003 -3.487922e+000 6.166025e-003 + 4.627000e+001 1.518054e-002 -3.488676e+000 6.167528e-003 + 4.628000e+001 3.741087e-002 -3.489430e+000 6.170319e-003 + 4.629000e+001 6.128292e-002 -3.490184e+000 6.173755e-003 + 4.630000e+001 8.635628e-002 -3.490938e+000 6.177040e-003 + 4.631000e+001 1.121595e-001 -3.491692e+000 6.179419e-003 + 4.632000e+001 1.382079e-001 -3.492446e+000 6.180344e-003 + 4.633000e+001 1.640227e-001 -3.493200e+000 6.179601e-003 + 4.634000e+001 1.891484e-001 -3.493954e+000 6.177363e-003 + 4.635000e+001 2.131700e-001 -3.494708e+000 6.174144e-003 + 4.636000e+001 2.357281e-001 -3.495462e+000 6.170687e-003 + 4.637000e+001 2.565306e-001 -3.496216e+000 6.167789e-003 + 4.638000e+001 2.753620e-001 -3.496970e+000 6.166120e-003 + 4.639000e+001 2.920889e-001 -3.497724e+000 6.166065e-003 + 4.640000e+001 3.066613e-001 -3.498478e+000 6.167635e-003 + 4.641000e+001 3.191107e-001 -3.499232e+000 6.170467e-003 + 4.642000e+001 3.295439e-001 -3.499985e+000 6.173905e-003 + 4.643000e+001 3.381342e-001 -3.500739e+000 6.177154e-003 + 4.644000e+001 3.451089e-001 -3.501493e+000 6.179466e-003 + 4.645000e+001 3.507353e-001 -3.502247e+000 6.180309e-003 + 4.646000e+001 3.553046e-001 -3.503001e+000 6.179489e-003 + 4.647000e+001 3.591159e-001 -3.503755e+000 6.177196e-003 + 4.648000e+001 3.624590e-001 -3.504509e+000 6.173960e-003 + 4.649000e+001 3.655994e-001 -3.505263e+000 6.170526e-003 + 4.650000e+001 3.687640e-001 -3.506017e+000 6.167689e-003 + 4.651000e+001 3.721294e-001 -3.506771e+000 6.166105e-003 + 4.652000e+001 3.758127e-001 -3.507525e+000 6.166142e-003 + 4.653000e+001 3.798656e-001 -3.508279e+000 6.167789e-003 + 4.654000e+001 3.842720e-001 -3.509033e+000 6.170667e-003 + 4.655000e+001 3.889483e-001 -3.509787e+000 6.174108e-003 + 4.656000e+001 3.937475e-001 -3.510541e+000 6.177320e-003 + 4.657000e+001 3.984661e-001 -3.511295e+000 6.179560e-003 + 4.658000e+001 4.028535e-001 -3.512049e+000 6.180314e-003 + 4.659000e+001 4.066235e-001 -3.512803e+000 6.179407e-003 + 4.660000e+001 4.094670e-001 -3.513557e+000 6.177047e-003 + 4.661000e+001 4.110657e-001 -3.514311e+000 6.173779e-003 + 4.662000e+001 4.111059e-001 -3.515065e+000 6.170355e-003 + 4.663000e+001 4.092913e-001 -3.515819e+000 6.167564e-003 + 4.664000e+001 4.053552e-001 -3.516573e+000 6.166051e-003 + 4.665000e+001 3.990712e-001 -3.517327e+000 6.166165e-003 + 4.666000e+001 3.902611e-001 -3.518081e+000 6.167880e-003 + 4.667000e+001 3.788011e-001 -3.518835e+000 6.170797e-003 + 4.668000e+001 3.646256e-001 -3.519589e+000 6.174243e-003 + 4.669000e+001 3.477282e-001 -3.520343e+000 6.177422e-003 + 4.670000e+001 3.281604e-001 -3.521097e+000 6.179604e-003 + 4.671000e+001 3.060286e-001 -3.521851e+000 6.180286e-003 + 4.672000e+001 2.814889e-001 -3.522605e+000 6.179314e-003 + 4.673000e+001 2.547406e-001 -3.523359e+000 6.176913e-003 + 4.674000e+001 2.260188e-001 -3.524113e+000 6.173638e-003 + 4.675000e+001 1.955864e-001 -3.524867e+000 6.170244e-003 + 4.676000e+001 1.637260e-001 -3.525621e+000 6.167515e-003 + 4.677000e+001 1.307325e-001 -3.526375e+000 6.166082e-003 + 4.678000e+001 9.690576e-002 -3.527129e+000 6.166276e-003 + 4.679000e+001 6.254485e-002 -3.527883e+000 6.168050e-003 + 4.680000e+001 2.794282e-002 -3.528637e+000 6.170993e-003 + 4.681000e+001 -6.616838e-003 -3.529391e+000 6.174422e-003 + 4.682000e+001 -4.086276e-002 -3.530145e+000 6.177546e-003 + 4.683000e+001 -7.453713e-002 -3.530899e+000 6.179642e-003 + 4.684000e+001 -1.073962e-001 -3.531653e+000 6.180229e-003 + 4.685000e+001 -1.392099e-001 -3.532407e+000 6.179170e-003 + 4.686000e+001 -1.697614e-001 -3.533161e+000 6.176710e-003 + 4.687000e+001 -1.988463e-001 -3.533915e+000 6.173414e-003 + 4.688000e+001 -2.262717e-001 -3.534669e+000 6.170044e-003 + 4.689000e+001 -2.518560e-001 -3.535423e+000 6.167376e-003 + 4.690000e+001 -2.754294e-001 -3.536177e+000 6.166028e-003 + 4.691000e+001 -2.968346e-001 -3.536931e+000 6.166312e-003 + 4.692000e+001 -3.159288e-001 -3.537685e+000 6.168161e-003 + 4.693000e+001 -3.325861e-001 -3.538439e+000 6.171150e-003 + 4.694000e+001 -3.467007e-001 -3.539193e+000 6.174587e-003 + 4.695000e+001 -3.581906e-001 -3.539947e+000 6.177681e-003 + 4.696000e+001 -3.670018e-001 -3.540701e+000 6.179720e-003 + 4.697000e+001 -3.731117e-001 -3.541455e+000 6.180239e-003 + 4.698000e+001 -3.765332e-001 -3.542209e+000 6.179118e-003 + 4.699000e+001 -3.773173e-001 -3.542962e+000 6.176619e-003 + 4.700000e+001 -3.755551e-001 -3.543716e+000 6.173316e-003 + 4.701000e+001 -3.713783e-001 -3.544470e+000 6.169972e-003 + 4.702000e+001 -3.649586e-001 -3.545224e+000 6.167358e-003 + 4.703000e+001 -3.565051e-001 -3.545978e+000 6.166075e-003 + 4.704000e+001 -3.462603e-001 -3.546732e+000 6.166416e-003 + 4.705000e+001 -3.344944e-001 -3.547486e+000 6.168300e-003 + 4.706000e+001 -3.214979e-001 -3.548240e+000 6.171286e-003 + 4.707000e+001 -3.075735e-001 -3.548994e+000 6.174681e-003 + 4.708000e+001 -2.930268e-001 -3.549748e+000 6.177700e-003 + 4.709000e+001 -2.781561e-001 -3.550502e+000 6.179645e-003 + 4.710000e+001 -2.632429e-001 -3.551256e+000 6.180071e-003 + 4.711000e+001 -2.485421e-001 -3.552010e+000 6.178881e-003 + 4.712000e+001 -2.342735e-001 -3.552764e+000 6.176353e-003 + 4.713000e+001 -2.206142e-001 -3.553518e+000 6.173073e-003 + 4.714000e+001 -2.076934e-001 -3.554272e+000 6.169802e-003 + 4.715000e+001 -1.955882e-001 -3.555026e+000 6.167300e-003 + 4.716000e+001 -1.843226e-001 -3.555780e+000 6.166148e-003 + 4.717000e+001 -1.738680e-001 -3.556534e+000 6.166615e-003 + 4.718000e+001 -1.641468e-001 -3.557288e+000 6.168593e-003 + 4.719000e+001 -1.550379e-001 -3.558042e+000 6.171625e-003 + 4.720000e+001 -1.463840e-001 -3.558796e+000 6.175006e-003 + 4.721000e+001 -1.380009e-001 -3.559550e+000 6.177955e-003 + 4.722000e+001 -1.296882e-001 -3.560304e+000 6.179789e-003 + 4.723000e+001 -1.212400e-001 -3.561058e+000 6.180081e-003 + 4.724000e+001 -1.124571e-001 -3.561812e+000 6.178762e-003 + 4.725000e+001 -1.031577e-001 -3.562566e+000 6.176131e-003 + 4.726000e+001 -9.318799e-002 -3.563320e+000 6.172794e-003 + 4.727000e+001 -8.243117e-002 -3.564074e+000 6.169517e-003 + 4.728000e+001 -7.081504e-002 -3.564828e+000 6.167058e-003 + 4.729000e+001 -5.831716e-002 -3.565582e+000 6.165986e-003 + 4.730000e+001 -4.496803e-002 -3.566336e+000 6.166549e-003 + 4.731000e+001 -3.085167e-002 -3.567090e+000 6.168620e-003 + 4.732000e+001 -1.610395e-002 -3.567844e+000 6.171721e-003 + 4.733000e+001 -9.085558e-004 -3.568598e+000 6.175140e-003 + 4.734000e+001 1.450912e-002 -3.569352e+000 6.178090e-003 + 4.735000e+001 2.988978e-002 -3.570106e+000 6.179895e-003 + 4.736000e+001 4.494940e-002 -3.570860e+000 6.180143e-003 + 4.737000e+001 5.938932e-002 -3.571614e+000 6.178779e-003 + 4.738000e+001 7.290677e-002 -3.572368e+000 6.176117e-003 + 4.739000e+001 8.520533e-002 -3.573122e+000 6.172773e-003 + 4.740000e+001 9.600492e-002 -3.573876e+000 6.169515e-003 + 4.741000e+001 1.050508e-001 -3.574630e+000 6.167095e-003 + 4.742000e+001 1.121216e-001 -3.575384e+000 6.166069e-003 + 4.743000e+001 1.170353e-001 -3.576138e+000 6.166671e-003 + 4.744000e+001 1.196541e-001 -3.576892e+000 6.168757e-003 + 4.745000e+001 1.198872e-001 -3.577646e+000 6.171841e-003 + 4.746000e+001 1.176918e-001 -3.578400e+000 6.175206e-003 + 4.747000e+001 1.130730e-001 -3.579154e+000 6.178074e-003 + 4.748000e+001 1.060811e-001 -3.579908e+000 6.179784e-003 + 4.749000e+001 9.680945e-002 -3.580662e+000 6.179941e-003 + 4.750000e+001 8.538952e-002 -3.581416e+000 6.178512e-003 + 4.751000e+001 7.198679e-002 -3.582170e+000 6.175828e-003 + 4.752000e+001 5.679563e-002 -3.582924e+000 6.172511e-003 + 4.753000e+001 4.003443e-002 -3.583678e+000 6.169331e-003 + 4.754000e+001 2.194095e-002 -3.584432e+000 6.167026e-003 + 4.755000e+001 2.768141e-003 -3.585185e+000 6.166133e-003 + 4.756000e+001 -1.721951e-002 -3.585939e+000 6.166862e-003 + 4.757000e+001 -3.774894e-002 -3.586693e+000 6.169045e-003 + 4.758000e+001 -5.854082e-002 -3.587447e+000 6.172179e-003 + 4.759000e+001 -7.931141e-002 -3.588201e+000 6.175539e-003 + 4.760000e+001 -9.977390e-002 -3.588955e+000 6.178348e-003 + 4.761000e+001 -1.196396e-001 -3.589709e+000 6.179957e-003 + 4.762000e+001 -1.386190e-001 -3.590463e+000 6.179992e-003 + 4.763000e+001 -1.564234e-001 -3.591217e+000 6.178442e-003 + 4.764000e+001 -1.727662e-001 -3.591971e+000 6.175659e-003 + 4.765000e+001 -1.873658e-001 -3.592725e+000 6.172281e-003 + 4.766000e+001 -1.999482e-001 -3.593479e+000 6.169084e-003 + 4.767000e+001 -2.102513e-001 -3.594233e+000 6.166804e-003 + 4.768000e+001 -2.180291e-001 -3.594987e+000 6.165966e-003 + 4.769000e+001 -2.230577e-001 -3.595741e+000 6.166765e-003 + 4.770000e+001 -2.251404e-001 -3.596495e+000 6.169016e-003 + 4.771000e+001 -2.241146e-001 -3.597249e+000 6.172202e-003 + 4.772000e+001 -2.198576e-001 -3.598003e+000 6.175589e-003 + 4.773000e+001 -2.122928e-001 -3.598757e+000 6.178400e-003 + 4.774000e+001 -2.013946e-001 -3.599511e+000 6.179994e-003 + 4.775000e+001 -1.871927e-001 -3.600265e+000 6.180008e-003 + 4.776000e+001 -1.697747e-001 -3.601019e+000 6.178442e-003 + 4.777000e+001 -1.492875e-001 -3.601773e+000 6.175660e-003 + 4.778000e+001 -1.259359e-001 -3.602527e+000 6.172304e-003 + 4.779000e+001 -9.997984e-002 -3.603281e+000 6.169148e-003 + 4.780000e+001 -7.172915e-002 -3.604035e+000 6.166918e-003 + 4.781000e+001 -4.153643e-002 -3.604789e+000 6.166126e-003 + 4.782000e+001 -9.787850e-003 -3.605543e+000 6.166950e-003 + 4.783000e+001 2.310753e-002 -3.606297e+000 6.169195e-003 + 4.784000e+001 5.672970e-002 -3.607051e+000 6.172334e-003 + 4.785000e+001 9.066040e-002 -3.607805e+000 6.175639e-003 + 4.786000e+001 1.244959e-001 -3.608559e+000 6.178345e-003 + 4.787000e+001 1.578595e-001 -3.609313e+000 6.179826e-003 + 4.788000e+001 1.904132e-001 -3.610067e+000 6.179742e-003 + 4.789000e+001 2.218672e-001 -3.610821e+000 6.178115e-003 + 4.790000e+001 2.519883e-001 -3.611575e+000 6.175323e-003 + 4.791000e+001 2.806053e-001 -3.612329e+000 6.172015e-003 + 4.792000e+001 3.076116e-001 -3.613083e+000 6.168957e-003 + 4.793000e+001 3.329647e-001 -3.613837e+000 6.166862e-003 + 4.794000e+001 3.566833e-001 -3.614591e+000 6.166218e-003 + 4.795000e+001 3.788413e-001 -3.615345e+000 6.167176e-003 + 4.796000e+001 3.995583e-001 -3.616099e+000 6.169517e-003 + 4.797000e+001 4.189891e-001 -3.616853e+000 6.172698e-003 + 4.798000e+001 4.373109e-001 -3.617607e+000 6.175985e-003 + 4.799000e+001 4.547088e-001 -3.618361e+000 6.178615e-003 + 4.800000e+001 4.713624e-001 -3.619115e+000 6.179980e-003 + 4.801000e+001 4.874306e-001 -3.619869e+000 6.179763e-003 + 4.802000e+001 5.030392e-001 -3.620623e+000 6.178009e-003 + 4.803000e+001 5.182692e-001 -3.621377e+000 6.175118e-003 + 4.804000e+001 5.331473e-001 -3.622131e+000 6.171755e-003 + 4.805000e+001 5.476397e-001 -3.622885e+000 6.168691e-003 + 4.806000e+001 5.616486e-001 -3.623639e+000 6.166635e-003 + 4.807000e+001 5.750122e-001 -3.624393e+000 6.166061e-003 + 4.808000e+001 5.875079e-001 -3.625147e+000 6.167103e-003 + 4.809000e+001 5.988590e-001 -3.625901e+000 6.169522e-003 + 4.810000e+001 6.087440e-001 -3.626655e+000 6.172761e-003 + 4.811000e+001 6.168092e-001 -3.627408e+000 6.176077e-003 + 4.812000e+001 6.226825e-001 -3.628162e+000 6.178708e-003 + 4.813000e+001 6.259891e-001 -3.628916e+000 6.180053e-003 + 4.814000e+001 6.263672e-001 -3.629670e+000 6.179807e-003 + 4.815000e+001 6.234847e-001 -3.630424e+000 6.178027e-003 + 4.816000e+001 6.170536e-001 -3.631178e+000 6.175127e-003 + 4.817000e+001 6.068442e-001 -3.631932e+000 6.171773e-003 + 4.818000e+001 5.926959e-001 -3.632686e+000 6.168738e-003 + 4.819000e+001 5.745262e-001 -3.633440e+000 6.166720e-003 + 4.820000e+001 5.523361e-001 -3.634194e+000 6.166181e-003 + 4.821000e+001 5.262124e-001 -3.634948e+000 6.167242e-003 + 4.822000e+001 4.963265e-001 -3.635702e+000 6.169650e-003 + 4.823000e+001 4.629303e-001 -3.636456e+000 6.172846e-003 + 4.824000e+001 4.263485e-001 -3.637210e+000 6.176088e-003 + 4.825000e+001 3.869685e-001 -3.637964e+000 6.178627e-003 + 4.826000e+001 3.452289e-001 -3.638718e+000 6.179878e-003 + 4.827000e+001 3.016052e-001 -3.639472e+000 6.179556e-003 + 4.828000e+001 2.565958e-001 -3.640226e+000 6.177738e-003 + 4.829000e+001 2.107075e-001 -3.640980e+000 6.174847e-003 + 4.830000e+001 1.644411e-001 -3.641734e+000 6.171555e-003 + 4.831000e+001 1.182788e-001 -3.642488e+000 6.168625e-003 + 4.832000e+001 7.267232e-002 -3.643242e+000 6.166738e-003 + 4.833000e+001 2.803435e-002 -3.643996e+000 6.166334e-003 + 4.834000e+001 -1.526894e-002 -3.644750e+000 6.167506e-003 + 4.835000e+001 -5.692212e-002 -3.645504e+000 6.169983e-003 + 4.836000e+001 -9.666246e-002 -3.646258e+000 6.173191e-003 + 4.837000e+001 -1.342795e-001 -3.647012e+000 6.176386e-003 + 4.838000e+001 -1.696123e-001 -3.647766e+000 6.178828e-003 + 4.839000e+001 -2.025453e-001 -3.648520e+000 6.179951e-003 + 4.840000e+001 -2.330025e-001 -3.649274e+000 6.179494e-003 + 4.841000e+001 -2.609406e-001 -3.650028e+000 6.177558e-003 + 4.842000e+001 -2.863425e-001 -3.650782e+000 6.174588e-003 + 4.843000e+001 -3.092103e-001 -3.651536e+000 6.171266e-003 + 4.844000e+001 -3.295587e-001 -3.652290e+000 6.168359e-003 + 4.845000e+001 -3.474105e-001 -3.653044e+000 6.166539e-003 + 4.846000e+001 -3.627920e-001 -3.653798e+000 6.166227e-003 + 4.847000e+001 -3.757307e-001 -3.654552e+000 6.167499e-003 + 4.848000e+001 -3.862543e-001 -3.655306e+000 6.170061e-003 + 4.849000e+001 -3.943913e-001 -3.656060e+000 6.173324e-003 + 4.850000e+001 -4.001723e-001 -3.656814e+000 6.176539e-003 + 4.851000e+001 -4.036335e-001 -3.657568e+000 6.178965e-003 + 4.852000e+001 -4.048197e-001 -3.658322e+000 6.180048e-003 + 4.853000e+001 -4.037884e-001 -3.659076e+000 6.179540e-003 + 4.854000e+001 -4.006136e-001 -3.659830e+000 6.177559e-003 + 4.855000e+001 -3.953888e-001 -3.660584e+000 6.174561e-003 + 4.856000e+001 -3.882294e-001 -3.661338e+000 6.171236e-003 + 4.857000e+001 -3.792739e-001 -3.662092e+000 6.168349e-003 + 4.858000e+001 -3.686833e-001 -3.662846e+000 6.166564e-003 + 4.859000e+001 -3.566392e-001 -3.663600e+000 6.166289e-003 + 4.860000e+001 -3.433399e-001 -3.664354e+000 6.167586e-003 + 4.861000e+001 -3.289957e-001 -3.665108e+000 6.170149e-003 + 4.862000e+001 -3.138216e-001 -3.665862e+000 6.173384e-003 + 4.863000e+001 -2.980306e-001 -3.666616e+000 6.176542e-003 + 4.864000e+001 -2.818248e-001 -3.667370e+000 6.178895e-003 + 4.865000e+001 -2.653878e-001 -3.668124e+000 6.179904e-003 + 4.866000e+001 -2.488764e-001 -3.668878e+000 6.179338e-003 + 4.867000e+001 -2.324142e-001 -3.669631e+000 6.177333e-003 + 4.868000e+001 -2.160858e-001 -3.670385e+000 6.174354e-003 + 4.869000e+001 -1.999333e-001 -3.671139e+000 6.171091e-003 + 4.870000e+001 -1.839551e-001 -3.671893e+000 6.168303e-003 + 4.871000e+001 -1.681067e-001 -3.672647e+000 6.166634e-003 + 4.872000e+001 -1.523048e-001 -3.673401e+000 6.166471e-003 + 4.873000e+001 -1.364329e-001 -3.674155e+000 6.167853e-003 + 4.874000e+001 -1.203498e-001 -3.674909e+000 6.170456e-003 + 4.875000e+001 -1.039004e-001 -3.675663e+000 6.173676e-003 + 4.876000e+001 -8.692690e-002 -3.676417e+000 6.176766e-003 + 4.877000e+001 -6.928167e-002 -3.677171e+000 6.179009e-003 + 4.878000e+001 -5.084032e-002 -3.677925e+000 6.179887e-003 + 4.879000e+001 -3.151394e-002 -3.678679e+000 6.179194e-003 + 4.880000e+001 -1.126035e-002 -3.679433e+000 6.177088e-003 + 4.881000e+001 9.906558e-003 -3.680187e+000 6.174055e-003 + 4.882000e+001 3.191001e-002 -3.680941e+000 6.170793e-003 + 4.883000e+001 5.460645e-002 -3.681695e+000 6.168057e-003 + 4.884000e+001 7.778499e-002 -3.682449e+000 6.166480e-003 + 4.885000e+001 1.011705e-001 -3.683203e+000 6.166431e-003 + 4.886000e+001 1.244298e-001 -3.683957e+000 6.167923e-003 + 4.887000e+001 1.471822e-001 -3.684711e+000 6.170612e-003 + 4.888000e+001 1.690115e-001 -3.685465e+000 6.173880e-003 + 4.889000e+001 1.894820e-001 -3.686219e+000 6.176973e-003 + 4.890000e+001 2.081554e-001 -3.686973e+000 6.179180e-003 + 4.891000e+001 2.246087e-001 -3.687727e+000 6.179994e-003 + 4.892000e+001 2.384528e-001 -3.688481e+000 6.179228e-003 + 4.893000e+001 2.493497e-001 -3.689235e+000 6.177056e-003 + 4.894000e+001 2.570284e-001 -3.689989e+000 6.173979e-003 + 4.895000e+001 2.612982e-001 -3.690743e+000 6.170704e-003 + 4.896000e+001 2.620588e-001 -3.691497e+000 6.167984e-003 + 4.897000e+001 2.593069e-001 -3.692251e+000 6.166445e-003 + 4.898000e+001 2.531379e-001 -3.693005e+000 6.166440e-003 + 4.899000e+001 2.437442e-001 -3.693759e+000 6.167968e-003 + 4.900000e+001 2.314081e-001 -3.694513e+000 6.170674e-003 + 4.901000e+001 2.164919e-001 -3.695267e+000 6.173930e-003 + 4.902000e+001 1.994229e-001 -3.696021e+000 6.176985e-003 + 4.903000e+001 1.806763e-001 -3.696775e+000 6.179138e-003 + 4.904000e+001 1.607556e-001 -3.697529e+000 6.179893e-003 + 4.905000e+001 1.401718e-001 -3.698283e+000 6.179082e-003 + 4.906000e+001 1.194222e-001 -3.699037e+000 6.176895e-003 + 4.907000e+001 9.896939e-002 -3.699791e+000 6.173838e-003 + 4.908000e+001 7.922327e-002 -3.700545e+000 6.170621e-003 + 4.909000e+001 6.052418e-002 -3.701299e+000 6.167987e-003 + 4.910000e+001 4.313047e-002 -3.702053e+000 6.166546e-003 + 4.911000e+001 2.720967e-002 -3.702807e+000 6.166630e-003 + 4.912000e+001 1.283432e-002 -3.703561e+000 6.168217e-003 + 4.913000e+001 -1.753141e-005 -3.704315e+000 6.170937e-003 + 4.914000e+001 -1.145720e-002 -3.705069e+000 6.174157e-003 + 4.915000e+001 -2.167572e-002 -3.705823e+000 6.177130e-003 + 4.916000e+001 -3.093034e-002 -3.706577e+000 6.179167e-003 + 4.917000e+001 -3.952770e-002 -3.707331e+000 6.179796e-003 + 4.918000e+001 -4.780459e-002 -3.708085e+000 6.178873e-003 + 4.919000e+001 -5.610730e-002 -3.708839e+000 6.176610e-003 + 4.920000e+001 -6.477056e-002 -3.709593e+000 6.173530e-003 + 4.921000e+001 -7.409711e-002 -3.710347e+000 6.170346e-003 + 4.922000e+001 -8.433904e-002 -3.711101e+000 6.167797e-003 + 4.923000e+001 -9.568177e-002 -3.711855e+000 6.166477e-003 + 4.924000e+001 -1.082315e-001 -3.712608e+000 6.166693e-003 + 4.925000e+001 -1.220069e-001 -3.713362e+000 6.168398e-003 + 4.926000e+001 -1.369351e-001 -3.714116e+000 6.171199e-003 + 4.927000e+001 -1.528529e-001 -3.714870e+000 6.174450e-003 + 4.928000e+001 -1.695123e-001 -3.715624e+000 6.177397e-003 + 4.929000e+001 -1.865910e-001 -3.716378e+000 6.179362e-003 + 4.930000e+001 -2.037060e-001 -3.717132e+000 6.179887e-003 + 4.931000e+001 -2.204318e-001 -3.717886e+000 6.178850e-003 + 4.932000e+001 -2.363199e-001 -3.718640e+000 6.176486e-003 + 4.933000e+001 -2.509199e-001 -3.719394e+000 6.173337e-003 + 4.934000e+001 -2.638018e-001 -3.720148e+000 6.170128e-003 + 4.935000e+001 -2.745765e-001 -3.720902e+000 6.167597e-003 + 4.936000e+001 -2.829152e-001 -3.721656e+000 6.166331e-003 + 4.937000e+001 -2.885660e-001 -3.722410e+000 6.166624e-003 + 4.938000e+001 -2.913667e-001 -3.723164e+000 6.168409e-003 + 4.939000e+001 -2.912540e-001 -3.723918e+000 6.171275e-003 + 4.940000e+001 -2.882672e-001 -3.724672e+000 6.174565e-003 + 4.941000e+001 -2.825482e-001 -3.725426e+000 6.177520e-003 + 4.942000e+001 -2.743359e-001 -3.726180e+000 6.179462e-003 + 4.943000e+001 -2.639563e-001 -3.726934e+000 6.179946e-003 + 4.944000e+001 -2.518085e-001 -3.727688e+000 6.178862e-003 + 4.945000e+001 -2.383478e-001 -3.728442e+000 6.176458e-003 + 4.946000e+001 -2.240660e-001 -3.729196e+000 6.173286e-003 + 4.947000e+001 -2.094699e-001 -3.729950e+000 6.170076e-003 + 4.948000e+001 -1.950598e-001 -3.730704e+000 6.167566e-003 + 4.949000e+001 -1.813083e-001 -3.731458e+000 6.166334e-003 + 4.950000e+001 -1.686408e-001 -3.732212e+000 6.166662e-003 + 4.951000e+001 -1.574184e-001 -3.732966e+000 6.168471e-003 + 4.952000e+001 -1.479238e-001 -3.733720e+000 6.171343e-003 + 4.953000e+001 -1.403521e-001 -3.734474e+000 6.174614e-003 + 4.954000e+001 -1.348045e-001 -3.735228e+000 6.177531e-003 + 4.955000e+001 -1.312880e-001 -3.735982e+000 6.179423e-003 + 4.956000e+001 -1.297183e-001 -3.736736e+000 6.179860e-003 + 4.957000e+001 -1.299281e-001 -3.737490e+000 6.178742e-003 + 4.958000e+001 -1.316785e-001 -3.738244e+000 6.176331e-003 + 4.959000e+001 -1.346739e-001 -3.738998e+000 6.173183e-003 + 4.960000e+001 -1.385791e-001 -3.739752e+000 6.170025e-003 + 4.961000e+001 -1.430383e-001 -3.740506e+000 6.167584e-003 + 4.962000e+001 -1.476939e-001 -3.741260e+000 6.166423e-003 + 4.963000e+001 -1.522059e-001 -3.742014e+000 6.166808e-003 + 4.964000e+001 -1.562689e-001 -3.742768e+000 6.168645e-003 + 4.965000e+001 -1.596276e-001 -3.743522e+000 6.171506e-003 + 4.966000e+001 -1.620886e-001 -3.744276e+000 6.174728e-003 + 4.967000e+001 -1.635297e-001 -3.745030e+000 6.177565e-003 + 4.968000e+001 -1.639041e-001 -3.745784e+000 6.179365e-003 + 4.969000e+001 -1.632409e-001 -3.746538e+000 6.179715e-003 + 4.970000e+001 -1.616420e-001 -3.747292e+000 6.178538e-003 + 4.971000e+001 -1.592742e-001 -3.748046e+000 6.176109e-003 + 4.972000e+001 -1.563582e-001 -3.748800e+000 6.172991e-003 + 4.973000e+001 -1.531550e-001 -3.749554e+000 6.169908e-003 + 4.974000e+001 -1.499494e-001 -3.750308e+000 6.167574e-003 + 4.975000e+001 -1.470329e-001 -3.751062e+000 6.166528e-003 + 4.976000e+001 -1.446856e-001 -3.751816e+000 6.167012e-003 + 4.977000e+001 -1.431586e-001 -3.752570e+000 6.168911e-003 + 4.978000e+001 -1.426581e-001 -3.753324e+000 6.171781e-003 + 4.979000e+001 -1.433314e-001 -3.754078e+000 6.174955e-003 + 4.980000e+001 -1.452552e-001 -3.754831e+000 6.177694e-003 + 4.981000e+001 -1.484283e-001 -3.755585e+000 6.179365e-003 + 4.982000e+001 -1.527672e-001 -3.756339e+000 6.179581e-003 + 4.983000e+001 -1.581061e-001 -3.757093e+000 6.178290e-003 + 4.984000e+001 -1.642009e-001 -3.757847e+000 6.175792e-003 + 4.985000e+001 -1.707365e-001 -3.758601e+000 6.172666e-003 + 4.986000e+001 -1.773386e-001 -3.759355e+000 6.169637e-003 + 4.987000e+001 -1.835873e-001 -3.760109e+000 6.167409e-003 + 4.988000e+001 -1.890342e-001 -3.760863e+000 6.166504e-003 + 4.989000e+001 -1.932196e-001 -3.761617e+000 6.167133e-003 + 4.990000e+001 -1.956923e-001 -3.762371e+000 6.169155e-003 + 4.991000e+001 -1.960276e-001 -3.763125e+000 6.172102e-003 + 4.992000e+001 -1.938459e-001 -3.763879e+000 6.175293e-003 + 4.993000e+001 -1.888284e-001 -3.764633e+000 6.177988e-003 + 4.994000e+001 -1.807313e-001 -3.765387e+000 6.179561e-003 + 4.995000e+001 -1.693970e-001 -3.766141e+000 6.179646e-003 + 4.996000e+001 -1.547615e-001 -3.766895e+000 6.178218e-003 + 4.997000e+001 -1.368584e-001 -3.767649e+000 6.175601e-003 + 4.998000e+001 -1.158196e-001 -3.768403e+000 6.172394e-003 + 4.999000e+001 -9.187146e-002 -3.769157e+000 6.169336e-003 + 5.000000e+001 -6.532785e-002 -3.769911e+000 6.167134e-003 + 5.001000e+001 -3.658028e-002 -3.770665e+000 6.166298e-003 + 5.002000e+001 -6.084772e-003 -3.771419e+000 6.167028e-003 + 5.003000e+001 2.565304e-002 -3.772173e+000 6.169158e-003 + 5.004000e+001 5.809452e-002 -3.772927e+000 6.172202e-003 + 5.005000e+001 9.068534e-002 -3.773681e+000 6.175462e-003 + 5.006000e+001 1.228730e-001 -3.774435e+000 6.178191e-003 + 5.007000e+001 1.541239e-001 -3.775189e+000 6.179763e-003 + 5.008000e+001 1.839388e-001 -3.775943e+000 6.179816e-003 + 5.009000e+001 2.118672e-001 -3.776697e+000 6.178338e-003 + 5.010000e+001 2.375191e-001 -3.777451e+000 6.175663e-003 + 5.011000e+001 2.605740e-001 -3.778205e+000 6.172404e-003 + 5.012000e+001 2.807878e-001 -3.778959e+000 6.169305e-003 + 5.013000e+001 2.979958e-001 -3.779713e+000 6.167075e-003 + 5.014000e+001 3.121137e-001 -3.780467e+000 6.166225e-003 + 5.015000e+001 3.231354e-001 -3.781221e+000 6.166946e-003 + 5.016000e+001 3.311278e-001 -3.781975e+000 6.169069e-003 + 5.017000e+001 3.362242e-001 -3.782729e+000 6.172105e-003 + 5.018000e+001 3.386152e-001 -3.783483e+000 6.175355e-003 + 5.019000e+001 3.385382e-001 -3.784237e+000 6.178076e-003 + 5.020000e+001 3.362667e-001 -3.784991e+000 6.179648e-003 + 5.021000e+001 3.320977e-001 -3.785745e+000 6.179718e-003 + 5.022000e+001 3.263405e-001 -3.786499e+000 6.178277e-003 + 5.023000e+001 3.193055e-001 -3.787253e+000 6.175663e-003 + 5.024000e+001 3.112932e-001 -3.788007e+000 6.172482e-003 + 5.025000e+001 3.025856e-001 -3.788761e+000 6.169466e-003 + 5.026000e+001 2.934377e-001 -3.789515e+000 6.167311e-003 + 5.027000e+001 2.840721e-001 -3.790269e+000 6.166507e-003 + 5.028000e+001 2.746740e-001 -3.791023e+000 6.167233e-003 + 5.029000e+001 2.653888e-001 -3.791777e+000 6.169311e-003 + 5.030000e+001 2.563215e-001 -3.792531e+000 6.172252e-003 + 5.031000e+001 2.475374e-001 -3.793285e+000 6.175370e-003 + 5.032000e+001 2.390642e-001 -3.794039e+000 6.177941e-003 + 5.033000e+001 2.308961e-001 -3.794793e+000 6.179371e-003 + 5.034000e+001 2.229980e-001 -3.795547e+000 6.179335e-003 + 5.035000e+001 2.153112e-001 -3.796301e+000 6.177847e-003 + 5.036000e+001 2.077594e-001 -3.797054e+000 6.175258e-003 + 5.037000e+001 2.002546e-001 -3.797808e+000 6.172175e-003 + 5.038000e+001 1.927031e-001 -3.798562e+000 6.169318e-003 + 5.039000e+001 1.850120e-001 -3.799316e+000 6.167355e-003 + 5.040000e+001 1.770934e-001 -3.800070e+000 6.166745e-003 + 5.041000e+001 1.688700e-001 -3.800824e+000 6.167632e-003 + 5.042000e+001 1.602783e-001 -3.801578e+000 6.169807e-003 + 5.043000e+001 1.512717e-001 -3.802332e+000 6.172762e-003 + 5.044000e+001 1.418222e-001 -3.803086e+000 6.175806e-003 + 5.045000e+001 1.319219e-001 -3.803840e+000 6.178228e-003 + 5.046000e+001 1.215824e-001 -3.804594e+000 6.179459e-003 + 5.047000e+001 1.108344e-001 -3.805348e+000 6.179207e-003 + 5.048000e+001 9.972595e-002 -3.806102e+000 6.177525e-003 + 5.049000e+001 8.832035e-002 -3.806856e+000 6.174798e-003 + 5.050000e+001 7.669343e-002 -3.807610e+000 6.171654e-003 + 5.051000e+001 6.493053e-002 -3.808364e+000 6.168824e-003 + 5.052000e+001 5.312333e-002 -3.809118e+000 6.166970e-003 + 5.053000e+001 4.136662e-002 -3.809872e+000 6.166530e-003 + 5.054000e+001 2.975525e-002 -3.810626e+000 6.167616e-003 + 5.055000e+001 1.838127e-002 -3.811380e+000 6.169987e-003 + 5.056000e+001 7.331586e-003 -3.812134e+000 6.173101e-003 + 5.057000e+001 -3.314097e-003 -3.812888e+000 6.176244e-003 + 5.058000e+001 -1.348464e-002 -3.813642e+000 6.178690e-003 + 5.059000e+001 -2.311833e-002 -3.814396e+000 6.179874e-003 + 5.060000e+001 -3.216315e-002 -3.815150e+000 6.179516e-003 + 5.061000e+001 -4.057648e-002 -3.815904e+000 6.177688e-003 + 5.062000e+001 -4.832424e-002 -3.816658e+000 6.174802e-003 + 5.063000e+001 -5.537967e-002 -3.817412e+000 6.171510e-003 + 5.064000e+001 -6.172170e-002 -3.818166e+000 6.168564e-003 + 5.065000e+001 -6.733306e-002 -3.818920e+000 6.166639e-003 + 5.066000e+001 -7.219838e-002 -3.819674e+000 6.166176e-003 + 5.067000e+001 -7.630219e-002 -3.820428e+000 6.167286e-003 + 5.068000e+001 -7.962717e-002 -3.821182e+000 6.169716e-003 + 5.069000e+001 -8.215268e-002 -3.821936e+000 6.172914e-003 + 5.070000e+001 -8.385363e-002 -3.822690e+000 6.176153e-003 + 5.071000e+001 -8.469993e-002 -3.823444e+000 6.178697e-003 + 5.072000e+001 -8.465652e-002 -3.824198e+000 6.179971e-003 + 5.073000e+001 -8.368403e-002 -3.824952e+000 6.179690e-003 + 5.074000e+001 -8.174009e-002 -3.825706e+000 6.177924e-003 + 5.075000e+001 -7.878128e-002 -3.826460e+000 6.175078e-003 + 5.076000e+001 -7.476574e-002 -3.827214e+000 6.171803e-003 + 5.077000e+001 -6.965620e-002 -3.827968e+000 6.168847e-003 + 5.078000e+001 -6.342345e-002 -3.828722e+000 6.166881e-003 + 5.079000e+001 -5.605006e-002 -3.829476e+000 6.166346e-003 + 5.080000e+001 -4.753415e-002 -3.830230e+000 6.167355e-003 + 5.081000e+001 -3.789305e-002 -3.830984e+000 6.169664e-003 + 5.082000e+001 -2.716662e-002 -3.831738e+000 6.172734e-003 + 5.083000e+001 -1.542007e-002 -3.832492e+000 6.175855e-003 + 5.084000e+001 -2.746098e-003 -3.833246e+000 6.178311e-003 + 5.085000e+001 1.073394e-002 -3.834000e+000 6.179545e-003 + 5.086000e+001 2.486983e-002 -3.834754e+000 6.179285e-003 + 5.087000e+001 3.948342e-002 -3.835508e+000 6.177604e-003 + 5.088000e+001 5.437085e-002 -3.836262e+000 6.174903e-003 + 5.089000e+001 6.930589e-002 -3.837016e+000 6.171814e-003 + 5.090000e+001 8.404452e-002 -3.837770e+000 6.169056e-003 + 5.091000e+001 9.833064e-002 -3.838524e+000 6.167268e-003 + 5.092000e+001 1.119027e-001 -3.839277e+000 6.166861e-003 + 5.093000e+001 1.245009e-001 -3.840031e+000 6.167918e-003 + 5.094000e+001 1.358753e-001 -3.840785e+000 6.170185e-003 + 5.095000e+001 1.457940e-001 -3.841539e+000 6.173122e-003 + 5.096000e+001 1.540506e-001 -3.842293e+000 6.176038e-003 + 5.097000e+001 1.604727e-001 -3.843047e+000 6.178250e-003 + 5.098000e+001 1.649279e-001 -3.843801e+000 6.179241e-003 + 5.099000e+001 1.673303e-001 -3.844555e+000 6.178781e-003 + 5.100000e+001 1.676448e-001 -3.845309e+000 6.176979e-003 + 5.101000e+001 1.658900e-001 -3.846063e+000 6.174259e-003 + 5.102000e+001 1.621397e-001 -3.846817e+000 6.171259e-003 + 5.103000e+001 1.565218e-001 -3.847571e+000 6.168685e-003 + 5.104000e+001 1.492160e-001 -3.848325e+000 6.167147e-003 + 5.105000e+001 1.404494e-001 -3.849079e+000 6.167011e-003 + 5.106000e+001 1.304897e-001 -3.849833e+000 6.168316e-003 + 5.107000e+001 1.196374e-001 -3.850587e+000 6.170764e-003 + 5.108000e+001 1.082165e-001 -3.851341e+000 6.173787e-003 + 5.109000e+001 9.656384e-002 -3.852095e+000 6.176678e-003 + 5.110000e+001 8.501800e-002 -3.852849e+000 6.178761e-003 + 5.111000e+001 7.390768e-002 -3.853603e+000 6.179543e-003 + 5.112000e+001 6.354031e-002 -3.854357e+000 6.178830e-003 + 5.113000e+001 5.419128e-002 -3.855111e+000 6.176774e-003 + 5.114000e+001 4.609401e-002 -3.855865e+000 6.173841e-003 + 5.115000e+001 3.943161e-002 -3.856619e+000 6.170702e-003 + 5.116000e+001 3.433008e-002 -3.857373e+000 6.168083e-003 + 5.117000e+001 3.085377e-002 -3.858127e+000 6.166595e-003 + 5.118000e+001 2.900293e-002 -3.858881e+000 6.166593e-003 + 5.119000e+001 2.871376e-002 -3.859635e+000 6.168088e-003 + 5.120000e+001 2.986085e-002 -3.860389e+000 6.170748e-003 + 5.121000e+001 3.226199e-002 -3.861143e+000 6.173971e-003 + 5.122000e+001 3.568522e-002 -3.861897e+000 6.177021e-003 + 5.123000e+001 3.985785e-002 -3.862651e+000 6.179201e-003 + 5.124000e+001 4.447710e-002 -3.863405e+000 6.180009e-003 + 5.125000e+001 4.922202e-002 -3.864159e+000 6.179255e-003 + 5.126000e+001 5.376615e-002 -3.864913e+000 6.177103e-003 + 5.127000e+001 5.779058e-002 -3.865667e+000 6.174038e-003 + 5.128000e+001 6.099670e-002 -3.866421e+000 6.170753e-003 + 5.129000e+001 6.311825e-002 -3.867175e+000 6.167994e-003 + 5.130000e+001 6.393230e-002 -3.867929e+000 6.166390e-003 + 5.131000e+001 6.326840e-002 -3.868683e+000 6.166305e-003 + 5.132000e+001 6.101590e-002 -3.869437e+000 6.167758e-003 + 5.133000e+001 5.712889e-002 -3.870191e+000 6.170417e-003 + 5.134000e+001 5.162861e-002 -3.870945e+000 6.173674e-003 + 5.135000e+001 4.460325e-002 -3.871699e+000 6.176790e-003 + 5.136000e+001 3.620517e-002 -3.872453e+000 6.179059e-003 + 5.137000e+001 2.664554e-002 -3.873207e+000 6.179972e-003 + 5.138000e+001 1.618666e-002 -3.873961e+000 6.179328e-003 + 5.139000e+001 5.132286e-003 -3.874715e+000 6.177282e-003 + 5.140000e+001 -6.183760e-003 -3.875469e+000 6.174308e-003 + 5.141000e+001 -1.741012e-002 -3.876223e+000 6.171087e-003 + 5.142000e+001 -2.819119e-002 -3.876977e+000 6.168353e-003 + 5.143000e+001 -3.818059e-002 -3.877731e+000 6.166729e-003 + 5.144000e+001 -4.705433e-002 -3.878485e+000 6.166575e-003 + 5.145000e+001 -5.452303e-002 -3.879239e+000 6.167914e-003 + 5.146000e+001 -6.034296e-002 -3.879993e+000 6.170425e-003 + 5.147000e+001 -6.432514e-002 -3.880747e+000 6.173522e-003 + 5.148000e+001 -6.634247e-002 -3.881501e+000 6.176486e-003 + 5.149000e+001 -6.633438e-002 -3.882254e+000 6.178639e-003 + 5.150000e+001 -6.430894e-002 -3.883008e+000 6.179493e-003 + 5.151000e+001 -6.034236e-002 -3.883762e+000 6.178863e-003 + 5.152000e+001 -5.457582e-002 -3.884516e+000 6.176908e-003 + 5.153000e+001 -4.720993e-002 -3.885270e+000 6.174092e-003 + 5.154000e+001 -3.849688e-002 -3.886024e+000 6.171074e-003 + 5.155000e+001 -2.873079e-002 -3.886778e+000 6.168558e-003 + 5.156000e+001 -1.823646e-002 -3.887532e+000 6.167128e-003 + 5.157000e+001 -7.357256e-003 -3.888286e+000 6.167110e-003 + 5.158000e+001 3.557724e-003 -3.889040e+000 6.168501e-003 + 5.159000e+001 1.416631e-002 -3.889794e+000 6.170967e-003 + 5.160000e+001 2.414548e-002 -3.890548e+000 6.173924e-003 + 5.161000e+001 3.320260e-002 -3.891302e+000 6.176678e-003 + 5.162000e+001 4.108508e-002 -3.892056e+000 6.178582e-003 + 5.163000e+001 4.758834e-002 -3.892810e+000 6.179193e-003 + 5.164000e+001 5.256148e-002 -3.893564e+000 6.178368e-003 + 5.165000e+001 5.591065e-002 -3.894318e+000 6.176299e-003 + 5.166000e+001 5.759994e-002 -3.895072e+000 6.173473e-003 + 5.167000e+001 5.764977e-002 -3.895826e+000 6.170551e-003 + 5.168000e+001 5.613287e-002 -3.896580e+000 6.168221e-003 + 5.169000e+001 5.316813e-002 -3.897334e+000 6.167033e-003 + 5.170000e+001 4.891250e-002 -3.898088e+000 6.167272e-003 + 5.171000e+001 4.355145e-002 -3.898842e+000 6.168887e-003 + 5.172000e+001 3.728835e-002 -3.899596e+000 6.171507e-003 + 5.173000e+001 3.033326e-002 -3.900350e+000 6.174523e-003 + 5.174000e+001 2.289168e-002 -3.901104e+000 6.177231e-003 + 5.175000e+001 1.515385e-002 -3.901858e+000 6.178996e-003 + 5.176000e+001 7.284882e-003 -3.902612e+000 6.179400e-003 + 5.177000e+001 -5.835245e-004 -3.903366e+000 6.178339e-003 + 5.178000e+001 -8.359625e-003 -3.904120e+000 6.176049e-003 + 5.179000e+001 -1.599598e-002 -3.904874e+000 6.173051e-003 + 5.180000e+001 -2.349146e-002 -3.905628e+000 6.170035e-003 + 5.181000e+001 -3.089070e-002 -3.906382e+000 6.167702e-003 + 5.182000e+001 -3.828115e-002 -3.907136e+000 6.166597e-003 + 5.183000e+001 -4.578765e-002 -3.907890e+000 6.166987e-003 + 5.184000e+001 -5.356492e-002 -3.908644e+000 6.168791e-003 + 5.185000e+001 -6.178815e-002 -3.909398e+000 6.171604e-003 + 5.186000e+001 -7.064226e-002 -3.910152e+000 6.174784e-003 + 5.187000e+001 -8.031009e-002 -3.910906e+000 6.177603e-003 + 5.188000e+001 -9.096034e-002 -3.911660e+000 6.179413e-003 + 5.189000e+001 -1.027356e-001 -3.912414e+000 6.179794e-003 + 5.190000e+001 -1.157410e-001 -3.913168e+000 6.178652e-003 + 5.191000e+001 -1.300348e-001 -3.913922e+000 6.176242e-003 + 5.192000e+001 -1.456193e-001 -3.914676e+000 6.173107e-003 + 5.193000e+001 -1.624362e-001 -3.915430e+000 6.169960e-003 + 5.194000e+001 -1.803620e-001 -3.916184e+000 6.167518e-003 + 5.195000e+001 -1.992086e-001 -3.916938e+000 6.166341e-003 + 5.196000e+001 -2.187249e-001 -3.917692e+000 6.166699e-003 + 5.197000e+001 -2.386023e-001 -3.918446e+000 6.168510e-003 + 5.198000e+001 -2.584828e-001 -3.919200e+000 6.171363e-003 + 5.199000e+001 -2.779696e-001 -3.919954e+000 6.174606e-003 + 5.200000e+001 -2.966392e-001 -3.920708e+000 6.177501e-003 + 5.201000e+001 -3.140561e-001 -3.921462e+000 6.179392e-003 + 5.202000e+001 -3.297875e-001 -3.922216e+000 6.179852e-003 + 5.203000e+001 -3.434191e-001 -3.922970e+000 6.178781e-003 + 5.204000e+001 -3.545706e-001 -3.923724e+000 6.176428e-003 + 5.205000e+001 -3.629094e-001 -3.924477e+000 6.173332e-003 + 5.206000e+001 -3.681641e-001 -3.925231e+000 6.170202e-003 + 5.207000e+001 -3.701350e-001 -3.925985e+000 6.167752e-003 + 5.208000e+001 -3.687017e-001 -3.926739e+000 6.166538e-003 + 5.209000e+001 -3.638290e-001 -3.927493e+000 6.166830e-003 + 5.210000e+001 -3.555681e-001 -3.928247e+000 6.168553e-003 + 5.211000e+001 -3.440555e-001 -3.929001e+000 6.171303e-003 + 5.212000e+001 -3.295078e-001 -3.929755e+000 6.174443e-003 + 5.213000e+001 -3.122142e-001 -3.930509e+000 6.177251e-003 + 5.214000e+001 -2.925253e-001 -3.931263e+000 6.179085e-003 + 5.215000e+001 -2.708404e-001 -3.932017e+000 6.179533e-003 + 5.216000e+001 -2.475922e-001 -3.932771e+000 6.178503e-003 + 5.217000e+001 -2.232307e-001 -3.933525e+000 6.176240e-003 + 5.218000e+001 -1.982069e-001 -3.934279e+000 6.173274e-003 + 5.219000e+001 -1.729561e-001 -3.935033e+000 6.170294e-003 + 5.220000e+001 -1.478825e-001 -3.935787e+000 6.167988e-003 + 5.221000e+001 -1.233457e-001 -3.936541e+000 6.166886e-003 + 5.222000e+001 -9.964874e-002 -3.937295e+000 6.167236e-003 + 5.223000e+001 -7.702926e-002 -3.938049e+000 6.168948e-003 + 5.224000e+001 -5.565382e-002 -3.938803e+000 6.171615e-003 + 5.225000e+001 -3.561519e-002 -3.939557e+000 6.174612e-003 + 5.226000e+001 -1.693325e-002 -3.940311e+000 6.177241e-003 + 5.227000e+001 4.409769e-004 -3.941065e+000 6.178891e-003 + 5.228000e+001 1.661809e-002 -3.941819e+000 6.179184e-003 + 5.229000e+001 3.176052e-002 -3.942573e+000 6.178056e-003 + 5.230000e+001 4.607051e-002 -3.943327e+000 6.175774e-003 + 5.231000e+001 5.977649e-002 -3.944081e+000 6.172872e-003 + 5.232000e+001 7.311862e-002 -3.944835e+000 6.170030e-003 + 5.233000e+001 8.633404e-002 -3.945589e+000 6.167913e-003 + 5.234000e+001 9.964269e-002 -3.946343e+000 6.167015e-003 + 5.235000e+001 1.132343e-001 -3.947097e+000 6.167547e-003 + 5.236000e+001 1.272571e-001 -3.947851e+000 6.169385e-003 + 5.237000e+001 1.418092e-001 -3.948605e+000 6.172099e-003 + 5.238000e+001 1.569321e-001 -3.949359e+000 6.175056e-003 + 5.239000e+001 1.726076e-001 -3.950113e+000 6.177566e-003 + 5.240000e+001 1.887579e-001 -3.950867e+000 6.179041e-003 + 5.241000e+001 2.052486e-001 -3.951621e+000 6.179135e-003 + 5.242000e+001 2.218941e-001 -3.952375e+000 6.177822e-003 + 5.243000e+001 2.384666e-001 -3.953129e+000 6.175402e-003 + 5.244000e+001 2.547059e-001 -3.953883e+000 6.172435e-003 + 5.245000e+001 2.703316e-001 -3.954637e+000 6.169609e-003 + 5.246000e+001 2.850557e-001 -3.955391e+000 6.167583e-003 + 5.247000e+001 2.985956e-001 -3.956145e+000 6.166832e-003 + 5.248000e+001 3.106863e-001 -3.956899e+000 6.167537e-003 + 5.249000e+001 3.210918e-001 -3.957653e+000 6.169540e-003 + 5.250000e+001 3.296145e-001 -3.958407e+000 6.172381e-003 + 5.251000e+001 3.361027e-001 -3.959161e+000 6.175405e-003 + 5.252000e+001 3.404554e-001 -3.959915e+000 6.177913e-003 + 5.253000e+001 3.426243e-001 -3.960669e+000 6.179322e-003 + 5.254000e+001 3.426130e-001 -3.961423e+000 6.179304e-003 + 5.255000e+001 3.404739e-001 -3.962177e+000 6.177855e-003 + 5.256000e+001 3.363021e-001 -3.962931e+000 6.175305e-003 + 5.257000e+001 3.302275e-001 -3.963685e+000 6.172236e-003 + 5.258000e+001 3.224055e-001 -3.964439e+000 6.169354e-003 + 5.259000e+001 3.130062e-001 -3.965193e+000 6.167323e-003 + 5.260000e+001 3.022035e-001 -3.965947e+000 6.166616e-003 + 5.261000e+001 2.901652e-001 -3.966700e+000 6.167398e-003 + 5.262000e+001 2.770426e-001 -3.967454e+000 6.169494e-003 + 5.263000e+001 2.629627e-001 -3.968208e+000 6.172424e-003 + 5.264000e+001 2.480225e-001 -3.968962e+000 6.175516e-003 + 5.265000e+001 2.322847e-001 -3.969716e+000 6.178061e-003 + 5.266000e+001 2.157771e-001 -3.970470e+000 6.179474e-003 + 5.267000e+001 1.984943e-001 -3.971224e+000 6.179432e-003 + 5.268000e+001 1.804018e-001 -3.971978e+000 6.177943e-003 + 5.269000e+001 1.614433e-001 -3.972732e+000 6.175346e-003 + 5.270000e+001 1.415489e-001 -3.973486e+000 6.172237e-003 + 5.271000e+001 1.206462e-001 -3.974240e+000 6.169327e-003 + 5.272000e+001 9.867119e-002 -3.974994e+000 6.167286e-003 + 5.273000e+001 7.558024e-002 -3.975748e+000 6.166581e-003 + 5.274000e+001 5.136103e-002 -3.976502e+000 6.167372e-003 + 5.275000e+001 2.604273e-002 -3.977256e+000 6.169477e-003 + 5.276000e+001 -2.957647e-004 -3.978010e+000 6.172409e-003 + 5.277000e+001 -2.751994e-002 -3.978764e+000 6.175492e-003 + 5.278000e+001 -5.543663e-002 -3.979518e+000 6.178020e-003 + 5.279000e+001 -8.379412e-002 -3.980272e+000 6.179413e-003 + 5.280000e+001 -1.122856e-001 -3.981026e+000 6.179355e-003 + 5.281000e+001 -1.405556e-001 -3.981780e+000 6.177863e-003 + 5.282000e+001 -1.682100e-001 -3.982534e+000 6.175281e-003 + 5.283000e+001 -1.948284e-001 -3.983288e+000 6.172206e-003 + 5.284000e+001 -2.199784e-001 -3.984042e+000 6.169346e-003 + 5.285000e+001 -2.432319e-001 -3.984796e+000 6.167360e-003 + 5.286000e+001 -2.641817e-001 -3.985550e+000 6.166704e-003 + 5.287000e+001 -2.824582e-001 -3.986304e+000 6.167526e-003 + 5.288000e+001 -2.977451e-001 -3.987058e+000 6.169634e-003 + 5.289000e+001 -3.097935e-001 -3.987812e+000 6.172536e-003 + 5.290000e+001 -3.184332e-001 -3.988566e+000 6.175561e-003 + 5.291000e+001 -3.235813e-001 -3.989320e+000 6.178011e-003 + 5.292000e+001 -3.252468e-001 -3.990074e+000 6.179323e-003 + 5.293000e+001 -3.235319e-001 -3.990828e+000 6.179196e-003 + 5.294000e+001 -3.186286e-001 -3.991582e+000 6.177663e-003 + 5.295000e+001 -3.108118e-001 -3.992336e+000 6.175080e-003 + 5.296000e+001 -3.004289e-001 -3.993090e+000 6.172045e-003 + 5.297000e+001 -2.878858e-001 -3.993844e+000 6.169260e-003 + 5.298000e+001 -2.736304e-001 -3.994598e+000 6.167370e-003 + 5.299000e+001 -2.581348e-001 -3.995352e+000 6.166811e-003 + 5.300000e+001 -2.418764e-001 -3.996106e+000 6.167712e-003 + 5.301000e+001 -2.253181e-001 -3.996860e+000 6.169863e-003 + 5.302000e+001 -2.088910e-001 -3.997614e+000 6.172763e-003 + 5.303000e+001 -1.929776e-001 -3.998368e+000 6.175740e-003 + 5.304000e+001 -1.778979e-001 -3.999122e+000 6.178106e-003 + 5.305000e+001 -1.638992e-001 -3.999876e+000 6.179314e-003 + 5.306000e+001 -1.511489e-001 -4.000630e+000 6.179086e-003 + 5.307000e+001 -1.397317e-001 -4.001384e+000 6.177473e-003 + 5.308000e+001 -1.296507e-001 -4.002138e+000 6.174849e-003 + 5.309000e+001 -1.208332e-001 -4.002892e+000 6.171819e-003 + 5.310000e+001 -1.131388e-001 -4.003646e+000 6.169085e-003 + 5.311000e+001 -1.063723e-001 -4.004400e+000 6.167279e-003 + 5.312000e+001 -1.002977e-001 -4.005154e+000 6.166820e-003 + 5.313000e+001 -9.465489e-002 -4.005908e+000 6.167817e-003 + 5.314000e+001 -8.917670e-002 -4.006662e+000 6.170037e-003 + 5.315000e+001 -8.360593e-002 -4.007416e+000 6.172969e-003 + 5.316000e+001 -7.771148e-002 -4.008170e+000 6.175935e-003 + 5.317000e+001 -7.130252e-002 -4.008923e+000 6.178251e-003 + 5.318000e+001 -6.424017e-002 -4.009677e+000 6.179382e-003 + 5.319000e+001 -5.644590e-002 -4.010431e+000 6.179067e-003 + 5.320000e+001 -4.790632e-002 -4.011185e+000 6.177379e-003 + 5.321000e+001 -3.867419e-002 -4.011939e+000 6.174706e-003 + 5.322000e+001 -2.886545e-002 -4.012693e+000 6.171663e-003 + 5.323000e+001 -1.865268e-002 -4.013447e+000 6.168951e-003 + 5.324000e+001 -8.255201e-003 -4.014201e+000 6.167198e-003 + 5.325000e+001 2.073511e-003 -4.014955e+000 6.166807e-003 + 5.326000e+001 1.206036e-002 -4.015709e+000 6.167870e-003 + 5.327000e+001 2.142836e-002 -4.016463e+000 6.170139e-003 + 5.328000e+001 2.991265e-002 -4.017217e+000 6.173092e-003 + 5.329000e+001 3.727581e-002 -4.017971e+000 6.176046e-003 + 5.330000e+001 4.332172e-002 -4.018725e+000 6.178322e-003 + 5.331000e+001 4.790711e-002 -4.019479e+000 6.179397e-003 + 5.332000e+001 5.095018e-002 -4.020233e+000 6.179024e-003 + 5.333000e+001 5.243570e-002 -4.020987e+000 6.177290e-003 + 5.334000e+001 5.241647e-002 -4.021741e+000 6.174596e-003 + 5.335000e+001 5.101086e-002 -4.022495e+000 6.171562e-003 + 5.336000e+001 4.839667e-002 -4.023249e+000 6.168888e-003 + 5.337000e+001 4.480154e-002 -4.024003e+000 6.167190e-003 + 5.338000e+001 4.049058e-002 -4.024757e+000 6.166859e-003 + 5.339000e+001 3.575176e-002 -4.025511e+000 6.167969e-003 + 5.340000e+001 3.087986e-002 -4.026265e+000 6.170262e-003 + 5.341000e+001 2.616010e-002 -4.027019e+000 6.173207e-003 + 5.342000e+001 2.185204e-002 -4.027773e+000 6.176122e-003 + 5.343000e+001 1.817493e-002 -4.028527e+000 6.178335e-003 + 5.344000e+001 1.529520e-002 -4.029281e+000 6.179339e-003 + 5.345000e+001 1.331691e-002 -4.030035e+000 6.178905e-003 + 5.346000e+001 1.227562e-002 -4.030789e+000 6.177134e-003 + 5.347000e+001 1.213617e-002 -4.031543e+000 6.174439e-003 + 5.348000e+001 1.279449e-002 -4.032297e+000 6.171441e-003 + 5.349000e+001 1.408334e-002 -4.033051e+000 6.168834e-003 + 5.350000e+001 1.578183e-002 -4.033805e+000 6.167220e-003 + 5.351000e+001 1.762810e-002 -4.034559e+000 6.166972e-003 + 5.352000e+001 1.933466e-002 -4.035313e+000 6.168145e-003 + 5.353000e+001 2.060538e-002 -4.036067e+000 6.170464e-003 + 5.354000e+001 2.115339e-002 -4.036821e+000 6.173389e-003 + 5.355000e+001 2.071889e-002 -4.037575e+000 6.176244e-003 + 5.356000e+001 1.908574e-002 -4.038329e+000 6.178366e-003 + 5.357000e+001 1.609612e-002 -4.039083e+000 6.179268e-003 + 5.358000e+001 1.166231e-002 -4.039837e+000 6.178742e-003 + 5.359000e+001 5.774919e-003 -4.040591e+000 6.176911e-003 + 5.360000e+001 -1.492943e-003 -4.041345e+000 6.174200e-003 + 5.361000e+001 -9.985784e-003 -4.042099e+000 6.171238e-003 + 5.362000e+001 -1.947027e-002 -4.042853e+000 6.168711e-003 + 5.363000e+001 -2.964399e-002 -4.043607e+000 6.167206e-003 + 5.364000e+001 -4.014802e-002 -4.044361e+000 6.167073e-003 + 5.365000e+001 -5.058271e-002 -4.045115e+000 6.168342e-003 + 5.366000e+001 -6.052600e-002 -4.045869e+000 6.170717e-003 + 5.367000e+001 -6.955314e-002 -4.046623e+000 6.173648e-003 + 5.368000e+001 -7.725705e-002 -4.047377e+000 6.176453e-003 + 5.369000e+001 -8.326814e-002 -4.048131e+000 6.178482e-003 + 5.370000e+001 -8.727264e-002 -4.048885e+000 6.179264e-003 + 5.371000e+001 -8.902845e-002 -4.049639e+000 6.178617e-003 + 5.372000e+001 -8.837776e-002 -4.050393e+000 6.176690e-003 + 5.373000e+001 -8.525569e-002 -4.051147e+000 6.173926e-003 + 5.374000e+001 -7.969462e-002 -4.051900e+000 6.170966e-003 + 5.375000e+001 -7.182383e-002 -4.052654e+000 6.168497e-003 + 5.376000e+001 -6.186460e-002 -4.053408e+000 6.167092e-003 + 5.377000e+001 -5.012094e-002 -4.054162e+000 6.167082e-003 + 5.378000e+001 -3.696638e-002 -4.054916e+000 6.168470e-003 + 5.379000e+001 -2.282757e-002 -4.055670e+000 6.170939e-003 + 5.380000e+001 -8.165426e-003 -4.056424e+000 6.173917e-003 + 5.381000e+001 6.545154e-003 -4.057178e+000 6.176716e-003 + 5.382000e+001 2.083607e-002 -4.057932e+000 6.178688e-003 + 5.383000e+001 3.426619e-002 -4.058686e+000 6.179374e-003 + 5.384000e+001 4.644003e-002 -4.059440e+000 6.178613e-003 + 5.385000e+001 5.702386e-002 -4.060194e+000 6.176577e-003 + 5.386000e+001 6.575868e-002 -4.060948e+000 6.173731e-003 + 5.387000e+001 7.246934e-002 -4.061702e+000 6.170730e-003 + 5.388000e+001 7.706945e-002 -4.062456e+000 6.168268e-003 + 5.389000e+001 7.956191e-002 -4.063210e+000 6.166914e-003 + 5.390000e+001 8.003515e-002 -4.063964e+000 6.166986e-003 + 5.391000e+001 7.865534e-002 -4.064718e+000 6.168470e-003 + 5.392000e+001 7.565508e-002 -4.065472e+000 6.171026e-003 + 5.393000e+001 7.131921e-002 -4.066226e+000 6.174068e-003 + 5.394000e+001 6.596858e-002 -4.066980e+000 6.176895e-003 + 5.395000e+001 5.994269e-002 -4.067734e+000 6.178856e-003 + 5.396000e+001 5.358205e-002 -4.068488e+000 6.179500e-003 + 5.397000e+001 4.721136e-002 -4.069242e+000 6.178675e-003 + 5.398000e+001 4.112424e-002 -4.069996e+000 6.176569e-003 + 5.399000e+001 3.557030e-002 -4.070750e+000 6.173663e-003 + 5.400000e+001 3.074534e-002 -4.071504e+000 6.170624e-003 + 5.401000e+001 2.678487e-002 -4.072258e+000 6.168150e-003 + 5.402000e+001 2.376142e-002 -4.073012e+000 6.166812e-003 + 5.403000e+001 2.168558e-002 -4.073766e+000 6.166920e-003 + 5.404000e+001 2.051059e-002 -4.074520e+000 6.168450e-003 + 5.405000e+001 2.014015e-002 -4.075274e+000 6.171052e-003 + 5.406000e+001 2.043891e-002 -4.076028e+000 6.174126e-003 + 5.407000e+001 2.124489e-002 -4.076782e+000 6.176968e-003 + 5.408000e+001 2.238315e-002 -4.077536e+000 6.178926e-003 + 5.409000e+001 2.367975e-002 -4.078290e+000 6.179550e-003 + 5.410000e+001 2.497527e-002 -4.079044e+000 6.178698e-003 + 5.411000e+001 2.613695e-002 -4.079798e+000 6.176563e-003 + 5.412000e+001 2.706888e-002 -4.080552e+000 6.173636e-003 + 5.413000e+001 2.771949e-002 -4.081306e+000 6.170587e-003 + 5.414000e+001 2.808602e-002 -4.082060e+000 6.168116e-003 + 5.415000e+001 2.821565e-002 -4.082814e+000 6.166791e-003 + 5.416000e+001 2.820326e-002 -4.083568e+000 6.166915e-003 + 5.417000e+001 2.818599e-002 -4.084322e+000 6.168458e-003 + 5.418000e+001 2.833485e-002 -4.085076e+000 6.171065e-003 + 5.419000e+001 2.884394e-002 -4.085830e+000 6.174136e-003 + 5.420000e+001 2.991798e-002 -4.086584e+000 6.176965e-003 + 5.421000e+001 3.175871e-002 -4.087338e+000 6.178907e-003 + 5.422000e+001 3.455118e-002 -4.088092e+000 6.179517e-003 + 5.423000e+001 3.845060e-002 -4.088846e+000 6.178660e-003 + 5.424000e+001 4.357060e-002 -4.089600e+000 6.176535e-003 + 5.425000e+001 4.997360e-002 -4.090354e+000 6.173630e-003 + 5.426000e+001 5.766387e-002 -4.091108e+000 6.170614e-003 + 5.427000e+001 6.658375e-002 -4.091862e+000 6.168179e-003 + 5.428000e+001 7.661322e-002 -4.092616e+000 6.166883e-003 + 5.429000e+001 8.757304e-002 -4.093370e+000 6.167019e-003 + 5.430000e+001 9.923113e-002 -4.094123e+000 6.168553e-003 + 5.431000e+001 1.113121e-001 -4.094877e+000 6.171126e-003 + 5.432000e+001 1.235093e-001 -4.095631e+000 6.174142e-003 + 5.433000e+001 1.354987e-001 -4.096385e+000 6.176907e-003 + 5.434000e+001 1.469543e-001 -4.097139e+000 6.178788e-003 + 5.435000e+001 1.575633e-001 -4.097893e+000 6.179356e-003 + 5.436000e+001 1.670415e-001 -4.098647e+000 6.178486e-003 + 5.437000e+001 1.751471e-001 -4.099401e+000 6.176383e-003 + 5.438000e+001 1.816923e-001 -4.100155e+000 6.173537e-003 + 5.439000e+001 1.865527e-001 -4.100909e+000 6.170604e-003 + 5.440000e+001 1.896730e-001 -4.101663e+000 6.168261e-003 + 5.441000e+001 1.910698e-001 -4.102417e+000 6.167047e-003 + 5.442000e+001 1.908304e-001 -4.103171e+000 6.167237e-003 + 5.443000e+001 1.891077e-001 -4.103925e+000 6.168783e-003 + 5.444000e+001 1.861128e-001 -4.104679e+000 6.171320e-003 + 5.445000e+001 1.821031e-001 -4.105433e+000 6.174259e-003 + 5.446000e+001 1.773699e-001 -4.106187e+000 6.176918e-003 + 5.447000e+001 1.722228e-001 -4.106941e+000 6.178684e-003 + 5.448000e+001 1.669737e-001 -4.107695e+000 6.179154e-003 + 5.449000e+001 1.619215e-001 -4.108449e+000 6.178224e-003 + 5.450000e+001 1.573362e-001 -4.109203e+000 6.176112e-003 + 5.451000e+001 1.534458e-001 -4.109957e+000 6.173311e-003 + 5.452000e+001 1.504248e-001 -4.110711e+000 6.170472e-003 + 5.453000e+001 1.483857e-001 -4.111465e+000 6.168253e-003 + 5.454000e+001 1.473733e-001 -4.112219e+000 6.167167e-003 + 5.455000e+001 1.473635e-001 -4.112973e+000 6.167464e-003 + 5.456000e+001 1.482645e-001 -4.113727e+000 6.169072e-003 + 5.457000e+001 1.499220e-001 -4.114481e+000 6.171613e-003 + 5.458000e+001 1.521272e-001 -4.115235e+000 6.174495e-003 + 5.459000e+001 1.546281e-001 -4.115989e+000 6.177048e-003 + 5.460000e+001 1.571415e-001 -4.116743e+000 6.178681e-003 + 5.461000e+001 1.593679e-001 -4.117497e+000 6.179017e-003 + 5.462000e+001 1.610059e-001 -4.118251e+000 6.177979e-003 + 5.463000e+001 1.617668e-001 -4.119005e+000 6.175810e-003 + 5.464000e+001 1.613881e-001 -4.119759e+000 6.173014e-003 + 5.465000e+001 1.596459e-001 -4.120513e+000 6.170241e-003 + 5.466000e+001 1.563645e-001 -4.121267e+000 6.168135e-003 + 5.467000e+001 1.514238e-001 -4.122021e+000 6.167187e-003 + 5.468000e+001 1.447634e-001 -4.122775e+000 6.167617e-003 + 5.469000e+001 1.363842e-001 -4.123529e+000 6.169325e-003 + 5.470000e+001 1.263464e-001 -4.124283e+000 6.171912e-003 + 5.471000e+001 1.147649e-001 -4.125037e+000 6.174778e-003 + 5.472000e+001 1.018025e-001 -4.125791e+000 6.177257e-003 + 5.473000e+001 8.766047e-002 -4.126545e+000 6.178772e-003 + 5.474000e+001 7.256844e-002 -4.127299e+000 6.178972e-003 + 5.475000e+001 5.677274e-002 -4.128053e+000 6.177809e-003 + 5.476000e+001 4.052507e-002 -4.128807e+000 6.175552e-003 + 5.477000e+001 2.407149e-002 -4.129561e+000 6.172723e-003 + 5.478000e+001 7.642445e-003 -4.130315e+000 6.169978e-003 + 5.479000e+001 -8.555527e-003 -4.131069e+000 6.167955e-003 + 5.480000e+001 -2.434620e-002 -4.131823e+000 6.167126e-003 + 5.481000e+001 -3.958777e-002 -4.132577e+000 6.167686e-003 + 5.482000e+001 -5.417459e-002 -4.133331e+000 6.169507e-003 + 5.483000e+001 -6.803653e-002 -4.134085e+000 6.172167e-003 + 5.484000e+001 -8.113620e-002 -4.134839e+000 6.175051e-003 + 5.485000e+001 -9.346421e-002 -4.135593e+000 6.177489e-003 + 5.486000e+001 -1.050330e-001 -4.136346e+000 6.178916e-003 + 5.487000e+001 -1.158695e-001 -4.137100e+000 6.179000e-003 + 5.488000e+001 -1.260076e-001 -4.137854e+000 6.177719e-003 + 5.489000e+001 -1.354805e-001 -4.138608e+000 6.175366e-003 + 5.490000e+001 -1.443136e-001 -4.139362e+000 6.172484e-003 + 5.491000e+001 -1.525189e-001 -4.140116e+000 6.169738e-003 + 5.492000e+001 -1.600903e-001 -4.140870e+000 6.167766e-003 + 5.493000e+001 -1.670015e-001 -4.141624e+000 6.167027e-003 + 5.494000e+001 -1.732053e-001 -4.142378e+000 6.167696e-003 + 5.495000e+001 -1.786351e-001 -4.143132e+000 6.169621e-003 + 5.496000e+001 -1.832087e-001 -4.143886e+000 6.172358e-003 + 5.497000e+001 -1.868337e-001 -4.144640e+000 6.175275e-003 + 5.498000e+001 -1.894140e-001 -4.145394e+000 6.177698e-003 + 5.499000e+001 -1.908577e-001 -4.146148e+000 6.179066e-003 + 5.500000e+001 -1.910856e-001 -4.146902e+000 6.179060e-003 + 5.501000e+001 -1.900390e-001 -4.147656e+000 6.177679e-003 + 5.502000e+001 -1.876878e-001 -4.148410e+000 6.175237e-003 + 5.503000e+001 -1.840366e-001 -4.149164e+000 6.172296e-003 + 5.504000e+001 -1.791299e-001 -4.149918e+000 6.169533e-003 + 5.505000e+001 -1.730549e-001 -4.150672e+000 6.167587e-003 + 5.506000e+001 -1.659419e-001 -4.151426e+000 6.166912e-003 + 5.507000e+001 -1.579631e-001 -4.152180e+000 6.167665e-003 + 5.508000e+001 -1.493279e-001 -4.152934e+000 6.169678e-003 + 5.509000e+001 -1.402771e-001 -4.153688e+000 6.172487e-003 + 5.510000e+001 -1.310737e-001 -4.154442e+000 6.175446e-003 + 5.511000e+001 -1.219937e-001 -4.155196e+000 6.177874e-003 + 5.512000e+001 -1.133144e-001 -4.155950e+000 6.179211e-003 + 5.513000e+001 -1.053030e-001 -4.156704e+000 6.179147e-003 + 5.514000e+001 -9.820502e-002 -4.157458e+000 6.177695e-003 + 5.515000e+001 -9.223315e-002 -4.158212e+000 6.175184e-003 + 5.516000e+001 -8.755775e-002 -4.158966e+000 6.172191e-003 + 5.517000e+001 -8.429893e-002 -4.159720e+000 6.169402e-003 + 5.518000e+001 -8.252087e-002 -4.160474e+000 6.167461e-003 + 5.519000e+001 -8.222879e-002 -4.161228e+000 6.166815e-003 + 5.520000e+001 -8.336860e-002 -4.161982e+000 6.167616e-003 + 5.521000e+001 -8.582935e-002 -4.162736e+000 6.169679e-003 + 5.522000e+001 -8.944849e-002 -4.163490e+000 6.172532e-003 + 5.523000e+001 -9.401944e-002 -4.164244e+000 6.175518e-003 + 5.524000e+001 -9.930141e-002 -4.164998e+000 6.177953e-003 + 5.525000e+001 -1.050307e-001 -4.165752e+000 6.179276e-003 + 5.526000e+001 -1.109330e-001 -4.166506e+000 6.179185e-003 + 5.527000e+001 -1.167365e-001 -4.167260e+000 6.177700e-003 + 5.528000e+001 -1.221839e-001 -4.168014e+000 6.175161e-003 + 5.529000e+001 -1.270449e-001 -4.168768e+000 6.172151e-003 + 5.530000e+001 -1.311255e-001 -4.169522e+000 6.169361e-003 + 5.531000e+001 -1.342771e-001 -4.170276e+000 6.167433e-003 + 5.532000e+001 -1.364020e-001 -4.171030e+000 6.166809e-003 + 5.533000e+001 -1.374566e-001 -4.171784e+000 6.167634e-003 + 5.534000e+001 -1.374525e-001 -4.172538e+000 6.169716e-003 + 5.535000e+001 -1.364535e-001 -4.173292e+000 6.172575e-003 + 5.536000e+001 -1.345712e-001 -4.174046e+000 6.175553e-003 + 5.537000e+001 -1.319577e-001 -4.174800e+000 6.177966e-003 + 5.538000e+001 -1.287965e-001 -4.175554e+000 6.179261e-003 + 5.539000e+001 -1.252921e-001 -4.176308e+000 6.179142e-003 + 5.540000e+001 -1.216584e-001 -4.177062e+000 6.177637e-003 + 5.541000e+001 -1.181074e-001 -4.177816e+000 6.175094e-003 + 5.542000e+001 -1.148378e-001 -4.178569e+000 6.172096e-003 + 5.543000e+001 -1.120247e-001 -4.179323e+000 6.169334e-003 + 5.544000e+001 -1.098109e-001 -4.180077e+000 6.167443e-003 + 5.545000e+001 -1.082999e-001 -4.180831e+000 6.166857e-003 + 5.546000e+001 -1.075511e-001 -4.181585e+000 6.167710e-003 + 5.547000e+001 -1.075777e-001 -4.182339e+000 6.169802e-003 + 5.548000e+001 -1.083464e-001 -4.183093e+000 6.172651e-003 + 5.549000e+001 -1.097805e-001 -4.183847e+000 6.175599e-003 + 5.550000e+001 -1.117642e-001 -4.184601e+000 6.177969e-003 + 5.551000e+001 -1.141493e-001 -4.185355e+000 6.179218e-003 + 5.552000e+001 -1.167634e-001 -4.186109e+000 6.179060e-003 + 5.553000e+001 -1.194188e-001 -4.186863e+000 6.177535e-003 + 5.554000e+001 -1.219222e-001 -4.187617e+000 6.174995e-003 + 5.555000e+001 -1.240840e-001 -4.188371e+000 6.172026e-003 + 5.556000e+001 -1.257275e-001 -4.189125e+000 6.169310e-003 + 5.557000e+001 -1.266967e-001 -4.189879e+000 6.167473e-003 + 5.558000e+001 -1.268626e-001 -4.190633e+000 6.166936e-003 + 5.559000e+001 -1.261280e-001 -4.191387e+000 6.167822e-003 + 5.560000e+001 -1.244308e-001 -4.192141e+000 6.169921e-003 + 5.561000e+001 -1.217439e-001 -4.192895e+000 6.172748e-003 + 5.562000e+001 -1.180749e-001 -4.193649e+000 6.175649e-003 + 5.563000e+001 -1.134627e-001 -4.194403e+000 6.177957e-003 + 5.564000e+001 -1.079728e-001 -4.195157e+000 6.179142e-003 + 5.565000e+001 -1.016920e-001 -4.195911e+000 6.178934e-003 + 5.566000e+001 -9.472137e-002 -4.196665e+000 6.177385e-003 + 5.567000e+001 -8.716944e-002 -4.197419e+000 6.174854e-003 + 5.568000e+001 -7.914513e-002 -4.198173e+000 6.171925e-003 + 5.569000e+001 -7.075137e-002 -4.198927e+000 6.169276e-003 + 5.570000e+001 -6.207946e-002 -4.199681e+000 6.167516e-003 + 5.571000e+001 -5.320472e-002 -4.200435e+000 6.167051e-003 + 5.572000e+001 -4.418356e-002 -4.201189e+000 6.167985e-003 + 5.573000e+001 -3.505217e-002 -4.201943e+000 6.170100e-003 + 5.574000e+001 -2.582690e-002 -4.202697e+000 6.172903e-003 + 5.575000e+001 -1.650620e-002 -4.203451e+000 6.175747e-003 + 5.576000e+001 -7.074047e-003 -4.204205e+000 6.177975e-003 + 5.577000e+001 2.495456e-003 -4.204959e+000 6.179075e-003 + 5.578000e+001 1.223257e-002 -4.205713e+000 6.178796e-003 + 5.579000e+001 2.216591e-002 -4.206467e+000 6.177204e-003 + 5.580000e+001 3.231636e-002 -4.207221e+000 6.174669e-003 + 5.581000e+001 4.269125e-002 -4.207975e+000 6.171777e-003 + 5.582000e+001 5.327927e-002 -4.208729e+000 6.169195e-003 + 5.583000e+001 6.404643e-002 -4.209483e+000 6.167521e-003 + 5.584000e+001 7.493333e-002 -4.210237e+000 6.167140e-003 + 5.585000e+001 8.585407e-002 -4.210991e+000 6.168138e-003 + 5.586000e+001 9.669671e-002 -4.211745e+000 6.170281e-003 + 5.587000e+001 1.073255e-001 -4.212499e+000 6.173072e-003 + 5.588000e+001 1.175849e-001 -4.213253e+000 6.175864e-003 + 5.589000e+001 1.273043e-001 -4.214007e+000 6.178014e-003 + 5.590000e+001 1.363051e-001 -4.214761e+000 6.179028e-003 + 5.591000e+001 1.444076e-001 -4.215515e+000 6.178673e-003 + 5.592000e+001 1.514386e-001 -4.216269e+000 6.177034e-003 + 5.593000e+001 1.572396e-001 -4.217023e+000 6.174492e-003 + 5.594000e+001 1.616739e-001 -4.217777e+000 6.171636e-003 + 5.595000e+001 1.646333e-001 -4.218531e+000 6.169126e-003 + 5.596000e+001 1.660436e-001 -4.219285e+000 6.167542e-003 + 5.597000e+001 1.658687e-001 -4.220039e+000 6.167250e-003 + 5.598000e+001 1.641130e-001 -4.220793e+000 6.168316e-003 + 5.599000e+001 1.608222e-001 -4.221546e+000 6.170488e-003 + 5.600000e+001 1.560823e-001 -4.222300e+000 6.173263e-003 + 5.601000e+001 1.500160e-001 -4.223054e+000 6.175995e-003 + 5.602000e+001 1.427791e-001 -4.223808e+000 6.178054e-003 + 5.603000e+001 1.345541e-001 -4.224562e+000 6.178963e-003 + 5.604000e+001 1.255433e-001 -4.225316e+000 6.178515e-003 + 5.605000e+001 1.159611e-001 -4.226070e+000 6.176815e-003 + 5.606000e+001 1.060262e-001 -4.226824e+000 6.174256e-003 + 5.607000e+001 9.595337e-002 -4.227578e+000 6.171433e-003 + 5.608000e+001 8.594616e-002 -4.228332e+000 6.168999e-003 + 5.609000e+001 7.618998e-002 -4.229086e+000 6.167520e-003 + 5.610000e+001 6.684660e-002 -4.229840e+000 6.167339e-003 + 5.611000e+001 5.804974e-002 -4.230594e+000 6.168497e-003 + 5.612000e+001 4.990229e-002 -4.231348e+000 6.170725e-003 + 5.613000e+001 4.247499e-002 -4.232102e+000 6.173506e-003 + 5.614000e+001 3.580666e-002 -4.232856e+000 6.176196e-003 + 5.615000e+001 2.990596e-002 -4.233610e+000 6.178171e-003 + 5.616000e+001 2.475427e-002 -4.234364e+000 6.178975e-003 + 5.617000e+001 2.030980e-002 -4.235118e+000 6.178421e-003 + 5.618000e+001 1.651228e-002 -4.235872e+000 6.176638e-003 + 5.619000e+001 1.328831e-002 -4.236626e+000 6.174037e-003 + 5.620000e+001 1.055666e-002 -4.237380e+000 6.171220e-003 + 5.621000e+001 8.233613e-003 -4.238134e+000 6.168838e-003 + 5.622000e+001 6.237681e-003 -4.238888e+000 6.167443e-003 + 5.623000e+001 4.493782e-003 -4.239642e+000 6.167360e-003 + 5.624000e+001 2.936478e-003 -4.240396e+000 6.168608e-003 + 5.625000e+001 1.512255e-003 -4.241150e+000 6.170898e-003 + 5.626000e+001 1.807536e-004 -4.241904e+000 6.173700e-003 + 5.627000e+001 -1.085016e-003 -4.242658e+000 6.176364e-003 + 5.628000e+001 -2.299404e-003 -4.243412e+000 6.178276e-003 + 5.629000e+001 -3.465660e-003 -4.244166e+000 6.178994e-003 + 5.630000e+001 -4.578082e-003 -4.244920e+000 6.178351e-003 + 5.631000e+001 -5.624581e-003 -4.245674e+000 6.176495e-003 + 5.632000e+001 -6.589413e-003 -4.246428e+000 6.173856e-003 + 5.633000e+001 -7.455843e-003 -4.247182e+000 6.171042e-003 + 5.634000e+001 -8.208541e-003 -4.247936e+000 6.168705e-003 + 5.635000e+001 -8.835502e-003 -4.248690e+000 6.167387e-003 + 5.636000e+001 -9.329359e-003 -4.249444e+000 6.167394e-003 + 5.637000e+001 -9.687986e-003 -4.250198e+000 6.168724e-003 + 5.638000e+001 -9.914372e-003 -4.250952e+000 6.171071e-003 + 5.639000e+001 -1.001576e-002 -4.251706e+000 6.173891e-003 + 5.640000e+001 -1.000218e-002 -4.252460e+000 6.176532e-003 + 5.641000e+001 -9.884443e-003 -4.253214e+000 6.178383e-003 + 5.642000e+001 -9.671846e-003 -4.253968e+000 6.179016e-003 + 5.643000e+001 -9.369742e-003 -4.254722e+000 6.178284e-003 + 5.644000e+001 -8.977205e-003 -4.255476e+000 6.176354e-003 + 5.645000e+001 -8.485023e-003 -4.256230e+000 6.173671e-003 + 5.646000e+001 -7.874221e-003 -4.256984e+000 6.170853e-003 + 5.647000e+001 -7.115279e-003 -4.257738e+000 6.168551e-003 + 5.648000e+001 -6.168188e-003 -4.258492e+000 6.167299e-003 + 5.649000e+001 -4.983420e-003 -4.259246e+000 6.167388e-003 + 5.650000e+001 -3.503822e-003 -4.260000e+000 6.168799e-003 + 5.651000e+001 -1.667408e-003 -4.260754e+000 6.171207e-003 + 5.652000e+001 5.890854e-004 -4.261508e+000 6.174055e-003 + 5.653000e+001 3.326021e-003 -4.262262e+000 6.176688e-003 + 5.654000e+001 6.596292e-003 -4.263016e+000 6.178498e-003 + 5.655000e+001 1.044061e-002 -4.263769e+000 6.179068e-003 + 5.656000e+001 1.488293e-002 -4.264523e+000 6.178266e-003 + 5.657000e+001 1.992629e-002 -4.265277e+000 6.176275e-003 + 5.658000e+001 2.554932e-002 -4.266031e+000 6.173553e-003 + 5.659000e+001 3.170376e-002 -4.266785e+000 6.170727e-003 + 5.660000e+001 3.831302e-002 -4.267539e+000 6.168448e-003 + 5.661000e+001 4.527215e-002 -4.268293e+000 6.167242e-003 + 5.662000e+001 5.244907e-002 -4.269047e+000 6.167388e-003 + 5.663000e+001 5.968733e-002 -4.269801e+000 6.168852e-003 + 5.664000e+001 6.681011e-002 -4.270555e+000 6.171295e-003 + 5.665000e+001 7.362545e-002 -4.271309e+000 6.174154e-003 + 5.666000e+001 7.993248e-002 -4.272063e+000 6.176769e-003 + 5.667000e+001 8.552844e-002 -4.272817e+000 6.178538e-003 + 5.668000e+001 9.021610e-002 -4.273571e+000 6.179056e-003 + 5.669000e+001 9.381126e-002 -4.274325e+000 6.178202e-003 + 5.670000e+001 9.615012e-002 -4.275079e+000 6.176175e-003 + 5.671000e+001 9.709599e-002 -4.275833e+000 6.173441e-003 + 5.672000e+001 9.654516e-002 -4.276587e+000 6.170632e-003 + 5.673000e+001 9.443162e-002 -4.277341e+000 6.168394e-003 + 5.674000e+001 9.073033e-002 -4.278095e+000 6.167246e-003 + 5.675000e+001 8.545912e-002 -4.278849e+000 6.167451e-003 + 5.676000e+001 7.867875e-002 -4.279603e+000 6.168962e-003 + 5.677000e+001 7.049157e-002 -4.280357e+000 6.171429e-003 + 5.678000e+001 6.103850e-002 -4.281111e+000 6.174281e-003 + 5.679000e+001 5.049461e-002 -4.281865e+000 6.176861e-003 + 5.680000e+001 3.906358e-002 -4.282619e+000 6.178573e-003 + 5.681000e+001 2.697107e-002 -4.283373e+000 6.179025e-003 + 5.682000e+001 1.445759e-002 -4.284127e+000 6.178113e-003 + 5.683000e+001 1.770937e-003 -4.284881e+000 6.176047e-003 + 5.684000e+001 -1.084143e-002 -4.285635e+000 6.173304e-003 + 5.685000e+001 -2.313961e-002 -4.286389e+000 6.170515e-003 + 5.686000e+001 -3.489805e-002 -4.287143e+000 6.168325e-003 + 5.687000e+001 -4.591144e-002 -4.287897e+000 6.167239e-003 + 5.688000e+001 -5.599970e-002 -4.288651e+000 6.167508e-003 + 5.689000e+001 -6.501176e-002 -4.289405e+000 6.169067e-003 + 5.690000e+001 -7.282824e-002 -4.290159e+000 6.171556e-003 + 5.691000e+001 -7.936287e-002 -4.290913e+000 6.174400e-003 + 5.692000e+001 -8.456280e-002 -4.291667e+000 6.176942e-003 + 5.693000e+001 -8.840788e-002 -4.292421e+000 6.178597e-003 + 5.694000e+001 -9.090895e-002 -4.293175e+000 6.178986e-003 + 5.695000e+001 -9.210554e-002 -4.293929e+000 6.178019e-003 + 5.696000e+001 -9.206286e-002 -4.294683e+000 6.175922e-003 + 5.697000e+001 -9.086860e-002 -4.295437e+000 6.173179e-003 + 5.698000e+001 -8.862939e-002 -4.296191e+000 6.170422e-003 + 5.699000e+001 -8.546742e-002 -4.296945e+000 6.168288e-003 + 5.700000e+001 -8.151703e-002 -4.297699e+000 6.167271e-003 + 5.701000e+001 -7.692161e-002 -4.298453e+000 6.167604e-003 + 5.702000e+001 -7.183074e-002 -4.299207e+000 6.169208e-003 + 5.703000e+001 -6.639759e-002 -4.299961e+000 6.171711e-003 + 5.704000e+001 -6.077662e-002 -4.300715e+000 6.174533e-003 + 5.705000e+001 -5.512148e-002 -4.301469e+000 6.177022e-003 + 5.706000e+001 -4.958304e-002 -4.302223e+000 6.178604e-003 + 5.707000e+001 -4.430749e-002 -4.302977e+000 6.178914e-003 + 5.708000e+001 -3.943434e-002 -4.303731e+000 6.177884e-003 + 5.709000e+001 -3.509438e-002 -4.304485e+000 6.175750e-003 + 5.710000e+001 -3.140738e-002 -4.305239e+000 6.173006e-003 + 5.711000e+001 -2.847964e-002 -4.305992e+000 6.170287e-003 + 5.712000e+001 -2.640132e-002 -4.306746e+000 6.168221e-003 + 5.713000e+001 -2.524357e-002 -4.307500e+000 6.167286e-003 + 5.714000e+001 -2.505568e-002 -4.308254e+000 6.167699e-003 + 5.715000e+001 -2.586226e-002 -4.309008e+000 6.169362e-003 + 5.716000e+001 -2.766061e-002 -4.309762e+000 6.171892e-003 + 5.717000e+001 -3.041857e-002 -4.310516e+000 6.174701e-003 + 5.718000e+001 -3.407299e-002 -4.311270e+000 6.177142e-003 + 5.719000e+001 -3.852900e-002 -4.312024e+000 6.178651e-003 + 5.720000e+001 -4.366026e-002 -4.312778e+000 6.178881e-003 + 5.721000e+001 -4.931047e-002 -4.313532e+000 6.177778e-003 + 5.722000e+001 -5.529600e-002 -4.314286e+000 6.175598e-003 + 5.723000e+001 -6.140999e-002 -4.315040e+000 6.172843e-003 + 5.724000e+001 -6.742767e-002 -4.315794e+000 6.170149e-003 + 5.725000e+001 -7.311285e-002 -4.316548e+000 6.168139e-003 + 5.726000e+001 -7.822554e-002 -4.317302e+000 6.167276e-003 + 5.727000e+001 -8.253037e-002 -4.318056e+000 6.167760e-003 + 5.728000e+001 -8.580539e-002 -4.318810e+000 6.169478e-003 + 5.729000e+001 -8.785116e-002 -4.319564e+000 6.172032e-003 + 5.730000e+001 -8.849950e-002 -4.320318e+000 6.174831e-003 + 5.731000e+001 -8.762155e-002 -4.321072e+000 6.177229e-003 + 5.732000e+001 -8.513482e-002 -4.321826e+000 6.178674e-003 + 5.733000e+001 -8.100865e-002 -4.322580e+000 6.178833e-003 + 5.734000e+001 -7.526793e-002 -4.323334e+000 6.177673e-003 + 5.735000e+001 -6.799469e-002 -4.324088e+000 6.175460e-003 + 5.736000e+001 -5.932735e-002 -4.324842e+000 6.172708e-003 + 5.737000e+001 -4.945766e-002 -4.325596e+000 6.170051e-003 + 5.738000e+001 -3.862521e-002 -4.326350e+000 6.168104e-003 + 5.739000e+001 -2.710972e-002 -4.327104e+000 6.167316e-003 + 5.740000e+001 -1.522137e-002 -4.327858e+000 6.167870e-003 + 5.741000e+001 -3.289473e-003 -4.328612e+000 6.169634e-003 + 5.742000e+001 8.350047e-003 -4.329366e+000 6.172199e-003 + 5.743000e+001 1.936780e-002 -4.330120e+000 6.174970e-003 + 5.744000e+001 2.945423e-002 -4.330874e+000 6.177307e-003 + 5.745000e+001 3.833231e-002 -4.331628e+000 6.178669e-003 + 5.746000e+001 4.576932e-002 -4.332382e+000 6.178743e-003 + 5.747000e+001 5.158676e-002 -4.333136e+000 6.177513e-003 + 5.748000e+001 5.566833e-002 -4.333890e+000 6.175263e-003 + 5.749000e+001 5.796524e-002 -4.334644e+000 6.172514e-003 + 5.750000e+001 5.849871e-002 -4.335398e+000 6.169902e-003 + 5.751000e+001 5.735954e-002 -4.336152e+000 6.168032e-003 + 5.752000e+001 5.470459e-002 -4.336906e+000 6.167338e-003 + 5.753000e+001 5.075041e-002 -4.337660e+000 6.167981e-003 + 5.754000e+001 4.576419e-002 -4.338414e+000 6.169811e-003 + 5.755000e+001 4.005250e-002 -4.339168e+000 6.172405e-003 + 5.756000e+001 3.394824e-002 -4.339922e+000 6.175162e-003 + 5.757000e+001 2.779646e-002 -4.340676e+000 6.177444e-003 + 5.758000e+001 2.193968e-002 -4.341430e+000 6.178724e-003 + 5.759000e+001 1.670329e-002 -4.342184e+000 6.178706e-003 + 5.760000e+001 1.238190e-002 -4.342938e+000 6.177394e-003 + 5.761000e+001 9.227059e-003 -4.343692e+000 6.175091e-003 + 5.762000e+001 7.437099e-003 -4.344446e+000 6.172327e-003 + 5.763000e+001 7.149407e-003 -4.345200e+000 6.169742e-003 + 5.764000e+001 8.435592e-003 -4.345954e+000 6.167933e-003 + 5.765000e+001 1.129969e-002 -4.346708e+000 6.167320e-003 + 5.766000e+001 1.567945e-002 -4.347462e+000 6.168046e-003 + 5.767000e+001 2.145071e-002 -4.348216e+000 6.169941e-003 + 5.768000e+001 2.843440e-002 -4.348969e+000 6.172568e-003 + 5.769000e+001 3.640608e-002 -4.349723e+000 6.175318e-003 + 5.770000e+001 4.510725e-002 -4.350477e+000 6.177558e-003 + 5.771000e+001 5.425800e-002 -4.351231e+000 6.178769e-003 + 5.772000e+001 6.357034e-002 -4.351985e+000 6.178672e-003 + 5.773000e+001 7.276145e-002 -4.352739e+000 6.177291e-003 + 5.774000e+001 8.156634e-002 -4.353493e+000 6.174942e-003 + 5.775000e+001 8.974915e-002 -4.354247e+000 6.172169e-003 + 5.776000e+001 9.711261e-002 -4.355001e+000 6.169613e-003 + 5.777000e+001 1.035053e-001 -4.355755e+000 6.167864e-003 + 5.778000e+001 1.088261e-001 -4.356509e+000 6.167328e-003 + 5.779000e+001 1.130264e-001 -4.357263e+000 6.168129e-003 + 5.780000e+001 1.161085e-001 -4.358017e+000 6.170082e-003 + 5.781000e+001 1.181227e-001 -4.358771e+000 6.172735e-003 + 5.782000e+001 1.191607e-001 -4.359525e+000 6.175474e-003 + 5.783000e+001 1.193479e-001 -4.360279e+000 6.177666e-003 + 5.784000e+001 1.188335e-001 -4.361033e+000 6.178805e-003 + 5.785000e+001 1.177802e-001 -4.361787e+000 6.178629e-003 + 5.786000e+001 1.163528e-001 -4.362541e+000 6.177177e-003 + 5.787000e+001 1.147084e-001 -4.363295e+000 6.174784e-003 + 5.788000e+001 1.129856e-001 -4.364049e+000 6.172003e-003 + 5.789000e+001 1.112969e-001 -4.364803e+000 6.169475e-003 + 5.790000e+001 1.097219e-001 -4.365557e+000 6.167787e-003 + 5.791000e+001 1.083027e-001 -4.366311e+000 6.167328e-003 + 5.792000e+001 1.070426e-001 -4.367065e+000 6.168206e-003 + 5.793000e+001 1.059064e-001 -4.367819e+000 6.170218e-003 + 5.794000e+001 1.048236e-001 -4.368573e+000 6.172899e-003 + 5.795000e+001 1.036937e-001 -4.369327e+000 6.175629e-003 + 5.796000e+001 1.023936e-001 -4.370081e+000 6.177777e-003 + 5.797000e+001 1.007863e-001 -4.370835e+000 6.178848e-003 + 5.798000e+001 9.873035e-002 -4.371589e+000 6.178595e-003 + 5.799000e+001 9.609055e-002 -4.372343e+000 6.177076e-003 + 5.800000e+001 9.274735e-002 -4.373097e+000 6.174640e-003 + 5.801000e+001 8.860614e-002 -4.373851e+000 6.171849e-003 + 5.802000e+001 8.360501e-002 -4.374605e+000 6.169347e-003 + 5.803000e+001 7.772071e-002 -4.375359e+000 6.167714e-003 + 5.804000e+001 7.097243e-002 -4.376113e+000 6.167327e-003 + 5.805000e+001 6.342321e-002 -4.376867e+000 6.168276e-003 + 5.806000e+001 5.517875e-002 -4.377621e+000 6.170342e-003 + 5.807000e+001 4.638379e-002 -4.378375e+000 6.173047e-003 + 5.808000e+001 3.721611e-002 -4.379129e+000 6.175766e-003 + 5.809000e+001 2.787857e-002 -4.379883e+000 6.177872e-003 + 5.810000e+001 1.858948e-002 -4.380637e+000 6.178878e-003 + 5.811000e+001 9.571861e-003 -4.381391e+000 6.178554e-003 + 5.812000e+001 1.042248e-003 -4.382145e+000 6.176973e-003 + 5.813000e+001 -6.800503e-003 -4.382899e+000 6.174500e-003 + 5.814000e+001 -1.378569e-002 -4.383653e+000 6.171706e-003 + 5.815000e+001 -1.977999e-002 -4.384407e+000 6.169235e-003 + 5.816000e+001 -2.469489e-002 -4.385161e+000 6.167659e-003 + 5.817000e+001 -2.849202e-002 -4.385915e+000 6.167344e-003 + 5.818000e+001 -3.118581e-002 -4.386669e+000 6.168361e-003 + 5.819000e+001 -3.284370e-002 -4.387423e+000 6.170476e-003 + 5.820000e+001 -3.358346e-002 -4.388177e+000 6.173199e-003 + 5.821000e+001 -3.356797e-002 -4.388931e+000 6.175901e-003 + 5.822000e+001 -3.299772e-002 -4.389685e+000 6.177958e-003 + 5.823000e+001 -3.210117e-002 -4.390439e+000 6.178895e-003 + 5.824000e+001 -3.112374e-002 -4.391192e+000 6.178496e-003 + 5.825000e+001 -3.031574e-002 -4.391946e+000 6.176853e-003 + 5.826000e+001 -2.991998e-002 -4.392700e+000 6.174343e-003 + 5.827000e+001 -3.015966e-002 -4.393454e+000 6.171547e-003 + 5.828000e+001 -3.122707e-002 -4.394208e+000 6.169110e-003 + 5.829000e+001 -3.327378e-002 -4.394962e+000 6.167596e-003 + 5.830000e+001 -3.640276e-002 -4.395716e+000 6.167356e-003 + 5.831000e+001 -4.066277e-002 -4.396470e+000 6.168446e-003 + 5.832000e+001 -4.604539e-002 -4.397224e+000 6.170614e-003 + 5.833000e+001 -5.248474e-002 -4.397978e+000 6.173359e-003 + 5.834000e+001 -5.985996e-002 -4.398732e+000 6.176047e-003 + 5.835000e+001 -6.800033e-002 -4.399486e+000 6.178058e-003 + 5.836000e+001 -7.669261e-002 -4.400240e+000 6.178926e-003 + 5.837000e+001 -8.569047e-002 -4.400994e+000 6.178453e-003 + 5.838000e+001 -9.472536e-002 -4.401748e+000 6.176745e-003 + 5.839000e+001 -1.035183e-001 -4.402502e+000 6.174196e-003 + 5.840000e+001 -1.117920e-001 -4.403256e+000 6.171394e-003 + 5.841000e+001 -1.192832e-001 -4.404010e+000 6.168985e-003 + 5.842000e+001 -1.257533e-001 -4.404764e+000 6.167526e-003 + 5.843000e+001 -1.309988e-001 -4.405518e+000 6.167356e-003 + 5.844000e+001 -1.348591e-001 -4.406272e+000 6.168514e-003 + 5.845000e+001 -1.372226e-001 -4.407026e+000 6.170733e-003 + 5.846000e+001 -1.380309e-001 -4.407780e+000 6.173500e-003 + 5.847000e+001 -1.372793e-001 -4.408534e+000 6.176177e-003 + 5.848000e+001 -1.350162e-001 -4.409288e+000 6.178145e-003 + 5.849000e+001 -1.313394e-001 -4.410042e+000 6.178952e-003 + 5.850000e+001 -1.263907e-001 -4.410796e+000 6.178411e-003 + 5.851000e+001 -1.203484e-001 -4.411550e+000 6.176646e-003 + 5.852000e+001 -1.134186e-001 -4.412304e+000 6.174063e-003 + 5.853000e+001 -1.058258e-001 -4.413058e+000 6.171257e-003 + 5.854000e+001 -9.780292e-002 -4.413812e+000 6.168876e-003 + 5.855000e+001 -8.958143e-002 -4.414566e+000 6.167471e-003 + 5.856000e+001 -8.138200e-002 -4.415320e+000 6.167366e-003 + 5.857000e+001 -7.340624e-002 -4.416074e+000 6.168587e-003 + 5.858000e+001 -6.582966e-002 -4.416828e+000 6.170852e-003 + 5.859000e+001 -5.879623e-002 -4.417582e+000 6.173637e-003 + 5.860000e+001 -5.241471e-002 -4.418336e+000 6.176300e-003 + 5.861000e+001 -4.675685e-002 -4.419090e+000 6.178227e-003 + 5.862000e+001 -4.185728e-002 -4.419844e+000 6.178975e-003 + 5.863000e+001 -3.771521e-002 -4.420598e+000 6.178370e-003 + 5.864000e+001 -3.429756e-002 -4.421352e+000 6.176552e-003 + 5.865000e+001 -3.154334e-002 -4.422106e+000 6.173938e-003 + 5.866000e+001 -2.936889e-002 -4.422860e+000 6.171131e-003 + 5.867000e+001 -2.767380e-002 -4.423614e+000 6.168779e-003 + 5.868000e+001 -2.634692e-002 -4.424368e+000 6.167424e-003 + 5.869000e+001 -2.527241e-002 -4.425122e+000 6.167380e-003 + 5.870000e+001 -2.433524e-002 -4.425876e+000 6.168656e-003 + 5.871000e+001 -2.342610e-002 -4.426630e+000 6.170959e-003 + 5.872000e+001 -2.244541e-002 -4.427384e+000 6.173755e-003 + 5.873000e+001 -2.130638e-002 -4.428138e+000 6.176401e-003 + 5.874000e+001 -1.993695e-002 -4.428892e+000 6.178286e-003 + 5.875000e+001 -1.828074e-002 -4.429646e+000 6.178977e-003 + 5.876000e+001 -1.629703e-002 -4.430400e+000 6.178315e-003 + 5.877000e+001 -1.395993e-002 -4.431154e+000 6.176452e-003 + 5.878000e+001 -1.125691e-002 -4.431908e+000 6.173819e-003 + 5.879000e+001 -8.186876e-003 -4.432662e+000 6.171021e-003 + 5.880000e+001 -4.758103e-003 -4.433415e+000 6.168704e-003 + 5.881000e+001 -9.861316e-004 -4.434169e+000 6.167405e-003 + 5.882000e+001 3.108088e-003 -4.434923e+000 6.167422e-003 + 5.883000e+001 7.499671e-003 -4.435677e+000 6.168751e-003 + 5.884000e+001 1.216076e-002 -4.436431e+000 6.171086e-003 + 5.885000e+001 1.706093e-002 -4.437185e+000 6.173887e-003 + 5.886000e+001 2.216695e-002 -4.437939e+000 6.176506e-003 + 5.887000e+001 2.744209e-002 -4.438693e+000 6.178341e-003 + 5.888000e+001 3.284488e-002 -4.439447e+000 6.178969e-003 + 5.889000e+001 3.832766e-002 -4.440201e+000 6.178245e-003 + 5.890000e+001 4.383501e-002 -4.440955e+000 6.176337e-003 + 5.891000e+001 4.930218e-002 -4.441709e+000 6.173683e-003 + 5.892000e+001 5.465397e-002 -4.442463e+000 6.170896e-003 + 5.893000e+001 5.980402e-002 -4.443217e+000 6.168619e-003 + 5.894000e+001 6.465480e-002 -4.443971e+000 6.167378e-003 + 5.895000e+001 6.909846e-002 -4.444725e+000 6.167460e-003 + 5.896000e+001 7.301858e-002 -4.445479e+000 6.168845e-003 + 5.897000e+001 7.629288e-002 -4.446233e+000 6.171214e-003 + 5.898000e+001 7.879678e-002 -4.446987e+000 6.174019e-003 + 5.899000e+001 8.040787e-002 -4.447741e+000 6.176613e-003 + 5.900000e+001 8.101092e-002 -4.448495e+000 6.178398e-003 + 5.901000e+001 8.050338e-002 -4.449249e+000 6.178965e-003 + 5.902000e+001 7.880099e-002 -4.450003e+000 6.178181e-003 + 5.903000e+001 7.584327e-002 -4.450757e+000 6.176229e-003 + 5.904000e+001 7.159847e-002 -4.451511e+000 6.173557e-003 + 5.905000e+001 6.606786e-002 -4.452265e+000 6.170782e-003 + 5.906000e+001 5.928885e-002 -4.453019e+000 6.168543e-003 + 5.907000e+001 5.133681e-002 -4.453773e+000 6.167358e-003 + 5.908000e+001 4.232544e-002 -4.454527e+000 6.167500e-003 + 5.909000e+001 3.240536e-002 -4.455281e+000 6.168936e-003 + 5.910000e+001 2.176119e-002 -4.456035e+000 6.171334e-003 + 5.911000e+001 1.060680e-002 -4.456789e+000 6.174139e-003 + 5.912000e+001 -8.208493e-004 -4.457543e+000 6.176706e-003 + 5.913000e+001 -1.226925e-002 -4.458297e+000 6.178443e-003 + 5.914000e+001 -2.347890e-002 -4.459051e+000 6.178950e-003 + 5.915000e+001 -3.419250e-002 -4.459805e+000 6.178112e-003 + 5.916000e+001 -4.416458e-002 -4.460559e+000 6.176123e-003 + 5.917000e+001 -5.317083e-002 -4.461313e+000 6.173440e-003 + 5.918000e+001 -6.101697e-002 -4.462067e+000 6.170682e-003 + 5.919000e+001 -6.754663e-002 -4.462821e+000 6.168486e-003 + 5.920000e+001 -7.264781e-002 -4.463575e+000 6.167357e-003 + 5.921000e+001 -7.625769e-002 -4.464329e+000 6.167556e-003 + 5.922000e+001 -7.836547e-002 -4.465083e+000 6.169035e-003 + 5.923000e+001 -7.901306e-002 -4.465837e+000 6.171452e-003 + 5.924000e+001 -7.829360e-002 -4.466591e+000 6.174246e-003 + 5.925000e+001 -7.634780e-002 -4.467345e+000 6.176774e-003 + 5.926000e+001 -7.335817e-002 -4.468099e+000 6.178453e-003 + 5.927000e+001 -6.954145e-002 -4.468853e+000 6.178896e-003 + 5.928000e+001 -6.513958e-002 -4.469607e+000 6.178004e-003 + 5.929000e+001 -6.040941e-002 -4.470361e+000 6.175984e-003 + 5.930000e+001 -5.561180e-002 -4.471115e+000 6.173301e-003 + 5.931000e+001 -5.100048e-002 -4.471869e+000 6.170577e-003 + 5.932000e+001 -4.681113e-002 -4.472623e+000 6.168440e-003 + 5.933000e+001 -4.325124e-002 -4.473377e+000 6.167385e-003 + 5.934000e+001 -4.049115e-002 -4.474131e+000 6.167655e-003 + 5.935000e+001 -3.865665e-002 -4.474885e+000 6.169187e-003 + 5.936000e+001 -3.782353e-002 -4.475638e+000 6.171626e-003 + 5.937000e+001 -3.801422e-002 -4.476392e+000 6.174406e-003 + 5.938000e+001 -3.919672e-002 -4.477146e+000 6.176884e-003 + 5.939000e+001 -4.128595e-002 -4.477900e+000 6.178489e-003 + 5.940000e+001 -4.414726e-002 -4.478654e+000 6.178849e-003 + 5.941000e+001 -4.760208e-002 -4.479408e+000 6.177883e-003 + 5.942000e+001 -5.143551e-002 -4.480162e+000 6.175811e-003 + 5.943000e+001 -5.540529e-002 -4.480916e+000 6.173113e-003 + 5.944000e+001 -5.925206e-002 -4.481670e+000 6.170412e-003 + 5.945000e+001 -6.271026e-002 -4.482424e+000 6.168331e-003 + 5.946000e+001 -6.551922e-002 -4.483178e+000 6.167353e-003 + 5.947000e+001 -6.743413e-002 -4.483932e+000 6.167706e-003 + 5.948000e+001 -6.823625e-002 -4.484686e+000 6.169307e-003 + 5.949000e+001 -6.774212e-002 -4.485440e+000 6.171788e-003 + 5.950000e+001 -6.581121e-002 -4.486194e+000 6.174575e-003 + 5.951000e+001 -6.235197e-002 -4.486948e+000 6.177025e-003 + 5.952000e+001 -5.732582e-002 -4.487702e+000 6.178573e-003 + 5.953000e+001 -5.074912e-002 -4.488456e+000 6.178861e-003 + 5.954000e+001 -4.269299e-002 -4.489210e+000 6.177824e-003 + 5.955000e+001 -3.328103e-002 -4.489964e+000 6.175698e-003 + 5.956000e+001 -2.268517e-002 -4.490718e+000 6.172973e-003 + 5.957000e+001 -1.111968e-002 -4.491472e+000 6.170277e-003 + 5.958000e+001 1.166256e-003 -4.492226e+000 6.168231e-003 + 5.959000e+001 1.389713e-002 -4.492980e+000 6.167308e-003 + 5.960000e+001 2.678053e-002 -4.493734e+000 6.167722e-003 + 5.961000e+001 3.951701e-002 -4.494488e+000 6.169376e-003 + 5.962000e+001 5.181002e-002 -4.495242e+000 6.171890e-003 + 5.963000e+001 6.337555e-002 -4.495996e+000 6.174683e-003 + 5.964000e+001 7.395111e-002 -4.496750e+000 6.177112e-003 + 5.965000e+001 8.330383e-002 -4.497504e+000 6.178618e-003 + 5.966000e+001 9.123736e-002 -4.498258e+000 6.178856e-003 + 5.967000e+001 9.759731e-002 -4.499012e+000 6.177772e-003 + 5.968000e+001 1.022753e-001 -4.499766e+000 6.175616e-003 + 5.969000e+001 1.052112e-001 -4.500520e+000 6.172885e-003 + 5.970000e+001 1.063939e-001 -4.501274e+000 6.170208e-003 + 5.971000e+001 1.058607e-001 -4.502028e+000 6.168202e-003 + 5.972000e+001 1.036942e-001 -4.502782e+000 6.167329e-003 + 5.973000e+001 1.000195e-001 -4.503536e+000 6.167790e-003 + 5.974000e+001 9.499849e-002 -4.504290e+000 6.169476e-003 + 5.975000e+001 8.882436e-002 -4.505044e+000 6.171997e-003 + 5.976000e+001 8.171473e-002 -4.505798e+000 6.174768e-003 + 5.977000e+001 7.390446e-002 -4.506552e+000 6.177152e-003 + 5.978000e+001 6.563822e-002 -4.507306e+000 6.178598e-003 + 5.979000e+001 5.716297e-002 -4.508060e+000 6.178775e-003 + 5.980000e+001 4.872061e-002 -4.508814e+000 6.177644e-003 + 5.981000e+001 4.054111e-002 -4.509568e+000 6.175466e-003 + 5.982000e+001 3.283626e-002 -4.510322e+000 6.172746e-003 + 5.983000e+001 2.579408e-002 -4.511076e+000 6.170112e-003 + 5.984000e+001 1.957425e-002 -4.511830e+000 6.168173e-003 + 5.985000e+001 1.430452e-002 -4.512584e+000 6.167377e-003 + 5.986000e+001 1.007820e-002 -4.513338e+000 6.167909e-003 + 5.987000e+001 6.952773e-003 -4.514092e+000 6.169643e-003 + 5.988000e+001 4.949644e-003 -4.514846e+000 6.172179e-003 + 5.989000e+001 4.055025e-003 -4.515600e+000 6.174928e-003 + 5.990000e+001 4.221840e-003 -4.516354e+000 6.177257e-003 + 5.991000e+001 5.372618e-003 -4.517108e+000 6.178626e-003 + 5.992000e+001 7.403240e-003 -4.517862e+000 6.178721e-003 + 5.993000e+001 1.018741e-002 -4.518615e+000 6.177519e-003 + 5.994000e+001 1.358172e-002 -4.519369e+000 6.175297e-003 + 5.995000e+001 1.743107e-002 -4.520123e+000 6.172568e-003 + 5.996000e+001 2.157437e-002 -4.520877e+000 6.169963e-003 + 5.997000e+001 2.585021e-002 -4.521631e+000 6.168083e-003 + 5.998000e+001 3.010246e-002 -4.522385e+000 6.167364e-003 + 5.999000e+001 3.418543e-002 -4.523139e+000 6.167972e-003 From a0c4f06cdc13767bee3cf14af65490a0cdaff97a Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:19:07 -0500 Subject: [PATCH 10/14] add diffpy.structure to conda.txt --- requirements/conda.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/requirements/conda.txt b/requirements/conda.txt index eacb3e1..6b826ba 100644 --- a/requirements/conda.txt +++ b/requirements/conda.txt @@ -1,2 +1,3 @@ numpy diffpy.srfit +diffpy.structure From 84304083b9b5778c5960c797f12e3dc2ec847dfa Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:19:58 -0500 Subject: [PATCH 11/14] news --- news/pdf-pack.rst | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) create mode 100644 news/pdf-pack.rst diff --git a/news/pdf-pack.rst b/news/pdf-pack.rst new file mode 100644 index 0000000..5620683 --- /dev/null +++ b/news/pdf-pack.rst @@ -0,0 +1,23 @@ +**Added:** + +* Add source code from ``diffpy.srfit.pdf`` to ``diffpy.cmipdf``. + +**Changed:** + +* + +**Deprecated:** + +* + +**Removed:** + +* + +**Fixed:** + +* + +**Security:** + +* From 19c6f4187cfeff7a73f046c6390beb904375f789 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:20:50 -0500 Subject: [PATCH 12/14] fix header --- src/diffpy/cmipdf/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffpy/cmipdf/__init__.py b/src/diffpy/cmipdf/__init__.py index d73ef6d..7dbcdc1 100644 --- a/src/diffpy/cmipdf/__init__.py +++ b/src/diffpy/cmipdf/__init__.py @@ -13,7 +13,7 @@ # See LICENSE.rst for license information. # ############################################################################## -"""PDF calculation tools.""" +"""The code of the PDF pack of the diffpy.cmi package.""" __all__ = ["PDFGenerator", "DebyePDFGenerator", "PDFContribution", "PDFParser"] From b19a95b38efd485dbc2b5c295730d43acac820dd Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:23:09 -0500 Subject: [PATCH 13/14] restore __init__ --- src/diffpy/cmipdf/__init__.py | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/src/diffpy/cmipdf/__init__.py b/src/diffpy/cmipdf/__init__.py index 7dbcdc1..6b1395b 100644 --- a/src/diffpy/cmipdf/__init__.py +++ b/src/diffpy/cmipdf/__init__.py @@ -15,11 +15,17 @@ ############################################################################## """The code of the PDF pack of the diffpy.cmi package.""" -__all__ = ["PDFGenerator", "DebyePDFGenerator", "PDFContribution", "PDFParser"] - from diffpy.cmipdf.debyepdfgenerator import DebyePDFGenerator from diffpy.cmipdf.pdfcontribution import PDFContribution from diffpy.cmipdf.pdfgenerator import PDFGenerator from diffpy.cmipdf.pdfparser import PDFParser +# package version +from diffpy.cmipdf.version import __version__ # noqa + +__all__ = ["PDFGenerator", "DebyePDFGenerator", "PDFContribution", "PDFParser"] + +# silence the pyflakes syntax checker +assert __version__ or True + # End of file From a6dc73e6bb74dd1be7e0bbae7a77458ed0843c31 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 21:24:57 -0500 Subject: [PATCH 14/14] add back user_filesystem fixture --- tests/conftest.py | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/tests/conftest.py b/tests/conftest.py index ea09502..937867d 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -1,12 +1,28 @@ import importlib.resources +import json import logging from functools import lru_cache +from pathlib import Path import pytest logger = logging.getLogger(__name__) +@pytest.fixture +def user_filesystem(tmp_path): + base_dir = Path(tmp_path) + home_dir = base_dir / "home_dir" + home_dir.mkdir(parents=True, exist_ok=True) + cwd_dir = base_dir / "cwd_dir" + cwd_dir.mkdir(parents=True, exist_ok=True) + + home_config_data = {"username": "home_username", "email": "home@email.com"} + with open(home_dir / "diffpyconfig.json", "w") as f: + json.dump(home_config_data, f) + yield tmp_path + + # diffpy.structure @lru_cache() def has_diffpy_structure():

3P0fJTPbQslP1A1*qQ$g8cK~2sn|S9nB|R@e;h@uJ8H_vF)}? z1B&4Lt1P58Hs?ur{JWmL(dF}fNQcXQ_FH~pi}tN#fE;wyS;<2vLRCw#H;&G#6a~6{ z{ne%cP&J?<%Y~v-35bp~O*s)NIE-n4Rp-TnP7VuaX;SMs>m0 zeCM;rs_fm}_HYf=&W=-orhQjw2mIi(gHS%LyVRtqnf2_{d4@|(5fEIZBG@Br1m;2t z#EI$0?~qa!VeCnghHJ*y*98h9C^!AeWjh7r_`F?94cRg8!w5OSY~a1(qgTa~&mJKT zogmrcRkdf10Fqq`WN(h=6@U-+L4WJPc#YOk5k0;Htsk(vusgPAr*w5b zB?#AdwA6cr*y9}M#HqsIw(jrRy9P4UqpPYO`G^!|@`4%C_bbPXrmGV!XFt0!w*A=; z4e#ahCv1{_N-)Dm4Olv)>-$n&sH`)5eIp0m&(3Tro@nrSj#1axH{asA!Q1x~MvEFL zy)~-OfJ~Y+)v?n#l{?0MH2m}IKHod}RvqIRMVVRE`MDN!yg>Z_>;4+>ae6nhg5fp9UM$ZoQ6D=(!ZV+m<9T@R|zge|-_=wlD zH+s!eEA4PV&S&3oybim?!*14lz-v%2oW|KrqbxAfdno;NkAaMQ_S?1t&keM@J@cZU zxP19>IS2D;g74_ipW~gsOi*^#14j4cr&yF&-y3;_KyCZ&@T~*~Ns(0ZuyoSR}qoWxH$SHBY zyT|js7I$N+Mpgj&6ogbV*d8at4uk||aA!TSdis6#OS`tIpE@FFbX>xuTqKRdi9p|@ zcu_Jc$7E0SZ;d?0pKwyJix_U$4mZYm_K42l_vb#l5<1GhAm^UNP34I9{i(c5i8NJ! z4|nPfPDhLR0#?Wd(CQ`w_FJE;r&9IyH=!DU?jv)!)3QH1Ai!h4QZ5RA&pr)?;QAB0 z;k~tRyVMfg5|7XDGTKR@g9Kjd7*&G#*cK(G z47*o@j5}pQKYaWWD0rO+sJ`>rCwzuO+k^ySJ~K@n_Wo5S|0370BQW!J6~~7+vmyZC zAw|Wsm(knS{VyV%GB33gLdY~Zm%y=bIFs{IjfA)BuFE1nVJ#Leb)DK$ZnvMmtCo<9|zEFQOlMl zN?%5MVF#-rA3`p?yTi*xgEivAtLLGq?@W|7SBFB`pf~z#y1%eZ%w@=1Ov2~-?2A^h z=a-J4vo=TY(w66!m?9qEZ6JW!M#NVR!tv}8UgBY~$B%lhZj;8WT|8q|(Nmt!zMzzQ zKqqQXzP=Hn-Q&}WR*dr!2G9BxW<~Xf?Jgj8kSvs(7%^MzZA2PKNM2XvB~oB`W~%tr zLsCdJ+w*REq=iHidwc;mV6Y=lINg|;v%j}P78AR5>SL|KXzR1{mxkL`m-3x&&q|W& z6M^I<6PeFWe*3kjP~P+P0`7KAa|)$-yf!xl`|EkmO(|-u`RuXHit52fC2xmOo6W7+ z6wOSQ_Wmr>kwX2j{ljHkhXfRSRFhPW2k5~sfg}XAPgkv*2Qrx_0n}Gs-M6mi7LEw@ z)KKLQ)#EW&?Cq#eu^B(C!!-6c3HL^5|h1N+8Y09b4`y{5QL9j2a&HBwI0t++;YZSW@XoM zp1l{3nF8rhS;6LrPvHC@d5=`Vz3j%Q9Z2#Aacpl)4SP7Ec?^ny;>3rrdO`OTPvjmD zj_cVYQSiuc{Yx0kJS8L2%lGLKsLp3!ba#C|Y=A3%e85lD{m$Wvs-GV>zw7pEfF#1Z zjiwK0(e(DYiiMs%&N}VF3c~Jq_aBBMm-?E=q8ly=9g>`@DPa&*gNa+&Sw{j!QH2iA z@UoLb9jK`eEr?eC*2rbzpm$HeLviFH%%Sr%hLr7Mv$y_6SE|b9RT}|7+LM6q2$dcD97p1=$~S>^9DH@eH^G3jNWAM-Dl06 zzdd72Cb@+-vUMA^tk%pAYUM}z{;EX2-wK6z>iTz0Y~wJp^Fj2Lx) zc5yR%WVqq{KRZJv#knN&U_W*`GY<+11xl5f`M{|W-cEosiW~;^iHN+jz!{<1T+e>R zz(K$~mMg!^Cm!0ShC!g{s>7LK#@Z!OPUjQxyLF$Pxl!Cj*hxx$u8(UdZc~Vsy6}4T zh=D#T37TKq@0iZaRb?3@2B22kney90n~;Bx;&c*w#6T2xT#av9fta_Ki;DX98m)o- zR(s#D?}dW7><5Ykbr?I{=DzNJ_8Hs!br@r}uVp)Zm)W~P)awx)bj`T5uBFgmAYN)! zbov}LHmg?Vna}B9@A0B&W-Dag#%Ong#^hv|C)nm^hZbvifdl*0(}N{rboqfPiV6(2 z@1xOgB~LGZ>s95T-Ca`UGkD#Hy>7c+f`|w|SATX`PL}KF0YD~wZEv>V&A6V|r}!x@I= zW8N+d>NXU;zuSY<)}bw2K(UKzjwlF*!Q!^@)-fH7I7W_x?FxU}XOD1Mtv(KjDLfZ; z4X2FyMjw{jN?pMIA4k1u!0OdA7>Zt#7woRDW#J{Hr7&wjRD^-{0ucu6%Q zYE}AVkhHb;{E#g4`_65)`FoyCtTP{V1_P|0d2ah~LNDND-)%OnM^{D){F3L{@0zX* zbMh`j>pD|Ed!kk8m9Ji}?GdlI+XpWL2ZQW@idHrD3gF9l)=f*&i5Fs>-^CyV)zc$J zI*tQ-SJ0`ERr0hrJN+`yWoFd0Kl?^mWXK-5#V+;PArvic zgI?;FGLwm{(Hw_FTs!t>-RlMe9;Z&-rsatPvY+qz&PZ8*3=ggLXO6`*-c)e7^ybA!Nz(L^f?IddPGH|K z^&+|>*mG?6_i_M6IyUU$2-?p|*=N39DyP{qYq$7hi~s5EOmQ6e$Y2gIzNC+~F36@R z48~Jxug~7rqX((<*ZZ@QB`Wv6LR#A^GLu8rdWqK<=E`hh|QTxu!UX@^< zDwYTj*j|}L!9A&k_6jtZ4-41lTI{l>Ot_QpfJCph&uerGb_j=YPgEDEHPmNE1xYCg z;a4%UKxe>`mYzY8drhOdurshrjD{V)^YQE(X-A(_5jVRJ(5c&(s$Lv$#)=1dc3jnR z%y=ja`aUeuB?N?)eKC{|d+eP$o#PNG-}dagXgJ9B;Swiy*7WhV;)nS4P~G*YAAP&} zY;%g2iPbcb=<-j!uoI2%5C^2co_)dC)pa1z`+AQ;-@R+Te~JS6=QbCbPJ?(^299v1 zRM9=&&q8P(%;{iICGB$;wYS>ZlRnn~LqEWn^&P3O;z;n@4d3LpKx3)9=q3-$;b{L$?0|m78 z0$X(&?lVJG;iClLCqtvoBNws&&kUx5C1*Arm!C2NjnyI3p`HpQ3&iHU1$PX4?ntHD?rqQKk0m zV%75ox*zdg2VvM1I*5mk2KqA(0BnAhk({;u%n{&#qfo7mfwAv$h_v2qAjq~mCTj~*e|f6`;e7}2zMRQBIZ=7s5ehXV@EK3J;-H$c+?ICa3GKB zj#D?$Q`Z`84*^l)pU!u6q)2_6hlPPq?@a~D_Uc0jil*=ZC9y~RajMq=1ED^8fP~P~8@7`@ zjc4yvmLJv-E>K_J6n|a^2@F}@&t47qWwkbPj%SYZV!oK-#KGwpgt5^GU=%$N)f~^9 z^zAdjK^`Lpc3bM++|%9onXv4wXTS8~410zq$RC{1l`TFqvXZ;6V-^Z|$~M)6GU%*t zk=He1LTYZVFWG+SteNQmDp6lfNPqf^x#R3T=d;HtGewc5RL^Bu>Zh=YnS0sN*q-w6Ze{iqQ3N^~!^0cZ*%q~8I$t3IhV ze0oi&0G2R>%grdCgJPB(ydaR7KhVtHx+w};77R!UwoKZ z06P;E^qz03g$;x>RwZ~-|uJ9#UCR0RGAps<7ba&ho@Lk^M$Eb_6^I=er!VMDNO%d zRt8QN22UiJ`m;v<-5zljr4KI=D*bfO9&y3B{n;tNsjaQ~!81H;jeV9b7=fzCZ%07) z#?XjQs@SB*4|$n9T2p6$pfl#@>lF0E<1|;TI;tb{+2eF8ip3}%FViGqN4V-$xekRP zy`1Z!4wXb2eRUh~hCLGSuRk@<_6Rw4a`)l92aMqT?gP|nx++FgYtPHz2Oxo0OjutP z8aPTsfc2}omFMf2@Mxm4ggm((kMCh-rurD>1XXtVE?;z?3;@u^ozD&uqxyRKnhxop zMj}A+ktzxTKR!I1MTh~-{yru@?BPF))(E81Ah=~0=Au6~rw)YiK07LD$E8q8#$!A? zEkQyxlevaD4E`Q)>Ydr&S465_Q4#h{o6D;qe3B#QAutd$*(Q8J(B(e+ zj0K=Go2CE8@dm~CSTlP26v&5P8}?YKLP6;@KO35M-98Fn?)a`ns$@Elgj_=|KR(QF z2nn`F4f^`U zq~GFr5k}JX>|^|RKyar&_5-@U`a`X5=D@*310^yuK*Oc)AImi05HXJk)f^~b?j&}$ ztEutK;R|nF53C0|Ty`e;yKw6y2$k>s>{CpcE;Ta%_Sr8`|LuyNc*SL><5M-7Mvz^M z*};4uQmzmES)E}I>g{d1aa0tY`?o?31}E98WQE^WCOY5-qmkuz1Nnhm7xr=1iA5FX$4`g(16)di_jo@p0|J+fuZj)@AP zc$RHYDDQSfxW-rt0-9hybef)BodeADSTxEgj{`>GvvXKg@2LjLaz8uezw!1Ct!XVx zjTJBPZ4-;cUf%QB?-Bojvg5~uSPiG4(UvyN9U)QkZUgyh#O2 z1F*lwUmWhm=kd#-#Law%Lxp&m%`XSuELcCU{ah_hxCW)~T3$~EbmB9^B(T5UO9U3q zHL!DFZ^tu{AsdX3oe~|9NZ6Su)nSYM2vz)QhV-{(r|N&!aEUu|knWctoN{$}ja+y= zD>2FQ#SqJTlZ%piyABVAU>b;o9Z%~MuapPr9Bmm0>18jmv-Ru;z?7YW`00H;(F*+>5u2IuxXa48<-B4NW&%6b-@v7es=QJo|3pw)ZV^g{9zhVEk|LuRA zEJKqlL%63S{e>lg328EreD9AS!_tU;vE%{ldV*OK0Ko*TYayjQ0HY`< zEIQz}Lcw(Oxb(LFy+(rw!cS|@s$CklrJ!A$K>d+uU^_9(`m7TWj~*9pg7)MbB9~?8 zj-v4yW?OBVEEd)w)j-A)?(rr(UGzhe~}M%*ZjezLIYCyVUxn(vp%T?4$InIM*gGJ zpq|+9jJvMjFw?cOIt0=hs+=60laOOhTNg{D@p9`~kN01tYKXRZ<+PQTt+$B|MKO`Q zhQu2x;u4eRWy+&`k`6?=jSoRRdp!Mz@Y`K0B!2IcVqjJZMF*{>+C9*@JpRjq7U9cX zPtAc2X?zm^VcRsl07Q^@sX=sjtCrqDTORs`+oc|AHcJS6 zy>RGdp@&%9;6gp28~kWH2wz$}9S%ziR1bC^^B5yUoeO}|;*9}}_8l}r5LvvOAetfi zYd@k4E@NJKazJU&GYlONtP}V_O>pVY`tYvT*1;diUkPn7GRJd!C`QB zg1fuB1b26Lx8Sb9-3jjQ?(Q;Na^Ca3_gi<}AHAxpx~!ksz4q+s+12=azIqII35?@C zBnZM+Qq zM2Z_Mc;&VzXUJYqgRG ze|xMnW8~E(=C?${WBe!5MU;qNJ+-9oU`q~cYT({|rA6?N{>#j;Jrn_#*DH8_s1ih( zkhR3)%^&$0xddMr11gVT+{A)17T|8R$OmMfdlyYO_kKG0 z&4X1qt1ZXH6z=&TO(RmB=I)32-dKCsFqrYHA+bGL*mdom1s|RHEH*x(6>Y~mzQNYZ zQifg7jfYO3ZH7&Qc(r2C#|V|d850gv7XJAQuoK`;%!tCixxL_A0m6z*%yC+>Z8#Py zTwO1WS9f{=ow8Y5W)5Ri5Jz!HqvmdeEr;zAygE#u)xTpVxz33{Cf7;K$cWqv2Ox9* z7&ZHO;0Z%Cb6}<8rd>VfyH5c`XvzciBuE}kZS2f3-?c<;yECSuK1~=fx0TsP%^Y9$ zVgx}|!OMHJedD@dH`hlPnl)=3$UE$TX9Jc*_W=th1#Y|QhmMIfib*nYe zB9*6waQ;qR;u)A|@(R?XMG9P$OPgo@C|YBUAnKcn(kwVF!75ZyV|L_dz!~bJ+%1)J zs*%s^A3deU;6!Uj89v7efH^qr&V4OA-m9zT`SxrG7A+o|Nu;je*>KIrHsX94LHTs<1OKaL$4cI3RgQ2t|Gn z<}X{2%lR9|v0wj|Vdtly)aR)H=R0*unA2h+K>^YN`AhV2 zsTfbNcBJ)}#pb?9QQ_ayf2=n79F&JgLEJij#BQtpZ8oda-PKD|qR$W*Z2Gbx0R+Ce zZ<0G_9%KHVW6w!h^=QGOY`k+ftGK1uZ90p&&BjHtU9D-1spORb?YBpd>vK{(DWU#J zXy{lru0T!4$g!Ps=-Bz)k>TtMMls6$+B?#6mi!gVK-yO({$b4}fsA^Un||H{p?e_Yw&%&?t1 z=?BLcKYIj}^qe*Q=UJEV<86$tq8@$e^{M$TB&ZyPm(t23bFQ4f+OA1`hS#1W0wMVJ z&M+u5X9u`k_tqneOR&J|S8(~Tb+bmp%}yA^M|ELWpO1XCSAl#w&Pn3t9eIph z?&fx+YiA`46Z%WD34kH83gz+zQyG59%NUW{A!AB?q?KEm_=Gi)&&XuX%v0+aRdBZN zU}2ySLd_#3HngI$ee-9<2!nsjg4pwS(2Z-!i$ZIN2MQD+P88{?d-*!6Cssc-rwXf; z=A;FZGf2-TbDK~26iV1}eG-_UqU0sgD$8q5W9rlfi6?qBCa;YOY>qbUW0RRR1pPKP z-4-6axu_H>dt%So5|?g!@2i`DW1K7)N6leMFCGK6{w)MwTRo~e9eQKvsqY&wu9qU0 z<0W@e7(346e;XIuiatT~B%(^Jd|;nR9jIx{j)lLZei))U0@@}YKKAI*wYkV`kQ1V- z0}_07q$)d7#-F@A5jPEZD1%K!C^1e>uJzL5Ly4@kt9Z|!kCxe3c!D{z);zZOSLDX3 zU&XiX%qG`x$ePeiI6=GYZ0B*pqbIEJzjNaSBY(uEA|)_9x<=AUxoN-Ikny1 z5%HTcZC?B|XwOc@fl0;@{Yo$9hD7+s7!#R}%M0nScqfZrZ<#A>q;fnHv9N^*oBG0Y z0dlu-@>rf{-$I+oUN~*l&SF`cwZ{7aZ z7oWwxxHM+y<}_5#=^ghZn|qrAVd`m5pM-hG>dsA_FU5%+uA6`VXhglMvm~_b$k>Vd zh*#zS$cS0zmEmUvuf9+=lm>fxhaw;HJ%#XQPGR`A*-E3f--AFq-gDz~edSMD$`jeU z>ltwQ4Eq%lZ?9el(}5c(z8~`8VZ_d>x;6LxlGZ?nH(q!BSRO!-3qC$okdpXdhw4oq zRF&Dg-w%-BS*0Vc!iy=Pl(DQ&pttwfkqmEj^UI^}VH2MF1a0>0wO6WxkK`qZDAr z-xWG~vS|P(te7D*f}+^Y7ZBm%oSk4CRt<2tKurhxenkJ%uI|z;e)o9cPHm|!?A>mBu5A;|6pMoH$cOPmg1I&5sXpD?07{7;h@)QHZMN#~=oq z)0Ou?6cCCfHQmP%pMZtzF?kIbwDyLnXyhJu(|F_v(8Xfcg5i#W<~~G0Q!kzE43Vxq zKj-|amd{2l^=mG=5=M9I>>IYfm9})0j0r^B&B_;ruj~XTF04TJF zv6uplsL+%r&~~0PZ#!S`iI*LZL&a<$W zx1WXL)gc5*fnK~_+gQ1Lx|`s457-io7#E#?>^oK8g;**j3d^qz;tL-2ni^t%#^K7T zPG7@P-@H;`Y^+kR1HPk80(J2aFGknA_zujWx>qzmPJf*D$hNVZ4pd72d6K;rsU{~ll9r@Y*_D3jJT3{s@SDi z@Nvu&Vetyf$&4>&PE|P|rP`zH`;~<5S9F@`wvOR%Z@ROolQ%dm;vJ$U3Oetz%M>MV6iQ!iD> zglanWketWbuUNK!&LwaoDG&3-v!&A}(db9L5a#*L{tDOO_ioOoaCR*)jyoTo`ZOmf zUz*9r1WbGFMSBe{D``2|1*B6AtPFUS{;-B!0kk;c&eD@W{a3hkq zOXwZdK`3&qokn~uJq2mu7pl86o#tg*!`!ZZdK@6wNzf#YXkK+i6au6U2w{3PtbT5e z@hORKSgmgP^BZ6lDPq2TXX1#iA{rzKEHh~Jc*f>6!g}-4s7l@49?@jCP6DJGk#pR2 zY%%Ce{+u{bsoDiF+_4lx{XV-Fh*ypoBq%7?xgyXs#~!;XOcxTWtO91V~u zg8P9dYKtWMb8;+D$QlDx^3iKYPi=F4?2g?c?e6T|Gd4WW!szj_j(d#XcYO&^jTf90 z+Iy(%xfU~sB|*1s{k4v?9w%n&YeD*Nz=k;nx>wPvP z$jFvYFD%3pw9=1xAG3xaFW)WTe7)uO3Y0B6*M@7~eOm3dLr81X<|_y%=RHvJ;6?rO z@Lmx!luEY4>OT%2wW-?XmZvEVH)+~dBM$5X_{D)(bTPAAdpxXA_zPPweBUl!#!?6_ zGC4Cx4bh=_2P|dw>PrMrpJU|3i8K6w2HV`4$EX1KE z$%nP)poA*VSHx=}2>mwdFg|(@sd)^TeDFn%p+7*LuZ_0QQ(^-4)rK$PrfbH4rEP=Q zdCt(o!X|-zv-{-4{Vn_XeBR7Mt*z>dN{)k(m~BnJdWd;$4a&J5;2%FgdrlCRe4yG6 zR_Qx5T8CeIUk-uj^3SnZJ7Vv}p<&dJ1JQX$?4ECfHCXKhp)b$gCg17TNOMbfzlb1m z^e!%5mux?NF3CCr5wrVe;K+bAry%L!J$(oQYIlp}Ps5n|v@}ci4yLU#?^wU`mWdKJ zrQ4jAMVO9IS({Ld1!?IKA5`;*n7LGpTuTAeGB@h?SiD>O!_okWRZ0>S7|vfxS*F1x z2=UjgKA(YI8vFzsuf1qdya zUn}Z}n7$90(R02Kle<@cJ(Kp5{;Cu`2L2$F*!~vu(1k)~*eNT!Pd_(QR!x_HTB<}d zBbmp*zy>I<3#M6DiHM!SA6rL2>8mo1*5Kpa8-9sa#U&aRn=9Y=a5SPH=!qG?so94= zpH@GceES)LiDoUk!NO=YuR0h2VdK3v2pyvzVhA)+WF3L04ER7C_yeK$}7KYq}g@9Jd*J@N5|7?gh-xBT$xTZjgh zf{GIkJC}rdkNtB}utyKK5SH^jzcxtzu47U=dj)1+y+2;d5o)SF$4&P-yWIYH1|@Du zhcWHe_|jcAguNdlj^mLIRr}SVpY!m|0&J)XE;oK&fFqDuZfNnCGJa} z`j-sjFqP{$K?bf(+J%=VW59Vu-p4cS4QOhj3~c*w!AqXR&cWw{)REz@KeY&+$v-Ks zJ9oGYGR{de3RjzTC3mwR@ppcqq+GjG2TQP2ChrQ;<(3WAhAU>QgWp0UzMu}Vnv2C{ z*p)q+1}z`IV=3W#F`^b>(6~kZBs&#@d|fiygouk%zfjl|x1aFhi~XtaXT!6fcw)pS z9GCUxa=TjOrH1d8G;#nT|5fY`?y?E~W_z`2mfoWH4y>I;PxlEsTlGQ9i2gDNY^`LR zkv2T^fhbYw()>YcisK^Yk5jAw`+b2E=vUWG1=5I~xPwts5G%KLCG7c%6X>@_LyYIE zO~jw_PFl#|IksnFC1aPs%?E7s;^YqcmD!l{MDJ(1=tnc&vl!+E)k~kcjq8UJi5xqa zS36~e+sQ743j2hH9HMCe`MgU%d$N-FolZc>5k7lr!IK*}5eJB>2=)oStIQ&xq4N;* zTUC4B)9N)%pZ-y7$+Bw*w5>9)&OMGcEu2i!X<2z~3$D;o@c^$)g@5@RyJ2=RGRw(z z0oHB2lCo6N&=-vAkt&;k9H`4ns#))Igb}66Tfg)(%W3oAS2>?>zT|vq%!dNOtpRf! zJHHiSa}DSKw`j-_B*;`2sifTH14@!q3K74Ik;e?An=TD#ctKMh303_*;U5@@P0EPj zDQrvu-p$2}H%)sCe2$Gt#0$UM2>F$Zu;8i=nI~*`J$lQthRi~7wN^AaFYs1v>Wz@o zJ2BrR39hhUyI3j4pzeFyZou8m#K)vzE4|DO0X+-*tD?T7=~(Fe3sEkq?ee3a)bv+( z6R6WJD@R-lh|2>jLU@8yXqSN1Bv;pmp4@% zi7!0Apf*ggtn<6{Tll^wpz3>G)eg@Q5|D}*ol^<~1UGPtD1T*|VAJ0in(SHb@^&9u z*BabOjWoPNjB+~)sPIm`Nzua_~Mm4BTVPhFkiWzjB}Ei}q7jBO{*X z+z4qkGqc_f9{jM8v+=aH``N|N)a%3EZl7B2Q}AmHHWXK-=fVmEr9@ujO~;2C*&KGx z&Ol1yoweWr7~epa&Se@Ci=Cm_-JZmGT#xaH0cRIBd-q&z2&TIx{iSeidGUvr(qvk{ z6Ya0dwg0Ls`-x8M(}zbo?{AFF<9lpY-h5cXw2Xo<8xGrp!{nRVqcly~AD}doFVB6I z#aPMEJD_J(Bpxq+_R1k(z42xsVn9bH9vDL=*G9WxqK|BDvA+mVNrT%BqxD78XmZ!L zFT9H_t71UqbBB7JbVSjRRd6y!8Cld(HJ(oH+Go4TFlEBP&voqkZ_$jhq2rA1Lit0t zsQgnE6qDu{!tRoXA!yj?KqbUPDb^-qhMa+;np`bo-kGkLQW<0~&n11H?2O$j+bQC| z2*Ai;G0a-wseP^wl$qn-fT_KZn2CR6ETcw7rCIL^~n2oAEi|%ibqB zz3jdPjcBYyQWeW>*FW!=bATo9fe*gM@ge*ws}r8Pp%=EBBuKB3D6n(jT8Pr?fqY11 z^Eu{hWH$!EBd*O%`NdJChEUe+`+E3j*-LXfPSTFOnu!fpk-~9S%QX{HRQ;s7a1}zT z6?}v7ah+e2U;?X@TpD;Sj|legq_HwlMju|d0>l-_v;WG+tlrk-f0Rqy{26k#3_UJE z4^=zMce|@N`(p~AJqB=R&eE1e25$vEU0guMb7ymuun&1Y>87fGE~N3Wt7Pzq^zAYR zY;COp!#;uPpwfZ~`%y%K?QeW*hZw-+&uN_vXnRyHU(y7d| zMu8Vey7CD!{!wmszNsxsdJ$ z*;Mr0V}iVWFf(oZv76gk;n-dRuFAX)?BWLa4#FWdO~@xlA=S?{H--Aln9>=~=1K^~ zabqj$J8`E0jSM4jd7!DU^&1{9eN)Dl&%IH6!dlFBA1D>X=F1`A!mkrzV4c;eYMH(A zu3mGJjxk$)^M73rNmGSF0$g@@$+_2ZaK{bW*zvL+^M~_Fu4-ZmvWpD!B&XA}L_AwH zc!7?tgt0;+>!x=AUfRmhy2CCM(^9O~s$G^T#zY~V)vC22-GSyiyI&!ieDRfl8JdCY z@lev?D!DL9XRn{d&(BjK81ti}yBA^##^hv4ev`XoMJI!`X(XUyjKH3=hSQK#51L{?0Vol&w#0pLqOoY;;ug z)3*{ekgDY?0A`u%C>BQRD-3I!*>xC5FLpN9lcOEYOrbZ%&S=hzd;LVy9*rn*utbUd z9o1qPoUJS@BDP|Y7{ecpa+TRz6bgt$PTFKzfQWTY;t$I(vjd4=-+|&+%6pTW$dIZY zxZ~l)I@y+1+!-9)45w*X3B`>-esIIhIZi#C~XeTdyGk0E~gNSjS{@3 zjx{u97DT>*^+hkRXW-j`b}862UBgSGL0>Il6u9=daly-agQxCF>5WYhLw*9+d2g+tGDh(H5fD!Gn4;gA3!lv;9+)=( z=sap@6G4ghHs%-B4@m8leh4L;wE91DGvQ%>syw9S+tQU<^xUVBa1XS^#LHtyi8_D5 zlaJ+Xnes*nIz69Ibq==lj7gWH5kRKov1{9U95a;vOAg7;fTua&4^3ps9%9eMTyfafT-_u!u> zEi2;FlOLB{G5yx!=GwKkPQp4_AGXyVW7(NWmr$Y;o`8xO&z$-cTWthTeQ?FqA|=1}iA9=UU5x!gN{77Uoj7o|&h05SKGw+l7|9x6x$&BA{@wgwp?wm*I-YUtMKN#6%_t>LF~!(W4M3kmMGH zNEwgS^QenemcQcC?){T^6k^)&J8_oZJxVi5I-N3DXu9I{t35fqwISU0^{Y zTzYJYs>`|IqLLaAVf^b{c9FH5G9<-vgB}L_EAura2tO4< zt^USA{U&SuF4A6`>UsNBq^hK)H=Kr%@|>#1s`n%p(ZFc-F{iFbc3jKo{G+$2EN$Pz z@Ys@y$KoD>i@UAKyx5+8b2$2fh(3+v_3g&j3mLj zV|wO4Hz5O(4}8u+5H_P&$8g3rMh=el#`@O(dbS1@aEweu3`GArEUc`|!2gvp{8y?; zr2W4#=KqzkFf$Ud1A#X*<9}qIdjIJEH{Smb|G#+W&h|u>SX=;N~WxS8}s6 zCZZR$wQ&?Sb}+Ozw{x_${~umP-}-YzNLo>mk>OKfrEls$#0>WzRY5^pS0YU!+Ru=* zOe_pU92}omvv3e;6VZ!1>RXu`3fP!h8GlBh7jQ5%wsHK=ApO4p|CoO!aP&g@c0Y~H zP0bwtCsTU0|8oCQ{!b85^G_FyY@c2f{wvV8Hn(ykq7<^VwsUecwkMLdH8Qrh`2k0- z=xA)M@;O-|Uf%z`^8XqBTOS*?f57Q^0|K*s77&%xt*#8d;{Fm+j=n*k7 zvN5rK&eYuMUzC4ScQh6@HvEkCFTj7-qHAVk(-)~8Apu9<+4YH4Y1pi@};y)U7-EgI<%d${0CL|nP(Bm>`K zJ3{gcTY`X3Tp#b4{MLeydfVIEc^{Ts{QX!*X66P)FtKd*jbJPOU1kPGkaFN@Y7kjG zAa)4;aog=PtI5&+y@P{6Go#afSbJvdg5NOB>YSQjiGDKtVyd}6wir#iHAywMHftG4 z6u^{dX|h1|xe!ba&Om!8h;Ha_lIXcv=&lhFSwE&w!9d*nA{t1!ddPoXW9rv@@Q=WK zHj#XT;`VcPK^yO`v4!ip8BtPF{EZKy&VuH2~My4-EW=6YE z5SMKBEOmbvnV`AeMAl)6i1VNrAVQv8JY~qElOHBzB4v_UV;Gru2q8O7e{s#S5ov1X zX4RvU?2rmDN{Z!veLCPt1$paOa>Zt3E&9Zz6=sz#8{!wyJxEzNCnM4Eo7Z-Eb(8l~ zWN=L3cK3{pjg5~%gK>iSUXWu+#Q@~)YhXYP!#8HoFx%(G$aOHOe!F1qn(5#@d?+26 zky?IWrefH+O^dfde5fSw@ZEDW{kVDv%uRoUJUI!hpwr)B0)XAqGX%MP2r~RwV7I$n zKHjsChp9h?CkA)_zE`t>Y%4z0L_`EG!04f6u)rXxVSv6NAu!zoJ&;!*hY!BE54Mx8 zig3|npL%!a+&@{ku-&(Sn=Q>(E-w&!Q(#zQ?q%nWOw*_lhT{Ob!eg zz8{9qAKG9(*3VrtpzFks$*~WB1R5PHs}G0V$Iz}1L8KL}H8;o^oT5Gg*vzmeuys@O z3eZK|@;Ol_G_yE1c;y?NnGoGVL#+iiJzqLOq|#)4r&;$a3QwLO$NKo2*M&VtNIf+; zgH!@*U+0NI00s#UyzRp7aWXYPRKcRSs(){QhDw>wL8i7bg<$fk;8Q`8@r}#RkAoq3 zI;GJY2ET&%fJ%Xydas6pVPIVG%k0Sj+oJ3MHz5-1A38LKW)R0)Ucuwh_+Y95OYQe% zosflA0ZSRu}#{C7z z=uJe&Tt3BskF7vunzOP_>OhRG;UAg7W04zvE2aRlgXNnR2b2b63ow|+CPc+03?zIV z(-3|;<^fzj;zHdjKRG~tORY(W=;+urqyrg3DMC{uN5!2de3e@1`Lc%qb^96v^;Qp2 zWOHa>`9?`{Agf>h?)12YLy#k-_wv9mW>@dl_zgcGj&|wfZb=PPd-L|*z{fX$gfv9B zc5`OsYcg3ubpj}SdJe0&W{aY{kT&gAherC4qm0D!z}mssk#R&!m_1j{kdKYWX5 zCOZlv=3-CgvyCUf52Khuy)y!X0naAP4u=`rSUxu=pvjh+z>4lRC5%}{vUh7`j2`lA z@=Vsn*K3v8nz%uRPH=*t*g{vWQDXrAXomef&w^|8P`DXj=&e(@)d;~mxNsv&O>yfp z+l{eimNTZe!4HF-U(C5{wyU$1LED=_82TYXqP)wjA5o(|4T_YW+LK|dwNaO3-gQM-D3>g;i6`T#x-m$!(r zN1|cy1Fz8`VDxV)qS3{#Y`gh+81~1?+Y$e zg8PC@HxOwy;d>poGkx2qCfpr@zxpy?KuqD)XNQ9~AjawKUxzP1PlaxhC^hL62y3$c zP+{n=-ttdI_)m5Sd@8wfE}C?T+^^*WxBf8pz!1Uaav&AM*8E1AV!B4CnOI*KbzJ}G zYNc3|%x@=I>xngM*z}Sk(|1$CDDxmnKH123GTH^5BIft(;HdAGn9LV~oh+vRy!h06 zQ$jZhjgu_qCGQ#C0^;ef;T{?58u}D8xbY6xaKlXi^2hQI*wZ*Z%AIPs!(+0py97Pw za(%{mw9b5xcw-dqJpZ_1*eZYgCxhMxLv_--fj72Y|( zYPm<|bI?&n^G)74AZoec7Q0M{lEt213}Fr25^H>91!!U<9(*D{NxI3MC#xaI5XHc4 zuE9rI@Kf?&h4HDy6m*#S?h{P>&ukOlE3umI<~c@Sy?+3e+k^e{@0gg)iJ*wjn!dQO zjxgy&6Vd@vPrPbg&r_c2WP)3RH5>?SbqjcS`Sa+#+fp0}`^LmDDI^@*L>6Wm(OggB zzZ%)iJYNXF&$stO+ib+rKkW0AihzNxlfg%fLe3xa)kqFRaX(-;JrhqAkDy=VE6|9` zek1)sQf?o-vnEodSalvy+0ZVZZDgG!?8cI_ix!RlxrP5De!3L~w@O5?^ME_IFaj%R zyCh*RkE)W@9R}A1*NJ!q-_K>g_BVPGcg>%OU$e?#q`vq(SYk8Dwa`dELr;dF}49|oQIDce8noC3Q0GjgGeCl7`(>8X>X z2I`YJOXvWuhq`&^Kx|~x*M9L1+dtO`hcHF-04O@WFW{K^``8YUEqZ~X%~#ed(fF&mGz8ylSb z0wAz4Y9IQ&b!vKW(CtP<_Sjl9hOcw6G=F1pDK_aJD-Xh_b)$BM1YT8{fv2Ble8tfZ zed_p?zEdS(MMAN4lY%2+3Y_!u;MEjwglLOCXV}qQWE2>SCb%*?zCj*ba#p|DEg!+? zgZhDWMRFF)WyzDF-A;0Iz^-5f>4#Efwf!}okR$B&UoP`bs#7g#9_sTb-NsiVU*UP?PFFzK z@UF@(atAzIV7}#t7X=Q_tM(Rkdyc%MP^P2KqKc%n_d?pfR;3=5m`-x6h7q4`=sSTE zYE%L*<3QTV&j-1^D7&A-3b)>E25}YI-zJecEyBpD&CGrMU-4QU} za{>mq&*<)288DtKlELGWjYa`YWzu~EQ#IFZuElvK$ogne5W%%pmq+O%jY$2jl@QJ% z=sqZnLxa-a;x=^lTAN)gExwE->6&%PI(s&im|w$Fo)gXmtb#~f)R5#qJj@oo@UV;} z+%4f&#vP^SRd<_ZU$DQ2I?rf~_K%SdfM0j`&q74Dq*Cp_{~?IlJCFx8!1ftDz@sOA zJr&DL9DE4U$7cX_B;|ZRJgP$ib46wwC1c#ydix@xAaS>Oi^!8tx2{uLT3{uWDZZXR zfS8u2QN(qR6pmK%$YeR3yO=GaLz6`|)zvloO=7xbX0FmjPRUQaZOiwhnd2r3OO<7> zlz(4SgPJ~4uY?ujA~1!jy2t%gj)45YqkIcbkKEwr0A18{OsQPd6G43?Gz72kZ}#-q zUV%WUY^K`DaY)q0t$m?&Gm&Lm<)p3QdX6FFz>Ve%vrV7ya9^V5I=3KNf#)-L&l>s( z$2A+B%aqT9R-|xVnjx%EFDWsIkhAEX?I?&za-{e!$IqzVdWF844O|-S-r;(%p~oS* zKc)xClYC$rBJ_n|Uu7-(=>xv8=>K_t!|RATVg=$1-*Vv6b3+CP%+cHWy3(?}t^3!Y zUj9yR1j87aAe(cIUJmioz5w}Euoz*H4YdChzmf6Y$D=?*CVPb3bm8LOKFGo?#d&&H z&~;PPNDdw|^^CICV$pgioY7JDSsEC)s`(!G*36SB%7Q1v)xx!|=|{=M&G!vyC%pJo zWk2g>Fb#`W%&_pKC>e7iyV&P@@HeB~Mf=#~FSoDRAO&&u%?4`gIJ_6I7SoS zCVN=reNXw$7)bAl0?u{{I~+wB(prk%R&RrWjjZJ|ZJS$z_NM(C53Y#`d40&Z6Vtcm zU1!9-y|g-YHU>2xddp~C_IEFABjVH4)N;E>c*V7UT*UdLPV#TG?Q-Fv@<5`99 zh$UFBZ57d@2G~H9WT-$ho&oE|pnh^p)IEwe*hYj0Z7f25f*Hv;$qSOnSds||y;X5% zbVAe3LQ(ObO{!%XCVxv&&-y9=YOiqX(r>Yb*%Y}R2hTg-!|`$$EnvCnBvlaetlNjv zUcTMpGF&4Zh0jfym#NaA8ODdh{Gq+$J%m5~(YR9hSMLOoo1(_6@2CI6P$$*&=j}>c zA914mwJ4r*JcJz=-{9AgbV-j4G6JFZTsNjV)#?cbehalav|L(eu3#t&Pu;UbAPH$) zJbyd03z)YX4P&{NpDp2QRwvjVlH7Vp<*nsGBUJeOo{J5&IU&TA$ zJrgu1to&xFduGQp}#28k{38%WtQ*cWkP$r4Lf_}c}zcKnkSPX_cHjm|1bylo! zs;(q56Mk;ot3>T#d06V?2icROE*+#@A} z#{8x5!1gWEsV`7d%ipiE=@d3373ypBY>=2rsxVuDaLJv}rD7~Pf!KlAK>srF;C=E^ z8zVnTJ0;!@C&tA~^{eFmX4O6`GNC~stvA;a$TKrLDxc^JLDfZy-HD3?DmrPum~GId zKK9Quh9Bpyk?tgFl4p}YqJ&jZ62imo;9&@-$}`XV7qzh;OQX~t(b`&czSTsGt0#L3jqSVZ%c%AHW-SnKa{s3oUXko|ANT>x6YtmrN*&3qa%JI zz`EWU0!^zF%33Cm@%J}#*=*DMhObgFOsrq!aELi6Ut{;ORs}rjW6!-@jH8z$n7jG^ z60)_rHkdea7?}Hyt$o$oSL)vhIK$*o=G?wy2PMig6UsE`zD2Eizy{UTiyLOsEZbE$ zbGR-E&O-XH!1`eud`|(yfF~$k4(wrAmXu2uw#&u%|B^7J7(UwLc%ZCsW#cL%r&_uS zgWbPR?-=pMwN}_3r^d_wJZl450ySgm3o6fBFJCfI4qUHrC2Q+XZ@Ix&@Y#?xm0~8P z^_Jl7jp}g4W}&6Xu=h_?>iITVX(e!LssoNSv@U^P^VGC-p*Xwo$K$N1t4_NTHs*<<0Mo>>m2T)!dXs)m9e(V)JA7LhNa1Nr#!>8{;x83R zCu;An{pepdnZ~T&4`6`Dg0@LZPkV472_|Bnn|VcF$c(03Kqe-;ve)o33Wk1n!E0kp$EmV|C<_lBB;1^Zw2Q{-CbnO|;LS{A zmdKYi>)&y%a6I30VGT}v@J&Y6KpE9uD759RJ3wXNvH?=J|DO5V+`+h=e10fZAI?>Q z3Ty=9E1keydgh9aDdNFc7;}XFFD)@#Q%HvD&d9|@K&nO2cr?XE?-R4eEd$*Ht~1Ua z&aA}WdYMYqi=;mCC7SWM6oe(BgG1CS!~q%eB&v8jT2ab6XIjx?GMQX$eqIcFvbpO> zZEIDcgqm{y@ZSjE64#DLke*A$)(Obz8KLQ-#DC(zs$XxHDb_$YrV3+0HWFY!ssGtb ztDvXbc!H+i_dF+Ha)cW`<6a2zzeN%nv9o`Pl_HDw06_5h`Ww$?zHA*8ObAY+R&_sG(FhDtKVjI^~G4APEWZKK@N*alxR8pi#lUZ&J5C z6{=>_+qReRby^EU1;1KcmGx6FhD%RhTR!S7eQ1s}RY z?O*79Nz<)WcoP3pjyY{t)FyeoG=)0g*YF@I2BZ1Kw!YzAL-FPehyiyn+p4HcJHHaW zrXDvwgvlUBwi*jTOWsnnJTsCS?s4UFzM%Yb&wM1XG1i=3u8wgIczlRIvbmA7E%z`x zTTS8P-%^{%OUjA&Se5yV zM_0|@W^p7_4%dtH(Y)p>_GEE+F$0}20#-B) z7oKfSbluLncvmO4B1fmct@}MP4e#jSd{UtJ7|_6spnch0YO%eE;hCi$VqRYJZBGGW zH0?m$3?oOSwI)KTRp|8UxhuT)lUDI)XuVVk%0YrF63UybjQ z)VI08qA>%eym}>~4WhT=iY>cT^U68#5mSmc*!Oic)(jf2Z1&KG&*82)y^PHFdy&K& zPc@!GPz7uu;XTUg9jp$`&gMu@%u7y*xyMJ-X6P>Vp7~92*`IH)mwI1>tD+jv=PHsh zQ9C_9yk>qS3n7P8qiBt{j4jm(*5pn^r0CAv#q>IXl+p1~)8c87QM7Kis&KlnmFSI0 zW|K4fft8a^Uy#~FN|LiE>))DRcPDx5Vg%pwM03vG0xKM|-HX!>3X(24FqUzRQTJD+ zaj&M6oFf+n<5K*HGTo-5y{`HbkTP*RJ4K&!-%ijAEYI>LeN9)6T>$=S2-4^Mi=!v#lmdPA|VNr%X zuBeq^InThdlgQsaScQk2??>#kdqVtA)T$&r+OFM|_Uu4f>2f#hgz2Dc z*3P|mjaTtjI4c-A)@q1ikQjgo_#7MjT$VKy%#GQ7diGG4~VM&3~$@{WC0`Gg` zEn?@xWR%-aOECl?D7xvdvOnq;tbQA0pM;tDnPn~GmzeM?hRp9d z+044Ows$-GnsU4R5-mp^06aoIWYFGKaaGb4&(hgS-*b9sb9Esb@OG;IE}i$i(V`5m zfn%0!M8O%y5lvb3j3psSV7aS>x6iVuhYWEv&+@9Ph$zmXy8*k#|G@9;kxTCY=;j+P z+_C;N=s_3!Wj(s|Cyww8amwnCAOlkN1!`3Z0)NB!=c2Sa0|`jPXR-iT85#k&*EP6) zW>cAdWF&uorK8C!G&p)>w-$q#m|RwydcCEal`O^GBMU!_*$S3TTB-SSGiIS}4RzmR zTW5+Nz*U{9r$lub2f?~f7VQJF-1YKtue0KIK_k4nqQ$=Nh@mZcwt$82;Vu^mB9=gQ z7;PcTabi7A0AX*q&#Hdm*3a-uwSd6+Jguzc8J~NH7n(iN__u{uLAkv@d3>lpn0D{v zo+<6%lmdyD`(i7{ff!5ca)kpdkCw6O!_aRb(%vNr1#7s|C^DKK5a(j_G*0H+RD9l4 zs7>5&o986)8QTWNuYb;^!y2DM$(yf*1A3#7M!xh3VEgLGP*-1BonIJsrcfMU@{=~< zB+SyC*VMbPXcsbsG*wY-^I7gEvb$Qb1rbqRP~~=L9*-UaUOd13ME-WHYSNF)3QM+o zN5X+xQ>Z&R3lH#OUXdS`AmHL1Tx_sneyK~nWa)D5{|K_G$4vLPUgAs1%~3H>!6_&1 zcM0ag$4eJp5XChqVuiGie1yl;@MQni`u0fX9T4Z_b68KpU1?j~h3kGT1*CrNlqQ66 zLlt_%3ff z!vVG7k??*ynTpq@F{y_H<_E;$Ep41lmQ6hM>YTIT;GtKxnRvzdm@9 zInwtPETVW^7YTYR3%!>6IAehrAS~|z?PC|@eKi%ua5yqID1`3avL`> zVw}#$(KI#RDPZ%*6<#O*Tne>TEEnwl|BEK(?Y$7`%Dmk@2< zz6O2j{F`2$>3v(uDSA>79c4fey{Sy~dq{sE9Ql&0AR1q>CVFS}@JDM>f?d&jMf)mw z+?Bb;P{q3JJDfZKk}Eg=V$XXMc2Bsdv?W?(Q5A&n*? zh`Z-ta5C<0tpJE4s9iG}As(a#J7#f5hGJhC;&+jQ1 zerOC=ofN-wIP)H&5JEyUAlaI(vRN10C9<3sd?OGBQ)BZ_qjpwTQc7Dd)mkQ_#Mmrm z1Wk7z6p|a#6Jm&NZ#nvoy*UiDIA_dX!eFFzei>3SzUsJ@O2FdsS>G#t5=BWd<(#3~ zFLhdf^%${`b*e}6h10q}&4epWK!;GkJE4l-EPu2QD|}8Dns4^lj3a!BqO8oN;v24M zI;@DUkh@sdO~037rz~|(pG6B%uR3E=Vo;$nU*Ed6n2E7%tSFTV9!8s&|4sZXUKS=C zTEU)J5wU}kfSJeqrf}+9Laes7#`v+(GL(HruhKz4!=z;XCI}kGzNb+XzGPz(mi`7k z_Ww|JkI|8RYoq96+qOEkZ6}>{)Uj>bwmP`>dLUH%`!C#S{Bl0cIT>bnc8#1gX=L+Lp7zxaY&JDh&x zQt;^2Qt{CP7Qnuyt5QQ7;1AFenOx9Z~Be|Zl`? zu8c*&kXolVV^w09WGL5J70--tSj2Yls;TWgAlJ9B-B1!372G_wH@6=iXll=h!LYbW z4AOccP#3wo`VEmqM4|HajB(srBK=_VUiGQEd0G9aDUGMir+x#;a;{k5F)eS(@WCE` z7(X57((ukv&68LmlgPSE|jPeB8EzK*tha z>Up*^&V&=T=G&jLsbK0tu5tRWass^Y#sUJWXhmLB)asAnTh{Sd2d4H?lf# zE*rDM=-hLWT%XcNe1t_i+rWtziVGk zLTdzV!9+?1$jg8`U3nG|!MLv-*D-we*u1=!MQ!Ljz` zEfUvq>P4X9yN~pf^J>Z;Ab+T{B7!a%fPl9(q+^e(UaIg~l2S$Y#E0-zSkbdt>E`q+2Pb70;h^5kx*fNhe}3p(`X*1Dt{~%vev3X&XPPUYASloH z6{*HvggpU{^(-ax=&7QJxgT#^HZ8Dj$08_GM(Jk0Up}b1zDE zRWDZkO% zRZL5!GSsBGl^j;v1r>BmrP@=wX48eAmV2qaC{g@U)m=*$bPcl2e#z#6@>LWJ;iUJY z|7rQm!ZW+f(W2yc8=crcSMjZ_{S3NsMM=R$-fA2jbvg&s;gO#+1TuH-E#Y4mtkYL& zYaQS|BjUHn?kNZIvMIlV#rHl$rJmwh7jEg1Z0^J>#2+ah@hH#Oqx*AN&?WW_Wc$I2 z$bSb{bF{R|qsmn%lIB!w%L%0BN00SHR%_Uq#TbV7Bpu7CqPx-LpTk5&d-M6rp?uz^ z;5_hvXzuzOYs>nutBdG7^us|}z9?@4vmK{2w@a_GL6u(YmI$nfC-U-7FUzK^Ag zbiNk>YwtBFs3yCV$>6HqR~mGy{vf`QObz>OQMR4NoBSKCKf)=GgMCjALS*qRBpfN4o-)9)V4yYiwKLNLyc0NsukPy*6Fz-O-q8;J`xVuuFdhO;>;d<3OiUD_4E@{2w^>j@=GojL>F>wkGxw5M z)`&w+I{c5xLELjqTZOtYXUUM3{5T<#>itUT(8@8iKw{@a>)SJdFW!{7j`}Dp3?w}p zZTJb|5@`G0(a@`)cDHz@Fd@GlSQ_Q28*51$>C|g?JlbkbMl6d(B+9^W}ZK{P>)p3L7 zIaWij;1-$(DQL<>RIaH>1E>i#%X1=+M7NiDyGAl=l@ZD}6R>0_74A?x3l(jq|)-%Z9%3z{)yCaYtQhwCRbn(@1oh-C8=&K4TGO7oQb7;Vq^%T8+*-CZs* zaotXDI?dgvLiD;>KYg5MG^7QW83N4g#+SSBwpN5=)^>BCAe=w zu9yxvF?9*K4;nTJW@D{vppSWG+~$?ft0A-;axXDm!98}+O2A_t3#ggq*KsixP7xwm zS}NUQo?Q7Za1o4M0f=H?@Z@2Sfw5|o-k&B!kzbT3pzB6va3&C4f!!RzQy4wNXgYy# zhjFW=!~Iin91kDn0Zb{?X+E;_9GGr)bro#p50OD`v*tP1eLZHh1;L|n!(HU{a**99 z0pDXOmYB&XMjhKzLo(ar?>-=%_@=q_Wjm5r_g=(S!H9Rx*RR*$Uk01dvn@K%M*6FQ zJ7$BNUE0`}Q*2uE)mi;k)9wybX*BrTTGtmy6pKL~*~+bfSYwtq(Vvu37I!N_!9a-s>MBxuA|AM;v?Ip`g$tCiI+&WtZS zOSe>VA~fLI;`}8inst)OqKazuNNx8EPfD@NKI$v`GmW4lYo7t27||r-G}LCFsndBoTd;lV8XTVY!S;hkT`8&{6Wm z*FNRdu+)|laxW%?tyZ=Ab`Y<1N@p2e#2w#yzcgN7enV&e*{U8H<@RDinv&AcCK|Y1 zmwZ4!7|VGwe`SEUE)8YhE!!C(+dsoNB|XE4qEOg8@_-*$x10WDt#Un-%8g=4`rW$Y zgp^C-A**_4S(f<#Rgeycv(Iby{5JXkdJgLq35-*$VO@1kk=$|86oMFhIG#Ev^`{jt z!IRY1IaIn)!bE!kZK;G~#c1jY@a=4wMWC)WpS=aOWZsK_!-Akky^uK%9LEi8(RuW5 z@Q&!!WYrV$HLR;=Hj%d7Unx@@-=5=+5+YWan(Hx(a3GbczxQ>SS9=lH z@0m<2s3;0@t*tz2NT4Xdx*->=D7 zC4*3pM0JqEtx=3 zHr;Y>tDAw7+ZpoZm|DXnAbm)O4+&~vwGvTpTb)?WEQ-FN zg!TH19L!q}U?dj)@f!Rf4o?GJ?H=7dA7a%4tEu`De{!|fqdL1R&+|$p*3VxZzgVhN zfo($H4XvYpp(WYqtA^gMEz)3%KIen=6k1HN*U*jGX1F^G3<{f5wmD6uhxLu?rQ$M7 zcf$A7Gd_#OZPm9oO`WzDR76c*z|fve>m1WsliQ54W;mjG_$OP9`=Zlwe z;6#^H404k|Kt7$UHJLT&>!<~3cc=Ij!@4vdD6`AETSY_TMap!>puKtXGr`iFQWj+% zbTk!McE8ASzgaBDYWU$zFChkVrAkwW$4ditQOZrIS^BsOo&1)0`&efsDCrt_Nqt_V z&TOdVK7dTdS@kzgo5T-E`x$@Un$dVtUgN%g%Oc>& z;2OnYfBi$8z3cgmn)t^KQa$?tQOX%E;R~Mz;;P0QW~5jt=tczf%W~%S-272Ap3bt- zniLaoKMfr?ZE8FUGu^dr;pU+5}{dVG0qLkGP;cziMaD>Jry^^ zGhl1d*lyYSqu(4hc0u<;{!1*QxNlup%%ziHCGk}S(mJa$Vmo)yXG7JK!^Kr3DZy8@ zg3*9)#}G-Up8-AtJHiehs;IV>4IGO~dPI&OMH|V=Pbx zdiRR4W4zEHrV;LRj4oz&fRP11s0Tc(qIG{_)K5F+$#={3M;**t{Y$FOgYs(UwZl_= zc8GlXN?8jv5d()G$;=rx_%mwD-@6}^uE+;DjhC+hPo)gfl-Sp7VV8sXbXupurx7#RLV?lKBRNFAZi}il#sC|lV zMQm~{PZCw_9w|&|3=(g78%-hgB8h~$F&G|Lrxq-81QLF`J&HoR1HYBf)v={c4HK)% z3H6>JZA+noWB#t$e;w)kEe`f$R^5)b&vjW+6`L{&`5B#qMlD{%UIi_H?1ZlAXlITr zjNFI)g5}dd+;$OOeByWjacfNYFy{=3YEGERe}3wW40v{ap!FLxE@V#kwq?)O(i?uy zZ?u-!EzRp(TfFxMoApK~^IbJFIU8LOB-=5(FCy&4t1Vh9v-qsIxt(Rk!sHJ^0dBtg z?u#khtZ_TG3X3^vgED>10faYM@Hj^@i1>XncXaO}&uCgF0aX43e7N4=4j>`z?4q#9 zyZjejv$W2Ily#Cg6k+a_Y}wD9$>v^L*%R3413qV-7ZuC%hlNJR!oJ~hW{^HHHM20% zNa7pmM2jpm&MPR9+Zyrx6W2&$GVQg=W=GOoeJACBOU(`{<*!Wd>`6L>9yWAb%!vu; z3g}AnoC^8=m`dDMZRP+#}O^;)j9Rt!?g1fOU}XLEavc;+HT@<`*NIvB+9=Ei7l> z*YW`Vn++_SH-;OsPkW%voJpEDzjx;1NeP$v)|IDb5`?`Yfvhqtq8$}OzrEn4L6wbI zPie0T4UC2Mz#u&}95{$@anhKVph04`|nc14hxM3<63`dk0oB56L3B7BV35~ssCa=3h z!&}T+JKcR+JmUu+a|GTyztYqOqZeqdTV92^Kb#yJ8>WG= zSn}6}qx1M9K}MdY5cTa#gsmcF!`6HTPivLz%+;(&imd|b!~<4ex3>(5mWLu6mS$*KLJBMDb9`k2bGOR{#Ev2ycR|`opi|D<4>(M%5`Q9aSllr0M zJ5TYw`s*zsZ45Tr*_z};e-iobaZgDV-dL3|lRQU=ReKEDYCskv;Q}6My){H-8UKmZ z$r*j6m%rGonirOr0I~7g^=xvI4o-xzd=M3y`CZtt-%u+nm(Jp!eIB@X`_HKL2+wYu z1?Siu?hy~k1jwtO9BFtE1I@8~;nb;@%TzOk!lEGKGFNGFUoxKGhFG>CoxX$%QAeuY zf1aHe$#v$r%Vuyf;8*zhA6M!=+T%NCrCUA7>R<@&u+81#-(})Xzn{Du5hNLxSpc!( zW$EaaUUEow4q{BW;vKiGU~M#}qss`a;sF2tTr{b~ZhR4`m0mOsT_;_E*I@z9y7(nU zgD@{PxLeq5!?bC<@3^u63xRtuh}8UC%OMy>D{EjX7kGnr1YY+8?G$@YsNvTt2{!^P zFx@z<-x|B9^-$>_2sp|}A@@#J8LOK@RXZ^Yy? zbklY-NRcSgh|Bf>jNX2nC83R%i#Rf6BTcMgWJu0i-v#9yO#LWFt!nwjdBYzpb#bG( zJa|%-e0=1y?>l~;+FE%j^qmGyg3aau`5Lz4Bir#FYb?J816F!EoqxxjW#vq*zc4jq zm5mAb&N;|~KihCgZX9>&>1Id?f3@g`po_{rPMG)fS1U=6gWeRX0`KBvrx$?f#=RtD zw|Mp@6_i;)*ZgS-oZ_=3PDC1=q>ca&kklO5?-s{^8aT3Pwi;S5(*M1P5@^t#Wn z7!$NyX9*NnYM83MK90JN$!fk^!}d^n=HVM=I#frWa-s!WeXF`kMU$@GGx%|;nZ_TE zJNPDqPl}}&=B(a>yEU`&>CLS$|rZzfa#1|-e?r#4~=;H z%x>_0rc6+p?civQDifkRRwEOCxrj)(Y2DGmofRST;9!|llvK7)5wk5_{aPA0txVUz zcpw_W@J|cL-!woD3C9=D(tQZ~oylQq-xF|?H`!p>gu=6B<}O>W%1X^%zO{G4w0LAw zhvoWBx%4oddzg+F2JD9|&iyP6|FJqrWJ$_y@tj`CK#C4TI7YIF#?$hB-eDY%RfkHg zL7P*{_kFcNsEb5Nd!!$PER`aJ2f^`@@|R|?oqF-b=qwL?m#!lHEI}GHyaCdtSFqxo zP{uje>@+W1!B0YWvlEZ$pRlg%Gi#3cq9Dql9;<3SW4{Goflgv<%a(VQ!y}J`+8%9w zVpSwOg@y!|Y%R%!z+|csoJ7d{5PiJh3DHmt=GH!&29w%! zz}~;5H^>juZemG+@T7wcwiexQiy{3LvZ>}VlqD*Kaf}g{5l+IPsTwu8R9MKm97gsj zCorL|nE*2zg}}1lrcqVQoCx`N1Koa_fKm;7t(;xoV_VHeWDjDgjdW%Cv}76tGe&P2 zL=!@kVKBn@p2d8_6Dy8?EztI(tQ|i+n}Jwm9$|fmgv~uDMU2$hfuU&{&+aM1$+!tfQtPju2g zXbAhTI|yx5I))JC{!FH--k*P_EIu4!B?RjOnGRKh5=BJTIKv80r29lL?;dC*_-hpF zKlt57$lVD)A*k_D#f>zq?BQ^U#Dhgl%i9#B$4i2D(m7&ae zT4^=x;p+$O&Mmux?PbU|!(x%@NaEq_^ir0cQY;^I8(4|%M7`LutJ2RtvOxt+trkD_ z#b)`|so*s7f?}P*hBhU|8&<=sZK#p1Ca*4RgjKht(fYeepoVNh|C2Z38&MD#&G5d% zo)Vt|&M|Fe0LFK#?(;i3H3ts&{N>05Kfcoj(UFwrmzI=s3@MYT>^tpbaDn@CrKRSm zQp$v~OG|a}LY>=}0?2$Rc4Y(ZOIWTm$mpu6{Db4v+Sc z^DP&l%}dwp$eJhB7Kvpsb%J=GwK27`o4!^8x~3*3qDTz3f!w1d=47Iv{!mAQBSkiy zRjRkqXB26fF}FWOhE$z><7(C!iO-Z|MW92yaUmA_g`yaODeTfOpfU8bfX^~_g*(NL zbspA5Oyt=Qr073mU|q zLU-)hV$u&E9n#~5yCFhT$xb)9CXdzz!)S8@XET$h4W_?*Vp@E2-9 z<-m{lr@;;{w9=IL zU0%UjcVL>AATn_2j#)+FqS_q?0T}Es?4Qj}D)(2}pw2R^r&e3&Yf>N4>k5C3S2H&} zHn46!ZD#}0dP~-PI<}z+zf18HwcBf$=h4am=egPRHo$hmua0}}nBMHCwiIdXOje}w zIJmIfz|I`Hv#loq}}k@D|pw_QCGZ*Co|(rsxzj^hE*?`mPALj*_PFo%^e<$rrcP_;WyZQJ87EYk0LzaN4Z^cDHTi^9@f1+ zE=pa>VMkQKLTV;*;!yUZC5LKhJa!pv4N7Vl>VA&b5pKR<Lg$nrO_|`M@}cVYBrd zrWYL2ECGc9m8RZqqu5Q3yYx{~9Eb9}9R1J$gtcz>hb%>ZNL0quhdVZT)l8#~d{K$P zM#Vwl7$f9E?jx-gARpvj=^?mPc#pUoIg6rWDw&8g=L0H!ktHK zF`?w})-3*EWtnJi(&^`pPSVSNI!CoVfwJaFt_wgJMs@tOqiR%AvJA;em$bQb2 zFcY~Oe+0`6DTQx-H&*WqXCIUs2J09`6%v=yOrtywlJJ5yu8gZi@%&~Z z2GQ4dy6S82oE;Jl*2A0H1MI^kF14s}-yHH0CS!?M3RE6Am5Zo3T@%|m{U1a|Eso@d zPLt;#?yKIu>v>vVo$}O)`tJ)z+Ir%wHpG}b>Z^elttBX_aZ->9AkIj_Cl5_nFyBu3 z>6$Wi`1}k9juuI%ZaMVT5T5PU3R06rb(PeN7QB%NG$v6+Z7}3ZOHe52tF$L3Cr3Vd zg&y!vBqR!AHmklf8qH~;h; zK@b%jfkPB6erWy$+U4l@uysVLe0pvy$P4%V1??EjZCZZ0@~Qh#TvJo)@wj|WK{_wV zfNQ`7zqmn#v`RX0m9PToa?Y{W!D{DJ}ow~aY zI^~TiUv8~sgHUm3WzF?lyln-p+uLK+H3I~zbwrJWX0grcNs_cC=VUw*_3gI&bYf<% zHnFF8;sNMR+968FdcC1P>V4sP!bJu5EJUjRNm1n`sgL9$SB@?$8^!Luvc{_yz4#g$1yb3U2mXG{X6%G;DNjoW#qHYqrcLKPJM)38%_n$(0+O$b|y1oM2NJBnGdPZb0 zd=ruwh2}=F5HcELv5R-tp)tTe--P7Lz$9o-l}I_oQeluqKe}@`tzjZ%9i;^HA_6-) z#HQU{p~DzG|Hx<=VkYOR2|eC{UU zvALYx$|QU0E{foDTv(E`edFEe>)YKXo}!AgDo%Qf?lq8oRSwE?%CHL|X-r{gA${8< zNawB6?`qnDVjz?~qY^td1B!dW(+CV;;6(d*Y%Lp*q+YLfa+7isC)od?Ylr^>K9ICo zfV17FLS@!KBgKNADCID*_3lI@$Qljmrev!9tj=Cc+~yUGo?AX5i$BK@=oQwX zSJzLe+I(C`@k$T*v0N5aF$^P=xfmC|Oml@@FMTdyO`qTrCvTc?aKknAB`7w<{}|9s z8>`!_(3-0d8@KAe%~K^Kld6xpnC&<^qG9_tP(^0Vi5G>N)kHkYkj>kn>KJyV5kN=( zS>4paQ^H9O8(S~${c~qCcXK*U#)rCXM5b^?&s#A{zB&%&Cbeg?d}MV!VgH=GsX!65 zcfr(XsWyRkOKh2!)5`7QX z;s)zE%9$lB#pLEwuU+5 z4%PIf&ZLrph&TY0M9SU4T|_**B}t%NK;Xp;hEOxO9B|dLKV|dUE5X-yp~c2OUSLcMd!SWg`gW; zH@r;%Tq4-x(E3|^vQh?&+LRVAtDOtM>Oy0NHDMH^Wlr#Zplkc*zBHO6w6UB7u8{iS3O)I4IUlfj|;N47fDUznOsYRo0rQ#SE4_{XMrj9SOu z@U?zWcc4X(wUODGF;n9T4^UY%4Jn?N3XqfP_^Dcu16n^fuLF>vAIzLo(j3Fun}WYx z#Jge&2nn=THPwVwB{ivdBXLCjHbV^e8I?H+;=?2#Vjn=K6s`01KN53BT)9zS1in5J zX87hY#>boK=^VVm5Wr$lItP~NXsGI+ueDyx8!!u&!HDXUw_-$Gz*o0QM?Bb@bQfNI zs<#gvt#yY44v8I!Kc1G%DXCklRZa|D9FdBVy`aIgy^?K8r~(%3O_n*$wS)Q;bV>?Y^yOQhNd-k2p}%h2ZHvYD zD26B*^jKyhiWgErqY+kPo=uICggP!noQ1quAUkx4=`%e@krJT^m)ykC$Oa#SXR{0$ zVR5SvbHwHA%&bJQDEkwq6}ni)qtO^OJ<=#dgjcULbCm$AD z0!0RELvqVBsC`02uk&nJWnbpd;;4A}1{mB_X;5gT%5kyj2~_(*)tpfh-5+(NY3Ipm zV-vP8&B7}~(%MtEg-^+C=a90onDZr3Oj|L@LhSmhiNUk^4ufRJ==8<-8#|7iOX59t z3SFD99Ab|^$Xt;rTG4`OyW|iGhW5)Bw+~7ha|&X5Wr)KF7_@R5c`$Fu-C5) z*lI{zB0PM8WUkhxH9DlUaxoqe!uiqUq{6u$vrnqrd{#AO;xJu)YJRp9Vg(jcg1}bm zD@8jZ$%;W!?2C-9Fma+TE7fp@{shZk=dvFKKRbhX=n&R|_juX8ka%PXIgG`u5RR0| z%fdEZ8mf)2z-W;C-99c&{l-K5gTxSHV{S+}AKGZ`WGyS5U#*OSAwrB79vrJZM3(y| zmc!LjHZh3VjZt17J=An{oW@>Cp>~3H(PyVC<1%w zU64t7Q!?@!-}--(!}eRQ5^Y%kCH}ld&mpbeBcZakvW2T_xxkB<*Fe2_*MF!T`cX55 zRZNWngF(0MK8o!lM?WWLZsg!qozc|eP@Z(P1$TQldGz&rRP&42%NDaIwDWMY3zMQ(~ICcto6S zh+?bz*Pc|3+gyyw z_>r6ZG?4nIC;11ko}Z9`6?P2N+i>cqNW(J#Hf!p*!TFnYx$Z{Kh62uf$5 z|AyvE3Z@xGvNlU4P$;kc-C}!e8!3c^L^dRFNWQ?d*p)MyztvIb6@Ds{F?t)+vvkL; zpv6)E-L?>wVv?LM;_VGgqOg*hKSB(zMOTmv35D}oZwsyokxD?38)LxI7zNnd&h#V0 zwjs&ikPV@FXFK|`oe(1boG+tq%s;-{=y&D2fB%kFimwZS8nRw~bBI>fW3tL<3yKwX zx!h?n!@?%Hniod0=pFtYcth#!R~j=60ZeIwR(UFF^D#1MhaU+_1&UGQk9j4fWo%D2 zW@$Qb{vX#7sBB$gPNPA;a-H0u%^S1=fR`eGFW+2zqbwqZfh7-#S@3P>OLC|xNInf4 zjbBhW^38izx3^K%vi4o}ERBzeibJ(^LHHhlGR#A%qVk)Y_1kvK51VEpLJ@u^`zp#D zU-+0CP#nxA!f}Ovd08>;sI$N!A_R(zq5gxA9>c}IG3}73Ed-WGl&|rge~A9+YLDKcRxGh2 z>s4&z@9BpB@=;rNrckr&P&^rc^7E6s8)xhEmLgbS+h8HTLM6m*x7b%v&>9?EyZ?at z9WUsh?H-yQ!&LA!m^S0Io26CiD{20KmCn-kg#h}E4jIJ|Ld}pMcKo5!<}!6_MYcKt z*$H?3SQd1>w+ z-M{NiY8VZ9KN=*gY>18;fsh})ZCQVcd`*9T`>q2r>wR$|-B^T&4uVo)!^wFfM4^3N z!ewJ7urReu+YV}G=%AXt^O&hUmHQ6JApm-!^4zx1mG4fAwEHm00HA+O+!PBeDj zxix}TA&3|pvR|TB4GFd;>N91)0fi%KYM74Sn4GU_lzlt47;tSjWCFiPhkiBfy>;;fK9(uW4#MHo zu=oa%^g$?%N;CtTT)YgOgN*=DxU}6o-E)+S*+i%fYUkI~JElufaleAr z74Udd2ySG$)S((j)#t$`JrqR=_a?r2W_t}7#!2&IY$IbN9C34rcW=Ax6F2(`X` zhZ+slj|lQR30e;uMif)4I5S0xM`9v_n3#C|6tzPb=t(V3SPfg5U1CG65knt~3yw~G zFHttC2;2aMPKgAw|asi7J7LzbI+}?0U7`IXi z34vS_=IMI(y!LMPG}<)ff=8F0`UxH-BoH(pISSf(L48WGEHl-b!e-?2MR2D8dd@nKj{>04J0(AJAzj}?LBvsKC_b^QGkI>&PxW< zTk$(7O`_rO;yAR}rs6x3xXux8T)5#vrNVX#0RiE_13?Qr5A1QL7VCRgtji!y+C&nO zNi?#&(Ozwz>z?RqFVZNR+Wa}}!qYwf{y+|InE4|}yRC~KVzMn`_Faf+!$1;MjbDPj zz#rhOWdG%hbGlNWo}Bi;PIeqDOuz*$lg!$)_)z%|5jhOYTNu=1DU;a4g*()(wF^HjasfEsEs%YX^hI zsnI2xu6_xq#@o}?W>inecae^VMx#43MtkHSzRokd9fYmoh~@G zBqvnSv?s65S9mq--A(6xEjuFSC)!X}w|2Q3-3d)(Bxgp&7l75#q#9{B^XD4z_0D!8 z{+P^ku%7F`=6Y^N>z=TY_*tN(!&s6-e}B3*ZHD0ed{^FhPmYqyBePME3HmwI_VoxU zi`bK$t2#Ywvm^cqb!!^4n1Sz`*d3QC3i`=h2+=Gw-7e=tPZkvA>4YKzc+xF2P?c>R zURZo_r?DSlWPcW8B0DT9Ys}a@>3R$feK{VZ@p$}#p|y}6`C2vBn+;}V_;eZk-reOO zu)Cx=(4u71^!FHSuG1HP=>)m`$=78CeHzoBz7}Q+HI7ErgdGfV;MnvkX8Oy0UGMC- zfN$X(3WNn{xV8)DJvA1y5mH>qmj3)ayJd{L6&uDm;ty?W+)Qj=%r?vWjriA{daXP{ zS{PdrHo0p7!Np;7??0Sb62d=FLJK!|xq6MA?OGZ~;SCnTfge*Dii40@7!kU4-!SK) z(U`JUI<23&0#G~DpF?Vz@rP#`^-v*p>x6C*aZvGAR|IvpC=U2fd~ZE4$-Y)WNW8q# z`DLZUTWO^!en@vUabq&(Wq)A5t9~4-pUgvZSZ1)aFp)X2w-S^Mq%4X<7i>w6um0%& z%c%Z;&|$X!09F5AHI|4$+1bG9A4K+VkO{!0nmaf;iJ0j-{3ELB|NEGUnS+Qy&D_Yz z%#n!cuS%>0!yv5hX#7{6{SRdpaP}V#Er7fItH1t->dN`=Bs7WGm^lG1F~H{qAhc{; z0NGzJJ#UU>~#pb)Wy%fcs!$WdZob|FVq#-a8i)Ct%*ca|7&Q zfRW403AiR8XF&Z=UjLQT-}PZ*1hfIx>c47cfCc=w@89!(uQ9+>{?~eQ{LSNU|9`au zY-DC478XDOw6n1NHK74*tbg+WtS6xUr!fC@rMUo(^nYKo|HTh|2zc%q-vKsKR16b<+4QC8+ga3mwX8NCU#>`CryrKW)8~@*M#{UfbKXS$Z`uX36 z@qg!x0XFsjkTaHf;+GGEnv-;-I=M``l>as=;#ex;3XqHDBqLepBwaa3wC9L7@q7Bc zuRMRh`7FPFVOj!DXY;X4XRp4cedLiSs~Vy)HL*ZQule^zRm#$O0WpEIv8l2H!NT&O z!ouP*qbIkMuRuKO@-Qb;%*>9?Aq+eXh)f`xfrYFLME4>|fb$>;F0DfJjv?qB>>3^% z8tMbr*418rF3(QIBNEx{8<@i=>Vb@``TNO_{4j8Nyo~vEh@m&a|Mh_>XebP;cW`iE z@@&cdZ_gMEgbK@_&aXKRUoOfD$ijussXqwUr6akWn!v!wM;*dp3WZ3SiAPhD2RnKAV-DF2gv;Iau%~7j$LI*=_ML&b z0W2+@Z$SUlYPu4*-pLMPEbQw7l!;hiZNgs{?))avrL^$ZNwK+u4yU?Q(vjZ?lZ_JdS?Q{vKFNu+=s$W?VG}d3t7>rn; z8i5IP@-vVad&leqV#e5?jEKhX;LlOc*F7roSl%$xr ze(}+X=)L2UpgV{Az;0h$UpXURxDUFj#-!st8g;z%RG`ca0OUB7cYom%0jT%<)>VGy zU7M-VPoNoyk!DTE0UIjUUDlfqLmmTlgkkAx8~l1X>5JxqQ1#_&;{7X+?8M6OE(LVb zm-ln|_sG)R(1$IiBr{JSad4g<!vqF_cgciVel zjGEk1Kih%jlIec`3p0jfC7_-eLIL~H>{#!GgbzeY13TUWN&FWx{*FO8()7Uw5tOu; zgGmF-T*u;FD!?vJ{|{!&!))ZL3bhaBCj2QZ4RZXb766dF1zq$;$biVCZT-@+NN@We z>VZ;=qO7c=2`YWD)qy8=1#zzn0Els=4X~Gi9wg&9?kY|O|4&Y!30vAPp-do?1Bn4} zJ=F$Q-+EvUGGR~2GLeAKns7+w{#|<*1~6_uVO1yza?RWq)EJ}$6O&jZ;o0+WfuP*9 zNz#2cJ0IqW7r&e+5v=qzAsxt)5>JOO!$uEQVYhT1{-iGf3@8;+RLLdYY>c4F@c6yN zofRUZXncPKlRBa2HJr5fKVW~(pY3A5u!t(bZm3H&LO8t&fZh_l<7M0%|eh-8!d3@4P{Xy^=pOdl87w_pNNNp5r3Fu!xh0!;KA% z-pm5xTi9($$;Pzv@6poO;yj-lMGvL`|Y^o(HZ zxcPW#ztr8owl1ctIEntOh-CA|!OxtBCqLMp^<)yqV{`G*{xSM63lcT4-FwHP9_}|@ z;j2PHkmSX?1gTDJ^QWsrx`rW_f+MGT2^4j|hhRSQ#R1pVTKl7~`>J5VO! zMPw4FQj*^aHMXMrYILZ3=YW?bM!YD%?!!IavAS0`jiZEd&=xF#Y1d=2eIl|hNrxB3np#MtBpLJXI~ zFNkEJkPVFSmzPEoJ{@%gIk8VAB#(di^8mucn^Y>s6a4-xwK!1h~ zs&()IA+FTQ7KEZ%revT9N?u2W(m(hF6IOTU^+%LOWcDsMtVFy*oq5!4hWzdXk%r5~ zy}pLUCGh9*TGXG;S~h26xSz$?0y>EI+b;zJ54Wn%qauCp87xXq(nQL6!utc==<&eb z_to}Ve#!BiN!YW%+V=`?eQ(7SN_e=lz-}sm!Hq8)19d{9!)NSzSuC|31Q z$T4%G_sfG@op1os=)DGsko8#C8`v!-Fa0z-z9CZ!_Se@1ceu>_Mpe(=0%pknDV08|f@C z;e*f`P!(hIT}-Nfngyv7I$h{y{f+RM2dfhn%AR~Xe9kfXXBdYB;r>~y*Jr_Z4ttlN zdxD*w?sB4{d)@bCH5Q~}2v(u&>{^yTi1pNn7Ohn1#7@RqxT5On7O&S*9d~?`&x=MO zCBeJ^@k#;myU09A=O@@f+51jBG=p$^S0ph<*Am*7?#H)KmcDwckrk|)BSFP(S91+V6HW``hPHrv0&3>6IPW5iW*AnrK z#n!2e*34t%b~()i9$>`z2CZ>X`(GEwr^3mJ*EI>Gq80pkov) zS9U3d`P3;Qm#dPAQZ>)(a_kgt0oY-ZGKR*oyXDO?-(#?BTBjUO(~9y^3tDexxr(~M z?;5^_=J@S!F6jszRTWgTqBgCq_d?)c-cBagO%p?<_grtt(x%adtmv5xsE8C~4lZ0#XCMyX$YdMGvDz=dyX+Sr6*{Q85JK&%p@EHh_f?xIy&zmAzN0 z3pX^hjr^<|USB=G>6{U)RxQiU%&Q3_lWTK{x4 z-5O;hVnA|YrjhH^Gw)QWs`^2^U7%!4oCajA^V=RZL;yMCba>r~r#Me>ttEo8M z-*Nh`p}eLbt{F(b;D}{j;@pXWFJ6AYU=hvvL+{aUwk;qtu=1J}x<&-vOW&Lq?=)I% z(?_z|a0E8mE%-%uk3|-2@aYH>2UfwPi-6YgMLKyDczW_O-I3xOuj6^qTZ)cNf`4E( zm!2(eZ>E6Gnw@ZEFD73ku|=C{7!0k2^^5@NYB?xb;B-zrtCzC|P@#LxT)j1g{L0nMm;puck~GuA&fFzYbiI%S~@D$Z_1wT^k70 z&j!qZT!(gZs_H~P(-aH45tzJG_%>i95;}i3_HzDJo@n4vADl}wctt{!`AnwJWAeg+ z#35lDb0HOP7C;?l!RN%N!4LP=aMcI38xEDD&G)63Q(%nzc;<`=?PU9o4&#gmyZN}1 z5_^=na@DUCPa^c*-%L<0GCxfd&bo@7>!?lEU$`rf3hsfvc2K{#Cga54p{ohjcL2!D z4R+5XD1~KgsuG>uwk(EPON?&&>e*?{U&V|i$2&4UH)^ZYu_~zeIK$k?WNut|$yb!< zcRv0LTm94B8YM7fqwMfkZL&j?`z&(f48DS2Iwx(cukt&eo3w+D<2uqeWWkckWtHQ6 zflxN}zM$jN{nsDp(6~?;sc1QB+1SD9S5SP_s4pv-#?y3J2}@gw0nzEJ&aLfelOvRf z=oi1Yoqx0L^P$J=Tb1s$^!0CrE&a@6Np{i%(WyMwUJdWpm*EP3ZdW_UgAN@|8-Hve zNBMTc?@jVI^rKPYLNw{Q_k3}4PO)0Jy@1(y+sdMQ@yJn5o~K% zOH~wGc6iyV?4(sXPdbN$Cvp;;UNigwcC#`kapzjD68! zF)dI5d?((CIV-{6Hp3N)^$JSfI$&_C$x_a$D@UW`|7qxm`cvJR(-|7uUp7n7;4M{iL> z#;qT*_Ux8p#P-dYFH2x9MH792jlEvE)zWPPM9gji?YMXHpI&S}o0K^tFTG=sQIq^V z@3oK%@FSgoR@23c#^FCD9?A6%^kVKPBXey z(zyX`HLV2})oh+nc70OcoOPh}WIhXw(vkTOo8nV{YUvLQO!;-(8%;60BxbP+3gIK4 zCCfgzaQAG5OZv=ZP+;5@yA-0hNx+xo#t28!3y_R9>}4PqVhRKW4!xWe66=X6Dsk90 z70D|eR5t9KHIB2cea@tns-1xpIXjhxpS2|J5@dHFtZiQwc;8xySvou@K4nh0jvAsB zUs>F2Kp=8NC}-fBB&T~M8(z%VST3-5?+~Ej=z7q{!nmdgAIOeIea{yAa*y);FCQ_{ zd5$zV{jpq9=P%1^Ckr~hN))=-$uX}p3xqNG{81gyt^5(o=2$rHaHDz4xtY8e#pkLz z>@m8^U=uCo2!t|KZe!gW<2PZ;zZ^~P%~r`y%*U;vAf&#|i7A(pREjkb`Z&sJ18vGC zw^IL1bm3l30hS_M#NnC?p`&bKR71Igv2|cyj=iUcn5W_}wj2SIe~dT0W>9>Gl_p}r zaAS(UcZ1Yx*m}#cSuC8c4>hC%1-8xQY?u4BfTwvEr88=QqY41AVLhx+to|bX2b%Yd zzKy8Qh=|ZpVj*)dE~@%ojG{*0xz$)piy&v7GR@1?Fx+syquaNSx zdNZmQ#hvCchmOBGV_LgYWm&*`NlIetb3R6G z9k|?+ufsrQkP&(_*{@`F?mjddsU}Y}x)4mlFCawi!nuk0V;qrBX~D<$!sL!W=E)7- z?hu>Z4VnxjhSrMPSAc;*eHH5IZhY4^*n?8V0_YS5rp6{%=su}xSemPE9JI47K znbMUUO+L9eeCYX!-l2~x>C2A`@Uskdcj#+*`4L8c5!F~_so0ol)zEd!J~Fql)a-y<}F+fb$u(b@FS< z44xdt2Il~jPW4lVyp&zvSxom|J!yTTZ=&m++)`lcxO1Idnmf}dGIrVuE#QE={hZ%F zn0uGr1?15W&E3oA2<$fS?G4nqKq;XzzVNhynRzQyEd+m`yr0d56O%Np9)WjW*rQ(U zl#Wo#;McoQ=eidFUL1sx?nQN}GeRl!)9o!}xHf}jM`N8gVxXLHl=0S#$-{|7Bs30u z_Fntqqqv0+7Lp@5!H`CGPK+>m!4syv_zH-xmyhUw_u$g-)hrKHL4v>^i}1>rvgZmi%KP^)9{2!EEXcF3Q`kFcy%SOQ@l`DPuzB^D&rUY8H;mSwNp>)U-UxN%R_Z!cP?)U+Er`t{Afx?O6w-gI-ASUsZef-EDYa`>K(paT%jIk znz%zLSp)*$`R2VYUkv4eeyx~h%#x3JHtJL<6vMXVy&Jso3d+3gf36wLfsE7pc`Z^i z&H%&zbL&oZv=n_t(IBEA)}e%?M&ena7P5DF0ps?_s|9J#M9IO)r8)=h+44(03b#}w zW~IsfZ#lKOpu*fL+J&fi;fKS4zzA&Vf#~ue#Xh3JBj&(RtSs>Gh??g8%0RzcL^!B%r1=$({oR2 z*;*H&j`(GUzF5y;;_LMp3u+fJVA0$y6g>*Ir}848DW67^&J2O$D{fv4+6(Pb#KF_a zjXnipsLJ-|uyRJL2w$+@^&om-P1D7L;2otIq#NqQ2#%wwK2ystFQhQ|NPyXpWx`OsW{Ju`HBOt|hurRGCUYX9QgM{)`kEKTzrC9XQ8zH&ie7G1CqF&?Ek4FRe z2NBXJO`!FzyWiVV;RAy=A&NyFL`4p_!T<)3bwj@A9`}-AAy?NeL`{}@7%375s-uMM zX8Kiu_g?4e<%F0?bJc}xS+k_}sl&MzD4aJjJ_ljwd{^|fCrUamMuUV%ubE>R3agq? zz`Z{ZH1$fUyG86W16GY+V35S_q=_3>e5Ey1n*M||4gD^=eCeh&(!z1fzW)|$+HNle ze=6W*qV2Qg`m2rC&o(0c>drOCyu&oTf&6dReTtamG_`W4*Xt;p^9bB zPYO&#y`%>fl}8qcOeUm46dyhGWA)wqq(1z``1&_fN)3>s;F#eK;R2FN$PP>0Da`p` znezLu41=G6gxR06g9KS*ag&Xc8MM~kp9jRT?8V6n7z{r@T_;B!MpykpeEp-mo=Nlz zN27zuCx$x3@ATJcefCclC^sALpFN#Sq$9m)%7FfG#&RI`Pc4)527_p` zj>YU#a?@LpJZsVvPqBZZRegey4rlm`uO++F&b6bX$`iJ-W~A!yS|KLpm6Tb|;hG!q zu5BUmrdgwEO=E$Q(-$8364t>VRRWWFI<%mzi0`KOG~;g^wBO>yZhL9GFq;%cAiPqs zeZ5X7|IK~^nE3r_vF=w7wW!hkB+24CJE{3z0NYFkYrWb193YF|qdLw>=|LgkAzT+$xtQy<;v znXl4~STmk~5%u78H+5z?{B3~tW2WI%DbEZ?(`(xnqd4+5&oWl)lsxI|^9ckgbn>=30PZ?Yiu zhAE}xtg2ulbHM-fB{qq#on}c&+UEv~@T6`0R!dR~eu-b+)+J3PO+Sa>$Sh_xS4ref zk)AzQxX{Qo9W33#e)ncQzk<3(YOgkxOu>j@TPP93vpn|RSEH{aUvthUWNC_;HF}$6 zb!_O3*lt?Cf)ct?qR(9a*M6>gUFpkWF^3{uIc3)wu)Oy3^iqPb#Aia43ZvA7BE*I?cDZqK2d^p&?w#huT1ME~P0mnif*CxE z2VuXar^NKJj&fjMZ9D&>@g2|j1n-U?nY(sX>%6sRTS@eMzf@T~d2d-8(HwU&1v`EH z_&y#*T2h(kiblM|~?{*5$wxZ#terx?pn~BitIw_nD3H4?5ZXOapvi_H+E;Sim z&OM^OEd#LM{5=R!wB?7T+$6$XIzkTCGG2He;1lv0c^$q`X{$+=_g}&b+ao4++Zbl` zYni0l?`wYDUqJT2x$&yz>Y&}C*V9A8q@pc_MsScwOfHqo3IoXB))kw#=b?RRL2 zMKd=-a1rY=C6mzK`6BD|^{cDOd0J_yptfh2Tyz#=xP$?(*LgfR^MXyp#60#z-WDmU z>a|cvGj$tD=QS|Pa>t3bzvoZAZA7H`v9c!8dXs+6a9wT?$vt+w`_pb1YES*Q$@{d< zHQ4o4Zh9=&Et_~p-`Sd)a3@~?OmIf=Rt@$r3(aib?(1HY)AFokg61WC1ohIBJNoY$ z&RzgN`lgS@=E&}A2hgb->PIUE7+JB{{?amIcV0+}JGf@Y$?{aIv}U+A>u;twXckJD3PE z@n$M!