10/18/23, 1:13 PM

mesh_tutorial

import igl

import polyscope as ps

ps.init()

MESH PATH = "/home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-mesk
V, F = igl.read triangle mesh(MESH PATH)

print(f"{V.shape=}, {F.shape=}")

ps.register surface mesh("torus", V, F) # with face connectivity

ps.register point cloud("torus", V) # with only vertices, it is a point
ps.show()

[polyscope] Backend: openGL3 glfw -- Loaded openGL version: 4.6 (Core Profil
e) Mesa 23.0.4-0ubuntul~22.04.1
V.shape=(24, 3), F.shape=(48, 3)

This notebook is for CSC317-Computer Graphics, Meshes tutorial only.

It is NOT an offical implementation guide for the course assignment.

Before we start, | personally would recommend you to implement A5 in the following
order:

src/write obj.cpp

Here is a comprehensive guide to the structure of a .obj file.
Hints:

o for every row of the matrix, print the row to one text line of the file, begins the line
with what the row represents (e.g. "v", "vn", "f")

o do it for every matrix!

o be careful of the number of columns.

// what you can do...

V.rows(); // would return # of vertices
F.rows(); // would return # of faces
V.cols(); // would return 3

UV.cols(); // would return 2

// you may not want to do this...

V.size(); // this would return the total number of elements in the
matrix (# of rows x # of cols)

src/cube.cpp

Literally just a cube.
Since it is a cube

» you know exactly what's the position of each vertex (V)
o you know exactly what's the normal of each vertex (VN)

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 1/8

https://www.cs.cmu.edu/~mbz/personal/graphics/obj.html

10/18/23, 1:13 PM mesh_tutorial

» you know exactly what's the texture coordinate of each vertex (UV)
» you know exactly what's the face connectivity of the cube (F)

Hint: in implementation it is just a long listof V, VN, UV, F,

// you can fill in a matrix like this :)
V.resize(8,3);
V << 0,0,0,

// so you don't have to do V.row(0) = Eigen::Vector3d(0,0,0);
Consider the UV of the cube, it is just a "flatten" box, think of an origami cube.

UV maps a 3D vertex to a 2D vertex on this image :)

src/sphere.cpp

Be creative, but as you can imagine it will be along the line of drawing polyline circles of
different radius and height! Think of a globe, think of earch, think of latitude and
longitude.

Hint:

» |tis agoodideatoindex the vertex in a reasonable way so that it is easy to construct
the connectivity matrix F .

» What's the normal defined on every vertex of the sphere? So easy lol.

o Consider the UV texture of the sphere as a world map (literally).

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 2/8

10/18/23, 1:13 PM mesh_tutorial

For every vertex of 3D coordinates (z, y, z) on our discretized sphere, we can map it to a
2D coordinate (u, v) on the world map following this expression:

z
7 + atan2(y, x) T acos(w)
u = ”U =
2w T

src/triangle area normal.cpp

It should returns the normal of the triangle, but the length of the normal is the area of the
triangle.

It is NOT a normalized normal.
Consider a triangle with vertices (po, p1, p2)-.-
(p1 —po) X (p2 —po) =24 n
where A is the area of the triangle, n is the normalized normal of the triangle.

It now returns a normal with length 24, you know what to do.

src/per_face normals.cpp

Since src/triangle area normal.cpp isdefined for one triangle face, it is trivial to
implement this function.

Hint: a recurring theme you will see in computer graphics when it comes to loop over faces
is

python pseudo code

V = (# of verts, 3) double matrix

F = (# of faces, 3) integer matrix
for f in F:

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 3/8

10/18/23, 1:13 PM mesh_tutorial

po = V[f[O]]
pl = V[f[1]]
p2 = V[f[2]]

do something with p@, pl, p2, the current triangle

src/vertex triangle adjacency.cpp

We build an adjacency list mapping every vertex index to a face (triangle) index.

Hint: consider the face loop shown above...it is a mapping maps every face (triangle) in F'
to 3 verticesin V.

