Permalink
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
342 lines (266 sloc) 9.62 KB

Calculus

This section covers how to do basic calculus tasks such as derivatives, integrals, limits, and series expansions in Diofant.

Derivatives

To take derivatives, use the :func:`~diofant.core.function.diff` function.

>>> diff(cos(x), x)
-sin(x)
>>> diff(exp(x**2), x)
   ⎛ 2⎞
   ⎝x ⎠
2⋅ℯ    ⋅x

:func:`~diofant.core.function.diff` can take multiple derivatives at once. To take multiple derivatives, pass the variable as many times as you wish to differentiate, or pass a number after the variable. For example, both of the following find the third derivative of x^4.

>>> diff(x**4, x, x, x)
24⋅x
>>> diff(x**4, x, 3)
24⋅x

You can also take derivatives with respect to many variables at once. Just pass each derivative in order, using the same syntax as for single variable derivatives. For example, each of the following will compute frac{partial^7}{partial xpartial y^2partial z^4} e^{x y z}.

>>> expr = exp(x*y*z)
>>> diff(expr, x, y, y, z, z, z, z)
 x⋅y⋅z  3  2 ⎛ 3  3  3       2  2  2                ⎞
ℯ     ⋅x ⋅y ⋅⎝x ⋅y ⋅z  + 14⋅x ⋅y ⋅z  + 52⋅x⋅y⋅z + 48⎠
>>> diff(expr, x, y, 2, z, 4)
 x⋅y⋅z  3  2 ⎛ 3  3  3       2  2  2                ⎞
ℯ     ⋅x ⋅y ⋅⎝x ⋅y ⋅z  + 14⋅x ⋅y ⋅z  + 52⋅x⋅y⋅z + 48⎠
>>> diff(expr, x, y, y, z, 4)
 x⋅y⋅z  3  2 ⎛ 3  3  3       2  2  2                ⎞
ℯ     ⋅x ⋅y ⋅⎝x ⋅y ⋅z  + 14⋅x ⋅y ⋅z  + 52⋅x⋅y⋅z + 48⎠

:func:`~diofant.core.function.diff` can also be called as a method :meth:`~diofant.core.expr.Expr.diff`. The two ways of calling :func:`~diofant.core.function.diff` are exactly the same, and are provided only for convenience.

>>> expr.diff(x, y, y, z, 4)
 x⋅y⋅z  3  2 ⎛ 3  3  3       2  2  2                ⎞
ℯ     ⋅x ⋅y ⋅⎝x ⋅y ⋅z  + 14⋅x ⋅y ⋅z  + 52⋅x⋅y⋅z + 48⎠

To create an unevaluated derivative, use the :class:`~diofant.core.function.Derivative` class. It has the same syntax as :func:`~diofant.core.function.diff`.

>>> Derivative(expr, x, y, y, z, 4)
     7
    ∂     ⎛ x⋅y⋅z⎞
──────────⎝ℯ     ⎠
  4   2
∂z  ∂y  ∂x

Such unevaluated objects also used when Diofant does not know how to compute the derivative of an expression.

To evaluate an unevaluated derivative, use the :meth:`~diofant.core.basic.Basic.doit` method.

>>> _.doit()
 x⋅y⋅z  3  2 ⎛ 3  3  3       2  2  2                ⎞
ℯ     ⋅x ⋅y ⋅⎝x ⋅y ⋅z  + 14⋅x ⋅y ⋅z  + 52⋅x⋅y⋅z + 48⎠

Integrals

To compute an integral, use the :func:`~diofant.integrals.integrals.integrate` function. There are two kinds of integrals, definite and indefinite. To compute an indefinite integral, do

>>> integrate(cos(x), x)
sin(x)

Note

For indefinite integrals, Diofant does not include the constant of integration.

For example, to compute a definite integral

\int_0^\infty e^{-x}\,dx,

we would do

>>> integrate(exp(-x), (x, 0, oo))
1

Tip

infty in Diofant is oo (that's the lowercase letter "oh" twice).

As with indefinite integrals, you can pass multiple limit tuples to perform a multiple integral. For example, to compute

\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{- x^{2} - y^{2}}\, dx\, dy,

do

>>> integrate(exp(-x**2 - y**2), (x, -oo, oo), (y, -oo, oo))
π

If :func:`~diofant.integrals.integrals.integrate` is unable to compute an integral, it returns an unevaluated :class:`~diofant.integrals.integrals.Integral` object.

>>> integrate(x**x, x)
⌠
⎮  x
⎮ x  dx
⌡
>>> print(_)
Integral(x**x, x)

As with :class:`~diofant.core.function.Derivative`, you can create an unevaluated integral directly. To later evaluate this integral, call :meth:`~diofant.integrals.integrals.Integral.doit`.

