Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

3509 lines (3107 sloc) 127.818 kB
/*
* Matroska file demuxer
* Copyright (c) 2003-2008 The FFmpeg Project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Matroska file demuxer
* @author Ronald Bultje <rbultje@ronald.bitfreak.net>
* @author with a little help from Moritz Bunkus <moritz@bunkus.org>
* @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
* @see specs available on the Matroska project page: http://www.matroska.org/
*/
#include "config.h"
#include <inttypes.h>
#include <stdio.h>
#include "libavutil/avstring.h"
#include "libavutil/base64.h"
#include "libavutil/dict.h"
#include "libavutil/intfloat.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/lzo.h"
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "libavutil/time_internal.h"
#include "libavcodec/bytestream.h"
#include "libavcodec/flac.h"
#include "libavcodec/mpeg4audio.h"
#include "avformat.h"
#include "avio_internal.h"
#include "internal.h"
#include "isom.h"
#include "matroska.h"
#include "oggdec.h"
/* For ff_codec_get_id(). */
#include "riff.h"
#include "rmsipr.h"
#if CONFIG_BZLIB
#include <bzlib.h>
#endif
#if CONFIG_ZLIB
#include <zlib.h>
#endif
typedef enum {
EBML_NONE,
EBML_UINT,
EBML_FLOAT,
EBML_STR,
EBML_UTF8,
EBML_BIN,
EBML_NEST,
EBML_LEVEL1,
EBML_PASS,
EBML_STOP,
EBML_SINT,
EBML_TYPE_COUNT
} EbmlType;
typedef const struct EbmlSyntax {
uint32_t id;
EbmlType type;
int list_elem_size;
int data_offset;
union {
uint64_t u;
double f;
const char *s;
const struct EbmlSyntax *n;
} def;
} EbmlSyntax;
typedef struct EbmlList {
int nb_elem;
void *elem;
} EbmlList;
typedef struct EbmlBin {
int size;
uint8_t *data;
int64_t pos;
} EbmlBin;
typedef struct Ebml {
uint64_t version;
uint64_t max_size;
uint64_t id_length;
char *doctype;
uint64_t doctype_version;
} Ebml;
typedef struct MatroskaTrackCompression {
uint64_t algo;
EbmlBin settings;
} MatroskaTrackCompression;
typedef struct MatroskaTrackEncryption {
uint64_t algo;
EbmlBin key_id;
} MatroskaTrackEncryption;
typedef struct MatroskaTrackEncoding {
uint64_t scope;
uint64_t type;
MatroskaTrackCompression compression;
MatroskaTrackEncryption encryption;
} MatroskaTrackEncoding;
typedef struct MatroskaTrackVideo {
double frame_rate;
uint64_t display_width;
uint64_t display_height;
uint64_t pixel_width;
uint64_t pixel_height;
EbmlBin color_space;
uint64_t stereo_mode;
uint64_t alpha_mode;
} MatroskaTrackVideo;
typedef struct MatroskaTrackAudio {
double samplerate;
double out_samplerate;
uint64_t bitdepth;
uint64_t channels;
/* real audio header (extracted from extradata) */
int coded_framesize;
int sub_packet_h;
int frame_size;
int sub_packet_size;
int sub_packet_cnt;
int pkt_cnt;
uint64_t buf_timecode;
uint8_t *buf;
} MatroskaTrackAudio;
typedef struct MatroskaTrackPlane {
uint64_t uid;
uint64_t type;
} MatroskaTrackPlane;
typedef struct MatroskaTrackOperation {
EbmlList combine_planes;
} MatroskaTrackOperation;
typedef struct MatroskaTrack {
uint64_t num;
uint64_t uid;
uint64_t type;
char *name;
char *codec_id;
EbmlBin codec_priv;
char *language;
double time_scale;
uint64_t default_duration;
uint64_t flag_default;
uint64_t flag_forced;
uint64_t seek_preroll;
MatroskaTrackVideo video;
MatroskaTrackAudio audio;
MatroskaTrackOperation operation;
EbmlList encodings;
uint64_t codec_delay;
AVStream *stream;
int64_t end_timecode;
int ms_compat;
uint64_t max_block_additional_id;
} MatroskaTrack;
typedef struct MatroskaAttachment {
uint64_t uid;
char *filename;
char *mime;
EbmlBin bin;
AVStream *stream;
} MatroskaAttachment;
typedef struct MatroskaChapter {
uint64_t start;
uint64_t end;
uint64_t uid;
char *title;
AVChapter *chapter;
} MatroskaChapter;
typedef struct MatroskaIndexPos {
uint64_t track;
uint64_t pos;
} MatroskaIndexPos;
typedef struct MatroskaIndex {
uint64_t time;
EbmlList pos;
} MatroskaIndex;
typedef struct MatroskaTag {
char *name;
char *string;
char *lang;
uint64_t def;
EbmlList sub;
} MatroskaTag;
typedef struct MatroskaTagTarget {
char *type;
uint64_t typevalue;
uint64_t trackuid;
uint64_t chapteruid;
uint64_t attachuid;
} MatroskaTagTarget;
typedef struct MatroskaTags {
MatroskaTagTarget target;
EbmlList tag;
} MatroskaTags;
typedef struct MatroskaSeekhead {
uint64_t id;
uint64_t pos;
} MatroskaSeekhead;
typedef struct MatroskaLevel {
uint64_t start;
uint64_t length;
} MatroskaLevel;
typedef struct MatroskaCluster {
uint64_t timecode;
EbmlList blocks;
} MatroskaCluster;
typedef struct MatroskaLevel1Element {
uint64_t id;
uint64_t pos;
int parsed;
} MatroskaLevel1Element;
typedef struct MatroskaDemuxContext {
const AVClass *class;
AVFormatContext *ctx;
/* EBML stuff */
int num_levels;
MatroskaLevel levels[EBML_MAX_DEPTH];
int level_up;
uint32_t current_id;
uint64_t time_scale;
double duration;
char *title;
char *muxingapp;
EbmlBin date_utc;
EbmlList tracks;
EbmlList attachments;
EbmlList chapters;
EbmlList index;
EbmlList tags;
EbmlList seekhead;
/* byte position of the segment inside the stream */
int64_t segment_start;
/* the packet queue */
AVPacket **packets;
int num_packets;
AVPacket *prev_pkt;
int done;
/* What to skip before effectively reading a packet. */
int skip_to_keyframe;
uint64_t skip_to_timecode;
/* File has a CUES element, but we defer parsing until it is needed. */
int cues_parsing_deferred;
/* Level1 elements and whether they were read yet */
MatroskaLevel1Element level1_elems[64];
int num_level1_elems;
int current_cluster_num_blocks;
int64_t current_cluster_pos;
MatroskaCluster current_cluster;
/* File has SSA subtitles which prevent incremental cluster parsing. */
int contains_ssa;
/* WebM DASH Manifest live flag/ */
int is_live;
} MatroskaDemuxContext;
typedef struct MatroskaBlock {
uint64_t duration;
int64_t reference;
uint64_t non_simple;
EbmlBin bin;
uint64_t additional_id;
EbmlBin additional;
int64_t discard_padding;
} MatroskaBlock;
static const EbmlSyntax ebml_header[] = {
{ EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
{ EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
{ EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
{ EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
{ EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
{ EBML_ID_EBMLVERSION, EBML_NONE },
{ EBML_ID_DOCTYPEVERSION, EBML_NONE },
{ 0 }
};
static const EbmlSyntax ebml_syntax[] = {
{ EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
{ 0 }
};
static const EbmlSyntax matroska_info[] = {
{ MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
{ MATROSKA_ID_DURATION, EBML_FLOAT, 0, offsetof(MatroskaDemuxContext, duration) },
{ MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
{ MATROSKA_ID_WRITINGAPP, EBML_NONE },
{ MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
{ MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
{ MATROSKA_ID_SEGMENTUID, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_track_video[] = {
{ MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
{ MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
{ MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
{ MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
{ MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
{ MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
{ MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
{ MATROSKA_ID_VIDEOPIXELCROPB, EBML_NONE },
{ MATROSKA_ID_VIDEOPIXELCROPT, EBML_NONE },
{ MATROSKA_ID_VIDEOPIXELCROPL, EBML_NONE },
{ MATROSKA_ID_VIDEOPIXELCROPR, EBML_NONE },
{ MATROSKA_ID_VIDEODISPLAYUNIT, EBML_NONE },
{ MATROSKA_ID_VIDEOFLAGINTERLACED, EBML_NONE },
{ MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, stereo_mode), { .u = MATROSKA_VIDEO_STEREOMODE_TYPE_NB } },
{ MATROSKA_ID_VIDEOASPECTRATIO, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_track_audio[] = {
{ MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
{ MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
{ MATROSKA_ID_AUDIOBITDEPTH, EBML_UINT, 0, offsetof(MatroskaTrackAudio, bitdepth) },
{ MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
{ 0 }
};
static const EbmlSyntax matroska_track_encoding_compression[] = {
{ MATROSKA_ID_ENCODINGCOMPALGO, EBML_UINT, 0, offsetof(MatroskaTrackCompression, algo), { .u = 0 } },
{ MATROSKA_ID_ENCODINGCOMPSETTINGS, EBML_BIN, 0, offsetof(MatroskaTrackCompression, settings) },
{ 0 }
};
static const EbmlSyntax matroska_track_encoding_encryption[] = {
{ MATROSKA_ID_ENCODINGENCALGO, EBML_UINT, 0, offsetof(MatroskaTrackEncryption,algo), {.u = 0} },
{ MATROSKA_ID_ENCODINGENCKEYID, EBML_BIN, 0, offsetof(MatroskaTrackEncryption,key_id) },
{ MATROSKA_ID_ENCODINGENCAESSETTINGS, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGALGO, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGHASHALGO, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGKEYID, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGNATURE, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_track_encoding[] = {
{ MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
{ MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
{ MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
{ MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
{ MATROSKA_ID_ENCODINGORDER, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_track_encodings[] = {
{ MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
{ 0 }
};
static const EbmlSyntax matroska_track_plane[] = {
{ MATROSKA_ID_TRACKPLANEUID, EBML_UINT, 0, offsetof(MatroskaTrackPlane,uid) },
{ MATROSKA_ID_TRACKPLANETYPE, EBML_UINT, 0, offsetof(MatroskaTrackPlane,type) },
{ 0 }
};
static const EbmlSyntax matroska_track_combine_planes[] = {
{ MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
{ 0 }
};
static const EbmlSyntax matroska_track_operation[] = {
{ MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
{ 0 }
};
static const EbmlSyntax matroska_track[] = {
{ MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
{ MATROSKA_ID_TRACKNAME, EBML_UTF8, 0, offsetof(MatroskaTrack, name) },
{ MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
{ MATROSKA_ID_TRACKTYPE, EBML_UINT, 0, offsetof(MatroskaTrack, type) },
{ MATROSKA_ID_CODECID, EBML_STR, 0, offsetof(MatroskaTrack, codec_id) },
{ MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
{ MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
{ MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
{ MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
{ MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
{ MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
{ MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
{ MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
{ MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
{ MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
{ MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
{ MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
{ MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
{ MATROSKA_ID_TRACKFLAGENABLED, EBML_NONE },
{ MATROSKA_ID_TRACKFLAGLACING, EBML_NONE },
{ MATROSKA_ID_CODECNAME, EBML_NONE },
{ MATROSKA_ID_CODECDECODEALL, EBML_NONE },
{ MATROSKA_ID_CODECINFOURL, EBML_NONE },
{ MATROSKA_ID_CODECDOWNLOADURL, EBML_NONE },
{ MATROSKA_ID_TRACKMINCACHE, EBML_NONE },
{ MATROSKA_ID_TRACKMAXCACHE, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_tracks[] = {
{ MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
{ 0 }
};
static const EbmlSyntax matroska_attachment[] = {
{ MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) },
{ MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
{ MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
{ MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
{ MATROSKA_ID_FILEDESC, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_attachments[] = {
{ MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
{ 0 }
};
static const EbmlSyntax matroska_chapter_display[] = {
{ MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
{ MATROSKA_ID_CHAPLANG, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_chapter_entry[] = {
{ MATROSKA_ID_CHAPTERTIMESTART, EBML_UINT, 0, offsetof(MatroskaChapter, start), { .u = AV_NOPTS_VALUE } },
{ MATROSKA_ID_CHAPTERTIMEEND, EBML_UINT, 0, offsetof(MatroskaChapter, end), { .u = AV_NOPTS_VALUE } },
{ MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) },
{ MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
{ MATROSKA_ID_CHAPTERFLAGHIDDEN, EBML_NONE },
{ MATROSKA_ID_CHAPTERFLAGENABLED, EBML_NONE },
{ MATROSKA_ID_CHAPTERPHYSEQUIV, EBML_NONE },
{ MATROSKA_ID_CHAPTERATOM, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_chapter[] = {
{ MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
{ MATROSKA_ID_EDITIONUID, EBML_NONE },
{ MATROSKA_ID_EDITIONFLAGHIDDEN, EBML_NONE },
{ MATROSKA_ID_EDITIONFLAGDEFAULT, EBML_NONE },
{ MATROSKA_ID_EDITIONFLAGORDERED, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_chapters[] = {
{ MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
{ 0 }
};
static const EbmlSyntax matroska_index_pos[] = {
{ MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
{ MATROSKA_ID_CUECLUSTERPOSITION, EBML_UINT, 0, offsetof(MatroskaIndexPos, pos) },
{ MATROSKA_ID_CUERELATIVEPOSITION,EBML_NONE },
{ MATROSKA_ID_CUEDURATION, EBML_NONE },
{ MATROSKA_ID_CUEBLOCKNUMBER, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_index_entry[] = {
{ MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
{ MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
{ 0 }
};
static const EbmlSyntax matroska_index[] = {
{ MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
{ 0 }
};
static const EbmlSyntax matroska_simpletag[] = {
{ MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
{ MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
{ MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
{ MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
{ MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
{ MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
{ 0 }
};
static const EbmlSyntax matroska_tagtargets[] = {
{ MATROSKA_ID_TAGTARGETS_TYPE, EBML_STR, 0, offsetof(MatroskaTagTarget, type) },
{ MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
{ MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
{ MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
{ MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
{ 0 }
};
static const EbmlSyntax matroska_tag[] = {
{ MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
{ MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
{ 0 }
};
static const EbmlSyntax matroska_tags[] = {
{ MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
{ 0 }
};
static const EbmlSyntax matroska_seekhead_entry[] = {
{ MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
{ MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
{ 0 }
};
static const EbmlSyntax matroska_seekhead[] = {
{ MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
{ 0 }
};
static const EbmlSyntax matroska_segment[] = {
{ MATROSKA_ID_INFO, EBML_LEVEL1, 0, 0, { .n = matroska_info } },
{ MATROSKA_ID_TRACKS, EBML_LEVEL1, 0, 0, { .n = matroska_tracks } },
{ MATROSKA_ID_ATTACHMENTS, EBML_LEVEL1, 0, 0, { .n = matroska_attachments } },
{ MATROSKA_ID_CHAPTERS, EBML_LEVEL1, 0, 0, { .n = matroska_chapters } },
{ MATROSKA_ID_CUES, EBML_LEVEL1, 0, 0, { .n = matroska_index } },
{ MATROSKA_ID_TAGS, EBML_LEVEL1, 0, 0, { .n = matroska_tags } },
{ MATROSKA_ID_SEEKHEAD, EBML_LEVEL1, 0, 0, { .n = matroska_seekhead } },
{ MATROSKA_ID_CLUSTER, EBML_STOP },
{ 0 }
};
static const EbmlSyntax matroska_segments[] = {
{ MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
{ 0 }
};
static const EbmlSyntax matroska_blockmore[] = {
{ MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
{ MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
{ 0 }
};
static const EbmlSyntax matroska_blockadditions[] = {
{ MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
{ 0 }
};
static const EbmlSyntax matroska_blockgroup[] = {
{ MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
{ MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
{ MATROSKA_ID_BLOCKDURATION, EBML_UINT, 0, offsetof(MatroskaBlock, duration) },
{ MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
{ MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference) },
{ MATROSKA_ID_CODECSTATE, EBML_NONE },
{ 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
{ 0 }
};
static const EbmlSyntax matroska_cluster[] = {
{ MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
{ MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
{ MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_clusters[] = {
{ MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
{ MATROSKA_ID_INFO, EBML_NONE },
{ MATROSKA_ID_CUES, EBML_NONE },
{ MATROSKA_ID_TAGS, EBML_NONE },
{ MATROSKA_ID_SEEKHEAD, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_cluster_incremental_parsing[] = {
{ MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
{ MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
{ MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
{ MATROSKA_ID_INFO, EBML_NONE },
{ MATROSKA_ID_CUES, EBML_NONE },
{ MATROSKA_ID_TAGS, EBML_NONE },
{ MATROSKA_ID_SEEKHEAD, EBML_NONE },
{ MATROSKA_ID_CLUSTER, EBML_STOP },
{ 0 }
};
static const EbmlSyntax matroska_cluster_incremental[] = {
{ MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
{ MATROSKA_ID_BLOCKGROUP, EBML_STOP },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_STOP },
{ MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
{ MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
{ 0 }
};
static const EbmlSyntax matroska_clusters_incremental[] = {
{ MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
{ MATROSKA_ID_INFO, EBML_NONE },
{ MATROSKA_ID_CUES, EBML_NONE },
{ MATROSKA_ID_TAGS, EBML_NONE },
{ MATROSKA_ID_SEEKHEAD, EBML_NONE },
{ 0 }
};
static const char *const matroska_doctypes[] = { "matroska", "webm" };
static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
{
AVIOContext *pb = matroska->ctx->pb;
uint32_t id;
matroska->current_id = 0;
matroska->num_levels = 0;
/* seek to next position to resync from */
if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
goto eof;
id = avio_rb32(pb);
// try to find a toplevel element
while (!avio_feof(pb)) {
if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
id == MATROSKA_ID_SEEKHEAD || id == MATROSKA_ID_ATTACHMENTS ||
id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
matroska->current_id = id;
return 0;
}
id = (id << 8) | avio_r8(pb);
}
eof:
matroska->done = 1;
return AVERROR_EOF;
}
/*
* Return: Whether we reached the end of a level in the hierarchy or not.
*/
static int ebml_level_end(MatroskaDemuxContext *matroska)
{
AVIOContext *pb = matroska->ctx->pb;
int64_t pos = avio_tell(pb);
if (matroska->num_levels > 0) {
MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
if (pos - level->start >= level->length || matroska->current_id) {
matroska->num_levels--;
return 1;
}
}
return (matroska->is_live && matroska->ctx->pb->eof_reached) ? 1 : 0;
}
/*
* Read: an "EBML number", which is defined as a variable-length
* array of bytes. The first byte indicates the length by giving a
* number of 0-bits followed by a one. The position of the first
* "one" bit inside the first byte indicates the length of this
* number.
* Returns: number of bytes read, < 0 on error
*/
static int ebml_read_num(MatroskaDemuxContext *matroska, AVIOContext *pb,
int max_size, uint64_t *number)
{
int read = 1, n = 1;
uint64_t total = 0;
/* The first byte tells us the length in bytes - avio_r8() can normally
* return 0, but since that's not a valid first ebmlID byte, we can
* use it safely here to catch EOS. */
if (!(total = avio_r8(pb))) {
/* we might encounter EOS here */
if (!avio_feof(pb)) {
int64_t pos = avio_tell(pb);
av_log(matroska->ctx, AV_LOG_ERROR,
"Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
pos, pos);
return pb->error ? pb->error : AVERROR(EIO);
}
return AVERROR_EOF;
}
/* get the length of the EBML number */
read = 8 - ff_log2_tab[total];
if (read > max_size) {
int64_t pos = avio_tell(pb) - 1;
av_log(matroska->ctx, AV_LOG_ERROR,
"Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
(uint8_t) total, pos, pos);
return AVERROR_INVALIDDATA;
}
/* read out length */
total ^= 1 << ff_log2_tab[total];
while (n++ < read)
total = (total << 8) | avio_r8(pb);
*number = total;
return read;
}
/**
* Read a EBML length value.
* This needs special handling for the "unknown length" case which has multiple
* encodings.
*/
static int ebml_read_length(MatroskaDemuxContext *matroska, AVIOContext *pb,
uint64_t *number)
{
int res = ebml_read_num(matroska, pb, 8, number);
if (res > 0 && *number + 1 == 1ULL << (7 * res))
*number = 0xffffffffffffffULL;
return res;
}
/*
* Read the next element as an unsigned int.
* 0 is success, < 0 is failure.
*/
static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
{
int n = 0;
if (size > 8)
return AVERROR_INVALIDDATA;
/* big-endian ordering; build up number */
*num = 0;
while (n++ < size)
*num = (*num << 8) | avio_r8(pb);
return 0;
}
/*
* Read the next element as a signed int.
* 0 is success, < 0 is failure.
*/
static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
{
int n = 1;
if (size > 8)
return AVERROR_INVALIDDATA;
if (size == 0) {
*num = 0;
} else {
*num = sign_extend(avio_r8(pb), 8);
/* big-endian ordering; build up number */
while (n++ < size)
*num = (*num << 8) | avio_r8(pb);
}
return 0;
}
/*
* Read the next element as a float.
* 0 is success, < 0 is failure.
*/
static int ebml_read_float(AVIOContext *pb, int size, double *num)
{
if (size == 0)
*num = 0;
else if (size == 4)
*num = av_int2float(avio_rb32(pb));
else if (size == 8)
*num = av_int2double(avio_rb64(pb));
else
return AVERROR_INVALIDDATA;
return 0;
}
/*
* Read the next element as an ASCII string.
* 0 is success, < 0 is failure.
*/
static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
{
char *res;
/* EBML strings are usually not 0-terminated, so we allocate one
* byte more, read the string and NULL-terminate it ourselves. */
if (!(res = av_malloc(size + 1)))
return AVERROR(ENOMEM);
if (avio_read(pb, (uint8_t *) res, size) != size) {
av_free(res);
return AVERROR(EIO);
}
(res)[size] = '\0';
av_free(*str);
*str = res;
return 0;
}
/*
* Read the next element as binary data.
* 0 is success, < 0 is failure.
*/
static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
{
av_fast_padded_malloc(&bin->data, &bin->size, length);
if (!bin->data)
return AVERROR(ENOMEM);
bin->size = length;
bin->pos = avio_tell(pb);
if (avio_read(pb, bin->data, length) != length) {
av_freep(&bin->data);
bin->size = 0;
return AVERROR(EIO);
}
return 0;
}
/*
* Read the next element, but only the header. The contents
* are supposed to be sub-elements which can be read separately.
* 0 is success, < 0 is failure.
*/
static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
{
AVIOContext *pb = matroska->ctx->pb;
MatroskaLevel *level;
if (matroska->num_levels >= EBML_MAX_DEPTH) {
av_log(matroska->ctx, AV_LOG_ERROR,
"File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
return AVERROR(ENOSYS);
}
level = &matroska->levels[matroska->num_levels++];
level->start = avio_tell(pb);
level->length = length;
return 0;
}
/*
* Read signed/unsigned "EBML" numbers.
* Return: number of bytes processed, < 0 on error
*/
static int matroska_ebmlnum_uint(MatroskaDemuxContext *matroska,
uint8_t *data, uint32_t size, uint64_t *num)
{
AVIOContext pb;
ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
}
/*
* Same as above, but signed.
