

Build, deploy and scale:
Django, GraphQL and SPA

@dhilipsiva

@dhilipsiva
● Optimistic Nihilist
● Democratic Socialist
● I code for fun & profit
● I love Science, Python, FOSS & தமிழ்
● Dad of 2. Environmentalist. Story Teller.
Gamer.

● Jack of all trades & Master of none
● A volunteer for progressives

I have no idea what I am talking about 🤪

Credentials
● 11+ years of professional experience in
python

● Built over 20 different products using
django alone

● Scaled more than 5 products to serve
millions of requests per second

● Built a Device Farm (iOS and Android)
● Involved in building a Bitcoin mining
farm with Rpi + ASIC (aws for miners)

Profession
VP of Engineering @ Reckonsys

Hitoshīkage @ Nitimis

Why GraphQL?
●Much more standardized than the
fragmented RESTful implementations

●Out-of-box live & browsable
documentation

●No back-and-forth communication
between API developer and SPA
developer

●Precise queries

Let’s look at our (buggy) demo app😬
https://stackopenflow.space

It is a very silly StackOverflow
clone

https://stackopenflow.space/

Stack
● Python
● Django
● Graphene
● Django-graphql-jwt
● Django-rules
● postgres

● JavaScript
● React
● Relay
● easy-peasy

Graphene
● Custom field defs
● Syncronous
● Mature
● Status Quo
● Fantastic Django
integration

Strawberry.rocks
● Dataclasses
● Asyncronous
● Not-so-mature
● Future (maybe)
● Very minimal
Django integration

Per-object perms

● Choose a rule based framework (like django-
rules) over a DB-based framework (guardian)

● Less DB calls = less latency
● No unnecessary migrations gue to change in
logic

● Easier to maintain

Why React?
● Plays really well with GraphQL (Facebook being
a big proponent of both React and GraphQL)

● Can build native applications with react-
native. So a front-end engineer can easily
scale-up as a mobile application developer.

● Second only to vue.js in terms of
community/popularity

Why Relay?
● Relay’s APIs are cleaner compared to
Apollo

● Hooks are 1st class citizens
● Out of box caching support
● Backed by Facebook (just like GraphQL and
React) so React has excellent
integration.

● Relay-compiler is fantastic at catching
errors

Why easy-peasy?
●Hooks are 1st class citizens
●Less boilerplate
●Pleasant APIs
●Ease of use

Project Layout
●All other django apps are placed
under the django root
“stackopenflow” app (the module that
contains settings.py, urls.py,
wsgi.py, etc)

●Therefore, all imports are
namespaced with “stackopenflow”

Typical Modules
●admin.py
●apps.py

●models.py
●tests.py

●views.py

Our Modules
● admin.py
● apps.py
● behaviours.py
● choices.py
● inputs.py

● models.py
● mutations.py
● queries.py
● tests.py
● types.py

Let’s walk through the source code
Django & React

https://github.com/djconeu2021/stackopenflow-api
https://github.com/djconeu2021/stackopenflow-app

https://github.com/djconeu2021/stackopenflow-api
https://github.com/djconeu2021/stackopenflow-app

bigga
●https://github.com/djconeu2021/bigga
●A docker-compose based deployment
●Can be configured to be used to
docker-swarm with minimal changes

●Handy for local development too
●Suitable for cheap, non-production
workloads

●Code walk through

AWS copilot
● https://aws.github.io/copilot-cli
● ECS on AWS Fargate (serverless containers)
● Very reliable & scaleable, but vendor dependent
● Easy auto scaling configuration
● Cheaper & faster than Lambda (serverless functions)
● But be sure set-up along with tools like Terraform

SPA Deployment
● S3 + CloudFront + ACM
● Cheaper than alternatives like Netlify
● Less latency
● Manual Setup:
https://github.com/reckonsys/bigga/blob/community/S3_FRONTEND_DEPLOYMENT.md

● Pyinvoke Script:
https://github.com/reckonsys/bigga/blob/community/tasks.py

https://github.com/reckonsys/bigga/blob/community/S3_FRONTEND_DEPLOYMENT.md
https://github.com/reckonsys/bigga/blob/community/tasks.py

Thank You
@dhilipsiva

dhilipsiva@pm.me
https://dhilipsiva.com
https://t.me/dhilipsiva

mailto:dhilipsiva@pm.me
https://dhilipsiva.com/
https://t.me/dhilipsiva

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