>WYXj2So@jKSfUYAlJ|=~ z7vv3-Ilc}rDkn<9e_z-#x4qK5#r z5jwXs+PSF+?WfthUq-*C(xKS23gKm}n&)nU{V=j1#h3-OZ)$1QN}P_i2*V1{byzJ93;jUCTqgz8yX{*ndH0KuPtuy3ay$XZ{t$6kImD&4VA zB2w*x5~f`X5`s-(nDF5)ELh#7Kkj_?OJI))SFM)F^~`tHzRzEhR7FjExoxa%>FwKg z<*4$8aV8>UrI|tg=M#+>U-YlBXF`5C6!GzdFDRb%4_HP;Kp#aDaiAMBAWCt3S>}Fm zZ>ulxp1*NP@VFQrbp9)BxMFPBBWhE$|MYGp<+*M~4+bw<9Hn`VR&Bui#R>_d=f*1if8B=BF$*PTlt_*59%*q2$s zbHtsho$p(&-Ia4IT@(zW`dW%nF#Sr$0A|hQKHuJE>bNf7jsA>io9NyMa5|H4=4>6! z4y%&z#=P*y-}6@;{N8E_FkarLo|m6K0hK<_i7EUH9<>+RcvYYUm3um0WNbFgRwCTJ zo5LWE5Is@36IH{S9@%y*$51onc{A|tUFCvj;W5iS6tmj~k1T2i&GyHaxOmsJw34+A zM_aQdzWdpF)>NO)2#gYc#sQg@Hw{f>R6pUefc=9~WX8;f18=>3^<%HI*%G`>$6)g& z_wnov#tCk|mT`Ii$m2Ll9cC9H#Q%CaOX8u6Z%|^nS|H3FzkELf%gtN@VEF-E=S|@} z4X=18AwzdLxg2g4GK_f2RzH3t>u^V%mbgj$wqN?Jb#8$#g#O} z$elOGZDAg*mAA4r_jMJr0*P0@Gcp_XXR}>7*8sWsO9uBxL}yJ_p16Rv7V3cr{|@4q zkjy9ti-0!4SM6Rg7>=jskzH!RJw&hMcUnX$IUVz2Kd7?ARsL*(CaD|a&$Js>^H*SD z()wwPHAFl1n$2|P{fSib%jVBFJ31zbN6tMT@f`I31p--f(+);ciTXyvG^6eSx>>x>e8%jwz<^xyAl zIg@N<6H)t&&;1jRp@oE`Zu-a~eP|Zy%*p3mlzPH@$iyx!08ZjP;U{FPt~1Vi5^`~C zZsL4_N@Qm^Sx{pQ+56E1um02Tj3%2*zAK(F&Bfw58$Jnrl9+oXck*Xq4xH;piQ60r zq)2a#orxVx%|1dtBU*5{NvmE3p{=-75SN*VmJs^$Tm=6f6|L?8G1z6kMb)Y_Dx&bN z@>J~9^L>SX$hoZ)syn}%#?gr6A1ZJqAw~4Or7hI?u41&W2MbxGeK)Jbj*R#x^6{uF zhbr~^G8)4XjW>HF(K?p#IJXVsx0_endKTz|xKIhnrU-&@F>!kn1`4m4#q`NRgqh=k z+jlkdYYU|{!Ib8^!RA`;HTqejqnQ+B1QZ(jyI+YlSYr^3<)+9ajqFE}9m62~2=R>S z(H~O{|L%TM6d4M&@@f1`XwI&O@K`3_g{aX;hAP_q1x32%3CQTIsor6R%-B=^` zs7p$0BVn#TfzX;mONh~Muz_E?`eV5->4+sW&fpfw)^Q%Jpy*hS$OkuQtWHOXeeRcS zO!QDU-?wk7H(3}bEf^NP^-`B&2)*yt2V#O-^L`CF5{9n&bfz(UiP>`<*#AOW7gAg3 zDe+MUivSBXy8_*IzL-E}a>*iL{Ob8Pc3cr}`A<>n5vbhBH)C7ZcBM@#w_V{Yat*(L z5iWwa`Ef+^gY03u~y%5O8cBK<`pw9VY3e zY?;mcHUZmQT8Y^+f~!3HE}*0l0dC4NyFb^dd=i0p{1{ThuK-@#SSxSMw*ryB$tY`U?Dj@N=fp>59?cpax6_ zoVY0=?eDAD((Udfd8S^%bh7h$w_o5qCx9e8_^TS1`|3!d`X9r2gAo=TCD`vHb$VGoP<3C1)Jwb8>#egLp1!Q23mbpeVy99p&$r;QW<6$*@GfA8{=Ie!9;IXLTf65k z-|~>PWt`t$$tSa4vD#p1+3VicWYvBvFI{gv+cGEjyH)O%cE&O5cT&jOPrlwnv-~yG zwzK%D7WZBA()aqzlBulEg(r!k&uXK^1bf{2Da0%&6SFn^;f)!xSQ_AL9W%?YQyoR z1gBGMsuS!&WyVp#5_OM@ezmZ+BA+5Hs3_DlJ=5PKTpOZ^%w^WH%*mn3>_9j8;UoEl z=LTkvL9Pg{?zC=|xYcl=IyGGFry>rU1 z&9eKXeU-9w9z4moU4-i_T!vX)x~<$o6Xfv5J?b@=PqIAb$ZwHc_C(bg#xpLTp&jCl zLf5v>8)#6uG=!&SLr{7WjA8-?vc(4QuoNh6u0*@n3 zutr7M&yf{)|0Z?6iCAe{vk>}a$!H;pM@6z(3nu*jj1737`ZRT zr_w|uP&#)MHwm~b9=;Fc3gw+r-weX*!(+4WXBoR~AZwV6GqS1wTQCc><(QC)Z*&ya(4 zuSbbiI)Skvy|XqNCkvnNGS!8su9u)^FLLWTVD>tm2~oz?_;c~A#0wxS+PW^0`YGg+ z(`UJ<-9I-Fa4b^D<+ABifKtP+gL}(vx%^tl>cCAsR$4lxo_jOIS6so$)!2}YY+sHY zhMfP(2JwDMh?L9kNFJ!gQ`jPQM3IS!<>4-_K>02)kgI?kzhcGQ(&X6truT3zDTvCr z^Xq_k_1k_6jsjClb-(lFSMX7C7Pv}5#AB*sn5#E5{nV=LC8Rn8A4U^Tn-+y$!WI1N z^leBUtH*#Yx@-9;o&CXeWuEG=#Xqe2PWd;}=VZIL3z%8$pUC}l=F;_@^~|L)ki#kU z?GK?K-=f*2@5WU|c_eq3@9_QSgcwh<0-#u5S9$6f$(Xk&VTrx~l^zyr@6kEQX%?g{ z=**1JM%(Qce1 zi!93<;-svpMG}{0PT^}RBN*nIt1LK2mxz~?g+>A>{KnKRNgpN0zimu+k9;H}BE(+q zf0^t_K9jv3syrSEUTnlJ0IAlM)JI~1UuLYxX?BSjK)<~o1cK?LxDPcwmvqkXDJTZof5Bag)HewfXjqfA%Yj>`L}7 z^a9IoTD)OZ*%>Z>A0*xGZss3XQ)P+sat(r8wa!1A#*#At3GF^2$R{vUqOUn=!l#gu zVxXq3eo@Cbd_DXCE+?&16kc3s$C8ec%!)lZ&(p~3x6rR{j=;mKLj7q$z8Qst_ z<_}ZwA?Y15f@ZX5PgHBZ$mi!J^R07>3t^vu&Ov#zaRRoVS5nV7*{VYKT$5G~KQic} z)C=?y;iTPt<~o|CQIXds;Z4AXrU5JB>5S7baxpQ;`90Oc=Xieakvsm1Kg+ z$n2}3FW~NrINhr`ZB}pjz0AC zcmis#MK)wsMPbGD0@yy}RUgZ+pJMu9yfq^6q=-j#)_}k8oNFP2rZ!oua$sqIm!1zq zXwzr>6iaKgjN^7Ys&y|;HxWASsf|fK%uzaeU5p&Jpq3BizXwoywp!Gb>&=hsePGg+ zbTpqQN|1{~$Z7I>mJ1H1+7ftaPu25X53v{tKC+*?h$JS^ntZas#C?p)q?5AO!}0B_ zB0U}Khz8`4U?gGB=oT0s_9ldn-=yH@_p)d>W$NRj_}D`GFY-_Nd+hcZu@ha(%#TTp z0v!9DAYY0*RjLR-Cjz}AlMD^7`yGEIuNG4@1Zhoq+HgW)!6)QSiIg-6FA3lyE1`Au zpnfs(^tDX?)-`=Y@AU;hMz5}ocLd|#*XA$GTCbYy*9A?C0B0qcOIuAwhQ1Uhwbq<8 z6l_Wke|3eOFcJWLqI~MCf%_)Yq(X&2uN$CYD5x6|8*A817_gj+ZeM^w+-83j7V4jq zFR&Kyt(eAdU2-8PHmN!|*NN{3+!e*4v;{DI)#Z1FIyFJLTkpA`2~Cbd=0&y%gh~D7zlhabU7uDG)>P*C2Nc*;&AS7r`*> z693sCF1>=y0_M-#)mne8S?e6V)Ng`0wN7j_%`}Uw$?Obb8X=_g9pjYK?6K1*K)B}) zdSB%*n-ozQUA1Wjk`D!eJ84Y%5{Tqp`=*v~M#+31G#dyCURHP8f6?bg6JKsT$pefKJA~2bdUtvBFap za?_P(GGY5REUGA(;C;36-Lnd8=BanRw32~v->ibEKm&s7Wcq*u+Nr2f8auO}78pNt z_v*cAUyN#DBjr$Zz#a&X5`MokJNM2PdfC_uOhFn6(}vLese-?47&MI@SjzpGibZg+ ztK99ypiuF7zxjLOPnN@P;-yCzeJksNXVTeoiFM&!k4l;fdc=!h$+zt3WIhOb_1Lgg zA-fGJ!7~`O#K9~DY?W@g8p@(gDT}uMnan9Ef&{HtC1E_EX z)UgQEPs5b9r%@p&B9AosQ%geZ1|scl*{EZE%-x9!;(_73v&)DHWpkK_!R;1 zzX&s^{MeLfy60XaMG*7F(1t_3sbx(6))Q!=c0#aVk`lR#t_c`ar*p_&Z1LtQj!I_& zP)?^2_wBaz5m8x`*E(FNxS%lxQI)*h_Y2|m6OgQ!aHLv!&PMyuhtiT)D71`Ok3bYNNG@ij81A|$k}qrNv(4`B->aepl%+;`qYF?4owdjpFNx+&!_eA)J9V09u_ENMJdN{cXU|EKK z@n(j0>$}Ve+vlco=|lKzPleov8H!=$@2Y+H6BARBh;X>_pgZAAyE6Ag(~q=aID_9n zm9N0Lw93sSir5#vQ){B8i>rXty%x1LQqZ?$EZS>k53bDY>^?(kQfpI=I^O6T~}UmlA`t>tJGhtX{< zs)0M^e-=kkcTcM9i-*#1~X@m4TsQW^STJio*D|UC=|) zazqoWa6tAO$+6aP7naddCq3lQE63|{?1Q<_^hzidX$Dx%SuWNVx11`0g`9gR?^e!C zxve#K+0*qk0<^Z>Otsrz2oTdBu=}H@Xmd6)cFkCjdMA*F3 zr>3@LLn4zn`_Han4YptL$ZboF-LRffp;|}F^*df@pqr}mzBp_+_8j6|OYqrLKQNdG z=d28%4EVimKMOSPgyQ^p<;PABTNPNXgV@R6#ylDd3+unRD6G!y{MuDMcrT*4S3lD= zsZm8}zm=bvo8mZV?ssKOVB}I|J84VEZ*>%ABlVh!>wXmEu>86VREG{EFG|F=JvRG{ zcvJPr)6LZn49sL!p;c?=i0#=wKcm-4Ft+DrM){e$&)Qbf^xIl2NrMYumBA+^d!PN$ za3l8dpw1|M4vnZA2F%s>Oh>l?uF>&va(z6MBo~KJ%@XC_H2oH~GI3BfG1_I|PP+eK zJJsT{cykF?j?2I;lEnYj#dP|9vRfGgkY9zusZ;gcV850}p^ILi{mskN>g~|Ldd9hL zK~j_jcZvsPlg2|K;BdLL-__sS%xiLUMj3m-D7Y}7_XMy=w!!-x^A;e)>&s~p#Ee3J zzgS=k<8uC6x|)kE$-wcfRjXz@n;xYhJ94+a^0e!NJoyu3t~14XcSSSuO6|hk9Z_G} zw(^YdAICQVik9pW`kE&iT4t_mBfFiMra#QpPD5e0SI%*%^+V-)il0-9PGi5e zUU#X)>m3hTBOGL0$=hHAaEJ)NzGSAeRqGP9@I84kj-&9rYO2WshmlWIW7DTY@^E3m zqfV4PKI@Y+OF4tI!h5@wAXroXe%8zIuGDy^>%OS3rBK%Z_m^e|o6okrL9$GiO%|r@ z=RfqmvrC%1vyK{W&a|fAxtzlTJrA?Un{}_R3=3S-*&Kv*8;=ay25dMb0oC|$NBRVk z5~po%fsGWO;>RK##E8f$;y4Wh--ykt2x~KOO(5gk?oFtC9Thtdn+=uqSM0Xnx7XZ5 zkKEOPiD;4oCkWjNuaH#Z8LI(%gX~5_+*f+6h@h9JeJglbC$W*u#QE>e55x+I(0 zX=mn|7VWSNus$tl`Zaa>!2h&f?U%vJ#1+u}u?p6IJz}rH+UkgAUC$w0KZwN=BNYAO zWa>4e$8}W+>?BL{4>?@QLvE8oCvid5yQXv5%M<@y+3~NX6+Gv{oWROV8ygxQS=^cK zck<4cY_tW6MtH|iA8H*#NS?)iS>E6SnS22e;jkjJY9%^RURiWbyg$vQDI8Z5?(_jI zD8VNa1t11|rVyajhkhkqIm}@i-7iJ2GFfQd5x2--9yRQV?vDPwZU}~Qyig5_ICCEg zn)!4bD#9x|EHoqKnzjh_l-DxV36+F1XY$!NA?XdvcuG(?dAU0q2GU+~lgsEQUi~f8 zkk!mn(0+PN7M4&2PbSj)dD98F5T^l33uTY_rAz06WyO}fZJZby4)GvvWd%0?+~ApV zQp!k>NcJ&TMP0AQ4H(NT(C1De&QtlNXXg9olF;#feeTxK#1Tos)VbIB0UGaY68K*_ zdTHs&h+E5HJcGj7u7*ne{`?1Xlyh4{L9jaunlZPdqtswCV`FF%G)B) zkL;|$%0JuDk<+`WK)rQT6w%cfsaUwl4ncDi;M;=RLnO;&ryaR<_7w0(O0hRKUmbh2 zT`i1N-EYi@NgGCah4k%Mk`=;YVteUILhd2=b|6i3US@qD`kaod{o zH`i_879S!jBjOd(0$RrKj3VQ3;4g-q{{CktHmIs_9k{wiVJA^ys!TCpb11v&nZ+x) zOyZSPj6gjWC0bTPAI^TRklzv5jYA0rCst{M1oY6u%ne~zlP^B!>&z|n6^8G%i@H^7 zz3x=S_Ot7_vyP9CaK}Rq_N@y=@-(|d0Y}`(q(SSSpR>1*oyxg53a>4Zm)tyC#Ts+n zs>?<~zB=9&rLWopbaOnrGsF&s4vDu0bdI%s$YJiGICPE?bNGU+P=7^JZ#dqsRAn%d z)D>q=9F3sM%TxF+(N8#D)y@ZM>>T&1=6BRMKI|I~06OVtBPb(1KCMBGm-WTr$+sz!v26HY#sRJt)w8ln zGYS8YkJW9zeyop|TJc zuw`#tGJ)E(y9Bz-Xlw`$_?yEv2;(dXj_h?fDlxPTK>UEAjc)9LH? zCbaPM7x+PBwW1X|bfZkRgWUlJ3$7 zyB6t};2jeR*g8umU3!~;P!%;WLqz~cZJ12{#-B9{Fm|d;Ea5t!}HYu_sFbsd{j%Ue&#kSaefUEV=Tg^F4AgNO3dh zs0&W4QH9$=C6dlVs`O@URxA<*ZFbv|y=Yc@#Z!~}@7+Vbt14+M&|LAARD)Mt$SR#; znt}A9O|aOG2U`jOh{r?Y0jj;WdKbf%bJ8jaG4TPM7c5{xVSKm+Q>e$&ag_|AOMN@(hxSQue;k|JJZa(YtGOzUu zKa{ymIlGqI-TcDX`ytDX7)dYS-m=%z5B22aQH{IW%Hu@mBU&4lqPPEnNRdCv93{)D-^Y2&w+wI-x1YfF4WL0y57eX4o zI|8$1XE{JJ)_pzC-Q;(z8*`xF6Ne(@gnPrlU8ic7r;s0U#)DCe08=I;_H7^Sw}W?8cj(*jfzEwjPhIREp7#v zh8b+O#bUOA<%$~)a1_q-L6GcP*Y+z88OhrXpClK`3NjbosW+kXt-#4wz#ZVY4+M^{ z+&vFwLWTPT=vS&YpfF>6B^2BJTgtZWK7zlo@4~lTl|Hp+gF{MxqJo}&u1T!7`=%O% zR$*bzz0-W;8|RjgFx zNYsLTK&aKgjYefWuM$+s#I4Y$4?C<}a5FFp@5CR5n{xnum45^SBfI@XJ)?3T)(djDSluMtr0 zOffbEVQfnQ8#D?Xz&)GDKD#>fD`U+78 zzk-t8gc`Ze3~GBQ#6Yq${#Kk{7By~0Dt>{0C-*_@RLeqbUIkMAQQ4Yv$a@mEpB}XA zNBw>Xilw~9J#B_40ILPf-5F-bI>50j5^eAC?ypPPc4gTuOYrx0lRzXf5pE5P5!v{y z>n$oOxs_Pmvq!4;(F3QO+}phP`nVcLWY{%#|FsLnBoOZ|n3Q#n_@71-Hxf0DvY&q4*KsyS3`x6o% zRY-Zl2v~Os@?N=v9Rr?Ng++42qI>s|b>7O|KUfuyGay?Wyw+0dzji5|c!5@Pv`^0a z)juAIuP#O34m1YKJG^fCpzhsH(Ef~0usS>jY=F3#(Vy~CH~cSXRNMXW$0UKc=dOk*v_A;MUj3ctbp4YuT zdSU4OJgrlIUT=ZtVyB?Qhg(2tq_ET2rIYRJUl*1wGA`z1o}P8-OhC`8<`+gO7Kfuz zp~*&|e;!*!3n;+nm+I<@Yjow6bSv(BR5y2ku>CA!^K3y*Vw>bgEs?NTa@*?C)O!%k$$e!9t%MrTm)kAZ z4I-$G%M)`B+{t%nK^EvE0|)hXR45@e!zb>Kbu8y-90&4%4>Y|iqaQ(F;^EjGjwtGQ z{1A}3D0D_!iA)2VzPm3l;Ad~CM9C5A0f&nGQI(M-nz=gT3ojcIuO>yr3F${mRy_p+0z z+`q{ySypq=eseOQ(LACN;q-RxZl zd0qVA_3-g?Iok!T4w6zP_Oerzv+g_>wwW!ZnnKykkXvpo4T}IpIhiOy))4dFT5YkZ zZ)ZH<#N(A_k5T!JdY@Bt-7zDA%OxA0NGw`;Q_=?(9*`tJ1i zR=GdTL>NVHeHNxj)tx(txh?DA1tBB#xW6Jw6Spe4(1?mKP@r`5~r@r9w_<(V8dk*{u-vDPhg_ zix7b0nfB>MF#l+Fa8bGQfSN@xYiI|)JBgQ~PL{$lj^*g9-Okpj zO&vXT5T*mcAGN~!Y(S8~CG}hiODw?D0B-p2@8YKO+J9cuGb-JUP+)_cazwFb=w-MQ zTelrNBiwEwB-e;1nO!u_ajHBOVfQ7|IXiU`!*G?4y^zc)s3%uo)r)ZRap1s!7y@hM zm<2b*jkrW03s%tB`w#J>Q{0WV@zq|c-u!X3A68dLqQ@W+;}@GGX*7^0^|^G(T;^e{ zSS)`F^umSCo-$Kt6RVWi#=4H$p7=Jb?mSOS1mR4KjG0ju_WT33cy@=qYQo>8NxKo2 zB0UlYL7z*LuT=tt+L0KWn?*~@@U5;`U*(6kKB_A9?`|r)6ndttPn5!Ok`q^XRo@*< zx$xHz*mjXMOFeyUQACVsW+yiMT(-Rhda`;m+=1KsVjzBjvW+F6htiR+|0YIXm*J8P|{-u7E0`&@$)+UL|1R792hjMN;$%PQd|al??6Ci(cj4HltG-2aAS zmDa0%mP3H9kW!m1_PA$}eJJT<)I@0<(`Qn;VYX&xvE@}U-!IBkp=6hG4^B=;)?lbq zgCFH)^9>I+Z-F$>4SUr`gdv@goy^_H#WaTwP;3#vm)Vj;ZV-~(maR|D~=g z0pGs~D;$F+Kpji&ql0Id`-s@sjfZS+%fN@P7blLNB+D=2307R@C=s0a7AL;qKKQ9n zmYHP(PEA)g_VQ(!%@Z0nC(Mj$of15tK4x$qXZoz`W^2HAi-*b`tn~d?Z$|2|;wCWW z1bJtLB#dqiD1oVO4yCOgVL_3r-(#oO(TvXp(1$w-Xh3Z~8q)IOZVJPcp;{58@of45 z1m|tKY!V8}-E6J6>WV%1ZSt>h+`?ZMjX%pJHABsBcJ!)H7EFXZpsj))5m3W7Srpt& z4IUoz3IybG+-p2*9&eWf#f+!`Dkx)@Az6T3Hh7w%9 zneH-#E*E%rBgXya(YgsP^S0mK@S;~Qx`15cL!EabfYHf4d+{H_iUOZj=fH@8*yxlHQKi(LYJzBG*TjLxpF7JuAc7k4tM=o=IQW^puXq zSMs}H@ZDtZrW^w9yz5_Ur8yOnD`MC8rT8f%Dx!Q*T*j<-rzs43%8UoXo|!xGD{vRS zZ&M5|dop**&^swf56N#MiraKijPxsT&UCB7m!78gdz^|5Bd^5p)CK)7O^nxMp{B*t zif{5!OTP7M3*D!LusD7rUY4Ka9O@9Ldr+<1nMeH{DAK(A$dt%TnpszucE2=013Exo z3aT70QX;ENnq@AUZ4r4jK%aiNQtHS}6My!pHw=(Yu}sz|=+{-lnBO$@_t$h}Z^bz4 z7IT{n7Ck*dm>N{nC=xDT)%+I7sCZ@y-75ueToyR8fbCO&l-2yqTvUMXy$|&hc;KXF zB>)wAF}~{7*Tb#^V~FZC=)#hQliUo_VHuBi>i`u`Xjz$GR)=2|X3HG{B6odf0G73Yg^7{Wt~H7G%VJ?{Lu{3`9cx9Q}{v36Ug`37gi zxoXW#^ySu=^^Chc=hQd5;66hKdL>!SDxKnjB&2+yx%eiZ zb4DK{x~6Y=Bc-jbu(GsC5#-PP4%_CQ=Gk0WRU4r~t1XvBApFBr8-~~S->_0=EP&uywd8`}?uHn|Bf zqllTtZ&hGh(mL8n6Q-7qt7wL{3VTa!$x$vTUh*i-!Q5OpnkDH=%2bjmgSHkRIeE*T zLHQH?_9rA>vYuEAoz`~d7khKSM&(*0DL(fcHE^o2N#Y}^rXkNi@4=<&fBN6o?Q+Od zfsz*zGvAq91Z_HT1PJvm9V<88_&OUpQQXic0vFuLzDBNo@XX36;pdt-C*}0HvjUc; z^;}bb{2UGOlI2ky+6nxQj|2uO*?ZQ?Wr!SlS(o1t;U_u>YY2bVz_xIS1kFn+Ga=3~ zWO>AKHeARQy$CzyM9qr0mJ_oxVGC5-L(+ZYPBU6`Fngk7x+e_rZucY)iSkyd;Y&3z zEr5<3@1^Wd@aXNoldQiOAB1}I9XR}tUF%#R2Hd4__i?ZJK4Co84e2N*l(3bd7{`9`p=0u2A8eFTjbJQ90Mqq1*1c0D|ALI5gPjGZ`f& zaI?3;PGt`TyFE~aSg+^X@~)~|SDPP`(*mp@_oo6uDWlilkD4AdI4`eZJQZrpF`EMp zX(F?Tn-pyo@&$a%H)!-Kp;KXnIiBLEx5QDe!#q^njy#7GyuyAR`Qh|c6bj4~&_YXD z)>y0TbES*V&Ftpj6vC6$vd@;7m5_xbA*4)vukEXCB|8>`iQ(YFYILrKPAr30e9soN zr0z*MA+H`dds=t4io`ONfN21}{O(8$z6;4GK6K(PYA;*zenpIK!C&mJfpT@h79Kxh z`YAKd{C$frAqR>2rFJsA&-JztNa9ED8&9ZTuS2MA2O2k0H}~seFkk9Sx#nA`b?o{L zxUmX6GXs&vo&$66a8#uo?EbV1pW_S}${zMlR;`V`t;O`Fd(L0{mq-ek`&{WkMZVm< zqVkS^F>#9*yhbT3Z+1(pSK{wGQN4{i2; zlElo+|4kBeaBu*qUI0G~NNkLZ|FQj>_rE13MnK@-;D1#B1VR6Af&W|HKPvy@&%a9l zo%7E&q5qxp-+}+mVh5nYf78En{yT^nVD_1;fV}L`oSXna7?A#QyKHO#@E4H& zmi?pSfLZv93ID4bf7|2$z`^VQjF=689&-Q?V>W;Q%>jUg*|=DtIavV^Fd(u2ofQCT z%nks4nV12yzzLXN4lckB0YWn;fPd!vs{u0tcJ?5Sj-8{0nmZ} z*}?zZ{&QfgfO`Kk{cEOK00a4({vNJ>&D7sc|9$*7kCO!;MY93=1K6?x`th%Q{A+;! zv(0}D_CF6V^uKlDzt;7?;NE|;+5ZE%{>Lj!&cMdx9}Knz6XU;hV!-hJQ6?;G=T4{v zpozH%>A2V#37MDx9pV6x$^Rdpn2w2+9)LhI2ss&<08ni}1oXd=;=dIcL=5aDOf1aI zo&W2|GN}La+22wBmq~14Z30lS0bK^X7yiET#r`iyG2lJsY+|Ddn6Lk#bN{2_zs4$K zVr%AX4)ChEI9UFr5(7kN4n`J$5&mC=|A7>9v9JL8D`sKsY~uKj8E`fcH8HX?Hu<}Q ze^TV`S<$WF>OW8afJ?arDT0VYS#UZ_q&mBe0K;#=&2Metfdmp#kr7c5ZN((BN<$7zpZR_rnE{-_1?U zER7D38)?8YeX4~1ovpBiNtq~oy|crIM6(=U z&P)%jQf*AcDJTMp84tM%PHh*9gyO>t=C|Ox@brKzpo_^(T-*ympiz7vM;3N7PxpYx z4!qw8Cj^Ya!7ZiPRd~Iq{h)_%?BGJ5LbuMW&cMJ~xLHEmIX&FIEeigE{!pu{Q2Kx) zyOGDsj|UPY^JOMN-3xpHF>4x%N{HC|esgl2>rBLEYG`G2^ojX7g7-D_Xs4{cx(v5F z*4q!Kzk93?0Tdtz4@5!1)BE-Z@?G|WVcjneI&@cH;q@pYk-elD=<3S^;l0f=5f^ z14;0sC)^JbQ!}V)^9wdWxuF52h{f23=)>T?M%`uh3tJQ27{s;tGgWJT3~`=BnB6p< z+YG3liMiq96o@A>XiJbBTA#w`{%dJI7k(*>zY%1^AJrPK51|m!F*f}rS5D#&mX`2w z6v^S$=S=|N)Z^P_4W0u2RT@^WFEhZrlr^Ns ziykJ8|JW=NGK6bm@Mh`D4kwQP7#M7NLS7Hj6Xf9R`ttB$iy-{y`L8TIznOshnIe2% zzaVWOa--UyI<(&$$!`n~1hi>i!+;f>iUhu#KS)FfCwAbqO2v~O85W=O+x;8_IoE~B z%aDrZ1$%lC3%-I0Nrj%K^)W=m-K=;@!%RIM96pa4K-Mt75@Ca@K}Q#%508IaA3mQC zv=ZRON4+i$fe_h%Q(=tW6Z$-IK<`;S)wU9*zI1^0ufQ{_36TT-Qy*Z@-qciI@A6R! z+P{VbYk?~gCJrmSIy*hxw|q%ZhoE+@{}z964Xe&cfcItG`zQdhJUtvo29j>?hx80* zX5u^fg#`AQ{YnBs1bqsprA8BfdeEV+@g@4jQTG|T_8Ckh@D)?{6_GB;K29=zOJQmJ zCN0$9_!+Uj$}L!eTf~E}qwUv@Ym@zTy8rn$@cD_hmiFb@l(1xX+5k*|*TbT3 z92oP6^ce$*vr%}!L2Z4}qv!zsk;s5EQlsqa_TkYL&l2DFM1xih3Ay@OH@ZgntB*bY z63*50LVom@5s1($IDzX?7Wc*qph0M_K(hi&<(Rc^I`##k zDWOD7$Cu_-Jl#~0@tMB)#o@a|FsQKXogQIu_Rsu<0acfJpH2W%ArQ)9{9Dkq@xDfO z^wvHse(rffKZFs*vyreUn1JpZR)RQ;u+YO?pfUXuX9N*dlz?WuHW@yhL}CpAorG;- z96BjMxj0N>)I%Zo*!SbPz(e9Ub0NnBuSUYQQ2}}&33_Ni2tY;#gv|d9c>#nJ+yO#< z_y9u6_yEl<0$QTS{u?$m(gZs8{d^AO^9OTt9N*B?ox++N!ot+*DF@_vZoc0|v3T0$ zHM6I}tlz+e-#~L*>J*$Lwjv#StQ_L$$A-f0@%zyIoAPdGEmKo{lgsl5(4XAj*L?_v z!DExf)Jm? zdXo9$)9(?0n7e%YT7A=}=zDfIduH18v=I{fzTNfjK!V)}(YNwj6F7}3usE=Pk|ja* z?dqG~g+=;+5j+H5_81X}As%uN4d@X*eJzEj57?b>ebOR|zv&51?@XL>5CornvHvRk zxb6Ub&O`fLulsW3FAMQgrMMBIO~cGc|6sNVK;YiHx7|1!A%A|MT{ z``IwZFk1NV1|B>c{Hs^*aWRPAzLDi!Ho@Uzx1Ieb1BkD%b|1{)FFHE{hI7Z^fw0MU!{}a{4(!f%Wb`3w_mx!7|*rPpXJU02snE^MSuXV_tIr>N0zT#LqG}p zXR&JlLghivA)v(NUHTe?fPF*&oFP8*L*VV$z=79w)viYpn}>%}u>CM@=Y!~OpW!X; zYZEwNQ*fBFL8*DTGXR|cM2o&MI9vy-8;*#!ra5HD(lxA}=ZEZxXT}6!iFEWD3{ILd zqPOIaG%7g!>^tHTzE)h8LlJUTg*L*hk*T3)0B9x!3 z>FxJS=k$at&^{LYs0(^sQ#)KK=|6Gz=I9GsoJ#ONhuM&my4y??obzED4Mp#s9B=%! z)@dNZ_~fCjq1qVjd!KdY&|nhxW{V=MB{lEO8(BAMAIQ4dcr_-4VL7=PdXLwBDvC9l z+gs!|S0F%y2d`nv;a?Z%vJLu1D5cbMmN~j&A`Ir4gv_RXM#2%ZAfb%YMJgQ5X^l=7nhD39t2J9x7n$b0Q*Dc4V zPq2s;V~6v)0U$rMpbUCpUPlM@(3F)t4ue=aN!Pc2*h-GYEa1ittY>;y;Er z)%+79{a$kdEBS+nr`i#vrE+{*ljuNFU%m1qP(2Z9q7cmda0M=h_fcD2ZKkL-AfCE7$C{1PU(qO+d=UBV>v%fPXBg10(I=Ut960w$S_RMRvwuurTLAqEe47} z(REjKgCU00fkNYT9?H@{4Jp1vNk1m$bzb=9)PGz0@Z^oGuL`*~zvNBCg$4MDRz7*U z*c>R3!Mf-6DwH%ld77vdBT2Y4IO)5(wxyBA_9kIJi|FKHU8mMbAlsPfbcv22@UBlvaSt%rdZDv|pRlg` zXKs3WB5A@#_CSnc;Sw>IuAjjzVrUKY@*3q7%SqQ_bc=@LfW?#mi(fHpm6qO^`YWg@ zpDV9mn>=TE{dAbm$!!s-diR3oM+oz@Vyn|zrK*E776^lRuTPfMDmvYdBz<9`lFQNN zS1fxJ+3FL2xf6cJ=yrOEjSm=;#R>2cMTkxyVj9f7-tOg-K>rwF6wouCkB(; z`u4431i0Ui(NtO>*;}KG-rV@5Rs`6|B>$irGaCsW~!QGP36xH?St|BNjlrw z7b$|Hwyx4miiu%0nGlh{H}{C6E+dU6!xdE--eJB0qE!4B@2;XuYyF&-Q zrC17DvlZC(=V}AH+iw@GIdBTp%vF%KS=kd=Nv+z{i8IcpPB05YGN8N>2kQOw`QAr! z8LQ<{A2H^uGZh$#hUn@)(8Lce+%Z{m)pkG!kB_ANpiEIU3Az*Z?flp<%G-Xl-4bWs zE-*^A!_Hte>kD6odUqf8yqK6Lc-*AIy^VKW_PG7jW3@HX)NL-lt(5$NCR%mL1H<1^ zaDmZR2*zDJa5gqV*}YUVAR2*vB|$;vsNY4GZ~{%`F(H=ncMddzYN&gWbZnebsEO)3 z*8LN-qQL28(v0<(qu-uptLNYI4HRo<1*{e$I;4#G`MMHJD@=>8oaPXrgzyk$yYI-e zy$o3yr4zUXH=n93D58A(QU-kP)lQBKeAq*?6B9w1_>ik%zC2_xABdjimm(40N#zGZCX-#HON>L=hor zt~G18loKwuxeny|PAR$zl@fo`B1Gk|1T7a&m=W?kPBo9~#Y$_1R)sh#0DgOyoui|r z=~_~yzHY0E#*2(LaTfjgopF3?BoN(I>{qe#A?wjid35suCBGPbR`uI*!Bb;CK6Ar9 z;e2nvo4kQ2Rm9t#8YscVGGJ|noN}Obs%z+?IX0_w5nUOBbW?#a5LAn8O%0y{0fn4s zbU%ZiUq2-x<2K^xbAJX(!~BF7>N?`rdbxWneZ4n*clnd+>Wjjw{U?ww*J2fVvD>TG zsFWU4`X)x&Z>~6sM0NQ4PnJ+*RB5}-qs@m|Td&fWyOXttHlPu3;FNpks7s;cRNgZe zIyMHoOJqJe4MC=ukT$RG#yMY~ibOAanX7euOUu)@E(kVg7p3{o86q4IxJ%xOnTC)e zU;Ip3z59k6_<|M2i9`vF;bjuGGh`eq|Hc* z^!_sK5u7*7iVMz%mV#GHuvhj#7INS>r!pQ5A!fXqef?-ScKJ?avW805woY!+8A<8w z=3h#o)4o~hOVJ3WRp2AK^g_`!@IS(sZ7nr753rKI@q~)qA-oqC!;`SbJzUdkO`!Ur zGP&GH@IgHVUa=y>dJMnp=}Ky_;vL&Ax4^T0w+o3~C(_7+pxY{nzjI7G%zC;Y4gVOy zux{uhBrQU{S>cF$y53^Y-?4 zxjqjkdNgSi9ac4v$XlS$&v@j`phM47pkOq;>mdY@c*RcUoo`9P{@aOD(0mNO8e(Qb zXyu3skERr5*?IY`-HK!2MQgeXx_-rf%wr_HJ-M~CfwZ~Xe)~$m&vJ_6Dx%UPYP3#n ztg%+?MyF-&XYSqyon%Nomc8&#tKL@txA}PFgog zoozT`zx_-I(TUI>dU9Oa?4(|!ImP$D^%NZe?Yu>q;C|<^fJdU4up2fp@7W6O^_gKl z0%XR7AR?&B#}<4N7-Zy7rGrk3o)=l%r-L7Q+0!k2t_rUKE&INvspMsVv&W^#<46%Z zTqmtYCS=iOFWG#{mR{Lrg=3kDFKY|t7Up}3f(2gt4?~taPn-w^9JFyA6_#%fDSI@z zwFrS=`4zNbuP!Wfk6iS215B3T`rJ4%sr*A1EoJh$w?F#o;?ZzcW5%y>!V`&0O$O1o zR%xWoZ)!omzbk_W(BWii@g4|d!u^>u$zzMIW06FDRE&_5C;8~UuPt0fyH~?PCO;pP z^J9Q$IPuo-JtuoZviIQ5JWcDk2x9xhg0Z$qc`0Z1PZqem>dZdJ-NcjC^oxBVIULDZ zSIQ9CLv3crM^|&dex}5*GcGGc1g17ChSXJ*e- zfc(Klkjd-M;#HX|l#o$9qkzYp<9y{|j##G?5A@A+n*S+f5By+Mx`!}u3~P}@g*}Rm zBS^7BUVR;dm>}!M#hFhp^cz>qgQI*^_kzvpbLTyO4p-LQ!J9{2UW>#LNG*$prvKYx zV=-KY@6<%bk%>Tpn()B2u;|u($CxAa1UU|WEu)_daZf(0yl*AiOS?`Nn2+>@a9fIh z=_GsYlMWX%`8gq9d~XIRZfKrpETi!-a}sDtgqSJqi9Wy?J6%G!&=PHWK6BkEc*pRS zHE|@HT{!cWc$Z<921nuQ`16pfsHET0R>tAALZv)lhr7~dsK7+4`1GeKF&RVSBr{X) zrg+hO1smqPMeN1snx#{Sv6n#&vgYI@pL#|0ivN3h8=hG+YrA?LtSPLLMLV)yDXdrb z5IyD9n)z5twaliBj) ze)9{0b7GYOG7T1sp_oT2i^xEa zp~IhMsvZ;VC8srv9bG)WtmN65OXYip^NV0B=5G9aHqBWRR;-ghM)&jnbIp-2Q|Uc8lIF2lCF3zFFA(D?)C_t z6MYf&(5arTi?Y!J#V)7Azb1|1=6LHpz){HCYugvF`bI^*z!EAk!yustAA=;(UAL+zPxjMDx)7iRJLY<3oEDOm*j6&_=QEZ zY#1VaJu4&X9@xbqj(z#{L9tbbchK3T3Q4qvSzOhdmgl@B2b;lcHJU_h9 z&CsDiU?+f?Ni8=^itWX7CepAg?nepXu3=}V#E^TU=9vMe-DxI^%~zieWT%GDFF$8S zIi~}91$&>O0AP(!l}bAI*$!xBgR44{QMGBtuXecXRY$>gQZgQX9D9uSn z#UVx8w_#%Bu{`izfO|W#gU>`oDX_rABbVzWQG{2{cmrR=e$XZ)(;NVc{SKwzj+uY# z7YN{HWWs?yyub)8j$EX5HXL9> zb+X^!K38yz80SJO8FOzt?Pd&2zrCftBg(n2{eFLZ0%!BGYZK5mwQ>OGzj?15Qs-Zk z#>jReCpg6;<5iGciG6vOn3qH_it#%>zH43u*7xGD?v?6J}?EJryP?hkj( zmJvuP#Apb=`lQru&yr{Onk84iWL7lU#dVc*|i+SA&H7bSC?)ZaR}4!Pd#AR2U%Xj*uOuz_Sbeqt3K`;(DS zVRolc=ODWqm(XD7NbYmLMCdrLbH~c5&kk(5scp%`uu=hMi#m{+Fi@~ycWvDw11%-r zgTpt%QQTELUMS(N(nYLNjXQI11>_vK6Z#w&tjAJN6wW*lYBc zLnkH=yO6Dv-LN>YVsg1M;2v*LEOpTU5Y;T++_&Y1woC^aI>x(;vw2}%$k&)KVwu^C z-seP<>eEX}{OyjU3+zdWzZ)y;!VS z4oWue;7pOWy9c=&_u7qYat!%Hv=UkDFbL2mE`e@oDk_{!F}pnYhTLhRPhAmZzJXtd z@;(*I&Vwwvmc$Msj65YC5H%7}j{!ArJ0Rq+Fx9l&6rjsl8&ds9@J{A9bjF-o*N3e$8Fu*_Jxj^Yfy-8L{*`W+n}zZvXB+22$m<2#T@HKpSA`r6=( zAXm6VG^z8+c|rpL%A3d}PD{2Oha^B`%Aii5BX;Z=YPP3I|4A1iN^QvE0az(oxtN@q zs+)pp%v)e?az3O&TeDKh7bT1S6Dpmo?T_qDcZS#s@yv)E95@Npk&_Gl&~_wl!Zon} z5lB4;HciV4*Gb_0dIbl!zDZ_gM|dPk*%pX*u_*0!oyDH3g1MIw+k&AAu{+ zWM4%!W4(PivI%_GH-{f;Xu)b#jcc75fpgZh{W7m0_gmU-Q1s&t_|t?cHS6u7juC!K z5_5h%TBn#-nS+>x2_TXw+8$oW_DYirg|Cl3N_L$jeI{D#S1oR9=o{+3R=8lgu-b~Z ziS?OP#xPrC5v>qhecTYHJ8;+@l5=Du5d0xIln(8olrWB}DH7oGxrpWa+1;{X+?2aA zX@=;VMuWi3Fp6yScCY$*kw!O9)`sh;0zm?j+#`SD)NE`sBI}>#xO>wx4H)Do*?&op z*g-tL`iLr`;4*-C0%Hw(4?mcT?t{mBp5~M5>hY-AFM* zVFbYT&g$P6!<)aoOHfL3zin%bQ+mcvuCBFY3d!fMx%#W27DDSRoy$YKSzGWl=yy+x`5>rYsSKCsQmIvS zV6xFB>v$0NH3jFHQb!W;)7-yo-OtG2!ZMh&?++TajJ6C@ZH^#{1yASW&41kOA$Y4wL1L5@V+3_^8|YGrYV9KDHZ;kr7{ zdEbbsWm3AXPRzqSF5tz2&V;XYw;uK{qDpco8G$rZ%RK(lywtMgU(bgzh#;wzi`+P* z-Xxq_c0G5~ejajk^o~)@FJ9zO^loIbQWxn~ZIaoS6pf@XR5rr_sodiqBvzK19dW0? z)~lcXUVvyktUP*!h(p$HBh!(eJz)3dB?{S8LtHgijD8d{gl@X7NuDGh!!XpKIpM3{ zL56}aS(9{Wj!z*i_cr`3Ri(lPp5h^QIU3#rDZT0)cD=I92QO=ASjsy)J(hIUo}*nb zj5u7Plr#faM^3K<{)`rU1tm2C7o2`8NlXuAe53I@f6^?1?3qT^6mEC|-CcJGl|P#h zE6D*3(I)vM0n0th#t^|WjzTL5-7KvmJ4)^j>qQSQOO(CA`jhc*gdNpw?6IOLn)nl? zAdfA)z&u{Ej;gqB^#=_@j;`kW4QdOYzDkrnIec4x)aV{RnrG2`HQCFx4Zx zjufQ501e+h|Dwj050d?6>C)iX18KMo%+oY!eIUsypp7E$SqE-BX@(}HbeGrCc>7GP zCeyY;6=!lvfeb`Vbydm!qih;R&?=`w9U=h(OzvfBJ%<#aTgqb)sa4>6UredR2}6Lmeeq5w|)B8YGQwW?n=0^w-c{?jhk3v`Nqd!xRLU6($dG z>fFaP>!VU<-E!ViMx?k%r6wN-KtGI}WzM{$ye*EN&o2yJc}Z)!&jiyUx`yPfwaIda zF@?-ifcDBU2({iwCx`h=%HBzl3SRtUlYv(ojFhQQvb{>}_AQENohduCQv<(|Tds;u z);FC>T&q6Ka_f&OlVZMs!? z=ZnaiKWd13PbqWv_j^gg8I+EPxEzPaXS7K}7l{#8my+@j!jvmj2#wH8M!d2^al!Mv za4-AV!t&j`Twjl=nellUuqB7+*5-%WKRG=HdDJ>tLd4;>ZU~n-a;Qu-m2davaWAS+ zTod6J{|S-PhNV!p3mNa-I;g#ZN2>;RFRLpWz=!BixytloNBH9hH8o=GUGkA@WCw3L z{MocerMSd`7;Pxx2!9+uw$~ElUG-?4;fNB>ZU__n7fg#! z>?rZbhN4~(GHN<+%ZI77LUzoH*!;!r0?(6S#Lh>7Ea&VPP@!oFbMqmH zP)g!^zVZ3mFcqv^-8J~ZJr!bYQ+rClSaavZUzJ+WdOj-fLR5qjdZ@`SHwOJ67re!i zUe$Iwlx`XSweH_rI`cyD?S8IA$7kMeH_gv(;1guSkEh;wgu_V?8=it^ba*7hcx2v@ zvuP>hGH9LjE#^eg0SF?0S@VRhso2QBFAnoCC}^5yIvj`oSD~EoN<*v-0~Ow}Oql#a zrexGz{^D;VhK46~!<-{|S|GBg=#|@qprZ}9;RBDfLJBklD`3ZGZqmR}3{x6tl~o#v zM>>rVJ4N|F^k*{fL6@r70^zDUaU3t5SH?!6T=RK(?nhJkuhGqC)^|7bO-vLumUua% zbWDtYmaIpjO=H~S8CL%^EXbc_mTv7XX?ZGJaN%%G*E-y~k4NkUx_x}a{&q?6Xm@w5 zEWAwXnj9k>S(Pp@c=vvmp4d3>fA{(N@gWqz#itU@GG^Q_ANtJ8L3L6-q{2coaPjOh zNjjy1LLi1J8Z1O=kaMV0PRLslAwt;nnX&9dpcLOdnD|GM$Zln_`XCEzVoHT;VuDV) zi^`|q?$`ZMui<8zqLBb;g>P>{qu`|izove6;Y9(JFAyWqMOCdx@YYY>*`BMdyrK%i zkM%T-E}&0NEYK*(;dcnryjEeWD=J;6_5EI3F-lvL8n55tz4O?-5hI(KZ-H#DHpI;- zKnFw>He++4kC^?PI+@Y(zZ_&;2*xwqb>Qt1o1|&H)CUqf0-(def_O%x(O z?mcR5WS{pGE30Re7WBCnw{Nf*56a;dCe;xs6{ed#{c37`PWusKPzh3B3+ZPJyDa=w z8t53@|3r*swO2Wby16vB)j4SI?zyjL*R*fV1yZQf+s26Y^k>jxh?VQPf%6^Jb1;Xzr{B`%^s8=Z_*Y4>v5j9ae|VWLrkK!JQM4Old_MV1JoA+ESBfCRe;zji z&e@u;kqIz@m&6fmfz!TLiq*BJEUcVA2QG|R(1zHikY(6dqRQ&67Ut5QIl&K)29e2s^#?cuq5mvNpo}+BK^~FDM?| z0E&ti<36zCndLJXvrty5R6G_4ez0Am#FXw^`3IwIOU`$ltjFa&1hA}lx3 z%Wv8&blUojoaRlUhdSl0pMl0%><9u4O^-S`sMEgI{@r}#l+;4Y4ctZ-gg;?ZpQUhl z0MAF>MuK0Z^WC*A9%5HsgI$4})xb_DX`apEmJ2Sa!Tov;xLT}eG0Kd7gr6Vw*fo~{ zn}|SjYTOX)33+#_vruiFOTU19?26rIB2F<2W%uRGh^gYOWnk=(JIu| zB?U3fWYJ2CH?fh^n9Gp&*peClm}vw>jr5N!7>!#Au$T#2=U@H;$4|Fu>|1keVHp-l zFieHby)I=5sJ1n)xbRq%OG-Z%4`U_xGgmpHpWGa<)s?!5Idt$E(QuQ3Ev5YM7;hSf zo@S}3%41eUH@_N+D+4X8&^>#*bquQ@A;>8d`gF0|=icG`wtb5&$+KcPfq!3^iD~m^ zTzd>$pn$Bb$g_waDX}AI-v5A*QNj*7Cl5ERr+Nm6Xv}A1PVw=4j2bhA(W4%^;xl6R zvH_%q!^lVG(sU9j96fI>@B%J}113uo`wx5!CysDPY(G7*dAc+W#CHD8I57TTqy>2P&5WL_AfzvR9!v3pGmsz5$l$=WZ>_3l7%RPccw; z8nsR(-x>9s<8X~)4s&F2LT&oJx7UKUHB+_C)GmW>*OOXmk|oUdX6;JDFuCN?z@LoP zgZIbwF{;X$TAcG2`}+Rrv~rJ`#qCW1TFew90sFmh5Zlp)lwlI<$zjv``Hn*tW`X<3 zWa{+0b&9Y}VeEt2?63skhxL0t3V+2$WRAB?57v0q2F2wXqCpnUql1_WtdyY}&VGi% zwGzRH@++=v#;bV>XlWVoTrRa|4MdO>7loH}PWQ*JSJr(P_BM>))K2nlDiH;Z+|;us zV{BmJ6M2d9#@~5u-IkUk#QD+vr1uvO#$xTs8wNRjO^uJEmNJyGk^(;;zpEkb^ihhl zbb_daosONhAL^JI;6VAXMGjjgEuaPO1zn-af&?I=z7-vlxu+JNMXG%>N)bEO0`dVb{bMje!0j0IZH0!T*>AVzHK`4 zn`&ACbIL6Jib@1l07E2Ut^I^*6%57XkA<}7kFty`)7-N)NG_S5zf(~d+QD4T#M*xD z!ekw$_`b5Sl$N>qb+yMS;*BfWWC-XhVix?^GA^qSPx4>*%sEnNd}#hr-=8?Gp;R)3 za*1`!f>z4#wm}C4{HeQ)vBK#g7BS(Y`%QY0-ZtN;NGR28B=LFK1ao$J>N_ic1j(rg z=-*&|v3oQ|mux5lTGI$Ke-V;J#h+2{^dGW|wFP^yAx+lP<8@j$v{%GL_2 z@(_2^MXYIzTwP0E9`3GtJ+(ObdAqb5D|^SdBR#XrU_sb{#-FXAYGcv?8=v#tuwzAv zsIb*s6e``j)Zpxxl2@UsdHA`$sm*``%}Y zYAS6`3|VY#i+Oj;qoE5zXn3-?A{8U9s?2t?1P-TRu?52=53#?rowYQXLo>c`wr!T69Q;BahTkB6OG424r zmbtTwIM=qNx+KQOTa;Id>VGTc|I!p45z_MNjxft+(D;GN6wv8qI~IPMH6Gy}+_`Qx z;TV)c@soMfyJu+ye;HEVyzoSqnF1!v0ofPUS6S|}kd8dIHtt&^{zz^l4pu172@}rF%kaO;~ z!UC{sgC@&(jD&@YU{8D7mxKDN0n?C6Nt!_#VFBGwN{wkc<}uYHMY0@@;#&KRJ;~ps zdZYP&MzG@K<7Ko^upcl7IxN2m>DDR?799|Y0!8rthwyBbP~}p z1gm(#XbeSBo6E*OM!{y)X?6BotUi5=+CCQjgfqhI>7U1m;71q++f#EWv+groce<|% zPN+4mH@RZ7fe%jg#%{Qw0t(+&~Sf;DV6&WJ8jT zJy;KlFITK_@Sb0`TYb8TY+R9VlEr|l33kWqyG)W`C@_CO+M03nFF7MPM}#&6ABo#~ zB)J_?204debDq0$Q_=9q^eO+6?W1|GOLpqnTTFQvuj9`3$ft^=mn#V*un?>Qy8t&U zoZ4=8W`zJ3?Dy>m(i}r|>{5-HeZ^Z6ZIgn{C7DT4m5Qeu4EEgqp<%Aa5)RxcA}{l_ zL~pCsPu{rtP^Q7Zb7j=AJWDm^jyf!xV`nTnNPnFAGxHw7Kb-Bi7w(DLK(jSqIXRd{ zkBQn6IL=ig4H{+GlNW;AZ3x1LHv7W@42kO+$#v3b1_jIV1z$`A`Kf?dQJeVmLXvCI znKff{f3Gp3UN*ZyqhEj$ncdVqR$=;0dDfwF{QT~*IM|Gn3~a4X*2zCzAhkartomLN zLDPtIi&sen{nh}ul+9KTr`rU^QerSulBx%e5?lh1dkan(ndYYGsilz*CXLo=lz1<03)fV*c`H;wnmnc{{!OeC~RwHITsgOXu1gc2;Q)3aS}doeUqtEyG`thTjmC4{!)s^n zX@?Je>4_tRm5yv~%(_o0x(FmcU)zpV>u%FbvZoUG%#oaRmbZYmfX4M!0@w~+!4%Z! z4?mEJ^F3a5PJE=8$RXgoEFCi4Z@o_==8iXAId)4hUS<=5#{@cw2Uc69OoZ>*A6m)W6w=0XW$tSuh%mYyCX4$`vy%J&w( zuF@G;m*3yaeTHkMYxCa?Aa2Q^Qo7iEt=N@nLIr!rX-W;(lGxD;;D+()W|S6vRKn;cU)ewUVvyIH0r6-RJe}Fcll>_qZ#m0E-`<+NWFFk=|Txf z7YZYjODIC64aaQ_H{2GrtGW2s-Vk;LwPWIs8&9g!yTJ4?M=9YF>3{*-BFuBjPNxX3;4+ zd;QMLY%?`qPN5FUwj3Te*BQ*YT<{x_v2Px$)(3YwWJvx`@>c%O_;B9hTQuZc6(cXX zz$o>nTuFKf-TNasHm2*&3Ob_xH~%;uw=vc?Y9FJ-FpH$dwCah>N+saJe0smaCl~A_ z`(!8Y=cDZ`74Fhv8ej1Y3a=GwXs8HdEwM(rxYA5H(|8T z+0uOPZ7t=THNtM^jWyly2f3Yt?aB?feZ?(5`TlCzaqci$ffM$OZ1g(~wfC%7Q8L5R z|7q+Tpd;J5MV+LRj&0kvZQD*dwrv|7+vwPK$F^Gm?#;B@YbI+wY zXRX>}V}7Zyx)IgRonj-QVhw{*;S&YQRmcZO&bNv3l`z-ZVWu-z1>6 z6)ek|{bFV;-)*10fon#yB&__;fp_w|JNJ9ijT$@3@x5AXK2|Y`Pqg{Ds`_FD0~i4A zGHpc1>S--jgnuhSLjK4%XJRpJ(ZOTae(6*@@%)^&6aupPmTG%QHc6TUpdUZGwL+UH zJD~+6d!>kUJ)N$f1>1Sb8!<9%!yOctR)$eI)x?7H83k z>wLcY5hsR-s9fT;y}PPSkygMnGv$`~TdSYvHfLo~53w~;4&+lRo8h`q^iA*9Sa&Y# zIS{Qvh=S7K+b=NJy#`Go7sDnz>!Y}GyLx7| z{&XpRaSr)mYtP#?n$!h*&-bbCbo9dR7~S?bsxXrzPeny~YcI(7pOSr=YUsC-c9}XV73klf zT$srK8{TjGPTiB5VO${d;-JHynw7Qx?;KU;9TWpZE;vsH+OPM!8j0S&gpYQfiaC`l&R;4;nC^S=J|18bY zMb;;1S0m?s3?)L2sFDAx>y}pI;fS}zOTbIK*)M-2HaWx=WM(}9vo#n-GM8W@;%^MgTOb!xudF#IQD+p zY*L@Lq3oShrvlY%TSf7Ha#CtT$GOk?8$k1usFzvNCuOHQHPB`Tuwh8X#c4`g=Fks; z+?~>1i|?}t7~WOc5c*TpKUvH1PjEwGEovPcNlHfJlrOx*=Y!R|nB%(w?$?2x(F;#5 zLVFDkwjewrPu+r-j;+ue?KKBbsp~b%?WE3AT#wqkq2GmPD7vHiiSnIv=aH>*)M#a2o92&I!={zqF~+H2 zDMezP0f0bo%0Pp;_wmBjxvD9yE$oyKVx&!Kclt93Z>VXAkXU&}Ht?3mbll;M{GS>)&Pz4nQhB zT08vMdcDbyxyQy0?KVK;yUoF6Jaik(L-<}Ie{yZU@(=gHU31dR#yF+WNW@!F2GzQ)gx+Nn10ueGP5Z>@#3u)14r z_-Vjs@!@oK510!vQ|A}xKMyw?M}S0Pvd>^hhNRKk_5{J?C|>MA%ACCOKl}c_rhb|3g1tV%gojPOXwek)!h}#Bge|cW zil#&oTsT6x0+$BWdYv)7xP2nnVWUE<_w!)NsN*ZYOihu)I+2HAjw`TfugGInhlCt` zpYe7$O0b6Mk%~hX@)6y#`D7x_fxClMuo+G65#Of%k#4cv-b#>d* zRQE~Vgq8ZRM3X9TxI+eKB@Zo^gh|{8G3^|E5b>3DWn~t;zb1)UB=0VC%$o01RaIh+B28CS0%b-ii z7+b^JUVHLz;(NH$z0Kl{z@Ti~>a*%K)eu5*zVxs^*$KGt)52z<%58()t~qO1J?K>E z#+acxAyJIpsE$wKY-T0xv2iHm@1Ksu2{=F5?I2ZOKX&VRJ3$l0M;Ni*irz9;OlagA z4eOPp;@zws3+;w;8pv75cbuc~gPs=#jLC}jn((WW;0srQ!EakMnjp00P%1QJK2Xm2 zxs$^WC`$v@2W{AzuljxLAF3ItuY)M*cG2l7TgLD6xYlKHUKZXe!&rhchIQbW1rAh1 z5`2}#Lho$e&3YP#K{OiQ?4fPMcS zMWBUH_Bg1T1~$RA>?W~2{8AV*G>CC_t#H@;+Ks@bf}@VM1iM|0K@JyYjv)f^_;P2t zRBIZ#Z9UnqE3laOXD|y{_|ZOS!T^zs)eVfh z0&zhUhp0)>NC^{H7LF?IIyx?I#8-_K&cpSNO5zdc5p}yH zr&e95y#Yx?uvmoVQpLl4k$S_}`-o445J^ft$xf*bw{}LXEbn9OaH{}6+v$R2Z(q)g zn2ZYrm1DL|i_x5H%lI2pB?Z_j41eF)`~5NLZ*T=C zat`$#JKf8YFc@Qw_%h4&_F|_Ahr&rW9iu=Lv|bfa80vb@Ztj}ZoT5YIwHGm^-#VMv z{8{WBLUzMIhV%rOwVQ*AG`*mj#$ypw%9BEmjhPah=^jYeK|Y)ynH*o)#x)Oz2}m1~ z^Yb2JEf^~jY{?#jo++1y08q$z@5LoQJ^E8B)t4mK%^B0bYZXFk8t_lm_22?+TmuL- zz0Hc?mr|-ek{r$V+k_RaV`>PsucS9$pxG(Gw2Pm%DY>KQHK;AS3yv|-E+Uh>p1ns- zl4%xcZ!~3M2ob4>w7P`3vaCT8qyZwz!oaXi{~VH%pXyzvNO|5ckU}?;3e`+$uCves zmi;*y4}0Cn&94kiE5-NfDyPY&vPT}Xx0jMFzw0ldV^$KSj2g;lsctHTs>*x5W__X) z_PalDY{4>&#sRM?^QF?nUEwWNxUmbg5l~lWD%gP66OWXVY9r#1e@%I^(Q`cjQ+kqF zTZ~79g=A)*xX{OO&tJOTH>#=xwj~0#fhBy(HgK^ec~C)PNU&6O@+V#>K62#)^P;mJ z$OKev*WO@~$=3mj?g|7KV@{ewHI^jUeq9D@$`ENJ%qfv;YiAI*9p{2P$G(=pT0nVK z0-{vQ`(C_V0j!YX9nKiq#?FnrEmMTS2_cyIdgI|IxFT)&l)?N@pC3JTSlA>QRI%$S zUbsq16K3d$a$vpabs(o%RaEZQ7ZWqKzmB>|^Oqhb9w7lE#EQML|MmPiF z`UfS7WD)XRnH&TsC#Lsdyp$1Si?{~|AI3P6I)u`#bTMV(XJBz z8W-Kjy#HxTXvrnnsVyg>-FnS_cb7$Nt<{<>IPz~R{z&`9`6G>N9(JF6H5EUaA``fH!`|^oL1yS5HYO%vZooiPJN(9IUM878F zQ8$AV%0HEm{+rT%>9>~@k)G57kR*t12l&t-!+O02+;)U|(0gb;l3%AiGf0j(aT@iM zEa5k;4{EX0oMhXA1GP2V^+;{(Sr7T?8lyB-f|1>IG4--orS+)dBn?4bI%GZ(0#4zb z3C^W^OD!$4{Ju!F(|JKq26GP7ctmp~v||D%zg9S7N7%Pm9Lv##xHPrIEhPdNWc^9v zn+ZD!vSTr-$0(j71*^B|-4=f0V&p|d_0~*UN`R~DQ3URnVS_krZrbjOmKL#P6+2il zbHga87n@qhg}MgR4VM#ALbr0CXj!Pw(|O?OVtDB+qfXZ49UtiVcJ0?$-Ydq|BiywL#r#x&rRHzz8&{B*jzs7fGn?xN)MPTKWdsoM4@d>d zHgGF}i)E@^Dy$m2uAanW4d+KQM2h;zd~9enK>x_WUoMBM6?juFA+MIZ;2Rvm=R(yD zrFw{o-YkKtDe45_WK6TI8H-29M(&;6wjS3-(l~i<=9&l!`kQR`%-e;|%4`w-kL(en%!L)!HHxEZ>nJ zuLtr-VA{i(L}qds;l{pQ?Lx%l`ou2(oY*{&EEk>39+sRotiF^h< z6GEZahsyHYmk?lA0};#pK#|?2_mfrR1`NEnJI(><1A^Vh*#92uq5=Fa$5zSGkzmtC z0Mi%yd)=sw7ud$`J_r7aCcm*ODyZ3c+>R#`KjcJb%;&NswFSXZ%&f~ATq^;W51p2k z=jwQ#RAKE>PBXV*>e+>8rx1Rrjz!g}w_;`y_asBK@*QE;%7@P(LAwPdmF!XyArM#e zZiOjzy-HF5!{i~7mP7mlc=bWUsw|I6{B1J~D9D(O9Wm%avks$up*TFF`5J0%fKL6M zt$Pj78>O=b&DGY)ZBnf#@R~mVp_!;0_`R#dlX%pd?J=+Jv2_89By-Rv=?97yv1vx+ z(^C0un8Fwmb^eW`OD>bDxUK;8NJpeVvkVV4*+hEygq*M?w8>(dC{Q6b0!Mu8q9O|X`QjA8 zLoBxiZ=z$LqNPPugCu}0ZD!BuT&EUI1Uzp%7#4>Q%`*+~RUwZ_PtGRkx=}}@?+pM6 z#IH<~uV=AszNg6bTOCvGyve>D+d%NgA0BmGJ0f0hb>p_sJll$T2wfr8byuthSw9>u zufI}+nvv>lcXU=@c{LsiYgn z{NURB?Ne{wdbnV3vc3sHpY@~_7c=s3pem_?j~@m6f%fB3X@|NJ58wh(Gg*g)?mM4r z@#a>@nP0P^DnJal1KgahCtRLlDYPAj8>|H+_rl9$X>46 zgg<&IOmTU>rHLYrc%|oV#ZB4^U9He4o*)u#(a9ZP*{?qh$lvwx)#>K*H~Tvm^T$GE zzI8u-23x)|#guinm!Wy^hF9VdsLGN#5KYE?T^6N76HCeRbut;~%*!+%%~*oAP>PR< zETH4Ekk9nyNxq0b%YKvi+*=YDc3X>Qa;t@BsX$m-LGXM<0O5fo=U|>frUu17Nm>k{ zESL~-bM3@ht9>trM))LQH{T+$675BW5EAyi>{5-}7KcaNz+>v&2}^v3sutxPC;J&jfZjfsn#Z_- z27WO>`hKWkJSeK!?+We1iAcAX1gef$XEqWk7Z<|PPLECy^>e3}-uyRz_$;L(iqRA9 zfyuO)SB$#4n7@E5AOYE`vX{;3aB@nA-*4!!{(x5B4fzcY;V5Rv&rW7hN@TmoD0Lu| zA%u$&GA;9ZkTe#SX2PkfcIuxv-myE4c&vP>1)PyT*A~jNhJ%kJXw3+JXT)!z+(#P)x!~jpiRi7zOiFZlpF}~Fn6P5?a4OZdfcxnb7d;o51 z5KAegz{zx&QVbLyHt?H!n-p!}=p3=2CFHjRZmp)-Hhvp3g4!@bT+MFg`2}6$6{^4S$c3xv4kGy0-EZQ+nIjzQf=8KKhAj@SpHTh=R}nD zQQUkoiL7KUB_ukKqzftQ*9KnJ#(bM;)Q0s$pHUvG9VY6yZgTp z@ERk1puG-aYl?4jM5*EXq&^L9XO&-R2wm7*xO;x!g_tX5r2$WB)v{$yE&$)C(K|Wp z-x(OSNyjD`{uFMqZlBpA2gPTi*mU|-`Rs^v6A!ig>FU+k^46s$bluMN>AKDQ1p1=?2<7H^I}p(CbJlr zSBPSJ*{(FzsIBoN;pKLiiCm^EuT>v?j4Nq3#&p7sCf*uFCfHs`)WGioa-a$1nN66u zIhVCI&72vURZ(0}Z_IGuJ9wNE;O*M@Zvh$T`cO!*XBM#$YH%wrH|5^zO^ z0P>YlGJ$**0xEpxBSKb>MzTe>8HA0U<9-cz4wRsbTSn@-i2Knoi5m*PvfJlKlD;_S2D#Va?*U=Xc<-mzyCwK5!d zvTE?W8q93Bx8gX%N7O5hN-W?6E|RTCyhl_Y_S4qZ?u<(qzy>||i*~NAr$;Ietr)O_ z8U<*ULD|@w;PNR*3#AJy+4D?~EW{+{ zVZZzvW%v|vc%9gCG9^0ubF7Cxb0=K&{OikOSC9+*x|-uKu#ybIf_gaJ9?4vX#)|)S zcwuq0#*H_5Z*^c{=FEH4TPPcXwsUa`h2tAIY(dkTzr+zC#?78k7Ch0nV<=ZJAN5AO~2+0(PGl88>f;>=55xG zL`_9B)U3QqHN%Pb1Q#D;m1y3M+sg%xbW%)9t{An5_JBTf$F%i800};iptS@?Su}wg z##7QQptpY57~&E38~9b_|8#z0yI>8U9#|x|x~p{CT4tzT1G4*ZNs%8pFZk-WBDNHG zrNXP27onb4nxkY2a<8FRyHcrD3LYvKlMyWs{=sV*@zg}26BQqP;DB$Ov;^C+H%{?M zU+A>%vG69WY)uD9O7Atb2`WjfF053ZS&P)5# zb9KvL5->i~90?Vz0VW?Nm$HmcL#eef_plB2Kk@sOUYZbD`)NxutGTF1fIiAZ62W{f zs&0r%Ud|1ebIXkuHm&Nqp5NrU7}v#Uhu612=fpnhmeb=1<+=A2idYPM-|=B&b{qv?%MyIR3YTM<2Y(0(a9<_##4 z#a<@TUpG1aqPMOL>fGWOUZ{qydb1Sx{p)N5Xza;aUROZKTRelaRm>q}YdXUZVLv*B z+9=FqSp$3~D@?sU71un@j7!K61p>woRV^&>`zt*wXGx%jlhC%l=*OmI3;xp`s{={x zHnWP`cB&>0U<E##a;hM;GwIcsw)9;7zcb|x0I^#g_0Xs3&m$6c0Jcvl z?Dx}D2ba|(MN*NGZeA;5h1>#MEH8V&C|6iekHL7jER+g7cGcY&l9jJ)&uwgASqH!= zLFGq7OQg>Xuj;Ruh@#xKSM?Qe-XCzv*mK<}62XCQ9|dvW+cY=gBqits{fDY6tHc=;&#N@?Us zjJo#X8nUJQWX6M0B|P0}#KrhvWtE&J!*29$V;lFdxl5D_S;lVM2O%wIo(bE43+BwI zqD9M-6nCcy@QB}z8YPcTEL23MNXW@qq4;``(WW-{GczOSNQ{LXYQr7{+6FSm%8#}h!Hd!2FO(N_nB8wddVajJ5M&U zjX5LE^%a)Q9Yl;Gr+|*cMKJs6II3Xg{^`(q>KR?+eVeJKp%rmJRR9kwfByW>{Gr_% zkR8T{7u*6C2$j8}=?$+g|M889(2{+11{2JK=m}UuirBwLB zkvwYNoV^|oBVV^3K00ia`|}ePd?mKq4a?Dy04=H%h9-M+!t;cf>gDA|-$?z#HMn=b zw=VSxBfbm34-g(%eo0)-tTqX+vkUMY9IMNZXfsBTXK@=>|J91;wV5$8GA(UM_w>|H z^_GV{Gx_S03%C-_o@O6Z&84}R)??2F?Z5>i-J5* zw0D0+Qw)&bnuAn{W=oCp(}L<4x@aY?(N9`U1OWM<=wW@f1lV4O?f1b^;SwCE_5jk$ zz4Vq;>L@r3YyC&R#xtr1HAA88brg(lzshdcs;Bp}+_zKW9$(%`zGZDvgH_1_vX!|f z$E#>Eh0WvA8Je}`k`jzl>1qJD?+H0BS`4NxyRCuW9H@Rk`hT*EqF&Agep8091t|3| z*lXat!h&tge{`~b5uthczOP?QT?q@t$`k4rxa*>=3CC4%_zl$@8vEAIOfGJ1ypSzDS2IrX31{ z372q)R|g}1rf76z$uda^LNpZU(!Gd71#(o)7ExXi(erN1SdW2L$hGz>c&2z06B3TW zf;}29`h1nA(^pD+SkaqKcIGKR2e6)9r?*iPd3T`%$SB+(I`t zOqg)!jM&D_18m_Dp&O}7JX!_d$3hnL#kUu=V3SK4IG1s)X29_G!oRaVXUWC zT@@=T6BiH0{go(?60q=mk`smrWTM{Ym^RLF1P{BLEvsxFD@_;*ZTx$AMv7~ZIrae&2i z#4C0)jAwPSES1-{y~y#_^RAmWa5Q<))vnK&;~kjGFQcj8ez4`~)aMz0e~|P{C$A1a zRij=ZeilOUV)0Q=ZU$ohq3hO6UJhlj~qTOW%o83#pR(ybN7nyO`mzt_sjpTaD zQJ-|ZxD8r$KsxBzn;_j1y%U$d?};Sj%Llv9Zp+6j3;p(xQRL731;I<(U^K#FcHy^lU`3&$J+F*@(G>sW-dZ>cUKS z+d+CF4D)gcF*v;UoHZvcgS-=o3*?K%zT!)z`4gK#ryjs3S6SlO>LA~L?0K9|(X~?5tiv zO`j|Sb?`b65KjE^p{6OWa!P?tosfkK!T2K}Z(%l`^aaXmkeBCt7^t{1TrTBN`BZJs zRnq1JV4y~i^x8~Jb>$&OHp53m!eG_{3eIqq&UDU5{N*v=?U2r@^FkYX<~6BnHk0$; zlC_GqMz52W{q-i+9A4k(8(E<2$uYRI5(9Jgh!AF^78GWtiZHfcR?B;xe1X{%(Fk`D z18%#VDyUqFGeZWV4PQArkG(uO!#2tBW%N1yk4>w9_i|9!V>bGAd9^3+dG?0xA(FEb z+!Ml5iL~+|zyYLP2KIHR;Di8FtPIC06Z4xaF*mkt+19C3fo?RgxHSP?LJ;G|?8ewa$8&jGhSg#BR!Rfq?;lr8^MO7fJM6Wnamd zOb!Uvd=QyjSJj!{ub#b4G1dmP&P{*v?Gq&C3=e)G2LCaqU9bXTKEb-kGrZi-1*1Qa zv=V8F(9Xfx&bKa^=!PShXVBW|cK}ENYU$3D_Er{01r5!~YFD`|t62(}`lCshbFh)@ zm!K~w5nIt=xhLOze-#ZVP4kaB*we>km;hB-X58lM?}-)0B7#PVYzG9!3MwvLt6Ay* z+-^Y{W$}j!U_OY^Zv8VPL>N%6T7e#u>0+-|SjyCTptKv)^Q@#!sF$U} z#_1?u2&vko`T&xswZeKj>7)l0D+zY4$1ikty<1_1p1nXEkx zIlc8Z6Wcy3%L@jLj=aeJn9l}hEjXaY1Y;~7?=eD|sGYc$s{pHVO2lc6=|&^${6$De z3YMM9@F~jgxyM zV!y}3$Vg0<lx#2x9M8sA z0S`ABT1-0+Il|hnSB$9+BSx0u>@_Tflys$x=_YsF7v(;25PLe!&2T)PUH5I0C@2*^ zL}@$_Nhu3|gBLTVonQv9OvqNGV zBk^v(d>+QVecNjd+OWEW#u#CDodS>Gi}@lYS-!jfOIZpFz~lqfs047F_HNv%hF!p? zjx3L~TB+V%8f7M-Io0TU! zV3K?yeFQFHNF;YaFfa#s>;jp@4JV7O17thrGQp1h(nH}m<}Jgu`JAFhmyAOm@Vr=x zuM~6Z23ysP#dUMxSbdRZGw5$ZN6`8`>jS&@iYQ@-DKImiY-*jBY*d=>IQ~p@YEj#c z*`D}dNUXVWh0-m)Q)Cr%3mff43QSnA){^+RyF@-C=#0L|T8W5kHWwguPmG3}c-mfY ziQfRR`pxbSXoXt6a3-kd6nQc4kbUYzmb%z-9D_m~QGdM29iH^oDfWK_Z z_e261($zJ7B1|h(%FS@0`-otl@JQaDJoH`K!j5%3vQ=TyNRibPBDJIE|I*m#@fBH= zi|;+j9E7q;nK>gK2Vy2>^8Kjj;@4v!H%q)f7WXf4yZ~2l5ZlFhlEo*G)dit{QVK5i zId2~TVb61aKp!b1+%Zd5Q%Fbl^r8IagusENadVqS{u|TVr2?{gnj8dh{7P9lQH>jT zPxMd@F-}W3!SskVT2o)7LP@^7`xxkC=sd(L=b%&VJgoDMBLoHuSr_bSl02n8VSgzk zcdHmot0&Io^l|{tik0LSyx1|F4U43`#N#{(XZa^gvKM>CsM?tk*Ap&+df1uY4S@s; zo2YG;d5iAlB?v1DHp>JpE(;Pb^g<1LI(;|I+v$=SbE00yfd{_sP~>}CXC-Lg_T--H&t$V&EJGqtEk+ydw ziZJCTcDf8cPIl+K$#5VwF7mfCCl?REyN^{_^o*+Qes$3rFEICxNf-|`<|Hb)C`z1@hZCHsP3Eh)_4saF=Y7b)A-4-@czFmQ_?|SE z9a9*Y+G7WKp5`WJVfjzQG&nL6&sU=FjGWiQ(+t6bC$Ti7D)`nlg7RUrZ{SK}Z^^)X zF1l85M*3$=wN4P@`*hsID{?#8BiT=Yn9x{+mA)2##dh?RPnGrN{0;dOiL&A=)So6i&R)UwC@}d5rOo-&Q9Tm zH=;69+!L=0MU*hO8|cl<Hq&tsG&t=aHGiHgHLZ6P zKljGdk)};-X%pMZ5JClbg5P)PzZO@WMF>SYm+<&*+$Nz*E=~YB_A%)ZZl=40Qn*mvz(S!0`q1g%s`_3SU8*fH*OD*aON(iboP zj+j;R2+|v;`gC6;h_&C~;Mir_GjHh7Y=>k|Q<*~Rox<8r{jS+ziU?oR7#{5k0+G~# zlgEo?Qc7)U3tW~J#VS>HHNUkhmnY*ezSenh-prh zBD8N8Oj8bC982!@d|+FqA-V_WQ`KhyNj#(pmyr_a;|iYy%>xWpx>+BI-@A9ucZ)PY zAZK#bQpqdlW$4KZ!jr3{kg70z;RbP8wy2c`dj*(-pP!)?YxU`nNKr}VXO)_&{9EKg z(_dIex?Dj;rHsEs6)`Tp2~U+Q8))5{P~dh0NBi__2$^B~d&l?68lTjs%cL+0X^ zA6{(D^pa$b6j7G%mfzeEM|k0yJOCL7Jmcs_LKr@8jW5Gy?>z~)$VLq)hE;^=?3%T{ zM*;HK2J917bsE=&Wr~EBZBBht<#I zgKk=4IA)1zpa)(f+V?o)EGzPq;QWo4H%agLUhIxP{L(im zdy;9g+!jncLtHs|!7^mlIy>96RWDZr!$1^q4hfoe(v`6wz#|ry#gQ|R!?(y4YSh=( zX`A=ow#=g8M^eR9x<4dO!GUKO)JNUBC_ZdD7ewjw=tD@>^|0fLki?|J5V zDbP(4nTWbpFfGyvDG9K+59i=RR*3|f8U?N$#w_{5;P92PuwZj~jO+~s)d%TU^b<2w zpX$#o9GCZAvm~~h8MCvJQ~Y6R5JMVH!8gWA)%z!~Zjfw(>(};@z{|Krp?!&{#(A95 ztAM365WD`vCG8f;5@j&5Lk;~TM^eV`Y|%|^r!i)ocsv=gq$kY7krJFL1i83^0>G^~ zV7Hw?M1g}v*j`6istQK~07I)`)_M^`9ToY`UXvW=D-6H=n@6`j_)P-J0R08uFEvL4 z^T@@OHnnlZS#zCJtJz!3B=8Kq-oh*5^&OU(jc5&wlgb;pBbUlpMry^gh4Md&!&BQh zuWbrx@=Q#qOI;?ZHQsQdvkGy2+)-rnImdL9R`q zGVAegGqg^b%}zC54Wd))1S%Umb{*`!(~f~IR=UTk6P6$zz3`WvNcNv{X&y5Pw5j9j z^z`|$&9NV{2X5t(JdXr83tnxd5wa~}N8EJEl_iKgX{lF-duT%DX`Ei&UPU|!Lrri} z4gEy38hiR?5rZPGMkyp?$XfhD6|ZaJA#p@bQUrUNN%yR?qTX!zT@6i^$iMU|vp}&q zirAdU?ep8xHx@rU2sv%Rn$iP|CIo{EF7HwK7lQ?0^K52ya}dFeAsQkDxftjYOPz;b zaN2P1xTI!s7_yV%!C0L|W)`E)CA&w`wRhY_xweYOuT=HwW!|M2zB}LyY*yJE>v`NX z5?J>Otq%1r{t}%it-=TVxBS4ie&kC@9NNiv@w0mEmMDeXZ_da*1m1RM2AIR!!z-ZT zfWLb~ZHbKwhYT~=kz{s7kV8-w#}gcq1zLoXHn5wC865;3#}_tCI~qj6%Cf}G?q;rYcvNJM`o^h|=n!EPe~w8-}Acus&s3T(7g(CRgpPsDVE(19EG;N5N8!_GxKJ`q%M**-^=bEvNDUZQV`|2f-lILCI&E?!oW5 zpPMxUz}{{qste|fE}Ya56}2O~Z#)@Tg||G!L82YY>Bor-353{j$?}*p!WU0NAm1iA z!wNoh^$0ymK{JR9J@0;WOeB4?F#k=j7c@RVSe?|>1w0oo7})gVgJ~v1N8cc`A<-h7*OS4@BZ>;}wACs^S+#YVsh*%P?$yx7 zrj8gj4Owgrjdxh8GhTAntr5PkLa|wG5m|4Q{n=(y-2*iw~ ze)jUWyVuH=RSrha}=Go1_^-E6;5pMQj3AWRW6dk05BQ+@j{ zeOf8~|J@3sEUE9Ixh`!`xw*ws-~(NW*=52uv>&u|U(@#z1+IcfPB{;z6Z zQ~b9YnPJo;y9|7q^80U25U`16J3e-pC)TSzPY z#Zvv}^#2n4ch9NG8kidyI{wXhA~yC`c(niGvNF;z<5B;4``7D>%laRH)34_LKbWRg zvE$Ibcu+x?nf@R+rFguRTl4VkXo!zp5P8ahfeDRwUiH{>GUdh+-$gi`;4Chw9jLBz z#*s*qzZrH!7>)qr&d9^r5WDpg4jF(^ih9l$zDh&XngT!JceS@Y4URb%zK}8z+)bHc z@Xh09Rm#H#IBPgI`8#_&&B}jY3Ps@nbQ_Xn`(I-CZ=78l{EX|@WrG3 zqUHXHoUh3W+BkjjX8($X|1|v<^7p?SLMv!*r0-~Bk4Gl0?`Ugj<7jDSfalCeL;vMP zDm+t1M_UIDT3W0B+DBt!Z$b`1D`#)>!^!ZA1^f4Ewm*#V4D<~xzPkBW6JM%-bzo*= zE%YZi$%Hr<=opyk=^2<9=$KiU=&0$KNa^TE$^RBEuJ%U85Pv|w5MT7=|14juVrE8W zJY&57l6_Hj|JsLV{U0)VMn)#4FWU2;@^2Xf8_QQr{X@pi@MWC;E@Pyp`yX`~>Hqxv z{;BtcEdFn@KVMkBBK%MJSHEAIU!(bljG2}03)=ioJqEfjX7iu&UvNDd zbYFVx|7`CI&dmOg`F`oKd@Wf2?1Sx#{rul$UqooeFM9N!@~^Rc8HJJcA7i0oqhnye90Kt{xP>N|1$sGM~?RTUpQoYh(Al9 zqM7>_82M{eR\n", + "pip install --user ipykernel\n", + "python -m ipykernel install --user --name=" + ] + }, + { + "cell_type": "markdown", + "id": "2", + "metadata": {}, + "source": [ + "You will now be able to select the new kernel and run the notebook. " + ] + }, + { + "cell_type": "markdown", + "id": "3", + "metadata": {}, + "source": [ + "## Import the relevant packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4", + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy.optimize import least_squares\n", + "import typing\n", + "\n", + "from diffpy.utils.parsers.loaddata import loadData\n", + "from diffpy.srfit.fitbase import FitRecipe, FitContribution, Profile, FitResults\n", + "from diffpy.srfit.pdf import PDFGenerator, PDFParser\n", + "from diffpy.srfit.fitbase.parameterset import ParameterSet\n", + "from pyobjcryst import loadCrystal\n", + "from pyobjcryst.crystal import Crystal\n", + "\n", + "#We import the form factors. We will use this to fit the Pt nanoparticles as spherical particles.\n", + "import diffpy.srfit.pdf.characteristicfunctions\n", + "F = diffpy.srfit.pdf.characteristicfunctions" + ] + }, + { + "cell_type": "markdown", + "id": "5", + "metadata": {}, + "source": [ + "## Define helper functions\n", + "\n", + "\"Songsheng's helper functions are used, in the tutorial it is mentioned that the helper functions would be published soon - How should these be cited/referenced currently?\"\\\n", + "\"Where can the original code be found? We should write this\"\n", + "\n", + "\n", + "Normally these helper functions will not need to be modified and you can use them as is, but to solve some of the specific problems in the PDFttp book we will make small changes and additions to the recipe functions. The changes we have made will be highlighted in the code. \n", + "\n", + "\n", + "### Create Recipe\n", + "\n", + "Here a helper function is defined that creates a FitContribution and FitRecipe, taking the data and structure files as input. \\\n", + "Because we want to refine the calibrant and determine instrumental parameters, qdamp and qbroad are added as parameters to our recipe under _add_params_in_pg." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6", + "metadata": {}, + "outputs": [], + "source": [ + "def _create_recipe(\n", + " equation: str,\n", + " crystals: typing.Dict[str, Crystal],\n", + " functions: typing.Dict[str, typing.Tuple[typing.Callable, typing.List[str]]],\n", + " profile: Profile,\n", + " fc_name: str = \"PDF\"\n", + ") -> FitRecipe:\n", + " \"\"\"Create the FitRecipe object.\n", + "\n", + " Parameters\n", + " ----------\n", + " equation :\n", + " The equation of G(r).\n", + " crystals :\n", + " A mapping from the name of variable in the equation to the crystal structure for PDF calculation.\n", + " functions :\n", + " A mapping from the name of variable in the equation to the python function for PDF calculation.\n", + " The first argument of the function is the array of r, the other arguments are the parameters.\n", + " profile :\n", + " The data profile that contains both the metadata and the data.\n", + " fc_name :\n", + " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", + "\n", + " Returns\n", + " -------\n", + " A FitRecipe object.\n", + " \"\"\"\n", + " fr = FitRecipe()\n", + " fc = FitContribution(fc_name)\n", + " for name, crystal in crystals.items():\n", + " pg = PDFGenerator(name)\n", + " pg.setStructure(crystal, periodic=True)\n", + " fc.addProfileGenerator(pg)\n", + " for name, (f, argnames) in functions.items():\n", + " fc.registerFunction(f, name=name, argnames=argnames)\n", + " fc.setEquation(equation)\n", + " fc.setProfile(profile, xname=\"r\", yname=\"G\", dyname=\"dG\")\n", + " fr.addContribution(fc)\n", + " return fr\n", + "\n", + "\n", + "def _get_tags(phase: str, param: str) -> typing.List[str]:\n", + " \"\"\"Get the tag names.\n", + "\n", + " Parameters\n", + " ----------\n", + " phase\n", + " param\n", + "\n", + " Returns\n", + " -------\n", + "\n", + " \"\"\"\n", + " return [param, phase, \"{}_{}\".format(phase, param)]\n", + "\n", + "\n", + "def _get_name(*args: str) -> str:\n", + " \"\"\"Get the name of the variable.\n", + "\n", + " Parameters\n", + " ----------\n", + " args\n", + "\n", + " Returns\n", + " -------\n", + "\n", + " \"\"\"\n", + " return \"_\".join(args)\n", + "\n", + "\n", + "def _rename_par(name: str, atoms: list) -> str:\n", + " \"\"\"Rename of the name of a parameter by replacing the index of the atom in the name by the label of\n", + " the atom and revert the order of coordinates and atom name.\n", + "\n", + " Used for the space group constrained parameters. For example, \"x_0\" where atom index 0 is Ni will become\n", + " \"Ni0_x\" after renamed. If the name can not renamed, return the original name.\n", + "\n", + " Parameters\n", + " ----------\n", + " name\n", + " atoms\n", + "\n", + " Returns\n", + " -------\n", + "\n", + " \"\"\"\n", + " parts = name.split(\"_\")\n", + " np = len(parts)\n", + " na = len(atoms)\n", + " if np > 1 and parts[1].isdigit() and -1 < int(parts[1]) < na:\n", + " parts[1] = atoms[int(parts[1])].name\n", + " parts = parts[::-1]\n", + " return \"_\".join(parts)\n", + "\n", + "\n", + "def _add_params_in_pg(recipe: FitRecipe, pg: PDFGenerator) -> None:\n", + " \"\"\"Add parameters in the PDFGenerator.\n", + "\n", + " Parameters\n", + " ----------\n", + " recipe\n", + " pg\n", + "\n", + " Returns\n", + " -------\n", + "\n", + " \"\"\"\n", + " name: str = pg.name\n", + " recipe.addVar(\n", + " pg.scale,\n", + " name=_get_name(name, \"scale\"),\n", + " value=SCALE_I,\n", + " fixed=True,\n", + " tags=_get_tags(name, \"scale\")\n", + " ).boundRange(0.)\n", + " recipe.addVar( #Here we add Qdamp as a variable\n", + " pg.qdamp,\n", + " name=_get_name(name, \"qdamp\"), \n", + " value=QDAMP_I, \n", + " fixed=True,\n", + " tags=_get_tags(name, \"qdamp\")\n", + " ).boundRange(0.)\n", + " recipe.addVar( #Here we add Qbroad as a variable\n", + " pg.qbroad,\n", + " name=_get_name(name, \"qbroad\"), \n", + " value=QBROAD_I, \n", + " fixed=True,\n", + " tags=_get_tags(name, \"qbroad\")\n", + " ).boundRange(0.) \n", + " recipe.addVar(\n", + " pg.delta2,\n", + " name=_get_name(name, \"delta2\"),\n", + " value=DELTA2_I,\n", + " fixed=True,\n", + " tags=_get_tags(name, \"delta2\")\n", + " ).boundRange(0.)\n", + " latpars = pg.phase.sgpars.latpars\n", + " for par in latpars:\n", + " recipe.addVar(\n", + " par,\n", + " name=_get_name(name, par.name),\n", + " fixed=True,\n", + " tags=_get_tags(name, \"lat\")\n", + " ).boundRange(0.)\n", + " atoms: typing.List[ParameterSet] = pg.phase.getScatterers()\n", + " for atom in atoms:\n", + " par = atom.Biso\n", + " recipe.addVar(\n", + " par,\n", + " name=_get_name(name, atom.name, \"Biso\"),\n", + " value=BISO_I,\n", + " fixed=True,\n", + " tags=_get_tags(name, \"adp\")\n", + " ).boundRange(0.)\n", + " xyzpars = pg.phase.sgpars.xyzpars\n", + " for par in xyzpars:\n", + " par_name = _rename_par(par.name, atoms)\n", + " recipe.addVar(\n", + " par,\n", + " name=_get_name(name, par_name),\n", + " fixed=True,\n", + " tags=_get_tags(name, \"xyz\")\n", + " )\n", + " return\n", + "\n", + "\n", + "def _add_params_in_fc(\n", + " recipe: FitRecipe,\n", + " fc: FitContribution,\n", + " names: typing.List[str],\n", + " tags: typing.List[str]\n", + ") -> None:\n", + " \"\"\"Add parameters in the FitContribution.\n", + "\n", + " Parameters\n", + " ----------\n", + " recipe\n", + " fc\n", + " names\n", + " tags\n", + "\n", + " Returns\n", + " -------\n", + "\n", + " \"\"\"\n", + " for name in names:\n", + " par = getattr(fc, name)\n", + " recipe.addVar(\n", + " par,\n", + " value=100.,\n", + " fixed=True,\n", + " tags=tags\n", + " )\n", + " return\n", + "\n", + "\n", + "def _initialize_recipe(\n", + " recipe: FitRecipe,\n", + " functions: typing.Dict[str, typing.Tuple[typing.Callable, typing.List[str]]],\n", + " crystals: typing.Dict[str, Crystal],\n", + " fc_name: str = \"PDF\"\n", + ") -> None:\n", + " \"\"\"Initialize the FitRecipe object with variables.\n", + "\n", + " The parameters are the scale of the PDF, the delta2 parameter in the correction of correlated motions,\n", + " the atomic displacement parameters (ADPs) of the symmetric unique atoms, the x, y, z positions of the\n", + " symmetric unique atoms under the constraint of the symmetry and the parameters in the functions registered\n", + " in the FitContribution.\n", + "\n", + " Parameters\n", + " ----------\n", + " recipe\n", + " functions\n", + " crystals\n", + " fc_name\n", + "\n", + " Returns\n", + " -------\n", + "\n", + " \"\"\"\n", + " fc: FitContribution = getattr(recipe, fc_name)\n", + " for name, (_, argnames) in functions.items():\n", + " _add_params_in_fc(recipe, fc, argnames[1:], tags=[name])\n", + " for name in crystals.keys():\n", + " pg: PDFGenerator = getattr(fc, name)\n", + " _add_params_in_pg(recipe, pg)\n", + " recipe.clearFitHooks()\n", + " return\n", + "\n", + "\n", + "def create_recipe_from_files(\n", + " equation: str,\n", + " cif_files: typing.Dict[str, str],\n", + " functions: typing.Dict[str, typing.Tuple[typing.Callable, typing.List[str]]],\n", + " data_file: typing.Dict[str, str],\n", + " meta_data: typing.Dict[str, typing.Union[str, int, float]] = None,\n", + " fc_name: str = \"PDF\"\n", + ") -> FitRecipe:\n", + " \"\"\"Create the FitRecipe object.\n", + "\n", + " Parameters\n", + " ----------\n", + " equation :\n", + " The equation of G(r).\n", + " cif_files :\n", + " A mapping from the name of variable in the equation to cif files of the crystal structure for PDF\n", + " calculation.\n", + " functions :\n", + " A mapping from the name of variable in the equation to the python function for PDF calculation.\n", + " The first argument of the function is the array of r, the other arguments are the parameters.\n", + " data_file :\n", + " The data file that be loaded into the data profile that contains both the metadata and the data.\n", + " meta_data :\n", + " Additional metadata to add into the data profile.\n", + " fc_name :\n", + " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", + "\n", + " Returns\n", + " -------\n", + " A FitRecipe object.\n", + " \"\"\"\n", + " if meta_data is None:\n", + " meta_data = {}\n", + " crystals = {n: loadCrystal(f) for n, f in cif_files.items()}\n", + " pp = PDFParser()\n", + " pp.parseFile(data_file)\n", + " profile = Profile()\n", + " profile.loadParsedData(pp)\n", + " profile.meta.update(meta_data)\n", + " recipe = _create_recipe(equation, crystals, functions, profile, fc_name=fc_name)\n", + " _initialize_recipe(recipe, functions, crystals, fc_name=fc_name)\n", + " return recipe" + ] + }, + { + "cell_type": "markdown", + "id": "7", + "metadata": {}, + "source": [ + "### Define Optimize function\n", + "\n", + "Here, the parameters in the FitRecipe are optimized with a least square regression. This helper function is not modified and you do not need to go through it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8", + "metadata": {}, + "outputs": [], + "source": [ + "def optimize_params(\n", + " recipe: FitRecipe,\n", + " steps: typing.List[typing.List[str]],\n", + " rmin: float = None,\n", + " rmax: float = None,\n", + " rstep: float = None,\n", + " print_step: bool = True,\n", + " fc_name: str = \"PDF\",\n", + " **kwargs\n", + ") -> None:\n", + " \"\"\"Optimize the parameters in the FitRecipe object using least square regression.\n", + "\n", + " Parameters\n", + " ----------\n", + " recipe :\n", + " The FitRecipe object.\n", + " steps :\n", + " A list of lists of parameter names in the recipe. They will be free and refined one batch after another.\n", + " Usually, the scale, lattice should be refined before the APD and XYZ.\n", + " rmin :\n", + " The minimum r in the range for refinement. If None, use the minimum r in the data.\n", + " rmax :\n", + " The maximum r in the range for refinement. If None, use the maximum r in the data.\n", + " rstep :\n", + " The step of r in the range for refinement. If None, use the step of r in the data.\n", + " print_step :\n", + " If True, print out the refinement step. Default True.\n", + " fc_name :\n", + " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", + " kwargs :\n", + " The kwargs for the `scipy.optimize.least_square`.\n", + "\n", + " Returns\n", + " -------\n", + " None.\n", + " \"\"\"\n", + " n = len(steps)\n", + " fc: FitContribution = getattr(recipe, fc_name)\n", + " p: Profile = fc.profile\n", + " p.setCalculationRange(xmin=rmin, xmax=rmax, dx=rstep)\n", + " for step in steps:\n", + " recipe.fix(*step)\n", + " for i, step in enumerate(steps):\n", + " recipe.free(*step)\n", + " if print_step:\n", + " print(\n", + " \"Step {} / {}: refine {}\".format(\n", + " i + 1, n, \", \".join(recipe.getNames())\n", + " ),\n", + " end=\"\\r\"\n", + " )\n", + " least_squares(recipe.residual, recipe.getValues(), bounds=recipe.getBounds2(), **kwargs)\n", + " return\n" + ] + }, + { + "cell_type": "markdown", + "id": "9", + "metadata": {}, + "source": [ + "### Define visualize fits\n", + "This function will plot the data, the fit, and the difference curve. This is realized using the matplotlib.pyplot package. As this helper function is not modified, you do not need to go through it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "10", + "metadata": {}, + "outputs": [], + "source": [ + "def visualize_fits(recipe: FitRecipe, xlim: typing.Tuple = None, fc_name: str = \"PDF\") -> None:\n", + " \"\"\"Visualize the fits in the FitRecipe object.\n", + "\n", + " Parameters\n", + " ----------\n", + " recipe :\n", + " The FitRecipe object.\n", + " xlim :\n", + " The boundary of the x to show in the plot.\n", + " fc_name :\n", + " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", + "\n", + " Returns\n", + " -------\n", + " None.\n", + " \"\"\"\n", + " # get data\n", + " fc = getattr(recipe, fc_name)\n", + " r = fc.profile.x\n", + " g = fc.profile.y\n", + " gcalc = fc.profile.ycalc\n", + " if xlim is not None:\n", + " sel = np.logical_and(r >= xlim[0], r <= xlim[1])\n", + " r = r[sel]\n", + " g = g[sel]\n", + " gcalc = gcalc[sel]\n", + " gdiff = g - gcalc\n", + " diffzero = -0.8 * np.max(g) * np.ones_like(g)\n", + " # plot figure\n", + " _, ax = plt.subplots()\n", + " ax.plot(r, g, 'bo', label=\"G(r) Data\")\n", + " ax.plot(r, gcalc, 'r-', label=\"G(r) Fit\")\n", + " ax.plot(r, gdiff + diffzero, 'g-', label=\"G(r) Diff\")\n", + " ax.plot(r, diffzero, 'k-')\n", + " ax.set_xlabel(r\"$r (\\AA)$\")\n", + " ax.set_ylabel(r\"$G (\\AA^{-2})$\")\n", + " ax.legend(loc=1)\n", + " plt.show()\n", + " return" + ] + }, + { + "cell_type": "markdown", + "id": "11", + "metadata": {}, + "source": [ + "### Save results in files\n", + "This helper function will save optimized FitRecipe to a specified path. This function is not modified and you do not need to go through it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "12", + "metadata": {}, + "outputs": [], + "source": [ + "def save_results(\n", + " recipe: FitRecipe,\n", + " directory: str,\n", + " file_stem: str,\n", + " pg_names: typing.List[str] = None,\n", + " fc_name: str = \"PDF\"\n", + ") -> None:\n", + " \"\"\"Save the parameters, fits and structures in the FitRecipe object.\n", + "\n", + " Parameters\n", + " ----------\n", + " recipe :\n", + " The FitRecipe object.\n", + " directory :\n", + " The directory to output the files.\n", + " file_stem :\n", + " The stem of the filename.\n", + " pg_names :\n", + " The name of the PDFGenerators (it will also be the name of the structures) to save. If None, not to save.\n", + " fc_name\n", + " The name of the FitContribution in the FitRecipe. Default \"PDF\".\n", + " Returns\n", + " -------\n", + " None.\n", + " \"\"\"\n", + " d_path = Path(directory)\n", + " d_path.mkdir(parents=True, exist_ok=True)\n", + " f_path = d_path.joinpath(file_stem)\n", + " fr = FitResults(recipe)\n", + " fr.saveResults(str(f_path.with_suffix(\".res\")))\n", + " fc: FitContribution = getattr(recipe, fc_name)\n", + " profile: Profile = fc.profile\n", + " profile.savetxt(str(f_path.with_suffix(\".fgr\")))\n", + " if pg_names is not None:\n", + " for pg_name in pg_names:\n", + " pg: PDFGenerator = getattr(fc, pg_name)\n", + " stru: Crystal = pg.stru\n", + " cif_path = f_path.with_name(\n", + " \"{}_{}\".format(f_path.stem, pg_name)\n", + " ).with_suffix(\".cif\")\n", + " with cif_path.open(\"w\") as f:\n", + " stru.CIFOutput(f)\n", + " return" + ] + }, + { + "cell_type": "markdown", + "id": "13", + "metadata": {}, + "source": [ + "## Determine Q$_{damp}$ and Q$_{broad}$ from Ni standard\n", + "### Import data\n", + "We specify the path for our data files. If your directory structure follows the one from the pdfttp_data, this will be two directories up in a folder called data. The PDF file will have the .gr extension while the structure file will have a .cif extension. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "14", + "metadata": {}, + "outputs": [], + "source": [ + "DPATH = '../../data/'\n", + "\n", + "GR_FILE = DPATH + 'Ni.gr'\n", + "CIF_FILE = DPATH + 'Ni.cif'" + ] + }, + { + "cell_type": "markdown", + "id": "15", + "metadata": {}, + "source": [ + "### Initial values\n", + "\n", + "We define initial guess values to use in our recipe." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "16", + "metadata": {}, + "outputs": [], + "source": [ + "SCALE_I = 0.4\n", + "BISO_I = 0.02\n", + "DELTA2_I = 2\n", + "QDAMP_I = 0.04\n", + "QBROAD_I = 0.02" + ] + }, + { + "cell_type": "markdown", + "id": "17", + "metadata": {}, + "source": [ + "### Fit Ni - short range\n", + "We create our recipe, which is easily done with the helper function we defined. The function needs a model, the structure files, functions used in the model if any, and the data file.\\\n", + "Here, our model is \"Ni\", which is the crystal structure we imported above. For the Ni calibrant we have no additional functions, and we just need to input the PDF data file to finish our recipe.\\\n", + "When our recipe is made, we can show its parameters by typing recipe.show(). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18", + "metadata": {}, + "outputs": [], + "source": [ + "recipe = create_recipe_from_files(\n", + " \"Ni\",\n", + " cif_files={\"Ni\": CIF_FILE},\n", + " functions={},\n", + " data_file=GR_FILE,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "19", + "metadata": {}, + "outputs": [], + "source": [ + "recipe.show()" + ] + }, + { + "cell_type": "markdown", + "id": "20", + "metadata": {}, + "source": [ + "We optimize our recipe with the optimize_params helper function. This is done in two steps, first the scale and lattice parameters are refined, next the ADPs, Qdamp, and delta2. We will first do the optimization in the local r-range, i.e. from 1.5 Ã… to 20 Ã…." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21", + "metadata": {}, + "outputs": [], + "source": [ + "optimize_params(\n", + " recipe,\n", + " [\n", + " [\"Ni_scale\", \"Ni_lat\"], \n", + " [\"Ni_adp\", 'Ni_qdamp',\"Ni_delta2\"]\n", + " ],\n", + " rmin=1.5,\n", + " rmax=20.0,\n", + " ftol=1e-4\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "22", + "metadata": {}, + "source": [ + "We can look at our fits by using the visualize_fits helper functions. This will plot our refinement. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23", + "metadata": {}, + "outputs": [], + "source": [ + "visualize_fits(recipe)" + ] + }, + { + "cell_type": "markdown", + "id": "24", + "metadata": {}, + "source": [ + "Finally, when we are satisfied with the fit, we can save the results from our refined recipe with the save_results helper function. We will save this in a folder Results/Ni and name our fit \"Ni_short_r\". This function will save a .fgr, .res, and .cif file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "25", + "metadata": {}, + "outputs": [], + "source": [ + "save_results(recipe, \"Results/Ni\", \"Ni_short_r\", [\"Ni\"])" + ] + }, + { + "cell_type": "markdown", + "id": "26", + "metadata": {}, + "source": [ + "We can open the .res file, which contain the residuals of the fit and the optimized parameters. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "27", + "metadata": {}, + "outputs": [], + "source": [ + "!cat \"./Results/Ni/Ni_short_r.res\"" + ] + }, + { + "cell_type": "markdown", + "id": "28", + "metadata": {}, + "source": [ + "### Fit Ni - full range\n", + "When we have a good fit for our data in a small range, we can increase the fit to the whole range. We will use the initializeRecipe function from diffpy to load the refined parameter values from the short range fit. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "29", + "metadata": {}, + "outputs": [], + "source": [ + "recipe = create_recipe_from_files(\n", + " \"Ni\",\n", + " cif_files={\"Ni\": CIF_FILE},\n", + " functions={},\n", + " data_file=GR_FILE,\n", + ")\n", + "\n", + "from diffpy.srfit.fitbase.fitresults import initializeRecipe\n", + "\n", + "initializeRecipe(recipe, \"./Results/Ni/Ni_short_r.res\")" + ] + }, + { + "cell_type": "markdown", + "id": "30", + "metadata": {}, + "source": [ + "We do the optimization as above, but now we include the Q$_{broad}$ parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "31", + "metadata": {}, + "outputs": [], + "source": [ + "optimize_params(\n", + " recipe,\n", + " [\n", + " [\"Ni_scale\", \"Ni_lat\"], \n", + " [\"Ni_adp\", 'Ni_qdamp',\"Ni_delta2\"],\n", + " ['Ni_qbroad']\n", + " ],\n", + " rmin=1.6,\n", + " rmax=50.0,\n", + " ftol=1e-4\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "32", + "metadata": {}, + "outputs": [], + "source": [ + "visualize_fits(recipe)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33", + "metadata": {}, + "outputs": [], + "source": [ + "save_results(recipe, \"Results/Ni\", \"Ni_full_r\", [\"Ni\"])" + ] + }, + { + "cell_type": "markdown", + "id": "34", + "metadata": {}, + "source": [ + "We want to save the refined values of the instrumental parameters, 'qdamp' and 'qbroad' so we can use them in our Pt fit." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "35", + "metadata": {}, + "outputs": [], + "source": [ + "for index,name in enumerate(recipe.names):\n", + " if 'qdamp' in name:\n", + " QDAMP_Ni = recipe.values[index]\n", + " if 'qbroad' in name:\n", + " QBROAD_Ni = recipe.values[index]\n", + "\n", + "print(f\" From the refinement of the Ni calibrant qdamp = {QDAMP_Ni:.4f}, and qbroad = {QBROAD_Ni:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "36", + "metadata": {}, + "source": [ + "## Pt NPs\n", + "\n", + "We import the data and structure files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "37", + "metadata": {}, + "outputs": [], + "source": [ + "GR_FILE_Pt = DPATH + 'Pt-nanoparticles.gr'\n", + "CIF_FILE_Pt = DPATH + 'Pt.cif'" + ] + }, + { + "cell_type": "markdown", + "id": "38", + "metadata": {}, + "source": [ + "We create our recipe. Because we now have nanoparticles, the model will be the crystal structure of Pt multiplied with a spherical characteristic function that will damp the PDF. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "39", + "metadata": {}, + "outputs": [], + "source": [ + "recipe = create_recipe_from_files(\n", + " \"sphere * Pt\",\n", + " cif_files={\"Pt\": CIF_FILE_Pt},\n", + " functions={\"sphere\": (F.sphericalCF, [\"r\", \"Pt_size\"])},\n", + " data_file=GR_FILE_Pt,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "40", + "metadata": {}, + "source": [ + "We define the values of QDAMP and QBROAD to the refined ones from the Ni calibrant. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41", + "metadata": {}, + "outputs": [], + "source": [ + "recipe.Pt_qdamp.setValue(QDAMP_Ni)\n", + "recipe.Pt_qbroad.setValue(QBROAD_Ni)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "42", + "metadata": {}, + "outputs": [], + "source": [ + "recipe.show()" + ] + }, + { + "cell_type": "markdown", + "id": "43", + "metadata": {}, + "source": [ + "We perform the refinement by optimizing as for Ni, but now we will also refine the new parameter \"Pt_size\", the size of the nanoparticles." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "44", + "metadata": {}, + "outputs": [], + "source": [ + "optimize_params(\n", + " recipe,\n", + " [\n", + " [\"Pt_scale\", \"Pt_lat\"], \n", + " [\"Pt_adp\", \"Pt_delta2\"], \n", + " [\"Pt_size\"]\n", + " ],\n", + " rmin=1.6,\n", + " rmax=20.0,\n", + " ftol=1e-4\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45", + "metadata": {}, + "outputs": [], + "source": [ + "visualize_fits(recipe)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46", + "metadata": {}, + "outputs": [], + "source": [ + "save_results(recipe, \"Results/Pt\", \"Pt_short_r\", [\"Pt\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47", + "metadata": {}, + "outputs": [], + "source": [ + "!cat \"./Results/Pt/Pt_short_r.res\"" + ] + }, + { + "cell_type": "markdown", + "id": "48", + "metadata": {}, + "source": [ + "### Pt Full range fit\n", + "We extend the fitting range and repeat the procedure of creating our recipe, optimizing, visualizing and saving the results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49", + "metadata": {}, + "outputs": [], + "source": [ + "recipe = create_recipe_from_files(\n", + " \"sphere * Pt\",\n", + " cif_files={\"Pt\": CIF_FILE_Pt},\n", + " functions={\"sphere\": (F.sphericalCF, [\"r\", \"Pt_size\"])},\n", + " data_file=GR_FILE_Pt\n", + ")\n", + "\n", + "\n", + "initializeRecipe(recipe, \"./Results/Pt/Pt_short_r.res\")\n", + "\n", + "optimize_params(\n", + " recipe,\n", + " [\n", + " [\"Pt_scale\", \"Pt_lat\"], \n", + " [\"Pt_adp\", \"Pt_delta2\"], \n", + " [\"Pt_size\"]\n", + " ],\n", + " rmin=1.6,\n", + " rmax=50,\n", + " ftol=1e-4\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "50", + "metadata": {}, + "outputs": [], + "source": [ + "visualize_fits(recipe)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "51", + "metadata": {}, + "outputs": [], + "source": [ + "save_results(recipe, \"Results/Pt\", \"Pt_full_r\", [\"Pt\"])" + ] + }, + { + "cell_type": "markdown", + "id": "52", + "metadata": {}, + "source": [ + "We print the results of the fitting:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53", + "metadata": {}, + "outputs": [], + "source": [ + "!cat \"./Results/Pt/Pt_full_r.res\"" + ] + }, + { + "cell_type": "markdown", + "id": "54", + "metadata": {}, + "source": [ + "# Import the helper functions from python module\n", + "\n", + "Instead of having to copy the helper functions into our jupyter notebook as we did in the beginning, we can load them in from a python module and just call them when we need. We have saved all the helper functions in the python module \"helper_functions.py\", located in the same folder as this notebook. This module is imported." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55", + "metadata": {}, + "outputs": [], + "source": [ + "import helper_functions" + ] + }, + { + "cell_type": "markdown", + "id": "56", + "metadata": {}, + "source": [ + "To run any of the helper functions we have to write \"helper_functions.\" in front of the function we want to import. This makes it possible to run all the same functions as before, e.g. the create_recipe_from_files, the optimize_params, and the visualize_fits." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57", + "metadata": {}, + "outputs": [], + "source": [ + "recipe = helper_functions.create_recipe_from_files(\n", + " \"Ni\",\n", + " cif_files={\"Ni\": CIF_FILE},\n", + " functions={},\n", + " data_file=GR_FILE,\n", + ")\n", + "\n", + "helper_functions.optimize_params(\n", + " recipe,\n", + " [\n", + " [\"Ni_scale\", \"Ni_lat\"], \n", + " [\"Ni_adp\", 'Ni_qdamp',\"Ni_delta2\"]\n", + " ],\n", + " rmin=1.5,\n", + " rmax=20.0,\n", + " ftol=1e-4\n", + ")\n", + "\n", + "helper_functions.visualize_fits(recipe)" + ] + }, + { + "cell_type": "markdown", + "id": "58", + "metadata": {}, + "source": [ + "If you need to make changes to one of the helper functions it has to be copied into the notebook, but for the helper functions that are not modified, importing them this way saves lines in the code and make it cleaner." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py37", + "language": "python", + "name": "py37" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py new file mode 100644 index 0000000..f00afb4 --- /dev/null +++ b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py @@ -0,0 +1,367 @@ +"""Please see notes in Chapter 3 of the 'PDF to the People' book for +additional explanation of the code. + +This Diffpy-CMI script will carry out a structural refinement of a +measured PDF from nanocrystalline platinum. It is the same refinement +as is done using PDFgui in this chapter of the book, only this time +using Diffpy-CMI. It is required that "fitBulkNi.py" be run prior to +running this example! +""" + +import re + +# 1: Import relevant system packages that we will need... +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +from bg_mpl_stylesheets.styles import all_styles +from scipy.optimize import least_squares + +# ... and the relevant CMI packages +from diffpy.srfit.fitbase import ( + FitContribution, + FitRecipe, + FitResults, + Profile, +) +from diffpy.srfit.pdf import PDFGenerator, PDFParser +from diffpy.srfit.pdf.characteristicfunctions import sphericalCF +from diffpy.srfit.structure import constrainAsSpaceGroup +from diffpy.structure.parsers import getParser + +plt.style.use(all_styles["bg-style"]) +# Config ############################## +# 2: Give a file path to where your PDF (.gr) and structure (.cif) files +# are located. +PWD = Path(__file__).parent.absolute() +DPATH = PWD.parent.parent / "data" + +# 3: Give an identifying name for the refinement. +FIT_ID = "Fit_Pt_NP" + +# 4: Specify the names of the input PDF and CIF files. +GR_NAME = "Pt-nanoparticles.gr" +CIF_NAME = "Pt.cif" + +# Experimental PDF Config ###################### +# 5: Specify the min, max, and step r-values of +# the PDF (that we want to fit over) +# also, specify the Q_max and Q_min values used to reduce the PDF. +PDF_RMIN = 1.5 +PDF_RMAX = 50 +PDF_RSTEP = 0.01 +QMAX = 25 +QMIN = 0.1 + +# PDF initialize refinable variables ############# +# 6: We explicitly specify the lattice parameters, scale, +# isotropic thermal parameters, and a correlated motion parameter. +CUBICLAT_I = 3.9 +SCALE_I = 0.6 +UISO_I = 0.01 +DELTA2_I = 4 + +# 7: For the nanoparticle (NP) case, also provide an initial guess +# for the average crystallite size, in Angstrom. +PSIZE_I = 40 + +# 8: First, let's read the fit results from the Ni fit. +# We parse out the refined values of Q_damp and Q_broad, +# instrumental parameters which will be fixed in this fit. +# This is a bit of python input/output and regular expression +# parsing, which we won't cover here. +RESDIR = PWD / "res" +NIBASENAME = "Fit_Ni_Bulk" + +RES_FILE = RESDIR / f"{NIBASENAME}.res" + +if RES_FILE.exists(): + with open(RES_FILE, "r") as file: + for line in file: + if line.split(" ")[0] == "Calib_Qbroad": + QBROAD_I = float(re.split(" +", line)[1]) + elif line.split(" ")[0] == "Calib_Qdamp": + QDAMP_I = float(re.split(" +", line)[1]) +else: + print("Ni example does not appear to be run\n") + print("The Ni example refines instrument parameters\n") + print("The instrument parameters are necessary to run this fit\n") + print("Please run the Ni example first\n") + +# If we want to run using multiprocessors, we can switch this to 'True'. +# This requires that the 'psutil' python package installed. +RUN_PARALLEL = False + + +# Functions that will carry out the refinement ################## +# 9: We define a function 'make_recipe' to make the recipe that +# the fit will follow. +def make_recipe(cif_path, dat_path): + """Creates and returns a Fit Recipe object. + + Parameters + ---------- + cif_path : string, The full path to the structure CIF file to load. + dat_path : string, The full path to the PDF data to be fit. + + Returns + ---------- + recipe : The initialized Fit Recipe object using the datname and + structure path provided. + """ + # 10: Create a CIF file parsing object, parse and load the structure, and + # grab the space group name. + p_cif = getParser("cif") + stru1 = p_cif.parseFile(cif_path) + sg = p_cif.spacegroup.short_name + + # 11: Create a Profile object for the experimental dataset and + # tell this profile the range and mesh of points in r-space. + profile = Profile() + parser = PDFParser() + parser.parseFile(dat_path) + profile.loadParsedData(parser) + profile.setCalculationRange(xmin=PDF_RMIN, xmax=PDF_RMAX, dx=PDF_RSTEP) + + # 12: Create a PDF Generator object for a periodic structure model. + generator_crystal1 = PDFGenerator("G1") + generator_crystal1.setStructure(stru1, periodic=True) + + # 13: Create a Fit Contribution object. + contribution = FitContribution("crystal") + contribution.addProfileGenerator(generator_crystal1) + + # If you have a multi-core computer (you probably do), run your + # refinement in parallel! + if RUN_PARALLEL: + try: + import multiprocessing + from multiprocessing import Pool + + import psutil + + syst_cores = multiprocessing.cpu_count() + cpu_percent = psutil.cpu_percent() + avail_cores = np.floor((100 - cpu_percent) / (100.0 / syst_cores)) + ncpu = int(np.max([1, avail_cores])) + pool = Pool(processes=ncpu) + generator_crystal1.parallel(ncpu=ncpu, mapfunc=pool.map) + except ImportError: + print( + "\nYou don't appear to have the necessary packages for " + "parallelization" + ) + + # 14: Set the Fit Contribution profile to the Profile object. + contribution.setProfile(profile, xname="r") + + # 15: Set an equation, based on your PDF generators. Here we add an extra + # layer of complexity, incorporating 'f' into our equation. This new term + # incorporates the effect of finite crystallite size damping on our PDF + # model. In this case we use a function which models a + # spherical NP 'sphericalCF'. + contribution.registerFunction(sphericalCF, name="f") + contribution.setEquation("s1*G1*f") + + # 16: Create the Fit Recipe object that holds all the details of the fit. + recipe = FitRecipe() + recipe.addContribution(contribution) + + # 17: Initialize the instrument parameters, Q_damp and Q_broad, and + # assign Q_max and Q_min. + generator_crystal1.qdamp.value = QDAMP_I + generator_crystal1.qbroad.value = QBROAD_I + generator_crystal1.setQmax(QMAX) + generator_crystal1.setQmin(QMIN) + + # 18: Add, initialize, and tag variables in the Fit Recipe object. + # In this case we also add 'psize', which is the NP size. + recipe.addVar(contribution.s1, SCALE_I, tag="scale") + recipe.addVar(contribution.psize, PSIZE_I, tag="psize") + + # 19: Use the srfit function 'constrainAsSpaceGroup' to constrain + # the lattice and ADP parameters according to the Fm-3m space group. + spacegroupparams = constrainAsSpaceGroup(generator_crystal1.phase, sg) + for par in spacegroupparams.latpars: + recipe.addVar( + par, value=CUBICLAT_I, fixed=False, name="fcc_Lat", tag="lat" + ) + for par in spacegroupparams.adppars: + recipe.addVar( + par, value=UISO_I, fixed=False, name="fcc_Uiso", tag="adp" + ) + + # 20: Add delta, but not instrumental parameters to Fit Recipe. + # The instrumental parameters will remain fixed at values obtained from + # the Ni calibrant in our previous example. As we have not added them + # through recipe.addVar, they cannot be refined. + recipe.addVar( + generator_crystal1.delta2, name="Pt_Delta2", value=DELTA2_I, tag="d2" + ) + + # 21: Return the Fit Recipe object to be optimized. + return recipe + + # End of function + + +# 22 We create a useful function 'plot_results' for writing a plot of the fit +# to disk. +def plot_results(recipe, fig_name): + """Creates plots of the fitted PDF and residual, and writes them to + disk as *.pdf files. + + Parameters + ---------- + recipe : The optimized Fit Recipe object containing the PDF data + we wish to plot. + fig_name : Path object, the full path to the figure file to create. + + Returns + ---------- + None + """ + if not isinstance(fig_name, Path): + fig_name = Path(fig_name) + + plt.clf() + plt.close("all") + # Get an array of the r-values we fitted over. + r = recipe.crystal.profile.x + + # Get an array of the observed PDF. + g = recipe.crystal.profile.y + + # Get an array of the calculated PDF. + gcalc = recipe.crystal.profile.ycalc + + # Make an array of identical shape as g which is offset from g. + diffzero = -0.65 * max(g) * np.ones_like(g) + + # Calculate the residual (difference) array and offset it vertically. + diff = g - gcalc + diffzero + + # Create a figure and an axis on which to plot + fig, ax1 = plt.subplots(1, 1) + + # Plot the difference offset line + ax1.plot(r, diffzero, lw=1.0, ls="--", c="black") + + # Plot the measured data + ax1.plot( + r, + g, + ls="None", + marker="o", + ms=5, + mew=0.2, + mfc="None", + label="G(r) Data", + ) + + # Plot the calculated data + ax1.plot(r, gcalc, lw=1.3, label="G(r) Fit") + + # Plot the difference + ax1.plot(r, diff, lw=1.2, label="G(r) diff") + + # Let's label the axes! + ax1.set_xlabel(r"r ($\mathrm{\AA}$)") + ax1.set_ylabel(r"G ($\mathrm{\AA}$$^{-2}$)") + + # Tune the tick markers. We are picky! + ax1.tick_params(axis="both", which="major", top=True, right=True) + + # Set the boundaries on the x-axis + ax1.set_xlim(r[0], r[-1]) + + # We definitely want a legend! + ax1.legend() + + # Let's use a tight layout. Shun wasted space! + plt.tight_layout() + + # This is going to make a figure pop up on screen for you to view. + # The script will pause until you close the figure! + plt.show() + + # Let's save the figure! + fig.savefig(fig_name.parent / f"{fig_name.name}.pdf", format="pdf") + + # End of function + + +# 23: We again create a 'main' function to be run when we execute the script. +def main(): + """This will run by default when the file is executed using 'python + file.py' in the command line. + + Parameters + ---------- + None + + Returns + ---------- + None + """ + + # Make some folders to store our output files. + resdir = PWD / "res" + fitdir = PWD / "fit" + figdir = PWD / "fig" + + folders = [resdir, fitdir, figdir] + + for folder in folders: + if not folder.exists(): + folder.mkdir() + + # Establish the location of the data and a name for our fit. + gr_path = DPATH / GR_NAME + basename = FIT_ID + print(basename) + + # Establish the full path of the CIF file with the structure of interest. + stru_path = DPATH / CIF_NAME + + # 24: Call 'make_recipe' to create our fit recipe. + recipe = make_recipe(str(stru_path), str(gr_path)) + + # Tell the Fit Recipe we want to write the maximum amount of + # information to the terminal during fitting. + recipe.fithooks[0].verbose = 3 + + # 25: As before, we fix all parameters, create a list of tags and, + # loop over them refining sequentially. In this example, we've added + # 'psize' because we want to refine the nanoparticle size. + recipe.fix("all") + + tags = ["lat", "scale", "psize", "adp", "d2", "all"] + for tag in tags: + recipe.free(tag) + least_squares(recipe.residual, recipe.values, x_scale="jac") + + # 26 Write the fitted data to a file. + profile = recipe.crystal.profile + profile.savetxt(fitdir / f"{basename}.fit") + + # 27 Print the fit results to the terminal. + res = FitResults(recipe) + res.printResults() + + # 28 Write the fit results to a file. + header = "crystal_HF.\n" + res.saveResults(resdir / f"{basename}.res", header=header) + + # 29 Write a plot of the fit to a (pdf) file. + plot_results(recipe, figdir / basename) + + # End of function + + +# This tells python to run the 'main' function we defined above. +if __name__ == "__main__": + main() + +# End of file diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py new file mode 100644 index 0000000..ea2759d --- /dev/null +++ b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py @@ -0,0 +1,456 @@ +import typing +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +from pyobjcryst import loadCrystal +from pyobjcryst.crystal import Crystal +from scipy.optimize import least_squares + +from diffpy.srfit.fitbase import ( + FitContribution, + FitRecipe, + FitResults, + Profile, +) +from diffpy.srfit.fitbase.parameterset import ParameterSet +from diffpy.srfit.pdf import PDFGenerator, PDFParser + + +# Recipe functions +def _create_recipe( + equation: str, + crystals: typing.Dict[str, Crystal], + functions: typing.Dict[ + str, typing.Tuple[typing.Callable, typing.List[str]] + ], + profile: Profile, + fc_name: str = "PDF", +) -> FitRecipe: + """Create the FitRecipe object. + + Parameters + ---------- + equation : + The equation of G(r). + crystals : + A mapping from the name of variable in the equation to the crystal + structure for PDF calculation. + functions : + A mapping from the name of variable in the equation to the python + function for PDF calculation. The first argument of the function + is the array of r, the other arguments are the parameters. + profile : + The data profile that contains both the metadata and the data. + fc_name : + The name of the FitContribution in the FitRecipe. Default "PDF". + + Returns + ------- + A FitRecipe object. + """ + fr = FitRecipe() + fc = FitContribution(fc_name) + for name, crystal in crystals.items(): + pg = PDFGenerator(name) + pg.setStructure(crystal, periodic=True) + fc.addProfileGenerator(pg) + for name, (f, argnames) in functions.items(): + fc.registerFunction(f, name=name, argnames=argnames) + fc.setEquation(equation) + fc.setProfile(profile, xname="r", yname="G", dyname="dG") + fr.addContribution(fc) + return fr + + +def _get_tags(phase: str, param: str) -> typing.List[str]: + """Get the tag names. + + Parameters + ---------- + phase + param + + Returns + ------- + """ + return [param, phase, "{}_{}".format(phase, param)] + + +def _get_name(*args: str) -> str: + """Get the name of the variable. + + Parameters + ---------- + args + + Returns + ------- + """ + return "_".join(args) + + +def _rename_par(name: str, atoms: list) -> str: + """Rename of the name of a parameter by replacing the index of the + atom in the name by the label of the atom and revert the order of + coordinates and atom name. + + Used for the space group constrained parameters. For example, "x_0" + where atom index 0 is Ni will become "Ni0_x" after renamed. + If the name can not renamed, return the original name. + + Parameters + ---------- + name + atoms + + Returns + ------- + """ + parts = name.split("_") + np = len(parts) + na = len(atoms) + if np > 1 and parts[1].isdigit() and -1 < int(parts[1]) < na: + parts[1] = atoms[int(parts[1])].name + parts = parts[::-1] + return "_".join(parts) + + +def _add_params_in_pg(recipe: FitRecipe, pg: PDFGenerator) -> None: + """Add parameters in the PDFGenerator. + + Parameters + ---------- + recipe + pg + + Returns + ------- + """ + name: str = pg.name + recipe.addVar( + pg.scale, + name=_get_name(name, "scale"), + value=0.4, + fixed=True, + tags=_get_tags(name, "scale"), + ).boundRange(0.0) + recipe.addVar( # Here we add Qdamp as a variable + pg.qdamp, + name=_get_name(name, "qdamp"), + value=0.04, + fixed=True, + tags=_get_tags(name, "qdamp"), + ).boundRange(0.0) + recipe.addVar( # Here we add Qbroad as a variable + pg.qbroad, + name=_get_name(name, "qbroad"), + value=0.02, + fixed=True, + tags=_get_tags(name, "qbroad"), + ).boundRange(0.0) + recipe.addVar( + pg.delta2, + name=_get_name(name, "delta2"), + value=2, + fixed=True, + tags=_get_tags(name, "delta2"), + ).boundRange(0.0) + latpars = pg.phase.sgpars.latpars + for par in latpars: + recipe.addVar( + par, + name=_get_name(name, par.name), + fixed=True, + tags=_get_tags(name, "lat"), + ).boundRange(0.0) + atoms: typing.List[ParameterSet] = pg.phase.getScatterers() + for atom in atoms: + par = atom.Biso + recipe.addVar( + par, + name=_get_name(name, atom.name, "Biso"), + value=0.02, + fixed=True, + tags=_get_tags(name, "adp"), + ).boundRange(0.0) + xyzpars = pg.phase.sgpars.xyzpars + for par in xyzpars: + par_name = _rename_par(par.name, atoms) + recipe.addVar( + par, + name=_get_name(name, par_name), + fixed=True, + tags=_get_tags(name, "xyz"), + ) + return + + +def _add_params_in_fc( + recipe: FitRecipe, + fc: FitContribution, + names: typing.List[str], + tags: typing.List[str], +) -> None: + """Add parameters in the FitContribution. + + Parameters + ---------- + recipe + fc + names + tags + + Returns + ------- + """ + for name in names: + par = getattr(fc, name) + recipe.addVar(par, value=100.0, fixed=True, tags=tags) + return + + +def _initialize_recipe( + recipe: FitRecipe, + functions: typing.Dict[ + str, typing.Tuple[typing.Callable, typing.List[str]] + ], + crystals: typing.Dict[str, Crystal], + fc_name: str = "PDF", +) -> None: + """Initialize the FitRecipe object with variables. + + The parameters are the scale of the PDF, the delta2 parameter in the + correction of correlated motions, the atomic displacement parameters (ADPs) + of the symmetric unique atoms, the x, y, z positions of the symmetric + unique atoms under the constraint of the symmetry and the parameters + in the functions registered in the FitContribution. + + Parameters + ---------- + recipe + functions + crystals + fc_name + + Returns + ------- + """ + fc: FitContribution = getattr(recipe, fc_name) + for name, (_, argnames) in functions.items(): + _add_params_in_fc(recipe, fc, argnames[1:], tags=[name]) + for name in crystals.keys(): + pg: PDFGenerator = getattr(fc, name) + _add_params_in_pg(recipe, pg) + recipe.clearFitHooks() + return + + +def create_recipe_from_files( + equation: str, + cif_files: typing.Dict[str, str], + functions: typing.Dict[ + str, typing.Tuple[typing.Callable, typing.List[str]] + ], + data_file: typing.Dict[str, str], + meta_data: typing.Dict[str, typing.Union[str, int, float]] = None, + fc_name: str = "PDF", +) -> FitRecipe: + """Create the FitRecipe object. + + Parameters + ---------- + equation : + The equation of G(r). + cif_files : + A mapping from the name of variable in the equation to cif files of the + crystal structure for PDF calculation. + functions : + A mapping from the name of variable in the equation to the python + function for PDF calculation. The first argument of the function is the + array of r, the other arguments are the parameters. + data_file : + The data file that be loaded into the data profile that contains both + the metadata and the data. + meta_data : + Additional metadata to add into the data profile. + fc_name : + The name of the FitContribution in the FitRecipe. Default "PDF". + + Returns + ------- + A FitRecipe object. + """ + if meta_data is None: + meta_data = {} + crystals = {n: loadCrystal(f) for n, f in cif_files.items()} + pp = PDFParser() + pp.parseFile(data_file) + profile = Profile() + profile.loadParsedData(pp) + profile.meta.update(meta_data) + recipe = _create_recipe( + equation, crystals, functions, profile, fc_name=fc_name + ) + _initialize_recipe(recipe, functions, crystals, fc_name=fc_name) + return recipe + + +# Optimize + + +def optimize_params( + recipe: FitRecipe, + steps: typing.List[typing.List[str]], + rmin: float = None, + rmax: float = None, + rstep: float = None, + print_step: bool = True, + fc_name: str = "PDF", + **kwargs, +) -> None: + """Optimize the parameters in the FitRecipe object using least + square regression. + + Parameters + ---------- + recipe : + The FitRecipe object. + steps : + A list of lists of parameter names in the recipe. They will be + free and refined one batch after another. Usually, the scale, lattice + should be refined before the APD and XYZ. + rmin : + The minimum r in the range for refinement. + If None, use the minimum r in the data. + rmax : + The maximum r in the range for refinement. + If None, use the maximum r in the data. + rstep : + The step of r in the range for refinement. + If None, use the step of r in the data. + print_step : + If True, print out the refinement step. Default True. + fc_name : + The name of the FitContribution in the FitRecipe. Default "PDF". + kwargs : + The kwargs for the `scipy.optimize.least_square`. + + Returns + ------- + None. + """ + n = len(steps) + fc: FitContribution = getattr(recipe, fc_name) + p: Profile = fc.profile + p.setCalculationRange(xmin=rmin, xmax=rmax, dx=rstep) + for step in steps: + recipe.fix(*step) + for i, step in enumerate(steps): + recipe.free(*step) + if print_step: + print( + "Step {} / {}: refine {}".format( + i + 1, n, ", ".join(recipe.getNames()) + ), + end="\r", + ) + least_squares( + recipe.residual, + recipe.getValues(), + bounds=recipe.getBounds2(), + **kwargs, + ) + return + + +# Visualize fits +def visualize_fits( + recipe: FitRecipe, xlim: typing.Tuple = None, fc_name: str = "PDF" +) -> None: + """Visualize the fits in the FitRecipe object. + + Parameters + ---------- + recipe : + The FitRecipe object. + xlim : + The boundary of the x to show in the plot. + fc_name : + The name of the FitContribution in the FitRecipe. Default "PDF". + + Returns + ------- + None. + """ + # get data + fc = getattr(recipe, fc_name) + r = fc.profile.x + g = fc.profile.y + gcalc = fc.profile.ycalc + if xlim is not None: + sel = np.logical_and(r >= xlim[0], r <= xlim[1]) + r = r[sel] + g = g[sel] + gcalc = gcalc[sel] + gdiff = g - gcalc + diffzero = -0.8 * np.max(g) * np.ones_like(g) + # plot figure + _, ax = plt.subplots() + ax.plot(r, g, "bo", label="G(r) Data") + ax.plot(r, gcalc, "r-", label="G(r) Fit") + ax.plot(r, gdiff + diffzero, "g-", label="G(r) Diff") + ax.plot(r, diffzero, "k-") + ax.set_xlabel(r"$r (\AA)$") + ax.set_ylabel(r"$G (\AA^{-2})$") + ax.legend(loc=1) + plt.show() + return + + +# Save results in files +def save_results( + recipe: FitRecipe, + directory: str, + file_stem: str, + pg_names: typing.List[str] = None, + fc_name: str = "PDF", + adp_iso=True, +) -> None: + """Save the parameters, fits and structures in the FitRecipe object. + + Parameters + ---------- + recipe : + The FitRecipe object. + directory : + The directory to output the files. + file_stem : + The stem of the filename. + pg_names : + The name of the PDFGenerators (it will also be the + name of the structures) to save. If None, not to save. + fc_name + The name of the FitContribution in the FitRecipe. Default "PDF". + Returns + ------- + None. + """ + d_path = Path(directory) + d_path.mkdir(parents=True, exist_ok=True) + f_path = d_path.joinpath(file_stem) + fr = FitResults(recipe) + fr.saveResults(str(f_path.with_suffix(".res"))) + fc: FitContribution = getattr(recipe, fc_name) + profile: Profile = fc.profile + profile.savetxt(str(f_path.with_suffix(".fgr"))) + if pg_names is not None: + for pg_name in pg_names: + pg: PDFGenerator = getattr(fc, pg_name) + stru: Crystal = pg.stru + cif_path = f_path.with_name( + "{}_{}".format(f_path.stem, pg_name) + ).with_suffix(".cif") + with cif_path.open("w") as f: + stru.CIFOutput(f) + return diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res new file mode 100644 index 0000000..0297506 --- /dev/null +++ b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res @@ -0,0 +1,32 @@ +Results written: Mon Nov 24 20:56:33 2025 +produced by cadenmyers +crystal_HF. + +Some quantities invalid due to missing profile uncertainty +Overall (Chi2 and Reduced Chi2 invalid) +------------------------------------------------------------------------------ +Residual 10.57852943 +Contributions 10.57852943 +Restraints 0.00000000 +Chi2 10.57852943 +Reduced Chi2 0.00218339 +Rw 0.02942970 + +Variables (Uncertainties invalid) +------------------------------------------------------------------------------ +Calib_Qbroad 1.68086175e-02 +/- 2.59401198e-03 +Calib_Qdamp 4.52977362e-02 +/- 9.58279254e-04 +Ni_Delta2 1.95751704e+00 +/- 3.00262551e-01 +fcc_ADP 5.87580800e-03 +/- 1.65380444e-04 +fcc_Lat 3.52458308e+00 +/- 2.30476044e-04 +s1 4.36675971e-01 +/- 7.47793282e-03 + +Variable Correlations greater than 25% (Correlations invalid) +------------------------------------------------------------------------------ +corr(fcc_ADP, Calib_Qbroad) -0.7338 +corr(Calib_Qdamp, Calib_Qbroad) -0.7333 +corr(s1, fcc_ADP) 0.6691 +corr(s1, Calib_Qdamp) 0.6286 +corr(fcc_ADP, Calib_Qdamp) 0.4992 +corr(s1, Calib_Qbroad) -0.4562 +corr(fcc_ADP, Ni_Delta2) 0.3226 From f152c129262d6f0069d9142c5b20cdd82312d723 Mon Sep 17 00:00:00 2001 From: Caden Myers Date: Mon, 24 Nov 2025 20:58:02 -0500 Subject: [PATCH 05/14] rm example --- docs/examples/pdf/fitNi/data/Ni.cif | 216 - docs/examples/pdf/fitNi/data/Ni.gr | 6022 ----------------- .../pdf/fitNi/data/Pt-nanoparticles.gr | 6022 ----------------- docs/examples/pdf/fitNi/data/Pt.cif | 232 - .../exercises/diffpy-cmi/fitBulkNi.ipynb | 692 -- .../fitNi/exercises/diffpy-cmi/fitNPPt.ipynb | 566 -- .../solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf | Bin 134282 -> 0 bytes .../solutions/diffpy-cmi/fit/Fit_Ni_Bulk.fit | 4852 ------------- .../fitNi/solutions/diffpy-cmi/fitBulkNi.py | 412 -- .../diffpy-cmi/fitBulkNi_NPPt_soln2.ipynb | 1117 --- .../pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py | 367 - .../solutions/diffpy-cmi/helper_functions.py | 456 -- .../solutions/diffpy-cmi/res/Fit_Ni_Bulk.res | 32 - 13 files changed, 20986 deletions(-) delete mode 100644 docs/examples/pdf/fitNi/data/Ni.cif delete mode 100644 docs/examples/pdf/fitNi/data/Ni.gr delete mode 100644 docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr delete mode 100644 docs/examples/pdf/fitNi/data/Pt.cif delete mode 100644 docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb delete mode 100644 docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fit/Fit_Ni_Bulk.fit delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitBulkNi.py delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitBulkNi_NPPt_soln2.ipynb delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/fitNPPt.py delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/helper_functions.py delete mode 100644 docs/examples/pdf/fitNi/solutions/diffpy-cmi/res/Fit_Ni_Bulk.res diff --git a/docs/examples/pdf/fitNi/data/Ni.cif b/docs/examples/pdf/fitNi/data/Ni.cif deleted file mode 100644 index cfaa968..0000000 --- a/docs/examples/pdf/fitNi/data/Ni.cif +++ /dev/null @@ -1,216 +0,0 @@ -data_New_Crystal -_audit_creation_method 'generated by CrystalMaker 9.0.3' -_cell_length_a 3.5200(0) -_cell_length_b 3.5200(0) -_cell_length_c 3.5200(0) -_cell_angle_alpha 90.0000(0) -_cell_angle_beta 90.0000(0) -_cell_angle_gamma 90.0000(0) - -_symmetry_space_group_name_H-M 'F m3m' -_symmetry_Int_Tables_number 225 -_symmetry_cell_setting cubic -loop_ -_symmetry_equiv_pos_as_xyz -'+x,+y,+z' -'+x,1/2+y,1/2+z' -'1/2+x,1/2+y,+z' -'1/2+x,+y,1/2+z' -'+z,+x,+y' -'+z,1/2+x,1/2+y' -'1/2+z,1/2+x,+y' -'1/2+z,+x,1/2+y' -'+y,+z,+x' -'+y,1/2+z,1/2+x' -'1/2+y,1/2+z,+x' -'1/2+y,+z,1/2+x' -'+x,+y,-z' -'+x,1/2+y,1/2-z' -'1/2+x,1/2+y,-z' -'1/2+x,+y,1/2-z' -'+z,+x,-y' -'+z,1/2+x,1/2-y' -'1/2+z,1/2+x,-y' -'1/2+z,+x,1/2-y' -'+y,+z,-x' -'+y,1/2+z,1/2-x' -'1/2+y,1/2+z,-x' -'1/2+y,+z,1/2-x' -'-x,+y,+z' -'-x,1/2+y,1/2+z' -'1/2-x,1/2+y,+z' -'1/2-x,+y,1/2+z' -'-z,+x,+y' -'-z,1/2+x,1/2+y' -'1/2-z,1/2+x,+y' -'1/2-z,+x,1/2+y' -'-y,+z,+x' -'-y,1/2+z,1/2+x' -'1/2-y,1/2+z,+x' -'1/2-y,+z,1/2+x' -'-x,+y,-z' -'-x,1/2+y,1/2-z' -'1/2-x,1/2+y,-z' -'1/2-x,+y,1/2-z' -'-z,+x,-y' -'-z,1/2+x,1/2-y' -'1/2-z,1/2+x,-y' -'1/2-z,+x,1/2-y' -'-y,+z,-x' -'-y,1/2+z,1/2-x' -'1/2-y,1/2+z,-x' -'1/2-y,+z,1/2-x' -'+y,+x,+z' -'+y,1/2+x,1/2+z' -'1/2+y,1/2+x,+z' -'1/2+y,+x,1/2+z' -'+x,+z,+y' -'+x,1/2+z,1/2+y' -'1/2+x,1/2+z,+y' -'1/2+x,+z,1/2+y' -'+z,+y,+x' -'+z,1/2+y,1/2+x' -'1/2+z,1/2+y,+x' -'1/2+z,+y,1/2+x' -'+y,+x,-z' -'+y,1/2+x,1/2-z' -'1/2+y,1/2+x,-z' -'1/2+y,+x,1/2-z' -'+x,+z,-y' -'+x,1/2+z,1/2-y' -'1/2+x,1/2+z,-y' -'1/2+x,+z,1/2-y' -'+z,+y,-x' -'+z,1/2+y,1/2-x' -'1/2+z,1/2+y,-x' -'1/2+z,+y,1/2-x' -'+y,-x,+z' -'+y,1/2-x,1/2+z' -'1/2+y,1/2-x,+z' -'1/2+y,-x,1/2+z' -'+x,-z,+y' -'+x,1/2-z,1/2+y' -'1/2+x,1/2-z,+y' -'1/2+x,-z,1/2+y' -'+z,-y,+x' -'+z,1/2-y,1/2+x' -'1/2+z,1/2-y,+x' -'1/2+z,-y,1/2+x' -'+y,-x,-z' -'+y,1/2-x,1/2-z' -'1/2+y,1/2-x,-z' -'1/2+y,-x,1/2-z' -'+x,-z,-y' -'+x,1/2-z,1/2-y' -'1/2+x,1/2-z,-y' -'1/2+x,-z,1/2-y' -'+z,-y,-x' -'+z,1/2-y,1/2-x' -'1/2+z,1/2-y,-x' -'1/2+z,-y,1/2-x' -'-x,-y,-z' -'-x,1/2-y,1/2-z' -'1/2-x,1/2-y,-z' -'1/2-x,-y,1/2-z' -'-z,-x,-y' -'-z,1/2-x,1/2-y' -'1/2-z,1/2-x,-y' -'1/2-z,-x,1/2-y' -'-y,-z,-x' -'-y,1/2-z,1/2-x' -'1/2-y,1/2-z,-x' -'1/2-y,-z,1/2-x' -'-x,-y,+z' -'-x,1/2-y,1/2+z' -'1/2-x,1/2-y,+z' -'1/2-x,-y,1/2+z' -'-z,-x,+y' -'-z,1/2-x,1/2+y' -'1/2-z,1/2-x,+y' -'1/2-z,-x,1/2+y' -'-y,-z,+x' -'-y,1/2-z,1/2+x' -'1/2-y,1/2-z,+x' -'1/2-y,-z,1/2+x' -'+x,-y,-z' -'+x,1/2-y,1/2-z' -'1/2+x,1/2-y,-z' -'1/2+x,-y,1/2-z' -'+z,-x,-y' -'+z,1/2-x,1/2-y' -'1/2+z,1/2-x,-y' -'1/2+z,-x,1/2-y' -'+y,-z,-x' -'+y,1/2-z,1/2-x' -'1/2+y,1/2-z,-x' -'1/2+y,-z,1/2-x' -'+x,-y,+z' -'+x,1/2-y,1/2+z' -'1/2+x,1/2-y,+z' -'1/2+x,-y,1/2+z' -'+z,-x,+y' -'+z,1/2-x,1/2+y' -'1/2+z,1/2-x,+y' -'1/2+z,-x,1/2+y' -'+y,-z,+x' -'+y,1/2-z,1/2+x' -'1/2+y,1/2-z,+x' -'1/2+y,-z,1/2+x' -'-y,-x,-z' -'-y,1/2-x,1/2-z' -'1/2-y,1/2-x,-z' -'1/2-y,-x,1/2-z' -'-x,-z,-y' -'-x,1/2-z,1/2-y' -'1/2-x,1/2-z,-y' -'1/2-x,-z,1/2-y' -'-z,-y,-x' -'-z,1/2-y,1/2-x' -'1/2-z,1/2-y,-x' -'1/2-z,-y,1/2-x' -'-y,-x,+z' -'-y,1/2-x,1/2+z' -'1/2-y,1/2-x,+z' -'1/2-y,-x,1/2+z' -'-x,-z,+y' -'-x,1/2-z,1/2+y' -'1/2-x,1/2-z,+y' -'1/2-x,-z,1/2+y' -'-z,-y,+x' -'-z,1/2-y,1/2+x' -'1/2-z,1/2-y,+x' -'1/2-z,-y,1/2+x' -'-y,+x,-z' -'-y,1/2+x,1/2-z' -'1/2-y,1/2+x,-z' -'1/2-y,+x,1/2-z' -'-x,+z,-y' -'-x,1/2+z,1/2-y' -'1/2-x,1/2+z,-y' -'1/2-x,+z,1/2-y' -'-z,+y,-x' -'-z,1/2+y,1/2-x' -'1/2-z,1/2+y,-x' -'1/2-z,+y,1/2-x' -'-y,+x,+z' -'-y,1/2+x,1/2+z' -'1/2-y,1/2+x,+z' -'1/2-y,+x,1/2+z' -'-x,+z,+y' -'-x,1/2+z,1/2+y' -'1/2-x,1/2+z,+y' -'1/2-x,+z,1/2+y' -'-z,+y,+x' -'-z,1/2+y,1/2+x' -'1/2-z,1/2+y,+x' -'1/2-z,+y,1/2+x' - -loop_ -_atom_site_label -_atom_site_type_symbol -_atom_site_fract_x -_atom_site_fract_y -_atom_site_fract_z -_atom_site_B_iso_or_equiv -_atom_site_occupancy - Ni1 Ni 0.0000 0.0000 0.0000 0.1 1.0 diff --git a/docs/examples/pdf/fitNi/data/Ni.gr b/docs/examples/pdf/fitNi/data/Ni.gr deleted file mode 100644 index a1565fc..0000000 --- a/docs/examples/pdf/fitNi/data/Ni.gr +++ /dev/null @@ -1,6022 +0,0 @@ -# xPDFsuite Configuration # -[PDF] -wavelength = 0.1836 -dataformat = Qnm -inputfile = Ni.chi -backgroundfile = -mode = xray -bgscale = 1.0 -composition = Ni -outputtype = gr -qmaxinst = 25.0 -qmin = 0.5 -qmax = 25.0 -rmax = 60.0 -rmin = 0.0 -rstep = 0.01 -rpoly = 0.9 - -#### start data -#S 1 -#L r($\AA$) G($\AA^{-2}$) -0 0 -0.01 -0.000497956 -0.02 -0.000963367 -0.03 -0.00136826 -0.04 -0.0016883 -0.05 -0.00190424 -0.06 -0.00200301 -0.07 -0.0019785 -0.08 -0.00183191 -0.09 -0.00157013 -0.1 -0.00120451 -0.11 -0.000765717 -0.12 -0.000279977 -0.13 0.000223969 -0.14 0.000716587 -0.15 0.00116932 -0.16 0.00155625 -0.17 0.00185559 -0.18 0.00204722 -0.19 0.00211684 -0.2 0.00206813 -0.21 0.00190414 -0.22 0.00163274 -0.23 0.00126516 -0.24 0.000814111 -0.25 0.000291589 -0.26 -0.00029348 -0.27 -0.000940567 -0.28 -0.00165528 -0.29 -0.00245064 -0.3 -0.00335283 -0.31 -0.00439854 -0.32 -0.00563399 -0.33 -0.00711292 -0.34 -0.00889334 -0.35 -0.0110333 -0.36 -0.0136142 -0.37 -0.0166653 -0.38 -0.0201915 -0.39 -0.0241829 -0.4 -0.0285954 -0.41 -0.0333445 -0.42 -0.0383002 -0.43 -0.0432836 -0.44 -0.0480648 -0.45 -0.0522996 -0.46 -0.0556565 -0.47 -0.0577668 -0.48 -0.0582263 -0.49 -0.0566146 -0.5 -0.0525102 -0.51 -0.0455077 -0.52 -0.0352366 -0.53 -0.0213724 -0.54 -0.00332425 -0.55 0.0187032 -0.56 0.0447171 -0.57 0.0745951 -0.58 0.108075 -0.59 0.14475 -0.6 0.184067 -0.61 0.225331 -0.62 0.26772 -0.63 0.310199 -0.64 0.35165 -0.65 0.390971 -0.66 0.427043 -0.67 0.458757 -0.68 0.485059 -0.69 0.504986 -0.7 0.517701 -0.71 0.522245 -0.72 0.517905 -0.73 0.504938 -0.74 0.483378 -0.75 0.453504 -0.76 0.415845 -0.77 0.371166 -0.78 0.320449 -0.79 0.264868 -0.8 0.205652 -0.81 0.144454 -0.82 0.0829324 -0.83 0.0226016 -0.84 -0.0350753 -0.85 -0.088739 -0.86 -0.137181 -0.87 -0.17939 -0.88 -0.214582 -0.89 -0.241725 -0.9 -0.260882 -0.91 -0.272364 -0.92 -0.276555 -0.93 -0.274102 -0.94 -0.265883 -0.95 -0.252975 -0.96 -0.236603 -0.97 -0.218096 -0.98 -0.198877 -0.99 -0.180474 -1 -0.164164 -1.01 -0.151087 -1.02 -0.142204 -1.03 -0.138263 -1.04 -0.139767 -1.05 -0.14696 -1.06 -0.159844 -1.07 -0.178527 -1.08 -0.20193 -1.09 -0.229259 -1.1 -0.259548 -1.11 -0.291708 -1.12 -0.324575 -1.13 -0.356963 -1.14 -0.38772 -1.15 -0.415706 -1.16 -0.43972 -1.17 -0.459257 -1.18 -0.473822 -1.19 -0.483157 -1.2 -0.48725 -1.21 -0.486335 -1.22 -0.480876 -1.23 -0.471549 -1.24 -0.459135 -1.25 -0.444714 -1.26 -0.429539 -1.27 -0.41473 -1.28 -0.401381 -1.29 -0.39051 -1.3 -0.383012 -1.31 -0.37962 -1.32 -0.380871 -1.33 -0.387346 -1.34 -0.399048 -1.35 -0.415568 -1.36 -0.436475 -1.37 -0.461135 -1.38 -0.48874 -1.39 -0.518352 -1.4 -0.548938 -1.41 -0.579429 -1.42 -0.608612 -1.43 -0.635447 -1.44 -0.6591 -1.45 -0.678862 -1.46 -0.694217 -1.47 -0.70486 -1.48 -0.710714 -1.49 -0.711934 -1.5 -0.708894 -1.51 -0.701933 -1.52 -0.69217 -1.53 -0.680561 -1.54 -0.668111 -1.55 -0.655862 -1.56 -0.644845 -1.57 -0.636023 -1.58 -0.63025 -1.59 -0.628257 -1.6 -0.630918 -1.61 -0.638149 -1.62 -0.649961 -1.63 -0.666128 -1.64 -0.686201 -1.65 -0.70952 -1.66 -0.735253 -1.67 -0.762427 -1.68 -0.789962 -1.69 -0.816601 -1.7 -0.841254 -1.71 -0.862927 -1.72 -0.880757 -1.73 -0.894063 -1.74 -0.902377 -1.75 -0.905474 -1.76 -0.903389 -1.77 -0.896252 -1.78 -0.884647 -1.79 -0.869669 -1.8 -0.852339 -1.81 -0.833825 -1.82 -0.815378 -1.83 -0.798279 -1.84 -0.783771 -1.85 -0.772998 -1.86 -0.767245 -1.87 -0.767258 -1.88 -0.773295 -1.89 -0.785498 -1.9 -0.80369 -1.91 -0.827379 -1.92 -0.85577 -1.93 -0.887798 -1.94 -0.92217 -1.95 -0.957378 -1.96 -0.991667 -1.97 -1.02346 -1.98 -1.05128 -1.99 -1.07382 -2 -1.09002 -2.01 -1.09912 -2.02 -1.10076 -2.03 -1.09493 -2.04 -1.08157 -2.05 -1.06223 -2.06 -1.03829 -2.07 -1.01142 -2.08 -0.983522 -2.09 -0.956668 -2.1 -0.932953 -2.11 -0.914387 -2.12 -0.902839 -2.13 -0.900459 -2.14 -0.90747 -2.15 -0.924067 -2.16 -0.949727 -2.17 -0.983142 -2.18 -1.02218 -2.19 -1.06388 -2.2 -1.1045 -2.21 -1.13928 -2.22 -1.16208 -2.23 -1.16767 -2.24 -1.15018 -2.25 -1.1037 -2.26 -1.02251 -2.27 -0.901327 -2.28 -0.735538 -2.29 -0.521425 -2.3 -0.254245 -2.31 0.0678304 -2.32 0.441659 -2.33 0.865151 -2.34 1.3346 -2.35 1.84467 -2.36 2.38849 -2.37 2.95777 -2.38 3.54294 -2.39 4.13307 -2.4 4.71536 -2.41 5.27782 -2.42 5.80862 -2.43 6.2962 -2.44 6.7297 -2.45 7.09923 -2.46 7.3962 -2.47 7.61359 -2.48 7.73974 -2.49 7.77584 -2.5 7.72285 -2.51 7.58212 -2.52 7.35706 -2.53 7.05305 -2.54 6.6772 -2.55 6.23821 -2.56 5.74602 -2.57 5.20886 -2.58 4.6428 -2.59 4.05984 -2.6 3.47163 -2.61 2.88933 -2.62 2.3233 -2.63 1.78283 -2.64 1.27592 -2.65 0.809631 -2.66 0.392363 -2.67 0.0237537 -2.68 -0.29486 -2.69 -0.563678 -2.7 -0.784307 -2.71 -0.959595 -2.72 -1.09342 -2.73 -1.19049 -2.74 -1.25534 -2.75 -1.29322 -2.76 -1.31176 -2.77 -1.31638 -2.78 -1.31211 -2.79 -1.30343 -2.8 -1.29412 -2.81 -1.28723 -2.82 -1.28498 -2.83 -1.28908 -2.84 -1.30022 -2.85 -1.3179 -2.86 -1.34136 -2.87 -1.36938 -2.88 -1.40043 -2.89 -1.43278 -2.9 -1.46466 -2.91 -1.4944 -2.92 -1.52019 -2.93 -1.54081 -2.94 -1.55557 -2.95 -1.56407 -2.96 -1.56627 -2.97 -1.56254 -2.98 -1.55357 -2.99 -1.54033 -3 -1.52403 -3.01 -1.50594 -3.02 -1.4877 -3.03 -1.47064 -3.04 -1.45598 -3.05 -1.44472 -3.06 -1.43765 -3.07 -1.43527 -3.08 -1.43781 -3.09 -1.44519 -3.1 -1.45745 -3.11 -1.4735 -3.12 -1.49254 -3.13 -1.51359 -3.14 -1.53561 -3.15 -1.55752 -3.16 -1.57826 -3.17 -1.59681 -3.18 -1.61222 -3.19 -1.62335 -3.2 -1.62982 -3.21 -1.63112 -3.22 -1.62685 -3.23 -1.6167 -3.24 -1.60044 -3.25 -1.57788 -3.26 -1.54884 -3.27 -1.5129 -3.28 -1.46959 -3.29 -1.41901 -3.3 -1.36084 -3.31 -1.2947 -3.32 -1.22019 -3.33 -1.13694 -3.34 -1.04463 -3.35 -0.943077 -3.36 -0.831813 -3.37 -0.711066 -3.38 -0.581781 -3.39 -0.444787 -3.4 -0.301259 -3.41 -0.152727 -3.42 -0.00107986 -3.43 0.151461 -3.44 0.302374 -3.45 0.448447 -3.46 0.586549 -3.47 0.713817 -3.48 0.82728 -3.49 0.924118 -3.5 1.00176 -3.51 1.05797 -3.52 1.09097 -3.53 1.09949 -3.54 1.08087 -3.55 1.03668 -3.56 0.967993 -3.57 0.876091 -3.58 0.762847 -3.59 0.630637 -3.6 0.482269 -3.61 0.320884 -3.62 0.149845 -3.63 -0.0276061 -3.64 -0.207184 -3.65 -0.385584 -3.66 -0.559751 -3.67 -0.726966 -3.68 -0.884918 -3.69 -1.03175 -3.7 -1.16611 -3.71 -1.28687 -3.72 -1.39285 -3.73 -1.48521 -3.74 -1.56449 -3.75 -1.63152 -3.76 -1.68739 -3.77 -1.73335 -3.78 -1.77075 -3.79 -1.80094 -3.8 -1.82507 -3.81 -1.84436 -3.82 -1.8602 -3.83 -1.87344 -3.84 -1.8848 -3.85 -1.8948 -3.86 -1.90384 -3.87 -1.91217 -3.88 -1.91994 -3.89 -1.92722 -3.9 -1.93406 -3.91 -1.94049 -3.92 -1.94652 -3.93 -1.95212 -3.94 -1.95726 -3.95 -1.96182 -3.96 -1.96559 -3.97 -1.96822 -3.98 -1.96898 -3.99 -1.96698 -4 -1.96105 -4.01 -1.94962 -4.02 -1.93071 -4.03 -1.90192 -4.04 -1.8605 -4.05 -1.80332 -4.06 -1.72695 -4.07 -1.62567 -4.08 -1.49698 -4.09 -1.3376 -4.1 -1.14419 -4.11 -0.913878 -4.12 -0.644398 -4.13 -0.334272 -4.14 0.0170227 -4.15 0.409033 -4.16 0.84306 -4.17 1.31213 -4.18 1.81158 -4.19 2.33546 -4.2 2.87661 -4.21 3.42679 -4.22 3.97685 -4.23 4.51697 -4.24 5.03626 -4.25 5.52152 -4.26 5.96415 -4.27 6.35448 -4.28 6.68367 -4.29 6.94404 -4.3 7.12923 -4.31 7.23451 -4.32 7.25691 -4.33 7.19244 -4.34 7.04032 -4.35 6.80856 -4.36 6.50215 -4.37 6.1277 -4.38 5.69331 -4.39 5.20825 -4.4 4.68272 -4.41 4.12752 -4.42 3.55339 -4.43 2.97281 -4.44 2.39701 -4.45 1.83577 -4.46 1.29786 -4.47 0.790855 -4.48 0.320938 -4.49 -0.107167 -4.5 -0.49027 -4.51 -0.823608 -4.52 -1.10901 -4.53 -1.34915 -4.54 -1.54662 -4.55 -1.70496 -4.56 -1.82845 -4.57 -1.92188 -4.58 -1.9903 -4.59 -2.03879 -4.6 -2.07139 -4.61 -2.094 -4.62 -2.11059 -4.63 -2.12426 -4.64 -2.13733 -4.65 -2.15126 -4.66 -2.16672 -4.67 -2.18352 -4.68 -2.20078 -4.69 -2.21664 -4.7 -2.22893 -4.71 -2.23511 -4.72 -2.23247 -4.73 -2.21825 -4.74 -2.18978 -4.75 -2.1446 -4.76 -2.08066 -4.77 -1.99587 -4.78 -1.88805 -4.79 -1.75834 -4.8 -1.6071 -4.81 -1.43531 -4.82 -1.24461 -4.83 -1.03725 -4.84 -0.816019 -4.85 -0.584182 -4.86 -0.345306 -4.87 -0.103802 -4.88 0.135774 -4.89 0.369149 -4.9 0.592084 -4.91 0.800467 -4.92 0.990416 -4.93 1.15836 -4.94 1.30111 -4.95 1.41438 -4.96 1.49614 -4.97 1.54603 -4.98 1.56316 -4.99 1.54728 -5 1.49877 -5.01 1.4186 -5.02 1.30836 -5.03 1.17018 -5.04 1.00516 -5.05 0.817851 -5.06 0.612352 -5.07 0.392403 -5.08 0.161907 -5.09 -0.0751693 -5.1 -0.314891 -5.11 -0.55345 -5.12 -0.787256 -5.13 -1.01209 -5.14 -1.22546 -5.15 -1.42504 -5.16 -1.60891 -5.17 -1.77564 -5.18 -1.92426 -5.19 -2.05429 -5.2 -2.16563 -5.21 -2.25842 -5.22 -2.33191 -5.23 -2.38843 -5.24 -2.42882 -5.25 -2.45391 -5.26 -2.4644 -5.27 -2.46081 -5.28 -2.44338 -5.29 -2.41204 -5.3 -2.36603 -5.31 -2.30376 -5.32 -2.22504 -5.33 -2.12845 -5.34 -2.01235 -5.35 -1.87503 -5.36 -1.7148 -5.37 -1.53013 -5.38 -1.31981 -5.39 -1.08201 -5.4 -0.816202 -5.41 -0.524455 -5.42 -0.208237 -5.43 0.130115 -5.44 0.487367 -5.45 0.859392 -5.46 1.24122 -5.47 1.62712 -5.48 2.01021 -5.49 2.38281 -5.5 2.73786 -5.51 3.06813 -5.52 3.36656 -5.53 3.62652 -5.54 3.84199 -5.55 4.00778 -5.56 4.11972 -5.57 4.17064 -5.58 4.16161 -5.59 4.09378 -5.6 3.96842 -5.61 3.78811 -5.62 3.5567 -5.63 3.27914 -5.64 2.96132 -5.65 2.60992 -5.66 2.23055 -5.67 1.8335 -5.68 1.42656 -5.69 1.01712 -5.7 0.612208 -5.71 0.218242 -5.72 -0.159087 -5.73 -0.514944 -5.74 -0.845144 -5.75 -1.14451 -5.76 -1.41345 -5.77 -1.65113 -5.78 -1.85756 -5.79 -2.03344 -5.8 -2.18011 -5.81 -2.29933 -5.82 -2.3932 -5.83 -2.46343 -5.84 -2.51171 -5.85 -2.54176 -5.86 -2.55556 -5.87 -2.55487 -5.88 -2.54114 -5.89 -2.51554 -5.9 -2.47897 -5.91 -2.43207 -5.92 -2.37493 -5.93 -2.30788 -5.94 -2.23175 -5.95 -2.14698 -5.96 -2.05413 -5.97 -1.95398 -5.98 -1.84756 -5.99 -1.73621 -6 -1.62154 -6.01 -1.5055 -6.02 -1.39056 -6.03 -1.27914 -6.04 -1.17372 -6.05 -1.07681 -6.06 -0.990859 -6.07 -0.918143 -6.08 -0.860692 -6.09 -0.820204 -6.1 -0.799382 -6.11 -0.798102 -6.12 -0.816264 -6.13 -0.853619 -6.14 -0.909433 -6.15 -0.982508 -6.16 -1.07123 -6.17 -1.17362 -6.18 -1.28739 -6.19 -1.41058 -6.2 -1.53951 -6.21 -1.67132 -6.22 -1.80318 -6.23 -1.93222 -6.24 -2.05559 -6.25 -2.17051 -6.26 -2.27419 -6.27 -2.36368 -6.28 -2.43486 -6.29 -2.48611 -6.3 -2.51465 -6.31 -2.51766 -6.32 -2.49226 -6.33 -2.43554 -6.34 -2.3446 -6.35 -2.21661 -6.36 -2.04766 -6.37 -1.83351 -6.38 -1.57472 -6.39 -1.26978 -6.4 -0.917849 -6.41 -0.518873 -6.42 -0.0737468 -6.43 0.415574 -6.44 0.945974 -6.45 1.51446 -6.46 2.1147 -6.47 2.73779 -6.48 3.3754 -6.49 4.01816 -6.5 4.6558 -6.51 5.2774 -6.52 5.8716 -6.53 6.42694 -6.54 6.92847 -6.55 7.36568 -6.56 7.73057 -6.57 8.0147 -6.58 8.21113 -6.59 8.3147 -6.6 8.3222 -6.61 8.23252 -6.62 8.04669 -6.63 7.76132 -6.64 7.38795 -6.65 6.93584 -6.66 6.41434 -6.67 5.83423 -6.68 5.20739 -6.69 4.54642 -6.7 3.86429 -6.71 3.17397 -6.72 2.48952 -6.73 1.82314 -6.74 1.18531 -6.75 0.585146 -6.76 0.0301897 -6.77 -0.473732 -6.78 -0.922568 -6.79 -1.31404 -6.8 -1.64677 -6.81 -1.91846 -6.82 -2.13639 -6.83 -2.30447 -6.84 -2.42752 -6.85 -2.51099 -6.86 -2.5607 -6.87 -2.5826 -6.88 -2.58249 -6.89 -2.56553 -6.9 -2.53682 -6.91 -2.5015 -6.92 -2.46303 -6.93 -2.42408 -6.94 -2.38658 -6.95 -2.35179 -6.96 -2.32036 -6.97 -2.29243 -6.98 -2.26793 -6.99 -2.24637 -7 -2.22708 -7.01 -2.20959 -7.02 -2.1936 -7.03 -2.17904 -7.04 -2.16611 -7.05 -2.1553 -7.06 -2.14736 -7.07 -2.14354 -7.08 -2.14494 -7.09 -2.15254 -7.1 -2.16733 -7.11 -2.19005 -7.12 -2.2211 -7.13 -2.2604 -7.14 -2.30732 -7.15 -2.36061 -7.16 -2.41849 -7.17 -2.47779 -7.18 -2.53512 -7.19 -2.58663 -7.2 -2.62803 -7.21 -2.65478 -7.22 -2.66221 -7.23 -2.64574 -7.24 -2.60098 -7.25 -2.52085 -7.26 -2.4049 -7.27 -2.25086 -7.28 -2.05747 -7.29 -1.82451 -7.3 -1.55292 -7.31 -1.2448 -7.32 -0.903396 -7.33 -0.532685 -7.34 -0.137314 -7.35 0.274162 -7.36 0.694636 -7.37 1.11652 -7.38 1.53194 -7.39 1.93296 -7.4 2.3118 -7.41 2.66101 -7.42 2.97232 -7.43 3.23781 -7.44 3.45467 -7.45 3.61892 -7.46 3.72768 -7.47 3.77925 -7.48 3.77314 -7.49 3.71003 -7.5 3.59178 -7.51 3.419 -7.52 3.19646 -7.53 2.93146 -7.54 2.62976 -7.55 2.2977 -7.56 1.9421 -7.57 1.57006 -7.58 1.18889 -7.59 0.805881 -7.6 0.429034 -7.61 0.0657826 -7.62 -0.277587 -7.63 -0.59513 -7.64 -0.881522 -7.65 -1.13215 -7.66 -1.34318 -7.67 -1.51164 -7.68 -1.63547 -7.69 -1.70984 -7.7 -1.73786 -7.71 -1.7211 -7.72 -1.66157 -7.73 -1.56216 -7.74 -1.42662 -7.75 -1.25952 -7.76 -1.06609 -7.77 -0.852107 -7.78 -0.623278 -7.79 -0.387977 -7.8 -0.152968 -7.81 0.0750366 -7.82 0.289536 -7.83 0.484409 -7.84 0.654075 -7.85 0.79364 -7.86 0.898304 -7.87 0.962703 -7.88 0.987507 -7.89 0.971944 -7.9 0.916357 -7.91 0.822197 -7.92 0.691977 -7.93 0.529202 -7.94 0.338267 -7.95 0.123735 -7.96 -0.108275 -7.97 -0.350204 -7.98 -0.59556 -7.99 -0.837821 -8 -1.07063 -8.01 -1.28795 -8.02 -1.48425 -8.03 -1.65466 -8.04 -1.79335 -8.05 -1.8971 -8.06 -1.96509 -8.07 -1.99623 -8.08 -1.99042 -8.09 -1.94854 -8.1 -1.87236 -8.11 -1.76454 -8.12 -1.62846 -8.13 -1.46685 -8.14 -1.2858 -8.15 -1.09096 -8.16 -0.887554 -8.17 -0.680936 -8.18 -0.476404 -8.19 -0.279102 -8.2 -0.093904 -8.21 0.0746902 -8.22 0.220648 -8.23 0.341757 -8.24 0.435477 -8.25 0.499718 -8.26 0.533084 -8.27 0.534889 -8.28 0.505169 -8.29 0.444673 -8.3 0.354688 -8.31 0.235407 -8.32 0.0922319 -8.33 -0.0713815 -8.34 -0.251477 -8.35 -0.443673 -8.36 -0.64325 -8.37 -0.845246 -8.38 -1.04457 -8.39 -1.23581 -8.4 -1.41282 -8.41 -1.57149 -8.42 -1.70751 -8.43 -1.81708 -8.44 -1.89703 -8.45 -1.94495 -8.46 -1.95924 -8.47 -1.93925 -8.48 -1.88402 -8.49 -1.79456 -8.5 -1.67519 -8.51 -1.52935 -8.52 -1.3613 -8.53 -1.17606 -8.54 -0.979258 -8.55 -0.776963 -8.56 -0.575492 -8.57 -0.381937 -8.58 -0.20307 -8.59 -0.0442459 -8.6 0.0895454 -8.61 0.194186 -8.62 0.266612 -8.63 0.304963 -8.64 0.308696 -8.65 0.278662 -8.66 0.215216 -8.67 0.124035 -8.68 0.0111315 -8.69 -0.117047 -8.7 -0.253067 -8.71 -0.38873 -8.72 -0.515325 -8.73 -0.623901 -8.74 -0.705572 -8.75 -0.748135 -8.76 -0.745952 -8.77 -0.692664 -8.78 -0.582919 -8.79 -0.412861 -8.8 -0.180311 -8.81 0.115113 -8.82 0.471919 -8.83 0.887157 -8.84 1.35893 -8.85 1.87505 -8.86 2.42666 -8.87 3.00356 -8.88 3.59451 -8.89 4.1875 -8.9 4.7701 -8.91 5.32976 -8.92 5.853 -8.93 6.32477 -8.94 6.73694 -8.95 7.08009 -8.96 7.34623 -8.97 7.52906 -8.98 7.62406 -8.99 7.62864 -9 7.54212 -9.01 7.36234 -9.02 7.09192 -9.03 6.74086 -9.04 6.31597 -9.05 5.82542 -9.06 5.27846 -9.07 4.68518 -9.08 4.05624 -9.09 3.40259 -9.1 2.73504 -9.11 2.0657 -9.12 1.40505 -9.13 0.762296 -9.14 0.145684 -9.15 -0.437683 -9.16 -0.981944 -9.17 -1.48255 -9.18 -1.9363 -9.19 -2.33781 -9.2 -2.68907 -9.21 -2.99198 -9.22 -3.24844 -9.23 -3.46125 -9.24 -3.63391 -9.25 -3.77047 -9.26 -3.87529 -9.27 -3.95287 -9.28 -4.00604 -9.29 -4.04116 -9.3 -4.06204 -9.31 -4.07179 -9.32 -4.07286 -9.33 -4.06693 -9.34 -4.05491 -9.35 -4.03691 -9.36 -4.01216 -9.37 -3.97852 -9.38 -3.93442 -9.39 -3.87727 -9.4 -3.80417 -9.41 -3.71204 -9.42 -3.59784 -9.43 -3.4587 -9.44 -3.29211 -9.45 -3.09528 -9.46 -2.86561 -9.47 -2.60475 -9.48 -2.3133 -9.49 -1.99282 -9.5 -1.64587 -9.51 -1.27601 -9.52 -0.887723 -9.53 -0.486338 -9.54 -0.077928 -9.55 0.329972 -9.56 0.72991 -9.57 1.11458 -9.58 1.47669 -9.59 1.80924 -9.6 2.10563 -9.61 2.35994 -9.62 2.56707 -9.63 2.71975 -9.64 2.81602 -9.65 2.85616 -9.66 2.83994 -9.67 2.7684 -9.68 2.64383 -9.69 2.46969 -9.7 2.25051 -9.71 1.99174 -9.72 1.69765 -9.73 1.37756 -9.74 1.03928 -9.75 0.690114 -9.76 0.337239 -9.77 -0.0124705 -9.78 -0.35264 -9.79 -0.677553 -9.8 -0.982296 -9.81 -1.26042 -9.82 -1.51092 -9.83 -1.73208 -9.84 -1.92313 -9.85 -2.08425 -9.86 -2.2165 -9.87 -2.32173 -9.88 -2.40242 -9.89 -2.46129 -9.9 -2.50077 -9.91 -2.52599 -9.92 -2.54035 -9.93 -2.547 -9.94 -2.54873 -9.95 -2.54785 -9.96 -2.54606 -9.97 -2.54439 -9.98 -2.54315 -9.99 -2.54181 -10 -2.53909 -10.01 -2.53312 -10.02 -2.52148 -10.03 -2.50136 -10.04 -2.46968 -10.05 -2.42325 -10.06 -2.3589 -10.07 -2.27266 -10.08 -2.16165 -10.09 -2.02501 -10.1 -1.86157 -10.11 -1.67099 -10.12 -1.45381 -10.13 -1.21152 -10.14 -0.946545 -10.15 -0.662259 -10.16 -0.362306 -10.17 -0.0527748 -10.18 0.260078 -10.19 0.57002 -10.2 0.870564 -10.21 1.15516 -10.22 1.41743 -10.23 1.65135 -10.24 1.85146 -10.25 2.00987 -10.26 2.12496 -10.27 2.19498 -10.28 2.21874 -10.29 2.19635 -10.3 2.12918 -10.31 2.01985 -10.32 1.87217 -10.33 1.69099 -10.34 1.48013 -10.35 1.24916 -10.36 1.00513 -10.37 0.755249 -10.38 0.506676 -10.39 0.266257 -10.4 0.040301 -10.41 -0.165636 -10.42 -0.346499 -10.43 -0.496762 -10.44 -0.61631 -10.45 -0.704313 -10.46 -0.761171 -10.47 -0.788447 -10.48 -0.788759 -10.49 -0.765617 -10.5 -0.723232 -10.51 -0.666002 -10.52 -0.599113 -10.53 -0.528254 -10.54 -0.457916 -10.55 -0.392007 -10.56 -0.333646 -10.57 -0.284995 -10.58 -0.247134 -10.59 -0.219988 -10.6 -0.202639 -10.61 -0.192261 -10.62 -0.184814 -10.63 -0.175856 -10.64 -0.160338 -10.65 -0.13285 -10.66 -0.0879024 -10.67 -0.0202152 -10.68 0.0749905 -10.69 0.203874 -10.7 0.368501 -10.71 0.569294 -10.72 0.806171 -10.73 1.0775 -10.74 1.38006 -10.75 1.7091 -10.76 2.05844 -10.77 2.42064 -10.78 2.78682 -10.79 3.14658 -10.8 3.49019 -10.81 3.80799 -10.82 4.09069 -10.83 4.32973 -10.84 4.5176 -10.85 4.64813 -10.86 4.71659 -10.87 4.71431 -10.88 4.64643 -10.89 4.51435 -10.9 4.32129 -10.91 4.07221 -10.92 3.7736 -10.93 3.43322 -10.94 3.0598 -10.95 2.6625 -10.96 2.25121 -10.97 1.83715 -10.98 1.42938 -10.99 1.03616 -11 0.664703 -11.01 0.320951 -11.02 0.00943022 -11.03 -0.266827 -11.04 -0.505069 -11.05 -0.704434 -11.06 -0.86865 -11.07 -1.00037 -11.08 -1.10311 -11.09 -1.18102 -11.1 -1.23857 -11.11 -1.28031 -11.12 -1.31056 -11.13 -1.333 -11.14 -1.3512 -11.15 -1.36767 -11.16 -1.3837 -11.17 -1.39957 -11.18 -1.41465 -11.19 -1.42747 -11.2 -1.43581 -11.21 -1.43691 -11.22 -1.42683 -11.23 -1.40242 -11.24 -1.36103 -11.25 -1.30011 -11.26 -1.21776 -11.27 -1.11291 -11.28 -0.985439 -11.29 -0.836249 -11.3 -0.667324 -11.31 -0.480665 -11.32 -0.281904 -11.33 -0.0762158 -11.34 0.130819 -11.35 0.33324 -11.36 0.524952 -11.37 0.699977 -11.38 0.852708 -11.39 0.978017 -11.4 1.06878 -11.41 1.12454 -11.42 1.14355 -11.43 1.12526 -11.44 1.07037 -11.45 0.980747 -11.46 0.859388 -11.47 0.710227 -11.48 0.537636 -11.49 0.346565 -11.5 0.144294 -11.51 -0.0634804 -11.52 -0.271254 -11.53 -0.473927 -11.54 -0.66699 -11.55 -0.846668 -11.56 -1.01003 -11.57 -1.15434 -11.58 -1.27806 -11.59 -1.38219 -11.6 -1.46747 -11.61 -1.53526 -11.62 -1.58744 -11.63 -1.62621 -11.64 -1.65391 -11.65 -1.67286 -11.66 -1.68495 -11.67 -1.69218 -11.68 -1.69603 -11.69 -1.69716 -11.7 -1.69566 -11.71 -1.69104 -11.72 -1.68228 -11.73 -1.66795 -11.74 -1.64627 -11.75 -1.61453 -11.76 -1.57096 -11.77 -1.514 -11.78 -1.44222 -11.79 -1.35464 -11.8 -1.25089 -11.81 -1.13127 -11.82 -0.996854 -11.83 -0.849457 -11.84 -0.691054 -11.85 -0.526043 -11.86 -0.358474 -11.87 -0.192727 -11.88 -0.0334482 -11.89 0.11462 -11.9 0.246821 -11.91 0.358758 -11.92 0.446284 -11.93 0.50356 -11.94 0.53022 -11.95 0.524586 -11.96 0.485851 -11.97 0.414095 -11.98 0.310266 -11.99 0.176128 -12 0.0141765 -12.01 -0.172927 -12.02 -0.382129 -12.03 -0.607674 -12.04 -0.845313 -12.05 -1.09073 -12.06 -1.33969 -12.07 -1.58808 -12.08 -1.83209 -12.09 -2.06815 -12.1 -2.29256 -12.11 -2.50192 -12.12 -2.69442 -12.13 -2.86792 -12.14 -3.02053 -12.15 -3.15052 -12.16 -3.25634 -12.17 -3.33648 -12.18 -3.38949 -12.19 -3.41233 -12.2 -3.40383 -12.21 -3.36369 -12.22 -3.29059 -12.23 -3.18331 -12.24 -3.04084 -12.25 -2.86248 -12.26 -2.64791 -12.27 -2.39732 -12.28 -2.10915 -12.29 -1.78679 -12.3 -1.43347 -12.31 -1.05243 -12.32 -0.647742 -12.33 -0.224279 -12.34 0.212328 -12.35 0.655788 -12.36 1.09927 -12.37 1.5343 -12.38 1.95338 -12.39 2.34915 -12.4 2.71444 -12.41 3.04253 -12.42 3.32735 -12.43 3.56366 -12.44 3.74719 -12.45 3.8743 -12.46 3.93868 -12.47 3.94467 -12.48 3.89318 -12.49 3.78637 -12.5 3.62754 -12.51 3.42105 -12.52 3.17215 -12.53 2.88686 -12.54 2.57119 -12.55 2.23188 -12.56 1.87803 -12.57 1.51673 -12.58 1.15487 -12.59 0.798989 -12.6 0.455166 -12.61 0.128913 -12.62 -0.174875 -12.63 -0.450731 -12.64 -0.694374 -12.65 -0.904443 -12.66 -1.07877 -12.67 -1.21572 -12.68 -1.3142 -12.69 -1.37353 -12.7 -1.39342 -12.71 -1.37392 -12.72 -1.31325 -12.73 -1.21293 -12.74 -1.07536 -12.75 -0.901818 -12.76 -0.693866 -12.77 -0.453421 -12.78 -0.182769 -12.79 0.115395 -12.8 0.437933 -12.81 0.78244 -12.82 1.1433 -12.83 1.51546 -12.84 1.89384 -12.85 2.27303 -12.86 2.6473 -12.87 3.01078 -12.88 3.35753 -12.89 3.6817 -12.9 3.97473 -12.91 4.23343 -12.92 4.45343 -12.93 4.63094 -12.94 4.76307 -12.95 4.84785 -12.96 4.88438 -12.97 4.8728 -12.98 4.81384 -12.99 4.70699 -13 4.55948 -13.01 4.3756 -13.02 4.16032 -13.03 3.91913 -13.04 3.65784 -13.05 3.38241 -13.06 3.09873 -13.07 2.81252 -13.08 2.52957 -13.09 2.25445 -13.1 1.99085 -13.11 1.74163 -13.12 1.50876 -13.13 1.29329 -13.14 1.09542 -13.15 0.914543 -13.16 0.749902 -13.17 0.599362 -13.18 0.459691 -13.19 0.328168 -13.2 0.201973 -13.21 0.0783467 -13.22 -0.0452695 -13.23 -0.171105 -13.24 -0.300956 -13.25 -0.436468 -13.26 -0.578251 -13.27 -0.726163 -13.28 -0.87971 -13.29 -1.03792 -13.3 -1.19943 -13.31 -1.36255 -13.32 -1.52544 -13.33 -1.68616 -13.34 -1.84244 -13.35 -1.99268 -13.36 -2.13562 -13.37 -2.27031 -13.38 -2.39624 -13.39 -2.51336 -13.4 -2.6221 -13.41 -2.72332 -13.42 -2.81828 -13.43 -2.90831 -13.44 -2.99575 -13.45 -3.08251 -13.46 -3.17044 -13.47 -3.26119 -13.48 -3.35612 -13.49 -3.45615 -13.5 -3.56173 -13.51 -3.67273 -13.52 -3.7885 -13.53 -3.907 -13.54 -4.02593 -13.55 -4.14239 -13.56 -4.25294 -13.57 -4.35368 -13.58 -4.44039 -13.59 -4.50864 -13.6 -4.55315 -13.61 -4.56813 -13.62 -4.55106 -13.63 -4.49834 -13.64 -4.40699 -13.65 -4.27471 -13.66 -4.10005 -13.67 -3.88242 -13.68 -3.62221 -13.69 -3.31902 -13.7 -2.97553 -13.71 -2.59718 -13.72 -2.18838 -13.73 -1.75433 -13.74 -1.30095 -13.75 -0.834725 -13.76 -0.362615 -13.77 0.108114 -13.78 0.569031 -13.79 1.01215 -13.8 1.43054 -13.81 1.81729 -13.82 2.16596 -13.83 2.47071 -13.84 2.72641 -13.85 2.92876 -13.86 3.07435 -13.87 3.15611 -13.88 3.17632 -13.89 3.13582 -13.9 3.03565 -13.91 2.8779 -13.92 2.66572 -13.93 2.40326 -13.94 2.0956 -13.95 1.74869 -13.96 1.3669 -13.97 0.961201 -13.98 0.539537 -13.99 0.110155 -14 -0.318524 -14.01 -0.738069 -14.02 -1.1402 -14.03 -1.51696 -14.04 -1.86023 -14.05 -2.16012 -14.06 -2.41333 -14.07 -2.61493 -14.08 -2.761 -14.09 -2.84871 -14.1 -2.87646 -14.11 -2.84381 -14.12 -2.75154 -14.13 -2.59993 -14.14 -2.39096 -14.15 -2.13255 -14.16 -1.83004 -14.17 -1.48957 -14.18 -1.11794 -14.19 -0.722473 -14.2 -0.310795 -14.21 0.1093 -14.22 0.529694 -14.23 0.941895 -14.24 1.3388 -14.25 1.71382 -14.26 2.06106 -14.27 2.37536 -14.28 2.65245 -14.29 2.88896 -14.3 3.08249 -14.31 3.22875 -14.32 3.32882 -14.33 3.38463 -14.34 3.39762 -14.35 3.37 -14.36 3.30463 -14.37 3.20492 -14.38 3.07471 -14.39 2.91819 -14.4 2.73836 -14.41 2.54152 -14.42 2.33241 -14.43 2.1153 -14.44 1.89426 -14.45 1.67305 -14.46 1.4551 -14.47 1.24339 -14.48 1.04054 -14.49 0.849793 -14.5 0.671893 -14.51 0.507976 -14.52 0.35876 -14.53 0.224574 -14.54 0.105398 -14.55 0.000894375 -14.56 -0.08954 -14.57 -0.166514 -14.58 -0.230476 -14.59 -0.283573 -14.6 -0.327067 -14.61 -0.362273 -14.62 -0.390528 -14.63 -0.413161 -14.64 -0.431471 -14.65 -0.44671 -14.66 -0.460036 -14.67 -0.472655 -14.68 -0.485663 -14.69 -0.499953 -14.7 -0.516311 -14.71 -0.535405 -14.72 -0.55778 -14.73 -0.583845 -14.74 -0.613868 -14.75 -0.648159 -14.76 -0.686602 -14.77 -0.728742 -14.78 -0.774106 -14.79 -0.822008 -14.8 -0.871552 -14.81 -0.921616 -14.82 -0.970853 -14.83 -1.0177 -14.84 -1.05997 -14.85 -1.09561 -14.86 -1.12258 -14.87 -1.13857 -14.88 -1.1412 -14.89 -1.12806 -14.9 -1.09678 -14.91 -1.0451 -14.92 -0.970903 -14.93 -0.87026 -14.94 -0.743297 -14.95 -0.589292 -14.96 -0.407754 -14.97 -0.198755 -14.98 0.0370128 -14.99 0.298201 -15 0.582777 -15.01 0.888093 -15.02 1.21179 -15.03 1.54789 -15.04 1.89163 -15.05 2.23774 -15.06 2.58054 -15.07 2.91409 -15.08 3.23226 -15.09 3.52896 -15.1 3.7975 -15.11 4.02995 -15.12 4.2232 -15.13 4.37278 -15.14 4.47493 -15.15 4.52678 -15.16 4.52641 -15.17 4.47294 -15.18 4.36653 -15.19 4.20667 -15.2 3.99508 -15.21 3.73822 -15.22 3.44057 -15.23 3.10739 -15.24 2.74465 -15.25 2.35882 -15.26 1.95674 -15.27 1.54542 -15.28 1.13215 -15.29 0.724621 -15.3 0.329302 -15.31 -0.0478994 -15.32 -0.401736 -15.33 -0.727728 -15.34 -1.02224 -15.35 -1.28256 -15.36 -1.5069 -15.37 -1.69192 -15.38 -1.83943 -15.39 -1.95145 -15.4 -2.02988 -15.41 -2.07729 -15.42 -2.09679 -15.43 -2.09196 -15.44 -2.06666 -15.45 -2.02498 -15.46 -1.97035 -15.47 -1.90808 -15.48 -1.84215 -15.49 -1.77612 -15.5 -1.71322 -15.51 -1.65626 -15.52 -1.6076 -15.53 -1.56914 -15.54 -1.54237 -15.55 -1.52924 -15.56 -1.52912 -15.57 -1.54197 -15.58 -1.56737 -15.59 -1.60457 -15.6 -1.65255 -15.61 -1.71005 -15.62 -1.77565 -15.63 -1.8479 -15.64 -1.92518 -15.65 -2.00536 -15.66 -2.08674 -15.67 -2.16766 -15.68 -2.24649 -15.69 -2.32168 -15.7 -2.3918 -15.71 -2.4555 -15.72 -2.51122 -15.73 -2.55764 -15.74 -2.59427 -15.75 -2.62037 -15.76 -2.63537 -15.77 -2.63888 -15.78 -2.6307 -15.79 -2.61082 -15.8 -2.57942 -15.81 -2.53633 -15.82 -2.48242 -15.83 -2.41893 -15.84 -2.34687 -15.85 -2.26742 -15.86 -2.18186 -15.87 -2.09161 -15.88 -1.99816 -15.89 -1.90301 -15.9 -1.80777 -15.91 -1.71404 -15.92 -1.62315 -15.93 -1.53627 -15.94 -1.45439 -15.95 -1.37823 -15.96 -1.30829 -15.97 -1.24474 -15.98 -1.18745 -15.99 -1.13643 -16 -1.09031 -16.01 -1.04794 -16.02 -1.0079 -16.03 -0.968523 -16.04 -0.927958 -16.05 -0.884193 -16.06 -0.835125 -16.07 -0.778526 -16.08 -0.711392 -16.09 -0.632404 -16.1 -0.539779 -16.11 -0.431991 -16.12 -0.307823 -16.13 -0.166426 -16.14 -0.00736698 -16.15 0.169334 -16.16 0.363574 -16.17 0.574853 -16.18 0.800384 -16.19 1.03802 -16.2 1.28515 -16.21 1.53869 -16.22 1.79517 -16.23 2.05077 -16.24 2.30139 -16.25 2.5422 -16.26 2.7681 -16.27 2.97524 -16.28 3.15935 -16.29 3.31641 -16.3 3.44275 -16.31 3.53514 -16.32 3.59089 -16.33 3.60798 -16.34 3.58279 -16.35 3.51573 -16.36 3.4088 -16.37 3.26343 -16.38 3.08199 -16.39 2.86774 -16.4 2.62475 -16.41 2.35793 -16.42 2.07285 -16.43 1.7753 -16.44 1.4732 -16.45 1.17376 -16.46 0.883993 -16.47 0.610836 -16.48 0.360931 -16.49 0.140444 -16.5 -0.0451108 -16.51 -0.191047 -16.52 -0.289598 -16.53 -0.341797 -16.54 -0.346725 -16.55 -0.304571 -16.56 -0.216843 -16.57 -0.0863435 -16.58 0.0828734 -16.59 0.285597 -16.6 0.515811 -16.61 0.767 -16.62 1.02912 -16.63 1.29382 -16.64 1.5526 -16.65 1.79699 -16.66 2.01884 -16.67 2.21053 -16.68 2.36523 -16.69 2.47573 -16.7 2.53513 -16.71 2.54312 -16.72 2.49799 -16.73 2.39944 -16.74 2.2487 -16.75 2.0484 -16.76 1.80254 -16.77 1.51635 -16.78 1.19504 -16.79 0.846691 -16.8 0.481023 -16.81 0.106529 -16.82 -0.268112 -16.83 -0.634282 -16.84 -0.983658 -16.85 -1.30844 -16.86 -1.60153 -16.87 -1.85422 -16.88 -2.06194 -16.89 -2.22233 -16.9 -2.33301 -16.91 -2.39291 -16.92 -2.4023 -16.93 -2.36269 -16.94 -2.27684 -16.95 -2.1486 -16.96 -1.98044 -16.97 -1.78081 -16.98 -1.55683 -16.99 -1.31539 -17 -1.0636 -17.01 -0.808633 -17.02 -0.557517 -17.03 -0.316945 -17.04 -0.0931206 -17.05 0.105948 -17.06 0.277245 -17.07 0.417156 -17.08 0.52302 -17.09 0.593222 -17.1 0.627213 -17.11 0.625508 -17.12 0.589652 -17.13 0.521771 -17.14 0.423897 -17.15 0.302831 -17.16 0.163559 -17.17 0.011546 -17.18 -0.14742 -17.19 -0.307392 -17.2 -0.462434 -17.21 -0.606785 -17.22 -0.73439 -17.23 -0.839154 -17.24 -0.918016 -17.25 -0.967651 -17.26 -0.985622 -17.27 -0.970453 -17.28 -0.921668 -17.29 -0.839812 -17.3 -0.726442 -17.31 -0.582916 -17.32 -0.413166 -17.33 -0.222913 -17.34 -0.0171874 -17.35 0.198484 -17.36 0.418237 -17.37 0.636035 -17.38 0.845851 -17.39 1.04183 -17.4 1.21698 -17.41 1.36642 -17.42 1.4866 -17.43 1.57413 -17.44 1.6265 -17.45 1.64214 -17.46 1.62043 -17.47 1.56175 -17.48 1.46737 -17.49 1.33711 -17.5 1.17638 -17.51 0.989475 -17.52 0.780679 -17.53 0.554676 -17.54 0.316379 -17.55 0.0707917 -17.56 -0.17714 -17.57 -0.422654 -17.58 -0.660307 -17.59 -0.886473 -17.6 -1.09775 -17.61 -1.29132 -17.62 -1.46496 -17.63 -1.61707 -17.64 -1.74664 -17.65 -1.85325 -17.66 -1.93663 -17.67 -1.99609 -17.68 -2.03441 -17.69 -2.05289 -17.7 -2.05304 -17.71 -2.03652 -17.72 -2.00502 -17.73 -1.96025 -17.74 -1.90384 -17.75 -1.83705 -17.76 -1.76121 -17.77 -1.67813 -17.78 -1.5889 -17.79 -1.49445 -17.8 -1.39562 -17.81 -1.29311 -17.82 -1.18759 -17.83 -1.07965 -17.84 -0.96983 -17.85 -0.858813 -17.86 -0.74731 -17.87 -0.635998 -17.88 -0.525601 -17.89 -0.416895 -17.9 -0.31069 -17.91 -0.207829 -17.92 -0.109162 -17.93 -0.015906 -17.94 0.0712245 -17.95 0.151628 -17.96 0.224627 -17.97 0.28963 -17.98 0.346141 -17.99 0.393761 -18 0.432189 -18.01 0.461219 -18.02 0.479968 -18.03 0.489031 -18.04 0.488558 -18.05 0.478627 -18.06 0.459359 -18.07 0.430912 -18.08 0.393485 -18.09 0.347325 -18.1 0.292717 -18.11 0.229405 -18.12 0.158666 -18.13 0.0811761 -18.14 -0.00220943 -18.15 -0.0904257 -18.16 -0.18217 -18.17 -0.27588 -18.18 -0.369721 -18.19 -0.461503 -18.2 -0.548346 -18.21 -0.627775 -18.22 -0.696975 -18.23 -0.753029 -18.24 -0.792994 -18.25 -0.814002 -18.26 -0.813364 -18.27 -0.788681 -18.28 -0.737007 -18.29 -0.656133 -18.3 -0.546896 -18.31 -0.409358 -18.32 -0.244391 -18.33 -0.0537243 -18.34 0.160036 -18.35 0.393418 -18.36 0.642129 -18.37 0.901351 -18.38 1.16456 -18.39 1.42508 -18.4 1.67635 -18.41 1.91171 -18.42 2.1246 -18.43 2.30874 -18.44 2.45839 -18.45 2.56849 -18.46 2.63177 -18.47 2.6467 -18.48 2.61276 -18.49 2.52957 -18.5 2.39805 -18.51 2.22045 -18.52 2.00028 -18.53 1.74222 -18.54 1.45204 -18.55 1.13491 -18.56 0.800718 -18.57 0.457648 -18.58 0.11381 -18.59 -0.222726 -18.6 -0.544163 -18.61 -0.843202 -18.62 -1.11325 -18.63 -1.34837 -18.64 -1.54032 -18.65 -1.68894 -18.66 -1.79219 -18.67 -1.84928 -18.68 -1.86064 -18.69 -1.82789 -18.7 -1.75371 -18.71 -1.64175 -18.72 -1.49589 -18.73 -1.32039 -18.74 -1.12322 -18.75 -0.910244 -18.76 -0.687362 -18.77 -0.46035 -18.78 -0.23469 -18.79 -0.0154361 -18.8 0.192904 -18.81 0.385794 -18.82 0.559452 -18.83 0.712479 -18.84 0.843376 -18.85 0.951372 -18.86 1.03638 -18.87 1.09893 -18.88 1.14008 -18.89 1.16138 -18.9 1.16385 -18.91 1.15015 -18.92 1.12328 -18.93 1.08559 -18.94 1.03939 -18.95 0.986835 -18.96 0.929927 -18.97 0.870425 -18.98 0.80982 -18.99 0.749385 -19 0.69007 -19.01 0.632418 -19.02 0.57671 -19.03 0.522985 -19.04 0.471077 -19.05 0.420661 -19.06 0.371295 -19.07 0.322469 -19.08 0.273614 -19.09 0.224205 -19.1 0.173846 -19.11 0.122273 -19.12 0.0693806 -19.13 0.0152551 -19.14 -0.0398097 -19.15 -0.0952996 -19.16 -0.150468 -19.17 -0.204156 -19.18 -0.255211 -19.19 -0.302283 -19.2 -0.343901 -19.21 -0.378517 -19.22 -0.404566 -19.23 -0.420522 -19.24 -0.424963 -19.25 -0.416317 -19.26 -0.39287 -19.27 -0.35489 -19.28 -0.302132 -19.29 -0.234777 -19.3 -0.153471 -19.31 -0.0593505 -19.32 0.0459534 -19.33 0.160319 -19.34 0.281297 -19.35 0.405531 -19.36 0.529284 -19.37 0.648907 -19.38 0.760615 -19.39 0.860603 -19.4 0.945175 -19.41 1.01087 -19.42 1.0546 -19.43 1.0723 -19.44 1.0623 -19.45 1.02443 -19.46 0.958428 -19.47 0.864912 -19.48 0.745379 -19.49 0.602222 -19.5 0.438687 -19.51 0.258805 -19.52 0.0668483 -19.53 -0.130751 -19.54 -0.328019 -19.55 -0.51904 -19.56 -0.697914 -19.57 -0.858948 -19.58 -0.996855 -19.59 -1.10694 -19.6 -1.18529 -19.61 -1.22571 -19.62 -1.22908 -19.63 -1.19504 -19.64 -1.12426 -19.65 -1.01858 -19.66 -0.881009 -19.67 -0.715634 -19.68 -0.52751 -19.69 -0.322404 -19.7 -0.106756 -19.71 0.111129 -19.72 0.324107 -19.73 0.525114 -19.74 0.707387 -19.75 0.864681 -19.76 0.991464 -19.77 1.08309 -19.78 1.13486 -19.79 1.14246 -19.8 1.10749 -19.81 1.03015 -19.82 0.911849 -19.83 0.755089 -19.84 0.56341 -19.85 0.341232 -19.86 0.0936976 -19.87 -0.174058 -19.88 -0.455357 -19.89 -0.743048 -19.9 -1.03103 -19.91 -1.31348 -19.92 -1.58501 -19.93 -1.84082 -19.94 -2.07678 -19.95 -2.28954 -19.96 -2.475 -19.97 -2.63197 -19.98 -2.76066 -19.99 -2.86114 -20 -2.93415 -20.01 -2.98098 -20.02 -3.0034 -20.03 -3.00349 -20.04 -2.98353 -20.05 -2.94473 -20.06 -2.89053 -20.07 -2.82328 -20.08 -2.74475 -20.09 -2.65632 -20.1 -2.55897 -20.11 -2.45325 -20.12 -2.3393 -20.13 -2.21686 -20.14 -2.08443 -20.15 -1.94181 -20.16 -1.78792 -20.17 -1.62162 -20.18 -1.44177 -20.19 -1.24742 -20.2 -1.03783 -20.21 -0.812622 -20.22 -0.571654 -20.23 -0.314546 -20.24 -0.0437377 -20.25 0.239012 -20.26 0.531387 -20.27 0.830539 -20.28 1.13314 -20.29 1.43544 -20.3 1.73338 -20.31 2.0223 -20.32 2.29682 -20.33 2.55321 -20.34 2.78728 -20.35 2.99517 -20.36 3.17343 -20.37 3.31913 -20.38 3.42997 -20.39 3.50435 -20.4 3.53978 -20.41 3.5361 -20.42 3.49604 -20.43 3.42129 -20.44 3.31423 -20.45 3.17795 -20.46 3.01606 -20.47 2.83268 -20.48 2.63226 -20.49 2.41905 -20.5 2.19865 -20.51 1.97616 -20.52 1.75604 -20.53 1.54244 -20.54 1.33905 -20.55 1.14903 -20.56 0.974922 -20.57 0.818601 -20.58 0.682708 -20.59 0.566533 -20.6 0.469369 -20.61 0.390191 -20.62 0.327393 -20.63 0.278877 -20.64 0.242142 -20.65 0.214394 -20.66 0.192663 -20.67 0.17391 -20.68 0.154678 -20.69 0.1322 -20.7 0.103995 -20.71 0.0679476 -20.72 0.0223701 -20.73 -0.0339523 -20.74 -0.101737 -20.75 -0.181367 -20.76 -0.273215 -20.77 -0.375553 -20.78 -0.487181 -20.79 -0.606581 -20.8 -0.732003 -20.81 -0.861538 -20.82 -0.993213 -20.83 -1.12507 -20.84 -1.25513 -20.85 -1.38139 -20.86 -1.50255 -20.87 -1.6174 -20.88 -1.72504 -20.89 -1.82481 -20.9 -1.91634 -20.91 -1.99945 -20.92 -2.07416 -20.93 -2.14023 -20.94 -2.19786 -20.95 -2.24757 -20.96 -2.28943 -20.97 -2.3233 -20.98 -2.34887 -20.99 -2.36556 -21 -2.3725 -21.01 -2.36858 -21.02 -2.35153 -21.03 -2.31993 -21.04 -2.27233 -21.05 -2.20685 -21.06 -2.12163 -21.07 -2.0149 -21.08 -1.88516 -21.09 -1.73119 -21.1 -1.55227 -21.11 -1.34624 -21.12 -1.11524 -21.13 -0.860893 -21.14 -0.585168 -21.15 -0.290774 -21.16 0.0188713 -21.17 0.339688 -21.18 0.667013 -21.19 0.9957 -21.2 1.31935 -21.21 1.63219 -21.22 1.92851 -21.23 2.20276 -21.24 2.44974 -21.25 2.66475 -21.26 2.84376 -21.27 2.98355 -21.28 3.08107 -21.29 3.13246 -21.3 3.14088 -21.31 3.10735 -21.32 3.03399 -21.33 2.92386 -21.34 2.78092 -21.35 2.60991 -21.36 2.41617 -21.37 2.20517 -21.38 1.98343 -21.39 1.75805 -21.4 1.53504 -21.41 1.32006 -21.42 1.1183 -21.43 0.934299 -21.44 0.771828 -21.45 0.633823 -21.46 0.523647 -21.47 0.44227 -21.48 0.388472 -21.49 0.361323 -21.5 0.359098 -21.51 0.379372 -21.52 0.419139 -21.53 0.474951 -21.54 0.543059 -21.55 0.619842 -21.56 0.700688 -21.57 0.781652 -21.58 0.859293 -21.59 0.930559 -21.6 0.99286 -21.61 1.04412 -21.62 1.08282 -21.63 1.10799 -21.64 1.11808 -21.65 1.11417 -21.66 1.09701 -21.67 1.06751 -21.68 1.02684 -21.69 0.976304 -21.7 0.917291 -21.71 0.851153 -21.72 0.779117 -21.73 0.701927 -21.74 0.620874 -21.75 0.536476 -21.76 0.448974 -21.77 0.358338 -21.78 0.264296 -21.79 0.166375 -21.8 0.063957 -21.81 -0.0437674 -21.82 -0.157879 -21.83 -0.278584 -21.84 -0.406308 -21.85 -0.541238 -21.86 -0.683268 -21.87 -0.831954 -21.88 -0.986488 -21.89 -1.14569 -21.9 -1.30804 -21.91 -1.47143 -21.92 -1.63347 -21.93 -1.7917 -21.94 -1.94358 -21.95 -2.08649 -21.96 -2.21791 -21.97 -2.33545 -21.98 -2.43699 -21.99 -2.51977 -22 -2.5825 -22.01 -2.62518 -22.02 -2.64757 -22.03 -2.65001 -22.04 -2.63338 -22.05 -2.59909 -22.06 -2.54902 -22.07 -2.48547 -22.08 -2.41052 -22.09 -2.32778 -22.1 -2.24051 -22.11 -2.15164 -22.12 -2.06399 -22.13 -1.98013 -22.14 -1.90228 -22.15 -1.83224 -22.16 -1.77129 -22.17 -1.72102 -22.18 -1.68083 -22.19 -1.65009 -22.2 -1.62776 -22.21 -1.6123 -22.22 -1.60176 -22.23 -1.59385 -22.24 -1.58606 -22.25 -1.57574 -22.26 -1.55957 -22.27 -1.53533 -22.28 -1.50077 -22.29 -1.45396 -22.3 -1.39341 -22.31 -1.31807 -22.32 -1.22742 -22.33 -1.12147 -22.34 -1.00045 -22.35 -0.864888 -22.36 -0.717399 -22.37 -0.55994 -22.38 -0.394762 -22.39 -0.224315 -22.4 -0.0511574 -22.41 0.122141 -22.42 0.293091 -22.43 0.459111 -22.44 0.617786 -22.45 0.767683 -22.46 0.907442 -22.47 1.03608 -22.48 1.15296 -22.49 1.25785 -22.5 1.35078 -22.51 1.4321 -22.52 1.50182 -22.53 1.56091 -22.54 1.61061 -22.55 1.65175 -22.56 1.6851 -22.57 1.71133 -22.58 1.73098 -22.59 1.74441 -22.6 1.7518 -22.61 1.75274 -22.62 1.74733 -22.63 1.73541 -22.64 1.71665 -22.65 1.69068 -22.66 1.65718 -22.67 1.61595 -22.68 1.56695 -22.69 1.51035 -22.7 1.446 -22.71 1.37526 -22.72 1.29922 -22.73 1.21918 -22.74 1.13671 -22.75 1.05353 -22.76 0.971537 -22.77 0.892672 -22.78 0.818923 -22.79 0.752801 -22.8 0.695442 -22.81 0.648142 -22.82 0.611842 -22.83 0.587067 -22.84 0.573892 -22.85 0.571921 -22.86 0.580288 -22.87 0.597853 -22.88 0.623002 -22.89 0.653021 -22.9 0.685569 -22.91 0.718178 -22.92 0.748361 -22.93 0.773721 -22.94 0.792059 -22.95 0.801479 -22.96 0.800017 -22.97 0.786426 -22.98 0.760868 -22.99 0.7235 -23 0.675025 -23.01 0.616669 -23.02 0.550122 -23.03 0.477471 -23.04 0.401097 -23.05 0.323665 -23.06 0.24814 -23.07 0.177111 -23.08 0.112927 -23.09 0.0576188 -23.1 0.0128024 -23.11 -0.0204029 -23.12 -0.0414293 -23.13 -0.0502927 -23.14 -0.0468583 -23.15 -0.0330749 -23.16 -0.0109798 -23.17 0.0172099 -23.18 0.0489553 -23.19 0.0815084 -23.2 0.112036 -23.21 0.137745 -23.22 0.156011 -23.23 0.163471 -23.24 0.158897 -23.25 0.140999 -23.26 0.108996 -23.27 0.0627 -23.28 0.00252891 -23.29 -0.0705133 -23.3 -0.154877 -23.31 -0.248602 -23.32 -0.349475 -23.33 -0.453987 -23.34 -0.559205 -23.35 -0.662151 -23.36 -0.759924 -23.37 -0.849798 -23.38 -0.929322 -23.39 -0.9964 -23.4 -1.04895 -23.41 -1.08506 -23.42 -1.10504 -23.43 -1.10876 -23.44 -1.09649 -23.45 -1.06893 -23.46 -1.02711 -23.47 -0.972346 -23.48 -0.906141 -23.49 -0.829779 -23.5 -0.74506 -23.51 -0.654087 -23.52 -0.558369 -23.53 -0.45927 -23.54 -0.357968 -23.55 -0.255446 -23.56 -0.152487 -23.57 -0.049689 -23.58 0.0524593 -23.59 0.153637 -23.6 0.253649 -23.61 0.352303 -23.62 0.449388 -23.63 0.544632 -23.64 0.63767 -23.65 0.728021 -23.66 0.815073 -23.67 0.897725 -23.68 0.975247 -23.69 1.04676 -23.7 1.11125 -23.71 1.16772 -23.72 1.21524 -23.73 1.25295 -23.74 1.28019 -23.75 1.29648 -23.76 1.3006 -23.77 1.29363 -23.78 1.27599 -23.79 1.24839 -23.8 1.21176 -23.81 1.16731 -23.82 1.11641 -23.83 1.06053 -23.84 1.00123 -23.85 0.94004 -23.86 0.878625 -23.87 0.818201 -23.88 0.759731 -23.89 0.703872 -23.9 0.650934 -23.91 0.60085 -23.92 0.553174 -23.93 0.5071 -23.94 0.461315 -23.95 0.414211 -23.96 0.364056 -23.97 0.308981 -23.98 0.24706 -23.99 0.176406 -24 0.095252 -24.01 0.00204348 -24.02 -0.105123 -24.03 -0.227269 -24.04 -0.364156 -24.05 -0.515738 -24.06 -0.681509 -24.07 -0.860504 -24.08 -1.05133 -24.09 -1.25219 -24.1 -1.46095 -24.11 -1.67538 -24.12 -1.89239 -24.13 -2.10906 -24.14 -2.32258 -24.15 -2.53021 -24.16 -2.7293 -24.17 -2.91735 -24.18 -3.09208 -24.19 -3.25144 -24.2 -3.39218 -24.21 -3.51369 -24.22 -3.615 -24.23 -3.69509 -24.24 -3.75315 -24.25 -3.78852 -24.26 -3.80069 -24.27 -3.78925 -24.28 -3.75388 -24.29 -3.6921 -24.3 -3.60592 -24.31 -3.49523 -24.32 -3.36 -24.33 -3.20032 -24.34 -3.01639 -24.35 -2.80862 -24.36 -2.57764 -24.37 -2.32405 -24.38 -2.04795 -24.39 -1.75272 -24.4 -1.44046 -24.41 -1.11368 -24.42 -0.7753 -24.43 -0.428637 -24.44 -0.0773746 -24.45 0.274496 -24.46 0.622488 -24.47 0.961466 -24.48 1.28726 -24.49 1.59552 -24.5 1.88211 -24.51 2.1432 -24.52 2.37539 -24.53 2.57581 -24.54 2.7422 -24.55 2.87129 -24.56 2.96227 -24.57 3.01688 -24.58 3.036 -24.59 3.02124 -24.6 2.97487 -24.61 2.89979 -24.62 2.7994 -24.63 2.67751 -24.64 2.5374 -24.65 2.38435 -24.66 2.22311 -24.67 2.0578 -24.68 1.89226 -24.69 1.73 -24.7 1.57405 -24.71 1.42696 -24.72 1.29067 -24.73 1.16757 -24.74 1.05763 -24.75 0.960713 -24.76 0.876361 -24.77 0.803622 -24.78 0.74115 -24.79 0.687283 -24.8 0.640133 -24.81 0.597683 -24.82 0.557914 -24.83 0.518445 -24.84 0.477437 -24.85 0.433272 -24.86 0.384613 -24.87 0.33044 -24.88 0.270088 -24.89 0.203264 -24.9 0.129942 -24.91 0.050315 -24.92 -0.0342715 -24.93 -0.122636 -24.94 -0.213325 -24.95 -0.304654 -24.96 -0.39476 -24.97 -0.481641 -24.98 -0.563215 -24.99 -0.637043 -25 -0.70054 -25.01 -0.752145 -25.02 -0.789957 -25.03 -0.812239 -25.04 -0.817453 -25.05 -0.804298 -25.06 -0.771743 -25.07 -0.719061 -25.08 -0.644842 -25.09 -0.549211 -25.1 -0.43348 -25.11 -0.298466 -25.12 -0.14539 -25.13 0.0241266 -25.14 0.208066 -25.15 0.40403 -25.16 0.609266 -25.17 0.820882 -25.18 1.03492 -25.19 1.2476 -25.2 1.45521 -25.21 1.65396 -25.22 1.84008 -25.23 2.00993 -25.24 2.16006 -25.25 2.28734 -25.26 2.38673 -25.27 2.45758 -25.28 2.49855 -25.29 2.50859 -25.3 2.48732 -25.31 2.43498 -25.32 2.35252 -25.33 2.2415 -25.34 2.10401 -25.35 1.94113 -25.36 1.75848 -25.37 1.55977 -25.38 1.34896 -25.39 1.1302 -25.4 0.907646 -25.41 0.685412 -25.42 0.467412 -25.43 0.257497 -25.44 0.0597822 -25.45 -0.123683 -25.46 -0.290784 -25.47 -0.439984 -25.48 -0.570342 -25.49 -0.681506 -25.5 -0.773693 -25.51 -0.847644 -25.52 -0.904015 -25.53 -0.944305 -25.54 -0.971422 -25.55 -0.987506 -25.56 -0.994785 -25.57 -0.995485 -25.58 -0.991735 -25.59 -0.985488 -25.6 -0.978452 -25.61 -0.972124 -25.62 -0.967638 -25.63 -0.965573 -25.64 -0.96617 -25.65 -0.969309 -25.66 -0.974549 -25.67 -0.981159 -25.68 -0.988184 -25.69 -0.994496 -25.7 -0.998656 -25.71 -0.999366 -25.72 -0.99549 -25.73 -0.985962 -25.74 -0.969899 -25.75 -0.946651 -25.76 -0.915835 -25.77 -0.877363 -25.78 -0.831459 -25.79 -0.77815 -25.8 -0.718892 -25.81 -0.654911 -25.82 -0.5876 -25.83 -0.518537 -25.84 -0.449432 -25.85 -0.382077 -25.86 -0.318284 -25.87 -0.259875 -25.88 -0.209241 -25.89 -0.167398 -25.9 -0.135642 -25.91 -0.115029 -25.92 -0.106345 -25.93 -0.110084 -25.94 -0.126437 -25.95 -0.155285 -25.96 -0.196457 -25.97 -0.249674 -25.98 -0.313051 -25.99 -0.385309 -26 -0.464964 -26.01 -0.550372 -26.02 -0.639761 -26.03 -0.731282 -26.04 -0.82305 -26.05 -0.913053 -26.06 -0.999202 -26.07 -1.0799 -26.08 -1.15359 -26.09 -1.21888 -26.1 -1.27462 -26.11 -1.31985 -26.12 -1.35389 -26.13 -1.37632 -26.14 -1.38638 -26.15 -1.38443 -26.16 -1.37139 -26.17 -1.348 -26.18 -1.31523 -26.19 -1.27424 -26.2 -1.22643 -26.21 -1.17329 -26.22 -1.11647 -26.23 -1.05764 -26.24 -0.998777 -26.25 -0.941607 -26.26 -0.887722 -26.27 -0.838589 -26.28 -0.795499 -26.29 -0.759537 -26.3 -0.731542 -26.31 -0.712079 -26.32 -0.702175 -26.33 -0.701052 -26.34 -0.708234 -26.35 -0.723002 -26.36 -0.744349 -26.37 -0.771 -26.38 -0.801443 -26.39 -0.83397 -26.4 -0.866702 -26.41 -0.89734 -26.42 -0.923867 -26.43 -0.944272 -26.44 -0.95662 -26.45 -0.959096 -26.46 -0.950064 -26.47 -0.928106 -26.48 -0.892067 -26.49 -0.840707 -26.5 -0.772802 -26.51 -0.689255 -26.52 -0.590303 -26.53 -0.476527 -26.54 -0.348847 -26.55 -0.208495 -26.56 -0.0569951 -26.57 0.10388 -26.58 0.272354 -26.59 0.446063 -26.6 0.622361 -26.61 0.79893 -26.62 0.973463 -26.63 1.14372 -26.64 1.30757 -26.65 1.46307 -26.66 1.60846 -26.67 1.74153 -26.68 1.86119 -26.69 1.96702 -26.7 2.05852 -26.71 2.13549 -26.72 2.19805 -26.73 2.24665 -26.74 2.282 -26.75 2.30508 -26.76 2.31639 -26.77 2.31801 -26.78 2.31167 -26.79 2.29896 -26.8 2.28143 -26.81 2.2606 -26.82 2.23791 -26.83 2.21461 -26.84 2.19178 -26.85 2.17042 -26.86 2.15098 -26.87 2.13369 -26.88 2.11845 -26.89 2.10488 -26.9 2.09233 -26.91 2.07984 -26.92 2.06627 -26.93 2.0502 -26.94 2.02968 -26.95 2.00333 -26.96 1.96951 -26.97 1.92663 -26.98 1.8732 -26.99 1.8079 -27 1.7296 -27.01 1.63744 -27.02 1.53047 -27.03 1.4079 -27.04 1.27088 -27.05 1.11998 -27.06 0.956112 -27.07 0.780516 -27.08 0.594761 -27.09 0.400683 -27.1 0.200351 -27.11 -0.00405243 -27.12 -0.209861 -27.13 -0.414444 -27.14 -0.615367 -27.15 -0.810257 -27.16 -0.996861 -27.17 -1.17309 -27.18 -1.33707 -27.19 -1.48717 -27.2 -1.62105 -27.21 -1.73793 -27.22 -1.83759 -27.23 -1.91961 -27.24 -1.98382 -27.25 -2.03032 -27.26 -2.05943 -27.27 -2.07171 -27.28 -2.06786 -27.29 -2.04769 -27.3 -2.01314 -27.31 -1.96555 -27.32 -1.90605 -27.33 -1.83577 -27.34 -1.75586 -27.35 -1.66745 -27.36 -1.57164 -27.37 -1.46951 -27.38 -1.36169 -27.39 -1.24972 -27.4 -1.13453 -27.41 -1.01704 -27.42 -0.898098 -27.43 -0.778532 -27.44 -0.659133 -27.45 -0.540656 -27.46 -0.423854 -27.47 -0.309621 -27.48 -0.198445 -27.49 -0.0908956 -27.5 0.0125118 -27.51 0.111329 -27.52 0.205177 -27.53 0.293754 -27.54 0.376834 -27.55 0.454102 -27.56 0.52529 -27.57 0.590765 -27.58 0.650594 -27.59 0.704887 -27.6 0.753782 -27.61 0.797429 -27.62 0.835975 -27.63 0.869543 -27.64 0.897997 -27.65 0.921357 -27.66 0.939805 -27.67 0.953225 -27.68 0.96143 -27.69 0.964168 -27.7 0.961132 -27.71 0.951975 -27.72 0.936335 -27.73 0.913417 -27.74 0.883073 -27.75 0.845278 -27.76 0.799897 -27.77 0.746919 -27.78 0.686486 -27.79 0.618914 -27.8 0.544701 -27.81 0.464537 -27.82 0.378991 -27.83 0.289549 -27.84 0.197532 -27.85 0.104299 -27.86 0.0112931 -27.87 -0.0800047 -27.88 -0.168124 -27.89 -0.251653 -27.9 -0.32929 -27.91 -0.399159 -27.92 -0.46094 -27.93 -0.514001 -27.94 -0.557994 -27.95 -0.592864 -27.96 -0.618865 -27.97 -0.636552 -27.98 -0.646762 -27.99 -0.650513 -28 -0.648966 -28.01 -0.644111 -28.02 -0.637563 -28.03 -0.630975 -28.04 -0.625974 -28.05 -0.624097 -28.06 -0.626733 -28.07 -0.635067 -28.08 -0.65026 -28.09 -0.673205 -28.1 -0.703742 -28.11 -0.74179 -28.12 -0.786941 -28.13 -0.838477 -28.14 -0.895393 -28.15 -0.956444 -28.16 -1.02019 -28.17 -1.08501 -28.18 -1.14905 -28.19 -1.21058 -28.2 -1.26803 -28.21 -1.31991 -28.22 -1.36495 -28.23 -1.40207 -28.24 -1.43047 -28.25 -1.44964 -28.26 -1.45876 -28.27 -1.45829 -28.28 -1.44892 -28.29 -1.43132 -28.3 -1.40639 -28.31 -1.37516 -28.32 -1.3388 -28.33 -1.29852 -28.34 -1.25554 -28.35 -1.21097 -28.36 -1.16602 -28.37 -1.12154 -28.38 -1.07814 -28.39 -1.0362 -28.4 -0.995841 -28.41 -0.956908 -28.42 -0.919001 -28.43 -0.881475 -28.44 -0.843336 -28.45 -0.803496 -28.46 -0.760782 -28.47 -0.713957 -28.48 -0.661783 -28.49 -0.603078 -28.5 -0.53677 -28.51 -0.461956 -28.52 -0.377767 -28.53 -0.283215 -28.54 -0.17891 -28.55 -0.0650895 -28.56 0.0576917 -28.57 0.18856 -28.58 0.326339 -28.59 0.469578 -28.6 0.616581 -28.61 0.765448 -28.62 0.913884 -28.63 1.05966 -28.64 1.20061 -28.65 1.33462 -28.66 1.4597 -28.67 1.57399 -28.68 1.67585 -28.69 1.76391 -28.7 1.83627 -28.71 1.89221 -28.72 1.93201 -28.73 1.95564 -28.74 1.96338 -28.75 1.95586 -28.76 1.93399 -28.77 1.89891 -28.78 1.852 -28.79 1.79425 -28.8 1.7279 -28.81 1.65497 -28.82 1.57722 -28.83 1.49634 -28.84 1.41396 -28.85 1.33157 -28.86 1.25052 -28.87 1.17196 -28.88 1.09717 -28.89 1.02668 -28.9 0.960917 -28.91 0.900153 -28.92 0.844457 -28.93 0.793734 -28.94 0.747745 -28.95 0.70614 -28.96 0.668506 -28.97 0.63461 -28.98 0.60363 -28.99 0.575115 -29 0.548668 -29.01 0.523974 -29.02 0.500814 -29.03 0.479076 -29.04 0.458764 -29.05 0.440027 -29.06 0.423206 -29.07 0.408512 -29.08 0.396332 -29.09 0.387089 -29.1 0.38122 -29.11 0.379141 -29.12 0.381223 -29.13 0.387759 -29.14 0.399113 -29.15 0.415436 -29.16 0.436357 -29.17 0.461611 -29.18 0.490767 -29.19 0.523239 -29.2 0.558284 -29.21 0.595023 -29.22 0.632455 -29.23 0.669398 -29.24 0.704545 -29.25 0.736709 -29.26 0.764682 -29.27 0.787288 -29.28 0.803418 -29.29 0.812052 -29.3 0.812287 -29.31 0.803359 -29.32 0.783966 -29.33 0.754069 -29.34 0.713682 -29.35 0.66275 -29.36 0.601388 -29.37 0.529875 -29.38 0.448634 -29.39 0.358225 -29.4 0.259324 -29.41 0.152132 -29.42 0.0381649 -29.43 -0.0815836 -29.44 -0.206146 -29.45 -0.334528 -29.46 -0.465723 -29.47 -0.598724 -29.48 -0.732528 -29.49 -0.866135 -29.5 -0.99839 -29.51 -1.12838 -29.52 -1.25516 -29.53 -1.37785 -29.54 -1.49556 -29.55 -1.60744 -29.56 -1.71267 -29.57 -1.81045 -29.58 -1.89982 -29.59 -1.97959 -29.6 -2.04968 -29.61 -2.10951 -29.62 -2.15855 -29.63 -2.19636 -29.64 -2.2226 -29.65 -2.23699 -29.66 -2.23939 -29.67 -2.22929 -29.68 -2.20657 -29.69 -2.17209 -29.7 -2.12615 -29.71 -2.06916 -29.72 -2.00161 -29.73 -1.9241 -29.74 -1.83729 -29.75 -1.7419 -29.76 -1.63833 -29.77 -1.52762 -29.78 -1.4109 -29.79 -1.28903 -29.8 -1.16284 -29.81 -1.03319 -29.82 -0.900907 -29.83 -0.766794 -29.84 -0.631644 -29.85 -0.496262 -29.86 -0.361482 -29.87 -0.228035 -29.88 -0.0966341 -29.89 0.0320226 -29.9 0.157249 -29.91 0.278373 -29.92 0.394737 -29.93 0.505701 -29.94 0.610085 -29.95 0.707745 -29.96 0.798194 -29.97 0.880964 -29.98 0.955657 -29.99 1.02196 -30 1.07964 -30.01 1.12858 -30.02 1.1687 -30.03 1.19949 -30.04 1.22192 -30.05 1.23637 -30.06 1.24329 -30.07 1.24325 -30.08 1.23687 -30.09 1.22485 -30.1 1.20788 -30.11 1.18661 -30.12 1.16163 -30.13 1.13385 -30.14 1.1038 -30.15 1.07192 -30.16 1.03851 -30.17 1.00375 -30.18 0.96767 -30.19 0.930174 -30.2 0.890938 -30.21 0.84953 -30.22 0.805566 -30.23 0.758512 -30.24 0.707805 -30.25 0.652884 -30.26 0.593229 -30.27 0.528396 -30.28 0.458053 -30.29 0.381683 -30.3 0.299405 -30.31 0.211634 -30.32 0.118777 -30.33 0.0214471 -30.34 -0.079551 -30.35 -0.183232 -30.36 -0.288455 -30.37 -0.393954 -30.38 -0.49819 -30.39 -0.599678 -30.4 -0.697039 -30.41 -0.788918 -30.42 -0.874054 -30.43 -0.951312 -30.44 -1.01972 -30.45 -1.07849 -30.46 -1.12705 -30.47 -1.16409 -30.48 -1.19038 -30.49 -1.20607 -30.5 -1.21145 -30.51 -1.207 -30.52 -1.19329 -30.53 -1.17102 -30.54 -1.14092 -30.55 -1.10371 -30.56 -1.05977 -30.57 -1.01034 -30.58 -0.956058 -30.59 -0.897421 -30.6 -0.834842 -30.61 -0.768613 -30.62 -0.698925 -30.63 -0.625873 -30.64 -0.54939 -30.65 -0.469329 -30.66 -0.385879 -30.67 -0.299045 -30.68 -0.2089 -30.69 -0.115621 -30.7 -0.0195128 -30.71 0.0789599 -30.72 0.179161 -30.73 0.280265 -30.74 0.381124 -30.75 0.480491 -30.76 0.577013 -30.77 0.66923 -30.78 0.755611 -30.79 0.834604 -30.8 0.904689 -30.81 0.964432 -30.82 1.01179 -30.83 1.04589 -30.84 1.06634 -30.85 1.07267 -30.86 1.06477 -30.87 1.04284 -30.88 1.00751 -30.89 0.959743 -30.9 0.900871 -30.91 0.832002 -30.92 0.755861 -30.93 0.674855 -30.94 0.5914 -30.95 0.508006 -30.96 0.427217 -30.97 0.351525 -30.98 0.283303 -30.99 0.224733 -31 0.178933 -31.01 0.146546 -31.02 0.128696 -31.03 0.126118 -31.04 0.139109 -31.05 0.16752 -31.06 0.21076 -31.07 0.267812 -31.08 0.337405 -31.09 0.418228 -31.1 0.507177 -31.11 0.601863 -31.12 0.699723 -31.13 0.79809 -31.14 0.894262 -31.15 0.985571 -31.16 1.06945 -31.17 1.14313 -31.18 1.20383 -31.19 1.25034 -31.2 1.28113 -31.21 1.29503 -31.22 1.29124 -31.23 1.26933 -31.24 1.22926 -31.25 1.17134 -31.26 1.09549 -31.27 1.00286 -31.28 0.895581 -31.29 0.775224 -31.3 0.643563 -31.31 0.50252 -31.32 0.354121 -31.33 0.200449 -31.34 0.0436012 -31.35 -0.114296 -31.36 -0.271002 -31.37 -0.424615 -31.38 -0.573395 -31.39 -0.715754 -31.4 -0.850274 -31.41 -0.975713 -31.42 -1.09101 -31.43 -1.19527 -31.44 -1.28682 -31.45 -1.36582 -31.46 -1.43206 -31.47 -1.48526 -31.48 -1.52529 -31.49 -1.55207 -31.5 -1.56561 -31.51 -1.56599 -31.52 -1.5533 -31.53 -1.52656 -31.54 -1.48717 -31.55 -1.43536 -31.56 -1.37143 -31.57 -1.29571 -31.58 -1.20862 -31.59 -1.11062 -31.6 -1.0023 -31.61 -0.884204 -31.62 -0.756706 -31.63 -0.621518 -31.64 -0.479773 -31.65 -0.332767 -31.66 -0.181948 -31.67 -0.0289203 -31.68 0.124575 -31.69 0.276674 -31.7 0.425239 -31.71 0.567856 -31.72 0.70269 -31.73 0.827716 -31.74 0.940977 -31.75 1.04064 -31.76 1.12503 -31.77 1.1927 -31.78 1.24245 -31.79 1.27244 -31.8 1.28212 -31.81 1.27221 -31.82 1.24291 -31.83 1.19482 -31.84 1.12887 -31.85 1.04637 -31.86 0.948914 -31.87 0.838369 -31.88 0.716291 -31.89 0.585608 -31.9 0.44904 -31.91 0.309043 -31.92 0.16805 -31.93 0.0284178 -31.94 -0.107637 -31.95 -0.23808 -31.96 -0.361112 -31.97 -0.474385 -31.98 -0.577191 -31.99 -0.668785 -32 -0.74862 -32.01 -0.816458 -32.02 -0.872346 -32.03 -0.916603 -32.04 -0.949775 -32.05 -0.972582 -32.06 -0.985205 -32.07 -0.989586 -32.08 -0.986811 -32.09 -0.977977 -32.1 -0.964158 -32.11 -0.946367 -32.12 -0.925528 -32.13 -0.902456 -32.14 -0.877822 -32.15 -0.85217 -32.16 -0.825993 -32.17 -0.799547 -32.18 -0.772971 -32.19 -0.746301 -32.2 -0.719486 -32.21 -0.692411 -32.22 -0.664914 -32.23 -0.636781 -32.24 -0.607778 -32.25 -0.577762 -32.26 -0.546576 -32.27 -0.514097 -32.28 -0.480235 -32.29 -0.444942 -32.3 -0.408199 -32.31 -0.370022 -32.32 -0.330376 -32.33 -0.289332 -32.34 -0.247001 -32.35 -0.203432 -32.36 -0.158666 -32.37 -0.112726 -32.38 -0.0656177 -32.39 -0.0173356 -32.4 0.0321377 -32.41 0.0829017 -32.42 0.134916 -32.43 0.18813 -32.44 0.242485 -32.45 0.297867 -32.46 0.354093 -32.47 0.410901 -32.48 0.467935 -32.49 0.524741 -32.5 0.580645 -32.51 0.634976 -32.52 0.686976 -32.53 0.7358 -32.54 0.780543 -32.55 0.820267 -32.56 0.854021 -32.57 0.880873 -32.58 0.899896 -32.59 0.909521 -32.6 0.909779 -32.61 0.900164 -32.62 0.88034 -32.63 0.850166 -32.64 0.809713 -32.65 0.759268 -32.66 0.699342 -32.67 0.630496 -32.68 0.553392 -32.69 0.469804 -32.7 0.381049 -32.71 0.288567 -32.72 0.193893 -32.73 0.0986113 -32.74 0.004324 -32.75 -0.0873927 -32.76 -0.174819 -32.77 -0.256286 -32.78 -0.330785 -32.79 -0.397235 -32.8 -0.454745 -32.81 -0.502625 -32.82 -0.540401 -32.83 -0.567811 -32.84 -0.584807 -32.85 -0.591022 -32.86 -0.586995 -32.87 -0.57368 -32.88 -0.551761 -32.89 -0.522038 -32.9 -0.485396 -32.91 -0.442777 -32.92 -0.395156 -32.93 -0.343511 -32.94 -0.288658 -32.95 -0.231742 -32.96 -0.173683 -32.97 -0.115262 -32.98 -0.0571777 -32.99 -4.56003e-05 -33 0.0556027 -33.01 0.109318 -33.02 0.160726 -33.03 0.209283 -33.04 0.25493 -33.05 0.297501 -33.06 0.336848 -33.07 0.372849 -33.08 0.405399 -33.09 0.434408 -33.1 0.459792 -33.11 0.481445 -33.12 0.498997 -33.13 0.512701 -33.14 0.522509 -33.15 0.528394 -33.16 0.530358 -33.17 0.528442 -33.18 0.522734 -33.19 0.513376 -33.2 0.5005 -33.21 0.484277 -33.22 0.465307 -33.23 0.444028 -33.24 0.42095 -33.25 0.396646 -33.26 0.371743 -33.27 0.346909 -33.28 0.322837 -33.29 0.300312 -33.3 0.280127 -33.31 0.262834 -33.32 0.249003 -33.33 0.239112 -33.34 0.233533 -33.35 0.232507 -33.36 0.236131 -33.37 0.244343 -33.38 0.257137 -33.39 0.273974 -33.4 0.294097 -33.41 0.316757 -33.42 0.341068 -33.43 0.366021 -33.44 0.390518 -33.45 0.413391 -33.46 0.433439 -33.47 0.44909 -33.48 0.459268 -33.49 0.462985 -33.5 0.459271 -33.51 0.447299 -33.52 0.426403 -33.53 0.396108 -33.54 0.356139 -33.55 0.306434 -33.56 0.246352 -33.57 0.177103 -33.58 0.0993637 -33.59 0.0139454 -33.6 -0.0781746 -33.61 -0.175876 -33.62 -0.277923 -33.63 -0.382995 -33.64 -0.489715 -33.65 -0.596563 -33.66 -0.702027 -33.67 -0.804756 -33.68 -0.903455 -33.69 -0.996911 -33.7 -1.08401 -33.71 -1.16373 -33.72 -1.23517 -33.73 -1.29728 -33.74 -1.34893 -33.75 -1.39017 -33.76 -1.42055 -33.77 -1.43968 -33.78 -1.44728 -33.79 -1.44312 -33.8 -1.42702 -33.81 -1.39889 -33.82 -1.35815 -33.83 -1.30469 -33.84 -1.23919 -33.85 -1.16177 -33.86 -1.07264 -33.87 -0.97208 -33.88 -0.860483 -33.89 -0.738348 -33.9 -0.606304 -33.91 -0.464652 -33.92 -0.314642 -33.93 -0.157704 -33.94 0.00489026 -33.95 0.171712 -33.96 0.341188 -33.97 0.511612 -33.98 0.681168 -33.99 0.847949 -34 1.0095 -34.01 1.16391 -34.02 1.3093 -34.03 1.44378 -34.04 1.56555 -34.05 1.67295 -34.06 1.76449 -34.07 1.83887 -34.08 1.89506 -34.09 1.9305 -34.1 1.94628 -34.11 1.94227 -34.12 1.91855 -34.13 1.87547 -34.14 1.81364 -34.15 1.73389 -34.16 1.6373 -34.17 1.52494 -34.18 1.39742 -34.19 1.25756 -34.2 1.10702 -34.21 0.947524 -34.22 0.780845 -34.23 0.608758 -34.24 0.433025 -34.25 0.255378 -34.26 0.0775409 -34.27 -0.0986404 -34.28 -0.271634 -34.29 -0.439986 -34.3 -0.602327 -34.31 -0.757375 -34.32 -0.903935 -34.33 -1.0409 -34.34 -1.16728 -34.35 -1.28159 -34.36 -1.3829 -34.37 -1.47109 -34.38 -1.5456 -34.39 -1.60599 -34.4 -1.65195 -34.41 -1.68333 -34.42 -1.7001 -34.43 -1.70242 -34.44 -1.68977 -34.45 -1.66307 -34.46 -1.62345 -34.47 -1.57174 -34.48 -1.50891 -34.49 -1.43607 -34.5 -1.35444 -34.51 -1.26533 -34.52 -1.17013 -34.53 -1.07004 -34.54 -0.966912 -34.55 -0.862251 -34.56 -0.757436 -34.57 -0.653768 -34.58 -0.55245 -34.59 -0.454562 -34.6 -0.361049 -34.61 -0.272702 -34.62 -0.190731 -34.63 -0.1151 -34.64 -0.0460907 -34.65 0.0161556 -34.66 0.071627 -34.67 0.120427 -34.68 0.162752 -34.69 0.198877 -34.7 0.229048 -34.71 0.253317 -34.72 0.272513 -34.73 0.287006 -34.74 0.29715 -34.75 0.303273 -34.76 0.305669 -34.77 0.304604 -34.78 0.300311 -34.79 0.292914 -34.8 0.282538 -34.81 0.269558 -34.82 0.254169 -34.83 0.236587 -34.84 0.217055 -34.85 0.195856 -34.86 0.173311 -34.87 0.149791 -34.88 0.125704 -34.89 0.101564 -34.9 0.0778845 -34.91 0.0551749 -34.92 0.0339462 -34.93 0.0146976 -34.94 -0.00210132 -34.95 -0.0160273 -34.96 -0.0267194 -34.97 -0.033663 -34.98 -0.0367669 -34.99 -0.0360636 -35 -0.0315798 -35.01 -0.0234424 -35.02 -0.0118734 -35.03 0.00282019 -35.04 0.0202602 -35.05 0.0400138 -35.06 0.0617195 -35.07 0.0847366 -35.08 0.108573 -35.09 0.1328 -35.1 0.157042 -35.11 0.180998 -35.12 0.20445 -35.13 0.227276 -35.14 0.249451 -35.15 0.271013 -35.16 0.292207 -35.17 0.313298 -35.18 0.334611 -35.19 0.356515 -35.2 0.379397 -35.21 0.403644 -35.22 0.429611 -35.23 0.457646 -35.24 0.488126 -35.25 0.521013 -35.26 0.556311 -35.27 0.593903 -35.28 0.633546 -35.29 0.67487 -35.3 0.717382 -35.31 0.760479 -35.32 0.803429 -35.33 0.845333 -35.34 0.885359 -35.35 0.922637 -35.36 0.956298 -35.37 0.985499 -35.38 1.00945 -35.39 1.02742 -35.4 1.03881 -35.41 1.04272 -35.42 1.03877 -35.43 1.02708 -35.44 1.00755 -35.45 0.980262 -35.46 0.945421 -35.47 0.903366 -35.48 0.854561 -35.49 0.799578 -35.5 0.738779 -35.51 0.673199 -35.52 0.603811 -35.53 0.531476 -35.54 0.45708 -35.55 0.381514 -35.56 0.305664 -35.57 0.230394 -35.58 0.156536 -35.59 0.0851109 -35.6 0.0167536 -35.61 -0.0479131 -35.62 -0.108313 -35.63 -0.16395 -35.64 -0.214414 -35.65 -0.259382 -35.66 -0.298629 -35.67 -0.332002 -35.68 -0.358974 -35.69 -0.380158 -35.7 -0.395741 -35.71 -0.406009 -35.72 -0.41134 -35.73 -0.412199 -35.74 -0.409132 -35.75 -0.402754 -35.76 -0.393704 -35.77 -0.382682 -35.78 -0.370631 -35.79 -0.358319 -35.8 -0.346511 -35.81 -0.335944 -35.82 -0.327318 -35.83 -0.321271 -35.84 -0.318365 -35.85 -0.319216 -35.86 -0.324312 -35.87 -0.333675 -35.88 -0.347416 -35.89 -0.365524 -35.9 -0.387864 -35.91 -0.414182 -35.92 -0.444116 -35.93 -0.477198 -35.94 -0.512972 -35.95 -0.550701 -35.96 -0.589582 -35.97 -0.628881 -35.98 -0.667846 -35.99 -0.705723 -36 -0.741773 -36.01 -0.775284 -36.02 -0.80559 -36.03 -0.83178 -36.04 -0.853411 -36.05 -0.870111 -36.06 -0.881484 -36.07 -0.887205 -36.08 -0.887025 -36.09 -0.880768 -36.1 -0.868326 -36.11 -0.849661 -36.12 -0.824297 -36.13 -0.792789 -36.14 -0.755364 -36.15 -0.712242 -36.16 -0.663705 -36.17 -0.610092 -36.18 -0.551801 -36.19 -0.489292 -36.2 -0.423066 -36.21 -0.353516 -36.22 -0.281613 -36.23 -0.20807 -36.24 -0.13366 -36.25 -0.0592018 -36.26 0.0144469 -36.27 0.0863982 -36.28 0.15575 -36.29 0.221504 -36.3 0.282472 -36.31 0.338081 -36.32 0.387564 -36.33 0.430242 -36.34 0.465541 -36.35 0.493013 -36.36 0.512353 -36.37 0.523409 -36.38 0.525895 -36.39 0.5199 -36.4 0.506276 -36.41 0.485585 -36.42 0.458547 -36.43 0.426017 -36.44 0.38897 -36.45 0.348475 -36.46 0.305665 -36.47 0.261714 -36.48 0.217944 -36.49 0.175526 -36.5 0.135521 -36.51 0.0988886 -36.52 0.0664661 -36.53 0.0389415 -36.54 0.0168372 -36.55 0.000497058 -36.56 -0.00951411 -36.57 -0.0135274 -36.58 -0.0119343 -36.59 -0.00515757 -36.6 0.00622686 -36.61 0.0215103 -36.62 0.039875 -36.63 0.0604208 -36.64 0.0821929 -36.65 0.104148 -36.66 0.125212 -36.67 0.144448 -36.68 0.160982 -36.69 0.174025 -36.7 0.182887 -36.71 0.186996 -36.72 0.185905 -36.73 0.179252 -36.74 0.166422 -36.75 0.147867 -36.76 0.123699 -36.77 0.0941471 -36.78 0.0595497 -36.79 0.0203398 -36.8 -0.0229672 -36.81 -0.0697874 -36.82 -0.119535 -36.83 -0.17155 -36.84 -0.224933 -36.85 -0.278959 -36.86 -0.332903 -36.87 -0.386044 -36.88 -0.437676 -36.89 -0.487112 -36.9 -0.533693 -36.91 -0.576624 -36.92 -0.615191 -36.93 -0.649033 -36.94 -0.677645 -36.95 -0.700566 -36.96 -0.717387 -36.97 -0.72775 -36.98 -0.731356 -36.99 -0.727969 -37 -0.717014 -37.01 -0.69853 -37.02 -0.672777 -37.03 -0.639836 -37.04 -0.599871 -37.05 -0.553136 -37.06 -0.499974 -37.07 -0.440815 -37.08 -0.376177 -37.09 -0.306364 -37.1 -0.232378 -37.11 -0.155087 -37.12 -0.0753114 -37.13 0.00607752 -37.14 0.0881767 -37.15 0.170064 -37.16 0.250811 -37.17 0.329504 -37.18 0.404926 -37.19 0.476416 -37.2 0.543225 -37.21 0.604665 -37.22 0.660142 -37.23 0.709163 -37.24 0.751349 -37.25 0.786438 -37.26 0.814218 -37.27 0.834174 -37.28 0.847046 -37.29 0.853099 -37.3 0.852715 -37.31 0.846382 -37.32 0.834686 -37.33 0.818295 -37.34 0.797944 -37.35 0.774362 -37.36 0.748377 -37.37 0.721036 -37.38 0.693181 -37.39 0.665633 -37.4 0.639173 -37.41 0.61453 -37.42 0.592363 -37.43 0.573249 -37.44 0.557835 -37.45 0.546565 -37.46 0.5395 -37.47 0.536763 -37.48 0.53836 -37.49 0.544176 -37.5 0.553981 -37.51 0.567432 -37.52 0.584083 -37.53 0.603508 -37.54 0.624934 -37.55 0.647557 -37.56 0.670607 -37.57 0.693272 -37.58 0.714716 -37.59 0.734091 -37.6 0.750558 -37.61 0.763299 -37.62 0.771147 -37.63 0.773563 -37.64 0.769986 -37.65 0.759857 -37.66 0.742705 -37.67 0.718167 -37.68 0.685986 -37.69 0.646027 -37.7 0.598273 -37.71 0.542167 -37.72 0.478649 -37.73 0.408129 -37.74 0.331114 -37.75 0.248225 -37.76 0.160192 -37.77 0.0678409 -37.78 -0.0279159 -37.79 -0.126108 -37.8 -0.225668 -37.81 -0.325316 -37.82 -0.42393 -37.83 -0.520377 -37.84 -0.613539 -37.85 -0.702324 -37.86 -0.785687 -37.87 -0.862646 -37.88 -0.932062 -37.89 -0.992765 -37.9 -1.04455 -37.91 -1.08687 -37.92 -1.1193 -37.93 -1.14154 -37.94 -1.15347 -37.95 -1.15505 -37.96 -1.14644 -37.97 -1.12748 -37.98 -1.0986 -37.99 -1.06081 -38 -1.01477 -38.01 -0.961215 -38.02 -0.900973 -38.03 -0.834927 -38.04 -0.76401 -38.05 -0.68919 -38.06 -0.611337 -38.07 -0.53163 -38.08 -0.451136 -38.09 -0.370807 -38.1 -0.29156 -38.11 -0.214273 -38.12 -0.139775 -38.13 -0.0688442 -38.14 -0.00220069 -38.15 0.0590686 -38.16 0.114608 -38.17 0.163967 -38.18 0.206672 -38.19 0.242309 -38.2 0.270521 -38.21 0.29101 -38.22 0.303536 -38.23 0.307922 -38.24 0.303291 -38.25 0.290358 -38.26 0.269167 -38.27 0.239835 -38.28 0.202559 -38.29 0.157624 -38.3 0.1054 -38.31 0.0463531 -38.32 -0.0190451 -38.33 -0.0904117 -38.34 -0.166505 -38.35 -0.246474 -38.36 -0.329386 -38.37 -0.414238 -38.38 -0.499969 -38.39 -0.585471 -38.4 -0.669607 -38.41 -0.751112 -38.42 -0.828602 -38.43 -0.901131 -38.44 -0.967639 -38.45 -1.02713 -38.46 -1.0787 -38.47 -1.12154 -38.48 -1.15495 -38.49 -1.17837 -38.5 -1.19087 -38.51 -1.19215 -38.52 -1.18258 -38.53 -1.16219 -38.54 -1.13116 -38.55 -1.08978 -38.56 -1.03848 -38.57 -0.977824 -38.58 -0.908444 -38.59 -0.830633 -38.6 -0.745565 -38.61 -0.65436 -38.62 -0.557949 -38.63 -0.457294 -38.64 -0.353376 -38.65 -0.247182 -38.66 -0.139696 -38.67 -0.0318891 -38.68 0.075165 -38.69 0.180508 -38.7 0.283273 -38.71 0.382627 -38.72 0.477787 -38.73 0.568023 -38.74 0.652665 -38.75 0.731109 -38.76 0.802805 -38.77 0.866624 -38.78 0.922823 -38.79 0.971133 -38.8 1.01137 -38.81 1.04346 -38.82 1.06742 -38.83 1.08334 -38.84 1.09146 -38.85 1.09194 -38.86 1.08484 -38.87 1.07121 -38.88 1.05163 -38.89 1.02674 -38.9 0.997233 -38.91 0.963815 -38.92 0.927228 -38.93 0.888205 -38.94 0.847427 -38.95 0.80562 -38.96 0.763488 -38.97 0.721569 -38.98 0.680316 -38.99 0.640085 -39 0.601133 -39.01 0.563612 -39.02 0.527569 -39.03 0.493012 -39.04 0.45976 -39.05 0.427505 -39.06 0.39594 -39.07 0.364713 -39.08 0.333442 -39.09 0.30174 -39.1 0.269234 -39.11 0.235582 -39.12 0.20039 -39.13 0.163482 -39.14 0.124789 -39.15 0.0842985 -39.16 0.0421046 -39.17 -0.00158839 -39.18 -0.0464667 -39.19 -0.0921114 -39.2 -0.138007 -39.21 -0.183467 -39.22 -0.227774 -39.23 -0.270198 -39.24 -0.30997 -39.25 -0.346315 -39.26 -0.378468 -39.27 -0.405696 -39.28 -0.42732 -39.29 -0.442701 -39.3 -0.45071 -39.31 -0.451509 -39.32 -0.444819 -39.33 -0.430485 -39.34 -0.408482 -39.35 -0.378915 -39.36 -0.342018 -39.37 -0.298154 -39.38 -0.247688 -39.39 -0.19098 -39.4 -0.129208 -39.41 -0.063178 -39.42 0.00623689 -39.43 0.0781031 -39.44 0.151444 -39.45 0.225256 -39.46 0.298522 -39.47 0.370132 -39.48 0.43892 -39.49 0.504023 -39.5 0.56453 -39.51 0.619589 -39.52 0.66842 -39.53 0.710326 -39.54 0.744698 -39.55 0.771032 -39.56 0.788477 -39.57 0.796822 -39.58 0.796274 -39.59 0.786818 -39.6 0.768563 -39.61 0.741742 -39.62 0.706709 -39.63 0.663937 -39.64 0.614008 -39.65 0.557231 -39.66 0.494755 -39.67 0.427622 -39.68 0.356782 -39.69 0.283233 -39.7 0.208011 -39.71 0.132167 -39.72 0.0567531 -39.73 -0.0171988 -39.74 -0.0884087 -39.75 -0.156046 -39.76 -0.219285 -39.77 -0.277363 -39.78 -0.329623 -39.79 -0.375525 -39.8 -0.414649 -39.81 -0.446709 -39.82 -0.471505 -39.83 -0.488458 -39.84 -0.498337 -39.85 -0.501418 -39.86 -0.4981 -39.87 -0.488889 -39.88 -0.474392 -39.89 -0.455302 -39.9 -0.432377 -39.91 -0.406386 -39.92 -0.378167 -39.93 -0.348791 -39.94 -0.31912 -39.95 -0.289996 -39.96 -0.262219 -39.97 -0.236538 -39.98 -0.213633 -39.99 -0.194106 -40 -0.178632 -40.01 -0.16773 -40.02 -0.161473 -40.03 -0.160036 -40.04 -0.16349 -40.05 -0.171799 -40.06 -0.184823 -40.07 -0.202328 -40.08 -0.22399 -40.09 -0.249581 -40.1 -0.27851 -40.11 -0.310095 -40.12 -0.343756 -40.13 -0.378885 -40.14 -0.41486 -40.15 -0.451057 -40.16 -0.48686 -40.17 -0.521676 -40.18 -0.554797 -40.19 -0.585726 -40.2 -0.614037 -40.21 -0.639319 -40.22 -0.661219 -40.23 -0.679442 -40.24 -0.693753 -40.25 -0.703977 -40.26 -0.709991 -40.27 -0.711358 -40.28 -0.708399 -40.29 -0.701173 -40.3 -0.689745 -40.31 -0.674211 -40.32 -0.654693 -40.33 -0.631333 -40.34 -0.604288 -40.35 -0.573702 -40.36 -0.539527 -40.37 -0.502248 -40.38 -0.462068 -40.39 -0.4192 -40.4 -0.373866 -40.41 -0.326302 -40.42 -0.276755 -40.43 -0.225493 -40.44 -0.17277 -40.45 -0.118879 -40.46 -0.0642436 -40.47 -0.00921512 -40.48 0.0458333 -40.49 0.100509 -40.5 0.154403 -40.51 0.207091 -40.52 0.258143 -40.53 0.30702 -40.54 0.353208 -40.55 0.396397 -40.56 0.436182 -40.57 0.472184 -40.58 0.504054 -40.59 0.531479 -40.6 0.554189 -40.61 0.571963 -40.62 0.584335 -40.63 0.591286 -40.64 0.592952 -40.65 0.589343 -40.66 0.580526 -40.67 0.566623 -40.68 0.54781 -40.69 0.524313 -40.7 0.496408 -40.71 0.464148 -40.72 0.428148 -40.73 0.388897 -40.74 0.346837 -40.75 0.302439 -40.76 0.256197 -40.77 0.208631 -40.78 0.160276 -40.79 0.111682 -40.8 0.0634868 -40.81 0.0162757 -40.82 -0.0293892 -40.83 -0.072951 -40.84 -0.113867 -40.85 -0.151613 -40.86 -0.185696 -40.87 -0.215657 -40.88 -0.241027 -40.89 -0.261072 -40.9 -0.275882 -40.91 -0.285244 -40.92 -0.289024 -40.93 -0.28717 -40.94 -0.279721 -40.95 -0.266807 -40.96 -0.24865 -40.97 -0.22544 -40.98 -0.197459 -40.99 -0.165523 -41 -0.130202 -41.01 -0.0921265 -41.02 -0.0519709 -41.03 -0.0104436 -41.04 0.0317308 -41.05 0.0738271 -41.06 0.115072 -41.07 0.154702 -41.08 0.192145 -41.09 0.226853 -41.1 0.258355 -41.11 0.286268 -41.12 0.310304 -41.13 0.330275 -41.14 0.346092 -41.15 0.357532 -41.16 0.364832 -41.17 0.368349 -41.18 0.368378 -41.19 0.365282 -41.2 0.359479 -41.21 0.351425 -41.22 0.341606 -41.23 0.330518 -41.24 0.318638 -41.25 0.306535 -41.26 0.29467 -41.27 0.283455 -41.28 0.273254 -41.29 0.26438 -41.3 0.257085 -41.31 0.251564 -41.32 0.247946 -41.33 0.246479 -41.34 0.246988 -41.35 0.249406 -41.36 0.253613 -41.37 0.259442 -41.38 0.266679 -41.39 0.27507 -41.4 0.284325 -41.41 0.294125 -41.42 0.304101 -41.43 0.313845 -41.44 0.322978 -41.45 0.331115 -41.46 0.337869 -41.47 0.342864 -41.48 0.345738 -41.49 0.346153 -41.5 0.343711 -41.51 0.338017 -41.52 0.329041 -41.53 0.316634 -41.54 0.300714 -41.55 0.281271 -41.56 0.258377 -41.57 0.232185 -41.58 0.202935 -41.59 0.17085 -41.6 0.136398 -41.61 0.100213 -41.62 0.062876 -41.63 0.0250238 -41.64 -0.0126586 -41.65 -0.0494556 -41.66 -0.0846376 -41.67 -0.117481 -41.68 -0.147059 -41.69 -0.172745 -41.7 -0.194067 -41.71 -0.210544 -41.72 -0.221799 -41.73 -0.227576 -41.74 -0.22775 -41.75 -0.222332 -41.76 -0.211478 -41.77 -0.195122 -41.78 -0.174073 -41.79 -0.149001 -41.8 -0.120608 -41.81 -0.0896913 -41.82 -0.0571235 -41.83 -0.0238307 -41.84 0.00923154 -41.85 0.0411021 -41.86 0.0705603 -41.87 0.0968467 -41.88 0.119149 -41.89 0.136747 -41.9 0.149028 -41.91 0.155499 -41.92 0.155802 -41.93 0.149713 -41.94 0.137047 -41.95 0.11749 -41.96 0.091754 -41.97 0.0601787 -41.98 0.023212 -41.99 -0.0186025 -42 -0.0646416 -42.01 -0.114219 -42.02 -0.166604 -42.03 -0.221074 -42.04 -0.276809 -42.05 -0.332925 -42.06 -0.388684 -42.07 -0.443377 -42.08 -0.496346 -42.09 -0.54698 -42.1 -0.594733 -42.11 -0.639119 -42.12 -0.679525 -42.13 -0.715575 -42.14 -0.747175 -42.15 -0.774122 -42.16 -0.796275 -42.17 -0.81355 -42.18 -0.82592 -42.19 -0.833402 -42.2 -0.836063 -42.21 -0.833717 -42.22 -0.826684 -42.23 -0.815276 -42.24 -0.799696 -42.25 -0.780166 -42.26 -0.756927 -42.27 -0.730232 -42.28 -0.700348 -42.29 -0.667549 -42.3 -0.631927 -42.31 -0.593964 -42.32 -0.553979 -42.33 -0.512255 -42.34 -0.469071 -42.35 -0.424706 -42.36 -0.379434 -42.37 -0.333525 -42.38 -0.287245 -42.39 -0.240872 -42.4 -0.194696 -42.41 -0.148975 -42.42 -0.103966 -42.43 -0.059924 -42.44 -0.0171049 -42.45 0.0242371 -42.46 0.0638493 -42.47 0.101442 -42.48 0.136621 -42.49 0.169303 -42.5 0.19927 -42.51 0.226318 -42.52 0.250271 -42.53 0.270979 -42.54 0.288328 -42.55 0.302247 -42.56 0.312594 -42.57 0.319323 -42.58 0.322735 -42.59 0.322988 -42.6 0.320303 -42.61 0.314965 -42.62 0.307314 -42.63 0.297751 -42.64 0.286721 -42.65 0.274692 -42.66 0.262255 -42.67 0.249991 -42.68 0.238442 -42.69 0.228141 -42.7 0.219595 -42.71 0.21327 -42.72 0.209581 -42.73 0.208875 -42.74 0.211649 -42.75 0.217968 -42.76 0.227815 -42.77 0.241164 -42.78 0.257889 -42.79 0.277772 -42.8 0.300502 -42.81 0.325687 -42.82 0.352862 -42.83 0.381574 -42.84 0.411093 -42.85 0.440798 -42.86 0.470069 -42.87 0.498294 -42.88 0.52488 -42.89 0.549266 -42.9 0.57094 -42.91 0.589431 -42.92 0.604029 -42.93 0.61472 -42.94 0.621289 -42.95 0.623599 -42.96 0.621593 -42.97 0.615287 -42.98 0.60477 -42.99 0.590192 -43 0.571683 -43.01 0.549342 -43.02 0.523734 -43.03 0.495176 -43.04 0.463994 -43.05 0.430522 -43.06 0.395086 -43.07 0.358 -43.08 0.319562 -43.09 0.280014 -43.1 0.239612 -43.11 0.198626 -43.12 0.157237 -43.13 0.115598 -43.14 0.0738367 -43.15 0.0320559 -43.16 -0.00965953 -43.17 -0.0512394 -43.18 -0.0926098 -43.19 -0.133709 -43.2 -0.174485 -43.21 -0.214868 -43.22 -0.254775 -43.23 -0.294102 -43.24 -0.332721 -43.25 -0.370477 -43.26 -0.407185 -43.27 -0.442519 -43.28 -0.476252 -43.29 -0.50812 -43.3 -0.537795 -43.31 -0.564921 -43.32 -0.589116 -43.33 -0.609982 -43.34 -0.627108 -43.35 -0.640078 -43.36 -0.64807 -43.37 -0.651007 -43.38 -0.648575 -43.39 -0.640465 -43.4 -0.626422 -43.41 -0.60626 -43.42 -0.579871 -43.43 -0.547236 -43.44 -0.508391 -43.45 -0.463079 -43.46 -0.412141 -43.47 -0.356008 -43.48 -0.295217 -43.49 -0.230415 -43.5 -0.162344 -43.51 -0.09184 -43.52 -0.0198101 -43.53 0.0527629 -43.54 0.124732 -43.55 0.195029 -43.56 0.262617 -43.57 0.326485 -43.58 0.385664 -43.59 0.439256 -43.6 0.486445 -43.61 0.526522 -43.62 0.558578 -43.63 0.581995 -43.64 0.596909 -43.65 0.603188 -43.66 0.600849 -43.67 0.590062 -43.68 0.57114 -43.69 0.544532 -43.7 0.510814 -43.71 0.470367 -43.72 0.424183 -43.73 0.37338 -43.74 0.318889 -43.75 0.261681 -43.76 0.202744 -43.77 0.143066 -43.78 0.0836188 -43.79 0.0253428 -43.8 -0.0306645 -43.81 -0.0835952 -43.82 -0.132751 -43.83 -0.177464 -43.84 -0.217157 -43.85 -0.251341 -43.86 -0.279624 -43.87 -0.301708 -43.88 -0.317395 -43.89 -0.326022 -43.9 -0.328114 -43.91 -0.323819 -43.92 -0.313335 -43.93 -0.296941 -43.94 -0.275001 -43.95 -0.247953 -43.96 -0.216308 -43.97 -0.180607 -43.98 -0.141299 -43.99 -0.0993988 -44 -0.0556342 -44.01 -0.0107597 -44.02 0.0344534 -44.03 0.0792283 -44.04 0.122795 -44.05 0.164403 -44.06 0.203246 -44.07 0.238442 -44.08 0.269572 -44.09 0.296103 -44.1 0.317578 -44.11 0.333631 -44.12 0.343988 -44.13 0.348471 -44.14 0.347006 -44.15 0.339377 -44.16 0.325672 -44.17 0.306426 -44.18 0.281956 -44.19 0.252652 -44.2 0.218964 -44.21 0.181397 -44.22 0.140492 -44.23 0.096818 -44.24 0.0508647 -44.25 0.00332636 -44.26 -0.0451542 -44.27 -0.0940319 -44.28 -0.142792 -44.29 -0.190957 -44.3 -0.238088 -44.31 -0.283793 -44.32 -0.32772 -44.33 -0.369394 -44.34 -0.408639 -44.35 -0.44528 -44.36 -0.479132 -44.37 -0.510038 -44.38 -0.537869 -44.39 -0.562514 -44.4 -0.583879 -44.41 -0.601888 -44.42 -0.616165 -44.43 -0.626944 -44.44 -0.634197 -44.45 -0.637898 -44.46 -0.638035 -44.47 -0.634612 -44.48 -0.627652 -44.49 -0.617203 -44.5 -0.603297 -44.51 -0.585815 -44.52 -0.565165 -44.53 -0.541507 -44.54 -0.51503 -44.55 -0.485949 -44.56 -0.454502 -44.57 -0.420945 -44.58 -0.385549 -44.59 -0.348563 -44.6 -0.310255 -44.61 -0.271006 -44.62 -0.231089 -44.63 -0.190762 -44.64 -0.150268 -44.65 -0.109825 -44.66 -0.0696294 -44.67 -0.0298511 -44.68 0.00933451 -44.69 0.0477898 -44.7 0.0854478 -44.71 0.12223 -44.72 0.15807 -44.73 0.192912 -44.74 0.226701 -44.75 0.259382 -44.76 0.290893 -44.77 0.321086 -44.78 0.349896 -44.79 0.377264 -44.8 0.403072 -44.81 0.427186 -44.82 0.44946 -44.83 0.469737 -44.84 0.487851 -44.85 0.503636 -44.86 0.516727 -44.87 0.527095 -44.88 0.534642 -44.89 0.539244 -44.9 0.540803 -44.91 0.539246 -44.92 0.534531 -44.93 0.52665 -44.94 0.515629 -44.95 0.50126 -44.96 0.483928 -44.97 0.463776 -44.98 0.440978 -44.99 0.415736 -45 0.388282 -45.01 0.358872 -45.02 0.327785 -45.03 0.295309 -45.04 0.261728 -45.05 0.227483 -45.06 0.192925 -45.07 0.158413 -45.08 0.124316 -45.09 0.0910079 -45.1 0.0588636 -45.11 0.0282578 -45.12 -0.000371337 -45.13 -0.0265513 -45.14 -0.0500643 -45.15 -0.0705927 -45.16 -0.0878486 -45.17 -0.101581 -45.18 -0.111582 -45.19 -0.117696 -45.2 -0.119826 -45.21 -0.117761 -45.22 -0.11155 -45.23 -0.101517 -45.24 -0.0878751 -45.25 -0.0709183 -45.26 -0.0510191 -45.27 -0.0286242 -45.28 -0.0042486 -45.29 0.0215332 -45.3 0.0481047 -45.31 0.0747079 -45.32 0.10064 -45.33 0.125218 -45.34 0.147779 -45.35 0.167692 -45.36 0.184376 -45.37 0.197319 -45.38 0.20609 -45.39 0.209982 -45.4 0.209037 -45.41 0.203228 -45.42 0.192572 -45.43 0.177202 -45.44 0.157363 -45.45 0.133404 -45.46 0.10577 -45.47 0.074985 -45.48 0.0414742 -45.49 0.00617465 -45.5 -0.0302267 -45.51 -0.0670308 -45.52 -0.103545 -45.53 -0.139099 -45.54 -0.173062 -45.55 -0.204857 -45.56 -0.233918 -45.57 -0.259586 -45.58 -0.281734 -45.59 -0.300114 -45.6 -0.314567 -45.61 -0.325019 -45.62 -0.331483 -45.63 -0.334046 -45.64 -0.332869 -45.65 -0.32807 -45.66 -0.319869 -45.67 -0.308801 -45.68 -0.295219 -45.69 -0.279495 -45.7 -0.262012 -45.71 -0.243151 -45.72 -0.223284 -45.73 -0.202769 -45.74 -0.181942 -45.75 -0.161148 -45.76 -0.140667 -45.77 -0.120735 -45.78 -0.101549 -45.79 -0.0832705 -45.8 -0.0660207 -45.81 -0.0498848 -45.82 -0.0349112 -45.83 -0.0211869 -45.84 -0.00864494 -45.85 0.00280404 -45.86 0.0132417 -45.87 0.022772 -45.88 0.0315174 -45.89 0.0396138 -45.9 0.0472066 -45.91 0.0544449 -45.92 0.0614713 -45.93 0.0684516 -45.94 0.0755133 -45.95 0.0827628 -45.96 0.0902828 -45.97 0.0981289 -45.98 0.106325 -45.99 0.114863 -46 0.123699 -46.01 0.132763 -46.02 0.141906 -46.03 0.150979 -46.04 0.159802 -46.05 0.168176 -46.06 0.175886 -46.07 0.182709 -46.08 0.188423 -46.09 0.192782 -46.1 0.195488 -46.11 0.196474 -46.12 0.195606 -46.13 0.192793 -46.14 0.187985 -46.15 0.181185 -46.16 0.172441 -46.17 0.161856 -46.18 0.149526 -46.19 0.135638 -46.2 0.120529 -46.21 0.104469 -46.22 0.0877522 -46.23 0.0706828 -46.24 0.0535697 -46.25 0.0367146 -46.26 0.0204028 -46.27 0.00494678 -46.28 -0.00941104 -46.29 -0.0225293 -46.3 -0.0342781 -46.31 -0.0445772 -46.32 -0.0533972 -46.33 -0.0607596 -46.34 -0.066734 -46.35 -0.0714355 -46.36 -0.0749574 -46.37 -0.0775567 -46.38 -0.0794821 -46.39 -0.08097 -46.4 -0.0822661 -46.41 -0.0836165 -46.42 -0.0852609 -46.43 -0.0874252 -46.44 -0.0903151 -46.45 -0.0941979 -46.46 -0.0991669 -46.47 -0.105321 -46.48 -0.112734 -46.49 -0.121439 -46.5 -0.131435 -46.51 -0.142682 -46.52 -0.155103 -46.53 -0.168593 -46.54 -0.183067 -46.55 -0.198254 -46.56 -0.213948 -46.57 -0.229917 -46.58 -0.245911 -46.59 -0.261659 -46.6 -0.276877 -46.61 -0.291271 -46.62 -0.304509 -46.63 -0.316181 -46.64 -0.326069 -46.65 -0.33388 -46.66 -0.339332 -46.67 -0.342165 -46.68 -0.342141 -46.69 -0.339054 -46.7 -0.332733 -46.71 -0.322922 -46.72 -0.309475 -46.73 -0.292562 -46.74 -0.272223 -46.75 -0.248557 -46.76 -0.221722 -46.77 -0.191937 -46.78 -0.159478 -46.79 -0.124676 -46.8 -0.0878303 -46.81 -0.0494458 -46.82 -0.0100645 -46.83 0.0298228 -46.84 0.0697107 -46.85 0.109089 -46.86 0.147454 -46.87 0.184318 -46.88 0.219217 -46.89 0.251534 -46.9 0.280959 -46.91 0.307226 -46.92 0.330069 -46.93 0.349279 -46.94 0.364705 -46.95 0.37626 -46.96 0.383911 -46.97 0.387685 -46.98 0.387344 -46.99 0.383319 -47 0.37581 -47.01 0.36502 -47.02 0.351181 -47.03 0.334546 -47.04 0.315383 -47.05 0.293973 -47.06 0.270592 -47.07 0.245437 -47.08 0.218965 -47.09 0.191474 -47.1 0.163261 -47.11 0.134623 -47.12 0.105853 -47.13 0.0772445 -47.14 0.0490862 -47.15 0.0216876 -47.16 -0.0045968 -47.17 -0.029552 -47.18 -0.0529221 -47.19 -0.074467 -47.2 -0.0939675 -47.21 -0.11123 -47.22 -0.126091 -47.23 -0.138422 -47.24 -0.14803 -47.25 -0.154837 -47.26 -0.158997 -47.27 -0.160575 -47.28 -0.159685 -47.29 -0.156493 -47.3 -0.151209 -47.31 -0.144085 -47.32 -0.135409 -47.33 -0.125449 -47.34 -0.114604 -47.35 -0.103264 -47.36 -0.0917705 -47.37 -0.0804533 -47.38 -0.0696163 -47.39 -0.0595295 -47.4 -0.0504205 -47.41 -0.0424672 -47.42 -0.0358874 -47.43 -0.0306792 -47.44 -0.0268043 -47.45 -0.0241938 -47.46 -0.0227232 -47.47 -0.0222182 -47.48 -0.0224623 -47.49 -0.0232048 -47.5 -0.0241713 -47.51 -0.0250434 -47.52 -0.0255136 -47.53 -0.0253057 -47.54 -0.0241645 -47.55 -0.0218664 -47.56 -0.0182265 -47.57 -0.0131054 -47.58 -0.00641376 -47.59 0.00190075 -47.6 0.0119286 -47.61 0.0234554 -47.62 0.0363503 -47.63 0.0504381 -47.64 0.0655058 -47.65 0.0813089 -47.66 0.0975795 -47.67 0.114034 -47.68 0.130371 -47.69 0.146254 -47.7 0.161413 -47.71 0.175586 -47.72 0.188534 -47.73 0.200045 -47.74 0.209938 -47.75 0.218066 -47.76 0.224318 -47.77 0.228537 -47.78 0.230665 -47.79 0.230808 -47.8 0.229003 -47.81 0.225322 -47.82 0.219863 -47.83 0.212752 -47.84 0.204136 -47.85 0.194184 -47.86 0.183023 -47.87 0.170899 -47.88 0.15806 -47.89 0.144715 -47.9 0.131077 -47.91 0.117352 -47.92 0.103741 -47.93 0.090434 -47.94 0.0776056 -47.95 0.0654688 -47.96 0.0541331 -47.97 0.0436901 -47.98 0.0342164 -47.99 0.0257592 -48 0.018336 -48.01 0.0119341 -48.02 0.00651163 -48.03 0.00199949 -48.04 -0.00163366 -48.05 -0.0045843 -48.06 -0.00698887 -48.07 -0.00899066 -48.08 -0.0107366 -48.09 -0.0123713 -48.1 -0.0140306 -48.11 -0.0158361 -48.12 -0.0178933 -48.13 -0.020306 -48.14 -0.0230946 -48.15 -0.0262696 -48.16 -0.0298092 -48.17 -0.0336606 -48.18 -0.0377418 -48.19 -0.0419457 -48.2 -0.0461447 -48.21 -0.0501882 -48.22 -0.0538998 -48.23 -0.0571433 -48.24 -0.0597824 -48.25 -0.0616994 -48.26 -0.0628025 -48.27 -0.0630324 -48.28 -0.0623673 -48.29 -0.0608275 -48.3 -0.0584464 -48.31 -0.0553489 -48.32 -0.0517353 -48.33 -0.0478062 -48.34 -0.0437957 -48.35 -0.0399644 -48.36 -0.0365918 -48.37 -0.0339669 -48.38 -0.0323788 -48.39 -0.0322011 -48.4 -0.0336824 -48.41 -0.037001 -48.42 -0.0423397 -48.43 -0.0498356 -48.44 -0.0595741 -48.45 -0.0715861 -48.46 -0.0858455 -48.47 -0.102269 -48.48 -0.120857 -48.49 -0.141274 -48.5 -0.163238 -48.51 -0.186462 -48.52 -0.210625 -48.53 -0.23538 -48.54 -0.260365 -48.55 -0.285206 -48.56 -0.309528 -48.57 -0.332847 -48.58 -0.35486 -48.59 -0.375233 -48.6 -0.393653 -48.61 -0.409834 -48.62 -0.42352 -48.63 -0.434485 -48.64 -0.442538 -48.65 -0.447472 -48.66 -0.448951 -48.67 -0.44713 -48.68 -0.441956 -48.69 -0.433409 -48.7 -0.4215 -48.71 -0.40627 -48.72 -0.387794 -48.73 -0.366173 -48.74 -0.341457 -48.75 -0.313742 -48.76 -0.283414 -48.77 -0.250702 -48.78 -0.215864 -48.79 -0.179184 -48.8 -0.140968 -48.81 -0.101546 -48.82 -0.0612646 -48.83 -0.0204779 -48.84 0.0203966 -48.85 0.0609645 -48.86 0.100855 -48.87 0.139705 -48.88 0.177168 -48.89 0.212915 -48.9 0.246642 -48.91 0.278075 -48.92 0.306802 -48.93 0.332683 -48.94 0.355638 -48.95 0.37555 -48.96 0.392341 -48.97 0.405969 -48.98 0.416433 -48.99 0.423761 -49 0.428013 -49.01 0.429052 -49.02 0.427187 -49.03 0.422593 -49.04 0.415411 -49.05 0.405795 -49.06 0.393902 -49.07 0.379895 -49.08 0.363938 -49.09 0.346195 -49.1 0.326699 -49.11 0.305774 -49.12 0.283586 -49.13 0.2603 -49.14 0.236084 -49.15 0.21111 -49.16 0.185553 -49.17 0.159594 -49.18 0.133421 -49.19 0.107245 -49.2 0.0812782 -49.21 0.0557246 -49.22 0.0307892 -49.23 0.00667768 -49.24 -0.0164064 -49.25 -0.0382643 -49.26 -0.0587051 -49.27 -0.0774903 -49.28 -0.0943889 -49.29 -0.109352 -49.3 -0.122252 -49.31 -0.132984 -49.32 -0.141466 -49.33 -0.14764 -49.34 -0.151472 -49.35 -0.152951 -49.36 -0.151982 -49.37 -0.148622 -49.38 -0.143041 -49.39 -0.135328 -49.4 -0.125592 -49.41 -0.113963 -49.42 -0.10059 -49.43 -0.0856403 -49.44 -0.0692987 -49.45 -0.0517048 -49.46 -0.033146 -49.47 -0.013893 -49.48 0.00580136 -49.49 0.0256704 -49.5 0.0454351 -49.51 0.0648062 -49.52 0.083487 -49.53 0.101176 -49.54 0.117446 -49.55 0.132061 -49.56 0.144755 -49.57 0.155262 -49.58 0.163342 -49.59 0.168784 -49.6 0.171415 -49.61 0.171106 -49.62 0.167766 -49.63 0.161115 -49.64 0.151469 -49.65 0.138938 -49.66 0.123693 -49.67 0.105967 -49.68 0.0860513 -49.69 0.0642896 -49.7 0.0410747 -49.71 0.0168285 -49.72 -0.00796439 -49.73 -0.0327481 -49.74 -0.0570301 -49.75 -0.0803229 -49.76 -0.102156 -49.77 -0.122086 -49.78 -0.13971 -49.79 -0.154669 -49.8 -0.166552 -49.81 -0.175027 -49.82 -0.180112 -49.83 -0.181722 -49.84 -0.179843 -49.85 -0.174528 -49.86 -0.165899 -49.87 -0.154139 -49.88 -0.139485 -49.89 -0.122109 -49.9 -0.102407 -49.91 -0.0808508 -49.92 -0.0578284 -49.93 -0.0337403 -49.94 -0.00899224 -49.95 0.0160118 -49.96 0.0408769 -49.97 0.0652227 -49.98 0.0886073 -49.99 0.1107 -50 0.131223 -50.01 0.149906 -50.02 0.166512 -50.03 0.180839 -50.04 0.19272 -50.05 0.202025 -50.06 0.208662 -50.07 0.21235 -50.08 0.213275 -50.09 0.211496 -50.1 0.207082 -50.11 0.200142 -50.12 0.190822 -50.13 0.179307 -50.14 0.165814 -50.15 0.150588 -50.16 0.133824 -50.17 0.115983 -50.18 0.0973978 -50.19 0.0784172 -50.2 0.0593974 -50.21 0.0406953 -50.22 0.0226603 -50.23 0.00562688 -50.24 -0.0100588 -50.25 -0.0240132 -50.26 -0.0361009 -50.27 -0.0461377 -50.28 -0.0539914 -50.29 -0.0595858 -50.3 -0.0629035 -50.31 -0.0639864 -50.32 -0.0629352 -50.33 -0.0598406 -50.34 -0.0549115 -50.35 -0.0485198 -50.36 -0.0409669 -50.37 -0.0325832 -50.38 -0.0237183 -50.39 -0.0147318 -50.4 -0.00598374 -50.41 0.00217524 -50.42 0.00934647 -50.43 0.015205 -50.44 0.0195245 -50.45 0.0220812 -50.46 0.0226964 -50.47 0.0212381 -50.48 0.0176227 -50.49 0.0118146 -50.5 0.00382467 -50.51 -0.0064327 -50.52 -0.0187498 -50.53 -0.0329386 -50.54 -0.0488307 -50.55 -0.0662324 -50.56 -0.0849301 -50.57 -0.104695 -50.58 -0.125289 -50.59 -0.146464 -50.6 -0.167981 -50.61 -0.189544 -50.62 -0.210907 -50.63 -0.231832 -50.64 -0.252088 -50.65 -0.271454 -50.66 -0.289719 -50.67 -0.306685 -50.68 -0.322154 -50.69 -0.335815 -50.7 -0.347648 -50.71 -0.357524 -50.72 -0.365335 -50.73 -0.370999 -50.74 -0.374455 -50.75 -0.375672 -50.76 -0.374648 -50.77 -0.371354 -50.78 -0.36576 -50.79 -0.358108 -50.8 -0.348516 -50.81 -0.337125 -50.82 -0.324101 -50.83 -0.309626 -50.84 -0.293895 -50.85 -0.277113 -50.86 -0.25946 -50.87 -0.241155 -50.88 -0.222433 -50.89 -0.20347 -50.9 -0.184422 -50.91 -0.165424 -50.92 -0.146582 -50.93 -0.127975 -50.94 -0.109653 -50.95 -0.0916585 -50.96 -0.073979 -50.97 -0.0565752 -50.98 -0.0394017 -50.99 -0.0224016 -51 -0.00551164 -51.01 0.011332 -51.02 0.0281884 -51.03 0.0451066 -51.04 0.0621295 -51.05 0.0792675 -51.06 0.0965096 -51.07 0.113825 -51.08 0.131162 -51.09 0.148449 -51.1 0.165596 -51.11 0.182501 -51.12 0.199053 -51.13 0.215086 -51.14 0.230515 -51.15 0.245241 -51.16 0.25917 -51.17 0.27223 -51.18 0.284365 -51.19 0.295543 -51.2 0.305755 -51.21 0.315001 -51.22 0.323254 -51.23 0.330642 -51.24 0.337227 -51.25 0.343078 -51.26 0.348259 -51.27 0.352832 -51.28 0.356844 -51.29 0.360322 -51.3 0.363258 -51.31 0.365604 -51.32 0.367335 -51.33 0.368364 -51.34 0.368575 -51.35 0.367824 -51.36 0.365948 -51.37 0.362767 -51.38 0.358091 -51.39 0.351652 -51.4 0.343232 -51.41 0.332757 -51.42 0.320095 -51.43 0.305149 -51.44 0.287865 -51.45 0.268235 -51.46 0.246307 -51.47 0.222183 -51.48 0.195914 -51.49 0.167792 -51.5 0.138164 -51.51 0.107352 -51.52 0.0757151 -51.53 0.0436477 -51.54 0.0115646 -51.55 -0.0201056 -51.56 -0.0509313 -51.57 -0.0803628 -51.58 -0.108026 -51.59 -0.133568 -51.6 -0.15665 -51.61 -0.176972 -51.62 -0.194285 -51.63 -0.208392 -51.64 -0.219149 -51.65 -0.226474 -51.66 -0.23003 -51.67 -0.23016 -51.68 -0.226971 -51.69 -0.220612 -51.7 -0.211278 -51.71 -0.199209 -51.72 -0.184682 -51.73 -0.168007 -51.74 -0.149503 -51.75 -0.129469 -51.76 -0.108421 -51.77 -0.0867437 -51.78 -0.0648237 -51.79 -0.0430431 -51.8 -0.0217752 -51.81 -0.0013775 -51.82 0.0178125 -51.83 0.0354312 -51.84 0.0511075 -51.85 0.0647041 -51.86 0.0760248 -51.87 0.0849169 -51.88 0.091274 -51.89 0.0950376 -51.9 0.0961986 -51.91 0.0947965 -51.92 0.0908149 -51.93 0.0844019 -51.94 0.0758606 -51.95 0.0654131 -51.96 0.0533135 -51.97 0.0398412 -51.98 0.0252942 -51.99 0.00998201 -52 -0.00578204 -52.01 -0.021678 -52.02 -0.0373722 -52.03 -0.0525848 -52.04 -0.0670643 -52.05 -0.0805892 -52.06 -0.0929711 -52.07 -0.104058 -52.08 -0.113733 -52.09 -0.12192 -52.1 -0.128459 -52.11 -0.133435 -52.12 -0.136902 -52.13 -0.138912 -52.14 -0.139538 -52.15 -0.138866 -52.16 -0.136995 -52.17 -0.134029 -52.18 -0.130072 -52.19 -0.125155 -52.2 -0.119464 -52.21 -0.113088 -52.22 -0.106109 -52.23 -0.0986005 -52.24 -0.0906307 -52.25 -0.0822619 -52.26 -0.073554 -52.27 -0.0645637 -52.28 -0.055347 -52.29 -0.0459939 -52.3 -0.0365816 -52.31 -0.0271968 -52.32 -0.0179366 -52.33 -0.00890868 -52.34 -0.000230278 -52.35 0.00797325 -52.36 0.0155477 -52.37 0.0223224 -52.38 0.0282047 -52.39 0.0330707 -52.4 0.0368076 -52.41 0.0393182 -52.42 0.040525 -52.43 0.0403735 -52.44 0.0388351 -52.45 0.0358453 -52.46 0.0314415 -52.47 0.0257501 -52.48 0.0188615 -52.49 0.0108908 -52.5 0.00197475 -52.51 -0.0077326 -52.52 -0.018064 -52.53 -0.0288441 -52.54 -0.0398995 -52.55 -0.0510259 -52.56 -0.0620466 -52.57 -0.0728036 -52.58 -0.0831524 -52.59 -0.092965 -52.6 -0.10213 -52.61 -0.110556 -52.62 -0.118167 -52.63 -0.124832 -52.64 -0.130563 -52.65 -0.135343 -52.66 -0.139154 -52.67 -0.141984 -52.68 -0.143827 -52.69 -0.14468 -52.7 -0.144542 -52.71 -0.143409 -52.72 -0.141194 -52.73 -0.137989 -52.74 -0.133798 -52.75 -0.128628 -52.76 -0.122496 -52.77 -0.115426 -52.78 -0.107453 -52.79 -0.0986278 -52.8 -0.089002 -52.81 -0.0786291 -52.82 -0.067672 -52.83 -0.056253 -52.84 -0.0445113 -52.85 -0.0326001 -52.86 -0.0206841 -52.87 -0.00893533 -52.88 0.00247108 -52.89 0.0133392 -52.9 0.0234683 -52.91 0.0327416 -52.92 0.0410298 -52.93 0.0482275 -52.94 0.0542573 -52.95 0.0590727 -52.96 0.0626595 -52.97 0.0650373 -52.98 0.0662058 -52.99 0.0662695 -53 0.0653956 -53.01 0.0637244 -53.02 0.0614144 -53.03 0.0586358 -53.04 0.0555652 -53.05 0.052379 -53.06 0.0492476 -53.07 0.0463526 -53.08 0.0438397 -53.09 0.0418172 -53.1 0.0403752 -53.11 0.0395766 -53.12 0.0394566 -53.13 0.0400234 -53.14 0.0412592 -53.15 0.0431224 -53.16 0.0455908 -53.17 0.0485375 -53.18 0.051863 -53.19 0.0554672 -53.2 0.059247 -53.21 0.0631007 -53.22 0.0669312 -53.23 0.0706489 -53.24 0.0741734 -53.25 0.07741 -53.26 0.0803246 -53.27 0.082878 -53.28 0.0850434 -53.29 0.0868051 -53.3 0.0881577 -53.31 0.0891036 -53.32 0.0896525 -53.33 0.0898113 -53.34 0.0895811 -53.35 0.0890102 -53.36 0.0881202 -53.37 0.0869339 -53.38 0.0854746 -53.39 0.0837669 -53.4 0.0818369 -53.41 0.0797129 -53.42 0.0774224 -53.43 0.0750036 -53.44 0.0725076 -53.45 0.0699823 -53.46 0.0674814 -53.47 0.065064 -53.48 0.0627943 -53.49 0.0607401 -53.5 0.0589716 -53.51 0.0575811 -53.52 0.056641 -53.53 0.0561986 -53.54 0.0563087 -53.55 0.0570156 -53.56 0.0583509 -53.57 0.0603314 -53.58 0.0629574 -53.59 0.0662115 -53.6 0.0700942 -53.61 0.0745177 -53.62 0.0793914 -53.63 0.0846227 -53.64 0.0901047 -53.65 0.0957178 -53.66 0.101333 -53.67 0.106814 -53.68 0.112021 -53.69 0.116767 -53.7 0.120932 -53.71 0.124386 -53.72 0.127005 -53.73 0.128672 -53.74 0.129283 -53.75 0.128746 -53.76 0.126983 -53.77 0.123919 -53.78 0.119396 -53.79 0.113495 -53.8 0.106198 -53.81 0.097505 -53.82 0.0874293 -53.83 0.0760008 -53.84 0.0632649 -53.85 0.0492834 -53.86 0.034111 -53.87 0.017805 -53.88 0.000564626 -53.89 -0.0174734 -53.9 -0.0361534 -53.91 -0.0553011 -53.92 -0.0747241 -53.93 -0.0942128 -53.94 -0.113542 -53.95 -0.132448 -53.96 -0.150641 -53.97 -0.167887 -53.98 -0.183929 -53.99 -0.198511 -54 -0.211388 -54.01 -0.222328 -54.02 -0.23112 -54.03 -0.237576 -54.04 -0.241399 -54.05 -0.242501 -54.06 -0.240906 -54.07 -0.236588 -54.08 -0.229567 -54.09 -0.219912 -54.1 -0.207736 -54.11 -0.1932 -54.12 -0.17651 -54.13 -0.157797 -54.14 -0.137466 -54.15 -0.115877 -54.16 -0.0933716 -54.17 -0.0703059 -54.18 -0.0470461 -54.19 -0.0239597 -54.2 -0.00140926 -54.21 0.020255 -54.22 0.0405708 -54.23 0.0593061 -54.24 0.0762001 -54.25 0.0910187 -54.26 0.103567 -54.27 0.113691 -54.28 0.121279 -54.29 0.126266 -54.3 0.128604 -54.31 0.128126 -54.32 0.125122 -54.33 0.119704 -54.34 0.112018 -54.35 0.102245 -54.36 0.0905931 -54.37 0.0772989 -54.38 0.0626185 -54.39 0.046805 -54.4 0.0301399 -54.41 0.0129882 -54.42 -0.00435681 -54.43 -0.0216069 -54.44 -0.0384832 -54.45 -0.0547218 -54.46 -0.0700777 -54.47 -0.08433 -54.48 -0.097226 -54.49 -0.108572 -54.5 -0.118316 -54.51 -0.126375 -54.52 -0.132706 -54.53 -0.1373 -54.54 -0.140187 -54.55 -0.141434 -54.56 -0.141139 -54.57 -0.139358 -54.58 -0.136293 -54.59 -0.13217 -54.6 -0.127177 -54.61 -0.121508 -54.62 -0.115359 -54.63 -0.108918 -54.64 -0.102361 -54.65 -0.0958507 -54.66 -0.089546 -54.67 -0.0835589 -54.68 -0.0779652 -54.69 -0.0728156 -54.7 -0.0681322 -54.71 -0.063909 -54.72 -0.0601153 -54.73 -0.056698 -54.74 -0.0535865 -54.75 -0.0507088 -54.76 -0.0479472 -54.77 -0.0452078 -54.78 -0.0424022 -54.79 -0.0394512 -54.8 -0.0362893 -54.81 -0.0328677 -54.82 -0.0291574 -54.83 -0.025147 -54.84 -0.0208329 -54.85 -0.0162776 -54.86 -0.0115371 -54.87 -0.00668255 -54.88 -0.00179644 -54.89 0.00303173 -54.9 0.00771005 -54.91 0.0121489 -54.92 0.0162545 -54.93 0.0199338 -54.94 0.0231555 -54.95 0.0258847 -54.96 0.0281066 -54.97 0.0298273 -54.98 0.0310736 -54.99 0.0318921 -55 0.0323467 -55.01 0.0325087 -55.02 0.0324796 -55.03 0.0323729 -55.04 0.0322908 -55.05 0.0323345 -55.06 0.0325997 -55.07 0.0331738 -55.08 0.0341323 -55.09 0.035537 -55.1 0.0374646 -55.11 0.0399335 -55.12 0.042936 -55.13 0.0464652 -55.14 0.0504995 -55.15 0.0550043 -55.16 0.0599338 -55.17 0.0652331 -55.18 0.070841 -55.19 0.0767039 -55.2 0.0827328 -55.21 0.0888535 -55.22 0.0949965 -55.23 0.101094 -55.24 0.107079 -55.25 0.112886 -55.26 0.118453 -55.27 0.123719 -55.28 0.128583 -55.29 0.133012 -55.3 0.136949 -55.31 0.140333 -55.32 0.143106 -55.33 0.145212 -55.34 0.146598 -55.35 0.147215 -55.36 0.147009 -55.37 0.14589 -55.38 0.143901 -55.39 0.141034 -55.4 0.137299 -55.41 0.132719 -55.42 0.127336 -55.43 0.121209 -55.44 0.114414 -55.45 0.10703 -55.46 0.0991616 -55.47 0.0909631 -55.48 0.0825613 -55.49 0.0740859 -55.5 0.0656648 -55.51 0.0574199 -55.52 0.0494629 -55.53 0.0418903 -55.54 0.0348044 -55.55 0.0282673 -55.56 0.0222846 -55.57 0.016859 -55.58 0.0119689 -55.59 0.00756945 -55.6 0.00359489 -55.61 -3.79416e-05 -55.62 -0.00342541 -55.63 -0.00667036 -55.64 -0.00989607 -55.65 -0.0132099 -55.66 -0.0167058 -55.67 -0.0204631 -55.68 -0.0245425 -55.69 -0.0289825 -55.7 -0.0337969 -55.71 -0.0389739 -55.72 -0.0444957 -55.73 -0.0502706 -55.74 -0.0562042 -55.75 -0.0621895 -55.76 -0.0681062 -55.77 -0.073826 -55.78 -0.0792181 -55.79 -0.0841548 -55.8 -0.0885168 -55.81 -0.0921276 -55.82 -0.0949588 -55.83 -0.0969498 -55.84 -0.0980639 -55.85 -0.09829 -55.86 -0.097642 -55.87 -0.096158 -55.88 -0.0938978 -55.89 -0.0909305 -55.9 -0.0873238 -55.91 -0.0832359 -55.92 -0.0787773 -55.93 -0.0740592 -55.94 -0.0691885 -55.95 -0.0642652 -55.96 -0.0593784 -55.97 -0.0546044 -55.98 -0.0500129 -55.99 -0.0456616 -56 -0.0415697 -56.01 -0.0377547 -56.02 -0.0342235 -56.03 -0.0309747 -56.04 -0.0280013 -56.05 -0.0252932 -56.06 -0.0228403 -56.07 -0.0206458 -56.08 -0.0187048 -56.09 -0.0170082 -56.1 -0.0155635 -56.11 -0.0143832 -56.12 -0.0134841 -56.13 -0.0128852 -56.14 -0.0126058 -56.15 -0.0126627 -56.16 -0.0130901 -56.17 -0.0138791 -56.18 -0.0150106 -56.19 -0.0164629 -56.2 -0.0182 -56.21 -0.0201717 -56.22 -0.0223132 -56.23 -0.0245463 -56.24 -0.0267818 -56.25 -0.0289059 -56.26 -0.030812 -56.27 -0.0323975 -56.28 -0.0335624 -56.29 -0.0342152 -56.3 -0.0342767 -56.31 -0.0336842 -56.32 -0.0323943 -56.33 -0.0303835 -56.34 -0.0275936 -56.35 -0.0241206 -56.36 -0.0200192 -56.37 -0.0153654 -56.38 -0.0102539 -56.39 -0.00479492 -56.4 0.000889731 -56.41 0.00667134 -56.42 0.0124155 -56.43 0.0179711 -56.44 0.0232217 -56.45 0.0280579 -56.46 0.032385 -56.47 0.0361245 -56.48 0.0392162 -56.49 0.0416183 -56.5 0.0433073 -56.51 0.0442527 -56.52 0.0444493 -56.53 0.0439641 -56.54 0.042832 -56.55 0.0410953 -56.56 0.0388006 -56.57 0.035997 -56.58 0.0327336 -56.59 0.0290585 -56.6 0.025002 -56.61 0.0206161 -56.62 0.0159584 -56.63 0.0110709 -56.64 0.00599712 -56.65 0.000783695 -56.66 -0.00451772 -56.67 -0.00984868 -56.68 -0.0151425 -56.69 -0.0203101 -56.7 -0.0252601 -56.71 -0.0298993 -56.72 -0.0341242 -56.73 -0.0378259 -56.74 -0.0408942 -56.75 -0.0432209 -56.76 -0.0447042 -56.77 -0.0452535 -56.78 -0.0447082 -56.79 -0.043085 -56.8 -0.0403735 -56.81 -0.0365818 -56.82 -0.0317502 -56.83 -0.0259525 -56.84 -0.0192962 -56.85 -0.0119208 -56.86 -0.00399405 -56.87 0.00429821 -56.88 0.0126916 -56.89 0.0209555 -56.9 0.0288543 -56.91 0.0361555 -56.92 0.0426373 -56.93 0.0480965 -56.94 0.0523552 -56.95 0.0552373 -56.96 0.0565522 -56.97 0.05634 -56.98 0.0545861 -56.99 0.0513199 -57 0.0466134 -57.01 0.0405785 -57.02 0.0333628 -57.03 0.0251439 -57.04 0.016103 -57.05 0.00647475 -57.06 -0.00346831 -57.07 -0.0134965 -57.08 -0.0233869 -57.09 -0.0329295 -57.1 -0.0419329 -57.11 -0.0502284 -57.12 -0.0576738 -57.13 -0.0640999 -57.14 -0.069427 -57.15 -0.0736444 -57.16 -0.0767289 -57.17 -0.0786817 -57.18 -0.0795248 -57.19 -0.079298 -57.2 -0.078055 -57.21 -0.0758595 -57.22 -0.0727276 -57.23 -0.0687801 -57.24 -0.0641141 -57.25 -0.0588049 -57.26 -0.0529258 -57.27 -0.0465483 -57.28 -0.0397419 -57.29 -0.0325751 -57.3 -0.0251161 -57.31 -0.0174213 -57.32 -0.00958519 -57.33 -0.00168438 -57.34 0.006203 -57.35 0.0139955 -57.36 0.0216088 -57.37 0.0289576 -57.38 0.0359564 -57.39 0.042519 -57.4 0.0485217 -57.41 0.053936 -57.42 0.0587076 -57.43 0.0627973 -57.44 0.0661832 -57.45 0.0688631 -57.46 0.0708554 -57.47 0.0721996 -57.48 0.0729441 -57.49 0.073155 -57.5 0.0729715 -57.51 0.0725048 -57.52 0.071874 -57.53 0.0712015 -57.54 0.0706073 -57.55 0.070204 -57.56 0.0700918 -57.57 0.0703708 -57.58 0.0711136 -57.59 0.0723307 -57.6 0.0740262 -57.61 0.0761765 -57.62 0.078731 -57.63 0.0816136 -57.64 0.0847259 -57.65 0.0879508 -57.66 0.0911483 -57.67 0.0941624 -57.68 0.0968525 -57.69 0.0990808 -57.7 0.10072 -57.71 0.101656 -57.72 0.101795 -57.73 0.101066 -57.74 0.0994193 -57.75 0.0967676 -57.76 0.0931621 -57.77 0.088655 -57.78 0.0832986 -57.79 0.0771622 -57.8 0.0703287 -57.81 0.0628903 -57.82 0.0549436 -57.83 0.0465857 -57.84 0.0378904 -57.85 0.0289754 -57.86 0.0199171 -57.87 0.0107784 -57.88 0.00161013 -57.89 -0.0075488 -57.9 -0.0166699 -57.91 -0.0257332 -57.92 -0.034724 -57.93 -0.0436239 -57.94 -0.0524272 -57.95 -0.0611177 -57.96 -0.069672 -57.97 -0.0780576 -57.98 -0.0862309 -57.99 -0.0941366 -58 -0.101708 -58.01 -0.108855 -58.02 -0.115461 -58.03 -0.121461 -58.04 -0.12676 -58.05 -0.131267 -58.06 -0.134896 -58.07 -0.137572 -58.08 -0.139233 -58.09 -0.139837 -58.1 -0.139316 -58.11 -0.137662 -58.12 -0.134958 -58.13 -0.131255 -58.14 -0.126624 -58.15 -0.121157 -58.16 -0.11496 -58.17 -0.10815 -58.18 -0.100855 -58.19 -0.0931865 -58.2 -0.085293 -58.21 -0.0773027 -58.22 -0.0693199 -58.23 -0.061434 -58.24 -0.0537168 -58.25 -0.0462213 -58.26 -0.0389815 -58.27 -0.0320124 -58.28 -0.0253306 -58.29 -0.0189022 -58.3 -0.0126922 -58.31 -0.00666423 -58.32 -0.000779479 -58.33 0.00499952 -58.34 0.010705 -58.35 0.0163606 -58.36 0.0219787 -58.37 0.0275536 -58.38 0.0330692 -58.39 0.0384926 -58.4 0.0437767 -58.41 0.0488633 -58.42 0.0536847 -58.43 0.0581676 -58.44 0.0622361 -58.45 0.0658091 -58.46 0.0687729 -58.47 0.0711096 -58.48 0.0727734 -58.49 0.073733 -58.5 0.0739733 -58.51 0.0734962 -58.52 0.0723201 -58.53 0.070479 -58.54 0.0680056 -58.55 0.0649464 -58.56 0.0614105 -58.57 0.0574718 -58.58 0.0532054 -58.59 0.0486841 -58.6 0.0439758 -58.61 0.0391407 -58.62 0.0342298 -58.63 0.029283 -58.64 0.0243317 -58.65 0.0193937 -58.66 0.0144759 -58.67 0.00957792 -58.68 0.00469444 -58.69 -0.000182309 -58.7 -0.00505962 -58.71 -0.00994158 -58.72 -0.0148261 -58.73 -0.019701 -58.74 -0.0245445 -58.75 -0.029324 -58.76 -0.0339964 -58.77 -0.0385079 -58.78 -0.0427964 -58.79 -0.0467926 -58.8 -0.0504232 -58.81 -0.0535746 -58.82 -0.0561932 -58.83 -0.0582207 -58.84 -0.0596002 -58.85 -0.0602864 -58.86 -0.0602478 -58.87 -0.0594685 -58.88 -0.0579491 -58.89 -0.0557064 -58.9 -0.0527149 -58.91 -0.0490896 -58.92 -0.0448938 -58.93 -0.0401992 -58.94 -0.0350839 -58.95 -0.0296294 -58.96 -0.023917 -58.97 -0.0180257 -58.98 -0.0120288 -58.99 -0.00599584 -59 1.02215e-05 -59.01 0.00594362 -59.02 0.0117681 -59.03 0.0174561 -59.04 0.0229876 -59.05 0.0283483 -59.06 0.0335271 -59.07 0.038508 -59.08 0.0432716 -59.09 0.0478139 -59.1 0.0521126 -59.11 0.0561385 -59.12 0.0598539 -59.13 0.0632132 -59.14 0.0661632 -59.15 0.0686444 -59.16 0.0705661 -59.17 0.0718546 -59.18 0.0724725 -59.19 0.0723628 -59.2 0.0714776 -59.21 0.069781 -59.22 0.0672525 -59.23 0.0638886 -59.24 0.0597052 -59.25 0.0546934 -59.26 0.0489421 -59.27 0.0425549 -59.28 0.0356279 -59.29 0.0282719 -59.3 0.0206085 -59.31 0.0127661 -59.32 0.00487626 -59.33 -0.00293125 -59.34 -0.0105074 -59.35 -0.0177423 -59.36 -0.0245421 -59.37 -0.0308267 -59.38 -0.0365345 -59.39 -0.0416242 -59.4 -0.0460742 -59.41 -0.0498822 -59.42 -0.0530631 -59.43 -0.0555974 -59.44 -0.0575872 -59.45 -0.0590856 -59.46 -0.0601496 -59.47 -0.0608367 -59.48 -0.0612012 -59.49 -0.061291 -59.5 -0.061145 -59.51 -0.0607881 -59.52 -0.0602249 -59.53 -0.0594708 -59.54 -0.0585137 -59.55 -0.0573307 -59.56 -0.0558898 -59.57 -0.0541528 -59.58 -0.0520777 -59.59 -0.0496225 -59.6 -0.0467329 -59.61 -0.0433596 -59.62 -0.0395058 -59.63 -0.0351603 -59.64 -0.0303254 -59.65 -0.0250175 -59.66 -0.0192676 -59.67 -0.0131213 -59.68 -0.00663731 -59.69 0.000122378 -59.7 0.00706512 -59.71 0.0140902 -59.72 0.0211042 -59.73 0.0280125 -59.74 0.0347216 -59.75 0.0411421 -59.76 0.0471906 -59.77 0.0527915 -59.78 0.0578424 -59.79 0.0623013 -59.8 0.0661409 -59.81 0.06933 -59.82 0.0718477 -59.83 0.0736835 -59.84 0.0748357 -59.85 0.0753106 -59.86 0.0751217 -59.87 0.0742395 -59.88 0.0727348 -59.89 0.0706464 -59.9 0.0680087 -59.91 0.0648603 -59.92 0.0612435 -59.93 0.0572046 -59.94 0.0527942 -59.95 0.0480669 -59.96 0.0430663 -59.97 0.037886 -59.98 0.0325963 -59.99 0.0272721 -60 0.0219913 diff --git a/docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr b/docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr deleted file mode 100644 index 2378e2e..0000000 --- a/docs/examples/pdf/fitNi/data/Pt-nanoparticles.gr +++ /dev/null @@ -1,6022 +0,0 @@ -# xPDFsuite Configuration # -[PDF] -wavelength = 0.1863 -dataformat = Qnm -inputfile = Pt-nanoparticles.chi -backgroundfile = sub_20170121-140150_W151005_2_ct_300_fe9969_0001.chi -mode = xray -bgscale = 0.083088 -composition = Pt -outputtype = gr -qmaxinst = 25.0 -qmin = 0.1 -qmax = 25.0 -rmax = 6.0 -rmin = 0.0 -rstep = 0.01 -rpoly = 0.9 - -#### start data -#S 1 -#L r($\AA$) G($\AA^{-2}$) -0 0 -0.01 -0.000504438 -0.02 -0.00097593 -0.03 -0.00138616 -0.04 -0.00171049 -0.05 -0.00192944 -0.06 -0.00202977 -0.07 -0.00200532 -0.08 -0.00185729 -0.09 -0.00159271 -0.1 -0.00122309 -0.11 -0.000779556 -0.12 -0.000288777 -0.13 0.000219985 -0.14 0.000716613 -0.15 0.00117193 -0.16 0.00155942 -0.17 0.00185677 -0.18 0.00204336 -0.19 0.00210472 -0.2 0.00204513 -0.21 0.00186871 -0.22 0.00158522 -0.23 0.0012089 -0.24 0.000756731 -0.25 0.000246563 -0.26 -0.000305107 -0.27 -0.0008863 -0.28 -0.00148968 -0.29 -0.00211613 -0.3 -0.00277676 -0.31 -0.0034922 -0.32 -0.00429234 -0.33 -0.00521523 -0.34 -0.00630502 -0.35 -0.00760912 -0.36 -0.00919359 -0.37 -0.0110949 -0.38 -0.013334 -0.39 -0.0159231 -0.4 -0.0188528 -0.41 -0.0220871 -0.42 -0.0255593 -0.43 -0.029169 -0.44 -0.0327804 -0.45 -0.0361924 -0.46 -0.0391868 -0.47 -0.0415241 -0.48 -0.0429392 -0.49 -0.0431522 -0.5 -0.0418778 -0.51 -0.0388366 -0.52 -0.0337678 -0.53 -0.0264366 -0.54 -0.0164288 -0.55 -0.003838 -0.56 0.0113785 -0.57 0.0291834 -0.58 0.0494524 -0.59 0.0719703 -0.6 0.0964309 -0.61 0.122439 -0.62 0.149528 -0.63 0.177116 -0.64 0.204514 -0.65 0.231072 -0.66 0.256124 -0.67 0.279013 -0.68 0.299114 -0.69 0.315852 -0.7 0.32873 -0.71 0.337194 -0.72 0.340821 -0.73 0.339737 -0.74 0.33395 -0.75 0.323614 -0.76 0.309019 -0.77 0.290588 -0.78 0.268865 -0.79 0.244492 -0.8 0.218137 -0.81 0.190686 -0.82 0.163019 -0.83 0.135922 -0.84 0.110137 -0.85 0.0863333 -0.86 0.065082 -0.87 0.0468331 -0.88 0.0318976 -0.89 0.0206611 -0.9 0.0129755 -0.91 0.00855672 -0.92 0.00707114 -0.93 0.00805504 -0.94 0.0109353 -0.95 0.0150551 -0.96 0.0197034 -0.97 0.0241465 -0.98 0.0275315 -0.99 0.0291931 -1 0.028561 -1.01 0.0251613 -1.02 0.0186504 -1.03 0.00883079 -1.04 -0.0043394 -1.05 -0.0207443 -1.06 -0.0401242 -1.07 -0.0622341 -1.08 -0.0862568 -1.09 -0.111542 -1.1 -0.137376 -1.11 -0.163017 -1.12 -0.187729 -1.13 -0.210813 -1.14 -0.231642 -1.15 -0.249631 -1.16 -0.264182 -1.17 -0.27529 -1.18 -0.282898 -1.19 -0.287118 -1.2 -0.28822 -1.21 -0.286625 -1.22 -0.282887 -1.23 -0.277665 -1.24 -0.271702 -1.25 -0.265878 -1.26 -0.261019 -1.27 -0.257882 -1.28 -0.257151 -1.29 -0.259409 -1.3 -0.265112 -1.31 -0.274564 -1.32 -0.287904 -1.33 -0.305285 -1.34 -0.326414 -1.35 -0.350723 -1.36 -0.377659 -1.37 -0.406546 -1.38 -0.436614 -1.39 -0.467034 -1.4 -0.496953 -1.41 -0.525528 -1.42 -0.551775 -1.43 -0.575014 -1.44 -0.594736 -1.45 -0.610521 -1.46 -0.62211 -1.47 -0.629421 -1.48 -0.632545 -1.49 -0.631748 -1.5 -0.627457 -1.51 -0.620057 -1.52 -0.610519 -1.53 -0.599661 -1.54 -0.588316 -1.55 -0.577328 -1.56 -0.567514 -1.57 -0.559629 -1.58 -0.554337 -1.59 -0.552202 -1.6 -0.553934 -1.61 -0.559459 -1.62 -0.568812 -1.63 -0.581861 -1.64 -0.598315 -1.65 -0.617732 -1.66 -0.639549 -1.67 -0.663099 -1.68 -0.68765 -1.69 -0.712355 -1.7 -0.736375 -1.71 -0.758973 -1.72 -0.779481 -1.73 -0.797326 -1.74 -0.812057 -1.75 -0.823359 -1.76 -0.831065 -1.77 -0.835034 -1.78 -0.835377 -1.79 -0.832605 -1.8 -0.827153 -1.81 -0.819558 -1.82 -0.81043 -1.83 -0.800424 -1.84 -0.79021 -1.85 -0.780442 -1.86 -0.771811 -1.87 -0.764886 -1.88 -0.760029 -1.89 -0.757528 -1.9 -0.757535 -1.91 -0.760069 -1.92 -0.765011 -1.93 -0.772115 -1.94 -0.781024 -1.95 -0.791345 -1.96 -0.802444 -1.97 -0.813731 -1.98 -0.824651 -1.99 -0.834679 -2 -0.843353 -2.01 -0.850299 -2.02 -0.855256 -2.03 -0.858091 -2.04 -0.858645 -2.05 -0.857266 -2.06 -0.854292 -2.07 -0.850171 -2.08 -0.845453 -2.09 -0.840767 -2.1 -0.836786 -2.11 -0.834199 -2.12 -0.833687 -2.13 -0.836104 -2.14 -0.84174 -2.15 -0.850932 -2.16 -0.863856 -2.17 -0.88051 -2.18 -0.900703 -2.19 -0.924063 -2.2 -0.950037 -2.21 -0.977946 -2.22 -1.00691 -2.23 -1.03586 -2.24 -1.06383 -2.25 -1.08988 -2.26 -1.11312 -2.27 -1.13278 -2.28 -1.14823 -2.29 -1.15907 -2.3 -1.16492 -2.31 -1.16579 -2.32 -1.16231 -2.33 -1.15505 -2.34 -1.14481 -2.35 -1.13255 -2.36 -1.11931 -2.37 -1.10618 -2.38 -1.09421 -2.39 -1.08446 -2.4 -1.07764 -2.41 -1.07396 -2.42 -1.07334 -2.43 -1.0752 -2.44 -1.07846 -2.45 -1.08149 -2.46 -1.08207 -2.47 -1.07748 -2.48 -1.0636 -2.49 -1.03674 -2.5 -0.993005 -2.51 -0.928142 -2.52 -0.837842 -2.53 -0.717922 -2.54 -0.564491 -2.55 -0.374126 -2.56 -0.144045 -2.57 0.131407 -2.58 0.449832 -2.59 0.810636 -2.6 1.21229 -2.61 1.652 -2.62 2.12574 -2.63 2.62821 -2.64 3.15297 -2.65 3.69258 -2.66 4.2382 -2.67 4.77946 -2.68 5.3067 -2.69 5.81008 -2.7 6.27987 -2.71 6.70667 -2.72 7.08174 -2.73 7.39722 -2.74 7.64455 -2.75 7.81487 -2.76 7.90915 -2.77 7.92548 -2.78 7.86366 -2.79 7.72519 -2.8 7.51325 -2.81 7.2326 -2.82 6.8894 -2.83 6.48923 -2.84 6.04118 -2.85 5.55743 -2.86 5.04777 -2.87 4.52219 -2.88 3.99051 -2.89 3.46217 -2.9 2.94598 -2.91 2.44988 -2.92 1.98261 -2.93 1.54979 -2.94 1.15455 -2.95 0.799649 -2.96 0.48653 -2.97 0.215355 -2.98 -0.0148958 -2.99 -0.206293 -3 -0.361801 -3.01 -0.483079 -3.02 -0.576463 -3.03 -0.647139 -3.04 -0.69972 -3.05 -0.738703 -3.06 -0.768309 -3.07 -0.792338 -3.08 -0.814061 -3.09 -0.836143 -3.1 -0.860919 -3.11 -0.889532 -3.12 -0.92252 -3.13 -0.959843 -3.14 -1.00096 -3.15 -1.04489 -3.16 -1.09039 -3.17 -1.13599 -3.18 -1.1801 -3.19 -1.22087 -3.2 -1.2571 -3.21 -1.28767 -3.22 -1.31177 -3.23 -1.3289 -3.24 -1.33894 -3.25 -1.34208 -3.26 -1.33887 -3.27 -1.33001 -3.28 -1.3165 -3.29 -1.29995 -3.3 -1.28167 -3.31 -1.26296 -3.32 -1.24508 -3.33 -1.22911 -3.34 -1.21599 -3.35 -1.20638 -3.36 -1.2009 -3.37 -1.19971 -3.38 -1.20245 -3.39 -1.20873 -3.4 -1.21794 -3.41 -1.22933 -3.42 -1.24206 -3.43 -1.25524 -3.44 -1.26799 -3.45 -1.2794 -3.46 -1.28876 -3.47 -1.29567 -3.48 -1.29983 -3.49 -1.30118 -3.5 -1.29987 -3.51 -1.29625 -3.52 -1.29081 -3.53 -1.2842 -3.54 -1.27716 -3.55 -1.27054 -3.56 -1.26505 -3.57 -1.2613 -3.58 -1.25975 -3.59 -1.26066 -3.6 -1.26407 -3.61 -1.26974 -3.62 -1.2772 -3.63 -1.28568 -3.64 -1.29398 -3.65 -1.30085 -3.66 -1.30487 -3.67 -1.30453 -3.68 -1.29826 -3.69 -1.28455 -3.7 -1.26199 -3.71 -1.22916 -3.72 -1.18425 -3.73 -1.12743 -3.74 -1.0584 -3.75 -0.977237 -3.76 -0.884416 -3.77 -0.780813 -3.78 -0.667684 -3.79 -0.546645 -3.8 -0.419521 -3.81 -0.288651 -3.82 -0.156829 -3.83 -0.0266033 -3.84 0.0994417 -3.85 0.218756 -3.86 0.328898 -3.87 0.427606 -3.88 0.512856 -3.89 0.582173 -3.9 0.633986 -3.91 0.668088 -3.92 0.683929 -3.93 0.681349 -3.94 0.660567 -3.95 0.622166 -3.96 0.56706 -3.97 0.496456 -3.98 0.411067 -3.99 0.31315 -4 0.204976 -4.01 0.0884506 -4.02 -0.0344906 -4.03 -0.161933 -4.04 -0.292026 -4.05 -0.423019 -4.06 -0.553297 -4.07 -0.681139 -4.08 -0.805304 -4.09 -0.924782 -4.1 -1.03872 -4.11 -1.14644 -4.12 -1.24747 -4.13 -1.34147 -4.14 -1.42827 -4.15 -1.50782 -4.16 -1.57953 -4.17 -1.64424 -4.18 -1.70216 -4.19 -1.75358 -4.2 -1.79876 -4.21 -1.83802 -4.22 -1.87166 -4.23 -1.89996 -4.24 -1.92314 -4.25 -1.94119 -4.26 -1.95473 -4.27 -1.96402 -4.28 -1.9693 -4.29 -1.97079 -4.3 -1.96877 -4.31 -1.9635 -4.32 -1.95527 -4.33 -1.94435 -4.34 -1.93105 -4.35 -1.9159 -4.36 -1.8993 -4.37 -1.88163 -4.38 -1.86326 -4.39 -1.84452 -4.4 -1.82569 -4.41 -1.80693 -4.42 -1.78831 -4.43 -1.76971 -4.44 -1.75079 -4.45 -1.73104 -4.46 -1.70969 -4.47 -1.68573 -4.48 -1.65788 -4.49 -1.62463 -4.5 -1.5842 -4.51 -1.53391 -4.52 -1.47162 -4.53 -1.39529 -4.54 -1.30253 -4.55 -1.19095 -4.56 -1.0583 -4.57 -0.902454 -4.58 -0.721601 -4.59 -0.514279 -4.6 -0.277308 -4.61 -0.0120249 -4.62 0.280859 -4.63 0.600337 -4.64 0.944669 -4.65 1.31136 -4.66 1.69715 -4.67 2.09807 -4.68 2.50944 -4.69 2.92592 -4.7 3.34073 -4.71 3.74761 -4.72 4.14006 -4.73 4.51154 -4.74 4.85557 -4.75 5.16594 -4.76 5.43687 -4.77 5.66229 -4.78 5.83449 -4.79 5.95349 -4.8 6.01687 -4.81 6.02329 -4.82 5.97251 -4.83 5.86543 -4.84 5.70403 -4.85 5.49138 -4.86 5.23011 -4.87 4.92463 -4.88 4.5835 -4.89 4.21301 -4.9 3.81983 -4.91 3.4108 -4.92 2.99278 -4.93 2.57245 -4.94 2.15618 -4.95 1.75057 -4.96 1.36142 -4.97 0.992615 -4.98 0.647724 -4.99 0.32946 -5 0.0396762 -5.01 -0.220614 -5.02 -0.451197 -5.03 -0.652593 -5.04 -0.824287 -5.05 -0.969245 -5.06 -1.09047 -5.07 -1.19047 -5.08 -1.2719 -5.09 -1.33746 -5.1 -1.38979 -5.11 -1.43136 -5.12 -1.46442 -5.13 -1.49051 -5.14 -1.51174 -5.15 -1.52933 -5.16 -1.54403 -5.17 -1.55625 -5.18 -1.56604 -5.19 -1.57316 -5.2 -1.57715 -5.21 -1.57731 -5.22 -1.57238 -5.23 -1.56183 -5.24 -1.54478 -5.25 -1.5204 -5.26 -1.48795 -5.27 -1.44682 -5.28 -1.39654 -5.29 -1.33682 -5.3 -1.26736 -5.31 -1.18772 -5.32 -1.09887 -5.33 -1.00125 -5.34 -0.895424 -5.35 -0.782112 -5.36 -0.662138 -5.37 -0.536437 -5.38 -0.406032 -5.39 -0.271952 -5.4 -0.135472 -5.41 0.00193805 -5.42 0.13894 -5.43 0.274135 -5.44 0.40606 -5.45 0.533201 -5.46 0.653997 -5.47 0.766853 -5.48 0.86959 -5.49 0.96049 -5.5 1.0384 -5.51 1.10183 -5.52 1.14941 -5.53 1.17992 -5.54 1.19233 -5.55 1.18584 -5.56 1.15995 -5.57 1.11315 -5.58 1.04644 -5.59 0.960901 -5.6 0.85748 -5.61 0.737484 -5.62 0.602569 -5.63 0.454701 -5.64 0.296125 -5.65 0.129307 -5.66 -0.0433631 -5.67 -0.218526 -5.68 -0.393401 -5.69 -0.565344 -5.7 -0.731859 -5.71 -0.890673 -5.72 -1.03979 -5.73 -1.17755 -5.74 -1.30257 -5.75 -1.41278 -5.76 -1.50889 -5.77 -1.59084 -5.78 -1.65894 -5.79 -1.7138 -5.8 -1.7563 -5.81 -1.78749 -5.82 -1.80853 -5.83 -1.82048 -5.84 -1.82423 -5.85 -1.82145 -5.86 -1.81295 -5.87 -1.79935 -5.88 -1.78094 -5.89 -1.75773 -5.9 -1.72942 -5.91 -1.69537 -5.92 -1.65441 -5.93 -1.60509 -5.94 -1.54643 -5.95 -1.47698 -5.96 -1.39528 -5.97 -1.29991 -5.98 -1.18963 -5.99 -1.06343 -6 -0.920593 -6.01 -0.759908 -6.02 -0.581757 -6.03 -0.387513 -6.04 -0.178365 -6.05 0.043993 -6.06 0.277385 -6.07 0.519183 -6.08 0.766357 -6.09 1.01555 -6.1 1.26276 -6.11 1.50387 -6.12 1.73507 -6.13 1.95256 -6.14 2.15267 -6.15 2.33199 -6.16 2.48742 -6.17 2.61629 -6.18 2.71638 -6.19 2.78334 -6.2 2.81833 -6.21 2.82118 -6.22 2.79203 -6.23 2.73161 -6.24 2.64116 -6.25 2.52239 -6.26 2.37748 -6.27 2.20881 -6.28 2.01789 -6.29 1.80981 -6.3 1.58781 -6.31 1.35518 -6.32 1.1152 -6.33 0.871085 -6.34 0.62591 -6.35 0.382557 -6.36 0.143842 -6.37 -0.087292 -6.38 -0.309147 -6.39 -0.51999 -6.4 -0.718391 -6.41 -0.903222 -6.42 -1.07364 -6.43 -1.22909 -6.44 -1.36923 -6.45 -1.49338 -6.46 -1.60141 -6.47 -1.69446 -6.48 -1.77291 -6.49 -1.83728 -6.5 -1.88813 -6.51 -1.9261 -6.52 -1.95183 -6.53 -1.966 -6.54 -1.96871 -6.55 -1.9609 -6.56 -1.94363 -6.57 -1.91757 -6.58 -1.88339 -6.59 -1.84175 -6.6 -1.79335 -6.61 -1.73889 -6.62 -1.67912 -6.63 -1.61458 -6.64 -1.54641 -6.65 -1.4756 -6.66 -1.40311 -6.67 -1.32991 -6.68 -1.25705 -6.69 -1.18558 -6.7 -1.11656 -6.71 -1.05106 -6.72 -0.990592 -6.73 -0.935843 -6.74 -0.887684 -6.75 -0.846907 -6.76 -0.814187 -6.77 -0.790058 -6.78 -0.7749 -6.79 -0.768924 -6.8 -0.772245 -6.81 -0.785367 -6.82 -0.807161 -6.83 -0.837103 -6.84 -0.874514 -6.85 -0.91858 -6.86 -0.96837 -6.87 -1.02286 -6.88 -1.08095 -6.89 -1.14154 -6.9 -1.20337 -6.91 -1.26512 -6.92 -1.32564 -6.93 -1.38378 -6.94 -1.43844 -6.95 -1.48855 -6.96 -1.53306 -6.97 -1.57095 -6.98 -1.60086 -6.99 -1.62152 -7 -1.63229 -7.01 -1.63208 -7.02 -1.61976 -7.03 -1.59412 -7.04 -1.55392 -7.05 -1.49785 -7.06 -1.42457 -7.07 -1.33162 -7.08 -1.21788 -7.09 -1.08279 -7.1 -0.925249 -7.11 -0.744323 -7.12 -0.539346 -7.13 -0.309965 -7.14 -0.0562087 -7.15 0.22145 -7.16 0.523574 -7.17 0.847245 -7.18 1.18977 -7.19 1.54834 -7.2 1.91955 -7.21 2.29946 -7.22 2.6836 -7.23 3.06709 -7.24 3.44465 -7.25 3.80929 -7.26 4.15584 -7.27 4.47873 -7.28 4.77252 -7.29 5.03206 -7.3 5.25266 -7.31 5.43021 -7.32 5.56128 -7.33 5.6427 -7.34 5.66905 -7.35 5.64377 -7.36 5.56726 -7.37 5.44085 -7.38 5.26682 -7.39 5.04834 -7.4 4.78934 -7.41 4.49445 -7.42 4.16822 -7.43 3.81591 -7.44 3.44543 -7.45 3.06277 -7.46 2.67386 -7.47 2.28439 -7.48 1.89974 -7.49 1.5248 -7.5 1.1639 -7.51 0.821631 -7.52 0.501455 -7.53 0.204598 -7.54 -0.067508 -7.55 -0.314113 -7.56 -0.5351 -7.57 -0.730923 -7.58 -0.902526 -7.59 -1.05126 -7.6 -1.17766 -7.61 -1.28435 -7.62 -1.37406 -7.63 -1.44881 -7.64 -1.51059 -7.65 -1.56125 -7.66 -1.60249 -7.67 -1.63578 -7.68 -1.66241 -7.69 -1.68308 -7.7 -1.69898 -7.71 -1.71082 -7.72 -1.71904 -7.73 -1.72398 -7.74 -1.72586 -7.75 -1.72489 -7.76 -1.72125 -7.77 -1.71514 -7.78 -1.70665 -7.79 -1.69633 -7.8 -1.6846 -7.81 -1.67193 -7.82 -1.65887 -7.83 -1.64601 -7.84 -1.63396 -7.85 -1.62332 -7.86 -1.6147 -7.87 -1.60879 -7.88 -1.6058 -7.89 -1.60596 -7.9 -1.60936 -7.91 -1.6159 -7.92 -1.6253 -7.93 -1.63711 -7.94 -1.65068 -7.95 -1.66522 -7.96 -1.67963 -7.97 -1.69275 -7.98 -1.7034 -7.99 -1.71032 -8 -1.71222 -8.01 -1.70782 -8.02 -1.6959 -8.03 -1.67528 -8.04 -1.64442 -8.05 -1.60223 -8.06 -1.5484 -8.07 -1.48232 -8.08 -1.40356 -8.09 -1.31186 -8.1 -1.20715 -8.11 -1.08957 -8.12 -0.959449 -8.13 -0.816635 -8.14 -0.662302 -8.15 -0.497823 -8.16 -0.324379 -8.17 -0.143356 -8.18 0.0436692 -8.19 0.234928 -8.2 0.428472 -8.21 0.622187 -8.22 0.813469 -8.23 0.999816 -8.24 1.17877 -8.25 1.34778 -8.26 1.5043 -8.27 1.64581 -8.28 1.76992 -8.29 1.87437 -8.3 1.9571 -8.31 2.01408 -8.32 2.04593 -8.33 2.05172 -8.34 2.03093 -8.35 1.98352 -8.36 1.90995 -8.37 1.81121 -8.38 1.68878 -8.39 1.54436 -8.4 1.3795 -8.41 1.19881 -8.42 1.0056 -8.43 0.803452 -8.44 0.596113 -8.45 0.387446 -8.46 0.181306 -8.47 -0.0185427 -8.48 -0.208119 -8.49 -0.383366 -8.5 -0.542075 -8.51 -0.681833 -8.52 -0.800718 -8.53 -0.897334 -8.54 -0.970834 -8.55 -1.02092 -8.56 -1.04783 -8.57 -1.05135 -8.58 -1.03291 -8.59 -0.995281 -8.6 -0.940521 -8.61 -0.870976 -8.62 -0.78918 -8.63 -0.697791 -8.64 -0.599518 -8.65 -0.497054 -8.66 -0.393074 -8.67 -0.290361 -8.68 -0.191218 -8.69 -0.0976911 -8.7 -0.0115904 -8.71 0.0655269 -8.72 0.13236 -8.73 0.187862 -8.74 0.231236 -8.75 0.260909 -8.76 0.277336 -8.77 0.280621 -8.78 0.270865 -8.79 0.248347 -8.8 0.213511 -8.81 0.166959 -8.82 0.109444 -8.83 0.0418631 -8.84 -0.0354463 -8.85 -0.120353 -8.86 -0.211496 -8.87 -0.30738 -8.88 -0.406387 -8.89 -0.506789 -8.9 -0.606768 -8.91 -0.70444 -8.92 -0.797782 -8.93 -0.884315 -8.94 -0.962525 -8.95 -1.03065 -8.96 -1.08708 -8.97 -1.1304 -8.98 -1.15944 -8.99 -1.17331 -9 -1.17145 -9.01 -1.15314 -9.02 -1.11816 -9.03 -1.06812 -9.04 -1.00403 -9.05 -0.927267 -9.06 -0.839557 -9.07 -0.742906 -9.08 -0.639568 -9.09 -0.531985 -9.1 -0.422765 -9.11 -0.314848 -9.12 -0.210863 -9.13 -0.113267 -9.14 -0.0243333 -9.15 0.0539038 -9.16 0.119705 -9.17 0.171667 -9.18 0.208756 -9.19 0.229327 -9.2 0.2337 -9.21 0.222558 -9.22 0.196503 -9.23 0.156478 -9.24 0.10373 -9.25 0.0397628 -9.26 -0.0337075 -9.27 -0.114808 -9.28 -0.201842 -9.29 -0.292216 -9.3 -0.383827 -9.31 -0.474692 -9.32 -0.562915 -9.33 -0.646724 -9.34 -0.724489 -9.35 -0.79475 -9.36 -0.856201 -9.37 -0.906812 -9.38 -0.946545 -9.39 -0.974757 -9.4 -0.991007 -9.41 -0.995051 -9.42 -0.986843 -9.43 -0.966532 -9.44 -0.934458 -9.45 -0.89096 -9.46 -0.83627 -9.47 -0.772155 -9.48 -0.699741 -9.49 -0.62032 -9.5 -0.535341 -9.51 -0.446395 -9.52 -0.355193 -9.53 -0.263539 -9.54 -0.173413 -9.55 -0.0869939 -9.56 -0.00603141 -9.57 0.067718 -9.58 0.132639 -9.59 0.187315 -9.6 0.230578 -9.61 0.261569 -9.62 0.279778 -9.63 0.284464 -9.64 0.276126 -9.65 0.256175 -9.66 0.225923 -9.67 0.187124 -9.68 0.141946 -9.69 0.0929318 -9.7 0.0429391 -9.71 -0.00492547 -9.72 -0.0468114 -9.73 -0.0792317 -9.74 -0.0990449 -9.75 -0.10311 -9.76 -0.0885446 -9.77 -0.0528212 -9.78 0.00613966 -9.79 0.08989 -9.8 0.199387 -9.81 0.337026 -9.82 0.50047 -9.83 0.688205 -9.84 0.898327 -9.85 1.12828 -9.86 1.37491 -9.87 1.63455 -9.88 1.90306 -9.89 2.17596 -9.9 2.44805 -9.91 2.71415 -9.92 2.96941 -9.93 3.20913 -9.94 3.42883 -9.95 3.6244 -9.96 3.79214 -9.97 3.92887 -9.98 4.03126 -9.99 4.09532 -10 4.12234 -10.01 4.11179 -10.02 4.06381 -10.03 3.97917 -10.04 3.85925 -10.05 3.70594 -10.06 3.52167 -10.07 3.30835 -10.08 3.06905 -10.09 2.80883 -10.1 2.53136 -10.11 2.24036 -10.12 1.93963 -10.13 1.63288 -10.14 1.3237 -10.15 1.01554 -10.16 0.711955 -10.17 0.416166 -10.18 0.130538 -10.19 -0.142704 -10.2 -0.401687 -10.21 -0.644893 -10.22 -0.871168 -10.23 -1.0797 -10.24 -1.27004 -10.25 -1.44081 -10.26 -1.59299 -10.27 -1.72752 -10.28 -1.84511 -10.29 -1.94665 -10.3 -2.03317 -10.31 -2.10581 -10.32 -2.1658 -10.33 -2.21437 -10.34 -2.25199 -10.35 -2.28066 -10.36 -2.30152 -10.37 -2.31549 -10.38 -2.32334 -10.39 -2.32565 -10.4 -2.32282 -10.41 -2.31505 -10.42 -2.30232 -10.43 -2.28403 -10.44 -2.26019 -10.45 -2.2303 -10.46 -2.1937 -10.47 -2.14969 -10.48 -2.09752 -10.49 -2.03641 -10.5 -1.96568 -10.51 -1.88445 -10.52 -1.7917 -10.53 -1.68787 -10.54 -1.5729 -10.55 -1.44695 -10.56 -1.31047 -10.57 -1.16416 -10.58 -1.00897 -10.59 -0.846149 -10.6 -0.677024 -10.61 -0.503468 -10.62 -0.327764 -10.63 -0.152023 -10.64 0.0215377 -10.65 0.190642 -10.66 0.353005 -10.67 0.506383 -10.68 0.648629 -10.69 0.776933 -10.7 0.889489 -10.71 0.98529 -10.72 1.06309 -10.73 1.12193 -10.74 1.16118 -10.75 1.18055 -10.76 1.18006 -10.77 1.16008 -10.78 1.12005 -10.79 1.06195 -10.8 0.987523 -10.81 0.898299 -10.82 0.796006 -10.83 0.682523 -10.84 0.55984 -10.85 0.430013 -10.86 0.295121 -10.87 0.15714 -10.88 0.0184519 -10.89 -0.119054 -10.9 -0.253654 -10.91 -0.383795 -10.92 -0.508122 -10.93 -0.625495 -10.94 -0.735001 -10.95 -0.835891 -10.96 -0.927023 -10.97 -1.00897 -10.98 -1.08179 -10.99 -1.14576 -11 -1.20129 -11.01 -1.24899 -11.02 -1.28954 -11.03 -1.32375 -11.04 -1.35231 -11.05 -1.37597 -11.06 -1.39589 -11.07 -1.41278 -11.08 -1.42728 -11.09 -1.43986 -11.1 -1.45084 -11.11 -1.46037 -11.12 -1.46841 -11.13 -1.47463 -11.14 -1.47849 -11.15 -1.47945 -11.16 -1.47671 -11.17 -1.46935 -11.18 -1.45635 -11.19 -1.43666 -11.2 -1.40923 -11.21 -1.37303 -11.22 -1.32658 -11.23 -1.26921 -11.24 -1.20075 -11.25 -1.12092 -11.26 -1.0297 -11.27 -0.927376 -11.28 -0.814553 -11.29 -0.692155 -11.3 -0.561425 -11.31 -0.423555 -11.32 -0.280917 -11.33 -0.135749 -11.34 0.00967782 -11.35 0.152977 -11.36 0.291711 -11.37 0.423456 -11.38 0.545875 -11.39 0.656782 -11.4 0.752892 -11.41 0.833525 -11.42 0.897485 -11.43 0.943881 -11.44 0.972237 -11.45 0.9825 -11.46 0.975049 -11.47 0.950683 -11.48 0.910454 -11.49 0.855082 -11.5 0.787773 -11.51 0.710699 -11.52 0.626202 -11.53 0.536729 -11.54 0.444755 -11.55 0.352712 -11.56 0.262919 -11.57 0.177682 -11.58 0.0993352 -11.59 0.0291096 -11.6 -0.0317873 -11.61 -0.0825045 -11.62 -0.122558 -11.63 -0.151831 -11.64 -0.170555 -11.65 -0.179288 -11.66 -0.178543 -11.67 -0.169493 -11.68 -0.153904 -11.69 -0.133199 -11.7 -0.108849 -11.71 -0.0823145 -11.72 -0.0549814 -11.73 -0.0281059 -11.74 -0.00276395 -11.75 0.0200205 -11.76 0.0396777 -11.77 0.0560492 -11.78 0.0691844 -11.79 0.0794243 -11.8 0.0873881 -11.81 0.0939483 -11.82 0.100197 -11.83 0.107402 -11.84 0.117238 -11.85 0.131185 -11.86 0.150659 -11.87 0.177056 -11.88 0.211642 -11.89 0.255501 -11.9 0.309477 -11.91 0.374137 -11.92 0.449726 -11.93 0.537066 -11.94 0.634679 -11.95 0.741616 -11.96 0.856616 -11.97 0.978087 -11.98 1.10414 -11.99 1.23263 -12 1.36121 -12.01 1.48733 -12.02 1.60784 -12.03 1.72041 -12.04 1.82256 -12.05 1.91198 -12.06 1.98657 -12.07 2.04452 -12.08 2.08435 -12.09 2.10494 -12.1 2.10504 -12.11 2.08367 -12.12 2.04238 -12.13 1.98188 -12.14 1.90329 -12.15 1.80809 -12.16 1.6981 -12.17 1.57541 -12.18 1.44233 -12.19 1.30111 -12.2 1.15457 -12.21 1.00563 -12.22 0.856743 -12.23 0.710227 -12.24 0.568196 -12.25 0.432512 -12.26 0.304746 -12.27 0.186146 -12.28 0.0782597 -12.29 -0.0185879 -12.3 -0.104568 -12.31 -0.179823 -12.32 -0.244764 -12.33 -0.300039 -12.34 -0.346475 -12.35 -0.385034 -12.36 -0.416751 -12.37 -0.44233 -12.38 -0.463211 -12.39 -0.48041 -12.4 -0.494709 -12.41 -0.506725 -12.42 -0.516886 -12.43 -0.525423 -12.44 -0.532363 -12.45 -0.537544 -12.46 -0.540397 -12.47 -0.540569 -12.48 -0.537459 -12.49 -0.530403 -12.5 -0.518731 -12.51 -0.50181 -12.52 -0.479088 -12.53 -0.450143 -12.54 -0.414626 -12.55 -0.372068 -12.56 -0.323191 -12.57 -0.268442 -12.58 -0.208502 -12.59 -0.144279 -12.6 -0.0768908 -12.61 -0.0076321 -12.62 0.0620565 -12.63 0.13055 -12.64 0.195982 -12.65 0.256845 -12.66 0.311608 -12.67 0.358853 -12.68 0.397319 -12.69 0.425942 -12.7 0.443888 -12.71 0.450582 -12.72 0.445198 -12.73 0.427732 -12.74 0.399052 -12.75 0.359747 -12.76 0.310646 -12.77 0.25279 -12.78 0.187396 -12.79 0.115817 -12.8 0.0394959 -12.81 -0.0401801 -12.82 -0.121463 -12.83 -0.202823 -12.84 -0.282914 -12.85 -0.360514 -12.86 -0.434552 -12.87 -0.504124 -12.88 -0.56851 -12.89 -0.627175 -12.9 -0.679292 -12.91 -0.725073 -12.92 -0.764638 -12.93 -0.798147 -12.94 -0.825875 -12.95 -0.848176 -12.96 -0.865465 -12.97 -0.87818 -12.98 -0.88676 -12.99 -0.891311 -13 -0.892562 -13.01 -0.890801 -13.02 -0.886236 -13.03 -0.878993 -13.04 -0.869113 -13.05 -0.856556 -13.06 -0.841216 -13.07 -0.822878 -13.08 -0.801128 -13.09 -0.775973 -13.1 -0.747206 -13.11 -0.714653 -13.12 -0.678197 -13.13 -0.6378 -13.14 -0.59352 -13.15 -0.545528 -13.16 -0.494022 -13.17 -0.439404 -13.18 -0.382467 -13.19 -0.323922 -13.2 -0.264601 -13.21 -0.205437 -13.22 -0.147443 -13.23 -0.091695 -13.24 -0.0392998 -13.25 0.00836532 -13.26 0.0500941 -13.27 0.0850813 -13.28 0.112407 -13.29 0.131273 -13.3 0.141021 -13.31 0.141162 -13.32 0.131383 -13.33 0.111564 -13.34 0.0811692 -13.35 0.040861 -13.36 -0.00856575 -13.37 -0.066434 -13.38 -0.13191 -13.39 -0.204023 -13.4 -0.281694 -13.41 -0.363756 -13.42 -0.448987 -13.43 -0.536189 -13.44 -0.623874 -13.45 -0.710804 -13.46 -0.795814 -13.47 -0.877813 -13.48 -0.955796 -13.49 -1.02885 -13.5 -1.09617 -13.51 -1.15702 -13.52 -1.21013 -13.53 -1.25557 -13.54 -1.29294 -13.55 -1.32186 -13.56 -1.34204 -13.57 -1.3532 -13.58 -1.35512 -13.59 -1.34757 -13.6 -1.33018 -13.61 -1.3022 -13.62 -1.26418 -13.63 -1.216 -13.64 -1.15755 -13.65 -1.08879 -13.66 -1.00976 -13.67 -0.920581 -13.68 -0.821502 -13.69 -0.712606 -13.7 -0.594289 -13.71 -0.467867 -13.72 -0.334292 -13.73 -0.194708 -13.74 -0.0504545 -13.75 0.0969456 -13.76 0.245801 -13.77 0.394276 -13.78 0.540209 -13.79 0.681341 -13.8 0.81574 -13.81 0.941396 -13.82 1.05639 -13.83 1.15893 -13.84 1.24743 -13.85 1.32053 -13.86 1.37715 -13.87 1.41535 -13.88 1.43537 -13.89 1.43767 -13.9 1.42261 -13.91 1.3909 -13.92 1.34356 -13.93 1.28193 -13.94 1.20759 -13.95 1.12235 -13.96 1.02761 -13.97 0.926266 -13.98 0.820539 -13.99 0.712533 -14 0.60428 -14.01 0.497695 -14.02 0.394531 -14.03 0.296356 -14.04 0.204553 -14.05 0.120967 -14.06 0.0458674 -14.07 -0.0201185 -14.08 -0.0765646 -14.09 -0.123226 -14.1 -0.16001 -14.11 -0.186948 -14.12 -0.204159 -14.13 -0.211641 -14.14 -0.209133 -14.15 -0.197542 -14.16 -0.177069 -14.17 -0.147889 -14.18 -0.110146 -14.19 -0.0639634 -14.2 -0.00945055 -14.21 0.0532779 -14.22 0.124358 -14.23 0.203732 -14.24 0.290642 -14.25 0.384672 -14.26 0.48527 -14.27 0.591723 -14.28 0.703148 -14.29 0.818485 -14.3 0.936497 -14.31 1.05577 -14.32 1.17454 -14.33 1.2911 -14.34 1.40368 -14.35 1.51054 -14.36 1.60993 -14.37 1.70018 -14.38 1.77978 -14.39 1.84736 -14.4 1.90086 -14.41 1.93989 -14.42 1.9643 -14.43 1.97388 -14.44 1.96876 -14.45 1.94939 -14.46 1.91649 -14.47 1.87108 -14.48 1.81441 -14.49 1.74723 -14.5 1.67199 -14.51 1.59045 -14.52 1.50429 -14.53 1.41515 -14.54 1.32457 -14.55 1.23395 -14.56 1.14451 -14.57 1.05728 -14.58 0.973325 -14.59 0.892911 -14.6 0.816274 -14.61 0.743424 -14.62 0.674162 -14.63 0.608115 -14.64 0.544772 -14.65 0.48352 -14.66 0.423704 -14.67 0.364603 -14.68 0.305475 -14.69 0.245738 -14.7 0.184912 -14.71 0.122639 -14.72 0.0586941 -14.73 -0.00700002 -14.74 -0.0743797 -14.75 -0.143289 -14.76 -0.213377 -14.77 -0.284127 -14.78 -0.355033 -14.79 -0.42555 -14.8 -0.495121 -14.81 -0.563208 -14.82 -0.629315 -14.83 -0.693014 -14.84 -0.753799 -14.85 -0.811444 -14.86 -0.865942 -14.87 -0.91728 -14.88 -0.965547 -14.89 -1.01092 -14.9 -1.05365 -14.91 -1.09405 -14.92 -1.13248 -14.93 -1.1692 -14.94 -1.20469 -14.95 -1.23931 -14.96 -1.27334 -14.97 -1.307 -14.98 -1.34043 -14.99 -1.3737 -15 -1.40679 -15.01 -1.4396 -15.02 -1.47187 -15.03 -1.50336 -15.04 -1.53372 -15.05 -1.56257 -15.06 -1.58947 -15.07 -1.61395 -15.08 -1.63551 -15.09 -1.65367 -15.1 -1.66787 -15.11 -1.67722 -15.12 -1.68156 -15.13 -1.68042 -15.14 -1.67334 -15.15 -1.65987 -15.16 -1.63959 -15.17 -1.61213 -15.18 -1.57713 -15.19 -1.53408 -15.2 -1.48233 -15.21 -1.42224 -15.22 -1.35369 -15.23 -1.27667 -15.24 -1.19124 -15.25 -1.09762 -15.26 -0.996125 -15.27 -0.887235 -15.28 -0.77135 -15.29 -0.649294 -15.3 -0.522424 -15.31 -0.3919 -15.32 -0.25904 -15.33 -0.125305 -15.34 0.00772734 -15.35 0.138379 -15.36 0.264909 -15.37 0.385121 -15.38 0.497152 -15.39 0.599532 -15.4 0.690666 -15.41 0.7691 -15.42 0.833562 -15.43 0.882995 -15.44 0.91659 -15.45 0.933807 -15.46 0.933229 -15.47 0.915765 -15.48 0.8822 -15.49 0.833247 -15.5 0.769898 -15.51 0.693398 -15.52 0.605222 -15.53 0.507036 -15.54 0.400664 -15.55 0.287681 -15.56 0.170775 -15.57 0.052029 -15.58 -0.0665281 -15.59 -0.182922 -15.6 -0.295267 -15.61 -0.401794 -15.62 -0.500879 -15.63 -0.590957 -15.64 -0.66989 -15.65 -0.737379 -15.66 -0.792568 -15.67 -0.834794 -15.68 -0.863591 -15.69 -0.878681 -15.7 -0.879971 -15.71 -0.867546 -15.72 -0.841328 -15.73 -0.801249 -15.74 -0.748806 -15.75 -0.684739 -15.76 -0.609916 -15.77 -0.525329 -15.78 -0.432083 -15.79 -0.331386 -15.8 -0.224536 -15.81 -0.112773 -15.82 0.00231428 -15.83 0.118999 -15.84 0.235767 -15.85 0.351103 -15.86 0.463515 -15.87 0.571557 -15.88 0.673855 -15.89 0.769131 -15.9 0.855703 -15.91 0.932638 -15.92 0.999422 -15.93 1.05543 -15.94 1.10025 -15.95 1.13364 -15.96 1.1556 -15.97 1.16631 -15.98 1.16615 -15.99 1.15501 -16 1.13423 -16.01 1.10491 -16.02 1.06806 -16.03 1.02473 -16.04 0.976043 -16.05 0.923132 -16.06 0.867105 -16.07 0.80903 -16.08 0.749893 -16.09 0.690745 -16.1 0.632365 -16.11 0.575407 -16.12 0.520398 -16.13 0.467742 -16.14 0.417722 -16.15 0.370508 -16.16 0.326204 -16.17 0.284984 -16.18 0.246521 -16.19 0.210671 -16.2 0.177264 -16.21 0.146116 -16.22 0.117042 -16.23 0.0898706 -16.24 0.0644521 -16.25 0.0407034 -16.26 0.01858 -16.27 -0.0020843 -16.28 -0.0213268 -16.29 -0.0391674 -16.3 -0.0556156 -16.31 -0.070679 -16.32 -0.0843712 -16.33 -0.0967195 -16.34 -0.107719 -16.35 -0.117446 -16.36 -0.12607 -16.37 -0.133724 -16.38 -0.140564 -16.39 -0.146764 -16.4 -0.152508 -16.41 -0.157983 -16.42 -0.163362 -16.43 -0.16881 -16.44 -0.174454 -16.45 -0.180355 -16.46 -0.186521 -16.47 -0.192894 -16.48 -0.19935 -16.49 -0.205692 -16.5 -0.211652 -16.51 -0.216894 -16.52 -0.220904 -16.53 -0.223245 -16.54 -0.22344 -16.55 -0.220966 -16.56 -0.215291 -16.57 -0.20589 -16.58 -0.192259 -16.59 -0.173932 -16.6 -0.150495 -16.61 -0.121086 -16.62 -0.0859049 -16.63 -0.0448042 -16.64 0.00227998 -16.65 0.0553096 -16.66 0.114142 -16.67 0.178528 -16.68 0.248115 -16.69 0.322502 -16.7 0.401346 -16.71 0.483612 -16.72 0.56855 -16.73 0.655336 -16.74 0.743079 -16.75 0.830829 -16.76 0.917593 -16.77 1.00234 -16.78 1.0839 -16.79 1.16094 -16.8 1.23262 -16.81 1.29791 -16.82 1.35581 -16.83 1.4054 -16.84 1.44581 -16.85 1.47629 -16.86 1.49616 -16.87 1.50438 -16.88 1.5005 -16.89 1.48485 -16.9 1.4574 -16.91 1.41829 -16.92 1.36784 -16.93 1.30657 -16.94 1.23515 -16.95 1.15442 -16.96 1.06496 -16.97 0.968292 -16.98 0.86594 -16.99 0.759264 -17 0.649676 -17.01 0.538607 -17.02 0.427485 -17.03 0.317693 -17.04 0.210547 -17.05 0.107642 -17.06 0.00991611 -17.07 -0.0817863 -17.08 -0.166725 -17.09 -0.244337 -17.1 -0.314243 -17.11 -0.376246 -17.12 -0.430327 -17.13 -0.476633 -17.14 -0.514815 -17.15 -0.546043 -17.16 -0.570883 -17.17 -0.58998 -17.18 -0.604036 -17.19 -0.613784 -17.2 -0.619963 -17.21 -0.623301 -17.22 -0.624471 -17.23 -0.624087 -17.24 -0.622879 -17.25 -0.621349 -17.26 -0.619926 -17.27 -0.618965 -17.28 -0.61875 -17.29 -0.619501 -17.3 -0.621379 -17.31 -0.624535 -17.32 -0.629082 -17.33 -0.634974 -17.34 -0.642219 -17.35 -0.650809 -17.36 -0.660724 -17.37 -0.671935 -17.38 -0.684408 -17.39 -0.698095 -17.4 -0.712991 -17.41 -0.729014 -17.42 -0.746015 -17.43 -0.763874 -17.44 -0.782441 -17.45 -0.801534 -17.46 -0.820938 -17.47 -0.840402 -17.48 -0.85964 -17.49 -0.878286 -17.5 -0.895982 -17.51 -0.91239 -17.52 -0.927153 -17.53 -0.939922 -17.54 -0.950367 -17.55 -0.958187 -17.56 -0.963126 -17.57 -0.964978 -17.58 -0.963338 -17.59 -0.958336 -17.6 -0.950028 -17.61 -0.93849 -17.62 -0.923869 -17.63 -0.906373 -17.64 -0.886266 -17.65 -0.863856 -17.66 -0.83948 -17.67 -0.813392 -17.68 -0.78613 -17.69 -0.758051 -17.7 -0.729487 -17.71 -0.700737 -17.72 -0.672059 -17.73 -0.643658 -17.74 -0.615687 -17.75 -0.588253 -17.76 -0.561428 -17.77 -0.535149 -17.78 -0.509348 -17.79 -0.48392 -17.8 -0.458728 -17.81 -0.433615 -17.82 -0.408411 -17.83 -0.382943 -17.84 -0.357018 -17.85 -0.330442 -17.86 -0.303099 -17.87 -0.27486 -17.88 -0.245618 -17.89 -0.215281 -17.9 -0.183774 -17.91 -0.151034 -17.92 -0.117011 -17.93 -0.081592 -17.94 -0.0447389 -17.95 -0.00647304 -17.96 0.0332401 -17.97 0.0744309 -17.98 0.117123 -17.99 0.161327 -18 0.207035 -18.01 0.254214 -18.02 0.302875 -18.03 0.352833 -18.04 0.403868 -18.05 0.455733 -18.06 0.508111 -18.07 0.56061 -18.08 0.612765 -18.09 0.664034 -18.1 0.713808 -18.11 0.761188 -18.12 0.805534 -18.13 0.846126 -18.14 0.882207 -18.15 0.913039 -18.16 0.937923 -18.17 0.956225 -18.18 0.967399 -18.19 0.970984 -18.2 0.965989 -18.21 0.952978 -18.22 0.932002 -18.23 0.903288 -18.24 0.867237 -18.25 0.824425 -18.26 0.775595 -18.27 0.72164 -18.28 0.663532 -18.29 0.602377 -18.3 0.5397 -18.31 0.476779 -18.32 0.414908 -18.33 0.35536 -18.34 0.299356 -18.35 0.248038 -18.36 0.202432 -18.37 0.163689 -18.38 0.132776 -18.39 0.109825 -18.4 0.0951643 -18.41 0.0889281 -18.42 0.091055 -18.43 0.101292 -18.44 0.119203 -18.45 0.14418 -18.46 0.175733 -18.47 0.212786 -18.48 0.254044 -18.49 0.298389 -18.5 0.344643 -18.51 0.391593 -18.52 0.438016 -18.53 0.482703 -18.54 0.524483 -18.55 0.56191 -18.56 0.594021 -18.57 0.620019 -18.58 0.639121 -18.59 0.650678 -18.6 0.654187 -18.61 0.649301 -18.62 0.635839 -18.63 0.613784 -18.64 0.582626 -18.65 0.543347 -18.66 0.496558 -18.67 0.442937 -18.68 0.383306 -18.69 0.318616 -18.7 0.249929 -18.71 0.178402 -18.72 0.105257 -18.73 0.0318592 -18.74 -0.0403803 -18.75 -0.110191 -18.76 -0.176347 -18.77 -0.237696 -18.78 -0.293185 -18.79 -0.341888 -18.8 -0.383023 -18.81 -0.415797 -18.82 -0.439317 -18.83 -0.453979 -18.84 -0.459791 -18.85 -0.456953 -18.86 -0.44586 -18.87 -0.427088 -18.88 -0.401374 -18.89 -0.369599 -18.9 -0.33262 -18.91 -0.291592 -18.92 -0.247948 -18.93 -0.202872 -18.94 -0.157538 -18.95 -0.113079 -18.96 -0.0705603 -18.97 -0.0309534 -18.98 0.00488642 -18.99 0.0359726 -19 0.0617424 -19.01 0.082003 -19.02 0.0965422 -19.03 0.105309 -19.04 0.108409 -19.05 0.106094 -19.06 0.0987483 -19.07 0.0868742 -19.08 0.0708536 -19.09 0.0516184 -19.1 0.0300126 -19.11 0.00681984 -19.12 -0.0171634 -19.13 -0.0411465 -19.14 -0.0643621 -19.15 -0.0860822 -19.16 -0.105632 -19.17 -0.122125 -19.18 -0.135204 -19.19 -0.144464 -19.2 -0.149568 -19.21 -0.150271 -19.22 -0.146428 -19.23 -0.137992 -19.24 -0.125012 -19.25 -0.107605 -19.26 -0.0857172 -19.27 -0.0600702 -19.28 -0.0310941 -19.29 0.000705379 -19.3 0.0347549 -19.31 0.0704231 -19.32 0.107031 -19.33 0.143864 -19.34 0.180154 -19.35 0.215015 -19.36 0.247754 -19.37 0.277659 -19.38 0.304058 -19.39 0.326337 -19.4 0.343952 -19.41 0.356441 -19.42 0.36344 -19.43 0.36446 -19.44 0.359259 -19.45 0.348144 -19.46 0.331226 -19.47 0.308732 -19.48 0.280996 -19.49 0.248448 -19.5 0.211609 -19.51 0.171069 -19.52 0.127347 -19.53 0.0812606 -19.54 0.0336275 -19.55 -0.0148506 -19.56 -0.0634936 -19.57 -0.111658 -19.58 -0.158752 -19.59 -0.204245 -19.6 -0.247678 -19.61 -0.288474 -19.62 -0.326426 -19.63 -0.361378 -19.64 -0.393194 -19.65 -0.4218 -19.66 -0.447182 -19.67 -0.469368 -19.68 -0.488426 -19.69 -0.504447 -19.7 -0.517296 -19.71 -0.527322 -19.72 -0.534651 -19.73 -0.539378 -19.74 -0.541584 -19.75 -0.541337 -19.76 -0.538691 -19.77 -0.533688 -19.78 -0.526347 -19.79 -0.516541 -19.8 -0.504512 -19.81 -0.490325 -19.82 -0.474068 -19.83 -0.455857 -19.84 -0.43584 -19.85 -0.414202 -19.86 -0.39116 -19.87 -0.366945 -19.88 -0.341833 -19.89 -0.316209 -19.9 -0.290394 -19.91 -0.264714 -19.92 -0.239488 -19.93 -0.21502 -19.94 -0.191589 -19.95 -0.169438 -19.96 -0.148835 -19.97 -0.129966 -19.98 -0.112845 -19.99 -0.0975121 -20 -0.0839606 -20.01 -0.0721382 -20.02 -0.0619558 -20.03 -0.0532953 -20.04 -0.0460194 -20.05 -0.0400433 -20.06 -0.0351824 -20.07 -0.0312635 -20.08 -0.0281796 -20.09 -0.0258519 -20.1 -0.0242341 -20.11 -0.0233131 -20.12 -0.0231085 -20.13 -0.0236682 -20.14 -0.0251281 -20.15 -0.0275368 -20.16 -0.0309606 -20.17 -0.03547 -20.18 -0.0411105 -20.19 -0.0478902 -20.2 -0.0557692 -20.21 -0.0646499 -20.22 -0.0743708 -20.23 -0.0847294 -20.24 -0.095341 -20.25 -0.105824 -20.26 -0.115744 -20.27 -0.124617 -20.28 -0.131931 -20.29 -0.137156 -20.3 -0.139764 -20.31 -0.139209 -20.32 -0.134735 -20.33 -0.126216 -20.34 -0.113349 -20.35 -0.0959308 -20.36 -0.0738689 -20.37 -0.04719 -20.38 -0.0160459 -20.39 0.0192865 -20.4 0.0584942 -20.41 0.101122 -20.42 0.146284 -20.43 0.193257 -20.44 0.241248 -20.45 0.28942 -20.46 0.336908 -20.47 0.382842 -20.48 0.426369 -20.49 0.466502 -20.5 0.502366 -20.51 0.533459 -20.52 0.559202 -20.53 0.579116 -20.54 0.592832 -20.55 0.600095 -20.56 0.600763 -20.57 0.594811 -20.58 0.581958 -20.59 0.562589 -20.6 0.537245 -20.61 0.506333 -20.62 0.470342 -20.63 0.429833 -20.64 0.385429 -20.65 0.337802 -20.66 0.287667 -20.67 0.235696 -20.68 0.182825 -20.69 0.129858 -20.7 0.0775631 -20.71 0.0266931 -20.72 -0.0220257 -20.73 -0.0679038 -20.74 -0.1103 -20.75 -0.148632 -20.76 -0.181937 -20.77 -0.210157 -20.78 -0.232981 -20.79 -0.250181 -20.8 -0.261633 -20.81 -0.26732 -20.82 -0.267332 -20.83 -0.261868 -20.84 -0.251169 -20.85 -0.235367 -20.86 -0.215375 -20.87 -0.191772 -20.88 -0.165195 -20.89 -0.136324 -20.9 -0.105861 -20.91 -0.0745102 -20.92 -0.0429653 -20.93 -0.0119165 -20.94 0.017929 -20.95 0.0460817 -20.96 0.0720988 -20.97 0.0956284 -20.98 0.116416 -20.99 0.134304 -21 0.149236 -21.01 0.161244 -21.02 0.170331 -21.03 0.176709 -21.04 0.180773 -21.05 0.182822 -21.06 0.183179 -21.07 0.18217 -21.08 0.180116 -21.09 0.177311 -21.1 0.174013 -21.11 0.170426 -21.12 0.166727 -21.13 0.163013 -21.14 0.159316 -21.15 0.155615 -21.16 0.151842 -21.17 0.147893 -21.18 0.143636 -21.19 0.138923 -21.2 0.133548 -21.21 0.127397 -21.22 0.120369 -21.23 0.112388 -21.24 0.103419 -21.25 0.0934753 -21.26 0.0826191 -21.27 0.0709647 -21.28 0.0586737 -21.29 0.0459338 -21.3 0.0330485 -21.31 0.0202909 -21.32 0.00794806 -21.33 -0.00368941 -21.34 -0.014338 -21.35 -0.0237317 -21.36 -0.031631 -21.37 -0.0378034 -21.38 -0.0419553 -21.39 -0.0441129 -21.4 -0.0442155 -21.41 -0.0422503 -21.42 -0.0382501 -21.43 -0.0322906 -21.44 -0.0244858 -21.45 -0.0149835 -21.46 -0.00391982 -21.47 0.00852313 -21.48 0.0220322 -21.49 0.0363739 -21.5 0.0513056 -21.51 0.066577 -21.52 0.0819322 -21.53 0.09711 -21.54 0.111845 -21.55 0.125818 -21.56 0.13872 -21.57 0.150301 -21.58 0.160279 -21.59 0.168367 -21.6 0.174283 -21.61 0.177755 -21.62 0.178524 -21.63 0.176357 -21.64 0.170848 -21.65 0.161928 -21.66 0.149602 -21.67 0.133849 -21.68 0.114721 -21.69 0.0923525 -21.7 0.0669705 -21.71 0.0388918 -21.72 0.00852578 -21.73 -0.0237236 -21.74 -0.0571017 -21.75 -0.0909213 -21.76 -0.124471 -21.77 -0.157006 -21.78 -0.187774 -21.79 -0.21603 -21.8 -0.24107 -21.81 -0.262242 -21.82 -0.278538 -21.83 -0.289888 -21.84 -0.295987 -21.85 -0.29667 -21.86 -0.291919 -21.87 -0.281872 -21.88 -0.26682 -21.89 -0.247197 -21.9 -0.223521 -21.91 -0.196368 -21.92 -0.166841 -21.93 -0.135813 -21.94 -0.104201 -21.95 -0.0729314 -21.96 -0.0429176 -21.97 -0.0150304 -21.98 0.00992653 -21.99 0.0311006 -22 0.0477124 -22.01 0.0595331 -22.02 0.0662436 -22.03 0.0676615 -22.04 0.0637406 -22.05 0.0545645 -22.06 0.0403372 -22.07 0.0213692 -22.08 -0.00212192 -22.09 -0.0295788 -22.1 -0.0602728 -22.11 -0.0936353 -22.12 -0.129085 -22.13 -0.166045 -22.14 -0.203955 -22.15 -0.242287 -22.16 -0.280551 -22.17 -0.31824 -22.18 -0.354941 -22.19 -0.390332 -22.2 -0.42412 -22.21 -0.456056 -22.22 -0.485928 -22.23 -0.513554 -22.24 -0.53878 -22.25 -0.56147 -22.26 -0.581286 -22.27 -0.598288 -22.28 -0.612416 -22.29 -0.623582 -22.3 -0.631708 -22.31 -0.636727 -22.32 -0.638586 -22.33 -0.637248 -22.34 -0.63269 -22.35 -0.624642 -22.36 -0.613432 -22.37 -0.599127 -22.38 -0.581821 -22.39 -0.561635 -22.4 -0.538714 -22.41 -0.513223 -22.42 -0.485342 -22.43 -0.455224 -22.44 -0.422971 -22.45 -0.388931 -22.46 -0.353283 -22.47 -0.316189 -22.48 -0.277795 -22.49 -0.238226 -22.5 -0.197587 -22.51 -0.155966 -22.52 -0.113407 -22.53 -0.0699637 -22.54 -0.0257548 -22.55 0.0191431 -22.56 0.0646341 -22.57 0.110594 -22.58 0.156863 -22.59 0.203237 -22.6 0.249463 -22.61 0.2952 -22.62 0.340046 -22.63 0.383613 -22.64 0.425451 -22.65 0.465081 -22.66 0.502009 -22.67 0.535743 -22.68 0.565802 -22.69 0.591741 -22.7 0.612849 -22.71 0.628952 -22.72 0.639953 -22.73 0.645729 -22.74 0.64627 -22.75 0.641675 -22.76 0.63216 -22.77 0.618051 -22.78 0.599778 -22.79 0.577614 -22.8 0.552472 -22.81 0.525055 -22.82 0.496053 -22.83 0.466163 -22.84 0.436065 -22.85 0.4064 -22.86 0.377746 -22.87 0.350615 -22.88 0.325602 -22.89 0.302842 -22.9 0.2825 -22.91 0.264626 -22.92 0.24916 -22.93 0.23594 -22.94 0.224716 -22.95 0.215163 -22.96 0.206917 -22.97 0.199556 -22.98 0.192557 -22.99 0.18549 -23 0.177954 -23.01 0.169589 -23.02 0.160094 -23.03 0.14923 -23.04 0.136833 -23.05 0.122756 -23.06 0.106957 -23.07 0.0896005 -23.08 0.0708166 -23.09 0.0507863 -23.1 0.0297277 -23.11 0.00788338 -23.12 -0.0144931 -23.13 -0.03715 -23.14 -0.0598397 -23.15 -0.0823253 -23.16 -0.104431 -23.17 -0.12602 -23.18 -0.146993 -23.19 -0.16729 -23.2 -0.186887 -23.21 -0.20579 -23.22 -0.224028 -23.23 -0.241606 -23.24 -0.258606 -23.25 -0.27509 -23.26 -0.291088 -23.27 -0.306614 -23.28 -0.321655 -23.29 -0.336166 -23.3 -0.350072 -23.31 -0.363269 -23.32 -0.375534 -23.33 -0.386751 -23.34 -0.396741 -23.35 -0.405305 -23.36 -0.412236 -23.37 -0.417332 -23.38 -0.420397 -23.39 -0.421253 -23.4 -0.419723 -23.41 -0.415466 -23.42 -0.40859 -23.43 -0.399029 -23.44 -0.386748 -23.45 -0.371742 -23.46 -0.354035 -23.47 -0.333678 -23.48 -0.310747 -23.49 -0.285286 -23.5 -0.257311 -23.51 -0.227133 -23.52 -0.194905 -23.53 -0.160797 -23.54 -0.124994 -23.55 -0.0877018 -23.56 -0.0491456 -23.57 -0.0095734 -23.58 0.0307577 -23.59 0.0715153 -23.6 0.112326 -23.61 0.152827 -23.62 0.192629 -23.63 0.231321 -23.64 0.268474 -23.65 0.303648 -23.66 0.336405 -23.67 0.366138 -23.68 0.39244 -23.69 0.415058 -23.7 0.43368 -23.71 0.448058 -23.72 0.458017 -23.73 0.463469 -23.74 0.464417 -23.75 0.460961 -23.76 0.453028 -23.77 0.441151 -23.78 0.425834 -23.79 0.40756 -23.8 0.38688 -23.81 0.364395 -23.82 0.340737 -23.83 0.316552 -23.84 0.292476 -23.85 0.269227 -23.86 0.247347 -23.87 0.227307 -23.88 0.209498 -23.89 0.194216 -23.9 0.181655 -23.91 0.1719 -23.92 0.164931 -23.93 0.160648 -23.94 0.158991 -23.95 0.159429 -23.96 0.161589 -23.97 0.165055 -23.98 0.169386 -23.99 0.174136 -24 0.178868 -24.01 0.183178 -24.02 0.186677 -24.03 0.188986 -24.04 0.189938 -24.05 0.189382 -24.06 0.187236 -24.07 0.183493 -24.08 0.178206 -24.09 0.171484 -24.1 0.163481 -24.11 0.154346 -24.12 0.144298 -24.13 0.133597 -24.14 0.122437 -24.15 0.110987 -24.16 0.0993816 -24.17 0.0877148 -24.18 0.0760349 -24.19 0.0643426 -24.2 0.0525841 -24.21 0.0406568 -24.22 0.0284317 -24.23 0.015752 -24.24 0.00244569 -24.25 -0.0116633 -24.26 -0.026744 -24.27 -0.0429473 -24.28 -0.0603963 -24.29 -0.0792752 -24.3 -0.0995571 -24.31 -0.121196 -24.32 -0.144125 -24.33 -0.168224 -24.34 -0.193327 -24.35 -0.219225 -24.36 -0.245672 -24.37 -0.272394 -24.38 -0.299067 -24.39 -0.325363 -24.4 -0.350978 -24.41 -0.375616 -24.42 -0.399002 -24.43 -0.420882 -24.44 -0.441037 -24.45 -0.459279 -24.46 -0.475438 -24.47 -0.48924 -24.48 -0.500792 -24.49 -0.510069 -24.5 -0.517077 -24.51 -0.521857 -24.52 -0.524473 -24.53 -0.525017 -24.54 -0.523599 -24.55 -0.520302 -24.56 -0.515215 -24.57 -0.508613 -24.58 -0.500658 -24.59 -0.491515 -24.6 -0.481358 -24.61 -0.47036 -24.62 -0.458695 -24.63 -0.446537 -24.64 -0.434052 -24.65 -0.421422 -24.66 -0.408816 -24.67 -0.396378 -24.68 -0.384233 -24.69 -0.372488 -24.7 -0.361226 -24.71 -0.350504 -24.72 -0.340348 -24.73 -0.330781 -24.74 -0.321741 -24.75 -0.313126 -24.76 -0.304821 -24.77 -0.296679 -24.78 -0.288528 -24.79 -0.280175 -24.8 -0.271414 -24.81 -0.262032 -24.82 -0.251742 -24.83 -0.240376 -24.84 -0.227778 -24.85 -0.213809 -24.86 -0.198366 -24.87 -0.181395 -24.88 -0.162888 -24.89 -0.142892 -24.9 -0.121504 -24.91 -0.0987806 -24.92 -0.0750454 -24.93 -0.0505465 -24.94 -0.0255574 -24.95 -0.000372081 -24.96 0.0247063 -24.97 0.0493764 -24.98 0.0733497 -24.99 0.0963463 -25 0.118034 -25.01 0.138313 -25.02 0.157051 -25.03 0.174167 -25.04 0.18963 -25.05 0.203462 -25.06 0.215729 -25.07 0.226536 -25.08 0.235988 -25.09 0.244219 -25.1 0.251485 -25.11 0.257955 -25.12 0.263786 -25.13 0.269115 -25.14 0.274048 -25.15 0.278658 -25.16 0.282981 -25.17 0.286998 -25.18 0.290653 -25.19 0.293878 -25.2 0.296559 -25.21 0.298568 -25.22 0.299764 -25.23 0.300007 -25.24 0.299169 -25.25 0.29714 -25.26 0.293764 -25.27 0.289033 -25.28 0.283001 -25.29 0.275727 -25.3 0.267314 -25.31 0.257912 -25.32 0.247712 -25.33 0.236934 -25.34 0.225827 -25.35 0.214666 -25.36 0.203741 -25.37 0.193305 -25.38 0.183584 -25.39 0.174772 -25.4 0.167019 -25.41 0.160427 -25.42 0.155045 -25.43 0.150864 -25.44 0.147913 -25.45 0.14596 -25.46 0.144829 -25.47 0.144315 -25.48 0.144182 -25.49 0.144181 -25.5 0.14406 -25.51 0.143575 -25.52 0.142489 -25.53 0.140542 -25.54 0.137637 -25.55 0.133674 -25.56 0.128605 -25.57 0.122433 -25.58 0.115212 -25.59 0.107043 -25.6 0.0980685 -25.61 0.0884547 -25.62 0.0784153 -25.63 0.0682088 -25.64 0.0580588 -25.65 0.0481817 -25.66 0.0387772 -25.67 0.03002 -25.68 0.0220531 -25.69 0.0149825 -25.7 0.00891864 -25.71 0.00388462 -25.72 -0.000191 -25.73 -0.00337171 -25.74 -0.00575393 -25.75 -0.00746125 -25.76 -0.00863781 -25.77 -0.00944111 -25.78 -0.0100347 -25.79 -0.0105878 -25.8 -0.0112717 -25.81 -0.0122242 -25.82 -0.0135631 -25.83 -0.0153834 -25.84 -0.0177557 -25.85 -0.0207255 -25.86 -0.0243134 -25.87 -0.0285164 -25.88 -0.033353 -25.89 -0.0387382 -25.9 -0.0446027 -25.91 -0.0508753 -25.92 -0.0574773 -25.93 -0.0643247 -25.94 -0.0713312 -25.95 -0.0784094 -25.96 -0.0854725 -25.97 -0.0924177 -25.98 -0.0991638 -25.99 -0.105628 -26 -0.111727 -26.01 -0.117379 -26.02 -0.122501 -26.03 -0.127011 -26.04 -0.130824 -26.05 -0.133844 -26.06 -0.13593 -26.07 -0.137065 -26.08 -0.137179 -26.09 -0.13621 -26.1 -0.134106 -26.11 -0.130833 -26.12 -0.126371 -26.13 -0.120718 -26.14 -0.113861 -26.15 -0.105816 -26.16 -0.0967236 -26.17 -0.0866728 -26.18 -0.0757728 -26.19 -0.0641488 -26.2 -0.0519381 -26.21 -0.0392869 -26.22 -0.026345 -26.23 -0.0132614 -26.24 -0.000196208 -26.25 0.0127155 -26.26 0.0253591 -26.27 0.0376384 -26.28 0.0494769 -26.29 0.060819 -26.3 0.0716301 -26.31 0.0818943 -26.32 0.0915797 -26.33 0.100722 -26.34 0.109364 -26.35 0.117535 -26.36 0.125262 -26.37 0.13257 -26.38 0.139472 -26.39 0.14597 -26.4 0.15205 -26.41 0.157643 -26.42 0.162727 -26.43 0.167243 -26.44 0.171116 -26.45 0.174263 -26.46 0.176597 -26.47 0.178033 -26.48 0.178494 -26.49 0.177911 -26.5 0.17614 -26.51 0.173253 -26.52 0.169254 -26.53 0.164174 -26.54 0.15807 -26.55 0.151024 -26.56 0.143139 -26.57 0.134536 -26.58 0.125342 -26.59 0.115685 -26.6 0.105741 -26.61 0.0956349 -26.62 0.0854729 -26.63 0.0753366 -26.64 0.0652777 -26.65 0.0553143 -26.66 0.0454283 -26.67 0.0355627 -26.68 0.0256115 -26.69 0.0154457 -26.7 0.00491199 -26.71 -0.00616053 -26.72 -0.0179524 -26.73 -0.0306443 -26.74 -0.0444079 -26.75 -0.0593958 -26.76 -0.0758042 -26.77 -0.0937187 -26.78 -0.113116 -26.79 -0.133983 -26.8 -0.156254 -26.81 -0.179814 -26.82 -0.204495 -26.83 -0.230086 -26.84 -0.256332 -26.85 -0.282952 -26.86 -0.309583 -26.87 -0.33589 -26.88 -0.36154 -26.89 -0.386209 -26.9 -0.40959 -26.91 -0.431399 -26.92 -0.451381 -26.93 -0.46932 -26.94 -0.484847 -26.95 -0.497973 -26.96 -0.508636 -26.97 -0.516787 -26.98 -0.522408 -26.99 -0.525511 -27 -0.52613 -27.01 -0.524315 -27.02 -0.520118 -27.03 -0.513413 -27.04 -0.50447 -27.05 -0.493345 -27.06 -0.480083 -27.07 -0.464721 -27.08 -0.447285 -27.09 -0.427796 -27.1 -0.40627 -27.11 -0.382684 -27.12 -0.356958 -27.13 -0.329278 -27.14 -0.2997 -27.15 -0.268307 -27.16 -0.23521 -27.17 -0.200556 -27.18 -0.164526 -27.19 -0.127339 -27.2 -0.0892283 -27.21 -0.0505082 -27.22 -0.0115531 -27.23 0.027289 -27.24 0.0656545 -27.25 0.103172 -27.26 0.139473 -27.27 0.174198 -27.28 0.207006 -27.29 0.237456 -27.3 0.265267 -27.31 0.290308 -27.32 0.312403 -27.33 0.33143 -27.34 0.347317 -27.35 0.360046 -27.36 0.369654 -27.37 0.376222 -27.38 0.379693 -27.39 0.380377 -27.4 0.37855 -27.41 0.374442 -27.42 0.368298 -27.43 0.360371 -27.44 0.350921 -27.45 0.340203 -27.46 0.328467 -27.47 0.315901 -27.48 0.302798 -27.49 0.289364 -27.5 0.275775 -27.51 0.262184 -27.52 0.248724 -27.53 0.235505 -27.54 0.222617 -27.55 0.21013 -27.56 0.198133 -27.57 0.186618 -27.58 0.175595 -27.59 0.16506 -27.6 0.154993 -27.61 0.145362 -27.62 0.136124 -27.63 0.127226 -27.64 0.11861 -27.65 0.110211 -27.66 0.101936 -27.67 0.0937115 -27.68 0.0854655 -27.69 0.0771309 -27.7 0.0686487 -27.71 0.0599719 -27.72 0.0510682 -27.73 0.0419146 -27.74 0.0325172 -27.75 0.0229244 -27.76 0.0131959 -27.77 0.00341673 -27.78 -0.00630365 -27.79 -0.0158327 -27.8 -0.0250174 -27.81 -0.0336879 -27.82 -0.0416141 -27.83 -0.0485935 -27.84 -0.0544641 -27.85 -0.0590425 -27.86 -0.0621585 -27.87 -0.0636611 -27.88 -0.0634245 -27.89 -0.0613532 -27.9 -0.057386 -27.91 -0.0513686 -27.92 -0.0434119 -27.93 -0.0336267 -27.94 -0.0221181 -27.95 -0.00902764 -27.96 0.00546959 -27.97 0.0211697 -27.98 0.0378453 -27.99 0.0552511 -28 0.0731477 -28.01 0.0912145 -28.02 0.109188 -28.03 0.126814 -28.04 0.143854 -28.05 0.160083 -28.06 0.175297 -28.07 0.189313 -28.08 0.201959 -28.09 0.212973 -28.1 0.222363 -28.11 0.230043 -28.12 0.235946 -28.13 0.240024 -28.14 0.242249 -28.15 0.242606 -28.16 0.241095 -28.17 0.237689 -28.18 0.232339 -28.19 0.22522 -28.2 0.216392 -28.21 0.205935 -28.22 0.193943 -28.23 0.18053 -28.24 0.165829 -28.25 0.149992 -28.26 0.133163 -28.27 0.115546 -28.28 0.0974052 -28.29 0.078965 -28.3 0.0604619 -28.31 0.042137 -28.32 0.0242316 -28.33 0.00698074 -28.34 -0.00939283 -28.35 -0.0246155 -28.36 -0.0385109 -28.37 -0.0509803 -28.38 -0.0619206 -28.39 -0.0712691 -28.4 -0.0790055 -28.41 -0.0851528 -28.42 -0.0897759 -28.43 -0.0929795 -28.44 -0.0948252 -28.45 -0.0955659 -28.46 -0.0954254 -28.47 -0.0946129 -28.48 -0.0933418 -28.49 -0.0918215 -28.5 -0.0902482 -28.51 -0.088798 -28.52 -0.0876196 -28.53 -0.0868696 -28.54 -0.086596 -28.55 -0.0868278 -28.56 -0.087557 -28.57 -0.0887387 -28.58 -0.0902947 -28.59 -0.0921185 -28.6 -0.0940821 -28.61 -0.0960412 -28.62 -0.0978211 -28.63 -0.0992783 -28.64 -0.100279 -28.65 -0.100708 -28.66 -0.100474 -28.67 -0.0995164 -28.68 -0.0978058 -28.69 -0.0953469 -28.7 -0.0921624 -28.71 -0.0883072 -28.72 -0.0839332 -28.73 -0.0791679 -28.74 -0.0741551 -28.75 -0.0690486 -28.76 -0.0640056 -28.77 -0.05918 -28.78 -0.0547158 -28.79 -0.0507668 -28.8 -0.0474588 -28.81 -0.0448462 -28.82 -0.0429837 -28.83 -0.0419004 -28.84 -0.0416005 -28.85 -0.0420657 -28.86 -0.043258 -28.87 -0.0451236 -28.88 -0.0476277 -28.89 -0.0506767 -28.9 -0.054175 -28.91 -0.0580508 -28.92 -0.0622381 -28.93 -0.0666786 -28.94 -0.0713238 -28.95 -0.0761346 -28.96 -0.081081 -28.97 -0.0861477 -28.98 -0.09131 -28.99 -0.0965512 -29 -0.101855 -29.01 -0.107199 -29.02 -0.112555 -29.03 -0.117885 -29.04 -0.123137 -29.05 -0.128249 -29.06 -0.133121 -29.07 -0.137678 -29.08 -0.141826 -29.09 -0.145469 -29.1 -0.148511 -29.11 -0.150863 -29.12 -0.152446 -29.13 -0.153198 -29.14 -0.153067 -29.15 -0.151975 -29.16 -0.150012 -29.17 -0.147224 -29.18 -0.143689 -29.19 -0.13951 -29.2 -0.134818 -29.21 -0.129764 -29.22 -0.124513 -29.23 -0.119245 -29.24 -0.11416 -29.25 -0.109427 -29.26 -0.105197 -29.27 -0.101599 -29.28 -0.0987351 -29.29 -0.096672 -29.3 -0.0954401 -29.31 -0.0950307 -29.32 -0.0954254 -29.33 -0.0965273 -29.34 -0.0981711 -29.35 -0.100201 -29.36 -0.102438 -29.37 -0.104691 -29.38 -0.106761 -29.39 -0.108448 -29.4 -0.109565 -29.41 -0.109886 -29.42 -0.109267 -29.43 -0.107622 -29.44 -0.104868 -29.45 -0.100961 -29.46 -0.0958884 -29.47 -0.0896737 -29.48 -0.08237 -29.49 -0.074057 -29.5 -0.0647776 -29.51 -0.0547126 -29.52 -0.0440055 -29.53 -0.0327847 -29.54 -0.0211746 -29.55 -0.0092899 -29.56 0.00276847 -29.57 0.0149162 -29.58 0.0270875 -29.59 0.0392308 -29.6 0.0513201 -29.61 0.063346 -29.62 0.0753114 -29.63 0.0872272 -29.64 0.0991082 -29.65 0.110968 -29.66 0.122817 -29.67 0.134653 -29.68 0.14646 -29.69 0.158208 -29.7 0.169851 -29.71 0.181327 -29.72 0.192558 -29.73 0.203458 -29.74 0.213928 -29.75 0.223868 -29.76 0.233155 -29.77 0.241658 -29.78 0.249335 -29.79 0.256118 -29.8 0.261958 -29.81 0.266827 -29.82 0.270723 -29.83 0.273663 -29.84 0.27569 -29.85 0.276834 -29.86 0.277184 -29.87 0.276879 -29.88 0.276021 -29.89 0.274719 -29.9 0.273076 -29.91 0.271185 -29.92 0.269129 -29.93 0.266971 -29.94 0.264751 -29.95 0.262489 -29.96 0.260174 -29.97 0.257773 -29.98 0.255228 -29.99 0.252462 -30 0.249384 -30.01 0.24589 -30.02 0.241872 -30.03 0.237163 -30.04 0.231689 -30.05 0.225366 -30.06 0.21812 -30.07 0.209893 -30.08 0.200649 -30.09 0.190377 -30.1 0.179088 -30.11 0.16682 -30.12 0.153556 -30.13 0.139468 -30.14 0.124659 -30.15 0.109244 -30.16 0.0933487 -30.17 0.0771042 -30.18 0.0606446 -30.19 0.0441033 -30.2 0.0276125 -30.21 0.0113184 -30.22 -0.0046707 -30.23 -0.0202502 -30.24 -0.0353252 -30.25 -0.0498104 -30.26 -0.0636291 -30.27 -0.0767132 -30.28 -0.0890014 -30.29 -0.100411 -30.3 -0.110859 -30.31 -0.120355 -30.32 -0.128859 -30.33 -0.136335 -30.34 -0.142751 -30.35 -0.148083 -30.36 -0.15231 -30.37 -0.155422 -30.38 -0.157363 -30.39 -0.158145 -30.4 -0.157842 -30.41 -0.156486 -30.42 -0.154126 -30.43 -0.15082 -30.44 -0.146641 -30.45 -0.141669 -30.46 -0.135997 -30.47 -0.129688 -30.48 -0.122874 -30.49 -0.115673 -30.5 -0.108181 -30.51 -0.100489 -30.52 -0.0926778 -30.53 -0.0848162 -30.54 -0.0769598 -30.55 -0.0691496 -30.56 -0.061418 -30.57 -0.0537707 -30.58 -0.0462017 -30.59 -0.0386952 -30.6 -0.0312275 -30.61 -0.0237695 -30.62 -0.016291 -30.63 -0.00876358 -30.64 -0.00116418 -30.65 0.00652953 -30.66 0.0143109 -30.67 0.0221664 -30.68 0.0300678 -30.69 0.0379722 -30.7 0.0458226 -30.71 0.0535494 -30.72 0.0610726 -30.73 0.0682985 -30.74 0.0751045 -30.75 0.0814229 -30.76 0.0871677 -30.77 0.0922613 -30.78 0.0966375 -30.79 0.100244 -30.8 0.103045 -30.81 0.105021 -30.82 0.106143 -30.83 0.10641 -30.84 0.105902 -30.85 0.104668 -30.86 0.102763 -30.87 0.100248 -30.88 0.0971898 -30.89 0.0936536 -30.9 0.0897017 -30.91 0.0853756 -30.92 0.080731 -30.93 0.0758209 -30.94 0.0706738 -30.95 0.0653092 -30.96 0.0597393 -30.97 0.0539707 -30.98 0.0480073 -30.99 0.0418523 -31 0.0355009 -31.01 0.028974 -31.02 0.022299 -31.03 0.0155082 -31.04 0.00864596 -31.05 0.00176783 -31.06 -0.00505954 -31.07 -0.0117604 -31.08 -0.0182522 -31.09 -0.0244191 -31.1 -0.0301894 -31.11 -0.0354895 -31.12 -0.0402531 -31.13 -0.0444297 -31.14 -0.0479878 -31.15 -0.050919 -31.16 -0.0532395 -31.17 -0.0549899 -31.18 -0.0562047 -31.19 -0.0570316 -31.2 -0.057589 -31.21 -0.0580114 -31.22 -0.0584441 -31.23 -0.0590362 -31.24 -0.0599348 -31.25 -0.0612772 -31.26 -0.0631971 -31.27 -0.0658357 -31.28 -0.0692127 -31.29 -0.0733564 -31.3 -0.078259 -31.31 -0.0838755 -31.32 -0.0901239 -31.33 -0.0968887 -31.34 -0.104024 -31.35 -0.11136 -31.36 -0.118684 -31.37 -0.12579 -31.38 -0.132478 -31.39 -0.138559 -31.4 -0.143863 -31.41 -0.148241 -31.42 -0.151578 -31.43 -0.153793 -31.44 -0.154784 -31.45 -0.154567 -31.46 -0.153237 -31.47 -0.150879 -31.48 -0.147611 -31.49 -0.143575 -31.5 -0.138935 -31.51 -0.133867 -31.52 -0.12855 -31.53 -0.123164 -31.54 -0.117888 -31.55 -0.11286 -31.56 -0.108191 -31.57 -0.103957 -31.58 -0.100203 -31.59 -0.0969373 -31.6 -0.0941347 -31.61 -0.0917371 -31.62 -0.0896752 -31.63 -0.087804 -31.64 -0.0859907 -31.65 -0.0840965 -31.66 -0.0819808 -31.67 -0.0795082 -31.68 -0.0765539 -31.69 -0.0730102 -31.7 -0.0687861 -31.71 -0.0637557 -31.72 -0.0579491 -31.73 -0.0513633 -31.74 -0.0440211 -31.75 -0.0359685 -31.76 -0.027272 -31.77 -0.0180137 -31.78 -0.008288 -31.79 0.00180966 -31.8 0.0121782 -31.81 0.0226923 -31.82 0.0332584 -31.83 0.0437923 -31.84 0.0542208 -31.85 0.0644828 -31.86 0.0745292 -31.87 0.0843217 -31.88 0.0938201 -31.89 0.102994 -31.9 0.111843 -31.91 0.120349 -31.92 0.128494 -31.93 0.136253 -31.94 0.143596 -31.95 0.150486 -31.96 0.156877 -31.97 0.162683 -31.98 0.167847 -31.99 0.172326 -32 0.176057 -32.01 0.178981 -32.02 0.181044 -32.03 0.182205 -32.04 0.182434 -32.05 0.181721 -32.06 0.180011 -32.07 0.177381 -32.08 0.173907 -32.09 0.169665 -32.1 0.164748 -32.11 0.159267 -32.12 0.153344 -32.13 0.147108 -32.14 0.140694 -32.15 0.13424 -32.16 0.127884 -32.17 0.121739 -32.18 0.115898 -32.19 0.110438 -32.2 0.105415 -32.21 0.10086 -32.22 0.0967845 -32.23 0.0931808 -32.24 0.0900491 -32.25 0.0873017 -32.26 0.0848794 -32.27 0.0827166 -32.28 0.0807461 -32.29 0.0789031 -32.3 0.0771296 -32.31 0.0753785 -32.32 0.0736149 -32.33 0.0718188 -32.34 0.0699931 -32.35 0.0681561 -32.36 0.0663407 -32.37 0.0645925 -32.38 0.0629668 -32.39 0.0615249 -32.4 0.0603299 -32.41 0.059457 -32.42 0.0589716 -32.43 0.0588985 -32.44 0.0592651 -32.45 0.0600825 -32.46 0.061344 -32.47 0.0630246 -32.48 0.0650813 -32.49 0.0674547 -32.5 0.0700796 -32.51 0.0728557 -32.52 0.07568 -32.53 0.0784552 -32.54 0.0810846 -32.55 0.0834756 -32.56 0.0855436 -32.57 0.087214 -32.58 0.0884246 -32.59 0.0890889 -32.6 0.0891956 -32.61 0.0887387 -32.62 0.0877132 -32.63 0.0861246 -32.64 0.0839866 -32.65 0.0813186 -32.66 0.0781428 -32.67 0.0744819 -32.68 0.0703184 -32.69 0.0657068 -32.7 0.0606608 -32.71 0.0551857 -32.72 0.0492814 -32.73 0.0429436 -32.74 0.0361653 -32.75 0.0289391 -32.76 0.0212557 -32.77 0.0130816 -32.78 0.00446379 -32.79 -0.00457785 -32.8 -0.0140107 -32.81 -0.023788 -32.82 -0.0338484 -32.83 -0.0441158 -32.84 -0.0545004 -32.85 -0.0648981 -32.86 -0.0751812 -32.87 -0.0852322 -32.88 -0.0949325 -32.89 -0.104167 -32.9 -0.112827 -32.91 -0.120815 -32.92 -0.128049 -32.93 -0.134466 -32.94 -0.139982 -32.95 -0.144566 -32.96 -0.148265 -32.97 -0.1511 -32.98 -0.153113 -32.99 -0.15436 -33 -0.154907 -33.01 -0.154829 -33.02 -0.154203 -33.03 -0.15308 -33.04 -0.151546 -33.05 -0.149673 -33.06 -0.147501 -33.07 -0.145057 -33.08 -0.142345 -33.09 -0.139358 -33.1 -0.136067 -33.11 -0.132431 -33.12 -0.128367 -33.13 -0.123829 -33.14 -0.118764 -33.15 -0.113113 -33.16 -0.106828 -33.17 -0.0998718 -33.18 -0.092225 -33.19 -0.083889 -33.2 -0.0748876 -33.21 -0.0652209 -33.22 -0.0550223 -33.23 -0.0443945 -33.24 -0.0334574 -33.25 -0.0223472 -33.26 -0.0112114 -33.27 -0.000204123 -33.28 0.0105197 -33.29 0.0208035 -33.3 0.0304549 -33.31 0.0393911 -33.32 0.0475136 -33.33 0.0547479 -33.34 0.0610463 -33.35 0.0663885 -33.36 0.070782 -33.37 0.0742601 -33.38 0.0768593 -33.39 0.0786374 -33.4 0.0797467 -33.41 0.080294 -33.42 0.080391 -33.43 0.080149 -33.44 0.0796746 -33.45 0.0790649 -33.46 0.0784039 -33.47 0.0777621 -33.48 0.0771933 -33.49 0.0767219 -33.5 0.0763544 -33.51 0.0760789 -33.52 0.0758671 -33.53 0.075677 -33.54 0.0754553 -33.55 0.0751414 -33.56 0.0746572 -33.57 0.0739336 -33.58 0.0729139 -33.59 0.0715417 -33.6 0.0697686 -33.61 0.067556 -33.62 0.0648759 -33.63 0.0617117 -33.64 0.0580578 -33.65 0.0538849 -33.66 0.0492377 -33.67 0.0441504 -33.68 0.0386556 -33.69 0.0327912 -33.7 0.0265998 -33.71 0.020127 -33.72 0.0134211 -33.73 0.00653199 -33.74 -0.000495913 -33.75 -0.00759424 -33.76 -0.0147085 -33.77 -0.0217833 -33.78 -0.0287617 -33.79 -0.0355854 -33.8 -0.0421946 -33.81 -0.0485286 -33.82 -0.0545213 -33.83 -0.0600798 -33.84 -0.0651737 -33.85 -0.0697488 -33.86 -0.0737564 -33.87 -0.0771552 -33.88 -0.079913 -33.89 -0.0820084 -33.9 -0.0834323 -33.91 -0.0841705 -33.92 -0.0842219 -33.93 -0.0836641 -33.94 -0.082545 -33.95 -0.0809242 -33.96 -0.0788703 -33.97 -0.0764587 -33.98 -0.0737684 -33.99 -0.0708783 -34 -0.0678618 -34.01 -0.0647945 -34.02 -0.061737 -34.03 -0.0587306 -34.04 -0.0558006 -34.05 -0.0529547 -34.06 -0.0501831 -34.07 -0.0474585 -34.08 -0.0447378 -34.09 -0.0419574 -34.1 -0.0390437 -34.11 -0.0359252 -34.12 -0.0325283 -34.13 -0.0287834 -34.14 -0.0246301 -34.15 -0.0200216 -34.16 -0.0149287 -34.17 -0.00934272 -34.18 -0.00324483 -34.19 0.00329062 -34.2 0.0101875 -34.21 0.0173553 -34.22 0.0246838 -34.23 0.0320473 -34.24 0.0393088 -34.25 0.0463259 -34.26 0.0529564 -34.27 0.0590048 -34.28 0.0643877 -34.29 0.0690042 -34.3 0.0727759 -34.31 0.0756513 -34.32 0.0776079 -34.33 0.0786529 -34.34 0.0788232 -34.35 0.0781731 -34.36 0.0767588 -34.37 0.0747569 -34.38 0.0722972 -34.39 0.069518 -34.4 0.0665609 -34.41 0.0635647 -34.42 0.0606599 -34.43 0.0579637 -34.44 0.0555875 -34.45 0.0536291 -34.46 0.0521196 -34.47 0.0510865 -34.48 0.0505349 -34.49 0.0504493 -34.5 0.050796 -34.51 0.051527 -34.52 0.0525843 -34.53 0.0539126 -34.54 0.0554384 -34.55 0.057088 -34.56 0.0588068 -34.57 0.0605493 -34.58 0.0622813 -34.59 0.0639806 -34.6 0.0656363 -34.61 0.0672476 -34.62 0.0688202 -34.63 0.0703693 -34.64 0.0719094 -34.65 0.0734511 -34.66 0.0749981 -34.67 0.0765444 -34.68 0.0780715 -34.69 0.0795463 -34.7 0.0809207 -34.71 0.0821123 -34.72 0.0830455 -34.73 0.0836321 -34.74 0.0837744 -34.75 0.0833726 -34.76 0.0823288 -34.77 0.0805532 -34.78 0.0779689 -34.79 0.0745159 -34.8 0.0700747 -34.81 0.064721 -34.82 0.0584791 -34.83 0.0514027 -34.84 0.0435743 -34.85 0.0351033 -34.86 0.0261228 -34.87 0.016785 -34.88 0.00725539 -34.89 -0.00227565 -34.9 -0.0116226 -34.91 -0.02062 -34.92 -0.0291168 -34.93 -0.0369813 -34.94 -0.0441063 -34.95 -0.0504126 -34.96 -0.0558508 -34.97 -0.0603741 -34.98 -0.0639745 -34.99 -0.0667499 -35 -0.0687677 -35.01 -0.070113 -35.02 -0.0708829 -35.03 -0.0711799 -35.04 -0.071106 -35.05 -0.0707562 -35.06 -0.0702074 -35.07 -0.0695312 -35.08 -0.0687753 -35.09 -0.0679563 -35.1 -0.0670669 -35.11 -0.0660775 -35.12 -0.0649384 -35.13 -0.0635839 -35.14 -0.0619367 -35.15 -0.0598843 -35.16 -0.0573494 -35.17 -0.0542693 -35.18 -0.0505844 -35.19 -0.0462543 -35.2 -0.0412618 -35.21 -0.0356163 -35.22 -0.0293551 -35.23 -0.0225441 -35.24 -0.015249 -35.25 -0.0076317 -35.26 0.000160745 -35.27 0.00797298 -35.28 0.0156419 -35.29 0.0230032 -35.3 0.0298976 -35.31 0.0361775 -35.32 0.0417099 -35.33 0.0463048 -35.34 0.0499547 -35.35 0.0526123 -35.36 0.05426 -35.37 0.0549086 -35.38 0.0545958 -35.39 0.0533829 -35.4 0.0513504 -35.41 0.0485819 -35.42 0.0451589 -35.43 0.0412413 -35.44 0.0369338 -35.45 0.0323334 -35.46 0.0275259 -35.47 0.0225826 -35.48 0.017559 -35.49 0.0124942 -35.5 0.00741111 -35.51 0.0023184 -35.52 -0.00278726 -35.53 -0.00791693 -35.54 -0.0130845 -35.55 -0.0183026 -35.56 -0.0235785 -35.57 -0.0289108 -35.58 -0.034286 -35.59 -0.0396756 -35.6 -0.0450306 -35.61 -0.0502902 -35.62 -0.0553819 -35.63 -0.0602223 -35.64 -0.0647216 -35.65 -0.0687874 -35.66 -0.0723292 -35.67 -0.0752638 -35.68 -0.0774715 -35.69 -0.0789209 -35.7 -0.0796005 -35.71 -0.0795041 -35.72 -0.0786504 -35.73 -0.0770833 -35.74 -0.0748707 -35.75 -0.0721021 -35.76 -0.0688853 -35.77 -0.0653257 -35.78 -0.0615882 -35.79 -0.0578081 -35.8 -0.0541123 -35.81 -0.0506171 -35.82 -0.0474229 -35.83 -0.0446099 -35.84 -0.0422347 -35.85 -0.0403301 -35.86 -0.0389372 -35.87 -0.0379865 -35.88 -0.0374266 -35.89 -0.0371856 -35.9 -0.0371761 -35.91 -0.0372998 -35.92 -0.0374535 -35.93 -0.0375347 -35.94 -0.0374416 -35.95 -0.037069 -35.96 -0.0363651 -35.97 -0.035285 -35.98 -0.0338055 -35.99 -0.031926 -36 -0.0296676 -36.01 -0.0270712 -36.02 -0.0241948 -36.03 -0.0211049 -36.04 -0.0178883 -36.05 -0.0146392 -36.06 -0.0114376 -36.07 -0.00835592 -36.08 -0.00545496 -36.09 -0.00278035 -36.1 -0.000360381 -36.11 0.00179525 -36.12 0.00368353 -36.13 0.00533881 -36.14 0.00681539 -36.15 0.00816788 -36.16 0.00945719 -36.17 0.0107458 -36.18 0.012093 -36.19 0.0135502 -36.2 0.0151564 -36.21 0.0169472 -36.22 0.0189177 -36.23 0.0210444 -36.24 0.0232877 -36.25 0.0255899 -36.26 0.0278772 -36.27 0.0300632 -36.28 0.032054 -36.29 0.0337526 -36.3 0.0350255 -36.31 0.03581 -36.32 0.0360412 -36.33 0.0356696 -36.34 0.0346684 -36.35 0.0330354 -36.36 0.0307944 -36.37 0.0279946 -36.38 0.0247063 -36.39 0.0210031 -36.4 0.0170386 -36.41 0.0129363 -36.42 0.00882314 -36.43 0.00482439 -36.44 0.00105704 -36.45 -0.00237564 -36.46 -0.00538903 -36.47 -0.00790935 -36.48 -0.0098741 -36.49 -0.0113134 -36.5 -0.0122493 -36.51 -0.0127276 -36.52 -0.0128151 -36.53 -0.0125946 -36.54 -0.01216 -36.55 -0.0116098 -36.56 -0.0110444 -36.57 -0.0105638 -36.58 -0.0102409 -36.59 -0.0101287 -36.6 -0.0102575 -36.61 -0.0106321 -36.62 -0.0112317 -36.63 -0.0120098 -36.64 -0.0128973 -36.65 -0.0138007 -36.66 -0.0146033 -36.67 -0.0151919 -36.68 -0.0154533 -36.69 -0.0152807 -36.7 -0.0145801 -36.71 -0.0132763 -36.72 -0.0113184 -36.73 -0.00868327 -36.74 -0.00533474 -36.75 -0.00135207 -36.76 0.0031722 -36.77 0.00813282 -36.78 0.0134007 -36.79 0.0188283 -36.8 0.0242562 -36.81 0.0295198 -36.82 0.0344572 -36.83 0.0388639 -36.84 0.0426344 -36.85 0.0456667 -36.86 0.0478844 -36.87 0.0492438 -36.88 0.0497356 -36.89 0.049385 -36.9 0.0482499 -36.91 0.0464135 -36.92 0.0439582 -36.93 0.0410775 -36.94 0.0379192 -36.95 0.0346352 -36.96 0.0313741 -36.97 0.028275 -36.98 0.0254607 -36.99 0.0230328 -37 0.0210799 -37.01 0.0196744 -37.02 0.0187962 -37.03 0.0184288 -37.04 0.0185295 -37.05 0.0190327 -37.06 0.0198548 -37.07 0.0208991 -37.08 0.0220622 -37.09 0.0232357 -37.1 0.0243083 -37.11 0.0251938 -37.12 0.0258223 -37.13 0.0261432 -37.14 0.0261273 -37.15 0.0257676 -37.16 0.0250786 -37.17 0.024095 -37.18 0.0228584 -37.19 0.0214467 -37.2 0.0199424 -37.21 0.0184216 -37.22 0.016957 -37.23 0.0156131 -37.24 0.014442 -37.25 0.0134793 -37.26 0.012742 -37.27 0.0122403 -37.28 0.011933 -37.29 0.0117662 -37.3 0.0116736 -37.31 0.0115748 -37.32 0.0113794 -37.33 0.0109922 -37.34 0.0103175 -37.35 0.00926526 -37.36 0.00770957 -37.37 0.00562011 -37.38 0.00295723 -37.39 -0.000299104 -37.4 -0.00414537 -37.41 -0.00855404 -37.42 -0.0134742 -37.43 -0.0188336 -37.44 -0.0245434 -37.45 -0.030503 -37.46 -0.0365663 -37.47 -0.0426095 -37.48 -0.0485093 -37.49 -0.0541467 -37.5 -0.0594122 -37.51 -0.0642091 -37.52 -0.0684569 -37.53 -0.0720759 -37.54 -0.0749946 -37.55 -0.0772358 -37.56 -0.0787995 -37.57 -0.0797034 -37.58 -0.0799795 -37.59 -0.0796716 -37.6 -0.0788319 -37.61 -0.0775174 -37.62 -0.0757716 -37.63 -0.0736544 -37.64 -0.0712371 -37.65 -0.0685624 -37.66 -0.0656646 -37.67 -0.0625679 -37.68 -0.059287 -37.69 -0.0558276 -37.7 -0.0521874 -37.71 -0.0483466 -37.72 -0.0442959 -37.73 -0.0400286 -37.74 -0.0355333 -37.75 -0.0308025 -37.76 -0.0258354 -37.77 -0.0206389 -37.78 -0.0152293 -37.79 -0.00963317 -37.8 -0.00387953 -37.81 0.00197111 -37.82 0.00785884 -37.83 0.0137196 -37.84 0.0194842 -37.85 0.0250807 -37.86 0.0304365 -37.87 0.0354809 -37.88 0.0401468 -37.89 0.0443295 -37.9 0.0480103 -37.91 0.0511483 -37.92 0.0537109 -37.93 0.0556759 -37.94 0.0570306 -37.95 0.0577722 -37.96 0.057906 -37.97 0.0574381 -37.98 0.0563511 -37.99 0.0547173 -38 0.0525648 -38.01 0.0499234 -38.02 0.0468241 -38.03 0.0432979 -38.04 0.0393755 -38.05 0.0350868 -38.06 0.0304527 -38.07 0.0254945 -38.08 0.0202628 -38.09 0.0147879 -38.1 0.00910142 -38.11 0.00323697 -38.12 -0.00276909 -38.13 -0.00887757 -38.14 -0.0150462 -38.15 -0.0212281 -38.16 -0.0273692 -38.17 -0.0334187 -38.18 -0.0393255 -38.19 -0.0450385 -38.2 -0.0505082 -38.21 -0.0556874 -38.22 -0.0605327 -38.23 -0.0650059 -38.24 -0.0690487 -38.25 -0.0726445 -38.26 -0.0757899 -38.27 -0.0784757 -38.28 -0.0806999 -38.29 -0.0824677 -38.3 -0.08379 -38.31 -0.0846832 -38.32 -0.0851676 -38.33 -0.0852393 -38.34 -0.0849477 -38.35 -0.0843243 -38.36 -0.0833927 -38.37 -0.0821748 -38.38 -0.0806895 -38.39 -0.0789531 -38.4 -0.0769785 -38.41 -0.0747758 -38.42 -0.0723334 -38.43 -0.0696773 -38.44 -0.0668132 -38.45 -0.063747 -38.46 -0.0604859 -38.47 -0.0570402 -38.48 -0.0534234 -38.49 -0.0496532 -38.5 -0.0457506 -38.51 -0.0417398 -38.52 -0.0376637 -38.53 -0.0335597 -38.54 -0.0294685 -38.55 -0.025433 -38.56 -0.0214973 -38.57 -0.017705 -38.58 -0.0140978 -38.59 -0.0107221 -38.6 -0.00762289 -38.61 -0.00481227 -38.62 -0.00230925 -38.63 -0.000125019 -38.64 0.00173733 -38.65 0.00328286 -38.66 0.00452436 -38.67 0.00548173 -38.68 0.00617068 -38.69 0.00662633 -38.7 0.00689559 -38.71 0.00701516 -38.72 0.00702184 -38.73 0.00695115 -38.74 0.00683595 -38.75 0.00670535 -38.76 0.00658377 -38.77 0.00649288 -38.78 0.00644587 -38.79 0.00644818 -38.8 0.00650072 -38.81 0.00659951 -38.82 0.00673637 -38.83 0.00689981 -38.84 0.00707597 -38.85 0.00724968 -38.86 0.00740285 -38.87 0.00752051 -38.88 0.00758999 -38.89 0.00760062 -38.9 0.00754454 -38.91 0.00741704 -38.92 0.00721668 -38.93 0.00694531 -38.94 0.00660789 -38.95 0.00620791 -38.96 0.00576226 -38.97 0.00528385 -38.98 0.00478714 -38.99 0.00428774 -39 0.00380201 -39.01 0.00334666 -39.02 0.00293847 -39.03 0.00259531 -39.04 0.00233966 -39.05 0.00218173 -39.06 0.00213587 -39.07 0.00221529 -39.08 0.00243189 -39.09 0.00279597 -39.1 0.00331593 -39.11 0.00399797 -39.12 0.00485098 -39.13 0.00588003 -39.14 0.00707149 -39.15 0.00841799 -39.16 0.00990809 -39.17 0.0115261 -39.18 0.0132522 -39.19 0.0150623 -39.2 0.0169285 -39.21 0.0188192 -39.22 0.0206962 -39.23 0.0225226 -39.24 0.0242627 -39.25 0.025881 -39.26 0.0273447 -39.27 0.0286241 -39.28 0.0296942 -39.29 0.0305356 -39.3 0.0311201 -39.31 0.0314511 -39.32 0.0315398 -39.33 0.031398 -39.34 0.0310445 -39.35 0.0305049 -39.36 0.0298098 -39.37 0.0289939 -39.38 0.0280942 -39.39 0.0271473 -39.4 0.026195 -39.41 0.0252697 -39.42 0.0243977 -39.43 0.0235984 -39.44 0.0228832 -39.45 0.0222551 -39.46 0.0217078 -39.47 0.0212265 -39.48 0.0207891 -39.49 0.0203585 -39.5 0.0198984 -39.51 0.0193695 -39.52 0.0187317 -39.53 0.0179466 -39.54 0.0169796 -39.55 0.015802 -39.56 0.0143889 -39.57 0.0127154 -39.58 0.0108012 -39.59 0.00865972 -39.6 0.00631582 -39.61 0.00380473 -39.62 0.00117093 -39.63 -0.00153359 -39.64 -0.00425157 -39.65 -0.00691923 -39.66 -0.00946711 -39.67 -0.0118422 -39.68 -0.0139943 -39.69 -0.0158818 -39.7 -0.0174736 -39.71 -0.0187508 -39.72 -0.0197071 -39.73 -0.0203498 -39.74 -0.0206862 -39.75 -0.020756 -39.76 -0.0206163 -39.77 -0.0203196 -39.78 -0.0199237 -39.79 -0.0194884 -39.8 -0.0190732 -39.81 -0.0187342 -39.82 -0.0185212 -39.83 -0.0184887 -39.84 -0.0186631 -39.85 -0.0190562 -39.86 -0.0196722 -39.87 -0.0205031 -39.88 -0.0215291 -39.89 -0.0227205 -39.9 -0.0240392 -39.91 -0.0254412 -39.92 -0.0268781 -39.93 -0.0282954 -39.94 -0.0296478 -39.95 -0.0308959 -39.96 -0.0320075 -39.97 -0.0329597 -39.98 -0.0337402 -39.99 -0.0343473 -40 -0.0347897 -40.01 -0.0350775 -40.02 -0.0352552 -40.03 -0.0353595 -40.04 -0.0354311 -40.05 -0.0355125 -40.06 -0.035645 -40.07 -0.035866 -40.08 -0.0362071 -40.09 -0.0366941 -40.1 -0.0373485 -40.11 -0.0381583 -40.12 -0.0391105 -40.13 -0.0401805 -40.14 -0.0413326 -40.15 -0.042522 -40.16 -0.0436962 -40.17 -0.044798 -40.18 -0.0457605 -40.19 -0.0465135 -40.2 -0.0470099 -40.21 -0.0472011 -40.22 -0.0470475 -40.23 -0.04652 -40.24 -0.0456018 -40.25 -0.0442889 -40.26 -0.0425906 -40.27 -0.040512 -40.28 -0.0380963 -40.29 -0.0354047 -40.3 -0.0324916 -40.31 -0.0294169 -40.32 -0.0262439 -40.33 -0.0230366 -40.34 -0.0198573 -40.35 -0.0167645 -40.36 -0.0138232 -40.37 -0.0110761 -40.38 -0.00855389 -40.39 -0.00628153 -40.4 -0.00427451 -40.41 -0.00253915 -40.42 -0.00107332 -40.43 0.000132547 -40.44 0.0010941 -40.45 0.00181516 -40.46 0.00233797 -40.47 0.00269002 -40.48 0.00289668 -40.49 0.00298216 -40.5 0.00296866 -40.51 0.00287571 -40.52 0.00271988 -40.53 0.00251438 -40.54 0.00226742 -40.55 0.00199055 -40.56 0.00168935 -40.57 0.00136809 -40.58 0.00103038 -40.59 0.000679655 -40.6 0.000319703 -40.61 -4.50765e-05 -40.62 -0.000409359 -40.63 -0.000766218 -40.64 -0.0011092 -40.65 -0.0014317 -40.66 -0.00172754 -40.67 -0.00199149 -40.68 -0.00221983 -40.69 -0.00241083 -40.7 -0.00256517 -40.71 -0.00268509 -40.72 -0.0027771 -40.73 -0.002852 -40.74 -0.0029208 -40.75 -0.00299592 -40.76 -0.00309036 -40.77 -0.00321692 -40.78 -0.00338713 -40.79 -0.00361043 -40.8 -0.00389658 -40.81 -0.00424722 -40.82 -0.00465753 -40.83 -0.0051206 -40.84 -0.00562526 -40.85 -0.00615653 -40.86 -0.0066964 -40.87 -0.00722487 -40.88 -0.00772119 -40.89 -0.00816041 -40.9 -0.00852573 -40.91 -0.00880526 -40.92 -0.0089911 -40.93 -0.0090817 -40.94 -0.00908249 -40.95 -0.00900624 -40.96 -0.0088729 -40.97 -0.00870901 -40.98 -0.00854982 -40.99 -0.0084347 -41 -0.00840189 -41.01 -0.00848899 -41.02 -0.00873061 -41.03 -0.00915599 -41.04 -0.00978676 -41.05 -0.010635 -41.06 -0.0117032 -41.07 -0.0129935 -41.08 -0.0144601 -41.09 -0.0160637 -41.1 -0.0177529 -41.11 -0.019467 -41.12 -0.0211375 -41.13 -0.0226912 -41.14 -0.0240535 -41.15 -0.0251433 -41.16 -0.0258715 -41.17 -0.0262003 -41.18 -0.0260855 -41.19 -0.0254977 -41.2 -0.0244243 -41.21 -0.0228702 -41.22 -0.0208583 -41.23 -0.0184288 -41.24 -0.0156266 -41.25 -0.0125271 -41.26 -0.00923144 -41.27 -0.00582787 -41.28 -0.00240697 -41.29 0.000942582 -41.3 0.00413801 -41.31 0.00710612 -41.32 0.00978654 -41.33 0.0121144 -41.34 0.0140673 -41.35 0.0156526 -41.36 0.016883 -41.37 0.0177881 -41.38 0.0184119 -41.39 0.0188105 -41.4 0.0190482 -41.41 0.0191939 -41.42 0.0193199 -41.43 0.0194984 -41.44 0.0197849 -41.45 0.0202232 -41.46 0.0208422 -41.47 0.0216549 -41.48 0.0226569 -41.49 0.023827 -41.5 0.0251281 -41.51 0.0265107 -41.52 0.0278997 -41.53 0.029224 -41.54 0.0304107 -41.55 0.0313882 -41.56 0.0320913 -41.57 0.0324646 -41.58 0.032466 -41.59 0.0320655 -41.6 0.0312271 -41.61 0.0299995 -41.62 0.0284172 -41.63 0.0265323 -41.64 0.0244118 -41.65 0.0221351 -41.66 0.0197895 -41.67 0.0174668 -41.68 0.0152635 -41.69 0.0132824 -41.7 0.0115896 -41.71 0.0102453 -41.72 0.00929314 -41.73 0.0087579 -41.74 0.00864443 -41.75 0.00893766 -41.76 0.00960349 -41.77 0.0106012 -41.78 0.0118584 -41.79 0.0132808 -41.8 0.0147847 -41.81 0.016285 -41.82 0.0176991 -41.83 0.0189516 -41.84 0.0199773 -41.85 0.0207243 -41.86 0.0211367 -41.87 0.0212014 -41.88 0.0209299 -41.89 0.0203382 -41.9 0.019456 -41.91 0.0183239 -41.92 0.0169906 -41.93 0.0155091 -41.94 0.0139332 -41.95 0.0123136 -41.96 0.0107002 -41.97 0.00912657 -41.98 0.00761363 -41.99 0.00616965 -42 0.00478979 -42.01 0.0034569 -42.02 0.00214301 -42.03 0.000811702 -42.04 -0.000588098 -42.05 -0.00209864 -42.06 -0.00376085 -42.07 -0.00560959 -42.08 -0.00767008 -42.09 -0.00995504 -42.1 -0.0124625 -42.11 -0.0151745 -42.12 -0.0180582 -42.13 -0.0210651 -42.14 -0.0241148 -42.15 -0.0271293 -42.16 -0.0300235 -42.17 -0.0327089 -42.18 -0.0350984 -42.19 -0.0371107 -42.2 -0.0386749 -42.21 -0.0397192 -42.22 -0.0401823 -42.23 -0.0400838 -42.24 -0.0394321 -42.25 -0.0382577 -42.26 -0.0366126 -42.27 -0.0345673 -42.28 -0.0322087 -42.29 -0.0296353 -42.3 -0.0269528 -42.31 -0.024282 -42.32 -0.0217301 -42.33 -0.0193897 -42.34 -0.0173393 -42.35 -0.0156386 -42.36 -0.0143263 -42.37 -0.0134179 -42.38 -0.0129052 -42.39 -0.0127753 -42.4 -0.012958 -42.41 -0.0133673 -42.42 -0.0139163 -42.43 -0.0145107 -42.44 -0.0150538 -42.45 -0.015452 -42.46 -0.015621 -42.47 -0.0154903 -42.48 -0.0149791 -42.49 -0.0140778 -42.5 -0.0127924 -42.51 -0.0111478 -42.52 -0.00919299 -42.53 -0.00699975 -42.54 -0.00465889 -42.55 -0.00227624 -42.56 3.26043e-05 -42.57 0.00211976 -42.58 0.00387656 -42.59 0.00519672 -42.6 0.00598869 -42.61 0.0061809 -42.62 0.00572565 -42.63 0.00460191 -42.64 0.0028168 -42.65 0.000398097 -42.66 -0.00261935 -42.67 -0.00609463 -42.68 -0.00991597 -42.69 -0.0139569 -42.7 -0.0180819 -42.71 -0.0221523 -42.72 -0.0260326 -42.73 -0.0295959 -42.74 -0.0327142 -42.75 -0.0352683 -42.76 -0.0372208 -42.77 -0.0385322 -42.78 -0.039189 -42.79 -0.0392043 -42.8 -0.0386153 -42.81 -0.0374814 -42.82 -0.0358802 -42.83 -0.0338909 -42.84 -0.0316261 -42.85 -0.029207 -42.86 -0.0267347 -42.87 -0.0243025 -42.88 -0.021992 -42.89 -0.0198698 -42.9 -0.0179846 -42.91 -0.0163661 -42.92 -0.0150407 -42.93 -0.0139877 -42.94 -0.0131685 -42.95 -0.0125389 -42.96 -0.012044 -42.97 -0.0116215 -42.98 -0.0112059 -42.99 -0.0107322 -43 -0.0101397 -43.01 -0.0093586 -43.02 -0.00835443 -43.03 -0.00710245 -43.04 -0.00558888 -43.05 -0.00381381 -43.06 -0.00179072 -43.07 0.000454847 -43.08 0.0028871 -43.09 0.00546233 -43.1 0.00813546 -43.11 0.0108424 -43.12 0.0135324 -43.13 0.0161581 -43.14 0.0186777 -43.15 0.0210562 -43.16 0.0232669 -43.17 0.0252915 -43.18 0.0271168 -43.19 0.0287292 -43.2 0.0301495 -43.21 0.0313881 -43.22 0.0324582 -43.23 0.0333741 -43.24 0.0341495 -43.25 0.0347956 -43.26 0.0353203 -43.27 0.0357231 -43.28 0.0359984 -43.29 0.0361463 -43.3 0.0361556 -43.31 0.0360124 -43.32 0.0357013 -43.33 0.0352071 -43.34 0.0345166 -43.35 0.0336202 -43.36 0.0325041 -43.37 0.0311722 -43.38 0.029646 -43.39 0.0279454 -43.4 0.0260984 -43.41 0.02414 -43.42 0.0221115 -43.43 0.0200582 -43.44 0.0180282 -43.45 0.0160768 -43.46 0.0142516 -43.47 0.0125897 -43.48 0.0111231 -43.49 0.00987442 -43.5 0.00885581 -43.51 0.00806796 -43.52 0.00750001 -43.53 0.00712996 -43.54 0.00693558 -43.55 0.00686105 -43.56 0.00685658 -43.57 0.00687176 -43.58 0.00685619 -43.59 0.00676239 -43.6 0.00654862 -43.61 0.0061814 -43.62 0.00563736 -43.63 0.00488906 -43.64 0.00395795 -43.65 0.00286245 -43.66 0.0016336 -43.67 0.000313724 -43.68 -0.00104554 -43.69 -0.00238569 -43.7 -0.00364427 -43.71 -0.00475431 -43.72 -0.00563732 -43.73 -0.0062513 -43.74 -0.00655184 -43.75 -0.00650598 -43.76 -0.00609403 -43.77 -0.00531059 -43.78 -0.00416504 -43.79 -0.0026811 -43.8 -0.000887603 -43.81 0.00116644 -43.82 0.00340365 -43.83 0.00575826 -43.84 0.00816161 -43.85 0.0105453 -43.86 0.012844 -43.87 0.0149986 -43.88 0.0169583 -43.89 0.0186694 -43.9 0.0201024 -43.91 0.0212541 -43.92 0.0221228 -43.93 0.0227183 -43.94 0.0230605 -43.95 0.0231776 -43.96 0.0231035 -43.97 0.0228762 -43.98 0.02253 -43.99 0.0221105 -44 0.0216544 -44.01 0.0211898 -44.02 0.0207379 -44.03 0.0203123 -44.04 0.0199189 -44.05 0.019556 -44.06 0.0192153 -44.07 0.0188818 -44.08 0.018535 -44.09 0.0181542 -44.1 0.0177191 -44.11 0.017211 -44.12 0.0166146 -44.13 0.0159196 -44.14 0.0151212 -44.15 0.0142206 -44.16 0.013219 -44.17 0.0121405 -44.18 0.0110052 -44.19 0.00983664 -44.2 0.00866072 -44.21 0.00750368 -44.22 0.00639057 -44.23 0.00534363 -44.24 0.00438268 -44.25 0.00352606 -44.26 0.0027722 -44.27 0.00211923 -44.28 0.00155888 -44.29 0.00107714 -44.3 0.00065529 -44.31 0.000271308 -44.32 -9.85172e-05 -44.33 -0.000478937 -44.34 -0.000894491 -44.35 -0.00136144 -44.36 -0.00189133 -44.37 -0.00248918 -44.38 -0.00315286 -44.39 -0.00387294 -44.4 -0.004633 -44.41 -0.00541046 -44.42 -0.0061757 -44.43 -0.0068942 -44.44 -0.00753464 -44.45 -0.00806655 -44.46 -0.00846305 -44.47 -0.00870283 -44.48 -0.00877185 -44.49 -0.00866476 -44.5 -0.00838567 -44.51 -0.00793969 -44.52 -0.00736053 -44.53 -0.00668625 -44.54 -0.00595763 -44.55 -0.00522014 -44.56 -0.00452156 -44.57 -0.00390933 -44.58 -0.00342784 -44.59 -0.00311577 -44.6 -0.00302185 -44.61 -0.00315203 -44.62 -0.00351012 -44.63 -0.00408929 -44.64 -0.0048701 -44.65 -0.00582112 -44.66 -0.00690039 -44.67 -0.00805741 -44.68 -0.00923544 -44.69 -0.0103662 -44.7 -0.0113898 -44.71 -0.0122521 -44.72 -0.012906 -44.73 -0.0133147 -44.74 -0.0134538 -44.75 -0.0133126 -44.76 -0.0128954 -44.77 -0.0122164 -44.78 -0.0113021 -44.79 -0.0102184 -44.8 -0.00902221 -44.81 -0.00777678 -44.82 -0.006548 -44.83 -0.00540081 -44.84 -0.00439552 -44.85 -0.00358432 -44.86 -0.00301788 -44.87 -0.00272945 -44.88 -0.00271339 -44.89 -0.00296064 -44.9 -0.00344563 -44.91 -0.00412738 -44.92 -0.00495144 -44.93 -0.00585264 -44.94 -0.00675841 -44.95 -0.00758475 -44.96 -0.0082486 -44.97 -0.00868409 -44.98 -0.00883177 -44.99 -0.00864514 -45 -0.0080934 -45.01 -0.00716332 -45.02 -0.00586028 -45.03 -0.00420827 -45.04 -0.00223199 -45.05 -1.03559e-05 -45.06 0.00237654 -45.07 0.00484737 -45.08 0.00731643 -45.09 0.0096979 -45.1 0.0119103 -45.11 0.0138803 -45.12 0.0155468 -45.13 0.0168319 -45.14 0.0177337 -45.15 0.0182495 -45.16 0.018392 -45.17 0.0181919 -45.18 0.0176955 -45.19 0.0169619 -45.2 0.0160598 -45.21 0.0150631 -45.22 0.0140526 -45.23 0.013106 -45.24 0.0122855 -45.25 0.0116418 -45.26 0.0112109 -45.27 0.0110122 -45.28 0.0110478 -45.29 0.0113023 -45.3 0.011747 -45.31 0.0123356 -45.32 0.0129955 -45.33 0.0136599 -45.34 0.0142587 -45.35 0.0147238 -45.36 0.0149926 -45.37 0.0150121 -45.38 0.0147428 -45.39 0.0141486 -45.4 0.0132206 -45.41 0.011993 -45.42 0.0105014 -45.43 0.00879815 -45.44 0.00695015 -45.45 0.0050352 -45.46 0.00313829 -45.47 0.00134714 -45.48 -0.000237435 -45.49 -0.00153137 -45.5 -0.00247682 -45.51 -0.00302366 -45.52 -0.00313986 -45.53 -0.00281331 -45.54 -0.00205258 -45.55 -0.000886608 -45.56 0.00063667 -45.57 0.00246769 -45.58 0.00450524 -45.59 0.00665454 -45.6 0.00882353 -45.61 0.0109214 -45.62 0.012863 -45.63 0.0145737 -45.64 0.0159926 -45.65 0.0170758 -45.66 0.0177671 -45.67 0.0180934 -45.68 0.0180768 -45.69 0.0177557 -45.7 0.0171843 -45.71 0.0164294 -45.72 0.0155665 -45.73 0.0146756 -45.74 0.0138374 -45.75 0.0131422 -45.76 0.0126473 -45.77 0.0124012 -45.78 0.0124361 -45.79 0.0127653 -45.8 0.0133831 -45.81 0.0142648 -45.82 0.0153683 -45.83 0.0166383 -45.84 0.0180007 -45.85 0.0193667 -45.86 0.0206554 -45.87 0.0217881 -45.88 0.0226931 -45.89 0.0233097 -45.9 0.0235918 -45.91 0.0235106 -45.92 0.0230422 -45.93 0.0221974 -45.94 0.0210305 -45.95 0.0195947 -45.96 0.0179585 -45.97 0.0162021 -45.98 0.0144133 -45.99 0.0126831 -46 0.0111006 -46.01 0.00976534 -46.02 0.00875034 -46.03 0.0080994 -46.04 0.00784616 -46.05 0.0080036 -46.06 0.00856318 -46.07 0.00949512 -46.08 0.0107498 -46.09 0.01226 -46.1 0.0139505 -46.11 0.015711 -46.12 0.0174414 -46.13 0.0190453 -46.14 0.0204325 -46.15 0.0215229 -46.16 0.0222508 -46.17 0.0225683 -46.18 0.0224477 -46.19 0.0218452 -46.2 0.0208183 -46.21 0.0194105 -46.22 0.0176816 -46.23 0.0157072 -46.24 0.013574 -46.25 0.0113761 -46.26 0.00921018 -46.27 0.00717289 -46.28 0.00537395 -46.29 0.0038746 -46.3 0.00273169 -46.31 0.00198365 -46.32 0.00164887 -46.33 0.00172507 -46.34 0.00218971 -46.35 0.00300145 -46.36 0.00410826 -46.37 0.00543842 -46.38 0.00689158 -46.39 0.00838174 -46.4 0.00982334 -46.41 0.0111356 -46.42 0.0122465 -46.43 0.0130965 -46.44 0.013641 -46.45 0.0138385 -46.46 0.0136789 -46.47 0.0131927 -46.48 0.0124113 -46.49 0.0113813 -46.5 0.010162 -46.51 0.0088221 -46.52 0.00743613 -46.53 0.00608025 -46.54 0.00483852 -46.55 0.00378248 -46.56 0.00296362 -46.57 0.00242399 -46.58 0.00219034 -46.59 0.00227281 -46.6 0.0026646 -46.61 0.00334228 -46.62 0.00426715 -46.63 0.00539685 -46.64 0.00665055 -46.65 0.00795336 -46.66 0.00923075 -46.67 0.0104087 -46.68 0.0114173 -46.69 0.0121937 -46.7 0.0126857 -46.71 0.0128534 -46.72 0.0126389 -46.73 0.0120645 -46.74 0.0111404 -46.75 0.00989055 -46.76 0.00835277 -46.77 0.00657652 -46.78 0.00462051 -46.79 0.00254999 -46.8 0.00043409 -46.81 -0.00164974 -46.82 -0.00363329 -46.83 -0.00545727 -46.84 -0.00707086 -46.85 -0.00843367 -46.86 -0.00951705 -46.87 -0.0103049 -46.88 -0.0107937 -46.89 -0.0109848 -46.9 -0.0108925 -46.91 -0.0105675 -46.92 -0.0100496 -46.93 -0.00938404 -46.94 -0.00861908 -46.95 -0.00780362 -46.96 -0.00698487 -46.97 -0.00620623 -46.98 -0.00551028 -46.99 -0.0049305 -47 -0.00448285 -47.01 -0.00417795 -47.02 -0.0040171 -47.03 -0.00399253 -47.04 -0.00408811 -47.05 -0.00428051 -47.06 -0.00454049 -47.07 -0.00483439 -47.08 -0.0051212 -47.09 -0.00536354 -47.1 -0.00552668 -47.11 -0.0055792 -47.12 -0.00549453 -47.13 -0.00525215 -47.14 -0.00483856 -47.15 -0.00424789 -47.16 -0.00346969 -47.17 -0.0025264 -47.18 -0.00143984 -47.19 -0.000235431 -47.2 0.00105605 -47.21 0.00239973 -47.22 0.00375813 -47.23 0.00509269 -47.24 0.00636541 -47.25 0.00752843 -47.26 0.00855661 -47.27 0.00942402 -47.28 0.010111 -47.29 0.0106048 -47.3 0.0109007 -47.31 0.0110014 -47.32 0.0109177 -47.33 0.0106654 -47.34 0.0102635 -47.35 0.00975605 -47.36 0.00917844 -47.37 0.00856878 -47.38 0.00796618 -47.39 0.0074092 -47.4 0.00693421 -47.41 0.00657393 -47.42 0.00636103 -47.43 0.00632349 -47.44 0.00646462 -47.45 0.00678877 -47.46 0.00729209 -47.47 0.00796266 -47.48 0.008781 -47.49 0.00972087 -47.5 0.0107503 -47.51 0.0118338 -47.52 0.0129273 -47.53 0.0139888 -47.54 0.0149798 -47.55 0.0158649 -47.56 0.0166133 -47.57 0.0172005 -47.58 0.0176091 -47.59 0.0178298 -47.6 0.0178508 -47.61 0.0176884 -47.62 0.0173666 -47.63 0.016911 -47.64 0.0163533 -47.65 0.0157301 -47.66 0.0150805 -47.67 0.0144448 -47.68 0.0138621 -47.69 0.0133778 -47.7 0.0130194 -47.71 0.0128083 -47.72 0.0127589 -47.73 0.0128768 -47.74 0.013158 -47.75 0.0135889 -47.76 0.0141473 -47.77 0.014803 -47.78 0.0155208 -47.79 0.0162501 -47.8 0.0169468 -47.81 0.0175666 -47.82 0.0180679 -47.83 0.0184137 -47.84 0.0185738 -47.85 0.0185262 -47.86 0.0182549 -47.87 0.0177462 -47.88 0.0170286 -47.89 0.0161242 -47.9 0.0150647 -47.91 0.0138899 -47.92 0.0126459 -47.93 0.0113826 -47.94 0.0101516 -47.95 0.00900757 -47.96 0.00800538 -47.97 0.00717827 -47.98 0.00655581 -47.99 0.00615686 -48 0.00598838 -48.01 0.00604479 -48.02 0.00630796 -48.03 0.00674779 -48.04 0.00732753 -48.05 0.00798977 -48.06 0.00867133 -48.07 0.00931159 -48.08 0.00984972 -48.09 0.0102277 -48.1 0.0103933 -48.11 0.010303 -48.12 0.00992388 -48.13 0.00921617 -48.14 0.00818693 -48.15 0.00685797 -48.16 0.00525723 -48.17 0.00342665 -48.18 0.00142075 -48.19 -0.000695538 -48.2 -0.00284942 -48.21 -0.00496323 -48.22 -0.00694185 -48.23 -0.00870943 -48.24 -0.0101967 -48.25 -0.0113415 -48.26 -0.0120932 -48.27 -0.0124147 -48.28 -0.0122837 -48.29 -0.0116942 -48.3 -0.010655 -48.31 -0.00915918 -48.32 -0.00729024 -48.33 -0.00510416 -48.34 -0.00266704 -48.35 -5.2403e-05 -48.36 0.00266169 -48.37 0.00539563 -48.38 0.00807123 -48.39 0.0106107 -48.4 0.0129297 -48.41 0.014983 -48.42 0.0167257 -48.43 0.018125 -48.44 0.0191607 -48.45 0.0198252 -48.46 0.0201231 -48.47 0.0200698 -48.48 0.019681 -48.49 0.0189884 -48.5 0.0180519 -48.51 0.016917 -48.52 0.0156311 -48.53 0.0142421 -48.54 0.0127965 -48.55 0.0113381 -48.56 0.00990704 -48.57 0.00854317 -48.58 0.00727899 -48.59 0.00613484 -48.6 0.00512834 -48.61 0.00427181 -48.62 0.00357259 -48.63 0.00303361 -48.64 0.00265386 -48.65 0.00242894 -48.66 0.00236064 -48.67 0.00243214 -48.68 0.00262737 -48.69 0.00293247 -48.7 0.00333203 -48.71 0.00380927 -48.72 0.00434611 -48.73 0.00492328 -48.74 0.00552043 -48.75 0.00611444 -48.76 0.0066816 -48.77 0.00719991 -48.78 0.00764774 -48.79 0.00800453 -48.8 0.00825145 -48.81 0.00837222 -48.82 0.00835388 -48.83 0.00818683 -48.84 0.00785469 -48.85 0.00737318 -48.86 0.00675088 -48.87 0.00600229 -48.88 0.00514771 -48.89 0.00421274 -48.9 0.00322757 -48.91 0.00222594 -48.92 0.00124509 -48.93 0.000328601 -48.94 -0.00048973 -48.95 -0.00117723 -48.96 -0.00170574 -48.97 -0.00205312 -48.98 -0.00220449 -48.99 -0.0021532 -49 -0.00190149 -49.01 -0.00145451 -49.02 -0.000832469 -49.03 -7.58491e-05 -49.04 0.000778701 -49.05 0.00168945 -49.06 0.00261149 -49.07 0.00349882 -49.08 0.00430656 -49.09 0.00499319 -49.1 0.00551288 -49.11 0.00583651 -49.12 0.00595303 -49.13 0.00585513 -49.14 0.00554623 -49.15 0.00504042 -49.16 0.00436187 -49.17 0.0035437 -49.18 0.00262634 -49.19 0.00165532 -49.2 0.000686773 -49.21 -0.000229397 -49.22 -0.00104736 -49.23 -0.00172669 -49.24 -0.00223459 -49.25 -0.00254781 -49.26 -0.00265407 -49.27 -0.00255293 -49.28 -0.00224172 -49.29 -0.00176231 -49.3 -0.00115289 -49.31 -0.000458602 -49.32 0.000268928 -49.33 0.000974206 -49.34 0.0016007 -49.35 0.00209377 -49.36 0.00240204 -49.37 0.00246241 -49.38 0.00226161 -49.39 0.00178237 -49.4 0.00102098 -49.41 -1.21746e-05 -49.42 -0.00129274 -49.43 -0.00278321 -49.44 -0.00443444 -49.45 -0.00618834 -49.46 -0.00797317 -49.47 -0.00971206 -49.48 -0.0113345 -49.49 -0.0127733 -49.5 -0.0139671 -49.51 -0.014864 -49.52 -0.0154232 -49.53 -0.0156172 -49.54 -0.0154188 -49.55 -0.0148263 -49.56 -0.0138809 -49.57 -0.0126169 -49.58 -0.0110806 -49.59 -0.00932866 -49.6 -0.00742481 -49.61 -0.00543736 -49.62 -0.00343599 -49.63 -0.00149517 -49.64 0.000316122 -49.65 0.00194638 -49.66 0.00335183 -49.67 0.00450046 -49.68 0.00537298 -49.69 0.00596328 -49.7 0.00627818 -49.71 0.00633667 -49.72 0.00615546 -49.73 0.00578891 -49.74 0.00528868 -49.75 0.00470509 -49.76 0.00408954 -49.77 0.00349209 -49.78 0.00295906 -49.79 0.00253101 -49.8 0.00224103 -49.81 0.00212855 -49.82 0.00219516 -49.83 0.00244226 -49.84 0.00286279 -49.85 0.00344086 -49.86 0.00415285 -49.87 0.00496887 -49.88 0.0058544 -49.89 0.00677199 -49.9 0.00767905 -49.91 0.00853625 -49.92 0.00930923 -49.93 0.0099678 -49.94 0.010487 -49.95 0.010848 -49.96 0.0110384 -49.97 0.0110525 -49.98 0.0108869 -49.99 0.0105427 -50 0.0100452 -50.01 0.00941259 -50.02 0.00866624 -50.03 0.00783026 -50.04 0.00693031 -50.05 0.00599276 -50.06 0.00504382 -50.07 0.00411044 -50.08 0.00321965 -50.09 0.00239207 -50.1 0.00164682 -50.11 0.0010005 -50.12 0.000466953 -50.13 5.72311e-05 -50.14 -0.00022051 -50.15 -0.000361056 -50.16 -0.000354458 -50.17 -0.000204833 -50.18 7.79404e-05 -50.19 0.000485802 -50.2 0.00100736 -50.21 0.00162785 -50.22 0.0023292 -50.23 0.00309019 -50.24 0.00388665 -50.25 0.00469048 -50.26 0.00546966 -50.27 0.00619418 -50.28 0.0068341 -50.29 0.00736054 -50.3 0.00774677 -50.31 0.00796942 -50.32 0.0080097 -50.33 0.00785446 -50.34 0.00747968 -50.35 0.0069043 -50.36 0.00614016 -50.37 0.00520616 -50.38 0.00412907 -50.39 0.00294279 -50.4 0.00168739 -50.41 0.000407674 -50.42 -0.000847709 -50.43 -0.00201993 -50.44 -0.00306434 -50.45 -0.00393764 -50.46 -0.00460254 -50.47 -0.0050298 -50.48 -0.00519984 -50.49 -0.00510408 -50.5 -0.00474578 -50.51 -0.00413457 -50.52 -0.00329336 -50.53 -0.00227894 -50.54 -0.00114112 -50.55 6.32345e-05 -50.56 0.00127268 -50.57 0.00242397 -50.58 0.00345502 -50.59 0.0043079 -50.6 0.00492027 -50.61 0.00524514 -50.62 0.00526821 -50.63 0.00497731 -50.64 0.00437515 -50.65 0.00347948 -50.66 0.00232255 -50.67 0.000949842 -50.68 -0.000581875 -50.69 -0.00220824 -50.7 -0.00384744 -50.71 -0.00542309 -50.72 -0.00686402 -50.73 -0.00810476 -50.74 -0.00908886 -50.75 -0.00977175 -50.76 -0.0101231 -50.77 -0.0101285 -50.78 -0.00976653 -50.79 -0.00907966 -50.8 -0.00811328 -50.81 -0.00692029 -50.82 -0.00556498 -50.83 -0.00411998 -50.84 -0.00266265 -50.85 -0.00127124 -50.86 -2.09751e-05 -50.87 0.000995915 -50.88 0.00173706 -50.89 0.00216228 -50.9 0.00224702 -50.91 0.00198442 -50.92 0.00138579 -50.93 0.000480221 -50.94 -0.000686701 -50.95 -0.0020566 -50.96 -0.00355872 -50.97 -0.00509708 -50.98 -0.00658798 -50.99 -0.00794885 -51 -0.00910233 -51.01 -0.00998014 -51.02 -0.0105265 -51.03 -0.0107011 -51.04 -0.0104695 -51.05 -0.00981491 -51.06 -0.0087818 -51.07 -0.00740723 -51.08 -0.0057445 -51.09 -0.00386064 -51.1 -0.00183321 -51.11 0.000253425 -51.12 0.00231208 -51.13 0.00424819 -51.14 0.00597147 -51.15 0.00741935 -51.16 0.00853636 -51.17 0.00928263 -51.18 0.00963547 -51.19 0.00959019 -51.2 0.00915993 -51.21 0.0083747 -51.22 0.00726464 -51.23 0.00590355 -51.24 0.00436998 -51.25 0.00273749 -51.26 0.00108078 -51.27 -0.000527971 -51.28 -0.00202263 -51.29 -0.00334622 -51.3 -0.0044535 -51.31 -0.00529295 -51.32 -0.00586306 -51.33 -0.00616999 -51.34 -0.00623009 -51.35 -0.00607273 -51.36 -0.00573821 -51.37 -0.00527519 -51.38 -0.0047377 -51.39 -0.00418191 -51.4 -0.0036709 -51.41 -0.00325501 -51.42 -0.00297579 -51.43 -0.00286485 -51.44 -0.00294221 -51.45 -0.00321528 -51.46 -0.00367868 -51.47 -0.00431468 -51.48 -0.00509583 -51.49 -0.00598574 -51.5 -0.00692685 -51.51 -0.00786865 -51.52 -0.00875984 -51.53 -0.00955118 -51.54 -0.0101983 -51.55 -0.0106643 -51.56 -0.0109215 -51.57 -0.0109464 -51.58 -0.010728 -51.59 -0.0102907 -51.6 -0.0096565 -51.61 -0.0088576 -51.62 -0.00793495 -51.63 -0.00693588 -51.64 -0.00591157 -51.65 -0.00491439 -51.66 -0.00400085 -51.67 -0.00322245 -51.68 -0.002613 -51.69 -0.00220094 -51.7 -0.00200403 -51.71 -0.00202852 -51.72 -0.00226895 -51.73 -0.00270851 -51.74 -0.00332004 -51.75 -0.00407324 -51.76 -0.0049158 -51.77 -0.00579586 -51.78 -0.00666441 -51.79 -0.00747385 -51.8 -0.00818055 -51.81 -0.00874708 -51.82 -0.00914421 -51.83 -0.00935235 -51.84 -0.00934741 -51.85 -0.00914568 -51.86 -0.00876546 -51.87 -0.00823177 -51.88 -0.00757793 -51.89 -0.00684368 -51.9 -0.00607298 -51.91 -0.0053116 -51.92 -0.00460473 -51.93 -0.0040065 -51.94 -0.00354619 -51.95 -0.00325084 -51.96 -0.00313817 -51.97 -0.00321553 -51.98 -0.00347955 -51.99 -0.00391619 -52 -0.00450143 -52.01 -0.00520364 -52.02 -0.00598265 -52.03 -0.00678407 -52.04 -0.00755968 -52.05 -0.00826143 -52.06 -0.00884392 -52.07 -0.00926664 -52.08 -0.00949605 -52.09 -0.00950731 -52.1 -0.00927801 -52.11 -0.00879829 -52.12 -0.00809201 -52.13 -0.00717961 -52.14 -0.00609136 -52.15 -0.00486602 -52.16 -0.00354914 -52.17 -0.00219096 -52.18 -0.000844211 -52.19 0.000432656 -52.2 0.00158345 -52.21 0.00256655 -52.22 0.00334411 -52.23 0.00388682 -52.24 0.004175 -52.25 0.00419944 -52.26 0.00396157 -52.27 0.00347327 -52.28 0.0027437 -52.29 0.00181541 -52.3 0.000733859 -52.31 -0.000457127 -52.32 -0.00171076 -52.33 -0.00297937 -52.34 -0.00421646 -52.35 -0.00537863 -52.36 -0.0064273 -52.37 -0.00731669 -52.38 -0.00803069 -52.39 -0.00855669 -52.4 -0.00888872 -52.41 -0.00902923 -52.42 -0.00898856 -52.43 -0.00878405 -52.44 -0.00843886 -52.45 -0.00798032 -52.46 -0.00743457 -52.47 -0.00684289 -52.48 -0.00623594 -52.49 -0.00564196 -52.5 -0.00508548 -52.51 -0.00458623 -52.52 -0.00415834 -52.53 -0.00380993 -52.54 -0.00354438 -52.55 -0.00336106 -52.56 -0.00324352 -52.57 -0.00317716 -52.58 -0.00314431 -52.59 -0.0031256 -52.6 -0.00310133 -52.61 -0.00305294 -52.62 -0.00296434 -52.63 -0.0028211 -52.64 -0.00261392 -52.65 -0.00234525 -52.66 -0.00202042 -52.67 -0.0016508 -52.68 -0.00125347 -52.69 -0.000850532 -52.7 -0.000468117 -52.71 -0.000135118 -52.72 0.000112814 -52.73 0.000243034 -52.74 0.000232174 -52.75 5.74958e-05 -52.76 -0.000298025 -52.77 -0.000844399 -52.78 -0.0015836 -52.79 -0.0025089 -52.8 -0.00360459 -52.81 -0.00485344 -52.82 -0.00621254 -52.83 -0.00763655 -52.84 -0.0090786 -52.85 -0.0104883 -52.86 -0.0118137 -52.87 -0.0130035 -52.88 -0.0140095 -52.89 -0.0147887 -52.9 -0.0152816 -52.91 -0.0154791 -52.92 -0.0153707 -52.93 -0.0149543 -52.94 -0.0142403 -52.95 -0.0132507 -52.96 -0.012019 -52.97 -0.0105886 -52.98 -0.00901096 -52.99 -0.00734272 -53 -0.00565852 -53.01 -0.00402136 -53.02 -0.00249204 -53.03 -0.00112649 -53.04 2.6634e-05 -53.05 0.000928098 -53.06 0.00154983 -53.07 0.00187013 -53.08 0.00187191 -53.09 0.00158999 -53.1 0.0010499 -53.11 0.000288041 -53.12 -0.000650195 -53.13 -0.00171269 -53.14 -0.00284322 -53.15 -0.00398422 -53.16 -0.00507612 -53.17 -0.00605995 -53.18 -0.00689595 -53.19 -0.00755098 -53.2 -0.008003 -53.21 -0.00824215 -53.22 -0.00827098 -53.23 -0.00810419 -53.24 -0.00776764 -53.25 -0.00729216 -53.26 -0.00672801 -53.27 -0.00612902 -53.28 -0.00554509 -53.29 -0.00502453 -53.3 -0.00461122 -53.31 -0.00434194 -53.32 -0.00424411 -53.33 -0.00433407 -53.34 -0.00462814 -53.35 -0.00510677 -53.36 -0.00574117 -53.37 -0.00649627 -53.38 -0.00732774 -53.39 -0.00818437 -53.4 -0.00901095 -53.41 -0.00975144 -53.42 -0.0103522 -53.43 -0.0107466 -53.44 -0.0109075 -53.45 -0.0108121 -53.46 -0.0104495 -53.47 -0.00982404 -53.48 -0.00895516 -53.49 -0.00787736 -53.5 -0.00663876 -53.51 -0.00529878 -53.52 -0.00393025 -53.53 -0.00261529 -53.54 -0.00142861 -53.55 -0.000441416 -53.56 0.000282601 -53.57 0.000690874 -53.58 0.000745174 -53.59 0.000424146 -53.6 -0.000282875 -53.61 -0.00137273 -53.62 -0.00277859 -53.63 -0.00444269 -53.64 -0.00629216 -53.65 -0.00824234 -53.66 -0.0102007 -53.67 -0.0120713 -53.68 -0.0137598 -53.69 -0.0151643 -53.7 -0.0161942 -53.71 -0.0168065 -53.72 -0.0169622 -53.73 -0.016644 -53.74 -0.0158575 -53.75 -0.0146314 -53.76 -0.0130169 -53.77 -0.0110848 -53.78 -0.00891654 -53.79 -0.00662934 -53.8 -0.00434144 -53.81 -0.00216389 -53.82 -0.000203524 -53.83 0.00144231 -53.84 0.00269072 -53.85 0.00347747 -53.86 0.00376037 -53.87 0.00348606 -53.88 0.00269061 -53.89 0.00142466 -53.9 -0.000250243 -53.91 -0.00225241 -53.92 -0.0044841 -53.93 -0.00683637 -53.94 -0.00919449 -53.95 -0.0114438 -53.96 -0.0134485 -53.97 -0.0151223 -53.98 -0.0163905 -53.99 -0.017198 -54 -0.0175139 -54.01 -0.017333 -54.02 -0.0166762 -54.03 -0.0155889 -54.04 -0.0141369 -54.05 -0.0123961 -54.06 -0.0104995 -54.07 -0.00855803 -54.08 -0.00668416 -54.09 -0.00498594 -54.1 -0.0035613 -54.11 -0.00249288 -54.12 -0.00184364 -54.13 -0.00166477 -54.14 -0.00199067 -54.15 -0.00277204 -54.16 -0.00396625 -54.17 -0.00550775 -54.18 -0.00731159 -54.19 -0.00927786 -54.2 -0.011297 -54.21 -0.0132554 -54.22 -0.0150306 -54.23 -0.0165048 -54.24 -0.0176019 -54.25 -0.0182556 -54.26 -0.0184225 -54.27 -0.0180846 -54.28 -0.01725 -54.29 -0.0159527 -54.3 -0.0142508 -54.31 -0.0122113 -54.32 -0.00994924 -54.33 -0.0075864 -54.34 -0.00523754 -54.35 -0.00301615 -54.36 -0.00102849 -54.37 0.00063187 -54.38 0.00188894 -54.39 0.00268824 -54.4 0.00296464 -54.41 0.00274157 -54.42 0.00205704 -54.43 0.000962721 -54.44 -0.000468378 -54.45 -0.00214592 -54.46 -0.00396707 -54.47 -0.00582196 -54.48 -0.00759953 -54.49 -0.0091691 -54.5 -0.0104441 -54.51 -0.0113493 -54.52 -0.0118293 -54.53 -0.0118516 -54.54 -0.011409 -54.55 -0.0105194 -54.56 -0.0092249 -54.57 -0.00758713 -54.58 -0.00567971 -54.59 -0.00362903 -54.6 -0.00154193 -54.61 0.000472759 -54.62 0.0023098 -54.63 0.00387295 -54.64 0.00507987 -54.65 0.00586618 -54.66 0.00617614 -54.67 0.00597049 -54.68 0.00528999 -54.69 0.00416734 -54.7 0.00265646 -54.71 0.000829438 -54.72 -0.00122731 -54.73 -0.00341766 -54.74 -0.00564071 -54.75 -0.00778901 -54.76 -0.00975546 -54.77 -0.0114622 -54.78 -0.0128423 -54.79 -0.0138466 -54.8 -0.0144459 -54.81 -0.0146316 -54.82 -0.0144155 -54.83 -0.0138285 -54.84 -0.0129036 -54.85 -0.011718 -54.86 -0.010356 -54.87 -0.00889562 -54.88 -0.00741546 -54.89 -0.00599042 -54.9 -0.00468805 -54.91 -0.00356531 -54.92 -0.00266601 -54.93 -0.00203854 -54.94 -0.00168171 -54.95 -0.001585 -54.96 -0.00172883 -54.97 -0.00208155 -54.98 -0.00260205 -54.99 -0.00324276 -55 -0.00395295 -55.01 -0.00468196 -55.02 -0.00537623 -55.03 -0.00599492 -55.04 -0.00650755 -55.05 -0.00689387 -55.06 -0.0071447 -55.07 -0.00726189 -55.08 -0.0072576 -55.09 -0.00715286 -55.1 -0.00697519 -55.11 -0.00675782 -55.12 -0.00654054 -55.13 -0.00635614 -55.14 -0.00623327 -55.15 -0.00619423 -55.16 -0.00625326 -55.17 -0.00641534 -55.18 -0.00667569 -55.19 -0.00702154 -55.2 -0.00742855 -55.21 -0.0078597 -55.22 -0.00827867 -55.23 -0.00864706 -55.24 -0.00892711 -55.25 -0.00908445 -55.26 -0.00909067 -55.27 -0.00892561 -55.28 -0.00857134 -55.29 -0.00802965 -55.3 -0.00732517 -55.31 -0.00648491 -55.32 -0.00554615 -55.33 -0.0045545 -55.34 -0.00356162 -55.35 -0.00262231 -55.36 -0.00179142 -55.37 -0.00113288 -55.38 -0.000691738 -55.39 -0.000496072 -55.4 -0.000567355 -55.41 -0.000913354 -55.42 -0.00152727 -55.43 -0.00238767 -55.44 -0.0034593 -55.45 -0.00469459 -55.46 -0.00603896 -55.47 -0.00741488 -55.48 -0.00875196 -55.49 -0.00998238 -55.5 -0.0110428 -55.51 -0.0118779 -55.52 -0.0124432 -55.53 -0.0127077 -55.54 -0.0126557 -55.55 -0.0122606 -55.56 -0.011571 -55.57 -0.0106232 -55.58 -0.00946598 -55.59 -0.00815875 -55.6 -0.00676843 -55.61 -0.00536575 -55.62 -0.00402152 -55.63 -0.00280543 -55.64 -0.00179412 -55.65 -0.00102312 -55.66 -0.000524826 -55.67 -0.000316253 -55.68 -0.000398227 -55.69 -0.000755501 -55.7 -0.00135775 -55.71 -0.0021614 -55.72 -0.00311457 -55.73 -0.00415073 -55.74 -0.00519501 -55.75 -0.00618206 -55.76 -0.00705101 -55.77 -0.00774887 -55.78 -0.00823345 -55.79 -0.0084757 -55.8 -0.00846123 -55.81 -0.00818027 -55.82 -0.00765253 -55.83 -0.00692342 -55.84 -0.00603799 -55.85 -0.00505027 -55.86 -0.00402 -55.87 -0.00300919 -55.88 -0.00207846 -55.89 -0.00128353 -55.9 -0.000685548 -55.91 -0.000318071 -55.92 -0.000195753 -55.93 -0.000324732 -55.94 -0.000696474 -55.95 -0.00128839 -55.96 -0.00206527 -55.97 -0.0029814 -55.98 -0.00398331 -55.99 -0.00501048 -56 -0.00599687 -56.01 -0.00688655 -56.02 -0.00763043 -56.03 -0.00818876 -56.04 -0.0085334 -56.05 -0.00864932 -56.06 -0.00853545 -56.07 -0.00820459 -56.08 -0.0076684 -56.09 -0.00698612 -56.1 -0.00620555 -56.11 -0.00537984 -56.12 -0.00456416 -56.13 -0.00381242 -56.14 -0.00317392 -56.15 -0.00269036 -56.16 -0.00239656 -56.17 -0.00232516 -56.18 -0.00246455 -56.19 -0.00280411 -56.2 -0.00332031 -56.21 -0.00397813 -56.22 -0.00473322 -56.23 -0.00553461 -56.24 -0.00632786 -56.25 -0.00705473 -56.26 -0.00765541 -56.27 -0.00809142 -56.28 -0.00832999 -56.29 -0.00835047 -56.3 -0.0081457 -56.31 -0.00772259 -56.32 -0.00710189 -56.33 -0.00631712 -56.34 -0.00540962 -56.35 -0.00443976 -56.36 -0.00347139 -56.37 -0.00256409 -56.38 -0.00177484 -56.39 -0.00115451 -56.4 -0.000744828 -56.41 -0.000575739 -56.42 -0.000663461 -56.43 -0.00102466 -56.44 -0.00163323 -56.45 -0.00244995 -56.46 -0.00343064 -56.47 -0.00452094 -56.48 -0.00565938 -56.49 -0.00678085 -56.5 -0.00782029 -56.51 -0.00871646 -56.52 -0.00939653 -56.53 -0.00982806 -56.54 -0.00998709 -56.55 -0.00986217 -56.56 -0.00945788 -56.57 -0.00879461 -56.58 -0.00790749 -56.59 -0.00684445 -56.6 -0.00566339 -56.61 -0.00443077 -56.62 -0.0032243 -56.63 -0.00210997 -56.64 -0.00114807 -56.65 -0.000389638 -56.66 0.000126509 -56.67 0.000376029 -56.68 0.000350536 -56.69 5.38788e-05 -56.7 -0.000499513 -56.71 -0.0012479 -56.72 -0.00213768 -56.73 -0.0031067 -56.74 -0.00408796 -56.75 -0.00501357 -56.76 -0.00581879 -56.77 -0.0064459 -56.78 -0.00683904 -56.79 -0.00695582 -56.8 -0.00679568 -56.81 -0.0063614 -56.82 -0.00567273 -56.83 -0.00476531 -56.84 -0.00368872 -56.85 -0.00250367 -56.86 -0.00127854 -56.87 -9.05769e-05 -56.88 0.000980734 -56.89 0.00187246 -56.9 0.00252978 -56.91 0.00291113 -56.92 0.00299083 -56.93 0.0027608 -56.94 0.00223134 -56.95 0.00143074 -56.96 0.000393276 -56.97 -0.000805483 -56.98 -0.00208731 -56.99 -0.00337415 -57 -0.00458649 -57.01 -0.00564795 -57.02 -0.00648982 -57.03 -0.00705514 -57.04 -0.00730221 -57.05 -0.00717947 -57.06 -0.00670918 -57.07 -0.00591628 -57.08 -0.00484091 -57.09 -0.00354046 -57.1 -0.0020866 -57.11 -0.000561342 -57.12 0.000947442 -57.13 0.0023502 -57.14 0.00353902 -57.15 0.00445184 -57.16 0.00503064 -57.17 0.00523562 -57.18 0.00504774 -57.19 0.00447015 -57.2 0.00352841 -57.21 0.00226947 -57.22 0.000756257 -57.23 -0.000928368 -57.24 -0.00267164 -57.25 -0.00437331 -57.26 -0.00593362 -57.27 -0.00725889 -57.28 -0.00826686 -57.29 -0.00889143 -57.3 -0.00908672 -57.31 -0.0088141 -57.32 -0.00806923 -57.33 -0.00691126 -57.34 -0.00539722 -57.35 -0.00360528 -57.36 -0.00163092 -57.37 0.00041785 -57.38 0.00242611 -57.39 0.00427797 -57.4 0.00584393 -57.41 0.00701728 -57.42 0.00773175 -57.43 0.00793196 -57.44 0.00758826 -57.45 0.00669874 -57.46 0.00528978 -57.47 0.00341514 -57.48 0.00115373 -57.49 -0.00140514 -57.5 -0.00411875 -57.51 -0.00685045 -57.52 -0.00946764 -57.53 -0.0118413 -57.54 -0.0138523 -57.55 -0.0153976 -57.56 -0.0163951 -57.57 -0.016788 -57.58 -0.0164957 -57.59 -0.0155701 -57.6 -0.014055 -57.61 -0.0120157 -57.62 -0.00954168 -57.63 -0.00674271 -57.64 -0.00374308 -57.65 -0.000675828 -57.66 0.00232256 -57.67 0.0050933 -57.68 0.00752695 -57.69 0.00952377 -57.7 0.011006 -57.71 0.0119212 -57.72 0.0122444 -57.73 0.0119784 -57.74 0.0111537 -57.75 0.00981717 -57.76 0.00803606 -57.77 0.00594461 -57.78 0.00365335 -57.79 0.00127853 -57.8 -0.00106372 -57.81 -0.00326301 -57.82 -0.00521991 -57.83 -0.00685049 -57.84 -0.0080738 -57.85 -0.00883671 -57.86 -0.00914693 -57.87 -0.00901334 -57.88 -0.00846675 -57.89 -0.00755751 -57.9 -0.00635224 -57.91 -0.00492991 -57.92 -0.00337728 -57.93 -0.00178695 -57.94 -0.000257423 -57.95 0.0011302 -57.96 0.0023071 -57.97 0.00321863 -57.98 0.00382661 -57.99 0.00411065 -58 0.00406848 -58.01 0.00371539 -58.02 0.00306676 -58.03 0.0021865 -58.04 0.00113915 -58.05 -1.0759e-05 -58.06 -0.00119575 -58.07 -0.00234901 -58.08 -0.00340785 -58.09 -0.00431673 -58.1 -0.00502983 -58.11 -0.00549182 -58.12 -0.00569931 -58.13 -0.00564942 -58.14 -0.0053503 -58.15 -0.00482199 -58.16 -0.00409475 -58.17 -0.00320696 -58.18 -0.0022028 -58.19 -0.00112954 -58.2 -3.81737e-05 -58.21 0.00102056 -58.22 0.00200554 -58.23 0.00288176 -58.24 0.00362156 -58.25 0.00420533 -58.26 0.00462179 -58.27 0.00486774 -58.28 0.00494381 -58.29 0.00485535 -58.3 0.00463063 -58.31 0.00428989 -58.32 0.00385529 -58.33 0.0033495 -58.34 0.0027945 -58.35 0.00221055 -58.36 0.00161544 -58.37 0.00102469 -58.38 0.000451404 -58.39 -9.64356e-05 -58.4 -0.000612972 -58.41 -0.00109417 -58.42 -0.00153714 -58.43 -0.00193943 -58.44 -0.00229837 -58.45 -0.00261056 -58.46 -0.00286834 -58.47 -0.003066 -58.48 -0.0031983 -58.49 -0.00325736 -58.5 -0.0032351 -58.51 -0.00312408 -58.52 -0.00291824 -58.53 -0.00261381 -58.54 -0.00221017 -58.55 -0.00170426 -58.56 -0.00110975 -58.57 -0.000442034 -58.58 0.000281004 -58.59 0.0010373 -58.6 0.00180131 -58.61 0.00254503 -58.62 0.00323919 -58.63 0.00385472 -58.64 0.00435299 -58.65 0.00471703 -58.66 0.00492936 -58.67 0.00497804 -58.68 0.00485824 -58.69 0.00457282 -58.7 0.00413247 -58.71 0.00355544 -58.72 0.00286611 -58.73 0.00209296 -58.74 0.00128082 -58.75 0.000467724 -58.76 -0.000308158 -58.77 -0.00101052 -58.78 -0.00160681 -58.79 -0.00207002 -58.8 -0.00238011 -58.81 -0.0025209 -58.82 -0.00248282 -58.83 -0.00228482 -58.84 -0.00194312 -58.85 -0.00148136 -58.86 -0.000929282 -58.87 -0.000320974 -58.88 0.000307118 -58.89 0.000918311 -58.9 0.0014744 -58.91 0.00194068 -58.92 0.00229666 -58.93 0.00252657 -58.94 0.00262314 -58.95 0.002588 -58.96 0.00243157 -58.97 0.00217238 -58.98 0.00183595 -58.99 0.00145257 -59 0.00106174 -59.01 0.000700564 -59.02 0.000403051 -59.03 0.000199511 -59.04 0.000114578 -59.05 0.000165583 -59.06 0.000361355 -59.07 0.000701515 -59.08 0.00118469 -59.09 0.00178214 -59.1 0.00246299 -59.11 0.00319307 -59.12 0.00393423 -59.13 0.00464653 -59.14 0.00529064 -59.15 0.00583022 -59.16 0.00623406 -59.17 0.00646265 -59.18 0.00651421 -59.19 0.00638594 -59.2 0.00608435 -59.21 0.00562563 -59.22 0.00503472 -59.23 0.00434378 -59.24 0.0035903 -59.25 0.00281507 -59.26 0.00206444 -59.27 0.0013779 -59.28 0.000788639 -59.29 0.000322745 -59.3 -2.44405e-06 -59.31 -0.000179424 -59.32 -0.000211004 -59.33 -0.000110135 -59.34 0.000103043 -59.35 0.000397421 -59.36 0.000729136 -59.37 0.00105861 -59.38 0.00134634 -59.39 0.00155572 -59.4 0.00165579 -59.41 0.0016236 -59.42 0.00144627 -59.43 0.00111661 -59.44 0.000647397 -59.45 7.15311e-05 -59.46 -0.000574374 -59.47 -0.00124455 -59.48 -0.00188653 -59.49 -0.00244413 -59.5 -0.00286082 -59.51 -0.00308327 -59.52 -0.00304864 -59.53 -0.00272418 -59.54 -0.00209829 -59.55 -0.00116689 -59.56 5.70446e-05 -59.57 0.00154314 -59.58 0.00324422 -59.59 0.00509785 -59.6 0.00702889 -59.61 0.00894541 -59.62 0.010749 -59.63 0.0123496 -59.64 0.0136619 -59.65 0.0146101 -59.66 0.0151323 -59.67 0.0151841 -59.68 0.0147417 -59.69 0.0138035 -59.7 0.0123527 -59.71 0.0104826 -59.72 0.00826526 -59.73 0.00578911 -59.74 0.00315676 -59.75 0.000480073 -59.76 -0.00212502 -59.77 -0.00454407 -59.78 -0.00666443 -59.79 -0.00835757 -59.8 -0.00957475 -59.81 -0.0102647 -59.82 -0.0104005 -59.83 -0.00998151 -59.84 -0.00903282 -59.85 -0.00760448 -59.86 -0.00576893 -59.87 -0.00361151 -59.88 -0.00124359 -59.89 0.0012 -59.9 0.0036019 -59.91 0.00584894 -59.92 0.0078377 -59.93 0.00947959 -59.94 0.0107052 -59.95 0.0114675 -59.96 0.0117224 -59.97 0.0114751 -59.98 0.0107819 -59.99 0.00969845 -60 0.00829913 diff --git a/docs/examples/pdf/fitNi/data/Pt.cif b/docs/examples/pdf/fitNi/data/Pt.cif deleted file mode 100644 index 481fa5d..0000000 --- a/docs/examples/pdf/fitNi/data/Pt.cif +++ /dev/null @@ -1,232 +0,0 @@ -data_52250-ICSD -_audit_creation_method 'generated by CrystalMaker 9.0.3' -_publ_section_comment -; -ICSD code: 52250 - - -Systematic name: Platinum - -Structural formula: Pt - -Chemical formula (sum): Pt1 - - -Crystal structure data from: Owen, E.A., Yates, E.L. Precision measuremen -ts of crystal parameters. - -; -_cell_length_a 3.9237(3) -_cell_length_b 3.9237(0) -_cell_length_c 3.9237(0) -_cell_angle_alpha 90.0000(0) -_cell_angle_beta 90.0000(0) -_cell_angle_gamma 90.0000(0) - -_symmetry_space_group_name_H-M 'F m -3 m' -_symmetry_Int_Tables_number 225 -_symmetry_cell_setting cubic -loop_ -_symmetry_equiv_pos_as_xyz -'+x,+y,+z' -'+x,1/2+y,1/2+z' -'1/2+x,1/2+y,+z' -'1/2+x,+y,1/2+z' -'+z,+x,+y' -'+z,1/2+x,1/2+y' -'1/2+z,1/2+x,+y' -'1/2+z,+x,1/2+y' -'+y,+z,+x' -'+y,1/2+z,1/2+x' -'1/2+y,1/2+z,+x' -'1/2+y,+z,1/2+x' -'+x,+y,-z' -'+x,1/2+y,1/2-z' -'1/2+x,1/2+y,-z' -'1/2+x,+y,1/2-z' -'+z,+x,-y' -'+z,1/2+x,1/2-y' -'1/2+z,1/2+x,-y' -'1/2+z,+x,1/2-y' -'+y,+z,-x' -'+y,1/2+z,1/2-x' -'1/2+y,1/2+z,-x' -'1/2+y,+z,1/2-x' -'-x,+y,+z' -'-x,1/2+y,1/2+z' -'1/2-x,1/2+y,+z' -'1/2-x,+y,1/2+z' -'-z,+x,+y' -'-z,1/2+x,1/2+y' -'1/2-z,1/2+x,+y' -'1/2-z,+x,1/2+y' -'-y,+z,+x' -'-y,1/2+z,1/2+x' -'1/2-y,1/2+z,+x' -'1/2-y,+z,1/2+x' -'-x,+y,-z' -'-x,1/2+y,1/2-z' -'1/2-x,1/2+y,-z' -'1/2-x,+y,1/2-z' -'-z,+x,-y' -'-z,1/2+x,1/2-y' -'1/2-z,1/2+x,-y' -'1/2-z,+x,1/2-y' -'-y,+z,-x' -'-y,1/2+z,1/2-x' -'1/2-y,1/2+z,-x' -'1/2-y,+z,1/2-x' -'+y,+x,+z' -'+y,1/2+x,1/2+z' -'1/2+y,1/2+x,+z' -'1/2+y,+x,1/2+z' -'+x,+z,+y' -'+x,1/2+z,1/2+y' -'1/2+x,1/2+z,+y' -'1/2+x,+z,1/2+y' -'+z,+y,+x' -'+z,1/2+y,1/2+x' -'1/2+z,1/2+y,+x' -'1/2+z,+y,1/2+x' -'+y,+x,-z' -'+y,1/2+x,1/2-z' -'1/2+y,1/2+x,-z' -'1/2+y,+x,1/2-z' -'+x,+z,-y' -'+x,1/2+z,1/2-y' -'1/2+x,1/2+z,-y' -'1/2+x,+z,1/2-y' -'+z,+y,-x' -'+z,1/2+y,1/2-x' -'1/2+z,1/2+y,-x' -'1/2+z,+y,1/2-x' -'+y,-x,+z' -'+y,1/2-x,1/2+z' -'1/2+y,1/2-x,+z' -'1/2+y,-x,1/2+z' -'+x,-z,+y' -'+x,1/2-z,1/2+y' -'1/2+x,1/2-z,+y' -'1/2+x,-z,1/2+y' -'+z,-y,+x' -'+z,1/2-y,1/2+x' -'1/2+z,1/2-y,+x' -'1/2+z,-y,1/2+x' -'+y,-x,-z' -'+y,1/2-x,1/2-z' -'1/2+y,1/2-x,-z' -'1/2+y,-x,1/2-z' -'+x,-z,-y' -'+x,1/2-z,1/2-y' -'1/2+x,1/2-z,-y' -'1/2+x,-z,1/2-y' -'+z,-y,-x' -'+z,1/2-y,1/2-x' -'1/2+z,1/2-y,-x' -'1/2+z,-y,1/2-x' -'-x,-y,-z' -'-x,1/2-y,1/2-z' -'1/2-x,1/2-y,-z' -'1/2-x,-y,1/2-z' -'-z,-x,-y' -'-z,1/2-x,1/2-y' -'1/2-z,1/2-x,-y' -'1/2-z,-x,1/2-y' -'-y,-z,-x' -'-y,1/2-z,1/2-x' -'1/2-y,1/2-z,-x' -'1/2-y,-z,1/2-x' -'-x,-y,+z' -'-x,1/2-y,1/2+z' -'1/2-x,1/2-y,+z' -'1/2-x,-y,1/2+z' -'-z,-x,+y' -'-z,1/2-x,1/2+y' -'1/2-z,1/2-x,+y' -'1/2-z,-x,1/2+y' -'-y,-z,+x' -'-y,1/2-z,1/2+x' -'1/2-y,1/2-z,+x' -'1/2-y,-z,1/2+x' -'+x,-y,-z' -'+x,1/2-y,1/2-z' -'1/2+x,1/2-y,-z' -'1/2+x,-y,1/2-z' -'+z,-x,-y' -'+z,1/2-x,1/2-y' -'1/2+z,1/2-x,-y' -'1/2+z,-x,1/2-y' -'+y,-z,-x' -'+y,1/2-z,1/2-x' -'1/2+y,1/2-z,-x' -'1/2+y,-z,1/2-x' -'+x,-y,+z' -'+x,1/2-y,1/2+z' -'1/2+x,1/2-y,+z' -'1/2+x,-y,1/2+z' -'+z,-x,+y' -'+z,1/2-x,1/2+y' -'1/2+z,1/2-x,+y' -'1/2+z,-x,1/2+y' -'+y,-z,+x' -'+y,1/2-z,1/2+x' -'1/2+y,1/2-z,+x' -'1/2+y,-z,1/2+x' -'-y,-x,-z' -'-y,1/2-x,1/2-z' -'1/2-y,1/2-x,-z' -'1/2-y,-x,1/2-z' -'-x,-z,-y' -'-x,1/2-z,1/2-y' -'1/2-x,1/2-z,-y' -'1/2-x,-z,1/2-y' -'-z,-y,-x' -'-z,1/2-y,1/2-x' -'1/2-z,1/2-y,-x' -'1/2-z,-y,1/2-x' -'-y,-x,+z' -'-y,1/2-x,1/2+z' -'1/2-y,1/2-x,+z' -'1/2-y,-x,1/2+z' -'-x,-z,+y' -'-x,1/2-z,1/2+y' -'1/2-x,1/2-z,+y' -'1/2-x,-z,1/2+y' -'-z,-y,+x' -'-z,1/2-y,1/2+x' -'1/2-z,1/2-y,+x' -'1/2-z,-y,1/2+x' -'-y,+x,-z' -'-y,1/2+x,1/2-z' -'1/2-y,1/2+x,-z' -'1/2-y,+x,1/2-z' -'-x,+z,-y' -'-x,1/2+z,1/2-y' -'1/2-x,1/2+z,-y' -'1/2-x,+z,1/2-y' -'-z,+y,-x' -'-z,1/2+y,1/2-x' -'1/2-z,1/2+y,-x' -'1/2-z,+y,1/2-x' -'-y,+x,+z' -'-y,1/2+x,1/2+z' -'1/2-y,1/2+x,+z' -'1/2-y,+x,1/2+z' -'-x,+z,+y' -'-x,1/2+z,1/2+y' -'1/2-x,1/2+z,+y' -'1/2-x,+z,1/2+y' -'-z,+y,+x' -'-z,1/2+y,1/2+x' -'1/2-z,1/2+y,+x' -'1/2-z,+y,1/2+x' - -loop_ -_atom_site_label -_atom_site_type_symbol -_atom_site_occupancy -_atom_site_fract_x -_atom_site_fract_y -_atom_site_fract_z -_atom_site_U_iso_or_equiv - Pt1 Pt 1.0000 0.0000 0.0000 0.0000 0.1000 diff --git a/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb b/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb deleted file mode 100644 index ccee65e..0000000 --- a/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitBulkNi.ipynb +++ /dev/null @@ -1,692 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "\n", - "
\n", - "Please see notes in Chapter 3 of the 'PDF to the People' book for additional
\n", - "explanation of the code.
\n", - "This Diffpy-CMI script will carry out a structural refinement of a measured
\n", - "PDF from nickel. It is the same refinement as is done using PDFgui in this
\n", - "chapter of the book, only this time using Diffpy-CMI
\n", - "
\n", - "1: Import relevant system packages that we will need..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import matplotlib as mpl\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy.optimize import least_squares\n", - "from bg_mpl_stylesheets.styles import all_styles\n", - "\n", - "plt.style.use(all_styles['bg-style'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "... and the relevant CMI packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "from diffpy.srfit.fitbase import FitContribution, FitRecipe\n", - "from diffpy.srfit.fitbase import FitResults\n", - "from diffpy.srfit.fitbase import Profile\n", - "from diffpy.srfit.pdf import PDFParser, PDFGenerator\n", - "from diffpy.structure.parsers import getParser\n", - "from diffpy.srfit.structure import constrainAsSpaceGroup" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "############# Config ##############################
\n", - "2: Give a file path to where your PDF (.gr) and structure (.cif) files are located. In this case it is two directories up, in a folder called 'data'. First we store the absolute directory of this script (`Path(__file__).parent.absolute()`), then we navigate two directories above this in the file tree (`PWD.parent.parent`) and append the name of the data directory `/ \"data\"`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "PWD = Path(__file__).parent.absolute()\n", - "DPATH = PWD.parent.parent / \"data\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "3: Give an identifying name for the refinement, similar to what you would name a fit tree in PDFGui." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "FIT_ID = \"Fit_Ni_Bulk\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "4: Specify the names of the input PDF and CIF file that are sitting in that data directory." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "GR_NAME = \"Ni.gr\"\n", - "CIF_NAME = \"Ni.cif\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "###### Experimental PDF Config ######################
\n", - "5: Specify the min, max, and step r-values of the PDF (that we want to fit over) also, specify the Qmax and Qmin values used to reduce the PDF." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "PDF_RMIN = 1.5\n", - "PDF_RMAX = 50\n", - "PDF_RSTEP = 0.01\n", - "QMAX = 25\n", - "QMIN = 0.1" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "###### PDF Initialize refinable variables #############
\n", - "6: We explicitly specify initial values lattice parameter, scale, and isotropic thermal parameters, as well as a correlated motion parameter, in this case delta_2." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "CUBICLAT_I = 3.52\n", - "SCALE_I = 0.4\n", - "UISO_I = 0.005\n", - "DELTA2_I = 2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "7: We will give initial values for the instrumental parameters, but because
\n", - "this is a calibrant, we will also refine these variables." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "QDAMP_I = 0.04\n", - "QBROAD_I = 0.02" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "If we want to run using multiprocessors, we can switch this to 'True'.
\n", - "This requires that the 'psutil' python package installed." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "RUN_PARALLEL = True" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "###### Functions that will carry out the refinement ##################
\n", - "8: We define a function 'make_recipe' to make the recipe that the fit will follow.
\n", - "This Fit Recipe object contains the PDF data, information on all the structure(s)
\n", - "we will use to fit, and all relevant details necessary to run the fit." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def make_recipe(cif_path, dat_path):\n", - " \"\"\"\n", - " Creates and returns a Fit Recipe object\n", - " Parameters\n", - " ----------\n", - " cif_path : string, The full path to the structure CIF file to load.\n", - " dat_path : string, The full path to the PDF data to be fit.\n", - " Returns\n", - " ----------\n", - " recipe : The initialized Fit Recipe object using the dat_path and structure path\n", - " provided.\n", - " \"\"\"\n", - " # 9: Create a CIF file parsing object, and use it to parse out\n", - " # relevant info and load the structure in the CIF file. This\n", - " # includes the space group of the structure. We need this so we\n", - " # can constrain the structure parameters later on.\n", - " p_cif = getParser('cif')\n", - " stru1 = p_cif.parseFile(cif_path)\n", - " sg = p_cif.spacegroup.short_name\n", - "\n", - " # 10: Create a Profile object for the experimental dataset.\n", - " # This handles all details about the dataset.\n", - " # We also tell this profile the range and mesh of points in r-space.\n", - " # The 'PDFParser' function should parse out the appropriate Q_min and\n", - " # Q_max from the *.gr file, if the information is present.\n", - " profile = Profile()\n", - " parser = PDFParser()\n", - " parser.parseFile(dat_path)\n", - " profile.loadParsedData(parser)\n", - " profile.setCalculationRange(xmin=PDF_RMIN, xmax=PDF_RMAX, dx=PDF_RSTEP)\n", - "\n", - " # 11: Create a PDF Generator object for a periodic structure model.\n", - " # Here we name it arbitrarily 'G1' and we give it the structure object.\n", - " # This Generator will later compute the model PDF for the structure\n", - " # object we provide it here.\n", - " generator_crystal1 = PDFGenerator(\"G1\")\n", - " generator_crystal1.setStructure(stru1, periodic=True)\n", - "\n", - " # 12: Create a Fit Contribution object, and arbitrarily name it 'crystal'.\n", - " # We then give the PDF Generator object we created just above\n", - " # to this Fit Contribution object. The Fit Contribution holds\n", - " # the equation used to fit the PDF.\n", - " contribution = FitContribution(\"crystal\")\n", - " contribution.addProfileGenerator(generator_crystal1)\n", - "\n", - " # If you have a multi-core computer (you probably do),\n", - " # run your refinement in parallel!\n", - " # Here we just make sure not to overload your CPUs.\n", - " if RUN_PARALLEL:\n", - " try:\n", - " import psutil\n", - " import multiprocessing\n", - " from multiprocessing import Pool\n", - " except ImportError:\n", - " print(\"\\nYou don't appear to have the necessary packages for parallelization\")\n", - " syst_cores = multiprocessing.cpu_count()\n", - " cpu_percent = psutil.cpu_percent()\n", - " avail_cores = np.floor((100 - cpu_percent) / (100.0 / syst_cores))\n", - " ncpu = int(np.max([1, avail_cores]))\n", - " pool = Pool(processes=ncpu)\n", - " generator_crystal1.parallel(ncpu=ncpu, mapfunc=pool.map)\n", - "\n", - " # 13: Set the experimental profile, within the Fit Contribution object,\n", - " # to the Profile object we created earlier.\n", - " contribution.setProfile(profile, xname=\"r\")\n", - "\n", - " # 14: Set an equation, within the Fit Contribution, based on your PDF\n", - " # Generators. Here we simply have one Generator, 'G1', and a scale variable,\n", - " # 's1'. Using this structure is a very flexible way of adding additional\n", - " # Generators (ie. multiple structural phases), experimental Profiles,\n", - " # PDF characteristic functions (ie. shape envelopes), and more.\n", - " contribution.setEquation(\"s1*G1\")\n", - "\n", - " # 15: Create the Fit Recipe object that holds all the details of the fit,\n", - " # defined in previous lines above. We give the Fit Recipe the Fit\n", - " # Contribution we created earlier.\n", - " recipe = FitRecipe()\n", - " recipe.addContribution(contribution)\n", - "\n", - " # 16: Initialize the instrument parameters, Q_damp and Q_broad, and\n", - " # assign Q_max and Q_min, all part of the PDF Generator object.\n", - " # It's possible that the 'PDFParse' function we used above\n", - " # already parsed out this information, but in case it didn't, we set it\n", - " # explicitly again here.\n", - " # All parameter objects can have their value assigned using the\n", - " # below '.value = ' syntax.\n", - " recipe.crystal.G1.qdamp.value = QDAMP_I\n", - " recipe.crystal.G1.qbroad.value = QBROAD_I\n", - " recipe.crystal.G1.setQmax(QMAX)\n", - " recipe.crystal.G1.setQmin(QMIN)\n", - "\n", - " # 17: Add a variable to the Fit Recipe object, initialize the variables\n", - " # with some value, and tag it with an arbitrary string. Here we add the scale\n", - " # parameter from the Fit Contribution. The '.addVar' method can be\n", - " # used to add variables to the Fit Recipe.\n", - " recipe.addVar(contribution.s1, SCALE_I, tag=\"scale\")\n", - "\n", - " # 18: Configure some additional fit variables pertaining to symmetry.\n", - " # We can use the srfit function 'constrainAsSpaceGroup' to constrain\n", - " # the lattice and ADP parameters according to the Fm-3m space group.\n", - " # First we establish the relevant parameters, then we loop through\n", - " # the parameters and activate and tag them. We must explicitly set the\n", - " # ADP parameters using 'value=' because CIF had no ADP data.\n", - " spacegroupparams = constrainAsSpaceGroup(generator_crystal1.phase,\n", - " sg)\n", - " for par in spacegroupparams.latpars:\n", - " recipe.addVar(par,\n", - " value=CUBICLAT_I,\n", - " fixed=False,\n", - " name=\"fcc_Lat\",\n", - " tag=\"lat\")\n", - " for par in spacegroupparams.adppars:\n", - " recipe.addVar(par,\n", - " value=UISO_I,\n", - " fixed=False,\n", - " name=\"fcc_ADP\",\n", - " tag=\"adp\")\n", - "\n", - " # 19: Add delta and instrumental parameters to Fit Recipe.\n", - " # These parameters are contained as part of the PDF Generator object\n", - " # and initialized with values as defined in the opening of the script.\n", - " # We give them unique names, and tag them with relevant strings.\n", - " recipe.addVar(generator_crystal1.delta2,\n", - " name=\"Ni_Delta2\",\n", - " value=DELTA2_I,\n", - " tag=\"d2\")\n", - " recipe.addVar(generator_crystal1.qdamp,\n", - " fixed=False,\n", - " name=\"Calib_Qdamp\",\n", - " value=QDAMP_I,\n", - " tag=\"inst\")\n", - " recipe.addVar(generator_crystal1.qbroad,\n", - " fixed=False,\n", - " name=\"Calib_Qbroad\",\n", - " value=QBROAD_I,\n", - " tag=\"inst\")\n", - "\n", - " # 20: Return the Fit Recipe object to be optimized.\n", - " return recipe\n", - "\n", - " # End of function" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "21: We create a useful function 'plot_results' for writing a plot of the fit to disk.