*/
static int matroska_ebmlnum_sint(MatroskaDemuxContext *matroska,
uint8_t *data, uint32_t size, int64_t *num)
{
uint64_t unum;
int res;
/* read as unsigned number first */
if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
return res;
/* make signed (weird way) */
*num = unum - ((1LL << (7 * res - 1)) - 1);
return res;
}
static int ebml_parse_elem(MatroskaDemuxContext *matroska,
EbmlSyntax *syntax, void *data);
static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
uint32_t id, void *data)
{
int i;
for (i = 0; syntax[i].id; i++)
if (id == syntax[i].id)
break;
if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
matroska->num_levels > 0 &&
matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
return 0; // we reached the end of an unknown size cluster
if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
av_log(matroska->ctx, AV_LOG_DEBUG, "Unknown entry 0x%"PRIX32"\n", id);
}
return ebml_parse_elem(matroska, &syntax[i], data);
}
static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
void *data)
{
if (!matroska->current_id) {
uint64_t id;
int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
if (res < 0) {
// in live mode, finish parsing if EOF is reached.
return (matroska->is_live && matroska->ctx->pb->eof_reached &&
res == AVERROR_EOF) ? 1 : res;
}
matroska->current_id = id | 1 << 7 * res;
}
return ebml_parse_id(matroska, syntax, matroska->current_id, data);
}
static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
void *data)
{
int i, res = 0;
for (i = 0; syntax[i].id; i++)
switch (syntax[i].type) {
case EBML_UINT:
*(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
break;
case EBML_FLOAT:
*(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
break;
case EBML_STR:
case EBML_UTF8:
// the default may be NULL
if (syntax[i].def.s) {
uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
*dst = av_strdup(syntax[i].def.s);
if (!*dst)
return AVERROR(ENOMEM);
}
break;
}
while (!res && !ebml_level_end(matroska))
res = ebml_parse(matroska, syntax, data);
return res;
}
static int is_ebml_id_valid(uint32_t id)
{
// Due to endian nonsense in Matroska, the highest byte with any bits set
// will contain the leading length bit. This bit in turn identifies the
// total byte length of the element by its position within the byte.
unsigned int bits = av_log2(id);
return id && (bits + 7) / 8 == (8 - bits % 8);
}
/*
* Allocate and return the entry for the level1 element with the given ID. If
* an entry already exists, return the existing entry.
*/
static MatroskaLevel1Element *matroska_find_level1_elem(MatroskaDemuxContext *matroska,
uint32_t id)
{
int i;
MatroskaLevel1Element *elem;
if (!is_ebml_id_valid(id))
return NULL;
// Some files link to all clusters; useless.
if (id == MATROSKA_ID_CLUSTER)
return NULL;
// There can be multiple seekheads.
if (id != MATROSKA_ID_SEEKHEAD) {
for (i = 0; i < matroska->num_level1_elems; i++) {
if (matroska->level1_elems[i].id == id)
return &matroska->level1_elems[i];
}
}
// Only a completely broken file would have more elements.
// It also provides a low-effort way to escape from circular seekheads
// (every iteration will add a level1 entry).
if (matroska->num_level1_elems >= FF_ARRAY_ELEMS(matroska->level1_elems)) {
av_log(matroska->ctx, AV_LOG_ERROR, "Too many level1 elements or circular seekheads.\n");
return NULL;
}
elem = &matroska->level1_elems[matroska->num_level1_elems++];
*elem = (MatroskaLevel1Element){.id = id};
return elem;
}
static int ebml_parse_elem(MatroskaDemuxContext *matroska,
EbmlSyntax *syntax, void *data)
{
static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
[EBML_UINT] = 8,
[EBML_FLOAT] = 8,
// max. 16 MB for strings
[EBML_STR] = 0x1000000,
[EBML_UTF8] = 0x1000000,
// max. 256 MB for binary data
[EBML_BIN] = 0x10000000,
// no limits for anything else
};
AVIOContext *pb = matroska->ctx->pb;
uint32_t id = syntax->id;
uint64_t length;
int res;
void *newelem;
MatroskaLevel1Element *level1_elem;
data = (char *) data + syntax->data_offset;
if (syntax->list_elem_size) {
EbmlList *list = data;
newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
if (!newelem)
return AVERROR(ENOMEM);
list->elem = newelem;
data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
memset(data, 0, syntax->list_elem_size);
list->nb_elem++;
}
if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
matroska->current_id = 0;
if ((res = ebml_read_length(matroska, pb, &length)) < 0)
return res;
if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
length, max_lengths[syntax->type], syntax->type);
return AVERROR_INVALIDDATA;
}
}
switch (syntax->type) {
case EBML_UINT:
res = ebml_read_uint(pb, length, data);
break;
case EBML_SINT:
res = ebml_read_sint(pb, length, data);
break;
case EBML_FLOAT:
res = ebml_read_float(pb, length, data);
break;
case EBML_STR:
case EBML_UTF8:
res = ebml_read_ascii(pb, length, data);
break;
case EBML_BIN:
res = ebml_read_binary(pb, length, data);
break;
case EBML_LEVEL1:
case EBML_NEST:
if ((res = ebml_read_master(matroska, length)) < 0)
return res;
if (id == MATROSKA_ID_SEGMENT)
matroska->segment_start = avio_tell(matroska->ctx->pb);
if (id == MATROSKA_ID_CUES)
matroska->cues_parsing_deferred = 0;
if (syntax->type == EBML_LEVEL1 &&
(level1_elem = matroska_find_level1_elem(matroska, syntax->id))) {
if (level1_elem->parsed)
av_log(matroska->ctx, AV_LOG_ERROR, "Duplicate element\n");
level1_elem->parsed = 1;
}
return ebml_parse_nest(matroska, syntax->def.n, data);
case EBML_PASS:
return ebml_parse_id(matroska, syntax->def.n, id, data);
case EBML_STOP:
return 1;
default:
if (ffio_limit(pb, length) != length)
return AVERROR(EIO);
return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
}
if (res == AVERROR_INVALIDDATA)
av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
else if (res == AVERROR(EIO))
av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
return res;
}
static void ebml_free(EbmlSyntax *syntax, void *data)
{
int i, j;
for (i = 0; syntax[i].id; i++) {
void *data_off = (char *) data + syntax[i].data_offset;
switch (syntax[i].type) {
case EBML_STR:
case EBML_UTF8:
av_freep(data_off);
break;
case EBML_BIN:
av_freep(&((EbmlBin *) data_off)->data);
break;
case EBML_LEVEL1:
case EBML_NEST:
if (syntax[i].list_elem_size) {
EbmlList *list = data_off;
char *ptr = list->elem;
for (j = 0; j < list->nb_elem;
j++, ptr += syntax[i].list_elem_size)
ebml_free(syntax[i].def.n, ptr);
av_freep(&list->elem);
} else
ebml_free(syntax[i].def.n, data_off);
default:
break;
}
}
}
/*
* Autodetecting...
*/
static int matroska_probe(AVProbeData *p)
{
uint64_t total = 0;
int len_mask = 0x80, size = 1, n = 1, i;
/* EBML header? */
if (AV_RB32(p->buf) != EBML_ID_HEADER)
return 0;
/* length of header */
total = p->buf[4];
while (size <= 8 && !(total & len_mask)) {
size++;
len_mask >>= 1;
}
if (size > 8)
return 0;
total &= (len_mask - 1);
while (n < size)
total = (total << 8) | p->buf[4 + n++];
/* Does the probe data contain the whole header? */
if (p->buf_size < 4 + size + total)
return 0;
/* The header should contain a known document type. For now,
* we don't parse the whole header but simply check for the
* availability of that array of characters inside the header.
* Not fully fool-proof, but good enough. */
for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
size_t probelen = strlen(matroska_doctypes[i]);
if (total < probelen)
continue;
for (n = 4 + size; n <= 4 + size + total - probelen; n++)
if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
return AVPROBE_SCORE_MAX;
}
// probably valid EBML header but no recognized doctype
return AVPROBE_SCORE_EXTENSION;
}
static MatroskaTrack *matroska_find_track_by_num(MatroskaDemuxContext *matroska,
int num)
{
MatroskaTrack *tracks = matroska->tracks.elem;
int i;
for (i = 0; i < matroska->tracks.nb_elem; i++)
if (tracks[i].num == num)
return &tracks[i];
av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
return NULL;
}
static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
MatroskaTrack *track)
{
MatroskaTrackEncoding *encodings = track->encodings.elem;
uint8_t *data = *buf;
int isize = *buf_size;
uint8_t *pkt_data = NULL;
uint8_t av_unused *newpktdata;
int pkt_size = isize;
int result = 0;
int olen;
if (pkt_size >= 10000000U)
return AVERROR_INVALIDDATA;
switch (encodings[0].compression.algo) {
case MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP:
{
int header_size = encodings[0].compression.settings.size;
uint8_t *header = encodings[0].compression.settings.data;
if (header_size && !header) {
av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
return -1;
}
if (!header_size)
return 0;
pkt_size = isize + header_size;
pkt_data = av_malloc(pkt_size);
if (!pkt_data)
return AVERROR(ENOMEM);
memcpy(pkt_data, header, header_size);
memcpy(pkt_data + header_size, data, isize);
break;
}
#if CONFIG_LZO
case MATROSKA_TRACK_ENCODING_COMP_LZO:
do {
olen = pkt_size *= 3;
newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
if (!newpktdata) {
result = AVERROR(ENOMEM);
goto failed;
}
pkt_data = newpktdata;
result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
} while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
if (result) {
result = AVERROR_INVALIDDATA;
goto failed;
}
pkt_size -= olen;
break;
#endif
#if CONFIG_ZLIB
case MATROSKA_TRACK_ENCODING_COMP_ZLIB:
{
z_stream zstream = { 0 };
if (inflateInit(&zstream) != Z_OK)
return -1;
zstream.next_in = data;
zstream.avail_in = isize;
do {
pkt_size *= 3;
newpktdata = av_realloc(pkt_data, pkt_size);
if (!newpktdata) {
inflateEnd(&zstream);
result = AVERROR(ENOMEM);
goto failed;
}
pkt_data = newpktdata;
zstream.avail_out = pkt_size - zstream.total_out;
zstream.next_out = pkt_data + zstream.total_out;
result = inflate(&zstream, Z_NO_FLUSH);
} while (result == Z_OK && pkt_size < 10000000);
pkt_size = zstream.total_out;
inflateEnd(&zstream);
if (result != Z_STREAM_END) {
if (result == Z_MEM_ERROR)
result = AVERROR(ENOMEM);
else
result = AVERROR_INVALIDDATA;
goto failed;
}
break;
}
#endif
#if CONFIG_BZLIB
case MATROSKA_TRACK_ENCODING_COMP_BZLIB:
{
bz_stream bzstream = { 0 };
if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
return -1;
bzstream.next_in = data;
bzstream.avail_in = isize;
do {
pkt_size *= 3;
newpktdata = av_realloc(pkt_data, pkt_size);
if (!newpktdata) {
BZ2_bzDecompressEnd(&bzstream);
result = AVERROR(ENOMEM);
goto failed;
}
pkt_data = newpktdata;
bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
bzstream.next_out = pkt_data + bzstream.total_out_lo32;
result = BZ2_bzDecompress(&bzstream);
} while (result == BZ_OK && pkt_size < 10000000);
pkt_size = bzstream.total_out_lo32;
BZ2_bzDecompressEnd(&bzstream);
if (result != BZ_STREAM_END) {
if (result == BZ_MEM_ERROR)
result = AVERROR(ENOMEM);
else
result = AVERROR_INVALIDDATA;
goto failed;
}
break;
}
#endif
default:
return AVERROR_INVALIDDATA;
}
*buf = pkt_data;
*buf_size = pkt_size;
return 0;
failed:
av_free(pkt_data);
return result;
}
static void matroska_convert_tag(AVFormatContext *s, EbmlList *list,
AVDictionary **metadata, char *prefix)
{
MatroskaTag *tags = list->elem;
char key[1024];
int i;
for (i = 0; i < list->nb_elem; i++) {
const char *lang = tags[i].lang &&
strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
if (!tags[i].name) {
av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
continue;
}
if (prefix)
snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
else
av_strlcpy(key, tags[i].name, sizeof(key));
if (tags[i].def || !lang) {
av_dict_set(metadata, key, tags[i].string, 0);
if (tags[i].sub.nb_elem)
matroska_convert_tag(s, &tags[i].sub, metadata, key);
}
if (lang) {
av_strlcat(key, "-", sizeof(key));
av_strlcat(key, lang, sizeof(key));
av_dict_set(metadata, key, tags[i].string, 0);
if (tags[i].sub.nb_elem)
matroska_convert_tag(s, &tags[i].sub, metadata, key);
}
}
ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
}
static void matroska_convert_tags(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTags *tags = matroska->tags.elem;
int i, j;
for (i = 0; i < matroska->tags.nb_elem; i++) {
if (tags[i].target.attachuid) {
MatroskaAttachment *attachment = matroska->attachments.elem;
for (j = 0; j < matroska->attachments.nb_elem; j++)
if (attachment[j].uid == tags[i].target.attachuid &&
attachment[j].stream)
matroska_convert_tag(s, &tags[i].tag,
&attachment[j].stream->metadata, NULL);
} else if (tags[i].target.chapteruid) {
MatroskaChapter *chapter = matroska->chapters.elem;
