Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
mrcal/mrcal.h
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
751 lines (649 sloc)
35.1 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S. | |
// Government sponsorship acknowledged. All rights reserved. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
#pragma once | |
#include <stdbool.h> | |
#include <stdint.h> | |
#include "mrcal-types.h" | |
#include "poseutils.h" | |
#include "stereo.h" | |
#include "triangulation.h" | |
//////////////////////////////////////////////////////////////////////////////// | |
//////////////////// Lens models | |
//////////////////////////////////////////////////////////////////////////////// | |
// Return an array of strings listing all the available lens models | |
// | |
// These are all "unconfigured" strings that use "..." placeholders for any | |
// configuration values. Each returned string is a \0-terminated const char*. The | |
// end of the list is signified by a NULL pointer | |
const char* const* mrcal_supported_lensmodel_names( void ); // NULL-terminated array of char* strings | |
// Return true if the given mrcal_lensmodel_type_t specifies a valid lens model | |
__attribute__((unused)) | |
static bool mrcal_lensmodel_type_is_valid(mrcal_lensmodel_type_t t) | |
{ | |
return t >= 0; | |
} | |
// Evaluates to true if the given lens model is one of the supported OpenCV | |
// types | |
#define MRCAL_LENSMODEL_IS_OPENCV(d) (MRCAL_LENSMODEL_OPENCV4 <= (d) && (d) <= MRCAL_LENSMODEL_OPENCV12) | |
// Return a string describing a lens model. | |
// | |
// This function returns a static string. For models with no configuration, this | |
// is the FULL string for that model. For models with a configuration, the | |
// configuration values have "..." placeholders. These placeholders mean that | |
// the resulting strings do not define a lens model fully, and cannot be | |
// converted to a mrcal_lensmodel_t with mrcal_lensmodel_from_name() | |
// | |
// This is the inverse of mrcal_lensmodel_type_from_name() | |
const char* mrcal_lensmodel_name_unconfigured( const mrcal_lensmodel_t* lensmodel ); | |
// Return a CONFIGURED string describing a lens model. | |
// | |
// This function generates a fully-configured string describing the given lens | |
// model. For models with no configuration, this is just the static string | |
// returned by mrcal_lensmodel_name_unconfigured(). For models that have a | |
// configuration, however, the configuration values are filled-in. The resulting | |
// string may be converted back into a mrcal_lensmodel_t by calling | |
// mrcal_lensmodel_from_name(). | |
// | |
// This function writes the string into the given buffer "out". The size of the | |
// buffer is passed in the "size" argument. The meaning of "size" is as with | |
// snprintf(), which is used internally. Returns true on success | |
// | |
// This is the inverse of mrcal_lensmodel_from_name() | |
bool mrcal_lensmodel_name( char* out, int size, | |
const mrcal_lensmodel_t* lensmodel ); | |
// Parse the lens model type from a lens model name string | |
// | |
// The configuration is ignored. Thus this function works even if the | |
// configuration is missing or unparseable. Unknown model names return | |
// MRCAL_LENSMODEL_INVALID | |
// | |
// This is the inverse of mrcal_lensmodel_name_unconfigured() | |
mrcal_lensmodel_type_t mrcal_lensmodel_type_from_name( const char* name ); | |
// Parse the full configured lens model from a lens model name string | |
// | |
// The lens mode type AND the configuration are read into a mrcal_lensmodel_t | |
// structure, which this function returns. Strings with valid model names but | |
// missing or unparseable configuration return | |
// | |
// {.type = MRCAL_LENSMODEL_INVALID_BADCONFIG}. | |
// | |
// Any other errors result in some other invalid lensmodel.type values, which | |
// can be checked with mrcal_lensmodel_type_is_valid(lensmodel->type) | |
// | |
// This is the inverse of mrcal_lensmodel_name() | |
bool mrcal_lensmodel_from_name( // output | |
mrcal_lensmodel_t* lensmodel, | |
// input | |
const char* name ); | |
// Return a structure containing a model's metadata | |
// | |
// The available metadata is described in the definition of the | |
// MRCAL_LENSMODEL_META_LIST() macro | |
mrcal_lensmodel_metadata_t mrcal_lensmodel_metadata( const mrcal_lensmodel_t* lensmodel ); | |
// Return the number of parameters required to specify a given lens model | |
// | |
// For models that have a configuration, the parameter count value generally | |
// depends on the configuration. For instance, splined models use the model | |
// parameters as the spline control points, so the spline density (specified in | |