\n", - "We won't go into detail here as much of this is non-CMI specific" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def plot_results(recipe, fig_name):\n", - " \"\"\"\n", - " Creates plots of the fitted PDF and residual, and writes them to disk\n", - " as *.pdf files.\n", - " Parameters\n", - " ----------\n", - " recipe : The optimized Fit Recipe object containing the PDF data\n", - " we wish to plot.\n", - " fig_name : Path object, the full path to the figure file to create..\n", - " Returns\n", - " ----------\n", - " None\n", - " \"\"\"\n", - " if not isinstance(fig_name, Path):\n", - " fig_name = Path(fig_name)\n", - " plt.clf()\n", - " plt.close('all')\n", - "\n", - " # Get an array of the r-values we fitted over.\n", - " r = recipe.crystal.profile.x\n", - "\n", - " # Get an array of the observed PDF.\n", - " g = recipe.crystal.profile.y\n", - "\n", - " # Get an array of the calculated PDF.\n", - " gcalc = recipe.crystal.profile.ycalc\n", - "\n", - " # Make an array of identical shape as g which is offset from g.\n", - " diffzero = -0.65 * max(g) * np.ones_like(g)\n", - "\n", - " # Calculate the residual (difference) array and offset it vertically.\n", - " diff = g - gcalc + diffzero\n", - "\n", - " # Create a figure and an axis on which to plot\n", - " fig, ax1 = plt.subplots(1, 1)\n", - "\n", - " # Plot the difference offset line\n", - " ax1.plot(r, diffzero, lw=1.0, ls=\"--\", c=\"black\")\n", - "\n", - " # Plot the measured data\n", - " ax1.plot(r,\n", - " g,\n", - " ls=\"None\",\n", - " marker=\"o\",\n", - " ms=5,\n", - " mew=0.2,\n", - " mfc=\"None\",\n", - " label=\"G(r) Data\")\n", - "\n", - " # Plot the calculated data\n", - " ax1.plot(r, gcalc, lw=1.3, label=\"G(r) Fit\")\n", - "\n", - " # Plot the difference\n", - " ax1.plot(r, diff, lw=1.2, label=\"G(r) diff\")\n", - "\n", - " # Let's label the axes!\n", - " ax1.set_xlabel(r\"r ($\\mathrm{\\AA}$)\")\n", - " ax1.set_ylabel(r\"G ($\\mathrm{\\AA}$$^{-2}$)\")\n", - "\n", - " # Tune the tick markers. We are picky!\n", - " ax1.tick_params(axis=\"both\",\n", - " which=\"major\",\n", - " top=True,\n", - " right=True)\n", - "\n", - " # Set the boundaries on the x-axis\n", - " ax1.set_xlim(r[0], r[-1])\n", - "\n", - " # We definitely want a legend!\n", - " ax1.legend()\n", - "\n", - " # Let's use a tight layout. Shun wasted space!\n", - " plt.tight_layout()\n", - "\n", - " # This is going to make a figure pop up on screen for you to view.\n", - " # The script will pause until you close the figure!\n", - " plt.show()\n", - "\n", - " # Let's save the figure!\n", - " fig.savefig(fig_name.parent / f\"{fig_name.name}.pdf\", format=\"pdf\")\n", - "\n", - " # End of function" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "22: By Convention, this main function is where we do most of our work, and it
\n", - "is the bit of code which will be run when we issue 'python file.py' from a terminal." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def main():\n", - " \"\"\"\n", - " This will run by default when the file is executed using\n", - " 'python file.py' in the command line.\n", - " Parameters\n", - " ----------\n", - " None\n", - " Returns\n", - " ----------\n", - " None\n", - " \"\"\"\n", - " # Make some folders to store our output files.\n", - " resdir = PWD / \"res\"\n", - " fitdir = PWD / \"fit\"\n", - " figdir = PWD / \"fig\"\n", - " folders = [resdir, fitdir, figdir]\n", - " for folder in folders:\n", - " if not folder.exists():\n", - " folder.mkdir()\n", - "\n", - " # Establish the location of the data and a name for our fit.\n", - " gr_path = DPATH / GR_NAME\n", - " basename = FIT_ID\n", - " print(basename)\n", - "\n", - " # Establish the full path of the CIF file with the structure of interest.\n", - " stru_path = DPATH / CIF_NAME\n", - "\n", - " # 23: Now we call our 'make_recipe' function created above, giving\n", - " # strings which points to the relevant CIF file and PDF data file.\n", - " recipe = make_recipe(str(stru_path),\n", - " str(gr_path))\n", - "\n", - " # Tell the Fit Recipe we want to write the maximum amount of\n", - " # information to the terminal during fitting.\n", - " # Passing '2' or '1' prints intermediate info, while '0' prints no info.\n", - " recipe.fithooks[0].verbose = 3\n", - "\n", - " # 24: During the optimization, fix and free parameters sequentially\n", - " # as you would PDFgui. This leads to more stability in the refinement.\n", - " # This can be done with 'recipe.fix' and 'recipe.free' and we can use\n", - " # either a single parameter name or any of the tags we assigned when creating\n", - " # the fit recipe. We first fix all variables. The tag 'all' incorporates every parameter.\n", - " # We then create a list of 'tags' which we want free sequentially, we\n", - " # loop over them freeing each during a loop, and then fit using the\n", - " # SciPy function 'least_squares'. 'least_squares' takes as its arguments\n", - " # the function to be optimized, here 'recipe.residual',\n", - " # as well as initial values for the fitted parameters, provided by\n", - " # 'recipe.values'. The 'x_scale=\"jac\"' argument is optional\n", - " # and provides for a bit more stability.\n", - " recipe.fix(\"all\")\n", - " tags = [\"lat\", \"scale\", \"adp\", \"d2\", \"all\"]\n", - " for tag in tags:\n", - " recipe.free(tag)\n", - " least_squares(recipe.residual, recipe.values, x_scale=\"jac\")\n", - "\n", - " # 25: We use the 'savetxt' method of the profile to write a text file\n", - " # containing the measured and fitted PDF to disk.\n", - " # The file is named based on the basename we created earlier, and\n", - " # written to the 'fitdir' directory.\n", - " profile = recipe.crystal.profile\n", - " profile.savetxt(fitdir / f\"{basename}.fit\")\n", - "\n", - " # 26: We use the 'FitResults' method to parse out the results from\n", - " # the optimized Fit Recipe, and 'printResults' to print them\n", - " # to the terminal.\n", - " res = FitResults(recipe)\n", - " res.printResults()\n", - "\n", - " # 27: We use the 'saveResults' method of 'FitResults' to write a text file\n", - " # containing the fitted parameters and fit quality indices to disk.\n", - " # The file is named based on the basename we created earlier, and\n", - " # written to the 'resdir' directory.\n", - " header = \"crystal_HF.\\n\"\n", - " res.saveResults(resdir / f\"{basename}.res\", header=header)\n", - "\n", - " # 28: We use the 'plot_results' method we created earlier to write a pdf file\n", - " # containing the measured and fitted PDF with residual to disk.\n", - " # The file is named based on the 'basename' we created earlier, and\n", - " # written to the 'figdir' directory.\n", - " plot_results(recipe, figdir / basename)\n", - "\n", - " # End of function" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "This tells python to run the 'main' function we defined above." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "if __name__ == \"__main__\":\n", - " main()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "End of file" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "cmi", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb b/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb deleted file mode 100644 index 88ee1b5..0000000 --- a/docs/examples/pdf/fitNi/exercises/diffpy-cmi/fitNPPt.ipynb +++ /dev/null @@ -1,566 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "Please see notes in Chapter 3 of the 'PDF to the People' book for additional
\n", - "explanation of the code.
\n", - "This Diffpy-CMI script will carry out a structural refinement of a measured
\n", - "PDF from nanocrystalline platinum. It is the same refinement as is done
\n", - "using PDFgui in this chapter of the book, only this time using Diffpy-CMI.
\n", - "It is required that \"fitBulkNi.py\" be run prior to running this example!
\n", - "
\n", - "1: Import relevant system packages that we will need..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import re\n", - "import matplotlib as mpl\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy.optimize import least_squares\n", - "from bg_mpl_stylesheets.styles import all_styles\n", - "\n", - "plt.style.use(all_styles['bg-style'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "... and the relevant CMI packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from diffpy.srfit.fitbase import FitContribution, FitRecipe, FitResults, Profile\n", - "from diffpy.srfit.pdf import PDFParser, PDFGenerator\n", - "from diffpy.structure.parsers import getParser\n", - "from diffpy.srfit.pdf.characteristicfunctions import sphericalCF\n", - "from diffpy.srfit.structure import constrainAsSpaceGroup" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "############# Config ##############################
\n", - "2: Give a file path to where your PDF (.gr) and structure (.cif) files are located." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "PWD = Path(__file__).parent.absolute()\n", - "DPATH = PWD.parent.parent / \"data\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3: Give an identifying name for the refinement." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "FIT_ID = \"Fit_Pt_NP\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4: Specify the names of the input PDF and CIF files." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "GR_NAME = \"Pt-nanoparticles.gr\"\n", - "CIF_NAME = \"Pt.cif\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "###### Experimental PDF Config ######################
\n", - "5: Specify the min, max, and step r-values of the PDF (that we want to fit over)
\n", - "also, specify the Q_max and Q_min values used to reduce the PDF." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "PDF_RMIN = 1.5\n", - "PDF_RMAX = 50\n", - "PDF_RSTEP = 0.01\n", - "QMAX = 25\n", - "QMIN = 0.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "######PDF initialize refinable variables #############
\n", - "6: We explicitly specify the lattice parameters, scale,
\n", - "isotropic thermal parameters, and a correlated motion parameter." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "CUBICLAT_I = 3.9\n", - "SCALE_I = 0.6\n", - "UISO_I = 0.01\n", - "DELTA2_I = 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "7: For the nanoparticle (NP) case, also provide an initial guess
\n", - "for the average crystallite size, in Angstrom." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "PSIZE_I = 40" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "8: First, let's read the fit results from the Ni fit.
\n", - "We parse out the refined values of Q_damp and Q_broad,
\n", - "instrumental parameters which will be fixed in this fit.
\n", - "This is a bit of python input/output and regular expression
\n", - "parsing, which we won't cover here." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "RESDIR = PWD / \"res\"\n", - "NIBASENAME = \"Fit_Ni_Bulk\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "RES_FILE = RESDIR / f\"{NIBASENAME}.res\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if RES_FILE.exists():\n", - " with open(RES_FILE, \"r\") as file:\n", - " for line in file:\n", - " if line.split(\" \")[0] == \"Calib_Qbroad\":\n", - " QBROAD_I = float(re.split(\" +\", line)[1])\n", - " elif line.split(\" \")[0] == \"Calib_Qdamp\":\n", - " QDAMP_I = float(re.split(\" +\", line)[1])\n", - "else:\n", - " print(\"Ni example does not appear to be run\\n\")\n", - " print(\"The Ni example refines instrument parameters\\n\")\n", - " print(\"The instrument parameters are necessary to run this fit\\n\")\n", - " print(\"Please run the Ni example first\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we want to run using multiprocessors, we can switch this to 'True'.
\n", - "This requires that the 'psutil' python package installed." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "RUN_PARALLEL = False" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "###### Functions that will carry out the refinement ##################
\n", - "9: We define a function 'make_recipe' to make the recipe that the fit will follow." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def make_recipe(cif_path, dat_path):\n", - " \"\"\"\n", - " Creates and returns a Fit Recipe object\n", - " Parameters\n", - " ----------\n", - " cif_path : string, The full path to the structure CIF file to load.\n", - " dat_path : string, The full path to the PDF data to be fit.\n", - " Returns\n", - " ----------\n", - " recipe : The initialized Fit Recipe object using the datname and structure path\n", - " provided.\n", - " \"\"\"\n", - " # 10: Create a CIF file parsing object, parse and load the structure, and\n", - " # grab the space group name.\n", - " p_cif = getParser('cif')\n", - " stru1 = p_cif.parseFile(cif_path)\n", - " sg = p_cif.spacegroup.short_name\n", - "\n", - " # 11: Create a Profile object for the experimental dataset and\n", - " # tell this profile the range and mesh of points in r-space.\n", - " profile = Profile()\n", - " parser = PDFParser()\n", - " parser.parseFile(dat_path)\n", - " profile.loadParsedData(parser)\n", - " profile.setCalculationRange(xmin=PDF_RMIN, xmax=PDF_RMAX, dx=PDF_RSTEP)\n", - "\n", - " # 12: Create a PDF Generator object for a periodic structure model.\n", - " generator_crystal1 = PDFGenerator(\"G1\")\n", - " generator_crystal1.setStructure(stru1, periodic=True)\n", - "\n", - " # 13: Create a Fit Contribution object.\n", - " contribution = FitContribution(\"crystal\")\n", - " contribution.addProfileGenerator(generator_crystal1)\n", - "\n", - " # If you have a multi-core computer (you probably do), run your refinement in parallel!\n", - " if RUN_PARALLEL:\n", - " try:\n", - " import psutil\n", - " import multiprocessing\n", - " from multiprocessing import Pool\n", - " syst_cores = multiprocessing.cpu_count()\n", - " cpu_percent = psutil.cpu_percent()\n", - " avail_cores = np.floor((100 - cpu_percent) / (100.0 / syst_cores))\n", - " ncpu = int(np.max([1, avail_cores]))\n", - " pool = Pool(processes=ncpu)\n", - " generator_crystal1.parallel(ncpu=ncpu, mapfunc=pool.map)\n", - " except ImportError:\n", - " print(\"\\nYou don't appear to have the necessary packages for parallelization\")\n", - "\n", - " # 14: Set the Fit Contribution profile to the Profile object.\n", - " contribution.setProfile(profile, xname=\"r\")\n", - "\n", - " # 15: Set an equation, based on your PDF generators. Here we add an extra layer\n", - " # of complexity, incorporating 'f' into our equation. This new term\n", - " # incorporates the effect of finite crystallite size damping on our PDF model.\n", - " # In this case we use a function which models a spherical NP 'sphericalCF'.\n", - " contribution.registerFunction(sphericalCF, name=\"f\")\n", - " contribution.setEquation(\"s1*G1*f\")\n", - "\n", - " # 16: Create the Fit Recipe object that holds all the details of the fit.\n", - " recipe = FitRecipe()\n", - " recipe.addContribution(contribution)\n", - "\n", - " # 17: Initialize the instrument parameters, Q_damp and Q_broad, and\n", - " # assign Q_max and Q_min.\n", - " generator_crystal1.qdamp.value = QDAMP_I\n", - " generator_crystal1.qbroad.value = QBROAD_I\n", - " generator_crystal1.setQmax(QMAX)\n", - " generator_crystal1.setQmin(QMIN)\n", - "\n", - " # 18: Add, initialize, and tag variables in the Fit Recipe object.\n", - " # In this case we also add 'psize', which is the NP size.\n", - " recipe.addVar(contribution.s1, SCALE_I, tag=\"scale\")\n", - " recipe.addVar(contribution.psize, PSIZE_I, tag=\"psize\")\n", - "\n", - " # 19: Use the srfit function 'constrainAsSpaceGroup' to constrain\n", - " # the lattice and ADP parameters according to the Fm-3m space group.\n", - " spacegroupparams = constrainAsSpaceGroup(generator_crystal1.phase,\n", - " sg)\n", - " for par in spacegroupparams.latpars:\n", - " recipe.addVar(par, value=CUBICLAT_I, fixed=False,\n", - " name=\"fcc_Lat\", tag=\"lat\")\n", - " for par in spacegroupparams.adppars:\n", - " recipe.addVar(par, value=UISO_I, fixed=False,\n", - " name=\"fcc_Uiso\", tag=\"adp\")\n", - "\n", - " # 20: Add delta, but not instrumental parameters to Fit Recipe.\n", - " # The instrumental parameters will remain fixed at values obtained from\n", - " # the Ni calibrant in our previous example. As we have not added them through\n", - " # recipe.addVar, they cannot be refined.\n", - " recipe.addVar(generator_crystal1.delta2,\n", - " name=\"Pt_Delta2\", value=DELTA2_I, tag=\"d2\")\n", - "\n", - " # 21: Return the Fit Recipe object to be optimized.\n", - " return recipe\n", - "\n", - " # End of function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "22 We create a useful function 'plot_results' for writing a plot of the fit to disk." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def plot_results(recipe, fig_name):\n", - " \"\"\"\n", - " Creates plots of the fitted PDF and residual, and writes them to disk\n", - " as *.pdf files.\n", - " Parameters\n", - " ----------\n", - " recipe : The optimized Fit Recipe object containing the PDF data\n", - " we wish to plot.\n", - " fig_name : Path object, the full path to the figure file to create.\n", - " Returns\n", - " ----------\n", - " None\n", - " \"\"\"\n", - " if not isinstance(fig_name, Path):\n", - " fig_name = Path(fig_name)\n", - " plt.clf()\n", - " plt.close('all')\n", - " # Get an array of the r-values we fitted over.\n", - " r = recipe.crystal.profile.x\n", - "\n", - " # Get an array of the observed PDF.\n", - " g = recipe.crystal.profile.y\n", - "\n", - " # Get an array of the calculated PDF.\n", - " gcalc = recipe.crystal.profile.ycalc\n", - "\n", - " # Make an array of identical shape as g which is offset from g.\n", - " diffzero = -0.65 * max(g) * np.ones_like(g)\n", - "\n", - " # Calculate the residual (difference) array and offset it vertically.\n", - " diff = g - gcalc + diffzero\n", - "\n", - " # Create a figure and an axis on which to plot\n", - " fig, ax1 = plt.subplots(1, 1)\n", - "\n", - " # Plot the difference offset line\n", - " ax1.plot(r, diffzero, lw=1.0, ls=\"--\", c=\"black\")\n", - "\n", - " # Plot the measured data\n", - " ax1.plot(r,\n", - " g,\n", - " ls=\"None\",\n", - " marker=\"o\",\n", - " ms=5,\n", - " mew=0.2,\n", - " mfc=\"None\",\n", - " label=\"G(r) Data\")\n", - "\n", - " # Plot the calculated data\n", - " ax1.plot(r, gcalc, lw=1.3, label=\"G(r) Fit\")\n", - "\n", - " # Plot the difference\n", - " ax1.plot(r, diff, lw=1.2, label=\"G(r) diff\")\n", - "\n", - " # Let's label the axes!\n", - " ax1.set_xlabel(r\"r ($\\mathrm{\\AA}$)\")\n", - " ax1.set_ylabel(r\"G ($\\mathrm{\\AA}$$^{-2}$)\")\n", - "\n", - " # Tune the tick markers. We are picky!\n", - " ax1.tick_params(axis=\"both\",\n", - " which=\"major\",\n", - " top=True,\n", - " right=True)\n", - "\n", - " # Set the boundaries on the x-axis\n", - " ax1.set_xlim(r[0], r[-1])\n", - "\n", - " # We definitely want a legend!\n", - " ax1.legend()\n", - "\n", - " # Let's use a tight layout. Shun wasted space!\n", - " plt.tight_layout()\n", - "\n", - " # This is going to make a figure pop up on screen for you to view.\n", - " # The script will pause until you close the figure!\n", - " plt.show()\n", - "\n", - " # Let's save the figure!\n", - " fig.savefig(fig_name.parent / f\"{fig_name.name}.pdf\", format=\"pdf\")\n", - "\n", - " # End of function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "23: We again create a 'main' function to be run when we execute the script." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def main():\n", - " \"\"\"\n", - " This will run by default when the file is executed using\n", - " 'python file.py' in the command line.\n", - " Parameters\n", - " ----------\n", - " None\n", - " Returns\n", - " ----------\n", - " None\n", - " \"\"\"\n", - "\n", - " # Make some folders to store our output files.\n", - " resdir = PWD / \"res\"\n", - " fitdir = PWD / \"fit\"\n", - " figdir = PWD / \"fig\"\n", - " folders = [resdir, fitdir, figdir]\n", - " for folder in folders:\n", - " if not folder.exists():\n", - " folder.mkdir()\n", - "\n", - " # Establish the location of the data and a name for our fit.\n", - " gr_path = DPATH / GR_NAME\n", - " basename = FIT_ID\n", - " print(basename)\n", - "\n", - " # Establish the full path of the CIF file with the structure of interest.\n", - " stru_path = DPATH / CIF_NAME\n", - "\n", - " # 24: Call 'make_recipe' to create our fit recipe.\n", - " recipe = make_recipe(str(stru_path),\n", - " str(gr_path))\n", - "\n", - " # Tell the Fit Recipe we want to write the maximum amount of\n", - " # information to the terminal during fitting.\n", - " recipe.fithooks[0].verbose = 3\n", - "\n", - " # 25: As before, we fix all parameters, create a list of tags and,\n", - " # loop over them refining sequentially. In this example, we've added\n", - " # 'psize' because we want to refine the nanoparticle size.\n", - " recipe.fix(\"all\")\n", - " tags = [\"lat\", \"scale\", \"psize\", \"adp\", \"d2\", \"all\"]\n", - " for tag in tags:\n", - " recipe.free(tag)\n", - " least_squares(recipe.residual, recipe.values, x_scale=\"jac\")\n", - "\n", - " # 26 Write the fitted data to a file.\n", - " profile = recipe.crystal.profile\n", - " profile.savetxt(fitdir / f\"{basename}.fit\")\n", - "\n", - " # 27 Print the fit results to the terminal.\n", - " res = FitResults(recipe)\n", - " res.printResults()\n", - "\n", - " # 28 Write the fit results to a file.\n", - " header = \"crystal_HF.\\n\"\n", - " res.saveResults(resdir / f\"{basename}.res\", header=header)\n", - "\n", - " # 29 Write a plot of the fit to a (pdf) file.\n", - " plot_results(recipe, figdir / basename)\n", - "\n", - " # End of function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This tells python to run the 'main' function we defined above." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if __name__ == \"__main__\":\n", - " main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "End of file" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf b/docs/examples/pdf/fitNi/solutions/diffpy-cmi/fig/Fit_Ni_Bulk.pdf deleted file mode 100644 index f5508dd9dfcb3d1f116e3ebca15e493c7c855ecb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 134282 zcmZUXWl&wg(ysB~?(XjH?(UG_?oM!bcXxM}1a}GU!67)oHn4$>ZMZr2JGbhqy0v~x z^_rgU=j}DMMrhQfWmz~_xe;j^cF5~{5IM-%$z9Ct5ru`x*|dFKt;pG=%skB;U2MqN z)Xi+HJjgl!IcSoLiXvJ$TmHw9|9=gTb#eA2=lZ`6Z2D^E_Er|2ie;4CF-T$w8%2v)c zp0?y1|IH|C=lD-AIh(BGzamImS-4nQ{Ri8_)7{F<3DKvZqF<@mTEVaI%nb~w<{^)I zVX;H?l+xh{1t;9H8UmLk*Rx1VO_T<43Gf$j>#1+6+uTvx!p@)e5WJrOU&r_~Um9Jy ze2fo%27fFBzX3i^_CI%jejb>BANU489$Y>z)gHISPQ^ZN8w1`Z-_HgE>-RrIKVPDY z6@y;Y#1fZ8>4IOAgWt7W-rDcAUQX0LC)LEj(ZwI9EhZn%G=}0eJIld!txa z)fbLzb-ucAK=18l{qye41f(naez89IS-t;$S8QwYIVN^|_i<+cz7lr)kO%^5HJ-Jf zY8CH)l<$N6vKBs8#9mkS13&izz)XW*cP?LrgAJdr2f+{C!OwqPKB`|ElNPvM+Z9P( za>U-F-xFW|mY?uhHRldK3iLlbc0A6y1V4L=fpu7d!PjV?&nutL(Zx4MAKJx_3=U5p z?@t`T;70%%aQ*W%d-DB8@1A4f@)k+JL%XPJkfOYlMT4O|8YYR3}*Xy zNZ1EYh?pB(YMnWjck+J3(p?Suj}*!A3sqNroMH^VJpzjEdOuIq&|bjJJ6camVjgQj ze!Y{x1yYaq8;;K@sn7i0+uq6d_RHJ+@p}%rkJEOqJ?s6)V!2#HKO3_bE-Z@o2etu0;J0e<-2U^8TkxmeJMagun8j>$ zr?B(eS+YQpLx;em3mGVT|6_9{=;y~7JapiToKGDDVv#<3p&CmX(fckym zEAPP%F1iQse?tZR@ht|&b`tbwe>a*kDde-!#=Hg3R*p44(y>}iw;RqNE>GIrZ=nh8~`it3Y>V`Lc7Qc{0iOvM$xw7rdPw z{Vq+aDVj)ptaYFC=Is0OUbm3-i(#H$?19JYAR^J_^PWlTWkKvN$aiTlFiEg0x%bRW zuX+FDI{5X8?^EgJiR}Yml66*mfZ3S0FptLL>@3pzz15SB*Otre^zGXK=-2h^&tQ}7 zZ$*K#%VS%w9hwvK0{+2!ba*|J^|1?y82m!NYnWSqJQyooEeDtwxc^=!wiy%!EL?pW zKjtm~U(vr2Br*4Q^zho|z~aqt*_!`GkRh*whI-0FOf zpOYhsHznKG6dFOX(4x(Hc}KY|lpsLP8#Yr8{c{R75>|(IpdW{~pcf6n-&}xDTIXd- zQxnCFC#&b&>+uhBrv}ftrGUYz1{MBJMgNGv>pL`Gl=>VHx?WmJ<6tq_mFadYL)=!p z@P%V$jv{eP+RP4acOSp~T@nK2;c`ZQ-1hFZ#!sq)8^;kQH#vjgL;Ye4=jB-}HqGxI z>DKdav!A*a&ALeoK;iGXYO2H&xjCms$I{0OO!HI1?(_ao7XxegRCyHBTD-iZ?rYLg zr&eRT)SS~S9MSY%qVt1lz~P-9H_Yf-4>j7)4Sm=3%E9WnX|Z^QHb|0ILf*!30Kg1E{ZA0Q43(F+yh=*X%ESteP}?7PW`%g7uFX@vB4r`w3ONWWZCT-C!!lKhCk79P2Irp zxJ!`fXxwM9liu?h%jI#g5B+(Gr3iIgCv2=X^p;_m0;;TDFHAA-n@r;I$74$`INg2k z&@aZC5qay)v@PCwm1cjXk6g; zjXD+s{OAm{P9!sl)!c*5lR)5N4Q_mNX04@3*S&r!s(A0)IJ2>NixAr=#!7x$-N^Dr z^AfEdOI;xDTJJ=wru?dp3ho8e{H$`LonK-mMPN*8A-RL?u3-sPDfMa)?agde!^`?e zPTsXZmh;~q>q|ZEaZ5?2&r!!{5{V6NV{T;&Owa&f3OITN91HxW$iT5-n6jq)WZ?WP zSbknM+Qz3OBrMiyEq-|i+1!8#&5y?luZt}u=_cCaQCx~EDiLZHs5DCn*W1%s$4mxY zyj5n=2f5lqC*~Xa)p%QKYTD_h1^BUbz6mF4d(~{IG{~wLH&0i!8n<>)>Naz@V-M{+ ziQ+LHET&s-311JTD!&kV4d(yU8HZ};vCgHXMoB`zY>4(bq4YJ z#C-G8$ZRGZy)SUyf}OGf`Cvxmzhy8jrycd-Mb$`+#U4`+(hXL$e;2WsV`a6ci%&@O zXWMJxb$PCmsq5P;Do_E=n+LpheR9Bt8zk^l=EG36XErfPifJ3rQ$Y+A z?$nm--tLn>1+{~c!WEj0vEQH_|2* z?H=jAedDl-!=E0Lk4%e|ce5xt9kS}{Z8TiqDYhi0<+8;~BdG3+tamELvJg3Cz6SGv zBIXgS(=-t>q%ngE+%XL`yw4HpZ8N-9LScI|`NP@<{gD6Emal;%{q`n+)Eh+|*t7Kx z4r|g$W#a`ZrM7}`0^eKlXaJ2GUoqkxNTJZI>pY8r$DS#Av9Bhmn2~l`z6*yE8e%T0 zf$ru%sLM;*R66-2#D*B%q-Ua4*~ysaWz7^J6KcehQlzvtYAhUKvn~W&rzG|)QixvY zkQ7(T226!4&4oB9weCL)-i(r@ z^d2Sg*|krqmaRy@UEgHN8amx}t=)Fie18S59r_%+f6ed%Vre-G|C~-;fR&8Jj~i#= z*eRF@NDZ8{J!YxDW|c0QBG|)F&G2pU;8;YIXmf9^=ASEg4`nk3Tzg9H{`ubLEKy?!o;587VN9TXkTt>4es@G#u8G zy`a$AB>v`@P1%dFL4Ovo|F>|Hg?!7-zRT`A#80&`@*xYRryQU9LT^y7$8U)oD8^uu z-u3x~%6>jZRGcEei5tM_SwIo$a%VQ^8wfb{g?9Y>jYR!9z`V^O%GU$nknX1C$^j2W$a2faspMo3C;KRxgjS22IH317bH7 z*G1eF@gL8oTfVDwsneHhR~;Y2-0%7(8ouR^S8RgM`^YDQC;GRq~vg<@d zMhy4@u{ySkIO|f0n17r&g}9^#EAiQ&KSw3$r+Y?l`d2REuc?bHX%8zjOALm5Mv=u9 zHfdQ469VQK5u{M2sh~y!Jc75QMjNw*iF+2RfscgvVTR~~@_7VdjH3D6KrG{)m@h=z z)k1*s^0FAY1y+8Rcd=^Sj>ml(I8M|>iTg2p+@oB0=Y7IvgM(}3V#l(-o6s{!6 z9dTv}_sHKyUi&kpN#7y`26ON2Vm-7+_Qdh1<1`V39@86ctV`IY&?8Ww3P-RJRC{9; z*i7N4Qqn*2c)ciDMkqsFV%SJG6Y+OI7eOjPqox*L0it|Bs7qDu_;v||b!;R*(+2Q^84@-Cacy^oJrUlvP0fLzY`$uVpAqn`=V zs#UY@o=|=`$iEE(2<}Dk+oaUd5qIgz{&?NRJHDhbih<;ID%gmbvovgIsr5(0rTf7*mt~WdK0cQJt7?U~ zm>R{LLjtN33X)_dR}H^c;&BjwFrK&pdh!f4n_?m9cp5^^ALqVObSbkH6!qq;^wvl| z$VF?NyC~a3{@sHnn-3dQ5v(dAERC^Hu#tfpq8MT)A_ALChYa`SFZ=KojP(KUVNpIz zj31Y%3r$V%EHNfKL=SO)zVr?Be7iAzn*QuB>T(gN1wFAy&0VN`+S!RHT~lg79SV0< z*>@?e(QOFhbcj_D#{GMWsRuO@I~RgL-fV;yu-n5b-y>uH0OFwrpX2;GupTREO@A@h zaI-7ToxQVc$FQ9U0f8+|s;gZEG1pcvBXUw1b#u;#ikpDCT40RQQ%QdMOS3n&oXx!b z0>WSzybHeWDN-EfeG$5^db@w~dM6Bp!0idxUO9zrV{S4dAFK74c40dCpU!rWGoAo>EO=RO+%9xjE*l?KROu_3o7;#7 z4J(oeafH^rU5lrj8*;loenD6W*=@i9PBmx|`x4OkP4hR$muLOaXbe4wex!z~_Q{mUha`Y8iEY#8Ht(rl1kXIctz#_EsLUP4FMrmv zCYey@;qNrC?!(qap@d=3yH5e5Ku3viS3I#n>)U!!I-!jNJiKr|~%*YPj3ApmDi)X+J~M;-x*0 zeApWZ+^qW>iKjC!;p{)JI}kMY$h+iym@u@G_+e8J?%Br-bk0|S(V+_7t~Y0a+ZT}` z^SYD%psO_4Y>fEtdnVGb`Dn9_v6$YtXYWaS^L}VXgQ71x!}lQa8c8Y$PH~u|ma8Qb zfVnw|{t6_F;6B#_(APacuPwuSv|lV*$uo|8#IRVw%zx3-e~^e~zQ8vdbg1)1vY?sv zl%aLg@Qt>KPW^e<&>znk`%SbYl;Z)u&=uDChH{HxC>^4ggk%1hD?|VL#0jF~%*!I= zo&t?D(NQR>i|07>BdllmS37v~%3`L+CXrnBz-EH>yjOAaSE?#T#+zV~-eQ(I&rJFV zN&3=?SH~7K4iMC!E~K~evZhAn#|vTN(rsUvqkE${v4RS+)lhH;mQ7O#y@1HwT6XmJ z*ga2G>@}^6#=0CG=XdJEw-;a9(%XhR1g3_*J zx$Go~fk`!6Q;!o7$)~$R&aw!6C8;34ML4Ff`rr>gKK1Pbd9-yKfKv6wo|v~$!DooQ zdwnr+vPBuFx1u zK;hJ3Ic>{X{WG06mp_*?ehzJYhYj$hxo*ldZiL8#&?3~v8=Ltxr}UiX+7J%~ex-J> zYIBHzdo@?KI7=At?qj8=0hE%;*&AYYNmNk9Q5T>hcF_U5 z)qb(Jfqd_=;nJwLQmVI?S9JURuI6!<$%7P5NN?1`3^k6w8t5|mpit>6-Jj9Nu)3%m zN!a3DGg;jCac@%e)B_el#Gec*(Y5i6yqSMJ)G8ety-xA(+wE>e-Bufqy(iid6{nss z*pchp^$O=^J!tupJ1vvs`UI+a(wc`^EJOv=dfzxIhZ`zAXA?QqG}arDP(uePm;G&Z z<1QDpzbFzpA^e7apY&m6iMEA1lO0#!@?@5z+hTS=flx>6(Or+CR8H+t{S%Rx)Iz^Q zjkl9{5CZC);+zzgO0_BTA)M*oLt9Et^h8xv4<7{vUQf+gG`#imu4@GQEvf{5X*N$; zKcycOiu_RU`tDx^h_t=Uei+MLMR&l12eJCuC2Zg^|18<=6(+^uUht<#-mr&;!$RIz zG_^(Z@l4^?j`YF7vE4lA`0E&EBM3=oHXnSs*jNk zI&pAKmOtokgSzT26Jkn7L%bGn3Zp2pakiZhOJ=_-)EZn|$DD+xOvpL(p$!chu|_RJ zFE_)t=riRhtm}V+6ilP;XWHuH;!|`=F4K18Z+#}>DGT_jR%IU|{N)?xL|vp)XkN50 z2gmO~H~iZef++JUadWsm4auK{h_Ds#ea+Vc758w>JO(0E9E<)nxk$?prxf zWftkkPrIpeSOc^io;xo-$P?Gcd&9}rn7cdWUYS0~E^E%fA%5z4)fplAUo56g54L*I zUq8VFh;>-!jf5}NLRsu3AUx#)x8%ara^3@MM)ZM1(k#Y$?Avy1-n9l?dS-eqWU@sx zeO`M)&?F^0q;GFH$%g~(`_qGLUa)klsK z$dY0IGt!dEIY0aK98#kZ#Nsrh! z;(2M2k`~PfIu=E;0kR__dCAUlf&-f6({RSZW&A_zMyH(7hC7Sb$k~rV^W_UJuEn!* z*PRem77vK?{Gu|?%;j>0YA#8XZ-IEzL={aMM0F*~6W5=y%iB6(0ckLf@ui?;%n-kj+=5VQzrO-m*Y$pCeT%$o1%~j&N))gcxyd< z@sgVo|D98bFCR+P9dPP;j>pCMEQNjYIA4WOM-rA8bun&Xs_r(iV8z9~p>Zxc!whJ@ zLkL;W8kUU9h|eN@zz1X^RiUG0?EhPNY4J8;6-hPVLd>!Zs$X5cxFjv$G3WWwg!rn&ors0Pjr)Kvm}K>Fw;8E>*+2 z1uo`R6bbF>C55Yy%G2t9m6{pzg!3)njJ4QvoVPx>RmsAMsoV(JjfnC{&Qm=i_QkwU z&5pp<6CNDWIqVX50=V1=RVkWw=enJpC7qZ{-pmLH zA!c&oIs>^&H#5TqTNkl8*i*M=X5I}hHSg4e8>*7sVJ1wndgah&;VkQ8E6QG3i9^MN z`k@qs?Nu9frJYHYoT-Axx+R1?8g$>hB@xC|{R$pa7O9xkQ!a27;+md z?kT0a=I|{jLtX}Oc+5ByS>$f7QsQaZNsVrG7blXOl%np9$%gbL1a!wNzYY@fWtu01 zV0m>(q}BI>c*S*1ns6mbM4PK6+TH?N1Vf3+yAnu=u!DpD7zXVBVD1O2ad?D8ESGUo zP)h?l^fDTgLGpYq2NDwx4Im#%4HS10tJpaF+3^e~ZytWiTiH88%806i;tj)Ha{O{eBp(U;!nS}Q79-wh z-Z^BBUCH}zXWh62+o`O|5k^B9rS_2C(uVLwx^XzJ2wFB2I5C|+`?X3?Ji0W>QT>Gc7Qj{!x$3Of0f)uhA&kbx{HxLkN8x7Z4at21FbK+a$e?bB`eeGDVPHe_J{bYR38igscb#>?aQckTJ z3rn%^4qFLCeW4Xm;t&yNx`lX#$M_|_yVp)=q^5P~&v-OMS=&dggHUORfSh+jCo$}k zQ9_Ox)2gK+43w>NZJzO^!liRs(BWKR%a`c1+>k%c$%Y&snL`^p^qZUJn9WWo8f|*V zU&?};*x2RpU*3xMa5isg+$)v#S%MiUG5+Hi zUb4qrg+2LDo0kdOE;v<>4fHZMd`^^pEGpoZJ9<(WJ5>GdiRg4y92^029A{~?oJLt9 zsu#c>`;N(+n!S8FMK}3YYhyjj=Fg%CzI`jf=0;}x84y(ZixX&b`^1rBYcA?wJ;$fgifC^WVD zd!AxgH4FN>qu;QDk^*h5d99A_AK_6}DpX{7ESVfy8!_Q%#4{2%TRRJ#^%}?m#>&AR zzlFeNB6@Veu;96c6|e>%;71IUKT0!4g<|bxv~Ky+AvAG{%dBzW9+Ri6)?mt(AyhpQ zyE8#9DwwZDj5{mrUCL(ZLB9Vr8dE0VL34Hdl2d-Jz8iJC!YWZ>*WCOXGQdza8FOqi zQnH0YdC%HpnmV?M2ZBaP+%N-9K?~FnEZE}O@cqfhW%ykPAEDw!u$1@|>YZ#x$3Y2a zFlqIGy{tdR8#}3HUL$89k(L@3OTP{n zoT2ZYOtOJ4mMczCN~>?p z1~&&DG>*B`$fTJgMnL)-WUqw}A48j1!ck6{v*-_TI}7uYILDcw=pWF^ga`|;VAT`5 zBm4{htPd(r_(X)nhQKeB9n$aEP1Am8&_|-=t36zY00%WPB<)@QMyMtI3k{u!Ti3sf zz(PqUP~4B!4x;au&^XhDTNnT{;fifq`)ddDB5BCii-~cUAs?stIVc>qSN@+QkoUoT zlVvI5HM~BwUC^ zjViEa>gf-jH<9qUceT#(^nCM{7L^ce?Y{S08KUU&F zs#Yg?!{l^U8Sm+)U2tkvq4AqtbcM>Rm7Xq^h`q$H+iqkVPUkU9Pvi)t>|zLpFn_o3 zK$$JT6dQCg3J>z6gtqb1o#ObU&v+hq^0X(25`yirJ7kcW7K&Xds+*uWjlT1t-QPEG zjE~Jh37z%-;!(;Sbc5VI{6R-TDlHba%R~C}VYw=`DfWvKmCbCzFHx}S_kNoYW+Q~l zBy`eEGX8DyZNL2ka5wq5o3w%r)(<-5LMW(~KN9pURD)lRfJqi&&`5U!yllJ&l^Y=t1LVCv7(CpCuyxGjS zu(d8%yJeyAjjr60`GvBEu^kl6>CqAZ=Ip{dF<+g1-I$l@cN|#puX-x8eS%$?w1h=r zc=@mQz5^xwln&)sBgbBb$t6jNpX({&v@&@t&Cl?0lm&X@A3EiE+0Y%K zfopQ?fn(7>fMcoNsql2{dzbERF;fCLhZwW+As;t?@2AMyy*T{mxIm~<$zkVbuI}aa z5P4XloCZ(u6gNs%eP)iF+MkZzNvD2eKBz;b8YSboP>b%N4`*50%C&Hb@zViK3~S7` zUyxeNur|h+488oTlXo~^jfQTv&)R_3_LO`*(b!^g6sa}NSd0n)Pa$Gn@^mH?xQ!wDz3uL< zxnkf#S7#amWs|KF-)evs&eb;|e1;p7H=7UTc27h5S2Z_cyESUEN5qr22$T`*A?ex{ zL(h4LO)Eh^L0g-fN?kWyXpU9&Wjx6`LGq$MnQ9QY^|yfTbX zNu$?+r!m*-Z)1zjVW$PA&vW}q7wSLeB4=+d^(^`jF9W- zYbVu`p%pb#N++DPo-hTyqZwjIwe*ciI8&r{EtQva zQ$z&t9twNvPy4rfYS6HOv(%(ROR40R_88dMhG%*bM9X%#2_7QEx72;Pm_f|t8xWU# zvxZUo2ei0`DofNS@hngj;p?VUxGQ@T*MRD~R;3bl!i=1n@R&F(nu9OSO}a1=l&eq) z!&l|nHyG(bO#x$W3XY4Ke;<%oFO~`eDl+pF(L}KfLNxH42%KJ>K`xd$P3% z8&Zc0=Z1w3pp2+zn8$=x8U8&T!XoUVq&&bSEnlQJo`4JcELrF=P;5c%%(n)mQEncF zp4RevAMj9hK65`;tk(N{fI5CdikxMN(4v34qHZW4Gq6+j{oU8x~DQTEB(+MtF(g7M>$x}yAxV6#<(7s1_icCM^Oa8qKSfh57ZWQ2nas!>4zy!)1l$v79+ z6+93%#7?KwLbd{d)r>ZgFOrI2oenniSm!p%(D)W=CZu{Y$xu#T&uFHu<*7i;y1rXoa33Q5Ds3)O&f!1)~^Pb>C3 zwTdgb)#9F^7O7sN=8~)3^xL8y7V2uRoipABmY(}oIowhR<;jBFQl{jvjz+I;^3nnR z4rRkY^Npq&j*NAS^K7JRjDUP~qj2mpx2^g)llCf&(x z4vp-3fdobQHuA&Khi_kThf-!P{|!dCI#BVI<`PHNOEb(sZuq7Y{X*ahpbB0dr0!sc zNNoso=P72)>H3|ie2w+<_G7N-du=l8m|0liMr-J$$nS7Dv0hi@-$L%oHc+MCmDQ-a zPv>9nQ3K613ot5K=)v$R>s2DpH>oKkJ;$4C=&7QMK&($Dip-H!Zy_jN3F)r+GV|Kk zV%P>rC#ZrVM>by0;Un$ouD3CW(Iazq6X4g3m7nlrbXqzP3CN{TXZVD1)PYs#f<hs+_~tL>KetpKll2R(qg<5xtT!6zTL|w+>+F>8ogi&0!;tfx z`f4C%b}2$4d^}=W;KTzP?tnQ2Nd(^6^gqx>Q6=%XU3?l?Mkd|n_{{mB?jmEH`rQr6 z%xg2Qqv{qhV zYRyi0wGX6+uVB+thG2-i^c2$wpxqdll_%QhR$MGTOZ%vY@k*MZzC~>yFaPTEX}+aN z9d6UP9O3i3GDE0J;X87+iiFE@!5RkbL}}iX#`C5C@6^~(Z4Zg1obb%9KhT6yc7U#N)Mw5 zmp!|U8@f&%A5pBr=%nj`PIiRsSoDh>$7xq2HL_!XLew83TyAa>U4Z7=EL~JPWhCtt zMM9>h>ORNPrZBv4F%|kpL7dD?%RsMZ40lWf^5=Kdzyg0lrCr-6p|erxdfFkTjKn~BmXQ|sF*tw z{atA{x}Vi`9P$lnMv?5lr5R1->T(`OR%WRY1Vm`L5>xF_tUNF@xWymjN>JIv#QG}B ztYM7CC{-{z={qVh=~yJtkow}-PXqu?cG^Nh%HhdogMu|!*{q9%V-64=6TH-M$US3{ zgnuC+@EfUBHU40-<{jWQdt29uTQhAGd~?7PVYW6*b)1Ssr@Td8Y#x4&Guv-K4h_fQ zOUUyVMN12Sx9Uza7X@4)?w*$_=TE+f=El`Av(+;yVtQ zfV{OzD@@0qODzl;#mmm|J*wW{_$urInNA%1NNQo?t5T6NKBPa0{7c*#CG=Y1SRkX% z8rtz00uRHPMwc!0YnZng6`8&pp9M5!*mTvSHEqDZ(~wvc5!stI;v@Vx^wW?&j7T*h zm*O8zGhUwO80u-YfYO7TkR}^;f}L?ZVr)Ti)V#acR98&DVyg){^5YWI->XCPF#NYZ zNIB>4w{q^7IwaTl#fn5b!tP}kIdL@8-;U~Rk86ABzfwVDDhHFl((~RU~gOqPksuaW7T05f_^-U!GD^#cEoXAt28SLkNO0U|5Eye$8A7 zIn~JsCO;SDfH4wxgFN0Jo&n87w}61-cJ_u;=*5aM_kq`bh&w4Oi>8)lWyMQ#h9lEN z`pCkBeklCxn7)0Z5bk@;X?aVk{nQ5}RS({?a^c*LhBEjE+2+vAb*pdQ;rTRK`gYeD zNVH-v8mqO7@=*I|D-FFx>ACbAMH9E)H%luCoP=r7-A+;|2}W>}0c~|K0jcl_jU95Q z(M7*5wr78F#H^r&1It+27Fp*yrJTMp?>&DA%Gd_sB`4K2W2Vz;o9Y_=c}q15dosmO zz?fc1jQ(roY?o9x$wkw6Ro@>@CmzxH z{<-31@k^SaMwuKHw7>3ahBaColFclPPb3w7lr^yRnQb^>lK_A5%}8ij?D-^hBWuYD zA4wxr$0=ew{}qNzcr3GlWI?pp9=GywJvE7FYyDNt9D! z&=_wAd0=oa;)_0Oaw*zCiHCvy-ljWobi)h0OEh%^Uxsf>bL>o$7_9OsauEZjWe7}Fegm?pI&Rlbb!drGMhfR=z@g@gWp$n+r8lkOnRcaP4d^twzG z54Xzb)sOEXTQ;5orqZM+BB$y{j)|F5pjXnHkZvrYRfCoJEJ*dy%2&#nV-foLO6jw5`;fqm$f>xdK9H8MbkKnI4K2sJoA@(4~}8DLBy+ODL%H@ z(QyWr(jRa=X@(E*YC+Y|z#x4KF@ij^R}nz*C+y6XtTS$SgUlz z&CumeTN^GXD3#dkrXBZxX)dWBls(#?VZ8Iq za+Ve22Sq4W z$~b@fMq|Fno5XOsk&%5HZ(+8xw@$kcA#Spth*nwXL(sxPJCu+O>0xy{3@wMd!^J_#0mf-UC2w`i%vH}@j*mJ*h$uhI*O}qA{u8J6hzsY%S zKpLH>VO>zSGALl&pQ?v(>6A<2)gVf6*b4<_#kDn-O{(e6YM0lg6aTUI^@zKsMc}3} zpfXQVmZj{UKEad#ck}%i$S!C7gaT)q3mb5UtVdtB8%KbIGM^>PhD(zk`^tcZerf;*Pry zY;kwy1ClJ7^KdF05*(Om+r>Qo57wrKTkNMyvCuf|1o5vsOjcGL{oXdz>mHeEnU+UT zV*1s#P?%Pz;kgXH9H*^>ku-g`aO?Yyw{UG zL*x5aqF&o2?{H$4flkpwFY=WHmCc+X*vg=k$od82x z9>EmP4pfPnpmkdI3MD)1GB^%PtZ~}`4>kuF#NK@DsOEQcZ*c`iH7rCoura%4yMxu?X*Utda53VcQ~ z^p;B11gTRlNDATl(jbhye&xxvAug46(aYv^gM_S6EDxdC)z4e@@??oo{#Mmw9@o%l zv4>1XsVKlX>>QeHVvoopLy(boN>Y-r)WVFP7uS8D3HK@KUqjI;Ftm8p#k9_8kz=dx z{H9w^=c;|~nu2x6Rc)_QUOh}EM2bxDDU3j{kIIn9qUJ%2=gVnTb)*yZ4dCSsTTabA zWF&#Oz|f106Y^~Hq2+>ArdLd;t_qpy`yNK6*m7k2*Yd*|(Wk7v`}`<&yfHPB2a?_< zfvDbSaT`7U?fTMLBF#^Ygez6*_G!6CLeY)E7M2lfkxGRt$Muf423vdP%rK3Z?*u4o zw%n3$N-q|wAAT<(UERH=whP5Wh7>-q$6}4ZHMzr?Cp7`c68#;*BSUSjutkWKH^RKI z0vC=AFdFwep}(-~ka_ulw!98>O8fD#_>P6k>cz_;)Bg?zI4tQzf83EoCY3pa6FcEU zW)*na?!y}L4o|}oZAKvU2vR~zGDdae;hb{ej)%cJ^TW<31fvsw_;=gtzax-bIj3z2df z6EPGW@s>GC36)S+D%d%_)`Cjj3CH-|P?k_R%_9f()J~+dbJ{AH>_dgVTthucHS=7= z`6r22zt%FO0~(I)#+5%y2?u6E@4sf!#njZa)-p=o>ku;5#ktb=K2d06v35|$YC6fN zi>~N3u}j7fK;U}QpF_~)*f^uyMU_sZvaY)eM7>p;C}i*_v)<W8fxSjXyv}kD`iVk6F*Sn8FRnDO7^Pk9FZpi zv#(`Cqy1F;ombLj!9Bs=QpbkuvnQ+5a%NZ)$E3l?DlnPyRT%0CS(`{z^AF7FTB)5z zGX0zhWC4Q5DJCvn0?T6Vah^5DLx9NFesOO|q$1aSZO8=Z!W|1dE1A2bYmOmDQG%+@ zD@6^i!}IAZ%W8Y+0C7cQ_^Im{w1F9+_ukfG^#(Wj}c^CEVe z)3Lh6%1Y;9DXW37Mmh!NI}#)*6~Cm7If|wT3!v84XiujZr!P#n2geVe3Np)^VQLuV z50V&y(Z0^i=LRR0sPzWKXP=KgRQ!bzO9OK3Ukp*dIJ4VI{@&i_Hv32@C8^>V=O@NV zr{S(|#c{35(->qDgGGy$KXyjCM4nKTG4E(YkZa|n6$q!V|33gRK+eB4VN{azL2OD3 z-N@ng5%2Mc;`^jo(4M*l|NQ*S0qflq5KI`u;-F*b-;0kENxQ{_{d+la(jk11)_%u; zAeRMy+av67zT3l6qrr!$RAb^vRK~^~4==I9?`M4gEji@hX7T~hGrCsq6`_8sloK?% z;VnT%c~E{dmB&dQQq5%eEzR*5hNf>8RIs+fJTb}u*Q`ibDz&jwP?J$&RVcpi#|R`- zsbt>U_*z(}z;nf9J5B@!s0}YAYzzA$ucv4MKh&&5obP=V}iLGWxI1Cj4>>JVdo z_as-M6!kXNZRYi@@^AD@;$&wD(2^<)l1&+p}Yde})jl4~k@xIF>58B+cnvAD2Dz!b2@8=&-j_ce6S z5Lm6%h(0Cl9}N~au@=?ag+PrtzGV@J8s;mCAc>w203j2>)AdgpEhZ{1+~?{(7A4R0 zl!5hmgd>A+Y2CJoYS*F$zJ{TOxtcFnAA=d=XaYP$7gZUnLP0^aDVfl&@gWKN)$BLy zdxyzNrH!7blp3`|2;O+NJc9QC@jn(a-=KGeqLZupd{1xnmP&ZDzm{SX71Ri9Lj| zPbBgL0Ev*}oy5cq2+yR@bBkWt?YA(K_Xu%Y7BgsfC#KBXNPIdTir+3o9S!u9LYk2J z7q~mknImaw%Y4Dy6K)@HMK{=7DefB$SQ-J@5@uZ#ZWHNnv}jdD2w%Ntak^wN`U{N# z!{7G{5<$3OoKzbkc|prPIYv!rs0P@zuoJohG)IjV7LwtV$4!tkSAxw)U})jXDv3Bn z35`!Z^Af%rynTTZtqb+i3bkHdEkgn#d`tB9v?g-;L;%S_8flgh*L)rfeRE-V%($acyD=w$lDBn2+|BjFM(s!@?O5;!b9h~-)%KfSi5w- zVky=s2U76l5YM2$G6iB$Dcn z`d-}5TE+&8hyfWVk2TNXHRJCn>7oN+UK#lp;`Hwak}&3(<0)c>q7jl05IXOU?bas? z-q_F~bN~cIJ>t8e{#Rj55;i?Sei=)IMo{VXQgeOY;X!v&uO%NBgFtaB10WuSB5~jI z20EfrhG_F#4wv`Qd=TZ+$E*fLXk` zO#7%TYMe8>%Shn3C%Rro;Po%vf3GnEs%X_O-Aw+E`GWQIFFh`^**Qb2n3Uj-vR@`k zGv)&_iQEWIO><8M*Xr4d<)CHhuG5_6f^28IEpw$_ov^Ab0WxK1m!UT3Q&q7xA;=kq z3>7H>dPRoWIW`Egpm%K|*7l?veZ6OtSvv|^*J9Pyqu|LR~i}09>ZIGh8du$(CQ?@G6SmIeP*p=yA`8X zFYtXALv)Wp&O^u8E1`l8_wNNpnZ@xT!z#e#GLyd>?z_rx-Fz;)pV*YxlbzVKs&V8b zt#M>s^oy=zzp6@t4Ea)!B6O3tt&mPLDSS^fDPk@DFdsuV%Qaaz>tV_WWFVLNLRglZ z<#ori#M*^u9_NX-e~AS`TxjR5-wH}xa9ED3uPjG>`yjvDyh z*@vSzf-|0dGwyuC9g8}FBg$f!tebgY6zJ#)B37-e(5~P=1p1r$;luolK{3Emu_0tN z2D~zsOxM1O8(pt>U)@> zIc!Ck-0&vR>`|PTSC?Zg6vxEU(Z*ARk>FFGFNt`g41&NEy-xGAOl9=N!cP}5F4dPCOc)TWSC-*^P2VN&J-x1>`W+1{A1kVrZo6WBj^T} ztni+znyGvEpDrVm{E1O#gF2;snk#w)^UhuS5b_(I>&sQzE8(kxanZ_%3333j>y8va zg%Ab22?Eh3ECw6eki;;HC(~Z>2rl3rOq&=bRVMqM#9v3KI(;!xJ|iKU;^xMKfHYJI z^t_|gu1J~iE4!j*w;J4z;LlYNcD97(Lu5-=fe9v*sW38(Z=50OVjy(@0aHa+v%rL{ zIdNjP9Vk+g9{|1vca~T*5s*PITn4$$AZZc9&QQ}K+TD#rJX~F*{j-aj4T6#LGAFBX zbp%byR8&j-GWu@xxD9GQ%VPA0(U@Ue9Y%Q3K0+h@f^YDx8wWlWfH4(g?e0?lMD!0#V9H5RoKFmOocm*rJKLfF z(yN1@nvUxE3Y*-K-4CA5TSu$q@FO z-X>~kVgxU-8+pJnBX|eue;nlN=Pu^4!8DBb@MhsZZav{0y|VyBKUdxM^*v-QeB#@v z)n;u&hYAi!@!eL^=tua*yfPpz%V^w93MGlJ@+(7K)MB8Ppz|6@#~MAZ_ljx`?_}b3 z3;yFDVUhutM1SPGzXVtfP)9@J+f<8~kAwMK6vE(-T2sjH!q5Ru4s@R})X>XKGoO1y zb8O#IEE9bso*4;%Oze8KY!~^JiZSEFw;_%M&XwCnUB$Tj4QonluwuPA)IZ8HojyQ& zw~b&XkqBPn!DIat*#+c|1vryq>YMaSgx%oQrQ2p%!{xoJ)^C$|AlD>)eGHa7Hos`)w~_%eFOlvrW| zZqTpB&XQPhtz7Y@B!zBCY!r<~LYmo^(ZZxG#IRQvT!NjE%|Sva2s$Xp z6ojyaf4azniB7UG8h1Xtw&cgEi#P5p2J+$NG&8ikyAiO1{FdQyp~9>fA|L^| zp7lL6E4wnB(ccSXq-_fWCpi0v8XlfO43c+P4kk1!?@{MX@e=VRKR3~AS&6l_;1q`N zJ~8s#!aXH*jJ+hSc(+&m<_Zt8TZTx#0LY0=QR(aaBGMLV@k~_6(2^0*<5HZ9ayR?- zFzL15M@X4ANCeW0$gdI!!GP8i`YeZNcCQlv_ zV8KCHXviyJDJB{RdWKmEg3*>G5HTwxA?*Jo$nOZMPXY$`d=n&;u|B)ooL|fRp%XM%M%AVPW!B$w!r> z$mnCfN3r=~ZRAyj8_6?Vyx(Z=Su$Py2|2T%Z|8HhMtD-2tHJob&-o!%WrA`wJ6Cde zPOgY@4Ky8+tUPM)DDmq?*j&v>z-N7>_1SIx;a*_`&s(Iu%oiP+x`<^yD zgPA)hNv&2JLJbaIT~I(3Lo4?t4IpC%P7TM?jTj6*nRkX3IInRp&Y17VowYY<6fB58ChC~~ zFEL1*sd;B3*1Cet6MIomj5GWW7blu%Gkf7M^H9x{_mBxbF*FNAJ&GxV3H#7gQlkZ? zn?x!KGSU#cqPnW^>Y!n!qkzr5+~*34n6MlAq2z6<%+;B>?52*Fv-b2H;VO`&U$oe; z(me{yO}1YQ&5a6G!4_Zo4?Sxx$|lRwY7EBG)h*t=m;KZw^gYDxj|R zcoM1fEqrce5UnSScB6(5)I+BWImpQ* z4Gl?$OkZ@<@S}8h&oOK)&^5($HzPK@5&FLD7s8L?m6FE3`!I|}fsSRFS_LEP^%5Y9 zwX>-#la;;4hZX}uF8~NA*qA8;8rKP+je6JN=+fB~Yw1oT9u=^CMm{=>(d#{>Vwx;D zZcSLMn!!nt_7*cZM2tDOQ#o9w0G}l0#ynKo;Y_K^eslw{s`9jc8mg-f3yZ>dUPTer z9fsxLEO`Wd_s_QwUQlyY1Pv3IPc`zW_c0EaW2;2_&O^a$tOP>fmz`BeU9l;2Ymqfk z8nle<9%Ng@iDQD9vb>4gu4>+T%-V&dYo)y_ZhuAYV;(cK(<(4OhGpN^LTQlzL9jkh z+l{g6UC4-_o3{$ooQAQU)(9oB_c}WOMx-rEd(Tk-<5o(EBIa+gnCEHqpA2CU=-OmH z1_GDOy&RtJ?cdH^Nw%4ij#>Ncbsj;#1DZ4rCI|DqNYerC!#FAm#_dCu57K(WLbPKd zdQEmG`dTn-=Wh1*u&!OE)=nEid~T&_m}JJxB=OHL%7mGR#_N#0nz`MogkU zNo9`EK7+F$nMqcgP;p%n^C?Csi2r&?C?OP4fylQ0tXc+pLOOV56i06(GY& zW7Z8CCDpjJOlI+JIqh4__T4ytL62n=ZEm&d0l}aq&XZZ*ij{ea{wJw6v-T38RiVCk zxuu`{DZf)&!ZhNXqNsB@K)&c%)%*+J4y_TBO(hqeF>Ol)Z9n!Du_+1TtJ{(VVVT^& zf!sRuLW<-hNeVg?=4BuWFfp8J<|@Gi+PVt113L_Pm6}dR7P*{U6~%Bp9z^aQ*Hf*7 zex||rpxoQ9HnSTDBK{alQ9y4v(z94m6F=yrCb|+4dYpQmcCKw?+WLpa%bZ6L;W9k5 zJA;8o4b0?2lSXgDMBPymJPa}`b;ku%gMh&_YZpU|#UPECcY>VqF?OyqI}3TC8Lx^++AHQcMcw3`Gx6Vr1TMctagC8c5Y!z}wKmQ0nb6D)|jE<#a#i!`J{&oJSTdoPoPz{NR1TlKVe2T22^S$7Lf!mH-Vd>v$<7aj zHbGecGcLrHIq#x&-!5SKS?_rxw44j}V}baj>WT`;6vyGhZ$_RuwnqV{7WEpVa7;Ry zgt5b3ty1$_yf=c~RKg*;?oR!BZ9vxhQ7?lbJf1{RV?L-(RHb!(c|DS4CPGqN4+UCx z6pzGWFoWyr0h$1i63>Q8J+u+c+U^Yb8(SsJQ7ltKAO@)Mj3!uTWvRE?+=v?MG!N9_brEj zOH`AE-6S-*gIKymHi`j!}w|&yb*ICFj#1T4QCQ_fgwi2Bh%FznIM!PbJk>^v2mYfShKq z?)nl^J3+Q~eMwTVsuFX85r~DmkT1I6mYskIE@E@{65xP?byOX2p~h(|j-diZp{S}p zDSv?+MghM;1w!uQ%9Zr|v);H$#^#fbZNWhdwu2^?XbRnz%)oOM;GMgDgp;N<#lcv2 zrp@&%W;w0Jd@68KEG!Y4Ahq}k&nV>$LoZ$c<&`7o3;EogsBay!w&!94Q8H{Vu%h)G zdINVxk37+@qwQlDe~KwpCK3vxi^Y&BY-S;mXf%Q)4>Q-#ey=-n)QE4I>ger@K0^>t ztYsA8=|bdz3Gp%sD@=uJ19&8OGgv0*&5FZbEfhD3;H772&A)Ht*0I`Pl1bsjR|D8z zft8x$kb8+bn^=1wK2J1epjS^eVP9T9k993T<~pTJeaIEdO=zh`U-B5EcEfg`r|j$Uk^nal(6 z4pYWl@!oqRb~S5bA3MBwMwBcMQI8=82P;C~m9cyA-RJ;AxMwJG@(N%|GizHe8&VtZ zwaIqp5LS!%6-N?h+^)!?IO>Uxa)XAU^l8r>_2TW z(uaOxo|@3~yW?}Hf|w~qka`sg{Guiy7D~mcj(Iyy&$u^Pv3PVwH)4NHd|eOxi%orS z2i8ZS%jE9746K9`QUca@3=j03gGODW8Q#jf_=;61N|P(H4(weGAtd@-VDXgvcSpDn z?r2l?$e+eEw7-|Nn_yqRbXx5qwVdu5os6W! z>b4R~KrJu9Eo&ay32GK;qJ@#b#w0SB7i_0`&pG;Z;{;BW#W%^0O;*5Yj!`VQ%J=(u zvfJ`)^mQ3t1m^JPE1(z4v5taN^|%MBXNmzlevdNVR@ILNi36IaYMge>0rjXbNQKH{ zf$d!s$Eh;q{*57E*I#QnqDI>nyk8=x_eigN5&sTg&tfeK^2>?k_C49Yvvf?Wfzd;b^M>RwLRJbv_qp!$W2beYAu^d1Dh$6*}g%YwHBOrK3Jz=mDW7B}R zay_7Ia}?~!%xf3(06@tS+nmwFU?KQSIPu34VDV&QDAv@vMG}z34;%|R`%8h3>CuO*F>T~fFNx6u(UUyAz%IR0Lexsw|6 zj-Q%np>7z3L^5;}r<$zVVV~;5#N{%$F7!;2giHf=>=|ai~_%hH?eF0PviIAJrfqQRFEa6tjXZV zy!wHnWLpZO|LZ;IZ+Aq06#y@18>jp=I)_=sz<_5&4*ArKuH;2bk0ymnSq zqYxlOISfWMl$sbVyCH^NZ$F26Q8noCm{T}^wh?A!%!*dMVH?{N5OUv4+B|1@E(fC# zowfWOI5%d0`F6rz(L`7(_9Cf*GE0ekQEM1XY!t;-&FFYZ8mLNgfHM!cdsT$;Je$C2 z7}HY~nz*bA6i86ZU-@>ZIiB}!5sRTF8>=f0m{^l@kVH2bCQ&x+dQokMC14`l(Ub@s zG=C7Pslw-GqVG;vsLC$rmu(2P!QjQfUbAT;(UG@7PNVAF3G14zWj+U$mePcv0TVBK zqLirExGP?X7h*oS!2mGksEX%%txF%F=%A1!deD_IkCF4d==!N#VqF=t;yB>pDZ2t< zCb2@RDvqy-@jGJ2IlhRgTz;3spG3?QHWEBOr2dN0^dQuhz)iF@P{LYuts(uff?jgNsm*L34S;z|6(@g7GV&A~O8yq}5eGH#MFCc}9J*@6+_hTxH?%+Ty!VhvJ9p};~cdwU<#5Oy@E zL4mXy98=lxOI7Jl10i|<6o~kL#GRuGVy4M>W%*!1f^@3`51(u*2^TwgF!W+=9$=xg zBfi^)>W?iJ(|VgAYoT%_)@CE1nlhD-QWUMyUI7K_{O>9M)!!-%|G!s*z;M@cNA$(o&iGOOtm=+u#fcBYReRz%m3+_PIsDHjA0tLFoiO&-Vtwm9mdb z2G;eyc7m5HO>xIA>NQ&+n6eadh4v^4q|FTEL48K79WX0)!6?v(#?Dd^7JliVoxa|y zDtTqez;HDN!Vpgf7rtVEjzv3wh75UDzSKa&$-q>yuIwU+P|&7@x#|(!0~oe}a#nH5 z5sLrDg1NzopP#_f7PkbGNA-Pnt| z=TICk%nj9iJ>iUEr{eGj5M~uTayzR*_Mwu8_~jA;7=$SUN!F*TXen1Nabxm3^T;#l z3S`0x0Xv=~3XmR}XlZnMC`G8q-nTIj-%|k5d?tW0Q@_FjpzU1@>u+Tk52&1|!QMFR z$<2-*S2d|S!|3|Ot@gO))zlPRg7eD{DB9MH-Ph-t2DNul3jJbYRBJ2S!BcO?m&~|s z?@sg`8G);M^ls&d`6rY5W~wIM94UDdvL*RwP;MJbo9mARhe|KO1jGPet6;`rZ9+^S0fxgaFAMVe_i==qM#Ljb z!R?Mn=a})4;~km_h^Wzbcuc=_qP13*8Nf+;1ly??l)ccTI<^s6zKkOUwHnjLork&X zN3eol0`Z6WMkR#UF9L0<(XF`=rWTULaAFXq93jF^-UZWL(qTh6f^g(E)(pxKp0_zV z73gRBRvaD&{-EI+OCCK=AFL;?q9-8MLR6FgsL=KDr+0xE0+?J}SN^nT3l$Idm5XeQnG z0aTGF8{Aix`@YrH%(l%t@neo}J~U=W1ms)`AQNXB69o=?PeIp(H5>VVQv{$mi}=iC zW|J8_7Ol{U1UW6ncP~a3iq>k97-l6q;f~>@ z$3!&9IjW;iG;V*Y)asmAR+ z0EMR^`1}!KOO{R%360oNwJJ&F`X09$i0KKqakUbaN!-IKQwO@M0ez~ zlQt?rl8p{y+>UAzp98%{e&fhSsBQy_Q29A1>lgrq8ic)PP_;H$W;-zE8iiBxS1>(Q zj0)3H#!BSytC7F9Y7C1I6}yv%1w>s@l=I*bV!j0d-9<%$B9Eg~qm>}!PkDq^4PDfO z$Z=Pne8~!MsH�DUglgcKeIuR?xlQ{_I*c8J=)uux$ap--Z>C`LT*Dvm+-YC44T{ z*xc8|7KNz+)y+-nm<-Y_PUzYDQ6sGI=q>=FVvvm=2#U69YBYk*Byh&}p(gXJ{6EtO z0&29^G0zbHzpm7YNMs?g7(0Q0qS~3n3Qb8HJ`)l7#|;1N2ffm|4BqK^E-{b5%m8ee zbQ?u;66%_EnSl%?4lF`-0gHZLdj(LT1{2TA$Wp@C`JTx(tR`4FVSyT)Er>1E_fWG# zRzj~&kgIf%3;ERdliqJyxR{_73_ed@LP=cuo{r^>J&1kQZU~Y#6J)a~jAb?#X_IdF z*#|*<$vZPAa^t|Nm|8%$k;eKI-TjNMW)9S}&U*avjA>T|u>v_k6JQ#;<%!xZr>!xP z4SL_H`aosZjnKT)q;Gd(UZuqs6xNRU;CeaxHnYrXhz+jw3Yty(_@Dfb7x~1lNzDn;^y`@S{Y^>BW7iz+kVV&3UcC% z7WFM+iOxkWF#=r-O?2|HBr9czw}B{j3@jin^ZgRK9%2dgGHQ~9HU*BI*IaVopp`Ux zvZ=f!yi*LD3vOAcjTAz3)&#~~%uHTBPTE#SNFe`wRVWsN-U8YOpGh(b=(SDqMvLp| zhUMa`k=IY6ZqDEN{+lM#%#P&=9wXfhJgYyC z82lmLCcA?e<9#gyda;}Wq>!~6_R=aur0ONQEBz6<`K3rotZfwRxXK-(xuwW9^08m8 zT0~eIOym#|VZEI1^x5Czc+LaDprd|r5TorZ-!OB8&S#}@^zT4 z7B$$jJEYdGT@9@yEnox8Buk0|Go3lGK5)Ppq}V|4FZ*Un@>$AgplKvFM%)u@8UR{7 z6;?pei=ur-Z>fvw4|ckNCuvT8wI)2kqN=9HUJPnZB?w*n9sLm&g2lj3U}{tom9R6x z`|2c3b1brZVoK-sYgdokQZwwib+fnW#3+eH*A;>^nGK-q+C)qIra{SGpSGQbOESVS zpD9Y$cQI1)RY;oh7(H)#KB|zPKf;7%NW<@|JBj_v`#9a*lriYdyG?=fxfhd;(M!B? zBuh+f=R7~C(^n(u4O?o`wu3aaxq~x#`b-XDdWrRtwi*zA;!)Zf!uQj5OuWrFznM&l zf$MdNPWP9j4&WKn&Wz`WuSpR0m+MO(;(mkJILNw+O{R%obMX>tn-*n*EFmGW*oxcA zgo97Hv3?lbG=o21)cZ@x-T>V>&EQq z&q?0b1hvZ@yMg0Z5ja8<*WKVTlQfOE)dZvcnUGZ}1l$dPj$v}zs1)p?rWQ7ussy^G zH#E3uO2Beu4@AQkZcO&z978&>3c~{GPEMrO6JndT8`GzNfQ%AFjsV2zV#fE%jlr5c z4eF&(F33ewKKrVZK#ZgU)P zPLlf}G3nxQrXWT&Qna^9mav2#h8oA;9o+p?;#CbA`5|Vje!dE`iMNbq_pJg_{hmgM zl`Q{eGLF0Ohxn)ZKnboGuP3Zfi^A8xR2^Flp3B*gyuqVMtSm9j2pm zLKQ{*^Dw_r1s?eh_P~ykeN==IW$b#D#LcCO@$9kRis^7NnF8v{+$uDOF3LzHt{cJR zWhm0fpAQVnO6q{g^6_jpypcy31%YK(rkE5H1ou4|Qmo>gI1#B#h4~eA4Y79BB>YD7 zyIk>enzYrVNOi8u9cogfhQPrQ%o2Pq>UGO~H@fT0PZ)6zkUEoTC{worzu1R)hBB{w z%W|ctis^jT`zXylYPtF&iJb(WC&M0MME4d2CVtN;e)X1I0_U#609dM;qiu(32+kTO z5Zoc3bK%8&8V#4N&|Yhl9HUrpV}sT$$S=cslEu%&)C;=fYh-gn$}svAd@>AQ-DqR; z%#c=sp;B*y3SKv|>AdG>-4P$9{t5PNoBF`dmlFeJCP6B2XBfzw9-{-oCy1>Lp5k0K&Ylt@W(DT*DfOy20i3 z7tPs5Ob?%$VSGOjKXoyp3u`Z3-z~^JZ>|7#a=gcbtc|bPQ;19R40(bCOX{obd1FEK z%IM}SG4Mq)cBK%^uEjei@^JSufjl&lYS5Kd@-h(u6&NV{p7wrlzG_xSX^k@a41XFZ zVPQsY-@?#S-|&(M*Hjwg331>>W&I$|0A(pCcyg1I1hc93P~Vp>K`?XNY$hHV<#nZ1 zMufSHa_^PdNuWeK*#r`89ox$ zk_@oG8e=lB2Bt4R7%9fmA%)&%{5Q95miDN@G!U|*H}&0;H7}-$4B1*t>!Oux!ibIn z$~Z-hVsFN0nt+<$#xNRU0$<75LFuw8;?hR=_vC*K$?28QJR(Elhdw(EXO-aAhvD(5 zKz|j;2V+<&aBraV*P~Le#3&`sMis0&Ak&;5m4>!+5?eZ6o^^ZgQ%r)~WRZ0LaTJpI zf%u~;V9n{*&MRmEq`I@k2&!6UF9(;PfEEuzh732T!slA2PQzAk7tc%Et}g-C=0nfigng=kTw(PN=HX#2n7kQQ$-GQy?5tOydqFoLS~Z&%(@|n876EH z;ye<}3V}|3R(bA8QVc`B0o1mgKMpa61Sc2s(nEBD0qVk@dV~T3YbOX1apllUiUUFT z!>o;!C$M<0S<~#J{9E7cHr=}?$82^ZzF42jLA8zWVY%Vm|I6CDaZ#hz0d$B>*iOrY7WY-qK0s1bv8KrZf2F>8#$jTy+f$b5<($w5QHC(~Mon50KQoGGe6;WH^DCYD3IvjP8hrkh3eWwsnC4~)4rmRT}> zkA2i~@^k=iA$jW@wANfFk}hP2yF4XtjNR7QgSnQJ2u zI%sXB=HgF{YOWfh3`p0HB6yV`8a;l?Tm|ncrAA%aYQ>i<3*D6DheJh>m+gzMPzREt0AX{bZzR z6*2cr3?Dl)vZPE5kLQb=JdV(u14dYyPFSjM&&U?qWT}$*Y$M{p@Y$(i{9-tx+yqsO z0Niw|Pl|R9ezAoFeF~vYD`ka~$PF))-Xi!&#a4}d)KcnzJ<`A$p<|-AT{RsX$!l&Z zVvvU+pp|*z$++m52_bPV?i7QCBwl3uQ>J-Ej)ZI5l{*Z zS(V8%GLs5-QQbPw0j36KP?!vtk!n$rldc@Wln^fA=Waqbz_SZv{s}&HHLZ{-+?j=h zqw6c4yXHum8?#ZFzA9B4JmSuv#X8|fZ0k%t82IMxz*Z7x4*JMtr&RnRUV^@FWpH~; zA+A;uN;Sgxp|O_fP(I6p>Q8n=OKmj9BC*`;7EGg)-lf%>Z=BRDU0_Oy<4}nnE6u$ye)`@RB6x zK;mB**1kJOS%v@zb*Pk%YonBzqNyT!jYRy`T)QIzs_?2wz}3{$_RWn|%zH{haWr!% zuLv)3RH?!XIbg3n!H*=QEO6GHfMs(rx_{ura)?$KBXZ#kgqE@DGi-#Srf#rP=VBkg ziwFXzri5-}A0-twQmKix-^NOfPKO6TW9=r$#eu<5a)fjwwT>pP=%z$9CN;-7N~$3T z>H>saD!7~TKt!Gp<<-S^mBj={>M?eYI5#s$E|J+?;=|;yT+F60Op>`6-f2j7Q%P)W z5$MEn19GAe$_&*D*N(_QCJACw#S4z?BQ?ebTV_Nz3EmAQ-i)yI9BTkVRV}=8A_=0T z37Km-2~9-qOvCN06k1{fP7XJhQ>%zoPe(lEoOeat`OXwfA>s=pZ*zC18HBV&s&q0= zMAQ@Eqs$q2;E%~b_Y4rA9h?C2aBdIAoytzZRtxG@XCxRGgncGBN;QueR;jHg21#i> zP`bT0(>#uZu+of8l@^y!3L}+19>jOiqEDocw06+a&dg^a4^hj?&|$(R8=r3dy;D}z ze|5^;snN5@Gv`_2xl@`ZLZV0|(~X*ET3&aeY)d`YR`QX>q?fjTM`vAPn}t5jf1Mdd!n)!mkmR0%bSe`x-< z9-85)_Wf9K5=5kuDlyMEo5jSRx-%QPWk>?>Y|OLOTn#0EVK|0oe zQBo^|hV9-xwLovgc&ZX6!^b$oR!wz;b}2-qiOG9~Vm&_LN$}mNYS1?dim5_JFQ~rs zMB5e*vlr$0o+Ai`i!vgi%p66DbOkcI4B2M|q!}ye?;{YgDubZQj7CJb2FxwRJI}mM zo}-jd_5xD#oV z%=3;o^&(zMDBqd%E^@)l5D?1TwMTxQf$cJQHb=?8RsVbFL7=S?Yg6jQYva)fLl|MLhT|0PWhhjXbY*iR8%oHg_zu+>a6Ih_YB64q74+15f`TFU0GsE z#WwUkcg@X{4uFX*L+HoF8;I*k9S18i+=6aTE*|UBH&2~2w?zc96I>yxqjf^w9Nis^ zf{_Ac#DG{Ch#^L}mnx`VN;YvaCBxoYP^w8)9%fuzGVNO7q>(r5i6r_TqRUu@f@j=- z7-w!mr<#K_ay)Y0OeWH9WScib=hI>ZA&d0)fGyl?B&7=)rj++?&`_t?j0w|MNi^`q z1Hx81e-A5#6>G;jW(qfxKLVDTEp@Gst$SyXRhxs6#3@B4yam+Ah+rJ*MR9G4_9g-q z5Vk4o=ZT!O!IqZD`=M8DC(&t-YmqD$Yk%Te;Bawq>KQhzhgvecH=52ujVyKTq+F9= zj^!CnB!aQ$GHgX_jM+1Ya^6{F+jS*Gp7<7hqP~;i%{~N-t*^{%^Jz<*Nf}X;_!8$N z^~8x7X#!>VrQ_vBOp}_znZnGi)V06|g(Ju$229qV;hUK-s@!#q97wYcBrG%FPc*6G zk#m~0oGLxnqG2>Y7H~~Pu7FBTpUDD0Wz35pLFND#xOL}f35QrkR%Yab4;?vZp+1;O z$am-7sX&RP85wr!+Fg)A97$f0+2Wv`i6cfWs4?q_OeIBl5t(oWl$aZ#ii1wbpv=W< z0xHb~y7Y-4#Y@c%N32cFHW$32xT^|b>f*`)y^>QZn_(bii82@W#&mWH;1P~6LeZNW zfeyX~|418%T0j3njy$W%hh%4YYYLPExV)IdFpMX$P6{Zq?YbL~_ad9=0w!Jg) z;G)Ha3Qwj76GskM@yxf_kUd0Nl_}Xsn+DouQzL3? z#5O4kWyWtgMl;t&s?>UdejeWrggQejpleqg8?i@oIQY`tF88BoiU)r=IRpTDLL1~t8 zDkVZ#X74l3iZRa!G*cAVsEov3Nbq#L`y?5q7q%0fZ;z?D&3qzqC z9J$ggF1uxV$-Lh<56;aH8;Bad#C=m(=R64hAL4Ae{hnNUG78YUNMBR2KKPdjwR0wm zXmDturOGGM=XfUdQCpCvXNDj6AL7$FsAlEFRZE2~ zC^H|bu!$#0ZS4ZexbMVJ2WK=wBXKfiSRQVCj5QKU!J?vOuO?iED2?OFlWWEUt#7$h z6e=B5g)^dga{?=4@GEgGoNc|N<|e@o0AI}DBBY($5*=ulfxG^n#I=nYdk$|gb_DV> z4xG$qy98EcXO8I3*ieK^8Ew@_nep){Ce=tm8EDDHffIUzn}T`A54#Jk>y#i;qos6a z3g+F%RhuY9S38!Zk8^;pa8rD^n(`+LHr@#4b0Yxb5a6v;O`I8{1CvFL%6K=$A(`Xj z(#5?!u{gPSLkHJVV;S*9kf_TE2bMUJszxqzca|1s>Se^Wl&+JM*o+H9zMSH4h<}9i zIF)omD+azL6=sEp@9{#CLpX4&kqJ1ffRb+Um6{IL0pRRhU>lZhU&@BP}w%B5cR5Nwt zq;+CdTn;z1cIHGMdvCbRGxw#rEpmaBF7!g{=wt*VmQwDTSeAt70vV=&9|U&;dYB9Y z&;YT&GkyL|8zsDE>RR?DY6gkNrLsNIoJ{rZE8~-y#GjDuo`jkLm)?VJa7GyE#G%;Z z8)phI2g+BFfAJcSxGYaX2#( z8|fk}eZg9%3VaPE1X%T>s0aRJ4baM|4?Qe6Pd{>^jF)S36(jWZ1BjJ#C})tc}|EQbJGE_ zhbeld6g4W1I%Z8W@dKh)2Z6H`p>&B|i2} z@YU0Ok0WkonpKotZZDFgP571Y!jy?pt_>JM&GB#}1WyYi6{Nwq3c*XJjuEj@_@P93 zTZ|$t+!}K0ckYaYBodyj> zYGf22RpvUmitj3ia4k2F(t+pB9KS_JV}%BPioQISdz>6eX~QZ;m7Bueg-0oHho?SD z1S$89lB?O{u}6dzDbO498Vfnt%(ZNhh!Rr2kEoFVIu))^?m+M%b%O1PC?-(S6nGMM z4ALuCyqh#gTau`V2Wc(UXQ0A{dO%`?R;gt;@V-*?7JCe}>~lJ#gWkx^P<->A0XQqSmvTVk*dc{e%!37s@XyX zXVL-6TwG$eM(CCTpgb;!lankUX7mVL1hlsY*=dgb#0o*jY+(Brc7Z{$wDDeNkFo ziMc|8EvTbwg0fk41sK*wrb4<9>Yj0=<;q+q63)bzWAud*9)`cWwmPAXz#&8FPB6ld zS4w6ca?m&@GZJ;Ee{$#7eF_B2u~CAb<%^UZeLThn3ECH zp6Dqzd4)C4^ocKm*RY6Zs;Og)#bA6&<#AVZ(K5644Cblz znkw4EYh6-BQaa_d%rk}UO1?5P^!lnZK|YRpn~+hY08>D$zZk)% zz>67`DConPN4lOVU3=6oE{sqx?co*oFJ9#>@biFm0?{xa8Yj3)p@lo@S8 z6C?uNn;HMzB(U-GGUL@pp>}RA9D6o|%giM(mRC$*F44sXN?I3aA#zJ_6Mv^$2DZaoZWLB~xXpXN8~L zIYOgBHyHM##3@NDD?yS${p`jUPLy|mxlqPGBL&yrnp#NBP)(r*@CD zi(!a|H=)@f20Y}kQjA%PJ^=ln4CaB!%5#!~_E#@BMM%aWRD0$FPsU;CL}%PcBy*83 zCmcF66M&L#YBXlhrMkK2?H3$Zyo^L<(8abmQ>E07{Mb5)#weK#&MCH9;0A;tOy;g^98w#YWl$?36h@gl9v>3N37$pE0$BxBNU>{LyQ zdVM3W%uzD#ieh4FkT8B)U3|V&f00q%y;3b-bee&nq~i0Hp=d+ z$Ne*_E^^^h!gZu@u&6=~Fjc8sX2WF`4k-mNixo;AGgYHNl#wl)8MG+>9U*^>{~O3u zr3fM7o{*fU;Obx#ZwmJq{$fPX(laq>*SKp=yMC0i*UZf|F$z|tr<;mHIvn{KGR`5% zsgg+#A|@stOch^aMS>{SyD)y)=61&0iC%$y1c;Dk7Lb12*1 z&P5wOS8$9(D-Nbqp}n46*nl|_t?(Lq?p${pI!@FtGDVvbN62cK?mel?q%4@wIwEy} zZ}=uE+~Pk2E!Q)89T3{bXHLQ8AjUZ16H}7nl_dG3n9k$apHQS`a6yb0HsHpY(+Q^Y zo+8*bN9a(Xur7V~{m zrK84NC{5DLwa@{d6j2Id%!R^Drdl2$=7?-M1Brlg`Sg>}j90~e$KG5y+Oskva;+(} z2P_`(!ctLr#KTOJq^^a|7U9;+GqgwyM8%o8HWHr#4NT_RaqENtGIQd{q?R|4hsyUtOOX3%;hk>Tsm4K_C;Suh(ur#qP%H)(GS~J68(+rr z#eF;7_mrwRjNTE}WroP=h;V;qj&45Nj&Ix(8k;PKIA9qE%{&7;BI1V>Ipjw5B$Cw> zu?BPpz*7^~Rv4a7f^R?>2U4{)Cp%cCV4yQlK03A5**U1LCvus`pW6y z0qBd6E_ZQ7H+QF?Aq}0PnZXt6)vd|MX9|ru(Y;s+aT5)@j17fp4irVv^R@&<^*=nt zPDq~0zHo6JLE2Q#-)roso6{GFw18Q&kt#5kNQb+0Z!#CJj(l5BVN?o}dUMQFfqTAl}oob_}-ep!2UyQm^46Y((y;abVh9b5}0mZpHa&o>*6|cQhBeLtPD_w~c zP1iuix@YQxh{E1O%QkiG0koSMUntNJ&6KKN{I)q)9H*IUCp^ZPZUWx|Znd3|aiS%D zx~di_&Y6V(MZ#x`XSYn@FcQ}?rwa{zuIfiyzN9K{fDYgUPpN3Gt&!zS4IoXXMGS=0 zKuyM)1t>#LXw-4>j<*m&Q)(2k^4?a@(a-{uzYLV7PJNUR5iv=P^T&yCE>Mt628TTO zO@ed!=@A5#o{E7+Eq7iTvtia{nrRr;yq`|l5v zVwn9V@*m3earEw9GHk3h^5Q|YJhgT@;xdUtPbCxP&Jt|gg))|EJQ>VS6J{jE_zR_1 zXSOdDgp?6^Zg}DxFJ-5aoUCEh9oypM0Ee3CUo$t_2j;Od%bCht<3P`8bVpDM2S~|` zs+9Qupl?iRUP3FjdusS2&e|2ftY%nuaU8ZAZFbXp|ZtenKP5xA~16JfDLbzoIW4K77U+-IaJDYPLHfDOb- zCRak2GBIwz%k2yC#>{aX$#{6`hzW9MOE~IC_cJZfP5 zb2AB$K%xYaYs8{+LLQM*y^M|DXRh_wB6EeECq+>RpD{JIT)Q;<35Cg=Or3-PGa9zK z82whjk-2APN-QUF8gB!##9aO*Nydl}ay^m;Ksr&uQ&W>!$B}G3G7A9PP3q2Z;tqKE zavjj{vjyeS%*8O3j!{!=S|V3Q@ijLCh8`+_shlS$v=dX!wg_AgWcR7JQB=EMCpG^M zYcYMU+z;$E_6qa&sg&`?F$FPO?&1i$cY=E7dE6=nj?~38CwdOajD+f5Bo?WQFBOxK zYSNRmIeSd4jqHfHE~abSa=8M&dBnfw3Ir3h*-j0C#l^@HB_>>4H$`+QC&RlUG>nKo zN6Ih{*--9XK+&lKHnoZXD2MOLC0VqX5<|Ss-ohb;gULiYl?kGjY7`W>3uaFh=_6@c z5v!k6WQ0^)gp(NnAmn4{JY?{zW#e3S3i@2O`mZ$we2WZV5zM8Yw=hgGQ<3L@Pjv27 z1{-!gDbpGBv3cSMAR=%B_SB4viJmAos%CK zo&I@A-Wf{jlAQGcR9LxlYH&7^>JAJ!^%xzs^}bVYjxjCBmQvfKQ`uDcIQ9LIE|@Kq z&h-deVhtr`VTFo`kUa%WcTRHaqRp8~x>lpekn2N6>>Ec;4uo6Ii9{nQT3wJOM7tn! zjxYy`=4Zx#UJz5caS%o}!VlaGM|Tr;B~?IHavjlnW*h|86%<%A#bymMq2HU5C5{E( z5}HZ0@+OJP$<%yM{{XX`gQLWLM&~3$S0lain&{(+_H8XTTu^2mCONmQ&M5NHt zWj>fco=tv6;FV1+8GHk6aHlZL>ZX@%2H3nm@UDxuZ*hqt)52e z7>cwf4#Omk-+W82qE%&&N~#c`M*x>q>L@N0ss%Sc>!s(OxCu|}$mC{8Mx zVS10ANlrs#4CcO5)d6k&h6qwBTw5D0j8st(y1N-qlEVg}XL}K&$y^)`h`w0r)rHfJ zBfsWA%p<->?Ejh)QHNc%-8k@4KM<*BChT)asof-nmV9*$RmD_M5n}8UL1QkIXNKTp z9E=tc(jz^$tElbVnWU`htFF^hL2(3D@o%U7{j8$UJ|OaY5}XI$twttOfjn9aH8IlX z5_z0ZGsi$$YaBZq)w!A*`mPZR{SS}&D>6l^WvDs}WL$^EpUDtzBoj3S%jpLs$jHcs zQ>>s;kWvbXVY!{L+Le=H3vEl%wJp>4Z?_S0Cr&<&k=W07q`KIhNo^#%6Q80h z=La2_iJORUN=d~{9FcM3l!QAan6*=+^vEN{mP^!Ccn{&Xp^3@7hq@*#l^KOnkP10= zZpmT-s2&*>5ad3nTxITCPwa~YG$?Vcz!ED#%fi+~oH!!4l-}l!NN?vDzYAk37mdPP z@e`zD&i#F5_FUh6(^x%;Vzj!pqft0c3Eeb^{AXqi$5CN}r6JWFCtpFkA{P~&J5WK* zRw)PNwp34y+ujlHI#)~Vj0YsBTzxTWCMlG~z-P}S2w{koWQ-ia<}F(cKgn;hX5>Su z$+k#i1#n39R%2H$CRcK4OQom4TwpE&S!BMc5DO}<$o_NOos3lw7UqCG5L#wm1GUMn6e;L^(LU#Lzob*>5nuuWEIOkUX z^?(1DU;q2B|1bprROnZiTfo1d+mL0`F3;bAr^q^y!dYRy z(6BUp@+Dq*W?Z?NhHrcK*eIQjFzc7=11tpcm<0V5e)RX)m$_7#Ib9;6sj+5Z?rN-r z#ecY=Jk%$MN+xaDI(b1U{f|dBV@vLvN}#ubVK3e{IudB7E-Z-RJj#$+X#g zmsWU0(7!>TEgpM&C}$46J&-B)nfd17A;R>VutS@4SBmQ7(zT7>G+R!yd8nBpbKNK^ z+8l104ztW1vL2gbwG13Um>J~WEWdavkgSD!Plohhx|f;hEw*$#3B;FLP+?x%i<0p_ ztEDLk2Rk)jD^G;eJUA{J~qz#;7l|KmS9OlLFP?IxT^wGTW z!VJAE?x~&MbYegyjrRwEtTtJgPeI%|%<O}xtjln?CqART zZIF|&oNg`F&Z#~&!+apWjH}}}ZeF+E$mACgtyP_4L=UnuKcwBu zT#y2WvqVhZ{Z0}2@z;%g5I4iM*7)dg{)_v!csh>$B8QlcrNb+WU3m4Xk3KZ!19qJjjAD^07_ZFKbIJ>><{t0jxN}qN z7#~C2gEmLZUKBevL@%Zs*NLT7DKN`%fl9B{<~tziV%bFa%6q<=9gD*k)9V zeQmssrKsgf`kkCnODsOU7Sn~vBl1c6V1NeY*t{=t-+Jg9n^X%jydz*e9Y6~~H@lpO zR;sv^euakvkpjd-W(X%Eo{2aBT(W`=LYu*_>V=bIQUsJ$(6^>YX%|!kZ6?1PcEOcA zOIH*8w<-TQ;Q*IY2}JoC6(yzD4ksD=X=o?j1tyyJD04V6d4w?I|LfM% zg^jsJnJEAfX4Y6h@fWpk?}kB>BPl|p-x}ucHiH6U<<*9`oY#7oBNFVaFek1W;Mlui!C$>$zzIdo+a}@)&to05>ePNC8bH#Fs zz(e}WUN@Kc6U|G`y9q@H=7{nl8jLVx$UC(T>%p^=eyr*sDxA0W9rg`T+|@}K4z}u` z!G5TnOrMZ(-tO-{5rkHKiU@)5!oE-aEg=dAJ2WTzeD*k%S363&j-ZXQ6Jakxi^v$_ zoi?Zj4MrY_g3_09qj!2$?;i^0$PJTbW(la=% z6?{d?Hs-TOUdoIeo3@czJ!>RX^?EB$#($q3F=xDKe5wv@m+wBPt*`l#g7HG&s=YcX zGspk<8@1iuo*h16mSlXaSl3|nYzL7$j;=rS(dM(S2!1)}BV{_M8~8qiHfJeF|`6tM<=bXGQayUh7ia86$eiBx+e&2hc0ED+rJ^k@vjX#oENd`BH8;5)n~Ik);E&P z4(P*aoH3q#-NW$|&LqCs&`FHT3|AaaaERvM{dm?mv#5r}F}vHh=)*jKn=Q@k-*(b_Z z_7hGy&YF1F`0ZZ&XZbCcas<1RR)jZDoRkHjm#W~r_wTr)Xwakx$dZaED*_VP2^A;v z85EfqY<@rYKxDngwtZIDg0Mr%IIpr=dG7J-C@N~n9+K7}st0Ac>PQPB;Q}61iBTjvT1D zY0gCn*O~}cJo`3DpaQG7)%tG3cr#U@My2&U_tG0h+TqKW&?wIwUW+REH`;Y*0{6+C z&yGlTacHunAR+q@5k1~ib>%hNeD-+5jj|E%yWZ(vJ85K-gc3A`Q)u_I$6t-J_*ZNQ z3v}4J7&z#^v`y%Te&%zi24Y6Y?z>t%vGvy_R#@+QEP`$dvxPE2-ChJL$0F&gP>#&b z(Mp$31&X7hG`)cS>;rXLMdR@cj*t5=@1lc^#2qQgJwE#u(XQ+QM?QOm(UH?D*pDc8 zb^qD;1{83o(lDT+KH0(^F~okKV}=))zRx9GZbYI(@-_9XVd@nsg2o4+W%^m;4IIU% zG(*tWes+|7@W!3YE!O0B_i#yIYj|MV27Z@=?rLw>F&mgZRrj!?OW7QZb6m@c&p<*+ z?g=IzFUhcTC|2B=^86RI(r*z>n(XR--)E=h-G|*DjPWwlc93i16~~e53Kdy4G-ni@ zsLGBz{Os`q?|o?}pWAtaVoXpmzeq3QVIB2^89I&lewzbe!Or>2M~4vAuOeken`1p7 z=}Mt4p2<1c*c1(DbsQQrr}z{JbKeq3Bq|($<$QU#1sI|t7*Z0vpF0eDIQ*@YFH+os zWa+c>3F2$C_(?NdNA=T?W?uO0392G+IQ_Fn^4XMKfY{wr)h>KKvkS_E$x^_LKYNdL z9_ENxZ+qP|nJ;)%*{8`~ZCAR*)(%h507gA~gqxQ`u#%mv7tC?g^ymFs++XaC*c-88 z(^fbr6>K}ouyeR5A&wYjwa+>L{`l$}o8mouBeIN-?>xD}dLlb191s@yD<~Vi_~;!D zFj}f$3d1v=J)*y(5P`DEwwsvlXmaASCdP2xgs>odd0(z)g%`e#s>0r<-EAj;yKb&w z2eYiA`(-TrIF1f`9FvE$h^^j;=bk;Hxusqv4GPh!*&Zk6>F$WKUhTFgjbHlTicBVS zE}wnvIN;(wmtbdpALR&97SUJ4m;^h_zt}#Td~4IbTQ1pR*F@h|#B$em(nNOI zaP`ci5ejt9PrZf6M|m_-+{Sr8&Gy+BQie+*JnV*EBy=sN>O+Yu=ul|&9J=67x6o;qi^~w=zBZ< zqo3-%LLU&a_ol^2%Sl zPn06B^Hj#jKKrKGj~{1sw$B=?m$_y-Y!vSO^mGQp4PJi~<~;nd!hUJ%`=iHyUVUcM z8>E46uiy9U@(9-AXbkZ9Vb7mB-mqZuBJXY?~m^7 zeD+lxkHwP}VFpzGrx&=YTh<6)RGHJYI-fH`v*s!w$GN zJ(}$i|EP&R=+73%X<@!#MvQKtl5fvIv+?LyQL7=+7Y6{Flxsu8%Mk#P&U>57B$HDP z47jKd%dmGa|AdnlDv0wQXA!5(W9$QByI%TX7hm;IyEVhn(sUOa zlz0lW;|aXuHknwss-wbSC$j9%-omx1*&N?_BSZP@%-K*jC0B;O>bp;bWOurO9KPe7 zx-=d^0u1}*aa|54)sJsJjysZS8;@s?EPARCy78RFSxeXtB{+w-P#pSa9dfQShkI?2 z@4VwR?6GsVI-Zl*&P_k{Ij?9laK_{j_ME3tkzDS*aNPJcgqdjZxO{+2w399xe@F8c z@vOgo~x3sllz*>Ehg+jSGlGzVlO$nxU{sp8sN0w zBhR;24m(Ld@m<&>v>M((VJCy7;U$#8UjByk|EkZFE%~qKP9sQ*xRPke3GIG?6YaaE zGX*=HZ>P6mXLnbZP>3}?bF8TQit9{JdIiS1i#%Gr?IVHH=Jb}%-U7QLC;`(q{h85Y zuDbe$Kb+syVEb8syqs7S^Sk^sA2po+@d@qQ>EkVm4ZrAc?0$}uFB*BxYk|fl0jM3~@D6&}H%1gb< zXOH}%s=32BHF7M^esrKr6=kb-dv(JUGZ0kjr(vc^`ksa=qLANI`QwKU)zYztN88tFLDN*p zvqzvgnhTcm6?O2<&|y!v?MNN9?6F5SJ!@A^8NaR%+v!J#pLT+N6^uMPaF)KcL<(Ah z^VzBJOy&6z>CCyFc>;^)%f`~>TiUKJ4R4CWkS?M^Anbsa2>*fA#V2l`ec6SqC6)-K z|7tr$AhUg&4Ks#sPp)>=!^Teo3~0}O;rclC)5VxKHDnmQ>T=Zd%GZ8&+Vh-|i_ZTt z5UW-3p_88}+NRGupB;}=4Lyv41Jy*zHH%BD*JQ1=b-`JX=4d}q`8h~5C5iGeZx}^ZBHsLa2%iU`r)&j z_Uz%^)UR&fRJRej*vSMb7&OJhvwn7{$rX_)Z|FKuuy3Xft`7M#US^FwK2;UabST;N zuLAnqs~RX|Tg^*{$UdSpFgp0}!?@+MqjZ2zqslptLj{&^ymhwWrMfWpyA925fp9pu zL~ih14u|T}