for (j = 0; j < matroska->chapters.nb_elem; j++)
if (chapter[j].uid == tags[i].target.chapteruid &&
chapter[j].chapter)
matroska_convert_tag(s, &tags[i].tag,
&chapter[j].chapter->metadata, NULL);
} else if (tags[i].target.trackuid) {
MatroskaTrack *track = matroska->tracks.elem;
for (j = 0; j < matroska->tracks.nb_elem; j++)
if (track[j].uid == tags[i].target.trackuid && track[j].stream)
matroska_convert_tag(s, &tags[i].tag,
&track[j].stream->metadata, NULL);
} else {
matroska_convert_tag(s, &tags[i].tag, &s->metadata,
tags[i].target.type);
}
}
}
static int matroska_parse_seekhead_entry(MatroskaDemuxContext *matroska,
uint64_t pos)
{
uint32_t level_up = matroska->level_up;
uint32_t saved_id = matroska->current_id;
int64_t before_pos = avio_tell(matroska->ctx->pb);
MatroskaLevel level;
int64_t offset;
int ret = 0;
/* seek */
offset = pos + matroska->segment_start;
if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
/* We don't want to lose our seekhead level, so we add
* a dummy. This is a crude hack. */
if (matroska->num_levels == EBML_MAX_DEPTH) {
av_log(matroska->ctx, AV_LOG_INFO,
"Max EBML element depth (%d) reached, "
"cannot parse further.\n", EBML_MAX_DEPTH);
ret = AVERROR_INVALIDDATA;
} else {
level.start = 0;
level.length = (uint64_t) -1;
matroska->levels[matroska->num_levels] = level;
matroska->num_levels++;
matroska->current_id = 0;
ret = ebml_parse(matroska, matroska_segment, matroska);
/* remove dummy level */
while (matroska->num_levels) {
uint64_t length = matroska->levels[--matroska->num_levels].length;
if (length == (uint64_t) -1)
break;
}
}
}
/* seek back */
avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
matroska->level_up = level_up;
matroska->current_id = saved_id;
return ret;
}
static void matroska_execute_seekhead(MatroskaDemuxContext *matroska)
{
EbmlList *seekhead_list = &matroska->seekhead;
int i;
// we should not do any seeking in the streaming case
if (!matroska->ctx->pb->seekable)
return;
for (i = 0; i < seekhead_list->nb_elem; i++) {
MatroskaSeekhead *seekheads = seekhead_list->elem;
uint32_t id = seekheads[i].id;
uint64_t pos = seekheads[i].pos;
MatroskaLevel1Element *elem = matroska_find_level1_elem(matroska, id);
if (!elem || elem->parsed)
continue;
elem->pos = pos;
// defer cues parsing until we actually need cue data.
if (id == MATROSKA_ID_CUES)
continue;
if (matroska_parse_seekhead_entry(matroska, pos) < 0) {
// mark index as broken
matroska->cues_parsing_deferred = -1;
break;
}
elem->parsed = 1;
}
}
static void matroska_add_index_entries(MatroskaDemuxContext *matroska)
{
EbmlList *index_list;
MatroskaIndex *index;
uint64_t index_scale = 1;
int i, j;
if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX)
return;
index_list = &matroska->index;
index = index_list->elem;
if (index_list->nb_elem &&
index[0].time > 1E14 / matroska->time_scale) {
av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
index_scale = matroska->time_scale;
}
for (i = 0; i < index_list->nb_elem; i++) {
EbmlList *pos_list = &index[i].pos;
MatroskaIndexPos *pos = pos_list->elem;
for (j = 0; j < pos_list->nb_elem; j++) {
MatroskaTrack *track = matroska_find_track_by_num(matroska,
pos[j].track);
if (track && track->stream)
av_add_index_entry(track->stream,
pos[j].pos + matroska->segment_start,
index[i].time / index_scale, 0, 0,
AVINDEX_KEYFRAME);
}
}
}
static void matroska_parse_cues(MatroskaDemuxContext *matroska) {
int i;
if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX)
return;
for (i = 0; i < matroska->num_level1_elems; i++) {
MatroskaLevel1Element *elem = &matroska->level1_elems[i];
if (elem->id == MATROSKA_ID_CUES && !elem->parsed) {
if (matroska_parse_seekhead_entry(matroska, elem->pos) < 0)
matroska->cues_parsing_deferred = -1;
elem->parsed = 1;
break;
}
}
matroska_add_index_entries(matroska);
}
static int matroska_aac_profile(char *codec_id)
{
static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
int profile;
for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
if (strstr(codec_id, aac_profiles[profile]))
break;
return profile + 1;
}
static int matroska_aac_sri(int samplerate)
{
int sri;
for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
break;
return sri;
}
static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
{
char buffer[32];
/* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
time_t creation_time = date_utc / 1000000000 + 978307200;
struct tm tmpbuf, *ptm = gmtime_r(&creation_time, &tmpbuf);
if (!ptm) return;
if (strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm))
av_dict_set(metadata, "creation_time", buffer, 0);
}
static int matroska_parse_flac(AVFormatContext *s,
MatroskaTrack *track,
int *offset)
{
AVStream *st = track->stream;
uint8_t *p = track->codec_priv.data;
int size = track->codec_priv.size;
if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
track->codec_priv.size = 0;
return 0;
}
*offset = 8;
track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
p += track->codec_priv.size;
size -= track->codec_priv.size;
/* parse the remaining metadata blocks if present */
while (size >= 4) {
int block_last, block_type, block_size;
flac_parse_block_header(p, &block_last, &block_type, &block_size);
p += 4;
size -= 4;
if (block_size > size)
return 0;
/* check for the channel mask */
if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
AVDictionary *dict = NULL;
AVDictionaryEntry *chmask;
ff_vorbis_comment(s, &dict, p, block_size, 0);
chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
if (chmask) {
uint64_t mask = strtol(chmask->value, NULL, 0);
if (!mask || mask & ~0x3ffffULL) {
av_log(s, AV_LOG_WARNING,
"Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
} else
st->codec->channel_layout = mask;
}
av_dict_free(&dict);
}
p += block_size;
size -= block_size;
}
return 0;
}
static int matroska_parse_tracks(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTrack *tracks = matroska->tracks.elem;
AVStream *st;
int i, j, ret;
int k;
for (i = 0; i < matroska->tracks.nb_elem; i++) {
MatroskaTrack *track = &tracks[i];
enum AVCodecID codec_id = AV_CODEC_ID_NONE;
EbmlList *encodings_list = &track->encodings;
MatroskaTrackEncoding *encodings = encodings_list->elem;
uint8_t *extradata = NULL;
int extradata_size = 0;
int extradata_offset = 0;
uint32_t fourcc = 0;
AVIOContext b;
char* key_id_base64 = NULL;
int bit_depth = -1;
/* Apply some sanity checks. */
if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
track->type != MATROSKA_TRACK_TYPE_AUDIO &&
track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
track->type != MATROSKA_TRACK_TYPE_METADATA) {
av_log(matroska->ctx, AV_LOG_INFO,
"Unknown or unsupported track type %"PRIu64"\n",
track->type);
continue;
}
if (!track->codec_id)
continue;
if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
if (!track->default_duration && track->video.frame_rate > 0)
track->default_duration = 1000000000 / track->video.frame_rate;
if (track->video.display_width == -1)
track->video.display_width = track->video.pixel_width;
if (track->video.display_height == -1)
track->video.display_height = track->video.pixel_height;
if (track->video.color_space.size == 4)
fourcc = AV_RL32(track->video.color_space.data);
} else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
if (!track->audio.out_samplerate)
track->audio.out_samplerate = track->audio.samplerate;
}
if (encodings_list->nb_elem > 1) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Multiple combined encodings not supported");
} else if (encodings_list->nb_elem == 1) {
if (encodings[0].type) {
if (encodings[0].encryption.key_id.size > 0) {
/* Save the encryption key id to be stored later as a
metadata tag. */
const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
key_id_base64 = av_malloc(b64_size);
if (key_id_base64 == NULL)
return AVERROR(ENOMEM);
av_base64_encode(key_id_base64, b64_size,
encodings[0].encryption.key_id.data,
encodings[0].encryption.key_id.size);
} else {
encodings[0].scope = 0;
av_log(matroska->ctx, AV_LOG_ERROR,
"Unsupported encoding type");
}
} else if (
#if CONFIG_ZLIB
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
#endif
#if CONFIG_BZLIB
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_BZLIB &&
#endif
#if CONFIG_LZO
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_LZO &&
#endif
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP) {
encodings[0].scope = 0;
av_log(matroska->ctx, AV_LOG_ERROR,
"Unsupported encoding type");
} else if (track->codec_priv.size && encodings[0].scope & 2) {
uint8_t *codec_priv = track->codec_priv.data;
int ret = matroska_decode_buffer(&track->codec_priv.data,
&track->codec_priv.size,
track);
if (ret < 0) {
track->codec_priv.data = NULL;
track->codec_priv.size = 0;
av_log(matroska->ctx, AV_LOG_ERROR,
"Failed to decode codec private data\n");
}
if (codec_priv != track->codec_priv.data)
av_free(codec_priv);
}
}
for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
strlen(ff_mkv_codec_tags[j].str))) {
codec_id = ff_mkv_codec_tags[j].id;
break;
}
}
st = track->stream = avformat_new_stream(s, NULL);
if (!st) {
av_free(key_id_base64);
return AVERROR(ENOMEM);
}
if (key_id_base64) {
/* export encryption key id as base64 metadata tag */
av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
av_freep(&key_id_base64);
}
if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
track->codec_priv.size >= 40 &&
track->codec_priv.data) {
track->ms_compat = 1;
bit_depth = AV_RL16(track->codec_priv.data + 14);
fourcc = AV_RL32(track->codec_priv.data + 16);
codec_id = ff_codec_get_id(ff_codec_bmp_tags,
fourcc);
if (!codec_id)
codec_id = ff_codec_get_id(ff_codec_movvideo_tags,
fourcc);
extradata_offset = 40;
} else if (!strcmp(track->codec_id, "A_MS/ACM") &&
track->codec_priv.size >= 14 &&
track->codec_priv.data) {
int ret;
ffio_init_context(&b, track->codec_priv.data,
track->codec_priv.size,
0, NULL, NULL, NULL, NULL);
ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size, 0);
if (ret < 0)
return ret;
codec_id = st->codec->codec_id;
extradata_offset = FFMIN(track->codec_priv.size, 18);
} else if (!strcmp(track->codec_id, "A_QUICKTIME")
&& (track->codec_priv.size >= 86)
&& (track->codec_priv.data)) {
fourcc = AV_RL32(track->codec_priv.data + 4);
codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
if (ff_codec_get_id(ff_codec_movaudio_tags, AV_RL32(track->codec_priv.data))) {
fourcc = AV_RL32(track->codec_priv.data);
codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
}
} else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
(track->codec_priv.size >= 21) &&
(track->codec_priv.data)) {
fourcc = AV_RL32(track->codec_priv.data + 4);
codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
if (ff_codec_get_id(ff_codec_movvideo_tags, AV_RL32(track->codec_priv.data))) {
fourcc = AV_RL32(track->codec_priv.data);
codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
}
if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI "))
codec_id = AV_CODEC_ID_SVQ3;
if (codec_id == AV_CODEC_ID_NONE) {
char buf[32];
av_get_codec_tag_string(buf, sizeof(buf), fourcc);
av_log(matroska->ctx, AV_LOG_ERROR,
"mov FourCC not found %s.\n", buf);
}
} else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
switch (track->audio.bitdepth) {
case 8:
codec_id = AV_CODEC_ID_PCM_U8;
break;
case 24:
codec_id = AV_CODEC_ID_PCM_S24BE;
break;
case 32:
codec_id = AV_CODEC_ID_PCM_S32BE;
break;
}
} else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
switch (track->audio.bitdepth) {
case 8:
codec_id = AV_CODEC_ID_PCM_U8;
break;
case 24:
codec_id = AV_CODEC_ID_PCM_S24LE;
break;
case 32:
codec_id = AV_CODEC_ID_PCM_S32LE;
break;
}
} else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
track->audio.bitdepth == 64) {
codec_id = AV_CODEC_ID_PCM_F64LE;
} else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
int profile = matroska_aac_profile(track->codec_id);
int sri = matroska_aac_sri(track->audio.samplerate);
extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
if (!extradata)
return AVERROR(ENOMEM);
extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
if (strstr(track->codec_id, "SBR")) {
sri = matroska_aac_sri(track->audio.out_samplerate);
extradata[2] = 0x56;
extradata[3] = 0xE5;
extradata[4] = 0x80 | (sri << 3);
extradata_size = 5;
} else
extradata_size = 2;
} else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - FF_INPUT_BUFFER_PADDING_SIZE) {
/* Only ALAC's magic cookie is stored in Matroska's track headers.