// the configuration) directly affects how many parameters such a model requires | |
int mrcal_lensmodel_num_params( const mrcal_lensmodel_t* lensmodel ); | |
// Return the locations of x and y spline knots | |
// Splined models are defined by the locations of their control points. These | |
// are arranged in a grid, the size and density of which is set by the model | |
// configuration. We fill-in the x knot locations into ux[] and the y locations | |
// into uy[]. ux[] and uy[] must be large-enough to hold configuration->Nx and | |
// configuration->Ny values respectively. | |
// | |
// This function applies to splined models only. Returns true on success | |
bool mrcal_knots_for_splined_models( double* ux, double* uy, | |
const mrcal_lensmodel_t* lensmodel); | |
//////////////////////////////////////////////////////////////////////////////// | |
//////////////////// Projections | |
//////////////////////////////////////////////////////////////////////////////// | |
// Project the given camera-coordinate-system points | |
// | |
// Compute a "projection", a mapping of points defined in the camera coordinate | |
// system to their observed pixel coordinates. If requested, gradients are | |
// computed as well. | |
// | |
// We project N 3D points p to N 2D pixel coordinates q using the given | |
// lensmodel and intrinsics parameter values. | |
// | |
// if (dq_dp != NULL) we report the gradient dq/dp in a dense (N,2,3) array | |
// ((N,2) mrcal_point3_t objects). | |
// | |
// if (dq_dintrinsics != NULL) we report the gradient dq/dintrinsics in a dense | |
// (N,2,Nintrinsics) array. Note that splined models have very high Nintrinsics | |
// and very sparse gradients. THIS function reports the gradients densely, | |
// however, so it is inefficient for splined models. | |
// | |
// This function supports CAHVORE distortions only if we don't ask for any | |
// gradients | |
// | |
// Projecting out-of-bounds points (beyond the field of view) returns undefined | |
// values. Generally things remain continuous even as we move off the imager | |
// domain. Pinhole-like projections will work normally if projecting a point | |
// behind the camera. Splined projections clamp to the nearest spline segment: | |
// the projection will fly off to infinity quickly since we're extrapolating a | |
// polynomial, but the function will remain continuous. | |
bool mrcal_project( // out | |
mrcal_point2_t* q, | |
mrcal_point3_t* dq_dp, | |
double* dq_dintrinsics, | |
// in | |
const mrcal_point3_t* p, | |
int N, | |
const mrcal_lensmodel_t* lensmodel, | |
// core, distortions concatenated | |
const double* intrinsics); | |
// Unproject the given pixel coordinates | |
// | |
// Compute an "unprojection", a mapping of pixel coordinates to the camera | |
// coordinate system. | |
// | |
// We unproject N 2D pixel coordinates q to N 3D direction vectors v using the | |
// given lensmodel and intrinsics parameter values. The returned vectors v are | |
// not normalized, and may have any length. | |
// This is the "reverse" direction, so an iterative nonlinear optimization is | |
// performed internally to compute this result. This is much slower than | |
// mrcal_project(). For OpenCV models specifically, OpenCV has | |
// cvUndistortPoints() (and cv2.undistortPoints()), but these are unreliable: | |
// https://github.com/opencv/opencv/issues/8811 | |
// | |
// This function does NOT support CAHVORE | |
bool mrcal_unproject( // out | |
mrcal_point3_t* v, | |
// in | |
const mrcal_point2_t* q, | |
int N, | |
const mrcal_lensmodel_t* lensmodel, | |
// core, distortions concatenated | |
const double* intrinsics); | |
// Project the given camera-coordinate-system points using a pinhole | |
// model. See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-pinhole | |
// | |
// This is a simplified special case of mrcal_project(). We project N | |
// camera-coordinate-system points p to N pixel coordinates q | |
// | |
// if (dq_dp != NULL) we report the gradient dq/dp in a dense (N,2,3) array | |
// ((N,2) mrcal_point3_t objects). | |
void mrcal_project_pinhole( // output | |
mrcal_point2_t* q, | |
mrcal_point3_t* dq_dp, | |
// input | |
const mrcal_point3_t* p, | |
int N, | |
const double* fxycxy); | |
// Unproject the given pixel coordinates using a pinhole model. | |
// See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-pinhole | |
// | |
// This is a simplified special case of mrcal_unproject(). We unproject N 2D | |
// pixel coordinates q to N camera-coordinate-system vectors v. The returned | |
// vectors v are not normalized, and may have any length. | |
// | |
// if (dv_dq != NULL) we report the gradient dv/dq in a dense (N,3,2) array | |
