
Single page apps & MVC

Irina Dumitrascu

ruby & cofeescript | dira.ro , @dira_geek_girl

February 28, 2013

http://dira.ro/
http://twitter.com/dira_geek_girl

MVC sounds simple

Model - store & manage data

View - display

Controller - manage the user interaction

Model

store data

deal with persistence

serverside, local storage, etc.

when to save

Model

be the one and only, reliable, complete source of data

(and operations on it)

View

display the data from the model in the DOM

Controller

manage the interaction with the user

and pass the intended changes to the model

The MVC flow

The MVC flow

The MVC flow

The MVC flow

MVC relationships

Controller updates Model

View reacts to Model

Forbidden MVC relationships

Model communicates directly to a View

Model communicates directly to a Controller

Classic JS web app

the data is stored in the DOM

some JS code for managing interaction, persistence

Classic flow

UI events =>

explicitly update all the places where this data appears in the DOM

other operations (e.g. persistence)

Classic relationships

whatever makes sense to you

it's common for the code that deals with UI to

update multiple views

update unrelated views

MVC

provides structure

different elements with a specific job, and reduced coupling

easier to unit test!

MVC shines

when you have multiple views for the same data

MVC shines

when you have multiple views for the same data

which is quite frequent

Multiple views on the same data

Multiple views on the same data

any controller can change the models

all the views update when the model changes

Added benefits

when you add another view, it just listens to the relevant model and updates itself

you don't change code in the models, or somewhere else to update the new view

Example - without MVC, one view

$('#scale').change =>
 scale = $(this).val()

 view.scale_to(scale)

$('#x').change =>
 x = $(this).val()

 view.set_x(x)

Example - without MVC, two views

$('#scale').change =>
 scale = $(this).val()

 view.scale_to(scale)
 another_view.scale_to(scale)

$('#x').change =>
 x = $(this).val()

 view.set_x(x)
 another_view.scale_to(scale)

Example - with MVC, two views

view #1
model.on 'change', @render

view #2
model.on 'change', @render

...

So it's MVC-VC-VC

So it's MVC-VC-VC

or M(VC)*

When using MVC

it's tempting to sometimes skip the rules...

The VC that does not need a model

Scenario

A data item that

is quite small

has only one view

Scenario

manage it in the view directly, without creating a model

What happens

it grows

you get too much model-related code in the VC

What happens

you extract it

The controller wants to be a model

The controller wants to be a model

Also known as: 'Messing with data in the controller'

Scenario

integrate a widget, let's say Sortable from jQuery UI

on the completion event handler, forget about the model and just post the new

order to the server on the spot

$('#list').sortable
 update: =>
 $.post '/positions', @getPositions()

What happens

the model is not the source of accurate data anymore

if another view needs to take the order into account, it can not

Summary

Code smell: model-specific tasks (e.g. persistence, manipulating data) in the

controller

Fix:

$('#list').sortable
 update: =>
 model.setPositions @getPositions()

The view-controller that doesn't

listen

Also known as: 'I think I know what the model will say!'

Scenario

Scenario

$('.scale .slider').change (e) ->
 scale = $(this).val()

 $('.scale .text').val(scale)

What happens

What about:

validation?

or 'snap to 5 pixels'?

Let the model be the source of wisdom about the data (and only react to it)

Code smell

update a view directly from a UI event handler

ui_element.change ->
 other_ui_element.val(value)

How it should look like

ui_element.change (value) ->
 model.set(value)

model.change (value) ->
 ui_element.set(value)

The model that gets no trust

Also known as: using information from controllers or views, in the model

Scenario

$('.album').click (e) ->
 window.album_id = $(e.currentTarget).data('id')

Scenario

update an image

reasoning:

the UI was shown -> so the image was shown

so it belongs to the current album!

Scenario

$.post("/albums/" + window.album_id + "/images" + id)

Conclusion

MVC is

simple

powerful

it's tempting to circumvent it

but it's worth it sticking to itG

Thank you!

Questions?