* Create the "atom size", "tag", and "tag version" fields the
* decoder expects manually. */
extradata_size = 12 + track->codec_priv.size;
extradata = av_mallocz(extradata_size +
FF_INPUT_BUFFER_PADDING_SIZE);
if (!extradata)
return AVERROR(ENOMEM);
AV_WB32(extradata, extradata_size);
memcpy(&extradata[4], "alac", 4);
AV_WB32(&extradata[8], 0);
memcpy(&extradata[12], track->codec_priv.data,
track->codec_priv.size);
} else if (codec_id == AV_CODEC_ID_TTA) {
extradata_size = 30;
extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!extradata)
return AVERROR(ENOMEM);
ffio_init_context(&b, extradata, extradata_size, 1,
NULL, NULL, NULL, NULL);
avio_write(&b, "TTA1", 4);
avio_wl16(&b, 1);
avio_wl16(&b, track->audio.channels);
avio_wl16(&b, track->audio.bitdepth);
if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
return AVERROR_INVALIDDATA;
avio_wl32(&b, track->audio.out_samplerate);
avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
track->audio.out_samplerate,
AV_TIME_BASE * 1000));
} else if (codec_id == AV_CODEC_ID_RV10 ||
codec_id == AV_CODEC_ID_RV20 ||
codec_id == AV_CODEC_ID_RV30 ||
codec_id == AV_CODEC_ID_RV40) {
extradata_offset = 26;
} else if (codec_id == AV_CODEC_ID_RA_144) {
track->audio.out_samplerate = 8000;
track->audio.channels = 1;
} else if ((codec_id == AV_CODEC_ID_RA_288 ||
codec_id == AV_CODEC_ID_COOK ||
codec_id == AV_CODEC_ID_ATRAC3 ||
codec_id == AV_CODEC_ID_SIPR)
&& track->codec_priv.data) {
int flavor;
ffio_init_context(&b, track->codec_priv.data,
track->codec_priv.size,
0, NULL, NULL, NULL, NULL);
avio_skip(&b, 22);
flavor = avio_rb16(&b);
track->audio.coded_framesize = avio_rb32(&b);
avio_skip(&b, 12);
track->audio.sub_packet_h = avio_rb16(&b);
track->audio.frame_size = avio_rb16(&b);
track->audio.sub_packet_size = avio_rb16(&b);
if (flavor < 0 ||
track->audio.coded_framesize <= 0 ||
track->audio.sub_packet_h <= 0 ||
track->audio.frame_size <= 0 ||
track->audio.sub_packet_size <= 0)
return AVERROR_INVALIDDATA;
track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
track->audio.frame_size);
if (!track->audio.buf)
return AVERROR(ENOMEM);
if (codec_id == AV_CODEC_ID_RA_288) {
st->codec->block_align = track->audio.coded_framesize;
track->codec_priv.size = 0;
} else {
if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
st->codec->bit_rate = sipr_bit_rate[flavor];
}
st->codec->block_align = track->audio.sub_packet_size;
extradata_offset = 78;
}
} else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
ret = matroska_parse_flac(s, track, &extradata_offset);
if (ret < 0)
return ret;
} else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
fourcc = AV_RL32(track->codec_priv.data);
}
track->codec_priv.size -= extradata_offset;
if (codec_id == AV_CODEC_ID_NONE)
av_log(matroska->ctx, AV_LOG_INFO,
"Unknown/unsupported AVCodecID %s.\n", track->codec_id);
if (track->time_scale < 0.01)
track->time_scale = 1.0;
avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
1000 * 1000 * 1000); /* 64 bit pts in ns */
/* convert the delay from ns to the track timebase */
track->codec_delay = av_rescale_q(track->codec_delay,
(AVRational){ 1, 1000000000 },
st->time_base);
st->codec->codec_id = codec_id;
if (strcmp(track->language, "und"))
av_dict_set(&st->metadata, "language", track->language, 0);
av_dict_set(&st->metadata, "title", track->name, 0);
if (track->flag_default)
st->disposition |= AV_DISPOSITION_DEFAULT;
if (track->flag_forced)
st->disposition |= AV_DISPOSITION_FORCED;
if (!st->codec->extradata) {
if (extradata) {
st->codec->extradata = extradata;
st->codec->extradata_size = extradata_size;
} else if (track->codec_priv.data && track->codec_priv.size > 0) {
if (ff_alloc_extradata(st->codec, track->codec_priv.size))
return AVERROR(ENOMEM);
memcpy(st->codec->extradata,
track->codec_priv.data + extradata_offset,
track->codec_priv.size);
}
}
if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
st->codec->codec_type = AVMEDIA_TYPE_VIDEO;
st->codec->codec_tag = fourcc;
if (bit_depth >= 0)
st->codec->bits_per_coded_sample = bit_depth;
st->codec->width = track->video.pixel_width;
st->codec->height = track->video.pixel_height;
av_reduce(&st->sample_aspect_ratio.num,
&st->sample_aspect_ratio.den,
st->codec->height * track->video.display_width,
st->codec->width * track->video.display_height,
255);
if (st->codec->codec_id != AV_CODEC_ID_HEVC)
st->need_parsing = AVSTREAM_PARSE_HEADERS;
if (track->default_duration) {
av_reduce(&st->avg_frame_rate.num, &st->avg_frame_rate.den,
1000000000, track->default_duration, 30000);
#if FF_API_R_FRAME_RATE
if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000LL
&& st->avg_frame_rate.num > st->avg_frame_rate.den * 5LL)
st->r_frame_rate = st->avg_frame_rate;
#endif
}
/* export stereo mode flag as metadata tag */
if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
/* export alpha mode flag as metadata tag */
if (track->video.alpha_mode)
av_dict_set(&st->metadata, "alpha_mode", "1", 0);
/* if we have virtual track, mark the real tracks */
for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
char buf[32];
if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
continue;
snprintf(buf, sizeof(buf), "%s_%d",
ff_matroska_video_stereo_plane[planes[j].type], i);
for (k=0; k < matroska->tracks.nb_elem; k++)
if (planes[j].uid == tracks[k].uid && tracks[k].stream) {
av_dict_set(&tracks[k].stream->metadata,
"stereo_mode", buf, 0);
break;
}
}
// add stream level stereo3d side data if it is a supported format
if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
if (ret < 0)
return ret;
}
} else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
st->codec->codec_type = AVMEDIA_TYPE_AUDIO;
st->codec->sample_rate = track->audio.out_samplerate;
st->codec->channels = track->audio.channels;
if (!st->codec->bits_per_coded_sample)
st->codec->bits_per_coded_sample = track->audio.bitdepth;
if (st->codec->codec_id != AV_CODEC_ID_AAC)
st->need_parsing = AVSTREAM_PARSE_HEADERS;
if (track->codec_delay > 0) {
st->codec->delay = av_rescale_q(track->codec_delay,
st->time_base,
(AVRational){1, st->codec->sample_rate});
}
if (track->seek_preroll > 0) {
av_codec_set_seek_preroll(st->codec,
av_rescale_q(track->seek_preroll,
(AVRational){1, 1000000000},
(AVRational){1, st->codec->sample_rate}));
}
} else if (codec_id == AV_CODEC_ID_WEBVTT) {
st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
st->disposition |= AV_DISPOSITION_CAPTIONS;
} else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
} else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
st->disposition |= AV_DISPOSITION_METADATA;
}
} else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
if (st->codec->codec_id == AV_CODEC_ID_ASS)
matroska->contains_ssa = 1;
}
}
return 0;
}
static int matroska_read_header(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
EbmlList *attachments_list = &matroska->attachments;
EbmlList *chapters_list = &matroska->chapters;
MatroskaAttachment *attachments;
MatroskaChapter *chapters;
uint64_t max_start = 0;
int64_t pos;
Ebml ebml = { 0 };
int i, j, res;
matroska->ctx = s;
matroska->cues_parsing_deferred = 1;
/* First read the EBML header. */
if (ebml_parse(matroska, ebml_syntax, &ebml) || !ebml.doctype) {
av_log(matroska->ctx, AV_LOG_ERROR, "EBML header parsing failed\n");
ebml_free(ebml_syntax, &ebml);
return AVERROR_INVALIDDATA;
}
if (ebml.version > EBML_VERSION ||
ebml.max_size > sizeof(uint64_t) ||
ebml.id_length > sizeof(uint32_t) ||
ebml.doctype_version > 3) {
av_log(matroska->ctx, AV_LOG_ERROR,
"EBML header using unsupported features\n"
"(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
ebml.version, ebml.doctype, ebml.doctype_version);
ebml_free(ebml_syntax, &ebml);
return AVERROR_PATCHWELCOME;
} else if (ebml.doctype_version == 3) {
av_log(matroska->ctx, AV_LOG_WARNING,
"EBML header using unsupported features\n"
"(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
ebml.version, ebml.doctype, ebml.doctype_version);
}
for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
if (!strcmp(ebml.doctype, matroska_doctypes[i]))
break;
if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
ebml_free(ebml_syntax, &ebml);
return AVERROR_INVALIDDATA;
}
}
ebml_free(ebml_syntax, &ebml);
/* The next thing is a segment. */
pos = avio_tell(matroska->ctx->pb);
res = ebml_parse(matroska, matroska_segments, matroska);
// try resyncing until we find a EBML_STOP type element.