// ((N,3) mrcal_point2_t objects). | |
void mrcal_unproject_pinhole( // output | |
mrcal_point3_t* v, | |
mrcal_point2_t* dv_dq, | |
// input | |
const mrcal_point2_t* q, | |
int N, | |
const double* fxycxy); | |
// Project the given camera-coordinate-system points using a stereographic | |
// model. See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-stereographic | |
// | |
// This is a simplified special case of mrcal_project(). We project N | |
// camera-coordinate-system points p to N pixel coordinates q | |
// | |
// if (dq_dp != NULL) we report the gradient dq/dp in a dense (N,2,3) array | |
// ((N,2) mrcal_point3_t objects). | |
void mrcal_project_stereographic( // output | |
mrcal_point2_t* q, | |
mrcal_point3_t* dq_dp, | |
// input | |
const mrcal_point3_t* p, | |
int N, | |
const double* fxycxy); | |
// Unproject the given pixel coordinates using a stereographic model. | |
// See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-stereographic | |
// | |
// This is a simplified special case of mrcal_unproject(). We unproject N 2D | |
// pixel coordinates q to N camera-coordinate-system vectors v. The returned | |
// vectors v are not normalized, and may have any length. | |
// | |
// if (dv_dq != NULL) we report the gradient dv/dq in a dense (N,3,2) array | |
// ((N,3) mrcal_point2_t objects). | |
void mrcal_unproject_stereographic( // output | |
mrcal_point3_t* v, | |
mrcal_point2_t* dv_dq, | |
// input | |
const mrcal_point2_t* q, | |
int N, | |
const double* fxycxy); | |
// Project the given camera-coordinate-system points using an equirectangular | |
// projection. See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-lonlat | |
// | |
// This is a simplified special case of mrcal_project(). We project N | |
// camera-coordinate-system points p to N pixel coordinates q | |
// | |
// if (dq_dp != NULL) we report the gradient dq/dp in a dense (N,2,3) array | |
// ((N,2) mrcal_point3_t objects). | |
void mrcal_project_lonlat( // output | |
mrcal_point2_t* q, | |
mrcal_point3_t* dq_dv, // May be NULL. Each point | |
// gets a block of 2 mrcal_point3_t | |
// objects | |
// input | |
const mrcal_point3_t* v, | |
int N, | |
const double* fxycxy); | |
// Unproject the given pixel coordinates using an equirectangular projection. | |
// See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-lonlat | |
// | |
// This is a simplified special case of mrcal_unproject(). We unproject N 2D | |
// pixel coordinates q to N camera-coordinate-system vectors v. The returned | |
// vectors v are normalized. | |
// | |
// if (dv_dq != NULL) we report the gradient dv/dq in a dense (N,3,2) array | |
// ((N,3) mrcal_point2_t objects). | |
void mrcal_unproject_lonlat( // output | |
mrcal_point3_t* v, | |
mrcal_point2_t* dv_dq, // May be NULL. Each point | |
// gets a block of 3 mrcal_point2_t | |
// objects | |
// input | |
const mrcal_point2_t* q, | |
int N, | |
const double* fxycxy); | |
// Project the given camera-coordinate-system points using a transverse | |
// equirectangular projection. See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-latlon | |
// | |
// This is a simplified special case of mrcal_project(). We project N | |
// camera-coordinate-system points p to N pixel coordinates q | |
// | |
// if (dq_dp != NULL) we report the gradient dq/dp in a dense (N,2,3) array | |
// ((N,2) mrcal_point3_t objects). | |
void mrcal_project_latlon( // output | |
mrcal_point2_t* q, | |
mrcal_point3_t* dq_dv, // May be NULL. Each point | |
// gets a block of 2 mrcal_point3_t | |
// objects | |
// input | |
const mrcal_point3_t* v, | |
int N, | |
const double* fxycxy); | |
// Unproject the given pixel coordinates using a transverse equirectangular | |
// projection. See the docs for projection details: | |
// http://mrcal.secretsauce.net/lensmodels.html#lensmodel-latlon | |
// | |
// This is a simplified special case of mrcal_unproject(). We unproject N 2D | |
// pixel coordinates q to N camera-coordinate-system vectors v. The returned | |
// vectors v are normalized. | |
// | |
// if (dv_dq != NULL) we report the gradient dv/dq in a dense (N,3,2) array | |
// ((N,3) mrcal_point2_t objects). | |
void mrcal_unproject_latlon( // output | |
mrcal_point3_t* v, | |
mrcal_point2_t* dv_dq, // May be NULL. Each point | |
// gets a block of 3 mrcal_point2_t | |
// objects | |
// input | |
const mrcal_point2_t* q, | |
int N, | |
const double* fxycxy); | |
//////////////////////////////////////////////////////////////////////////////// | |
//////////////////// Optimization | |
//////////////////////////////////////////////////////////////////////////////// | |
// Return the number of parameters needed in optimizing the given lens model | |
// | |
