
Clean Architecture with
Django

Rethinking basic assumptions
Paul Wolf

paul.wolf@yew.io
https://github.com/paul-wolf

mailto:paul.wolf@yew.io
https://github.com/paul-wolf

Can we build our Django applications using the principles of a Clean
Architecture?

Clean Architecture: A Craftsman’s Guide to Software Structure and
Design

by Robert C. Martin

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 2

Typical Django Applications

• *Web* applications

• They have a relational database and views on that data with some
transactional logic in between

• However powerful the other features are, they are pretty much a set
of conveniences: admin, user and authentication framework, data
migrations, middleware, management commands, etc.

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 3

Why Clean
Architecture
(CA)?

CA is intended to reduce the cost of change

• Easier and faster to build new features
• More independence of solution components

meaning less refactoring if you change
something
• Improved testability leading to better quality

software
• Less cost overhead for software

development

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 4

Arrow of Dependency

"High-level modules should not depend on low-level modules. Both
should depend on abstractions.”

"Abstractions should not depend on details. Details should
depend on abstractions.”

R.Martin

Clean Architecture is a pattern for making change easier to manage

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 5

Clean Architecture

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 6

Stable

Volatile

Volatile code
should depend
on less volatile
code

Depends on

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 7

Common
Closure Principle

Separation of
Concerns Loose Coupling High Cohesion

Common
Reuse Principle

Model View
Controller

Model View
Template

Ge
ne

ra
lit
y

Reuse/Release
Equivalence

Principle

Dependency
Inversion Principle

The Dependency Rule
More important

Less important
Model–view–

viewmodel
Model View

Presenter

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 8

Entities

Details
• Frameworks
• UI mechanics
• Databases
• Integrations
• IO mechanisms

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 9

Business rules

Controllers

views

Integrations

Databases

Clean Architecture Biases

• Architecture rather than procedure oriented
• Cost is front-loaded. Higher upfront investment in design is assumed
• It favours languages that have strong abstraction features: interfaces

CA “likes” C++ and Java

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 10

Frameworks

“Architectures are not (or should not) be about frameworks.
Architectures should not be supplied by frameworks. Frameworks are
tools to be used, not architectures to be conformed to. If your
architecture is based on frameworks, then it cannot be based on your
use cases.”

https://blog.cleancoder.com/uncle-bob/2011/09/30/Screaming-
Architecture.html

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 11

https://blog.cleancoder.com/uncle-bob/2011/09/30/Screaming-Architecture.html

• Interfaces are abstractions

• Most dependencies should be on Interfaces

• In Python
• Abstract classes
• Duck typing
• Factories
• Dependency Injection Libraries

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 12

Best use-case for Django

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 13

Models

Data
schema
definition

Views

ORM

RDBMS

Django works best when the models have a
representation that is very close to the representation
that views present to users

Here’s where it gets tricky

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 14

Models
Data
schema

Views

ORM

RDBMS

Business
Rules

?

Dependency Inversion (DI)

DI is a method of turning the arrow of dependency in a different
direction to what it would otherwise be to ensure that the arrow points
towards entities and business rules, not to details

One way to achieve Dependency Inversion is to use the Dependency
Injection Pattern

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 15

• https://martinfowler.com/articles/injection.html

• https://github.com/ets-labs/python-dependency-injector

Dependency Injector is a dependency injection framework for Python.
“Separating configuration from use”

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 16

https://github.com/ets-labs/python-dependency-injector
https://github.com/ets-labs/python-dependency-injector

Interface Adapters

Interface Adapters are for going from one level of abstraction to
another without breaking the dependency rule

“Keep dependencies pointing in the direction of less volatile, less detail
oriented code”
(R. Martin)

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 17

Django Object Relational Mapping

• CRUD is natural and ready-made
• Conceptual simplicity
• Very fast setup
•Migrations are a snap (with conditions attached)

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 18

The Django ORM does heavy lifting

• Domain modelling
• Database connection management
• Object state management
• Caching

