Skip to content


Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
220 lines (182 sloc) 8.808 kb
Cross Site Request Forgery Middleware.
This module provides a middleware that implements protection
against request forgeries from other sites.
from __future__ import unicode_literals
import logging
import re
from django.conf import settings
from django.core.urlresolvers import get_callable
from django.utils.cache import patch_vary_headers
from django.utils.crypto import constant_time_compare, get_random_string
from django.utils.encoding import force_text
from django.utils.http import same_origin
logger = logging.getLogger('django.request')
REASON_NO_REFERER = "Referer checking failed - no Referer."
REASON_BAD_REFERER = "Referer checking failed - %s does not match %s."
REASON_NO_CSRF_COOKIE = "CSRF cookie not set."
REASON_BAD_TOKEN = "CSRF token missing or incorrect."
def _get_failure_view():
Returns the view to be used for CSRF rejections
return get_callable(settings.CSRF_FAILURE_VIEW)
def _get_new_csrf_key():
return get_random_string(CSRF_KEY_LENGTH)
def get_token(request):
Returns the CSRF token required for a POST form. The token is an
alphanumeric value.
A side effect of calling this function is to make the csrf_protect
decorator and the CsrfViewMiddleware add a CSRF cookie and a 'Vary: Cookie'
header to the outgoing response. For this reason, you may need to use this
function lazily, as is done by the csrf context processor.
request.META["CSRF_COOKIE_USED"] = True
return request.META.get("CSRF_COOKIE", None)
def rotate_token(request):
Changes the CSRF token in use for a request - should be done on login
for security purposes.
"CSRF_COOKIE": _get_new_csrf_key(),
def _sanitize_token(token):
# Allow only alphanum
if len(token) > CSRF_KEY_LENGTH:
return _get_new_csrf_key()
token = re.sub('[^a-zA-Z0-9]+', '', force_text(token))
if token == "":
# In case the cookie has been truncated to nothing at some point.
return _get_new_csrf_key()
return token
class CsrfViewMiddleware(object):
Middleware that requires a present and correct csrfmiddlewaretoken
for POST requests that have a CSRF cookie, and sets an outgoing
CSRF cookie.
This middleware should be used in conjunction with the csrf_token template
# The _accept and _reject methods currently only exist for the sake of the
# requires_csrf_token decorator.
def _accept(self, request):
# Avoid checking the request twice by adding a custom attribute to
# request. This will be relevant when both decorator and middleware
# are used.
request.csrf_processing_done = True
return None
def _reject(self, request, reason):
logger.warning('Forbidden (%s): %s', reason, request.path,
'status_code': 403,
'request': request,
return _get_failure_view()(request, reason=reason)
def process_view(self, request, callback, callback_args, callback_kwargs):
if getattr(request, 'csrf_processing_done', False):
return None
csrf_token = _sanitize_token(
# Use same token next time
request.META['CSRF_COOKIE'] = csrf_token
except KeyError:
csrf_token = None
# Generate token and store it in the request, so it's
# available to the view.
request.META["CSRF_COOKIE"] = _get_new_csrf_key()
# Wait until request.META["CSRF_COOKIE"] has been manipulated before
# bailing out, so that get_token still works
if getattr(callback, 'csrf_exempt', False):
return None
# Assume that anything not defined as 'safe' by RFC2616 needs protection
if request.method not in ('GET', 'HEAD', 'OPTIONS', 'TRACE'):
if getattr(request, '_dont_enforce_csrf_checks', False):
# Mechanism to turn off CSRF checks for test suite.
# It comes after the creation of CSRF cookies, so that
# everything else continues to work exactly the same
# (e.g. cookies are sent, etc.), but before any
# branches that call reject().
return self._accept(request)
if request.is_secure():
# Suppose user visits
# An active network attacker (man-in-the-middle, MITM) sends a
# POST form that targets and
# submits it via JavaScript.
# The attacker will need to provide a CSRF cookie and token, but
# that's no problem for a MITM and the session-independent
# nonce we're using. So the MITM can circumvent the CSRF
# protection. This is true for any HTTP connection, but anyone
# using HTTPS expects better! For this reason, for
# we need additional protection that treats
# as completely untrusted. Under HTTPS,
# Barth et al. found that the Referer header is missing for
# same-domain requests in only about 0.2% of cases or less, so
# we can use strict Referer checking.
referer = force_text(
if referer is None:
return self._reject(request, REASON_NO_REFERER)
# Note that request.get_host() includes the port.
good_referer = 'https://%s/' % request.get_host()
if not same_origin(referer, good_referer):
reason = REASON_BAD_REFERER % (referer, good_referer)
return self._reject(request, reason)
if csrf_token is None:
# No CSRF cookie. For POST requests, we insist on a CSRF cookie,
# and in this way we can avoid all CSRF attacks, including login
return self._reject(request, REASON_NO_CSRF_COOKIE)
# Check non-cookie token for match.
request_csrf_token = ""
if request.method == "POST":
request_csrf_token = request.POST.get('csrfmiddlewaretoken', '')
except IOError:
# Handle a broken connection before we've completed reading
# the POST data. process_view shouldn't raise any
# exceptions, so we'll ignore and serve the user a 403
# (assuming they're still listening, which they probably
# aren't because of the error).
if request_csrf_token == "":
# Fall back to X-CSRFToken, to make things easier for AJAX,
# and possible for PUT/DELETE.
request_csrf_token = request.META.get(settings.CSRF_HEADER_NAME, '')
if not constant_time_compare(request_csrf_token, csrf_token):
return self._reject(request, REASON_BAD_TOKEN)
return self._accept(request)
def process_response(self, request, response):
if getattr(response, 'csrf_processing_done', False):
return response
# If CSRF_COOKIE is unset, then CsrfViewMiddleware.process_view was
# never called, probably because a request middleware returned a response
# (for example, contrib.auth redirecting to a login page).
if request.META.get("CSRF_COOKIE") is None:
return response
if not request.META.get("CSRF_COOKIE_USED", False):
return response
# Set the CSRF cookie even if it's already set, so we renew
# the expiry timer.
# Content varies with the CSRF cookie, so set the Vary header.
patch_vary_headers(response, ('Cookie',))
response.csrf_processing_done = True
return response
Jump to Line
Something went wrong with that request. Please try again.