// This is identical to mrcal_lensmodel_num_params(), but takes into account the | |
// problem selections. Any intrinsics parameters locked down in the | |
// mrcal_problem_selections_t do NOT count towards the optimization parameters | |
int mrcal_num_intrinsics_optimization_params( mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel ); | |
// Scales a state vector to the packed, unitless form used by the optimizer | |
// | |
// In order to make the optimization well-behaved, we scale all the variables in | |
// the state and the gradients before passing them to the optimizer. The internal | |
// optimization library thus works only with unitless (or "packed") data. | |
// | |
// This function takes an (Nstate,) array of full-units values b[], and scales | |
// it to produce packed data. This function applies the scaling directly to the | |
// input array; the input is modified, and nothing is returned. | |
// | |
// This is the inverse of mrcal_unpack_solver_state_vector() | |
void mrcal_pack_solver_state_vector( // out, in | |
double* b, | |
// in | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
// Scales a state vector from the packed, unitless form used by the optimizer | |
// | |
// In order to make the optimization well-behaved, we scale all the variables in | |
// the state and the gradients before passing them to the optimizer. The internal | |
// optimization library thus works only with unitless (or "packed") data. | |
// | |
// This function takes an (Nstate,) array of unitless values b[], and scales it | |
// to produce full-units data. This function applies the scaling directly to the | |
// input array; the input is modified, and nothing is returned. | |
// | |
// This is the inverse of mrcal_pack_solver_state_vector() | |
void mrcal_unpack_solver_state_vector( // out, in | |
double* b, // unitless state on input, | |
// scaled, meaningful state on | |
// output | |
// in | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
// Reports the icam_extrinsics corresponding to a given icam_intrinsics. | |
// | |
// If we're solving a vanilla calibration problem (stationary cameras observing | |
// a moving calibration object), each camera has a unique intrinsics index and a | |
// unique extrinsics index. This function reports the latter, given the former. | |
// | |
// On success, the result is written to *icam_extrinsics, and we return true. If | |
// the given camera is at the reference coordinate system, it has no extrinsics, | |
// and we report -1. | |
// | |
// If we have moving cameras (NOT a vanilla calibration problem), there isn't a | |
// single icam_extrinsics for a given icam_intrinsics, and we report an error by | |
// returning false | |
bool mrcal_corresponding_icam_extrinsics(// out | |
int* icam_extrinsics, | |
// in | |
int icam_intrinsics, | |
int Ncameras_intrinsics, | |
int Ncameras_extrinsics, | |
int Nobservations_board, | |
const mrcal_observation_board_t* observations_board, | |
int Nobservations_point, | |
const mrcal_observation_point_t* observations_point); | |
// Solve the given optimization problem | |
// | |
// This is the entry point to the mrcal optimization routine. The argument list | |
// is commented. | |
mrcal_stats_t | |
mrcal_optimize( // out | |
// Each one of these output pointers may be NULL | |
// Shape (Nstate,) | |
double* b_packed, | |
// used only to confirm that the user passed-in the buffer they | |
// should have passed-in. The size must match exactly | |
int buffer_size_b_packed, | |
// Shape (Nmeasurements,) | |
double* x, | |
// used only to confirm that the user passed-in the buffer they | |
// should have passed-in. The size must match exactly | |
int buffer_size_x, | |
// out, in | |
// These are a seed on input, solution on output | |
// intrinsics is a concatenation of the intrinsics core and the | |
// distortion params. The specific distortion parameters may | |
// vary, depending on lensmodel, so this is a variable-length | |
// structure | |
double* intrinsics, // Ncameras_intrinsics * NlensParams | |
mrcal_pose_t* extrinsics_fromref, // Ncameras_extrinsics of these. Transform FROM the reference frame | |
mrcal_pose_t* frames_toref, // Nframes of these. Transform TO the reference frame | |
mrcal_point3_t* points, // Npoints of these. In the reference frame | |
mrcal_calobject_warp_t* calobject_warp, // 1 of these. May be NULL if !problem_selections.do_optimize_calobject_warp | |
// in | |
int Ncameras_intrinsics, int Ncameras_extrinsics, int Nframes, | |
int Npoints, int Npoints_fixed, // at the end of points[] | |
const mrcal_observation_board_t* observations_board, | |
const mrcal_observation_point_t* observations_point, | |
int Nobservations_board, | |
