
Parsing & Error Recovery

David Walker
COS 320

Error Recovery
• What should happen when your parser finds an

error in the user’s input?
– stop immediately and signal an error
– record the error but try to continue

• In the first case, the user must recompile from
scratch after possibly a trivial fix

• In the second case, the user might be
overwhelmed by a whole series of error
messages, all caused by essentially the same
problem

• We will talk about how to do error recovery in a
principled way

Error Recovery
• Error recovery:

– process of adjusting input stream so that the parser can continue
after unexpected input

• Possible adjustments:
– delete tokens
– insert tokens
– substitute tokens

• Classes of recovery:
– local recovery: adjust input at the point where error was

detected (and also possibly immediately after)
– global recovery: adjust input before point where error was

detected.
• Error recovery is possible in both top-down and bottom-

up parsers

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| LPAR exp RPAR ()

• general strategy for both bottom-up and top-down:
• look for a synchronizing token

exps : exp ()
| exps ; exp ()

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| LPAR exp RPAR ()

• general strategy for both bottom-up and top-down:
• look for a synchronizing token

• accomplished in bottom-up parsers by adding error rules to grammar:
exp : LPAR error RPAR ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| LPAR exp RPAR ()

• general strategy for both bottom-up and top-down:
• look for a synchronizing token

• accomplished in bottom-up parsers by adding error rules to grammar:
exp : LPAR error RPAR ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

• in general, follow error with a synchronizing token. Recovery steps:
• Pop stack (if necessary) until a state is reached in which the
action for the error token is shift
• Shift the error token
• Discard input symbols (if necessary) until a state is reached that has
a non-error action
• Resume normal parsing

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

@#$ is an unexpected token!

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS (

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

pop stack until shifting “error” can result in correct parse

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS (error

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

shift “error”

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS (error

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

discard input until we can legally
shift or reduce

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS (error)

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

SHIFT)

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS exp

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

REDUCE using exp ::= (error)

Local Bottom-up Error Recovery
exp : NUM ()

| exp PLUS exp ()
| (exp) ()

exp : (error) ()

exps : exp ()
| error ; exp ()

exps : exp ()
| exps ; exp ()

exp PLUS exp

NUM PLUS (NUM PLUS @#$ PLUS NUM) PLUS NUM

yet to read

input:

stack:

continue parsing...

Top-down Local Error Recovery

• also possible to use synchronizing tokens
• here, a synchronizing token for non

terminal X is a member of Follow(X)
– when parsing X and an error is found; eat

input stream until you get to a member of
Follow(X)

1. S ::= IF E THEN S ELSE S
2. | BEGIN S L
3. | PRINT E

4. L ::= END
5. | ; S L
6. E ::= NUM = NUM

non-terminals: S, E, L
terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =
rules:

val tok = ref (getToken ())
fun advance () = tok := getToken ()
fun eat t = if (! tok = t) then advance () else error ()

fun skipto toks =
if member(!tok, toks) then ()
else

eat(!tok); skipto toks

fun S () = case !tok of
IF => ... | BEGIN => ... | PRINT => ...

and L () = case !tok of
END => eat END

| SEMI => eat SEMI; S (); L ()

and E () = case !tok of
NUM => eat NUM; eat EQ; eat NUM

1. S ::= IF E THEN S ELSE S
2. | BEGIN S L
3. | PRINT E

4. L ::= END
5. | ; S L
6. E ::= NUM = NUM

non-terminals: S, E, L
terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =
rules:

fun S () = case !tok of
IF => ... | BEGIN => ... | PRINT => ...

| _ => skipto [ELSE,END,SEMI]

and L () = case !tok of
END => eat END

| SEMI => eat SEMI; S (); L ()
| _ =>

and E () = case !tok of
NUM => eat NUM; eat EQ; eat NUM

| _ =>

val tok = ref (getToken ())
fun advance () = tok := getToken ()
fun eat t = if (! tok = t) then advance () else error ()

fun skipto toks =
if member(!tok, toks) then ()
else

eat(!tok); skipto toks

1. S ::= IF E THEN S ELSE S
2. | BEGIN S L
3. | PRINT E

4. L ::= END
5. | ; S L
6. E ::= NUM = NUM

non-terminals: S, E, L
terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =
rules:

fun S () = case !tok of
IF => ... | BEGIN => ... | PRINT => ...

