
A Tour of Ruby on Rails
By David Keener

http://www.keenertech.com

But First, Who Am I?

•  Blog: http://www.keenertech.com
 (New Rails-based version in late June)
•  Email: dkeener@keenertech.com

David Keener

I’m a technical architect and writer with over 20
years of experience. Been doing web applications
Since 1997, and Rails applications since version 1.1.

Technical Architect for Grab Networks, the company
known for streaming the Beijing Olympics over the
web and for distributing more news videos in the US
than any other company except MSNBC.

1

What Is Ruby on Rails?

•  It’s a tool
•  It’s optimized to create web

sites quickly
•  It’s a productivity enhancer

•  It’s not magic
•  It’s not a silver bullet
•  It’s not going to

replace Java for all
applications

Rails is an open-source, full-stack MVC
framework for developing web-based, database-
driven applications. Rails is implemented in the
Ruby programming language.

2

Open Source

•  Free
•  Supported by a highly active community
•  Easily hosted on UNIX/Linux platforms
•  Integrated with popular web servers such

as Apache and NGINX
•  Supported by free development tools like

NetBeans, Eclipse and Aptana Studio

Rails is…

3

It’s a Full-Stack Framework
Rails provides an integrated full stack framework. J2EE
provides similar functionality with a variety of separate
frameworks / tools (each with their own learning curves).

4

MVC
•  Stands for “Model – View – Controller”
•  Architectural pattern that organizes apps into

distinct components with specific responsibilities

-  Presentation Logic
-  User Interface Details

-  Business Logic
-  Handles Events

-  Data Access

5

Web-Based, Database-Driven…

•  Create
•  Read
•  Update
•  Delete

Rails is ideal for web applications that
do CRUD operations….

(Um, this generally sort of implies a database)

6

Example CRUD App

7

What’s the Big Deal?
So, Rails is a framework.

 It’s not really doing anything new.

 There are lots of frameworks….

 What makes Rails so special?

8

One picture is worth….

Note: Graphic found on web. 9

The Goals of Rails

•  Build web sites
•  Build web sites quickly
•  Increase productivity by eliminating or reducing

common drudgery
•  Make programming fun again by letting

developers focus on features that matter

To solve any problem, first define the problem
clearly. Here’s what the creators of Rails set out
to accomplish…

10

The Rails Philosophy

•  Convention over configuration
•  Do not repeat yourself (DRY)
•  The 80/20 Rule: Rails implements 80% of

the functionality that most users need; the
other 20% is your application

•  Corollary to the 80/20 Rule: You have the
power to extend the framework yourself

Philosophy separates Rails from other frameworks….

11

“Opinionated Software”

•  Philosophies are baked into the design of Rails
•  Rails should make it hard not to do agile

development
•  Ruthless about what features are included in

Rails…and which are not

Rails was developed by David Heinemeier Hansson
in 2003 (released to the public in 2004). He and the
members of the Rails Core Team had definite
opinions about what makes a framework good.

12

Primary Rails Features

•  Migrations: Facilitates DB maintenance
•  Code Generators: Get up-and-running quickly

with scaffolding (replace it later)
•  Object-Relational Mapping: Uses ActiveRecord

to automatically generate class methods based
on database lookups

•  MVC: No configuration required; just follow the
Rails conventions

•  Integrated Features: Database access, AJAX,
Testing, Text/HTML emails, etc.

13

Migrations
•  Automates building/rebuilding database
•  Ensures all database-related components are

stored in one location
•  Simplifies a key area of drudgery in most projects
•  Includes database-agnostic methods for

manipulating a database
•  Migrations are numbered, so there’s no

confusion about what order to run them in

14

An Example Migration
Name: 005_change_operations.rb
To run: rake db:migrate

class ChangeOperations < ActiveRecord::Migration
 def self.up
 add_column :operations, :org_id, :integer
 end

 def self.down
 remove_column :operations, :org_id
 end
End

15

Code Generator (1)
•  Generate the structure of an

app:

 $ rails appname

•  Eliminates the drudgery of
determining your app structure

•  Makes maintenance easier
because all Rails apps look
similar

Code Generators (2)

•  Create a model, view, controller and migration
with one command

 $ ruby script/generate scaffold product
 name:string desc:text status:boolean

•  Gets a new set of CRUD web pages up in
minutes

•  Replace the Scaffolding with more functional
code as your development schedule allows

You’ll hear a lot about Scaffolding….

17

Convention Over Configuration
•  Note that the Scaffolding set up an MVC feature

with no configuration required
•  If you follow standard Rails naming conventions,

Rails automatically knows where to find the
things it needs

•  Some key files that got created:

/app/controllers/products_controller.rb
/app/models/product.rb
/app/views/products/index.html.erb (plus other CRUD views)
/db/migrate/009_create_products.rb
/test/unit/product_test.rb

18

Object-Relational Mapping

•  ActiveRecord – A component of Rails that
handles database access

•  Eliminates most of the drudgery involved in
working with a database

•  The example model on the next page shows just
how simple this is…

This is a fancy term for “how your objects are
going to access the database.”

19

Example Model

•  Two lines of code!
•  Rails queries the database and

determines the data types and fields for
you

•  Relationships between models and field
validations can be added later

class Product < ActiveRecord::Base
end

20

Example Controller Method

•  Uses our Product model
•  Uses the “find” capability provided by

ActiveRecord to retrieve products from the
database

•  No SQL required!

def index
 @products = Product.find(:all)
end

21

But Wait, There’s More!
•  Built-in support for testing
•  Integrated AJAX capabilities: Let’s you

make web pages function like Desktop
apps

•  Integrated JavaScript libraries: Prototype
and Scriptaculous – Supports dynamic
web page effect

•  Email capabilities – Emails are just
another type of view

22

About Productivity…

It’s kind of like having a
jet pack

•  There’s a learning
curve…

•  But once you learn
Rails, you can really
fly

23

Who’s Using It?
•  In the DC area, most startups are using

Ruby on Rails
•  Ideal for small businesses
•  Ideal for internal corporate apps
•  Slower penetration into large companies

because they’re inherently conservative
•  Even slower penetration into government,

although that is changing

24

How to Leverage Rails
•  Rails is about doing more work in less

time with fewer people
•  Small, focused teams work well
•  Frequent releases work well due to the

quick development process
 - 2 week cycles at Voxant
 - Monthly cycles at Grab Networks
•  Ideal for agile methodologies

25

Getting Started With Rails
•  Agile Web Development With Rails, 3rd edition,

by Sam Ruby, Dave Thomas, David
Heinemeier Hansson – An award-winning
technical book; the best way for developers to
learn Rails

•  http://api.rubyonrails.org - The Rails API
documentation

•  http://rubyforge.org - One of the main
repositories for open source Rails add-ons

26

What About Hosting?
•  EngineYard – Relatively expensive, but solid for

corporate hosting
•  DreamHost – Relatively low cost
•  WebFaction – Low-cost, high quality…targeted

for savvy developers
•  Rails can be hosted on UNIX/Linux boxes easily
•  Typically hosted using either Mongrel or Phusion

Passenger (usually in combination with Apache
or NGINX)

27