while (res != 1) {
res = matroska_resync(matroska, pos);
if (res < 0)
return res;
pos = avio_tell(matroska->ctx->pb);
res = ebml_parse(matroska, matroska_segment, matroska);
}
matroska_execute_seekhead(matroska);
if (!matroska->time_scale)
matroska->time_scale = 1000000;
if (matroska->duration)
matroska->ctx->duration = matroska->duration * matroska->time_scale *
1000 / AV_TIME_BASE;
av_dict_set(&s->metadata, "title", matroska->title, 0);
av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
if (matroska->date_utc.size == 8)
matroska_metadata_creation_time(&s->metadata, AV_RB64(matroska->date_utc.data));
res = matroska_parse_tracks(s);
if (res < 0)
return res;
attachments = attachments_list->elem;
for (j = 0; j < attachments_list->nb_elem; j++) {
if (!(attachments[j].filename && attachments[j].mime &&
attachments[j].bin.data && attachments[j].bin.size > 0)) {
av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
} else {
AVStream *st = avformat_new_stream(s, NULL);
if (!st)
break;
av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
st->codec->codec_id = AV_CODEC_ID_NONE;
for (i = 0; ff_mkv_image_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
if (!strncmp(ff_mkv_image_mime_tags[i].str, attachments[j].mime,
strlen(ff_mkv_image_mime_tags[i].str))) {
st->codec->codec_id = ff_mkv_image_mime_tags[i].id;
break;
}
}
attachments[j].stream = st;
if (st->codec->codec_id != AV_CODEC_ID_NONE) {
st->disposition |= AV_DISPOSITION_ATTACHED_PIC;
st->codec->codec_type = AVMEDIA_TYPE_VIDEO;
av_init_packet(&st->attached_pic);
if ((res = av_new_packet(&st->attached_pic, attachments[j].bin.size)) < 0)
return res;
memcpy(st->attached_pic.data, attachments[j].bin.data, attachments[j].bin.size);
st->attached_pic.stream_index = st->index;
st->attached_pic.flags |= AV_PKT_FLAG_KEY;
} else {
st->codec->codec_type = AVMEDIA_TYPE_ATTACHMENT;
if (ff_alloc_extradata(st->codec, attachments[j].bin.size))
break;
memcpy(st->codec->extradata, attachments[j].bin.data,
attachments[j].bin.size);
for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
strlen(ff_mkv_mime_tags[i].str))) {
st->codec->codec_id = ff_mkv_mime_tags[i].id;
break;
}
}
}
}
}
chapters = chapters_list->elem;
for (i = 0; i < chapters_list->nb_elem; i++)
if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
(max_start == 0 || chapters[i].start > max_start)) {
chapters[i].chapter =
avpriv_new_chapter(s, chapters[i].uid,
(AVRational) { 1, 1000000000 },
chapters[i].start, chapters[i].end,
chapters[i].title);
if (chapters[i].chapter) {
av_dict_set(&chapters[i].chapter->metadata,
"title", chapters[i].title, 0);
}
max_start = chapters[i].start;
}
matroska_add_index_entries(matroska);
matroska_convert_tags(s);
return 0;
}
/*
* Put one packet in an application-supplied AVPacket struct.
* Returns 0 on success or -1 on failure.
*/
static int matroska_deliver_packet(MatroskaDemuxContext *matroska,
AVPacket *pkt)
{
if (matroska->num_packets > 0) {
memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
av_freep(&matroska->packets[0]);
if (matroska->num_packets > 1) {
void *newpackets;
memmove(&matroska->packets[0], &matroska->packets[1],
(matroska->num_packets - 1) * sizeof(AVPacket *));
newpackets = av_realloc(matroska->packets,
(matroska->num_packets - 1) *
sizeof(AVPacket *));
if (newpackets)
matroska->packets = newpackets;
} else {
av_freep(&matroska->packets);
matroska->prev_pkt = NULL;
}
matroska->num_packets--;
return 0;
}
return -1;
}
/*
* Free all packets in our internal queue.
*/
static void matroska_clear_queue(MatroskaDemuxContext *matroska)
{
matroska->prev_pkt = NULL;
if (matroska->packets) {
int n;
for (n = 0; n < matroska->num_packets; n++) {
av_free_packet(matroska->packets[n]);
av_freep(&matroska->packets[n]);
}
av_freep(&matroska->packets);
matroska->num_packets = 0;
}
}
static int matroska_parse_laces(MatroskaDemuxContext *matroska, uint8_t **buf,
int *buf_size, int type,
uint32_t **lace_buf, int *laces)
{
int res = 0, n, size = *buf_size;
uint8_t *data = *buf;
uint32_t *lace_size;
if (!type) {
*laces = 1;
*lace_buf = av_mallocz(sizeof(int));
if (!*lace_buf)
return AVERROR(ENOMEM);
*lace_buf[0] = size;
return 0;
}
av_assert0(size > 0);
*laces = *data + 1;
data += 1;
size -= 1;
lace_size = av_mallocz(*laces * sizeof(int));
if (!lace_size)
return AVERROR(ENOMEM);
switch (type) {
case 0x1: /* Xiph lacing */
{
uint8_t temp;
uint32_t total = 0;
for (n = 0; res == 0 && n < *laces - 1; n++) {
while (1) {
if (size <= total) {
res = AVERROR_INVALIDDATA;
break;
}
temp = *data;
total += temp;
lace_size[n] += temp;
data += 1;
size -= 1;
if (temp != 0xff)
break;
}
}
if (size <= total) {
res = AVERROR_INVALIDDATA;
break;
}
lace_size[n] = size - total;
break;
}
case 0x2: /* fixed-size lacing */
if (size % (*laces)) {
res = AVERROR_INVALIDDATA;
break;
}
for (n = 0; n < *laces; n++)
lace_size[n] = size / *laces;
break;
case 0x3: /* EBML lacing */
{
uint64_t num;
uint64_t total;
n = matroska_ebmlnum_uint(matroska, data, size, &num);
if (n < 0 || num > INT_MAX) {
av_log(matroska->ctx, AV_LOG_INFO,
"EBML block data error\n");
res = n<0 ? n : AVERROR_INVALIDDATA;
break;
}
data += n;
size -= n;
total = lace_size[0] = num;
for (n = 1; res == 0 && n < *laces - 1; n++) {
int64_t snum;
int r;
r = matroska_ebmlnum_sint(matroska, data, size, &snum);
if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
av_log(matroska->ctx, AV_LOG_INFO,
"EBML block data error\n");
res = r<0 ? r : AVERROR_INVALIDDATA;
break;
}
data += r;
size -= r;
lace_size[n] = lace_size[n - 1] + snum;
total += lace_size[n];
}
if (size <= total) {
res = AVERROR_INVALIDDATA;
break;
}
lace_size[*laces - 1] = size - total;
break;
}
}
*buf = data;
*lace_buf = lace_size;
*buf_size = size;
return res;
}
static int matroska_parse_rm_audio(MatroskaDemuxContext *matroska,
MatroskaTrack *track, AVStream *st,
uint8_t *data, int size, uint64_t timecode,
int64_t pos)
{
int a = st->codec->block_align;
int sps = track->audio.sub_packet_size;
int cfs = track->audio.coded_framesize;
int h = track->audio.sub_packet_h;
int y = track->audio.sub_packet_cnt;
int w = track->audio.frame_size;
int x;
if (!track->audio.pkt_cnt) {
if (track->audio.sub_packet_cnt == 0)
track->audio.buf_timecode = timecode;
if (st->codec->codec_id == AV_CODEC_ID_RA_288) {
if (size < cfs * h / 2) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Corrupt int4 RM-style audio packet size\n");
return AVERROR_INVALIDDATA;
}
for (x = 0; x < h / 2; x++)
memcpy(track->audio.buf + x * 2 * w + y * cfs,
data + x * cfs, cfs);
} else if (st->codec->codec_id == AV_CODEC_ID_SIPR) {
if (size < w) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Corrupt sipr RM-style audio packet size\n");
return AVERROR_INVALIDDATA;
}
memcpy(track->audio.buf + y * w, data, w);
} else {
if (size < sps * w / sps || h<=0 || w%sps) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Corrupt generic RM-style audio packet size\n");
return AVERROR_INVALIDDATA;
}
for (x = 0; x < w / sps; x++)
memcpy(track->audio.buf +
sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
data + x * sps, sps);
}
if (++track->audio.sub_packet_cnt >= h) {
if (st->codec->codec_id == AV_CODEC_ID_SIPR)
ff_rm_reorder_sipr_data(track->audio.buf, h, w);
track->audio.sub_packet_cnt = 0;
track->audio.pkt_cnt = h * w / a;
}
}
while (track->audio.pkt_cnt) {
int ret;
AVPacket *pkt = av_mallocz(sizeof(AVPacket));
if (!pkt)
return AVERROR(ENOMEM);
ret = av_new_packet(pkt, a);
if (ret < 0) {
av_free(pkt);
return ret;
}
memcpy(pkt->data,
track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
a);
pkt->pts = track->audio.buf_timecode;
track->audio.buf_timecode = AV_NOPTS_VALUE;
pkt->pos = pos;
pkt->stream_index = st->index;
dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
}
return 0;
}
/* reconstruct full wavpack blocks from mangled matroska ones */
static int matroska_parse_wavpack(MatroskaTrack *track, uint8_t *src,
uint8_t **pdst, int *size)
{
uint8_t *dst = NULL;
int dstlen = 0;
int srclen = *size;
uint32_t samples;
uint16_t ver;
int ret, offset = 0;
if (srclen < 12 || track->stream->codec->extradata_size < 2)
return AVERROR_INVALIDDATA;
ver = AV_RL16(track->stream->codec->extradata);
samples = AV_RL32(src);
src += 4;
srclen -= 4;
while (srclen >= 8) {
int multiblock;
uint32_t blocksize;
uint8_t *tmp;
uint32_t flags = AV_RL32(src);
uint32_t crc = AV_RL32(src + 4);
src += 8;
srclen -= 8;
multiblock = (flags & 0x1800) != 0x1800;
if (multiblock) {
if (srclen < 4) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
blocksize = AV_RL32(src);
src += 4;
srclen -= 4;
} else
blocksize = srclen;
if (blocksize > srclen) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
tmp = av_realloc(dst, dstlen + blocksize + 32);
if (!tmp) {
ret = AVERROR(ENOMEM);
goto fail;
}
dst = tmp;
dstlen += blocksize + 32;
AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
AV_WL16(dst + offset + 8, ver); // version
AV_WL16(dst + offset + 10, 0); // track/index_no
AV_WL32(dst + offset + 12, 0); // total samples
AV_WL32(dst + offset + 16, 0); // block index
AV_WL32(dst + offset + 20, samples); // number of samples
AV_WL32(dst + offset + 24, flags); // flags
AV_WL32(dst + offset + 28, crc); // crc
memcpy(dst + offset + 32, src, blocksize); // block data
src += blocksize;
srclen -= blocksize;
offset += blocksize + 32;
}
*pdst = dst;
*size = dstlen;
return 0;
fail:
av_freep(&dst);
return ret;
}
static int matroska_parse_webvtt(MatroskaDemuxContext *matroska,
MatroskaTrack *track,
AVStream *st,
uint8_t *data, int data_len,
uint64_t timecode,
uint64_t duration,
int64_t pos)
{
AVPacket *pkt;
uint8_t *id, *settings, *text, *buf;
int id_len, settings_len, text_len;
uint8_t *p, *q;
int err;
if (data_len <= 0)
return AVERROR_INVALIDDATA;
p = data;
q = data + data_len;
id = p;
id_len = -1;
while (p < q) {
if (*p == '\r' || *p == '\n') {
id_len = p - id;
if (*p == '\r')
p++;
break;
}
p++;
}
if (p >= q || *p != '\n')
return AVERROR_INVALIDDATA;
p++;
settings = p;
settings_len = -1;
while (p < q) {
if (*p == '\r' || *p == '\n') {
settings_len = p - settings;
if (*p == '\r')
p++;
break;
}
p++;
}
if (p >= q || *p != '\n')
return AVERROR_INVALIDDATA;
p++;
text = p;
text_len = q - p;
while (text_len > 0) {
const int len = text_len - 1;
const uint8_t c = p[len];
if (c != '\r' && c != '\n')
break;
text_len = len;
}
if (text_len <= 0)
return AVERROR_INVALIDDATA;
pkt = av_mallocz(sizeof(*pkt));
if (!pkt)
return AVERROR(ENOMEM);
err = av_new_packet(pkt, text_len);
if (err < 0) {
av_free(pkt);
return AVERROR(err);
}
memcpy(pkt->data, text, text_len);
if (id_len > 0) {
buf = av_packet_new_side_data(pkt,
AV_PKT_DATA_WEBVTT_IDENTIFIER,
id_len);
if (!buf) {
av_free(pkt);
return AVERROR(ENOMEM);
}
memcpy(buf, id, id_len);
}
if (settings_len > 0) {
buf = av_packet_new_side_data(pkt,
AV_PKT_DATA_WEBVTT_SETTINGS,
settings_len);
if (!buf) {
av_free(pkt);
return AVERROR(ENOMEM);
}
memcpy(buf, settings, settings_len);
}
// Do we need this for subtitles?