How do you construct an inverse look-up table of that? (mapping every vertex u to a list of
faces contains vertex u)

Why is it not a fixed size matrix like F'? Why is it a adjacency list?

It is basically an super easy LeetCode question.

src/per_vertex normals.cpp

We can also define a normal for each vertex, by averaging the normals of the faces that
contains the vertex.

So you are going touse src/vertex triangle adjacency.cpp to fine the faces
that contains the vertex, and then average the normals of those faces.

Math for every vertex be like:

> Apong
)

fENbB(v

IS 45my)

FEND(v)

n,

where Af is the area of the face (triangle) f, n; is the normalized normal of the face

(triangle), Nb(v) is the set of faces that contains vertex v.

Think what should be normalized! Hint: loops over neighboring faces of the vertex, and
sum up the area-weighted normals of the faces. Then normalize the sum.

src/per _corner _normals.cpp

o Per vertex normal averaging over neighboring faces makes the normal on the sharp
edge of the mesh looks smooth (see README picture).

o Per face normal is defined over one triangle, so global smoothness is not guaranteed
(see README picture).

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 4/8

10/18/23, 1:13 PM mesh_tutorial

So we can improve per vertex/face normal by defining a normal for every face (triangle)
corner.

By setting a threshold, if the angle between two neighboring faces is greater than a
threshold angle, we should not average the normals of those two faces.

We define the threshold as a scale value ¢, we then have per corner normals defined as...

Z Ag-my

9END(c)|nyny>e

Nfe=
| Z Ag - ngl|

9gEND(c)|nsny>e

where A, is the area of the face (triangle) g, ng is the normalized normal of the face
(triangle), Nb(c) is the set of faces that contains triangle f corner c.

Hint:

» why only consider the pairs where the dot product is greater than €? Consider the case
where two vectors are orthogonal, the angle between them is 90 degree, and the dot
productis 0.

» the function takes an angle (in degree), how do you convert the degree angle to a dot
product threshold €?

» or how do you convert the dot product threshold to a degree angle?
o think about when to normalize...

» basically we are averaging face normal unless it is too crazily different
 think how you can the neighboring faces of a face (with
src/vertex triangle adjacency.cpp)

src/catmull clark.cpp

Welcome to the most difficult part of the assignment &=
Refer to the lecture slides or wiki for the algorithm.
For every level of subdivision:

» Step 1: easy, average per face (blue)

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 5/8

https://github.com/dilevin/computer-graphics-csc317/blob/master/lectures/lecture5.pdf
https://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface

10/18/23, 1:13 PM mesh_tutorial

o Step 2: easy, average per edge and their neighboring 2 faces (pink)

o Step 3: move original vertices to new places...

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 6/8

10/18/23, 1:13 PM mesh_tutorial

o Step 4: add new edges between face points (blue) and edge points (pink). (Note that
in lecture this is step 3, but 3/4 can be in whatever order)

= since new edge points are defined with ONE edge and the neighboring TWO
faces of the edge, you need to construct a inverse look-up table to map edge to
faces.

= since every edge point uniquely maps to one edge, every edge uniquely maps to
two faces, and every face uniquely maps a face point (from step 1), you can now
connect the face points (from step 1) to the edge point (from step 2).

= you can also go the other way -- since every face point is uniquely maps to a face,
and every face uniquely maps to 4 edges, you can now connect the face points to
the edge points.

= Basically for every edge, it uniquely defines a three point pair.

o Step 5: connect moved points (green) with edge points (pink).
= similar to step 4, every edge point is uniquely maps to an edge, and every edge is
uniquely maps to two vertices (two moved points).
= you can also go the other way.

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html 7/8

10/18/23, 1:13 PM

mesh_tutorial

w8

™

o Step 6: done, move to the next iteration...

Misc

#include <igl/PI.h> givesyou the 7w constant with igl::PI .

» The dimension of the expected output is defined in header files, read header files!

file:///home/z/Teaching/CSC317-Compuer-Graphics/computer-graphics-meshes/src/mesh_tutorial.html

8/8