| _ => skipto [ELSE,END,SEMI]

and L () = case !tok of
END => eat END

| SEMI => eat SEMI; S (); L ()
| _ => skipto [ELSE, END,SEMI]

and E () = case !tok of
NUM => eat NUM; eat EQ; eat NUM

| _ =>

val tok = ref (getToken ())
fun advance () = tok := getToken ()
fun eat t = if (! tok = t) then advance () else error ()

fun skipto toks =
if member(!tok, toks) then ()
else

eat(!tok); skipto toks

1. S ::= IF E THEN S ELSE S
2. | BEGIN S L
3. | PRINT E

4. L ::= END
5. | ; S L
6. E ::= NUM = NUM

non-terminals: S, E, L
terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =
rules:

fun S () = case !tok of
IF => ... | BEGIN => ... | PRINT => ...

| _ => skipto [ELSE,END,SEMI]

and L () = case !tok of
END => eat END

| SEMI => eat SEMI; S (); L ()
| _ => skipto [ELSE, END,SEMI]

and E () = case !tok of
NUM => eat NUM; eat EQ; eat NUM

| _ => skipto [THEN,ELSE,END,SEMI]

val tok = ref (getToken ())
fun advance () = tok := getToken ()
fun eat t = if (! tok = t) then advance () else error ()

fun skipto toks =
if member(!tok, toks) then ()
else

eat(!tok); skipto toks

global error recovery
• global error recovery determines the smallest

set of insertions, deletions or replacements that
will allow a correct parse, even if those
insertions, etc. occur before an error would have
been detected

• ML-Yacc uses Burke-Fisher error repair
– tries every possible single-token insertion, deletion or

replacement at every point in the input up to K tokens
before the error is detected

• eg: K = 20; parser gets stuck at token 500; all possible
repairs between token 480-500 tried

• best repair = longest successful parse

global error recovery
• Consider Burke-Fisher with

– K-token window
– N different token types

• Total number of repairs = K + 2K*N
• deletions (K) +
• insertions (K + 1)*N +
• replacements (K)(N-1)

• Affordable in the uncommon case when
there is an error

K-token window

global error recovery
• Parser must be able to back up K tokens

and reparse
• Mechanics:

– parser maintains old stack and new stack

S ; ID := E + (

ID := NUM ; ID := ID + (ID := NUM + ...

yet to read

input:

new stack:

ID := NUMold stack:

K-token window
maintained in queue
by parser

K-token window

global error recovery
• Parser must be able to back up K tokens

and reparse
• Mechanics:

– parser maintains old stack and new stack

S ; ID := E + (

ID := NUM ; ID := ID + (ID := NUM + ...

yet to read

input:

new stack:

ID := NUMold stack:
old stack lags the new stack by K=6 tokens

K-token window
maintained in queue
by parser

Reductions (E ::= NUM) and (S ::= ID := NUM) applied to old stack in turn

K-token window

global error recovery
• Parser must be able to back up K tokens

and reparse
• Mechanics:

– parser maintains old stack and new stack

S ; ID := E + (

ID := NUM ; ID := ID + (ID := NUM + ...

yet to read

input:

new stack:

ID := NUMold stack:

K-token window
maintained in queue
by parser

semantic actions performed once when reduction is “committed” on the old stack

Burke-Fisher in ML-Yacc
• ML-Yacc provides additional support for Burke-

Fisher
– to continue parsing, we need semantics values for inserted

tokens

– some multiple-token insertions & deletions are common,
but it is too expensive for ML-Yacc to try every 2,3,4- token
insertion, deletion

%value ID {make_id “bogus”}
%value INT {0}
%value STRING {“”}

%change EQ -> ASSIGN
| SEMI ELSE -> ELSE
| -> IN INT END

ML-Yacc
would do this
anyway but by
specifying,
it tries it first

finally the magic:
how to construct an LR parser table

• At every point in the parse, the LR parser table
tells us what to do next
– shift, reduce, error or accept

• To do so, the LR parser keeps track of the parse
“state” ==> a state in a finite automaton

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS NUM) PLUS NUM

yet to read

input:

stack:

finally the magic:
how to construct an LR parser table

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS NUM) PLUS NUM

yet to read

input:

stack:

1
4

2
3exp

plus

exp

5minus

exp
finite automaton;
terminals and
non terminals
label edges

(

finally the magic:
how to construct an LR parser table

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS NUM) PLUS NUM

yet to read

input:

stack:

1
4

2
3exp

plus

exp

5minus

exp
finite automaton;
terminals and
non terminals
label edges

1 state-annotated stack:

(

finally the magic:
how to construct an LR parser table

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS NUM) PLUS NUM

yet to read

input:

stack:

1
4

2
3exp

plus

exp

5minus

exp
finite automaton;
terminals and
non terminals
label edges

1 exp 2 state-annotated stack:

(

finally the magic:
how to construct an LR parser table

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS NUM) PLUS NUM

yet to read

input:

stack:

1
4

2
3exp

plus

exp

5minus

exp
finite automaton;
terminals and
non terminals
label edges

1 exp 2 PLUS 3state-annotated stack:

(

finally the magic:
how to construct an LR parser table

exp PLUS (exp PLUS

NUM PLUS (NUM PLUS NUM) PLUS NUM

yet to read

input:

stack:

1
4

2
3exp

plus

exp

5minus

exp
finite automaton;
terminals and
non terminals
label edges

1 exp 2 PLUS 3 (1 exp 2 PLUS 3state-annotated stack:

(

this state
and input
tell us what
to do next

The Parse Table
• At every point in the parse, the LR parser table

tells us what to do next according to the
automaton state at the top of the stack
– shift, reduce, error or accept

states Terminal seen next ID, NUM, := ...
1
2 sn = shift & goto state n
3 rk = reduce by rule k
... a = accept
n = error

The Parse Table
• Reducing by rule k is broken into two steps:

– current stack is:
A 8 B 3 C 7 RHS 12

– rewrite the stack according to X ::= RHS:
A 8 B 3 C 7 X

– figure out state on top of stack (ie: goto 13)
A 8 B 3 C 7 X 13

states Terminal seen next ID, NUM, := ... Non-terminals X,Y,Z ...
1
2 sn = shift & goto state n gn = goto state n
3 rk = reduce by rule k
... a = accept
n = error

The Parse Table
• Reducing by rule k is broken into two steps:

– current stack is:
A 8 B 3 C 7 RHS 12

– rewrite the stack according to X ::= RHS:
A 8 B 3 C 7 X

– figure out state on top of stack (ie: goto 13)
A 8 B 3 C 7 X 13

states Terminal seen next ID, NUM, := ... Non-terminals X,Y,Z ...
1
2 sn = shift & goto state n gn = goto state n
3 rk = reduce by rule k
... a = accept
n = error

LR(0) parsing
• each state in the automaton represents a

collection of LR(0) items:
– an item is a rule from the grammar combined with “@”

to indicate where the parser currently is in the input
• eg: S’ ::= @ S $ indicates that the parser is just beginning to

parse this rule and it expects to be able to parse S then $ next

• A whole automaton state looks like this:

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

state number

collection of
LR(0) items

• LR(1) states look very similar, it is just that the items contain some look-ahead info

LR(0) parsing
• To construct states, we begin with a particular

LR(0) item and construct its closure
– the closure adds more items to a set when the “@”

appears to the left of a non-terminal
– if the state includes X ::= s @ Y s’ and Y ::= t is a rule

then the state also includes Y ::= @ t

S’ ::= @ S $

1

Grammar:

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

LR(0) parsing
• To construct states, we begin with a particular

LR(0) item and construct its closure
– the closure adds more items to a set when the “@”

appears to the left of a non-terminal
– if the state includes X ::= s @ Y s’ and Y ::= t is a rule

then the state also includes Y ::= @ t

S’ ::= @ S $
S ::= @ (L)

1

Grammar:

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

LR(0) parsing
• To construct states, we begin with a particular

LR(0) item and construct its closure
– the closure adds more items to a set when the “@”

appears to the left of a non-terminal
– if the state includes X ::= s @ Y s’ and Y ::= t is a rule

then the state also includes Y ::= @ t

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

Grammar:

Full
Closure

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

LR(0) parsing
• To construct an LR(0) automaton:

– start with start rule & compute initial state with closure
– pick one of the items from the state and move “@” to the

right one symbol (as if you have just parsed the symbol)
• this creates a new item ...
• ... and a new state when you compute the closure of the new item
• mark the edge between the two states with:

– a terminal T, if you moved “@” over T
– a non-terminal X, if you moved “@” over X

– continue until there are no further ways to move “@” across
items and generate new states or new edges in the
automaton

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S’ ::= S @ $

S

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S’ ::= S @ $

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ xS

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S’ ::= S @ $

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ xS

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S’ ::= S @ $

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ xS

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S’ ::= S @ $

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

S

(

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

S

(

S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

S

(
x

S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

S ::= (L) @

S

(
x

,

)S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

S ::= (L) @

S

(
x

,

)S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

S ::= (L) @

S

(
x

,

)S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

S

(
x

S

,

)S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

S

(
x

(

S

,

)S

L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

S

(
x

(

x

S

,

)S

L

x

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

Grammar:

S ::= x @

S’ ::= S @ $

L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7
6

5

8

9

S

(
x

(

x

S

,

)S

L

Assigning numbers to states:

x

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

computing parse table
• State i contains X ::= s @ $ ==> table[i,$] = a
• State i contains rule k: X ::= s @ ==> table[i,T] = rk for all terminals T
• Transition from i to j marked with T ==> table[i,T] = sj
• Transition from i to j marked with X ==> table[i,X] = gj

states Terminal seen next ID, NUM, := ... Non-terminals X,Y,Z ...
1
2 sn = shift & goto state n gn = goto state n

3 rk = reduce by rule k

... a = accept

n = error

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

states () x , $ S L
1

2
3
4
...

x

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

states () x , $ S L
1 s3

2
3
4
...

