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Can we build our Django applications using the principles of a Clean 
Architecture?

Clean Architecture: A Craftsman’s Guide to Software Structure and 
Design 

by Robert C. Martin
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Typical Django Applications

• *Web* applications

• They have a relational database and views  on that data with some 
transactional logic in between

• However powerful the other features are, they are pretty much a set 
of conveniences: admin, user and authentication framework, data 
migrations, middleware, management commands, etc.
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Why Clean 
Architecture 
(CA)?

CA is intended to reduce the cost of change

• Easier and faster to build new features
• More independence of solution components 

meaning less refactoring if you change 
something
• Improved testability leading to better quality 

software
• Less cost overhead for software 

development
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Arrow of Dependency

"High-level modules should not depend on low-level modules. Both 
should depend on abstractions.”

"Abstractions should not depend on details. Details should
depend on abstractions.”

R.Martin

Clean Architecture is a pattern for making change easier to manage
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Clean Architecture
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Entities

Details
• Frameworks
• UI mechanics
• Databases
• Integrations
• IO mechanisms
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Clean Architecture Biases

• Architecture rather than procedure oriented 
• Cost is front-loaded. Higher upfront investment in design is assumed
• It favours languages that have strong abstraction features: interfaces

CA “likes” C++ and Java
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Frameworks

“Architectures are not (or should not) be about frameworks. 
Architectures should not be supplied by frameworks. Frameworks are 
tools to be used, not architectures to be conformed to. If your 
architecture is based on frameworks, then it cannot be based on your 
use cases.”

https://blog.cleancoder.com/uncle-bob/2011/09/30/Screaming-
Architecture.html
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• Interfaces are abstractions

• Most dependencies should be on Interfaces

• In Python 
• Abstract classes
• Duck typing
• Factories
• Dependency Injection Libraries

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 12



Best use-case for Django
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that views present to users



Here’s where it gets tricky
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Dependency Inversion (DI)

DI is a method of turning the arrow of dependency in a different 
direction to what it would otherwise be to ensure that the arrow points 
towards entities and business rules, not to details

One way to achieve Dependency Inversion is to use the Dependency 
Injection Pattern
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• https://martinfowler.com/articles/injection.html

• https://github.com/ets-labs/python-dependency-injector

Dependency Injector is a dependency injection framework for Python.
“Separating configuration from use”
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Interface Adapters

Interface Adapters are for going from one level of abstraction to 
another without breaking the dependency rule

“Keep dependencies pointing in the direction of less volatile, less detail 
oriented code” 
(R. Martin)
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Django Object Relational Mapping

• CRUD is natural and ready-made
• Conceptual simplicity
• Very fast setup
•Migrations are a snap (with conditions attached)
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The Django ORM does heavy lifting

• Domain modelling
• Database connection management 
• Object state management
• Caching

Details are now intermingled with abstractions about the business 
domain

“There is no such thing as an ORM” 
R.Martin
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ORM Responsibilities
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Data schema and business domain definition
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class Asset(models.Model):
asset_type = models.IntegerField(choices=ASSET_TYPES)
owner = models.ForeignKey(Owner)
...

class Meta:
abstract = True

class AssetPrint(Asset):
...

class AssetDigital(Asset):
...

class Asset(models.Model):
asset_type = models.IntegerField(choices=ASSET_TYPES)
owner = models.ForeignKey(Owner)
...

class AssetPrint(models.Model):
asset = models.ForeignKey(Asset)
...

class AssetDigital(models.Model):
asset = models.ForeignKey(Asset)
...

We are defining details, a 
data schema; you are 
deciding to use an RDBMS

We are also defining the 
business domain



Object Relational Mapping Limitations

• A set of models is a data representation valid for specific use cases; 
other valid representations may be possible
• The query interface starts to get awkward
• Vectorised operations
• Geospatial operations
• CQRS 
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Context Freedom

A variable is context-free if it has minimal dependencies

• No integration state
• No framework dependency
• Easy to create
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Now views only ever depend 
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We could do this
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The Django ORM Use-Case Principle

The data representation in the view layer is similar to the data 
representation in the model layer.

The Django ORM and framework works extremely well within the 
intended use case

• Excellent performance
• Easy to use
• Great experience!
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The main Django Use-Case
def books_average_price(request):

price_data = Book.objects.all().aggregate(Avg('price’))

return JsonResponse({"price": float(price_data["price__avg"])})

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 26

Entities

ORM

Views

Call another detail layer code 
module, the ORM

Business rules

Not very Clean Architecture

But it works really well, given some 
assumptions



class PriceEngine:

def get_average_price(self):

price_data = Book.objects.all().aggregate(Avg('price'))

return float(price_data["price__avg"])

def books_average_price(request):

price_engine = PriceEngine()

price = price_engine.get_average_price()

return JsonResponse({"price": price})
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def is_summer():

return datetime.datetime.now().month in (6, 7, 8)

class PriceEngine(ABC):