int Nobservations_point, | |
// All the board pixel observations, in an array of shape | |
// | |
// ( Nobservations_board, | |
// calibration_object_height_n, | |
// calibration_object_width_n ) | |
// | |
// .x, .y are the | |
// pixel observations .z is the weight of the observation. Most | |
// of the weights are expected to be 1.0. Less precise | |
// observations have lower weights. | |
// | |
// .z<0 indicates that this is an outlier. This is respected on | |
// input (even if !do_apply_outlier_rejection). New outliers are | |
// marked with .z<0 on output, so this isn't const | |
mrcal_point3_t* observations_board_pool, | |
const mrcal_lensmodel_t* lensmodel, | |
const int* imagersizes, // Ncameras_intrinsics*2 of these | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_problem_constants_t* problem_constants, | |
double calibration_object_spacing, | |
int calibration_object_width_n, | |
int calibration_object_height_n, | |
bool verbose, | |
bool check_gradient); | |
// This is cholmod_sparse. I don't want to include the full header that defines | |
// it in mrcal.h, and I don't need to: mrcal.h just needs to know that it's a | |
// structure | |
struct cholmod_sparse_struct; | |
// Evaluate the value of the callback function at the given operating point | |
// | |
// The main optimization routine in mrcal_optimize() searches for optimal | |
// parameters by repeatedly calling a function to evaluate each hypothethical | |
// parameter set. This evaluation function is available by itself here, | |
// separated from the optimization loop. The arguments are largely the same as | |
// those to mrcal_optimize(), but the inputs are all read-only It is expected | |
// that this will be called from Python only. | |
bool mrcal_optimizer_callback(// out | |
// These output pointers may NOT be NULL, unlike | |
// their analogues in mrcal_optimize() | |
// Shape (Nstate,) | |
double* b_packed, | |
// used only to confirm that the user passed-in the buffer they | |
// should have passed-in. The size must match exactly | |
int buffer_size_b_packed, | |
// Shape (Nmeasurements,) | |
double* x, | |
// used only to confirm that the user passed-in the buffer they | |
// should have passed-in. The size must match exactly | |
int buffer_size_x, | |
// output Jacobian. May be NULL if we don't need | |
// it. This is the unitless Jacobian, used by the | |
// internal optimization routines | |
struct cholmod_sparse_struct* Jt, | |
// in | |
// intrinsics is a concatenation of the intrinsics core | |
// and the distortion params. The specific distortion | |
// parameters may vary, depending on lensmodel, so | |
// this is a variable-length structure | |
const double* intrinsics, // Ncameras_intrinsics * NlensParams | |
const mrcal_pose_t* extrinsics_fromref, // Ncameras_extrinsics of these. Transform FROM the reference frame | |
const mrcal_pose_t* frames_toref, // Nframes of these. Transform TO the reference frame | |
const mrcal_point3_t* points, // Npoints of these. In the reference frame | |
const mrcal_calobject_warp_t* calobject_warp, // 1 of these. May be NULL if !problem_selections.do_optimize_calobject_warp | |
int Ncameras_intrinsics, int Ncameras_extrinsics, int Nframes, | |
int Npoints, int Npoints_fixed, // at the end of points[] | |
const mrcal_observation_board_t* observations_board, | |
const mrcal_observation_point_t* observations_point, | |
int Nobservations_board, | |
int Nobservations_point, | |
// All the board pixel observations, in an array of shape | |
// | |
// ( Nobservations_board, | |
// calibration_object_height_n, | |
// calibration_object_width_n ) | |
// | |
// .x, .y are the pixel observations .z is the | |
// weight of the observation. Most of the weights | |
// are expected to be 1.0. Less precise | |
// observations have lower weights. | |
// | |
// .z<0 indicates that this is an outlier | |
const mrcal_point3_t* observations_board_pool, | |
const mrcal_lensmodel_t* lensmodel, | |
const int* imagersizes, // Ncameras_intrinsics*2 of these | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_problem_constants_t* problem_constants, | |
double calibration_object_spacing, | |
int calibration_object_width_n, | |
int calibration_object_height_n, | |
bool verbose); | |
//////////////////////////////////////////////////////////////////////////////// | |
//////////////////// Layout of the measurement and state vectors | |
//////////////////////////////////////////////////////////////////////////////// | |
// The optimization routine tries to minimize the length of the measurement | |
// vector x by moving around the state vector b. | |
// | |
// Depending on the specific optimization problem being solved and the | |