// pkt->flags = AV_PKT_FLAG_KEY;
pkt->stream_index = st->index;
pkt->pts = timecode;
// Do we need this for subtitles?
// pkt->dts = timecode;
pkt->duration = duration;
pkt->pos = pos;
dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
matroska->prev_pkt = pkt;
return 0;
}
static int matroska_parse_frame(MatroskaDemuxContext *matroska,
MatroskaTrack *track, AVStream *st,
uint8_t *data, int pkt_size,
uint64_t timecode, uint64_t lace_duration,
int64_t pos, int is_keyframe,
uint8_t *additional, uint64_t additional_id, int additional_size,
int64_t discard_padding)
{
MatroskaTrackEncoding *encodings = track->encodings.elem;
uint8_t *pkt_data = data;
int offset = 0, res;
AVPacket *pkt;
if (encodings && !encodings->type && encodings->scope & 1) {
res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
if (res < 0)
return res;
}
if (st->codec->codec_id == AV_CODEC_ID_WAVPACK) {
uint8_t *wv_data;
res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
if (res < 0) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Error parsing a wavpack block.\n");
goto fail;
}
if (pkt_data != data)
av_freep(&pkt_data);
pkt_data = wv_data;
}
if (st->codec->codec_id == AV_CODEC_ID_PRORES &&
AV_RB32(&data[4]) != MKBETAG('i', 'c', 'p', 'f'))
offset = 8;
pkt = av_mallocz(sizeof(AVPacket));
if (!pkt) {
if (pkt_data != data)
av_freep(&pkt_data);
return AVERROR(ENOMEM);
}
/* XXX: prevent data copy... */
if (av_new_packet(pkt, pkt_size + offset) < 0) {
av_free(pkt);
res = AVERROR(ENOMEM);
goto fail;
}
if (st->codec->codec_id == AV_CODEC_ID_PRORES && offset == 8) {
uint8_t *buf = pkt->data;
bytestream_put_be32(&buf, pkt_size);
bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
}
memcpy(pkt->data + offset, pkt_data, pkt_size);
if (pkt_data != data)
av_freep(&pkt_data);
pkt->flags = is_keyframe;
pkt->stream_index = st->index;
if (additional_size > 0) {
uint8_t *side_data = av_packet_new_side_data(pkt,
AV_PKT_DATA_MATROSKA_BLOCKADDITIONAL,
additional_size + 8);
if (!side_data) {
av_free_packet(pkt);
av_free(pkt);
return AVERROR(ENOMEM);
}
AV_WB64(side_data, additional_id);
memcpy(side_data + 8, additional, additional_size);
}
if (discard_padding) {
uint8_t *side_data = av_packet_new_side_data(pkt,
AV_PKT_DATA_SKIP_SAMPLES,
10);
if (!side_data) {
av_free_packet(pkt);
av_free(pkt);
return AVERROR(ENOMEM);
}
AV_WL32(side_data, 0);
AV_WL32(side_data + 4, av_rescale_q(discard_padding,
(AVRational){1, 1000000000},
(AVRational){1, st->codec->sample_rate}));
}
if (track->ms_compat)
pkt->dts = timecode;
else
pkt->pts = timecode;
pkt->pos = pos;
if (st->codec->codec_id == AV_CODEC_ID_SUBRIP) {
/*
* For backward compatibility.
* Historically, we have put subtitle duration
* in convergence_duration, on the off chance
* that the time_scale is less than 1us, which
* could result in a 32bit overflow on the
* normal duration field.
*/
pkt->convergence_duration = lace_duration;
}
if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE ||
lace_duration <= INT_MAX) {
/*
* For non subtitle tracks, just store the duration
* as normal.
*
* If it's a subtitle track and duration value does
* not overflow a uint32, then also store it normally.
*/
pkt->duration = lace_duration;
}
dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
matroska->prev_pkt = pkt;
return 0;
fail:
if (pkt_data != data)
av_freep(&pkt_data);
return res;
}
static int matroska_parse_block(MatroskaDemuxContext *matroska, uint8_t *data,
int size, int64_t pos, uint64_t cluster_time,
uint64_t block_duration, int is_keyframe,
uint8_t *additional, uint64_t additional_id, int additional_size,
int64_t cluster_pos, int64_t discard_padding)
{
uint64_t timecode = AV_NOPTS_VALUE;
MatroskaTrack *track;
int res = 0;
AVStream *st;
int16_t block_time;
uint32_t *lace_size = NULL;
int n, flags, laces = 0;
uint64_t num;
int trust_default_duration = 1;
if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
return n;
}
data += n;
size -= n;
track = matroska_find_track_by_num(matroska, num);
if (!track || !track->stream) {
av_log(matroska->ctx, AV_LOG_INFO,
"Invalid stream %"PRIu64" or size %u\n", num, size);
return AVERROR_INVALIDDATA;
} else if (size <= 3)
return 0;
st = track->stream;
if (st->discard >= AVDISCARD_ALL)
return res;
av_assert1(block_duration != AV_NOPTS_VALUE);
block_time = sign_extend(AV_RB16(data), 16);
data += 2;
flags = *data++;
size -= 3;
if (is_keyframe == -1)
is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
if (cluster_time != (uint64_t) -1 &&
(block_time >= 0 || cluster_time >= -block_time)) {
timecode = cluster_time + block_time - track->codec_delay;
if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
timecode < track->end_timecode)
is_keyframe = 0; /* overlapping subtitles are not key frame */
if (is_keyframe)
av_add_index_entry(st, cluster_pos, timecode, 0, 0,
AVINDEX_KEYFRAME);
}
if (matroska->skip_to_keyframe &&
track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
if (timecode < matroska->skip_to_timecode)
return res;
if (is_keyframe)
matroska->skip_to_keyframe = 0;
else if (!st->skip_to_keyframe) {
av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
matroska->skip_to_keyframe = 0;
}
}
res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
&lace_size, &laces);
if (res)
goto end;
if (track->audio.samplerate == 8000) {
// If this is needed for more codecs, then add them here
if (st->codec->codec_id == AV_CODEC_ID_AC3) {
if (track->audio.samplerate != st->codec->sample_rate || !st->codec->frame_size)
trust_default_duration = 0;
}
}
if (!block_duration && trust_default_duration)
block_duration = track->default_duration * laces / matroska->time_scale;
if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
track->end_timecode =
FFMAX(track->end_timecode, timecode + block_duration);
for (n = 0; n < laces; n++) {
int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
if (lace_size[n] > size) {
av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
break;
}
if ((st->codec->codec_id == AV_CODEC_ID_RA_288 ||
st->codec->codec_id == AV_CODEC_ID_COOK ||
st->codec->codec_id == AV_CODEC_ID_SIPR ||
st->codec->codec_id == AV_CODEC_ID_ATRAC3) &&
st->codec->block_align && track->audio.sub_packet_size) {
res = matroska_parse_rm_audio(matroska, track, st, data,
lace_size[n],
timecode, pos);
if (res)
goto end;
} else if (st->codec->codec_id == AV_CODEC_ID_WEBVTT) {
res = matroska_parse_webvtt(matroska, track, st,
data, lace_size[n],
timecode, lace_duration,
pos);
if (res)
goto end;
} else {
res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
timecode, lace_duration, pos,
!n ? is_keyframe : 0,
additional, additional_id, additional_size,
discard_padding);
if (res)
goto end;
}
if (timecode != AV_NOPTS_VALUE)
timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
data += lace_size[n];
size -= lace_size[n];
}
end:
av_free(lace_size);
return res;
}
static int matroska_parse_cluster_incremental(MatroskaDemuxContext *matroska)
{
EbmlList *blocks_list;
MatroskaBlock *blocks;
int i, res;
res = ebml_parse(matroska,
matroska_cluster_incremental_parsing,
&matroska->current_cluster);
if (res == 1) {
/* New Cluster */
if (matroska->current_cluster_pos)
ebml_level_end(matroska);
ebml_free(matroska_cluster, &matroska->current_cluster);
memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
matroska->current_cluster_num_blocks = 0;
matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
matroska->prev_pkt = NULL;
/* sizeof the ID which was already read */
if (matroska->current_id)
matroska->current_cluster_pos -= 4;
res = ebml_parse(matroska,
matroska_clusters_incremental,
&matroska->current_cluster);
/* Try parsing the block again. */
if (res == 1)
res = ebml_parse(matroska,
matroska_cluster_incremental_parsing,
&matroska->current_cluster);
}
if (!res &&
matroska->current_cluster_num_blocks <
matroska->current_cluster.blocks.nb_elem) {
blocks_list = &matroska->current_cluster.blocks;
blocks = blocks_list->elem;
matroska->current_cluster_num_blocks = blocks_list->nb_elem;
i = blocks_list->nb_elem - 1;
if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
uint8_t* additional = blocks[i].additional.size > 0 ?
blocks[i].additional.data : NULL;
if (!blocks[i].non_simple)
blocks[i].duration = 0;
res = matroska_parse_block(matroska, blocks[i].bin.data,
blocks[i].bin.size, blocks[i].bin.pos,
matroska->current_cluster.timecode,
blocks[i].duration, is_keyframe,
additional, blocks[i].additional_id,
blocks[i].additional.size,
matroska->current_cluster_pos,
blocks[i].discard_padding);
}
}
return res;
}
static int matroska_parse_cluster(MatroskaDemuxContext *matroska)
{
MatroskaCluster cluster = { 0 };
EbmlList *blocks_list;
MatroskaBlock *blocks;
int i, res;
int64_t pos;
if (!matroska->contains_ssa)
return matroska_parse_cluster_incremental(matroska);
pos = avio_tell(matroska->ctx->pb);
matroska->prev_pkt = NULL;
if (matroska->current_id)
pos -= 4; /* sizeof the ID which was already read */
res = ebml_parse(matroska, matroska_clusters, &cluster);
blocks_list = &cluster.blocks;
blocks = blocks_list->elem;
for (i = 0; i < blocks_list->nb_elem; i++)
if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
res = matroska_parse_block(matroska, blocks[i].bin.data,
blocks[i].bin.size, blocks[i].bin.pos,
cluster.timecode, blocks[i].duration,
is_keyframe, NULL, 0, 0, pos,
blocks[i].discard_padding);
}
ebml_free(matroska_cluster, &cluster);
return res;
}
static int matroska_read_packet(AVFormatContext *s, AVPacket *pkt)
{
MatroskaDemuxContext *matroska = s->priv_data;
while (matroska_deliver_packet(matroska, pkt)) {
int64_t pos = avio_tell(matroska->ctx->pb);
if (matroska->done)
return AVERROR_EOF;
if (matroska_parse_cluster(matroska) < 0)
matroska_resync(matroska, pos);
}
return 0;
}
static int matroska_read_seek(AVFormatContext *s, int stream_index,
int64_t timestamp, int flags)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTrack *tracks = NULL;
AVStream *st = s->streams[stream_index];
int i, index, index_sub, index_min;
/* Parse the CUES now since we need the index data to seek. */
if (matroska->cues_parsing_deferred > 0) {
matroska->cues_parsing_deferred = 0;
matroska_parse_cues(matroska);
}
if (!st->nb_index_entries)
goto err;
timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
SEEK_SET);
matroska->current_id = 0;
while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
matroska_clear_queue(matroska);
if (matroska_parse_cluster(matroska) < 0)
break;
}
}
matroska_clear_queue(matroska);
if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
goto err;
index_min = index;
tracks = matroska->tracks.elem;
for (i = 0; i < matroska->tracks.nb_elem; i++) {
tracks[i].audio.pkt_cnt = 0;
tracks[i].audio.sub_packet_cnt = 0;
tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
tracks[i].end_timecode = 0;
if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
tracks[i].stream->discard != AVDISCARD_ALL) {
index_sub = av_index_search_timestamp(
tracks[i].stream, st->index_entries[index].timestamp,
AVSEEK_FLAG_BACKWARD);
while (index_sub >= 0 &&
index_min > 0 &&
tracks[i].stream->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
st->index_entries[index].timestamp - tracks[i].stream->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
index_min--;
}
}
avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
matroska->current_id = 0;
if (flags & AVSEEK_FLAG_ANY) {
st->skip_to_keyframe = 0;
matroska->skip_to_timecode = timestamp;
} else {
st->skip_to_keyframe = 1;
matroska->skip_to_timecode = st->index_entries[index].timestamp;
}
matroska->skip_to_keyframe = 1;
matroska->done = 0;
matroska->num_levels = 0;
ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
return 0;
err:
// slightly hackish but allows proper fallback to
// the generic seeking code.
