Single page apps & MVC

Irina Dumitrascu

ruby & cofeescript | dira.ro , @dira_geek_girl

February 28, 2013


http://dira.ro/
http://twitter.com/dira_geek_girl

MVC sounds simple

Model

View Controller

e Model - store & manage data



e View - display

e Controller - manage the user interaction



Model

e store data
e deal with persistence
o serverside, local storage, etc.

o when to save



Model

be the one and only, reliable, complete source of data

(and operations on it)



View

e display the data from the model in the DOM



Controller

e manage the interaction with the user

e and pass the intended changes to the model



The MVC flow

Pilctosncii




The MVC flow

Bilcto: cis




The MVC flow

O

del
MO
X

View Controller



The MVC flow

D
Changed!
View Controller

1o



MVC relationships

O

del
MO
X

View Controller

1o

e Controller updates Model



e View reacts to Model



Forbidden MVC relationships

O

del
MO
X

View Controller

1o

e Model communicates directly to a View



e Model communicates directly to a Controller



Classic JS web app

e the data is stored in the DOM

e some JS code for managing interaction, persistence



Classic flow

e Ul events =>
o explicitly update all the places where this data appears in the DOM

o other operations (e.g. persistence)



Classic relationships

e whatever makes sense to you
e 1t's common for the code that deals with UI to
o update multiple views

o update unrelated views






MVC

e provides structure
o different elements with a specific job, and reduced coupling

o easier to unit test!



MVC shines

e when you have multiple views for the same data



MVC shines

e when you have multiple views for the same data

e which is quite frequent



Multiple views on the same data




Multiple views on the same data

e any controller can change the models



e all the views update when the model changes



Added benefits

e when you add another view, it just listens to the relevant model and updates itself

e you don't change code in the models, or somewhere else to update the new view



Example - without MVC, one view

$('#scale').change =>
scale = $(this).val()

view.scale to(scale)

$('#x').change =>
X = $(this).val()

view.set x(x)



Example - without MVC(C, two views

$('#scale').change =>
scale = $(this).val()

view.scale to(scale)
another view.scale to(scale)

$('#x').change =>
X = $(this).val()

view.set x(x)
another view.scale to(scale)



Example - with MVC, two views

# view #1
model.on 'change', @render
# view #2
model.on 'change', @render

# ...



So it's MVC-VC-VC




S0 it's MVC-VC-VC

or M(VC)*



When using MVC

it's tempting to sometimes skip the rules...



The VC that does not need a model



Scenario

A data item that

e is quite small

e has only one view



Scenario

e manage it in the view directly, without creating a model



What happens

e it grows

e you get too much model-related code in the VC



What happens

e you extract it



The controller wants to be a model



The controller wants to be a model

Also known as: 'Messing with data in the controller’



Scenario

e integrate a widget, let's say Sortable from jQuery Ul

e on the completion event handler, forget about the model and just post the new

order to the server on the spot

$('#list').sortable
update: =>
$.post '/positions', @getPositions()



What happens

e the model is not the source of accurate data anymore

e if another view needs to take the order into account, it can not



Pilcta:




Summary

Code smell: model-specific tasks (e.g. persistence, manipulating data) in the

controller

Fix:

S$('#list').sortable
update: =>
model.setPositions @getPositions|()



The view-controller that doesn't

listen

Also known as: 'I think I know what the model will say!'



Scenario




Scenario

$('.scale .slider').change (e) ->
scale = $(this).val()

$('.scale .text').val(scale)



What happens

What about:

e validation?

e or 'snap to 5 pixels'?

Let the model be the source of wisdom about the data (and only react to it)



Code smell

update a view directly from a UI event handler

ui element.change ->
other ui element.val(value)



How it should look like

ui element.change (value) ->
model.set(value)

model.change (value) ->
ui element.set(value)



The model that gets no trust

Also known as: using information from controllers or views, in the model



Scenario

fi Ahums (H) ] a012-08-14-Berlin
ﬂinldut Fq) B Amg kg, 200z, Berlin

ER 2012-bucurest [£9)
L = hare: = Wi onbne: Public an the et (83}

m 201 F=08=14=-Berlin (£8.7)

) Crthar Stuld (17)

$('.album').click (e) ->
window.album id = $(e.currentTarget).data('id')

ke

I T



Scenario

hig Amams (I} ] 2012-08-14-Berlin 4
ﬂinldut Fq) B Amg kg, 200z, Berlin = |
ER 2012-bucurest [83)
- rteriad | 3 I | .d Share F | Yo online: Public on che veeb (353
14=Berlin (8]
:‘jﬂthﬂ Stufd (17)
by
-
4

e update an image



e reasoning:
o the Ul was shown -> so the image was shown

o so it belongs to the current album!



Scenario

fi Ahums (H) ] a012-08-14-Berlin
ﬂinldut Fq) B Amg kg, 200z, Berlin

ER 2012-bucurest [£9)
L = hare: = Wi onbne: Public an the et (83}

m 201 F=08=14=-Berlin (£8.7)

) Crthar Stuld (17)

$.post("/albums/" + window.album id + "/images" + id)

ke

I T



Conclusion

MVC is

e simple

e powerful

it's tempting to circumvent it

but it's worth it sticking to itG



Thank you!

Questions?