// mrcal_problem_selections_t, the state vector may contain any of | |
// - The lens parameters | |
// - The geometry of the cameras | |
// - The geometry of the observed chessboards and discrete points | |
// - The chessboard shape | |
// | |
// The measurement vector may contain | |
// - The errors in observations of the chessboards | |
// - The errors in observations of discrete points | |
// - The penalties in the solved point positions | |
// - The regularization terms | |
// | |
// Given the problem selections and a vector b or x it is often useful to know | |
// where specific quantities lie in those vectors. We have 4 sets of functions | |
// to answer such questions: | |
// | |
// int mrcal_measurement_index_THING() | |
// Returns the index in the measurement vector x where the contiguous block of | |
// values describing the THING begins. THING is any of | |
// - boards | |
// - points | |
// - regularization | |
// | |
// int mrcal_num_measurements_THING() | |
// Returns the number of values in the contiguous block in the measurement | |
// vector x that describe the given THING. THING is any of | |
// - boards | |
// - points | |
// - regularization | |
// | |
// int mrcal_state_index_THING() | |
// Returns the index in the state vector b where the contiguous block of | |
// values describing the THING begins. THING is any of | |
// - intrinsics | |
// - extrinsics | |
// - frames | |
// - points | |
// - calobject_warp | |
// If we're not optimizing the THING, return <0 | |
// | |
// int mrcal_num_states_THING() | |
// Returns the number of values in the contiguous block in the state | |
// vector b that describe the given THING. THING is any of | |
// - intrinsics | |
// - extrinsics | |
// - frames | |
// - points | |
// - calobject_warp | |
// If we're not optimizing the THING, return 0 | |
int mrcal_measurement_index_boards(int i_observation_board, | |
int Nobservations_board, | |
int Nobservations_point, | |
int calibration_object_width_n, | |
int calibration_object_height_n); | |
int mrcal_num_measurements_boards(int Nobservations_board, | |
int calibration_object_width_n, | |
int calibration_object_height_n); | |
int mrcal_measurement_index_points(int i_observation_point, | |
int Nobservations_board, | |
int Nobservations_point, | |
int calibration_object_width_n, | |
int calibration_object_height_n); | |
int mrcal_num_measurements_points(int Nobservations_point); | |
int mrcal_measurement_index_regularization(int calibration_object_width_n, | |
int calibration_object_height_n, | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, int Nobservations_point, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_measurements_regularization(int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_measurements(int Nobservations_board, | |
int Nobservations_point, | |
int calibration_object_width_n, | |
int calibration_object_height_n, | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_states(int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_state_index_intrinsics(int icam_intrinsics, | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_states_intrinsics(int Ncameras_intrinsics, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_state_index_extrinsics(int icam_extrinsics, | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_states_extrinsics(int Ncameras_extrinsics, | |
mrcal_problem_selections_t problem_selections); | |
int mrcal_state_index_frames(int iframe, | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_states_frames(int Nframes, | |
mrcal_problem_selections_t problem_selections); | |
int mrcal_state_index_points(int i_point, | |
int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_states_points(int Npoints, int Npoints_fixed, | |
mrcal_problem_selections_t problem_selections); | |
int mrcal_state_index_calobject_warp(int Ncameras_intrinsics, int Ncameras_extrinsics, | |
int Nframes, | |
int Npoints, int Npoints_fixed, int Nobservations_board, | |
mrcal_problem_selections_t problem_selections, | |
const mrcal_lensmodel_t* lensmodel); | |
int mrcal_num_states_calobject_warp(mrcal_problem_selections_t problem_selections, | |
int Nobservations_board); | |
// if len>0, the string doesn't need to be 0-terminated. If len<=0, the end of | |
// the buffer IS indicated by a '\0' byte | |
mrcal_cameramodel_t* mrcal_read_cameramodel_string(const char* string, int len); | |
mrcal_cameramodel_t* mrcal_read_cameramodel_file (const char* filename); | |
void mrcal_free_cameramodel(mrcal_cameramodel_t** cameramodel); | |
bool mrcal_write_cameramodel_file(const char* filename, | |
const mrcal_cameramodel_t* cameramodel); | |
// Public ABI stuff, that's not for end-user consumption | |
#include "mrcal-internal.h" | |