@abstractmethod

def get_average_price(self):

pass

class PriceEngineGeneral(PriceEngine):

def get_average_price(self):

price_data = Book.objects.all().aggregate(Avg('price'))

return float(price_data["price__avg"])

class PriceEngineDiscount(PriceEngine):

def __init__(self, discount):

self.discount = discount or 0.8

def get_average_price(self):

price_data = Book.objects.all().aggregate(Avg('price'))

return float(price_data["price__avg"]) * self.discount

def price_engine_factory(discount=None) -> PriceEngine:

if is_summer():

return PriceEngineDiscount(discount)

return PriceEngineGeneral()

def books_average_price(request):

price_engine = price_engine_factory()

price = price_engine.get_average_price()

return JsonResponse({"price": price})
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Cross detail dependencies: Example Reservation

Call an external API that has start/end dates for a reservation using the 
Reservation Model instance

But the remote API only requires start/end dates

We can’t call the integration anymore without setting up a persistent 
object that might have nothing to do with our call to the API
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Cross detail dependencies

Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 30

Entities and 
business rules

ORM

External
Integration

API
Provider

https://en.wikipedia.org/wiki/Loose_coupling

Views



Paul Wolf – DjangoCon Europe 2021 Django and Clean Architecture 31

reservation_service = reservation_service_factory()
reservation = make_context_free_reservation(reservation_model_instance)
# reservation is a dataclass
response = reservation_service.get_availability(reservation)

Entities

ORM

Views Interface 
adapter

Integration

factory

Translating a model instance to 
a dataclass uses an adapter

There is overhead here but it 
keeps the integration service 
free of a detail dependency



To adapt the right abstractions and prevent dependency on the ORM, 
we’d need to define abstract interfaces that give us PSL objects

Creating interface adapters for the ORM is high overhead in terms of 
production effort, resulting complexity and performance

And it breaks the transactional link
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https://github.com/paul-wolf/djaq

The Djaq project (by this author) is an *example* of splitting the ORM 
along data schema and entity/query lines

It uses the schema definitions produced by the ORM and treats it 
purely as a data schema definition and data migration layer

It produces plain old Python objects, context-free
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REST Frameworks for Django 

• Django REST Frameworks generally are heavily integrated with the 
QuerySet API

• All the different layers are mixed together, details, abstractions, 
domain entities

• REST frameworks tend to bake the ORM into the rest of the 
architecture 
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Recommendations

To profit from the application of Clean Architecture principles, we need 
to think in terms of how software in general should be structured, not 
just a Python project or, even more specifically, a Django project

CA requires abstraction overhead; don’t incur this unless the 
circumstances warrant it 
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Minimise Dependence on Details

• Any code not: 

- From your business logic code
- From the Python Standard Library

“context-dependent” variables are objects that are bound to external details, 
like connection state, frameworks, io mechanics, request/response, 
databases, etc. 
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Recommendations (Do Not)

• Avoid passing context-dependent variables as far as possible 
• Avoid cross detail dependencies except for ORM/Django View
• Don’t rely on integrations; these are details 
• Don’t rely on non-Python Standard Library frameworks more than 

necessary. Try to write most stable code using only the PSL. Avoid 
dependencies on frameworks where possible and reasonable
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Django Framework

Django is for doing Web view things, serving data models that look from the 
outside like the domain you’ve modeled

If you are in a part of your code that is not doing that one thing, don’t use 
the Django framework

• Don’t pass the request object as a function parameter any more than 
necessary

• Don’t pass integration objects; model instances are integration objects
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Recommendations (Do)

Use the Django framework in the way it was intended

Do call the QuerySet API in Django view functions; this is the intended use 
case for Django, unless you must call other detail level services

Remember this is the edge of the architecture where you are dealing with 
details. Models are details (and domain entities). Use them directly. Don’t try 
to hide them behind an abstraction unless that serves to prevent other 
dependencies

Use Dependency Injection liberally to reduce cross-detail dependencies 
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The REPL test

Can we load code into a REPL* easily? Loading into these tools should be 
easy:

• IPython
• Jupyter notebook
• Pdb

Is it easy to create a Django management command for any modules besides 
views?

* Read-eval-print loop
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Unit tests

Unit testing is massively easier when you have an inner layer of 
business entities that are context-free

No amount of mocking will be as good.
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Understand the Trajectory of Change

• Accretion
• Additive complexity

• Functional Diversity
• New kinds of complexity

Applications that become more complex because of Functional 
Diversity will require greater engineering investment, probably before 
you are aware of it
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Finally

Django is for making the initial build of an application easier and less 
costly

Clean Architecture is for making change easier and less costly after the 
initial application is built

You can combine these two things. Applying the dependency rule can 
massively improve software design in a Django project. 
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Thank you for listening!

Many thanks to those who provided reviews of this presentation to 
help me improve it:

Daria Knyazeva, Jeff Whitehead, Nicola Pero, Andrey Pavelchuck, 
Andrew Hayton, Thibaud Colas
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