Details are now intermingled with abstractions about the business
domain

“There is no such thing as an ORM”
R.Martin

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 19

ORM Responsibilities

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 20

Domain/Data
Model

Schema and data
migration

RDBMS
Schema

specification

State
management

Details

Data schema and business domain definition

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 21

class Asset(models.Model):
asset_type = models.IntegerField(choices=ASSET_TYPES)
owner = models.ForeignKey(Owner)
...

class Meta:
abstract = True

class AssetPrint(Asset):
...

class AssetDigital(Asset):
...

class Asset(models.Model):
asset_type = models.IntegerField(choices=ASSET_TYPES)
owner = models.ForeignKey(Owner)
...

class AssetPrint(models.Model):
asset = models.ForeignKey(Asset)
...

class AssetDigital(models.Model):
asset = models.ForeignKey(Asset)
...

We are defining details, a
data schema; you are
deciding to use an RDBMS

We are also defining the
business domain

Object Relational Mapping Limitations

• A set of models is a data representation valid for specific use cases;
other valid representations may be possible
• The query interface starts to get awkward
• Vectorised operations
• Geospatial operations
• CQRS

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 22

Context Freedom

A variable is context-free if it has minimal dependencies

• No integration state
• No framework dependency
• Easy to create

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 23

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 24

Entities

ORM

Views
Interface
adapter

Have an interface adapter that
returns only Python
dataclasses or dicts, tuples,
etc.

Now views only ever depend
on the business domain

We could do this

Undermines the
Django framework

The Django ORM Use-Case Principle

The data representation in the view layer is similar to the data
representation in the model layer.

The Django ORM and framework works extremely well within the
intended use case

• Excellent performance
• Easy to use
• Great experience!

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 25

The main Django Use-Case
def books_average_price(request):

price_data = Book.objects.all().aggregate(Avg('price’))

return JsonResponse({"price": float(price_data["price__avg"])})

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 26

Entities

ORM

Views

Call another detail layer code
module, the ORM

Business rules

Not very Clean Architecture

But it works really well, given some
assumptions

class PriceEngine:

def get_average_price(self):

price_data = Book.objects.all().aggregate(Avg('price'))

return float(price_data["price__avg"])

def books_average_price(request):

price_engine = PriceEngine()

price = price_engine.get_average_price()

return JsonResponse({"price": price})

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 27

Entities

ORM

Views

Logic engine

Call a business rule module

def is_summer():

return datetime.datetime.now().month in (6, 7, 8)

class PriceEngine(ABC):

@abstractmethod

def get_average_price(self):

pass

class PriceEngineGeneral(PriceEngine):

def get_average_price(self):

price_data = Book.objects.all().aggregate(Avg('price'))

return float(price_data["price__avg"])

class PriceEngineDiscount(PriceEngine):

def __init__(self, discount):

self.discount = discount or 0.8

def get_average_price(self):

price_data = Book.objects.all().aggregate(Avg('price'))

return float(price_data["price__avg"]) * self.discount

def price_engine_factory(discount=None) -> PriceEngine:

if is_summer():

return PriceEngineDiscount(discount)

return PriceEngineGeneral()

def books_average_price(request):

price_engine = price_engine_factory()

price = price_engine.get_average_price()

return JsonResponse({"price": price})

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 28

Entities

ORM

Views

Logic
Engine

factory

Logic
Engine

Cross detail dependencies: Example Reservation

Call an external API that has start/end dates for a reservation using the
Reservation Model instance

But the remote API only requires start/end dates

We can’t call the integration anymore without setting up a persistent
object that might have nothing to do with our call to the API

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 29

Cross detail dependencies

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 30

Entities and
business rules

ORM

External
Integration

API
Provider

https://en.wikipedia.org/wiki/Loose_coupling

Views

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 31

reservation_service = reservation_service_factory()
reservation = make_context_free_reservation(reservation_model_instance)
reservation is a dataclass
response = reservation_service.get_availability(reservation)

Entities

ORM

Views Interface
adapter

Integration

factory

Translating a model instance to
a dataclass uses an adapter

There is overhead here but it
keeps the integration service
free of a detail dependency

To adapt the right abstractions and prevent dependency on the ORM,
we’d need to define abstract interfaces that give us PSL objects