2
x

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

states () x , $ S L
1 s3 s2

2
3
4
...

2
x

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

states () x , $ S L
1 s3 s2 g4

2
3
4
...

2
x

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3
4
...

2
x

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

2
x

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2
4
...

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

2
x

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4
...

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

S’ ::= @ S $
S ::= @ (L)
S ::= @ x

1

S ::= x @

S’ ::= S @ $ L ::= S @

S ::= (@ L)
L ::= @ S
L ::= @ L , S
S ::= @ (L)
S ::= @ x

L ::= L , @ S
S ::= @ (L)
S ::= @ x

S ::= (L @)
L ::= L @ , S

L ::= L , S @

S ::= (L) @

2

4

3

7 6

5

8

9

S

(
x

(

x
S

,

)S

L

2
x

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
...

(

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

1

(x , x) $

yet to read

input:

stack:

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 x 2

1. S’ ::= S $
2. S ::= (L)
3. S ::= x
4. L ::= S
5. L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 S

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 S 7

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L 5

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L 5 , 8

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L 5 , 8 x 2

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L 5 , 8 S

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L 5 , 8 S 9

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

states () x , $ S L
1 s3 s2 g4

2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

(x , x) $

yet to read

input:

stack: 1 (3 L 5

0. S’ ::= S $
• S ::= (L)
• S ::= x
• L ::= S
• L ::= L , S

etc

LR(0)
• Even though we are doing LR(0) parsing we are using

some look ahead (there is a column for each non-terminal)
• however, we only use the terminal to figure out which state

to go to next, not to decide whether to shift or reduce

states () x , $ S L

1 s3 s2 g4

2 r2 r2 r2 r2 r2

3 s3 s2 g7 g5

LR(0)
• Even though we are doing LR(0) parsing we are using

some look ahead (there is a column for each non-terminal)
• however, we only use the terminal to figure out which state

to go to next, not to decide whether to shift or reduce
states () x , $ S L

1 s3 s2 g4
2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5

states no look-ahead S L
1 shift g4
2 reduce 2
3 shift g7 g5

ignore next automaton state

LR(0)
• Even though we are doing LR(0) parsing we are using

some look ahead (there is a column for each non-terminal)
• however, we only use the terminal to figure out which state

to go to next, not to decide whether to shift or reduce
• If the same row contains both shift and reduce, we will have

a conflict ==> the grammar is not LR(0)
• Likewise if the same row contains reduce by two different

rules

states no look-ahead S L
1 shift, reduce 5 g4
2 reduce 2, reduce 7
3 shift g7 g5

SLR
• SLR (simple LR) is a variant of LR(0) that reduces the number

of conflicts in LR(0) tables by using a tiny bit of look ahead
• To determine when to reduce, 1 symbol of look ahead is used.
• Only put reduce by rule (X ::= RHS) in column T if T is in

Follow(X)

states () x , $ S L
1 s3 s2 g4
2 r2 s5 r2
3 r1 r1 r5 r5 g7 g5

cuts down the number of rk slots & therefore cuts down conflicts

LR(1) & LALR
• LR(1) automata are identical to LR(0) except for the “items” that

make up the states
• LR(0) items:

X ::= s1 @ s2
• LR(1) items

X ::= s1 @ s2, T
– Idea: sequence s1 is on stack; input stream is s2 T

• Find closure with respect to X ::= s1 @ Y s2, T by adding all
items Y ::= s3, U when Y ::= s3 is a rule and U is in First(s2 T)

• Two states are different if they contain the same rules but the
rules have different look-ahead symbols
– Leads to many states
– LALR(1) = LR(1) where states that are identical aside from look-ahead

symbols have been merged
– ML-Yacc & most parser generators use LALR

• READ: Appel 3.3 (and also all of the rest of chapter 3)

look-ahead symbol added

Grammar Relationships
Unambiguous Grammars Ambiguous Grammars

LR(0)SLRLALRLR(1) LL(0)

LL(1)

summary
• LR parsing is more powerful than LL

parsing, given the same look ahead
• to construct an LR parser, it is necessary

to compute an LR parser table
• the LR parser table represents a finite

automaton that walks over the parser
stack

• ML-Yacc uses LALR, a compact variant of
LR(1)