matroska_clear_queue(matroska);
matroska->current_id = 0;
st->skip_to_keyframe =
matroska->skip_to_keyframe = 0;
matroska->done = 0;
matroska->num_levels = 0;
return -1;
}
static int matroska_read_close(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTrack *tracks = matroska->tracks.elem;
int n;
matroska_clear_queue(matroska);
for (n = 0; n < matroska->tracks.nb_elem; n++)
if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
av_freep(&tracks[n].audio.buf);
ebml_free(matroska_cluster, &matroska->current_cluster);
ebml_free(matroska_segment, matroska);
return 0;
}
typedef struct {
int64_t start_time_ns;
int64_t end_time_ns;
int64_t start_offset;
int64_t end_offset;
} CueDesc;
/* This function searches all the Cues and returns the CueDesc corresponding the
* the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
* end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
*/
static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
MatroskaDemuxContext *matroska = s->priv_data;
CueDesc cue_desc;
int i;
int nb_index_entries = s->streams[0]->nb_index_entries;
AVIndexEntry *index_entries = s->streams[0]->index_entries;
if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
for (i = 1; i < nb_index_entries; i++) {
if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
index_entries[i].timestamp * matroska->time_scale > ts) {
break;
}
}
--i;
cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
if (i != nb_index_entries - 1) {
cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
} else {
cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
// FIXME: this needs special handling for files where Cues appear
// before Clusters. the current logic assumes Cues appear after
// Clusters.
cue_desc.end_offset = cues_start - matroska->segment_start;
}
return cue_desc;
}
static int webm_clusters_start_with_keyframe(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
int64_t cluster_pos, before_pos;
int index, rv = 1;
if (s->streams[0]->nb_index_entries <= 0) return 0;
// seek to the first cluster using cues.
index = av_index_search_timestamp(s->streams[0], 0, 0);
if (index < 0) return 0;
cluster_pos = s->streams[0]->index_entries[index].pos;
before_pos = avio_tell(s->pb);
while (1) {
int64_t cluster_id = 0, cluster_length = 0;
AVPacket *pkt;
avio_seek(s->pb, cluster_pos, SEEK_SET);
// read cluster id and length
ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id);
ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
if (cluster_id != 0xF43B675) { // done with all clusters
break;
}
avio_seek(s->pb, cluster_pos, SEEK_SET);
matroska->current_id = 0;
matroska_clear_queue(matroska);
if (matroska_parse_cluster(matroska) < 0 ||
matroska->num_packets <= 0) {
break;
}
pkt = matroska->packets[0];
cluster_pos += cluster_length + 12; // 12 is the offset of the cluster id and length.
if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
rv = 0;
break;
}
}
avio_seek(s->pb, before_pos, SEEK_SET);
return rv;
}
static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
double min_buffer, double* buffer,
double* sec_to_download, AVFormatContext *s,
int64_t cues_start)
{
double nano_seconds_per_second = 1000000000.0;
double time_sec = time_ns / nano_seconds_per_second;
int rv = 0;
int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
int64_t end_time_ns = time_ns + time_to_search_ns;
double sec_downloaded = 0.0;
CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
if (desc_curr.start_time_ns == -1)
return -1;
*sec_to_download = 0.0;
// Check for non cue start time.
if (time_ns > desc_curr.start_time_ns) {
int64_t cue_nano = desc_curr.end_time_ns - time_ns;
double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
double timeToDownload = (cueBytes * 8.0) / bps;
sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
*sec_to_download += timeToDownload;
// Check if the search ends within the first cue.
if (desc_curr.end_time_ns >= end_time_ns) {
double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
sec_downloaded = percent_to_sub * sec_downloaded;
*sec_to_download = percent_to_sub * *sec_to_download;
}
if ((sec_downloaded + *buffer) <= min_buffer) {
return 1;
}
// Get the next Cue.
desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
}
while (desc_curr.start_time_ns != -1) {
int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
double desc_sec = desc_ns / nano_seconds_per_second;
double bits = (desc_bytes * 8.0);
double time_to_download = bits / bps;
sec_downloaded += desc_sec - time_to_download;
*sec_to_download += time_to_download;
if (desc_curr.end_time_ns >= end_time_ns) {
double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
sec_downloaded = percent_to_sub * sec_downloaded;
*sec_to_download = percent_to_sub * *sec_to_download;
if ((sec_downloaded + *buffer) <= min_buffer)
rv = 1;
break;
}
if ((sec_downloaded + *buffer) <= min_buffer) {
rv = 1;
break;
}
desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
}
*buffer = *buffer + sec_downloaded;
return rv;
}
/* This function computes the bandwidth of the WebM file with the help of
* buffer_size_after_time_downloaded() function. Both of these functions are
* adapted from WebM Tools project and are adapted to work with FFmpeg's
* Matroska parsing mechanism.
*
* Returns the bandwidth of the file on success; -1 on error.
* */
static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
{
MatroskaDemuxContext *matroska = s->priv_data;
AVStream *st = s->streams[0];
double bandwidth = 0.0;
int i;
for (i = 0; i < st->nb_index_entries; i++) {
int64_t prebuffer_ns = 1000000000;
int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
double nano_seconds_per_second = 1000000000.0;
int64_t prebuffered_ns = time_ns + prebuffer_ns;
double prebuffer_bytes = 0.0;
int64_t temp_prebuffer_ns = prebuffer_ns;
int64_t pre_bytes, pre_ns;
double pre_sec, prebuffer, bits_per_second;
CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
// Start with the first Cue.
CueDesc desc_end = desc_beg;
// Figure out how much data we have downloaded for the prebuffer. This will
// be used later to adjust the bits per sample to try.
while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
// Prebuffered the entire Cue.
prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
}
if (desc_end.start_time_ns == -1) {
// The prebuffer is larger than the duration.
if (matroska->duration * matroska->time_scale >= prebuffered_ns)
return -1;
bits_per_second = 0.0;
} else {
// The prebuffer ends in the last Cue. Estimate how much data was
// prebuffered.
pre_bytes = desc_end.end_offset - desc_end.start_offset;
pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
pre_sec = pre_ns / nano_seconds_per_second;
prebuffer_bytes +=
pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
prebuffer = prebuffer_ns / nano_seconds_per_second;
// Set this to 0.0 in case our prebuffer buffers the entire video.
bits_per_second = 0.0;
do {
int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
double desc_sec = desc_ns / nano_seconds_per_second;
double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
// Drop the bps by the percentage of bytes buffered.
double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
double mod_bits_per_second = calc_bits_per_second * percent;
if (prebuffer < desc_sec) {
double search_sec =
(double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
// Add 1 so the bits per second should be a little bit greater than file
// datarate.
int64_t bps = (int64_t)(mod_bits_per_second) + 1;
const double min_buffer = 0.0;
double buffer = prebuffer;
double sec_to_download = 0.0;
int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
min_buffer, &buffer, &sec_to_download,
s, cues_start);
if (rv < 0) {
return -1;
} else if (rv == 0) {
bits_per_second = (double)(bps);
break;
}
}
desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
} while (desc_end.start_time_ns != -1);
}
if (bandwidth < bits_per_second) bandwidth = bits_per_second;
}
return (int64_t)bandwidth;
}
static int webm_dash_manifest_cues(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
EbmlList *seekhead_list = &matroska->seekhead;
MatroskaSeekhead *seekhead = seekhead_list->elem;
char *buf;
int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth;
int i;
// determine cues start and end positions
for (i = 0; i < seekhead_list->nb_elem; i++)
if (seekhead[i].id == MATROSKA_ID_CUES)
break;
if (i >= seekhead_list->nb_elem) return -1;
before_pos = avio_tell(matroska->ctx->pb);
cues_start = seekhead[i].pos + matroska->segment_start;
if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
// cues_end is computed as cues_start + cues_length + length of the
// Cues element ID + EBML length of the Cues element. cues_end is
// inclusive and the above sum is reduced by 1.
uint64_t cues_length = 0, cues_id = 0, bytes_read = 0;
bytes_read += ebml_read_num(matroska, matroska->ctx->pb, 4, &cues_id);
bytes_read += ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
cues_end = cues_start + cues_length + bytes_read - 1;
}
avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
if (cues_start == -1 || cues_end == -1) return -1;
// parse the cues
matroska_parse_cues(matroska);
// cues start
av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0);
// cues end
av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0);
// bandwidth
bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
if (bandwidth < 0) return -1;
av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0);
// check if all clusters start with key frames
av_dict_set_int(&s->streams[0]->metadata, CLUSTER_KEYFRAME, webm_clusters_start_with_keyframe(s), 0);
// store cue point timestamps as a comma separated list for checking subsegment alignment in
// the muxer. assumes that each timestamp cannot be more than 20 characters long.
buf = av_malloc_array(s->streams[0]->nb_index_entries, 20 * sizeof(char));
if (!buf) return -1;
strcpy(buf, "");
for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
snprintf(buf, (i + 1) * 20 * sizeof(char),
"%s%" PRId64, buf, s->streams[0]->index_entries[i].timestamp);
if (i != s->streams[0]->nb_index_entries - 1)
strncat(buf, ",", sizeof(char));
}
av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
av_free(buf);
return 0;
}
static int webm_dash_manifest_read_header(AVFormatContext *s)
{
char *buf;
int ret = matroska_read_header(s);
MatroskaTrack *tracks;
MatroskaDemuxContext *matroska = s->priv_data;
if (ret) {
av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
return -1;
}
if (!matroska->is_live) {
buf = av_asprintf("%g", matroska->duration);
if (!buf) return AVERROR(ENOMEM);
av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
av_free(buf);
// initialization range
// 5 is the offset of Cluster ID.
av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, avio_tell(s->pb) - 5, 0);
}
// basename of the file
buf = strrchr(s->filename, '/');
av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->filename, 0);
// track number
tracks = matroska->tracks.elem;
av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0);
// parse the cues and populate Cue related fields
return matroska->is_live ? 0 : webm_dash_manifest_cues(s);
}
static int webm_dash_manifest_read_packet(AVFormatContext *s, AVPacket *pkt)
{
return AVERROR_EOF;
}
#define OFFSET(x) offsetof(MatroskaDemuxContext, x)
static const AVOption options[] = {
{ "live", "flag indicating that the input is a live file that only has the headers.", OFFSET(is_live), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AV_OPT_FLAG_DECODING_PARAM },
{ NULL },
};
static const AVClass webm_dash_class = {
.class_name = "WebM DASH Manifest demuxer",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVInputFormat ff_matroska_demuxer = {
.name = "matroska,webm",
.long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
.extensions = "mkv,mk3d,mka,mks",
.priv_data_size = sizeof(MatroskaDemuxContext),
.read_probe = matroska_probe,
.read_header = matroska_read_header,
.read_packet = matroska_read_packet,
.read_close = matroska_read_close,
.read_seek = matroska_read_seek,
.mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
};
AVInputFormat ff_webm_dash_manifest_demuxer = {
.name = "webm_dash_manifest",
.long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
.priv_data_size = sizeof(MatroskaDemuxContext),
.read_header = webm_dash_manifest_read_header,
.read_packet = webm_dash_manifest_read_packet,
.read_close = matroska_read_close,
.priv_class = &webm_dash_class,
};
Jump to Line
Something went wrong with that request. Please try again.