Creating interface adapters for the ORM is high overhead in terms of
production effort, resulting complexity and performance

And it breaks the transactional link

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 32

https://github.com/paul-wolf/djaq

The Djaq project (by this author) is an *example* of splitting the ORM
along data schema and entity/query lines

It uses the schema definitions produced by the ORM and treats it
purely as a data schema definition and data migration layer

It produces plain old Python objects, context-free

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 33

https://github.com/paul-wolf/djaq

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 34

34

Entities

ORM

Views

Djaq Interface
adapterRead: query

string

Djaq
transactions

Write

Djaq is an interface
adapter that returns
context free Python
objects

REST Frameworks for Django

• Django REST Frameworks generally are heavily integrated with the
QuerySet API

• All the different layers are mixed together, details, abstractions,
domain entities

• REST frameworks tend to bake the ORM into the rest of the
architecture

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 35

Recommendations

To profit from the application of Clean Architecture principles, we need
to think in terms of how software in general should be structured, not
just a Python project or, even more specifically, a Django project

CA requires abstraction overhead; don’t incur this unless the
circumstances warrant it

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 36

Minimise Dependence on Details

• Any code not:

- From your business logic code
- From the Python Standard Library

“context-dependent” variables are objects that are bound to external details,
like connection state, frameworks, io mechanics, request/response,
databases, etc.

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 37

Recommendations (Do Not)

• Avoid passing context-dependent variables as far as possible
• Avoid cross detail dependencies except for ORM/Django View
• Don’t rely on integrations; these are details
• Don’t rely on non-Python Standard Library frameworks more than

necessary. Try to write most stable code using only the PSL. Avoid
dependencies on frameworks where possible and reasonable

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 38

Django Framework

Django is for doing Web view things, serving data models that look from the
outside like the domain you’ve modeled

If you are in a part of your code that is not doing that one thing, don’t use
the Django framework

• Don’t pass the request object as a function parameter any more than
necessary

• Don’t pass integration objects; model instances are integration objects

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 39

Recommendations (Do)

Use the Django framework in the way it was intended

Do call the QuerySet API in Django view functions; this is the intended use
case for Django, unless you must call other detail level services

Remember this is the edge of the architecture where you are dealing with
details. Models are details (and domain entities). Use them directly. Don’t try
to hide them behind an abstraction unless that serves to prevent other
dependencies

Use Dependency Injection liberally to reduce cross-detail dependencies

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 40

The REPL test

Can we load code into a REPL* easily? Loading into these tools should be
easy:

• IPython
• Jupyter notebook
• Pdb

Is it easy to create a Django management command for any modules besides
views?

* Read-eval-print loop

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 41

Unit tests

Unit testing is massively easier when you have an inner layer of
business entities that are context-free

No amount of mocking will be as good.

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 42

Understand the Trajectory of Change

• Accretion
• Additive complexity

• Functional Diversity
• New kinds of complexity

Applications that become more complex because of Functional
Diversity will require greater engineering investment, probably before
you are aware of it

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 43

Finally

Django is for making the initial build of an application easier and less
costly

Clean Architecture is for making change easier and less costly after the
initial application is built

You can combine these two things. Applying the dependency rule can
massively improve software design in a Django project.

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 44

References

• https://www.goodreads.com/book/show/18043011-clean-architecture
• https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-

the-first-five-principles-of-object-oriented-design
• https://alistair.cockburn.us/hexagonal-architecture/
• https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
• https://github.com/paul-wolf/djaq
• https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-

architecture.html
• https://blog.cleancoder.com/uncle-bob/2011/09/30/Screaming-

Architecture.html

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 45

https://github.com/paul-wolf/djaq
https://github.com/paul-wolf/djaq
https://github.com/paul-wolf/djaq
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://github.com/paul-wolf/djaq
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2011/09/30/Screaming-Architecture.html

Thank you for listening!

Many thanks to those who provided reviews of this presentation to
help me improve it:

Daria Knyazeva, Jeff Whitehead, Nicola Pero, Andrey Pavelchuck,
Andrew Hayton, Thibaud Colas

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 46