>>> Integral(log(x)**2, x)
⌠
⎮    2
⎮ log (x) dx
⌡
>>> _.doit()
         2
x⋅log (x) - 2⋅x⋅log(x) + 2⋅x

:func:`~diofant.integrals.integrals.integrate` uses powerful algorithms that are always improving to compute both definite and indefinite integrals, including a partial implementation of the Risch algorithm

>>> Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
...           exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)
⌠
⎮  x ⎛ x  2      x      x    4    2      ⎞
⎮ ℯ ⋅⎝ℯ ⋅x  - 2⋅ℯ ⋅x - ℯ  + x  - x  - 2⋅x⎠
⎮ ──────────────────────────────────────── dx
⎮        ⎛ x    ⎞        2        2
⎮        ⎝ℯ  + 1⎠⋅(x - 1) ⋅(x + 1)
⌡
>>> _.doit()
    x
  ℯ         ⎛ x    ⎞
────── + log⎝ℯ  + 1⎠
 2
x  - 1

and an algorithm using Meijer G-functions that is useful for computing integrals in terms of special functions, especially definite integrals

>>> Integral(sin(x**2), x)
⌠
⎮    ⎛ 2⎞
⎮ sin⎝x ⎠ dx
⌡
>>> _.doit()
                      ⎛  ___  ⎞
    ___   ___         ⎜╲╱ 2 ⋅x⎟
3⋅╲╱ 2 ⋅╲╱ π ⋅fresnels⎜───────⎟⋅Γ(3/4)
                      ⎜   ___ ⎟
                      ⎝ ╲╱ π  ⎠
──────────────────────────────────────
               8⋅Γ(7/4)
>>> Integral(x**y*exp(-x), (x, 0, oo))
∞
⌠
⎮  -x  y
⎮ ℯ  ⋅x  dx
⌡
0
>>> _.doit()
⎧ Γ(y + 1)    for -re(y) < 1
⎪
⎪∞
⎪⌠
⎨⎮  -x  y
⎪⎮ ℯ  ⋅x  dx    otherwise
⎪⌡
⎪0
⎩

This last example returned a :class:`~diofant.functions.elementary.piecewise.Piecewise` expression because the integral does not converge unless Re(y) > 1.

Sums and Products

Much like integrals, there are :func:`~diofant.concrete.summations.summation` and :func:`~diofant.concrete.products.product` to compute sums and products respectively.

>>> summation(2**x, (x, 0, y - 1))
 y
2  - 1
>>> product(z, (x, 1, y))
 y
z

Unevaluated sums and products are represented by :class:`~diofant.concrete.summations.Sum` and :class:`~diofant.concrete.products.Product` classes.

>>> Sum(1, (x, 1, z))
 z
___
╲
 ╲   1
 ╱
╱
‾‾‾
x = 1
>>> _.doit()
z

Limits

Diofant can compute symbolic limits with the :func:`~diofant.series.limits.limit` function. To compute a directional limit

\lim_{x\to 0^+}\frac{\sin x}{x},

do

>>> limit(sin(x)/x, x, 0)
1

:func:`~diofant.series.limits.limit` should be used instead of :meth:`~diofant.core.basic.Basic.subs` whenever the point of evaluation is a singularity. Even though Diofant has objects to represent infty, using them for evaluation is not reliable because they do not keep track of things like rate of growth. Also, things like infty - infty and frac{infty}{infty} return mathrm{nan} (not-a-number). For example

>>> expr = x**2/exp(x)
>>> expr.subs({x: oo})
nan
>>> limit(expr, x, oo)
0

Like :class:`~diofant.core.function.Derivative` and :class:`~diofant.integrals.integrals.Integral`, :func:`~diofant.series.limits.limit` has an unevaluated counterpart, :class:`~diofant.series.limits.Limit`. To evaluate it, use :meth:`~diofant.series.limits.Limit.doit`.

>>> Limit((cos(x) - 1)/x, x, 0)
     cos(x) - 1
 lim ──────────
x─→0⁺    x
>>> _.doit()
0

To change side, pass '-' as a third argument to :func:`~diofant.series.limits.limit`. For example, to compute

\lim_{x\to 0^-}\frac{1}{x},

do

>>> limit(1/x, x, 0, dir='-')
-∞

You can also evaluate bidirectional limit

>>> limit(sin(x)/x, x, 0, dir='real')
1
>>> limit(1/x, x, 0, dir='real')
Traceback (most recent call last):
...
PoleError: left and right limits for expression 1/x at point x=0 seems to be not equal

Series Expansion

Diofant can compute asymptotic series expansions of functions around a point.

>>> series(exp(sin(x)), x, 0, 4)
         2
        x     ⎛ 4⎞
1 + x + ── + O⎝x ⎠
        2

The Oleft (x^4right ) term, an instance of :class:`~diofant.series.order.O` at the end represents the Landau order term at x=0 (not to be confused with big O notation used in computer science, which generally represents the Landau order term at x=infty). Order terms can be created and manipulated outside of :func:`~diofant.series.series.series`.

>>> x + x**3 + x**6 + O(x**4)
     3    ⎛ 4⎞
x + x  + O⎝x ⎠
>>> x*O(1)
O(x)

If you do not want the order term, use the :meth:`~diofant.core.expr.Expr.removeO` method.

>>> series(exp(x), x, 0, 3).removeO()
 2
x
── + x + 1
2

The :class:`~diofant.series.order.O` notation supports arbitrary limit points (other than 0):

>>> series(exp(x - 1), x, x0=1)
       2          3          4          5
(x - 1)    (x - 1)    (x - 1)    (x - 1)         ⎛       6       ⎞
──────── + ──────── + ──────── + ──────── + x + O⎝(x - 1) ; x → 1⎠
   2          6          24        120